Sample records for form weak hydrogen

  1. Diethyl [(4-bromo­phen­yl)(5-chloro-2-hydroxy­anilino)meth­yl]phospho­nate

    PubMed Central

    Babu, V. H. H. Surendra; Krishnaiah, M.; Prasad, G. Syam; C. Suresh Reddy; Kant, Rajni

    2009-01-01

    In the title compound, C17H20BrClNO4P, inter­molecular C—H⋯O and N—H⋯O hydrogen bonds form centrosymmetric R 2 2(10) dimers linked through O—H⋯O inter­molecular hydrogen bonds, which form centrosymmetric R 2 2(16) dimers. All these hydrogen bonds form chains along [010]. In addition, the crystal structure is stabilized by weak C—H⋯Br hydrogen bonds. The very weak intramolecular N—H⋯O interaction forms a five-membered ring. PMID:21578446

  2. Translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I

    NASA Astrophysics Data System (ADS)

    Takahashi, Masae; Ishikawa, Yoichi

    2013-06-01

    We perform dispersion-corrected first-principles calculations, and far-infrared (terahertz) spectroscopic experiments at 4 K, to examine translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I. The calculated frequencies and relative intensities reproduce the observed spectrum to accuracy of 11 cm-1 or less. The stronger one of the two peaks assigned to the translational mode includes the stretching vibration of the weak hydrogen bond between the acetyl groups of a neighboring one-dimensional chain. The calculation of aspirin form II performed for comparison gives the stretching vibration of the weak hydrogen bond in one-dimensional chain.

  3. Crystal structure of 2-amino-pyridinium 6-chloro-nicotinate.

    PubMed

    Jasmine, N Jeeva; Rajam, A; Muthiah, P Thomas; Stanley, N; Razak, I Abdul; Rosli, M Mustaqim

    2015-09-01

    In the title salt, C5H7N(+)·C6H3ClNO(-), the 2-amino-pyri-din-ium cation inter-acts with the carboxyl-ate group of the 6-chloro-nicotinate anion through a pair of independent N-H⋯O hydrogen bonds, forming an R 2 (2)(8) ring motif. In the crystal, these dimeric units are connected further via N-H⋯O hydrogen bonds, forming chains along [001]. In addition, weak C-H⋯N and C-H⋯O hydrogen bonds, together with weak π-π inter-actions, with centroid-centroid distances of 3.6560 (5) and 3.6295 (5) Å, connect the chains, forming a two-dimensional network parallel to (100).

  4. (Z)-3-(1-Chloro-prop-1-en-yl)-2-methyl-1-phenyl-sulfonyl-1H-indole.

    PubMed

    Umadevi, M; Saravanan, V; Yamuna, R; Mohanakrishnan, A K; Chakkaravarthi, G

    2013-11-16

    In the title compound, C18H16ClNO2S, the indole ring system forms a dihedral angle of 75.07 (8)° with the phenyl ring. The mol-ecular structure is stabilized by a weak intra-molecular C-H⋯O hydrogen bond. In the crystal, mol-ecules are linked by weak C-H⋯O hydrogen bonds, forming a chain along [10-1]. C-H⋯π inter-actions are also observed, leading to a three-dimensional network.

  5. Hydrogen storage and evolution catalysed by metal hydride complexes.

    PubMed

    Fukuzumi, Shunichi; Suenobu, Tomoyoshi

    2013-01-07

    The storage and evolution of hydrogen are catalysed by appropriate metal hydride complexes. Hydrogenation of carbon dioxide by hydrogen is catalysed by a [C,N] cyclometalated organoiridium complex, [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(OH(2))](2)SO(4) [Ir-OH(2)](2)SO(4), under atmospheric pressure of H(2) and CO(2) in weakly basic water (pH 7.5) at room temperature. The reverse reaction, i.e., hydrogen evolution from formate, is also catalysed by [Ir-OH(2)](+) in acidic water (pH 2.8) at room temperature. Thus, interconversion between hydrogen and formic acid in water at ambient temperature and pressure has been achieved by using [Ir-OH(2)](+) as an efficient catalyst in both directions depending on pH. The Ir complex [Ir-OH(2)](+) also catalyses regioselective hydrogenation of the oxidised form of β-nicotinamide adenine dinucleotide (NAD(+)) to produce the 1,4-reduced form (NADH) under atmospheric pressure of H(2) at room temperature in weakly basic water. In weakly acidic water, the complex [Ir-OH(2)](+) also catalyses the reverse reaction, i.e., hydrogen evolution from NADH to produce NAD(+) at room temperature. Thus, interconversion between NADH (and H(+)) and NAD(+) (and H(2)) has also been achieved by using [Ir-OH(2)](+) as an efficient catalyst and by changing pH. The iridium hydride complex formed by the reduction of [Ir-OH(2)](+) by H(2) and NADH is responsible for the hydrogen evolution. Photoirradiation (λ > 330 nm) of an aqueous solution of the Ir-hydride complex produced by the reduction of [Ir-OH(2)](+) with alcohols resulted in the quantitative conversion to a unique [C,C] cyclometalated Ir-hydride complex, which can catalyse hydrogen evolution from alcohols in a basic aqueous solution (pH 11.9). The catalytic mechanisms of the hydrogen storage and evolution are discussed by focusing on the reactivity of Ir-hydride complexes.

  6. Molecular Handshake: Recognition through Weak Noncovalent Interactions

    ERIC Educational Resources Information Center

    Murthy, Parvathi S.

    2006-01-01

    The weak noncovalent interactions between substances, the handshake in the form of electrostatic interactions, van der Waals' interactions or hydrogen bonding is universal to all living and nonliving matter. They significantly influence the molecular and bulk properties and behavior of matter. Their transient nature affects chemical reactions and…

  7. The effect of redox treatment on the structural, adsorptive, and catalytic properties of Raney nickel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailenko, S.D.; Khodareva, T.A.; Leongardt, E.V.

    The effect on Raney nickel catalyst of annealing in hydrogen, and of mild oxidation and subsequent reduction have been studied. The properties investigated are the structure, hydrogen adsorption, and activity for nitrobenzene and potassium maleate liquid-phase hydrogenation. Characterization involved X-ray line broadening, adsorption, and capillary condensation of Ar, XPS, and thermoprogrammed reduction. Thermodesorption studies indicate two forms of adsorbed hydrogen, one of which is a weakly bound molecular form and does not depend on treatment, while the other is strongly bound atomic hydrogen whose amount decreases with increase in the annealing temperature. Annealing hydrogen at T [ge] 200[degrees]C in hydrogen,more » after which the activity for hydrogenation is on par with that of newly prepared catalyst. 33 refs., 10 figs., 5 tabs.« less

  8. Crystal Structures of New Ammonium 5-Aminotetrazolates

    PubMed Central

    Lampl, Martin; Salchner, Robert; Laus, Gerhard; Braun, Doris E.; Kahlenberg, Volker; Wurst, Klaus; Fuhrmann, Gerda; Schottenberger, Herwig; Huppertz, Hubert

    2015-01-01

    The crystal structures of three salts of anionic 5-aminotetrazole are described. The tetramethylammonium salt (P1‒) forms hydrogen-bonded ribbons of anions which accept weak C–H⋯N contacts from the cations. The cystamine salt (C2/c) shows wave-shaped ribbons of anions linked by hydrogen bonds to screw-shaped dications. The tetramethylguanidine salt (P21/c) exhibits layers of anions hydrogen-bonded to the cations. PMID:26753100

  9. 7-Meth­oxy­indan-1-one

    PubMed Central

    Chang, Yuan Jay; Chen, Kew-Yu

    2012-01-01

    In the title compound, C10H10O2, the 1-indanone unit is essentially planar (r.m.s. deviation = 0.028 Å). In the crystal, molecules are linked via C—H⋯O hydrogen bonds, forming layers lying parallel to the ab plane. This two-dimensional structure is stabilized by a weak C—H⋯π inter­action. A second weak C—H⋯π inter­action links the layers, forming a three-dimensional structure. PMID:23284398

  10. Hydrogen Bond Lifetimes and Energetics for Solute-Solvent Complexes Studied with 2D-IR Vibrational Echo Spectroscopy

    PubMed Central

    Zheng, Junrong; Fayer, Michael D.

    2008-01-01

    Weak π hydrogen bonded solute-solvent complexes are studied with ultrafast two dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy, temperature dependent IR absorption spectroscopy, and density functional theory calculations. Eight solute-solvent complexes composed of a number of phenol derivatives and various benzene derivatives are investigated. The complexes are formed between the phenol derivative (solute) in a mixed solvent of the benzene derivative and CCl4. The time dependence of the 2D-IR vibrational echo spectra of the phenol hydroxyl stretch is used to directly determine the dissociation and formation rates of the hydrogen bonded complexes. The dissociation rates of the weak hydrogen bonds are found to be strongly correlated with their formation enthalpies. The correlation can be described with an equation similar to the Arrhenius equation. The results are discussed in terms of transition state theory. PMID:17373792

  11. Spectroscopic study of uracil, 1-methyluracil and 1-methyl-4-thiouracil: Hydrogen bond interactions in crystals and ab-initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Brela, Mateusz Z.; Boczar, Marek; Malec, Leszek M.; Wójcik, Marek J.; Nakajima, Takahito

    2018-05-01

    Hydrogen bond networks in uracil, 1-methyluracil and 1-methyl-4-thiouracil were studied by ab initio molecular dynamics as well as analysis of the orbital interactions. The power spectra calculated by ab initio molecular dynamics for atoms involved in hydrogen bonds were analyzed. We calculated spectra by using anharmonic approximation based on the autocorrelation function of the atom positions obtained from the Born-Oppenheimer simulations. Our results show the differences between hydrogen bond networks in uracil and its methylated derivatives. The studied methylated derivatives, 1-methyluracil as well as 1-methyl-4-thiouracil, form dimeric structures in the crystal phase, while uracil does not form that kind of structures. The presence of sulfur atom instead oxygen atom reflects weakness of the hydrogen bonds that build dimers.

  12. Selecting the spin crossover profile with controlled crystallization of mononuclear Fe(iii) polymorphs.

    PubMed

    Vicente, Ana I; Ferreira, Liliana P; Carvalho, Maria de Deus; Rodrigues, Vítor H N; Dîrtu, Marinela M; Garcia, Yann; Calhorda, Maria José; Martinho, Paulo N

    2018-05-08

    Two polymorphic species of the [Fe(5-Br-salEen)2]ClO4 compound were obtained, each of them being selectively recovered after evaporation of the solvent at a controlled rate. While polymorph 1a is formed during slow evaporation, fast evaporation favors polymorph 1b. The importance of the evaporation rate was recognized after detailed studies of the reaction temperature, solvent evaporation rate and crystallization temperature effects. The complex in the new polymorphic form 1a showed an abrupt spin crossover at 172 K with a small 1 K hysteresis window and over a narrow 10 K range. 57Fe Mössbauer spectroscopy and differential scanning calorimetry, complemented by X-ray studies for both the high-spin and low-spin forms, were used to further characterize the new polymorphic phase 1a. Both polymorphs are based on the same Fe(iii) complex cation hydrogen bonded to the perchlorate anion. These units are loosely bound in the crystals via weak interactions. In the new polymorph 1a, the hydrogen bonds are stronger, while the weak hydrogen and halogen bonds, as well as π-π stacking, create a cooperative network, not present in 1b, responsible for the spin transition profile.

  13. Hydrogen line ratios in Seyfert galaxies and low redshift quasars

    NASA Technical Reports Server (NTRS)

    Kriss, G. R.

    1984-01-01

    New observations of the Lymal alpha radiation/hydrogen alpha radiation ratio in a set of X-ray selected active galactic nuclei and an archival study of International Ultraviolet Explorer (IUE) observations of Lymal alpha low redshift quasars and Seyfert galaxies have been used to form a large sample for studying the influence of soft X-rays on the enhancement of Balmer emission in the broad line region. In common models of broad line clouds, the Balmer lines are formed deep in the interior, largely by collisional excitation. Heating within the clouds is provided by soft X-ray radiation, while Lymal alpha is formed mainly by recombination after photoionization. The ratio Lymal alpha/Halpha is expected to depend weakly on the ratio of ionizing ultraviolet luminosity to X-ray luminosity (L sub UV/l sub x). If the Lymal alpha luminosity is used as a measure of L sub UV' a weak dependence of Lymal/H alpha on the X-ray luminosity is found similar to previous results.

  14. Spectroscopic study of uracil, 1-methyluracil and 1-methyl-4-thiouracil: Hydrogen bond interactions in crystals and ab-initio molecular dynamics.

    PubMed

    Brela, Mateusz Z; Boczar, Marek; Malec, Leszek M; Wójcik, Marek J; Nakajima, Takahito

    2018-05-15

    Hydrogen bond networks in uracil, 1-methyluracil and 1-methyl-4-thiouracil were studied by ab initio molecular dynamics as well as analysis of the orbital interactions. The power spectra calculated by ab initio molecular dynamics for atoms involved in hydrogen bonds were analyzed. We calculated spectra by using anharmonic approximation based on the autocorrelation function of the atom positions obtained from the Born-Oppenheimer simulations. Our results show the differences between hydrogen bond networks in uracil and its methylated derivatives. The studied methylated derivatives, 1-methyluracil as well as 1-methyl-4-thiouracil, form dimeric structures in the crystal phase, while uracil does not form that kind of structures. The presence of sulfur atom instead oxygen atom reflects weakness of the hydrogen bonds that build dimers. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. dl-Asparaginium nitrate

    PubMed Central

    Moussa Slimane, Nabila; Cherouana, Aouatef; Bendjeddou, Lamia; Dahaoui, Slimane; Lecomte, Claude

    2009-01-01

    In the title compound, C4H9N2O3 +·NO3 −, alternatively called (1RS)-2-carbamoyl-1-carboxy­ethanaminium nitrate, the asymmetric unit comprises one asparaginium cation and one nitrate anion. The strongest cation–cation O—H⋯O hydrogen bond in the structure, together with other strong cation–cation N—H⋯O hydrogen bonds, generates a succession of infinite chains of R 2 2(8) rings along the b axis. Additional cation–cation C—H⋯O hydrogen bonds link these chains into two-dimensional layers formed by alternating R 4 4(24) and R 4 2(12) rings. Connections between these layers are provided by the strong cation–anion N—H⋯O hydrogen bonds, as well as by one weak C—H⋯O inter­action, thus forming a three-dimensional network. Some of the cation–anion N—H⋯O hydrogen bonds are bifurcated of the type D—H⋯(A 1,A 2). PMID:21577586

  16. The Born-Oppenheimer molecular simulations of infrared spectra of crystalline poly-(R)-3-hydroxybutyrate with analysis of weak Csbnd H⋯Odbnd C hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Brela, Mateusz Z.; Boczar, Marek; Wójcik, Marek J.; Sato, Harumi; Nakajima, Takahito; Ozaki, Yukihiro

    2017-06-01

    In this letter we present results of study of weak Csbnd H⋯Odbnd C hydrogen bonds of crystalline poly-(R)-3-hydroxybutyrate (PHB) by using Born-Oppenheimer molecular dynamics. The polymeric structure and IR spectra of PHB result from the presence of the weak hydrogen bonds. We applied the post-molecular dynamics analysis to consider a Cdbnd O motion as indirectly involved in the hydrogen bonds. Quantization of the nuclear motion of the oxygens was done to perform detailed analysis of the strength and properties of the Cdbnd O bands involved in the weak hydrogen bonds. We have also shown the dynamic character of the weak hydrogen bond interactions.

  17. An investigation of the effect of surface impurities on the adsorption kinetics of hydrogen chemisorbed onto iron

    NASA Technical Reports Server (NTRS)

    Shanabarger, Mickey R.

    1994-01-01

    The goal of this program has been to develop an understanding of heterogeneous kinetic processes for those molecular species which produce gaseous hydrogen degradation of the mechanical properties of metallic structural materials. During the present program, the interaction of hydrogen with the surfaces of alpha-2 (Ti3Al) titanium aluminide, gamma (TiAl) titanium aluminide, and beryllium were studied. The interaction of low pressure hydrogen with gamma titanium aluminide and beryllium was found to be relatively weak. Weak in the sense that adsorption leads to a low surface concentration of dissociated hydrogen, i.e., the chemisorption process is reversible at room temperature (300 K) for gamma titanium aluminide and the sticking coefficient for chemisorption is extremely small for beryllium. Hydrogen was found to interact readily with alpha-2 titanium aluminide to form a stable surface hydride at 300 K. These results correlate well with other recent studies which show that the mechanical properties for alpha-2 titanium aluminide are readily degraded in hydrogen while gamma titanium aluminide exhibits less degradation and beryllium essentially no degradation. The interaction of oxygen with the surface of several of these materials was studied. More recently, preliminary hydrogen permeation studies were completed for three high temperature alloys, Incoloy 909, Mo-47.5Re (wt. %), and this past year, Haynes 188.

  18. Chiral self-recognition: direct spectroscopic detection of the homochiral and heterochiral dimers of propylene oxide in the gas phase.

    PubMed

    Su, Zheng; Borho, Nicole; Xu, Yunjie

    2006-12-27

    In this report, we describe rotational spectroscopic and high-level ab initio studies of the 1:1 chiral molecular adduct of propylene oxide dimer. The complexes are bound by weak secondary hydrogen bonds, that is, the O(epoxy)...H-C noncovalent interactions. Six homochiral and six heterochiral conformers were predicted to be the most stable configurations where each monomer acts as a proton acceptor and a donor simultaneously, forming two six- or five-membered intermolecular hydrogen-bonded rings. Rotational spectra of six, that is, three homochiral and heterochiral conformer pairs, out of the eight conformers that were predicted to have sufficiently large permanent electric dipole moments were measured and analyzed. The relative conformational stability order and the signs of the chiral recognition energies of the six conformers were determined experimentally and were compared to the ab initio computational results. The experimental observations and the ab initio calculations suggest that the concerted effort of these weak secondary hydrogen bonds can successfully lock the subunits in a particular orientation and that the overall binding strength is comparable to a classic hydrogen bond.

  19. Halogen Bonding: A Powerful Tool for Modulation of Peptide Conformation

    PubMed Central

    2017-01-01

    Halogen bonding is a weak chemical force that has so far mostly found applications in crystal engineering. Despite its potential for use in drug discovery, as a new molecular tool in the direction of molecular recognition events, it has rarely been assessed in biopolymers. Motivated by this fact, we have developed a peptide model system that permits the quantitative evaluation of weak forces in a biologically relevant proteinlike environment and have applied it for the assessment of a halogen bond formed between two amino acid side chains. The influence of a single weak force is measured by detection of the extent to which it modulates the conformation of a cooperatively folding system. We have optimized the amino acid sequence of the model peptide on analogues with a hydrogen bond-forming site as a model for the intramolecular halogen bond to be studied, demonstrating the ability of the technique to provide information about any type of weak secondary interaction. A combined solution nuclear magnetic resonance spectroscopic and computational investigation demonstrates that an interstrand halogen bond is capable of conformational stabilization of a β-hairpin foldamer comparable to an analogous hydrogen bond. This is the first report of incorporation of a conformation-stabilizing halogen bond into a peptide/protein system, and the first quantification of a chlorine-centered halogen bond in a biologically relevant system in solution. PMID:28581720

  20. Structure of saligenin: microwave, UV and IR spectroscopy studies in a supersonic jet combined with quantum chemistry calculations.

    PubMed

    Kumar, Sumit; Singh, Santosh K; Calabrese, Camilla; Maris, Assimo; Melandri, Sonia; Das, Aloke

    2014-08-28

    In this study, we have determined the structure of a medicinally important molecule saligenin (2-hydroxybenzyl alcohol) using UV, IR and microwave absorption spectroscopy in a supersonic jet combined with ab initio calculations. The structure of the only observed conformer of saligenin corresponds to the global minimum on the conformational surface. The observed structure is stabilized by an intramolecular strong O-H···O hydrogen bonding as well as a very weak O-H···π interaction. The hydrogen bond is formed through phenolic OH as the hydrogen bond donor and benzylic OH as the hydrogen bond acceptor while the O-H···π interaction is through benzylic O-H as the hydrogen bond donor and phenyl group as the hydrogen bond acceptor. It has been observed that the benzylic OH stretching frequency in saligenin is more red-shifted compared to that in benzyl alcohol as the strong O-H···O interaction present in saligenin acts on the benzylic O-H group. In fact, there is a subtle interplay among the strong O-H···O hydrogen bond, weak O-H···π interaction, and steric effects arising from the ortho substitution of the OH group in benzyl alcohol. This fine-tuning of multiple interactions very often governs the specific structures of biomolecules and materials.

  1. Influence of strong and weak hydrogen bonds in ices on stimulated Raman scattering.

    PubMed

    Li, Tianyu; Li, Fangfang; Li, Zhanlong; Sun, Chenglin; Tong, Junhong; Fang, Wenhui; Men, Zhiwei

    2016-03-15

    Stimulated Raman scattering (SRS) in liquid water and ice Ih using Nd:YAG laser is investigated. The spectrum of backward SRS (BSRS) in water is acquired. The spectrum shows an unexpected SRS peak at around 3453  cm(-1) besides the normal peak, which is similar to the spontaneous Raman spectrum of ice VII. The ice VII phase will be formed by laser-induced shock compression in liquid water. Simultaneously, unlike the spontaneous Raman spectrum, the pre-resonance SRS of ice Ih at around 3110 and 3210  cm(-1) is observed. The Raman peaks appeared in liquid water and ice Ih are attributed to the effect of strong and weak hydrogen bonds (H bonds), which should be ubiquitous in other ice phases.

  2. 2-[2-(3-Chloro­phen­yl)hydrazinyl­idene]-1,3-diphenyl­propane-1,3-dione

    PubMed Central

    Bustos, Carlos; Alvarez-Thon, Luis; Cárcamo, Juan-Guillermo; Ibañez, Andrés; Sánchez, Christian

    2011-01-01

    The mol­ecular structure of the title compound, C21H15ClN2O2, features one strong intra­molecular N—H⋯O resonance-assisted hydrogen bond (RAHB). In the crystal, mol­ecules form inversion-related dimers via pairs of weak inter­molecular N—H⋯O contacts. These dimers are further stabilized via three weak C—H⋯O contacts, developing the three-dimensional structure. PMID:21754825

  3. Crystal structure and hydrogen-bonding patterns in 5-fluoro-cytosinium picrate.

    PubMed

    Mohana, Marimuthu; Thomas Muthiah, Packianathan; McMillen, Colin D

    2017-03-01

    In the crystal structure of the title compound, 5-fluoro-cytosinium picrate, C 4 H 5 FN 3 O + ·C 6 H 2 N 3 O 7 - , one N heteroatom of the 5-fluoro-cytosine (5FC) ring is protonated. The 5FC ring forms a dihedral angle of 19.97 (11)° with the ring of the picrate (PA - ) anion. In the crystal, the 5FC + cation inter-acts with the PA - anion through three-centre N-H⋯O hydrogen bonds, forming two conjoined rings having R 2 1 (6) and R 1 2 (6) motifs, and is extended by N-H⋯O hydrogen bonds and C-H⋯O inter-actions into a two-dimensional sheet structure lying parallel to (001). Also present in the crystal structure are weak C-F⋯π inter-actions.

  4. Supra-molecular architecture in a co-crystal of the N(7)-H tautomeric form of N (6)-benzoyl-adenine with adipic acid (1/0.5).

    PubMed

    Swinton Darious, Robert; Thomas Muthiah, Packianathan; Perdih, Franc

    2016-06-01

    The asymmetric unit of the title co-crystal, C12H9N5O·0.5C6H10O4, consists of one mol-ecule of N (6)-benzoyl-adenine (BA) and one half-mol-ecule of adipic acid (AA), the other half being generated by inversion symmetry. The dihedral angle between the adenine and phenyl ring planes is 26.71 (7)°. The N (6)-benzoyl-adenine mol-ecule crystallizes in the N(7)-H tautomeric form with three non-protonated N atoms. This tautomeric form is stabilized by intra-molecular N-H⋯O hydrogen bonding between the carbonyl (C=O) group and the N(7)-H hydrogen atom on the Hoogsteen face of the purine ring, forming an S(7) ring motif. The two carboxyl groups of adipic acid inter-act with the Watson-Crick face of the BA mol-ecules through O-H⋯N and N-H⋯O hydrogen bonds, generating an R 2 (2)(8) ring motif. The latter units are linked by N-H⋯N hydrogen bonds, forming layers parallel to (10-5). A weak C-H⋯O hydrogen bond is also present, linking adipic acid mol-ecules in neighbouring layers, enclosing R (2) 2(10) ring motifs and forming a three-dimensional structure. C=O⋯π and C-H⋯π inter-actions are also present in the structure.

  5. Hydrogen density of states and defects densities in a-Si:H

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deane, S.C.; Powell, M.J.; Robertson, J.

    1996-12-31

    The properties of hydrogenated amorphous silicon (a-Si:H) and its devices depend fundamentally on the density of states (DOS) in the gap due to dangling bonds. It is generally believed that the density of dangling bonds is controlled by a chemical equilibrium with the weak Si-Si bonds which form the localized valence band tail states. Further details are given of a unified model of the hydrogen density of states and defect pool of a-Si:H. The model is compared to other defect models and extended to describe a-Si alloys and the creation of valence band tail states during growth.

  6. Synthesis, Photophysical Characterization, and Gelation Studies of a Stilbene-Cholesterol Derivative

    ERIC Educational Resources Information Center

    Geiger, H. Christina; Geiger, David K.; Baldwin, Christine

    2006-01-01

    Organogels are low molar mass organic compounds with the ability to immobilize an incredible quantity of solvent and fibrous aggregation of these compounds formed by noncovalent interaction usually involves hydrogen bonding. For stilbene-cholesterol based gelators, the driving force for molecular aggregation are weak van der Waal interactions…

  7. Discrete and polymeric self-assembled dendrimers: Hydrogen bond-mediated assembly with high stability and high fidelity

    PubMed Central

    Corbin, Perry S.; Lawless, Laurence J.; Li, Zhanting; Ma, Yuguo; Witmer, Melissa J.; Zimmerman, Steven C.

    2002-01-01

    Hydrogen bond-mediated self-assembly is a powerful strategy for creating nanoscale structures. However, little is known about the fidelity of assembly processes that must occur when similar and potentially competing hydrogen-bonding motifs are present. Furthermore, there is a continuing need for new modules and strategies that can amplify the relatively weak strength of a hydrogen bond to give more stable assemblies. Herein we report quantitative complexation studies on a ureidodeazapterin-based module revealing an unprecedented stability for dimers of its self-complementary acceptoracceptor-donor-donor (AADD) array. Linking two such units together with a semirigid spacer that carries a first-, second-, or third-generation Fréchet-type dendron affords a ditopic structure programmed to self assemble. The specific structure that is formed depends both on the size of the dendron and the solvent, but all of the assemblies have exceptionally high stability. The largest discrete nanoscale assembly is a hexamer with a molecular mass of about 17.8 kDa. It is stabilized by 30 hydrogen bonds, including six AADD⋅DDAA contacts. The hexamer forms and is indefinitely stable in the presence of a hexamer containing six ADD⋅DAA hydrogen-bonding arrays. PMID:11917113

  8. Water: two liquids divided by a common hydrogen bond.

    PubMed

    Soper, Alan K

    2011-12-08

    The structure of water is the subject of a long and ongoing controversy. Unlike simpler liquids, where atomic interactions are dominated by strong repulsive forces at short distances and weaker attractive (van der Waals) forces at longer distances, giving rise to local atomic coordination numbers of order 12, water has pronounced and directional hydrogen bonds which cause the dense liquid close-packed structure to open out into a disordered and dynamic network, with coordination number 4-5. Here I show that water structure can be accurately represented as a mixture of two identical, interpenetrating, molecular species separated by common hydrogen bonds. Molecules of one type can form hydrogen bonds with molecules of the other type but cannot form hydrogen bonds with molecules of the same type. These hydrogen bonds are strong along the bond but weak with respect to changes in the angle between neighboring bonds. The observed pressure and temperature dependence of water structure and thermodynamic properties follow naturally from this choice of water model, and it also gives a simple explanation of the enduring claims based on spectroscopic evidence that water is a mixture of two components. © 2011 American Chemical Society

  9. Influence of the anions on the N-cationic benzethonium salts in the solid state and solution: Chloride, bromide, hydroxide and citrate hydrates

    NASA Astrophysics Data System (ADS)

    Paradies, Henrich H.; Reichelt, Hendrik

    2016-06-01

    The crystal structures of the hydrated cationic surfactant benzethonium (Bzth) chloride, bromide, hydroxide, and citrate have been determined by X-ray diffraction analysis and compared with their structures in solution well above their critical micelle concentration. The differences in the nature of the various anions of the four Bzth-X materials lead to unique anion environments and 3-D molecular arrangements. The water molecule in the monoclinic Bzth-Cl or Bzth-Br forms is hydrogen bonded to the halides and particularly to the hydrogens of the methoxy groups of the Bzth moiety notwithstanding the weak Brønsted acidity of the methoxy hydrogens. The citrate strongly interacts with the hydrogens of the methoxy group forming an embedded anionic spherical cluster of a radius of 2.6 Å. The Bzth-OH crystallizes in a hexagonal lattice with two water molecules and reveals free water molecules forming hydrogen bonded channels through the Bzth-OH crystal along the c-axis. The distances between the cationic nitrogen and the halides are 4.04 Å and 4.20 Å, significantly longer than expected for typical van der Waals distances of 3.30 Å. The structures show weakly interacting, alternating apolar and polar layers, which run parallel to the crystallographic a-b planes or a-c planes. The Bzth-X salts were also examined in aqueous solution containing 20% (v/v) ethanol and 1.0 % (v/v) glycerol well above their critical micelle concentration by small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). The [1,1,1] planes for the Bzth Cl or Br, the [0,0,2] and [1,1,0] planes for the Bzth-citrate, the [2,-1,0] planes and the [0,0,1] planes for the Bzth-OH found in the crystalline phase were also present in the solution phase, accordingly, the preservation of these phases are a strong indication of periodicity in the solution phase.

