Metallic Thin-Film Bonding and Alloy Generation
NASA Technical Reports Server (NTRS)
Peotter, Brian S. (Inventor); Fryer, Jack Merrill (Inventor); Campbell, Geoff (Inventor); Droppers, Lloyd (Inventor)
2016-01-01
Diffusion bonding a stack of aluminum thin films is particularly challenging due to a stable aluminum oxide coating that rapidly forms on the aluminum thin films when they are exposed to atmosphere and the relatively low meting temperature of aluminum. By plating the individual aluminum thin films with a metal that does not rapidly form a stable oxide coating, the individual aluminum thin films may be readily diffusion bonded together using heat and pressure. The resulting diffusion bonded structure can be an alloy of choice through the use of a carefully selected base and plating metals. The aluminum thin films may also be etched with distinct patterns that form a microfluidic fluid flow path through the stack of aluminum thin films when diffusion bonded together.
Low stress polysilicon film and method for producing same
NASA Technical Reports Server (NTRS)
Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor)
2001-01-01
Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin film may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films.
Low stress polysilicon film and method for producing same
NASA Technical Reports Server (NTRS)
Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor)
2002-01-01
Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin film may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films.
Methods for preparing colloidal nanocrystal-based thin films
Kagan, Cherie R.; Fafarman, Aaron T.; Choi, Ji-Hyuk; Koh, Weon-kyu; Kim, David K.; Oh, Soong Ju; Lai, Yuming; Hong, Sung-Hoon; Saudari, Sangameshwar Rao; Murray, Christopher B.
2016-05-10
Methods of exchanging ligands to form colloidal nanocrystals (NCs) with chalcogenocyanate (xCN)-based ligands and apparatuses using the same are disclosed. The ligands may be exchanged by assembling NCs into a thin film and immersing the thin film in a solution containing xCN-based ligands. The ligands may also be exchanged by mixing a xCN-based solution with a dispersion of NCs, flocculating the mixture, centrifuging the mixture, discarding the supernatant, adding a solvent to the pellet, and dispersing the solvent and pellet to form dispersed NCs with exchanged xCN-ligands. The NCs with xCN-based ligands may be used to form thin film devices and/or other electronic, optoelectronic, and photonic devices. Devices comprising nanocrystal-based thin films and methods for forming such devices are also disclosed. These devices may be constructed by depositing NCs on to a substrate to form an NC thin film and then doping the thin film by evaporation and thermal diffusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meral, Kadem, E-mail: kademm@atauni.edu.tr; Arik, Mustafa, E-mail: marik@tatauni.edu.tr; Onganer, Yavuz, E-mail: yonganer@atauni.edu.tr
Thin films of pyronin dye mixed with poly(vinyl alcohol) (PVA) on glass substrate were prepared by using spin-coating technique. The optical and morphological properties of the thin films were studied by UV-Vis., steady-state fluorescence spectroscopies and atomic force microscopy (AFM). The thin films on glass substrate were fabricated at various [PVA]/[dye] (P/D) ratios. Hence, the monomeric and H-aggregates thin films of pyronin dye mixed with PVA were formed as a function of the dye and PVA concentration. It was determined that while the monomeric thin films showed strong fluorescence, the formation of H-aggregates in the thin film caused to decreasingmore » the fluorescence intensity. AFM studies demonstrated that the morphology of the thin film was drastically varied with changing the optical property of the thin film such as monomeric and H-aggregates thin films.« less
Methods for producing thin film charge selective transport layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, Scott Ryan; Olson, Dana C.; van Hest, Marinus Franciscus Antonius Maria
Methods for producing thin film charge selective transport layers are provided. In one embodiment, a method for forming a thin film charge selective transport layer comprises: providing a precursor solution comprising a metal containing reactive precursor material dissolved into a complexing solvent; depositing the precursor solution onto a surface of a substrate to form a film; and forming a charge selective transport layer on the substrate by annealing the film.
Method of producing solution-derived metal oxide thin films
Boyle, Timothy J.; Ingersoll, David
2000-01-01
A method of preparing metal oxide thin films by a solution method. A .beta.-metal .beta.-diketonate or carboxylate compound, where the metal is selected from groups 8, 9, 10, 11, and 12 of the Periodic Table, is solubilized in a strong Lewis base to form a homogeneous solution. This precursor solution forms within minutes and can be deposited on a substrate in a single layer or a multiple layers to form a metal oxide thin film. The substrate with the deposited thin film is heated to change the film from an amorphous phase to a ceramic metal oxide and cooled.
Liang, Yu Teng; Vijayan, Baiju K.; Gray, Kimberly A.; Hersam, Mark C.
2016-07-19
In one aspect, a method of making non-covalently bonded carbon-titania nanocomposite thin films includes: forming a carbon-based ink; forming a titania (TiO.sub.2) solution; blade-coating a mechanical mixture of the carbon-based ink and the titania solution onto a substrate; and annealing the blade-coated substrate at a first temperature for a first period of time to obtain the carbon-based titania nanocomposite thin films. In certain embodiments, the carbon-based titania nanocomposite thin films may include solvent-exfoliated graphene titania (SEG-TiO.sub.2) nanocomposite thin films, or single walled carbon nanotube titania (SWCNT-TiO.sub.2) nanocomposite thin films.
Photovoltaic devices comprising cadmium stannate transparent conducting films and method for making
Wu, Xuanzhi; Coutts, Timothy J.; Sheldon, Peter; Rose, Douglas H.
1999-01-01
A photovoltaic device having a substrate, a layer of Cd.sub.2 SnO.sub.4 disposed on said substrate as a front contact, a thin film comprising two or more layers of semiconductor materials disposed on said layer of Cd.sub.2 SnO.sub.4, and an electrically conductive film disposed on said thin film of semiconductor materials to form a rear electrical contact to said thin film. The device is formed by RF sputter coating a Cd.sub.2 SnO.sub.4 layer onto a substrate, depositing a thin film of semiconductor materials onto the layer of Cd.sub.2 SnO.sub.4, and depositing an electrically conductive film onto the thin film of semiconductor materials.
NASA Astrophysics Data System (ADS)
Taniguchi, Tatsuhiko; Sakane, Shunya; Aoki, Shunsuke; Okuhata, Ryo; Ishibe, Takafumi; Watanabe, Kentaro; Suzuki, Takeyuki; Fujita, Takeshi; Sawano, Kentarou; Nakamura, Yoshiaki
2017-05-01
We have investigated the intrinsic thermoelectric properties of epitaxial β-FeSi2 thin films and the impact of phosphorus (P) doping. Epitaxial β-FeSi2 thin films with single phase were grown on Si(111) substrates by two different techniques in an ultrahigh-vacuum molecular beam epitaxy (MBE) system: solid-phase epitaxy (SPE), where iron silicide films formed by codeposition of Fe and Si at room temperature were recrystallized by annealing at 530°C to form epitaxial β-FeSi2 thin films on Si(111) substrates, and MBE of β-FeSi2 thin films on epitaxial β-FeSi2 templates formed on Si(111) by reactive deposition epitaxy (RDE) at 530°C (RDE + MBE). Epitaxial SPE thin films based on codeposition had a flatter surface and more abrupt β-FeSi2/Si(111) interface than epitaxial RDE + MBE thin films. We investigated the intrinsic thermoelectric properties of the epitaxial β-FeSi2 thin films on Si(111), revealing lower thermal conductivity and higher electrical conductivity compared with bulk β-FeSi2. We also investigated the impact of doping on the Seebeck coefficient of bulk and thin-film β-FeSi2. A route to enhance the thermoelectric performance of β-FeSi2 is proposed, based on (1) fabrication of thin-film structures for high electrical conductivity and low thermal conductivity, and (2) proper choice of doping for high Seebeck coefficient.
Ordered organic-organic multilayer growth
Forrest, Stephen R.; Lunt, Richard R.
2016-04-05
An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.
Ordered organic-organic multilayer growth
Forrest, Stephen R; Lunt, Richard R
2015-01-13
An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.
Large area polysilicon films with predetermined stress characteristics and method for producing same
NASA Technical Reports Server (NTRS)
Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor); Phillips, Stephen M. (Inventor)
2002-01-01
Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin films may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films. Multi-layer assemblies exhibiting selectively determinable overall bending moments are also disclosed. Selective production of overall bending moments in microstructures enables manufacture of such structures with a wide array of geometrical configurations.
Photovoltaic devices comprising cadmium stannate transparent conducting films and method for making
Wu, X.; Coutts, T.J.; Sheldon, P.; Rose, D.H.
1999-07-13
A photovoltaic device is disclosed having a substrate, a layer of Cd[sub 2]SnO[sub 4] disposed on said substrate as a front contact, a thin film comprising two or more layers of semiconductor materials disposed on said layer of Cd[sub 2]SnO[sub 4], and an electrically conductive film disposed on said thin film of semiconductor materials to form a rear electrical contact to said thin film. The device is formed by RF sputter coating a Cd[sub 2]SnO[sub 4] layer onto a substrate, depositing a thin film of semiconductor materials onto the layer of Cd[sub 2]SnO[sub 4], and depositing an electrically conductive film onto the thin film of semiconductor materials. 10 figs.
NMR characterization of thin films
Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela
2010-06-15
A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.
NMR characterization of thin films
Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela
2008-11-25
A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.
Perovskite phase thin films and method of making
Boyle, Timothy J.; Rodriguez, Mark A.
2000-01-01
The present invention comprises perovskite-phase thin films, of the general formula A.sub.x B.sub.y O.sub.3 on a substrate, wherein A is selected from beryllium, magnesium, calcium, strontium, and barium or a combination thereof; B is selected from niobium and tantalum or a combination thereof; and x and y are mole fractions between approximately 0.8 and 1.2. More particularly, A is strontium or barium or a combination thereof and B is niobium or tantalum or a combination thereof. Also provided is a method of making a perovskite-phase thin film, comprising combining at least one element-A-containing compound, wherein A is selected from beryllium, magnesium, calcium, strontium or barium, with at least one element-B-containing compound, wherein B niobium or tantalum, to form a solution; adding a solvent to said solution to form another solution; spin-coating the solution onto a substrate to form a thin film; and heating the film to form the perovskite-phase thin film.
Multi-layer assemblies with predetermined stress profile and method for producing same
NASA Technical Reports Server (NTRS)
Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor); Phillips, Stephen M. (Inventor)
2003-01-01
Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin films may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films. Multi-layer assemblies exhibiting selectively determinable overall bending moments are also disclosed. Selective production of overall bending moments in microstructures enables manufacture of such structures with a wide array of geometrical configurations.
Nanoporous structures on ZnO thin films
NASA Astrophysics Data System (ADS)
Gür, Emre; Kılıç, Bayram; Coşkun, C.; Tüzemen, S.; Bayrakçeken, Fatma
2010-01-01
Porous structures were formed on ZnO thin films which were grown by an electrochemical deposition (ECD) method. The growth processes were carried out in a solution of dimethylsulfoxide (DMSO) zinc perchlorate, Zn(ClO 4) 2, at 120 ∘C on indium tin oxide (ITO) substrates. Optical and structural characterizations of electrochemically grown ZnO thin films have shown that the films possess high (0002) c-axis orientation, high nucleation, high intensity and low FWHM of UV emission at the band edge region and a sharp UV absorption edge. Nanoporous structures were formed via self-assembled monolayers (SAMs) of hexanethiol (C 6SH) and dodecanethiol (C 12SH). Scanning electron microscope (SEM) measurements showed that while a nanoporous structure (pore radius 20 nm) is formed on the ZnO thin films by hexanathiol solution, a macroporous structure (pore radius 360 nm) is formed by dodecanethiol solution. No significant variation is observed in X-ray diffraction (XRD) measurements on the ZnO thin films after pore formation. However, photoluminescence (PL) measurements showed that green emission is observed as the dominant emission for the macroporous structures, while no variation is observed for the thin film nanoporous ZnO sample.
Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; van Hest, Marinus Franciscus Antonius Maria; Ginley, David S [Evergreen, CO; Leisch, Jennifer [Denver, CO; Taylor, Matthew [West Simsbury, CT; Stanbery, Billy J [Austin, TX
2011-09-20
Precursor compositions containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semi-conductor applications. Methods of forming the precursor compositions using primary amine solvents and methods of forming the thin films wherein the selection of temperature and duration of heating controls the formation of a targeted species of copper selenide.
NASA Technical Reports Server (NTRS)
Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor); Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor)
2013-01-01
A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.
Method for making surfactant-templated thin films
Brinker, C. Jeffrey; Lu, Yunfeng; Fan, Hong You
2010-08-31
An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.
Method for making surfactant-templated thin films
Brinker, C. Jeffrey; Lu, Yunfeng; Fan, Hongyou
2002-01-01
An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tadanaga, Kiyoharu, E-mail: tadanaga@chem.osakafu-u.ac.jp; Yamaguchi, Akihiro; Sakuda, Atsushi
2014-05-01
Highlights: • LiMn{sub 2}O{sub 4} thin films were prepared by using the mist CVD process. • An aqueous solution of lithium and manganese acetates is used for the precursor solution. • The cell with the LiMn{sub 2}O{sub 4} thin films exhibited a capacity of about 80 mAh/g. • The cell showed good cycling performance during 10 cycles. - Abstract: LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries were prepared by using so-called the “mist CVD process”, employing an aqueous solution of lithium acetate and manganese acetate, as the source of Li and Mn, respectively. The aqueousmore » solution of starting materials was ultrasonically atomized to form mist particles, and mists were transferred by nitrogen gas to silica glass substrate to form thin films. FE-SEM observation revealed that thin films obtained by this process were dense and smooth, and thin films with a thickness of about 750 nm were obtained. The electrochemical cell with the thin films obtained by sintering at 700 °C exhibited a capacity of about 80 mAh/g, and the cell showed good cycling performance during 10 cycles.« less
Process for forming epitaxial perovskite thin film layers using halide precursors
Clem, Paul G.; Rodriguez, Mark A.; Voigt, James A.; Ashley, Carol S.
2001-01-01
A process for forming an epitaxial perovskite-phase thin film on a substrate. This thin film can act as a buffer layer between a Ni substrate and a YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor layer. The process utilizes alkali or alkaline metal acetates dissolved in halogenated organic acid along with titanium isopropoxide to dip or spin-coat the substrate which is then heated to about 700.degree. C. in an inert gas atmosphere to form the epitaxial film on the substrate. The YBCO superconductor can then be deposited on the layer formed by this invention.
Thin films of mixed metal compounds
Mickelsen, Reid A.; Chen, Wen S.
1985-01-01
A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.
Hobson, David O.; Snyder, Jr., William B.
1995-01-01
A method and system for manufacturing a thin-film battery and a battery structure formed with the method utilizes a plurality of deposition stations at which thin battery component films are built up in sequence upon a web-like substrate as the substrate is automatically moved through the stations. At an initial station, cathode and anode current collector film sections are deposited upon the substrate, and at another station, a thin cathode film is deposited upon the substrate so to overlie part of the cathode current collector section. At another station, a thin electrolyte film is deposited upon so as to overlie the cathode film and part of the anode current collector film, at yet another station, a thin lithium film is deposited upon so as to overlie the electrolyte film and an additional part of the anode current collector film. Such a method accommodates the winding of a layup of battery components into a spiral configuration to provide a thin-film, high capacity battery and also accommodates the build up of thin film battery components onto a substrate surface having any of a number of shapes.
Thin film electronic devices with conductive and transparent gas and moisture permeation barriers
Simpson, Lin Jay
2015-07-28
Thin film electronic devices (or stacks integrated with a substrate) that include a permeation barrier formed of a thin layer of metal that provides a light transmitting and electrically conductive layer, wherein the electrical conductive layer is formed on a surface of the substrate or device layer such as a transparent conducting material layer with pin holes or defects caused by manufacturing and the thin layer of metal is deposited on the conductive layer and formed from a self-healing metal that forms self-terminating oxides. A permeation plug or block is formed in or adjacent to the thin film of metal at or proximate to the pin holes to block further permeation of contaminants through the pin holes.
Bhaskaran, M; Sriram, S; Mitchell, D R G; Short, K T; Holland, A S; Mitchell, A
2009-01-01
This article discusses the results of transmission electron microscopy (TEM)-based investigation of nickel silicide (NiSi) thin films grown on silicon. Nickel silicide is currently used as the CMOS technology standard for local interconnects and in electrical contacts. Films were characterized with a range of TEM-based techniques along with glancing angle X-ray diffraction. The nickel silicide thin films were formed by vacuum annealing thin films of nickel (50 nm) deposited on (100) silicon. The cross-sectional samples indicated a final silicide thickness of about 110 nm. This investigation studied and reports on three aspects of the thermally formed thin films: the uniformity in composition of the film using jump ratio maps; the nature of the interface using high resolution imaging; and the crystalline orientation of the thin films using selected-area electron diffraction (SAED). The analysis highlighted uniform composition in the thin films, which was also substantiated by spectroscopy techniques; an interface exhibiting the desired abrupt transition from silicide to silicon; and desired and preferential crystalline orientation corresponding to stoichiometric NiSi, supported by glancing angle X-ray diffraction results.
Thin film electronic devices with conductive and transparent gas and moisture permeation barriers
Simpson, Lin Jay
2013-12-17
A thin film stack (100, 200) is provided for use in electronic devices such as photovoltaic devices. The stack (100, 200) may be integrated with a substrate (110) such as a light transmitting/transmissive layer. A electrical conductor layer (120, 220) is formed on a surface of the substrate (110) or device layer such as a transparent conducting (TC) material layer (120,220) with pin holes or defects (224) caused by manufacturing. The stack (100) includes a thin film (130, 230) of metal that acts as a barrier for environmental contaminants (226, 228). The metal thin film (130,230) is deposited on the conductor layer (120, 220) and formed from a self-healing metal such as a metal that forms self-terminating oxides. A permeation plug or block (236) is formed in or adjacent to the thin film (130, 230) of metal at or proximate to the pin holes (224) to block further permeation of contaminants through the pin holes (224).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Routh, Prahlad K.; Nykypanchuk, Dmytro; Venkatesh, T. A.
Large area, device relevant sized microporous thin films are formed with commercially available polythiophenes by the breath figure technique, a water-assisted micro patterning method, with such semitransparent thin films exhibiting periodicity and uniformity dictated by the length of the polymer side chain. Compared to drop casted thin films, the microporous thin films exhibit increased crystallinity due to stronger packing of the polymer inside the honeycomb frame.
Thin film photovoltaic device and process of manufacture
Albright, S.P.; Chamberlin, R.
1997-10-07
Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.
Thin film photovoltaic device and process of manufacture
Albright, Scot P.; Chamberlin, Rhodes
1999-02-09
Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.
Thin film photovoltaic device and process of manufacture
Albright, S.P.; Chamberlin, R.
1999-02-09
Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.
Thin film photovoltaic device and process of manufacture
Albright, Scot P.; Chamberlin, Rhodes
1997-10-07
Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.
Composite polymeric film and method for its use in installing a very-thin polymeric film in a device
Duchane, D.V.; Barthell, B.L.
1982-04-26
A composite polymeric film and a method for its use in forming and installing a very thin (< 10 ..mu..m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectiely dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to e successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.
Composite polymeric film and method for its use in installing a very thin polymeric film in a device
Duchane, David V.; Barthell, Barry L.
1984-01-01
A composite polymeric film and a method for its use in forming and installing a very thin (<10 .mu.m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectively dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to be successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.
Facile "modular assembly" for fast construction of a highly oriented crystalline MOF nanofilm.
Xu, Gang; Yamada, Teppei; Otsubo, Kazuya; Sakaida, Shun; Kitagawa, Hiroshi
2012-10-10
The preparation of crystalline, ordered thin films of metal-organic frameworks (MOFs) will be a critical process for MOF-based nanodevices in the future. MOF thin films with perfect orientation and excellent crystallinity were formed with novel nanosheet-structured components, Cu-TCPP [TCPP = 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin], by a new "modular assembly" strategy. The modular assembly process involves two steps: a "modularization" step is used to synthesize highly crystalline "modules" with a nanosized structure that can be conveniently assembled into a thin film in the following "assembly" step. With this method, MOF thin films can easily be set up on different substrates at very high speed with controllable thickness. This new approach also enabled us to prepare highly oriented crystalline thin films of MOFs that cannot be prepared in thin-film form by traditional techniques.
Dinda, Enakshi; Rashid, Md Harunar; Biswas, Mrinmoy; Mandal, Tarun K
2010-11-16
We describe a general one-step facile method for depositing gold nanoparticle (GNP) thin films onto any type of substrates by the in situ reduction of AuCl(3) using a newly designed redox-active ionic liquid (IL), tetrabutylphosphonium citrate ([TBP][Ci]). Various substrates such as positively charged glass, negatively charged glass/quartz, neutral hydrophobic glass, polypropylene, polystyrene, plain paper, and cellophane paper are successfully coated with a thin film of GNPs. This IL ([TBP][Ci]) is prepared by the simple neutralization of tetrabutylphosphonium hydroxide with citric acid. We also demonstrate that the [TBP][Ci] ionic liquid can be successfully used to generate GNPs in an aqueous colloidal suspension in situ. The deposited GNP thin films on various surfaces are made up of mostly discrete spherical GNPs that are well distributed throughout the film, as confirmed by field-emission scanning electron microscopy. However, it seems that some GNPs are arranged to form arrays depending on the nature of surface. We also characterize these GNP thin films via UV-vis spectroscopy and X-ray diffractometry. The as-formed GNP thin films show excellent stability toward solvent washing. We demonstrate that the thin film of GNPs on a glass/quartz surface can be successfully used as a refractive index (RI) sensor for different polar and nonpolar organic solvents. The as-formed GNP thin films on different surfaces show excellent catalytic activity in the borohydride reduction of p-nitrophenol.
NASA Technical Reports Server (NTRS)
Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor); Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor)
2010-01-01
A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.
Evaporation system and method for gas jet deposition of thin film materials
Schmitt, J.J.; Halpern, B.L.
1994-10-18
A method and apparatus are disclosed for depositing thin films of materials such as metals, oxides and nitrides at low temperature relies on a supersonic free jet of inert carrier gas to transport vapor species generated from an evaporation source to the surface of a substrate. Film deposition vapors are generated from solid film precursor materials, including those in the form of wires or powders. The vapor from these sources is carried downstream in a low pressure supersonic jet of inert gas to the surface of a substrate where the vapors deposit to form a thin film. A reactant gas can be introduced into the gas jet to form a reaction product with the evaporated material. The substrate can be moved from the gas jet past a gas jet containing a reactant gas in which a discharge has been generated, the speed of movement being sufficient to form a thin film which is chemically composed of the evaporated material and reactant gases. 8 figs.
Evaporation system and method for gas jet deposition of thin film materials
Schmitt, Jerome J.; Halpern, Bret L.
1994-01-01
A method and apparatus for depositing thin films of materials such as metals, oxides and nitrides at low temperature relies on a supersonic free jet of inert carrier gas to transport vapor species generated from an evaporation source to the surface of a substrate. Film deposition vapors are generated from solid film precursor materials, including those in the form of wires or powders. The vapor from these sources is carried downstream in a low pressure supersonic jet of inert gas to the surface of a substrate where the vapors deposit to form a thin film. A reactant gas can be introduced into the gas jet to form a reaction product with the evaporated material. The substrate can be moved from the gas jet past a gas jet containing a reactant gas in which a discharge has been generated, the speed of movement being sufficient to form a thin film which is chemically composed of the evaporated material and reactant gases.
High density nonmagnetic cobalt in thin films
NASA Astrophysics Data System (ADS)
Banu, Nasrin; Singh, Surendra; Basu, Saibal; Roy, Anupam; Movva, Hema C. P.; Lauter, V.; Satpati, B.; Dev, B. N.
2018-05-01
Recently high density (HD) nonmagnetic cobalt has been discovered in a nanoscale cobalt thin film, grown on Si(111) single crystal. This form of cobalt is not only nonmagnetic but also superconducting. These promising results have encouraged further investigations of the growth of the nonmagnetic (NM) phase of cobalt. In the original investigation, the cobalt film had a natural cobalt oxide at the top. We have investigated whether the growth of HD NM cobalt layers in the thin film depends on (i) a capping layer on the cobalt film, (ii) the thickness of the cobalt film and (iii) the nature of the substrate on which the cobalt film is grown. The results of such investigations indicate that for cobalt films capped with a thin gold layer, and for various film thicknesses, HD NM cobalt layers are formed. However, instead of a Si substrate, when the cobalt films are grown on oxide substrates, such as silicon oxide or cobalt oxide, HD NM cobalt layers are not formed. The difference is attributed to the nature—crystalline or amorphous—of the substrate.
NASA Astrophysics Data System (ADS)
Skonieczny, R.; Makowiecki, J.; Bursa, B.; Krzykowski, A.; Szybowicz, M.
2018-02-01
The titanyl phthalocyanine (TiOPc) thin film deposited on glass, silicon and gold substrate have been studied using Raman spectroscopy, atomic force microscopy (AFM), absorption and profilometry measurements. The TiOPc thin layers have been deposited at room temperature by the quasi-molecular beam evaporation technique. The Raman spectra have been recorded using micro Raman system equipped with a confocal microscope. Using surface Raman mapping techni que with polarized Raman spectra the polymorphic forms of the TiOPc thin films distribution have been obtained. The AFM height and phase image were examined in order to find surface features and morphology of the thin films. Additionally to compare experimental results, structure optimization and vibrational spectra calculation of single TiOPc molecule were performed using DFT calculations. The received results showed that the parameters like polymorphic form, grain size, roughness of the surface in TiOPc thin films can well characterize the obtained organic thin films structures in terms of their use in optoelectronics and photovoltaics devices.
Mustaqima, Millaty; Yoo, Pilsun; Huang, Wei; Lee, Bo Wha; Liu, Chunli
2015-01-01
We report the preparation of (111) preferentially oriented CoFe2O4 thin films on Pt(111)/TiO2/SiO2/Si substrates using a spin-coating process. The post-annealing conditions and film thickness were varied for cobalt ferrite (CFO) thin films, and Pt/CFO/Pt structures were prepared to investigate the resistance switching behaviors. Our results showed that resistance switching without a forming process is preferred to obtain less fluctuation in the set voltage, which can be regulated directly from the preparation conditions of the CFO thin films. Therefore, instead of thicker film, CFO thin films deposited by two times spin-coating with a thickness about 100 nm gave stable resistance switching with the most stable set voltage. Since the forming process and the large variation in set voltage have been considered as serious obstacles for the practical application of resistance switching for non-volatile memory devices, our results could provide meaningful insights in improving the performance of ferrite material-based resistance switching memory devices.
Thin films of a ferroelectric phenazine/chloranilic acid organic cocrystal
NASA Astrophysics Data System (ADS)
Thompson, Nicholas J.; Jandl, Adam C.; Spalenka, Josef W.; Evans, Paul G.
2011-07-01
Phenazine-chloranilic acid cocrystal thin films can be formed by vacuum evaporation of the component molecules onto cooled substrates. Fluxes of phenazine and chloranilic acid were provided from separate sublimation sources, from which the cocrystalline phase can be formed under a wide range of impingement rates of the component molecules. Substrates consisted of Au or Ni thin films on Si wafers, cooled to 100-140 K during deposition. X-ray diffraction and scanning electron microscopy show that this process yields polycrystalline thin films of the cocrystal with voids between crystalline grains. The relative intensities of X-ray reflections differ from reported intensities of polycrystalline powders, suggesting that the films have an anisotropic distribution of crystallographic orientations. The cocrystalline thin films have an effective dielectric constant of 13 at room temperature, increasing at lower temperatures and exhibiting a broad maximum near 200 K. The means to grow thin films of organic ferroelectric materials will allow the integration of new functionalities into organic electronic device structures, including capacitors and field-effect transistors.
Thin film absorber for a solar collector
Wilhelm, William G.
1985-01-01
This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.
Rambabu, A; Senthilkumar, B; Sada, K; Krupanidhi, S B; Barpanda, P
2018-03-15
Sodium-ion thin-film micro-batteries form a niche sector of energy storage devices. Sodium titanate, Na 2 Ti 6 O 13 (NTO) thin films were deposited by pulsed laser deposition (PLD) using solid-state synthesized polycrystalline Na 2 Ti 6 O 13 compound. The phase-purity and crystallinity of NTO in bulk and thin-film forms were confirmed by Rietveld refinement. Electron microscopy and atomic force microscopy revealed the formation of uniform ∼100 nm thin film with roughness of ∼4 nm consisting of homogeneous nanoscale grains. These PLD-deposited NTO thin-films, when tested in Na-half cell architecture, delivered a near theoretical reversible capacity close to 42 mA h g -1 involving Ti 4+ /Ti 3+ redox activity along with good cycling stability and rate kinetics. Na 2 Ti 6 O 13 can work as an efficient and safe anode in designing sodium-ion thin-film micro-batteries. Copyright © 2017 Elsevier Inc. All rights reserved.
Synthesis and Characterization of Thin Film Lithium-Ion Batteries Using Polymer Electrolytes
NASA Technical Reports Server (NTRS)
Maranchi, Jeffrey P.; Kumta, Prashant N.; Hepp, Aloysius F.; Raffaelle, Ryne P.
2002-01-01
The present paper describes the integration of thin film electrodes with polymer electrolytes to form a complete thin film lithium-ion battery. Thin film batteries of the type, LiCoO2 [PAN, EC, PC, LiN(CF3SO2)2] SnO2 have been fabricated. The results of the synthesis and characterization studies will be presented and discussed.
Microwave plasma assisted supersonic gas jet deposition of thin film materials
Schmitt, III, Jerome J.; Halpern, Bret L.
1993-01-01
An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures.
Thin film ion conducting coating
Goldner, Ronald B.; Haas, Terry; Wong, Kwok-Keung; Seward, George
1989-01-01
Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.
Chemical surface deposition of ultra-thin semiconductors
McCandless, Brian E.; Shafarman, William N.
2003-03-25
A chemical surface deposition process for forming an ultra-thin semiconducting film of Group IIB-VIA compounds onto a substrate. This process eliminates particulates formed by homogeneous reactions in bath, dramatically increases the utilization of Group IIB species, and results in the formation of a dense, adherent film for thin film solar cells. The process involves applying a pre-mixed liquid coating composition containing Group IIB and Group VIA ionic species onto a preheated substrate. Heat from the substrate causes a heterogeneous reaction between the Group IIB and VIA ionic species of the liquid coating composition, thus forming a solid reaction product film on the substrate surface.
Thin-film semiconductor rectifier has improved properties
NASA Technical Reports Server (NTRS)
1966-01-01
Cadmium selenide-zinc selenide film is used as a thin film semiconductor rectifier. The film is vapor-deposited in a controlled concentration gradient into a glass substrate to form the required junctions between vapor-deposited gold electrodes.
Long range self-assembly of polythiophene breath figures: Optical and morphological characterization
Routh, Prahlad K.; Nykypanchuk, Dmytro; Venkatesh, T. A.; ...
2015-09-01
Large area, device relevant sized microporous thin films are formed with commercially available polythiophenes by the breath figure technique, a water-assisted micro patterning method, with such semitransparent thin films exhibiting periodicity and uniformity dictated by the length of the polymer side chain. Compared to drop casted thin films, the microporous thin films exhibit increased crystallinity due to stronger packing of the polymer inside the honeycomb frame.
Microwave plasma assisted supersonic gas jet deposition of thin film materials
Schmitt, J.J. III; Halpern, B.L.
1993-10-26
An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures. 5 figures.
Method of producing amorphous thin films
Brusasco, Raymond M.
1992-01-01
Disclosed is a method of producing thin films by sintering which comprises: a. coating a substrate with a thin film of an inorganic glass forming parulate material possessing the capability of being sintered, and b. irridiating said thin film of said particulate material with a laser beam of sufficient power to cause sintering of said material below the temperature of liquidus thereof. Also disclosed is the article produced by the method claimed.
Method of producing amorphous thin films
Brusasco, R.M.
1992-09-01
Disclosed is a method of producing thin films by sintering which comprises: (a) coating a substrate with a thin film of an inorganic glass forming material possessing the capability of being sintered; and (b) irradiating said thin film of said particulate material with a laser beam of sufficient power to cause sintering of said material below the temperature of liquidus thereof. Also disclosed is the article produced by the method claimed. 4 figs.
Catalano, Anthony W.; Bhushan, Manjul
1982-01-01
A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.
Integrated structure vacuum tube
NASA Technical Reports Server (NTRS)
Dimeff, J.; Kerwin, W. J. (Inventor)
1976-01-01
High efficiency, multi-dimensional thin film vacuum tubes suitable for use in high temperature, high radiation environments are described. The tubes are fabricated by placing thin film electrode members in selected arrays on facing interior wall surfaces of an alumina substrate envelope. Cathode members are formed using thin films of triple carbonate. The photoresist used in photolithography aids in activation of the cathodes by carbonizing and reacting with the reduced carbonates when heated in vacuum during forming. The finely powdered triple carbonate is mixed with the photoresist used to delineate the cathode locations in the conventional solid state photolithographic manner. Anode and grid members are formed using thin films of refractory metal. Electron flow in the tubes is between grid elements from cathode to anode as in a conventional three-dimensional tube.
NASA Astrophysics Data System (ADS)
Wang, Yige; Wang, Li; Li, Huanrong; Liu, Peng; Qin, Dashan; Liu, Binyuan; Zhang, Wenjun; Deng, Ruiping; Zhang, Hongjie
2008-03-01
Stable transparent titania thin films were fabricated at room temperature by combining thenoyltrifluoroacetone (TTFA)-modified titanium precursors with amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, P123) copolymers. The obtained transparent titania thin films were systematically investigated by IR spectroscopy, PL emission and excitation spectroscopy and transmission electron microscopy. IR spectroscopy indicates that TTFA coordinates the titanium center during the process of hydrolysis and condensation. Luminescence spectroscopy confirms the in-situ formation of lanthanide complexes in the transparent titania thin film. TEM image shows that the in-situ formed lanthanide complexes were homogeneously distributed throughout the whole thin film. The quantum yield and the number of water coordinated to lanthanide metal center have been theoretically determined based on the luminescence data.
Extending the 3ω method: thermal conductivity characterization of thin films.
Bodenschatz, Nico; Liemert, André; Schnurr, Sebastian; Wiedwald, Ulf; Ziemann, Paul
2013-08-01
A lock-in technique for measurement of thermal conductivity and volumetric heat capacity of thin films is presented. The technique is based on the 3ω approach using electrical generation and detection of oscillatory heat along a thin metal strip. Thin films are deposited onto the backside of commercial silicon nitride membranes, forming a bilayer geometry with distinct thermal parameters. Stepwise comparison to an adapted heat diffusion model delivers these parameters for both layers. Highest sensitivity is found for metallic thin films.
NASA Technical Reports Server (NTRS)
Bilodeau, Steven (Inventor); Baum, Thomas H. (Inventor); Roeder, Jeffrey F. (Inventor); Chen, Ing-Shin (Inventor)
2001-01-01
A modified PbZrTiO.sub.3 perovskite crystal material thin film, wherein the PbZrTiO.sub.3 perovskite crystal material includes crystal lattice A-sites and B-sites at least one of which is modified by the presence of a substituent selected from the group consisting of (i) A-site substituents consisting of Sr, Ca, Ba and Mg, and (ii) B-site substituents selected from the group consisting of Nb and Ta. The perovskite crystal thin film material may be formed by liquid delivery MOCVD from metalorganic precursors of the metal components of the thin film, to form PZT and PSZT, and other piezoelectric and ferroelectric thin film materials. The thin films of the invention have utility in non-volatile ferroelectric memory devices (NV-FeRAMs), and in microelectromechanical systems (MEMS) as sensor and/or actuator elements, e.g., high speed digital system actuators requiring low input power levels.
NASA Technical Reports Server (NTRS)
Bilodeau, Steven (Inventor); Baum, Thomas H. (Inventor); Roeder, Jeffrey F. (Inventor); Chen, Ing-Shin (Inventor)
2004-01-01
A modified PbZrTiO.sub.3 perovskite crystal material thin film, wherein the PbZrTiO.sub.3 perovskite crystal material includes crystal lattice A-sites and B-sites at least one of which is modified by the presence of a substituent selected from the group consisting of (i) A-site substituents consisting of Sr, Ca, Ba and Mg, and (ii) B-site substituents selected from the group consisting of Nb and Ta. The perovskite crystal thin film material may be formed by liquid delivery MOCVD from metalorganic precursors of the metal components of the thin film, to form PZT and PSZT, and other piezoelectric and ferroelectric thin film materials. The thin films of the invention have utility in non-volatile ferroelectric memory devices (NV-FeRAMs), and in microelectromechanical systems (MEMS) as sensor and/or actuator elements, e.g., high speed digital system actuators requiring low input power levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laskowski, Lukasz, E-mail: lukasz.laskowski@kik.pcz.pl; Laskowska, Magdalena, E-mail: magdalena.laskowska@onet.pl; Jelonkiewicz, Jerzy, E-mail: jerzy.jelonkiewicz@kik.pcz.pl
The SBA-15 silica thin films containing copper ions anchored inside channels via propyl phosphonate groups are investigated. Such materials were prepared in the form of thin films, with hexagonally arranged pores, laying rectilinear to the substrate surface. However, in the case of our thin films, their free standing form allowed for additional research possibilities, that are not obtainable for typical thin films on a substrate. The structural properties of the samples were investigated by X-ray reflectometry, atomic force microscopy (AFM) and transmission electron microscopy (TEM). The molecular structure was examined by Raman spectroscopy supported by numerical simulations. Magnetic measurements (SQUIDmore » magnetometry and EPR spectroscopy) showed weak antiferromagnetic interactions between active units inside silica channels. Consequently, the pores arrangement was determined and the process of copper ions anchoring by propyl phosphonate groups was verified in unambiguous way. Moreover, the type of interactions between magnetic atoms was determined. - Highlights: • Functionalized free-standing SBA-15 thin films were synthesized for a first time. • Thin films synthesis procedure was described in details. • Structural properties of the films were thoroughly investigated and presented. • Magnetic properties of the novel material was investigated and presented.« less
Synthesis and characterization of lithium intercalation electrodes based on iron oxide thin films
NASA Astrophysics Data System (ADS)
Sarradin, J.; Guessous, A.; Ribes, M.
Sputter-deposited iron oxide thin films are investigated as a possible negative electrode for rocking-chair microbatteries. Experimental conditions related to the manufacturing of amorphous thin films suitable to a large number of available intercalation sites are described. Structural and physical properties of the thin layer films are presented. The conductivities of the amorphous thin films were found to be very high compared with those of the respective crystalline forms. Regarding the electrochemical behaviour, Fe 2O 3-based thin films electrodes are able to store and reversibly exchange lithium ions. At a C/2 charge/discharge rate with 100% depth-of-discharge (DOD), the specific capacity of these amorphous thin film electrodes remains almost constant and close to 330 Ah/kg after more than 120 charge/discharge cycles.
The effect of TiO2 thin film thickness on self-cleaning glass properties
NASA Astrophysics Data System (ADS)
Mufti, Nandang; Laila, Ifa K. R.; Hartatiek; Fuad, Abdulloh
2017-05-01
TiO2 is one of semiconductor materials which are widely used as photocatalyst in the form of a thin film. The TiO2 thin film is prepared by using the spin coating sol-gel method. The researcher prepared TiO2 thin film with 3 coating variations and X-Ray Diffraction characterization, UV-Vis Spectrophotometer, Electron Microscopy Scanning, and examined its hydrophilic and anti-fogging properties. The result of X-Ray Diffraction showed that the phase formed is the anatase on 101crystal field. The Electron Microscopy Scanning images showed that TiO2 thin films had a homogeneous surface with the particle sizes as big as 235 nm, 179 nm, and 137 nm. The thickness of each thin film was 2.06μm, 3.33μm, and 5.20μm. The characterization of UV-Vis Spectrophotometer showed that the greatest absorption to the wavelength of visible light was in the thin film’s thickness of 3 coatings with the band-gap determined by using 3.30 eV, 3.33 eV, and 3.33 eV Plot Tuoc. These results indicated that the rate of absorption would be increased by increasing the thickness of film. The increasing thickness of the thin film makes the film hydrophilic able to be used as an anti-fogging substance.
Investigations of Si Thin Films as Anode of Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qingliu; Shi, Bing; Bareño, Javier
Amorphous silicon thin films having various thicknesses were investigated as a negative electrode material for lithium-ion batteries. Electrochemical characterization of the 20 nm thick thin silicon film revealed a very low first cycle Coulombic efficiency, which can be attributed to the silicon oxide layer formed on both the surface of the as-deposited Si thin film and the interface between the Si and the substrate. Among the investigated films, the 100 nm Si thin film demonstrated the best performance in terms of first cycle efficiency and cycle life. Observations from scanning electron microscopy demonstrated that the generation of cracks was inevitablemore » in the cycled Si thin films, even as the thickness of the film was as little as 20 nm, which was not predicted by previous modeling work. However, the cycling performance of the 20 and 100 nm silicon thin films was not detrimentally affected by these cracks. The poor capacity retention of the 1 mu m silicon thin film was attributed to the delamination.« less
Photoluminescence and cathodoluminescence properties of green emitting SrGa2{S}4 : Eu2+ thin film
NASA Astrophysics Data System (ADS)
Chartier, Céline; Benalloul, Paul; Barthou, Charles; Frigerio, Jean-Marc; Mueller, Gerd O.; Mueller-Mach, Regina; Trottier, Troy
2002-02-01
Photoluminescence and cathodoluminescence properties of SrGa2S4 : Eu2+ thin films prepared by reactive RF magnetron sputtering are investigated. Luminescence performances of the phosphor in the thin film form are compared to those of powder samples: the brightness efficiency of thin films is found to be about 30% of the efficiency of powder at low current density. A ratio higher than 40% is expected at higher current density. Thin film screens for FEDs will become a positive alternative to powder screens provided that film quality and light extraction could be improved by optimization of thickness and deposition parameters.
Exciting transition metal doped dilute magnetic thin films: MgO:Er and ZnO:Er
NASA Astrophysics Data System (ADS)
Ćakıcı, T.; Sarıtaş, S.; Muǧlu, G. Merhan; Yıldırım, M.
2017-02-01
Erbium doped MgO and doped ZnO thin films have reasonably important properties applications in spintronic devices. These films were synthesized on glass substrates by Chemical Spray Pyrolysis (CSP) method. In the literature there has been almost no report on preparation of MgO:Er dilute magnetic thin films by means of CSP. Because doped thin films show different magnetic behaviors, depending upon the type of magnetic material ions, concentration of them, synthesis route and experimental conditions, synthesized MgO:Er and ZnO:Er films were compared to thin film properties. Optical analyses of the synthesized thin films were examined spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. Structural analysis of the thin films was examined by using XRD, Raman Analysis, FE-SEM, EDX and AFM techniques. Also, magnetic properties of the MgO:Er and ZnO:Er films were investigated by vibrating sample magnetometer (VSM) which show that diamagnetic behavior of the MgO:Er thin film and ferromagnetic (FM) behavior of the ZnO:Er film were is formed.
Liu, Ye; Cheng, Daming; Lin, I-Hsin; Abbott, Nicholas L.; Jiang, Hongrui
2012-01-01
Although biochemical sensing using liquid crystals (LC) has been demonstrated, relatively little attention has been paid towards the fabrication of in situ-formed LC sensing devices. Herein, we demonstrate a highly reproducible method to create uniform LC thin film on treated substrates, as needed, for LC sensing. We use shear forces generated by the laminar flow of aqueous liquid within a microfluidic channel to create LC thin films stabilized within microfabricated structures. The orientational response of the LC thin films to targeted analytes in aqueous phases was transduced and amplified by the optical birefringence of the LC thin films. The biochemical sensing capability of our sensing devices was demonstrated through experiments employing two chemical systems: dodecyl trimethylammonium bromide (DTAB) dissolved in an aqueous solution, and the hydrolysis of phospholipids by the enzyme phospholipase A2 (PLA2). PMID:22842797
Microstructure and thermochromic properties of VOX-WOX-VOX ceramic thin films
NASA Astrophysics Data System (ADS)
Khamseh, S.; Araghi, H.; Ghahari, M.; Faghihi Sani, M. A.
2016-03-01
W-doped VO2 films have been synthesized via oxygen annealing of V-W-V (vanadium-tungsten-vanadium) multilayered films. The effects of middle layer's thickness of V-W-V multilayered film on structure and properties of VOX-WOX-VOX ceramic thin films were investigated. The as-deposited V-W-V multilayered film showed amorphous-like structure when mixed structure of VO2 (M) and VO2 (B) was formed in VOX-WOX-VOX ceramic thin films. Tungsten content of VOX-WOX-VOX ceramic thin films increased with increasing middle layer's thickness. With increasing middle layer's thickness, room temperature square resistance ( R sq) of VOX-WOX-VOX ceramic thin films increased from 65 to 86 kΩ/sq. The VOX-WOX-VOX ceramic thin film with the thinnest middle layer showed significant SMT (semiconductor-metal transition) when SMT became negligible on increasing middle layer's thickness.
Catalano, A.W.; Bhushan, M.
1982-08-03
A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.
NASA Astrophysics Data System (ADS)
Majeed, Shahbaz; Siraj, K.; Naseem, S.; Khan, Muhammad F.; Irshad, M.; Faiz, H.; Mahmood, A.
2017-07-01
Pure and gold-doped diamond-like carbon (Au-DLC) thin films are deposited at room temperature by using RF magnetron sputtering in an argon gas-filled chamber with a constant flow rate of 100 sccm and sputtering time of 30 min for all DLC thin films. Single-crystal silicon (1 0 0) substrates are used for the deposition of pristine and Au-DLC thin films. Graphite (99.99%) and gold (99.99%) are used as co-sputtering targets in the sputtering chamber. The optical properties and structure of Au-DLC thin films are studied with the variation of gold concentration from 1%-5%. Raman spectroscopy, atomic force microscopy (AFM), Vickers hardness measurement (VHM), and spectroscopic ellipsometry are used to analyze these thin films. Raman spectroscopy indicates increased graphitic behavior and reduction in the internal stresses of Au-DLC thin films as the function of increasing gold doping. AFM is used for surface topography, which shows that spherical-like particles are formed on the surface, which agglomerate and form larger clusters on the surface by increasing the gold content. Spectroscopy ellipsometry analysis elucidates that the refractive index and extinction coefficient are inversely related and the optical bandgap energy is decreased with increasing gold content. VHM shows that gold doping reduces the hardness of thin films, which is attributed to the increase in sp2-hybridization.
2016-09-08
10.1118/1.4935531. A new radiation detection method relies on high-energy current (HEC) formed by secondary charged particles in the detector material...photocurrent, radiation detection , self-powered, thin-film U U U SAR 17 Dr. Joseph Wander Reset A Self-powered thin-film radiation detector using intrinsic...Program, Lowell, MA 01854 Purpose: We introduce a radiation detection method that relies on high-energy current (HEC) formed by secondary 10 charged
A generalized theory of thin film growth
NASA Astrophysics Data System (ADS)
Du, Feng; Huang, Hanchen
2018-03-01
This paper reports a theory of thin film growth that is generalized for arbitrary incidence angle during physical vapor deposition in two dimensions. The accompanying kinetic Monte Carlo simulations serve as verification. A special theory already exists for thin film growth with zero incidence angle, and another theory also exists for nanorod growth with a glancing angle. The theory in this report serves as a bridge to describe the transition from thin film growth to nanorod growth. In particular, this theory gives two critical conditions in analytical form of critical coverage, ΘI and ΘII. The first critical condition defines the onset when crystal growth or step dynamics stops following the wedding cake model for thin film growth. The second critical condition defines the onset when multiple-layer surface steps form to enable nanorod growth. Further, this theory also reveals a critical incidence angle, below which nanorod growth is impossible. The critical coverages, together with the critical incidence angle, defines a phase diagram of thin growth versus nanorod growth.
Electric field mediated breakdown of thin liquid films separating microscopic emulsion droplets
NASA Astrophysics Data System (ADS)
Mostowfi, Farshid; Khristov, Khristo; Czarnecki, Jan; Masliyah, Jacob; Bhattacharjee, Subir
2007-04-01
The authors present a microfluidic technique for electrically induced breakup of thin films formed between microscopic emulsion droplets. The method involves creating a stationary film at the intersection of two microchannels etched onto a glass substrate. After stabilizing the film, a ramped potential is applied across it. The electrical stresses developed at the film interfaces lead to its rupture above a threshold potential. The potential difference at which the film ruptures assesses the film stability. This approach is employed to demonstrate how surfactant (lecithin) adsorption imparts stability to an ultrathin oil film formed between two water droplets.
Electrochromic materials, devices and process of making
Richardson, Thomas J.
2003-11-11
Thin films of transition metal compositions formed with magnesium that are metals, alloys, hydrides or mixtures of alloys, metals and/or hydrides exhibit reversible color changes on application of electric current or hydrogen. Thin films of these materials are suitable for optical switching elements, thin film displays, sun roofs, rear-view mirrors and architectural glass.
Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan
2006-04-25
Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.
Improvement of corrosion resistance of NiTi sputtered thin films by anodization
NASA Astrophysics Data System (ADS)
Bayat, N.; Sanjabi, S.; Barber, Z. H.
2011-08-01
Anodization of sputtered NiTi thin films has been studied in 1 M acetic acid at 23 °C for different voltages from 2 to 10 V. The morphology and cross-sectional structures of the untreated and anodized surfaces were investigated by field emission scanning electron microscopy (FE-SEM). The results show that increasing anodization voltage leads to film surface roughening and unevenness. It can be seen that the thickness of the anodized layer formed on the NiTi surface is in the nanometer range. The corrosion resistance of anodized thin films was studied by potentiodynamic scan (PDS) and impedance spectroscopy (EIS) techniques in Hank's solution at 310 K (37 °C). It was shown that the corrosion resistance of the anodized film surface improved with increasing voltage to 6 V. Anodization of austenitic sputtered NiTi thin films has also been studied, in the same anodizing conditions, at 4 V. Comparison of anodized sputtered NiTi thin films with anodized austenitic shape memory films illustrate that the former are more corrosion resistant than the latter after 1 h immersion in Hank's solution, which is attributed to the higher grain boundary density to quickly form a stable and protective passive film.
Synthesis of galium nitride thin films using sol-gel dip coating method
NASA Astrophysics Data System (ADS)
Hamid, Maizatul Akmam Ab; Ng, Sha Shiong
2017-12-01
In this research, gallium nitride (GaN) thin film were grown on silicon (Si) substrate by a low-cost sol-gel dip coating deposition method. The GaN precursor solution was prepared using gallium (III) nitrate hydrate powder, ethanol and diethanolamine as a starting material, solvent and surfactant respectively. The structural, morphological and optical characteristics of the deposited GaN thin film were investigated. Field-emission scanning electron microscopy observations showed that crack free and dense grains GaN thin films were formed. Energy dispersive X-ray analysis confirmed that the oxygen content in the deposited films was low. X-ray diffraction results revealed that deposited GaN thin films have hexagonal wurtzite structure.
Ko, Eun-Byul; Choi, Jae-Seok; Jung, Hyunsung; Choi, Sung-Churl; Kim, Chang-Yeoul
2016-02-01
Transparent conducting oxide (TCO) is widely used for the application of flat panel display like liquid crystal displays and plasma display panel. It is also applied in the field of touch panel, solar cell electrode, low-emissivity glass, defrost window, and anti-static material. Fluorine-doped tin oxide (FTO) thin films were fabricated by spray pyrolysis of ethanol-added FTO precursor solutions. FTO thin film by spray pyrolysis is very much investigated and normally formed at high temperature, about 500 degrees C. However, these days, flexible electronics draw many attentions in the field of IT industry and the research for flexible transparent conducting thin film is also required. In the industrial field, indium-tin oxide (ITO) film on polymer substrate is widely used for touch panel and displays. In this study, we investigated the possibility of FTO thin film formation at relatively low temperature of 250 degrees C. We found out that the control of volume of input precursor and exhaust gases could make it possible to form FTO thin film with a relatively low electrical resistance, less than 100 Ohm/sq and high optical transmittance about 88%.
Deployable telescope having a thin-film mirror and metering structure
Krumel, Leslie J [Cedar Crest, NM; Martin, Jeffrey W [Albuquerque, NM
2010-08-24
A deployable thin-film mirror telescope comprises a base structure and a metering structure. The base structure houses a thin-film mirror, which can be rolled for stowage and unrolled for deployment. The metering structure is coupled to the base structure and can be folded for stowage and unfolded for deployment. In the deployed state, the unrolled thin-film mirror forms a primary minor for the telescope and the unfolded metering structure positions a secondary minor for the telescope.
Gu, Zhi-Gang; Fu, Wen-Qiang; Liu, Min; Zhang, Jian
2017-01-26
A self-polymerized chiral monomer 3,4-dihydroxy-l-phenylalanine (l-DOPA) has been introduced into the pores of an achiral surface-mounted metal organic framework (SURMOF), and then the homochiral poly(l-DOPA) thin film has been successfully formed after UV light irradiation and etching of the SURMOF. Remarkably, such a poly(l-DOPA) thin film exhibited enantioselective adsorption of naproxen. This study opened a SURMOF-templated approach for preparing porous polymer thin films.
Polat, B D; Keleş, O
2014-05-01
We investigate the anode performance of non ordered and ordered nanostructured Cu-Sn thin films deposited via electron beam deposition technique. The ordered nanostructured Cu-Sn thin film having nano-porosities was fabricated using an oblique (co)deposition technique. Our results showed that the nano structured Cu-Sn thin film containing Cu-Sn nanorods had higher initial anodic capacity (790 mA h g(-)) than that of the non ordered thin film (330 mA h g(-)). But the capacity of the ordered nanostructured Cu-Sn thin film diminished after the first cycle and a steady state capacity value around 300 mA h g(-) is sustainable in following up to 80th cycle, which is attributed to the composition and morphology of the thin film. The presence of copper containing Sn nanorods leading to form nano-porosities as interstitial spaces among them, enhanced lithium ions movement within thin film and increased the thin film tolerance against the stress generated because of the drastic volume change occurred during lithiation-delithiation processes; hence, homogenously distributed porosities increased the cycle life of the thin film.
Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.
1987-08-07
An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.
Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.
1989-01-01
An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.
Method for making thin polypropylene film
Behymer, R.D.; Scholten, J.A.
1985-11-21
An economical method is provided for making uniform thickness polypropylene film as thin as 100 Angstroms. A solution of polypropylene dissolved in xylene is formed by mixing granular polypropylene and xylene together in a flask at an elevated temperature. A substrate, such as a glass plate or microscope slide is immersed in the solution. When the glass plate is withdrawn from the solution at a uniform rate, a thin polypropylene film forms on a flat surface area of the glass plate as the result of xylene evaporation. The actual thickness of the polypropylene film is functional of the polypropylene in xylene solution concentration, and the particular withdrawal rate of the glass plate from the solution. After formation, the thin polypropylene film is floated from the glass plate onto the surface of water, from which it is picked up with a wire hoop.
The evolution of droplet impacting on thin liquid film at superhydrophilic surface
NASA Astrophysics Data System (ADS)
Li, Yun; Zheng, Yi; Lan, Zhong; Xu, Wei; Ma, Xuehu
2017-12-01
Thin films are ubiquitous in nature, and the evolution of a liquid film after droplet impact is critical in many industrial processes. In this paper, a series of experiments and numerical simulations are conducted to investigate the distribution and evolution features of local temperature as the droplet impacts a thin film on the superhydrophilic surface by the thermal tracing method. A cold area is formed in the center after droplet impacts on heated solid surfaces. For the droplet impact on thin heated liquid film, a ring-shaped low temperature zone is observed in this experiment. Meanwhile, numerical simulation is adopted to analyze the mechanism and the interaction between the droplet and the liquid film. It is found that due to the vortex velocity distribution formed inside the liquid film after the impact, a large part of the droplet has congested. The heating process is not obvious in the congested area, which leads to the formation of a low-temperature area in the results.
Compliant Electrode and Composite Material for Piezoelectric Wind and Mechanical Energy Conversions
NASA Technical Reports Server (NTRS)
Chen, Bin (Inventor)
2015-01-01
A thin film device for harvesting energy from wind. The thin film device includes one or more layers of a compliant piezoelectric material formed from a composite of a polymer and an inorganic material, such as a ceramic. Electrodes are disposed on a first side and a second side of the piezoelectric material. The electrodes are formed from a compliant material, such as carbon nanotubes or graphene. The thin film device exhibits improved resistance to structural fatigue upon application of large strains and repeated cyclic loadings.
Method for laser welding ultra-thin metal foils
Pernicka, J.C.; Benson, D.K.; Tracy, C.E.
1996-03-26
A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld. 5 figs.
Method for laser welding ultra-thin metal foils
Pernicka, John C.; Benson, David K.; Tracy, C. Edwin
1996-01-01
A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld.
Electron-beam-evaporated thin films of hafnium dioxide for fabricating electronic devices
Xiao, Zhigang; Kisslinger, Kim
2015-06-17
Thin films of hafnium dioxide (HfO 2) are widely used as the gate oxide in fabricating integrated circuits because of their high dielectric constants. In this paper, the authors report the growth of thin films of HfO 2 using e-beam evaporation, and the fabrication of complementary metal-oxide semiconductor (CMOS) integrated circuits using this HfO 2 thin film as the gate oxide. The authors analyzed the thin films using high-resolution transmission electron microscopy and electron diffraction, thereby demonstrating that the e-beam-evaporation-grown HfO 2 film has a polycrystalline structure and forms an excellent interface with silicon. Accordingly, we fabricated 31-stage CMOS ringmore » oscillator to test the quality of the HfO 2 thin film as the gate oxide, and obtained excellent rail-to-rail oscillation waveforms from it, denoting that the HfO 2 thin film functioned very well as the gate oxide.« less
Effect of solution concentration on MEH-PPV thin films
NASA Astrophysics Data System (ADS)
Affendi, I. H. H.; Sarah, M. S. P.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.
2018-05-01
MEH-PPV thin films were prepared with a mixture of THF (tetrahydrofuran) solution deposited by spin coating method. The surface topology of MEH-PPV thin film were characterize by atomic force microscopy (AFM) and optical properties of absorption spectra were characterized by using Ultraviolet-visible-near-infrared (UV-Vis-NIR). The MEH-PPV concentration variation affects the surface and optical properties of the thin film where 0.5 mg/ml MEH-PPV concentration have a good surface topology provided the same film also gives the highest absorption coefficient were then deposited to a TiO2 thin film forming composite layer. The composite layer then shows low current flow of short circuit current of Isc = -5.313E-7 A.