  10. Crystal structure and hydrogen-bonding patterns in 5-fluoro­cytosinium picrate

    PubMed Central

    Mohana, Marimuthu; Thomas Muthiah, Packianathan; McMillen, Colin D.

    2017-01-01

    In the crystal structure of the title compound, 5-fluoro­cytosinium picrate, C4H5FN3O+·C6H2N3O7 −, one N heteroatom of the 5-fluoro­cytosine (5FC) ring is protonated. The 5FC ring forms a dihedral angle of 19.97 (11)° with the ring of the picrate (PA−) anion. In the crystal, the 5FC+ cation inter­acts with the PA− anion through three-centre N—H⋯O hydrogen bonds, forming two conjoined rings having R 2 1(6) and R 1 2(6) motifs, and is extended by N—H⋯O hydrogen bonds and C—H⋯O inter­actions into a two-dimensional sheet structure lying parallel to (001). Also present in the crystal structure are weak C—F⋯π inter­actions. PMID:28316809

  11. Orphenadrinium picrate picric acid.

    PubMed

    Fun, Hoong-Kun; Hemamalini, Madhukar; Siddaraju, B P; Yathirajan, H S; Narayana, B

    2010-02-24

    The asymmetric unit of the title compound N,N-dimethyl-2-[(2-methyl-phen-yl)phenyl-meth-oxy]ethanaminium picrate picric acid, C(18)H(24)NO(+)·C(6)H(2)N(3)O(7) (-)·C(6)H(3)N(3)O(7), contains one orphenadrinium cation, one picrate anion and one picric acid mol-ecule. In the orphenadrine cation, the two aromatic rings form a dihedral angle of 70.30 (7)°. There is an intra-molecular O-H⋯O hydrogen bond in the picric acid mol-ecule, which generates an S(6) ring motif. In the crystal structure, the orphenadrine cations, picrate anions and picric acid mol-ecules are connected by strong inter-molecular N-H⋯O hydrogen bonds, π⋯π inter-actions between the benzene rings of cations and anions [centroid-centroid distance = 3.5603 (9) Å] and weak C-H⋯O hydrogen bonds, forming a three-dimensional network.

  12. The measurement of the stacking fault energy in copper, nickel and copper-nickel alloys

    NASA Technical Reports Server (NTRS)

    Leighly, H. P., Jr.

    1982-01-01

    The relationship of hydrogen solubility and the hydrogen embrittlement of high strength, high performance face centered cubic alloys to the stacking fault energy of the alloys was investigated. The stacking fault energy is inversely related to the distance between the two partial dislocations which are formed by the dissociation of a perfect dislocation. The two partial dislocations define a stacking fault in the crystal which offers a region for hydrogen segregation. The distance between the partial dislocations is measured by weak beam, dark field transmission electron microscopy. The stacking fault energy is calculated. Pure copper, pure nickel and copper-nickel single crystals are used to determine the stacking fault energy.

  13. Quantum nature of protons in water probed by scanning tunneling microscopy and spectroscopy

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Lü, Jing-Tao; Feng, Yexin; Chen, Ji; Peng, Jinbo; Lin, Zeren; Meng, Xiangzhi; Wang, Zhichang; Li, Xin-Zheng; Wang, En-Ge; Jiang, Ying; Jing-Tao Lü Team; Xin-Zheng Li Team

    The complexity of hydrogen-bonding interaction largely arises from the quantum nature of light hydrogen nuclei, which has remained elusive for decades. Here we report the direct assessment of nuclear quantum effects on the strength of a single hydrogen bond formed at a water-salt interface, using tip-enhanced inelastic electron tunneling spectroscopy (IETS) based on a low-temperature scanning tunneling microscope (STM). The IETS signals are resonantly enhanced by gating the frontier orbitals of water via a chlorine-terminated STM tip, such that the hydrogen-bonding strength can be determined with unprecedentedly high accuracy from the redshift in the O-H stretching frequency of water. Isotopic substitution experiments combined with quantum simulations reveal that the anharmonic quantum fluctuations of hydrogen nuclei weaken the weak hydrogen bonds and strengthen the relatively strong ones. However, this trend can be completely reversed when the hydrogen bond is strongly coupled to the polar atomic sites of the surface.

  14. Adsorption and Desorption of Hydrogen by Gas-Phase Palladium Clusters Revealed by In Situ Thermal Desorption Spectroscopy.

    PubMed

    Takenouchi, Masato; Kudoh, Satoshi; Miyajima, Ken; Mafuné, Fumitaka

    2015-07-02

    Adsorption and desorption of hydrogen by gas-phase Pd clusters, Pdn(+), were investigated by thermal desorption spectroscopy (TDS) experiments and density functional theory (DFT) calculations. The desorption processes were examined by heating the clusters that had adsorbed hydrogen at room temperature. The clusters remaining after heating were monitored by mass spectrometry as a function of temperature up to 1000 K, and the temperature-programmed desorption (TPD) curve was obtained for each Pdn(+). It was found that hydrogen molecules were released from the clusters into the gas phase with increasing temperature until bare Pdn(+) was formed. The threshold energy for desorption, estimated from the TPD curve, was compared to the desorption energy calculated by using DFT, indicating that smaller Pdn(+) clusters (n ≤ 6) tended to have weakly adsorbed hydrogen molecules, whereas larger Pdn(+) clusters (n ≥ 7) had dissociatively adsorbed hydrogen atoms on the surface. Highly likely, the nonmetallic nature of the small Pd clusters prevents hydrogen molecule from adsorbing dissociatively on the surface.

  15. Three-dimensional six-connecting organic building blocks based on polychlorotriphenylmethyl units--synthesis, self-assembly, and magnetic properties.

    PubMed

    Roques, Nans; Maspoch, Daniel; Wurst, Klaus; Ruiz-Molina, Daniel; Rovira, Concepció; Veciana, Jaume

    2006-12-13

    The synthesis of a three-dimensional, six-connecting, organic building block based on a robust, rigid, and open-shell polychlorotriphenylmethyl (PTM) unit (radical 1) is reported, and its self-assembly properties are described in detail. The tendencies of this highly polar molecule and its hydrogenated precursor, compound 4, to form hydrogen bonds with oxygenated solvents ([1THF(6)] and [4THF(6)]) were reduced by replacing THF with diethyl ether in the crystallization process to yield two-dimensional (2D) hydrogen-bonded structures ([1(Et(2)O)(3)] and [4(Et(2)O)(3)]). The presence of direct hydrogen bonds between the radicals in the latter phase of 1 gives rise to very weak ferromagnetic intermolecular interactions at low temperatures, whereas when the radicals are isolated by THF molecules these interactions are antiferromagnetic and very weak. The role played by the carboxylic groups not only in the self-assembly properties but also in the transmission of the magnetic interactions has been illustrated by determination of the crystal structure and measurement of the magnetic properties of the corresponding hexaester radical 6, in which the close packing of molecular units gives rise to weak antiferromagnetic intermolecular interactions. Attempts to avoid solvation of the molecules in the solid state and to increase the structural and magnetic dimensionality were pursued by recrystallization of both compounds 1 and 4 from concentrated nitric acid, affording two three-dimensional (3D) robust hydrogen-bonded structures. While the structure obtained with compound 4 is characterized by the presence of polar channels and boxes containing water guest molecules along the c axis, radical 1 was oxidized to the corresponding fuchsone 10, which presented a completely different close-packed, guest-free structure.

  16. 2-({4-[4-(1H-Benzimidazol-2-yl)phen­yl]-1H-1,2,3-triazol-1-yl}meth­oxy)ethanol

    PubMed Central

    Ouahrouch, Abdelaaziz; Taourirte, Moha; Lazrek, Hassan B.; Bats, Jan W.; Engels, Joachim W.

    2012-01-01

    In the title molecule, C18H17N5O2, the dihedral angle between the benzene plane and the benzimidazole plane is 19.8 (1)° and the angle between the benzene plane and the triazole plane is 16.7 (1)°. In the crystal, mol­ecules are connected by O—H⋯N hydrogen bonds, forming zigzag chains along the c-axis direction. The chains are connected by bifurcated N—H⋯(N,N) hydrogen bonds into layers parallel to (100). These layers are connected along the a-axis direction by weak C—H⋯O contacts, forming a three-dimensional network. PMID:22719663

  17. Crystal structure of 1-ferrocenyl-2-(4-methyl-benzo-yl)spiro-[11H-pyrrolidizine-3,11'-indeno[1,2-b]quinoxaline].

    PubMed

    Chandralekha, Kuppan; Gavaskar, Deivasigamani; Sureshbabu, Adukamparai Rajukrishnan; Lakshmi, Srinivasakannan

    2014-09-01

    In the title compound, [Fe(C5H5)(C34H28N3O)], the four-fused-rings system of the 11H-indeno-[1,2-b]quinoxaline unit is approximately planar [maximum deviation = 0.167 (4) Å] and forms a dihedral angle of 37.25 (6)° with the plane of the benzene ring of the methyl-benzoyl group. Both pyrrolidine rings adopt a twist conformation. An intra-molecular C-H⋯O hydrogen bond is observed. In the crystal, mol-ecules are linked by C-H⋯O hydrogen bonds and weak C-H⋯π inter-actions, forming double chains extending parallel to the c axis.

  18. Modeling evolution of hydrogen bonding and stabilization of transition states in the process of cocaine hydrolysis catalyzed by human butyrylcholinesterase.

    PubMed

    Gao, Daquan; Zhan, Chang-Guo

    2006-01-01

    Molecular dynamics (MD) simulations and quantum mechanical/molecular mechanical (QM/MM) calculations were performed on the prereactive enzyme-substrate complex, transition states, intermediates, and product involved in the process of human butyrylcholinesterase (BChE)-catalyzed hydrolysis of (-)-cocaine. The computational results consistently reveal a unique role of the oxyanion hole (consisting of G116, G117, and A199) in BChE-catalyzed hydrolysis of cocaine, compared to acetylcholinesterase (AChE)-catalyzed hydrolysis of acetylcholine. During BChE-catalyzed hydrolysis of cocaine, only G117 has a hydrogen bond with the carbonyl oxygen (O31) of the cocaine benzoyl ester in the prereactive BChE-cocaine complex, and the NH groups of G117 and A199 are hydrogen-bonded with O31 of cocaine in all of the transition states and intermediates. Surprisingly, the NH hydrogen of G116 forms an unexpected hydrogen bond with the carboxyl group of E197 side chain and, therefore, is not available to form a hydrogen bond with O31 of cocaine in the acylation. The NH hydrogen of G116 is only partially available to form a weak hydrogen bond with O31 of cocaine in some structures involved in the deacylation. The change of the estimated hydrogen-bonding energy between the oxyanion hole and O31 of cocaine during the reaction process demonstrates how the protein environment can affect the energy barrier for each step of the BChE-catalyzed hydrolysis of cocaine. These insights concerning the effects of the oxyanion hole on the energy barriers provide valuable clues on how to rationally design BChE mutants with a higher catalytic activity for the hydrolysis of (-)-cocaine. 2005 Wiley-Liss, Inc.

  19. Modeling Evolution of Hydrogen Bonding and Stabilization of Transition States in the Process of Cocaine Hydrolysis Catalyzed by Human Butyrylcholinesterase

    PubMed Central

    Gao, Daquan; Zhan, Chang-Guo

    2010-01-01

    Molecular dynamics (MD) simulations and quantum mechanical/molecular mechanical (QM/MM) calculations were performed on the prereactive enzyme-substrate complex, transition states, intermediates, and product involved in the process of human butyrylcholinesterase (BChE)-catalyzed hydrolysis of (−)-cocaine. The computational results consistently reveal a unique role of the oxyanion hole (consisting of G116, G117, and A199) in BChE-catalyzed hydrolysis of cocaine, as compared to acetylcholinesterase (AChE)-catalyzed hydrolysis of acetylcholine. During BChE-catalyzed hydrolysis of cocaine, only G117 has a hydrogen bond with the carbonyl oxygen (O31) of the cocaine benzoyl ester in the prereactive BChE-cocaine complex, and the NH groups of G117 and A199 are hydrogen-bonded with O31 of cocaine in all of the transition states and intermediates. Surprisingly, the NH hydrogen of G116 forms an unexpected hydrogen bond with the carboxyl group of E197 side chain and, therefore, is not available to form a hydrogen bond with O31 of cocaine in the acylation. The NH hydrogen of G116 is only partially available to form a weak hydrogen bond with O31 of cocaine in some structures involved in the deacylation. The change of the estimated hydrogen bonding energy between the oxyanion hole and O31 of cocaine during the reaction process demonstrates how the protein environment can affect the energy barrier for each step of the BChE-catalyzed hydrolysis of cocaine. These insights concerning the effects of the oxyanion hole on the energy barriers provide valuable clues on how to rationally design BChE mutants with a higher catalytic activity for the hydrolysis of (−)-cocaine. PMID:16288482

  20. Fac and mer isomers of Ru(II) tris(pyrazolyl-pyridine) complexes as models for the vertices of coordination cages: structural characterisation and hydrogen-bonding characteristics.

    PubMed

    Metherell, Alexander J; Cullen, William; Stephenson, Andrew; Hunter, Christopher A; Ward, Michael D

    2014-01-07

    We have prepared a series of mononuclear fac and mer isomers of Ru(II) complexes containing chelating pyrazolyl-pyridine ligands, to examine their differing ability to act as hydrogen-bond donors in MeCN. This was prompted by our earlier observation that octanuclear cube-like coordination cages that contain these types of metal vertex can bind guests such as isoquinoline-N-oxide (K = 2100 M(-1) in MeCN), with a significant contribution to binding being a hydrogen-bonding interaction between the electron-rich atom of the guest and a hydrogen-bond donor site on the internal surface of the cage formed by a convergent set of CH2 protons close to a 2+ metal centre. Starting with [Ru(L(H))3](2+) [L(H) = 3-(2-pyridyl)-1H-pyrazole] the geometric isomers were separated by virtue of the fact that the fac isomer forms a Cu(I) adduct which the mer isomer does not. Alkylation of the pyrazolyl NH group with methyl iodide or benzyl bromide afforded [Ru(L(Me))3](2+) and [Ru(L(bz))3](2+) respectively, each as their fac and mer isomers; all were structurally characterised. In the fac isomers the convergent group of pendant -CH2R or -CH3 protons defines a hydrogen-bond donor pocket; in the mer isomer these protons do not converge and any hydrogen-bonding involving these protons is expected to be weaker. For both [Ru(L(Me))3](2+) and [Ru(L(bz))3](2+), NMR titrations with isoquinoline-N-oxide in MeCN revealed weak 1 : 1 binding (K ≈ 1 M(-1)) between the guest and the fac isomer of the complex that was absent with the mer isomer, confirming a difference in the hydrogen-bond donor capabilities of these complexes associated with their differing geometries. The weak binding compared to the cage however occurs because of competition from the anions, which are free to form ion-pairs with the mononuclear complex cations in a way that does not happen in the cage complexes. We conclude that (i) the presence of fac tris-chelate sites in the cage to act as hydrogen-bond donors, and (ii) exclusion of counter-ions from the central cavity leaving these hydrogen-bonding sites free to interact with guests, are both important design criteria for future coordination cage hosts.

  1. Leptons from decay of mesons in the laser-induced particle pulse from ultra-dense protium p(0)

    NASA Astrophysics Data System (ADS)

    Holmlid, Leif

    2016-10-01

    Kaons and pions are observed by their characteristic decay times of 12, 52 and 26 ns after impact of relatively weak ns-long laser pulses on ultra-dense hydrogen H(0), as reported previously. The signal using an ultra-dense protium p(0) generator with natural hydrogen is now studied. Deflection in a weak magnetic field or penetration through metal foils cannot distinguish between the types of decaying mesons. The signals observed are thus not caused by the decaying mesons themselves, but by the fast particles often at >50MeV u-1 formed in their decay. The fast particles are concluded to be mainly muons from their relatively small magnetic deflection and strong penetration. This is further supported by published studies on the direct observation of the beta decay of muons in scintillators and solid converters using the same type of p(0) generator.

  2. Cocrystallization of adamantane-1,3-dicarboxylic acid and 4,4'-bipyridine.

    PubMed

    Pan, Yue; Li, Kunhao; Bi, Wenhua; Li, Jing

    2008-02-01

    The cocrystallization of adamantane-1,3-dicarboxylic acid (adc) and 4,4'-bipyridine (4,4'-bpy) yields a unique 1:1 cocrystal, C(12)H(16)O(4).C(10)H(8)N(2), in the C2/c space group, with half of each molecule in the asymmetric unit. The mid-point of the central C-C bond of the 4,4'-bpy molecule rests on a center of inversion, while the adc molecule straddles a twofold rotation axis that passes through two of the adamantyl C atoms. The constituents of this cocrystal are joined by hydrogen bonds, the stronger of which are O-H...N hydrogen bonds [O...N = 2.6801 (17) A] and the weaker of which are C-H...O hydrogen bonds [C...O = 3.367 (2) A]. Alternate adc and 4,4'-bpy molecules engage in these hydrogen bonds to form zigzag chains. In turn, these chains are linked through pi-pi interactions along the c axis to generate two-dimensional layers. These layers are neatly packed into a stable crystalline three-dimensional form via weak C-H...O hydrogen bonds [C...O = 3.2744 (19) A] and van der Waals attractions.

  3. Microwave Spectrum of the Isopropanol-Water Dimer

    NASA Astrophysics Data System (ADS)

    Mead, Griffin; Finneran, Ian A.; Carroll, Brandon; Blake, Geoffrey

    2016-06-01

    Microwave spectroscopy provides a unique opportunity to study model non-covalent interactions. Of particular interest is the hydrogen bonding of water, whose various molecular properties are influenced by both strong and weak intermolecular forces. More specifically, measuring the hydrogen bonded structures of water-alcohol dimers investigates both strong (OH ··· OH) and weak (CH ··· OH) hydrogen bond interactions. Recently, we have measured the pure rotational spectrum of the isopropanol-water dimer using chirped-pulse Fourier transform microwave spectroscopy (CP-FTMW) between 8-18 GHz. Here, we present the spectrum of this dimer and elaborate on the structure's strong and weak hydrogen bonding.

  4. Spectroscopic studies of the intramolecular hydrogen bonding in o-hydroxy Schiff bases, derived from diaminomaleonitrile, and their deprotonation reaction products

    NASA Astrophysics Data System (ADS)

    Szady-Chełmieniecka, Anna; Kołodziej, Beata; Morawiak, Maja; Kamieński, Bohdan; Schilf, Wojciech

    2018-01-01

    The structural study of five Schiff bases derived from diaminomaleonitrile (DAMN) and 2-hydroxy carbonyl compounds was performed using 1H, 13C and 15N NMR methods in solution and in the solid state as well. ATR-FTIR and X-Ray spectroscopies were used for confirmation of the results obtained by NMR method. The imine obtained from DAMN and benzaldehyde was synthesized as a model compound which lacks intramolecular hydrogen bond. Deprotonation of all synthesized compounds was done by treating with tetramethylguanidine (TMG). NMR data revealed that salicylidene Schiff bases in DMSO solution exist as OH forms without intramolecular hydrogen bonds and independent on the substituents in aromatic ring. In the case of 2-hydroxy naphthyl derivative, the OH proton is engaged into weak intramolecular hydrogen bond. Two of imines (salDAMN and 5-BrsalDAMN) exist in DMSO solution as equilibrium mixtures of two isomers (A and B). The structures of equilibrium mixture in the solid state have been studied by NMR, ATR-FTIR and X-Ray methods. The deprotonation of three studied compounds (salDAMN, 5-BrsalDAMN, and 5-CH3salDAMN) proceeded in two different ways: deprotonation of oxygen atom (X form) or of nitrogen atom of free primary amine group of DAMN moiety (Y form). For 5-NO2salDAMN and naphDAMN only one form (X) was observed.

  5. Selective electrochemical generation of hydrogen peroxide from water oxidation

    DOE PAGES

    Viswanathan, Venkatasubramanian; Hansen, Heine A.; Norskov, Jens K.

    2015-10-08

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, wemore » show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e– water oxidation to H 2O 2 and the 4e– oxidation to O 2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO 2, can activate hydrogen peroxide evolution. Furthermore, we present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H 2O 2 evolution selectively.« less

  6. Molecular Dynamic Simulation of Diffusion Coefficients for Alkanols in Supercritical CO2 1

    NASA Astrophysics Data System (ADS)

    Li, Zhiwei; Lai, Shuhui; Gao, Wei; Chen, Liuping

    2018-07-01

    The infinite dilution diffusion coefficients ( D 12) of methanol, ethanol, 1-propanol, 1-butanol and 1-pentanol in supercritical CO2 (scCO2) at 313.2 K and 10-16 MPa were simulated by molecular dynamics (MD) simulation. The microscopic structure was also analyzed by calculation of the radial distribution function, coordination number (CN) between the center mass of solute and solvent molecules, and the average number of hydrogen bonding of this system. In infinite dilute solution, the probability of forming hydrogen bond between alkanol molecules is greatly reduced relative to pure alkanol fluid, and the weak hydrogen bonds formed between alkanol and CO2 molecules. In general, this work provides a reliable simulation method for transfer properties of solutes in scCO2. The prediction data were provides for the design and development of chemical processing. The results are helpful for one to deeper understand the relationship between microscopic structures of fluid and its transfer properties.

  7. Temperature dependent polymorphism of pyrazinamide: An in situ Raman and DFT study

    NASA Astrophysics Data System (ADS)

    Sharma, Poornima; Nandi, Rajib; Gangopadhyay, Debraj; Singh, Anurag; Singh, Ranjan K.

    2018-02-01

    The α and γ polymorphs of drug pyrazinamide have been detected with the help of temperature dependent Raman spectroscopic technique. Pyrazinamide is a very useful drug used for the treatment of tuberculosis (TB) and plays a significant role in destroying the dormant tubercle bacilli which are not destroyed by other common TB drugs. Temperature dependent Raman spectra suggest polymorphic phase change from α → γ form of pyrazinamide between 145 and 146 °C. In situ Raman spectra of pyrazinamide between 145 and 146 °C show the conversion of α → γ form by the shift in Cdbnd O stretching vibration accompanied by several other changes. The phase change is characterized by the breaking of two linear Nsbnd H ⋯ O type hydrogen bonds associated with Cdbnd O stretching vibration in α dimer and formation of one linear Nsbnd H ⋯ N type hydrogen bond along with a weak intramolecular Csbnd H ⋯ O type hydrogen bond in the γ dimer.

  8. Direct visualization of critical hydrogen atoms in a pyridoxal 5'-phosphate enzyme

    DOE PAGES

    Dajnowicz, Steven; Johnston, Ryne C.; Parks, Jerry M.; ...

    2017-10-16

    Enzymes dependent on pyridoxal 5'-phosphate (PLP, the active form of vitamin B6) perform a myriad of diverse chemical transformations. They promote various reactions by modulating the electronic states of PLP through weak interactions in the active site. Neutron crystallography has the unique ability of visualizing the nuclear positions of hydrogen atoms in macromolecules. Here we present a room-temperature neutron structure of a homodimeric PLP-dependent enzyme, aspartate aminotransferase, which was reacted in situ with α-methylaspartate. In one monomer, the PLP remained as an internal aldimine with a deprotonated Schiff base. In the second monomer, the external aldimine formed with the substratemore » analog. We observe a deuterium equidistant between the Schiff base and the C-terminal carboxylate of the substrate, a position indicative of a low-barrier hydrogen bond. As a result, quantum chemical calculations and a low-pH room-temperature X-ray structure provide insight into the physical phenomena that control the electronic modulation in aspartate aminotransferase.« less

  9. Direct visualization of critical hydrogen atoms in a pyridoxal 5'-phosphate enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dajnowicz, Steven; Johnston, Ryne C.; Parks, Jerry M.

    Enzymes dependent on pyridoxal 5'-phosphate (PLP, the active form of vitamin B6) perform a myriad of diverse chemical transformations. They promote various reactions by modulating the electronic states of PLP through weak interactions in the active site. Neutron crystallography has the unique ability of visualizing the nuclear positions of hydrogen atoms in macromolecules. Here we present a room-temperature neutron structure of a homodimeric PLP-dependent enzyme, aspartate aminotransferase, which was reacted in situ with α-methylaspartate. In one monomer, the PLP remained as an internal aldimine with a deprotonated Schiff base. In the second monomer, the external aldimine formed with the substratemore » analog. We observe a deuterium equidistant between the Schiff base and the C-terminal carboxylate of the substrate, a position indicative of a low-barrier hydrogen bond. As a result, quantum chemical calculations and a low-pH room-temperature X-ray structure provide insight into the physical phenomena that control the electronic modulation in aspartate aminotransferase.« less

  10. Orphenadrinium picrate picric acid

    PubMed Central

    Fun, Hoong-Kun; Hemamalini, Madhukar; Siddaraju, B. P.; Yathirajan, H. S.; Narayana, B.

    2010-01-01

    The asymmetric unit of the title compound N,N-dimethyl-2-[(2-methyl­phen­yl)phenyl­meth­oxy]ethanaminium picrate picric acid, C18H24NO+·C6H2N3O7 −·C6H3N3O7, contains one orphenadrinium cation, one picrate anion and one picric acid mol­ecule. In the orphenadrine cation, the two aromatic rings form a dihedral angle of 70.30 (7)°. There is an intra­molecular O—H⋯O hydrogen bond in the picric acid mol­ecule, which generates an S(6) ring motif. In the crystal structure, the orphenadrine cations, picrate anions and picric acid mol­ecules are connected by strong inter­molecular N—H⋯O hydrogen bonds, π⋯π inter­actions between the benzene rings of cations and anions [centroid–centroid distance = 3.5603 (9) Å] and weak C—H⋯O hydrogen bonds, forming a three-dimensional network. PMID:21580426

  11. Influence of the anions on the N-cationic benzethonium salts in the solid state and solution: Chloride, bromide, hydroxide and citrate hydrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paradies, Henrich H., E-mail: hparadies@aol.com, E-mail: hparadies@jacobs-university.de; Jacobs University Bremen, Life Sciences and Chemistry Department, Campus Ring 1, D-28759 Bremen; Reichelt, Hendrik

    The crystal structures of the hydrated cationic surfactant benzethonium (Bzth) chloride, bromide, hydroxide, and citrate have been determined by X-ray diffraction analysis and compared with their structures in solution well above their critical micelle concentration. The differences in the nature of the various anions of the four Bzth-X materials lead to unique anion environments and 3-D molecular arrangements. The water molecule in the monoclinic Bzth-Cl or Bzth-Br forms is hydrogen bonded to the halides and particularly to the hydrogens of the methoxy groups of the Bzth moiety notwithstanding the weak Brønsted acidity of the methoxy hydrogens. The citrate strongly interactsmore » with the hydrogens of the methoxy group forming an embedded anionic spherical cluster of a radius of 2.6 Å. The Bzth-OH crystallizes in a hexagonal lattice with two water molecules and reveals free water molecules forming hydrogen bonded channels through the Bzth-OH crystal along the c-axis. The distances between the cationic nitrogen and the halides are 4.04 Å and 4.20 Å, significantly longer than expected for typical van der Waals distances of 3.30 Å. The structures show weakly interacting, alternating apolar and polar layers, which run parallel to the crystallographic a-b planes or a-c planes. The Bzth-X salts were also examined in aqueous solution containing 20% (v/v) ethanol and 1.0 % (v/v) glycerol well above their critical micelle concentration by small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). The [1,1,1] planes for the Bzth Cl or Br, the [0,0,2] and [1,1,0] planes for the Bzth-citrate, the [2,-1,0] planes and the [0,0,1] planes for the Bzth-OH found in the crystalline phase were also present in the solution phase, accordingly, the preservation of these phases are a strong indication of periodicity in the solution phase.« less

  12. Theoretical study of interactions between cysteine and perfluoropropanoic acid in gas and aqueous phase

    NASA Astrophysics Data System (ADS)

    Holmes, Tiffani M.; Doskocz, Jacek; Wright, Terrance; Hill, Glake A.

    The interaction of perfluoropropanoic acid (PFPA) with the amino acid cysteine was investigated using density functional theory. Previous studies suggest that the peroxisome proliferator chemical, perfluorooctanoic acid, is circulated throughout the body by way of sulfur-containing amino acids. We present conformational analysis of the interactions of PFPA, a small model of perfluorooctanoic acid, with the sulfur-containing amino acid which occur by the process of hydrogen bonding, in which the hydrogen of the sulfhydryl group interacts with the carboxyl oxygen, and the amino nitrogen forms a hydrogen bond with the hydrogen of the bond OH group of the fluorinated alkyl. We also show in our structures a recently characterized weak nonbonded interaction between divalent sulfur and a main chain carboxyl oxygen in proteins. B3LYP calculated free energies and interaction energies predict low-energy, high-interaction conformations for complex systems of perfluorinated fatty acid interactions with cysteine.

  13. Synthesis and Characterization of Luminol Persulphate Chemiluminescence in Aqueous Amines

    NASA Astrophysics Data System (ADS)

    Raut, V. M.; More, P. S.; Khollam, Y. B.; Sonone, R. S.; Kondawar, S. B.; Koinkar, Pankaj

    The chemiluminescence (CL) emission spectra of luminol were recorded using Fuss spectrograph in different aqueous aliphatic amines using sodium persulphate alone and mixture with hydrogen peroxide as an oxidant. The CL emission spectra after resolution showed two emission bands at 425 and 455 nm. The CL mechanism was explained on the basis of two exited state species formed during oxidation of luminol. The CL of luminol is found to be very weak as persulphate slowly produced oxygen. The glow become intense with time as more and more oxygen is made available for oxidation of luminol. The mixture of hydrogen peroxide and sodium persulphate is found to be more effective in producing intense and long lived CL glow for luminol. The CL emission band of luminol by using sodium persulphate and mixture with hydrogen peroxide is explained on the basis of formation of exited singlet and triplet state of 3-aminophthalate ion (3-APA). The shorter wavelength emission band of 425 nm is found to be very weak in intensity as compared to longer wavelength emission band of 455 nm. Thus phosphoresce is favored in case of persulphate CL of luminol.

  14. Weak hydrogen bonding interactions influence slip system activity and compaction behavior of pharmaceutical powders.

    PubMed

    Khomane, Kailas S; Bansal, Arvind K

    2013-12-01

    Markedly different mechanical behavior of powders of polymorphs, cocrystals, hydrate/anhydrate pairs, or structurally similar molecules has been attributed to the presence of active slip planes system in their crystal structures. Presence of slip planes in the crystal lattice allows easier slip under the applied compaction pressure. This allows greater plastic deformation of the powder and results into increased interparticulate bonding area and greater tensile strength of the compacts. Thus, based on this crystallographic feature, tableting performance of the active pharmaceutical ingredients can be predicted. Recently, we encountered a case where larger numbers of CH···O type interactions across the proposed slip planes hinder the slip and thus resist plastic deformation of the powder under the applied compaction pressure. Hence, attention must be given to these types of interactions while identifying slip planes by visualization method. Generally, slip planes are visualized as flat layers often strengthened by a two-dimensional hydrogen-bonding network within the layers or planes. No hydrogen bonding should exist between these layers to consider them as slip planes. Moreover, one should also check the presence of CH···O type interactions across these planes. Mercury software provides an option for visualization of these weak hydrogen bonding interactions. Hence, caution must be exercised while selecting appropriate solid form based on this crystallographic feature. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. 3-{[(E)-(2-Hydroxynaphthalen-1-yl)methylidene]amino}pyridinium per­chlorate

    PubMed Central

    Damous, Maamar; Dénès, George; Bouacida, Sofiane; Hamlaoui, Meriem; Merazig, Hocine; Daran, Jean-Claude

    2013-01-01

    In the title Schiff base salt, C16H13N2O+·ClO4 −, the pyridine ring and the naphthalene ring system are approximately co-planar [making a dihedral angle of 6.05 (12)°] and an intra­molecular O—H⋯N hydrogen bond occurs between the hydroxyl and imino groups. In the crystal, the cations and anions are linked by N—H⋯O and weak C—H⋯O hydrogen bonds, forming the supra­molecular layers parallel to (100). The crystal studied was an inversion twin refined with minor component = 0.43 (13). PMID:24427084

  16. N-(3,4-Dimethyl-phen-yl)-4-hydr-oxy-2-methyl-2H-1,2-benzothia-zine-3-carboxamide 1,1-dioxide.

    PubMed

    Siddiqui, Waseeq Ahmad; Ali, Muhammad; Zia-Ur-Rehman, Muhammad; Sharif, Saima; Tizzard, Graham John

    2009-03-28

    1,2-Benzothia-zines similar to the title compound, C(18)H(18)N(2)O(4)S, are well known in the literature for their biological activities and are used as medicines in the treatment of inflammation and rheumatoid arthritis. The thia-zine ring adopts a distorted half-chair conformation. The enolic H atom is involved in an intra-molecular O-H⋯O hydrogen bond, forming a six-membered ring. In the crystal, mol-ecules arrange themselves into centrosymmetric dimers by means of pairs of weak inter-molecular N-H⋯O hydrogen bonds.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Jongmyung; Woo, Jiyong; Song, Jeonghwan

    The effect of hydrogen treatment on the threshold switching property in a Ag/amorphous Si based programmable metallization cells was investigated for selector device applications. Using the Ag filament formed during motion of Ag ions, a steep-slope (5 mV/dec.) for threshold switching with higher selectivity (∼10{sup 5}) could be achieved. Because of the faster diffusivity of Ag atoms, which are inside solid-electrolytes, the resulting Ag filament could easily be dissolved under low current regime, where the Ag filament possesses weak stability. We found that the dissolution process could be further enhanced by hydrogen treatment that facilitated the movement of the Agmore » atoms.« less

  18. Direct visualization of critical hydrogen atoms in a pyridoxal 5'-phosphate enzyme.

    PubMed

    Dajnowicz, Steven; Johnston, Ryne C; Parks, Jerry M; Blakeley, Matthew P; Keen, David A; Weiss, Kevin L; Gerlits, Oksana; Kovalevsky, Andrey; Mueser, Timothy C

    2017-10-16

    Enzymes dependent on pyridoxal 5'-phosphate (PLP, the active form of vitamin B 6 ) perform a myriad of diverse chemical transformations. They promote various reactions by modulating the electronic states of PLP through weak interactions in the active site. Neutron crystallography has the unique ability of visualizing the nuclear positions of hydrogen atoms in macromolecules. Here we present a room-temperature neutron structure of a homodimeric PLP-dependent enzyme, aspartate aminotransferase, which was reacted in situ with α-methylaspartate. In one monomer, the PLP remained as an internal aldimine with a deprotonated Schiff base. In the second monomer, the external aldimine formed with the substrate analog. We observe a deuterium equidistant between the Schiff base and the C-terminal carboxylate of the substrate, a position indicative of a low-barrier hydrogen bond. Quantum chemical calculations and a low-pH room-temperature X-ray structure provide insight into the physical phenomena that control the electronic modulation in aspartate aminotransferase.Pyridoxal 5'-phosphate (PLP) is a ubiquitous co factor for diverse enzymes, among them aspartate aminotransferase. Here the authors use neutron crystallography, which allows the visualization of the positions of hydrogen atoms, and computation to characterize the catalytic mechanism of the enzyme.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viswanathan, Venkatasubramanian; Hansen, Heine A.; Norskov, Jens K.

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, wemore » show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e– water oxidation to H 2O 2 and the 4e– oxidation to O 2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO 2, can activate hydrogen peroxide evolution. Furthermore, we present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H 2O 2 evolution selectively.« less

  20. Carbon-tuned bonding method significantly enhanced the hydrogen storage of BN-Li complexes.

    PubMed

    Deng, Qing-ming; Zhao, Lina; Luo, You-hua; Zhang, Meng; Zhao, Li-xia; Zhao, Yuliang

    2011-11-01

    Through first-principles calculations, we found doping carbon atoms onto BN monolayers (BNC) could significantly strengthen the Li bond on this material. Unlike the weak bond strength between Li atoms and the pristine BN layer, it is observed that Li atoms are strongly hybridized and donate their electrons to the doped substrate, which is responsible for the enhanced binding energy. Li adsorbed on the BNC layer can serve as a high-capacity hydrogen storage medium, without forming clusters, which can be recycled at room temperature. Eight polarized H(2) molecules are attached to two Li atoms with an optimal binding energy of 0.16-0.28 eV/H(2), which results from the electrostatic interaction of the polarized charge of hydrogen molecules with the electric field induced by positive Li atoms. This practical carbon-tuned BN-Li complex can work as a very high-capacity hydrogen storage medium with a gravimetric density of hydrogen of 12.2 wt%, which is much higher than the gravimetric goal of 5.5 wt % hydrogen set by the U.S. Department of Energy for 2015.

  1. Trapping gases in metal-organic frameworks with a selective surface molecular barrier layer

    DOE PAGES

    Tan, Kui; Zuluaga, Sebastian; Fuentes, Erika; ...

    2016-12-13

    The main challenge for gas storage and separation in nanoporous materials is that many molecules of interest adsorb too weakly to be effectively retained. Instead of synthetically modifying the internal surface structure of the entire bulk—as is typically done to enhance adsorption—here we show that post exposure of a prototypical porous metal-organic framework to ethylenediamine can effectively retain a variety of weakly adsorbing molecules (for example, CO, CO 2, SO 2, C 2H 4, NO) inside the materials by forming a monolayer-thick cap at the external surface of microcrystals. Furthermore, this capping mechanism, based on hydrogen bonding as explained bymore » ab initio modelling, opens the door for potential selectivity. For example, water molecules are shown to disrupt the hydrogen-bonded amine network and diffuse through the cap without hindrance and fully displace/release the retained small molecules out of the metal-organic framework at room temperature. Lastly, these findings may provide alternative strategies for gas storage, delivery and separation.« less

  2. Spectroscopic studies of the intramolecular hydrogen bonding in o-hydroxy Schiff bases, derived from diaminomaleonitrile, and their deprotonation reaction products.

    PubMed

    Szady-Chełmieniecka, Anna; Kołodziej, Beata; Morawiak, Maja; Kamieński, Bohdan; Schilf, Wojciech

    2018-01-15

    The structural study of five Schiff bases derived from diaminomaleonitrile (DAMN) and 2-hydroxy carbonyl compounds was performed using 1 H, 13 C and 15 N NMR methods in solution and in the solid state as well. ATR-FTIR and X-Ray spectroscopies were used for confirmation of the results obtained by NMR method. The imine obtained from DAMN and benzaldehyde was synthesized as a model compound which lacks intramolecular hydrogen bond. Deprotonation of all synthesized compounds was done by treating with tetramethylguanidine (TMG). NMR data revealed that salicylidene Schiff bases in DMSO solution exist as OH forms without intramolecular hydrogen bonds and independent on the substituents in aromatic ring. In the case of 2-hydroxy naphthyl derivative, the OH proton is engaged into weak intramolecular hydrogen bond. Two of imines (salDAMN and 5-BrsalDAMN) exist in DMSO solution as equilibrium mixtures of two isomers (A and B). The structures of equilibrium mixture in the solid state have been studied by NMR, ATR-FTIR and X-Ray methods. The deprotonation of three studied compounds (salDAMN, 5-BrsalDAMN, and 5-CH 3 salDAMN) proceeded in two different ways: deprotonation of oxygen atom (X form) or of nitrogen atom of free primary amine group of DAMN moiety (Y form). For 5-NO 2 salDAMN and naphDAMN only one form (X) was observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Crystal structure of fenclorim.

    PubMed

    Kwon, Eunjin; Kim, Jineun; Kang, Gihaeng; Kim, Tae Ho

    2015-10-01

    In the title compound, C10H6Cl2N2 (systematic name: 4,6-di-chloro-2-phenyl-pyrimidine), which is used commercially as the herbicide safener, fenclorim, the dihedral angle between the di-chloro-pyrimidyl and phenyl rings is 9.45 (10)°. In the crystal, C-H⋯N hydrogen bonds link adjacent mol-ecules, forming chains along the c-axis direction. In addition, weak inter-molecular C-Cl⋯π [3.6185 (10) Å] and π-π [3.8796 (11) Å] inter-actions are present, forming a three-dimensional network.

  4. Crystal structure of 3-{[4-(2-meth-oxy-phen-yl)piperazin-1-yl]meth-yl}-5-(thio-phen-2-yl)-1,3,4-oxa-diazole-2(3H)-thione.

    PubMed

    Al-Alshaikh, Monirah A; Abuelizz, Hatem A; El-Emam, Ali A; Abdelbaky, Mohammed S M; Garcia-Granda, Santiago

    2016-02-01

    The title compound, C18H20N4O2S2, is a new 1,3,4-oxa-diazole and a key pharmacophore of several biologically active agents. It is composed of a meth-yl(thio-phen-2-yl)-1,3,4-oxa-diazole-2(3H)-thione moiety linked to a 2-meth-oxy-phenyl unit via a piperazine ring that has a chair conformation. The thio-phene ring mean plane lies almost in the plane of the oxa-diazole ring, with a dihedral angle of 4.35 (9)°. The 2-meth-oxy-phenyl ring is almost normal to the oxa-diazole ring, with a dihedral angle of 84.17 (10)°. In the crystal, mol-ecules are linked by weak C-H⋯S hydrogen bonds and C-H⋯π inter-actions, forming layers parallel to the bc plane. The layers are linked via weak C-H⋯O hydrogen bonds and slipped parallel π-π inter-actions [inter-centroid distance = 3.6729 (10) Å], forming a three-dimensional structure. The thio-phene ring has an approximate 180° rotational disorder about the bridging C-C bond.

  5. Active sites and states in the heterogeneous catalysis of carbon-hydrogen bonds.

    PubMed

    Somorjai, Gabor A; Marsh, Anderson L

    2005-04-15

    C-H bond activation for several alkenes (ethylene, propylene, isobutene, cyclohexene and 1-hexene) and alkanes (methane, ethane, n-hexane, 2-methylpentane and 3-methylpentane) has been studied on the (111) crystal face of platinum as a function of temperature at low (10(-6) Torr) and high (>/=1 Torr) pressures in the absence and presence of hydrogen pressures (>/=10 Torr). Sum frequency generation (SFG) vibrational spectroscopy has been used to characterize the adsorbate structures and high pressure scanning tunnelling microscopy (HP-STM) has been used to monitor their surface mobility under reaction conditions during hydrogenation, dehydrogenation and CO poisoning. C-H bond dissociation occurs at low temperatures, approximately 250 K, for all of these molecules, although only at high pressures for the weakly bound alkanes because of their low desorption temperatures. Bond dissociation is known to be surface structure sensitive and we find that it is also accompanied by the restructuring of the metal surface. The presence of hydrogen slows down dehydrogenation and for some of the molecules it influences the molecular rearrangement, thus altering reaction selectivity. Surface mobility of adsorbates is essential to produce catalytic activity. When surface diffusion is inhibited by CO adsorption, ordered surface structures form and the reaction is poisoned. Ethylene hydrogenation is surface structure insensitive, while cyclohexene hydrogenation and dehydrogenation are structure sensitive. n-Hexane and other C6 alkanes form either upright or flat-lying molecules on the platinum surface which react to produce branched isomers or benzene, respectively.

  6. A density functional theory study on the hydrogen bonding interactions between luteolin and ethanol.

    PubMed

    Zheng, Yan-Zhen; Xu, Jing; Liang, Qin; Chen, Da-Fu; Guo, Rui; Fu, Zhong-Min

    2017-08-01

    Ethanol is one of the most commonly used solvents to extract flavonoids from propolis. Hydrogen bonding interactions play an important role in the properties of liquid system. The main objective of the work is to study the hydrogen bonding interactions between flavonoid and ethanol. Luteolin is a very common flavonoid that has been found in different geographical and botanical propolis. In this work, it was selected as the representative flavonoid to do detailed research. The study was performed from a theoretical perspective using density functional theory (DFT) method. After careful optimization, there exist nine optimized geometries for the luteolin - CH 3 CH 2 OH complex. The binding distance of X - H···O, and the bond length, vibrational frequency, and electron density changes of X - H all indicate the formation of the hydrogen bond in the optimized geometries. In the optimized geometries, it is found that: (1) except for the H2', H5', and H6', CH 3 CH 2 OH has formed hydrogen bonds with all the hydrogen and oxygen atoms in luteolin. The hydrogen atoms in the hydroxyl groups of luteolin form the strongest hydrogen bonds with CH 3 CH 2 OH; (2) all of the hydrogen bonds are closed-shell interactions; (3) the strongest hydrogen bond is the O3' - H3'···O in structure A, while the weakest one is the C3 - H3···O in structure E; (4) the hydrogen bonds of O3' - H3'···O, O - H···O4, O - H···O3' and O - H···O7 are medium strength and covalent dominant in nature. While the other hydrogen bonds are weak strength and possess a dominant character of the electrostatic interactions in nature.

  7. N-(2,3-Dimethyl-phen-yl)-4-hydr-oxy-2-methyl-2H-1,2-benzothia-zine-3-carboxamide 1,1-dioxide.

    PubMed

    Siddiqui, Waseeq Ahmad; Bukahari, Iftikhar Hussain; Zia-Ur-Rehman, Muhammad; Khan, Islam Ullah; Tizzard, Graham John

    2009-02-28

    In the crystal structure of the title compound, C(18)H(18)N(2)O(4)S, the thia-zine ring adopts a distorted half-chair conformation. 1,2-Benzothia-zines of this kind have a wide range of biological activities and are mainly used as medicines in the treatment of inflammation and rheumatoid arthritis. The enolic H atom is involved in an intra-molecular O-H⋯O hydrogen bond, forming a six-membered ring. The mol-ecules arrange themselves into centrosymmetric dimers by means of inter-molecular N-H⋯O hydrogen bonds. A weak inter-molcular C-H⋯O inter-action is also present.

  8. N-(3,4-Dimethyl­phen­yl)-4-hydr­oxy-2-methyl-2H-1,2-benzothia­zine-3-carboxamide 1,1-dioxide

    PubMed Central

    Siddiqui, Waseeq Ahmad; Ali, Muhammad; Zia-ur-Rehman, Muhammad; Sharif, Saima; Tizzard, Graham John

    2009-01-01

    1,2-Benzothia­zines similar to the title compound, C18H18N2O4S, are well known in the literature for their biological activities and are used as medicines in the treatment of inflammation and rheumatoid arthritis. The thia­zine ring adopts a distorted half-chair conformation. The enolic H atom is involved in an intra­molecular O—H⋯O hydrogen bond, forming a six-membered ring. In the crystal, mol­ecules arrange themselves into centrosymmetric dimers by means of pairs of weak inter­molecular N—H⋯O hydrogen bonds. PMID:21582605

  9. N,N-Dimethyl-N-propyl-propan-1-aminium chloride monohydrate.

    PubMed

    Kärnä, Minna; Lahtinen, Manu; Valkonen, Jussi

    2008-10-11

    The title compound, C(8)H(20)N(+)·Cl(-)·H(2)O, has been prepared by a simple one-pot synthesis route followed by anion exchange using resin. In the crystal structure, the cations are packed in such a way that channels exist parallel to the b axis. These channels are filled by the anions and water mol-ecules, which inter-act via O-H⋯Cl hydrogen bonds [O⋯Cl = 3.285 (3) and 3.239 (3) Å] to form helical chains. The cations are involved in weak inter-molecular C-H⋯Cl and C-H⋯O hydrogen bonds. The title compound is not isomorphous with the bromo or iodo analogues.

  10. Weak Bond-Based Injectable and Stimuli Responsive Hydrogels for Biomedical Applications

    PubMed Central

    Ding, Xiaochu; Wang, Yadong

    2017-01-01

    Here we define hydrogels crosslinked by weak bonds as physical hydrogels. They possess unique features including reversible bonding, shear thinning and stimuli-responsiveness. Unlike covalently crosslinked hydrogels, physical hydrogels do not require triggers to initiate chemical reactions for in situ gelation. The drug can be fully loaded in a pre-formed hydrogel for delivery with minimal cargo leakage during injection. These benefits make physical hydrogels useful as delivery vehicles for applications in biomedical engineering. This review focuses on recent advances of physical hydrogels crosslinked by weak bonds: hydrogen bonds, ionic interactions, host-guest chemistry, hydrophobic interactions, coordination bonds and π-π stacking interactions. Understanding the principles and the state of the art of gels with these dynamic bonds may give rise to breakthroughs in many biomedical research areas including drug delivery and tissue engineering. PMID:29062484

  11. "Job-Sharing" Storage of Hydrogen in Ru/Li₂O Nanocomposites.

    PubMed

    Fu, Lijun; Tang, Kun; Oh, Hyunchul; Manickam, Kandavel; Bräuniger, Thomas; Chandran, C Vinod; Menzel, Alexander; Hirscher, Michael; Samuelis, Dominik; Maier, Joachim

    2015-06-10

    A "job-sharing" hydrogen storage mechanism is proposed and experimentally investigated in Ru/Li2O nanocomposites in which H(+) is accommodated on the Li2O side, while H(-) or e(-) is stored on the side of Ru. Thermal desorption-mass spectroscopy results show that after loading with D2, Ru/Li2O exhibits an extra desorption peak, which is in contrast to Ru nanoparticles or ball-milled Li2O alone, indicating a synergistic hydrogen storage effect due to the presence of both phases. By varying the ratio of the two phases, it is shown that the effect increases monotonically with the area of the heterojunctions, indicating interface related hydrogen storage. X-ray diffraction, Fourier transform infrared spectroscopy, and nuclear magnetic resonance results show that a weak LiO···D bond is formed after loading in Ru/Li2O nanocomposites with D2. The storage-pressure curve seems to favor H(+)/H(-) over H(+)/e(-) mechanism.

  12. Interactions of carbon dioxide with model organic molecules: A comparative theoretical study

    NASA Astrophysics Data System (ADS)

    Trung, Nguyen Tien; Nguyen, Minh Tho

    2013-08-01

    Interaction energies obtained using CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ computations including both ZPE and BSSE corrections range from -2.9 to -14.2 kJ mol-1. While formic acid forms the most stable complex with CO2, formaldehyde yields the least stable complex. Lewis acid-base interaction such as C-N⋯C(CO2), Cdbnd O⋯C(CO2), which overcomes C-H⋯O blue-shifting hydrogen bond, plays a significant role in stabilizing most complexes. However, the strength of (HCOOH, CO2) is mainly determined by O-H⋯O red-shifting hydrogen bond. The C-H⋯O blue-shifting hydrogen bond is revealed upon complexation of CH3OH, HCHO, HCOOH, CH3COCH3 and HCOOCH3 with CO2. Remarkably, existence of weak hydrogen bonded C-H⋯O interaction is not found in the (CH3OCH3, CO2) and (CH3NH2, CO2) pairs.

  13. Carbide-Derived Carbons with Tunable Porosity Optimized for Hydrogen Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, John E.; Gogotsi, Yury; Yildirim, Taner

    2010-01-07

    On-board hydrogen storage is a key requirement for fuel cell-powered cars and trucks. Porous carbon-based materials can in principle adsorb more hydrogen per unit weight at room temperature than liquid hydrogen at -176 oC. Achieving this goal requires interconnected pores with very high internal surface area, and binding energies between hydrogen and carbon significantly enhanced relative to H2 on graphite. In this project a systematic study of carbide-derived carbons, a novel form of porous carbon, was carried out to discover a high-performance hydrogen sorption material to meet the goal. In the event we were unable to improve on the statemore » of the art in terms of stored hydrogen per unit weight, having encountered the same fundamental limit of all porous carbons: the very weak interaction between H2 and the carbon surface. On the other hand we did discover several strategies to improve storage capacity on a volume basis, which should be applicable to other forms of porous carbon. Further discoveries with potentially broader impacts include • Proof that storage performance is not directly related to pore surface area, as had been previously claimed. Small pores (< 1.5 nm) are much more effective in storing hydrogen than larger ones, such that many materials with large total surface areas are sub-par performers. • Established that the distribution of pore sizes can be controlled during CDC synthesis, which opens the possibility of developing high performance materials within a common family while targeting widely disparate applications. Examples being actively pursued with other funding sources include methane storage, electrode materials for batteries and supercapacitors with record high specific capacitance, and perm-selective membranes which bind cytokines for control of infections and possibly hemodialysis filters.« less

  14. Weak interactions involving organic fluorine: analysis of structural motifs in Flunazirine and Haloperidol

    NASA Astrophysics Data System (ADS)

    Prasanna, M. D.; Row, T. N. Guru

    2001-05-01

    The crystal structure of Flunazirine, an anticonvulsant drug, is analyzed in terms of intermolecular interactions involving fluorine. The structure displays motifs formed by only weak interactions C-H⋯F and C-H⋯π. The motifs thus generated show cavities, which could serve as hosts for complexation. The structure of Flunazirine displays cavities formed by C-H⋯F and C-H⋯π interactions. Haloperidol, an antipsychotic drug, shows F⋯F interactions in the crystalline lattice in lieu of Cl⋯Cl interactions. However, strong O-H⋯N interactions dominate packing. The salient features of the two structures in terms of intermolecular interactions reveal, even though organic fluorine has lower tendency to engage in hydrogen bonding and F⋯F interactions, these interactions could play a significant role in the design of molecular assemblies via crystal engineering.

  15. Proton transfer in a short hydrogen bond caused by solvation shell fluctuations: an ab initio MD and NMR/UV study of an (OHO)(-) bonded system.

    PubMed

    Pylaeva, Svetlana; Allolio, Christoph; Koeppe, Benjamin; Denisov, Gleb S; Limbach, Hans-Heinrich; Sebastiani, Daniel; Tolstoy, Peter M

    2015-02-14

    We present a joint experimental and quantum chemical study on the influence of solvent dynamics on the protonation equilibrium in a strongly hydrogen bonded phenol-acetate complex in CD2Cl2. Particular attention is given to the correlation of the proton position distribution with the internal conformation of the complex itself and with fluctuations of the aprotic solvent. Specifically, we have focused on a complex formed by 4-nitrophenol and tetraalkylammonium-acetate in CD2Cl2. Experimentally we have used combined low-temperature (1)H and (13)C NMR and UV-vis spectroscopy and showed that a very strong OHO hydrogen bond is formed with proton tautomerism (PhOH···(-)OAc and PhO(-)···HOAc forms, both strongly hydrogen bonded). Computationally, we have employed ab initio molecular dynamics (70 and 71 solvent molecules, with and without the presence of a counter-cation, respectively). We demonstrate that the relative motion of the counter-cation and the "free" carbonyl group of the acid plays the major role in the OHO bond geometry and causes proton "jumps", i.e. interconversion of PhOH···(-)OAc and PhO(-)···HOAc tautomers. Weak H-bonds between CH(CD) groups of the solvent and the oxygen atom of carbonyl stabilize the PhOH···(-)OAc type of structures. Breaking of CH···O bonds shifts the equilibrium towards PhO(-)···HOAc form.

  16. Effects of hydrogen bonding between pyrrole-2-carboxaldehyde and nearest polar and nonpolar environment

    NASA Astrophysics Data System (ADS)

    Rana, Meenakshi; Chowdhury, Papia

    2017-10-01

    The present paper represents dominant effects of hydrogen bonding on the existence of different molecular aggregates in one of the heterocyclic pyrrole system: pyrrole-2-carboxaldehyde (PCL). Theoretical and experimental Raman spectral evidence verifies the existence of different molecular aggregates like dimeric, monomeric, hydrated complex states in PCL. Atoms in molecules (AIMs) analysis and fluorescence decay profile provide a strong signature of intermolecular hydrogen bonding (IerHB) as the possible reason for the existence of cis form of dimeric (X) molecular aggregates. The high remnant polarization of 3.13 μCcm- 2 and smaller dielectric loss in solid form of PCL arise due to in X by ordering of dipoles as a result of IerHB. A remarkable high ferroelectric response in solid phase makes PCL a desirable candidate to be used as raw material for energy storage devices. For solution phase, in presence of external hydroxylic environment, PCL reacts with external water molecules through weak IerHB and creates different hydrated PCL/(H2O)n complexes by creating water bridge with number of water molecules from 1 to n. An increasing number of water molecules helps to form stronger hydrated complex by separation of charges by lowering the transferring energy barrier.

  17. First principles study of gallium cleaning for hydrogen-contaminated α-Al2O3(0001) surfaces.

    PubMed

    Yang, Rui; Rendell, Alistair P

    2013-05-15

    The use of gallium for cleaning hydrogen-contaminated Al2O3 surfaces is explored by performing first principles density functional calculations of gallium adsorption on a hydrogen-contaminated Al-terminated α-Al2O3(0001) surface. Both physisorbed and chemisorbed H-contaminated α-Al2O3(0001) surfaces with one monolayer (ML) gallium coverage are investigated. The thermodynamics of gallium cleaning are considered for a variety of different asymptotic products, and are found to be favorable in all cases. Physisorbed H atoms have very weak interactions with the Al2O3 surface and can be removed easily by the Ga ML. Chemisorbed H atoms form stronger interactions with the surface Al atoms. Bonding energy analysis and departure simulations indicate, however, that chemisorbed H atoms can be effectively removed by the Ga ML. Copyright © 2013 Wiley Periodicals, Inc.

  18. Understanding the interplay of weak forces in [3,3]-sigmatropic rearrangement for stereospecific synthesis of diamines.

    PubMed

    So, Soon Mog; Mui, Leo; Kim, Hyunwoo; Chin, Jik

    2012-08-21

    Chiral diamines are important building blocks for constructing stereoselective catalysts, including transition metal based catalysts and organocatalysts that facilitate oxidation, reduction, hydrolysis, and C-C bond forming reactions. These molecules are also critical components in the synthesis of drugs, including antiviral agents such as Tamiflu and Relenza and anticancer agents such as oxaliplatin and nutlin-3. The diaza-Cope rearrangement reaction provides one of the most versatile methods for rapidly generating a wide variety of chiral diamines stereospecifically and under mild conditions. Weak forces such as hydrogen bonding, electronic, steric, oxyanionic, and conjugation effects can drive this equilibrium process to completion. In this Account, we examine the effect of these individual weak forces on the value of the equilibrium constant for the diaza-Cope rearrangement reaction using both computational and experimental methods. The availability of a wide variety of aldehydes and diamines allows for the facile synthesis of the diimines needed to study the weak forces. Furthermore, because the reaction generally takes place cleanly at ambient temperature, we can easily measure equilibrium constants for rearrangement of the diimines. We use the Hammett equation to further examine the electronic and oxyanionic effects. In addition, computations and experiments provide us with new insights into the origin and extent of stereospecificity for this rearrangement reaction. The diaza-Cope rearrangement, with its unusual interplay between weak forces and the equilibrium constant of the reaction, provides a rare opportunity to study the effects of the fundamental weak forces on a chemical reaction. Among these many weak forces that affect the diaza-Cope rearrangement, the anion effect is the strongest (10.9 kcal/mol) followed by the resonance-assisted hydrogen-bond effect (7.1 kcal/mol), the steric effect (5.7 kcal/mol), the conjugation effect (5.5 kcal/mol), and the electronic effect (3.2 kcal/mol). Based on both computation and experimental data, the effects of these weak forces are additive. Understanding the interplay of the weak forces in the [3,3]-sigmatropic reaction is interesting in its own right and also provides valuable insights for the synthesis of chiral diamine based drugs and catalysts in excellent yield and enantiopurity.

  19. Evidence for intramolecular OH⋯π hydrogen bonding in unsaturated alcohols from UV photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Kowski, Klaus; Lüttke, Wolfgang; Rademacher, Paul

    2001-06-01

    The gas phase He(I) photoelectron (PE) spectra of several unsaturated alcohols (1-11) have been measured and analysed with respect to intramolecular OH⋯π hydrogen bonding. Evidence for such a hydrogen bond has been detected in the spectra of 2-allylphenol (1) and 2-phenylethan-1-ol (3). 1 exists as a conformational mixture of a hydrogen bonded form 1a and an open form 1b in a composition of roughly 2:1. A strong ionization band (IPv=10.01 eV; where IPv is the vertical ionization potential) is assigned to the ethylenic Cdbnd C double bond in the major conformer (1a) and a weak band (IPv=9.72 eV) to that of the minor conformer (1b). The latter IP coincides with the corresponding ionization of allylbenzene. In the series of ω-phenylalkan-1-ols, compound 3 exhibits an unusually low nπ(O) ionization indicating hydrogen bonding between the OH group and the π electron system of the phenyl ring. The higher homologs 4 and 5 prefer 'open' conformations without such interaction. The PE spectra of alkenols such as but-3-en-1-ol (7) and pent-4-en-1-ol (8) as well as of alkynols such as but-3-yn-1-ol (10) and pent-4-yn-1-ol (11) are consistent with OH⋯π hydrogen bonded conformers. The methanol/ethylene hetero-dimer has a T-shaped structure, as indicated by B3LYP/6-311++G(d) calculations, with a binding energy of 5.65 kJ mol-1.