Thin film seeds for melt processing textured superconductors for practical applications
Veal, Boyd W.; Paulikas, Arvydas; Balachandran, Uthamalingam; Zhong, Wei
1999-01-01
A method of fabricating bulk superconducting material such as RBa.sub.2 Cu.sub.3 O.sub.7-.delta. where R is La or Y comprising depositing a thin epitaxially oriented film of Nd or Sm (123) on an oxide substrate. The powder oxides of RBa.sub.2 Cu.sub.3 O.sub.7-.delta. or oxides and/or carbonates of R and Ba and Cu present in mole ratios to form RBa.sub.2 Cu.sub.3 O.sub.7-.delta., where R is Y or La are heated, in physical contact with the thin film of Nd or Sm (123) on the oxide substrate to a temperature sufficient to form a liquid phase in the oxide or carbonate mixture while maintaining the thin film solid to grow a large single domain 123 superconducting material. Then the material is cooled. The thin film is between 200 .ANG. and 2000 .ANG.. A construction prepared by the method is also disclosed.
Thin film seeds for melt processing textured superconductors for practical applications
Veal, B.W.; Paulikas, A.; Balachandran, U.; Zhong, W.
1999-02-09
A method of fabricating bulk superconducting material such as RBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} where R is La or Y comprising depositing a thin epitaxially oriented film of Nd or Sm (123) on an oxide substrate is disclosed. The powder oxides of RBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} or oxides and/or carbonates of R and Ba and Cu present in mole ratios to form RBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}}, where R is Y or La are heated, in physical contact with the thin film of Nd or Sm (123) on the oxide substrate to a temperature sufficient to form a liquid phase in the oxide or carbonate mixture while maintaining the thin film solid to grow a large single domain 123 superconducting material. Then the material is cooled. The thin film is between 200 {angstrom} and 2000 {angstrom}. A construction prepared by the method is also disclosed.
NASA Astrophysics Data System (ADS)
Goodman, Samuel M.; Noh, Hyunwoo; Singh, Vivek; Cha, Jennifer N.; Nagpal, Prashant
2015-02-01
Quantum dot (QD), or semiconductor nanocrystal, thin films are being explored for making solution-processable devices due to their size- and shape-tunable bandgap and discrete higher energy electronic states. While DNA has been extensively used for the self-assembly of nanocrystals, it has not been investigated for the simultaneous conduction of multiple energy charges or excitons via exciton shelves (ES) formed in QD-DNA nano-bioelectronic thin films. Here, we present studies on charge conduction through exciton shelves, which are formed via chemically coupled QDs and DNA, between electronic states of the QDs and the HOMO-LUMO levels in the complementary DNA nucleobases. While several challenges need to be addressed in optimizing the formation of devices using QD-DNA thin films, a higher charge collection efficiency for hot-carriers and our detailed investigations of charge transport mechanism in these thin films highlight their potential for applications in nano-bioelectronic devices and biological transducers.
NASA Astrophysics Data System (ADS)
Hu, Tao; Wang, Zongrong; Ma, Ning; Du, Piyi
2017-12-01
PbZr0.52Ti0.48O3 thin films containing hexagonal and cubic Ag nanoparticles (Ag NPs) of various sizes were prepared using the sol-gel technique. During the aging process, Ag ions were photo-reduced to form hexagonal Ag NPs. These NPs were uniform in size, and their uniformity was maintained in the thin films during the heat treatment process. Both the total volume and average size of the hexagonal Ag NPs increased with an increasing Ag ion concentration from 0.02 to 0.08 mol l-1. Meanwhile, the remaining Ag ions were reduced to form unstable Ag-Pb alloy particles with Pb ions during the early heating stage. During subsequent heat treatment, these alloys decomposed to form cubic Ag NPs in the thin films. The absorption range of the thin films, quantified as the full width at half maximum in the ultraviolet-visible absorption spectrum, expanded from 6.3 × 1013 Hz (390-425 nm) to 8.4 × 1013 Hz (383-429 nm) as the Ag NPs/PZT ratio increased from 0.2 to 0.8. This work provides an effective way to broaden the absorption range and enhance the optical properties of such films.
In situ micro-Raman analysis and X-ray diffraction of nickel silicide thin films on silicon.
Bhaskaran, M; Sriram, S; Perova, T S; Ermakov, V; Thorogood, G J; Short, K T; Holland, A S
2009-01-01
This article reports on the in situ analysis of nickel silicide (NiSi) thin films formed by thermal processing of nickel thin films deposited on silicon substrates. The in situ techniques employed for this study include micro-Raman spectroscopy (microRS) and X-ray diffraction (XRD); in both cases the variations for temperatures up to 350 degrees C has been studied. Nickel silicide thin films formed by vacuum annealing of nickel on silicon were used as a reference for these measurements. In situ analysis was carried out on nickel thin films on silicon, while the samples were heated from room temperature to 350 degrees C. Data was gathered at regular temperature intervals and other specific points of interest (such as 250 degrees C, where the reaction between nickel and silicon to form Ni(2)Si is expected). The transformations from the metallic state, through the intermediate reaction states, until the desired metal-silicon reaction product is attained, are discussed. The evolution of nickel silicide from the nickel film can be observed from both the microRS and XRD in situ studies. Variations in the evolution of silicide from metal for different silicon substrates are discussed, and these include (100) n-type, (100) p-type, and (110) p-type silicon substrates.
Nucleation and strain-stabilization during organic semiconductor thin film deposition.
Li, Yang; Wan, Jing; Smilgies, Detlef-M; Bouffard, Nicole; Sun, Richard; Headrick, Randall L
2016-09-07
The nucleation mechanisms during solution deposition of organic semiconductor thin films determine the grain morphology and may influence the crystalline packing in some cases. Here, in-situ optical spectromicroscopy in reflection mode is used to study the growth mechanisms and thermal stability of 6,13-bis(trisopropylsilylethynyl)-pentacene thin films. The results show that the films form in a supersaturated state before transforming to a solid film. Molecular aggregates corresponding to subcritical nuclei in the crystallization process are inferred from optical spectroscopy measurements of the supersaturated region. Strain-free solid films exhibit a temperature-dependent blue shift of optical absorption peaks due to a continuous thermally driven change of the crystalline packing. As crystalline films are cooled to ambient temperature they become strained although cracking of thicker films is observed, which allows the strain to partially relax. Below a critical thickness, cracking is not observed and grazing incidence X-ray diffraction measurements confirm that the thinnest films are constrained to the lattice constants corresponding to the temperature at which they were deposited. Optical spectroscopy results show that the transition temperature between Form I (room temperature phase) and Form II (high temperature phase) depends on the film thickness, and that Form I can also be strain-stabilized up to 135 °C.
Multifunctional thin film surface
Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.
2015-10-13
A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.
Depositing bulk or micro-scale electrodes
Shah, Kedar G.; Pannu, Satinderpall S.; Tolosa, Vanessa; Tooker, Angela C.; Sheth, Heeral J.; Felix, Sarah H.; Delima, Terri L.
2016-11-01
Thicker electrodes are provided on microelectronic device using thermo-compression bonding. A thin-film electrical conducting layer forms electrical conduits and bulk depositing provides an electrode layer on the thin-film electrical conducting layer. An insulating polymer layer encapsulates the electrically thin-film electrical conducting layer and the electrode layer. Some of the insulating layer is removed to expose the electrode layer.
Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors
Kagan; Mitzi; Dimitrakopoulos
1999-10-29
Organic-inorganic hybrid materials promise both the superior carrier mobility of inorganic semiconductors and the processability of organic materials. A thin-film field-effect transistor having an organic-inorganic hybrid material as the semiconducting channel was demonstrated. Hybrids based on the perovskite structure crystallize from solution to form oriented molecular-scale composites of alternating organic and inorganic sheets. Spin-coated thin films of the semiconducting perovskite (C(6)H(5)C(2)H(4)NH(3))(2)SnI(4) form the conducting channel, with field-effect mobilities of 0.6 square centimeters per volt-second and current modulation greater than 10(4). Molecular engineering of the organic and inorganic components of the hybrids is expected to further improve device performance for low-cost thin-film transistors.
Hydrothermally formed three-dimensional nanoporous Ni(OH)2 thin-film supercapacitors.
Yang, Yang; Li, Lei; Ruan, Gedeng; Fei, Huilong; Xiang, Changsheng; Fan, Xiujun; Tour, James M
2014-09-23
A three-dimensional nanoporous Ni(OH)2 thin-film was hydrothermally converted from an anodically formed porous layer of nickel fluoride/oxide. The nanoporous Ni(OH)2 thin-films can be used as additive-free electrodes for energy storage. The nanoporous layer delivers a high capacitance of 1765 F g(-1) under three electrode testing. After assembly with porous activated carbon in asymmetric supercapacitor configurations, the devices deliver superior supercapacitive performances with capacitance of 192 F g(-1), energy density of 68 Wh kg(-1), and power density of 44 kW kg(-1). The wide working potential window (up to 1.6 V in 6 M aq KOH) and stable cyclability (∼90% capacitance retention over 10,000 cycles) make the thin-film ideal for practical supercapacitor devices.
Developing high-transmittance heterojunction diodes based on NiO/TZO bilayer thin films
2013-01-01
In this study, radio frequency magnetron sputtering was used to deposit nickel oxide thin films (NiO, deposition power of 100 W) and titanium-doped zinc oxide thin films (TZO, varying deposition powers) on glass substrates to form p(NiO)-n(TZO) heterojunction diodes with high transmittance. The structural, optical, and electrical properties of the TZO and NiO thin films and NiO/TZO heterojunction devices were investigated with scanning electron microscopy, X-ray diffraction (XRD) patterns, UV-visible spectroscopy, Hall effect analysis, and current-voltage (I-V) analysis. XRD analysis showed that only the (111) diffraction peak of NiO and the (002) and (004) diffraction peaks of TZO were observable in the NiO/TZO heterojunction devices, indicating that the TZO thin films showed a good c-axis orientation perpendicular to the glass substrates. When the sputtering deposition power for the TZO thin films was 100, 125, and 150 W, the I-V characteristics confirmed that a p-n junction characteristic was successfully formed in the NiO/TZO heterojunction devices. We show that the NiO/TZO heterojunction diode was dominated by the space-charge limited current theory. PMID:23634999
Rechargeable thin film battery and method for making the same
Goldner, Ronald B.; Liu, Te-Yang; Goldner, Mark A.; Gerouki, Alexandra; Haas, Terry E.
2006-01-03
A rechargeable, stackable, thin film, solid-state lithium electrochemical cell, thin film lithium battery and method for making the same is disclosed. The cell and battery provide for a variety configurations, voltage and current capacities. An innovative low temperature ion beam assisted deposition method for fabricating thin film, solid-state anodes, cathodes and electrolytes is disclosed wherein a source of energetic ions and evaporants combine to form thin film cell components having preferred crystallinity, structure and orientation. The disclosed batteries are particularly useful as power sources for portable electronic devices and electric vehicle applications where high energy density, high reversible charge capacity, high discharge current and long battery lifetimes are required.
Jin, Jingcheng; Jin, Chunshui; Li, Chun; Deng, Wenyuan; Yao, Shun
2015-06-01
High-quality coatings of fluoride materials are in extraordinary demand for use in deep ultraviolet (DUV) lithography. Gadolinium fluoride (GdF3) thin films were prepared by a thermal boat evaporation process at different substrate temperatures. GdF3 thin film was set at quarter-wave thickness (∼27 nm) with regard to their common use in DUV/vacuum ultraviolet optical stacks; these thin films may significantly differ in nanostructural properties at corresponding depositing temperatures, which would crucially influence the performance of the multilayers. The measurement and analysis of optical, structural, and mechanical properties of GdF3 thin films have been performed in a comprehensive characterization cycle. It was found that depositing GdF3 thin films at relative higher temperature would form a rather dense, smooth, homogeneous structure within this film thickness scale.
Preparation methodologies and nano/microstructural evaluation of metal/semiconductor thin films.
Chen, Zhiwen; Jiao, Zheng; Wu, Minghong; Shek, Chan-Hung; Wu, C M Lawrence; Lai, Joseph K L
2012-01-01
Metal/semiconductor thin films are a class of unique materials that are widespread technological applications, particularly in the field of microelectronic devices. Assessment strategies of fractal and tures are of fundamental importance in the development of nano/microdevices. This review presents the preparation methodologies and nano/microstructural evaluation of metal/semiconductor thin films including Au/Ge bilayer films and Pd-Ge alloy thin films, which show in the form of fractals and nanocrystals. Firstly, the extended version of Au/Ge thin films for the fractal crystallization of amorphous Ge and the formation of nanocrystals developed with improved micro- and nanostructured features are described in Section 2. Secondly, the nano/microstructural characteristics of Pd/Ge alloy thin films during annealing have been investigated in detail and described in Section 3. Finally, we will draw the conclusions from the present work as shown in Section 4. It is expected that the preparation methodologies developed and the knowledge of nano/microstructural evolution gained in metal/semiconductor thin films, including Au/Ge bilayer films and Pd-Ge alloy thin films, will provide an important fundamental basis underpinning further interdisciplinary research in these fields such as physics, chemistry, materials science, and nanoscience and nanotechnology, leading to promising exciting opportunities for future technological applications involving these thin films.
Method of improving field emission characteristics of diamond thin films
Krauss, A.R.; Gruen, D.M.
1999-05-11
A method of preparing diamond thin films with improved field emission properties is disclosed. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display. 3 figs.
Method of improving field emission characteristics of diamond thin films
Krauss, Alan R.; Gruen, Dieter M.
1999-01-01
A method of preparing diamond thin films with improved field emission properties. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display.
NASA Astrophysics Data System (ADS)
Liu, Wei-Ting; Huang, Wen-Yao
2012-10-01
This study used the novel fluorescence based deep-blue-emitting molecule BPVPDA in an organic fluorescent color thin film to exhibit deep blue color with CIE coordinates of (0.13, 0.16). The developed original organic RGB color thin film technology enables the optimization of the distinctive features of an organic light emitting diode (OLED) and thin-film-transistor (TFT) LCD display. The color filter structure maintains the same high resolution to obtain a higher level of brightness in comparison with conventional organic RGB color thin film. The image-processing engine is designed to achieve a sharp text image for a TFT LCD with organic color thin films. The organic color thin films structure uses an organic dye dopant in a limpid photoresist. With this technology, the following characteristics can be obtained: 1. high color reproduction of gamut ratio, and 2. improved luminous efficiency with organic color fluorescent thin film. This performance is among the best results ever reported for a color-filter used on TFT-LCD or OLED.
NASA Astrophysics Data System (ADS)
Liu, Wei-ting; Huang, Wen-Yao
2012-06-01
This study used novel fluorescence based deep-blue-emitting molecules, namely BPVPDA, an organic fluorescence color thin film using BPVPDA exhibit deep blue fluorine with CIE coordinates of (0.13,0.16). The developed original Organic RGB color thin film technology enables the optimization of the distinctive features of an organic light emitting diode (OLED) and (TFT) LCD display. The color filter structure maintains the same high resolution to obtain a higher level of brightness, in comparison with conventional organic RGB color thin film. The image-processing engine is designed to achieve a sharp text image for a thin-film-transistor (TFT) LCD with organic color thin films. The organic color thin films structure uses organic dye dopent in limpid photo resist. With this technology , the following characteristics can be obtained: (1) high color reproduction of gamut ratio, and (2) improved luminous efficiency with organic color fluorescence thin film. This performance is among the best results ever reported for a color-filter used on TFT-LCD and OLED.
Surface-area-controlled synthesis of porous TiO2 thin films for gas-sensing applications
NASA Astrophysics Data System (ADS)
Park, Jae Young; Kim, Ho-hyoung; Rana, Dolly; Jamwal, Deepika; Katoch, Akash
2017-03-01
Surface-area-controlled porous TiO2 thin films were prepared via a simple sol-gel chemical route, and their gas-sensing properties were thoroughly investigated in the presence of typical oxidizing NO2 gas. The surface area of TiO2 thin films was controlled by developing porous TiO2 networked by means of controlling the TiO2-to-TTIP (titanium isopropoxide, C12H28O4Ti) molar ratio, where TiO2 nanoparticles of size ˜20 nm were used. The sensor’s response was found to depend on the surface area of the TiO2 thin films. The porous TiO2 thin-film sensor with greater surface area was more sensitive than those of TiO2 thin films with lesser surface area. The improved sensing ability was ascribed to the porous network formed within the thin films by TiO2 sol. Our results show that surface area is a key parameter for obtaining superior gas-sensing performance; this provides important guidelines for preparing and using porous thin films for gas-sensing applications.
NASA Astrophysics Data System (ADS)
Zavadil, Kevin R.; Ruffner, Judith H.; King, Donald B.
1999-01-01
We have successfully developed a method for fabricating scandate-based thermionic emitters in thin film form. The primary goal of our effort is to develop thin film emitters that exhibit low work function, high intrinsic electron emissivity, minimum thermal activation properties and that can be readily incorporated into a microgap converter. Our approach has been to incorporate BaSrO into a Sc2O3 matrix using rf sputtering to produce thin films. Diode testing has shown the resulting films to be electron emissive at temperatures as low as 900 K with current densities of 0.1 mA.cm-2 at 1100 K and saturation voltages. We calculate an approximate maximum work function of 1.8 eV and an apparent emission constant (Richardson's constant, A*) of 36 mA.cm-2.K-2. Film compositional and structural analysis shows that a significant surface and subsurface alkaline earth hydroxide phase can form and probably explains the limited utilization and stability of Ba and its surface complexes. The flexibility inherent in sputter deposition suggests alternate strategies for eliminating undesirable phases and optimizing thin film emitter properties.
Matsuo, Kyohei; Saito, Shohei; Yamaguchi, Shigehiro
2016-09-19
The solution-processed fabrication of thin films of organic semiconductors enables the production of cost-effective, large-area organic electronic devices under mild conditions. The formation/dissociation of a dynamic B-N coordination bond can be used for the solution-processed fabrication of semiconducting films of polycyclic aromatic hydrocarbon (PAH) materials. The poor solubility of a boron-containing PAH in chloroform, toluene, and chlorobenzene was significantly improved by addition of minor amounts (1 wt % of solvent) of pyridine derivatives, as their coordination to the boron atom suppresses the inherent propensity of the PAHs to form π-stacks. Spin-coating solutions of the thus formed Lewis acid-base complexes resulted in the formation of amorphous thin films, which could be converted into polycrystalline films of the boron-containing PAH upon thermal annealing. Organic thin-film transistors prepared by this solution process displayed typical p-type characteristics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optical Analysis of Iron-Doped Lead Sulfide Thin Films for Opto-Electronic Applications
NASA Astrophysics Data System (ADS)
Chidambara Kumar, K. N.; Khadeer Pasha, S. K.; Deshmukh, Kalim; Chidambaram, K.; Shakil Muhammad, G.
Iron-doped lead sulfide thin films were deposited on glass substrates using successive ionic layer adsorption and reaction method (SILAR) at room temperature. The X-ray diffraction pattern of the film shows a well formed crystalline thin film with face-centered cubic structure along the preferential orientation (1 1 1). The lattice constant is determined using Nelson Riley plots. Using X-ray broadening, the crystallite size is determined by Scherrer formula. Morphology of the thin film was studied using a scanning electron microscope. The optical properties of the film were investigated using a UV-vis spectrophotometer. We observed an increase in the optical band gap from 2.45 to 3.03eV after doping iron in the lead sulfide thin film. The cutoff wavelength lies in the visible region, and hence the grown thin films can be used for optoelectronic and sensor applications. The results from the photoluminescence study show the emission at 500-720nm. The vibrating sample magnetometer measurements confirmed that the lead sulfide thin film becomes weakly ferromagnetic material after doping with iron.
Ferroelectric properties of PZT/BFO multilayer thin films prepared using the sol-gel method.
Jo, Seo-Hyeon; Lee, Sung-Gap; Lee, Young-Hie
2012-01-05
In this study, Pb(Zr0.52Ti0.48)O3/BiFeO3 [PZT/BFO] multilayer thin films were fabricated using the spin-coating method on a Pt(200 nm)/Ti(10 nm)/SiO2(100 nm)/p-Si(100) substrate alternately using BFO and PZT metal alkoxide solutions. The coating-and-heating procedure was repeated several times to form the multilayer thin films. All PZT/BFO multilayer thin films show a void-free, uniform grain structure without the presence of rosette structures. The relative dielectric constant and dielectric loss of the six-coated PZT/BFO [PZT/BFO-6] thin film were approximately 405 and 0.03%, respectively. As the number of coatings increased, the remanent polarization and coercive field increased. The values for the BFO-6 multilayer thin film were 41.3 C/cm2 and 15.1 MV/cm, respectively. The leakage current density of the BFO-6 multilayer thin film at 5 V was 2.52 × 10-7 A/cm2.
NASA Astrophysics Data System (ADS)
Yazdanparast, Sanaz
2016-12-01
Cuprous oxide (Cu2O) thin films were electrodeposited cathodically from a highly alkaline bath using tartrate as complexing agent. Different microstructures for Cu2O thin films were achieved by varying the applied potential from -0.285 to -0.395 V versus a reference electrode of Ag/AgCl at 50 °C in potentiostatic mode, and separately by changing the bath temperature from 25 to 50 °C in galvanostatic mode. Characterization experiments showed that both grain size and orientation of Cu2O can be controlled by changing the applied potential. Applying a high negative potential of -0.395 V resulted in smaller grain size of Cu2O thin films with a preferred orientation in [111] direction. An increase in the bath temperature in galvanostatic electrodeposition increased the grain size of Cu2O thin films. All the films in Au/Cu2O/Au-Pd cell showed unipolar resistance switching behavior after an initial FORMING process. Increasing the grain size of Cu2O thin films and decreasing the top electrode area increased the FORMING voltage and decreased the current level of high resistance state (HRS). The current in low resistance state (LRS) was independent of the top electrode area and the grain size of deposited films, suggesting a filamentary conduction mechanism in unipolar resistance switching of Cu2O.
Active superconducting devices formed of thin films
Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.
1991-05-28
Active superconducting devices are formed of thin films of superconductor which include a main conduction channel which has an active weak link region. The weak link region is composed of an array of links of thin film superconductor spaced from one another by voids and selected in size and thickness such that magnetic flux can propagate across the weak link region when it is superconducting. Magnetic flux applied to the weak link region will propagate across the array of links causing localized loss of superconductivity in the links and changing the effective resistance across the links. The magnetic flux can be applied from a control line formed of a superconducting film deposited coplanar with the main conduction channel and weak link region on a substrate. The devices can be formed of any type to superconductor but are particularly well suited to the high temperature superconductors since the devices can be entirely formed from coplanar films with no overlying regions. The devices can be utilized for a variety of electrical components, including switching circuits, amplifiers, oscillators and modulators, and are well suited to microwave frequency applications.
Method for making surfactant-templated, high-porosity thin films
Brinker, C. Jeffrey; Lu, Yunfeng; Fan, Hongyou
2001-01-01
An evaporation-induced self-assembly method to prepare a surfactant-templated thin film by mixing a silica sol, a surfactant, and a hydrophobic polymer and then evaporating a portion of the solvent during coating onto a substrate and then heating to form a liquid-phase, thin film material with a porosity greater than approximately 50 percent. The high porosity thin films can have dielectric constants less than 2 to be suitable for applications requiring low-dielectric constants. An interstitial compound can be added to the mixture, with the interstitial compound either covalently bonded to the pores or physically entrapped within the porous structure. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.
Atomic layer deposition of metal sulfide thin films using non-halogenated precursors
Martinson, Alex B. F.; Elam, Jeffrey W.; Pellin, Michael J.
2015-05-26
A method for preparing a metal sulfide thin film using ALD and structures incorporating the metal sulfide thin film. The method includes providing an ALD reactor, a substrate, a first precursor comprising a metal and a second precursor comprising a sulfur compound. The first and the second precursors are reacted in the ALD precursor to form a metal sulfide thin film on the substrate. In a particular embodiment, the metal compound comprises Bis(N,N'-di-sec-butylacetamidinato)dicopper(I) and the sulfur compound comprises hydrogen sulfide (H.sub.2S) to prepare a Cu.sub.2S film. The resulting metal sulfide thin film may be used in among other devices, photovoltaic devices, including interdigitated photovoltaic devices that may use relatively abundant materials for electrical energy production.
Cellulose triacetate, thin film dielectric capacitor
NASA Technical Reports Server (NTRS)
Yen, Shiao-Ping S. (Inventor); Jow, T. Richard (Inventor)
1995-01-01
Very thin films of cellulose triacetate are cast from a solution containing a small amount of high boiling temperature, non-solvent which evaporates last and lifts the film from the casting surface. Stretched, oriented, crystallized films have high electrical breakdown properties. Metallized films less than about 2 microns in thickness form self-healing electrodes for high energy density, pulsed power capacitors. Thicker films can be utilized as a dielectric for a capacitor.
Cellulose triacetate, thin film dielectric capacitor
NASA Technical Reports Server (NTRS)
Yen, Shiao-Ping S. (Inventor); Jow, T. Richard (Inventor)
1993-01-01
Very thin films of cellulose triacetate are cast from a solution containing a small amount of high boiling temperature, non-solvent which evaporates last and lifts the film from the casting surface. Stretched, oriented, crystallized films have high electrical breakdown properties. Metallized films less than about 2 microns in thickness form self-healing electrodes for high energy density, pulsed power capacitors. Thicker films can be utilized as a dielectric for a capacitor.
Infrared studies of autoionization of thin films of dinitrogen tetroxidea)
NASA Astrophysics Data System (ADS)
Jones, L. H.; Swanson, B. I.; Agnew, S. F.
1985-05-01
The autoionization of dinitrogen tetroxide to form nitrosonium nitrate in thin films at 150-200 K has been studied using infrared absorption spectroscopy. It is found that at these temperatures and low pressure the process is intramolecular, involving only one of two isomers of the nitrite form (ONONO2). (AIP)
Achieving 3-D Nanoparticle Assembly in Nanocomposite Thin Films via Kinetic Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jingyu; Xiao, Yihan; Xu, Ting
Nanocomposite thin films containing well-ordered nanoparticle (NP) assemblies are ideal candidates for the fabrication of metamaterials. Achieving 3-D assembly of NPs in nanocomposite thin films is thermodynamically challenging as the particle size gets similar to that of a single polymer chain. The entropic penalties of polymeric matrix upon NP incorporation leads to NP aggregation on the film surface or within the defects in the film. Controlling the kinetic pathways of assembly process provides an alternative path forward by arresting the system in nonequilibrium states. Here, we report the thin film 3-D hierarchical assembly of 20 nm NPs in supramolecules withmore » a 30 nm periodicity. By mediating the NP diffusion kinetics in the supramolecular matrix, surface aggregation of NPs was suppressed and NPs coassemble with supramolecules to form new 3-D morphologies in thin films. Lastly, the present studies opened a viable route to achieve designer functional composite thin films via kinetic control.« less
Achieving 3-D Nanoparticle Assembly in Nanocomposite Thin Films via Kinetic Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jingyu; Xiao, Yihan; Xu, Ting
Nanocomposite thin films containing well-ordered nanoparticle (NP) assemblies are ideal candidates for the fabrication of metamaterials. Achieving 3-D assembly of NPs in nanocomposite thin films is thermodynamically challenging as the particle size gets similar to that of a single polymer chain. The entropic penalties of polymeric matrix upon NP incorporation leads to NP aggregation on the film surface or within the defects in the film. Controlling the kinetic pathways of assembly process provides an alternative path forward by arresting the system in nonequilibrium states. Here, we report the thin film 3-D hierarchical assembly of 20 nm NPs in supramolecules withmore » a 30 nm periodicity. By mediating the NP diffusion kinetics in the supramolecular matrix, surface aggregation of NPs was suppressed and NPs coassemble with supramolecules to form new 3-D morphologies in thin films. The present studies opened a viable route to achieve designer functional composite thin films via kinetic control.« less
Achieving 3-D Nanoparticle Assembly in Nanocomposite Thin Films via Kinetic Control
Huang, Jingyu; Xiao, Yihan; Xu, Ting
2017-02-20
Nanocomposite thin films containing well-ordered nanoparticle (NP) assemblies are ideal candidates for the fabrication of metamaterials. Achieving 3-D assembly of NPs in nanocomposite thin films is thermodynamically challenging as the particle size gets similar to that of a single polymer chain. The entropic penalties of polymeric matrix upon NP incorporation leads to NP aggregation on the film surface or within the defects in the film. Controlling the kinetic pathways of assembly process provides an alternative path forward by arresting the system in nonequilibrium states. Here, we report the thin film 3-D hierarchical assembly of 20 nm NPs in supramolecules withmore » a 30 nm periodicity. By mediating the NP diffusion kinetics in the supramolecular matrix, surface aggregation of NPs was suppressed and NPs coassemble with supramolecules to form new 3-D morphologies in thin films. Lastly, the present studies opened a viable route to achieve designer functional composite thin films via kinetic control.« less
Coppa, N.V.
1993-08-24
A method is described of producing superconducting microcircuits comprising the steps of: depositing a thin film of Ba[sub 2]Cu[sub 3]O[sub 5+x](O < x < 1) onto a substrate; depositing a thin film of a dopant onto said thin film of Ba[sub 2]Cu[sub 3]O[sub 5+x]; depositing a photoresist onto said thin film of a dopant; shining light through a mask containing a pattern for a desired circuit configuration and onto said photoresist; developing said photoresist to remove portions of said photoresist shined by the light and to selectively expose said dopant film; etching said selectively exposed dopant film from said thin film of Ba[sub 2]Cu[sub 3]O[sub 5+x] to form a pattern of dopant; and heating said substrate at a temperature and for a period of time sufficient to diffuse and react said pattern of dopant with said thin film of Ba[sub 2]Cu[sub 3]O[sub 5+x].
Lee, Stephanie S; Mativetsky, Jeffrey M; Loth, Marsha A; Anthony, John E; Loo, Yueh-Lin
2012-11-27
The nanoscale boundaries formed when neighboring spherulites impinge in polycrystalline, solution-processed organic semiconductor thin films act as bottlenecks to charge transport, significantly reducing organic thin-film transistor mobility in devices comprising spherulitic thin films as the active layers. These interspherulite boundaries (ISBs) are structurally complex, with varying angles of molecular orientation mismatch along their lengths. We have successfully engineered exclusively low- and exclusively high-angle ISBs to elucidate how the angle of molecular orientation mismatch at ISBs affects their resistivities in triethylsilylethynyl anthradithiophene thin films. Conductive AFM and four-probe measurements reveal that current flow is unaffected by the presence of low-angle ISBs, whereas current flow is significantly disrupted across high-angle ISBs. In the latter case, we estimate the resistivity to be 22 MΩμm(2)/width of the ISB, only less than a quarter of the resistivity measured across low-angle grain boundaries in thermally evaporated sexithiophene thin films. This discrepancy in resistivities across ISBs in solution-processed organic semiconductor thin films and grain boundaries in thermally evaporated organic semiconductor thin films likely arises from inherent differences in the nature of film formation in the respective systems.
Thin Metallic Films From Solvated Metal Atoms
NASA Astrophysics Data System (ADS)
Trivino, Galo C.; Klabunde, Kenneth J.; Dale, Brock
1988-02-01
Metals were evaporated under vacuum and the metal atoms solvated by excess organic solvents at low temperature. Upon warming stable colloidal metal particles were formed by controlled metal atom clustering. The particles were stabilized toward flocculation by solvation and electrostatic effects. Upon solvent removal the colloidal particles grew to form thin films that were metallic in appearance, but showed higher resistivities than pure metallic films. Gold, palladium, platinium, and especially indium are discussed.
Thin film production method and apparatus
Loutfy, Raouf O.; Moravsky, Alexander P.; Hassen, Charles N.
2010-08-10
A method for forming a thin film material which comprises depositing solid particles from a flowing suspension or aerosol onto a filter and next adhering the solid particles to a second substrate using an adhesive.
Low Temperature Chemical Vapor Deposition Of Thin Film Magnets
Miller, Joel S.; Pokhodnya, Kostyantyn I.
2003-12-09
A thin-film magnet formed from a gas-phase reaction of tetracyanoetheylene (TCNE) OR (TCNQ), 7,7,8,8-tetracyano-P-quinodimethane, and a vanadium-containing compound such as vanadium hexcarbonyl (V(CO).sub.6) and bis(benzene)vanalium (V(C.sub.6 H.sub.6).sub.2) and a process of forming a magnetic thin film upon at least one substrate by chemical vapor deposition (CVD) at a process temperature not exceeding approximately 90.degree. C. and in the absence of a solvent. The magnetic thin film is particularly suitable for being disposed upon rigid or flexible substrates at temperatures in the range of 40.degree. C. and 70.degree. C. The present invention exhibits air-stable characteristics and qualities and is particularly suitable for providing being disposed upon a wide variety of substrates.
Wafer bonded virtual substrate and method for forming the same
Atwater, Jr., Harry A.; Zahler, James M [Pasadena, CA; Morral, Anna Fontcuberta i [Paris, FR
2007-07-03
A method of forming a virtual substrate comprised of an optoelectronic device substrate and handle substrate comprises the steps of initiating bonding of the device substrate to the handle substrate, improving or increasing the mechanical strength of the device and handle substrates, and thinning the device substrate to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. The handle substrate is typically Si or other inexpensive common substrate material, while the optoelectronic device substrate is formed of more expensive and specialized electro-optic material. Using the methodology of the invention a wide variety of thin film electro-optic materials of high quality can be bonded to inexpensive substrates which serve as the mechanical support for an optoelectronic device layer fabricated in the thin film electro-optic material.
Wafer bonded virtual substrate and method for forming the same
NASA Technical Reports Server (NTRS)
Atwater, Jr., Harry A. (Inventor); Zahler, James M. (Inventor); Morral, Anna Fontcuberta i (Inventor)
2007-01-01
A method of forming a virtual substrate comprised of an optoelectronic device substrate and handle substrate comprises the steps of initiating bonding of the device substrate to the handle substrate, improving or increasing the mechanical strength of the device and handle substrates, and thinning the device substrate to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. The handle substrate is typically Si or other inexpensive common substrate material, while the optoelectronic device substrate is formed of more expensive and specialized electro-optic material. Using the methodology of the invention a wide variety of thin film electro-optic materials of high quality can be bonded to inexpensive substrates which serve as the mechanical support for an optoelectronic device layer fabricated in the thin film electro-optic material.
Sundramoorthy, Ashok K.; Wang, Yilei; Wang, Jing; Che, Jianfei; Thong, Ya Xuan; Lu, Albert Chee W.; Chan-Park, Mary B.
2015-01-01
Graphene is a promising candidate material for transparent conductive films because of its excellent conductivity and one-carbon-atom thickness. Graphene oxide flakes prepared by Hummers method are typically several microns in size and must be pieced together in order to create macroscopic films. We report a macro-scale thin film fabrication method which employs a three-dimensional (3-D) surfactant, 4-sulfocalix[4]arene (SCX), as a lateral aggregating agent. After electrochemical exfoliation, the partially oxidized graphene (oGr) flakes are dispersed with SCX. The SCX forms micelles, which adsorb on the oGr flakes to enhance their dispersion, also promote aggregation into large-scale thin films under vacuum filtration. A thin oGr/SCX film can be shaved off from the aggregated oGr/SCX cake by immersing the cake in water. The oGr/SCX thin-film floating on the water can be subsequently lifted from the water surface with a substrate. The reduced oGr (red-oGr) films can be as thin as 10−20 nm with a transparency of >90% and sheet resistance of 890 ± 47 kΩ/sq. This method of electrochemical exfoliation followed by SCX-assisted suspension and hydrazine reduction, avoids using large amounts of strong acid (unlike Hummers method), is relatively simple and can easily form a large scale conductive and transparent film from oGr/SCX suspension. PMID:26040436
Direct Observation of the BCC (100) Plane in Thin Films of Sphere-forming Diblock Copolymers
NASA Astrophysics Data System (ADS)
Ji, Shengxiang; Nagpal, Umang; Liao, Wen; de Pablo, Juan; Nealey, Paul
2010-03-01
In sphere-forming diblock copolymers, periodic arrays of spheres are arranged in a body-centred cubic (BCC) lattice structure in bulk. However, in thin films different surface morphologies were observed as a function of the film thickness, and the transition from the hexagonal array to the BCC (110) arrangement of spheres on film surfaces was located with respect to the increase of the film thickness. Here we report the first direct observation of the BCC (100) plane in thin films of poly (styrene-b-methyl methacrylate) diblock copolymers on homogeneous substrates. By balancing the surface energies of both blocks, the lower energy BCC (100) plane corresponding to a square arrangement of half spheres, formed on film surfaces when the film thickness was commensurate with the spacing, L100, between (100) planes or greater than 2 L100. A hexagonal arrangement of spheres was only observed when the thickness was less than 2 L100 and incommensurate with 1 L100. Monte Carlo (MC) simulation confirmed our experimental observation and was used to investigate the transition of the arrangement of spheres as a function of the film thickness.
Evaluation of space environmental effects on metals and optical thin films on EOIM-3
NASA Technical Reports Server (NTRS)
Vaughn, Jason A.; Linton, Roger C.; Finckenor, Miria M.; Kamenetzky, Rachel R.
1995-01-01
Metals and optical thin films exposed to the space environment on the Third Flight of the Evaluation of Oxygen Interactions with Materials (EOIM-3) payload, onboard Space Shuttle mission STS-46 were evaluated. The materials effects described in this paper include the effects of space exposure on various pure metals, optical thin films, and optical thin film metals. The changes induced by exposure to the space environment in the material properties were evaluated using bidirectional reflectance distribution function (BRDF), specular reflectance (250 nm to 2500 nm), ESCA, VUV reflectance (120 nm to 200 nm), ellipsometry, FTIR and optical properties. Using these analysis techniques gold optically thin film metal mirrors with nickel undercoats were observed to darken due to nickel diffusion through the gold to the surface. Also, thin film nickel mirrors formed nickel oxide due to exposure to both the atmosphere and space.
Öztürk, Zafer; Filez, Matthias; Weckhuysen, Bert M
2017-08-10
The synthesis of metal-organic framework (MOF) thin films has garnered significant attention during the past decade. By better understanding the parameters governing the nucleation and growth of such thin films, their properties can be rationally tuned, empowering their application as (reactive) membranes. Here, a combined AFM-vibrational spectroscopy research strategy is employed to detail the chemistries governing the nucleation and growth of zeolitic imidazolate framework (ZIF) thin films, in particular isostructural Co-ZIF-67 and Zn-ZIF-8. First, a single step direct synthesis approach is used to investigate the influence of different synthesis parameters -metal/linker ratio, temperature, and metal type- on the thin film nucleation and growth behaviour. While the metal/linker ratio has a pronounced effect on the thin film nucleation rate, the temperature mainly influences the growth kinetics of nuclei forming the thin film. In addition, the nucleation and growth of ZIF thin films is shown to be highly dependent on the electronegativity of the metal type. Thin-film thickness control can be achieved by using a multistep synthesis strategy, implying repetitive applications of single step deposition under identical synthesis conditions, for which a growth mechanism is proposed. This study provides insight into the influence of synthesis parameters on the ZIF thin film properties, using tools at hand to rationally tune MOF thin film properties. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Piezoelectric thin films and their applications for electronics
NASA Astrophysics Data System (ADS)
Yoshino, Yukio
2009-03-01
ZnO and AlN piezoelectric thin films have been studied for applications in bulk acoustic wave (BAW) resonator. This article introduces methods of forming ZnO and AlN piezoelectric thin films by radio frequency sputtering and applications of BAW resonators considering the relationship between the crystallinity of piezoelectric thin films and the characteristics of the BAW resonators. Using ZnO thin films, BAW resonators were fabricated for a contour mode at 3.58 MHz and thickness modes from 200 MHz to 5 GHz. The ZnO thin films were combined with various materials, substrates, and thin films to minimize the temperature coefficient of frequency (TCF). The minimum TCF of BAW resonators was approximately 2 ppm/°C in the range -20 to 80 °C. The electromechanical coupling coefficient (k2) in a 1.9 GHz BAW resonator was 6.9%. Using AlN thin films, 5-20 GHz BAW resonators with an ultrathin membrane were realized. The membrane thickness of a 20 GHz BAW resonator was about 200 nm, k2 was 6.1%, and the quality factor (Q) was about 280. Q decreased with increasing resonant frequency. The value of k2 is almost the same for 5-20 GHz resonators. This result could be obtained by improving the thickness uniformity, by controlling internal stress of thin films, and by controlling the crystallinity of AlN piezoelectric thin film.
Plasmonic properties of gold nanoparticles covered by silicon suboxide thin film
NASA Astrophysics Data System (ADS)
Baranov, Evgeniy; Zamchiy, Alexandr; Safonov, Aleksey; Starinskiy, Sergey; Khmel, Sergey
2017-10-01
The optical properties of nanocomposite material consisting of gold nanoparticles without/with silicon suboxide thin film were obtained. The gold film was deposited by thermal vacuum evaporation and then it was annealed in a vacuum chamber to form gold nanoparticles. The silicon suboxide thin films were deposited by the gas-jet electron beam plasma chemical vapor deposition method. The intensity of the localized surface plasmon resonance increased and the plasmon maximum peak shifted from 520 nm to 537 nm.
Effect of substrates on Zinc Oxide thin films fabrication using sol-gel method
NASA Astrophysics Data System (ADS)
Kadir, Rosmalini Ab; Taib, Nurmalina Mohd; Ahmad, Wan Rosmaria Wan; Aziz, Anees Abdul; Sabirin Zoolfakar, Ahmad
2018-03-01
The properties of ZnO thin films were deposited on three different substrates via dip coating method was investigated. The films were prepared on glass, ITO and p-type silicon. Characterization of the film revealed that the properties of the dip coated ZnO thin films were influenced by the type of substrates. The grains on ITO and glass were ∼10 nm in size while the grains on wafer agglomerate together to form a denser film. Studies of the optical properties using UV-VIS-NIR of the fabricated films demonstrated that glass has the highest transmittance compared to ITO.
Tuneable dielectric films having low electrical losses
Dimos, Duane Brian; Schwartz, Robert William; Raymond, Mark Victor; Al-Shareef, Husam Niman; Mueller, Carl; Galt, David
2000-01-01
The present invention is directed to a method for forming dielectric thin films having substantially reduced electrical losses at microwave and millimeter wave frequencies relative to conventional dielectric thin films. The reduction in losses is realized by dramatically increasing the grain sizes of the dielectric films, thereby minimizing intergranular scattering of the microwave signal due to grain boundaries and point defects. The increase in grain size is realized by heating the film to a temperature at which the grains experience regrowth. The grain size of the films can be further increased by first depositing the films with an excess of one of the compoents, such that a highly mobile grain boundary phase is formed.
Thin Films of Novel Linear-Dendritic Diblock Copolymers
NASA Astrophysics Data System (ADS)
Iyer, Jyotsna; Hammond, Paula
1998-03-01
A series of diblock copolymers with one linear block and one dendrimeric block have been synthesized with the objective of forming ultrathin film nanoporous membranes. Polyethyleneoxide serves as the linear hydrophilic portion of the diblock copolymer. The hyperbranched dendrimeric block consists of polyamidoamine with functional end groups. Thin films of these materials made by spin casting and the Langmuir-Blodgett techniques are being studied. The effect of the polyethylene oxide block size and the number and chemical nature of the dendrimer end group on the nature and stability of the films formed willbe discussed.
Effects of bacteria on CdS thin films used in technological devices
NASA Astrophysics Data System (ADS)
Alpdoğan, S.; Adıgüzel, A. O.; Sahan, B.; Tunçer, M.; Metin Gubur, H.
2017-04-01
Cadmium sulfide (CdS) thin films were fabricated on glass substrates by the chemical bath deposition method at 70 {}^\\circ \\text{C} considering deposition times ranging from 2 h to 5 h. The optical band gaps of CdS thin films were found to be in the 2.42-2.37 eV range. CdS thin films had uniform spherical nano-size grains which had polycrystalline, hexagonal and cubic phases. The films had a characteristic electrical resistivity of the order of {{10}5} Ω \\text{cm} and n-type conductivity at room condition. CdS thin films were incubated in cultures of B.domonas aeruginosa and Staphylococcus aureus, which exist abundantly in the environment, and form biofilms. SEM images showed that S. aureus and K. pneumonia were detected significantly on the film surfaces with a few of P. aeruginosa and B. subtilis cells attached. CdS thin film surface exhibits relatively good resistance to the colonization of P. aeruginosa and B. subtilis. Optical results showed that the band gap of CdS thin films which interacted with the bacteria is 2.42 \\text{eV} . The crystal structure and electrical properties of CdS thin films were not affected by bacterial adhesion. The antimicrobial effect of CdS nanoparticles was different for different bacterial strains.
Synthesis and characteristics of PbTe1-xSex thin films formed via electrodeposition
NASA Astrophysics Data System (ADS)
Bae, Sangwoo; Lee, Sangwon; Sohn, Ho-Sang; Lee, Ho Seong
2017-09-01
PbTe1-xSex films were grown using electrodeposition and their microstructural and electrical properties were investigated. The Se content incorporated in the PbTe1-xSex films increased with the Se content in the electrolyte. X-ray diffraction peaks of the PbTe1-xSex films shifted to higher angles according to Vegard's law. For the sample with a small Se content, the PbTe1-xSex films showed a characteristic feather-like dendrite, while PbTe1-xSex films with a higher Se content showed faceted particles. Transmission electron microscopy results showed that the feather-like dendritic PbTe1-xSex grew like a single crystal and a growing twinning was formed in some dendrites. With an increase in the Se content in the PbTe1-xSex thin films, the carrier concentrations increased but the mobility reduced. Electrical conductivity of the PbTe1-xSex thin films increased and then slightly decreased with increasing Se content.
Method of forming particulate materials for thin-film solar cells
Eberspacher, Chris; Pauls, Karen Lea
2004-11-23
A method for preparing particulate materials useful in fabricating thin-film solar cells is disclosed. Particulate materials is prepared by the method include for example materials comprising copper and indium and/or gallium in the form of single-phase, mixed-metal oxide particulates; multi-phase, mixed-metal particulates comprising a metal oxide; and multinary metal particulates.
Self-assembly of dodecaphenyl POSS thin films
NASA Astrophysics Data System (ADS)
Handke, Bartosz; Klita, Łukasz; Niemiec, Wiktor
2017-12-01
The self-assembly abilities of Dodecaphenyl Polyhedral Oligomeric Silsesquioxane thin films on Si(1 0 0) surfaces were studied. Due to their thermal properties - relatively low sublimation temperature and preservation of molecular structure - cage type silsesquioxanes are ideal material for the preparation of a thin films by Physical Vapor Deposition. The Ultra-High Vacuum environment and the deposition precision of the PVD method enable the study of early stages of thin film growth and its molecular organization. X-ray Reflectivity and Atomic Force Microscopy measurements allow to pursuit size-effects in the structure of thin films with thickness ranges from less than a single molecular layer up to several tens of layers. Thermal treatment of the thin films triggered phase change: from a poorly ordered polycrystalline film into a well-ordered multilayer structure. Self-assembly of the layers is the effect of the π-stacking of phenyl rings, which force molecules to arrange in a superlattice, forming stacks of alternating organic-inorganic layers.
Method of producing thin cellulose nitrate film
Lupica, S.B.
1975-12-23
An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent.
Method for fabrication of electrodes
Jankowski, Alan F.; Morse, Jeffrey D.; Barksdale, Randy
2004-06-22
Described herein is a method to fabricate porous thin-film electrodes for fuel cells and fuel cell stacks. Furthermore, the method can be used for all fuel cell electrolyte materials which utilize a continuous electrolyte layer. An electrode layer is deposited on a porous host structure by flowing gas (for example, Argon) from the bottomside of the host structure while simultaneously depositing a conductive material onto the topside of the host structure. By controlling the gas flow rate through the pores, along with the process conditions and deposition rate of the thin-film electrode material, a film of a pre-determined thickness can be formed. Once the porous electrode is formed, a continuous electrolyte thin-film is deposited, followed by a second porous electrode to complete the fuel cell structure.
Atmospheric Pressure Plasma Jet-Assisted Synthesis of Zeolite-Based Low-k Thin Films.
Huang, Kai-Yu; Chi, Heng-Yu; Kao, Peng-Kai; Huang, Fei-Hung; Jian, Qi-Ming; Cheng, I-Chun; Lee, Wen-Ya; Hsu, Cheng-Che; Kang, Dun-Yen
2018-01-10
Zeolites are ideal low-dielectric constant (low-k) materials. This paper reports on a novel plasma-assisted approach to the synthesis of low-k thin films comprising pure-silica zeolite MFI. The proposed method involves treating the aged solution using an atmospheric pressure plasma jet (APPJ). The high reactivity of the resulting nitrogen plasma helps to produce zeolite crystals with high crystallinity and uniform crystal size distribution. The APPJ treatment also remarkably reduces the time for hydrothermal reaction. The zeolite MFI suspensions synthesized with the APPJ treatment are used for the wet deposition to form thin films. The deposited zeolite thin films possessed dense morphology and high crystallinity, which overcome the trade-off between crystallinity and film quality. Zeolite thin films synthesized using the proposed APPJ treatment achieve low leakage current (on the order of 10 -8 A/cm 2 ) and high Young's modulus (12 GPa), outperforming the control sample synthesized without plasma treatment. The dielectric constant of our zeolite thin films was as low as 1.41. The overall performance of the low-k thin films synthesized with the APPJ treatment far exceed existing low-k films comprising pure-silica MFI.
NASA Astrophysics Data System (ADS)
Elsayed, E. M.; Rashad, M. M.; Khalil, H. F. Y.; Ibrahim, I. A.; Hussein, M. R.; El-Sabbah, M. M. B.
2016-04-01
Nanocrystalline metal ferrite MFe2O4 (M=Cu, Zn, and Ni) thin films have been synthesized via electrodeposition-anodization process. Electrodeposited (M)Fe2 alloys were obtained from aqueous sulfate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (M)Fe2 alloys such as the bath composition and the current density were studied and optimized. The anodized (M)Fe2 alloy films were annealed in air at 400 °C for 2 h. The results revealed the formation of three ferrite thin films were formed. The crystallite sizes of the produced films were in the range between 45 and 60 nm. The microstructure of the formed film was ferrite type dependent. The corrosion behavior of ferrite thin films in different pH solutions was investigated using open circuit potential (OCP) and potentiodynamic polarization measurements. The open circuit potential indicates that the initial potential E im of ZnFe2O4 thin films remained constant for a short time, then sharply increased in the less negative direction in acidic and alkaline medium compared with Ni and Cu ferrite films. The values of the corrosion current density I corr were higher for the ZnFe2O4 films at pH values of 1 and 12 compared with that of NiFe2O4 and CuFe2O4 which were higher only at pH value 1. The corrosion rate was very low for the three ferrite films when immersion in the neutral medium. The surface morphology recommended that Ni and Cu ferrite films were safely used in neutral and alkaline medium, whereas Zn ferrite film was only used in neutral atmospheres.
Thin-film chip-to-substrate interconnect and methods for making same
Tuckerman, D.B.
1988-06-06
Integrated circuit chips are electrically connected to a silicon wafer interconnection substrate. Thin film wiring is fabricated down bevelled edges of the chips. A subtractive wire fabrication method uses a series of masks and etching steps to form wires in a metal layer. An additive method direct laser writes or deposits very thin lines which can then be plated up to form wires. A quasi-additive or subtractive/additive method forms a pattern of trenches to expose a metal surface which can nucleate subsequent electrolytic deposition of wires. Low inductance interconnections on a 25 micron pitch (1600 wires on a 1 cm square chip) can be produced. The thin film hybrid interconnect eliminates solder joints or welds, and minimizes the levels of metallization. Advantages include good electrical properties, very high wiring density, excellent backside contact, compactness, and high thermal and mechanical reliability. 6 figs.
Thin-film chip-to-substrate interconnect and methods for making same
Tuckerman, David B.
1991-01-01
Integrated circuit chips are electrically connected to a silica wafer interconnection substrate. Thin film wiring is fabricated down bevelled edges of the chips. A subtractive wire fabrication method uses a series of masks and etching steps to form wires in a metal layer. An additive method direct laser writes or deposits very thin metal lines which can then be plated up to form wires. A quasi-additive or subtractive/additive method forms a pattern of trenches to expose a metal surface which can nucleate subsequent electrolytic deposition of wires. Low inductance interconnections on a 25 micron pitch (1600 wires on a 1 cm square chip) can be produced. The thin film hybrid interconnect eliminates solder joints or welds, and minimizes the levels of metallization. Advantages include good electrical properties, very high wiring density, excellent backside contact, compactness, and high thermal and mechanical reliability.
Flat-lying semiconductor-insulator interfacial layer in DNTT thin films.
Jung, Min-Cherl; Leyden, Matthew R; Nikiforov, Gueorgui O; Lee, Michael V; Lee, Han-Koo; Shin, Tae Joo; Takimiya, Kazuo; Qi, Yabing
2015-01-28
The molecular order of organic semiconductors at the gate dielectric is the most critical factor determining carrier mobility in thin film transistors since the conducting channel forms at the dielectric interface. Despite its fundamental importance, this semiconductor-insulator interface is not well understood, primarily because it is buried within the device. We fabricated dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) thin film transistors by thermal evaporation in vacuum onto substrates held at different temperatures and systematically correlated the extracted charge mobility to the crystal grain size and crystal orientation. As a result, we identify a molecular layer of flat-lying DNTT molecules at the semiconductor-insulator interface. It is likely that such a layer might form in other material systems as well, and could be one of the factors reducing charge transport. Controlling this interfacial flat-lying layer may raise the ultimate possible device performance for thin film devices.
NASA Astrophysics Data System (ADS)
Nyoung Jang, Jin; Jong Lee, You; Jang, YunSung; Yun, JangWon; Yi, Seungjun; Hong, MunPyo
2016-06-01
In this study, we confirm that bombardment by high energy negative oxygen ions (NOIs) is the key origin of electro-optical property degradations in indium tin oxide (ITO) thin films formed by conventional plasma sputtering processes. To minimize the bombardment effect of NOIs, which are generated on the surface of the ITO targets and accelerated by the cathode sheath potential on the magnetron sputter gun (MSG), we introduce a magnetic field shielded sputtering (MFSS) system composed of a permanent magnetic array between the MSG and the substrate holder to block the arrival of energetic NOIs. The MFSS processed ITO thin films reveal a novel nanocrystal imbedded polymorphous structure, and present not only superior electro-optical characteristics but also higher gas diffusion barrier properties. To the best of our knowledge, no gas diffusion barrier composed of a single inorganic thin film formed by conventional plasma sputtering processes achieves such a low moisture permeability.
Tarasevich, B.J.; Rieke, P.C.
1998-06-02
A method is provided for producing a thin film product, comprising a first step in which an underlying substrate of a first material is provided. The underlying substrate includes a plurality of unmodified sites. The underlying substrate is then chemically modified wherein a plurality of organic functional groups are attached to a plurality of the unmodified sites. The arrangement and type of the functional group used can be selected for the purpose of controlling particular properties of the second material deposited. A thin film layer of at least one second material is then deposited onto the chemically modified underlying substrate. This can be accomplished by connecting the thin film to the underlying substrate by binding the thin film to the functional groups. 5 figs.
Tarasevich, Barbara J.; Rieke, Peter C.
1998-01-01
A method is provided for producing a thin film product, comprising a first step in which an underlying substrate of a first material is provided. The underlying substrate includes a plurality of unmodified sites. The underlying substrate is then chemically modified wherein a plurality of organic functional groups are attached to a plurality of the unmodified sites. The arrangement and type of the functional group used can be selected for the purpose of controlling particular properties of the second material deposited. A thin film layer of at least one second material is then deposited onto the chemically modified underlying substrate. This can be accomplished by connecting the thin film to the underlying substrate by binding the thin film to the functional groups.
Influences of annealing temperature on sprayed CuFeO2 thin films
NASA Astrophysics Data System (ADS)
Abdelwahab, H. M.; Ratep, A.; Abo Elsoud, A. M.; Boshta, M.; Osman, M. B. S.
2018-06-01
Delafossite CuFeO2 thin films were successfully prepared onto quartz substrates using simple spray pyrolysis technique. Post annealing under nitrogen atmosphere for 2 h was necessary to form delafossite CuFeO2 phase. The effect of alteration in annealing temperature (TA) 800, 850 and 900 °C was study on structural, morphology and optical properties. The XRD results for thin film annealed at TA = 850 °C show single phase CuFeO2 with rhombohedral crystal system and R 3 bar m space group with preferred orientation along (0 1 2). The prepared copper iron oxide thin films have an optical transmission ranged ∼40% in the visible region. The optical direct optical band gap of the prepared thin films was ranged ∼2.9 eV.
Micro-machined thin film hydrogen gas sensor, and method of making and using the same
NASA Technical Reports Server (NTRS)
DiMeo, Jr., Frank (Inventor); Bhandari, Gautam (Inventor)
2001-01-01
A hydrogen sensor including a thin film sensor element formed, e.g., by metalorganic chemical vapor deposition (MOCVD) or physical vapor deposition (PVD), on a microhotplate structure. The thin film sensor element includes a film of a hydrogen-interactive metal film that reversibly interacts with hydrogen to provide a correspondingly altered response characteristic, such as optical transmissivity, electrical conductance, electrical resistance, electrical capacitance, magnetoresistance, photoconductivity, etc., relative to the response characteristic of the film in the absence of hydrogen. The hydrogen-interactive metal film may be overcoated with a thin film hydrogen-permeable barrier layer to protect the hydrogen-interactive film from deleterious interaction with non-hydrogen species. The hydrogen sensor of the invention may be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently configured as a hand-held apparatus.
Method and making group IIB metal - telluride films and solar cells
Basol, Bulent M.; Kapur, Vijay K.
1990-08-21
A technique is disclosed forming thin films (13) of group IIB metal-telluride, such as Cd.sub.x Zn.sub.1-x Te (0.ltoreq.x.ltoreq.1), on a substrate (10) which comprises depositing Te (18) and at least one of the elements (19) of Cd, Zn, and Hg onto a substrate and then heating the elements to form the telluride. A technique is also provided for doping this material by chemically forming a thin layer of a dopant on the surface of the unreacted elements and then heating the elements along with the layer of dopant. A method is disclosed of fabricating a thin film photovoltaic cell which comprises depositing Te and at least one of the elements of Cd, Zn, and Hg onto a substrate which contains on its surface a semiconductor film (12) and then heating the elements in the presence of a halide of the Group IIB metals, causing the formation of solar cell grade Group IIB metal-telluride film and also causing the formation of a rectifying junction, in situ, between the semiconductor film on the substrate and the Group IIB metal-telluride layer which has been formed.