  20. SO2 Solvation in the 1-Ethyl-3-Methylimidazolium Thiocyanate Ionic Liquid by Incorporation into the Extended Cation-Anion Network.

    PubMed

    Firaha, Dzmitry S; Kavalchuk, Mikhail; Kirchner, Barbara

    We have carried out an ab initio molecular dynamics study on the sulfur dioxide (SO 2 ) solvation in 1-ethyl-3-methylimidazolium thiocyanate for which we have observed that both cations and anions play an essential role in the solvation of SO 2 . Whereas, the anions tend to form a thiocyanate- and much less often an isothiocyanate-SO 2 adduct, the cations create a "cage" around SO 2 with those groups of atoms that donate weak interactions like the alkyl hydrogen atoms as well as the heavy atoms of the [Formula: see text]-system. Despite these similarities between the solvation of SO 2 and CO 2 in ionic liquids, an essential difference was observed with respect to the acidic protons. Whereas CO 2 avoids accepting hydrogen bonds form the acidic hydrogen atoms of the cations, SO 2 can from O(SO 2 )-H(cation) hydrogen bonds and thus together with the strong anion-adduct it actively integrates in the hydrogen bond network of this particular ionic liquid. The fact that SO 2 acts in this way was termed a linker effect by us, because the SO 2 can be situated between cation and anion operating as a linker between them. The particular contacts are the H(cation)[Formula: see text]O(SO 2 ) hydrogen bond and a S(anion)-S(SO 2 ) sulfur bridge. Clearly, this observation provides a possible explanation for the question of why the SO 2 solubility in these ionic liquids is so high.

  1. Structural and vibrational spectral investigations of melaminium maleate monohydrate by FTIR, FT-Raman and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Kalaivani, M.; Marchewka, M. K.; Mohan, S.

    2013-04-01

    The structural investigations of the molecular complex of melamine with maleic acid, namely melaminium maleate monohydrate have been carried out by quantum chemical methods in addition to FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical studies were performed with DFT (B3LYP) method using 6-31G**, cc-pVDZ and 6-311++G** basis sets to determine the energy, structural and thermodynamic parameters of melaminium maleate monohydrate. The hydrogen atom from maleic acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak Osbnd H⋯O and Nsbnd H⋯O hydrogen bonds shows notable vibrational effects.

  2. Self-assembly of diphenylalanine with preclick components as capping groups.

    PubMed

    Gemma, Andrea; Mayans, Enric; Ballano, Gema; Torras, Juan; Díaz, Angélica; Jiménez, Ana I; Puiggalí, Jordi; Cativiela, Carlos; Alemán, Carlos

    2017-10-11

    Alkyne and azide, which are commonly used in the cycloaddition reaction recognized as "click chemistry", have been used as capping groups of two engineered diphenylalanine (FF) derivatives due to their ability to form weak intermolecular interactions (i.e. dipole-π and π-π stacking). In Poc-FF-N 3 , alkyne and azide act as N- and C-terminal capping groups, respectively, while such positions are exchanged in N 3 -FF-OPrp. The self-assembly of such two synthesized peptides has been extensively studied in their "pre-click" state, considering the influence of three different factors: the peptide concentration, the polarity of the medium, and the nature of the substrate. Poc-FF-N 3 assembles into microfibers that, depending on the medium and the substrate, can aggregate hierarchically in supramolecular structures with different morphologies. The most distinctive one corresponds to very stable birefringent dendritic-like microstructures, which are derived from the ordered agglomeration of microfibers. These branched supramolecular structures, which are observed under a variety of conditions, are relatively uncommon in short FF sequences. At the molecular level, Poc-FF-N 3 organizes in antiparallel β-sheets stabilized by N-HO intermolecular hydrogen bonds and re-enforced by weak interactions between the azide and alkyne groups of neighbouring molecules. In contrast, N 3 -FF-OPrp exhibits a very poor tendency to organize into structures with a well-defined morphology. Theoretical calculations on model complexes indicate that the tendency of the latter peptide to organize into small amorphous agglomerates is due to its poor ability to form specific intermolecular interactions in comparison with Poc-FF-N 3 . The implications of the weak interactions induced by the alkyne and azide groups, which strengthen peptidepeptide hydrogen bonds and π-ladders due to the stacked aromatic phenyl side groups, are discussed.

  3. Crystal structure of (E)-4-hy-droxy-N'-(3-meth-oxy-benzyl-idene)benzohydrazide.

    PubMed

    Chantrapromma, Suchada; Prachumrat, Patcharawadee; Ruanwas, Pumsak; Boonnak, Nawong; Kassim, Mohammad B

    2016-09-01

    The title compound, C 15 H 14 N 2 O 3 , crystallizes with two independent mol-ecules ( A and B ) in the asymmetric unit that differ in the orientation of the 3-meth-oxy-phenyl group with respect to the methyl-idenebenzohydrazide unit. The dihedral angles between the two benzene rings are 24.02 (10) and 29.30 (9)° in mol-ecules A and B , respectively. In mol-ecule A , the meth-oxy group is twisted slightly relative to its bound benzene ring, with a C meth-yl -O-C-C torsion angle of 14.2 (3)°, whereas it is almost co-planar in mol-ecule B , where the corresponding angle is -2.4 (3)°. In the crystal, the mol-ecules are linked by N-H⋯O, O-H⋯N and O-H⋯O hydrogen bonds, as well as by weak C-H⋯O inter-actions, forming sheets parallel to the bc plane. The N-H⋯O hydrogen bond and weak C-H⋯O inter-action link different mol-ecules ( A ⋯ B ) whereas both O-H⋯N and O-H⋯O hydrogen bonds link like mol-ecules ( A ⋯ A ) and ( B ⋯ B ). Pairs of inversion-related B mol-ecules are stacked approximately along the a axis by π-π inter-actions in which the distance between the centroids of the 3-meth-oxy-phenyl rings is 3.5388 (12) Å. The B mol-ecules also participate in weak C-H⋯π inter-actions between the 4-hy-droxy-phenyl and the 3-meth-oxy-phenyl rings.

  4. Seven organic salts assembled from hydrogen-bonds of N-H⋯O, O-H⋯O, and C-H⋯O between acidic compounds and bis(benzimidazole)

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Liu, Hui; Gao, Xin Jun; Lin, Zhanghui; Chen, Guqing; Wang, Daqi

    2014-10-01

    Seven crystalline organic acid-base adducts derived from 1,4-bis(benzimidazol-2-yl)butane/1,2-bis(2-benzimidazolyl)-1,2-ethanediol and acidic components (picric acid, 2-hydroxy-5-(phenyldiazenyl)benzoic acid, 5-sulfosalicylic acid, oxalic acid, and 1,5-naphthalenedisulfonic acid) were prepared and characterized by the single crystal X-ray diffraction analysis, IR, mp, and elemental analysis. All of the seven compounds are organic salts involving proton transfer from the acidic components to the bis(benzimidazole). For the salt 3, although a competing carboxyl group is present, it has been observed that only the proton at the -SO3H group is deprotonized rather than the H at the COOH. While in the salt 7, both COOH and SO3H were ionized to exhibit a valence number of -2. For 4, the oxalic acid existed as unionized molecule, monoanion, and dianion simultaneously in one compound. All supramolecular architectures of the organic salts 1-7 involve extensive intermolecular N-H⋯O, O-H⋯O, and C-H⋯O hydrogen bonds as well as other noncovalent interactions. Since the potentially hydrogen bonding phenol group is present in the ortho position to the carboxyl group in 2, 3, and 7, it forms the more facile intramolecular O-H⋯O hydrogen bonding. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, all the complexes displayed 3D framework structure.

  5. Crystal structure of di-bromo-meth-oxy-seselin (DBMS), a photobiologically active pyran-ocoumarin.

    PubMed

    Bauri, A K; Foro, Sabine; Rahman, A F M M

    2017-05-01

    The title compound, C 15 H 14 Br 2 O 4 [systematic name: rac -(9 S ,10 R )-3,9-dibromo-10-methoxy-8,8-dimethyl-9,10-dihydropyrano[2,3- h ]chromen-2(8 H )-one], is a pyran-ocoumarin derivative formed by the bromination of seselin, which is a naturally occurring angular pyran-ocoumarin isolated from the Indian herb Trachyspermum stictocarpum . In the mol-ecule, the benzo-pyran ring system is essentially planar, with a maximum deviation of 0.044 (2) Å for the O atom. The di-hydro-pyran ring is in a half-chair conformation and the four essentially planar atoms of this ring form a dihedral angle of 4.6 (2)° with the benzo-pyran ring system. In the crystal, mol-ecules are linked by weak C-H⋯O hydrogen bonds, forming chains propagating along [010]. In addition, π-π stacking inter-actions, with centroid-centroid distances of 3.902 (2) and 3.908 (2) Å, link the hydrogen-bonded chains into layers parallel to (001).

  6. Boiling points of halogenated ethanes: an explanatory model implicating weak intermolecular hydrogen-halogen bonding.

    PubMed

    Beauchamp, Guy

    2008-10-23

    This study explores via structural clues the influence of weak intermolecular hydrogen-halogen bonds on the boiling point of halogenated ethanes. The plot of boiling points of 86 halogenated ethanes versus the molar refraction (linked to polarizability) reveals a series of straight lines, each corresponding to one of nine possible arrangements of hydrogen and halogen atoms on the two-carbon skeleton. A multiple linear regression model of the boiling points could be designed based on molar refraction and subgroup structure as independent variables (R(2) = 0.995, standard error of boiling point 4.2 degrees C). The model is discussed in view of the fact that molar refraction can account for approximately 83.0% of the observed variation in boiling point, while 16.5% could be ascribed to weak C-X...H-C intermolecular interactions. The difference in the observed boiling point of molecules having similar molar refraction values but differing in hydrogen-halogen intermolecular bonds can reach as much as 90 degrees C.

  7. Intramolecular competition between n-pair and π-pair hydrogen bonding: Microwave spectrum and internal dynamics of the pyridine–acetylene hydrogen-bonded complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackenzie, Rebecca B.; Dewberry, Christopher T.; Leopold, Kenneth R., E-mail: A.C.Legon@bristol.ac.uk, E-mail: david.tew@bristol.ac.uk, E-mail: kleopold@umn.edu

    2015-09-14

    a-type rotational spectra of the hydrogen-bonded complex formed from pyridine and acetylene are reported. Rotational and {sup 14}N hyperfine constants indicate that the complex is planar with an acetylenic hydrogen directed toward the nitrogen. However, unlike the complexes of pyridine with HCl and HBr, the acetylene moiety in HCCH—NC{sub 5}H{sub 5} does not lie along the symmetry axis of the nitrogen lone pair, but rather, forms an average angle of 46° with the C{sub 2} axis of the pyridine. The a-type spectra of HCCH—NC{sub 5}H{sub 5} and DCCD—NC{sub 5}H{sub 5} are doubled, suggesting the existence of a low lying pairmore » of tunneling states. This doubling persists in the spectra of HCCD—NC{sub 5}H{sub 5}, DCCH—NC{sub 5}H{sub 5}, indicating that the underlying motion does not involve interchange of the two hydrogens of the acetylene. Single {sup 13}C substitution in either the ortho- or meta-position of the pyridine eliminates the doubling and gives rise to separate sets of spectra that are well predicted by a bent geometry with the {sup 13}C on either the same side (“inner”) or the opposite side (“outer”) as the acetylene. High level ab initio calculations are presented which indicate a binding energy of 1.2 kcal/mol and a potential energy barrier of 44 cm{sup −1} in the C{sub 2v} configuration. Taken together, these results reveal a complex with a bent hydrogen bond and large amplitude rocking of the acetylene moiety. It is likely that the bent equilibrium structure arises from a competition between a weak hydrogen bond to the nitrogen (an n-pair hydrogen bond) and a secondary interaction between the ortho-hydrogens of the pyridine and the π electron density of the acetylene.« less

  8. Structure-directing weak phosphoryl XH...O=P (X = C, N) hydrogen bonds in cyclic oxazaphospholidines and oxazaphosphinanes.

    PubMed

    van der Lee, A; Rolland, M; Marat, X; Virieux, D; Volle, J N; Pirat, J L

    2008-04-01

    The structures of six cyclic oxazaphospholidines and three cyclic oxazaphosphinanes have been determined and their supramolecular structures have been compared. The molecules differ with respect to the functional groups attached to the central five- or six-membered rings, but have one phosphoryl group in common. The predominant feature in the supramolecular structures is the existence of relatively weak intermolecular phosphoryl XH...O=P (X = C, N) hydrogen bonds, creating in nearly all cases linear zigzag or double molecular chains. The molecular chains are in general linked to each other via very weak CH...pi or usual hydrogen-bond interactions. A survey of the Cambridge Structural Database on similar XH...O=P interactions shows a very large flexibility of the XH...O angle, which is in agreement with the DFT calculation reported elsewhere. The strength of the XH...O=P interaction can therefore be considered as relatively weak to moderately strong, and is expected to play at least a role in the formation of secondary substructures.

  9. A low-energy core-collapse supernova without a hydrogen envelope.

    PubMed

    Valenti, S; Pastorello, A; Cappellaro, E; Benetti, S; Mazzali, P A; Manteca, J; Taubenberger, S; Elias-Rosa, N; Ferrando, R; Harutyunyan, A; Hentunen, V P; Nissinen, M; Pian, E; Turatto, M; Zampieri, L; Smartt, S J

    2009-06-04

    The final fate of massive stars depends on many factors. Theory suggests that some with initial masses greater than 25 to 30 solar masses end up as Wolf-Rayet stars, which are deficient in hydrogen in their outer layers because of mass loss through strong stellar winds. The most massive of these stars have cores which may form a black hole and theory predicts that the resulting explosion of some of them produces ejecta of low kinetic energy, a faint optical luminosity and a small mass fraction of radioactive nickel. An alternative origin for low-energy supernovae is the collapse of the oxygen-neon core of a star of 7-9 solar masses. No weak, hydrogen-deficient, core-collapse supernovae have hitherto been seen. Here we report that SN 2008ha is a faint hydrogen-poor supernova. We propose that other similar events have been observed but have been misclassified as peculiar thermonuclear supernovae (sometimes labelled SN 2002cx-like events). This discovery could link these faint supernovae to some long-duration gamma-ray bursts, because extremely faint, hydrogen-stripped core-collapse supernovae have been proposed to produce such long gamma-ray bursts, the afterglows of which do not show evidence of associated supernovae.

  10. Vibrational states and optical transitions in hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Johannsen, P. G.

    1998-03-01

    Proton energies in hydrogen bonds are mostly calculated using a double Morse potential (the DMP model). This form, however, does not reproduce the experimentally observed correlation between the proton stretching frequency and the bond length in an extended bond-length region sufficiently well. An alternative potential is proposed in the present paper. The quantum states of this non-symmetric double-well potential are calculated numerically using the Numerov (Fox-Goodwin) algorithm. It is shown that the optical spectra of hydrogen bonds in various substances can be well approximated on the basis of the transition frequencies and intensities predicted by the present model. For weakly interacting OH impurities in 0953-8984/10/10/008/img1, the overtone spectrum and line intensities are well reproduced, whereas the line broadenings and the decrease of the fundamental stretching frequencies in intermediate and strong hydrogen bonds are traced back to the influence of the reduced height of the central barrier. The model is also extrapolated to the range of symmetric hydrogen bonds, and the calculated transition frequencies are discussed with respect to most recent infra-red experiments on ice under strong compression. A possible artificial infra-red signal from strained diamond anvils is thereby noted.

  11. Carbohydrates in Supramolecular Chemistry.

    PubMed

    Delbianco, Martina; Bharate, Priya; Varela-Aramburu, Silvia; Seeberger, Peter H

    2016-02-24

    Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.

  12. Tests of CPT, Lorentz invariance and the WEP with antihydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzscheiter, M.H.; ATHENA Collaboration

    1999-03-01

    Antihydrogen atoms, produced near rest, trapped in a magnetic well, and cooled to the lowest possible temperature (kinetic energy) could provide an extremely powerful tool for the search of violations of CPT and Lorentz invariance. Equally well, such a system could be used for searches of violations of the Weak Equivalence Principle (WEP) at high precision. The author describes his plans to form a significant number of cold, trapped antihydrogen atoms for comparative precision spectroscopy of hydrogen and antihydrogen and comment on possible first experiments.

  13. 3,6-Dimethyl-N 1,N 4-bis­(1-phenyl­eth­yl)-1,4-dihydro-1,2,4,5-tetra­zine-1,4-dicarboxamide

    PubMed Central

    Rao, Guo-Wu; Li, Qi; Lu, Xiao-Jing

    2012-01-01

    In the title mol­ecule, C22H26N6O2, the central tetra­zine ring exhibits a boat conformation, and the two phenyl rings form a dihedral angle of 88.39 (6)°. In the crystal, weak N—H⋯O and C—H⋯O hydrogen bonds link mol­ecules into layers parallel to the ab plane. PMID:22347041

  14. New CO and H alpha observations of Magellanic-type irregular galaxies

    NASA Astrophysics Data System (ADS)

    Dettmar, Ralf-Jurgen; Becker, Renate; Shaw, Martin

    In order to study the star-forming regions in Magellanic-type irregular galaxies and their relation to molecular cloud complexes, we obtained hydrogen alpha images of several southern objects. In addition, we detected and mapped some of these objects in the J = 1-0 CO line. The weak CO emission of most irregulars made it necessary to integrate for 2-8 hours per position. We describe some preliminary results for IC 4662, DDO 70 (Sex B), and IC 5052.

  15. N-(1H-Indazol-5-yl)-4-meth-oxy-benzene-sulfonamide.

    PubMed

    Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Saadi, Mohamed; El Ammari, Lahcen

    2013-10-26

    In the title compound, C14H13N3O3S, the fused ring system is almost planar, the largest deviation from the mean plane being 0.023 (2) Å, and makes a dihedral angle of 47.92 (10)° with the benzene ring of the benzene-sulfonamide moiety. In the crystal, mol-ecules are connected through N-H⋯O hydrogen bonds and weak C-H⋯O contacts, forming a two-dimensional network which is parallel to (010).

  16. 2-Methyl-2-phenyl-1-(pyrrolidin-1-yl)propan-1-one.

    PubMed

    Ren, Dong-Mei

    2013-05-01

    In the title compound, C14H19NO, the dihedral angle between the benzene ring and the plane of the amide group is 80.6 (1)°. In the crystal, mol-ecules are connected via weak C-H⋯O hydrogen bonds, forming chains along the c-axis direction. The conformation of the five-memebred ring is an envelope, with one of the ring C atoms adjacent to the ring N atom as the flap atom.

  17. Effects of Water-Extractable Arabinoxylan on the Physicochemical Properties and Structure of Wheat Gluten by Thermal Treatment.

    PubMed

    Zhu, Yunping; Wang, Yu; Li, Jinlong; Li, Fang; Teng, Chao; Li, Xiuting

    2017-06-14

    This study investigated the effects of water-extractable arabinoxylan (WEAX) on gluten by thermal treatment. Fourier transform infrared spectroscopy (FTIR) results showed that heating significantly decreased β-sheets and β-turn structures in gluten proteins between 25 and 55 °C. The addition of WEAX caused a transition from β-turn to β-sheets at >55 °C. The ratio of weakly hydrogen-bonded β-sheets to strongly hydrogen-bonded β-sheets demonstrated an increasing trend with temperature increasing, but WEAX can hinder this process. FT-Raman results revealed that a hydrophilic environment was developed with 5% WEAX at 25 °C, and phenolic hydroxyl on ferulic acid can form new H-bonds with the phenyl groups of the nondissociated Tyr residues. A 5% WEAX content is helpful for gluten to maintain its original gauche-gauche-gauche conformation of disulfide bond upon heating. In addition, WEAX can reduce the elasticity of gluten and form a soft texture at 25, 55, and 75 °C.

  18. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts

    NASA Astrophysics Data System (ADS)

    Jeon, Ki-Joon; Moon, Hoi Ri; Ruminski, Anne M.; Jiang, Bin; Kisielowski, Christian; Bardhan, Rizia; Urban, Jeffrey J.

    2011-04-01

    Hydrogen is a promising alternative energy carrier that can potentially facilitate the transition from fossil fuels to sources of clean energy because of its prominent advantages such as high energy density (142 MJ kg-1 ref. 1), great variety of potential sources (for example water, biomass, organic matter), light weight, and low environmental impact (water is the sole combustion product). However, there remains a challenge to produce a material capable of simultaneously optimizing two conflicting criteria—absorbing hydrogen strongly enough to form a stable thermodynamic state, but weakly enough to release it on-demand with a small temperature rise. Many materials under development, including metal-organic frameworks, nanoporous polymers, and other carbon-based materials, physisorb only a small amount of hydrogen (typically 1-2 wt%) at room temperature. Metal hydrides were traditionally thought to be unsuitable materials because of their high bond formation enthalpies (for example MgH2 has a ΔHf˜75 kJ mol-1), thus requiring unacceptably high release temperatures resulting in low energy efficiency. However, recent theoretical calculations and metal-catalysed thin-film studies have shown that microstructuring of these materials can enhance the kinetics by decreasing diffusion path lengths for hydrogen and decreasing the required thickness of the poorly permeable hydride layer that forms during absorption. Here, we report the synthesis of an air-stable composite material that consists of metallic Mg nanocrystals (NCs) in a gas-barrier polymer matrix that enables both the storage of a high density of hydrogen (up to 6 wt% of Mg, 4 wt% for the composite) and rapid kinetics (loading in <30 min at 200 °C). Moreover, nanostructuring of the Mg provides rapid storage kinetics without using expensive heavy-metal catalysts.

  19. X-ray, spectroscopic and antibacterial activity studies of the 1:1 complex of lasalocid acid with 1,1,3,3-tetramethylguanidine

    NASA Astrophysics Data System (ADS)

    Huczyński, Adam; Janczak, Jan; Stefańska, Joanna; Rutkowski, Jacek; Brzezinski, Bogumil

    2010-08-01

    The crystal structure of the 1:1 complex between lasalocid acid (LAS) and 1,1,3,3-tetramethylguanidine (TMG) with one inclusion acetone molecule is studied by X-ray diffraction, FT-IR spectroscopy, 1H and 13C NMR. The complex is stabilized by three intra- and two inter-molecular hydrogen bonds formed between LAS anion and protonated TMG molecule. The NH2+ protons of the protonated TMG molecule are hydrogen bonded with the etheric oxygen atom O(6) and the hydroxyl oxygen atom O(8) of the LAS anion. The intermolecular NH⋯O hydrogen bonds are relatively long (2.933(4) Å and 2.903(4) Å). One oxygen atom of the carboxylate group is involved in a relatively strong intramolecular quasi-aromatic O(1)-H⋯O(3) hydrogen bond of 2.428(4) Å length, and the second oxygen atom in the bifurcated intramolecular relatively weak O(4)-H⋯O(2) of 2.803(4) Å and O(8)-H⋯O(2) of 2.805(4) Å hydrogen bonds. The O(4)-H⋯O(2) and O(8)-H⋯O(2) hydrogen bonds bind the ends of the LAS anion forming a pseudo-cyclic structure. The FT-IR spectra of the complex in the solid state and in the solution are comparable, thus the structures observed in the both states are also comparable. The in vitro biological tests of LAS-TMG show its good activity towards some strains of Gram-positive bacteria but this activity is lower than that of lasalocid acid.

  20. The origin of the Crab Nebula and the electron capture supernova in 8-10 M solar mass stars

    NASA Technical Reports Server (NTRS)

    Nomoto, K.

    1981-01-01

    The chemical composition of the Crab Nebula is compared with several presupernova models. The small carbon and oxygen abundances in the helium-rich nebula are consistent with only the presupernova model of the star whose main sequence mass was MMS approximately 8-9.5 M. More massive stars contain too much carbon in the helium layer and smaller mass stars do not leave neutron stars. The progenitor star of the Crab Nebula lost appreciable part of the hydrogen-rich envelope before the hydrogen-rich and helium layers were mixed by convection. Finally it exploded as the electron capture supernova; the O+Ne+Mg core collapsed to form a neutron star and only the extended helium-rich envelope was ejected by the weak shock wave.

  1. N-acetylglyoxylic amide bearing a nitrophenyl group as anion receptors: NMR and X-ray investigations on anion binding and selectivity

    NASA Astrophysics Data System (ADS)

    Suryanti, Venty; Bhadbhade, Mohan; Black, David StC; Kumar, Naresh

    2017-10-01

    N-Nitrophenylglyoxylic amides 1 and 2 in presence of tetrabutylammonium cation (TBA) act as receptors for anions HSO4-, Cl-, Br- and NO3- as investigated by NMR studies. The receptors formed 1:1 host-guest complexes in solution. X-ray structure of 1 along with TBA that bind a chloride anion is reported. Molecule 1 showed the highest selectivity for HSO4- anion over others measured. X-ray structure of the bound Cl- revealed a pocket containing the anion making strong (Nsbnd H⋯Cl) and weak hydrogen bonds (Csbnd H⋯Cl) that contribute to the recognition of the chloride anion. Nsbnd H and Csbnd H hydrogen bonds resulted in a relatively strong binding for chloride ions.

  2. N-(2,3-Dimethyl­phen­yl)-4-hydr­oxy-2-methyl-2H-1,2-benzothia­zine-3-carboxamide 1,1-dioxide

    PubMed Central

    Siddiqui, Waseeq Ahmad; Bukahari, Iftikhar Hussain; Zia-ur-Rehman, Muhammad; Khan, Islam Ullah; Tizzard, Graham John

    2009-01-01

    In the crystal structure of the title compound, C18H18N2O4S, the thia­zine ring adopts a distorted half-chair conformation. 1,2-Benzothia­zines of this kind have a wide range of biological activities and are mainly used as medicines in the treatment of inflammation and rheumatoid arthritis. The enolic H atom is involved in an intra­molecular O—H⋯O hydrogen bond, forming a six-membered ring. The mol­ecules arrange themselves into centrosymmetric dimers by means of inter­molecular N—H⋯O hydrogen bonds. A weak inter­molcular C—H⋯O inter­action is also present. PMID:21582293

  3. Fluorescence Correlation Spectroscopy to Study Diffusion of Polymer Chains within Layered Hydrogen-Bonded Polymer Films

    NASA Astrophysics Data System (ADS)

    Pristinski, Denis; Kharlampieva, Evguenia; Sukhishvili, Svetlana

    2002-03-01

    Fluorescence Correlation Spectroscopy (FCS) has been used to probe molecular motions within polymer multilayers formed by hydrogen-bonding sequential self-assembly. Polyethylene glycol (PEG) molecules were end-labeled with the fluorescent tags, and self-assembled with polymethacrylic acid (PMAA) using layer-by-layer deposition. We have found that molecules included in the top adsorbed layer have significant mobility at the millisecond time scale, probably due to translational diffusion. However, their dynamics deviate from classical Brownian motion with a single diffusion time. Possible reasons for the deviation are discussed. We found that motions were significantly slowed with increasing depth within the PEG/PMAA multilayer. This phenomena occured in a narrow pH range around 4.0 in which intermolecular interactions were relatively weak.

  4. Structural and vibrational spectral investigations of melaminium maleate monohydrate by FTIR, FT-Raman and quantum chemical calculations.

    PubMed

    Arjunan, V; Kalaivani, M; Marchewka, M K; Mohan, S

    2013-04-15

    The structural investigations of the molecular complex of melamine with maleic acid, namely melaminium maleate monohydrate have been carried out by quantum chemical methods in addition to FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical studies were performed with DFT (B3LYP) method using 6-31G(**), cc-pVDZ and 6-311++G(**) basis sets to determine the energy, structural and thermodynamic parameters of melaminium maleate monohydrate. The hydrogen atom from maleic acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak OH···O and NH···O hydrogen bonds shows notable vibrational effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Solute-solvent complex switching dynamics of chloroform between acetone and dimethylsulfoxide-two-dimensional IR chemical exchange spectroscopy.

    PubMed

    Kwak, Kyungwon; Rosenfeld, Daniel E; Chung, Jean K; Fayer, Michael D

    2008-11-06

    Hydrogen bonds formed between C-H and various hydrogen bond acceptors play important roles in the structure of proteins and organic crystals, and the mechanisms of C-H bond cleavage reactions. Chloroform, a C-H hydrogen bond donor, can form weak hydrogen-bonded complexes with acetone and with dimethylsulfoxide (DMSO). When chloroform is dissolved in a mixed solvent consisting of acetone and DMSO, both types of hydrogen-bonded complexes exist. The two complexes, chloroform-acetone and chloroform-DMSO, are in equilibrium, and they rapidly interconvert by chloroform exchanging hydrogen bond acceptors. This fast hydrogen bond acceptor substitution reaction is probed using ultrafast two-dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy. Deuterated chloroform is used in the experiments, and the 2D-IR spectrum of the C-D stretching mode is measured. The chemical exchange of the chloroform hydrogen bonding partners is tracked by observing the time-dependent growth of off-diagonal peaks in the 2D-IR spectra. The measured substitution rate is 1/30 ps for an acetone molecule to replace a DMSO molecule in a chloroform-DMSO complex and 1/45 ps for a DMSO molecule to replace an acetone molecule in a chloroform-acetone complex. Free chloroform exists in the mixed solvent, and it acts as a reactive intermediate in the substitution reaction, analogous to a SN1 type reaction. From the measured rates and the equilibrium concentrations of acetone and DMSO, the dissociation rates for the chloroform-DMSO and chloroform-acetone complexes are found to be 1/24 ps and 1/5.5 ps, respectively. The difference between the measured rate for the complete substitution reaction and the rate for complex dissociation corresponds to the diffusion limited rate. The estimated diffusion limited rate agrees well with the result from a Smoluchowski treatment of diffusive reactions.

  6. Kinetics and thermochemistry of 2,5-dimethyltetrahydrofuran and related oxolanes: next next-generation biofuels.

    PubMed

    Simmie, John M

    2012-05-10

    The enthalpies of formation, entropies, specific heats at constant pressure, enthalpy functions, and all carbon-hydrogen and carbon-methyl bond dissociation energies have been computed using high-level methods for the cyclic ethers (oxolanes) tetrahydrofuran, 2-methyltetrahydrofuran, and 2,5-dimethyltetrahydrofuran. Barrier heights for hydrogen-abstraction reactions by hydrogen atoms and the methyl radical are also computed and shown to correlate with reaction energy change. The results show a pleasing consistency and considerably expands the available data for these important compounds. Abstraction by ȮH is accompanied by formation of both pre- and postreaction weakly bound complexes. The resulting radicals formed after abstraction undergo ring-opening reactions leading to readily recognizable intermediates, while competitive H-elimination reactions result in formation of dihydrofurans. Formation enthalpies of all 2,3- and 2,5-dihydrofurans and associated radicals are also reported. It is probable that the compounds at the center of this study will be relatively clean-burning biofuels, although formation of intermediate aldehydes might be problematic.

  7. FORMATION AND ALIGNMENT OF ELONGATED, FRACTAL-LIKE WATER-ICE GRAINS IN EXTREMELY COLD, WEAKLY IONIZED PLASMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai, Kil-Byoung; Bellan, Paul M., E-mail: kbchai@caltech.edu, E-mail: pbellan@caltech.edu

    2015-04-01

    Elongated, fractal-like water-ice grains are observed to form spontaneously when water vapor is injected into a weakly ionized laboratory plasma formed in a background gas cooled to an astrophysically relevant temperature. The water-ice grains form in 1–2 minutes, levitate with regular spacing, and are aligned parallel to the sheath electric field. Water-ice grains formed in plasma where the neutrals and ions have low mass, such as hydrogen and helium, are larger, more elongated, and more fractal-like than water-ice grains formed in plasmas where the neutrals and ions have high mass such as argon and krypton. Typical aspect ratios (length tomore » width ratio) are as great as 5 while typical fractal dimensions are ∼1.7. Water-ice grain lengths in plasmas with low neutral and ion masses can be several hundred microns long. Infrared absorption spectroscopy reveals that the water-ice grains are crystalline and so are similar in constitution to the water-ice grains in protoplanetary disks, Saturn’s rings, and mesospheric clouds. The properties and behavior of these laboratory water-ice grains may provide insights into morphology and alignment behavior of water-ice grains in astrophysical dusty plasmas.« less

  8. Lasagna-type arrays with halide-nitromethane cluster filling. The first recognition of the Hal(-)···HCH2NO2 (Hal = Cl, Br, I) hydrogen bonding.

    PubMed

    Gushchin, Pavel V; Kuznetsov, Maxim L; Wang, Qian; Karasik, Andrey A; Haukka, Matti; Starova, Galina L; Kukushkin, Vadim Yu

    2012-06-21

    The previously predicted ability of the methyl group of nitromethane to form hydrogen bonding with halides is now confirmed experimentally based on X-ray data of novel nitromethane solvates followed by theoretical ab initio calculations at the MP2 level of theory. The cationic (1,3,5-triazapentadiene)Pt(II) complexes [Pt{HN=C(NC(5)H(10))N(Ph)C(NH(2))=NPh}(2)](Cl)(2), [1](Hal)(2) (Hal = Cl, Br, I), and [Pt{HN=C(NC(4)H(8)O)N(Ph)C(NH(2))=NPh}(2)](Cl)(2), [2](Cl)(2), were crystallized from MeNO(2)-containing systems providing nitromethane solvates studied by X-ray diffraction. In the crystal structure of [1][(Hal)(2)(MeNO(2))(2)] (Hal = Cl, Br, I) and [2][(Cl)(2)(MeNO(2))(2)], the solvated MeNO(2) molecules occupy vacant spaces between lasagna-type layers and connect to the Hal(-) ion through a weak hydrogen bridge via the H atom of the methyl thus forming, by means of the Hal(-)···HCH(2)NO(2) contact, the halide-nitromethane cluster "filling". The quantum-chemical calculations demonstrated that the short distance between the Hal(-) anion and the hydrogen atom of nitromethane in clusters [1][(Hal)(2)(MeNO(2))(2)] and [2][(Cl)(2)(MeNO(2))(2)] is not just a consequence of the packing effect but a result of the moderately strong hydrogen bonding.

  9. Chirality of weakly bound complexes: The potential energy surfaces for the hydrogen-peroxide−noble-gas interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roncaratti, L. F., E-mail: lz@fis.unb.br; Leal, L. A.; Silva, G. M. de

    2014-10-07

    We consider the analytical representation of the potential energy surfaces of relevance for the intermolecular dynamics of weakly bound complexes of chiral molecules. In this paper we study the H{sub 2}O{sub 2}−Ng (Ng=He, Ne, Ar, Kr, and Xe) systems providing the radial and the angular dependence of the potential energy surface on the relative position of the Ng atom. We accomplish this by introducing an analytical representation which is able to fit the ab initio energies of these complexes in a wide range of geometries. Our analysis sheds light on the role that the enantiomeric forms and the symmetry ofmore » the H{sub 2}O{sub 2} molecule play on the resulting barriers and equilibrium geometries. The proposed theoretical framework is useful to study the dynamics of the H{sub 2}O{sub 2} molecule, or other systems involving O–O and S–S bonds, interacting by non-covalent forces with atoms or molecules and to understand how the relative orientation of the O–H bonds changes along collisional events that may lead to a hydrogen bond formation or even to selectivity in chemical reactions.« less

  10. Theoretical and experimental study of fenofibrate and simvastatin

    NASA Astrophysics Data System (ADS)

    Nicolás Vázquez, Inés; Rodríguez-Núñez, Jesús Rubén; Peña-Caballero, Vicente; Ruvalcaba, Rene Miranda; Aceves-Hernandez, Juan Manuel

    2017-12-01

    Fenofibrate, an oral fibrate lipid lowering agent, and simvastatin, which reduces plasma levels of low-density lipoprotein cholesterol, are active pharmaceutical ingredients (APIs), currently in the market. We characterized these APIs by thermal analysis and conducted X-ray powder diffraction techniques. Studies should be carried out in the formulation stage before the final composition of a polypill may be established. Thus, it was found in thermochemical studies that both compounds present no chemical interactions in an equimolar mixture of solid samples at room temperature. Theoretical studies were employed to determine possible interactions between fenofibrate and simvastatin. A very weak intramolecular hydrogen bond is formed between the hydroxyl group (O5H5) of the simvastatin with chlorine and carbonyl group (C11O4, C1O2) of the fenofibrate molecule. These weak energy hydrogen bonds have no effect on the chemical stability of the compounds studied. The results were obtained using Density Functional Theory methods; particularly the BPE1BPE and B3LYP functional and 6-31++G** basis set. The values of energy show good approximation when are compared with similar calculations previously reported. Infrared spectra of monomers and dimers were obtained via theoretical calculations.

  11. Anode reactive bleed and injector shift control strategy

    DOEpatents

    Cai, Jun [Rochester, NY; Chowdhury, Akbar [Pittsford, NY; Lerner, Seth E [Honeoye Falls, NY; Marley, William S [Rush, NY; Savage, David R [Rochester, NY; Leary, James K [Rochester, NY

    2012-01-03

    A system and method for correcting a large fuel cell voltage spread for a split sub-stack fuel cell system. The system includes a hydrogen source that provides hydrogen to each split sub-stack and bleed valves for bleeding the anode side of the sub-stacks. The system also includes a voltage measuring device for measuring the voltage of each cell in the split sub-stacks. The system provides two levels for correcting a large stack voltage spread problem. The first level includes sending fresh hydrogen to the weak sub-stack well before a normal reactive bleed would occur, and the second level includes sending fresh hydrogen to the weak sub-stack and opening the bleed valve of the other sub-stack when the cell voltage spread is close to stack failure.

  12. An Optical Study of Processes in Hydrogen Flame in a Tube

    DTIC Science & Technology

    2002-07-01

    growth of the hydrogen- flame length with the hydrogen flow rate was observed, whereas for a turbulent hydrogen jet (Reynolds number Re > 104 [5]), the... flame length remained almost constant and varied only weakly with the flow rate of hydrogen. For a subsonic jet flow, flame images display an...There are some data in the literature which show how the diffusive- flame length varies with the rate of hydrogen flow [4, 7]. The length of a

  13. Hydrogen loss and its improved retention in hydrogen plasma treated a-SiNx:H films: ERDA study with 100 MeV Ag7+ ions

    NASA Astrophysics Data System (ADS)

    Bommali, R. K.; Ghosh, S.; Khan, S. A.; Srivastava, P.

    2018-05-01

    Hydrogen loss from a-SiNx:H films under irradiation with 100 MeV Ag7+ ions using elastic recoil detection analysis (ERDA) experiment is reported. The results are explained under the basic assumptions of the molecular recombination model. The ERDA hydrogen concentration profiles are composed of two distinct hydrogen desorption processes, limited by rapid molecular diffusion in the initial stages of irradiation, and as the fluence progresses a slow process limited by diffusion of atomic hydrogen takes over. Which of the aforesaid processes dominates, is determined by the continuously evolving Hydrogen concentration within the films. The first process dominates when the H content is high, and as the H concentration falls below a certain threshold (Hcritical) the irradiation generated H radicals have to diffuse through larger distances before recombining to form H2, thereby significantly bringing down the hydrogen evolution rate. The ERDA measurements were also carried out for films treated with low temperature (300 °C) hydrogen plasma annealing (HPA). The HPA treated films show a clear increase in Hcritical value, thus indicating an improved diffusion of atomic hydrogen, resulting from healing of weak bonds and passivation of dangling bonds. Further, upon HPA films show a significantly higher H concentration relative to the as-deposited films, at advanced fluences. These results indicate the potential of HPA towards improved H retention in a-SiNx:H films. The study distinguishes clearly the presence of two diffusion processes in a-SiNx:H whose diffusion rates differ by an order of magnitude, with atomic hydrogen not being able to diffuse further beyond ∼ 1 nm from the point of its creation.

  14. Convenient synthesis of Mn-doped Zn (O,S) nanoparticle photocatalyst for 4-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Susanto Gultom, Noto; Abdullah, Hairus; Kuo, Dong-Hau

    2018-04-01

    The conversion of 4-nitrophenol as a toxic and waste pollutant to 4-aminophenol as a non-toxic and useful compound by photocatalytic reduction is highly important. In this work, the solid-solution concept by doping was involved to synthesis earth-abundant and green material of Mn-doped Zn(O,S). Zn(O,S) with different Mn doping contents was easily synthesized at low temperature 90°C for 4-NP reduction without using the reducing agent of NaBH4. The Mn-doped Zn(O,S) catalyst exhibited the enhancements in optical and electrochemical properties compared to un-doped Zn(O,S).It was found that 10% Mn-doped Zn(O,S) had the best properties and it could totally reduce 4-NP after 2h photoreactions under low UV illumination. The hydrogen ion was proposed to involve the 4-NP reduction to 4-AP, which is hydrogen ion and electron replaced the oxygen in amino (NO2) group of 4-NP to form the nitro (NH2) group. We alsoproposed the incorporation of Mn in Zn site in the Zn(O,S) host lattice could make the oxygen surface bonding weak for easily forming the oxygen vacancy. The more oxygen vacancy for more hydrogen ion would be generated to consume for 4-NP reduction.

  15. A theoretical perspective of the nature of hydrogen-bond types - the atoms in molecules approach

    NASA Astrophysics Data System (ADS)

    Vijaya Pandiyan, B.; Kolandaivel, P.; Deepa, P.

    2014-06-01

    Hydrogen bonds and their strength were analysed based on their X-H proton-donor bond properties and the parameters of the H-Y distance (Y proton acceptor). Strong, moderate and weak interactions in hydrogen-bond types were verified through the proton affinities of bases (PA), deprotanation enthalpies of acids (DPE) and the chemical shift (σ). The aromaticity and anti-aromaticity were analysed by means of the NICS (0) (nucleus-independent chemical shift), NICS (1) and ΔNICS (0), ΔNICS (1) of hydrogen-bonded molecules. The strength of a hydrogen bond depends on the capacity of hydrogen atom engrossing into the electronegative acceptor atom. The correlation between the above parameters and their relations were discussed through curve fitting. Bader's theory of atoms in molecules has been applied to estimate the occurrence of hydrogen bonds through eight criteria reported by Popelier et al. The lengths and potential energy shifts have been found to have a strong negative linear correlation, whereas the lengths and Laplacian shifts have a strong positive linear correlation. This study illustrates the common factors responsible for strong, moderate and weak interactions in hydrogen-bond types.

  16. Two drimane lactones, valdiviolide and 11-epivaldiviolide, in the form of a 1:1 cocrystal obtained from Drimys winteri extracts.

    PubMed

    Paz Robles, Cristian; Mercado, Darío; Suarez, Sebastián; Baggio, Ricardo

    2014-12-01

    A cocrystal, C15H22O3·C15H22O3, (I), obtained from Drimys winteri, is composed of two isomeric drimane sesquiterpene lactones, namely valdiviolide, (Ia), and 11-epivaldiviolide, (Ib), neither of which has been reported in the crystal form. Both diastereoisomers present three chiral centres at sites 5, 10 and 11, with an SSR sequence in (Ia) and an SSS sequence in (Ib). O-H···O hydrogen bonds bind molecules into chains running along [120] and the chains are in turn linked by π-π stacking interactions to define planar weakly interacting arrays parallel to (001).

  17. On the atmospheric oxidation of liquid toluene.

    PubMed

    Pritchard, Huw O

    2006-10-21

    This communication presents preliminary computational results on the interaction between triplet (3Sigma) and singlet (1Sigma, 1Delta) oxygen molecules with toluene. All three oxygen species form very weak complexes with toluene and all also appear capable of abstracting a benzylic hydrogen atom to form the HO2 radical. Reaction with singlet molecular oxygen does not convincingly explain the formation of benzylhydroperoxide from toluene residues stored over a long time in brown glass bottles, and it is speculated that this may be a surface-catalysed photochemical reaction. The possible involvement of singlet oxygen molecules in the spontaneous ignition of tyre rubber and of soft coal is discussed briefly and the need for new experimental studies is stressed.

  18. 2-[4-(4,5-Dihydro-1H-pyrrol-2-yl)phen­yl]-4,5-dihydro-1H-imidazole

    PubMed Central

    Kia, Reza; Fun, Hoong-Kun; Kargar, Hadi

    2008-01-01

    The mol­ecule of the title compound, C12H14N4, lies about a crystallographic inversion centre. The five- and six-membered rings are twisted from each other, forming a dihedral angle of 18.06 (7)°. In the crystal structure, neighbouring mol­ecules are linked by inter­molecular N—H⋯N hydrogen bonds into one-dimensional infinite chains forming 18-membered rings with R 2 2(18) motifs. The crystal structure is further stabilized by weak inter­molecular π–π stacking [centroid–centroid distance = 3.8254 (6) Å] and C—H⋯π inter­actions. PMID:21581375

  19. Porphyrin-induced photogeneration of hydrogen peroxide determined using the luminol chemiluminescence method in aqueous solution: A structure-activity relationship study related to the aggregation of porphyrin.

    PubMed

    Komagoe, Keiko; Katsu, Takashi

    2006-02-01

    A luminol chemiluminescence method was used to evaluate the porphyrin-induced photogeneration of hydrogen peroxide (H2O2). This method enabled us to detect H202 in the presence of a high concentration of porphyrin, which was not possible using conventional colorimetry. The limit of detection was about 1 microM. We compared the ability to generate H2O2, using uroporphyrin (UP), hexacarboxylporphyrin (HCP), coproporphyrin (CP), hematoporphyrin (HP), mesoporphyrin (MP), and protoporphyrin (PP). The amount of H2O2 photoproduced was strongly related to the state of the porphyrin in the aqueous solution. UP and HCP, which existed predominantly in a monomeric form, had a good ability to produce H2O2. HP and MP, existing as dimers, showed weak activity. CP, forming a mixture of monomer and dimer, had a moderate ability to produce H2O2. PP, which was highly aggregated, had a good ability. These results demonstrated that the efficiency of porphyrins to produce H2O2 was strongly dependent on their aggregated form, and the dimer suppressed the production of H2O2.

  20. [Study of hydrogen bonds in the "catalytic triad" of trypsin by NMR spectra at 1H, 13C, and 15N nuclei].

    PubMed

    Golubeb, N S; Gindin, V A; Ligaĭ, S S; Smirnov, S N

    1994-05-01

    The 1H and 13C NMR of trypsin stabilized by chemical modification with a hydrophilic polymer have been obtained in a wide range of pH (1.0-11.0). The spectral features referred to some nuclei of the "catalytic triad" have been identified using different NMR techniques as well as chemical modification with selective reagents. It was found that the monoprotonation of this system results in a quasi-symmetrical hydrogen bond formed between the basic groups which provided explanation for the discrepancies between the experimental findings obtained by different authors concerning the protonation site in this catalytic system. Simulation of the catalytic triad by a 15N-labelled low molecular model suggests that an increase in the OH-group acidity is unaccompanied by a discrete double proton transfer; however, a smooth shift of the bridging protons from one basic atom to another occurs with quasi-symmetrical hydrogen bonds formed in intermediate cases. On the basis of experimental data a new concept has been proposed for the mechanism of acid-base catalysis performed by pains of weak basic groups, such as His-Im and Asp(Glu)-COO- (pKa = 3-7) which are not capable of proton abstraction from alcoholic or water OH-groups (pKa > 13). The catalysis may consist in changing the charge densities on the reacting groups due to strong H-bonding and, on the other hand, in facilitating the free movement of a proton in the field of several basic atoms when going along the reaction coordinate. The energy of very strong hydrogen bonds thus formed diminishes the activation energy of the reaction.

  1. Enhanced Hydrogen Dipole Physisorption, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Channing

    2014-01-03

    The hydrogen gas adsorption effort at Caltech was designed to probe and apply our understanding of known interactions between molecular hydrogen and adsorbent surfaces as part of a materials development effort to enable room temperature storage of hydrogen at nominal pressure. The work we have performed over the past five years has been tailored to address the outstanding issues associated with weak hydrogen sorbent interactions in order to find an adequate solution for storage tank technology.

  2. Tandem ring-closing metathesis/transfer hydrogenation: practical chemoselective hydrogenation of alkenes.

    PubMed

    Connolly, Timothy; Wang, Zhongyu; Walker, Michael A; McDonald, Ivar M; Peese, Kevin M

    2014-09-05

    An operationally simple chemoselective transfer hydrogenation of alkenes using ruthenium metathesis catalysts is presented. Of great practicality, the transfer hydrogenation reagents can be added directly to a metathesis reaction and effect hydrogenation of the product alkene in a single pot at ambient temperature without the need to seal the vessel to prevent hydrogen gas escape. The reduction is applicable to a range of alkenes and can be performed in the presence of aryl halides and benzyl groups, a notable weakness of Pd-catalyzed hydrogenations. Scope and mechanistic considerations are presented.

  3. 4-Methyl-N-(1-methyl-1H-indazol-5-yl)benzene-sulfonamide.

    PubMed

    Chicha, Hakima; Oulemda, Bassou; Rakib, El Mostapha; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    In the title compound, C15H15N3O2S, the fused ring system is close to planar, the largest deviation from the mean plane being 0.030 (2) Å, and makes a dihedral angle of 48.84 (9)° with the benzene ring belonging to the methyl-benzene-sulfonamide moiety. In the crystal, mol-ecules are -connected through N-H⋯N hydrogen bonds and weak C-H⋯O contacts, forming a two-dimensional network parallel to (001).

  4. 4-Methyl-N-(1-methyl-1H-indazol-5-yl)benzene­sulfonamide

    PubMed Central

    Chicha, Hakima; Oulemda, Bassou; Rakib, El Mostapha; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    In the title compound, C15H15N3O2S, the fused ring system is close to planar, the largest deviation from the mean plane being 0.030 (2) Å, and makes a dihedral angle of 48.84 (9)° with the benzene ring belonging to the methyl­benzene­sulfonamide moiety. In the crystal, mol­ecules are ­connected through N—H⋯N hydrogen bonds and weak C—H⋯O contacts, forming a two-dimensional network parallel to (001). PMID:24427093

  5. N-(1H-Indazol-5-yl)-4-meth­oxy­benzene­sulfonamide

    PubMed Central

    Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    In the title compound, C14H13N3O3S, the fused ring system is almost planar, the largest deviation from the mean plane being 0.023 (2) Å, and makes a dihedral angle of 47.92 (10)° with the benzene ring of the benzene­sulfonamide moiety. In the crystal, mol­ecules are connected through N—H⋯O hydrogen bonds and weak C—H⋯O contacts, forming a two-dimensional network which is parallel to (010). PMID:24454128

  6. 1-[(3,5-Dimethyl-1H-pyrazol-1-yl)carbon­yl]-5-methyl­indolizine-3-carbo­nitrile

    PubMed Central

    Gu, Wei-Jin; Xie, Wen-Li; Wang, Ting-Ting

    2012-01-01

    In the title mol­ecule, C16H14N4O, the indolizine ring system is essentially planar, with a maximum deviation of 0.013 (3) Å, and forms a dihedral angle of 7.52 (12)° with the pyrazole ring. In the crystal, weak C—H⋯O hydrogen bonds and π–π stacking inter­actions, with a centroid–centroid distance of 3.6378 (16) Å, link mol­ecules along [001]. PMID:23476226

  7. Loss of benzene to generate an enolate anion by a site-specific double-hydrogen transfer during CID fragmentation of o-alkyl ethers of ortho-hydroxybenzoic acids.

    PubMed

    Attygalle, Athula B; Bialecki, Jason B; Nishshanka, Upul; Weisbecker, Carl S; Ruzicka, Josef

    2008-09-01

    Collision-induced dissociation of anions derived from ortho-alkyloxybenzoic acids provides a facile way of producing gaseous enolate anions. The alkyloxyphenyl anion produced after an initial loss of CO(2) undergoes elimination of a benzene molecule by a double-hydrogen transfer mechanism, unique to the ortho isomer, to form an enolate anion. Deuterium labeling studies confirmed that the two hydrogen atoms transferred in the benzene loss originate from positions 1 and 2 of the alkyl chain. An initial transfer of a hydrogen atom from the C-1 position forms a phenyl anion and a carbonyl compound, both of which remain closely associated as an ion/neutral complex. The complex breaks either directly to give the phenyl anion by eliminating the neutral carbonyl compound, or to form an enolate anion by transferring a hydrogen atom from the C-2 position and eliminating a benzene molecule in the process. The pronounced primary kinetic isotope effect observed when a deuterium atom is transferred from the C-1 position, compared to the weak effect seen for the transfer from the C-2 position, indicates that the first transfer is the rate determining step. Quantum mechanical calculations showed that the neutral loss of benzene is a thermodynamically favorable process. Under the conditions used, only the spectra from ortho isomers showed peaks at m/z 77 for the phenyl anion and m/z 93 for the phenoxyl anion, in addition to that for the ortho-specific enolate anion. Under high collision energy, the ortho isomers also produce a peak at m/z 137 for an alkene loss. The spectra of meta and para compounds show a peak at m/z 92 for the distonic anion produced by the homolysis of the O-C bond. Moreover, a small peak at m/z 136 for a distonic anion originating from an alkyl radical loss allows the differentiation of para compounds from meta isomers.

  8. Constraints on CEMP-no progenitors from nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Choplin, Arthur; Maeder, André; Meynet, Georges; Chiappini, Cristina

    2016-09-01

    Context. The CEMP-no stars are long-lived small mass stars presenting a very low iron content and overabundances of carbon with no sign or only very weak signs of s- or r-elements. Although the origin of this abundance pattern is still a matter of debate, it was very likely inherited from a previous massive star, which we call the source star. Aims: We rely on a recent classification of CEMP-no stars arguing that some of them are made of a material processed by hydrogen burning that was enriched in products of helium burning during the nuclear life of the source star. We examine the possibility of forming CEMP-no stars with this material. Methods: We study the nucleosynthesis of the CNO cycle and the Ne-Na Mg-Al chains in a hydrogen burning single zone while injecting the helium burning products 12C, 16O, 22Ne, and 26Mg. We investigate the impact of changing density, temperature and the injection rate. The nuclear reaction rates involving the creation and destruction of 27Al are also examined. Results: 14N, 23Na, 24Mg, and 27Al are formed when injecting 12C, 16O, 22Ne, and 26Mg in the hydrogen burning zone. The 12C/13C ratio is constant under various conditions in the hydrogen burning zone. The predicted [Al/Fe] ratio varies up to ~ 2 dex depending on the prescription used for the reaction rates involving 27Al. Conclusions: The experiments we carried out support the view that some CEMP-no stars are made of a material processed by hydrogen burning that comes from a massive star experiencing mild to strong rotational mixing. During its burning, this material was likely enriched in helium burning products. No material coming from the carbon-oxygen rich core of the source star should be added to form the daughter star, otherwise the 12C/13C ratio would be largely above the observed range of values.

  9. Crystal structures of 3,5-bis-[(E)-3-hy-droxy-benzyl-idene]-1-methyl-piperidin-4-one and 3,5-bis-[(E)-2-chloro-benzyl-idene]-1-methyl-piperidin-4-one.

    PubMed

    Eryanti, Yum; Zamri, Adel; Herlina, Tati; Supratman, Unang; Rosli, Mohd Mustaqim; Fun, Hoong-Kun

    2015-12-01

    The title compounds, C20H19NO3, (1), and C20H17Cl2NO, (2), are the 3-hy-droxy-benzyl-idene and 2-chloro-benzyl-idene derivatives, respectively, of curcumin [systematic name: (1E,6E)-1,7-bis-(4-hy-droxy-3-meth-oxy-phen-yl)-1,6-hepta-diene-3,5-dione]. The dihedral angles between the benzene rings in each compound are 21.07 (6)° for (1) and 13.4 (3)° for (2). In both compounds, the piperidinone rings adopt a sofa confirmation and the methyl group attached to the N atom is in an equatorial position. In the crystal of (1), two pairs of O-H⋯N and O-H⋯O hydrogen bonds link the mol-ecules, forming chains along [10-1]. The chains are linked via C-H⋯O hydrogen bonds, forming undulating sheets parallel to the ac plane. In the crystal of (2), mol-ecules are linked by weak C-H⋯Cl hydrogen bonds, forming chains along the [204] direction. The chains are linked along the a-axis direction by π-π inter-actions [inter-centroid distance = 3.779 (4) Å]. For compound (2), the crystal studied was a non-merohedral twin with the refined ratio of the twin components being 0.116 (6):0.886 (6).

  10. Sorption of hydrogen by silica aerogel at low-temperatures

    NASA Astrophysics Data System (ADS)

    Dolbin, A. V.; Khlistyuck, M. V.; Esel'son, V. B.; Gavrilko, V. G.; Vinnikov, N. A.; Basnukaeva, R. M.; Martsenuk, V. E.; Veselova, N. V.; Kaliuzhnyi, I. A.; Storozhko, A. V.

    2018-02-01

    The programmed thermal desorption method is used at temperatures of 7-95 K to study the sorption and subsequent desorption of hydrogen by a sample of silica aerogel. Physical sorption of hydrogen owing to the weak van-der-Waals interaction of hydrogen molecules with the silicon dioxide walls of the pores of the sample was observed over the entire temperature range. The total capacity of the aerogel sample for hydrogen was ˜1.5 mass %. It was found that when the sample temperature was lowered from 95 to 60 K, the characteristic sorption times for hydrogen by the silica aerogel increase; this is typical of thermally activated diffusion (Ea ≈ 408 K). For temperatures of 15-45 K the characteristic H2 sorption times depended weakly on temperature, presumably because of the predominance of a tunnel mechanism for diffusion over thermally activated diffusion. Below 15 K the characteristic sorption times increase somewhat as the temperature is lowered; this may be explained by the formation of a monolayer of H2 molecules on the surface of the aerogel grains.

  11. Aqueous heterogeneity at the air/water interface revealed by 2D-HD-SFG spectroscopy.

    PubMed

    Hsieh, Cho-Shuen; Okuno, Masanari; Hunger, Johannes; Backus, Ellen H G; Nagata, Yuki; Bonn, Mischa

    2014-07-28

    Water molecules interact strongly with each other through hydrogen bonds. This efficient intermolecular coupling causes strong delocalization of molecular vibrations in bulk water. We study intermolecular coupling at the air/water interface and find intermolecular coupling 1) to be significantly reduced and 2) to vary strongly for different water molecules at the interface--whereas in bulk water the coupling is homogeneous. For strongly hydrogen-bonded OH groups, coupling is roughly half of that of bulk water, due to the lower density in the near-surface region. For weakly hydrogen-bonded OH groups that absorb around 3500 cm(-1), which are assigned to the outermost, yet hydrogen-bonded OH groups pointing towards the liquid, coupling is further reduced by an additional factor of 2. Remarkably, despite the reduced structural constraints imposed by the interfacial hydrogen-bond environment, the structural relaxation is slow and the intermolecular coupling of these water molecules is weak. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Crystal and molecular structure of N-(4-nitrophenyl)-β-alanine—Its vibrational spectra and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Marchewka, M. K.; Drozd, M.; Janczak, J.

    2011-08-01

    The N-(4-nitrophenyl)-β-alanine in crystalline form directly by the addition of 4-nitroaniline to the acrylic acid in aqueous solution has been obtained. The title β-alanine derivative crystallizes in the P2 1/ c space group of monoclinic system with four molecules per unit cell. The X-ray geometry of β-alanine derivative molecule has been compared with those obtained by molecular orbital calculations corresponding to the gas phase. In the crystal the molecules related by an inversion center interact via symmetrically equivalent O-H⋯O hydrogen bonds with O⋯O distance of 2.656(2) Å forming a dimeric structure. The dimers of β-alanine derivative weakly interact via N-H⋯O hydrogen bonds between the H atom of β-amine groups and one of O atom of nitro groups. The room temperature powder vibrational (infrared and Raman) measurements are in accordance with the X-ray analysis. In aqueous solution of 4-nitroaniline and acrylic acid, the double C dbnd C bond of vinyl group of acrylic acid breaks as result of 4-nitroaniline addition.