Thin-Film Nanocapacitor and Its Characterization
ERIC Educational Resources Information Center
Hunter, David N.; Pickering, Shawn L.; Jia, Dongdong
2007-01-01
An undergraduate thin-film nanotechnology laboratory was designed. Nanocapacitors were fabricated on silicon substrates by sputter deposition. A mask was designed to form the shape of the capacitor and its electrodes. Thin metal layers of Au with a 80 nm thickness were deposited and used as two infinitely large parallel plates for a capacitor.…
A thin polymer insulator for Josephson tunneling applications
NASA Technical Reports Server (NTRS)
Wilmsen, C. M.
1973-01-01
The use of an organic monolayer formed from a vapor as an insulating barrier for thin film Josephson junctions is considered, and the effect of an organic monolayer on the transition temperature of a thin film superconductor is investigated. Also analyzed are the geometric factors which influence Josephson junctions and Josephson junction interferometers.
Ferroelectric properties of PZT/BFO multilayer thin films prepared using the sol-gel method
2012-01-01
In this study, Pb(Zr0.52Ti0.48)O3/BiFeO3 [PZT/BFO] multilayer thin films were fabricated using the spin-coating method on a Pt(200 nm)/Ti(10 nm)/SiO2(100 nm)/p-Si(100) substrate alternately using BFO and PZT metal alkoxide solutions. The coating-and-heating procedure was repeated several times to form the multilayer thin films. All PZT/BFO multilayer thin films show a void-free, uniform grain structure without the presence of rosette structures. The relative dielectric constant and dielectric loss of the six-coated PZT/BFO [PZT/BFO-6] thin film were approximately 405 and 0.03%, respectively. As the number of coatings increased, the remanent polarization and coercive field increased. The values for the BFO-6 multilayer thin film were 41.3 C/cm2 and 15.1 MV/cm, respectively. The leakage current density of the BFO-6 multilayer thin film at 5 V was 2.52 × 10-7 A/cm2. PMID:22221519
Role of solution structure in self-assembly of conjugated block copolymer thin films
Brady, Michael A.; Ku, Sung -Yu; Perez, Louis A.; ...
2016-10-24
Conjugated block copolymers provide a pathway to achieve thermally stable nanostructured thin films for organic solar cells. We characterized the structural evolution of poly(3-hexylthiophene)- block-poly(diketopyrrolopyrrole–terthiophene) (P3HT- b-DPPT-T) from solution to nanostructured thin films. Aggregation of the DPPT-T block of P3HT- b-DPPT-T was found in solution by small-angle X-ray scattering with the P3HT block remaining well-solvated. The nanostructure in thin films was determined using a combination of wide and small-angle X-ray scattering techniques as a function of processing conditions. The structure in solution controlled the initial nanostructure in spin-cast thin films, allowing subsequent thermal annealing processes to further improve the ordering.more » In contrast to the results for thin films, nanostructural ordering was not observed in the bulk samples by small-angle X-ray scattering. Finally, these results suggest the importance of controlling solvent induced aggregation in forming nanostructured thin films of conjugated block copolymers.« less
Role of solution structure in self-assembly of conjugated block copolymer thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, Michael A.; Ku, Sung -Yu; Perez, Louis A.
Conjugated block copolymers provide a pathway to achieve thermally stable nanostructured thin films for organic solar cells. We characterized the structural evolution of poly(3-hexylthiophene)- block-poly(diketopyrrolopyrrole–terthiophene) (P3HT- b-DPPT-T) from solution to nanostructured thin films. Aggregation of the DPPT-T block of P3HT- b-DPPT-T was found in solution by small-angle X-ray scattering with the P3HT block remaining well-solvated. The nanostructure in thin films was determined using a combination of wide and small-angle X-ray scattering techniques as a function of processing conditions. The structure in solution controlled the initial nanostructure in spin-cast thin films, allowing subsequent thermal annealing processes to further improve the ordering.more » In contrast to the results for thin films, nanostructural ordering was not observed in the bulk samples by small-angle X-ray scattering. Finally, these results suggest the importance of controlling solvent induced aggregation in forming nanostructured thin films of conjugated block copolymers.« less
Mitlin, David; , Ophus, Colin; Evoy, Stephane; Radmilovic, Velimir; Mohammadi, Reza; Westra, Ken; Nelson-Fitzpatrick, Nathaniel; Lee, Zonghoon
2010-07-20
A thin-film composition of nanocrystal molybdenum in an amorphous metallic matrix may be formed by co-sputtering Mo with aluminum or nickel. NEMS cantilevers may be formed from the film. The films exhibit high nanoindentation hardness and a reduction in roughness and intrinsic stress, while maintaining resistivity in the metallic range.
Electrochromic TiO2 Thin Film Prepared by Dip-Coating Technique
NASA Astrophysics Data System (ADS)
Suriani, S.; Kamisah, M. M.
2002-12-01
Titanium dioxide (TiO2) thin films were prepared by using sol-gel dip coating technique. The coating solutions were prepared by reacting titanium isopropoxide as precursors and ethanol as solvent. The films were formed on transparent ITO-coated glass by a dip coating technique and final dried at various temperatures up to 600 °C for 30 minutes. The films were characterized with the UV-Vis-NIR Spectrometer, Scanning Electron Microscopy (SEM) and X-ray diffractometer (XRD). XRD results show that the films dried at 600 °C form anatase structure. From the spectroscopic studies, the sample shows electrochromic property.
Formation and prevention of fractures in sol-gel-derived thin films.
Kappert, Emiel J; Pavlenko, Denys; Malzbender, Jürgen; Nijmeijer, Arian; Benes, Nieck E; Tsai, Peichun Amy
2015-02-07
Sol-gel-derived thin films play an important role as the functional coatings for various applications that require crack-free films to fully function. However, the fast drying process of a standard sol-gel coating often induces mechanical stresses, which may fracture the thin films. An experimental study on the crack formation in sol-gel-derived silica and organosilica ultrathin (submicron) films is presented. The relationships among the crack density, inter-crack spacing, and film thickness were investigated by combining direct micrograph analysis with spectroscopic ellipsometry. It is found that silica thin films are more prone to fracturing than organosilica films and have a critical film thickness of 300 nm, above which the film fractures. In contrast, the organosilica films can be formed without cracks in the experimentally explored regime of film thickness up to at least 1250 nm. These results confirm that ultrathin organosilica coatings are a robust silica substitute for a wide range of applications.
Guest-Induced Two-Way Structural Transformation in a Layered Metal-Organic Framework Thin Film.
Haraguchi, Tomoyuki; Otsubo, Kazuya; Sakata, Osami; Fujiwara, Akihiko; Kitagawa, Hiroshi
2016-12-28
Fabrication of thin films made of metal-organic frameworks (MOFs) has been intensively pursued for practical applications that use the structural response of MOFs. However, to date, only physisorption-induced structural response has been studied in these films. Chemisorption can be expected to provide a remarkable structural response because of the formation of bonds between guest molecules and reactive metal sites in host MOFs. Here, we report that chemisorption-induced two-way structural transformation in a nanometer-sized MOF thin film. We prepared a two-dimensional layered-type MOF Fe[Pt(CN) 4 ] thin film using a step-by-step approach. Although the as-synthesized film showed poor crystallinity, the dehydrated form of this thin film had a highly oriented crystalline nature (Film-D) as confirmed by synchrotron X-ray diffraction (XRD). Surprisingly, under water and pyridine vapors, Film-D showed chemisorption-induced dynamic structural transformations to Fe(L) 2 [Pt(CN) 4 ] thin films [L = H 2 O (Film-H), pyridine (Film-P)], where water and pyridine coordinated to the open Fe 2+ site. Dynamic structural transformations were also confirmed by in situ XRD, sorption measurement, and infrared reflection absorption spectroscopy. This is the first report of chemisorption-induced dynamic structural response in a MOF thin film, and it provides useful insights, which would lead to future practical applications of MOFs utilizing chemisorption-induced structural responses.
Scavenging of oxygen from SrTiO3 by metals and its implications for oxide thin film deposition
NASA Astrophysics Data System (ADS)
Posadas, Agham; Kormondy, Kristy; Guo, Wei; Ponath, Patrick; Kremer, Jacqueline; Hadamek, Tobias; Demkov, Alexander
SrTiO3 is a widely used substrate for the growth of other functional oxide thin films. However, SrTiO3 loses oxygen very easily during oxide thin film deposition even under relatively high oxygen pressures. In some cases, there will be an interfacial layer of oxygen-deficient SrTiO3 formed at the interface with the deposited oxide film, depending on the metals present in the film. By depositing a variety of metals layer by layer and measuring the evolution of the core level spectra of both the deposited metal and SrTiO3 using x-ray photoelectron spectroscopy, we show that there are three distinct types of behavior that occur for thin metal films on SrTiO3. We discuss the implications of these types of behavior for the growth of complex oxide thin films on SrTiO3, and which oxide thin films are expected to produce an interfacial oxygen-deficient layer depending on their elemental constituents.
Xiang, Xiao-Dong; Chang, Hauyee; Takeuchi, Ichiro
2000-01-01
A dielectric thin-film material for microwave applications, including use as a capacitor, the thin-film comprising a composition of barium strontium calcium and titanium of perovskite type (Ba.sub.x Sr.sub.y Ca.sub.1-x-y)TiO.sub.3. Also provided is a method for making a dielectric thin film of that formula over a wide compositional range through a single deposition process.
Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof
Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.
2010-07-13
Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.
AZO nanorods thin films by sputtering method
NASA Astrophysics Data System (ADS)
Rosli, A. B.; Shariffudin, S. S.; Awang, Z.; Herman, S. H.
2018-05-01
Al-doped zinc oxide (AZO) nanorods thin film were deposited on Au catalyst using RF sputtering at 300 °C. The 15 nm thickness Au catalyst were deposited on glass substrates by sputtering method followed by annealing for 15 min at 500 °C to form Au nanostructures on the glass substrate. The AZO thin films were then deposited on Au catalyst at different RF power ranging from 50 - 200 W. The morphology of AZO was characterized using Field Emission Scanning Electron Microscopy while X-ray Diffraction was used to examine crystallinity of AZO thin films. From this work, the AZO nanorods was found grow at 200 W RF power.
Production and investigation of thin films of metal actinides (Pu, Am, Cm, Bk, Cf)
NASA Astrophysics Data System (ADS)
Radchenko, V. M.; Ryabinin, M. A.; Stupin, V. A.
2010-03-01
Under limited availability of transplutonium metals some special techniques and methods of their production have been developed that combine the process of metal reduction from a chemical compound and preparation of a sample for examination. In this situation the evaporation and condensation of metal onto a substrate becomes the only possible technology. Thin film samples of metallic 244Cm, 248Cm and 249Bk were produced by thermal reduction of oxides with thorium followed by deposition of the metals in the form of thin layers on tantalum substrates. For the production of 249Cf metal in the form of a thin layer the method of thermal reduction of oxide with lanthanum was used. 238Pu and 239Pu samples in the form of films were prepared by direct high temperature evaporation and condensation of the metal onto a substrate. For the production of 241Am films a gram sample of plutonium-241 metal was used containing about 18 % of americium at the time of production. Thermal decomposition of Pt5Am intermetallics in vacuum was used to produce americium metal with about 80% yield. Resistivity of the metallic 249Cf film samples was found to decrease exponentially with increasing temperature. The 249Cf metal demonstrated a tendency to form preferably a DHCP structure with the sample mass increasing. An effect of high specific activity on the crystal structure of 238Pu nuclide thin layers was studied either.
Characterisation of nickel silicide thin films by spectroscopy and microscopy techniques.
Bhaskaran, M; Sriram, S; Holland, A S; Evans, P J
2009-01-01
This article discusses the formation and detailed materials characterisation of nickel silicide thin films. Nickel silicide thin films have been formed by thermally reacting electron beam evaporated thin films of nickel with silicon. The nickel silicide thin films have been analysed using Auger electron spectroscopy (AES) depth profiles, secondary ion mass spectrometry (SIMS), and Rutherford backscattering spectroscopy (RBS). The AES depth profile shows a uniform NiSi film, with a composition of 49-50% nickel and 51-50% silicon. No oxygen contamination either on the surface or at the silicide-silicon interface was observed. The SIMS depth profile confirms the existence of a uniform film, with no traces of oxygen contamination. RBS results indicate a nickel silicide layer of 114 nm, with the simulated spectra in close agreement with the experimental data. Atomic force microscopy and transmission electron microscopy have been used to study the morphology of the nickel silicide thin films. The average grain size and average surface roughness of these films was found to be 30-50 and 0.67 nm, respectively. The film surface has also been studied using Kikuchi patterns obtained by electron backscatter detection.
Using atomistic simulations to model cadmium telluride thin film growth
NASA Astrophysics Data System (ADS)
Yu, Miao; Kenny, Steven D.
2016-03-01
Cadmium telluride (CdTe) is an excellent material for low-cost, high efficiency thin film solar cells. It is important to conduct research on how defects are formed during the growth process, since defects lower the efficiency of solar cells. In this work we use computer simulation to predict the growth of a sputter deposited CdTe thin film. On-the-fly kinetic Monte Carlo technique is used to simulate the CdTe thin film growth on the (1 1 1) surfaces. The results show that on the (1 1 1) surfaces the growth mechanisms on surfaces which are terminated by Cd or Te are quite different, regardless of the deposition energy (0.1∼ 10 eV). On the Te-terminated (1 1 1) surface the deposited clusters first form a single mixed species layer, then the Te atoms in the mixed layer moved up to form a new layer. Whilst on the Cd-terminated (1 1 1) surface the new Cd and Te layers are formed at the same time. Such differences are probably caused by stronger bonding between ad-atoms and surface atoms on the Te layer than on the Cd layer.
Guo, Jing; Pei, Yingli; Zhou, Zhengji; Zhou, Wenhui; Kou, Dongxing; Wu, Sixin
2015-12-01
Solution-processed approach for the deposition of Cu2ZnSn (S,Se)4 (CZTSSe) absorbing layer offers a route for fabricating thin film solar cell that is appealing because of simplified and low-cost manufacturing, large-area coverage, and better compatibility with flexible substrates. In this work, we present a simple solution-based approach for simultaneously dissolving the low-cost elemental Cu, Zn, Sn, S, and Se powder, forming a homogeneous CZTSSe precursor solution in a short time. Dense and compact kesterite CZTSSe thin film with high crystallinity and uniform composition was obtained by selenizing the low-temperature annealed spin-coated precursor film. Standard CZTSSe thin film solar cell based on the selenized CZTSSe thin film was fabricated and an efficiency of 6.4 % was achieved.
Fabrication of nanocrystal ink based superstrate-type CuInS₂ thin film solar cells.
Cho, Jin Woo; Park, Se Jin; Kim, Woong; Min, Byoung Koun
2012-07-05
A CuInS₂ (CIS) nanocrystal ink was applied to thin film solar cell devices with superstrate-type configuration. Monodispersed CIS nanocrystals were synthesized by a colloidal synthetic route and re-dispersed in toluene to form an ink. A spray method was used to coat CIS films onto conducting glass substrates. Prior to CIS film deposition, TiO₂ and CdS thin films were also prepared as a blocking layer and a buffer layer, respectively. We found that both a TiO₂ blocking layer and a CdS buffer layer are necessary to generate photoresponses in superstrate-type devices. The best power conversion efficiency (∼1.45%) was achieved by the CIS superstrate-type thin film solar cell device with 200 and 100 nm thick TiO₂ and CdS films, respectively.
Nucleation of fcc Ta when heating thin films
Janish, Matthew T.; Mook, William M.; Carter, C. Barry
2014-10-25
Thin tantalum films have been studied during in-situ heating in a transmission electron microscope. Diffraction patterns from the as-deposited films were typical of amorphous materials. Crystalline grains were observed to form when the specimen was annealed in-situ at 450°C. Particular attention was addressed to the formation and growth of grains with the face-centered cubic (fcc) crystal structure. As a result, these observations are discussed in relation to prior work on the formation of fcc Ta by deformation and during thin film deposition.
Kampwirth, R.T.; Schuller, I.K.; Falco, C.M.
1979-11-23
An improved method of preparing thin film superconducting electrical circuits of niobium or niobium compounds is provided in which a thin film of the niobium or niobium compound is applied to a nonconductive substrate and covered with a layer of photosensitive material. The sensitive material is in turn covered with a circuit pattern exposed and developed to form a mask of the circuit in photoresistive material on the surface of the film. The unmasked excess niobium film is removed by contacting the substrate with an aqueous etching solution of nitric acid, sulfuric acid, and hydrogen fluoride, which will rapidly etch the niobium compound without undercutting the photoresist. A modification of the etching solution will permit thin films to be lifted from the substrate without further etching.
An investigation of GaN thin films on AlN on sapphire substrate by sol-gel spin coating method
NASA Astrophysics Data System (ADS)
Amin, Nur Fahana Mohd; Ng, Sha Shiong
2017-12-01
In this research, the gallium nitride (GaN) thin films were deposited on aluminium nitride on sapphire (AlN/Al2O3) substrate by sol-gel spin coating method. Simple ethanol-based precursor with the addition of diethanolamine solution was used. The structural and morphology properties of synthesized GaN thin films were characterized by using X-ray Diffraction, Field-Emission Scanning Electron Microscopy and Atomic Force Microscopy. While the elemental compositions and the lattice vibrational properties of the films were investigated by means of the Energy Dispersive X-ray spectroscopy and Raman spectroscopy. All the results revealed that the wurtzite structure GaN thin films with GaN(002) preferred orientation and smooth surface morphology were successfully grown on AlN/Al2O3 substrate by using inexpensive and simplified sol-gel spin coating technique. The sol-gel spin coated GaN thin film with lowest oxygen content was also achieved.FESEM images show that GaN thin films with uniform and packed grains were formed. Based on the obtained results, it can be concluded that wurtzite structure GaN thin films were successfully deposited on AlN/Al2O3 substrate.
Mechanical properties and microstructures of Al-Cu Thin films with various heat treatments
NASA Astrophysics Data System (ADS)
Joo, Young-Chang
1998-10-01
The relationship between microstructure and mechanical properties has been investigated in Al-Cu thin films. The Cu content in Al-Cu samples used in this study ranges from 0 to 2 wt.% and substrate curvature measurement was used to measure film stress. In thin films, the constraints on the film by the substrate influence the microstructure and mechanical properties. Al-Cu thin films cooled from high temperatures have a large density of dislocations due to the plastic deformation caused by the thermal mismatch between the film and substrate. The high density of dislocations in the thin film enables precipitates to form inside the grain even during a very rapid quenching. The presence of a large density of dislocations and precipitates will in turn cause precipitation hardening of the Al-Cu films. The precipitation hardening is dominant at lower temperatures, and solid solution hardening is observed at higher temperatures in the tensile regime. Pure Al films showed the same values of tensile and compressive yield stresses at a given temperature during stress-temperature cycling.
Polygonal crack patterns by drying thin films under quasi-two-dimensional confinement
NASA Astrophysics Data System (ADS)
Ma, Xiaolei; Lowensohn, Janna; Burton, Justin
Cracks patterns such as T/Y junction cracks in dried mud are ubiquitous in nature. Although the conditions for cracking in solids is well-known, cracks in colloidal and granular systems are more complex. Here we report the formations of polygonal cracks by drying thin films of corn starch ( 10 μm in diameter) under quasi-2D confinement. We find there are two drying stages before the films are completely dried. Initially, a compaction front invades throughout the film. Then, a second drying stage ''percolates'' throughout the film with a characteristic branching pattern, leading to a dense packing of particles connected by liquid capillary bridges. Finally, polygonal cracks appear as the remaining liquid dries. The same drying kinetics occur for films with different thickness, h, except that fractal-like fracture patterns form in thin films, where the thickness is comparable to the particle size, while polygons form in thick films with many layers of particles. We also find that the average area of the polygons, A, in fully dried films scales with the thickness, A hβ , where β 1 . 5 , and the prefactor depends on the initial packing fraction of the suspension. This form is consistent with a simple energy balance criterion for crack formation.
Wang, Lina; Xu, Lin; Liu, Binyuan; Shi, Tongfei; Jiang, Shichun; An, Lijia
2017-05-03
The dewetting behavior of ring polystyrene (RPS) film and linear polystyrene (LPS) film on silanized Si substrates with different grafting densities and PDMS substrate was investigated. Results showed that polymer architectures greatly influenced the dewetting behavior of the thin polymer film. On the silanized Si substrate with 69% grafting density, RPS chains exhibited stronger adsorption compared with LPS chains, and as a result the wetting layer formed more easily. For LPS films, with a decreased annealing temperature, the stability of the polymer film changed from non-slip dewetting via apparent slip dewetting to apparently stable. However, for RPS films, the polymer film stability switched from apparent slip dewetting to apparently stable. On the silanized Si substrate with 94% grafting density, the chain adsorption became weaker and the dewetting processes were faster than that on the substrate with 69% grafting density at the same experimental temperature for both the LPS and RPS films. Moreover, on the PDMS substrate, LPS films always showed non-slip dewetting, while the dewetting kinetics of RPS films switched from non-slip dewetting to slip dewetting behaviour. Forming the wetting layer strongly influenced the stability and dewetting behavior of the thin polymer films.
Stepwise dynamics of an anionic micellar film - Formation of crown lenses.
Lee, Jongju; Nikolov, Alex; Wasan, Darsh
2017-06-15
We studied the stepwise thinning of a microscopic circular foam film formed from an anionic micellar solution of sodium dodecyl sulfate (SDS). The foam film formed from the SDS micellar solution thins in a stepwise manner by the formation and expansion of a dark spot(s) of one layer less than the film thickness. During the last stages of film thinning (e.g., a film with one micellar layer), the dark spot expansion occurs via two steps. Initially, a small dark circular spot inside a film of several microns in size is formed, which expands at a constant rate. Then, a ridge along the expanding spot is formed. As the ridge grows, it becomes unstable and breaks into regular crown lenses, which are seen as white spots in the reflected light at the border of the dark spot with the surrounding thicker film. The Rayleigh type of instability contributes to the formation of the lenses, which results in the increase of the dark spot expansion rate with time. We applied the two-dimensional micellar-vacancy diffusion model and took into consideration the effects of the micellar layering and film volume on the rate of the dark spot expansion [Lee et al., 2016] to predict the rate of the dark spot expansion for a 0.06M SDS film in the presence of lenses. We briefly discuss the Rayleigh type of instability in the case of a 0.06M SDS foam film. The goals of this study are to reveal why the crown lenses are formed during the foam film stratification and to elucidate their effect on the rate of spot expansion. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Merakeb, Noureddine; Messai, Amel; Djelloul, Abdelkader; Ayesh, Ahmad I.
2015-11-01
In this paper, we investigate the structure, composition, magnetic, and mechanical properties of stainless steel thin films formed by thermal evaporation technique. These thin films reveal novel structural and physical properties where they were found to consist of nanocrystals that are ~90 % body-centred cubic crystal structure which holds ferromagnetic properties (α-phase), and ~10 % face-centred cubic crystal structure which is paramagnetic at room temperature (γ-phase). The presence of the above phases was quantified by X-ray diffraction, transmission electron microscopy, and conversion electron Mössbauer spectroscopy. The magnetic properties were evaluated by a superconducting quantum interference device magnetometer, and they confirmed the dual-phase crystal structure of the stainless thin films, where the presence of γ-phase reduced the magnetization of the produced thin films. In addition, the fabricated stainless steel thin films did not contain micro-cracks, and they exhibit a tensile stress of about 1.7 GPa, hardness of 7.5 GPa, and elastic modulus of 104 GPa.
NASA Astrophysics Data System (ADS)
McCann, Ronán; Hughes, Cian; Bagga, Komal; Stalcup, Apryll; Vázquez, Mercedes; Brabazon, Dermot
2017-06-01
In this paper, we outline a novel technique for the deposition of nanostructured thin films utilizing a modified form of pulsed laser deposition (PLD). We demonstrate confined atmospheric PLD (CAP) for the deposition of gold on cyclic olefin polymer substrates. The deposition process is a simplified form of conventional PLD, with deposition conducted under atmospheric conditions and the substrate and target in close proximity. It was found that this confinement results in the deposition of nanostructured thin films on the substrate. Infrared spectroscopy showed no significant change of polymer surface chemistry as a result of the deposition process, and optical spectroscopy revealed plasmonic behavior of the resulting thin film. The effect of laser fluence on the deposition process was also examined with more uniform films deposited at higher fluences.
Low temperature photochemical vapor deposition of alloy and mixed metal oxide films
Liu, David K.
1992-01-01
Method and apparatus for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure.
Tearing as a test for mechanical characterization of thin adhesive films
NASA Astrophysics Data System (ADS)
Hamm, Eugenio; Reis, Pedro; Leblanc, Michael; Roman, Benoit; Cerda, Enrique
2008-05-01
Thin adhesive films have become increasingly important in applications involving packaging, coating or for advertising. Once a film is adhered to a substrate, flaps can be detached by tearing and peeling, but they narrow and collapse in pointy shapes. Similar geometries are observed when peeling ultrathin films grown or deposited on a solid substrate, or skinning the natural protective cover of a ripe fruit. Here, we show that the detached flaps have perfect triangular shapes with a well-defined vertex angle; this is a signature of the conversion of bending energy into surface energy of fracture and adhesion. In particular, this triangular shape of the tear encodes the mechanical parameters related to these three forms of energy and could form the basis of a quantitative assay for the mechanical characterization of thin adhesive films, nanofilms deposited on substrates or fruit skin.
Tearing as a test for mechanical characterization of thin adhesive films.
Hamm, Eugenio; Reis, Pedro; LeBlanc, Michael; Roman, Benoit; Cerda, Enrique
2008-05-01
Thin adhesive films have become increasingly important in applications involving packaging, coating or for advertising. Once a film is adhered to a substrate, flaps can be detached by tearing and peeling, but they narrow and collapse in pointy shapes. Similar geometries are observed when peeling ultrathin films grown or deposited on a solid substrate, or skinning the natural protective cover of a ripe fruit. Here, we show that the detached flaps have perfect triangular shapes with a well-defined vertex angle; this is a signature of the conversion of bending energy into surface energy of fracture and adhesion. In particular, this triangular shape of the tear encodes the mechanical parameters related to these three forms of energy and could form the basis of a quantitative assay for the mechanical characterization of thin adhesive films, nanofilms deposited on substrates or fruit skin.
Capillary bending of a thin polymer film floating on a liquid bath
NASA Astrophysics Data System (ADS)
Twohig, Timothy; Croll, Andrew B.
Thin elastic films and shells are very important in schemes for the encapsulation and protection of fluids from their environment. Capillary origami is a particularly poignant example of how useful fluid/film structures can be formed. The interactions of fluids on thin-films which themselves lie on another surface (fluid or low friction solid) need to be studied if the differences from fluid-fluid and fluid-solid film interfaces are to be fully appreciated. In this experiment, we examine the triple line that occurs when a fluid is resting on a thin polymer film which is itself floating on a second fluid. The top fluid has a high-energy air/fluid interface which can be minimized by deforming the film in a manner that reduces the total air/fluid interface. We create a one-dimensional experiment in order to isolate the basic physics that occurs as the tension of the top fluid pulls on the thin film. Notably, the 1D geometry removes all the complexity incurred by thin films in biaxial stress states (such as wrinkling, folding and crumpling) from the problem. AFOSR under the Young Investigator Program (FA9550-15-1-0168).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakashima, Y., E-mail: yuta-n@mech.kumamoto-u.ac.jp; Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611; Tsusu, K.
2014-06-15
Here, we sought to develop a cell culture surface conversion technique that would not damage living cells. An alginate thin film, formed on a glass plate by spin coating of sodium alginate solution and dipping into calcium chloride solution, was used to inhibit adhesion of cells. The film could be removed by ethylenediaminetetraacetate (EDTA) at any time during cell culture, permitting observation of cellular responses to conversion of the culture surface in real time. Additionally, we demonstrated the validity of the alginate thin film coating method and the performance of the film. The thickness of the alginate thin film wasmore » controlled by varying the rotation speed during spin coating. Moreover, the alginate thin film completely inhibited the adhesion of cultured cells to the culture surface, irrespective of the thickness of the film. When the alginate thin film was removed from the culture surface by EDTA, the cultured cells adhered to the culture surface, and their morphology changed. Finally, we achieved effective differentiation of C2C12 myoblasts into myotube cells by cell culture on the convertible culture surface, demonstrating the utility of our novel technique.« less
Thin-film preparation by back-surface irradiation pulsed laser deposition using metal powder targets
NASA Astrophysics Data System (ADS)
Kawasaki, Hiroharu; Ohshima, Tamiko; Yagyu, Yoshihito; Ihara, Takeshi; Yamauchi, Makiko; Suda, Yoshiaki
2017-01-01
Several kinds of functional thin films were deposited using a new thin-film preparation method named the back-surface irradiation pulsed laser deposition (BIPLD) method. In this BIPLD method, powder targets were used as the film source placed on a transparent target holder, and then a visible-wavelength pulsed laser was irradiated from the holder side to the substrate. Using this new method, titanium oxide and boron nitride thin films were deposited on the silicon substrate. Surface scanning electron microscopy (SEM) images suggest that all of the thin films were deposited on the substrate with some large droplets irrespective of the kind of target used. The deposition rate of the films prepared by using this method was calculated from film thickness and deposition time to be much lower than that of the films prepared by conventional PLD. X-ray diffraction (XRD) measurement results suggest that rutile and anatase TiO2 crystal peaks were formed for the films prepared using the TiO2 rutile powder target. Crystal peaks of hexagonal boron nitride were observed for the films prepared using the boron nitride powder target. The crystallinity of the prepared films was changed by annealing after deposition.
Recent progress of obliquely deposited thin films for industrial applications
NASA Astrophysics Data System (ADS)
Suzuki, Motofumi; Itoh, Tadayoshi; Taga, Yasunori
1999-06-01
More than 10 years ago, birefringent films of metal oxides were formed by oblique vapor deposition and investigated with a view of their application to optical retardation plates. The retardation function of the films was explained in terms of the birefringence caused by the characteristic anisotropic nanostructure inside the films. These films are now classified in the genre of the so-called sculptured thin films. However, the birefringent films thus prepared are not yet industrialized even now due to the crucial lack of the durability and the yield of products. In this review paper, we describe the present status of application process of the retardation films to the information systems such as compact disc and digital versatile disc devices with a special emphasis on the uniformity of retardation properties in a large area and the stability of the optical properties of the obliquely deposited thin films. Finally, further challenges for wide application of the obliquely deposited thin films are also discussed.
Epitaxial growth of thermally stable cobalt films on Au(111)
NASA Astrophysics Data System (ADS)
Haag, N.; Laux, M.; Stöckl, J.; Kollamana, J.; Seidel, J.; Großmann, N.; Fetzer, R.; Kelly, L. L.; Wei, Z.; Stadtmüller, B.; Cinchetti, M.; Aeschlimann, M.
2016-10-01
Ferromagnetic thin films play a fundamental role in spintronic applications as a source for spin polarized carriers and in fundamental studies as ferromagnetic substrates. However, it is challenging to produce such metallic films with high structural quality and chemical purity on single crystalline substrates since the diffusion barrier across the metal-metal interface is usually smaller than the thermal activation energy necessary for smooth surface morphologies. Here, we introduce epitaxial thin Co films grown on an Au(111) single crystal surface as a thermally stable ferromagnetic thin film. Our structural investigations reveal an identical growth of thin Co/Au(111) films compared to Co bulk single crystals with large monoatomic Co terraces with an average width of 500 Å, formed after thermal annealing at 575 K. Combining our results from photoemission and Auger electron spectroscopy, we provide evidence that no significant diffusion of Au into the near surface region of the Co film takes place for this temperature and that no Au capping layer is formed on top of Co films. Furthermore, we show that the electronic valence band is dominated by a strong spectral contribution from a Co 3d band and a Co derived surface resonance in the minority band. Both states lead to an overall negative spin polarization at the Fermi energy.
NASA Astrophysics Data System (ADS)
Suetsugu, Takaaki; Shimazu, Yuichi; Tsuchiya, Takashi; Kobayashi, Masaki; Minohara, Makoto; Sakai, Enju; Horiba, Koji; Kumigashira, Hiroshi; Higuchi, Tohru
2016-06-01
We have prepared b-axis-oriented VO2 thin films by RF magnetron sputtering using oxygen radicals as the reactive gas. The VO2 thin films consist of a mixed-valence V3+/V4+ state formed by oxygen vacancies. The V3+ ratio strongly depends on the film thickness and the oxygen partial pressure of the radical gun during deposition. The lattice constant of the b-axis increases and the metal-insulator transition (MIT) temperature decreases with decreasing V3+ ratio, although the VO2 thin films with a high V3+ ratio of 42% do not exhibit MIT. The bandwidths and spectral weights of V 3d a1g and \\text{e}\\text{g}σ bands at around the Fermi level, which correspond to the insulating phase at 300 K, are smaller in the VO2 thin films with a low V3+ ratio. These results indicate that the control of the mixed-valence V3+/V4+ state is important for the MIT of b-axis-oriented VO2 thin films.
Liu, Jinxuan; Wöll, Christof
2017-10-02
Surface-supported metal-organic framework thin films are receiving increasing attention as a novel form of nanotechnology. New deposition techniques that enable the control of the film thickness, homogeneity, morphology, and dimensions with a huge number of metal-organic framework compounds offer tremendous opportunities in a number of different application fields. In response to increasing demands for environmental sustainability and cleaner energy, much effort in recent years has been devoted to the development of MOF thin films for applications in photovoltaics, CO 2 reduction, energy storage, water splitting, and electronic devices, as well as for the fabrication of membranes. Although existing applications are promising and encouraging, MOF thin films still face numerous challenges, including the need for a more thorough understanding of the thin-film growth mechanism, stability of the internal and external interfaces, strategies for doping and models for charge carrier transport. In this paper, we review the recent advances in MOF thin films, including fabrication and patterning strategies and existing nanotechnology applications. We conclude by listing the most attractive future opportunities as well as the most urgent challenges.
NASA Astrophysics Data System (ADS)
Yang, Jyun-Bao; Chang, Ting-Chang; Huang, Jheng-Jie; Chen, Yu-Chun; Chen, Yu-Ting; Tseng, Hsueh-Chih; Chu, Ann-Kuo; Sze, Simon M.
2014-04-01
In this study, indium-gallium-zinc-oxide thin film transistors can be operated either as transistors or resistance random access memory devices. Before the forming process, current-voltage curve transfer characteristics are observed, and resistance switching characteristics are measured after a forming process. These resistance switching characteristics exhibit two behaviors, and are dominated by different mechanisms. The mode 1 resistance switching behavior is due to oxygen vacancies, while mode 2 is dominated by the formation of an oxygen-rich layer. Furthermore, an easy approach is proposed to reduce power consumption when using these resistance random access memory devices with the amorphous indium-gallium-zinc-oxide thin film transistor.
Dual-Input AND Gate From Single-Channel Thin-Film FET
NASA Technical Reports Server (NTRS)
Miranda, F. A.; Pinto, N. J.; Perez, R.; Mueller, C. H.
2008-01-01
A regio-regular poly(3-hexylthiophene) (RRP3HT) thin-film transistor having a split-gate architecture has been fabricated on a doped silicon/silicon nitride substrate and characterized. RRP3HT is a semiconducting polymer that has a carrier mobility and on/off ratio when used in a field effect transistor (FET) configuration. This commercially available polymer is very soluble in common organic solvents and is easily processed to form uniform thin films. The most important polymer-based device fabricated and studied is the FET, since it forms the building block in logic circuits and switches for active matrix (light-emitting-diode) (LED) displays, smart cards, and radio frequency identification (RFID) cards.
Ferroelectricity in epitaxial Y-doped HfO2 thin film integrated on Si substrate
NASA Astrophysics Data System (ADS)
Lee, K.; Lee, T. Y.; Yang, S. M.; Lee, D. H.; Park, J.; Chae, S. C.
2018-05-01
We report on the ferroelectricity of a Y-doped HfO2 thin film epitaxially grown on Si substrate, with an yttria-stabilized zirconia buffer layer pre-deposited on the substrate. Piezoresponse force microscopy results show the ferroelectric domain pattern, implying the existence of ferroelectricity in the epitaxial HfO2 film. The epitaxially stabilized HfO2 film in the form of a metal-ferroelectric-insulator-semiconductor structure exhibits ferroelectric hysteresis with a clear ferroelectric switching current in polarization-voltage measurements. The HfO2 thin film also demonstrates ferroelectric retention comparable to that of current perovskite-based metal-ferroelectric-insulator-semiconductor structures.
Liang, Yuan-Chang; Lung, Tsai-Wen; Wang, Chein-Chung
2016-12-01
Well-crystallized Sn 2 S 3 semiconductor thin films with a highly (111)-crystallographic orientation were grown using RF sputtering. The surface morphology of the Sn 2 S 3 thin films exhibited a sheet-like feature. The Sn 2 S 3 crystallites with a sheet-like surface had a sharp periphery with a thickness in a nanoscale size, and the crystallite size ranged from approximately 150 to 300 nm. Postannealing the as-synthesized Sn 2 S 3 thin films further in ambient air at 400 °C engendered roughened and oxidized surfaces on the Sn 2 S 3 thin films. Transmission electron microscopy analysis revealed that the surfaces of the Sn 2 S 3 thin films transformed into a SnO 2 phase, and well-layered Sn 2 S 3 -SnO 2 heterostructure thin films were thus formed. The Sn 2 S 3 -SnO 2 heterostructure thin film exhibited a visible photoassisted room-temperature gas-sensing behavior toward low concentrations of NO 2 gases (0.2-2.5 ppm). By contrast, the pure Sn 2 S 3 thin film exhibited an unapparent room-temperature NO 2 gas-sensing behavior under illumination. The suitable band alignment at the interface of the Sn 2 S 3 -SnO 2 heterostructure thin film and rough surface features might explain the visible photoassisted room-temperature NO 2 gas-sensing responses of the heterostructure thin film on exposure to NO 2 gas at low concentrations in this work.
Song, Sung E; Choi, Gwan H; Yi, Gi-Ra; Yoo, Pil J
2017-11-01
Polymeric thin films coated on non-wettable substrates undergo film-instabilities, which are usually manifested as surface deformation in the form of dewetting or wrinkling. The former takes place in fluidic films, whereas the latter occurs in solid films. Therefore, there have rarely been reports of systems involving simultaneous deformations of dewetting and wrinkling. In this study, we propose polymeric thin films of liquid crystalline (LC) mesogens prepared on a non-wettable Si substrate and apply a treatment of plasma irradiation to form a thin polymerized layer at the surface. The resulting compressive stress generated in the surface region drives the formation of wrinkles, while at the same time, dipolar attraction between LC molecules induces competitive cohesive dewetting. Intriguing surface structures were obtained whereby dewetting-like hole arrays are nested inside the randomly propagated wrinkles. The structural features are readily controlled by the degree of surface cross-linking, hydrophilicity of the substrates, and the LC film thickness. In particular, dewetting of LC mesogens is observed to be restricted to occur at the trough regions of wrinkles, exhibiting the typical behavior of geometrically confined dewetting. Finally, wrinkling-dewetting mixed structures are separated from the substrate in the form of free standing films to demonstrate the potential applicability as membranes.
Multi-functional properties of CaCu3Ti4O12 thin films
NASA Astrophysics Data System (ADS)
Felix, A. A.; Rupp, J. L. M.; Varela, J. A.; Orlandi, M. O.
2012-09-01
In this work, electric transport properties of CaCu3Ti4O12 (CCTO) thin films were investigated for resistive switching, rectifying and gas sensor applications. Single phase CCTO thin films were produced by polymeric precursor method (PPM) on different substrates and their electrical properties were studied. Films produced on LNO/Si substrates have symmetrical non-ohmic current-voltage characteristics, while films deposited on Pt/Si substrates have a highly asymmetrical non-ohmic behavior which is related to a metal-semiconductor junction formed at the CCTO/Pt interface. In addition, results confirm that CCTO has a resistive switching response which is enhanced by Schottky contacts. Sensor response tests revealed that CCTO films are sensitive to oxygen gas and exhibit n-type conductivity. These results demonstrate the versatility of CCTO thin film prepared by the PPM method for gas atmosphere or bias dependent resistance applications.
Structure of disordered gold-polymer thin films using small angle x-ray scattering
NASA Astrophysics Data System (ADS)
Teixeira, F. S.; Salvadori, M. C.; Cattani, M.; Brown, I. G.
2010-11-01
We have investigated the structure of disordered gold-polymer thin films using small angle x-ray scattering and compared the results with the predictions of a theoretical model based on two approaches—a structure form factor approach and the generalized Porod law. The films are formed of polymer-embedded gold nanoclusters and were fabricated by very low energy gold ion implantation into polymethylmethacrylate (PMMA). The composite films span (with dose variation) the transition from electrically insulating to electrically conducting regimes, a range of interest fundamentally and technologically. We find excellent agreement with theory and show that the PMMA-Au films have monodispersive or polydispersive characteristics depending on the implanted ion dose.
Development of Thin Film Ceramic Thermocouples for High Temperature Environments
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.; Farmer, Serene C.; Sayir, Ali; Blaha, Charles A.; Gonzalez, Jose M.
2004-01-01
The maximum use temperature of noble metal thin film thermocouples of 1100 C (2000 F) may not be adequate for use on components in the increasingly harsh conditions of advanced aircraft and next generation launch technology. Ceramic-based thermocouples are known for their high stability and robustness at temperatures exceeding 1500 C, but are typically found in the form of rods or probes. NASA Glenn Research Center is investigating the feasibility of ceramics as thin film thermocouples for extremely high temperature applications to take advantage of the stability and robustness of ceramics and the non-intrusiveness of thin films. This paper will discuss the current state of development in this effort.
Method for producing textured substrates for thin-film photovoltaic cells
Lauf, R.J.
1996-04-02
The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the, solar energy conversion efficiency of thin-film photovoltaic cells. 4 figs.
Method for producing textured substrates for thin-film photovoltaic cells
Lauf, R.J.
1994-04-26
The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the solar energy conversion efficiency of thin-film photovoltaic cells. 4 figures.
Method for producing textured substrates for thin-film photovoltaic cells
Lauf, Robert J.
1994-01-01
The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the solar energy conversion efficiency of thin-film photovoltaic cells.
Method for producing textured substrates for thin-film photovoltaic cells
Lauf, Robert J.
1996-01-01
The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the, solar energy conversion efficiency of thin-film photovoltaic cells.
Space-charge limited current in CdTe thin film solar cell
NASA Astrophysics Data System (ADS)
Li, Qiang; Shen, Kai; Li, Xun; Yang, Ruilong; Deng, Yi; Wang, Deliang
2018-04-01
In this study, we demonstrate that space-charge limited current (SCLC) is an intrinsic current shunting leakage in CdTe thin film solar cells. The SCLC leakage channel, which is formed by contact between the front electrode, CdTe, and the back electrode, acts as a metal-semiconductor-metal (MSM) like transport path. The presence of SCLC leaking microchannels in CdTe leads to a band bending at the MSM structure, which enhances minority carrier recombination and thus decreases the minority carrier lifetime in CdTe thin film solar cells. SCLC was found to be a limiting factor both for the fill factor and the open-circuit voltage of CdTe thin film solar cells.
Thin-film diffusion brazing of titanium alloys
NASA Technical Reports Server (NTRS)
Mikus, E. B.
1972-01-01
A thin film diffusion brazing technique for joining titanium alloys by use of a Cu intermediate is described. The method has been characterized in terms of static and dynamic mechanical properties on Ti-6Al-4V alloy. These include tensile, fracture toughness, stress corrosion, shear, corrosion fatigue, mechanical fatigue and acoustic fatigue. Most of the properties of titanium joints formed by thin film diffusion brazing are equal or exceed base metal properties. The advantages of thin film diffusion brazing over solid state diffusion bonding and brazing with conventional braze alloys are discussed. The producibility advantages of this process over others provide the potential for producing high efficiency joints in structural components of titanium alloys for the minimum cost.
Integration of Peptides into Organic Thin Film Transistor (OTFT)-based Printable Sensors
2017-02-10
AFRL-AFOSR-JP-TR-2017-0009 Integration of Peptides into Organic Thin Film Transistor (OTFT)-based Printable Sensors Paul Dastoor UNIVERSITY OF...collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION . 1...Peptides into Organic Thin Film Transistor (OTFT)-based Printable Sensors 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-15-1-4002 5c. PROGRAM ELEMENT
Highly ordered gold nanotubes using thiols at a cleavable block copolymer interface.
Ryu, Ja-Hyoung; Park, Soojin; Kim, Bokyung; Klaikherd, Akamol; Russell, Thomas P; Thayumanavan, S
2009-07-29
We have prepared functionalized nanoporous thin films from a polystyrene-block-polyethylene oxide block copolymer, which was made cleavable due to the intervening disulfide bond. The cleavage reaction of the disulfide bond leaves behind free thiol groups inside the nanopores of polystyrene thin film. This nanoporous thin film can be used as a template for generating gold nanoring structures. This strategy can provide a facile method to form a highly ordered array of biopolymer or metal-polymer composite structures.
Method of forming a thin unbacked metal foil
Duchane, David V.; Barthell, Barry L.
1984-01-01
In a method of forming a thin (<2 .mu.m) unbacked metal foil having a desired curviplanar shape, a soluble polymeric film, preferably comprising polyvinyl alcohol, is formed on a supporting structure having a shape that defines the desired shape of the foil product. A layer of metal foil is deposited onto one side of the soluble film, preferably by vacuum vapor deposition. The metallized film is then immersed in a suitable solvent to dissolve the film and thereby leave the metal foil as an unbacked metal foil element mounted on the supporting structure. Aluminum foils less than 0.2 .mu.m (2,000 .ANG.) thick and having an areal density of less than 54 .mu.g/cm.sup.2 have been obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzanyan, A S; Kuzanyan, A A; Petrosyan, V A
The factors determining the efficiency of the target material utilisation for pulsed laser deposition of films are considered. The target volume is calculated, which is evaporated in the ablation process by the focused laser radiation having a rectangular form. The new device is suggested and developed for obtaining thin films by the method of laser deposition, which is specific in the employment of a simple optical system mounted outside a deposition chamber that comprises two lenses and the diaphragm and focuses the laser beam onto a target in the form of a sector-like spot. Thin films of CuO and YBaCuOmore » were deposited with this device. Several deposition cycles revealed that the target material is consumed uniformly from the entire surface of the target. A maximal spread of the target thickness was not greater than ±2% both prior to deposition and after it. The device designed provides a high coefficient of the target material utilisation efficiency. (laser deposition of thin films)« less
In situ measurements of thin films in bovine serum lubricated contacts using optical interferometry.
Vrbka, Martin; Křupka, Ivan; Hartl, Martin; Návrat, Tomáš; Gallo, Jiří; Galandáková, Adéla
2014-02-01
The aim of this study is to consider the relevance of in situ measurements of bovine serum film thickness in the optical test device that could be related to the function of the artificial hip joint. It is mainly focussed on the effect of the hydrophobicity or hydrophilicity of the transparent surface and the effect of its geometry. Film thickness measurements were performed using ball-on-disc and lens-on-disc configurations of optical test device as a function of time. Chromatic interferograms were recorded with a high-speed complementary metal-oxide semiconductor digital camera and evaluated with thin film colorimetric interferometry. It was clarified that a chromium layer covering the glass disc has a hydrophobic behaviour which supports the adsorption of proteins contained in the bovine serum solution, thereby a thicker lubricating film is formed. On the contrary, the protein film formation was not observed when the disc was covered with a silica layer having a hydrophilic behaviour. In this case, a very thin lubricating film was formed only due to the hydrodynamic effect. Metal and ceramic balls have no substantial effect on lubricant film formation although their contact surfaces have relatively different wettability. It was confirmed that conformity of contacting surfaces and kinematic conditions has fundamental effect on bovine serum film formation. In the ball-on-disc configuration, the lubricant film is formed predominantly due to protein aggregations, which pass through the contact zone and increase the film thickness. In the more conformal ball-on-lens configuration, the lubricant film is formed predominantly due to hydrodynamic effect, thereby the film thickness is kept constant during measurement.
Method of forming ultra thin film devices by vacuum arc vapor deposition
NASA Technical Reports Server (NTRS)
Schramm, Harry F. (Inventor)
2005-01-01
A method for providing an ultra thin electrical circuit integral with a portion of a surface of an object, including using a focal Vacuum Arc Vapor Deposition device having a chamber, a nozzle and a nozzle seal, depressing the nozzle seal against the portion of the object surface to create an airtight compartment in the chamber and depositing one or more ultra thin film layer(s) only on the portion of the surface of the object, the layers being of distinct patterns such that they form the circuit.
NASA Astrophysics Data System (ADS)
Laha, Ranjit; Malar, P.; Osipowicz, Thomas; Kasiviswanathan, S.
2017-09-01
Tailoring of plasmonic properties of metal nanoparticle-embedded dielectric thin films are very crucial for many thin film-based applications. We, herein, investigate the various ways of tuning the plasmonic positions of gold nanoparticles (AuNPs)-embedded indium oxide thin films (Au:IO) through a sequence-specific sandwich method. The sandwich method is a four-step process involving deposition of In2O3 film by magnetron sputtering in first and fourth steps, thermal evaporation of Au on to In2O3 film in second and annealing of Au/In2O3 film in the third step. The Au:IO films were characterized by x-ray diffraction, spectrophotometry and transmission electron microscopy. The size and shape of the embedded nanoparticles were found from Rutherford back-scattering spectrometry. Based on dynamic Maxwell Garnett theory, the observed plasmon resonance position was ascribed to the oblate shape of AuNPs formed in sandwich method. Finally, through experimental data, it was shown that the plasmon resonance position of Au:IO thin films can be tuned by 125 nm. The method shown here can be used to tune the plasmon resonance position over the entire range of visible region for the thin films made from other combinations of metal-dielectric pair.
NASA Technical Reports Server (NTRS)
Siegel, C. M. (Inventor)
1984-01-01
A method is described for thinning an epitaxial layer of a wafer that is to be used in producing diodes having a specified breakdown voltage and which also facilitates the thinning process. Current is passed through the epitaxial layer, by connecting a current source between the substrate of the wafer and an electrolyte in which the wafer is immersed. When the wafer is initially immersed, the voltage across the wafer initially drops and then rises at a steep rate. When light is applied to the wafer the voltage drops, and when the light is interrupted the voltage rises again. These changes in voltage, each indicate the breakdown voltage of a Schottky diode that could be prepared from the wafer at that time. The epitaxial layer is thinned by continuing to apply current through the wafer while it is immersed and light is applied, to form an oxide film and when the oxide film is thick the wafer can then be cleaned of oxide and the testing and thinning continued. Uninterrupted thinning can be achieved by first forming an oxide film, and then using an electrolyte that dissolves the oxide about as fast as it is being formed, to limit the thickness of the oxide layer.
Murata, Tsuyoshi; Ishizawa, Hitoshi; Tanaka, Akira
2008-05-01
We have successfully developed a process to form high quality MgF(2) thin films with ultralow refractive indices from autoclaved sols prepared from magnesium acetate and hydrofluoric acid. And we have confirmed that our porous MgF(2) coatings have not only high transmittance in the UV region but also high uniformity of film thickness. They can be uniformly formed on phiv 300 mm substrates as a single coating and as a hybrid coating with sublayers formed by physical vapor deposition. They are expected to be applied to various optics that need high transmittance in the UV region.
NASA Astrophysics Data System (ADS)
Keeble, D. J.; Krishnan, A.; Umlor, M. T.; Lynn, K. G.; Warren, W. L.; Dimos, D.; Tuttle, B. A.
Preliminary positron annihilation studies of ceramic and thin film Pb(Zr,Ti)O3 (PZT) materials have been completed. This paper examines effects of processing conditions on vacancy related defects. Positron lifetime measurements on bulk PLZT plates showed an increase in positron trapping to a defect state with increasing grain size consistent with trapping to lead vacancy related defects formed through lead oxide loss during processing. Variable energy positron beam measurements were completed on bulk PLZT plates, sol-gel PZT thin films, and laser ablated PLZT thin films. Films processed in a reduced oxygen atmosphere were found to give a higher S-parameter, due to an increase in concentration of neutral or negatively charged vacancy type defects, compared with material processed in an oxidizing ambient.
Low temperature photochemical vapor deposition of alloy and mixed metal oxide films
Liu, D.K.
1992-12-15
Method and apparatus are described for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure. 7 figs.
NASA Astrophysics Data System (ADS)
Grumezescu, Valentina; Andronescu, Ecaterina; Holban, Alina Maria; Mogoantă, Laurenţiu; Mogoşanu, George Dan; Grumezescu, Alexandru Mihai; Stănculescu, Anca; Socol, Gabriel; Iordache, Florin; Maniu, Horia; Chifiriuc, Mariana Carmen
2015-05-01
In this study we aimed to evaluate the biocompatibility and antimicrobial activity of kanamycin functionalized 5 nm-magnetite (Fe3O4@KAN) nanoparticles thin films deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. A laser deposition regime was established in order to stoichiometrically transfer Fe3O4@KAN thin films on silicone and glass substrates. Morphological and physico-chemical properties of powders and coatings were characterized by XRD, TEM, SEM, AFM and IR microscopy (IRM). Our nanostructured thin films have proved efficiency in the prevention of microbial adhesion and mature biofilms development as a result of antibiotic release in its active form. Furthermore, kanamycin functionalized nanostructures exhibit a good biocompatibility, both in vivo and in vitro, demonstrating their potential for implants application. This is the first study reporting the assessment of the in vivo biocompatibility of a magnetite-antimicrobial thin films produced by MAPLE technique.
Fabrication of high performance thin-film transistors via pressure-induced nucleation.
Kang, Myung-Koo; Kim, Si Joon; Kim, Hyun Jae
2014-10-31
We report a method to improve the performance of polycrystalline Si (poly-Si) thin-film transistors (TFTs) via pressure-induced nucleation (PIN). During the PIN process, spatial variation in the local solidification temperature occurs because of a non-uniform pressure distribution during laser irradiation of the amorphous Si layer, which is capped with an SiO2 layer. This leads to a four-fold increase in the grain size of the poly-Si thin-films formed using the PIN process, compared with those formed using conventional excimer laser annealing. We find that thin films with optimal electrical properties can be achieved with a reduction in the number of laser irradiations from 20 to 6, as well as the preservation of the interface between the poly-Si and the SiO2 gate insulator. This interface preservation becomes possible to remove the cleaning process prior to gate insulator deposition, and we report devices with a field-effect mobility greater than 160 cm(2)/Vs.
Fabrication of amplitude-phase type diffractive optical elements in aluminium films
NASA Astrophysics Data System (ADS)
Fomchenkov, S. A.; Butt, M. A.
2017-11-01
In the course of studies have been conducted a method of forming the phase diffractive optical elements (DOEs) by direct laser writing in thin films of aluminum. The quality of the aluminum films were investigated depending on the parameters of magnetron sputtering process. Moreover, the parameters of the laser writing process in thin films of aluminum were optimized. The structure of phase diffractive optical elements was obtained by the proposed method.
Method of forming macro-structured high surface area transparent conductive oxide electrodes
Forman, Arnold J.; Chen, Zhebo; Jaramillo, Thomas F.
2016-01-05
A method of forming a high surface area transparent conducting electrode is provided that includes depositing a transparent conducting thin film on a conductive substrate, where the transparent conducting thin film includes transparent conductive particles and a solution-based transparent conducting adhesive layer which serves to coat and bind together the transparent conducting particles, and heat treating the transparent conducting adhesion layer on the conductive substrate, where an increased surface area transparent conducting electrode is formed.
Drop impact on thin liquid films using TIRM
NASA Astrophysics Data System (ADS)
Pack, Min; Ying Sun Team
2015-11-01
Drop impact on thin liquid films is relevant to a number of industrial processes such as pesticide spraying and repellent surface research such as self-cleaning applications. In this study, we systematically investigate the drop impact dynamics on thin liquid films on plain glass substrates by varying the film thickness, viscosity and impact velocity. High speed imaging is used to track the droplet morphology and trajectory over time as well as observing instability developments at high Weber number impacts. Moreover, the air layer between the drop and thin film upon drop impact is probed by total internal reflection microscopy (TIRM) where the grayscale intensity is used to measure the air layer thickness and spreading radius over time. For low We impact on thick films (We ~ 10), the effect of the air entrainment is pronounced where the adhesion of the droplet to the wall is delayed by the air depletion and liquid film drainage, whereas for high We impact (We >100) the air layer is no longer formed and instead, the drop contact with the wall is limited only to the film drainage for all film thicknesses. In addition, the maximum spreading radius of the droplet is analyzed for varying thin film thickness and viscosity.
Jensen, K. M.Ø.; Blichfeld, A. B.; Bauers, S. R.; ...
2015-07-05
By means of normal incidence, high flux and high energy x-rays, we have obtained total scattering data for Pair Distribution Function (PDF) analysis from thin films (tf), suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. We illustrate the ‘tfPDF’ method through studies of as depositedmore » (i.e. amorphous) and crystalline FeSb 3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb 3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb 3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb 6 octahedra with motifs highly resembling the local structure in crystalline FeSb 3. Analysis of the amorphous structure allows predicting whether the final crystalline product will form the FeSb 3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films.« less
Jensen, Kirsten M. Ø.; Blichfeld, Anders B.; Bauers, Sage R.; Wood, Suzannah R.; Dooryhée, Eric; Johnson, David C.; Iversen, Bo B.; Billinge, Simon J. L.
2015-01-01
By means of normal-incidence, high-flux and high-energy X-rays, total scattering data for pair distribution function (PDF) analysis have been obtained from thin films (tf), suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. The ‘tfPDF’ method is illustrated through studies of as-deposited (i.e. amorphous) and crystalline FeSb3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb6 octahedra with motifs highly resembling the local structure in crystalline FeSb3. Analysis of the amorphous structure allows the prediction of whether the final crystalline product will form the FeSb3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films. PMID:26306190
Lu, Li-Fang; Xu, Zheng; Zhang, Fu-Jun; Zhao, Su-Ling; Song, Dan-Dan; Li, Jun-Ming; Wang, Yong-Sheng; Xu, Xu-Rong
2010-02-01
Nanocrystalline ZnS thin films were fabricated by glancing angle deposition (GLAD) technology in an electron beam evaporation system. Deposition was carried out in the custom vacuum chamber at a base pressure 3 x 10(-4) Pa, and the deposition rate was fixed at 0.2 nm x s(-1). ZnS films were deposited on pieces of indium tin oxide (ITO) substrates when the oblique angle of the substrate relative to the incoming molecular flux was set to 0 degrees, 80 degrees and 85 degrees off the substrate normal respectively. X-ray diffraction (XRD) spectra and scanning electron microscope (SEM) images showed that ZnS nanocrystalline films were formed on the substrates at different oblique angle, but the nanocolumn structure was only formed under the situation of alpha = 80 degrees and 85 degrees. The dynamics during the deposition process of the ZnS films at alpha = 0 degrees, 80 degrees and 85 degrees was analyzed. The transmitted spectra of ZnS thin films deposited on ITO substrates showed that the ZnS nanocolumn thin films could enhance the transmissivity in visible range. The ZnS nanocolumn could be used into electroluminescence device, and it would enhance the luminous efficiency of the device.
Nyström, Gustav; Marais, Andrew; Karabulut, Erdem; Wågberg, Lars; Cui, Yi; Hamedi, Mahiar M.
2015-01-01
Traditional thin-film energy-storage devices consist of stacked layers of active films on two-dimensional substrates and do not exploit the third dimension. Fully three-dimensional thin-film devices would allow energy storage in bulk materials with arbitrary form factors and with mechanical properties unique to bulk materials such as compressibility. Here we show three-dimensional energy-storage devices based on layer-by-layer self-assembly of interdigitated thin films on the surface of an open-cell aerogel substrate. We demonstrate a reversibly compressible three-dimensional supercapacitor with carbon nanotube electrodes and a three-dimensional hybrid battery with a copper hexacyanoferrate ion intercalating cathode and a carbon nanotube anode. The three-dimensional supercapacitor shows stable operation over 400 cycles with a capacitance of 25 F g−1 and is fully functional even at compressions up to 75%. Our results demonstrate that layer-by-layer self-assembly inside aerogels is a rapid, precise and scalable route for building high-surface-area 3D thin-film devices. PMID:26021485
Constantinescu, Adi; Golubović, Leonardo; Levandovsky, Artem
2013-09-01
Long range dewetting forces acting across thin films, such as the fundamental van der Waals interactions, may drive the formation of large clusters (tall multilayer islands) and pits, observed in thin films of diverse materials such as polymers, liquid crystals, and metals. In this study we further develop the methodology of the nonequilibrium statistical mechanics of thin films coarsening within continuum interface dynamics model incorporating long range dewetting interactions. The theoretical test bench model considered here is a generalization of the classical Mullins model for the dynamics of solid film surfaces. By analytic arguments and simulations of the model, we study the coarsening growth laws of clusters formed in thin films due to the dewetting interactions. The ultimate cluster growth scaling laws at long times are strongly universal: Short and long range dewetting interactions yield the same coarsening exponents. However, long range dewetting interactions, such as the van der Waals forces, introduce a distinct long lasting early time scaling behavior characterized by a slow growth of the cluster height/lateral size aspect ratio (i.e., a time-dependent Young angle) and by effective coarsening exponents that depend on cluster size. In this study, we develop a theory capable of analytically calculating these effective size-dependent coarsening exponents characterizing the cluster growth in the early time regime. Such a pronounced early time scaling behavior has been indeed seen in experiments; however, its physical origin has remained elusive to this date. Our theory attributes these observed phenomena to ubiquitous long range dewetting interactions acting across thin solid and liquid films. Our results are also applicable to cluster growth in initially very thin fluid films, formed by depositing a few monolayers or by a submonolayer deposition. Under this condition, the dominant coarsening mechanism is diffusive intercluster mass transport while the cluster coalescence plays a minor role, both in solid and in fluid films.
Template-mediated, Hierarchical Engineering of Ordered Mesoporous Films and Powders
NASA Astrophysics Data System (ADS)
Tian, Zheng
Hierarchical control over pore size, pore topology, and meso/mictrostructure as well as material morphology (e.g., powders, monoliths, thin films) is crucial for meeting diverse materials needs among applications spanning next generation catalysts, sensors, batteries, sorbents, etc. The overarching goal of this thesis is to establish fundamental mechanistic insight enabling new strategies for realizing such hierarchical textural control for carbon materials that is not currently achievable with sacrificial pore formation by 'one-pot' surfactant-based 'soft'-templating or multi-step inorganic 'hard-templating. While 'hard'-templating is often tacitly discounted based upon its perceived complexity, it offers potential for overcoming key 'soft'-templating challenges, including bolstering pore stability, accommodating a more versatile palette of replica precursors, realizing ordered/spanning porosity in the case of porous thin films, simplifying formation of bi-continuous pore topologies, and inducing microstructure control within porous replica materials. In this thesis, we establish strategies for hard-templating of hierarchically porous and structured carbon powders and tunable thin films by both multi-step hard-templating and a new 'one-pot' template-replica precursor co-assembly process. We first develop a nominal hard-templating technique to successfully prepare three-dimensionally ordered mesoporous (3DOm) and 3DOm-supported microporous carbon thin films by exploiting our ability to synthesize and assemble size-tunable silica nanoparticles into scalable, colloidal crystalline thin film templates of tunable mono- to multi-layer thickness. This robust thin film template accommodates liquid and/or vapor-phase infiltration, polymerization, and pyrolysis of various carbon sources without pore contraction and/or collapse upon template sacrifice. The result is robust, flexible 3DOm or 3DOm-supported ultra-thin microporous films that can be transferred by stamp techniques to various substrates for low-cost counter-electrodes in dye-sensitized solar cells, as we demonstrate, or as potential high-flux membranes for molecular separations. Inspired by 'one-pot' 'soft'-templating approaches, wherein the pore forming agent and replica precursor are co-assembled, we establish how 'hard'-templating can be carried out in an analogous fashion. Namely, we show how pre-formed silica nanoparticles can be co-assembled from aqueous solutions with a carbon source (glucose), leading to elucidation of a pseudo-phase behavior in which we identify an operating window for synthesis of hierarchically bi-continuous carbon films. Systematic study of the association of carbon precursors with the silica particles in combination with transient coating experiments reveals mechanistic insight into how silica-adsorbed carbon precursor modulates particle assembly and ultimately controls template particle d-spacing. We uncover a critical d-spacing defining the boundary between ordered and disordered mesoporosity within the resulting films. We ultimately extend this thin-film mechanistic insight to realize 'one'-pot, bi-continuous 3DOm carbon powders. Through a combination of X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and high-resolution transmission electron microscopy (HR-TEM), we elucidate novel synthesis-structure relations for template-mediated microstructuring of the 3DOm replica carbons. Attractive properties of the resulting bi-continuous porous carbons for applications, for example, as novel electrodes, include high surface areas, large mesopore volumes, and tunable graphitic content (i.e. >50%) and character. We specifically demonstrate their performance, in thin film form, as counter-electrodes in dye-sensitized solar cells. We also demonstrate how they can be exploited in powder form as high-performance supercapacitor electrodes exhibiting attractive retention and absolute capacitance. We conclude the thesis by demonstrating the versatility of both the thin-film and powder templating processes developed herein, for realizing ordered binary colloidal crystal templates and their bi-modal porous carbon replica films, expanding compositional diversity of the 'one-pot' thin film process beyond carbons to include an example of 3DOm ZrO2 films, and employing the hard-templating process as a strategy for realizing 3DOm carbon-supported nanocarbides.
Magnetoelastic sensor for characterizing properties of thin-film/coatings
NASA Technical Reports Server (NTRS)
Bachas, Leonidas G. (Inventor); Barrett, Gary (Inventor); Grimes, Craig A. (Inventor); Kouzoudis, Dimitris (Inventor); Schmidt, Stefan (Inventor)
2004-01-01
An apparatus for determining elasticity characteristics of a thin-film layer. The apparatus comprises a sensor element having a base magnetostrictive element at least one surface of which is at least partially coated with the thin-film layer. The thin-film layer may be of a variety of materials (having a synthetic and/or bio-component) in a state or form capable of being deposited, manually or otherwise, on the base element surface, such as by way of eye-dropper, melting, dripping, brushing, sputtering, spraying, etching, evaporation, dip-coating, laminating, etc. Among suitable thin-film layers for the sensor element of the invention are fluent bio-substances, thin-film deposits used in manufacturing processes, polymeric coatings, paint, an adhesive, and so on. A receiver, preferably remotely located, is used to measure a plurality of values for magneto-elastic emission intensity of the sensor element in either characterization: (a) the measure of the plurality of values is used to identify a magneto-elastic resonant frequency value for the sensor element; and (b) the measure of the plurality of successive values is done at a preselected magneto-elastic frequency.
Analysis of Crystal Structure of Fe3O4 Thin Films Based on Iron Sand Growth by Spin Coating Method
NASA Astrophysics Data System (ADS)
Rianto, D.; Yulfriska, N.; Murti, F.; Hidayati, H.; Ramli, R.
2018-04-01
Recently, iron sand used as one of base materials in the steel industry. However, the content of iron sand can be used as starting materials in sensor technology in the form of thin films. In this paper, we report the analysis of crystal structure of magnetite thin film based on iron sand from Tiram’s Beach. The magnetic content of sand separated by a permanent magnet, then it was milled at 30 hours milling time. In order to increase the purity of magnetite, it washed after milling using aquades under magnetic separation by a magnet permanent. The thin film has been prepared using iron (III) nitrate by sol–gel technique. The precursor is resulted by dissolving magnetite in oxalic acid and nitric acid. Then, solution of iron (III) nitrate dissolved in ethylene glycol was applied on glass substrates by spin coating. The X-Ray Diffraction is operated thin film characterization. The structure of magnetite has been studied based on X-Ray Peaks that correspond to magnetite content of thin films.
Ion Beam Assisted Deposition of Thin Epitaxial GaN Films.
Rauschenbach, Bernd; Lotnyk, Andriy; Neumann, Lena; Poppitz, David; Gerlach, Jürgen W
2017-06-23
The assistance of thin film deposition with low-energy ion bombardment influences their final properties significantly. Especially, the application of so-called hyperthermal ions (energy <100 eV) is capable to modify the characteristics of the growing film without generating a large number of irradiation induced defects. The nitrogen ion beam assisted molecular beam epitaxy (ion energy <25 eV) is used to deposit GaN thin films on (0001)-oriented 6H-SiC substrates at 700 °C. The films are studied in situ by reflection high energy electron diffraction, ex situ by X-ray diffraction, scanning tunnelling microscopy, and high-resolution transmission electron microscopy. It is demonstrated that the film growth mode can be controlled by varying the ion to atom ratio, where 2D films are characterized by a smooth topography, a high crystalline quality, low biaxial stress, and low defect density. Typical structural defects in the GaN thin films were identified as basal plane stacking faults, low-angle grain boundaries forming between w-GaN and z-GaN and twin boundaries. The misfit strain between the GaN thin films and substrates is relieved by the generation of edge dislocations in the first and second monolayers of GaN thin films and of misfit interfacial dislocations. It can be demonstrated that the low-energy nitrogen ion assisted molecular beam epitaxy is a technique to produce thin GaN films of high crystalline quality.
Bioactivity and cytocompatibility of zirconia (ZrO(2)) films fabricated by cathodic arc deposition.
Liu, Xuanyong; Huang, Anping; Ding, Chuanxian; Chu, Paul K
2006-07-01
Zirconium oxide thin films were fabricated on silicon wafers using a filtered cathodic arc system in concert with oxygen plasma. The structure and phase composition of the zirconium oxide thin films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), and transmission electron microscopy (TEM). The bioactivity was assessed by investigating the formation of apatite on the film surface after soaking in simulated body fluids. Bone marrow mesenchymal stem cells (BMMSC) were used to further evaluate the cytocompatibility of the materials. The results indicate that the films are composed of stoichiometric ZrO(2) and the composition is quite uniform throughout the thickness. Bone-like apatite can be formed on the surface of the ZrO(2) thin film in our SBF immersion experiments, suggesting that the surface is bioactive. The outermost layer of the ZrO(2) thin film comprises nano-sized particles that can be identified by AFM images taken on the thin film surface and TEM micrographs obtained from the interface between the ZrO(2) thin film and apatite layer. The nanostructured surface is believed to be the key factor that apatite is induced to precipitate on the surface. Bone marrow mesenchymal stem cells are observed to grow and proliferate in good states on the film surface. Our results show that ZrO(2) thin films fabricated by cathodic arc deposition exhibit favorable bioactivity and cytocompatibility.
Zhang, Huanhuan; Xu, Lin; Lai, Yuqing; Shi, Tongfei
2016-06-28
On a non-wetting solid substrate, the solvent annealing process of a thin polymer film includes the swelling process and the dewetting process. Owing to difficulties in the in situ analysis of the two processes simultaneously, a quantitative study on the solvent annealing process of thin polymer films on the non-wetting solid substrate is extremely rare. In this paper, we design an experimental method by combining spectroscopic ellipsometry with optical microscopy to achieve the simultaneous in situ study. Using this method, we investigate the influence of the structure of swollen film on its dewetting kinetics during the solvent annealing process. The results show that for a thin PS film with low Mw (Mw = 4.1 kg mol(-1)), acetone molecules can form an ultrathin enriched layer between the PS film and the solid substrate during the swelling process. The presence of the acetone enriched layer accounts for the exponential kinetic behavior in the case of a thin PS film with low Mw. However, the acetone enriched layer is not observed in the case of a thin PS film with high Mw (Mw = 400 kg mol(-1)) and the slippage effect of polymer chains is valid during the dewetting process.
Comparison of the Thermal Degradation of Heavily Nb-Doped and Normal PZT Thin Films.
Yang, Jeong-Suong; Kang, YunSung; Kang, Inyoung; Lim, SeungMo; Shin, Seung-Joo; Lee, JungWon; Hur, Kang Heon
2017-03-01
The degradation of niobium-doped lead zirconate titanate (PZT) and two types of PZT thin films were investigated. Undoped PZT, two-step PZT, and heavily Nb-doped PZT (PNZT) around the morphotropic phase boundary were in situ deposited under optimum condition by RF-magnetron sputtering. All 2- [Formula: see text]-thick films had dense perovskite columnar grain structure and self-polarized (100) dominant orientation. PZT thin films were deposited on Pt/TiO x bottom electrode on Si wafer, and PNZT thin film was on Ir/TiW electrode with the help of orientation control. Sputtered PZT films formed on microelectromechanical system (MEMS) gyroscope and the degradation rates were compared at different temperatures. PNZT showed the best resistance to the thermal degradation, followed by two-step PZT. To clarify the effect of oxygen vacancies on the degradation of the film at high temperature, photoluminescence measurement was conducted, which confirmed that oxygen vacancy rate was the lowest in heavy PNZT. Nb-doping PZT thin films suppressed the oxygen deficit and made high imprint with self-polarization. This defect distribution and high internal field allowed PNZT thin film to make the piezoelectric sensors more stable and reliable at high temperature, such as reflow process of MEMS packaging.
NASA Astrophysics Data System (ADS)
Tsai, Chun-Chien; Lee, Yao-Jen; Chiang, Ko-Yu; Wang, Jyh-Liang; Lee, I.-Che; Chen, Hsu-Hsin; Wei, Kai-Fang; Chang, Ting-Kuo; Chen, Bo-Ting; Cheng, Huang-Chung
2007-11-01
In this paper, location-controlled silicon crystal grains are fabricated by the excimer laser crystallization method which employs amorphous silicon spacer structure and prepatterned thin films. The amorphous silicon spacer in nanometer-sized width formed using spacer technology is served as seed crystal to artificially control superlateral growth phenomenon during excimer laser irradiation. An array of 1.8-μm-sized disklike silicon grains is formed, and the n-channel thin-film transistors whose channels located inside the artificially-controlled crystal grains exhibit higher performance of field-effect-mobility reaching 308cm2/Vs as compared with the conventional ones. This position-manipulated silicon grains are essential to high-performance and good uniformity devices.
Internal stresses and formation of switchable nanowires at thin silica film edges
NASA Astrophysics Data System (ADS)
Phillips, J. C.
2011-02-01
At vertical edges, thin films of silicon oxide (SiO2-x) can contain defect-free semiconductive c-Si layered nanocrystals (Si NC) embedded in and supported by an insulating g-SiO2 matrix. Yaoet al. [Appl. Phys. A (in press)] have shown that a trenched thin film geometry enables the NC to form switchable nanowires (SNW) when trained by an applied field. The field required to form SNW decreases rapidly within a few cycles, or by annealing at 600 °C in even fewer cycles, and is stable to 700 °C. Here we describe the intrinsic evolution of Si NC and SNW in terms of the competition between internal stresses and electro-osmosis. The analysis relies heavily on experimental data from a wide range of thin film studies, and it explains why a vertical edge across the planar polySi-SiO2-x interface is necessary to form SNW. The discussion also shows that the formation mechanisms of Si NC and polySi/SiO2-x SNW are intrinsic and result from optimization of nanowire connectivity in the presence of residual host misfit stresses.
NASA Astrophysics Data System (ADS)
Suhandi, A.; Tayubi, Y. R.; Arifin, P.
2016-04-01
Metal Organic Chemical Vapor Deposition (MOCVD) is a method for growing a solid material (in the form of thin films, especially for semiconductor materials) using vapor phase metal organic sources. Studies on the growth mechanism of GaAs1-xSbx ternary alloy thin solid film in the range of miscibility-gap using metal organic sources trimethylgallium (TMGa), trisdimethylaminoarsenic (TDMAAs), and trisdimethylaminoantimony (TDMASb) on MOCVD reactor has been done to understand the physical and chemical processes involved. Knowledge of the processes that occur during alloy formation is very important to determine the couple of growth condition and growth parameters are appropriate for yield high quality GaAs1-xSbx alloy. The mechanism has been studied include decomposition of metal organic sources and chemical reactions that may occur, the incorporation of the alloy elements forming and the contaminants element that are formed in the gown thin film. In this paper presented the results of experimental data on the growth of GaAs1-xSbx alloy using Vertical-MOCVD reactor to demonstrate its potential in growing GaAs1-xSbx alloy in the range of its miscibility gap.
Optical, wetting and electrical properties of functionalized fulleropyrrolidine thin films
NASA Astrophysics Data System (ADS)
Abdulrazack, Parveen; Venkatesan, Sughanya; Chellasamy, Manoharan; Samuthira, Nagarajan
2017-12-01
Fulleropyrrolidine derivatives acts as an electron acceptor in the fabrication of solar cells and other optoelectronic devices. In this investigation thin film of functionalized fulleropyrrolidines were fabricated and studied their photo-physical properties. Surface morphology of the thin films was investigated through AFM and FE-SEM. The results suggested that large dependence on structure vs molecular packing. The long alkyl chain substituted C60 were assembled in the form of nanorods. C60- C60 intermolecular distance were measured, the films were with good absorption and exhibits n-type semiconducting behavior. The films were having high contact angle and can be effectively used for fabricating semiconducting devices with self- cleaning property.
Reinhard, Patrick; Bissig, Benjamin; Pianezzi, Fabian; Hagendorfer, Harald; Sozzi, Giovanna; Menozzi, Roberto; Gretener, Christina; Nishiwaki, Shiro; Buecheler, Stephan; Tiwari, Ayodhya N
2015-05-13
Concepts of localized contacts and junctions through surface passivation layers are already advantageously applied in Si wafer-based photovoltaic technologies. For Cu(In,Ga)Se2 thin film solar cells, such concepts are generally not applied, especially at the heterojunction, because of the lack of a simple method yielding features with the required size and distribution. Here, we show a novel, innovative surface nanopatterning approach to form homogeneously distributed nanostructures (<30 nm) on the faceted, rough surface of polycrystalline chalcogenide thin films. The method, based on selective dissolution of self-assembled and well-defined alkali condensates in water, opens up new research opportunities toward development of thin film solar cells with enhanced efficiency.
In situ conductance measurements of copper phthalocyanine thin film growth on sapphire [0001].
Murdey, Richard; Sato, Naoki
2011-06-21
The current flowing through a thin film of copper phthalocyanine vacuum deposited on a single crystal sapphire [0001] surface was measured during film growth from 0 to 93 nm. The results, expressed as conductance vs. nominal film thickness, indicate three distinct film growth regions. Conductive material forms below about 5 nm and again above 35 nm, but in the intermediate thicknesses the film conductance was observed to decrease with increasing film thickness. With the aid of ac-AFM topology images taken ex situ, the conductance results are explained based on the Stranski-Krastanov (2D + 3D) film growth mechanism, in which the formation of a thin wetting layer is followed by the growth of discrete islands that eventually coalesce into an interpenetrating, conductive network. © 2011 American Institute of Physics
Copper-Zinc-Tin-Sulfur Thin Film Using Spin-Coating Technology
Yeh, Min-Yen; Lei, Po-Hsun; Lin, Shao-Hsein; Yang, Chyi-Da
2016-01-01
Cu2ZnSnS4 (CZTS) thin films were deposited on glass substrates by using spin-coating and an annealing process, which can improve the crystallinity and morphology of the thin films. The grain size, optical gap, and atomic contents of copper (Cu), zinc (Zn), tin (Sn), and sulfur (S) in a CZTS thin film absorber relate to the concentrations of aqueous precursor solutions containing copper chloride (CuCl2), zinc chloride (ZnCl2), tin chloride (SnCl2), and thiourea (SC(NH2)2), whereas the electrical properties of CZTS thin films depend on the annealing temperature and the atomic content ratios of Cu/(Zn + Sn) and Zn/Sn. All of the CZTS films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDXS), Raman spectroscopy, and Hall measurements. Furthermore, CZTS thin film was deposited on an n-type silicon substrate by using spin-coating to form an Mo/p-CZTS/n-Si/Al heterostructured solar cell. The p-CZTS/n-Si heterostructured solar cell showed a conversion efficiency of 1.13% with Voc = 520 mV, Jsc = 3.28 mA/cm2, and fill-factor (FF) = 66%. PMID:28773647
Structural and electrical properties of CZTS thin films by electrodeposition
NASA Astrophysics Data System (ADS)
Rao, M. C.; Basha, Sk. Shahenoor
2018-06-01
CZTS (Cu2ZnSnS4) thin films were coated on ITO glass substrates by single bath electrodeposition technique. The prepared films were subsequently characterized by XRD, SEM, FTIR, UV-visible spectroscopy and Raman studies. The thickness of the thin films was measured by wedge method. X-ray diffraction studies revealed the formation of polycrystalline phase. The morphological surface of the prepared thin films was examined by SEM and AFM and showed the presence of microcrystals on the surface of the samples. The elemental analysis and their compositional ratios present in the samples were confirmed by the energy dispersive X-ray analysis. Functional groups and the position of band structure involved in the materials were confirmed by FTIR. Optical absorption studies were performed on the prepared thin films in the wavelength ranging from 300 to 1000 nm and the energy bandgap values were found to be in the range from 1.39 to 1.60 eV. Raman spectral peak which was observed at 360 cm-1 correspond to kesterite phase, was formed due to the vibration of the molecules. Electrical measurements confirmed the nature of the thin film depending on the charge concentration present in the samples.
Drop dynamics on a thin film: Thin film rupture
NASA Astrophysics Data System (ADS)
Carlson, Andreas; Kim, Pilnam; Stone, Howard A.
2011-11-01
The spreading of a water drop on an oil film that covers a solid substrate is a common event in many industrial processes. We study in experiments the dynamics of a water drop on a thin silicone oil film and quantify its interaction with the solid substrate that supports the film. The oil film becomes unstable and ruptures for solids that are hydrophilic. We determine the ``waiting time,'' the time it takes the water drop to drain the silicone film. This timescale is found to highly depend on how well water wets the solid, illustrating the interplay between intermolecular and hydrodynamic forces in the phenomenon. A phase diagram for the thin film stability is extracted based on waters equilibrium contact angle on the solid, which shows that we can either promote or inhibit de-wetting. As water comes in direct contact with the solid, it spreads and peels off the silicone film. We show the influence of viscosity, equilibrium contact angle and film height on the opening radius of the hole formed as the solid de-wets.
NASA Astrophysics Data System (ADS)
El-Shabaan, M. M.
2018-05-01
Thermal, structural, alternating-current (AC) conductivity (σ AC), and dielectric properties of ethyl-2-amino-6-ethyl-5-oxo-4-(3-phenoxyphenyl)-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-carboxylate (HPQC) thin films have been studied. Thermogravimetry analysis and differential scanning calorimetry confirmed the thermal stability of HPQC over a wide temperature range. Fourier-transform infrared spectroscopy and x-ray diffraction analysis were carried out on HPQC in powder form and as-deposited thin film. The crystal system and space group type were determined for HPQC in powder form. The AC conductivity and dielectric properties were determined in the frequency range from 0.5 kHz to 5 MHz and temperature range from 296 K to 443 K. The AC electrical conduction of HPQC thin film was found to be governed by the small-polaron tunneling mechanism. The polaron hopping energy (W H), tunneling distance (R), and density of states (N) near the Fermi level were determined as functions of temperature and frequency. The dielectric properties of HPQC thin film were studied by analysis of Nyquist diagrams, the dissipation factor (tan δ), and real (ɛ') and imaginary (ɛ″) parts of the dielectric constant.
Method to protect charge recombination in the back-contact dye-sensitized solar cell.
Yoo, Beomjin; Kim, Kang-Jin; Lee, Doh-Kwon; Kim, Kyungkon; Ko, Min Jae; Kim, Yong Hyun; Kim, Won Mok; Park, Nam-Gyu
2010-09-13
We prepared a back-contact dye-sensitized solar cell and investigated effect of the sputter deposited thin TiO₂ film on the back-contact ITO electrode on photovoltaic property. The nanocrystalline TiO₂ layer with thickness of about 11 μm formed on a plain glass substrate in the back-contact structure showed higher optical transmittance than that formed on an ITO-coated glass substrate, which led to an improved photocurrent density by about 6.3%. However, photovoltage was found to decrease from 817 mV to 773 mV. The photovoltage recovered after deposition of a 35 nm-thick thin TiO₂ film on the surface of the back-contact ITO electrode. Little difference in time constant for electron transport was found for the back-contact ITO electrodes with and without the sputter deposited thin TiO₂ film. Whereas, time constant for charge recombination increased after introduction of the thin TiO₂ film, indicating that such a thin TiO₂ film protected back electron transfer, associated with the recovery of photovoltage. As the result of the improved photocurrent density without deterioration of photovoltage, the back-contact dye-sensitized solar cell exhibited 13.6% higher efficiency than the ITO-coated glass substrate-based dye-sensitized solar cell.
NASA Astrophysics Data System (ADS)
Zhu, Xiaohong; Defaÿ, Emmanuel; Aïd, Marc; Ren, Yinjuan; Zhang, Caiyun; Zhu, Jiliang; Zhu, Jianguo; Xiao, Dingquan
2013-03-01
Ba0.7Sr0.3TiO3 (BST) thin films, about 100 nm in thickness, were prepared on unannealed and 700 °C-preannealed Pt bottom electrodes by the ion beam sputtering and post-deposition annealing method. It was found that the preannealed Pt layer has a more compact structure, making it not only a bottom electrode but also a good template for high-quality BST thin film growth. The BST films deposited on preannealed Pt bottom electrodes showed (0 0 l)-preferred orientation, dense and uniform microstructure with no intermediate phase formed at the film/electrode interface, and thus enhanced dielectric properties. As a result, the typical relative dielectric constant and tunability (under a dc electric field of 1 MV cm-1) reach 180 and 50.1%, respectively, for the BST thin films with preannealed Pt bottom electrodes, which are significantly higher than those (166 and 41.3%, respectively) for the BST thin films deposited on unannealed Pt bottom electrodes.
Photovoltaic cells employing zinc phosphide
Barnett, Allen M.; Catalano, Anthony W.; Dalal, Vikram L.; Masi, James V.; Meakin, John D.; Hall, Robert B.
1984-01-01
A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.
Understanding polymorphism in organic semiconductor thin films through nanoconfinement.
Diao, Ying; Lenn, Kristina M; Lee, Wen-Ya; Blood-Forsythe, Martin A; Xu, Jie; Mao, Yisha; Kim, Yeongin; Reinspach, Julia A; Park, Steve; Aspuru-Guzik, Alán; Xue, Gi; Clancy, Paulette; Bao, Zhenan; Mannsfeld, Stefan C B
2014-12-10
Understanding crystal polymorphism is a long-standing challenge relevant to many fields, such as pharmaceuticals, organic semiconductors, pigments, food, and explosives. Controlling polymorphism of organic semiconductors (OSCs) in thin films is particularly important given that such films form the active layer in most organic electronics devices and that dramatic changes in the electronic properties can be induced even by small changes in the molecular packing. However, there are very few polymorphic OSCs for which the structure-property relationships have been elucidated so far. The major challenges lie in the transient nature of metastable forms and the preparation of phase-pure, highly crystalline thin films for resolving the crystal structures and evaluating the charge transport properties. Here we demonstrate that the nanoconfinement effect combined with the flow-enhanced crystal engineering technique is a powerful and likely material-agnostic method to identify existing polymorphs in OSC materials and to prepare the individual pure forms in thin films at ambient conditions. With this method we prepared high quality crystal polymorphs and resolved crystal structures of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene), including a new polymorph discovered via in situ grazing incidence X-ray diffraction and confirmed by molecular mechanic simulations. We further correlated molecular packing with charge transport properties using quantum chemical calculations and charge carrier mobility measurements. In addition, we applied our methodology to a [1]benzothieno[3,2-b][1]1benzothiophene (BTBT) derivative and successfully stabilized its metastable form.
Effect of pressure-assisted thermal annealing on the optical properties of ZnO thin films.
Berger, Danielle; Kubaski, Evaldo Toniolo; Sequinel, Thiago; da Silva, Renata Martins; Tebcherani, Sergio Mazurek; Varela, José Arana
2013-01-01
ZnO thin films were prepared by the polymeric precursor method. The films were deposited on silicon substrates using the spin-coating technique, and were annealed at 330 °C for 32 h under pressure-assisted thermal annealing and under ambient pressure. Their structural and optical properties were characterized, and the phases formed were identified by X-ray diffraction. No secondary phase was detected. The ZnO thin films were also characterized by field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, photoluminescence and ultraviolet emission intensity measurements. The effect of pressure on these thin films modifies the active defects that cause the recombination of deep level states located inside the band gap that emit yellow-green (575 nm) and orange (645 nm) photoluminescence. Copyright © 2012 John Wiley & Sons, Ltd.
Tungsten-doped thin film materials
Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.
2003-12-09
A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.
Wilhelm, W.G.
The invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame. A thin film window is bonded to one planar side of the frame. An absorber of laminate construction is comprised of two thin film layers that are sealed perimetrically. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. Absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.
NASA Astrophysics Data System (ADS)
Rahman, R. A.; Zulkefle, M. A.; Yusoff, K. A.; Abdullah, W. F. H.; Rusop, M.; Herman, S. H.
2018-03-01
This study presents an investigation on zinc oxide (ZnO) and titanium dioxide (TiO2) bilayer film applied as the sensing membrane for extended-gate field effect transistor (EGFET) for pH sensing application. The influences of the drying temperatures on the pH sensing capability of ZnO/TiO2 were investigated. The sensing performance of the thin films were measured by connecting the thin film to a commercial MOSFET to form the extended gates. By varying the drying temperature, we found that the ZnO/TiO2 thin film dried at 150°C gave the highest sensitivity compared to other drying conditions, with the sensitivity value of 48.80 mV/pH.
Zhang, Zhaojing; Yao, Liyong; Bi, Jinlian; Gao, Shoushuai; Gao, Qing; Jeng, Ming‐Jer; Sun, Guozhong; Zhou, Zhiqiang; He, Qing; Sun, Yun
2017-01-01
Abstract Double layer distribution exists in Cu2SnZnSe4 (CZTSe) thin films prepared by selenizing the metallic precursors, which will degrade the back contact of Mo substrate to absorber layer and thus suppressing the performance of solar cell. In this work, the double‐layer distribution of CZTSe film is eliminated entirely and the formation of MoSe2 interfacial layer is inhibited successfully. CZTSe film is prepared by selenizing the precursor deposited by electrodeposition method under Se and SnSex mixed atmosphere. It is found that the insufficient reaction between ZnSe and Cu‐Sn‐Se phases in the bottom of the film is the reason why the double layer distribution of CZTSe film is formed. By increasing Sn content in the metallic precursor, thus making up the loss of Sn because of the decomposition of CZTSe and facilitate the diffusion of liquid Cu2Se, the double layer distribution is eliminated entirely. The crystallization of the formed thin film is dense and the grains go through the entire film without voids. And there is no obvious MoSe2 layer formed between CZTSe and Mo. As a consequence, the series resistance of the solar cell reduces significantly to 0.14 Ω cm2 and a CZTSe solar cell with efficiency of 7.2% is fabricated. PMID:29610727
Zhang, Zhaojing; Yao, Liyong; Zhang, Yi; Ao, Jianping; Bi, Jinlian; Gao, Shoushuai; Gao, Qing; Jeng, Ming-Jer; Sun, Guozhong; Zhou, Zhiqiang; He, Qing; Sun, Yun
2018-02-01
Double layer distribution exists in Cu 2 SnZnSe 4 (CZTSe) thin films prepared by selenizing the metallic precursors, which will degrade the back contact of Mo substrate to absorber layer and thus suppressing the performance of solar cell. In this work, the double-layer distribution of CZTSe film is eliminated entirely and the formation of MoSe 2 interfacial layer is inhibited successfully. CZTSe film is prepared by selenizing the precursor deposited by electrodeposition method under Se and SnSe x mixed atmosphere. It is found that the insufficient reaction between ZnSe and Cu-Sn-Se phases in the bottom of the film is the reason why the double layer distribution of CZTSe film is formed. By increasing Sn content in the metallic precursor, thus making up the loss of Sn because of the decomposition of CZTSe and facilitate the diffusion of liquid Cu 2 Se, the double layer distribution is eliminated entirely. The crystallization of the formed thin film is dense and the grains go through the entire film without voids. And there is no obvious MoSe 2 layer formed between CZTSe and Mo. As a consequence, the series resistance of the solar cell reduces significantly to 0.14 Ω cm 2 and a CZTSe solar cell with efficiency of 7.2% is fabricated.
Preparation of redox polymer cathodes for thin film rechargeable batteries
Skotheim, T.A.; Lee, H.S.; Okamoto, Yoshiyuki.
1994-11-08
The present invention relates to the manufacture of thin film solid state electrochemical devices using composite cathodes comprising a redox polymer capable of undergoing oxidation and reduction, a polymer solid electrolyte and conducting carbon. The polymeric cathode material is formed as a composite of radiation crosslinked polymer electrolytes and radiation crosslinked redox polymers based on polysiloxane backbones with attached organosulfur side groups capable of forming sulfur-sulfur bonds during electrochemical oxidation.
Finite size effects in phase transformation kinetics in thin films and surface layers
NASA Astrophysics Data System (ADS)
Trofimov, Vladimir I.; Trofimov, Ilya V.; Kim, Jong-Il
2004-02-01
In studies of phase transformation kinetics in thin films, e.g. crystallization of amorphous films, until recent time is widely used familiar Kolmogorov-Johnson-Mehl-Avrami (KJMA) statistical model of crystallization despite it is applicable only to an infinite medium. In this paper a model of transformation kinetics in thin films based on a concept of the survival probability for randomly chosen point during transformation process is presented. Two model versions: volume induced transformation (VIT) when the second-phase grains nucleate over a whole film volume and surface induced transformation (SIT) when they form on an interface with two nucleation mode: instantaneous nucleation at transformation onset and continuous one during all the process are studied. At VIT-process due to the finite film thickness effects the transformation profile has a maximum in a film middle, whereas that of the grains population reaches a minimum inhere, the grains density is always higher than in a volume material, and the thinner film the slower it transforms. The transformation kinetics in a thin film obeys a generalized KJMA equation with parameters depending on a film thickness and in limiting cases of extremely thin and thick film it reduces to classical KJMA equation for 2D- and 3D-system, respectively.
Chalcogenide phase-change thin films used as grayscale photolithography materials.
Wang, Rui; Wei, Jingsong; Fan, Yongtao
2014-03-10
Chalcogenide phase-change thin films are used in many fields, such as optical information storage and solid-state memory. In this work, we present another application of chalcogenide phase-change thin films, i.e., as grayscale photolithgraphy materials. The grayscale patterns can be directly inscribed on the chalcogenide phase-change thin films by a single process through direct laser writing method. In grayscale photolithography, the laser pulse can induce the formation of bump structure, and the bump height and size can be precisely controlled by changing laser energy. Bumps with different height and size present different optical reflection and transmission spectra, leading to the different gray levels. For example, the continuous-tone grayscale images of lifelike bird and cat are successfully inscribed onto Sb(2)Te(3) chalcogenide phase-change thin films using a home-built laser direct writer, where the expression and appearance of the lifelike bird and cat are fully presented. This work provides a way to fabricate complicated grayscale patterns using laser-induced bump structures onto chalcogenide phase-change thin films, different from current techniques such as photolithography, electron beam lithography, and focused ion beam lithography. The ability to form grayscale patterns of chalcogenide phase-change thin films reveals many potential applications in high-resolution optical images for micro/nano image storage, microartworks, and grayscale photomasks.
Space Environmentally Durable Polyimides and Copolyimides
NASA Technical Reports Server (NTRS)
Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Hergenrother, Paul M. (Inventor); Watson, Kent A. (Inventor); Thompson, Craig M. (Inventor)
2006-01-01
Polyimides displaying low color in thin films, atomic oxygen resistance, vacuum ultraviolet radiation resistance, solubility in organic solvents in the imide form, high glass transition (T(sub g)) temperatures, and high thermal stability are provided. The poly(amide acid)s, copoly(amide acid)s, polyimides and copolyimides are prepared by the reaction of stoichiometric ratios of an aromatic &anhydride with diamines which contain phenylphosphine oxide groups in polar aprotic solvents. Controlled molecular weight oligomeric (amide acid)s and imides can be prepared by offsetting the stoichiometry according to the Carothers equation using excess diamine and endcapping with aromatic anhydrides. The polyimide materials can be processed into various material forms such as thin films, fibers, foams, threads, adhesive film, coatings, dry powders, and fiber coated prepreg, and uses include thin film membranes on antennas, second-surface mirrors, thermal optical coatings, and multilayer thermal insulation (MLI) blanket materials.
Space Environmentally Durable Polyimides and Copolyimides
NASA Technical Reports Server (NTRS)
Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor); Watson, Kent A. (Inventor); Thompson, Craig M. (Inventor)
2005-01-01
Polyimides displaying low color in thin films, atomic oxygen resistance, vacuum ultraviolet radiation resistance, solubility in organic solvents in the imide form, high glass transition (T(sub g)) temperatures, and high thermal stability are provided. The poly(amide acid)s, copoly(amide acid)s, polyimides and copolyimides are prepared by the reaction of stoichiometric ratios of an aromatic dianhydride with diamines which contain phenylphosphine oxide groups in polar aprotic solvents. Controlled molecular weight oligomeric (amide acid)s and imides can be prepared by offsetting the stoichiometry according to the Carothers equation using excess diamine and endcapping with aromatic anhydrides The polyimide materials can be processed into various material forms such as thin films, fibers, foams, threads, adhesive film, coatings, dry powders, and fiber coated prepreg, and uses include thin film membranes on antennas, second-surface mirrors, thermal optical coatings, and multilayer thermal insulation (MLI) blanket materials.
NASA Astrophysics Data System (ADS)
Avazpour, L.; Toroghinejad, M. R.; Shokrollahi, H.
2016-11-01
A series of rare-earth (RE)-doped nanocrystalline Cox RE(1-x) Fe2O4 (x = 0, 0.1, 0.2 and RE: Nd, Eu) thin films were prepared on silicon substrates by a sol-gel process, and the influences of different RE3+ ions on the microstructure, magnetism and polar magneto-optical Kerr effect of the deposited films were investigated. Also this research presents the optimization process of cobalt ferrite thin films deposited via spin coating, by studying their structural and morphological properties at different thicknesses (200, 350 nm) and various heat treatment temperatures 300-850 °C. Nanoparticulate polycrystalline thin film were formed with heat treatment above 400 °C but proper magnetic properties due to well crystallization of the film were achieved at about 650 °C. AFM results indicated that the deposited thin films were crack-free exhibiting a dense nanogranular structure. The root-mean square (RMS) roughness of the thin films was in the range of 0.2-3.2 nm. The results revealed that both of the magnetism and magneto optical Kerr (MOKE) spectra of Cox RE(1-x) Fe2O4 films could be mediated by doping with various RE ions. The Curie temperature of substituted samples was lower than pristine cobalt ferrite thin films. In MOKE spectra both dominant peaks were blue shifted with addition of RE ions. For low concentration dopant the inter-valence charge transfer related rotation was enhanced and for higher concentration dopant the crystal field rotation peak was enhanced. The MOKE enhancement for Eu3+ substituted samples was more than Nd3+ doped cobalt ferrite films. The enhanced MOKEs in nanocrystalline thin films might promise their applications for magneto-optical sensors in adopted wavelengths.
Ultra-high cooling rate utilizing thin film evaporation
NASA Astrophysics Data System (ADS)
Su, Fengmin; Ma, Hongbin; Han, Xu; Chen, Hsiu-hung; Tian, Bohan
2012-09-01
This research introduces a cell cryopreservation method, which utilizes thin film evaporation and provides an ultra-high cooling rate. The microstructured surface forming the thin film evaporation was fabricated from copper microparticles with an average diameter of 50 μm. Experimental results showed that a cooling rate of approximately 5×104 °C/min was achieved in a temperature range from 10 °C to -187 °C. The current investigation will give birth to a cell cryopreservation method through vitrification with relatively low concentrations of cryoprotectants.
Waveguide-based optical chemical sensor
Grace, Karen M [Ranchos de Taos, NM; Swanson, Basil I [Los Alamos, NM; Honkanen, Seppo [Tucson, AZ
2007-03-13
The invention provides an apparatus and method for highly selective and sensitive chemical sensing. Two modes of laser light are transmitted through a waveguide, refracted by a thin film host reagent coating on the waveguide, and analyzed in a phase sensitive detector for changes in effective refractive index. Sensor specificity is based on the particular species selective thin films of host reagents which are attached to the surface of the planar optical waveguide. The thin film of host reagents refracts laser light at different refractive indices according to what species are forming inclusion complexes with the host reagents.
Apparatus and processes for the mass production of photovoltaic modules
Barth, Kurt L [Ft. Collins, CO; Enzenroth, Robert A [Fort Collins, CO; Sampath, Walajabad S [Fort Collins, CO
2007-05-22
An apparatus and processes for large scale inline manufacturing of CdTe photovoltaic modules in which all steps, including rapid substrate heating, deposition of CdS, deposition of CdTe, CdCl.sub.2 treatment, and ohmic contact formation, are performed within a single vacuum boundary at modest vacuum pressures. A p+ ohmic contact region is formed by subliming a metal salt onto the CdTe layer. A back electrode is formed by way of a low cost spray process, and module scribing is performed by means of abrasive blasting or mechanical brushing through a mask. The vacuum process apparatus facilitates selective heating of substrates and films, exposure of substrates and films to vapor with minimal vapor leakage, deposition of thin films onto a substrate, and stripping thin films from a substrate. A substrate transport apparatus permits the movement of substrates into and out of vacuum during the thin film deposition processes, while preventing the collection of coatings on the substrate transport apparatus itself.
Strong thin membrane structure. [solar sails
NASA Technical Reports Server (NTRS)
Frazer, R. E. (Inventor)
1979-01-01
A continuous process is described for producing strong lightweight structures for use as solar sails for spacecraft propulsion by radiation pressure. A thin reflective coating, such as aluminum, is applied to a rotating cylinder. A nylon mesh, applied over the aluminum coating, is then coated with a polymerizing material such as a para-xylylene monomer gas to polymerize as a film bound to the mesh and the aluminum. An emissivity increasing material such as chromium or silicon monoxide is applied to the polymer film to disperse such material colloidally into the growing polymer film, or to the final polymer film. The resulting membrane structure is then removed from the cylinder. Alternately, the membrane structure can be formed by etching a substrate in the form of an organic film such as a polymide, or a metal foil, to remove material from the substrate and reduce its thickness. A thin reflective coating (aluminum) is applied on one side of the substrate, and an emissivity increasing coating is applied on the reverse side of the substrate.
Apparatus and processes for the mass production of photovotaic modules
Barth, Kurt L.; Enzenroth, Robert A.; Sampath, Walajabad S.
2002-07-23
An apparatus and processes for large scale inline manufacturing of CdTe photovoltaic modules in which all steps, including rapid substrate heating, deposition of CdS, deposition of CdTe, CdCl.sub.2 treatment, and ohmic contact formation, are performed within a single vacuum boundary at modest vacuum pressures. A p+ ohmic contact region is formed by subliming a metal salt onto the CdTe layer. A back electrode is formed by way of a low cost spray process, and module scribing is performed by means of abrasive blasting or mechanical brushing through a mask. The vacuum process apparatus facilitates selective heating of substrates and films, exposure of substrates and films to vapor with minimal vapor leakage, deposition of thin films onto a substrate, and stripping thin films from a substrate. A substrate transport apparatus permits the movement of substrates into and out of vacuum during the thin film deposition processes, while preventing the collection of coatings on the substrate transport apparatus itself.
Huang, Xiaohua
2013-01-01
The structural evolution of low-molecular-weight poly(ethylene oxide)-block-polystyrene (PEO-b-PS) diblock copolymer thin film with various initial film thicknesses on silicon substrate under thermal annealing was investigated by atomic force microscopy, optical microscopy, and contact angle measurement. At film thickness below half of the interlamellar spacing of the diblock copolymer (6.2 nm), the entire silicon is covered by a polymer brush with PEO blocks anchored on the Si substrate due to the substrate-induced effect. When the film is thicker than 6.2 nm, a dense polymer brush which is equal to half of an interlamellar layer was formed on the silicon, while the excess material dewet this layer to form droplets. The droplet surface was rich with PS block and the PEO block crystallized inside the bigger droplet to form spherulite. PMID:24302862
Buried anode lithium thin film battery and process for forming the same
Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping
2004-10-19
A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).
Cadmium-free junction fabrication process for CuInSe.sub.2 thin film solar cells
Ramanathan, Kannan V.; Contreras, Miguel A.; Bhattacharya, Raghu N.; Keane, James; Noufi, Rommel
1999-01-01
The present invention provides an economical, simple, dry and controllable semiconductor layer junction forming process to make cadmium free high efficiency photovoltaic cells having a first layer comprised primarily of copper indium diselenide having a thin doped copper indium diselenide n-type region, generated by thermal diffusion with a group II(b) element such as zinc, and a halide, such as chlorine, and a second layer comprised of a conventional zinc oxide bilayer. A photovoltaic device according the present invention includes a first thin film layer of semiconductor material formed primarily from copper indium diselenide. Doping of the copper indium diselenide with zinc chloride is accomplished using either a zinc chloride solution or a solid zinc chloride material. Thermal diffusion of zinc chloride into the copper indium diselenide upper region creates the thin n-type copper indium diselenide surface. A second thin film layer of semiconductor material comprising zinc oxide is then applied in two layers. The first layer comprises a thin layer of high resistivity zinc oxide. The second relatively thick layer of zinc oxide is doped to exhibit low resistivity.
Liquid film target impingement scrubber
McDowell, William J.; Coleman, Charles F.
1977-03-15
An improved liquid film impingement scrubber is provided wherein particulates suspended in a gas are removed by jetting the particle-containing gas onto a relatively small thin liquid layer impingement target surface. The impingement target is in the form of a porous material which allows a suitable contacting liquid from a pressurized chamber to exude therethrough to form a thin liquid film target surface. The gas-supported particles collected by impingement of the gas on the target are continuously removed and flushed from the system by the liquid flow through each of a number of pores in the target.
Method for manufacturing electrical contacts for a thin-film semiconductor device
Carlson, David E.; Dickson, Charles R.; D'Aiello, Robert V.
1988-11-08
A method of fabricating spaced-apart back contacts on a thin film of semiconductor material by forming strips of buffer material on top of the semiconductor material in locations corresponding to the desired dividing lines between back contacts, forming a film of metal substantially covering the semiconductor material and buffer strips, and scribing portions of the metal film overlying the buffer strips with a laser without contacting the underlying semiconductor material to separate the metal layer into a plurality of back contacts. The buffer material serves to protect the underlying semiconductor material from being damaged during the laser scribing. Back contacts and multi-cell photovoltaic modules incorporating such back contacts also are disclosed.
Electrical contacts for a thin-film semiconductor device
Carlson, David E.; Dickson, Charles R.; D'Aiello, Robert V.
1989-08-08
A method of fabricating spaced-apart back contacts on a thin film of semiconductor material by forming strips of buffer material on top of the semiconductor material in locations corresponding to the desired dividing lines between back contacts, forming a film of metal substantially covering the semiconductor material and buffer strips, and scribing portions of the metal film overlying the buffer strips with a laser without contacting the underlying semiconductor material to separate the metal layer into a plurality of back contacts. The buffer material serves to protect the underlying semiconductor material from being damaged during the laser scribing. Back contacts and multi-cell photovoltaic modules incorporating such back contacts also are disclosed.
Ge, Yongjie; Duan, Xidong; Zhang, Meng; Mei, Lin; Hu, Jiawen; Hu, Wei; Duan, Xiangfeng
2018-01-10
Silver nanowire (Ag-NW) thin films have emerged as a promising next-generation transparent electrode. However, the current Ag-NW thin films are often plagued by high NW-NW contact resistance and poor long-term stability, which can be largely attributed to the ill-defined polyvinylpyrrolidone (PVP) surface ligands and nonideal Ag-PVP-Ag contact at NW-NW junctions. Herein, we report a room temperature direct welding and chemical protection strategy to greatly improve the conductivity and stability of the Ag-NW thin films. Specifically, we use a sodium borohydride (NaBH 4 ) treatment process to thoroughly remove the PVP ligands and produce a clean Ag-Ag interface that allows direct welding of NW-NW junctions at room temperature, thus greatly improving the conductivity of the Ag-NW films, outperforming those obtained by thermal or plasmonic thermal treatment. We further show that, by decorating the as-formed Ag-NW thin film with a dense, hydrophobic dodecanethiol layer, the stability of the Ag-NW film can be greatly improved by 150-times compared with that of PVP-wrapped ones. Our studies demonstrate that a proper surface ligand design can effectively improve the conductivity and stability of Ag-NW thin films, marking an important step toward their applications in electronic and optoelectronic devices.
Low-cost growth of magnesium doped gallium nitride thin films by sol-gel spin coating method
NASA Astrophysics Data System (ADS)
Amin, N. Mohd; Ng, S. S.
2018-01-01
Low-cost sol-gel spin coating growth of magnesium (Mg) doped gallium nitride (GaN) thin films with different concentrations of Mg was reported. The effects of the Mg concentration on the structural, surface morphology, elemental compositions, lattice vibrational, and electrical properties of the deposited films were investigated. X-ray diffraction results show that the Mg-doped samples have wurtzite structure with preferred orientation of GaN(002). The crystallite size decreases and the surface of the films with pits/pores were formed, while the crystalline quality of the films degraded as the Mg concentration increases from 2% to 6. %. All the Raman active phonon modes of the wurtzite GaN were observed while a broad peak attributed to the Mg-related lattice vibrational mode was detected at 669 cm-1. Hall effect results show that the resistivity of the thin films decreases while the hole concentration and hall mobility of thin films increases as the concentration of the Mg increases.
Dielectric relaxation of barium strontium titanate and application to thin films for DRAM capacitors
NASA Astrophysics Data System (ADS)
Baniecki, John David
This thesis examines the issues associated with incorporating the high dielectric constant material Barium Strontium Titanate (BSTO) in to the storage capacitor of a dynamic random access memory (DRAM). The research is focused on two areas: characterizing and understanding the factors that control charge retention in BSTO thin films and modifying the electrical properties using ion implantation. The dielectric relaxation of BSTO thin films deposited by metal-organic chemical vapor deposition (MOCVD) is investigated in the time and frequency domains. It is shown that the frequency dispersion of the complex capacitance of BSTO thin films can be understood in terms of a power-law frequency dependence from 1mHz to 20GHz. From the correspondence between the time and frequency domain measurements, it is concluded that the power-law relaxation currents extend back to the nano second regime of DRAM operation. The temperature, field, and annealing dependence of the dielectric relaxation currents are also investigated and mechanisms for the observed power law relaxation are explored. An equivalent circuit model of a high dielectric constant thin film capacitor is developed based on the electrical measurements and implemented in PSPICE. Excellent agreement is found between the experimental and simulated electrical characteristics showing the utility of the equivalent circuit model in simulating the electrical properties of high dielectric constant thin films. Using the equivalent circuit model, it is shown that the greatest charge loss due to dielectric relaxation occurs during the first read after a refresh time following a write to the opposite logic state for a capacitor that has been written to the same logic state for a long time (opposite state write charge loss). A theoretical closed form expression that is a function of three material parameters is developed which estimates the opposite state write charge loss due to dielectric relaxation. Using the closed form expression, and BSTO thin film electrical characteristics, the charge loss due to dielectric relaxation is estimated to be 6--12% of the initial charge stored on the capacitor plates for MOCVD BSTO thin films with Pt electrodes after a post top electrode anneal in oxygen. In contrast, it is shown that the charge loss due to steady state leakage is only 0.0125--0.125% of the initial charge stored on the capacitor plates. Charge retention is shown to depend strongly on the annealing conditions. Annealing MOCVD BSTO thin films with Pt electrodes in forming gas (95% Ar 5% H2) increases charge loss due to dielectric relaxation to as much as 60%. Ion implantation is used to dope BSTO thin films with Mn. X-ray diffraction and transmission electron microscopy (TEM) shows ion implantation significantly damages the film leaving only short-range order, but post-implant annealing heals the damage. Capacitance recovery after post-implant annealing is as high as 94% for 15 nm BSTO films. At low implant doses, the Mn doped films have substantially lower leakage (up to a factor of ten lower) and only slightly higher relaxation currents and dielectric loss indicating that ion implantation may be a potentially viable way of introducing dopants into high dielectric constant thin films for future DRAM applications.
NASA Astrophysics Data System (ADS)
Pradeesh, K.; Baumberg, J. J.; Prakash, G. Vijaya
2009-07-01
Thin films of self-organized quantum wells of inorganic-organic hybrid perovskites of (C6H9C2H4NH3)2PbI4 are formed from a simple intercalation strategy to yield well-ordered uniform films over centimeter-size scales. These films compare favorably with traditional solution-chemistry-synthesized thin films. The hybrid films show strong room-temperature exciton-related absorption and photoluminescence, which shift with fabrication protocol. We demonstrate the potential of this method for electronic and photonic device applications.
DiMeo, Jr., Frank; Baum, Thomas H.
2003-07-22
The present invention provides a hydrogen sensor including a thin film sensor element formed by metal organic chemical vapor deposition (MOCVD) or physical vapor deposition (PVD), on a micro-hotplate structure. The thin film sensor element includes a film of a hydrogen-interactive metal film that reversibly interacts with hydrogen to provide a correspondingly altered response characteristic, such as optical transmissivity, electrical conductance, electrical resistance, electrical capacitance, magneto resistance, photoconductivity, etc., relative to the response characteristic of the film in the absence of hydrogen. The hydrogen-interactive metal film may be overcoated with a thin film hydrogen-permeable barrier layer to protect the hydrogen-interactive film from deleterious interaction with non-hydrogen species. The hydrogen permeable barrier may comprise species to scavenge oxygen and other like species. The hydrogen sensor of the invention may be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently configured as a hand-held apparatus.
Sensing of contaminants in potable water using TiO{sub 2} functional film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akshatha, N.; Poonia, Monika; Gupta, R. K., E-mail: raj@pilani.bits-pilani.ac.in
2016-04-13
The piezoelectric based quartz crystal microbalance is employed for sensing contaminants in potable water. A spin coated thin layer of TiO{sub 2} nanoparticles was formed at the sensing area of a 5 MHz AT-cut quartz wafer. The thin film of TiO{sub 2} nanoparticles forms a mesoporous functional layer for the trapping of water borne contaminants. The morphology of the thin film of TiO{sub 2} nanoparticles was studied using field emission scanning electron microscope (FESEM). The surface morphology of the TiO{sub 2} nanoparticles reveals the mesoporous structures indicating large number of defects and porous sites. Such film was employed for the detectionmore » of water borne contaminants by detecting the piezoelectric response from a quartz crystal microbalance. We found the film to be very sensitive to the contaminants. The minimum detection limit was found to be 330 ppb. The effect of surface recharging was also studied by altering the physical conditions so that the film can be used for repetitive usage.« less
Elastica solution for a nanotube formed by self-adhesion of a folded thin film
NASA Astrophysics Data System (ADS)
Glassmaker, N. J.; Hui, C. Y.
2004-09-01
Schmidt and Eberl demonstrated the construction of tubes with submicron diameters by the method of folding thin solid films [Nature (London) 410, 168 (2001)]. In their method, a thin film is folded 180° and brought into adhesive contact with itself. The resulting sealed loop forms a nanotube with the thickness of the tube walls equal to the thickness of the thin film. The calculation of the diameter of the tube and the shape of its cross section in equilibrium are the subjects of this study. The tube is modeled as a two-dimensional elastica when viewed in cross section, and adhesive behavior is governed by an energy release rate criterion. A numerical technique is used to find elastic equilibria for a large range of material parameters. With these solutions in hand, the problem of designing a nanotube becomes transparent. It is shown that one dimensionless parameter determines the diameter of the nanotube, while another fixes its shape. Each of these parameters is a ratio involving the material's mechanical properties and the film thickness. Before concluding, we verify our model by comparing its results with the experimental observations of Schmidt and Eberl, for their materials.
Low polarity water, a novel transition species at the polyethylene-water interface.
Kosower, Edward M; Borz, Galina
2015-10-14
The bridge between water repelling and water-attracting regions is recognized here as low polarity water, a novel "neutral" form of water; its identity as a dipole-dipole water dimer is supported by spectroscopic evidence of its presence in thin films of water on a polyethylene surface. High resolution (0.5 cm(-1)), low signal energies (Sg 100) and short scans (0.1 s) are used to ensure that all peaks are detected. Thin films may be trapped between two polyethylene windows, affirming the low polarity of such water; the spectra of the trapped films ("sandwich") are similar to those from a subtraction procedure. Use of the "sandwich" is a new and useful technique in surface studies. In general, intermediate forms might bridge incompatibility between different regimes, from sets of molecules (chemistry and physics) to sets of organisms (biology and sociology). Thin films of water on polyethylene also display strong and transient peaks of water oligomers, cyclic pentamers and cyclic hexamers (chair and boat), bicyclic hexamers (books 1 and 2) and tricyclic hexamers (prism) that have been previously identified in thin films of water on a silver halide surface.
Core-Shell Double Gyroid Structure Formed by Linear ABC Terpolymer Thin Films.