  13. Determination of the Kinematics of the Qweak Experiment and Investigation of an Atomic Hydrogen Moller Polarimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, Valerie M.

    The Q weak experiment has tested the Standard Model through making a precise measurement of the weak charge of the proton (more » $$Q^p_W$$). This was done through measuring the parity-violating asymmetry for polarized electrons scattering off of unpolarized protons. The parity-violating asymmetry measured is directly proportional to the four-momentum transfer ($Q^2$) from the electron to the proton. The extraction of $$Q^p_W$$ from the measured asymmetry requires a precise $Q^2$ determination. The Q weak experiment had a $Q^2$ = 24.8 ± 0.1 m(GeV 2) which achieved the goal of an uncertainty of <= 0.5%. From the measured asymmetry and $Q^2$, $$Q^p_W$$ was determined to be 0.0719 ± 0.0045, which is in good agreement with the Standard Model prediction. This puts a 7.5 TeV lower limit on possible "new physics". This dissertation describes the analysis of Q^2 for the Q weak experiment. Future parity-violating electron scattering experiments similar to the Q weak experiment will measure asymmetries to high precision in order to test the Standard Model. These measurements will require the beam polarization to be measured to sub-0.5% precision. Presently the electron beam polarization is measured through Moller scattering off of a ferromagnetic foil or through using Compton scattering, both of which can have issues reaching this precision. A novel Atomic Hydrogen Moller Polarimeter has been proposed as a non-invasive way to measure the polarization of an electron beam via Moller scattering off of polarized monatomic hydrogen gas. This dissertation describes the development and initial analysis of a Monte Carlo simulation of an Atomic Hydrogen Moller Polarimeter.« less

  14. Supramolecular features of 2-(chlorophenyl)-3-[(chlorobenzylidene)-amino]-2,3-dihydroquinazolin-4(1H)-ones: A combined experimental and computational study

    NASA Astrophysics Data System (ADS)

    Mandal, Arkalekha; Patel, Bhisma K.

    2018-03-01

    The molecular structures of two isomeric 2-(chlorophenyl)-3-[(chlorobenzylidene)-amino] substituted 2,3-dihydroquinazolin-4(1H)-ones have been determined via single crystal XRD. Both isomers contain chloro substitutions on each of the phenyl rings and as a result a broad spectrum of halogen mediated weak interactions are viable in their crystal structures. The crystal packing of these compounds is stabilized by strong N-H⋯O hydrogen bond and various weak, non-classical hydrogen bonds acting synergistically. Both the molecules contain a chiral center and the weak interactions observed in them are either chiral self-discriminatory or chiral self-recognizing in nature. The weak interactions and spectral features of the compounds have been studied through experimental as well as computational methods including DFT, MEP, NBO and Hiresfeld surface analyses. In addition, the effect of different weak interactions to dictate either chiral self-recognition or self-discrimination in crystal packing has been elucidated.

  15. Self-consistent nonlocal feedback theory for electrocatalytic swimmers with heterogeneous surface chemical kinetics

    NASA Astrophysics Data System (ADS)

    Nourhani, Amir; Crespi, Vincent H.; Lammert, Paul E.

    2015-06-01

    We present a self-consistent nonlocal feedback theory for the phoretic propulsion mechanisms of electrocatalytic micromotors or nanomotors. These swimmers, such as bimetallic platinum and gold rods catalyzing decomposition of hydrogen peroxide in aqueous solution, have received considerable theoretical attention. In contrast, the heterogeneous electrochemical processes with nonlocal feedback that are the actual "engines" of such motors are relatively neglected. We present a flexible approach to these processes using bias potential as a control parameter field and a locally-open-circuit reference state, carried through in detail for a spherical motor. While the phenomenological flavor makes meaningful contact with experiment easier, required inputs can also conceivably come from, e.g., Frumkin-Butler-Volmer kinetics. Previously obtained results are recovered in the weak-heterogeneity limit and improved small-basis approximations tailored to structural heterogeneity are presented. Under the assumption of weak inhomogeneity, a scaling form is deduced for motor speed as a function of fuel concentration and swimmer size. We argue that this form should be robust and demonstrate a good fit to experimental data.

  16. Reaction of Si nanopowder with water investigated by FT-IR and XPS

    NASA Astrophysics Data System (ADS)

    Imamura, Kentaro; Kobayashi, Yuki; Matsuda, Shinsuke; Akai, Tomoki; Kobayashi, Hikaru

    2017-08-01

    The initial reaction of Si nanopowder with water to generate hydrogen is investigated using FT-IR and XPS measurements. Si nanopowder is fabricated using the simple beads milling method. For HF-etched Si nanopowder, strong peaks due to Si-H and Si-H2 stretching vibrational modes and a weak shoulder peak due to Si-H3 are observed. Although no peaks due to oxide is observed in the Si 2p XPS spectrum, weak vibrational peaks due to HSiO2 and HSiO3 species are observable. The hydrogen generation rate greatly increases with pH, indicating that the reacting species is hydroxide ions (OH- ions). After the reaction, the intensities of the peaks due to SiH and SiH2 species decrease while those for HSiO, HSiO2, and HSiO3 species increase. This result demonstrates that OH- ions attack Si back-bonds, with surface Si-H bonds remaining. After initial reaction of HF-etched Si nanopowder with heavy water, vibrational peaks for SiD, SiDH, and SiDH2 appear, and then, a peak due to DSiO3 species is observed, but no peaks due to DSiO2 and DSiO species are observable. This result indicates that SiD, SiDH, and SiDH2 species are formed by substitution reactions, followed by oxidation of back-bonds to form DSiO3 species. After immersion in D2O for a day, 37% H atoms on the surface are replaced to D atoms.

  17. A two-dimensional silver(I) coordination polymer constructed from 4-aminophenylarsonate and triphenylphosphane: poly[[(μ₃-4-aminophenylarsonato-κ³N:O:O)(triphenylphosphane-κP)silver(I)] monohydrate].

    PubMed

    Xiao, Zu-Ping; Wen, Meng; Wang, Chun-Ya; Huang, Xi-He

    2015-04-01

    The title compound, {[Ag(C6H7AsNO3)(C18H15P)]·H2O}n, has been synthesized from the reaction of 4-aminophenylarsonic acid with silver nitrate, in aqueous ammonia, with the addition of triphenylphosphane (PPh3). The Ag(I) centre is four-coordinated by one amino N atom, one PPh3 P atom and two arsonate O atoms, forming a severely distorted [AgNPO2] tetrahedron. Two Ag(I)-centred tetrahedra are held together to produce a dinuclear [Ag2O2N2P2] unit by sharing an O-O edge. 4-Aminophenylarsonate (Hapa(-)) adopts a μ3-κ(3)N:O:O-tridentate coordination mode connecting two dinuclear units, resulting in a neutral [Ag(Hapa)(PPh3)]n layer lying parallel to the (101̄) plane. The PPh3 ligands are suspended on both sides of the [Ag(Hapa)(PPh3)]n layer, displaying up and down orientations. There is an R2(2)(8) hydrogen-bonded dimer involving two arsonate groups from two Hapa(-) ligands related by a centre of inversion. Additionally, there are hydrogen-bonding interactions involving the solvent water molecules and the arsonate and amine groups of the Hapa(-) ligands, and weak π-π stacking interactions within the [Ag(Hapa)(PPh3)]n layer. These two-dimensional layers are further assembled by weak van der Waals interactions to form the final architecture.

  18. Hydrogen-bonding interactions and protic equilibria in room-temperature ionic liquids containing crown ethers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marin, T.; Shkrob, I.; Dietz, M.

    2011-04-14

    Nuclear magnetic resonance (NMR) spectroscopy has been used to study hydrogen-bonding interactions between water, associated and dissociated acids (i.e., nitric and methanesulfonic acids), and the constituent ions of several water-immiscible room-temperature ionic liquids (ILs). In chloroform solutions also containing a crown ether (CE), water molecules strongly associate with the IL ions, and there is rapid proton exchange between these bound water molecules and hydronium associated with the CE. In neat ILs, the acids form clusters differing in their degree of association and ionization, and their interactions with the CEs are weak. The CE can either promote proton exchange between differentmore » clusters in IL solution when their association is weak or inhibit such exchange when the association is strong. Even strongly hydrophobic ILs are shown to readily extract nitric acid from aqueous solution, typically via the formation of a 1:1:1 {l_brace}H{sub 3}O{sup +} {center_dot} CE{r_brace}NO{sub 3}{sup -} complex. In contrast, the extraction of methanesulfonic acid is less extensive and proceeds mainly by IL cation-hydronium ion exchange. The relationship of these protic equilibria to the practical application of hydrophobic ILs (e.g., in spent nuclear fuel reprocessing) is discussed.« less

  19. Cosmic Caper Unfolds in Infrared

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Poster Version

    This plot of data from NASA's Spitzer Space Telescope reveals vast reservoirs of hot gas in a galaxy about a billion light-years away called 3C 326 North. The gas is hot both figuratively and literally: it was stolen from another galaxy, and, during its transfer from one galaxy to another, it was heated up to hot-lava temperatures as high as 730 degrees Celsius (1,340 degrees Fahrenheit).

    The data were taken by Spitzer's infrared spectrometer, which splits light apart into its constituent wavelengths much like a prism turns sunlight into a rainbow. The resulting bumps and wiggles shown here, called a spectrum, reveal the signature, or 'fingerprint,' of a hot, molecular hydrogen gas. In space, molecular hydrogen gas is a precious commodity: it is a necessary ingredient to make stars and planets. On Earth, this same gas is considered as a possible alternative fuel for cars.

    The strength of the hydrogen fingerprint also tells astronomers that a lot is present in the galaxy - the equivalent of one billion suns!

    Astronomers were initially surprised to see so much gas because the galaxy is not busy making stars, as indicated by the weak signature in this spectrum of a star-forming molecule called polycyclic aromatic hydrocarbons. Further investigations revealed that the gas is being ripped off from a smaller, companion galaxy.

    The weak signatures for neon, oxygen and iron in the spectrum indicate that the supermassive black hole at the center of this galaxy is relatively inactive, or sleepy.

  20. Inefficient volatile loss from the Moon-forming disk: Reconciling the giant impact hypothesis and a wet Moon

    NASA Astrophysics Data System (ADS)

    Nakajima, Miki; Stevenson, David J.

    2018-04-01

    The Earth's Moon is thought to have formed from a circumterrestrial disk generated by a giant impact between the proto-Earth and an impactor approximately 4.5 billion years ago. Since this impact was energetic, the disk would have been hot (4000-6000 K) and partially vaporized (20-100% by mass). This formation process is thought to be responsible for the geochemical observation that the Moon is depleted in volatiles (e.g., K and Na). To explain this volatile depletion, some studies suggest the Moon-forming disk was rich in hydrogen, which was dissociated from water, and it escaped from the disk as a hydrodynamic wind accompanying heavier volatiles (hydrodynamic escape). This model predicts that the Moon should be significantly depleted in water, but this appears to contradict some of the recently measured lunar water abundances and D/H ratios that suggest that the Moon is more water-rich than previously thought. Alternatively, the Moon could have retained its water if the upper parts (low pressure regions) of the disk were dominated by heavier species because hydrogen would have had to diffuse out from the heavy-element rich disk, and therefore the escape rate would have been limited by this slow diffusion process (diffusion-limited escape). To identify which escape the disk would have experienced and to quantify volatiles loss from the disk, we compute the thermal structure of the Moon-forming disk considering various bulk water abundances (100-1000 ppm) and mid-plane disk temperatures (2500-4000 K). Assuming that the disk consists of silicate (SiO2 or Mg2SiO4) and water and that the disk is in the chemical equilibrium, our calculations show that the upper parts of the Moon-forming disk are dominated by heavy atoms or molecules (SiO and O at Tmid > 2500- 2800 K and H2O at Tmid < 2500- 2800 K) and hydrogen is a minor species. This indicates that hydrogen escape would have been diffusion-limited, and therefore the amount of lost water and hydrogen would have been small compared to the initial abundance assumed. This result indicates that the giant impact hypothesis can be consistent with the water-rich Moon. Furthermore, since the hydrogen wind would have been weak, the other volatiles would not have escaped either. Thus, the observed volatile depletion of the Moon requires another mechanism.

  1. Stress-induced crystal transition of poly(butylene succinate) studied by terahertz and low-frequency Raman spectroscopy and quantum chemical calculation

    NASA Astrophysics Data System (ADS)

    Tatsuoka, Seika; Sato, Harumi

    2018-05-01

    We measured terahertz (THz) and low-frequency Raman spectra of Poly (butylene succinate) (PBS) which shows the crystal transition from α to β by stretching. For the assignment of the absorption peaks in the low-frequency region, we performed quantum chemical calculations with Cartesian-coordinate tensor transfer (CCT) method. Four major peaks appeared in the THz spectra of PBS at around 58, 76, 90, and 100 cm-1, and in the low-frequency Raman spectra a peak was observed at 88 cm-1. The THz peak at 100 cm-1 and the Raman peak at 88 cm-1 show a shift to a lower wavenumber region with increasing temperature. The quantum chemical calculation of β crystal form reveals the new peak appears above 100 cm-1. It was found that two kinds of peaks overlapped at around 100 cm-1 in the THz spectra of PBS. One of them can be assigned to a weak hydrogen bond between the C=O and CH2 groups in the intermolecular chains, which is perpendicular to the molecular chain of the α crystal form. Another one showed a parallel polarization which can be assigned to the intramolecular interaction between O (ether) and H-C groups in the β crystal form. The position of the peak at around 100 cm-1 in the perpendicular polarization changed to a lower wavenumber region with stretching, because of the weakening of the intermolecular hydrogen bonding by increasing the interatomic distances. On the other hand, that of the parallel polarization shifts to a higher wavenumber region because of the shortening of the interatomic distance from α to β crystal form (the strength of the intramolecular hydrogen bonding became stronger) by stretching.

  2. Zero-point energy effects in anion solvation shells.

    PubMed

    Habershon, Scott

    2014-05-21

    By comparing classical and quantum-mechanical (path-integral-based) molecular simulations of solvated halide anions X(-) [X = F, Cl, Br and I], we identify an ion-specific quantum contribution to anion-water hydrogen-bond dynamics; this effect has not been identified in previous simulation studies. For anions such as fluoride, which strongly bind water molecules in the first solvation shell, quantum simulations exhibit hydrogen-bond dynamics nearly 40% faster than the corresponding classical results, whereas those anions which form a weakly bound solvation shell, such as iodide, exhibit a quantum effect of around 10%. This observation can be rationalized by considering the different zero-point energy (ZPE) of the water vibrational modes in the first solvation shell; for strongly binding anions, the ZPE of bound water molecules is larger, giving rise to faster dynamics in quantum simulations. These results are consistent with experimental investigations of anion-bound water vibrational and reorientational motion.

  3. Effect of critical molecular weight of PEO in epoxy/EPO blends as characterized by advanced DSC and solid-state NMR

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoliang; Lu, Shoudong; Sun, Pingchuan; Xue, Gi

    2013-03-01

    The differential scanning calorimetry (DSC) and solid state NMR have been used to systematically study the length scale of the miscibility and local dynamics of the epoxy resin/poly(ethylene oxide) (ER/PEO) blends with different PEO molecular weight. By DSC, we found that the diffusion behavior of PEO with different Mw is an important factor in controlling these behaviors upon curing. We further employed two-dimensional 13C-{1H}PISEMA NMR experiment to elucidate the possible weak interaction and detailed local dynamics in ER/PEO blends. The CH2O group of PEO forms hydrogen bond with hydroxyl proton of cured-ER ether group, and its local dynamics frozen by such interaction. Our finding indicates that molecular weight (Mw) of PEO is a crucial factor in controlling the miscibility, chain dynamics and hydrogen bonding interaction in these blends.

  4. catena-Poly[[[di-aqua-bis-[1,2-bis-(pyridin-4-yl)diazene]copper(II)]-μ-1,2-bis-(pyridin-4-yl)diazene] bis-(perchlorate)].

    PubMed

    Ballestero-Martínez, Ernesto; Campos-Fernández, Cristian Saul; Soto-Tellini, Victor Hugo; Gonzalez-Montiel, Simplicio; Martínez-Otero, Diego

    2013-06-01

    In the title compound, {[Cu(C10H8N4)3(H2O)2](ClO4)2} n , the coordination environment of the cationic Cu(II) atom is distorted octa-hedral, formed by pairs of symmetry-equivalent 1,2-bis-(pyridin-4-yl)diazene ligands, bridging 1,2-bis-(pyridin-4-yl)diazene ligands and two non-equivalent water mol-ecules. The 1,2-bis-(pyridin-4-yl)diazene mol-ecules form polymeric chains parallel to [-101] via azo bonds which are situated about inversion centres. Since the Cu(II) atom is situated on a twofold rotation axis, the monomeric unit has point symmetry 2. The perchlorate anions are disordered in a 0.536 (9):0.464 (9) ratio and are acceptors of water H atoms in medium-strong O-H⋯O hydrogen bonds with graph set R 4 (4)(12). The water mol-ecules, which are coordinated to the Cu(II) atom and are hydrogen-bonded to the perchlorate anions, form columns parallel to [010]. A π-π inter-action [centroid-centroid distance = 3.913 (2) Å] occurs between pyridine rings, and weak C-H⋯O inter-actions also occur.

  5. Gas Sorption and Storage Properties of Calixarenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, Rahul S.; Banerjee, Debasis; Atwood, Jerry L.

    2016-12-01

    Calixarenes, a class of organic macrocyclic molecules have shown interesting gas sorption properties towards industrially important gases such as carbon di-oxide, hydrogen, methane and acetylene. These macrocycles are involved in weak van der Waals interaction to form multidimensional supramolecular frameworks. The gas-diffusion and subsequent sorption occurs due to a cooperative behavior between neighboring macrocycles. Furthermore, the flexibility at the upper rim functional group also plays a key role in the overall gas uptake of calixarene. In this book chapter, we give a brief account of interaction and diffusion of gases in calixarene and selected derivatives.

  6. 2-Amino-4,6-dimethyl­pyrimidin-1-ium chloride

    PubMed Central

    Hu, Hui-Ling; Yeh, Chun-Wei

    2012-01-01

    In the title compound, C6H10N3 +·Cl−, the cation is essentially planar with an r.m.s. deviations of the fitted atoms of 0.008 Å. In the crystal, adjacent ions are linked by weak N—H⋯Cl hydrogen bonds involving the pyrimidine and amine N atoms, forming a three-dimensional network. C—H⋯π inter­actions between the methyl and pyrimidine groups and π–π stacking [centroid–centroid distance = 3.474 (1) Å] between parallel pyrimidine ring systems are also observed. PMID:23476204

  7. 2-(2-Thien­yl)-4,5-dihydro-1H-imidazole

    PubMed Central

    Kia, Reza; Fun, Hoong-Kun; Kargar, Hadi

    2009-01-01

    In title compound, C7H8N2S, the five-membered rings are twisted by a dihedral angle of 5.17 (10)°. Two inter­molecular N—H⋯N and C—H⋯N hydrogen bonds to the same acceptor N atom form seven-membered rings, producing R 2 1(7) ring motifs. These inter­actions link neighbouring mol­ecules into one-dimensional chains extended along the c axis. The crystal structure is further stabilized by weak inter­molecular C—H⋯π inter­actions. PMID:21581910

  8. Interaction of water, alkyl hydroperoxide, and allylic alcohol with a single-site homogeneous Ti-Si epoxidation catalyst: A spectroscopic and computational study.

    PubMed

    Urakawa, Atsushi; Bürgi, Thomas; Skrabal, Peter; Bangerter, Felix; Baiker, Alfons

    2005-02-17

    Tetrakis(trimethylsiloxy)titanium (TTMST, Ti(OSiMe3)4) possesses an isolated Ti center and is a highly active homogeneous catalyst in epoxidation of various olefins. The structure of TTMST resembles that of the active sites in some heterogeneous Ti-Si epoxidation catalysts, especially silylated titania-silica mixed oxides. Water cleaves the Ti-O-Si bond and deactivates the catalyst. An alkyl hydroperoxide, TBHP (tert-butyl hydroperoxide), does not cleave the Ti-O-Si bond, but interacts via weak hydrogen-bonding as supported by NMR, DOSY, IR, and computational studies. ATR-IR spectroscopy combined with computational investigations shows that more than one, that is, up to four, TBHP can undergo hydrogen-bonding with TTMST, leading to the activation of the O-O bond of TBHP. The greater the number of TBHP molecules that form hydrogen bonds to TTMST, the more electrophilic the O-O bond becomes, and the more active the complex is for epoxidation. An allylic alcohol, 2-cyclohexen-1-ol, does not interact strongly with TTMST, but the interaction is prominent when it interacts with the TTMST-TBHP complex. On the basis of the experimental and theoretical findings, a hydrogen-bond-assisted epoxidation mechanism of TTMST is suggested.

  9. Infrared absorption of methanol-water clusters (CH3OH)n(H2O), n = 1-4, recorded with the VUV-ionization/IR-depletion technique

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Fang; Kelterer, Anne-Marie; Matisz, Gergely; Kunsági-Máté, Sándor; Chung, Chao-Yu; Lee, Yuan-Pern

    2017-04-01

    We recorded infrared (IR) spectra in the CH- and OH-stretching regions of size-selected clusters of methanol (M) with one water molecule (W), represented as MnW, n = 1-4, in a pulsed supersonic jet using the photoionization/IR-depletion technique. Vacuum ultraviolet emission at 118 nm served as the source of ionization in a time-of-flight mass spectrometer to detect clusters MnW as protonated forms Mn-1WH+. The variations in intensities of Mn-1WH+ were monitored as the wavelength of the IR laser light was tuned across the range 2700-3800 cm-1. IR spectra of size-selected clusters were obtained on processing of the observed action spectra of the related cluster-ions according to a mechanism that takes into account the production and loss of each cluster due to IR photodissociation. Spectra of methanol-water clusters in the OH region show significant variations as the number of methanol molecules increases, whereas those in the CH region are similar for all clusters. Scaled harmonic vibrational wavenumbers and relative IR intensities predicted with the M06-2X/aug-cc-pVTZ method for the methanol-water clusters are consistent with our experimental results. For dimers, absorption bands of a structure WM with H2O as a hydrogen-bond donor were observed at 3570, 3682, and 3722 cm-1, whereas weak bands of MW with methanol as a hydrogen-bond donor were observed at 3611 and 3753 cm-1. For M2W, the free OH band of H2O was observed at 3721 cm-1, whereas a broad feature was deconvoluted to three bands near 3425, 3472, and 3536 cm-1, corresponding to the three hydrogen-bonded OH-stretching modes in a cyclic structure. For M3W, the free OH shifted to 3715 cm-1, and the hydrogen-bonded OH-stretching bands became much broader, with a weak feature near 3179 cm-1 corresponding to the symmetric OH-stretching mode of a cyclic structure. For M4W, the observed spectrum agrees unsatisfactorily with predictions for the most stable cyclic structure, indicating significant contributions from branched isomers, which is distinctly different from M5 of which the cyclic form dominates.

  10. Infrared absorption of methanol-water clusters (CH3OH)n(H2O), n = 1-4, recorded with the VUV-ionization/IR-depletion technique.

    PubMed

    Lee, Yu-Fang; Kelterer, Anne-Marie; Matisz, Gergely; Kunsági-Máté, Sándor; Chung, Chao-Yu; Lee, Yuan-Pern

    2017-04-14

    We recorded infrared (IR) spectra in the CH- and OH-stretching regions of size-selected clusters of methanol (M) with one water molecule (W), represented as M n W, n = 1-4, in a pulsed supersonic jet using the photoionization/IR-depletion technique. Vacuum ultraviolet emission at 118 nm served as the source of ionization in a time-of-flight mass spectrometer to detect clusters M n W as protonated forms M n-1 WH + . The variations in intensities of M n-1 WH + were monitored as the wavelength of the IR laser light was tuned across the range 2700-3800 cm -1 . IR spectra of size-selected clusters were obtained on processing of the observed action spectra of the related cluster-ions according to a mechanism that takes into account the production and loss of each cluster due to IR photodissociation. Spectra of methanol-water clusters in the OH region show significant variations as the number of methanol molecules increases, whereas those in the CH region are similar for all clusters. Scaled harmonic vibrational wavenumbers and relative IR intensities predicted with the M06-2X/aug-cc-pVTZ method for the methanol-water clusters are consistent with our experimental results. For dimers, absorption bands of a structure WM with H 2 O as a hydrogen-bond donor were observed at 3570, 3682, and 3722 cm -1 , whereas weak bands of MW with methanol as a hydrogen-bond donor were observed at 3611 and 3753 cm -1 . For M 2 W, the free OH band of H 2 O was observed at 3721 cm -1 , whereas a broad feature was deconvoluted to three bands near 3425, 3472, and 3536 cm -1 , corresponding to the three hydrogen-bonded OH-stretching modes in a cyclic structure. For M 3 W, the free OH shifted to 3715 cm -1 , and the hydrogen-bonded OH-stretching bands became much broader, with a weak feature near 3179 cm -1 corresponding to the symmetric OH-stretching mode of a cyclic structure. For M 4 W, the observed spectrum agrees unsatisfactorily with predictions for the most stable cyclic structure, indicating significant contributions from branched isomers, which is distinctly different from M 5 of which the cyclic form dominates.

  11. Kinetic theory of weakly ionized dilute gas of hydrogen-like atoms of the first principles of quantum statistics and dispersion laws of eigenwaves

    NASA Astrophysics Data System (ADS)

    Slyusarenko, Yurii V.; Sliusarenko, Oleksii Yu.

    2017-11-01

    We develop a microscopic approach to the construction of the kinetic theory of dilute weakly ionized gas of hydrogen-like atoms. The approach is based on the statements of the second quantization method in the presence of bound states of particles. The basis of the derivation of kinetic equations is the method of reduced description of relaxation processes. Within the framework of the proposed approach, a system of common kinetic equations for the Wigner distribution functions of free oppositely charged fermions of two kinds (electrons and cores) and their bound states—hydrogen-like atoms— is obtained. Kinetic equations are used to study the spectra of elementary excitations in the system when all its components are non-degenerate. It is shown that in such a system, in addition to the typical plasma waves, there are longitudinal waves of matter polarization and the transverse ones with a behavior characteristic of plasmon polaritons. The expressions for the dependence of the frequencies and Landau damping coefficients on the wave vector for all branches of the oscillations discovered are obtained. Numerical evaluation of the elementary perturbation parameters in the system on an example of a weakly ionized dilute gas of the 23Na atoms using the D2-line characteristics of the natrium atom is given. We note the possibility of using the results of the developed theory to describe the properties of a Bose condensate of photons in the diluted weakly ionized gas of hydrogen-like atoms.

  12. Polymorphic drugs examined with neutron spectroscopy: Is making more stable forms really that simple?

    NASA Astrophysics Data System (ADS)

    Tsapatsaris, Nikolaos; Landsgesell, Sven; Koza, Michael M.; Frick, Bernhard; Boldyreva, Elena V.; Bordallo, Heloisa N.

    2013-12-01

    Understanding polymorphism in pharmaceutical ingredients is a long-standing challenge in formulation science. A well-known example is paracetamol, C8H9NO2. The marketed stable form I crystallizes with corrugated molecular layers. In contrast, form II, which is thermodynamically favorable at high pressures, has relatively planar layers that can slip over each other without difficulty, but is metastable at ambient conditions. By means of inelastic neutron scattering we demonstrated that the lattice modes of form II exhibit a sudden 1 meV energy shift at 300 K under a pressure of ca 0.4 GPa. Moreover, evidence of an increase of the vibrational energy in both polymorphs was found, which was accompanied, in form I, by an unexpectedly weak increase of the tunnel splitting. These results indicate an anisotropy of the potential surface probed by the methyl rotor, and are discussed in relation to the differences of the strength of the hydrogen bond environment for each polymorph.

  13. Supramolecular assemblies of tetrafluoroterephthalic acid and N-heterocycles via various strong hydrogen bonds and weak Csbnd H⋯F interactions: Synthons cooperation, robust motifs and structural diversity

    NASA Astrophysics Data System (ADS)

    Hu, Yanjing; Hu, Hanbin; Li, Yingying; Chen, Ruixin; Yang, Yu; Wang, Lei

    2016-10-01

    A series of organic solid states including three salts, two co-crystals, and three hydrates based on tetrafluoroterephthalic acid (H2tfBDC) and N-bearing ligands (2,4-(1H,3H)-pyrimidine dione (PID), 2,4-dihydroxy-6-methyl pyrimidine (DHMPI), 2-amino-4,6-dimethyl pyrimidine (ADMPI), 2-amino-4,6-dimenthoxy pyrimidine (ADMOPI), 5,6-dimenthyl benzimidazole (DMBI), 2-aminobenzimidazole (ABI), 3,5-dimethyl pyrazole (DMP), and 3-cyanopyridine (3-CNpy)), namely, [(PID)2·(H2tfBDC)] (1), [(DHMPI)2·(H2tfBDC)] (2), [(H-ADMPI+)2·(tfBDC2-)·2(H2O)] (3), [(H-ADMOPI+)2·(tfBDC2-)·(H2O)] (4), [(H-DMBI+)2·(tfBDC2-)·2(H2O)] (5), [(H-ABI+)2·(tfBDC2-)] (6), [(H-DMP+)·(HtfBDC-)] (7), and [(H-3-CNpy+)·(HtfBDC-)] (8), were synthesized by solvent evaporation method. Crystal structures analyses show that the F atom of the H2tfBDC participates in multiple Csbnd H⋯F hydrogen bond formations, producing different supramolecular synthons. The weak hydrogen bonding Csbnd H⋯F and Nsbnd H⋯F play an important part in constructing the diversity structures 2-8, except in crystal 1. In complexes 1-3, they present the same synthon R22(8) with different N-heterocyclic compounds, which may show the strategy in constructing the supramolecular. Meanwhile, the complex 3 exhibits a 2D layer, and the independent molecules of water exist in the adjacent layers. In complexes 4 and 5, the water molecules connect the neighboring layers to form 3D network by strong Osbnd H⋯O hydrogen bonding. These crystals 1-8 were fully characterized by single-crystal X-ray crystallography, elemental analysis, infrared spectroscopy (IR), and thermogravimetric analysis (TGA).