Antoine, Ségolène; Aissou, Karim; Mumtaz, Muhammad; Telitel, Siham; Pécastaings, Gilles; Wirotius, Anne-Laure; Brochon, Cyril; Cloutet, Eric; Fleury, Guillaume; Hadziioannou, Georges
2018-05-01
The synthesis and self-assembly in thin-film configuration of linear ABC triblock terpolymer chains consisting of polystyrene (PS), poly(2-vinylpyridine) (P2VP), and polyisoprene (PI) are described. For that purpose, a hydroxyl-terminated PS-b-P2VP (45 kg mol -1 ) building block and a carboxyl-terminated PI (9 kg mol -1 ) are first separately prepared by anionic polymerization, and then are coupled via a Steglich esterification reaction. This quantitative and metal-free catalyst synthesis route reveals to be very interesting since functionalization and purification steps are straightforward, and well-defined terpolymers are produced. A solvent vapor annealing (SVA) process is used to promote the self-assembly of frustrated PS-b-P2VP-b-PI chains into a thin-film core-shell double gyroid (Q 230 , space group: Ia3¯d) structure. As terraces are formed within PS-b-P2VP-b-PI thin films during the SVA process under a CHCl 3 vapor, different plane orientations of the Q 230 structure ((211), (110), (111), and (100)) are observed at the polymer-air interface depending on the film thickness. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thick crystalline films on foreign substrates
Smith, Henry I.; Atwater, Harry A.; Geis, Michael W.
1986-01-01
To achieve a uniform texture, large crystalline grains or, in some cases, a single crystalline orientation in a thick (>1 .mu.m) film on a foreign substrate, the film is formed so as to be thin (<1 .mu.m) in a certain section. Zone-melting recrystallization is initiated in the thin section and then extended into the thick section. The method may employ planar constriction patterns of orientation filter patterns.
Design of Polymers with Semiconductor, NLO and Structural Properties.
1991-04-22
polymer thin films. + 14 KV Needle electrod Polymer layer ITO electrode Substrate Heater and temperature control unit The second harmonic coefficients of...the solubily and processability through utilization of derivitization and precursor routes we have been able to form the first optical quality films...ethylene spacer, and therefore 14 possesses a great degree of solubility in organic solvents, necessary for the fabrication of optical quality thin films
Thick crystalline films on foreign substrates
Smith, H.I.; Atwater, H.A.; Geis, M.W.
1986-03-18
To achieve a uniform texture, large crystalline grains or, in some cases, a single crystalline orientation in a thick (>1 [mu]m) film on a foreign substrate, the film is formed so as to be thin (<1 [mu]m) in a certain section. Zone-melting recrystallization is initiated in the thin section and then extended into the thick section. The method may employ planar constriction patterns of orientation filter patterns. 2 figs.
Structural and optical properties of MgxAl1-xHy gradient thin films: a combinatorial approach
NASA Astrophysics Data System (ADS)
Gremaud, R.; Borgschulte, A.; Chacon, C.; van Mechelen, J. L. M.; Schreuders, H.; Züttel, A.; Hjörvarsson, B.; Dam, B.; Griessen, R.
2006-07-01
The structural, optical and dc electrical properties of MgxAl1-x (0.2≤x≤0.9) gradient thin films covered with Pd/Mg are investigated before and after exposure to hydrogen. We use hydrogenography, a novel high-throughput optical technique, to map simultaneously all the hydride forming compositions and the kinetics thereof in the gradient thin film. Metallic Mg in the MgxAl1-x layer undergoes a metal-to-semiconductor transition and MgH2 is formed for all Mg fractions x investigated. The presence of an amorphous Mg-Al phase in the thin film phase diagram enhances strongly the kinetics of hydrogenation. In the Al-rich part of the film, a complex H-induced segregation of MgH2 and Al occurs. This uncommon large-scale segregation is evidenced by metal and hydrogen profiling using Rutherford backscattering spectrometry and resonant nuclear analysis based on the reaction 1H(15N,αγ)12C. Besides MgH2, an additional semiconducting phase is found by electrical conductivity measurements around an atomic [Al]/[Mg] ratio of 2 (x=0.33). This suggests that the film is partially transformed into Mg(AlH4)2 at around this composition.
PZT Thin-Film Micro Probe Device with Dual Top Electrodes
NASA Astrophysics Data System (ADS)
Luo, Chuan
Lead zirconate titanate (PZT) thin-film actuators have been studied intensively for years because of their potential applications in many fields. In this dissertation, a PZT thin-film micro probe device is designed, fabricated, studied, and proven to be acceptable as an intracochlear acoustic actuator. The micro probe device takes the form of a cantilever with a PZT thin-film diaphragm at the tip of the probe. The tip portion of the probe will be implanted in cochlea later in animal tests to prove its feasibility in hearing rehabilitation. The contribution of the dissertation is three-fold. First, a dual top electrodes design, consisting of a center electrode and an outer electrode, is developed to improve actuation displacement of the PZT thin-film diaphragm. The improvement by the dual top electrodes design is studied via a finite element model. When the dimensions of the dual electrodes are optimized, the displacement of the PZT thin-film diaphragm increases about 30%. A PZT thin-film diaphragm with dual top electrodes is fabricated to prove the concept, and experimental results confirm the predictions from the finite element analyses. Moreover, the dual electrode design can accommodate presence of significant residual stresses in the PZT thin-film diaphragm by changing the phase difference between the two electrodes. Second, a PZT thin-film micro probe device is fabricated and tested. The fabrication process consists of PZT thin-film deposition and deep reactive ion etching (DRIE). The uniqueness of the fabrication process is an automatic dicing mechanism that allows a large number of probes to be released easily from the wafer. Moreover, the fabrication is very efficient, because the DRIE process will form the PZT thin-film diaphragm and the special dicing mechanism simultaneously. After the probes are fabricated, they are tested with various possible implantation depths (i.e., boundary conditions). Experimental results show that future implantation depths should be less than 3 mm in order to guarantee the first resonant frequency above 60 kHz. Finally, a package for the PZT thin-film micro probe device is developed to ensure its proper function in an aqueous environment, such as inside of cochlea. The package is an insulation layer of parylene coating on the probe. A finite element analysis indicates that a coating thickness of less than 1 mum will reduce the PZT diaphragm displacement by less than 10%. A special fixture is designed to hold a large number of probes for parylene deposition of a thickness of 250 nm. A packaged probe is then submerged in deionized water and functions properly for at least 55 hours. Displacement and impedance of the probe are measured via a laser Doppler vibrometer and an impedance analyzer, respectively. Experimental results show that displacement of the PZT diaphragm increases about 30% in two hours, after the probe is submerged in the deionized water. The impedance measurement shows consistent trends. A hypothesis to explain this unusual phenomenon is diffusion of water molecules into the PZT thin film. High-resolution SEM images of the probe indicate presence of numerous nano-pores in the surface of the PZT thin film, indirectly confirming the hypothesis. Keywords: PZT, Thin-Film, Dual Electrodes, Parylene Coating, Aqueous Environment, Cochlear Implant
Line-source excited impulsive EM field response of thin plasmonic metal films
NASA Astrophysics Data System (ADS)
Štumpf, Martin; Vandenbosch, Guy A. E.
2013-08-01
In this paper, reflection against and transmission through thin plasmonic metal films, basic building blocks of many plasmonic devices, are analytically investigated directly in the time domain for an impulsive electric and magnetic line-source excitation. The electromagnetic properties of thin metallic films are modeled via the Drude model. The problem is formulated with the help of approximate thin-sheet boundary conditions and the analysis is carried out using the Cagniard-DeHoop technique. Closed-form space-time expressions are found and discussed. The obtained time-domain analytical expressions reveal the existence of the phenomenon of transient oscillatory surface effects along a plasmonic metal thin sheet. Illustrative numerical examples of transmitted/reflected pulsed fields are provided.
Nanocrystalline SnO2 formation by oxygen ion implantation in tin thin films
NASA Astrophysics Data System (ADS)
Kondkar, Vidya; Rukade, Deepti; Kanjilal, Dinakar; Bhattacharyya, Varsha
2018-03-01
Metallic tin thin films of thickness 100 nm are deposited on fused silica substrates by thermal evaporation technique. These films are implanted with 45 keV oxygen ions at fluences ranging from 5 × 1015 to 5 × 1016 ions cm-2. The energy of the oxygen ions is calculated using SRIM in order to form embedded phases at the film-substrate interface. Post-implantation, films are annealed using a tube furnace for nanocrystalline tin oxide formation. These films are characterized using x-ray diffraction, Raman spectroscopy, UV-vis spectroscopy and photoluminescence spectroscopy. XRD and Raman spectroscopy studies reveal the formation of single rutile phase of SnO2. The size of the nanocrystallites formed decreases with an increase in the ion fluence. The nanocrystalline SnO2 formation is also confirmed by UV-vis and photoluminescence spectroscopy.
NASA Astrophysics Data System (ADS)
Kim, H. D.; Roh, Y.; Lee, J. E.; Kang, H.-B.; Yang, C.-W.; Lee, N.-E.
2004-07-01
We have investigated the effects of high temperature annealing on the physical and electrical properties of multilayered high-k gate oxide [HfSixOy/HfO2/intermixed-layer(IL)/ZrO2/intermixed-layer(IL)/HfO2] in metal-oxide-semiconductor device. The multilayered high-k films were formed after oxidizing the Hf/Zr/Hf films deposited directly on the Si substrate. The subsequent N2 annealing at high temperature (>= 700 °C) not only results in the polycrystallization of the multilayered high-k films, but also causes the diffusion of Zr. The latter transforms the HfSixOy/HfO2/IL/ZrO2/IL/HfO2 film into the Zr-doped HfO2 film, and improves electrical properties in general. However, the thin SiOx interfacial layer starts to form if annealing temperature increases over 700 °C, deteriorating the equivalent oxide thickness. .
NASA Astrophysics Data System (ADS)
Pat, Suat; Özen, Soner; Korkmaz, Şadan
2018-01-01
We report the influence of Sn doping on microstructure, surface, and optical properties of GaN thin films deposited on glass and polyethylene terephthalate (PET) substrate. Sn-doped GaN thin films have been deposited by thermionic vacuum arc (TVA) at low temperature. TVA is a rapid deposition technology for thin film growth. Surface and optical properties of the thin films were presented. Grain size, height distribution, roughness values were determined. Grain sizes were calculated as 20 nm and 13 nm for glass and PET substrates, respectively. Nano crystalline forms were shown by field emission scanning electron microscopy. Optical band gap values were determined by optical methods and photoluminescence measurement. The optical band gap values of Sn doped GaN on glass and PET were determined to be approximately ˜3.40 eV and ˜3.47 eV, respectively. As a result, TVA is a rapid and low temperature deposition technology for the Sn doped GaN deposited on glass and PET substrate.
NASA Astrophysics Data System (ADS)
Le, Khai Q.; Dang, Ngo Hai
2018-05-01
This paper investigates solvent and concentration effects on photoluminescence (PL) or fluorescence properties of Rhodamine 800 (Rho800) dyes formed in aqueous solution and polymer thin-film. Various commonly used organic solvents including ethanol, methanol and cyclopentanol were studied at a constant dye concentration. There were small changes in the PL spectra for the different solvents in terms of PL intensity and peak wavelength. The highest PL intensity was observed for cyclopentanol and the lowest for ethanol. The longest peak wavelength was found in cyclopentanol (716 nm) and the shortest in methanol (708 nm). Dissolving the dye powder in the methanol solvent and varying the dye concentration in aqueous solution from the high concentrated solution to highly dilute states, the wavelength tunability was observed between about 700 nm in the dilute state and 730 nm at high concentration. Such a large shift may be attributed to the formation of dye aggregates. Rho800 dye-doped polyvinyl alcohol (PVA) polymer thin-film was further investigated. The PL intensity of the dye in the form of thin-film is lower than that of the aqueous solution form whereas the peak wavelength is redshifted due to the presence of PVA. This paper, to our best knowledge, reports the first study of spectroscopic properties of Rho800 dyes in various forms and provides useful guidelines for production of controllable organic luminescence sources.
Method for synthesizing thin film electrodes
Boyle, Timothy J [Albuquerque, NM
2007-03-13
A method for making a thin-film electrode, either an anode or a cathode, by preparing a precursor solution using an alkoxide reactant, depositing multiple thin film layers with each layer approximately 500 1000 .ANG. in thickness, and heating the layers to above 600.degree. C. to achieve a material with electrochemical properties suitable for use in a thin film battery. The preparation of the anode precursor solution uses Sn(OCH.sub.2C(CH.sub.3).sub.3).sub.2 dissolved in a solvent in the presence of HO.sub.2CCH.sub.3 and the cathode precursor solution is formed by dissolving a mixture of (Li(OCH.sub.2C(CH.sub.3).sub.3)).sub.8 and Co(O.sub.2CCH.sub.3).H.sub.2O in at least one polar solvent.
Fabrication and characterization of nickel oxide nanoparticles/silicon NiO NPS/Si
NASA Astrophysics Data System (ADS)
Shuihab, Aliyah; Khalf, Surour
2018-05-01
In this study, (NiO) thin film which prepared by chemical method and deposited by drop casting technique on glass. The structural, optical and chemical analyses have been investigated. X-ray diffraction (XRD) measurements relieve that the (NiO) thin film was polycrystalline, cubic structure and there is no trace of the other material. UV-Vis measurements reveal that the energy gap of (NiO) thin film was found 1.8 eV. The Fourier Transform Infrared Spectroscopy (FTIR) spectrum of (NiO) thin film shows NiO nanoparticles had its IR peak of Ni-O stretching vibration and shifted to blue direction. Due to their quantum size effect and spherical nanostructures, the FTIR absorption of NiO nanoparticles is blue-shifted compared to that of the bulk form.
Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy.
Withayachumnankul, Withawat; O'Hara, John F; Cao, Wei; Al-Naib, Ibraheem; Zhang, Weili
2014-01-13
Thin-film sensing with a film thickness much less than a wavelength is an important challenge in conventional transmission-mode terahertz time-domain spectroscopy (THz-TDS). Since the interaction length between terahertz waves and a sample film is short, a small change in the transmitted signal compared with the reference is considerably obscured by system uncertainties. In this article, several possible thin-film measurement procedures are carefully investigated. It is suggested that an alternating sample and reference measurement approach is most robust for thin-film sensing. In addition, a closed-form criterion is developed to determine the critical thickness, i.e., the minimal thickness of a film unambiguously detectable by transmission-mode THz-TDS. The analysis considers influences from the Fresnel transmission at interfaces and the Fabry-Pérot reflections, in addition to the propagation across the film. The experimental results show that typical THz-TDS systems can detect polymer films with a thickness down to a few microns, two orders of magnitude less than the wavelength. For reasonably accurate characterization, it is recommended that the film thickness be at least ten times above this limit. The analysis is readily extended to biomolecular and semiconductor films. The criterion can be used to estimate the system-dependent performance in thin-film sensing applications, and can help to ascertain whether an alternative terahertz sensing modality is necessary.
Method of fabrication of display pixels driven by silicon thin film transistors
Carey, Paul G.; Smith, Patrick M.
1999-01-01
Display pixels driven by silicon thin film transistors are fabricated on plastic substrates for use in active matrix displays, such as flat panel displays. The process for forming the pixels involves a prior method for forming individual silicon thin film transistors on low-temperature plastic substrates. Low-temperature substrates are generally considered as being incapable of withstanding sustained processing temperatures greater than about 200.degree. C. The pixel formation process results in a complete pixel and active matrix pixel array. A pixel (or picture element) in an active matrix display consists of a silicon thin film transistor (TFT) and a large electrode, which may control a liquid crystal light valve, an emissive material (such as a light emitting diode or LED), or some other light emitting or attenuating material. The pixels can be connected in arrays wherein rows of pixels contain common gate electrodes and columns of pixels contain common drain electrodes. The source electrode of each pixel TFT is connected to its pixel electrode, and is electrically isolated from every other circuit element in the pixel array.
Bursting of a bubble confined in between two plates
NASA Astrophysics Data System (ADS)
Murano, Mayuko; Kimono, Natsuki; Okumura, Ko
2015-11-01
Rupture of liquid thin films, driven by surface tension, has attracted interests of scientists for many years. It is also a daily phenomenon familiar to everyone in the form of the bursting of soap films. In recent years, many studies in confined geometries (e.g. in a Hele-Shaw cell) have revealed physical mechanisms of the dynamics of bubbles and drops. As for a liquid film sandwiched in between another liquid immiscible to the film liquid in the Hele-Shaw cell, it is reported that the thin film bursts at a constant speed and the speed depends on the viscosity of the surrounding liquid when the film is less viscous, although a rim is not formed at the bursting tip; this is because the circular symmetry of the hole in the bursting film is lost. Here, we study the bursting speed of a thin film sandwiched between air instead of the surrounding liquid in the Hele-Shaw cell to seek different scaling regimes. By measuring the bursting velocity and the film thickness of an air bubble with a high speed camera, we have found a new scaling law in viscous regime. This research was partly supported by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).
Process for making dense thin films
Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.
2005-07-26
Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for firing of device substrate to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.
Turbine Blade Temperature Measurements Using Thin Film Temperature Sensors
NASA Technical Reports Server (NTRS)
Grant, H. P.; Przybyszewski, J. S.; Claing, R. G.
1981-01-01
The development of thin film temperature sensors is discussed. The technology for sputtering 2 micron thin film platinum versus platinum 10 percent rhodium thermocouples on alumina forming coatings was improved and extended to applications on actual turbine blades. Good adherence was found to depend upon achieving a proper morphology of the alumina surface. Problems of adapting fabrication procedures to turbine blades were uncovered, and improvements were recommended. Testing at 1250 K at one atmosphere pressure was then extended to a higher Mach No. (0.5) in combustor flow for 60 hours and 71 thermal cycles. The mean time to failure was 47 hours accumulated during 1 hour exposures in the combustor. Calibration drift was about 0.1 percent per hour, attributable to oxidation of the rhodium in the thin films. An increase in film thickness and application of a protective overcoat are recommended to reduce drift in actual engine testing.
Water-Based Peeling of Thin Hydrophobic Films
NASA Astrophysics Data System (ADS)
Khodaparast, Sepideh; Boulogne, François; Poulard, Christophe; Stone, Howard A.
2017-10-01
Inks of permanent markers and waterproof cosmetics create elastic thin films upon application on a surface. Such adhesive materials are deliberately designed to exhibit water-repellent behavior. Therefore, patterns made up of these inks become resistant to moisture and cannot be cleaned by water after drying. However, we show that sufficiently slow dipping of such elastic films, which are adhered to a substrate, into a bath of pure water allows for complete removal of the hydrophobic coatings. Upon dipping, the air-water interface in the bath forms a contact line on the substrate, which exerts a capillary-induced peeling force at the edge of the hydrophobic thin film. We highlight that this capillary peeling process is more effective at lower velocities of the air-liquid interface and lower viscosities. Capillary peeling not only removes such thin films from the substrate but also transfers them flawlessly onto the air-water interface.
Plasma CVD of hydrogenated boron-carbon thin films from triethylboron
NASA Astrophysics Data System (ADS)
Imam, Mewlude; Höglund, Carina; Schmidt, Susann; Hall-Wilton, Richard; Birch, Jens; Pedersen, Henrik
2018-01-01
Low-temperature chemical vapor deposition (CVD) of B—C thin films is of importance for neutron voltaics and semiconductor technology. The highly reactive trialkylboranes, with alkyl groups of 1-4 carbon atoms, are a class of precursors that have been less explored for low-temperature CVD of B—C films. Herein, we demonstrate plasma CVD of B—C thin films using triethylboron (TEB) as a single source precursor in an Ar plasma. We show that the film density and B/C ratio increases with increasing plasma power, reaching a density of 2.20 g/cm3 and B/C = 1.7. This is attributed to a more intense energetic bombardment during deposition and more complete dissociation of the TEB molecule in the plasma at higher plasma power. The hydrogen content in the films ranges between 14 and 20 at. %. Optical emission spectroscopy of the plasma shows that BH, CH, C2, and H are the optically active plasma species from TEB. We suggest a plasma chemical model based on β-hydrogen elimination of C2H4 to form BH3, in which BH3 and C2H4 are then dehydrogenated to form BH and C2H2. Furthermore, C2H2 decomposes in the plasma to produce C2 and CH, which together with BH and possibly BH3-x(C2H5)x are the film forming species.
NASA Technical Reports Server (NTRS)
Thakoor, Sarita (Inventor)
1992-01-01
Thin film ferroelectric capacitors comprising a ferroelectric film sandwiched between electrodes for nonvolatile memory operations are rendered more stable by subjecting the capacitors to an anneal following deposition of the top electrode. The anneal is done so as to form the interface between the ferroelectric film and the top electrode. Heating in an air oven, laser annealing, or electron bombardment may be used to form the interface. Heating in an air oven is done at a temperature at least equal to the crystallization temperature of the ferroelectric film. Where the ferroelectric film comprises lead zirconate titanate, annealing is done at about 550 to 600 C for about 10 to 15 minutes. The formation treatment reduces the magnitude of charge associated with the nonswitching pulse in the thin film ferroelectric capacitors. Reduction of this charge leads to significantly more stable nonvolatile memory operations in both digital and analog memory devices. The formation treatment also reduces the ratio of change of the charge associated with the nonswitching pulse as a function of retention time. These improved memory devices exhibit greater performance in retention and reduced fatigue in memory arrays.
NASA Technical Reports Server (NTRS)
Thakoor, Sarita (Inventor)
1994-01-01
Thin film ferroelectric capacitors (10) comprising a ferroelectric film (18) sandwiched between electrodes (16 and 20) for nonvolatile memory operations are rendered more stable by subjecting the capacitors to an anneal following deposition of the top electrode (20). The anneal is done so as to form the interface (22) between the ferroelectric film and the top electrode. Heating in an air oven, laser annealing, or electron bombardment may be used to form the interface. Heating in an air oven is done at a temperature at least equal to the crystallization temperature of the ferroelectric film. Where the ferroelectric film comprises lead zirconate titanate, annealing is done at about 550.degree. to 600.degree. C. for about 10 to 15 minutes. The formation treatment reduces the magnitude of charge associated with the non-switching pulse in the thin film ferroelectric capacitors. Reduction of this charge leads to significantly more stable nonvolatile memory operations in both digital and analog memory devices. The formation treatment also reduces the ratio of change of the charge associated with the non-switching pulse as a function of retention time. These improved memory devices exhibit greater performance in retention and reduced fatigue in memory arrays.
Understanding Light Harvesting in Radial Junction Amorphous Silicon Thin Film Solar Cells
Yu, Linwei; Misra, Soumyadeep; Wang, Junzhuan; Qian, Shengyi; Foldyna, Martin; Xu, Jun; Shi, Yi; Johnson, Erik; Cabarrocas, Pere Roca i
2014-01-01
The radial junction (RJ) architecture has proven beneficial for the design of a new generation of high performance thin film photovoltaics. We herein carry out a comprehensive modeling of the light in-coupling, propagation and absorption profile within RJ thin film cells based on an accurate set of material properties extracted from spectroscopic ellipsometry measurements. This has enabled us to understand and evaluate the impact of varying several key parameters on the light harvesting in radially formed thin film solar cells. We found that the resonance mode absorption and antenna-like light in-coupling behavior in the RJ cell cavity can lead to a unique absorption distribution in the absorber that is very different from the situation expected in a planar thin film cell, and that has to be taken into account in the design of high performance RJ thin film solar cells. When compared to the experimental EQE response of real RJ solar cells, this modeling also provides an insightful and powerful tool to resolve the wavelength-dependent contributions arising from individual RJ units and/or from strong light trapping due to the presence of the RJ cell array. PMID:24619197
Bledt, Carlos M; Melzer, Jeffrey E; Harrington, James A
2014-02-01
This analysis explores the theory and design of dielectric multilayer reflection-enhancing thin film stacks based on high and low refractive index alternating layers of cadmium sulfide (CdS) and lead sulfide (PbS) on silver (Ag)-coated hollow glass waveguides (HGWs) for low loss transmission at midinfrared wavelengths. The fundamentals for determining propagation losses in such multilayer thin-film-coated Ag hollow waveguides is thoroughly discussed, and forms the basis for further theoretical analysis presented in this study. The effects on propagation loss resulting from several key parameters of these multilayer thin film stacks is further explored in order to bridge the gap between results predicted through calculation under ideal conditions and deviations from such ideal models that often arise in practice. In particular, the effects on loss due to the number of dielectric thin film layers deposited, deviation from ideal individual layer thicknesses, and surface roughness related scattering losses are presented and thoroughly investigated. Through such extensive theoretical analysis the level of understanding of the underlying loss mechanisms of multilayer thin-film Ag-coated HGWs is greatly advanced, considerably increasing the potential practical development of next-generation ultralow-loss mid-IR Ag/multilayer dielectric-coated HGWs.
NASA Astrophysics Data System (ADS)
Rasoulnezhad, Hossein; Hosseinzadeh, Ghader; Ghasemian, Naser; Hosseinzadeh, Reza; Homayoun Keihan, Amir
2018-05-01
Nanostructured TiO2 and Fe-doped TiO2 thin films with high transparency were deposited on glass substrate through ultrasonic-assisted spray pyrolysis technique and were used in the visible light photocatalytic degradation of MB dye. The resulting thin films were characterized by scanning electron microscopy (SEM), Raman spectroscopy, photoluminescence spectroscopy, x-ray diffraction (XRD), and UV-visible absorption spectroscopy techniques. Based on Raman spectroscopy results, both of the TiO2 and Fe-doped TiO2 films have anatase crystal structure, however, because of the insertion of Fe in the structure of TiO2 some point defects and oxygen vacancies are formed in the Fe-doped TiO2 thin film. Presence of Fe in the structure of TiO2 decreases the band gap energy of TiO2 and also reduces the electron–hole recombination rate. Decreasing of the electron–hole recombination rate and band gap energy result in the enhancement of the visible light photocatalytic activity of the Fe-doped TiO2 thin film.
Structural control of In2Se3 polycrystalline thin films by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Okamoto, T.; Nakada, Y.; Aoki, T.; Takaba, Y.; Yamada, A.; Konagai, M.
2006-09-01
Structural control of In2Se3 polycrystalline thin films was attempted by molecular beam epitaxy (MBE) technique. In2Se3 polycrystalline films were obtained on glass substrates at substrate temperatures above 400 °C. VI/III ratio greatly affected crystal structure of In2Se3 polycrystalline films. Mixtures of -In2Se3 and γ-In2Se3 were obtained at VI/III ratios greater than 20, and layered InSe polycrystalline films were formed at VI/III ratios below 1. γ-In2Se3 polycrystalline thin films without α-phase were successfully deposited with VI/III ratios in a range of 2 to 4. Photocurrent spectra of the γ-In2Se3 polycrystalline films showed an abrupt increase at approximately 1.9 eV, which almost corresponds with the reported bandgap of γ-In2Se3. Dark conductivity and photoconductivity measured under solar simulator light (AM 1.5, 100 mW/cm2) were approximately 10-9 and 10-5 S/cm in the γ-In2Se3 polycrystalline thin films, respectively.
Ceramic surfaces, interfaces and solid-state reactions
NASA Astrophysics Data System (ADS)
Heffelfinger, Jason Roy
Faceting, the decomposition of a surface into two or more surfaces of different orientation, is studied as a function of annealing time for ceramic surfaces. Single-crystals of Alsb2Osb3\\ (alpha-Alsb2Osb3 or corundum structure) are carefully prepared and characterized by atomic force microscopy, scanning electron microscopy and transmission electron microscopy. The mechanisms by which the originally smooth vicinal surface transforms into either a hill-and-valley or a terrace-and-step structure have been characterized. The progression of faceting is found to have a series of stages: surface smoothing, nucleation and growth of individual facets, formation of facet domains, coalescence of individual and facet domains and facet coarsening. These stages provide a model for the mechanisms of how other ceramic surfaces may facet into hill-and-valley and terrace-and-step surface microstructures. The well characterized Alsb2Osb3 surfaces provide excellent substrates by which to study the effect of surface structure on thin-film growth. Pulsed-laser deposition was used to grow thin films of yttria stabilized zirconia (YSZ) and Ysb2Osb3 onto annealed Alsb2Osb3 substrates. The substrate surface structure, such as surface steps and terraces, was found to have several effects on thin-film growth. Thin-films grown onto single-crystal substrates serve as a model geometry for studying thin-film solid-state reactions. Here, the reaction sequence and orientation relationship between thin films of Ysb2Osb3 and an Alsb2Osb3 substrate were characterized for different reaction temperatures. In a system were multiple reaction phases can form, the yttria aluminum monoclinic phase (YAM) was found to form prior to formation of other phases in this system. In a second system, a titanium alloy was reacted with single crystal Alsb2Osb3 in order to study phase formation in an intermetallic system. Both Tisb3Al and TiAl were found to form as reaction products and their orientation relationships with the Alsb2Osb3 are discussed.
NASA Astrophysics Data System (ADS)
Thakurdesai, Madhavi; Kanjilal, D.; Bhattacharyya, Varsha
2012-08-01
Irradiation by swift heavy ions (SHI) is unique tool to synthesize nanocrystalline thin films. We have reported transformation of 100 nm thick amorphous films into nanocrystalline film due to irradiation by 100 MeV Ag ion beam. Oblate shaped nanoparticles having anatase phase of TiO2 were formed on the surface of the irradiated films. In the present investigation, these films are annealed at 350 °C for 2 min in oxygen atmosphere by Rapid Thermal Annealing (RTA) method. During RTA processing, the temperature rises abruptly and this thermal instability is expected to alter surface morphology, structural and optical properties of nanocrystalline TiO2 thin films. Thus in the present work, effect of RTA on SHI induced nanocrystalline thin films of TiO2 is studied. The effect of RTA processing on the shape and size of TiO2 nanoparticles is studied by Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Glancing Angle X-ray Diffraction (GAXRD) studies are carried to investigate structural changes induced by RTA processing. Optical characterization is carried out by UV-vis spectroscopy and photoluminescence (PL) spectroscopy. The changes observed in structural and optical properties of nanocrystalline TiO2 thin films after RTA processing are attributed to the annihilation of SHI induced defects.
An introduction to fast dissolving oral thin film drug delivery systems: a review.
Kathpalia, Harsha; Gupte, Aasavari
2013-12-01
Many pharmaceutical companies are switching their products from tablets to fast dissolving oral thin films (OTFs). Films have all the advantages of tablets (precise dosage, easy administration) and those of liquid dosage forms (easy swallowing, rapid bioavailability). Statistics have shown that four out of five patients prefer orally disintegrating dosage forms over conventional solid oral dosages forms. Pediatric, geriatric, bedridden, emetic patients and those with Central Nervous System disorders, have difficulty in swallowing or chewing solid dosage forms. Many of these patients are non-compliant in administering solid dosage forms due to fear of choking. OTFs when placed on the tip or the floor of the tongue are instantly wet by saliva. As a result, OTFs rapidly hydrate and then disintegrate and/or dissolve to release the medication for local and/or systemic absorption. This technology provides a good platform for patent non- infringing product development and for increasing the patent life-cycle of the existing products. The application of fast dissolving oral thin films is not only limited to buccal fast dissolving system, but also expands to other applications like gastroretentive, sublingual delivery systems. This review highlights the composition including the details of various types of polymers both natural and synthetic, the different types of manufacturing techniques, packaging materials and evaluation tests for the OTFs.
NASA Astrophysics Data System (ADS)
Moser, Matthew Lee
Since their discovery two decades ago, single walled carbon nanotubes (SWNT) have created an expansion of scientific interest that continues to grow to this day. This is due to a good balance between presence of bandgap, chemical reactivity and electrical conductivity. By interconnection of the individual nanotubes or modulation of the SWNT's electronic states, electronic devices made with thin films can become candidates for next generation electronics in areas such as memory devices, spintronics, energy storage devices and optoelectronics. My thesis focuses on the modulation of the electronic structure, optical properties and transport characteristics of single walled carbon nanotube films and their application in electronic and optoelectronic devices. Individual SWNTs have exceptional electronic properties but are difficult to manipulate for use in electronic devices. Alternatively, devices utilize SWNTs in thin films. SWNT thin films, however, may lose some of the properties due to Schottky barriers and electron hoping between metal-nanotube junctions and individual nanotubes within the film, respectively. Until recently, there has been no known route to preserve both conjugation and electrical properties. Prior attempts using covalent chemical functionalization led to re-hybridization of sp2 carbon centers to sp3, which introduces defects into the material and results in a decrease of electron mobility. As was discovered in Haddon Research group, depositing Group VI transition metals via atomic vapor deposition into SWNT films results in formation of bis-hexahapto covalent bonds. This (eta6-SWNT) Metal (eta6-SWNT) type of bonding was found to interconnect the delocalized systems without inducing structural re-hybridization and results in a decrease of the thin films electrical resistance. Recently, with the assistance of electron beam deposition, we deposited atomic metal vapor of various lanthanide metals on the SWNT thin films with the idea that they would also form covalent interconnects between nanotube sidewalls. In the case of highly electropositive lanthanides, the possibility of hexahapto bonding combined with ionic character can be evaluated and theorized. We have reported the first use of lanthanides to enhance the conductivities of SWNT thin films and showed that these metals can not only form bis-hexahapto interconnects at the SWNT junctions but can also inject electrons into the conduction bands of the SWNTs, forming a new type of mixed covalent-ionic bonding in the SWNT network. By monitoring electrical resistance and taking spectroscopic measurements of the Near-Infrared region we are able to show the correlation between enhanced conductivity and suppression of the S 11 interband transition of semiconducting SWNTs. Potential applications of SWNT thin films as electrochromic windows require reversible modulation of the electronic structure. In order to fabricate SWNTs devices which allow for this behavior it is necessary to modulate the electronic structure by physical means such as the application of an electrical potential. We found that ionic solutions can assist with maintaining complete suppression of two Van Hove singularities in the Density of States of semiconducting SWNTs which results in optically transparent windows in the Near-Infrared region, similar to the effect seen with the incorporation of atomic lanthanide metals in thin films. We demonstrate this behavior to provide a route to nanotube based optoelectronic devices in which we use electric fields to reversibly dope the SWNT films and thereby achieve controllable modulation of optical properties of SWNT thin film.
NASA Astrophysics Data System (ADS)
Shimizu, Yuhei; Tonooka, Kazuhiko; Yoshida, Yoshiyuki; Furuse, Mitsuho; Takashima, Hiroshi
2018-06-01
With the eventual aim of forming joints between superconducting wires of YBa2Cu3O7-δ (YBCO), thin films of Nb were grown at room-temperature on SrTiO3 (STO) (0 0 1), a single-crystal substrate that shows good lattice matching with YBCO. The crystallinity, surface morphology, and superconducting properties of the Nb thin films were investigated and compared with those of similar films grown on a silica glass substrate. The Nb thin films grew with an (hh0) orientation on both substrates. The crystallinity of the Nb thin films on the STO substrate was higher than that on the silica glass substrate. X-ray diffraction measurements and observation of the surface morphology by atomic-force microscopy indicated that Nb grew in the plane along the [1 0 0] and [0 1 0] directions of the STO substrate. This growth mode relaxes strain between Nb and STO, and is believed to lead to the high crystallinity observed. As a result, the Nb thin films on the STO substrates showed lower electric resistivity and a higher superconducting transition temperature than did those on the silica glass substrates. The results of this study should be useful in relation to the production of superconducting joints.
NASA Astrophysics Data System (ADS)
Fujii, Mami N.; Ishikawa, Yasuaki; Ishihara, Ryoichi; van der Cingel, Johan; Mofrad, Mohammad R. T.; Bermundo, Juan Paolo Soria; Kawashima, Emi; Tomai, Shigekazu; Yano, Koki; Uraoka, Yukiharu
2016-06-01
In a previous work, we reported the high field effect mobility of ZnO-doped In2O3 (IZO) thin film transistors (TFTs) irradiated by excimer laser annealing (ELA) [M. Fujii et al., Appl. Phys. Lett. 102, 122107 (2013)]. However, a deeper understanding of the effect of ELA on the IZO film characteristics based on crystallinity, carrier concentrations, and optical properties is needed to control localized carrier concentrations for fabricating self-aligned structures in the same oxide film and to adequately explain the physical characteristics. In the case of as-deposited IZO film used as the channel, a high carrier concentration due to a high density of oxygen vacancies was observed; such a film does not show the required TFT characteristics but can act as a conductive film. We achieved a decrease in the carrier concentration of IZO films by crystallization using ELA. This means that ELA can form localized conductive or semi-conductive areas on the IZO film. We confirmed that the reason for the carrier concentration decrease was the decrease of oxygen-deficient regions and film crystallization. The annealed IZO films showed nano-crystalline phase, and the temperature at the substrate was substantially less than the temperature limit for flexible films such as plastic, which is 50°C. This paves the way for the formation of self-aligned structures and separately formed conductive and semi-conductive regions in the same oxide film.
NASA Astrophysics Data System (ADS)
Chandrakala, C.; Sravanthi, P.; Raj Bharath, S.; Arockiasamy, S.; George Johnson, M.; Nagaraja, K. S.; Jeyaraj, B.
2017-02-01
A novel binuclear zinc schiff's base complex bis[(pentylnitrilomethylidine)(pentylnitrilomethylidine-μ-phenalato)]dizinc(II) (hereafter referred as ZSP) was prepared and used as a precursor for the deposition of ZnO thin film by MOCVD. The dynamic TG run of ZSP showed sufficient volatility and good thermal stability. The temperature dependence of vapour pressure measured by transpiration technique yielded a value of 55.8 ± 2.3 kJ mol-1 for the enthalpy of sublimation (ΔH°sub) in the temperature range of 423-503 K. The crystal structure of ZSP was solved by single crystal XRD which exhibits triclinic crystal system with the space group of Pī. The molecular mass of ZSP was determined by mass spectrometry which yielded the m/z value of 891 and 445 Da corresponding to its dimeric as well as monomeric form. The complex ZSP was further characterized by FT-IR and NMR. The demonstration of ZnO thin film deposition was carried out by using plasma assisted MOCVD. The thin film XRD confirmed the highly oriented (002) ZnO thin films on Si(100) substrate. The uniformity and composition of the thin film were analyzed by SEM/EDX. The band gap of ZnO thin film measurement indicated the blue shift with the value of 3.79 eV.
NASA Astrophysics Data System (ADS)
Amma, Shin-ichi; Tokumoto, Yuki; Edagawa, Keiichi; Shibata, Naoya; Mizoguchi, Teruyasu; Yamamoto, Takahisa; Ikuhara, Yuichi
2010-05-01
Conductive nanowires were fabricated in GaN thin film by selectively doping of Al along threading dislocations. Electrical current flow localized at the nanowires was directly measured by a contact mode atomic force microscope. The current flow at the nanowires was considered to be Frenkel-Poole emission mode, suggesting the existence of the deep acceptor level along the nanowires as a possible cause of the current flow. The results obtained in this study show the possibility for fabricating nanowires using pipe-diffusion at dislocations in solid thin films.
Electrical compensation by Ga vacancies in Ga2O3 thin films
NASA Astrophysics Data System (ADS)
Korhonen, E.; Tuomisto, F.; Gogova, D.; Wagner, G.; Baldini, M.; Galazka, Z.; Schewski, R.; Albrecht, M.
2015-06-01
The authors have applied positron annihilation spectroscopy to study the vacancy defects in undoped and Si-doped Ga2O3 thin films. The results show that Ga vacancies are formed efficiently during metal-organic vapor phase epitaxy growth of Ga2O3 thin films. Their concentrations are high enough to fully account for the electrical compensation of Si doping. This is in clear contrast to another n-type transparent semiconducting oxide In2O3, where recent results show that n-type conductivity is not limited by cation vacancies but by other intrinsic defects such as Oi.
NASA Astrophysics Data System (ADS)
Gordienko, Vyacheslav M.; Dzhidzhoev, M. S.; Kolchin, V. V.; Magnitskiy, Sergey A.; Platonenko, Viktor T.; Savel'ev, Andrei B.; Tarasevitch, A. P.
1995-02-01
The characteristics of a femtosecond laser plasma, formed by irradiation of a thin freely suspended carbon film, are investigated numerically. It is shown that the use of thin films can increase considerably the electron temperature of a femtosecond laser plasma and make it possible to generate x-rays of shorter wavelengths. This method can also be used to increase the efficiency of conversion of the energy of laser pulses into the radiation emitted by hydrogen-like carbon ions without a significant increase in the duration of x-ray pulses.
Optical characterization of sputtered YBaCo 4O 7+ δ thin films
NASA Astrophysics Data System (ADS)
Montoya, J. F.; Izquierdo, J. L.; Causado, J. D.; Bastidas, A.; Nisperuza, D.; Gómez, A.; Arnache, O.; Osorio, J.; Marín, J.; Paucar, C.; Morán, O.
2011-02-01
Thin films of YBaCo 4O 7+ δ were deposited on r (1012)-oriented Al 2O 3 substrates by dc magnetron sputtering. The as-grown films were characterized after their structural, morphological and optical properties. Special attention is devoted to the analysis of the optical response of these films as reports on optical properties of YBaCo 4O 7+ δ, especially in thin film form, are not frequently reported in the literature. Transmittance/absorbance measurements allow for determining two well defined energy gaps at 3.7 and 2.2 eV. In turn, infrared (IR) measurements show infrared transparency in the wave length range 4000-2500 nm with a sharp absorption edge at wave lengths less than 2500 nm. Complementary Raman spectra measurements on the thin films allowed for identifying bands associated with vibrating modes of CoO 4 and YO 6 in tetrahedral and octahedral oxygen coordination, respectively. Additional bands which seemed to stem from Co ions in octahedral oxygen coordination were also clearly identified.
Influence of Clay Platelet Spacing on Oxygen Permeability of Thin Film Assemblies
NASA Astrophysics Data System (ADS)
Priolo, Morgan; Gamboa, Daniel; Grunlan, Jaime
2010-03-01
Thin films of anionic natural montmorrilonite clay and various polyelectrolytes have been produced by alternately dipping a plastic substrate into dilute aqueous mixtures containing each ingredient in an effort to show the influence of clay platelet spacing on thin film permeability. After polymer-clay layers have been sequentially deposited, the resulting transparent films exhibit a brick wall nanostructure comprised of completely exfoliated clay bricks in polymeric mortar. This brick wall forms an extremely tortuous path for a molecule to traverse, creating channels perpendicular to the concentration gradient that increase the molecule's diffusion length and delay its transmission. To a first approximation, greater clay spacing (i.e., reduced clay concentration) produces greater oxygen barrier. Oxygen transmission rates below 0.005 cm^3/m^2.day have been achieved for films with only eight clay layers (total thickness of only 200 nm). With optical transparencies greater than 86% and the ability to be microwaved, these thin film composites are good candidates for flexible electronics packaging and foil replacement for food.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Chih-Hao; Yue, Kan; Wang, Jing
Controlling self-assembled nanostructures in thin films allows the bottom-up fabrication of ordered nanoscale patterns. Here we report the unique thickness-dependent phase behavior in thin films of a bolaform-like giant surfactant, which consists of butyl- and hydroxyl-functionalized polyhedral oligomeric silsesquioxane (BPOSS and DPOSS) cages telechelically located at the chain ends of a polystyrene (PS) chain with 28 repeating monomers on average. In the bulk, BPOSS-PS28-DPOSS forms a double gyroid (DG) phase. Both grazing incidence small angle X-ray scattering and transmission electron microscopy techniques are combined to elucidate the thin film structures. Interestingly, films with thicknesses thinner than 200 nm exhibit anmore » irreversible phase transition from hexagonal perforated layer (HPL) to compressed hexagonally packed cylinders (c-HEX) at 130 °C, while films with thickness larger than 200 nm show an irreversible transition from HPL to DG at 200 °C. The thickness-controlled transition pathway suggests possibilities to obtain diverse patterns via thin film self-assembly.« less
Synthesis of nanodimensional TiO2 thin films.
Thakurdesai, Madhavi; Mohanty, T; John, J; Rao, T K Gundu; Raychaudhuri, Pratap; Bhattacharyya, V; Kanjilal, D
2008-08-01
Nanodimensional TiO2 has wide application in the field of photocatalysis, photovoltaic and photochromic devices. In present investigation TiO2 thin films deposited by pulsed laser deposition method are irradiated by 100 MeV Ag ion beam to achieve growth of nanophases. The nanostructure evolution is characterized by atomic force microscopy (AFM). The phases of TiO2 formed after irradiation are identified by glancing angle X-ray diffraction and Raman spectroscopy. The particle radius estimated by AFM varies from 10-13 nm. Anatase phase of TiO2 is formed after irradiation. The blue shift observed in UV-VIS absorption spectra indicates the nanostructure formation. The shape and size of nanoparticles formed due to high electronic excitation depend upon thickness of the film.
Electro-Caloric Properties of BT/PZT Multilayer Thin Films Prepared by Sol-Gel Method.
Kwon, Min-Su; Lee, Sung-Gap; Kim, Kyeong-Min
2018-09-01
In this study, Barium Titanate (BT)/Lead Zirconate Titanate (PZT) multilayer thin films were fabricated by the spin-coating method on Pt (200 nm)/Ti (10 nm) SiO2 (100 nm)/P-Si (100) substrates using BaTiO3 and Pb(Zr0.90Ti0.10)O3 metal alkoxide solutions. The coating and heating procedure was repeated several times to form the multilayer thin films. All of BT/PZT multilayer thin films show X-ray diffraction patterns typical to a polycrystalline perovskite structure and a uniform and void free grain microstructure. The thickness of the BT and PZT film by one-cycle of drying/sintering was approximately 50 nm and all of the films consisted of fine grains with a flat surface morphology. The electrocaloric properties of BT/PZT thin films were investigated by indirect estimation. The results showed that the temperature change ΔT can be calculated as a function of temperature using Maxwell's relation; the temperature change reaches a maximum value of ~1.85 °C at 135 °C under an applied electric field of 260 kV/cm.
.beta.-silicon carbide protective coating and method for fabricating same
Carey, Paul G.; Thompson, Jesse B.
1994-01-01
A polycrystalline beta-silicon carbide film or coating and method for forming same on components, such as the top of solar cells, to act as an extremely hard protective surface, and as an anti-reflective coating. This is achieved by DC magnetron co-sputtering of amorphous silicon and carbon to form a SiC thin film onto a surface, such as a solar cell. The thin film is then irradiated by a pulsed energy source, such as an excimer laser, to synthesize the poly- or .mu.c-SiC film on the surface and produce .beta.--SiC. While the method of this invention has primary application in solar cell manufacturing, it has application wherever there is a requirement for an extremely hard surface.
Microstructure and dielectric properties of pyrochlore Bi2Ti2O7 thin films
NASA Astrophysics Data System (ADS)
Cagnon, Joël; Boesch, Damien S.; Finstrom, Nicholas H.; Nergiz, Saide Z.; Keane, Sean P.; Stemmer, Susanne
2007-08-01
Bi2Ti2O7 thin films were grown by radio-frequency magnetron sputtering on bare and Pt-coated sapphire substrates at low substrate temperatures (˜200 °C). Postdeposition anneals were carried out at different temperatures to crystallize the films. Nearly phase-pure Bi2Ti2O7 thin films with the cubic pyrochlore structure were obtained at annealing temperatures up to 800 °C. Impurity phases, in particular Bi4Ti3O12, formed at higher temperatures. At 1 MHz, the dielectric constants were about 140-150 with a very small tunability and the dielectric loss was about 4×10-3. The dielectric loss increased with frequency. The dielectric properties of Bi2Ti2O7 films are compared to those of pyrochlore bismuth zinc niobate films.
NASA Astrophysics Data System (ADS)
Xu, Yunyun; Zhang, Tao; Lin, Zhenrong; Tian, Yanfeng; Zhou, Shandan
Sb2O3- and CeO2-doped ZnO thin films were prepared by RF magnetron sputtering technique. The influence of Sb2O3 and CeO2 on the structure and ultraviolet (UV) absorption properties was studied by X-ray diffraction and UV-Vis spectrophotometry. Results show that multiple doping of films had a prominent effect on the development of crystal grains and the UV absorption property. Ce and Sb exist in many forms in the ZnO film. The multiple-doped films also show enhanced UVA absorption, and the UV absorption peak widens and the absorption intensity increases. Sb plays a dominant role on the structure and UV absorption of ZnO thin films, which are enhanced by Ce.
Thin film photovoltaic device with multilayer substrate
Catalano, Anthony W.; Bhushan, Manjul
1984-01-01
A thin film photovoltaic device which utilizes at least one compound semiconductor layer chosen from Groups IIB and VA of the Periodic Table is formed on a multilayer substrate The substrate includes a lowermost support layer on which all of the other layers of the device are formed. Additionally, an uppermost carbide or silicon layer is adjacent to the semiconductor layer. Below the carbide or silicon layer is a metal layer of high conductivity and expansion coefficient equal to or slightly greater than that of the semiconductor layer.
Processing And Patterning Of Thin Film Superconductors Formed By Metallo-Organic Deposition
NASA Astrophysics Data System (ADS)
Micheli, Adolph L.; Mantese, Joseph V.; Hamdi, Aboud H.
1990-04-01
Thin film superconductors of Y-Ba-Cu and Yb-Ba-Cu were formed by the pyrolysis of neodecanoate solutions of Y, Yb, Ba and Cu which had been deposited onto <100> SrTiO3 substrates [1]. Rapid thermal annealing, in oxygen, of the as-deposited films produced high T films having superconducting onset temperatures above 90 K and zero resistance at 8g K. Scanning Electron Microscopy (SEM) revealed enhancements in grain growth, compared to furnace annealed films, by a factor of 4. X-ray diffraction analysis showed preferred epitaxial grain growth with the c-axis of the films oriented both perpendicular and parallel to the substrate surface. Separate Rutherford Backscattering Spectrometry (RBS) channeling experiments confirmed the formation of preferred epitaxial grain growth. Film composition was determined by RBS and Inductively Coupled Plasma Emission Spectrometry (ICPES). Selective patterning was accomplished by focused beam exposure of the metal neodecanoate films [2-4]. The exposure rendered the neodecanoate film locally insoluble in xylene, thus permitting selective area patterning prior to pyrolysis. Electron, ion and laser beams were used to pattern films on <100> SrTiO3. The finest lines, approximately 5 #m in width and 26 nm thick, were patterned using electron beams whose lines had superconducting onsets above 90 K and zero resistance at 69 K after rapid thermal annealing. Both ion beam and laser patterning had similar superconducting onsets and zero resistance. Neodecanoates of Y, Yb, Ba, and Cu were formed, as previously described [5], by reacting the metal acetates of these materials with either ammonium neodecanoate or tetramethyl ammonium neodecanoate. The carboxylates formed from these reactions were then dissolved in a solution of xylene and pyridine. The individual chemical constituents were combined to produce solutions, Ln:Ba:Cu, in the ratio 1:2:4. Here, Ln is a rare-earth element. Details of the preparation of the metal carboxylates may be found elsewhere [6]. Thin films of Y-Ba-Cu and Yb-Ba-Cu were deposited onto <100> SrTiO by flooding the substrates with the appropriate neodecanoate solutions, then spin drying them at 2000 rpm for 30 s. The substrates were heated rapidly to 500?°C for 5 min in an air oven to pyrolize the metallo organics to their oxides. This process produces thin films about 200 nm thick. The spin coating process was repeated 3-6 times if thicker films were desired. X-ray diffraction analysis of films pyrolized at 500?°C shoed the presence of only microcrystallites. Room temperature resistivities of lx10 0-cm were measured for these films. No superconducting behavior was observed. After the 500?°C pyrolysis the films were further processed by RTA in flowing oxygen. The substrates were placed upon oxidized silicon wafers, rapidly heated to 850?°C for 60 s using infrared radiation produced by a bank of quartz lamps then allowed to cool to room temperature. A second rapid annealing was then performed at 920?°C for 30 s in oxygen. Thin film superconductors formed in the manner described above were very uniform in structure and thickness across the surface of the film. The grains are approximately 1 #m wide and 2 #m long, a factor of 4 larger than the grains found in furnace annealed films formed by MOD [5].
Thin film buried anode battery
Lee, Se-Hee [Lakewood, CO; Tracy, C Edwin [Golden, CO; Liu, Ping [Denver, CO
2009-12-15
A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).
Takei, Atsushi; Jin, Lihua; Fujita, Hiroyuki; Takei, A; Fujita, H; Jin, Lihua
2016-09-14
Wrinkles on thin film/elastomer bilayer systems provide functional surfaces. The aspect ratio of these wrinkles is critical to their functionality. Much effort has been dedicated to creating high-aspect-ratio structures on the surface of bilayer systems. A highly prestretched elastomer attached to a thin film has recently been shown to form a high-aspect-ratio structure, called a ridge structure, due to a large strain induced in the elastomer. However, the prestretch requirements of the elastomer during thin film attachment are not compatible with conventional thin film deposition methods, such as spin coating, dip coating, and chemical vapor deposition (CVD). Thus, the fabrication method is complex, and ridge structure formation is limited to planar surfaces. This paper presents a new and simple method for constructing ridge structures on a nonplanar surface using a plastic thin film/elastomer bilayer system. A plastic thin film is attached to a stress-free elastomer, and the resulting bilayer system is highly stretched one- or two-dimensionally. Upon the release of the stretch load, the deformation of the elastomer is reversible, while the plastically deformed thin film stays elongated. The combination of the length mismatch and the large strain induced in the elastomer generates ridge structures. The morphology of the plastic thin film/elastomer bilayer system is experimentally studied by varying the physical parameters, and the functionality and the applicability to a nonplanar surface are demonstrated. Finally, we simulate the effect of plasticity on morphology. This study presents a new technique for generating microscale high-aspect-ratio structures and its potential for functional surfaces.
Zn1-xAlxO:Cu2O transparent metal oxide composite thin films by sol gel method
NASA Astrophysics Data System (ADS)
AlHammad, M. S.
2017-05-01
We have synthesized undoped zinc oxide (ZnO) and Cu2O doped Zn1-XAlXO (AZO; Al/Zn = 1.5 at.%) metal oxide films by sol-gel spin coating method. Atomic force microscopy results indicate that the Zn1-xAlxO:Cu2O is are formed form the fibers. The surface morphology of the films is found to depend on the concentration of Cu2O. The optical constants such as band gap, Urbach energy, refractive index, extinction coefficient and dielectric constants of the films were determined. The transmittance spectra shows that all the films are highly transparent. The study revealed that undoped ZnO film has direct bang gap of 3.29 eV and the optical band gap of films is increased with doping content. The hot probe measurements indicate that Zn1-xAlxO:Cu2O transparent metal oxide composite thin films exhibited p-type electrical conductivity.
Y1Ba2Cu3O(6+delta) growth on thin Y-enhanced SiO2 buffer layers on silicon
NASA Technical Reports Server (NTRS)
Robin, T.; Mesarwi, A.; Wu, N. J.; Fan, W. C.; Espoir, L.; Ignatiev, A.; Sega, R.
1991-01-01
SiO2 buffer layers as thin as 2 nm have been developed for use in the growth of Y1Ba2Cu3O(6+delta) thin films on silicon substrates. The SiO2 layers are formed through Y enhancement of silicon oxidation, and are highly stoichiometric. Y1Ba2Cu3O(6+delta) film growth on silicon with thin buffer layers has shown c orientation and Tc0 = 78 K.
Ahn, Sejin; Son, Tae Hwa; Cho, Ara; Gwak, Jihye; Yun, Jae Ho; Shin, Keeshik; Ahn, Seoung Kyu; Park, Sang Hyun; Yoon, Kyunghoon
2012-09-01
A simple direct solution coating process for forming CuInSe₂ (CIS) thin films was described, employing a low-cost and environmentally friendly precursor solution. The precursor solution was prepared by mixing metal acetates, ethanol, and ethanolamine. The facile formation of a precursor solution without the need to prefabricate nanoparticles enables a rapid and easy processing, and the high stability of the solution in air further ensures the precursor preparation and the film deposition in ambient conditions without a glove box. The thin film solar cell fabricated with the absorber film prepared by this route showed an initial conversion efficiency of as high as 7.72 %. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Patterns, Instabilities, Colors, and Flows in Vertical Foam Films
NASA Astrophysics Data System (ADS)
Yilixiati, Subinuer; Wojcik, Ewelina; Zhang, Yiran; Pearsall, Collin; Sharma, Vivek
2015-03-01
Foams find use in many applications in daily life, industry and biology. Examples include beverages, firefighting foam, cosmetics, foams for oil recovery and foams formed by pollutants. Foams are collection of bubbles separated by thin liquid films that are stabilized against drainage by the presence of surfactant molecules. Drainage kinetics and stability of the foam are strongly influenced by surfactant type, addition of particles, proteins and polymers. In this study, we utilize the thin film interference colors as markers for identifying patterns, instabilities and flows within vertical foam films. We experimentally study the emergence of thickness fluctuations near the borders and within thinning films, and study how buoyancy, capillarity and gravity driven instabilities and flows, are affected by variation in bulk and interfacial physicochemical properties dependent on the choice of constituents.
Ultrasonic Welding of Thin Alumina and Aluminum Using Inserts
NASA Astrophysics Data System (ADS)
Ishikuro, Tomoaki; Matsuoka, Shin-Ichi
This paper describes an experimental study of ultrasonic welding of thin ceramics and metals using inserts. Ultrasonic welding has enable the joining of various thick ceramics, such as Al2O3 and ZrO2, to aluminum at room temperature quickly and easily as compared to other welding methods. However, for thin ceramics, which are brittle, welding is difficult to perform without causing damage. In this study, aluminum anodized oxide with different anodizing time was used as thin alumina ceramic. Vapor deposition of aluminum alloys was used to create an effective binder layer for welding at a low pressure and within a short duration in order to prevent damage to the anodic oxide film formed with a short anodizing time. For example, ultrasonic welding of thin Al2O3/Al was accomplished under the following conditions: ultrasonic horn tip amplitude of 30µm, welding pressure of 5MPa, and required duration of 0.1s. However, since the vapor deposition film tends to exfoliate as observed in the anodic oxide film formed with a long anodizing time, welding was difficult.
Self-assembly of a thin highly reduced graphene oxide film and its high electrocatalytic activity
NASA Astrophysics Data System (ADS)
Bai, Yan-Feng; Zhang, Yong-Fang; Zhou, An-Wei; Li, Hai-Wai; Zhang, Yu; Luong, John H. T.; Cui, Hui-Fang
2014-10-01
A thin highly reduced graphene oxide (rGO) film was self-assembled at the dimethyl formamide (DMF)-air interface through evaporation-induced water-assisted thin film formation at the pentane-DMF interface, followed by complete evaporation of pentane. The thin film was transferred onto various solid substrates for film characterization and electrochemical sensing. UV-visible spectrometry, scanning electron microscopy (SEM), atomic force microscopy (AFM) and electrochemistry techniques were used to characterize the film. An rGO film showing 82.8% of the transmittance at 550 nm corresponds to a few layers of rGO nanosheets. The rGO nanosheets cross-stack with each other, lying approximately in the plane of the film. An rGO film collected on a glassy carbon (GC) electrode exhibited improved electrical conductivity compared to GC, with the electrode charge-transfer resistance (Rct) reduced from 31 Ω to 22 Ω. The as-formed rGO/GC electrode was mechanically very stable, exhibiting significantly enhanced electrocatalytic activity to H2O2 and dopamine. Multiple layers of the rGO films on the GC electrode showed even stronger electrocatalytic activity to dopamine than that of the single rGO film layer. The controllable formation of a stable rGO film on various solid substrates has potential applications for nanoelectronics and sensors/biosensors.
Method of fabricating a scalable nanoporous membrane filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tringe, Joseph W; Balhorn, Rodney L; Zaidi, Saleem
A method of fabricating a nanoporous membrane filter having a uniform array of nanopores etch-formed in a thin film structure (e.g. (100)-oriented single crystal silicon) having a predetermined thickness, by (a) using interferometric lithography to create an etch pattern comprising a plurality array of unit patterns having a predetermined width/diameter, (b) using the etch pattern to etch frustum-shaped cavities or pits in the thin film structure such that the dimension of the frustum floors of the cavities are substantially equal to a desired pore size based on the predetermined thickness of the thin film structure and the predetermined width/diameter ofmore » the unit patterns, and (c) removing the frustum floors at a boundary plane of the thin film structure to expose, open, and thereby create the nanopores substantially having the desired pore size.« less
Spontaneous nano-gap formation in Ag film using NaCl sacrificial layer for Raman enhancement
NASA Astrophysics Data System (ADS)
Min, Kyungchan; Jeon, Wook Jin; Kim, Youngho; Choi, Jae-Young; Yu, Hak Ki
2018-03-01
We report the method of fabrication of nano-gaps (known as hot spots) in Ag thin film using a sodium chloride (NaCl) sacrificial layer for Raman enhancement. The Ag thin film (20-50 nm) on the NaCl sacrificial layer undergoes an interfacial reaction due to the AgCl formed at the interface during water molecule intercalation. The intercalated water molecules can dissolve the NaCl molecules at interfaces and form the ionic state of Na+ and Cl-, promoting the AgCl formation. The Ag atoms can migrate by the driving force of this interfacial reaction, resulting in the formation of nano-size gaps in the film. The surface-enhanced Raman scattering activity of Ag films with nano-size gaps has been investigated using Raman reporter molecules, Rhodamine 6G (R6G).
Method for microwave plasma assisted supersonic gas jet deposition of thin films
Schmitt, III, Jerome J.; Halpern, Bret L.
1994-01-01
A thin film is formed on a substrate positioned in a vacuum chamber by use of a gas jet apparatus affixed to a vacuum chamber port and having an outer nozzle with an interior cavity into which carrier gas is fed, an inner nozzle located within the outer nozzle interior cavity into which reactant gas is introduced, a tip of the inner nozzle being recessed from the vacuum chamber port within the outer nozzle interior cavity, and a microwave discharge device configured about the apparatus for generating a discharge in the carrier gas and reactant gas only in a portion of the outer nozzle interior cavity extending from approximately the inner nozzle tip towards the vacuum chamber. A supersonic free jet of carrier gas transports vapor species generated in the microwave discharge to the surface of the substrate to form a thin film on the substrate. The substrate can be translated from the supersonic jet to a second supersonic jet in less time than needed to complete film formation so that the film is chemically composed of chemical reaction products of vapor species in the jets.
Compositional and structural analysis of nitrogen incorporated and ion implanted diamond thin films
NASA Astrophysics Data System (ADS)
Garratt, Elias James
Significant progress in area of nano-structured thin film systems has taken place in recent decades. In particular, diamond thin film systems are being widely studied for their wear resistant, optical and electronic properties. Of the various methods researchers use to modify the structure of such films, three techniques in particular are of interest due to their versatility: modification of the growth atmosphere, growth on metalized substrates, providing an interfacial layer, and modification through post-growth ion implantation. The aim of this study is to investigate the effects each has to the structure and composition of elements. Different techniques are applied in each section; nitrogen gas dilution in a microwave plasma CVD system, diamond deposition on a metal interfacial layer and ion implantation in thin nanocrystalline diamond film. The forms of nanocrystalline diamond film resulting from such modifications are investigated using advanced spectroscopic and spectrometric techniques, as well as mechanical testing and surface mapping. The impact of these characterizations will provide valuable perspective to researchers in materials science. Understanding the changes to the structure and properties of this class of thin films, which can be induced through various mechanisms, will allow future researchers to refine these films towards technological applications in areas of hard coatings, electronics and photonics.
Mesoscale simulations of confined Nafion thin films.
Vanya, P; Sharman, J; Elliott, J A
2017-12-07
The morphology and transport properties of thin films of the ionomer Nafion, with thicknesses on the order of the bulk cluster size, have been investigated as a model system to explain the anomalous behaviour of catalyst/electrode-polymer interfaces in membrane electrode assemblies. We have employed dissipative particle dynamics (DPD) to investigate the interaction of water and fluorocarbon chains, with carbon and quartz as confining materials, for a wide range of operational water contents and film thicknesses. We found confinement-induced clustering of water perpendicular to the thin film. Hydrophobic carbon forms a water depletion zone near the film interface, whereas hydrophilic quartz results in a zone with excess water. There are, on average, oscillating water-rich and fluorocarbon-rich regions, in agreement with experimental results from neutron reflectometry. Water diffusivity shows increasing directional anisotropy of up to 30% with decreasing film thickness, depending on the hydrophilicity of the confining material. A percolation analysis revealed significant differences in water clustering and connectivity with the confining material. These findings indicate the fundamentally different nature of ionomer thin films, compared to membranes, and suggest explanations for increased ionic resistances observed in the catalyst layer.
Morphology and crystallinity of ZnS nanocolumns prepared by glancing angle deposition.
Lu, Lifang; Zhang, Fujun; Xu, Zheng; Zhao, Suling; Wang, Yongsheng
2010-03-01
ZnS films with different morphologies and nanometer structures were fabricated via high vacuum electron beam deposition by changing the oblique angle alpha between the incoming particle flux and the substrate normal. The morphology and crystallinity of ZnS nanocrystalline films prepared on the substrates at alpha = 0 degrees and 80 degrees were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction. These experimental results show that the ZnS nanocolumn structure was formed at the situation of alpha = 80 degrees. The incidence angle also strongly influenced the crystallinity of thin films. The most intensive diffraction peaks changed from (220) to (111) when the incidence angle was set to 0 degrees and 80 degrees. The dynamic growth process of ZnS films at alpha = 0 degrees and 80 degrees has been analyzed by shadow effect and atomic surface diffusion. The transmittance spectra of the ZnS thin films prepared at different oblique angles were measured, and the transmissivity of ZnS nanocolumn thin films was enhanced compared with ZnS thin films prepared by normal deposition in the visible light range.
NASA Astrophysics Data System (ADS)
Kal, S.; Kasko, I.; Ryssel, H.
1995-10-01
The influence of ion-beam mixing on ultra-thin cobalt silicide (CoSi2) formation was investigated by characterizing the ion-beam mixed and unmixed CoSi2 films. A Ge+ ion-implantation through the Co film prior to silicidation causes an interface mixing of the cobalt film with the silicon substrate and results in improved silicide-to-silicon interface roughness. Rapid thermal annealing was used to form Ge+ ion mixed and unmixed thin CoSi2 layer from 10 nm sputter deposited Co film. The silicide films were characterized by secondary neutral mass spectroscopy, x-ray diffraction, tunneling electron microscopy (TEM), Rutherford backscattering, and sheet resistance measurements. The experi-mental results indicate that the final rapid thermal annealing temperature should not exceed 800°C for thin (<50 nm) CoSi2 preparation. A comparison of the plan-view and cross-section TEM micrographs of the ion-beam mixed and unmixed CoSi2 films reveals that Ge+ ion mixing (45 keV, 1 × 1015 cm-2) produces homogeneous silicide with smooth silicide-to-silicon interface.
Mesoscale simulations of confined Nafion thin films
NASA Astrophysics Data System (ADS)
Vanya, P.; Sharman, J.; Elliott, J. A.
2017-12-01
The morphology and transport properties of thin films of the ionomer Nafion, with thicknesses on the order of the bulk cluster size, have been investigated as a model system to explain the anomalous behaviour of catalyst/electrode-polymer interfaces in membrane electrode assemblies. We have employed dissipative particle dynamics (DPD) to investigate the interaction of water and fluorocarbon chains, with carbon and quartz as confining materials, for a wide range of operational water contents and film thicknesses. We found confinement-induced clustering of water perpendicular to the thin film. Hydrophobic carbon forms a water depletion zone near the film interface, whereas hydrophilic quartz results in a zone with excess water. There are, on average, oscillating water-rich and fluorocarbon-rich regions, in agreement with experimental results from neutron reflectometry. Water diffusivity shows increasing directional anisotropy of up to 30% with decreasing film thickness, depending on the hydrophilicity of the confining material. A percolation analysis revealed significant differences in water clustering and connectivity with the confining material. These findings indicate the fundamentally different nature of ionomer thin films, compared to membranes, and suggest explanations for increased ionic resistances observed in the catalyst layer.
NASA Astrophysics Data System (ADS)
Sato, Kazuhisa; Abe, Seishi
2016-10-01
The microstructure of polycrystalline PbTe1-xSex-ZnSe composite thin films has been studied by scanning transmission electron microscopy and electron diffraction. The films were prepared by the one-step synthesis method using simultaneous evaporation of PbTe and ZnSe. The nanocrystals of PbTe1-xSex are formed in a ZnSe matrix. Tellurium concentration can be tuned by controlling the PbTe evaporation source temperatures between 753 K and 793 K. Binary PbSe nanocrystals were formed at 753 K, while ternary PbTe1-xSex nanocrystals were formed at 793 K. The nanocrystals grow in a granular shape at the initial stage of film growth, and the morphology changes to nanowire-shape as the film grows, irrespective of the Te concentration. The ternary PbTe1-xSex nanocrystals were composed of two phases with different Te concentration; Te-rich (Se-poor) granular crystals were formed near the bottom half parts of the film and Te-poor (Se-rich) nanowires were formed at the upper half parts of the film. Columnar ZnSe crystals contain high-density {111} stacking faults due to the low stacking fault energy of ZnSe. A balance of deposition and re-evaporation on the substrate during the film growth will be responsible for the resultant nanocrystal morphology.
Liu, Xianzhe; Xu, Hua; Ning, Honglong; Lu, Kuankuan; Zhang, Hongke; Zhang, Xiaochen; Yao, Rihui; Fang, Zhiqiang; Lu, Xubing; Peng, Junbiao
2018-03-07
Amorphous Silicon-Tin-Oxide thin film transistors (a-STO TFTs) with Mo source/drain electrodes were fabricated. The introduction of a ~8 nm MoO x interlayer between Mo electrodes and a-STO improved the electron injection in a-STO TFT. Mo adjacent to the a-STO semiconductor mainly gets oxygen atoms from the oxygen-rich surface of a-STO film to form MoO x interlayer. The self-formed MoO x interlayer acting as an efficient interface modification layer could conduce to the stepwise internal transport barrier formation while blocking Mo atoms diffuse into a-STO layer, which would contribute to the formation of ohmic contact between Mo and a-STO film. It can effectively improve device performance, reduce cost and save energy for the realization of large-area display with high resolution in future.
Wu, Yi-Hsiu; Lo, Ting-Ya; She, Ming-Shiuan; Ho, Rong-Ming
2015-08-05
In this study, we aim to examine the morphological evolution of block copolymer (BCP) nanostructured thin films through solvent evaporation at different rates for solvent swollen polystyrene-block-poly(l-lactide) (PS-PLLA). Interesting phase transitions from disorder to perpendicular cylinder and then gyroid can be found while using a partially selective solvent for PS to swell PS-PLLA thin film followed by solvent evaporation. During the transitions, gyroid-forming BCP thin film with characteristic crystallographic planes of (111)G, (110)G, and (211)G parallel to air surface can be observed, and will gradually transform into coexisting (110)G and (211)G planes, and finally transforms to (211)G plane due to the preferential segregation of constituted block to the surface (i.e., the thermodynamic origin for self-assembly) that affects the relative amount of each component at the air surface. With the decrease on the evaporation rate, the disorder phase will transform to parallel cylinder and then directly to (211)G without transition to perpendicular cylinder phase. Most importantly, the morphological evolution of PS-PLLA thin films is strongly dependent upon the solvent removal rate only in the initial stage of the evaporation process due to the anisotropy of cylinder structure. Once the morphology is transformed back to the isotropic gyroid structure after long evaporation, the morphological evolution will only relate to the variation of the surface composition. Similar phase transitions at the substrate can also be obtained by controlling the ratio of PLLA-OH to PS-OH homopolymers to functionalize the substrate. As a result, the fabrication of well-defined nanostructured thin films with controlled orientation can be achieved by simple swelling and deswelling with controlled evaporation rate.
NASA Astrophysics Data System (ADS)
Khalyapin, D. L.; Kim, J.; Stolyar, S. V.; Turpanov, I. A.; Kim, P. D.; Kim, I.
2003-11-01
The crystal structure of the thin films of metastable Co 13Cu 87 alloy prepared by magnetron sputtering was investigated by transmission electron microscope. As-deposited films have a nanocrystal structure with an fcc lattice. As a result of the prolonged ion polishing with a beam of Ar ions with the energy of 4.7 keV, the four-layer 4H dhcp structure was formed.
Wireless SAW Sensors Having Integrated Antennas
NASA Technical Reports Server (NTRS)
Malocha, Donald C. (Inventor); Gallagher, Mark (Inventor)
2015-01-01
A wireless surface acoustic wave sensor includes a piezoelectric substrate, a surface acoustic wave device formed on the substrate, and an antenna formed on the substrate. In some embodiments, the antenna is formed on the surface of the substrate using one or more of photolithography, thin film processing, thick film processing, plating, and printing.
NASA Astrophysics Data System (ADS)
Anitha Sukkurji, Parvathy; Molinari, Alan; Benes, Alexander; Loho, Christoph; Sai Kiran Chakravadhanula, Venkata; Garlapati, Suresh Kumar; Kruk, Robert; Clemens, Oliver
2017-03-01
Barium ferrite and its hydrated form (BaFeO2.5-x+δ (OH)2x , BFO) is an interesting cathode material for protonic ceramic fuel cells (PCFC) due to its potential to be both, conducting for electrons and protons. We report on the fabrication of almost epitaxially grown thin films (22 nm) of barium ferrite BaFeO~2.5 (BFO) on Nb-doped SrTiO3 substrates via pulsed laser deposition (PLD), followed by treatment under inert, and subsequently wet inert atmospheres to induce water (respectively proton) incorporation. Microstructure, chemical composition and conducting properties are investigated for the BFO films and their hydrated forms, highlighting the influence of hydration on the conductivity characteristics between ~200-290 K. We find that water incorporation gives a strong enhancement of the conductivity to ~10-9 S cm-1 compared to argon annealed films, inducing electronic and protonic charge carriers at the same time. In comparison to bulk powders, proton conductivity is found to be strongly suppressed in such thin hydrated BFO films, pointing towards the influence of strain on the conductivity, which is evaluated based on a detailed investigation by high-resolution transmission electron microscopy.
... come in several different forms: cream, gel, foam, film, and suppositories. Most spermicides contain nonoxynol-9, a ... applicator. Other types of spermicides include vaginal contraceptive film (VCF), a thin sheet placed in the back ...
NASA Astrophysics Data System (ADS)
Huang, Limin; Chen, Zhuoying; Wilson, James D.; Banerjee, Sarbajit; Robinson, Richard D.; Herman, Irving P.; Laibowitz, Robert; O'Brien, Stephen
2006-08-01
Advanced applications for high k dielectric and ferroelectric materials in the electronics industry continues to demand an understanding of the underlying physics in decreasing dimensions into the nanoscale. We report the synthesis, processing, and electrical characterization of thin (<100nm thick) nanostructured thin films of barium titanate (BaTiO3) built from uniform nanoparticles (<20nm in diameter). We introduce a form of processing as a step toward the ability to prepare textured films based on assembly of nanoparticles. Essential to this approach is an understanding of the nanoparticle as a building block, combined with an ability to integrate them into thin films that have uniform and characteristic electrical properties. Our method offers a versatile means of preparing BaTiO3 nanocrystals, which can be used as a basis for micropatterned or continuous BaTiO3 nanocrystal thin films. We observe the BaTiO3 nanocrystals crystallize with evidence of tetragonality. We investigated the preparation of well-isolated BaTiO3 nanocrystals smaller than 10nm with control over aggregation and crystal densities on various substrates such as Si, Si /SiO2, Si3N4/Si, and Pt-coated Si substrates. BaTiO3 nanocrystal thin films were then prepared, resulting in films with a uniform nanocrystalline grain texture. Electric field dependent polarization measurements show spontaneous polarization and hysteresis, indicating ferroelectric behavior for the BaTiO3 nanocrystalline films with grain sizes in the range of 10-30nm. Dielectric measurements of the films show dielectic constants in the range of 85-90 over the 1KHz -100KHz, with low loss. We present nanocrystals as initial building blocks for the preparation of thin films which exhibit highly uniform nanostructured texture and grain sizes.
NASA Astrophysics Data System (ADS)
Cai, Xiuyu
2007-12-01
Organic semiconductors are attracting more and more interest as a promising set of materials in the field of electronics research. This thesis focused on several new organic semiconductors and a novel high-kappa dielectric thin film (SrTiO3), which are two essential parts in Organic Thin Film Transistors (OTFTs). Structure and morphology of thin films of tricyanovinyl capped oligothiophenes were studied using atomic force microscopy and x-ray diffraction. Thin film transistors of one compound exhibited a reasonable electron mobility of 0.02 cm2/Vs. Temperature dependent measurements on the thin film transistor based on this compound revealed shallow trap states that were interpreted in terms of a multiple trap and release model. Moreover, inversion of the majority charge carrier type from electrons to holes was observed when the number of oligothiophene rings increased to six and ambipolar transport behavior was observed for tricyanovinyl sexithiophene. Another interesting organic semiconductor compound is the fluoalkylquarterthiophene, which showed ambipolar transport and large hysteresis in the transfer curve. Due to the bistable state at floating gate, the thin film transistor was exploited to study non-volatile floating gate memory effects. The temperature dependence of the retention time for this memory device revealed that the electron trapping was an activated process. Following the earlier work on hybrid acene-thiophene organic semiconductors, new compounds with similar structure were studied to reveal the mechanism of the air-stability exhibited by some compounds. They all formed highly crystalline thin films and showed reasonable device performances which are well correlated with the molecular structures, thin film microstructures, and solid state packing. The most air-stable compound had no observable degradation with exposure to air for 15 months. SrTiO3 was developed to be employed in OTFTs. Optimization of thin film growth was performed using reactive sputtering growth. Excellent SrTiO3 epitaixal thin film growth was revealed on conductive SrTiO 3:Nb substrates. A maximum charge carrier density of 1014 cm-2 was obtained based on pentacene and perylene diimide thin film transistors. Some new physical phenomena, such as step-like transfer characteristic curve and negative transconductance, were observed at such high field effect induced charge carrier density.
Ghrairi, Najla; Bouaicha, Mongi
2012-07-01
In this work, we report the structural, morphological, and optical properties of TiO2 thin films synthesized by the electro phoretic deposition technique. The TiO2 film was formed on a doped fluorine tin oxide (SnO2:F, i.e., FTO) layer and used as a photo electrode in a dye solar cell (DSC). Using spectroscopic ellipsometry measurements in the 200 to 800 nm wavelengths domain, we obtain a thickness of the TiO2 film in the range of 70 to 80 nm. Characterizations by X-ray diffraction and atomic force microscopy (AFM) show a polycrystalline film. In addition, AFM investigation shows no cracks in the formed layer. Using an ultraviolet-visible near-infrared spectrophotometer, we found that the transmittance of the TiO2 film in the visible domain reaches 75%. From the measured current-voltage or I-V characteristic under AM1.5 illumination of the formed DSC, we obtain an open circuit voltage Voc = 628 mV and a short circuit current Isc = 22.6 μA, where the surface of the formed cell is 3.14 cm2.
2012-01-01
In this work, we report the structural, morphological, and optical properties of TiO2 thin films synthesized by the electro phoretic deposition technique. The TiO2 film was formed on a doped fluorine tin oxide (SnO2:F, i.e., FTO) layer and used as a photo electrode in a dye solar cell (DSC). Using spectroscopic ellipsometry measurements in the 200 to 800 nm wavelengths domain, we obtain a thickness of the TiO2 film in the range of 70 to 80 nm. Characterizations by X-ray diffraction and atomic force microscopy (AFM) show a polycrystalline film. In addition, AFM investigation shows no cracks in the formed layer. Using an ultraviolet–visible near-infrared spectrophotometer, we found that the transmittance of the TiO2 film in the visible domain reaches 75%. From the measured current–voltage or I-V characteristic under AM1.5 illumination of the formed DSC, we obtain an open circuit voltage Voc = 628 mV and a short circuit current Isc = 22.6 μA, where the surface of the formed cell is 3.14 cm2. PMID:22747886
Self-assembled ordered structures in thin films of HAT5 discotic liquid crystal.
Morales, Piero; Lagerwall, Jan; Vacca, Paolo; Laschat, Sabine; Scalia, Giusy
2010-05-20
Thin films of the discotic liquid crystal hexapentyloxytriphenylene (HAT5), prepared from solution via casting or spin-coating, were investigated by atomic force microscopy and polarizing optical microscopy, revealing large-scale ordered structures substantially different from those typically observed in standard samples of the same material. Thin and very long fibrils of planar-aligned liquid crystal were found, possibly formed as a result of an intermediate lyotropic nematic state arising during the solvent evaporation process. Moreover, in sufficiently thin films the crystallization seems to be suppressed, extending the uniform order of the liquid crystal phase down to room temperature. This should be compared to the bulk situation, where the same material crystallizes into a polymorphic structure at 68 °C.
Method for production of ceramic oxide and carbide bodies by polymer inclusion and decomposition
Quinby, Thomas C.
1985-01-01
A method for the preparation of thin, free-standing metal oxide films which are useful as nuclear accelerator target materials. Cations of any metal except those of Group IA and precious metals, such as, U, Zr, Nd, Ce, Th, pr or Cr, are absorbed on a thin film of polymeric material, such as, carboxymethylcellulose, viscose rayon or cellophane. The cation impregnated polymeric material is dried. Then the impregnated film is heated in an inert atmosphere to form a carbonized membrane. The carbonized membrane is oxidized to yield a thin, self-supporting, metal oxide membrane. Or, the membrane can be heated in an inert atmosphere to yield a thin, self-supporting, metal carbide-containing membrane.
Method for production of ceramic oxide and carbide bodies by polymer inclusion and decomposition
Quinby, T.C.
1984-08-30
A method for the preparation of thin, free-standing metal oxide films which are useful as nuclear accelerator target materials is described. Cations of any metal except those of Group IA and precious metals, such as, U, Zr, Nd, Ce, Th, Pr or Cr, are absorbed on a thin film of polymeric material, such as carboxymethylcellulose, viscose rayon or cellophane. The cation impregnated polymeric material is dried. Then the impregnated film is heated in an inert atmosphere to form a carbonized membrane. The carbonized membrane is oxidized to yield a thin, self-supporting, metal oxide membrane. Or, the membrane can be heated in an inert atmosphere to yield a thin, self-supporting, metal carbide-containing membrane.
Jeong, Heondo; Na, Jeong-Geol; Jang, Min Su; Ko, Chang Hyun
2016-05-01
In hydrogen production by methanol steam reforming reaction with microchannel reactor, Al2O3 thin film formed by atomic layer deposition (ALD) was introduced on the surface of microchannel reactor prior to the coating of catalyst particles. Methanol conversion rate and hydrogen production rate, increased in the presence of Al2O3 thin film. Over-view and cross-sectional scanning electron microscopy study showed that the adhesion between catalyst particles and the surface of microchannel reactor enhanced due to the presence of Al2O3 thin film. The improvement of hydrogen production rate inside the channels of microreactor mainly came from the stable fixation of catalyst particles on the surface of microchannels.
Self-Organized Formation of Short TiO2 Nanotube Arrays By Complete Anodization of Ti Thin Films
NASA Astrophysics Data System (ADS)
Okada, Masahisa; Tajima, Kazuki; Yamada, Yasusei; Yoshimura, Kazuki
We investigate the self-organized growth of short TiO2 nanotubes by complete anodization of Ti thin films deposited on Si substrates in ethylene glycol electrolytes with small addition of NH4F. During the anodization process, real-time inspection of the current transient is performed to anodize the Ti films completely. X-ray photoelectron spectroscopy and scanning electron microscopy are employed to characterize the resulting samples. We find that the length of the formed TiO2 nanotubes is governed by the thickness of Ti thin films independently of the tube diameter. Short TiO2 nanotubes are also found to be stable up to 550 °C in air atmosphere even after crystallization to rutile.
Optoelectronic properties of novel amorphous CuAlO2/ZnO NWs based heterojunction
NASA Astrophysics Data System (ADS)
Bu, Ian Y. Y.
2013-08-01
Amorphous p-type CuAlO2 thin films were grown onto n-type crystalline ZnO NWs forming a heterojunction through the combination of sol-gel process and hydrothermal growth method. The effects of temperature on structure and optoelectronic properties of CuAlO2 thin films were investigated through various measurement techniques. It was found that the derived CuAlO2 is Al-rich with thin film. UV-Vis measurements showed that the deposited CuAlO2 films are semi-transparent with maximum transmittance ∼82% at 500 nm. Electrical characterization and integration into pn junction confirms that the amorphous CuAlO2 is p-type and exhibited photovoltaic behavior.
NASA Astrophysics Data System (ADS)
Samokhvalov, A. V.; Mel'nikov, A. S.; Buzdin, A. I.
2012-05-01
We study the intervortex interaction in thin films of layered superconductors for the magnetic field tilted with respect to the c axis. In such a case, the crossing lattice of Abrikosov vortices (AVs) and Josephson vortices appears. The interaction between pancake vortices, forming the AVs, with Josephson ones, produces the zigzag deformation of the AV line. This deformation induces a long-range attraction between Abrikosov vortices and, in thin films, it competes with another long-range interaction, i.e., with Pearl's repulsion. This interplay results in the formation of clusters of Abrikosov vortices, which can be considered as vortex molecules. The number of vortices in such clusters depends on field tilting angle and film thickness.
The low temperature oxidation of lithium thin films on HOPG by O 2 and H 2O
Wulfsberg, Steven M.; Koel, Bruce E.; Bernasek, Steven L.
2016-04-16
Lithiated graphite and lithium thin films have been used in fusion devices. In this environment, lithiated graphite will undergo oxidation by background gases. In order to gain insight into this oxidation process, thin (< 15 monolayer (ML)) lithium films on highly ordered pyrolytic graphite (HOPG) were exposed in this paper to O 2(g) and H 2O (g) in an ultra-high vacuum chamber. High resolution electron energy loss spectroscopy (HREELS) was used to identify the surface species formed during O 2(g) and H 2O (g) exposure. Auger electron spectroscopy (AES) was used to obtain the relative oxidation rates during O 2(g)more » and H 2O (g) exposure. AES showed that as the lithium film thickness decreased from 15 to 5 to 1 ML, the oxidation rate decreased for both O 2(g) and H 2O (g). HREELS showed that a 15 ML lithium film was fully oxidized after 9.7 L (L) of O 2(g) exposure and Li 2O was formed. HREELS also showed that during initial exposure (< 0.5 L) H 2O (g), lithium hydride and lithium hydroxide were formed on the surface of a 15 ML lithium film. Finally, after 0.5 L of H 2O (g) exposure, the H 2O (g) began to physisorb, and after 15 L of H 2O (g) exposure, the 15 ML lithium film was not fully oxidized.« less
The low temperature oxidation of lithium thin films on HOPG by O 2 and H 2O
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wulfsberg, Steven M.; Koel, Bruce E.; Bernasek, Steven L.
Lithiated graphite and lithium thin films have been used in fusion devices. In this environment, lithiated graphite will undergo oxidation by background gases. In order to gain insight into this oxidation process, thin (< 15 monolayer (ML)) lithium films on highly ordered pyrolytic graphite (HOPG) were exposed in this paper to O 2(g) and H 2O (g) in an ultra-high vacuum chamber. High resolution electron energy loss spectroscopy (HREELS) was used to identify the surface species formed during O 2(g) and H 2O (g) exposure. Auger electron spectroscopy (AES) was used to obtain the relative oxidation rates during O 2(g)more » and H 2O (g) exposure. AES showed that as the lithium film thickness decreased from 15 to 5 to 1 ML, the oxidation rate decreased for both O 2(g) and H 2O (g). HREELS showed that a 15 ML lithium film was fully oxidized after 9.7 L (L) of O 2(g) exposure and Li 2O was formed. HREELS also showed that during initial exposure (< 0.5 L) H 2O (g), lithium hydride and lithium hydroxide were formed on the surface of a 15 ML lithium film. Finally, after 0.5 L of H 2O (g) exposure, the H 2O (g) began to physisorb, and after 15 L of H 2O (g) exposure, the 15 ML lithium film was not fully oxidized.« less
Park, Jae Hyo; Kim, Hyung Yoon; Jang, Gil Su; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Kiaee, Zohreh; Joo, Seung Ki
2016-01-01
The development of ferroelectric random-access memory (FeRAM) technology with control of grain boundaries would result in a breakthrough for new nonvolatile memory devices. The excellent piezoelectric and electrical properties of bulk ferroelectrics are degraded when the ferroelectric is processed into thin films because the grain boundaries then form randomly. Controlling the nature of nucleation and growth are the keys to achieving a good crystalline thin-film. However, the sought after high-quality ferroelectric thin-film has so far been thought to be impossible to make, and research has been restricted to atomic-layer deposition which is extremely expensive and has poor reproducibility. Here we demonstrate a novel epitaxial-like growth technique to achieve extremely uniform and large rectangular-shaped grains in thin-film ferroelectrics by dividing the nucleation and growth phases. With this technique, it is possible to achieve 100-μm large uniform grains, even made available on Si, which is large enough to fabricate a field-effect transistor in each grain. The electrical and reliability test results, including endurance and retention test results, were superior to other FeRAMs reported so far and thus the results presented here constitute the first step toward the development of FeRAM using epitaxial-like ferroelectric thin-films. PMID:27005886
NASA Astrophysics Data System (ADS)
Kurobori, T.; Miyamoto, Y.; Maruyama, Y.; Yamamoto, T.; Sasaki, T.
2014-05-01
We report novel disk-type X-ray two-dimensional (2-D) imaging detectors utilising Ag-doped phosphate glass and lithium fluoride (LiF) thin films based on the radiophotoluminescence (RPL) and photoluminescence (PL) phenomena, respectively. The accumulated X-ray doses written in the form of atomic-scale Ag-related luminescent centres in Ag-doped glass and F-aggregated centres in LiF thin films were rapidly reconstructed as a dose distribution using a homemade readout system. The 2-D images reconstructed from the RPL and PL detectors are compared with that from the optically stimulated luminescence (OSL) detector. In addition, the optical and dosimetric characteristics of LiF thin films are investigated and evaluated. The possibilities of dose distributions with a high spatial resolution on the order of microns over large areas, a wide dynamic range covering 11 orders of magnitude and a non-destructive readout are successfully demonstrated by combining the Ag-doped glass with LiF thin films.
NASA Astrophysics Data System (ADS)
Purniawan, A.; Khrisna, Y. S. A.; Rasyida, A.; Atmono, T. M.
2018-04-01
Foreign body related infection (FBRIs) is caused by forming biofilm of bacterial colony of medical equipment surfaces. In many cases, the FBRIs is still happened on the surface after medical sterilization process has been performed. In order to avoid the case, surface modification by antimicrobial coating was used. In this work, we present silver (Ag) thin film on 316 L stainless steel substrate surface was deposited using Radio Frequency Sputtering PVD (RF-PVD). The morphology of Ag thin film were characterized using SEM-EDX. Surface roughness of the thin film was measured by AFM. In addition, Kirby Bauer Test in Escherichia coli (E. coli) was conducted in order to evaluate the inhibition performance of the Ag thin film antimicrobial coating. Based on SEM and AFM results show that the particle size is increased from 523 nm to 708 nm and surface roughness from 9 to 20 nm for deposition time 10 minutes to 20 minutes, respectively. In addition, the inhibition layer of the coating is about 29 mm.
Liang, Yuan-Chang; Xu, Nian-Cih; Wang, Chein-Chung; Wei, Da-Hua
2017-07-10
TiO₂-CdO composite rods were synthesized through a hydrothermal method and sputtering thin-film deposition. The hydrothermally derived TiO₂ rods exhibited a rectangular cross-sectional crystal feature with a smooth surface, and the as-synthesized CdO thin film exhibited a rounded granular surface feature. Structural analyses revealed that the CdO thin film sputtered onto the surfaces of the TiO₂ rods formed a discontinuous shell layer comprising many island-like CdO crystallites. The TiO₂-CdO composite rods were highly crystalline, and their surfaces were rugged. A comparison of the NO₂ gas-sensing properties of the CdO thin film, TiO₂ rods, and TiO₂-CdO composite rods revealed that the composite rods exhibited superior gas-sensing responses to NO₂ gas than did the CdO thin film and TiO 2 rods, which can be attributed to the microstructural differences and the formation of heterojunctions between the TiO₂ core and CdO crystallites.
Plasma-formed hyperthermal atomic beams for use in thin film fabrication
NASA Astrophysics Data System (ADS)
Gilson, E. P.; Cohen, S. A.; Berlinger, B.; Chan, W.
2013-10-01
Enhancing the surface mobility of adsorbents during thin-film growth processes is important for creating certain high-quality thin films. Under the auspices of a DARPA program to develop methods for supplying momentum to adsorbates during thin-film formation without using bulk heating, a hyperthermal atomic beam (HAB) was generated and directed at silicon surfaces with patterned coatings of pentacene, gold, and other surrogates for adsorbents relevant to various thin-film coatings. The HAB was created when the plasma from a helicon plasma source struck a tungsten neutralizer plate and was reflected as neutrals. Time averaged HAB fluxes 100 times greater than in previous PPPL HAB sources have been generated. The effect of the HAB on the patterned coatings was measured using atomic force microscopy (AFM). Results are presented on the flux and energy of the HAB for various system pressures, magnetic fields, and neutralizer biases. AFM measurements of the surface topology demonstrate that the HAB energy, species, and integrated flux are all important factors in altering surface mobility. This research is supported by the U.S. Defense Advanced Research Projects Agency.
NASA Astrophysics Data System (ADS)
Tejasvi, Ravi; Basu, Suddhasatwa
2017-12-01
A simple method for depositing a thin film of nanomaterial on a substrate using centrifugation technique has been developed, whereby solvent evaporation is prevented and solvent reuse is possible. The centrifuge technique of deposition yields uniform, smooth thin film irrespective of substrate surface texture. The deposited TiO2/eC3N4 film studied, through field emission scanning electron microscope, atomic force microscope, and optical surface profilometer, shows variation in surface roughness on the basis of centrifugation speeds. Initially film coverage improves and surface roughness decreases with the increase in rpm of the centrifuge and the surface roughness slightly increases with further increase in rpm. The photoelectrochemical studies of TiO2/eC3N4 films suggest that the centrifuge technique forms better heterojunctions compared to that by spin coating technique leading to enhanced photoelectrochemical water splitting.
Praseodymium - A Competent Dopant for Luminescent Downshifting and Photocatalysis in ZnO Thin Films
NASA Astrophysics Data System (ADS)
Narayanan, Nripasree; Deepak, N. K.
2018-05-01
Highly transparent and conducting Zinc oxide (ZnO) thin films doped with Praseodymium (Pr) were deposited on glass substrates by using the spray pyrolysis method. The X-ray diffraction (XRD) analysis revealed the polycrystallinity of the deposited films with a hexagonal wurtzite structure, whereas the energy-dispersive X-ray spectroscopy (EDX) analysis confirmed the incorporation of Pr in the films. The optical energy gap decreased by Pr doping due to the merging of the conduction band with the impurity bands formed within the forbidden gap. The room temperature photoluminescence spectra of the Pr-doped film showed enhancement of visible emission, suggesting efficient luminescent downshifting. The photocatalytic activity of the Pr-doped films is higher than that of undoped films due to the effective suppression of the rapid recombination of the photo-generated electron-hole pairs. The impurity levels formed within the forbidden gap act as efficient luminescent centers and electron traps, which lead to luminescent downshifting and enhanced photocatalytic activity.
NASA Astrophysics Data System (ADS)
Kumar, Ankit; Wetterskog, Erik; Lewin, Erik; Tai, Cheuk-Wai; Akansel, Serkan; Husain, Sajid; Edvinsson, Tomas; Brucas, Rimantas; Chaudhary, Sujeet; Svedlindh, Peter
2018-05-01
Antiphase boundaries (APBs) normally form as a consequence of the initial growth conditions in all spinel ferrite thin films. These boundaries result from the intrinsic nucleation and growth mechanism, and are observed as regions where the periodicity of the crystalline lattice is disrupted. The presence of APBs in epitaxial films of the inverse spinel Fe3O4 alters their electronic and magnetic properties due to strong antiferromagnetic (AF) interactions across these boundaries. We explore the effect of using in-plane in situ electric-field-assisted growth on the formation of APBs in heteroepitaxial Fe3O4 (100)/MgO(100) thin films. The electric-field-assisted growth is found to reduce the AF interactions across APBs and, as a consequence, APB-free thin-film-like properties are obtained, which have been probed by electronic, magnetic, and structural characterization. The electric field plays a critical role in controlling the density of APBs during the nucleation process by providing an electrostatic force acting on adatoms and therefore changing their kinetics. This innovative technique can be employed to grow epitaxial spinel thin films with controlled AF interactions across APBs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Jyoti, E-mail: shah.jyoti1@gmail.com; Kotnala, Ravinder K., E-mail: rkkotnala@nplindia.org, E-mail: rkkotnala@gmail.com
2014-04-07
Thin film of BaTiO{sub 3} doped with 0.1 at. % Cr (Cr:BTO) has been prepared by pulsed laser deposition technique. Film was deposited on Pt/SrTiO{sub 3} substrate at 500 °C in 50 mTorr Oxygen gas pressure using KrF (298 nm) laser. Polycrystalline growth of single phase Cr:BTO thin film has been confirmed by grazing angle X-ray diffraction. Cr:BTO film exhibited remnant polarization 6.4 μC/cm{sup 2} and 0.79 MV/cm coercivity. Magnetization measurement of Cr:BTO film showed magnetic moment 12 emu/cc. Formation of weakly magnetic domains has been captured by magnetic force microscopy. Theoretical impedance equation fitted to experimental data in Cole-Cole plot for thin film inmore » presence of transverse magnetic field resolved the increase in grain capacitance from 4.58 × 10{sup −12} to 5.4 × 10{sup −11} F. Film exhibited high value 137 mV/cm-Oe magneto-electric (ME) coupling coefficient at room temperature. The high value of ME coupling obtained can reduce the typical processing steps involved in multilayer deposition to obtain multiferrocity in thin film. Barium titanate being best ferroelectric material has been tailored to be multiferroic by non ferromagnetic element, Cr, doping in thin film form opens an avenue for more stable and reliable spintronic material for low power magnetoelectric random excess memory applications.« less
Thermal Regulation of Heat Transfer Processes
2014-10-02
determine the contrasts of thermophysical properties of composites and thin films , and various approaches to regulate heat transport processes. In the...nanofluids, 2) thermal regulation of optical properties in thin film , and 3) thermal regulation of phase transition for efficient steam generation...stress generated during the crystals growth forces CNTs to contact with each other and form a conductive percolation network. Hence the composite
Preparation of Ferroelectric Thin Films of Bismuth Layer Structured Compounds
NASA Astrophysics Data System (ADS)
Watanabe, Hitoshi; Mihara, Takashi; Yoshimori, Hiroyuki; Araujo, Carlos
1995-09-01
Ferroelectric thin films of bismuth layer structured compounds, SrBi2Ta2O9, SrBi2Nb2O9, SrBi4Ti4O15 and their solid solutions, were formed onto a sputtered platinum layer on a silicon substrate using spin-on technique and metal-organic decomposition (MOD) method. X-ray diffraction (XRD) analysis and some electrical measurements were performed on the prepared thin films. XRD results of SrBi2(Ta1- x, Nb x)2O9 films (0≤x≤1) showed that niobium ions substitute for tantalum ions in an arbitrary ratio without any change of the layer structure and lattice constants. Furthermore, XRD results of SrBi2 xTa2O9 films (0≤x≤1.5) indicated that the formation of the bismuth layer structure does not always require an accurate bismuth content. The layer structure was formed above 50% of the stoichiometric bismuth content in the general formula. SrBi2(Ta1- x, Nb x)2O9 films with various Ta/Nb ratios have large enough remanent polarization for nonvolatile memory application and have shown high fatigue resistance against 1011 cycles of full switching of the remanent polarization. Mixture films of the three compounds were also investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceylan, Abdullah, E-mail: aceylanabd@yahoo.com; Ozcan, Yusuf; Orujalipoor, Ilghar
2016-06-07
In this work, we present in depth structural investigations of nanocomposite ZnO: Ge thin films by utilizing a state of the art grazing incidence small angle x-ray spectroscopy (GISAXS) technique. The samples have been deposited by sequential r.f. and d.c. sputtering of ZnO and Ge thin film layers, respectively, on single crystal Si(100) substrates. Transformation of Ge layers into Ge nanoparticles (Ge-np) has been initiated by ex-situ rapid thermal annealing of asprepared thin film samples at 600 °C for 30, 60, and 90 s under forming gas atmosphere. A special attention has been paid on the effects of reactive and nonreactivemore » growth of ZnO layers on the structural evolution of Ge-np. GISAXS analyses have been performed via cylindrical and spherical form factor calculations for different nanostructure types. Variations of the size, shape, and distributions of both ZnO and Ge nanostructures have been determined. It has been realized that GISAXS results are not only remarkably consistent with the electron microscopy observations but also provide additional information on the large scale size and shape distribution of the nanostructured components.« less
Influence of support electrolytic in the electrodeposition of CuGaSe thin films
Fernandez, A. M.; Turner, J. A.; Lara-Lara, B.; ...
2016-11-02
CuGaSe 2 is an important thin film electronic material that possesses several attributes that make it appealing for solar energy conversion. Because of its properties it can be incorporated in to various devices, among the greatest highlights are photovoltaic cells, as well as its potential use as photocathodes for hydrogen production, via the photoelectrolysis. There are several methods of its preparation, most notably electrodeposition that has the potential for large areas and high volumes. Electrodeposition of ternary and/or quaternary semiconductors generally proceeds via the formation of a binary, which is subsequently reacted to form the ternary compound. Several conditions mustmore » be controlled to form binary compounds that include the use of complexing agents, buffers, temperature, etc. Here, we discuss the effect of anion composition in the electrolytic bath and the type of lithium salts, in order to manipulate the atomic concentration of CuGaSe 2 during the electrodeposition of thin films, yielding copper-rich, gallium-rich or stoichiometric thin films. Finally, we present the results of a study on the morphology and structure obtained using two types of substrates both before and after performing a heat treatment.« less
Influence of support electrolytic in the electrodeposition of Cusbnd Gasbnd Se thin films
NASA Astrophysics Data System (ADS)
Fernandez, A. M.; Turner, J. A.; Lara-Lara, B.; Deutsch, T. G.
2017-01-01
CuGaSe2 is an important thin film electronic material that possesses several attributes that make it appealing for solar energy conversion. Due to its properties it can be incorporated in to various devices, among the greatest highlights are photovoltaic cells, as well as its potential use as photocathodes for hydrogen production, via the photoelectrolysis. There are several methods of its preparation, most notably electrodeposition that has the potential for large areas and high volumes. Electrodeposition of ternary and/or quaternary semiconductors generally proceeds via the formation of a binary, which is subsequently reacted to form the ternary compound. Several conditions must be controlled to form binary compounds that include the use of complexing agents, buffers, temperature, etc. In this paper, we discuss the effect of anion composition in the electrolytic bath and the type of lithium salts, in order to manipulate the atomic concentration of CuGaSe2 during the electrodeposition of thin films, yielding copper-rich, gallium-rich or stoichiometric thin films. We also present the results of a study on the morphology and structure obtained using two types of substrates both before and after performing a heat treatment.
Influence of support electrolytic in the electrodeposition of CuGaSe thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, A. M.; Turner, J. A.; Lara-Lara, B.
CuGaSe 2 is an important thin film electronic material that possesses several attributes that make it appealing for solar energy conversion. Because of its properties it can be incorporated in to various devices, among the greatest highlights are photovoltaic cells, as well as its potential use as photocathodes for hydrogen production, via the photoelectrolysis. There are several methods of its preparation, most notably electrodeposition that has the potential for large areas and high volumes. Electrodeposition of ternary and/or quaternary semiconductors generally proceeds via the formation of a binary, which is subsequently reacted to form the ternary compound. Several conditions mustmore » be controlled to form binary compounds that include the use of complexing agents, buffers, temperature, etc. Here, we discuss the effect of anion composition in the electrolytic bath and the type of lithium salts, in order to manipulate the atomic concentration of CuGaSe 2 during the electrodeposition of thin films, yielding copper-rich, gallium-rich or stoichiometric thin films. Finally, we present the results of a study on the morphology and structure obtained using two types of substrates both before and after performing a heat treatment.« less
Dumée, Ludovic F.; She, Fenghua; Duke, Mikel; Gray, Stephen; Hodgson, Peter; Kong, Lingxue
2014-01-01
Meso-porous metal materials have enhanced surface energies offering unique surface properties with potential applications in chemical catalysis, molecular sensing and selective separation. In this paper, commercial 20 nm diameter metal nano-particles, including silver and copper were blended with 7 nm silica nano-particles by shear mixing. The resulted powders were cold-sintered to form dense, hybrid thin films. The sacrificial silica template was then removed by selective etching in 12 wt% hydrofluoric acid solutions for 15 min to reveal a purely metallic meso-porous thin film material. The impact of the initial silica nano-particle diameter (7–20 nm) as well as the sintering pressure (5–20 ton·m−2) and etching conditions on the morphology and properties of the final nano-porous thin films were investigated by porometry, pyknometery, gas and liquid permeation and electron microscopy. Furthermore, the morphology of the pores and particle aggregation during shear mixing were assessed through cross-sectioning by focus ion beam milling. It is demonstrated that meso-pores ranging between 50 and 320 nm in average diameter and porosities up to 47% can be successfully formed for the range of materials tested. PMID:28344241
[beta]-silicon carbide protective coating and method for fabricating same
Carey, P.G.; Thompson, J.B.
1994-11-01
A polycrystalline beta-silicon carbide film or coating and method for forming same on components, such as the top of solar cells, to act as an extremely hard protective surface, and as an anti-reflective coating are disclosed. This is achieved by DC magnetron co-sputtering of amorphous silicon and carbon to form a SiC thin film onto a surface, such as a solar cell. The thin film is then irradiated by a pulsed energy source, such as an excimer laser, to synthesize the poly- or [mu]c-SiC film on the surface and produce [beta]-SiC. While the method of this invention has primary application in solar cell manufacturing, it has application wherever there is a requirement for an extremely hard surface. 3 figs.
Bioplasmonic Alloyed Nanoislands Using Dewetting of Bilayer Thin Films.
Kang, Minhee; Ahn, Myeong-Su; Lee, Youngseop; Jeong, Ki-Hun
2017-10-25
Unlike monometallic materials, bimetallic plasmonic materials offer extensive benefits such as broadband tuning capability or high environmental stability. Here we report a broad range tuning of plasmon resonance of alloyed nanoislands by using solid-state dewetting of gold and silver bilayer thin films. Thermal dewetting after successive thermal evaporation of thin metal double-layer films readily forms AuAg-alloyed nanoislands with a precise composition ratio. The complete miscibility of alloyed nanoislands results in programmable tuning of plasmon resonance wavelength in a broadband visible range. Such extraordinary tuning capability opens up a new direction for plasmonic enhancement in biophotonic applications such as surface-enhanced Raman scattering or plasmon-enhanced fluorescence.
Thin film ceramic thermocouples
NASA Technical Reports Server (NTRS)
Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)
2011-01-01
A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.
Liquid-phase deposition of thin Si films by ballistic electro-reduction
NASA Astrophysics Data System (ADS)
Ohta, T.; Gelloz, B.; Kojima, A.; Koshida, N.
2013-01-01
It is shown that the nanocryatalline silicon ballistic electron emitter operates in a SiCl4 solution without using any counter electrodes and that thin amorphous Si films are efficiently deposited on the emitting surface with no contaminations and by-products. Despite the large electrochemical window of the SiCl4 solution, electrons injected with sufficiently high energies preferentially reduce Si4+ ions at the interface. Using an emitter with patterned line emission windows, a Si-wires array can be formed in parallel. This low-temperature liquid-phase deposition technique provides an alternative clean process for power-effective fabrication of advanced thin Si film structures and devices.
Porous multi-component material for the capture and separation of species of interest
Addleman, Raymond S.; Chouyyok, Wilaiwan; Li, Xiaohong S.; Cinson, Anthony D.; Gerasimenko, Aleksandr A
2016-06-21
A method and porous multi-component material for the capture, separation or chemical reaction of a species of interest is disclosed. The porous multi-component material includes a substrate and a composite thin film. The composite thin film is formed by combining a porous polymer with a nanostructured material. The nanostructured material may include a surface chemistry for the capture of chemicals or particles. The composite thin film is coupled to the support or device surface. The method and material provides a simple, fast, and chemically and physically benign way to integrate nanostructured materials into devices while preserving their chemical activity.
Thin film resonator technology.
Lakin, Kenneth M
2005-05-01
Advances in wireless systems have placed increased demands on high performance frequency control devices for operation into the microwave range. With spectrum crowding, high bandwidth requirements, miniaturization, and low cost requirements as a background, the thin film resonator technology has evolved into the mainstream of applications. This technology has been under development for over 40 years in one form or another, but it required significant advances in integrated circuit processing to reach microwave frequencies and practical manufacturing for high-volume applications. This paper will survey the development of the thin film resonator technology and describe the core elements that give rise to resonators and filters for today's high performance wireless applications.
Micro devices using shape memory polymer patches for mated connections
Lee, Abraham P.; Fitch, Joseph P.
2000-01-01
A method and micro device for repositioning or retrieving miniature devices located in inaccessible areas, such as medical devices (e.g., stents, embolic coils, etc.) located in a blood vessel. The micro repositioning or retrieving device and method uses shape memory polymer (SMP) patches formed into mating geometries (e.g., a hoop and a hook) for re-attachment of the deposited medical device to a catheter or guidewire. For example, SMP or other material hoops are formed on the medical device to be deposited in a blood vessel, and SMP hooks are formed on the micro device attached to a guidewire, whereby the hooks on the micro device attach to the hoops on the medical device, or vice versa, enabling deposition, movement, re-deposit, or retrieval of the medical device. By changing the temperature of the SMP hooks, the hooks can be attached to or released from the hoops located on the medical device. An exemplary method for forming the hooks and hoops involves depositing a sacrificial thin film on a substrate, patterning and processing the thin film to form openings therethrough, depositing or bonding SMP materials in the openings so as to be attached to the substrate, and removing the sacrificial thin film.
Lemaire, Paul C; Zhao, Junjie; Williams, Philip S; Walls, Howard J; Shepherd, Sarah D; Losego, Mark D; Peterson, Gregory W; Parsons, Gregory N
2016-04-13
Chemically functional microporous metal-organic framework (MOF) crystals are attractive for filtration and gas storage applications, and recent results show that they can be immobilized on high surface area substrates, such as fiber mats. However, fundamental knowledge is still lacking regarding initial key reaction steps in thin film MOF nucleation and growth. We find that thin inorganic nucleation layers formed by atomic layer deposition (ALD) can promote solvothermal growth of copper benzenetricarboxylate MOF (Cu-BTC) on various substrate surfaces. The nature of the ALD material affects the MOF nucleation time, crystal size and morphology, and the resulting MOF surface area per unit mass. To understand MOF nucleation mechanisms, we investigate detailed Cu-BTC MOF nucleation behavior on metal oxide powders and Al2O3, ZnO, and TiO2 layers formed by ALD on polypropylene substrates. Studying both combined and sequential MOF reactant exposure conditions, we find that during solvothermal synthesis ALD metal oxides can react with the MOF metal precursor to form double hydroxy salts that can further convert to Cu-BTC MOF. The acidic organic linker can also etch or react with the surface to form MOF from an oxide metal source, which can also function as a nucleation agent for Cu-BTC in the mixed solvothermal solution. We discuss the implications of these results for better controlled thin film MOF nucleation and growth.
George, J P; Smet, P F; Botterman, J; Bliznuk, V; Woestenborghs, W; Van Thourhout, D; Neyts, K; Beeckman, J
2015-06-24
The electro-optical properties of lead zirconate titanate (PZT) thin films depend strongly on the quality and crystallographic orientation of the thin films. We demonstrate a novel method to grow highly textured PZT thin films on silicon using the chemical solution deposition (CSD) process. We report the use of ultrathin (5-15 nm) lanthanide (La, Pr, Nd, Sm) based intermediate layers for obtaining preferentially (100) oriented PZT thin films. X-ray diffraction measurements indicate preferentially oriented intermediate Ln2O2CO3 layers providing an excellent lattice match with the PZT thin films grown on top. The XRD and scanning electron microscopy measurements reveal that the annealed layers are dense, uniform, crack-free and highly oriented (>99.8%) without apparent defects or secondary phases. The EDX and HRTEM characterization confirm that the template layers act as an efficient diffusion barrier and form a sharp interface between the substrate and the PZT. The electrical measurements indicate a dielectric constant of ∼650, low dielectric loss of ∼0.02, coercive field of 70 kV/cm, remnant polarization of 25 μC/cm(2), and large breakdown electric field of 1000 kV/cm. Finally, the effective electro-optic coefficients of the films are estimated with a spectroscopic ellipsometer measurement, considering the electric field induced variations in the phase reflectance ratio. The electro-optic measurements reveal excellent linear effective pockels coefficients of 110 to 240 pm/V, which makes the CSD deposited PZT thin film an ideal candidate for Si-based active integrated nanophotonic devices.
Interfacial mechanisms for stability of surfactant-laden films
Chai, Chew; Àlvarez-Valenzuela, Marco A.; Tajuelo, Javier; Fuller, Gerald G.
2017-01-01
Thin liquid films are central to everyday life. They are ubiquitous in modern technology (pharmaceuticals, coatings), consumer products (foams, emulsions) and also serve vital biological functions (tear film of the eye, pulmonary surfactants in the lung). A common feature in all these examples is the presence of surface-active molecules at the air-liquid interface. Though they form only molecular-thin layers, these surfactants produce complex surface stresses on the free surface, which have important consequences for the dynamics and stability of the underlying thin liquid film. Here we conduct simple thinning experiments to explore the fundamental mechanisms that allow the surfactant molecules to slow the gravity-driven drainage of the underlying film. We present a simple model that works for both soluble and insoluble surfactant systems in the limit of negligible adsorption-desorption dynamics. We show that surfactants with finite surface rheology influence bulk flow through viscoelastic interfacial stresses, while surfactants with inviscid surfaces achieve stability through opposing surface-tension induced Marangoni flows. PMID:28520734
Air-Flow Navigated Crystal Growth for TIPS Pentacene-Based Organic Thin-Film Transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Zhengran; Chen, Jihua; Sun, Zhenzhong
2012-01-01
6,13-bis(triisopropylsilylethynyl)pentacene (TIPS pentacene) is a promising active channel material of organic thin-film transistors (OTFTs) due to its solubility, stability, and high mobility. However, the growth of TIPS pentacene crystals is intrinsically anisotropic and thus leads to significant variation in the performance of OTFTs. In this paper, air flow is utilized to effectively reduce the TIPS pentacene crystal anisotropy and enhance performance consistency in OTFTs, and the resulted films are examined with optical microscopy, grazing-incidence X-ray diffraction, and thin-film transistor measurements. Under air-flow navigation (AFN), TIPS pentacene drop-cast from toluene solution has been observed to form thin films with improved crystalmore » orientation and increased areal coverage on substrates, which subsequently lead to a four-fold increase of average hole mobility and one order of magnitude enhancement in performance consistency defined by the ratio of average mobility to the standard deviation of the field-effect mobilities.« less
NASA Astrophysics Data System (ADS)
Lee, Bo Mi; Loh, Kenneth J.
2017-04-01
Carbon nanotubes can be randomly deposited in polymer thin film matrices to form nanocomposite strain sensors. However, a computational framework that enables the direct design of these nanocomposite thin films is still lacking. The objective of this study is to derive an experimentally validated and two-dimensional numerical model of carbon nanotube-based thin film strain sensors. This study consisted of two parts. First, multi-walled carbon nanotube (MWCNT)-Pluronic strain sensors were fabricated using vacuum filtration, and their physical, electrical, and electromechanical properties were evaluated. Second, scanning electron microscope images of the films were used for identifying topological features of the percolated MWCNT network, where the information obtained was then utilized for developing the numerical model. Validation of the numerical model was achieved by ensuring that the area ratios (of MWCNTs relative to the polymer matrix) were equivalent for both the experimental and modeled cases. Strain sensing behavior of the percolation-based model was simulated and then compared to experimental test results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, SL; Zhang, YB; Pun, AB
2014-09-16
Despite the high charge-carrier mobility in covalent organic frameworks (COFs), the low intrinsic conductivity and poor solution processability still impose a great challenge for their applications in flexible electronics. We report the growth of oriented thin films of a tetrathiafulvalene-based COF (TTF-COF) and its tunable doping. The porous structure of the crystalline TTF-COF thin film allows the diffusion of dopants such as I-2 and tetracyanoquinodimethane (TCNQ) for redox reactions, while the closely packed 2D grid sheets facilitate the cross-layer delocalization of thus-formed TTF radical cations to generate more conductive mixed-valence TTF species, as is verified by UV-vis-NIR and electron paramagneticmore » resonance spectra. Conductivity as high as 0.28 S m(-1) is observed for the doped COF thin films, which is three orders of magnitude higher than that of the pristine film and is among the highest for COF materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bras, Patrice, E-mail: patrice.bras@angstrom.uu.se; Sterner, Jan; Platzer-Björkman, Charlotte
2015-11-15
Blister formation in Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films sputtered from a quaternary compound target is investigated. While the thin film structure, composition, and substrate material are not correlated to the blister formation, a strong link between sputtering gas entrapment, in this case argon, and blistering effect is found. It is shown that argon is trapped in the film during sputtering and migrates to locally form blisters during the high temperature annealing. Blister formation in CZTS absorbers is detrimental for thin film solar cell fabrication causing partial peeling of the absorber layer and potential shunt paths in the complete device.more » Reduced sputtering gas entrapment, and blister formation, is seen for higher sputtering pressure, higher substrate temperature, and change of sputtering gas to larger atoms. This is all in accordance with previous publications on blister formation caused by sputtering gas entrapment in other materials.« less
Wilhelm, William G.