  14. Dynamic high pressure induced strong and weak hydrogen bonds enhanced by pre-resonance stimulated Raman scattering in liquid water.

    PubMed

    Wang, Shenghan; Fang, Wenhui; Li, Fabing; Gong, Nan; Li, Zhanlong; Li, Zuowei; Sun, Chenglin; Men, Zhiwei

    2017-12-11

    355 nm pulsed laser is employed to excite pre-resonance forward stimulated Raman scattering (FSRS) of liquid water at ambient temperature. Due to the shockwave induced dynamic high pressure, the obtained Raman spectra begin to exhibit double peaks distribution at 3318 and 3373 cm -1 with the input energy of 17 mJ,which correspond with OH stretching vibration with strong and weak hydrogen (H) bonds. With laser energy rising from 17 to 27 mJ, the Stokes line at 3318 cm -1 shifts to 3255 and 3230 cm -1 because of the high pressure being enlarged. When the energy is up to 32 mJ, only 3373 cm -1 peak exists. The strong and weak H bond exhibit quite different energy dependent behaviors.

  15. The use of ultrasmall iron(0) nanoparticles as catalysts for the selective hydrogenation of unsaturated C-C bonds.

    PubMed

    Kelsen, Vinciane; Wendt, Bianca; Werkmeister, Svenja; Junge, Kathrin; Beller, Matthias; Chaudret, Bruno

    2013-04-28

    The performance of well-defined ultrasmall iron(0) nanoparticles (NPs) as catalysts for the selective hydrogenation of unsaturated C-C and C=X bonds is reported. Monodisperse iron nanoparticles of about 2 nm size are synthesized by the decomposition of {Fe(N[Si(CH3)3]2)2}2 under dihydrogen. They are found to be active for the hydrogenation of various alkenes and alkynes under mild conditions and weakly active for C=O bond hydrogenation.

  16. Microwave absorption in substances that form hydration layers with water

    NASA Astrophysics Data System (ADS)

    Garner, H. R.; Ohkawa, T.; Tuason, O.; Lee, R. L.

    1990-12-01

    The microwave absorption of certain water soluble polymers (polyethylene glycol, polyvinyl pyrrolidone, proteins, and DNA) in solution is composed of three parts: absorption in the free water, absorption in the substance, and absorption in the hydration layer. Ethanol, sucrose, glycerol, and sodium acetate, which form weak hydrogen bonds or have an ionic nature in aqueous solutions, also have microwave absorption signatures similar to polymers that form hydration layers. The frequency-dependent absorption of the free water and of the hydration layer water is described by a simple Debye relaxation model. The absorption per unit sample volume attributable to the hydration layer is solute concentration dependent, and a simple model is used to describe the dependence. The hydration-layer relaxation time was found to vary from substance to substance and with solute concentration. The relaxation time was also found to be independent of solute length.

  17. Crystal structures of five (2-chloro­quinolin-3-yl)methyl ethers: supra­molecular assembly in one and two dimensions mediated by hydrogen bonding and π–π stacking

    PubMed Central

    Sowmya, Haliwana B. V.; Suresha Kumara, Tholappanavara H.; Gopalpur, Nagendrappa; Jasinski, Jerry P.; Millikan, Sean P.; Yathirajan, Hemmige S.; Glidewell, Christopher

    2015-01-01

    In the mol­ecules of the title compounds, methyl 5-bromo-2-[(2-chloro­quinolin-3-yl)meth­oxy]benzoate, C18H13BrClNO3, (I), methyl 5-bromo-2-[(2-chloro-6-methyl­quinolin-3-yl)meth­oxy]benzoate, C19H15BrClNO3, (II), methyl 2-[(2-chloro-6-methyl­quinolin-3-yl)meth­oxy]benzoate, C19H16ClNO3, (III), which crystallizes with Z′ = 4 in space group P212121, and 2-chloro-3-[(naphthalen-1-yl­oxy)meth­yl]quinoline, C20H14ClNO, (IV), the non-H atoms are nearly coplanar, but in {5-[(2-chloro­quinolin-3-yl)meth­oxy]-4-(hy­droxy­meth­yl)-6-methyl­pyridin-3-yl}methanol, C18H17ClN2O3, (V), the planes of the quinoline unit and of the unfused pyridine ring are almost parallel, although not coplanar. The mol­ecules of (I) are linked by two independent π–π stacking inter­actions to form chains, but there are no hydrogen bonds present in the structure. In (II), the mol­ecules are weakly linked into chains by a single type of π–π stacking inter­action. In (III), three of the four independent mol­ecules are linked by π–π stacking inter­actions but the other mol­ecule does not participate in such inter­actions. Weak C—H⋯O hydrogen bonds link the mol­ecules into three types of chains, two of which contain just one type of independent mol­ecule while the third type of chain contains two types of mol­ecule. The mol­ecules of (IV) are linked into chains by a C—H⋯π(arene) hydrogen bond, but π–π stacking inter­actions are absent. In (V), there is an intra­molecular O—H⋯O hydrogen bond, and mol­ecules are linked into sheets by a combination of O—H⋯N hydrogen bonds and π–π stacking inter­actions. PMID:26090133

  18. Effect of chain structure on hydrogen bonding in vinyl acetate - vinyl alcohol copolymers

    NASA Astrophysics Data System (ADS)

    Merekalova, Nadezhda D.; Bondarenko, Galina N.; Denisova, Yuliya I.; Krentsel, Liya B.; Litmanovich, Arkadiy D.; Kudryavtsev, Yaroslav V.

    2017-04-01

    FTIR spectroscopy and semi-empirical AM1 method are used to study hydrogen bonding in multiblock and random equimolar copolymers of vinyl acetate and vinyl alcohol. An energetically beneficial zip-holder complex, built on multiple inter- and intrachain hydroxyl-hydroxyl bonds and an intrachain hydroxyl-acetyloxy bond, can be formed between two vinyl alcohol sequences. As a result, multiblock copolymers reveal stronger degree of association that affects crystallinity, as well as various rheological and relaxation properties discussed in the literature. Macromolecular complexes in random copolymers are weak and tend to be destroyed in the presence of residual DMF solvent and adsorbed water. Nevertheless, a rather stable interchain quaternary complex can be formed that includes vinyl alcohol and vinyl acetate units and DMF and water molecules. For a single chain it is shown that an H-bond between neighboring vinyl alcohol and vinyl acetate monomer units mostly engages a carbonyl oxygen atom of the vinyl acetate, if the vinyl alcohol belongs to a short (<5 units) sequence, and an ether oxygen atom in the other case. On the whole, the quantum chemistry calculations shed much light on the origin of distinctions in the copolymer FTIR spectra, which may seem subtle when considered standalone.

  19. A Raman spectroscopy study on the effects of intermolecular hydrogen bonding on water molecules absorbed by borosilicate glass surface

    NASA Astrophysics Data System (ADS)

    Li, Fabing; Li, Zhanlong; Wang, Ying; Wang, Shenghan; Wang, Xiaojun; Sun, Chenglin; Men, Zhiwei

    2018-05-01

    The structural forms of water/deuterated water molecules located on the surface of borosilicate capillaries have been first investigated in this study on the basis of the Raman spectral data obtained at different temperatures and under atmospheric pressure for molecules in bulk and also for molecules absorbed by borosilicate glass surface. The strongest two fundamental bands locating at 3063 cm-1 (2438 cm-1) in the recorded Raman spectra are assigned here to the Osbnd H (Osbnd D) bond stretching vibrations and they are compared with the corresponding bands observed at 3124 cm-1 (2325 cm-1) in the Raman spectrum of ice Ih. Our spectroscopic observations have indicated that the structure of water and deuterated water molecules on borosilicate surface is similar to that of ice Ih (hexagonal phase of ice). These observations have also indicated that water molecules locate on the borosilicate surface so as to construct a bilayer structure and that strong and weak intermolecular hydrogen bonds are formed between water/deuterated molecules and silanol groups on borosilicate surface. In accordance with these findings, water and deuterated water molecules at the interface of capillary have a higher melting temperature.

  20. Weak hydrogen bond topology in 1,1-difluoroethane dimer: A rotational study

    NASA Astrophysics Data System (ADS)

    Chen, Junhua; Zheng, Yang; Wang, Juan; Feng, Gang; Xia, Zhining; Gou, Qian

    2017-09-01

    The rotational spectrum of the 1,1-difluoroethane dimer has been investigated by pulsed-jet Fourier transform microwave spectroscopy. Two most stable isomers have been detected, which are both stabilized by a network of three C—H⋯F—C weak hydrogen bonds: in the most stable isomer, two difluoromethyl C—H groups and one methyl C—H group act as the weak proton donors whilst in the second isomer, two methyl C—H groups and one difluoromethyl C—H group act as the weak proton donors. For the global minimum, the measurements have also been extended to its four 13C isotopologues in natural abundance, allowing a precise, although partial, structural determination. Relative intensity measurements on a set of μa-type transitions allowed estimating the relative population ratio of the two isomers as NI/NII ˜ 6/1 in the pulsed jet, indicating a much larger energy gap between these two isomers than that expected from ab initio calculation, consistent with the result from pseudo-diatomic dissociation energies estimation.

  1. Hydrogen speciation in synthetic quartz

    USGS Publications Warehouse

    Aines, R.D.; Kirby, S.H.; Rossman, G.R.

    1984-01-01

    The dominant hydrogen impurity in synthetic quartz is molecular H2O. H-OH groups also occur, but there is no direct evidence for the hydrolysis of Si-O-Si bonds to yield Si-OH HO-Si groups. Molecular H2O concentrations in the synthetic quartz crystals studied range from less than 10 to 3,300 ppm (H/Si), and decrease smoothly by up to an order of magnitude with distance away from the seed. OH- concentrations range from 96 to 715 ppm, and rise smoothly with distance away from the seed by up to a factor of three. The observed OH- is probably all associated with cationic impurities, as in natural quartz. Molecular H2O is the dominant initial hydrogen impurity in weak quartz. The hydrolytic weakening of quartz may be caused by the transformation H2O + Si-O-Si ??? 2SiOH, but this may be a transitory change with the SiOH groups recombining to form H2O, and the average SiOH concentration remaining very low. Synthetic quartz is strengthened when the H2O is accumulated into fluid inclusions and cannot react with the quartz framework. ?? 1984 Springer-Verlag.

  2. Role of basic and acidic centers of MgO and modified MgO in catalytic transfer hydrogenation of ketones studied by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Szöllösi, György; Bartók, Mihály

    1999-05-01

    In this study our aim was to identify the active sites and the surface species responsible for deactivation of MgO during catalytic transfer hydrogenations (CTH) of ketones using alcohols as hydrogen donors. Our previous studies showed that deactivation of MgO could be prevented by previous treatment with chloromethanes. Therefore the surface species formed during the reaction were studied before and after treatment with chloroform or chloroform- d by in situ infrared spectroscopy (IR). As a result, it was concluded that the reaction requires the presence of surface basic and acidic centers. The presence of Lewis acid centers was not necessary, the reaction could proceed on weakly acidic surface Brönsted sites, as the alterations in intensity and position of the ν(OH) bands indicated. Modification with chloroform resulted also in the generation of surface OH groups with a proper acidity for the reaction. The shift in carbonyl vibrations led us to the conclusion that Lewis acid and base centers were responsible for the catalyst poisoning, so covering these acid sites by Cl - led to a stable catalyst.

  3. Experimental investigation and DFT calculation of different amine/ammonium salts adsorption on kaolinite

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Min, Fan-fei; Liu, Lingyun; Liu, Chunfu; Lu, Fangqin

    2017-10-01

    The adsorption of four different amine/ammonium salts of DDA (Dodecyl amine), MDA (N-methyldodecyl amine), DMDA (N,N-dimethyldodecyl amine) and DTAC (Dodecyl trimethyl ammonium chloride) on kaolinite particles was investigated in the study through the measurement of contact angles, zeta potentials, aggregation observation, adsorption and sedimentation. The results show that different amine/ammonium salts can adsorb on the kaolinite surface to enhance the hydrophobicity and reduce the electronegativity of kaolinite particle surface, and thus induce a strong hydrophobic aggregation of kaolinite particles which promotes the settlement of kaolinite. To explore the adsorption mechanism of these four amine/ammonium salts on kaolinite surfaces, the adsorptions of DDA+, MDA+, DMDA+ and DTAC+ on kaolinite (001) surface and (00 1 bar) surface are calculated with DFT (Density functional theory). The DFT calculation results indicate that different amine/ammonium cations can strongly adsorbed on kaolinite (001) surface and (00 1 bar) surface by forming Nsbnd H⋯O strong hydrogen bonds or Csbnd H⋯O weak hydrogen bonds, and there are strongly electrostatic attractions between different amine/ammonium cations and kaolinite surfaces. The main adsorption mechanism of amine/ammonium cations on kaolinite is hydrogen-bond interaction and electrostatic attraction.

  4. Microwave plasma induced surface modification of diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Rao Polaki, Shyamala; Kumar, Niranjan; Gopala Krishna, Nanda; Madapu, Kishore; Kamruddin, Mohamed; Dash, Sitaram; Tyagi, Ashok Kumar

    2017-12-01

    Tailoring the surface of diamond-like carbon (DLC) film is technically relevant for altering the physical and chemical properties, desirable for useful applications. A physically smooth and sp3 dominated DLC film with tetrahedral coordination was prepared by plasma-enhanced chemical vapor deposition technique. The surface of the DLC film was exposed to hydrogen, oxygen and nitrogen plasma for physical and chemical modifications. The surface modification was based on the concept of adsorption-desorption of plasma species and surface entities of films. Energetic chemical species of microwave plasma are adsorbed, leading to desorbtion of the surface carbon atoms due to energy and momentum exchange. The interaction of such reactive species with DLC films enhanced the roughness, surface defects and dangling bonds of carbon atoms. Adsorbed hydrogen, oxygen and nitrogen formed a covalent network while saturating the dangling carbon bonds around the tetrahedral sp3 valency. The modified surface chemical affinity depends upon the charge carriers and electron covalency of the adsorbed atoms. The contact angle of chemically reconstructed surface increases when a water droplet interacts either through hydrogen or van dear Waals bonding. These weak interactions influenced the wetting property of the DLC surface to a great extent.

  5. Hydrophilic Association in a Dilute Glutamine Solution Persists Independent of Increasing Temperature.

    PubMed

    Rhys, Natasha H; Soper, Alan K; Dougan, Lorna

    2015-12-24

    Recent studies suggest that hydrophilic interactions play an important role in controlling self-assembly in biological processes. To explore the effect of temperature on this interaction, we extend our previous work on the glutamine-water system at 24 °C (at a mole ratio of 1 glutamine to 269 water molecules) and present additional neutron diffraction data, at the same concentration, at 37 and 60 °C, using hydrogen/deuterium substitution on the water and glutamine, coupled with further extensive empirical potential structure refinement computer simulations. Taking all the possible hydrophilic couplings between glutamine molecules into account, we find that nearly one-fifth of the glutamines in solution are linked by hydrogen bonds at any one time. This number contrasts strongly with the ∼3-4% fraction found in the same simulation with random packing and no hydrogen bonds. Within the uncertainties imposed by dilute solution statistics, we find no temperature dependence in these values. The clusters are highly transitory, forming and disappearing rapidly as the simulations proceed. Hydrophobic association of the alkyl groups on glutamine without concomitant hydrophilic association of the charged head and side-chain groups is only weakly observed.

  6. A dual cryogenic ion trap spectrometer for the formation and characterization of solvated ionic clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, Brett M.; Voss, Jonathan M.; Garand, Etienne, E-mail: egarand@chem.wisc.edu

    2015-11-28

    A new experimental approach is presented in which two separate cryogenic ion traps are used to reproducibly form weakly bound solvent clusters around electrosprayed ions and messenger-tag them for single-photon infrared photodissociation spectroscopy. This approach thus enables the vibrational characterization of ionic clusters comprised of a solvent network around large and non-volatile ions. We demonstrate the capabilities of the instrument by clustering water, methanol, and acetone around a protonated glycylglycine peptide. For water, cluster sizes with greater than twenty solvent molecules around a single ion are readily formed. We further demonstrate that similar water clusters can be formed around ionsmore » having a shielded charge center or those that do not readily form hydrogen bonds. Finally, infrared photodissociation spectra of D{sub 2}-tagged GlyGlyH{sup +} ⋅ (H{sub 2}O){sub 1−4} are presented. They display well-resolved spectral features and comparisons with calculations reveal detailed information on the solvation structures of this prototypical peptide.« less

  7. A dual cryogenic ion trap spectrometer for the formation and characterization of solvated ionic clusters

    DOE PAGES

    Marsh, Brett M.; Voss, Jonathan M.; Garand, Etienne

    2015-11-24

    A new experimental approach is presented in which two separate cryogenic ion traps are used to reproducibly form weakly bound solvent clusters around electrosprayed ions and messenger-tag them for single-photon infrared photodissociation spectroscopy. This approach thus enables the vibrational characterization of ionic clusters comprised of a solvent network around large and non-volatile ions. We demonstrate the capabilities of the instrument by clustering water, methanol, and acetone around a protonated glycylglycine peptide. For water, cluster sizes with greater than twenty solvent molecules around a single ion are readily formed. We further demonstrate that similar water clusters can be formed around ionsmore » having a shielded charge center or those that do not readily form hydrogen bonds. Finally, infrared photodissociation spectra of D 2-tagged GlyGlyH +·(H 2O) 1–4 are presented. As a result, they display well-resolved spectral features and comparisons with calculations reveal detailed information on the solvation structures of this prototypical peptide.« less

  8. Crystal structures of the three closely related compounds: bis-[(1H-tetra-zol-5-yl)meth-yl]nitramide, tri-amino-guanidinium 5-({[(1H-tetra-zol-5-yl)meth-yl](nitro)-amino}-meth-yl)tetra-zol-1-ide, and di-ammonium bis-[(tetra-zol-1-id-5-yl)meth-yl]nitramide monohydrate.

    PubMed

    Mitchell, Lauren A; Imler, Gregory H; Parrish, Damon A; Deschamps, Jeffrey R; Leonard, Philip W; Chavez, David E

    2017-07-01

    In the mol-ecule of neutral bis-[(1 H -tetra-zol-5-yl)meth-yl]nitramide, (I), C 4 H 6 N 10 O 2 , there are two intra-molecular N-H⋯O hydrogen bonds. In the crystal, N-H⋯N hydrogen bonds link mol-ecules, forming a two-dimensional network parallel to (-201) and weak C-H⋯O, C-H⋯N hydrogen bonds, and inter-molecular π-π stacking completes the three-dimensional network. The anion in the molecular salt, tri-amino-guanidinium 5-({[(1 H -tetra-zol-5-yl)meth-yl](nitro)-amino}-meth-yl)tetra-zol-1-ide, (II), CH 9 N 6 + ·C 4 H 5 N 10 O 2 - , displays intra-molecular π-π stacking and in the crystal, N-H⋯N and N-H⋯O hydrogen bonds link the components of the structure, forming a three-dimensional network. In the crystal of di-ammonium bis-[(tetra-zol-1-id-5-yl)meth-yl]nitramide monohydrate, (III), 2NH 4 + ·C 4 H 4 N 10 O 2 2- ·H 2 O, O-H⋯N, N-H⋯N, and N-H⋯O hydrogen bonds link the components of the structure into a three-dimensional network. In addition, there is inter-molecular π-π stacking. In all three structures, the central N atom of the nitramide is mainly sp 2 -hybridized. Bond lengths indicate delocalization of charges on the tetra-zole rings for all three compounds. Compound (II) was found to be a non-merohedral twin and was solved and refined in the major component.

  9. Diazole-based powdered cocrystal featuring a helical hydrogen-bonded network: structure determination from PXRD, solid-state NMR and computer modeling.

    PubMed

    Sardo, Mariana; Santos, Sérgio M; Babaryk, Artem A; López, Concepción; Alkorta, Ibon; Elguero, José; Claramunt, Rosa M; Mafra, Luís

    2015-02-01

    We present the structure of a new equimolar 1:1 cocrystal formed by 3,5-dimethyl-1H-pyrazole (dmpz) and 4,5-dimethyl-1H-imidazole (dmim), determined by means of powder X-ray diffraction data combined with solid-state NMR that provided insight into topological details of hydrogen bonding connectivities and weak interactions such as CH···π contacts. The use of various 1D/2D (13)C, (15)N and (1)H high-resolution solid-state NMR techniques provided structural insight on local length scales revealing internuclear proximities and relative orientations between the dmim and dmpz molecular building blocks of the studied cocrystal. Molecular modeling and DFT calculations were also employed to generate meaningful structures. DFT refinement was able to decrease the figure of merit R(F(2)) from ~11% (PXRD only) to 5.4%. An attempt was made to rationalize the role of NH···N and CH···π contacts in stabilizing the reported cocrystal. For this purpose four imidazole derivatives with distinct placement of methyl substituents were reacted with dmpz to understand the effect of methylation in blocking or enabling certain intermolecular contacts. Only one imidazole derivative (dmim) was able to incorporate into the dmpz trimeric motif thus resulting in a cocrystal, which contains both hydrophobic (methyl groups) and hydrophilic components that self-assemble to form an atypical 1D network of helicoidal hydrogen bonded pattern, featuring structural similarities with alpha-helix arrangements in proteins. The 1:1 dmpz···dmim compound I is the first example of a cocrystal formed by two different azoles. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Synthesis and structural characterization of lithium, sodium and potassium complexes supported by a tridentate amino-bisphenolate ligand

    NASA Astrophysics Data System (ADS)

    Durango-García, Clara J.; Rufino-Felipe, Ernesto; López-Cardoso, Marcela; Muñoz-Hernández, Miguel-Ángel; Montiel-Palma, Virginia

    2018-07-01

    Reactions of methylamino-N,N-bis(2-methylene-4,6-di-tert-butylphenol) (1) with one or two equivalents of bulk Li, Na or K metals in THF or DMSO render mono or dialkali metal complexes depending on the stoichiometric ratio of the reactants. The metal-methylamino-N-(2-methylene-4,6-tert-butylphenol)sbnd N-(2-methylene-4,6-tert-butylphenolate) complexes, 2Li, 2Na and 2K, are generated upon the substitution of a single phenol hydrogen of 1. In the solid state, complex 2Na is a dimer due to the establishment of two symmetric hydrogen bonds between two adjacent molecules. The Na center also engages into the formation of a ten-membered metallacycle ring with a butterfly-like structure. Due to dimerization, an intermolecular six-membered core is formed involving two sodium and four oxygen atoms. The weakly coordinated nitrogen atom from the ligand is nearly perpendicular to the hexagonal core. The dimetal-methylamino-N,N‧-bis(2-methylene-4,6-di-tert-butylphenolate) complexes, 3Li, 3Na and 3K result from metal substitution of the two phenol hydrogens from ligand 1. The SC-XRD structures of 3Li and 3Na are discreet, each incorporating two metal atoms in different coordination environments. Ten-membered rings with boat-boat conformations are also observed as are rhombic central M2O2 cores. The molecular structure of 3K in DMSO shows a higher degree of aggregation. It effectively comprises four K atoms, two ligand backbones and seven solvent molecules forming a central four-membered K2O2 ring perpendicular to an eight-membered structure formed also by K and O atoms spanning over the two ligand moieties.

  11. Direct observation and modelling of ordered hydrogen adsorption and catalyzed ortho-para conversion on ETS-10 titanosilicate material.

    PubMed

    Ricchiardi, Gabriele; Vitillo, Jenny G; Cocina, Donato; Gribov, Evgueni N; Zecchina, Adriano

    2007-06-07

    Hydrogen physisorption on porous high surface materials is investigated for the purpose of hydrogen storage and hydrogen separation, because of its simplicity and intrinsic reversibility. For these purposes, the understanding of the binding of dihydrogen to materials, of the structure of the adsorbed phase and of the ortho-para conversion during thermal and pressure cycles are crucial for the development of new hydrogen adsorbents. We report the direct observation by IR spectroscopic methods of structured hydrogen adsorption on a porous titanosilicate (ETS-10), with resolution of the kinetics of the ortho-para transition, and an interpretation of the structure of the adsorbed phase based on classical atomistic simulations. Distinct infrared signals of o- and p-H2 in different adsorbed states are measured, and the conversion of o- to p-H2 is monitored over a timescale of hours, indicating the presence of a catalyzed reaction. Hydrogen adsorption occurs in three different regimes characterized by well separated IR manifestations: at low pressures ordered 1:1 adducts with Na and K ions exposed in the channels of the material are formed, which gradually convert into ordered 2:1 adducts. Further addition of H2 occurs only through the formation of a disordered condensed phase. The binding enthalpy of the Na+-H2 1:1 adduct is of -8.7+/-0.1 kJ mol(-1), as measured spectroscopically. Modeling of the weak interaction of H2 with the materials requires an accurate force field with a precise description of both dispersion and electrostatics. A novel three body force field for molecular hydrogen is presented, based on the fitting of an accurate PES for the H2-H2 interaction to the experimental dipole polarizability and quadrupole moment. Molecular mechanics simulations of hydrogen adsorption at different coverages confirm the three regimes of adsorption and the structure of the adsorbed phase.

  12. The absorption of energetic electrons by molecular hydrogen gas

    NASA Technical Reports Server (NTRS)

    Cravens, T. E.; Victor, G. A.; Dalgarno, A.

    1975-01-01

    The processes by which energetic electrons lose energy in a weakly ionized gas of molecular hydrogen are analyzed, and calculations are carried out taking into account the discrete nature of the excitation processes. The excitation, ionization, and heating efficiencies are computed for electrons with energies up to 100 eV absorbed in a gas with fractional ionizations up to 0.01, and the mean energy per pair of neutral hydrogen atoms is calculated.

  13. Hydrogen transport membranes

    DOEpatents

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  14. Eight supramolecular assemblies constructed from bis(benzimidazole) and organic acids through strong classical hydrogen bonding and weak noncovalent interactions

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Wang, Daqi

    2014-05-01

    Eight crystalline organic acid-base adducts derived from alkane bridged bis(N-benzimidazole) and organic acids (2,4,6-trinitrophenol, p-nitrobenzoic acid, m-nitrobenzoic acid, 3,5-dinitrobenzoic acid, 5-sulfosalicylic acid and oxalic acid) were prepared and characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. Of the eight compounds five are organic salts (1, 4, 6, 7 and 8) and the other three (2, 3, and 5) are cocrystals. In all of the adducts except 1 and 8, the ratio of the acid and the base is 2:1. All eight supramolecular assemblies involve extensive intermolecular classical hydrogen bonds as well as other noncovalent interactions. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, all the complexes displayed 3D framework structure. The results presented herein indicate that the strength and directionality of the classical N+-H⋯O-, O-H⋯O, and O-H⋯N hydrogen bonds (ionic or neutral) and other nonbonding associations between acids and ditopic benzimidazoles are sufficient to bring about the formation of cocrystals or organic salts.

  15. Acemetacin cocrystal structures by powder X-ray diffraction.

    PubMed

    Bolla, Geetha; Chernyshev, Vladimir; Nangia, Ashwini

    2017-05-01

    Cocrystals of acemetacin drug (ACM) with nicotinamide (NAM), p -aminobenzoic acid (PABA), valerolactam (VLM) and 2-pyridone (2HP) were prepared by melt crystallization and their X-ray crystal structures determined by high-resolution powder X-ray diffraction. The powerful technique of structure determination from powder data (SDPD) provided details of molecular packing and hydrogen bonding in pharmaceutical cocrystals of acemetacin. ACM-NAM occurs in anhydrate and hydrate forms, whereas the other structures crystallized in a single crystalline form. The carboxylic acid group of ACM forms theacid-amide dimer three-point synthon R 3 2 (9) R 2 2 (8) R 3 2 (9) with three different syn amides (VLM, 2HP and caprolactam). The conformations of the ACM molecule observed in the crystal structures differ mainly in the mutual orientation of chlorobenzene fragment and the neighboring methyl group, being anti (type I) or syn (type II). ACM hydrate, ACM-NAM, ACM-NAM-hydrate and the piperazine salt of ACM exhibit the type I conformation, whereas ACM polymorphs and other cocrystals adopt the ACM type II conformation. Hydrogen-bond interactions in all the crystal structures were quantified by calculating their molecular electrostatic potential (MEP) surfaces. Hirshfeld surface analysis of the cocrystal surfaces shows that about 50% of the contribution is due to a combination of strong and weak O⋯H, N⋯H, Cl⋯H and C⋯H interactions. The physicochemical properties of these cocrystals are under study.