1982-01-01
The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame (14). A thin film window (42) is bonded to one planar side of the frame. An absorber (24) of laminate construction is comprised of two thin film layers (24a, 24b) that are sealed perimetrically. The layers (24a, 24b) define a fluid-tight planar envelope (24c) of large surface area to volume through which a heat transfer fluid flows. Absorber (24) is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.
The 3D modeling of high numerical aperture imaging in thin films
NASA Technical Reports Server (NTRS)
Flagello, D. G.; Milster, Tom
1992-01-01
A modelling technique is described which is used to explore three dimensional (3D) image irradiance distributions formed by high numerical aperture (NA is greater than 0.5) lenses in homogeneous, linear films. This work uses a 3D modelling approach that is based on a plane-wave decomposition in the exit pupil. Each plane wave component is weighted by factors due to polarization, aberration, and input amplitude and phase terms. This is combined with a modified thin-film matrix technique to derive the total field amplitude at each point in a film by a coherent vector sum over all plane waves. Then the total irradiance is calculated. The model is used to show how asymmetries present in the polarized image change with the influence of a thin film through varying degrees of focus.
Optical characteristics of bismuth sulfide (Bi2S3) thin films.
NASA Astrophysics Data System (ADS)
Mahmoud, S.; Eid, A. H.; Omar, H.
Thin films of bismuth sulfide (Bi2S3) were grown by two deposition techniques, by thermal evaporation and by chemical deposition. The thermally deposited reactions consisted in depositing the individual elements, namely bismuth and sulfur, sequentially from a tungsten boat source and allowing the layers to interdiffuse to form the compound during the heat-treatment. The chemical deposition was based on the reaction between the triethanolamine compex of Bi3+ ions and thiourea in basic media. Scanning electron microscope and X-ray diffraction analysis were made on as-deposited and on annealed films to determine their structure. The different electronic transitions and the optical constants are determined from the transmision and reflection data of these thin films for normal incidence. The optical gaps of Bi2S3 films show a remarkable dependence on the preparation method.
NASA Astrophysics Data System (ADS)
Jones, R. E., Jr.; Maniar, P. D.; Olowolafe, J. O.; Campbell, A. C.; Mogab, C. J.
1992-02-01
Paraelectric lead lanthanum zirconium titanate (PLZT) films, 150 nm thick, were deposited using a spin-coat, sol-gel process followed by a 650 °C oxygen anneal. X-ray diffraction indicated complete conversion to the perovskite phase. Sputter-deposited platinum electrodes were employed with the PLZT films to form thin-film capacitors with the best combination of high charge storage density (26.1 μC/cm2 at 3 V and 36.4 μC/cm2 at 5 V) and leakage current density (0.2 μA/cm2 at 3 V and 0.5 μA/cm2 at 5 V ) reported to date. The electrical characteristics of these thin-film capacitors meet the requirements for a planar bit cell capacitor for 64-Mbit dynamic random access memories.
Controllable Ag nanostructure patterning in a microfluidic channel for real-time SERS systems.
Leem, Juyoung; Kang, Hyun Wook; Ko, Seung Hwan; Sung, Hyung Jin
2014-03-07
We present a microfluidic patterning system for fabricating nanostructured Ag thin films via a polyol method. The fabricated Ag thin films can be used immediately in a real-time SERS sensing system. The Ag thin films are formed on the inner surfaces of a microfluidic channel so that a Ag-patterned Si wafer and a Ag-patterned PDMS channel are produced by the fabrication. The optimum sensing region and fabrication duration for effective SERS detection were determined. As SERS active substrates, the patterned Ag thin films exhibit an enhancement factor (EF) of 4.25 × 10(10). The Ag-patterned polymer channel was attached to a glass substrate and used as a microfluidic sensing system for the real-time monitoring of biomolecule concentrations. This microfluidic patterning system provides a low-cost process for the fabrication of materials that are useful in medical and pharmaceutical detection and can be employed in mass production.
Design and Operation of a Fast, Thin-Film Thermocouple Probe on a Turbine Engine
NASA Technical Reports Server (NTRS)
Meredith, Roger D.; Wrbanek, John D.; Fralick, Gustave C.; Greer, Lawrence C., III; Hunter, Gary W.; Chen, Liang-Yu
2014-01-01
As a demonstration of technology maturation, a thin-film temperature sensor probe was fabricated and installed on a F117 turbofan engine via a borescope access port to monitor the temperature experienced in the bleed air passage of the compressor area during an engine checkout test run. To withstand the harsh conditions experienced in this environment, the sensor probe was built from high temperature materials. The thin-film thermocouple sensing elements were deposited by physical vapor deposition using pure metal elements, thus avoiding the inconsistencies of sputter-depositing particular percentages of materials to form standardized alloys commonly found in thermocouples. The sensor probe and assembly were subjected to a strict protocol of multi-axis vibrational testing as well as elevated temperature pressure testing to be qualified for this application. The thin-film thermocouple probe demonstrated a faster response than a traditional embedded thermocouple during the engine checkout run.
Space Environmentally Stable Polyimides and Copolyimides
NASA Technical Reports Server (NTRS)
Watson, Kent A.; Connell, John W.
2000-01-01
Polyimides with a unique combination of properties including low color in thin films, atomic oxygen (AO), ultra-violet (UV) radiation resistance, solubility in organic solvents in the imide form, high glass transition (T(sub g)) temperatures and high thermal stability have been prepared and characterized. The polymers were prepared by reacting a novel aromatic diamine with aromatic dianhydrides in a polar aprotic solvent. The solubility of the polymers in the imide form as well as the color density of thin films were dependent upon the chemical structure of the dianhydride. Several thin films (25-50 mm thick) prepared by solution casting of amide acid or imide solutions exhibited very low color and high optical transparency (approximately 90%) as determined by UV/visible spectroscopy. The polymers exhibited T(sub g)s >200 C depending upon the structure of the dianhydride and temperatures of 5% weight loss approximately 500C in air as determined by dynamic thermogravimetric analysis. Thin films coated with silver/inconel were exposed to a high fluence of AO and 1000 equivalent solar hours of UV radiation. The effects of these exposures on optical properties were minor. These space environmentally durable polymers are potentially useful in a variety of applications on spacecraft such as thin film membranes on antennas, second-surface mirrors, thermal/optical coatings and multi-layer thermal insulation (MLI) blanket materials. The chemistry, physical and mechanical properties of the polymers as well as their responses to AO and UV exposure will be discussed.
NASA Astrophysics Data System (ADS)
Wang, Bin; Liu, Jinzhang; Zhao, Yi; Zheng, Dezhi; Li, Yan; Sha, Jiangbo
2018-01-01
Holey graphene oxide (HGO) is prepared and its liquid crystal (LC) formation in water is investigated. The blade-coated LC-HGO hydrogel is hydrothermally reduced to form 3D nanoporous films used as supercapacitor electrodes. Holey graphene sheets are rumpled and interconnected to form a cellular structure with pore size around 100 nm during the reduction process. Reduced HGO films with different thicknesses are integrated into solid-state symmetric supercapacitors and their electrochemical performances are studied. High specific capacitance up to 304 F g-1 and high volumetric capacitance around 400 F cm-3 are achieved from our thin and flexible devices.
Three-dimensional thin film for lithium-ion batteries and supercapacitors.
Yang, Yang; Peng, Zhiwei; Wang, Gunuk; Ruan, Gedeng; Fan, Xiujun; Li, Lei; Fei, Huilong; Hauge, Robert H; Tour, James M
2014-07-22
Three-dimensional heterogeneously nanostructured thin-film electrodes were fabricated by using Ta2O5 nanotubes as a framework to support carbon-onion-coated Fe2O3 nanoparticles along the surface of the nanotubes. Carbon onion layers function as microelectrodes to separate the two different metal oxides and form a nanoscale 3-D sandwich structure. In this way, space-charge layers were formed at the phase boundaries, and it provides additional energy storage by charge separation. These 3-D nanostructured thin films deliver both excellent Li-ion battery properties (stabilized at 800 mAh cm(–3)) and supercapacitor (up to 18.2 mF cm(–2)) performance owing to the synergistic effects of the heterogeneous structure. Thus, Li-ion batteries and supercapacitors are successfully assembled into the same electrode, which is promising for next generation hybrid energy storage and delivery devices.
Thin film concentrator panel development
NASA Technical Reports Server (NTRS)
Zimmerman, D. K.
1982-01-01
The development and testing of a rigid panel concept that utilizes a thin film reflective surface for application to a low-cost point-focusing solar concentrator is discussed. It is shown that a thin film reflective surface is acceptable for use on solar concentrators, including 1500 F applications. Additionally, it is shown that a formed steel sheet substrate is a good choice for concentrator panels. The panel has good optical properties, acceptable forming tolerances, environmentally resistant substrate and stiffeners, and adaptability to low to mass production rates. Computer simulations of the concentrator optics were run using the selected reflector panel design. Experimentally determined values for reflector surface specularity and reflectivity along with dimensional data were used in the analysis. The simulations provided intercept factor and net energy into the aperture as a function of aperture size for different surface errors and pointing errors. Point source and Sun source optical tests were also performed.
Preparation of MgF2-SiO2 thin films with a low refractive index by a solgel process.
Ishizawa, Hitoshi; Niisaka, Shunsuke; Murata, Tsuyoshi; Tanaka, Akira
2008-05-01
Porous MgF(2)-SiO(2) thin films consisting of MgF(2) particles connected by an amorphous SiO(2) binder are prepared by a solgel process. The films have a low refractive index of 1.26, sufficient strength to withstand wiping by a cloth, and a high environmental resistance. The refractive index of the film can be controlled by changing the processing conditions. Films can be uniformly formed on curved substrates and at relatively low temperatures, such as 100 degrees C. The low refractive index of the film, which cannot be achieved by conventional dry processes, is effective in improving the performance of antireflective coatings.
NASA Astrophysics Data System (ADS)
Schütz, F.; Scheurell, K.; Scholz, G.; Kemnitz, E.
2016-09-01
Porous antireflective thin films, prepared of nanoscopic MgF2 sols, exhibit a low refraction index and are useful for various optical applications. Due to their porosity, film stability and durability suffer from mechanical abrasion and water solubility, respectively. Hence, we present approaches of improved mechanical stability of MgF2 layers induced by chloride addition. Antireflective (AR) films were produced by dip-coating followed by thermal treatment. Afterwards, film stability and environmental durability was strained by crockmeter and water stability tests, respectively. In comparison to films prepared from chloride-free MgF2 sols, chloride mingled sols form coatings with increased mechanical stability and a lower solubility.
NASA Astrophysics Data System (ADS)
Cormier, Lyne Mercedes
1998-12-01
The objectives of this investigation of amorphous Cr-B thin films as prospective coatings for biomaterials applications were to (i) produce and characterize an amorphous Cr-B thin film coating by magnetron sputtering, (ii) evaluate its corrosion resistance in physiologically relevant electrolytes, and (iii) propose a mechanism for the formation/dissolution of the passive film formed on amorphous Cr-B in chloride-containing near-neutral salt electrolytes. Dense (zone T) amorphous Cr75B25 thin films produced by DC magnetron sputtering were found to be better corrosion barriers than nanoczystalline or porous (zone 1) amorphous Cr75B25 thin films. The growth morphology and microstructure were a function of the sputtering pressure and substrate temperature, in agreement with the structure zone model of Thornton. The passivity/loss of passivity of amorphous Cr 75B25 in near-neutral salt solutions was explained using a modified bipolar layer model. The chromate ions identified by X-Ray Photoelectron Spectroscopy (XPS) in the outer layer of the passive film were found to play a determinant role in the passive behaviour of amorphous Cr75B 25 thin films in salt solutions. In near-neutral salt solutions of pH = 5 to 7, a decrease in pH combined with an increase in chloride concentration resulted in less dissolution of the Cr75B25 thin films. The apparent breakdown potential at 240 mV (SCE) obtained by Cyclic Potentiodynamic Anodic Polarization (CPAP) was associated with oxidation of species within the passive film, but not to dissolution leading to immediate loss of passivity. Pit Propagation Rate (PPR) testing evaluated the stable pitting potential to be between 600 and 650 mV. Amorphous Cr75B25 thin films ranked the best among other Cr-based materials such as 316L stainless steel, CrB2 and Cr investigated in this study for general corrosion behaviour in NaCl and Hanks solutions by CPAP testing. In terms of corrosion resistance, amorphous Cr75B25 thin films were recognized as a promising material for surface modification of biomaterials.
NASA Astrophysics Data System (ADS)
Serra, R.; Oliveira, V.; Oliveira, J. C.; Kubart, T.; Vilar, R.; Cavaleiro, A.
2015-03-01
Amorphous and crystalline sputtered boron carbide thin films have a very high hardness even surpassing that of bulk crystalline boron carbide (≈41 GPa). However, magnetron sputtered B-C films have high friction coefficients (C.o.F) which limit their industrial application. Nanopatterning of materials surfaces has been proposed as a solution to decrease the C.o.F. The contact area of the nanopatterned surfaces is decreased due to the nanometre size of the asperities which results in a significant reduction of adhesion and friction. In the present work, the surface of amorphous and polycrystalline B-C thin films deposited by magnetron sputtering was nanopatterned using infrared femtosecond laser radiation. Successive parallel laser tracks 10 μm apart were overlapped in order to obtain a processed area of about 3 mm2. Sinusoidal-like undulations with the same spatial period as the laser tracks were formed on the surface of the amorphous boron carbide films after laser processing. The undulations amplitude increases with increasing laser fluence. The formation of undulations with a 10 μm period was also observed on the surface of the crystalline boron carbide film processed with a pulse energy of 72 μJ. The amplitude of the undulations is about 10 times higher than in the amorphous films processed at the same pulse energy due to the higher roughness of the films and consequent increase in laser radiation absorption. LIPSS formation on the surface of the films was achieved for the three B-C films under study. However, LIPSS are formed under different circumstances. Processing of the amorphous films at low fluence (72 μJ) results in LIPSS formation only on localized spots on the film surface. LIPSS formation was also observed on the top of the undulations formed after laser processing with 78 μJ of the amorphous film deposited at 800 °C. Finally, large-area homogeneous LIPSS coverage of the boron carbide crystalline films surface was achieved within a large range of laser fluences although holes are also formed at higher laser fluences.
Nanomechanical properties of platinum thin films synthesized by atomic layer deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamun, M.A.; Gu, D.; Baumgart, H.
2015-03-01
The nanomechanical properties of Pt thin films grown on Si (100) using atomic layer deposition (ALD) were investigated using nanoindentation. Recently, atomic layer deposition (ALD) has successfully demonstrated the capability to deposit ultra-thin films of platinum (Pt). Using (methylcyclopentadienyl) trimethylplatinum (MeCpPtMe3) as chemical platinum precursor and oxygen (O2) as the oxidizing agent, the ALD synthesis of Pt can be achieved with high conformity and excellent film uniformity. The ALD process window for Pt films was experimentally established in the temperature range between 270 °C and 320 °C, where the sheet conductance was constant over that temperature range, indicating stable ALDmore » Pt film growth rate. ALD growth of Pt films exhibits very poor nucleation and adhesion characteristics on bare Si surfaces when the native oxide was removed by 2% HF etch. Pt adhesion improves for thermally oxidized Si wafers and for Si wafers covered with native oxide. Three ALD Pt films deposited at 800, 900, and 1000 ALD deposition cycles were tested for the structural and mechanical properties. Additionally, the sample with 900 ALD deposition cycles was further annealed in forming gas (95% N2 and 5% H2) at 450 °C for 30 min in order to passivate dangling bonds in the grain boundaries of the polycrystalline Pt film. Cross-sectional transmission electron microscopy (TEM), X-ray diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscope (SEM) were employed to characterize the films' surface structure and morphology. Nanoindentation technique was used to evaluate the hardness and modulus of the ALD Pt films of various film thicknesses. The results indicate that the films depict comparable hardness and modulus results; however, the 800 and 1000 ALD deposition cycles films without forming gas annealing experienced significant amount of pileup, whereas the 900 ALD deposition cycles sample annealed in forming gas resulted in a smaller pileup.« less
Effect of Annealing Temperature on Flowerlike Cu3BiS3 Thin Films Grown by Chemical Bath Deposition
NASA Astrophysics Data System (ADS)
Deshmukh, S. G.; Patel, S. J.; Patel, K. K.; Panchal, A. K.; Kheraj, Vipul
2017-10-01
For widespread application of thin-film photovoltaic solar cells, synthesis of inexpensive absorber material is essential. In this work, deposition of ternary Cu3BiS3 absorber material, which contains abundant and environmentally benign elements, was carried out on glass substrate. Flowerlike Cu3BiS3 thin films with nanoflakes as building block were formed on glass substrate by chemical bath deposition. These films were annealed at 573 K and 673 K in sulfur ambient for structural improvement. Their structure was characterized using Raman spectroscopy, as well as their surface morphological and optical properties. The x-ray diffraction profile of as-deposited Cu3BiS3 thin film revealed amorphous structure, which transformed to orthorhombic phase after annealing. The Raman spectrum exhibited a characteristic peak at 290 cm-1. Scanning electron microscopy of as-deposited Cu3BiS3 film confirmed formation of nanoflowers with diameter of around 1052 nm. Wettability testing of as-deposited Cu3BiS3 thin film demonstrated hydrophobic nature, which became hydrophilic after annealing. The measured ultraviolet-visible (UV-Vis) absorption spectra of the Cu3BiS3 thin films gave an absorption coefficient of 105 cm-1 and direct optical bandgap of about 1.42 eV after annealing treatment. Based on all these results, such Cu3BiS3 material may have potential applications in the photovoltaic field as an absorber layer.
Microphase separation in thin films of lamellar forming polydisperse di-block copolymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajeev; Lokitz, Bradley S.; Sides, Scott W.
Despite the ubiquity of polydispersity in chain lengths of di-block copolymers, its effects on microphase separation in thin films have eluded a clear understanding. In this paper, we have studied effects of polydispersity on the microphase separation in thin films of lamellar forming di-block copolymers using self-consistent field theory (SCFT) and neutron reflectivity experiments. Di-block copolymers containing a polydisperse block of poly(glycidylmethacrylate) (PGMA) connected to a near-monodisperse block poly(2-vinyl-4,4-dimethyl-d 6 azlactone) (PVDMA-d 6) are considered in this work. Effects of chain length polydispersity, film thickness, substrate–monomer and monomer–monomer interactions on the microphase segregation are studied using SCFT. The theoretical studymore » reveals that in comparison to a film created with monodisperse di-block copolymers, an increase in polydispersity tends to decrease the number of lamellar strata that can be packed in a film of given thickness. This is a direct consequence of an increase in lamellar domain spacing with an increase in polydispersity index. Furthermore, it is shown that polydispersity induces conformational asymmetry and an increase in the polydispersity index leads to an increase in the effective Kuhn segment length of the polydisperse blocks. It is shown that the conformational asymmetry effects, which are entropic in origin and of increasing importance as film thickness decreases, drive the polydisperse blocks to the middle of the films despite favorable substrate interactions. These predictions are verified by results from neutron reflectivity experiments on thin films made from moderately polydisperse PGMA-PVDMA-d 6 di-block copolymer deposited on silicon substrates. In conclusion, results from SCFT are used to predict neutron reflectivity profiles, providing a facile and robust route to obtain useful physical insights into the structure of polydisperse diblock copolymers at interfaces.« less
Microphase separation in thin films of lamellar forming polydisperse di-block copolymers
Kumar, Rajeev; Lokitz, Bradley S.; Sides, Scott W.; ...
2015-02-03
Despite the ubiquity of polydispersity in chain lengths of di-block copolymers, its effects on microphase separation in thin films have eluded a clear understanding. In this paper, we have studied effects of polydispersity on the microphase separation in thin films of lamellar forming di-block copolymers using self-consistent field theory (SCFT) and neutron reflectivity experiments. Di-block copolymers containing a polydisperse block of poly(glycidylmethacrylate) (PGMA) connected to a near-monodisperse block poly(2-vinyl-4,4-dimethyl-d 6 azlactone) (PVDMA-d 6) are considered in this work. Effects of chain length polydispersity, film thickness, substrate–monomer and monomer–monomer interactions on the microphase segregation are studied using SCFT. The theoretical studymore » reveals that in comparison to a film created with monodisperse di-block copolymers, an increase in polydispersity tends to decrease the number of lamellar strata that can be packed in a film of given thickness. This is a direct consequence of an increase in lamellar domain spacing with an increase in polydispersity index. Furthermore, it is shown that polydispersity induces conformational asymmetry and an increase in the polydispersity index leads to an increase in the effective Kuhn segment length of the polydisperse blocks. It is shown that the conformational asymmetry effects, which are entropic in origin and of increasing importance as film thickness decreases, drive the polydisperse blocks to the middle of the films despite favorable substrate interactions. These predictions are verified by results from neutron reflectivity experiments on thin films made from moderately polydisperse PGMA-PVDMA-d 6 di-block copolymer deposited on silicon substrates. In conclusion, results from SCFT are used to predict neutron reflectivity profiles, providing a facile and robust route to obtain useful physical insights into the structure of polydisperse diblock copolymers at interfaces.« less
Microphase separation in thin films of lamellar forming polydisperse di-block copolymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajeev; Lokitz, Bradley S.; Sides, Scott W.
Despite the ubiquity of polydispersity in chain lengths of di-block copolymers, its effects on microphase separation in thin films have eluded a clear understanding. In this work, we have studied effects of polydispersity on the microphase separation in thin films of lamellar forming di-block copolymers using self-consistent field theory (SCFT) and neutron reflectivity experiments. Di-block copolymers containing a polydisperse block of poly(glycidylmethacrylate) (PGMA) connected to a near-monodisperse block poly(2-vinyl-4,4-dimethyl-d6 azlactone) (PVDMA-d6) are considered in this work. Effects of chain length polydispersity, film thickness, substrate-monomer and monomer-monomer interactions on the microphase segregation are studied using SCFT. The theoretical study reveals thatmore » in comparison to a film created with monodisperse di-block copolymers, an increase in polydispersity tends to decrease the number of lamellar strata that can be packed in a film of given thickness. This is a direct consequence of an increase in lamellar domain spacing with an increase in polydispersity index. Furthermore, it is shown that polydispersity induces conformational asymmetry and an increase in the polydispersity index leads to an increase in the effective Kuhn segment length of the polydisperse blocks. It is shown that the conformational asymmetry effects, which are entropic in origin and of increasing importance as film thickness decreases, drive the polydisperse blocks to the middle of the films despite favorable substrate interactions. These predictions are verified by results from neutron reflectivity experiments on thin films made from moderately polydisperse PGMA-PVDMA-d6 di-block copolymer deposited on silicon substrates. Finally, results from SCFT are used to predict neutron reflectivity profiles, providing a facile and robust route to obtain useful physical insights into the structure of polydisperse diblock copolymers at interfaces.« less
Simulation experiments of the effect of space environment on bacteriophage and DNA thin films
NASA Astrophysics Data System (ADS)
Fekete, A.; Rontó, G.; Hegedûs, M.; Módos, K.; Bérces, A.; Kovács, G.; Lammer, H.
PUR experiment (phage and uracil response) is part of the ROSE consortium selected for the first mission on the ISS and its main goal to examine and quantify the effect of specific space parameters such as VUV, UV radiation, dehydration effects, non-oxidative environments etc. related to space vacuum conditions on nucleic acid models. An improved method for the preparation of DNA thin films (NaDNA and LiDNA) was elaborated and the homogeneity of the films were controlled by spectroscopy and phase contrast microscopy. The complete recovery of the amount of DNA from the thin film was found after dissolution. Electrophoresis of the dissolved DNA indicated an intact DNA structure, while successful PCR amplification an intact function of the molecule, so they are likely candidates for the flight on the EXPOSE facility. A new method for preparation of bacteriophage T7 thin layer has been developed, the quality was controlled by spectroscopy and microscopy. After dissolution almost 90% of the viability of the phage particles remained, and the intactness of DNA structure was checked by PCR. DNA and phage thin films were produced in sandwich form as well, and stored in an atmosphere containing a mixture of N2 and H2 , by quality control of the samples no change has been found. They were tested under simulated space conditions at IWF space simulation facility in Graz. DNA thin films and bacteriophage T7 thin layers at different r.h. values have been irradiated in sandwich form in normal atmospheric conditions by using a low pressure Mercury lamp and high power (300W) Deuterium lamp containing short wavelength ( < 240 nm) UVC components simulating theextraterrestrial solar radiation. Characteristic change in the absorption spectrum and the decrease of the amount of PCR products have been detected indicating the photodamage of isolated and intraphage DNA.
Preparation of thin ceramic films via an aqueous solution route
Pederson, Larry R.; Chick, Lawrence A.; Exarhos, Gregory J.
1989-01-01
A new chemical method of forming thin ceramic films has been developed. An aqueous solution of metal nitrates or other soluble metal salts and a low molecular weight amino acid is coated onto a substrate and pyrolyzed. The amino acid serves to prevent precipitation of individual solution components, forming a very viscous, glass-like material as excess water is evaporated. Using metal nitrates and glycine, the method has been demonstrated for zirconia with various levels of yttria stabilization, for lanthanum-strontium chromites, and for yttrium-barium-copper oxide superconductors on various substrates.
Yu, Jung-Hoon; Nam, Sang-Hun; Lee, Ji Won; Boo, Jin-Hyo
2016-07-09
This paper presents the preparation of high-quality vanadium dioxide (VO₂) thermochromic thin films with enhanced visible transmittance (T vis ) via radio frequency (RF) sputtering and plasma enhanced chemical vapor deposition (PECVD). VO₂ thin films with high T vis and excellent optical switching efficiency (E os ) were successfully prepared by employing SiO₂ as a passivation layer. After SiO₂ deposition, the roughness of the films was decreased 2-fold and a denser structure was formed. These morphological changes corresponded to the results of optical characterization including the haze, reflectance and absorption spectra. In spite of SiO₂ coating, the phase transition temperature (T c ) of the prepared films was not affected. Compared with pristine VO₂, the total layer thickness after SiO₂ coating was 160 nm, which is an increase of 80 nm. Despite the thickness change, the VO₂ thin films showed a higher T vis value (λ 650 nm, 58%) compared with the pristine samples (λ 650 nm, 43%). This enhancement of T vis while maintaining high E os is meaningful for VO₂-based smart window applications.
Chain Conformation near the Buried Interface in Nanoparticle-Stabilized Polymer Thin Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barkley, Deborah A.; Jiang, Naisheng; Sen, Mani
It is known that when nanoparticles are added to polymer thin films, they often migrate to the film-substrate interface and form an “immobile interfacial layer”, which has been believed as the origin of suppression of dewetting. We here report an alternative mechanism of dewetting suppression from the structural aspect of a polymer. Dodecane thiol-functionalized gold (Au) nanoparticles embedded in PS thin films prepared on Si substrates were used as a model. It was found that thermal annealing promotes irreversible polymer adsorption onto the substrate surface along with the surface migration of the nanoparticles. We also revealed that the surface migrationmore » causes additional nanoconfined space for the adsorbed polymer chains. As a result, the self-organization process of the strongly adsorbed polymer chains on the solid surface was so hindered that the chain conformations were randomized and expanded in the film normal direction. Here, the resultant chain conformation allows the interpenetration between free chains and the adsorbed chains, promoting adhesion and hence stabilizing the thin film.« less
Chain Conformation near the Buried Interface in Nanoparticle-Stabilized Polymer Thin Films
Barkley, Deborah A.; Jiang, Naisheng; Sen, Mani; ...
2017-09-26
It is known that when nanoparticles are added to polymer thin films, they often migrate to the film-substrate interface and form an “immobile interfacial layer”, which has been believed as the origin of suppression of dewetting. We here report an alternative mechanism of dewetting suppression from the structural aspect of a polymer. Dodecane thiol-functionalized gold (Au) nanoparticles embedded in PS thin films prepared on Si substrates were used as a model. It was found that thermal annealing promotes irreversible polymer adsorption onto the substrate surface along with the surface migration of the nanoparticles. We also revealed that the surface migrationmore » causes additional nanoconfined space for the adsorbed polymer chains. As a result, the self-organization process of the strongly adsorbed polymer chains on the solid surface was so hindered that the chain conformations were randomized and expanded in the film normal direction. Here, the resultant chain conformation allows the interpenetration between free chains and the adsorbed chains, promoting adhesion and hence stabilizing the thin film.« less
Synthesis and characterization of cadmium sulphide thin films prepared by spin coating
NASA Astrophysics Data System (ADS)
Chodavadiya, Nisarg; Chapanari, Amisha; Zinzala, Jignesh; Ray, Jaymin; Pandya, Samir
2018-05-01
An II-VI group semiconductor is Wide band gap materials and has been widely studied due to their fundamental optical, structural, and electrical properties. Cadmium sulphide (CdS) is one of the most emerged materials in II-VI group. It has many applications such as buffer later in photovoltaic cell, multilayer light emitting diodes, optical filters, thin film field effect transistors, gas sensors, light detectors etc. It is fundamentally an n-type material with an optical band gap of 2.4 eV. Owing to these properties we had studied CdS thin films synthesis and characterized by Raman, Ultraviolet - Visible spectroscopy (UV-VIS) and Hot probe method. CdS thin films were prepared by spin coating of the Cadmium-thiourea precursor solution. Visual inspection after 20 minute thermolysis time the films were looks uniform and shiny pale yellow in color. Raman confirms the A1 vibration of pure CdS. UV-VIS gives the band gap about 2.52 eV, which confirms the formation of nanocrystalline form of CdS. Finally, hot probe signifies the n-type conductivity of the CdS film.
Indentation-induced solid-state dewetting of thin Au(Fe) films
NASA Astrophysics Data System (ADS)
Kosinova, Anna; Schwaiger, Ruth; Klinger, Leonid; Rabkin, Eugen
2017-07-01
We studied the effect of local plastic deformation on the thermal stability and solid-state dewetting of thin homogeneous Au(Fe) films deposited on sapphire substrates. The films with ordered square arrays of indents produced by nanoindentation were annealed at the temperature of 700 °C in a forming gas atmosphere. The behavior of the film in the region of shallow indents (reaching a depth up to one half of the film thickness) was very different from the one in the region of deep indents (with depths greater than one half of the film thickness). In the first case, the grain growth in indented and unperturbed regions of the film proceeded quite similarly, and nearly complete healing of the indents was observed. In the latter case, a recrystallization process in the vicinity of the indents resulted in the formation of small new grains with misorientation angles that were not present in the as-deposited film. The thermal grooving along the corresponding new high-energy grain boundaries caused an increase of the depth of the indents and the formation of the dewetting holes. The morphology of these holes and their size were different compared to the holes formed randomly in the unperturbed regions of the same films. In particular, the interaction between the individual indents of an array led to the preferential formation of holes at the periphery of the arrays. These findings shed a new light on the process of nucleation of the solid-state dewetting in thin films.
Nonflat equilibrium liquid shapes on flat surfaces.
Starov, Victor M
2004-01-15
The hydrostatic pressure in thin liquid layers differs from the pressure in the ambient air. This difference is caused by the actions of surface forces and capillary pressure. The manifestation of the surface force action is the disjoining pressure, which has a very special S-shaped form in the case of partial wetting (aqueous thin films and thin films of aqueous electrolyte and surfactant solutions, both free films and films on solid substrates). In thin flat liquid films the disjoining pressure acts alone and determines their thickness. However, if the film surface is curved then both the disjoining and the capillary pressures act simultaneously. In the case of partial wetting their simultaneous action results in the existence of nonflat equilibrium liquid shapes. It is shown that in the case of S-shaped disjoining pressure isotherm microdrops, microdepressions, and equilibrium periodic films exist on flat solid substrates. Criteria are found for both the existence and the stability of these nonflat equilibrium liquid shapes. It is shown that a transition from thick films to thinner films can go via intermediate nonflat states, microdepressions and periodic films, which both can be more stable than flat films within some range of hydrostatic pressure. Experimental investigations of shapes of the predicted nonflat layers can open new possibilities of determination of disjoining pressure in the range of thickness in which flat films are unstable.
Formation of gold grating structures on fused silica substrates by femtosecond laser irradiation
NASA Astrophysics Data System (ADS)
Takami, Akihiro; Nakajima, Yasutaka; Terakawa, Mitsuhiro
2017-05-01
Despite the attractive optical properties of gold nanostructures for emerging applications, the formation of sharp laser-induced periodic gold structures has not been reported. In this study, we experimentally demonstrate the formation of micro- and nanoscale periodic gold grating structures on fused silica substrates using a femtosecond laser. The experimental and calculated results show good agreement, indicating that the gold grating structures were formed by a beat formed in a gold thin film. We also propose that the beat was formed by interference of two surface plasmon polaritons with different periods excited in a gold thin film and calculated their periods.
NASA Astrophysics Data System (ADS)
Annabattula, R. K.; Huck, W. T. S.; Onck, P. R.
2010-04-01
Buckling of thin films on a rigid substrate during use or fabrication is a well-known but unwanted phenomenon. However, this phenomenon can also be exploited to generate well-controlled patterns at the micro and nano-scale. These patterned surfaces find various technological applications such as optical gratings or micro/nano-fluidic channels. In this article, we present a numerical model that accounts for the buckling-up of pre-strained thin films by a reduction of the interface toughness and the subsequent bond-back. Channels are formed whose dimensions can be controlled by tuning the film dimensions, film thickness and stiffness, the eigenstrain in the film and the cohesive interface energy between the film and the substrate. We will show how the buckling-up and draping back processes can be captured in terms of a limited set of dimensionless parameters, providing quantitative insight on how these parameters should be tuned to generate a specified channel geometry.
Magnon dispersion in thin magnetic films.
Balashov, T; Buczek, P; Sandratskii, L; Ernst, A; Wulfhekel, W
2014-10-01
Although the dispersion of magnons has been measured in many bulk materials, few studies deal with the changes in the dispersion when the material is in the form of a thin film, a system that is of interest for applications. Here we review inelastic tunneling spectroscopy studies of magnon dispersion in Mn/Cu3Au(1 0 0) and present new studies on Co and Ni thin films on Cu(1 0 0). The dispersion in Mn and Co films closely follows the dispersion of bulk samples with negligible dependence on thickness. The lifetime of magnons depends slightly on film thickness, and decreases considerably as the magnon energy increases. In Ni/Cu(1 0 0) films the thickness dependence of dispersion is much more pronounced. The measurements indicate a considerable mode softening for thinner films. Magnon lifetimes decrease dramatically near the edge of the Brillouin zone due to a close proximity of the Stoner continuum. The experimental study is supported by first-principles calculations.
Chang, Dongsook; Huang, Aaron; Olsen, Bradley D
2017-01-01
The self-assembly of nanostructured globular protein arrays in thin films is demonstrated using protein-polymer block copolymers based on a model protein mCherry and the polymer poly(oligoethylene glycol acrylate) (POEGA). Conjugates are flow coated into thin films on a poly(ethylene oxide) grafted Si surface, forming self-assembled cylindrical nanostructures with POEGA domains selectively segregating to the air-film interface. Long-range order and preferential arrangement of parallel cylinders templated by selective surfaces are demonstrated by controlling relative humidity. Long-range order increases with coating speed when the film thicknesses are kept constant, due to reduced nucleation per unit area of drying film. Fluorescence emission spectra of mCherry in films prepared at <25% relative humidity shows a small shift suggesting that proteins are more perturbed at low humidity than high humidity or the solution state. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Brown, James L.; Naughton, Jonathan W.
1999-01-01
A thin film of oil on a surface responds primarily to the wall shear stress generated on that surface by a three-dimensional flow. The oil film is also subject to wall pressure gradients, surface tension effects and gravity. The partial differential equation governing the oil film flow is shown to be related to Burgers' equation. Analytical and numerical methods for solving the thin oil film equation are presented. A direct numerical solver is developed where the wall shear stress variation on the surface is known and which solves for the oil film thickness spatial and time variation on the surface. An inverse numerical solver is also developed where the oil film thickness spatial variation over the surface at two discrete times is known and which solves for the wall shear stress variation over the test surface. A One-Time-Level inverse solver is also demonstrated. The inverse numerical solver provides a mathematically rigorous basis for an improved form of a wall shear stress instrument suitable for application to complex three-dimensional flows. To demonstrate the complexity of flows for which these oil film methods are now suitable, extensive examination is accomplished for these analytical and numerical methods as applied to a thin oil film in the vicinity of a three-dimensional saddle of separation.
NASA Astrophysics Data System (ADS)
Yordanov, R.; Boyadjiev, S.; Georgieva, V.; Vergov, L.
2014-05-01
The present work discusses a technology for deposition and characterization of thin molybdenum oxide (MoOx, MoO3) films studied for gas sensor applications. The samples were produced by reactive radio-frequency (RF) and direct current (DC) magnetron sputtering. The composition and microstructure of the films were studied by XPS, XRD and Raman spectroscopy, the morphology, using high resolution SEM. The research was focused on the sensing properties of the sputtered thin MoO3 films. Highly sensitive gas sensors were implemented by depositing films of various thicknesses on quartz resonators. Making use of the quartz crystal microbalance (QCM) method, these sensors were capable of detecting changes in the molecular range. Prototype QCM structures with thin MoO3 films were tested for sensitivity to NH3 and NO2. Even in as-deposited state and without heating the substrates, these films showed good sensitivity. Moreover, no additional thermal treatment is necessary, which makes the production of such QCM gas sensors simple and cost-effective, as it is fully compatible with the technology for producing the initial resonator. The films are sensitive at room temperature and can register concentrations as low as 50 ppm. The sorption is fully reversible, the films are stable and capable of long-term measurements.
NASA Astrophysics Data System (ADS)
Tsujiuchi, Y.; Makino, Y.
A composite film of soya phosphatidylcohline (soya PC) and bacteriorhodopsin (BR) was fabricated by the multilayer molecular thin film method using fatty acid and lipid on a quartz substrate. Direct Force Microscopy (DFM), UV absorption spectra and IR absorption spectra of the film were characterized on the detail of surface structure of the film. The DFM data revealed that many rhombus (diamond-shaped) particles were observed in the film. The spectroscopic data exhibited the yield of M-intermediate of BR in the film. On our modelling of molecular configuration indicate that the coexistence of the strong inter-molecular interaction and the strong inter-molecular interaction between BR trimmers attributed to form the particles.
Evolution of zirconyl-stearate Langmuir monolayers and the synthesized ZrO2 thin films with pH
NASA Astrophysics Data System (ADS)
Choudhary, Raveena; Sharma, Rajni; Brar, Loveleen K.
2018-04-01
ZrO2 thin films have a wide range of applications ranging from photonics, antireflection coatings, and resistive oxygen gas sensors, as a gate dielectric and in high temperature fuel cells. We have used the deposition of zirconyl stearate monolayers followed by their oxidation as a method for the synthesis of zirconium oxide thin films. The zirconyl stearate films have been studied and deposited for first time to the best of our knowledge. The Langmuir monolayers are studied using pressure-Area (π-A) isotherms and oscillatory barrier method. The morphology of the films for limited number of layers was studied with FE-SEM to determine the effect of pH on the final ZrO2 film. The 200 layer deposition films show pure monoclinic phase. The films have a band gap ˜6.0eV with a strong PL emission peak is at 490 nm and a weak peak is at 423 nm. So the films formed by this deposition method are suitable for luminescent applications
Droplet size effects on film drainage between droplet and substrate.
Steinhaus, Benjamin; Spicer, Patrick T; Shen, Amy Q
2006-06-06
When a droplet approaches a solid surface, the thin liquid film between the droplet and the surface drains until an instability forms and then ruptures. In this study, we utilize microfluidics to investigate the effects of film thickness on the time to film rupture for water droplets in a flowing continuous phase of silicone oil deposited on solid poly(dimethylsiloxane) (PDMS) surfaces. The water droplets ranged in size from millimeters to micrometers, resulting in estimated values of the film thickness at rupture ranging from 600 nm down to 6 nm. The Stefan-Reynolds equation is used to model film drainage beneath both millimeter- and micrometer-scale droplets. For millimeter-scale droplets, the experimental and analytical film rupture times agree well, whereas large differences are observed for micrometer-scale droplets. We speculate that the differences in the micrometer-scale data result from the increases in the local thin film viscosity due to confinement-induced molecular structure changes in the silicone oil. A modified Stefan-Reynolds equation is used to account for the increased thin film viscosity of the micrometer-scale droplet drainage case.
Duangdee, Chatnapa; Tangpukdee, Noppadon; Krudsood, Srivicha; Wilairatana, Polrat
2012-04-01
To determine the frequency of malaria parasite detection from the buffy coat blood films by using capillary tube in falciparum malaria patients with negative conventional thick films. Thirty six uncomplicated falciparum malaria patients confirmed by conventional thick and thin films were included in the study. The patients were treated with artemisinin combination therapy at Hospital for Tropical Diseases, Bangkok, Thailand for 28 day. Fingerpricks for conventional blood films were conducted every 6 hours until negative parasitemia, then daily fingerpricks for parasite checks were conducted until the patients were discharged from hospital. Blood samples were also concurrently collected in 3 heparinized capillary tubes at the same time of fingerpricks for conventional blood films when the prior parasitemia was negative on thin films and parasitemia was lower than 50 parasites/200 white blood cells by thick film. The first negative conventional thick films were compared with buffy coat thick films for parasite identification. Out of 36 patients with thick films showing negative for asexual forms of parasites, buffy coat films could detect remaining 10 patients (27.8%) with asexual forms of Plasmodium falciparum. The study shows that buffy coat thick films are useful and can detect malarial parasites in 27.8% of patients whose conventional thick films show negative parasitemia.
Ferromagnetism in tetragonally distorted LaCoO3 thin films
NASA Astrophysics Data System (ADS)
Mehta, Virat Vasav; Liberati, Marco; Wong, Franklin J.; Chopdekar, Rajesh Vilas; Arenholz, Elke; Suzuki, Yuri
2009-04-01
Thin films of epitaxial LaCoO3 were synthesized on SrTiO3 and (La ,Sr)(Al,Ta)O3 substrates, varying the oxygen background pressure in order to evaluate the impact of epitaxial growth as well as oxygen vacancies on the long range magnetic order. The epitaxial constraints from the substrate impose a tetragonal distortion compared to the bulk form. X-ray absorption and x-ray magnetic circular dichroism measurements confirmed that the ferromagnetism arises from the Co ions and persists through the entire thickness of the film. It was found that for the thin films to show ferromagnetic order they have to be grown under the higher oxygen pressures. A correlation of the structure and magnetism suggests that the tetragonal distortions induce the ferromagnetism.
NASA Astrophysics Data System (ADS)
Tan, Feihu; Zhang, Qingmeng; Zhao, Hongbin; Wei, Feng; Du, Jun
2018-03-01
PbO-SrO-Na2O-Nb2O5-SiO2 (PSNNS) glass ceramic thin films were prepared by pulsed laser deposition technology on heavily doped silicon substrates. The influence of annealing temperatures on microstructures, dielectric properties and energy storage performances of the as-prepared films were investigated in detail. X-ray diffraction studies indicate that Pb2Nb2O7 crystallizes at 800°C and disappears at 900°C, while NaNbO3 and PbNb2O6 are formed at the higher temperature of 900°C. The dielectric properties of the glass ceramics thin films have a strong dependence on the phase assemblages that are developed during heat treatment. The maximum dielectric constant value of 171 was obtained for the film annealed at 800°C, owing to the high electric breakdown field strength, The energy storage densities of the PSNNS films annealed at 800°C were as large as 36.9 J/cm3, These results suggest that PSNNS thin films are promising for energy storage applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlie, Nathan; Anheier, Norman C.; Qiao, Hong
2011-05-01
The prism coupling technique has been utilized to measure the refractive index in the near- and mid-IR spectral region of chalcogenide glasses in bulk and thin film form. A commercial system (Metricon model 2010) has been modified with additional laser sources, detectors, and a new GaP prism to allow the measurement of refractive index dispersion over the 1.5–10.6 μm range. The instrumental error was found to be ±0.001 refractive index units across the entire wavelength region examined. Measurements on thermally evaporated AMTIR2 thin films confirmed that (i) the film deposition process provides thin films with reduced index compared to thatmore » of the bulk glass used as a target, (ii) annealing of the films increases the refractive index of the film to the level of the bulk glass used as a target to create it, and (iii) it is possible to locally increase the refractive index of the chalcogenide glass using laser exposure at 632.8 nm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlie, N.; Petit, L.; Musgraves, J. D.
2011-05-15
The prism coupling technique has been utilized to measure the refractive index in the near- and mid-IR spectral region of chalcogenide glasses in bulk and thin film form. A commercial system (Metricon model 2010) has been modified with additional laser sources, detectors, and a new GaP prism to allow the measurement of refractive index dispersion over the 1.5-10.6 {mu}m range. The instrumental error was found to be {+-}0.001 refractive index units across the entire wavelength region examined. Measurements on thermally evaporated AMTIR2 thin films confirmed that (i) the film deposition process provides thin films with reduced index compared to thatmore » of the bulk glass used as a target, (ii) annealing of the films increases the refractive index of the film to the level of the bulk glass used as a target to create it, and (iii) it is possible to locally increase the refractive index of the chalcogenide glass using laser exposure at 632.8 nm.« less
NASA Astrophysics Data System (ADS)
Gopalan, Sundararaman; Ramesh, Sivaramakrishnan; Dutta, Shibesh; Virajit Garbhapu, Venkata
2018-02-01
It is well known that Hf-based dielectrics have replaced the traditional SiO2 and SiON as gate dielectric materials for conventional CMOS devices. By using thicker high-k materials such as HfO2 rather than ultra-thin SiO2, we can bring down leakage current densities in MOS devices to acceptable levels. HfO2 is also one of the potential candidates as a blocking dielectric for Flash memory applications for the same reason. In this study, effects of substrate heating and oxygen flow rate while depositing HfO2 thin films using CVD and effects of post deposition annealing on the physical and electrical characteristics of HfO2 thin films are presented. It was observed that substrate heating during deposition helps improve the density and electrical characteristics of the films. At higher substrate temperature, Vfb moved closer to zero and also resulted in significant reduction in hysteresis. Higher O2 flow rates may improve capacitance, but also results in slightly higher leakage. The effect of PDA depended on film thickness and O2 PDA improved characteristics only for thick films. For thinner films forming gas anneal resulted in better electrical characteristics.
Optical Characterization of Molecular Contaminant Films
NASA Technical Reports Server (NTRS)
Visentine, James T.
2007-01-01
A semi-empirical method of optical characterization of thin contaminant films on surfaces of optical components has been conceived. The method was originally intended for application to films that become photochemically deposited on such optical components as science windows, lenses, prisms, thinfilm radiators, and glass solar-cell covers aboard spacecraft and satellites in orbit. The method should also be applicable, with suitable modifications, to thin optical films (whether deposited deliberately or formed as contaminants) on optical components used on Earth in the computer microchip laser communications and thin-film industries. The method is expected to satisfy the need for a means of understanding and predicting the reductions in spectral transmittance caused by contaminant films and the consequent deterioration of performances of sensitive optical systems. After further development, this method could become part of the basis of a method of designing optical systems to minimize or compensate for the deleterious effects of contaminant films. In the original outer-space application, these deleterious effects are especially pronounced because after photochemical deposition, the films become darkened by further exposure to solar vacuum ultraviolet (VUV) radiation. In this method, thin contaminant films are theoretically modeled as thin optical films, characterized by known or assumed values of thickness, index of refraction, and absorption coefficient, that form on the outer surfaces of the original antireflection coating on affected optical components. The assumed values are adjusted as needed to make actual spectral transmittance values approximate observed ones as closely as possible and to correlate these values with amounts of VUV radiation to which the optical components have been exposed. In an initial study, the method was applied in correlating measured changes in transmittance of high-purity fused silica photochemically coated with silicone films of various measured thicknesses and exposed to various measured amounts of VUV radiation. In each case, it was found to be possible to select an index of refraction and absorption coefficient that made the ultraviolet, visible, and infrared transmittance changes predicted by the model match the corresponding measured transmittance changes almost exactly.
Ureasil-polyether hybrid film-forming materials.
Souza, L K; Bruno, C H; Lopes, L; Pulcinelli, S H; Santilli, C V; Chiavacci, L A
2013-01-01
The objectives of this work were to study the suitability and highlight the advantages of the use of cross-linked ureasil-polyether hybrid matrices as film-forming systems. The results revealed that ureasil-polyethers are excellent film-forming systems due to specific properties, such as their biocompatibility, their cosmetic attractiveness for being able to form thin and transparent films, their short drying time to form films and their excellent bioadhesion compared to the commercial products known as strong adhesives. Rheological measurements have demonstrated the ability of these hybrid matrices to form a film in only a few seconds and Water Vapor Transmitting Rate (WVTR) showed adequate semi-occlusive properties suggesting that these films could be used as skin and wound protectors. Both the high skin bioadhesion and non-cytotoxic character seems to be improved by the presence of multiple amine groups in the hybrid molecules. Copyright © 2012 Elsevier B.V. All rights reserved.
Method for microwave plasma assisted supersonic gas jet deposition of thin films
Schmitt, J.J. III; Halpern, B.L.
1994-10-18
A thin film is formed on a substrate positioned in a vacuum chamber by use of a gas jet apparatus affixed to a vacuum chamber port and having an outer nozzle with an interior cavity into which carrier gas is fed, an inner nozzle located within the outer nozzle interior cavity into which reactant gas is introduced, a tip of the inner nozzle being recessed from the vacuum chamber port within the outer nozzle interior cavity, and a microwave discharge device configured about the apparatus for generating a discharge in the carrier gas and reactant gas only in a portion of the outer nozzle interior cavity extending from approximately the inner nozzle tip towards the vacuum chamber. A supersonic free jet of carrier gas transports vapor species generated in the microwave discharge to the surface of the substrate to form a thin film on the substrate. The substrate can be translated from the supersonic jet to a second supersonic jet in less time than needed to complete film formation so that the film is chemically composed of chemical reaction products of vapor species in the jets. 5 figs.
NASA Technical Reports Server (NTRS)
Frazer, Robert E. (Inventor)
1982-01-01
Production of strong lightweight membrane structure by applying a thin reflective coating such as aluminum to a rotating cylinder, applying a mesh material such as nylon over the aluminum coating, coating the mesh overlying the aluminum with a polymerizing material such as a para-xylylene monomer gas to polymerize as a film bound to the mesh and the aluminum, and applying an emissivity increasing material such as chromium and silicon monoxide to the polymer film to disperse such material colloidally into the growing polymer film, or applying such material to the final polymer film, and removing the resulting membrane structure from the cylinder. Alternatively, such membrane structure can be formed by etching a substrate in the form of an organic film such as a polyimide, or a metal foil, to remove material from the substrate and reduce its thickness, applying a thin reflective coating such as aluminum on one side of the substrate and applying an emissivity increasing coating such as chromium and silicon monoxide on the reverse side of the substrate.
Structural comparison of Ag-Ge-S bulk glasses and thin films
NASA Astrophysics Data System (ADS)
Wang, Fei; Jain, Mukul; Dunn, Porter; de Leo, Carter; Boolchand, Punit
2007-03-01
Ternary glasses of composition (GeS3)1-xAgx (x=0.1 and 0.2) are studied in form of bulk and thin films. Bulk glasses are synthesized and examined in Raman scattering and SEM. Raman scattering results of bulk glasses show that with increasing x, an increasing fraction of the Ag additive enters the base glass as Ag^+ with S^-anions serving to form thiogermanate species with one, two and three non-bridging S^- species. SEM measurements of the bulk glass show the material is intrinsically phase separated. White colored islands are observed distributed in a dark base. The EDS measurements show islands are Ag rich and the base is relatively Ag deficient. The Ag rich islands are expected to be mainly glassy phase Ag2S. Thin films of same compositions are fabricated using thermal evaporation. Films are evaporated following two different procedures to prevent the material from spitting. One method was preheating outgas and the other method was using tungsten mesh wrapped boats. The stoichiometry and molecular structure of films under each procedure are analyzed by Raman scattering and SEM to be compared with bulk glasses.
Metastable tantalum oxide formation during the devitrification of amorphous tantalum thin films
Donaldson, Olivia K.; Hattar, Khalid; Trelewicz, Jason R.
2016-07-04
Microstructural evolution during the devitrification of amorphous tantalum thin films synthesized via pulsed laser deposition was investigated using in situ transmission electron microscopy (TEM) combined with ex situ isothermal annealing, bright-field imaging, and electron-diffraction analysis. The phases formed during crystallization and their stability were characterized as a function of the chamber pressure during deposition, devitrification temperature, and annealing time. A range of metastable nanocrystalline tantalum oxides were identified following devitrification including multiple orthorhombic oxide phases, which often were present with, or evolved to, the tetragonal TaO 2 phase. While the appearance of these phases indicated the films were evolving tomore » the stable form of tantalum oxide—monoclinic tantalum pentoxide—it was likely not achieved for the conditions considered due to an insufficient amount of oxygen present in the films following deposition. Nevertheless, the collective in situ and ex situ TEM analysis applied to thin film samples enabled the isolation of a number of metastable tantalum oxides. As a result, new insights were gained into the transformation sequence and stability of these nanocrystalline phases, which presents opportunities for the development of advanced tantalum oxide-based dielectric materials for novel memristor designs.« less
NASA Technical Reports Server (NTRS)
Lu, W. J.; Shi, D. T.; Elshot, K.; Bryant, E.; Lafate, K.; Chen, H.; Burger, A.; Collins, W. E.
1998-01-01
Pd/SiC has been used as a hydrogen and a hydrocarbon gas sensor operated at high temperature. UHV (Ultra High Vacuum)-Scanning Tunneling Microscopy (STM), Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS) techniques were applied to study the relationship between the morphology and chemical compositions for Pd ultra-thin films on SiC (less than 30 angstroms) at different annealing temperatures. Pd ultra-thin film on 6H-SiC was prepared by the RF sputtering method. The morphology from UHV-STM and AFM shows that the Pd thin film was well deposited on SiC substrate, and the Pd was partially aggregated to round shaped participates at an annealing temperature of 300 C. At 400 C, the amount of surface participates decreases, and some strap shape participates appear. From XPS, Pd2Si was formed on the surface after annealing at 300 C, and all Pd reacted with SiC to form Pd2Si after annealing at 400 C. The intensity of the XPS Pd peak decreases enormously at 400 C. The Pd film diffused into SiC, and the Schottky barrier height has almost no changes. The work shows the Pd sicilides/SiC have the same electronic properties with Pd/SiC, and explains why the Pd/SiC sensor still responds to hydrogen at high operating temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alraddadi, S.; Hines, W.; Yilmaz, T.
2016-02-19
A systematic investigation of the thickness and oxygen pressure dependence for the structural properties of ultra-thin epitaxial magnetite (Fe 3O 4) films has been carried out; for such films, the structural properties generally differ from those for the bulk when the thickness ≤10 nm. Iron oxide ultra-thin films with thicknesses varying from 3 nm to 20 nm were grown on MgO (001) substrates using molecular beam epitaxy under different oxygen pressures ranging from 1 × 10 -7 torr to 1 × 10 -5 torr. The crystallographic and electronic structures of the films were characterized using low energy electron diffraction (LEED)more » and x-ray photoemission spectroscopy (XPS), respectively. Moreover, the quality of the epitaxial Fe 3O 4 ultra-thin films was judged by magnetic measurements of the Verwey transition, along with complementary XPS spectra. We observed that under the same growth conditions the stoichiometry of ultra-thin films under 10 nm transforms from the Fe 3O 4 phase to the FeO phase. In this work, a phase diagram based on thickness and oxygen pressure has been constructed to explain the structural phase transformation. It was found that high-quality magnetite films with thicknesses ≤20 nm formed within a narrow range of oxygen pressure. An optimal and controlled growth process is a crucial requirement for the accurate study of the magnetic and electronic properties for ultra-thin Fe 3O 4 films. Furthermore, these results are significant because they may indicate a general trend in the growth of other oxide films, which has not been previously observed or considered.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herz, A., E-mail: andreas.herz@tu-ilmenau.de, E-mail: dong.wang@tu-ilmenau.de; Franz, A.; Theska, F.
2016-03-15
Self-assembly of ultrathin Au, W, and Au-W bilayer thin films is investigated using a rapid thermal annealing technique in an inert ambient. The solid-state dewetting of Au films is briefly revisited in order to emphasize the role of initial film thickness. W films deposited onto SiO{sub 2} evolve into needle-like nanocrystals rather than forming particle-like agglomerates upon annealing at elevated temperatures. Transmission electron microscopy reveals that such nanocrystals actually consist of tungsten (VI) oxide (WO{sub 3}) which is related to an anisotropic oxide crystal growth out of the thin film. The evolution of W films is highly sensitive to themore » presence of any residual oxygen. Combination of both the dewetting of Au and the oxide crystal growth of WO{sub 3} is realized by using various bilayer film configurations of the immiscible Au and W. At low temperature, Au dewetting is initiated while oxide crystal growth is still suppressed. Depending on the stacking sequence of the Au-W bilayer thin film, W acts either as a substrate or as a passivation layer for the dewetting of Au. Being the ground layer, W changes the wettability of Au which clearly modifies its initial state for the dewetting. Being the top layer, W prevents Au from dewetting regardless of Au film thickness. Moreover, regular pattern formation of Au-WO{sub 3} nanoparticles is observed at high temperature demonstrating how bilayer thin film dewetting can create unique nanostructure arrangements.« less
Optical Properties of Fe3O4 Thin Films Prepared from the Iron Sand by Spin Coating Method
NASA Astrophysics Data System (ADS)
Yulfriska, N.; Rianto, D.; Murti, F.; Darvina, Y.; Ramli, R.
2018-04-01
Research on magnetic oxide is growing very rapidly. This magnetic oxide can be found in nature that is in iron sand. One of the beaches in Sumatera Barat containing iron sand is Tiram Beach, Padang Pariaman District, Sumatera Barat. The content of iron sand is generally in the form of magnetic minerals such as magnetite, hematite, and maghemit. Magnetite has superior properties that can be developed into thin films. The purpose of this research is to investigate the optical properties of transmittance, absorbance, reflectance and energy gap from Fe3O4 thin films. This type of research is an experimental research. The iron sand obtained from nature is first purified using a permanent magnet, then made in nanoparticle size using HEM-E3D with milling time for 30 hours. After that, the process of making thin film with sol-gel spin coating method. In this research, variation of rotation speed from spin coating is 1000 rpm, 2000 rpm and 3000 rpm. Based on XRD results indicated that the iron sand of Tiram beach contains magnetite minerals and the SEM results show that the thickness of the thin films formed is 25μm, 24μm and 11μm. The characterization tool used for characterizing optical properties is the UV-VIS Spectrophotometer. So it can be concluded that the greater the speed of rotation the thickness of the thin layer will be smaller, resulting in the transmittance and reflectance will be greater, while the absorbance will be smaller. Energy gap obtained from this research is 3,75eV, 3,75eV and 3,74eV. So the average energy gap obtained is 3,75eV.
Fabrication of luminescent SrWO{sub 4} thin films by a novel electrochemical method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Lianping; Gao Yuanhong
2007-10-02
Highly crystallized SrWO{sub 4} thin films with single scheelite structure were prepared within 60 min by a cell electrochemical method. X-ray diffraction analysis shows that SrWO{sub 4} thin films have a tetragonal structure. Scanning electron microscopy examinations reveal that SrWO{sub 4} grains grow well in tetragonal tapers and grains like flowers or bunches, which can usually form by using the electrolysis electrochemical method, have disappeared under cell electrochemical conditions. X-ray photoelectron spectra and energy dispersive X-ray microanalysis examinations demonstrate that the composition of the film is consistent with its stoichiometry. These SrWO{sub 4} films show a single blue emission peakmore » (located at 460 nm) using an excitation wave of 230 nm. The speed of cell electrochemical method can be controlled by changing temperature. The optimum treatment temperature is about 50-60 deg. C.« less
Supersonic plasma outflow in a plasmochemical method of amorphous silicon thin films formation
NASA Astrophysics Data System (ADS)
Baranova, L. V.; Strunin, V. I.; Khudaibergenov, G. Zh
2018-01-01
As a result of the numerical modeling of gasdynamic functions of a nozzle of Laval there obtained its parameters which form supersonic plasma jet outflow in a process of amorphous silicon thin films deposition. According to the nozzle design parameters, there obtained amorphous silicon thin films and studied uniformity of the thickness of the synthesized coatings. It was also performed that due to a low translational temperature at the nozzle exit the relaxation losses reduce significantly, “freezing” the vibrational degrees of freedom and the degrees of freedom of the transverse motion of the particles, and increasing the energy efficiency of the film formation process. All this is caused by the fact that on the surface of a growing film only the products of primary interaction of electrons with molecules of a silicon-containing gas in the plasmatron do interact.
Properties of zinc tin oxide thin film by aerosol assisted chemical vapor deposition (AACVD)
NASA Astrophysics Data System (ADS)
Riza, Muhammad Arif; Rahman, Abu Bakar Abd; Sepeai, Suhaila; Ludin, Norasikin Ahmad; Teridi, Mohd Asri Mat; Ibrahim, Mohd Adib
2018-05-01
This study focuses on the properties of ZTO which have been deposited by a low-cost method namely aerosol assisted chemical vapor deposition (AACVD). The precursors used in this method were zinc acetate dihidrate and tin chloride dihydrate for ZTO thin film deposition. Both precursors were mixed and stirred until fully dissolved before deposition. The ZTO was deposited on borosilicate glass substrate for the investigation of optical properties. The films deposited have passed the scotch tape adherence test. XRD revealed that the crystal ZTO is slightly in the form of perovskite structure but several deteriorations were also seen in the spectrum. The UV-Vis analysis showed high transmittance of ˜85% and the band gap was calculated to be 3.85 eV. The average thickness of the film is around 284 nm. The results showed that the ZTO thin films have been successfully deposited by the utilization of AACVD method.
Preparation of SiO2 Passivation Thin Film for Improved the Organic Light-Emitting Device Life Time
NASA Astrophysics Data System (ADS)
Hong, Jeong Soo; Kim, Sang Mo; Kim, Kyung-Hwan
2011-08-01
To improve the organic light-emitting diode (OLED) lifetime, we prepared a SiO2 thin film for OLED passivation using a facing target sputtering (FTS) system as a function of oxygen gas flow rate and working pressure. The properties of the SiO2 thin film were examined by Fourier transform infrared (FT-IR), photoluminescence (PL) intensity measurement, field emission scanning electron microscopy (FE-SEM), and ultraviolet-visible (UV-vis) spectrometry that As a result, we found that a SiO2 thin film is formed at a 2 sccm oxygen gas flow rate and results the minimum damage to the organic layer is observed at a 1 mTorr working pressure. Also, from the water vapor transmission rate (WVTR), we observed that all of the as-deposited SiO2 thin films showed the ability of blocking moisture. After the properties were evaluated, an optimized SiO2 thin film was applied to OLED passivation. As a result, the property of the OLED fabricated by SiO2 passivation is similar to the OLED fabricated by glass passivation. However, the performance of OLED was degraded by enhancing of SiO2 passivation. This is the organic layer of the device is exposed to plasma for a prolonged period. Therefore, a method of minimizing damage to the organic layer and optimum conditions for what are important.
Superconducting transmission line particle detector
Gray, K.E.
1988-07-28
A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.
Superconducting transmission line particle detector
Gray, Kenneth E.
1989-01-01
A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.
Thin-film limit formalism applied to surface defect absorption.
Holovský, Jakub; Ballif, Christophe
2014-12-15
The thin-film limit is derived by a nonconventional approach and equations for transmittance, reflectance and absorptance are presented in highly versatile and accurate form. In the thin-film limit the optical properties do not depend on the absorption coefficient, thickness and refractive index individually, but only on their product. We show that this formalism is applicable to the problem of ultrathin defective layer e.g. on a top of a layer of amorphous silicon. We develop a new method of direct evaluation of the surface defective layer and the bulk defects. Applying this method to amorphous silicon on glass, we show that the surface defective layer differs from bulk amorphous silicon in terms of light soaking.
Ultrafast amorphization in Ge(10)Sb(2)Te(13) thin film induced by single femtosecond laser pulse.
Konishi, Mitsutaka; Santo, Hisashi; Hongo, Yuki; Tajima, Kazuyuki; Hosoi, Masaharu; Saiki, Toshiharu
2010-06-20
We demonstrate amorphization in a Ge(10)Sb(2)Te(13) (GST) thin film through a nonthermal process by femtosecond electronic excitation. Amorphous recording marks were formed by irradiation with a single femtosecond pulse, and were confirmed to be recrystallized by laser thermal annealing. Scanning electron microscope observations revealed that amorphization occurred below the melting temperature. We performed femtosecond pump-probe measurements to investigate the amorphization dynamics of a GST thin film. We found that the reflectivity dropped abruptly within 500fs after excitation by a single pulse and that a small change in the reflectivity occurred within 5ps of this drop.
NASA Astrophysics Data System (ADS)
Kim, Youngkwang; Lee, Hyunjoon; Lim, Taeho; Kim, Hyun-Jong; Kwon, Oh Joong
2017-10-01
With emerging stability issues in fuel cell technology, a non-conventional catalyst not supported on carbon materials has been highlighted because it can avoid negative influences of carbon support materials on the stability, such as carbon corrosion. The nanostructured thin film catalyst is representative of non-conventional catalysts, which shows improved stability, enhanced mass specific activity, and fast mass transfer at high current densities. However, the nanostructured thin film catalyst usually requires multi-step processes for fabrication, making its mass production complex and irreproducible. We introduce a Pt-Cu alloy nanostructured thin film catalyst, which can be simply prepared by electrodeposition. By using hydrogen bubbles as a template, a three-dimensional free-standing foam of Cu was electrodeposited directly on the micro-porous layer/carbon paper and it was then displaced with Pt by simple immersion. The structure characterization revealed that a porous thin Pt-Cu alloy catalyst layer was successfully formed on the micro-porous layer/carbon paper. The synthesized Pt-Cu alloy catalyst exhibited superior durability compared to a conventional Pt/C in single cell test.
EXAFS and XANES investigation of (Li, Ni) codoped ZnO thin films grown by pulsed laser deposition.
Mino, Lorenzo; Gianolio, Diego; Bardelli, Fabrizio; Prestipino, Carmelo; Senthil Kumar, E; Bellarmine, F; Ramanjaneyulu, M; Lamberti, Carlo; Ramachandra Rao, M S
2013-09-25
Ni doped, Li doped and (Li, Ni) codoped ZnO thin films were successfully grown using a pulsed laser deposition technique. Undoped and doped ZnO thin films were investigated using extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge spectroscopy (XANES). Preliminary investigations on the Zn K-edge of the undoped and doped ZnO thin films revealed that doping has not influenced the average Zn-Zn bond length and Debye-Waller factor. This shows that both Ni and Li doping do not appreciably affect the average local environment of Zn. All the doped ZnO thin films exhibited more than 50% of substitutional Ni, with a maximum of 77% for 2% Ni and 2% Li doped ZnO thin film. The contribution of Ni metal to the EXAFS signal clearly reveals the presence of Ni clusters. The Ni-Ni distance in the Ni(0) nanoclusters, which are formed in the film, is shorter with respect to the reference Ni metal foil and the Debye-Waller factor is higher. Both facts perfectly reflect what is expected for metal nanoparticles. At the highest doping concentration (5%), the presence of Li favors the growth of a secondary NiO phase. Indeed, 2% Ni and 5% Li doped ZnO thin film shows %Nisub = 75 ± 11, %Nimet = 10 ± 8, %NiO = 15 ± 8. XANES studies further confirm that the substitutional Ni is more than 50% in all the samples. These results explain the observed magnetic properties.
Nonlinear periodic wavetrains in thin liquid films falling on a uniformly heated horizontal plate
NASA Astrophysics Data System (ADS)
Issokolo, Remi J. Noumana; Dikandé, Alain M.
2018-05-01
A thin liquid film falling on a uniformly heated horizontal plate spreads into fingering ripples that can display a complex dynamics ranging from continuous waves, nonlinear spatially localized periodic wave patterns (i.e., rivulet structures) to modulated nonlinear wavetrain structures. Some of these structures have been observed experimentally; however, conditions under which they form are still not well understood. In this work, we examine profiles of nonlinear wave patterns formed by a thin liquid film falling on a uniformly heated horizontal plate. For this purpose, the Benney model is considered assuming a uniform temperature distribution along the film propagation on the horizontal surface. It is shown that for strong surface tension but a relatively small Biot number, spatially localized periodic-wave structures can be analytically obtained by solving the governing equation under appropriate conditions. In the regime of weak nonlinearity, a multiple-scale expansion combined with the reductive perturbation method leads to a complex Ginzburg-Landau equation: the solutions of which are modulated periodic pulse trains which amplitude and width and period are expressed in terms of characteristic parameters of the model.
Method to synthesize and produce thin films by spray pyrolysis
Turcotte, Richard L.
1982-07-06
Forming a film by spraying onto a heated substrate an atomized solution containing the appropriate salt of a constituent element of the film and a reducing agent at a concentration greater than 1 M and greater than 10 times the stoichiometric amount of reducing agent.
NASA Astrophysics Data System (ADS)
Zou, Jun; Ji, Chen; Yuan, BaoGang; Ruan, XiaoDong; Fu, Xin
2013-06-01
In contrast to a soap bubble, an antibubble is a liquid globule surrounded by a thin film of air. The collapse behavior of an antibubble is studied using a high-speed video camera. It is found that the retraction velocity of the thin air film of antibubbles depends on the thickness of the air film, e, the surface tension coefficient σ, etc., and varies linearly with (σ/ρe)1/2, according to theoretical analysis and experimental observations. During the collapse of the antibubble, many tiny bubbles can be formed at the rim of the air film due to the Rayleigh instability. In most cases, a larger bubble will emerge finally, which holds most of the volume of the air film.
NASA Astrophysics Data System (ADS)
Hung, L. S.; Zheng, L. R.
1992-05-01
Fine line structures of ceramic thin films were fabricated by patterning of metalorganic precursors using photolithography and ion beams. A trilevel structure was developed with an outer resist layer to transfer patterns, a silver delineated layer as an implantation mask, and a planar resist layer protecting the precursor film from chemical attacking and sputtering. Ion irradiation through the Ag stencil rendered metal carboxylates insoluble in 2-ethylhexanoic acid, permitting patterning of the precursor film with patterning features on micron scales. The potential of this technique was demonstrated in patterning of Bi2Sr2CaCu2O(8+x) and Pb(Zr(0.53)Ti(0.47) thin films.
Magneto-transport Characterization of Thin Film In-plane and Cross-plane Conductivity
NASA Astrophysics Data System (ADS)
Tang, Yang; Grayson, Matthew
Thin films with highly anisotropic in-plane and cross-plane conductivities are widely used in devices, such as infrared emitters and detectors, and the proper magneto-transport characterization in both directions can reveal information about the doping density, impurities, carrier life times and band structure. This work introduces a novel method for deducing the complete anisotropic electrical conductivity tensor of such an anisotropic resistive layer atop a highly conducting bottom contact, which is a standard part of the device structure. Three strip-line contacts separated by a length scale comparable to the film thickness are applied atop the resistive thin film layer of interest, with the highly conducting back-plane as a back-contact. The potential distribution in the device is modeled, using both scaling and conformal transformation to minimize the calculated volume. As a proof of concept, triple strip-line devices for GaAs and GaAs/AlGaAs superlattice thin films are fabricated. To achieve narrow strip-line contacts with sub-micron scale widths, non-annealed Ni/Au contacts form ohmic contacts to a patterned n+-GaAs cap layer atop the anisotropic thin films. Preliminary experimental data will be presented as a validation of this method. Acknowledgment: Funded by AFOSR FA9550-15-1-0377 and AFOSR FA9550-15-1-0247.
Chatterjee, Manosree; Hens, Abhiram; Mahato, Kuldeep; Jaiswal, Namita; Mahato, Nivedita; Nagahanumaiah; Chanda, Nripen
2017-11-15
A new method is reported for fabrication of polymeric micro- and nanoparticles from an intermediate patterned surface originated by dewetting of a polymeric thin film. Poly (d, l-lactide-co-glycolide) or PLGA, a biocompatible polymer is used to develop a thin film over a clean glass substrate which dewets spontaneously in the micro-/nano-patterned surface of size range 50nm to 3.5µm. Since another water-soluble polymer, poly vinyl alcohol (PVA) is coated on the same glass substrate before PLGA thin film formation, developed micro-/nano-patterns are easily extracted in water in the form of micro- and nanoparticle mixture of size range 50nm to 3.0µm. This simplified method is also used to effectively encapsulate a dye molecule, rhodamine B inside the PLGA micro-/nanoparticles. The developed dye-encapsulated nanoparticles, PLGA-rhodamine are separated from the mixture and tested for in-vitro delivery application of external molecules inside human lung cancer cells. For the first time, the use of thin film dewetting technique is reported as a potential route for the synthesis of polymeric micro-/nanoparticles and effective encapsulation of external species therein. Copyright © 2017 Elsevier Inc. All rights reserved.
Seleim, S M; Hamdalla, Taymour A; Mahmoud, Mohamed E
2017-09-05
Nanosized (NS) cobalt (II) bis(5-phenyl-azo-8-hydroxyquinolate) (NS Co(II)-(5PA-8HQ) 2 ) thin films have been synthesized using static step-by-step soft surface reaction (SS-b-SSR) technique. Structural and optical characterizations of these thin films have been carried out using thermal gravimetric analysis (TGA), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD). The HR-TEM results revealed that the assembled Co(II)-complex exhibited a uniformly NS structure particles in the form of nanorods with width and length up to 16.90nm and 506.38nm, respectively. The linear and nonlinear optical properties have been investigated. The identified energy gap of the designed thin film materials was found 4.01eV. The refractive index of deposited Co(II)-complex thin film was identified by thickness-dependence and found as 1.9 at wavelength 1100nm. In addition, the refractive index was varied by about 0.15 due to an increase in the thickness by 19nm. Copyright © 2017 Elsevier B.V. All rights reserved.
Pathways toward unidirectional alignment in block copolymer thin films on faceted surfaces
NASA Astrophysics Data System (ADS)
Gunkel, Ilja; Gu, Xiaodan; Sarje, Abhinav; Hexemer, Alexander; Russell, Thomas
2015-03-01
Solvent vapor annealing (SVA) has been shown recently to be an effective means to produce long-range lateral order in block copolymer (BCP) thin films in relatively short times. Furthermore, using substrates with faceted surfaces allows for generating unidirectionally aligned BCP microdomains on the size scale of an entire wafer. While in recent years SVA has been largely demystified, the detailed pathways toward obtaining unidirectional alignment still remain unclear. Grazing-incidence X-ray scattering (GISAXS) is a very powerful tool for characterizing the structure and morphology of BCPs in thin films, and is particularly useful for studying structural changes in BCP thin films during SVA. We here present in situ GISAXS experiments on cylinder-forming PS-b-P2VP BCP thin films on faceted Sapphire substrates during annealing in THF. We show that the degree of alignment of cylindrical microdomains is greatly enhanced at solvent concentrations close to the order-disorder transition of the copolymer. Furthermore, we observed that inducing disorder by further increasing the solvent concentration and subsequent quenching to the ordered (not yet glassy) state induced the highest degree of alignment with nearly unidirectional alignment of the microdomains in less than 30 min.
NASA Astrophysics Data System (ADS)
Abbas, Haider; Park, Mi Ra; Abbas, Yawar; Hu, Quanli; Kang, Tae Su; Yoon, Tae-Sik; Kang, Chi Jung
2018-06-01
Improved resistive switching characteristics are demonstrated in a hybrid device with Pt/Ti/MnO (thin film)/MnO (nanoparticle)/Pt structure. The hybrid devices of MnO thin film and nanoparticle assembly were fabricated. MnO nanoparticles with an average diameter of ∼30 nm were chemically synthesized and assembled as a monolayer on a Pt bottom electrode. A MnO thin film of ∼40 nm thickness was deposited on the nanoparticle assembly to form the hybrid structure. Resistive switching could be induced by the formation and rupture of conducting filaments in the hybrid oxide layers. The hybrid device exhibited very stable unipolar switching with good endurance and retention characteristics. It showed a larger and stable memory window with a uniform distribution of SET and RESET voltages. Moreover, the conduction mechanisms of ohmic conduction, space-charge-limited conduction, Schottky emission, and Poole–Frenkel emission have been investigated as possible conduction mechanisms for the switching of the devices. Using MnO nanoparticles in the thin film and nanoparticle heterostructures enabled the appropriate control of resistive random access memory (RRAM) devices and markedly improved their memory characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
BOYLE, TIMOTHY J.; INGERSOLL, DAVID; CYGAN, RANDALL T.
2002-11-01
We have undertaken the synthesis of a thin film ''All Ceramic Battery'' (ACB) using solution route processes. Based on the literature and experimental results, we selected SnO{sub 2}, LiCoO{sub 2}, and LiLaTiO{sub 3} (LLT) as the anode, cathode, and electrolyte, respectively. Strain induced by lattice mismatch between the cathode and bottom electrode, as estimated by computational calculations, indicate that thin film orientations for batteries when thicknesses are as low as 500 {angstrom} are strongly controlled by surface energies. Therefore, we chose platinized silicon as the basal platform based on our previous experience with this material. The anode thin films weremore » generated by standard spin-cast methods and processing using a solution of [Sn(ONep)]{sub 8} and HOAc which was found to form Sn{sub 6}(O){sub 4}(ONep){sub 4}. Electrochemical evaluation showed that the SnO{sub 2} was converted to Sn{sup o} during the first cycle. The cathode was also prepared by spin coating using the novel [Li(ONep)]{sub 8} and Co(OAc){sub 2}. The films could be electrochemically cycled (i.e., charged/discharged), with all of the associated structural changes being observable by XRD. Computational models indicated that the LLT electrolyte would be the best available ceramic material for use as the electrolyte. The LLT was synthesized from [Li(ONep)]{sub 8}, [Ti(ONep){sub 4}]{sub 2}, and La(DIP){sub 3}(py){sub 3} with RTP processing at 900 C being necessary to form the perovskite phase. Alternatively, a novel route to thin films of the block co-polymer ORMOLYTE was developed. The integration of these components was undertaken with each part of the assembly being identifiably by XRD analysis (this will allow us to follow the progress of the charge/discharge cycles of the battery during use). SEM investigations revealed the films were continuous with minimal mixing. All initial testing of the thin-film cathode/electrolyte/anode ACB devices revealed electrical shorting. Alternative approaches for preparing non-shorted devices (e.g. inverted and side-by-side) are under study.« less
Modulation of magnetic interaction in Bismuth ferrite through strain and spin cycloid engineering
NASA Astrophysics Data System (ADS)
Yadav, Rama Shanker; Reshi, Hilal Ahmad; Pillai, Shreeja; Rana, D. S.; Shelke, Vilas
2016-12-01
Bismuth ferrite, a widely studied room temperature multiferroic, provides new horizons of multifunctional behavior in phase transited bulk and thin film forms. Bismuth ferrite thin films were deposited on lattice mismatched LaAlO3 substrate using pulsed laser deposition technique. X-ray diffraction confirmed nearly tetragonal (T-type) phase of thin film involving role of substrate induced strain. The film thickness of 56 nm was determined by X-ray reflectivity measurement. The perfect coherence and epitaxial nature of T- type film was observed through reciprocal space mapping. The room temperature Raman measurement of T-type bismuth ferrite thin film also verified phase transition with appearance of only few modes. In parallel, concomitant La and Al substituted Bi1-xLaxFe0.95Al0.05O3 (x = 0.1, 0.2, 0.3) bulk samples were synthesized using solid state reaction method. A structural phase transition into orthorhombic (Pnma) phase at x = 0.3 was observed. The structural distortion at x = 0.1, 0.2 and phase transition at x = 0.3 substituted samples were also confirmed by changes in Raman active modes. The remnant magnetization moment of 0.199 emu/gm and 0.28 emu/gm were observed for x = 0.2 and 0.3 bulk sample respectively. The T-type bismuth ferrite thin film also showed high remnant magnetization of around 20emu/cc. The parallelism in magnetic behavior between T-type thin film and concomitant La and Al substituted bulk samples is indication of modulation, frustration and break in continuity of spiral spin cycloid.
Silicon-germanium and platinum silicide nanostructures for silicon based photonics
NASA Astrophysics Data System (ADS)
Storozhevykh, M. S.; Dubkov, V. P.; Arapkina, L. V.; Chizh, K. V.; Mironov, S. A.; Chapnin, V. A.; Yuryev, V. A.
2017-05-01
This paper reports a study of two types of silicon based nanostructures prospective for applications in photonics. The first ones are Ge/Si(001) structures forming at room temperature and reconstructing after annealing at 600°C. Germanium, being deposited from a molecular beam at room temperature on the Si(001) surface, forms a thin granular film composed of Ge particles with sizes of a few nanometers. A characteristic feature of these films is that they demonstrate signs of the 2 x 1 structure in their RHEED patterns. After short-term annealing at 600°C under the closed system conditions, the granular films reconstruct to heterostructures consisting of a Ge wetting layer and oval clusters of Ge. A mixed type c(4x2) + p(2x2) reconstruction typical to the low-temperature MBE (Tgr < 600°C) forms on the wetting layer. Long-term annealing of granular films at the same conditions results in formation of c(4x2)-reconstructed wetting layer typical to high-temperature MBE (Tgr < 600°C) and huge clusters of Ge. The other type of the studied nanostructures is based on Pt silicides. This class of materials is one of the friendliest to silicon technology. But as silicide film thickness reaches a few nanometers, low resistivity becomes of primary importance. Pt3Si has the lowest sheet resistance among the Pt silicides. However, the development of a process of thin Pt3Si films formation is a challenging task. This paper describes formation of a thin Pt3Si/Pt2Si structures at room temperature on poly-Si films. Special attention is paid upon formation of poly-Si and amorphous Si films on Si3N4 substrates at low temperatures.
NASA Technical Reports Server (NTRS)
Paley, M. S.; Frazier, D. O.; Abdeldeyem, H.; Armstrong, S.; McManus, S. P.
1995-01-01
Polydiacetylenes are a very promising class of polymers for both photonic and electronic applications because of their highly conjugated structures. For these applications, high-quality thin polydiacetylene films are required. We have discovered a novel technique for obtaining such films of a polydiacetylene derivative of 2-methyl-4-nitroaniline using photodeposition from monomer solutions onto UV transparent substrates. This heretofore unreported process yields amorphous polydiacetylene films with thicknesses on the order of I micron that have optical quality superior to that of films grown by standard crystal growth techniques. Furthermore, these films exhibit good third-order nonlinear optical susceptibilities; degenerate four-wave mixing experiments give x(3) values on the order of 10(exp -8) - 10(exp -7) esu. We have conducted masking experiments which demonstrate that photodeposition occurs only where the substrate is directly irradiated, clearly indicating that the reaction occurs at the surface. Additionally, we have also been able to carry out photodeposition using lasers to form thin polymer circuits. In this work, we discuss the photodeposition of polydiacetylene thin films from solution, perform chemical characterization of these films, investigate the role of the substrate, speculate on the mechanism of the reaction, and make a preliminary determination of the third-order optical nonlinearity of the films. This simple, straightforward technique may ultimately make feasible the production of polydiacetylene thin films for technological applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhailovskii, V., E-mail: v.mikhailovskii@spbu.ru; IRC for Nanotechnology, Research Park, St.-Petersburg State University; Petrov, Yu.
2016-06-17
The drastic enhancement of backscattered electrons (BSE) yield from nanostructured thin metal film which exceeded well the one from massive metal was observed at accelerating voltages below 400 V. The dependences of BSE signal from nanostructured gold film on accelerating voltage and on retarding grid potential applied to BSE detector were investigated. It was shown that enhanced BSE signal was formed by inelastic scattered electrons coming from the gaps between nanoparticles. A tentative explanation of the mechanism of BSE signal enhancement was suggested.
Formation of thin-film resistors on silicon substrates
Schnable, George L.; Wu, Chung P.
1988-11-01
The formation of thin-film resistors by the ion implantation of a metallic conductive layer in the surface of a layer of phosphosilicate glass or borophosphosilicate glass which is deposited on a silicon substrate. The metallic conductive layer materials comprise one of the group consisting of tantalum, ruthenium, rhodium, platinum and chromium silicide. The resistor is formed and annealed prior to deposition of metal, e.g. aluminum, on the substrate.
Exciton-phonon coupling in diindenoperylene thin films
NASA Astrophysics Data System (ADS)
Heinemeyer, U.; Scholz, R.; Gisslén, L.; Alonso, M. I.; Ossó, J. O.; Garriga, M.; Hinderhofer, A.; Kytka, M.; Kowarik, S.; Gerlach, A.; Schreiber, F.
2008-08-01
We investigate exciton-phonon coupling and exciton transfer in diindenoperylene (DIP) thin films on oxidized Si substrates by analyzing the dielectric function determined by variable-angle spectroscopic ellipsometry. Since the molecules in the thin-film phase form crystallites that are randomly oriented azimuthally and highly oriented along the surface normal, DIP films exhibit strongly anisotropic optical properties with uniaxial symmetry. This anisotropy can be determined by multiple sample analysis. The thin-film spectrum is compared with a monomer spectrum in solution, which reveals similar vibronic subbands and a Huang-Rhys parameter of S≈0.87 for an effective internal vibration at ℏωeff=0.17eV . However, employing these parameters the observed dielectric function of the DIP films cannot be described by a pure Frenkel exciton model, and the inclusion of charge-transfer (CT) states becomes mandatory. A model Hamiltonian is parametrized with density-functional theory calculations of single DIP molecules and molecule pairs in the stacking geometry of the thin-film phase, revealing the vibronic coupling constants of DIP in its excited and charged states together with electron and hole transfer integrals along the stack. From a fit of the model calculation to the observed dielectric tensor, we find the lowest CT transition E00CT at 0.26±0.05eV above the neutral molecular excitation energy E00F , which is an important parameter for device applications.
Confinement effects on thin polymer films
NASA Astrophysics Data System (ADS)
Dalnoki-Veress, Karoly J. T.
We present the results of four projects investigating the effects of confinement on polymeric systems. The first study dealt with polymer blends that are quenched using a spincoating technique rather than a temperature quench. The mass fraction of two blends was varied to determine the effect of the substrate-blend interface on the thin film phase separation morphology. Quantitative measurements of the morphology on three different substrates revealed significant differences in the phase separation morphology as a result of the different wetting properties of the polymer blend on the substrates. The second project dealt with the effect of mechanical confinement on the phase separation of polymer blend thin films. We measured the phase separation morphology of polystyrene/poly (methyl methacrylate) (PS/PMMA) blend films of thickness h on a silicon oxide (SiOx) substrate with a SiOx capping layer. A novel phase separation morphology was observed for small capping layer thicknesses L as well as a transition from lateral to lamellar morphology as L is increased. A simple model is presented which explains the observed lateral morphology, and the morphology transition, in terms of a balance between the free energy increase associated with forming the interfaces between PS-rich and PMMA-rich domains, and the free energy increase associated with the elastic bending of the SiOx capping layer. Direct control of the amplitude and period of the deformation is achieved by varying h and L. Reasonable agreement is obtained between the predicted amplitude of the rippling of the film surface and that measured directly using atomic force microscopy. For temperatures greater than the glass transition temperature Tg, thin freely-standing polymer films are unstable to the formation of holes. In the third project, we have studied the formation and growth of two types of holes: those which form spontaneously when the films are heated above Tg, and those purposely nucleated using a heated scanning tunneling microscope tip. For both types of holes, we observe exponential growth of the hole radius, corresponding to the viscous regime of hole formation, and a decrease in the film viscosity with decreasing film thickness h for h < 250 nm. In the last project the thermal stability of freely-standing films was enhanced by symmetrically confining the films between thin layers of silicon oxide to form SiOx/PS/SiOx trilayer films. Aggressive annealing of the films produced a novel morphology consisting of long, parallel domains with a well-defined periodicity. A simple model is presented which describes the scaling behavior of the morphology. We discuss the direct control of the morphology through manipulation of the individual film thicknesses and the long-range Van der Waals or dispersion interactions.
Grell, Tsehai A.J.; Alabanza, Anginelle M.; Gaskell, Karen; Aslan, Kadir
2013-01-01
A rapid surface modification technique for the formation of self-assembled monolayers (SAMs) of alkanethiols on gold thin films using microwave heating in less than 10 min is reported. In this regard, SAMs of two model alkanethiols, 11-mercaptoundecanoic acid (11-MUDA, to generate a hydrophilic surface) and undecanethiol (UDET, a hydrophobic surface), were successfully formed on gold thin films using selective microwave heating in 1) a semi-continuous and 2) a continuous fashion and at room temperature (24 hours, control experiment, no microwave heating). The formation of SAMs of 11-MUDA and UDET were confirmed by contact angle measurements, Fourier–transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The contact angles for water on SAMs formed by the selective microwave heating and conventional room temperature incubation technique (24 hours) were measured to be similar for 11-MUDA and UDET. FT-IR spectroscopy results confirmed that the internal structure of SAMs prepared using both microwave heating and at room temperature were similar. XPS results revealed that the organic and sulfate contaminants found on bare gold thin films were replaced by SAMs after the surface modification process was carried out using both microwave heating and at room temperature. PMID:24083414
NASA Astrophysics Data System (ADS)
Huynh, T. T. D.; Semmar, N.
2017-09-01
The melting process and nanostructure formation induced by nanosecond and picosecond laser pulses on bulk silicon and copper thin film were studied by ex situ analysis and in situ real time reflectivity. Three different probing wavelengths (633, 473 and 326 nm) were used during the pump laser processing and were correlated to the beam parameters (pulse duration, laser fluence and number of laser shots) and copper thin film thickness. On a silicon surface using a KrF laser beam (27 ns, 1 Hz, 248 nm), the melting threshold was determined close to 700 mJ cm-2 and the melting duration increased from 10 to 130 ns as the fluence increased from 700 to 1750 mJ cm-2. Nanostructures with a spatial period close to the laser wavelength were formed on both copper thin film and silicon substrate after nanosecond Nd:YAG laser (10 ns, 266 nm, 1 Hz) irradiation. In the picosecond regime, using an Nd:YAG laser (40 ps, 266 nm, 1 Hz), different nanostructures, from spikes to laser-induced periodic surface structures, were formed on 500 nm copper thin film and were analyzed with respect to the drop in dynamic reflectivity changes versus the number of laser shots.
Polythiophene thin films by surface-initiated polymerization: Mechanistic and structural studies
Youm, Sang Gil; Hwang, Euiyong; Chavez, Carlos A.; ...
2016-06-15
The ability to control nanoscale morphology and molecular organization in organic semiconducting polymer thin films is an important prerequisite for enhancing the efficiency of organic thin-film devices including organic light-emitting and photovoltaic devices. The current “top-down” paradigm for making such devices is based on utilizing solution-based processing (e.g., spin-casting) of soluble semiconducting polymers. This approach typically provides only modest control over nanoscale molecular organization and polymer chain alignment. A promising alternative to using solutions of presynthesized semiconducting polymers pursues instead a “bottom-up” approach to prepare surface-grafted semiconducting polymer thin films by surface-initiated polymerization of small-molecule monomers. Herein, we describe themore » development of an efficient method to prepare polythiophene thin films utilizing surface-initiated Kumada catalyst transfer polymerization. In this study, we provided evidence that the surface-initiated polymerization occurs by the highly robust controlled (quasi-“living”) chain-growth mechanism. Further optimization of this method enabled reliable preparation of polythiophene thin films with thickness up to 100 nm. Extensive structural studies of the resulting thin films using X-ray and neutron scattering methods as well as ultraviolet photoemission spectroscopy revealed detailed information on molecular organization and the bulk morphology of the films, and enabled further optimization of the polymerization protocol. One of the remarkable findings was that surface-initiated polymerization delivers polymer thin films showing complex molecular organization, where polythiophene chains assemble into lateral crystalline domains of about 3.2 nm size, with individual polymer chains folded to form in-plane aligned and densely packed oligomeric segments (7-8 thiophene units per each segment) within each domain. Achieving such a complex mesoscale organization is virtually impossible with traditional methods relying on solution processing of presynthesized polymers. Another significant advantage of surface-confined polymer thin films is their remarkable stability toward organic solvents and other processing conditions. In addition to controlled bulk morphology, uniform molecular organization, and stability, a unique feature of the surface-initiated polymerization is that it can be used for the preparation of large-area uniformly nanopatterned polymer thin films. Lastly, this was demonstrated using a combination of particle lithography and surface-initiated polymerization. In general, surface-initiated polymerization is not limited to polythiophene but can be also expanded toward other classes of semiconducting polymers and copolymers.« less
Thin Films Formed from Conjugated Polymers with Ionic, Water-Soluble Backbones.
Voortman, Thomas P; Chiechi, Ryan C
2015-12-30
This paper compares the morphologies of films of conjugated polymers in which the backbone (main chain) and pendant groups are varied between ionic/hydrophilic and aliphatic/hydrophobic. We observe that conjugated polymers in which the pendant groups and backbone are matched, either ionic-ionic or hydrophobic-hydrophobic, form smooth, structured, homogeneous films from water (ionic) or tetrahydrofuran (hydrophobic). Mismatched conjugated polymers, by contrast, form inhomogeneous films with rough topologies. The polymers with ionic backbone chains are conjugated polyions (conjugated polymers with closed-shell charges in the backbone), which are semiconducting materials with tunable bad-gaps, not unlike uncharged conjugated polymers.
Photodiode Based on CdO Thin Films as Electron Transport Layer
NASA Astrophysics Data System (ADS)
Soylu, M.; Kader, H. S.
2016-11-01
Cadmium oxide (CdO) thin films were synthesized by the sol-gel method. The films were analyzed by means of XRD, AFM, and UV/Vis spectrophotometry. X-ray diffraction patterns confirm that the films are formed from CdO with cubic crystal structure and consist of nano-particles. The energy gap of the prepared film was found to be 2.29 eV. The current-voltage ( I- V) characteristics of the CdO/ p-Si heterojunction were examined in the dark and under different illumination intensities. The heterojunction showed high rectifying behavior and a strong photoresponse. Main electrical parameters of the photodiode such as series and shunt resistances ( R s and R sh), saturation current I 0, and photocurrent I ph, were extracted considering a single diode equivalent circuit of a photovoltaic cell. Results indicate that the application of CdO thin films as an electron transport layer on p-Si acts as a photodetector in the field of the UV/visible.
Tuning phase transition temperature of VO2 thin films by annealing atmosphere
NASA Astrophysics Data System (ADS)
Liu, Xingxing; Wang, Shao-Wei; Chen, Feiliang; Yu, Liming; Chen, Xiaoshuang
2015-07-01
A simple new way to tune the optical phase transition temperature of VO2 films was proposed by only controlling the pressure of oxygen during the annealing process. Vanadium films were deposited on glass by a large-scale magnetron sputtering coating system and then annealed in appropriate oxygen atmosphere to form the VO2 films. The infrared transmission change (at 2400 nm) is as high as 58% for the VO2 thin film on the glass substrate, which is very good for tuning infrared radiation and energy saving as smart windows. The phase transition temperature of the films can be easily tuned from an intrinsic temperature to 44.7 °C and 40.2 °C on glass and sapphire by annealing oxygen pressure, respectively. The mechanism is: V3+ ions form in the film when under anaerobic conditions, which can interrupt the V4+ chain and reduce the phase transition temperature. The existence of V3+ ions has been observed by x-ray photoelectron spectroscopy (XPS) experiments as proof.
Thin film heterojunction photovoltaic cells and methods of making the same
Basol, Bulent M.; Tseng, Eric S.; Rod, Robert L.
1983-06-14
A method of fabricating a thin film heterojunction photovoltaic cell which comprises depositing a film of a near intrinsic or n-type semiconductor compound formed of at least one of the metal elements of Class II B of the Periodic Table of Elements and at least tellurium and then heating said film at a temperature between about 250.degree. C. and 500.degree. C. for a time sufficient to convert said film to a suitably low resistivity p-type semiconductor compound. Such film may be deposited initially on the surface of an n-type semiconductor substrate. Alternatively, there may be deposited on the converted film a layer of n-type semiconductor compound different from the film semiconductor compound. The resulting photovoltaic cell exhibits a substantially increased power output over similar cells not subjected to the method of the present invention.
SnS2 Thin Film Deposition by Spray Pyrolysis
NASA Astrophysics Data System (ADS)
Jaber, Abdallah Yahia; Alamri, Saleh Noaiman; Aida, Mohammed Salah
2012-06-01
Tin disulfide (SnS2) thin films have been synthesized using a simplified spray pyrolysis technique using a perfume atomizer. The films were deposited using two different solutions prepared by the dilution of SnCl2 and thiourea in distilled water and in methanol. The obtained films have a microcrystalline structure. The film deposited using methanol as the solvent is nearly stochiometric SnS2 with a spinel phase having a (001) preferential orientation. The film prepared with an aqueous solution is Sn-rich. Scanning electronic microscopy (SEM) images reveal that the film deposited with the aqueous solution is rough and is formed with large wires. However, the film deposited with methanol is dense and smooth. Conductivity measurements indicate that the aqueous solution leads to an n-type semiconductor, while methanol leads to a p-type semiconductor.
NASA Astrophysics Data System (ADS)
Cartas, William
Rare earth oxides (REOs) exhibit favorable catalytic performance for a diverse set of chemical transformations, including both partial and complete oxidation reactions. I will discuss our efforts to develop thin film systems of terbia for model surface science investigations of a REO that is effectively reducible, and which is thus expected to promote complete oxidation chemistry of adsorbed species. The growth of terbia on Cu(111) is shown to produce a complex surface that exhibits multiple phases of the oxide as well as exposed substrate. Growing the film on Pt(111) results in more uniform, single phase, and closed film. We used low energy electron diffraction (LEED) and scanning tunneling microscopy (STM) to characterize the structural properties of terbia thin films grown on Pt(111) in ultrahigh vacuum (UHV) using physical vapor deposition. We find that the REO grows as a high quality Tb2O 3(111) film, and adopts oxygen-deficient fluorite structures wherein the metal cations form a hexagonal lattice in registry with the Pt(111) substrate, while oxygen vacancies are randomly distributed within the film. The Tb 2O3(111) films are thermally stable when heated to 1000 K in UHV. LEED and STM show that a fraction of the Tb2O3 forms hexagonal islands when first deposited, and further depositions typically result in three dimensional growth of the film. The Tb2O3 (111) / Pt(111) system produces a coincidence structure, seen very clearly in LEED images. We have also found that Tb2O3(111) films can be oxidized in UHV by exposure to plasma-generated atomic oxygen beams. The oxidized films have an estimated TbO2 stoichiometry and decompose to Tb2O3 during heating, with O2 desorption starting at about 500 K. Terbia films oxidized at 90 K show a weakly bound state of oxygen that is likely chemisorbed. Temperature programmed reaction spectroscopy (TPRS) studies using methanol show that increased oxygen in the film does not modify the chemical selectivity of the film; however, the increased oxygen content does increase the activity of the film toward methanol dehydrogenation. We have found that when methanol is adsorbed onto the terbia-Pt(111) system, it reacts to form formaldehyde and water and reduces the surface. The development of high-quality terbia thin films on Pt(111) provides new opportunities to investigate oxidation chemistry on an REO that has distinct reduction and oxidation properties.
Coaxial line configuration for microwave power transmission study of YBa2Cu3O(7-delta) thin films
NASA Technical Reports Server (NTRS)
Chorey, C. M.; Miranda, F. A.; Bhasin, K. B.
1991-01-01
Microwave transmission measurements through YBa2Cu3O(7-delta) (YBCO) high-transition-temperature superconducting thin films on lanthanum aluminate (LaAlO3) have been performed in a coaxial line at 10 GHz. LaAlO3 substrates were ultrasonically machined into washer-shaped discs, polished, and coated with laser-ablated YBCO. These samples were mounted in a 50-ohm coaxial air line to form a short circuit. The power transmitted through the films as a function of temperature was used to calculate the normal state conductivity and the magnetic penetration depth for the films.
2011-01-01
In this work, we apply nano-embossing technique to form a stagger structure in ferroelectric lead zirconate titanate [Pb(Zr0.3, Ti0.7)O3 (PZT)] films and investigate the ferroelectric and electrical characterizations of the embossed and un-embossed regions, respectively, of the same films by using piezoresponse force microscopy (PFM) and Radiant Technologies Precision Material Analyzer. Attributed to the different layer thickness of the patterned ferroelectric thin film, two distinctive coercive voltages have been obtained, thereby, allowing for a single ferroelectric memory cell to contain more than one bit of data. PMID:21794156
Room-temperature fabrication of a Ga-Sn-O thin-film transistor
NASA Astrophysics Data System (ADS)
Matsuda, Tokiyoshi; Takagi, Ryo; Umeda, Kenta; Kimura, Mutsumi
2017-08-01
We have succeeded in forming a Ga-Sn-O (GTO) film for a thin-film transistor (TFT) using radio-frequency (RF) magnetron sputtering at room temperature without annealing process. It is achieved that the field-effect mobility is 0.83 cm2 V-1 s-1 and the on/off ratio is roughly 106. A critical process parameter is the deposition pressure during the RF magnetron sputtering, which determines a balance between competing mechanisms of sputtering damages and chemical reactions, because the film quality has to be enhanced solely during the sputtering deposition. This result suggests a possibility of rare-metal free amorphous metal-oxide semiconductors.
Chemical bath deposition of II-VI compound thin films
NASA Astrophysics Data System (ADS)
Oladeji, Isaiah Olatunde
II-VI compounds are direct bandgap semiconductors with great potentials in optoelectronic applications. Solar cells, where these materials are in greater demand, require a low cost production technology that will make the final product more affordable. Chemical bath deposition (CBD) a low cost growth technique capable of producing good quality thin film semiconductors over large area and at low temperature then becomes a suitable technology of choice. Heterogeneous reaction in a basic aqueous solution that is responsible for the II-VI compound film growth in CBD requires a metal complex. We have identified the stability constant (k) of the metal complex compatible with CBD growth mechanism to be about 106.9. This value is low enough to ensure that the substrate adsorbed complex relax for subsequent reaction with the chalcogen precursor to take place. It is also high enough to minimize the metal ion concentration in the bath participating in the precipitation of the bulk compounds. Homogeneous reaction that leads to precipitation in the reaction bath takes place because the solubility products of bulk II-VI compounds are very low. This reaction quickly depletes the bath of reactants, limit the film thickness, and degrade the film quality. While ZnS thin films are still hard to grow by CBD because of lack of suitable complexing agent, the homogeneous reaction still limits quality and thickness of both US and ZnS thin films. In this study, the zinc tetraammine complex ([Zn(NH3) 4]2+) with k = 108.9 has been forced to acquire its unsaturated form [Zn(NH3)3]2+ with a moderate k = 106.6 using hydrazine and nitrilotriacetate ion as complementary complexing agents and we have successfully grown ZnS thin films. We have also, minimized or eliminated the homogeneous reaction by using ammonium salt as a buffer and chemical bath with low reactant concentrations. These have allowed us to increase the saturation thickness of ZnS thin film by about 400% and raise that of US film form 0.2 to 0.5 mum with improved quality. A novel chemical activated diffusion of Cd into ZnS thin film at temperature lower than 100°C is also developed. This in conjunction with thermal activated diffusion at 400°C has enabled us to synthesize Cd1-xZn xS thin films suitable for solar cells from CBD grown CdS/ZnS multilayer. The potential application of the new Cd1-xZnxS/CdS/CdTe solar cell structure is also demonstrated. The unoptimized structure grown on transparent conducting oxide coated soda lime glass of 3mm thickness with no antireflection coating yielded a 10% efficiency. This efficiency is the highest ever recorded in any Cd1-xZnxS film containing CdTe solar cells.
Superstrate sub-cell voltage-matched multijunction solar cells
Mascarenhas, Angelo; Alberi, Kirstin
2016-03-15
Voltage-matched thin film multijunction solar cell and methods of producing cells having upper CdTe pn junction layers formed on a transparent substrate which in the completed device is operatively positioned in a superstate configuration. The solar cell also includes a lower pn junction formed independently of the CdTe pn junction and an insulating layer between CdTe and lower pn junctions. The voltage-matched thin film multijunction solar cells further include a parallel connection between the CdTe pn junction and lower pn junctions to form a two-terminal photonic device. Methods of fabricating devices from independently produced upper CdTe junction layers and lower junction layers are also disclosed.
Sol-gel preparation of lead magnesium niobate (PMN) powders and thin films
Boyle, T.J.
1999-01-12
A method of preparing a lead magnesium niobium oxide (PMN), Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}, precursor solution by a solvent method wherein a liquid solution of a lead-complex PMN precursor is combined with a liquid solution of a niobium-complex PMN precursor, the combined lead- and niobium-complex liquid solutions are reacted with a magnesium-alkyl solution, forming a PMN precursor solution and a lead-based precipitate, and the precipitate is separated from the reacted liquid PMN precursor solution to form a precipitate-free PMN precursor solution. This precursor solution can be processed to form both ferroelectric powders and thin films. 3 figs.
Sol-Gel Preparation Of Lead Magnesium Ni Obate (Pmn) Powdersand Thin Films
Boyle, Timothy J.
1999-01-12
A method of preparing a lead magnesium niobium oxide (PMN), Pb(Mg.sub.1/3 Nb.sub.2/3)O.sub.3, precursor solution by a solvent method wherein a liquid solution of a lead-complex PMN precursor is combined with a liquid solution of a niobium-complex PMN precursor, the combined lead- and niobium-complex liquid solutions are reacted with a magnesium-alkyl solution, forming a PMN precursor solution and a lead-based precipitate, and the precipitate is separated from the reacted liquid PMN precursor solution to form a precipitate-free PMN precursor solution. This precursor solution can be processed to form both ferroelectric powders and thin films.
NASA Astrophysics Data System (ADS)
Motalebi, Abolfazl; Nasr-Esfahani, Mojtaba
2013-06-01
The corrosion resistance of AISI 316L stainless steel for biomedical applications, was significantly enhanced by means of hybrid organic-inorganic sol-gel thin films deposited by spin-coating. Thin films of less than 100 nm with different hybrid characters were obtained by incorporating rosemary extract as green corrosion inhibitor. The morphology, composition, and adhesion of hybrid sol-gel coatings have been examined by SEM, EDX, and pull-off test, respectively. Addition of high additive concentrations (0.1%) did not disorganize the sol-gel network. Direct pull-off test recorded a mean coating-substrate bonding strength larger than 21.2 MPa for the hybrid sol-gel coating. The effect of rosemary extract, with various added concentrations from 0.012 to 0.1%, on the anticorrosion properties of sol-gel films have been characterized by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in simulated body fluid (SBF) solution and has been compared to the bare metal. Rosemary extract additions (0.05%) have significantly increased the corrosion protection of the sol-gel thin film to higher than 90%. The in vitro bioactivity of prepared films indicates that hydroxyapatite nuclei can form and grow on the surface of the doped sol-gel thin films. The present study shows that due to their excellent anticorrosion properties, bioactivity and bonding strength to substrate, doped sol-gel thin films are practical hybrid films in biomedical applications.
Synthesis and Characterization of BaFe12O19 Thin Films Using Suspension of Nano Powders
NASA Astrophysics Data System (ADS)
Salemizadeh, Saman; Seyyed Ebrahimi, S. A.
BaM thin films have been synthesized by dispersing the dried gel nano powders prepared by Sol-Gel method. The solution was made by dissolving iron nitrate Fe(NO3).9H2O, barium nitrate Ba(NO3)2 and citric acid in deyonized water and methanol. This sol was slowly evaporated until a dried gel was formed. This dried gel was then added to ethylene glycol. The final solution was vigorously shaken and mixed in ultrasonic cleaner for 30 min to disperse particles sufficiently. Then the prepared solution spin coated on Si(110) substrate. The obtained thin films were dried at 120 °C and then calcined at 900 °C for 1 h. The films were characterized using X-ray diffraction (XRD) and vibrating sample magnetometer (VSM).
NASA Astrophysics Data System (ADS)
Jamer, Michelle E.; Sterbinsky, George E.; Stephen, Gregory M.; DeCapua, Matthew C.; Player, Gabriel; Heiman, Don
2016-10-01
Recently, theorists have predicted many materials with a low magnetic moment and large spin-polarization for spintronic applications. These compounds are predicted to form in the inverse Heusler structure; however, many of these compounds have been found to phase segregate. In this study, ordered Cr2CoGa thin films were synthesized without phase segregation using molecular beam epitaxy. The present as-grown films exhibit a low magnetic moment from antiferromagnetically coupled Cr and Co atoms as measured with superconducting quantum interface device magnetometry and soft X-ray magnetic circular dichroism. Electrical measurements demonstrated a thermally-activated semiconductor-like resistivity component with an activation energy of 87 meV. These results confirm spin gapless semiconducting behavior, which makes these thin films well positioned for future devices.
Jamer, Michelle E.; Sterbinsky, George E.; Stephen, Gregory M.; ...
2016-10-31
Recently, theorists have predicted many materials with a low magnetic moment and large spin-polarization for spintronic applications. These compounds are predicted to form in the inverse Heusler structure; however, many of these compounds have been found to phase segregate. In this study, ordered Cr 2CoGa thin films were synthesized without phase segregation using molecular beam epitaxy. The present as-grown films exhibit a low magnetic moment from antiferromagnetically coupled Cr and Co atoms as measured with superconducting quantum interface device magnetometry and soft X-ray magnetic circular dichroism. Electrical measurements demonstrated a thermally-activated semiconductor-like resistivity component with an activation energy of 87more » meV. Finally, these results confirm spin gapless semiconducting behavior, which makes these thin films well positioned for future devices.« less
NASA Astrophysics Data System (ADS)
Madkour, Sherif; Szymoniak, Paulina; Schick, Christoph; Schönhals, Andreas
2017-05-01
Specific heat spectroscopy (SHS) employing AC nanochip calorimetry was used to investigate the glassy dynamics of ultra-thin films (thicknesses: 10 nm-340 nm) of a polymer blend, which is miscible in the bulk. In detail, a Poly(vinyl methyl ether) (PVME)/Polystyrene (PS) blend with the composition of 25/75 wt. % was studied. The film thickness was controlled by ellipsometry while the film topography was checked by atomic force microscopy. The results are discussed in the framework of the balance between an adsorbed and a free surface layer on the glassy dynamics. By a self-assembling process, a layer with a reduced mobility is irreversibly adsorbed at the polymer/substrate interface. This layer is discussed employing two different scenarios. In the first approach, it is assumed that a PS-rich layer is adsorbed at the substrate. Whereas in the second approach, a PVME-rich layer is suggested to be formed at the SiO2 substrate. Further, due to the lower surface tension of PVME, with respect to air, a nanometer thick PVME-rich surface layer, with higher molecular mobility, is formed at the polymer/air interface. By measuring the glassy dynamics of the thin films of PVME/PS in dependence on the film thickness, it was shown that down to 30 nm thicknesses, the dynamic Tg of the whole film was strongly influenced by the adsorbed layer yielding a systematic increase in the dynamic Tg with decreasing the film thickness. However, at a thickness of ca. 30 nm, the influence of the mobile surface layer becomes more pronounced. This results in a systematic decrease in Tg with the further decrease of the film thickness, below 30 nm. These results were discussed with respect to thin films of PVME/PS blend with a composition of 50/50 wt. % as well as literature results.
Paik, Taejong; Hong, Sung-Hoon; Gaulding, E Ashley; Caglayan, Humeyra; Gordon, Thomas R; Engheta, Nader; Kagan, Cherie R; Murray, Christopher B
2014-01-28
We demonstrate thermally switchable VO2 metamaterials fabricated using solution-processable colloidal nanocrystals (NCs). Vanadium oxide (VOx) NCs are synthesized through a nonhydrolytic reaction and deposited from stable colloidal dispersions to form NC thin films. Rapid thermal annealing transforms the VOx NC thin films into monoclinic, nanocrystalline VO2 thin films that show a sharp, reversible metal-insulator phase transition. Introduction of precise concentrations of tungsten dopings into the colloidal VOx NCs enables the still sharp phase transition of the VO2 thin films to be tuned to lower temperatures as the doping level increases. We fabricate "smart", differentially doped, multilayered VO2 films to program the phase and therefore the metal-insulator behavior of constituent vertically structured layers with temperature. With increasing temperature, we tailored the optical response of multilayered films in the near-IR and IR regions from that of a strong light absorber, in a metal-insulator structure, to that of a Drude-like reflector, characteristic of a pure metallic structure. We demonstrate that nanocrystal-based nanoimprinting can be employed to pattern multilayered subwavelength nanostructures, such as three-dimensional VO2 nanopillar arrays, that exhibit plasmonic dipolar responses tunable with a temperature change.
Yu, Jung-Hoon; Nam, Sang-Hun; Lee, Ji Won; Boo, Jin-Hyo
2016-01-01
This paper presents the preparation of high-quality vanadium dioxide (VO2) thermochromic thin films with enhanced visible transmittance (Tvis) via radio frequency (RF) sputtering and plasma enhanced chemical vapor deposition (PECVD). VO2 thin films with high Tvis and excellent optical switching efficiency (Eos) were successfully prepared by employing SiO2 as a passivation layer. After SiO2 deposition, the roughness of the films was decreased 2-fold and a denser structure was formed. These morphological changes corresponded to the results of optical characterization including the haze, reflectance and absorption spectra. In spite of SiO2 coating, the phase transition temperature (Tc) of the prepared films was not affected. Compared with pristine VO2, the total layer thickness after SiO2 coating was 160 nm, which is an increase of 80 nm. Despite the thickness change, the VO2 thin films showed a higher Tvis value (λ 650 nm, 58%) compared with the pristine samples (λ 650 nm, 43%). This enhancement of Tvis while maintaining high Eos is meaningful for VO2-based smart window applications. PMID:28773679
Effects of different wetting layers on the growth of smooth ultra-thin silver thin films
NASA Astrophysics Data System (ADS)
Ni, Chuan; Shah, Piyush; Sarangan, Andrew M.
2014-09-01
Ultrathin silver films (thickness below 10 nm) are of great interest as optical coatings on windows and plasmonic devices. However, producing these films has been a continuing challenge because of their tendency to form clusters or islands rather than smooth contiguous thin films. In this work we have studied the effect of Cu, Ge and ZnS as wetting layers (1.0 nm) to achieve ultrasmooth thin silver films. The silver films (5 nm) were grown by RF sputter deposition on silicon and glass substrates using a few monolayers of the different wetting materials. SEM imaging was used to characterize the surface properties such as island formation and roughness. Also the optical properties were measured to identify the optical impact of the different wetting layers. Finally, a multi-layer silver based structure is designed and fabricated, and its performance is evaluated. The comparison between the samples with different wetting layers show that the designs with wetting layers which have similar optical properties to silver produce the best overall performance. In the absence of a wetting layer, the measured optical spectra show a significant departure from the model predictions, which we attribute primarily to the formation of clusters.
Measurement of thin liquid film drainage using a novel high-speed impedance analyzer
NASA Astrophysics Data System (ADS)
Hool, Kevin O.; Saunders, Robert C.; Ploehn, Harry J.
1998-09-01
This work describes the design and implementation of a new instrument, called the thin film impedance analyzer, which measures the rate of drainage of thin oil films. The instrument forms an oil film by elevating a planar oil-water interface into a water drop hanging from a stainless steel capillary tube immersed in the oil. The instrument measures the magnitude of the impedance of the matter between the capillary tube and a screen electrode immersed in the lower water phase. Under appropriate conditions, the capacitance of the oil film dominates the impedance. The instrument records the increase in the magnitude of the admittance associated with the draining and thinning of the oil film. The features of the drainage curves vary considerably with the type, amount, and location of surfactants in the oil and water phases, as well as with user-specified values of drop volume, drop equilibration time, and extent of drop compression. For this reason, the instrument has utility as a screening tool for selecting surfactants for emulsion formulations. Potential future uses include accelerated prediction of emulsion stability and extraction of oil-water interfacial rheological parameters.
Advanced Si solid phase crystallization for vertical channel in vertical NANDs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sangsoo; Son, Yong-Hoon; Semiconductor R and D Center, Samsung Electronics Co., Ltd., Hwasung 445-701
The advanced solid phase crystallization (SPC) method using the SiGe/Si bi-layer structure is proposed to obtain high-mobility poly-Si thin-film transistors in next generation vertical NAND (VNAND) devices. During the SPC process, the top SiGe thin film acts as a selective nucleation layer to induce surface nucleation and equiaxial microstructure. Subsequently, this SiGe thin film microstructure is propagated to the underlying Si thin film by epitaxy-like growth. The initial nucleation at the SiGe surface was clearly observed by in situ transmission electron microscopy (TEM) when heating up to 600 °C. The equiaxial microstructures of both SiGe nucleation and Si channel layers weremore » shown in the crystallized bi-layer plan-view TEM measurements. Based on these experimental results, the large-grained and less-defective Si microstructure is expected to form near the channel region of each VNAND cell transistor, which may improve the electrical characteristics.« less