  16. catena-Poly[[[di­aqua­bis­[1,2-bis­(pyridin-4-yl)diazene]copper(II)]-μ-1,2-bis­(pyridin-4-yl)diazene] bis­(perchlorate)

    PubMed Central

    Ballestero-Martínez, Ernesto; Campos-Fernández, Cristian Saul; Soto-Tellini, Victor Hugo; Gonzalez-Montiel, Simplicio; Martínez-Otero, Diego

    2013-01-01

    In the title compound, {[Cu(C10H8N4)3(H2O)2](ClO4)2}n, the coordination environment of the cationic CuII atom is distorted octa­hedral, formed by pairs of symmetry-equivalent 1,2-bis­(pyridin-4-yl)diazene ligands, bridging 1,2-bis­(pyridin-4-yl)diazene ligands and two non-equivalent water mol­ecules. The 1,2-bis­(pyridin-4-yl)diazene mol­ecules form polymeric chains parallel to [-101] via azo bonds which are situated about inversion centres. Since the CuII atom is situated on a twofold rotation axis, the monomeric unit has point symmetry 2. The perchlorate anions are disordered in a 0.536 (9):0.464 (9) ratio and are acceptors of water H atoms in medium–strong O—H⋯O hydrogen bonds with graph set R 4 4(12). The water mol­ecules, which are coordinated to the CuII atom and are hydrogen-bonded to the perchlorate anions, form columns parallel to [010]. A π–π inter­action [centroid–centroid distance = 3.913 (2) Å] occurs between pyridine rings, and weak C—H⋯O inter­actions also occur. PMID:23794983

  17. Acemetacin cocrystal structures by powder X-ray diffraction

    PubMed Central

    Bolla, Geetha

    2017-01-01

    Cocrystals of acemetacin drug (ACM) with nicotinamide (NAM), p-aminobenzoic acid (PABA), valerolactam (VLM) and 2-pyridone (2HP) were prepared by melt crystallization and their X-ray crystal structures determined by high-resolution powder X-ray diffraction. The powerful technique of structure determination from powder data (SDPD) provided details of molecular packing and hydrogen bonding in pharmaceutical cocrystals of acemetacin. ACM–NAM occurs in anhydrate and hydrate forms, whereas the other structures crystallized in a single crystalline form. The carboxylic acid group of ACM forms theacid–amide dimer three-point synthon R 3 2(9)R 2 2(8)R 3 2(9) with three different syn amides (VLM, 2HP and caprolactam). The conformations of the ACM molecule observed in the crystal structures differ mainly in the mutual orientation of chlorobenzene fragment and the neighboring methyl group, being anti (type I) or syn (type II). ACM hydrate, ACM—NAM, ACM–NAM-hydrate and the piperazine salt of ACM exhibit the type I conformation, whereas ACM polymorphs and other cocrystals adopt the ACM type II conformation. Hydrogen-bond interactions in all the crystal structures were quantified by calculating their molecular electrostatic potential (MEP) surfaces. Hirshfeld surface analysis of the cocrystal surfaces shows that about 50% of the contribution is due to a combination of strong and weak O⋯H, N⋯H, Cl⋯H and C⋯H interactions. The physicochemical properties of these cocrystals are under study. PMID:28512568

  18. Quadratic Zeeman effect in hydrogen Rydberg states: Rigorous bound-state error estimates in the weak-field regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falsaperla, P.; Fonte, G.

    1993-05-01

    Applying a method based on some results due to Kato [Proc. Phys. Soc. Jpn. 4, 334 (1949)], we show that series of Rydberg eigenvalues and Rydberg eigenfunctions of hydrogen in a uniform magnetic field can be calculated with a rigorous error estimate. The efficiency of the method decreases as the eigenvalue density increases and as [gamma][ital n][sup 3][r arrow]1, where [gamma] is the magnetic-field strength in units of 2.35[times]10[sup 9] G and [ital n] is the principal quantum number of the unperturbed hydrogenic manifold from which the diamagnetic Rydberg states evolve. Fixing [gamma] at the laboratory value 2[times]10[sup [minus]5] andmore » confining our calculations to the region [gamma][ital n][sup 3][lt]1 (weak-field regime), we obtain extremely accurate results up to states corresponding to the [ital n]=32 manifold.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bie Haiying; Lu Jing; Yu Jiehui

    Three novel thiocyanate supramolecular compounds have been synthesized and characterized by X-ray diffraction and fluorescent spectra. Compound [pipH]{sub 2}[Co(NCS){sub 4}] (pip=piperazine) 1 possesses a two-dimensional layer connected by the combination of N-H...N hydrogen bonds and weak S...S contacts. Under the same conditions, using nickel salt instead of cobalt salt as a starting material, we obtained a different two-dimensional supramolecular layer [pipH]{sub 2}[Ni(NCS){sub 4}] 2 connected by unusual N-H...S hydrogen bonds and weak S...S contacts. In order to observe the influence of the dimension of ligand on the self-assembly structure, dabco was used for substituting pip, and compound [dabcoH]{sub 2}[Ni(NCS){sub 4}]more » (dabco=1,4-Diazabicyclo[2.2.2] octane) 3 was gained, which constructed two-dimensional, highly wavy network with hourglass-shaped cavities only through N-H...S hydrogen bonds.« less

  20. N-(2-{[5-Bromo-2-(morpholin-4-yl)pyrimidin-4-yl]sulfan­yl}-4-meth­oxy­phen­yl)-4-chloro­benzene­sulfonamide

    PubMed Central

    Kumar, Mohan; Mallesha, L.; Sridhar, M. A.; Kapoor, Kamini; Gupta, Vivek K.; Kant, Rajni

    2012-01-01

    In the title compound, C21H20BrClN4O4S2, the benzene rings bridged by the sulfonamide group are tilted relative to each other by a dihedral angle of 70.2 (1)° and the dihedral angle between the sulfur-bridged pyrimidine and benzene rings is 69.5 (1)°. The mol­ecular conformation is stabilized by a weak intra­molecular π–π stacking inter­action between the pyrimidine and the 4-chloro­benzene rings [centroid–centroid distance = 3.978 (2) Å]. The morpholine ring adopts a chair conformation. In the crystal, mol­ecules are linked into inversion dimers by pairs of C—H⋯N hydrogen bonds and these dimers are further connected by N—H⋯O hydrogen bonds, forming a tape along the a axis. PMID:22969673

  1. Heterophase-structured nanocrystals as superior supports for Ru-based catalysts in selective hydrogenation of benzene

    PubMed Central

    Peng, Zhikun; Liu, Xu; Li, Shuaihui; Li, Zhongjun; Li, Baojun; Liu, Zhongyi; Liu, Shouchang

    2017-01-01

    ZrO2 heterophase structure nanocrystals (HSNCs) were synthesized with tunable ratios of monoclinic ZrO2 (m-ZrO2) to tetragonal ZrO2 (t-ZrO2). The phase mole ratio of m-ZrO2 versus t-ZrO2 in ZrO2 HSNCs was tuned from 40% to 100%. The concentration of the surface hydroxyl groups on m-ZrO2 is higher than that on t-ZrO2. ZrO2 HSNCs have different surface hydroxyl groups on two crystalline phases. This creates more intimate synergistic effects than their single-phase counterparts. The ZrO2 HSNCs were used as effective supports to fabricate heterophase-structured Ru/ZrO2 catalysts for benzene-selective hydrogenation. The excellent catalytic performance including high activity and selectivity is attributed to the heterogeneous strong/weak hydrophilic interface and water layer formed at the m-ZrO2/t-ZrO2 catalyst junction. PMID:28057914

  2. Trinuclear organooxotin assemblies from solvothermal synthesis reaction: Crystal structure, hydrogen bonding and π π stacking interaction

    NASA Astrophysics Data System (ADS)

    Ma, Chunlin; Sun, Junshan; Zhang, Rufen

    2007-05-01

    Two new trinuclear mono-organooxotin(IV) complexes with 2,3,4,5-tetrafluorobenzoic acid and sodium perchlorate of the types: [(SnR) 3(OH)(2,3,4,5-F 4C 6HCO 2) 4 · ClO 4] · [O 2CC 6HF 4](R = PhCH 2, 1; o- F-PhCH 2 for 2), have been solvothermally synthesized and structurally characterized by elemental, IR, 1H, 13C and 119Sn NMR and X-ray crystallography diffraction analyses. Complex 2 is also characterized by X-ray crystallography diffraction analyses. In complex 2, four carboxyl groups and a perchlorate bridged three tin atoms in a cyclohexane chair arrangement and form the basic framework. A hydroxyl group comprises the oxygen components of the stannoxane ring system. In these complexes, weak but significant intramolecular hydrogen bonding and π-π stacking interaction are also shown. These contacts lead to aggregation and supramolecular assembly of complexes 1 and 2 into 1D or 2D framework.

  3. Why the dark matter of galaxies is clumps of micro­ brown­dwarfs and not Cold Dark Matter

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.

    Observations of quasar microlensing by Schild 1996 show the baryonic dark matter BDM of galaxies is micro-brown-dwarfs, primordial hydrogen-helium planets formed at the plasma to gas transition 10^13 seconds, in trillion-planet clumps termed proto-globular-star-clusters PGCs. Large photon-viscosity {nu} of the plasma permits supercluster-mass gravitational fragmentation at 10^12 seconds when the horizon scale L_H = ct is matched by the Schwarz viscous scale L_SV of Gibson 1996. Voids begin expansion at sonic speeds c/ 3^1/2, where c is light speed and t is time, explaining 10^25 meter size regions observed to be devoid of all matter, either BDM or non-baryonic NBDM. Most of the NBDM is weakly-collisional, strongly-diffusive, neutrino-like particles. If cold NBDM (CDM) is assumed, it must soon become warm and diffuse because it is weakly-collisional. It cannot clump and its clumps cannot clump. CDM is ruled out with 99% confidence by local-group satellite observations of Kroupa et al. 2010. The satellites are clusters of PGCs. PGCs are recaptured by the Galaxy on an accretion disk as they freeze and diffuse from its core to form its BDM halo. Stars form by viscous mergers of primordial gas planets within PGCs. Stars die by overeating mBDs, making the first chemicals, oceans and life at 2-8 Myr.

  4. A comparison of the interaction of nitric oxide with the heteropolytungstic acids H{sub 3}PW{sub 12}O{sub 40}, H{sub 0.5}Cs{sub 2.5}PW{sub 12}O{sub 40}, HMgPW{sub 12}O{sub 40}, H{sub 8}SiW{sub 11}O{sub 38}, H{sub 4}SiW{sub 12}O{sub 40}, and H{sub 10}CoW{sub 12}O{sub 42}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herring, A.M.; McCormick, R.L.; Boonrueng, S.R.

    2000-05-18

    The interaction between NO and the heteropolytungstic acids (HPAs) H{sub 3}PW{sub 12}O{sub 40} (HPW), H{sub 0.5}Cs{sub 2.5}PW{sub 12}O{sub 40} (HCsPW), HMgPW{sub 12}O{sub 40} (HMgPW), H{sub 8}SiW{sub 11}O{sub 38} (HSiW{sub 11}), H{sub 4}SiW{sub 12}O{sub 40} (HSiW), and H{sub 10}CoW{sub 12}{sub 42}(HCoW) in the presence of O{sub 2}(g) was investigated. The tools employed were in situ diffuse reflectance infrared spectroscopy, X-ray powder diffraction, and solid-state {sup 1}H NMR. It was determined that protons may either be present in the HPAs secondary structure as anhydrous protons or be bound to one or two water molecules as H{sub 3}O{sup +} or H{sub 5}O{sub 2}{supmore » +}, respectively. A previous investigation found that HPW sorbed NO into its bulk structure as NOH{sup +}, whereas the anhydrous potassium salt of HPW exhibited weak chemisorption of NO on its surface. In the present study, it was found that NO chemisorbed weakly on the surface of the anhydrous HCsPW. For HMgPW and HSiW, IR and NMR evidence suggests that water is present as H{sub 3}O{sup +}, and the formation of surface-bound NOH{sup +} was observed. Inclusion of NO into the secondary structure as NOH{sup +} was observed for HPW, HSiW{sub 11}, and HCoW. Literature data for HPW, as well as IR and NMR results reported here, indicate that these HPAs contain water as H{sub 5}O{sub 2}{sup +}. The presence of H{sub 5}O{sub 2}{sup +} is, therefore, a prerequisite for NO incorporation as NOH{sup +} in the HPA secondary structure. These HPAs exhibited two modes of NO bonding in the secondary structure: a strongly hydrogen-bound hydrated form, NOH{sup +}{center_dot}H{sub 2}O, and a more weakly bound anhydrous form, NOH{sup +}. Evidence suggests that it is the hydrated form that decomposes, yielding N{sub 2} upon rapid heating. Both NO-containing species interact with terminal and corner-sharing oxygen atoms of the Keggin ion. Anions that are held apart by terminal oxygen-hydrogen bonds have a larger lattice parameter than those held apart by terminal oxygen-hydrogen and corner-sharing oxygen-nitrogen bonds. The lattice contraction upon NO incorporation implies activation of NO by an intimate interaction with oxygen of the Keggin anion.« less

  5. (S)-N-{1-[5-(4-Chloro-benzyl-sulfanyl)-1,3,4-oxadiazol-2-yl]eth-yl}-4-methyl-benzene-sulfonamide.

    PubMed

    Syed, Tayyaba; Hameed, Shahid; Jones, Peter G

    2011-10-01

    The title compound, C(18)H(18)ClN(3)O(3)S(2), adopts by folding the form of a distorted disc. Inter-planar angles are 29.51 (7) and 63.43 (7)° from the five-membered ring to the aromatic systems and 34.80 (6)° between these two latter rings. The absolute configuration was confirmed by determination of the Flack parameter. In the crystal, the mol-ecules are linked by four hydrogen bonds, one classical (N-H⋯N) and three 'weak' (C-H⋯O), forming layers parallel to the ac plane; these are in turn linked in the third dimension by Cl⋯N [3.1689 (16) Å] and Cl⋯O [3.3148 (13) Å] contacts to the heterocyclic ring.

  6. Precision Measurement of the proton neutral weak form factors at Q 2 ~ 0.1 GeV 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufman, Lisa J.

    2007-02-01

    This thesis reports the HAPPEX measurement of the parity-violating asymmetry for longitudinally polarized electrons elastically scattered from protons in a liquid hydrogen target. The measurement was carried out in Hall A at Thomas Jefferson National Accelerator Facility using a beam energy E = 3 GeV and scattering angle = 6°. The asymmetry is sensitive to the weak neutral form factors from which we extract the strange quark electric and magnetic form factors (Gmore » $$s\\atop{E}$$ and G$$s\\atop{M}$$) of the proton. The measurement was conducted during two data-taking periods in 2004 and 2005. This thesis describes the methods for controlling the helicity-correlated beam asymmetries and the analysis of the raw asymmetry. The parity-violating asymmetry has been measured to be A PV = -1.14± 0.24 (stat)±0.06 (syst) ppm at 2> = 0.099 GeV 2 (2004), and A PV = -1.58±0.12 (stat)±0.04 (syst) ppm at 2> = 0.109 GeV 2 (2005). The strange quark form factors extracted from the asymmetry are G$$s\\atop{E}$$ + 0.080G$$s\\atop{M}$$ = 0.030 ± 0.025 (stat) ± 0.006 (syst) ± 0.012 (FF) (2004) and G$$s\\atop{E}$$ +0.088G$$s\\atop{M}$$ = 0.007±0.011 (stat)±0.004 (syst)±0.005 (FF) (2005). These results place the most precise constraints on the strange quark form factors and indicate little strange dynamics in the proton.« less

  7. (Acetyl­acetonato)dibromido[2,2-diphenyl­hydrazin-1-ido(1−)][2,2-diphenyl­hydrazin-1-ido(2−)]molybdenum(VI)

    PubMed Central

    Bustos, Carlos; Alvarez-Thon, Luis; Ibañez, Andrés; Sánchez, Christian

    2011-01-01

    In the title compound, [MoBr2(C12H11N2)(C12H10N2)(C5H7O2)], the MoVI atom is six-coordinated in a distorted octa­hedral geometry by two N atoms from the diphenyl­hydrazide(1−) and diphenyl­hydrazide(2−) ligands, two O atoms from a bidentate acetyl­acetonate ligand and two Br− ions. The mol­ecules form an inversion dimer via a pair of weak C—H⋯O hydrogen bonds and a π–π stacking inter­action with a centroid–centroid distance of 3.7401 (12) Å. Weak intra­molecular C—H⋯Br inter­actions and an intra­molecular π–π stacking inter­action with a centroid–centroid distance of 3.8118 (15) Å are also observed. PMID:21754584

  8. Coformer selection based on degradation pathway of drugs: a case study of adefovir dipivoxil-saccharin and adefovir dipivoxil-nicotinamide cocrystals.

    PubMed

    Gao, Yuan; Gao, Jing; Liu, Ziling; Kan, Hongliang; Zu, Hui; Sun, Wanjin; Zhang, Jianjun; Qian, Shuai

    2012-11-15

    Adefovir dipivoxil (AD) is a bis(pivaloyloxymethyl) prodrug of adefovir with chemical stability problem. It undergoes two degradation pathways including hydrolysis and dimerization during storage. Pharmaceutical cocrystallization exhibits a promising approach to enhance aqueous solubility as well as physicochemical stability. In this study we attempted to prepare and investigate the physiochemical properties of AD cocrystals, which were formed with two coformers having different acidity and alkalinity (weakly acidic saccharin (SAC) and weakly basic nicotinamide (NCT)). The presence of different coformer molecules along with AD resulted in altered physicochemical properties. AD-SAC cocrystal showed great improvement in solubility and chemical stability, while AD-NCT did not. Several potential factors giving rise to different solid-state properties were summarized. Different coformers resulted in different cocrystal formation, packing style and hydrogen bond formation. This study could provide the coformer selection strategy based on degradation pathways for some unstable drugs in pharmaceutical cocrystal design. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Sulfur, carbon, hydrogen, and oxygen isotope geochemistry of the Idaho cobalt belt

    USGS Publications Warehouse

    Johnson, Craig A.; Bookstrom, Arthur A.; Slack, John F.

    2012-01-01

    Cobalt-copper ± gold deposits of the Idaho cobalt belt, including the deposits of the Blackbird district, have been analyzed for their sulfur, carbon, hydrogen, and oxygen isotope compositions to improve the understanding of ore formation. Previous genetic hypotheses have ranged widely, linking the ores to the sedimentary or diagenetic history of the host Mesoproterozoic sedimentary rocks, to Mesoproterozoic or Cretaceous magmatism, or to metamorphic shearing. The δ34S values are nearly uniform throughout the Blackbird dis- trict, with a mean value for cobaltite (CoAsS, the main cobalt mineral) of 8.0 ± 0.4‰ (n = 19). The data suggest that (1) sulfur was derived at least partly from sedimentary sources, (2) redox reactions involving sulfur were probably unimportant for ore deposition, and (3) the sulfur was probably transported to sites of ore for- mation as H2S. Hydrogen and oxygen isotope compositions of the ore-forming fluid, which are calculated from analyses of biotite-rich wall rocks and tourmaline, do not uniquely identify the source of the fluid; plausible sources include formation waters, metamorphic waters, and mixtures of magmatic and isotopically heavy meteoric waters. The calculated compositions are a poor match for the modified seawaters that form vol- canogenic massive sulfide (VMS) deposits. Carbon and oxygen isotope compositions of siderite, a mineral that is widespread, although sparse, at Blackbird, suggest formation from mixtures of sedimentary organic carbon and magmatic-metamorphic carbon. The isotopic compositions of calcite in alkaline dike rocks of uncertain age are consistent with a magmatic origin. Several lines of evidence suggest that siderite postdated the emplacement of cobalt and copper, so its significance for the ore-forming event is uncertain. From the stable isotope perspective, the mineral deposits of the Idaho cobalt belt contrast with typical VMS and sedimentary exhalative deposits. They show characteristics of deposit types that form in deeper environments and could be related to metamorphic processes or magmatic processes, although the isotopic evidence for magmatic components is relatively weak.

  10. Hydrogen content and mechanical stress in glow discharge amorphous silicon

    NASA Astrophysics Data System (ADS)

    Paduschek, P.; Eichinger, P.; Kristen, G.; Mitlehner, H.

    1982-08-01

    The hydrogen content of plasma deposited amorphous silicon thin films on silicon has been determined as a function of annealing parameters (200-700°C, 12 h) using the proton-proton scattering method. It is shown that hydrogen is released with an activation energy of 1.3 eV. Different deposition temperatures are compared with respect to the hydrogen evolution. The mechanical stress of the layers on silicon substrates has been measured by interferometric techniques for each annealing step. As the hydrogen content decreases monotonically with rising annealing temperature the mechanical stress converts from compressive to tensile. While only a weak correlation exists between the total hydrogen content and the mechanical stress, the bound hydrogen as determined by IR absorption displays a linear relation with the measured mechanical stress.

  11. Weak hydrogen bond topology in 1,1-difluoroethane dimer: A rotational study.

    PubMed

    Chen, Junhua; Zheng, Yang; Wang, Juan; Feng, Gang; Xia, Zhining; Gou, Qian

    2017-09-07

    The rotational spectrum of the 1,1-difluoroethane dimer has been investigated by pulsed-jet Fourier transform microwave spectroscopy. Two most stable isomers have been detected, which are both stabilized by a network of three C-H⋯F-C weak hydrogen bonds: in the most stable isomer, two difluoromethyl C-H groups and one methyl C-H group act as the weak proton donors whilst in the second isomer, two methyl C-H groups and one difluoromethyl C-H group act as the weak proton donors. For the global minimum, the measurements have also been extended to its four 13 C isotopologues in natural abundance, allowing a precise, although partial, structural determination. Relative intensity measurements on a set of μ a -type transitions allowed estimating the relative population ratio of the two isomers as N I /N II ∼ 6/1 in the pulsed jet, indicating a much larger energy gap between these two isomers than that expected from ab initio calculation, consistent with the result from pseudo-diatomic dissociation energies estimation.

  12. An Electron Density Source-Function Study of DNA Base Pairs in Their Neutral and Ionized Ground States†.

    PubMed

    Gatti, Carlo; Macetti, Giovanni; Boyd, Russell J; Matta, Chérif F

    2018-07-05

    The source function (SF) decomposes the electron density at any point into contributions from all other points in the molecule, complex, or crystal. The SF "illuminates" those regions in a molecule that most contribute to the electron density at a point of reference. When this point of reference is the bond critical point (BCP), a commonly used surrogate of chemical bonding, then the SF analysis at an atomic resolution within the framework of Bader's Quantum Theory of Atoms in Molecules returns the contribution of each atom in the system to the electron density at that BCP. The SF is used to locate the important regions that control the hydrogen bonds in both Watson-Crick (WC) DNA dimers (adenine:thymine (AT) and guanine:cytosine (GC)) which are studied in their neutral and their singly ionized (radical cationic and anionic) ground states. The atomic contributions to the electron density at the BCPs of the hydrogen bonds in the two dimers are found to be delocalized to various extents. Surprisingly, gaining or loosing an electron has similar net effects on some hydrogen bonds concealing subtle compensations traced to atomic sources contributions. Coarser levels of resolutions (groups, rings, and/or monomers-in-dimers) reveal that distant groups and rings often have non-negligible effects especially on the weaker hydrogen bonds such as the third weak CH⋅⋅⋅O hydrogen bond in AT. Interestingly, neither the purine nor the pyrimidine in the neutral or ionized forms dominate any given hydrogen bond despite that the former has more atoms that can act as source or sink for the density at its BCP. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  13. Methyllithium-Doped Naphthyl-Containing Conjugated Microporous Polymer with Enhanced Hydrogen Storage Performance.

    PubMed

    Xu, Dan; Sun, Lei; Li, Gang; Shang, Jin; Yang, Rui-Xia; Deng, Wei-Qiao

    2016-06-01

    Hydrogen storage is a primary challenge for using hydrogen as a fuel. With ideal hydrogen storage kinetics, the weak binding strength of hydrogen to sorbents is the key barrier to obtain decent hydrogen storage performance. Here, we reported the rational synthesis of a methyllithium-doped naphthyl-containing conjugated microporous polymer with exceptional binding strength of hydrogen to the polymer guided by theoretical simulations. Meanwhile, the experimental results showed that isosteric heat can reach up to 8.4 kJ mol(-1) and the methyllithium-doped naphthyl-containing conjugated microporous polymer exhibited an enhanced hydrogen storage performance with 150 % enhancement compared with its counterpart naphthyl-containing conjugated microporous polymer. These results indicate that this strategy provides a direction for design and synthesis of new materials that meet the US Department of Energy (DOE) hydrogen storage target. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis of hydrogen-carbon clathrate material and hydrogen evolution therefrom at moderate temperatures and pressures

    DOEpatents

    Lueking, Angela [State College, PA; Narayanan, Deepa [Redmond, WA

    2011-03-08

    A process for making a hydrogenated carbon material is provided which includes forming a mixture of a carbon source, particularly a carbonaceous material, and a hydrogen source. The mixture is reacted under reaction conditions such that hydrogen is generated and/or released from the hydrogen source, an amorphous diamond-like carbon is formed, and at least a portion of the generated and/or released hydrogen associates with the amorphous diamond-like carbon, thereby forming a hydrogenated carbon material. A hydrogenated carbon material including a hydrogen carbon clathrate is characterized by evolution of molecular hydrogen at room temperature at atmospheric pressure in particular embodiments of methods and compositions according to the present invention.

  15. Probing the Watson-Crick, wobble, and sugar-edge hydrogen bond sites of uracil and thymine.

    PubMed

    Müller, Andreas; Frey, Jann A; Leutwyler, Samuel

    2005-06-16

    The nucleobases uracil (U) and thymine (T) offer three hydrogen-bonding sites for double H-bond formation via neighboring N-H and C=O groups, giving rise to the Watson-Crick, wobble and sugar-edge hydrogen bond isomers. We probe the hydrogen bond properties of all three sites by forming hydrogen bonded dimers of U, 1-methyluracil (1MU), 3-methyluracil (3MU), and T with 2-pyridone (2PY). The mass- and isomer-specific S1 <-- S0 vibronic spectra of 2PY.U, 2PY.3MU, 2PY.1MU, and 2PY.T were measured using UV laser resonant two-photon ionization (R2PI). The spectra of the Watson-Crick and wobble isomers of 2PY.1MU were separated using UV-UV spectral hole-burning. We identify the different isomers by combining three different diagnostic tools: (1) Selective methylation of the uracil N3-H group, which allows formation of the sugar-edge isomer only, and methylation of the N1-H group, which leads to formation of the Watson-Crick and wobble isomers. (2) The experimental S1 <-- S0 origins exhibit large spectral blue shifts relative to the 2PY monomer. Ab initio CIS calculations of the spectral shifts of the different hydrogen-bonded dimers show a linear correlation with experiment. This correlation allows us to identify the R2PI spectra of the weakly populated Watson-Crick and wobble isomers of both 2PY.U and 2PY.T. (3) PW91 density functional calculation of the ground-state binding and dissociation energies De and D0 are in agreement with the assignment of the dominant hydrogen bond isomers of 2PY.U, 2PY.3MU and 2PY.T as the sugar-edge form. For 2PY.U, 2PY.T and 2PY.1MU the measured wobble:Watson-Crick:sugar-edge isomer ratios are in good agreement with the calculated ratios, based on the ab initio dissociation energies and gas-phase statistical mechanics. The Watson-Crick and wobble isomers are thereby determined to be several kcal/mol less strongly bound than the sugar-edge isomers. The 36 observed intermolecular frequencies of the nine different H-bonded isomers give detailed insight into the intermolecular force field.

  16. Photoelectron spectroscopy of nitromethane anion clusters

    NASA Astrophysics Data System (ADS)

    Pruitt, Carrie Jo M.; Albury, Rachael M.; Goebbert, Daniel J.

    2016-08-01

    Nitromethane anion and nitromethane dimer, trimer, and hydrated cluster anions were studied by photoelectron spectroscopy. Vertical detachment energies, estimated electron affinities, and solvation energies were obtained from the photoelectron spectra. Cluster structures were investigated using theoretical calculations. Predicted detachment energies agreed with experiment. Calculations show water binds to nitromethane anion through two hydrogen bonds. The dimer has a non-linear structure with a single ionic Csbnd H⋯O hydrogen bond. The trimer has two different solvent interactions, but both involve the weak Csbnd H⋯O hydrogen bond.

  17. Direct quantitative measurement of the C═O⋅⋅⋅H–C bond by atomic force microscopy

    PubMed Central

    Kawai, Shigeki; Nishiuchi, Tomohiko; Kodama, Takuya; Spijker, Peter; Pawlak, Rémy; Meier, Tobias; Tracey, John; Kubo, Takashi; Meyer, Ernst; Foster, Adam S.

    2017-01-01

    The hydrogen atom—the smallest and most abundant atom—is of utmost importance in physics and chemistry. Although many analysis methods have been applied to its study, direct observation of hydrogen atoms in a single molecule remains largely unexplored. We use atomic force microscopy (AFM) to resolve the outermost hydrogen atoms of propellane molecules via very weak C═O⋅⋅⋅H–C hydrogen bonding just before the onset of Pauli repulsion. The direct measurement of the interaction with a hydrogen atom paves the way for the identification of three-dimensional molecules such as DNAs and polymers, building the capabilities of AFM toward quantitative probing of local chemical reactivity. PMID:28508080

  18. Weak hydrogen bonding and fluorous interactions in the chloride and bromide salts of 4-[(2,2,3,3-tetrafluoropropoxy)methyl]pyridinium.

    PubMed

    Lu, Norman; Wei, Rong Jyun; Lin, Kwan Yu; Alagesan, Mani; Wen, Yuh Sheng; Liu, Ling Kang

    2017-04-01

    Neutralization of 4-[(2,2,3,3-tetrafluoropropoxy)methyl]pyridine with hydrohalo acids HX (X = Cl and Br) yielded the pyridinium salts 4-[(2,2,3,3-tetrafluoropropoxy)methyl]pyridinium chloride, C 9 H 10 F 4 NO + ·Cl - , (1), and 4-[(2,2,3,3-tetrafluoropropoxy)methyl]pyridinium bromide, C 9 H 10 F 4 NO + ·Br - , (2), both carrying a fluorous side chain at the para position of the pyridinium ring. Single-crystal X-ray diffraction techniques revealed that (1) and (2) are isomorphous. The halide anions accept four hydrogen bonds from N-H, ortho-C-H and CF 2 -H groups. Two cations and two anions form a centrosymmetric dimeric building block, utilizing complimentary N-H...X...H-Csp 3 connections. These dimers are further crosslinked, utilizing another complimentary Csp 2 -H...X...H-Csp 2 connection. The pyridinium rings are π-stacked, forming columns running parallel to the a axis that make angles of ca 44-45° with the normal to the pyridinium plane. There are also supramolecular C-H...F-C interactions, namely bifurcated C-H...F and bifurcated C-F...H interactions; additionally, one type II C-F...F-C halogen bond has been observed.

  19. Investigating and addressing student difficulties with the corrections to the energies of the hydrogen atom for the strong and weak field Zeeman effect

    NASA Astrophysics Data System (ADS)

    Keebaugh, Christof; Marshman, Emily; Singh, Chandralekha

    2018-07-01

    Understanding when and how to make limiting case approximations and why they are valid in a particular situation is a hallmark of expertise in physics. Using limiting cases can simplify the problem-solving process significantly and they often provide a means to check that the results obtained are reasonable. We discuss an investigation of student difficulties with the corrections to the energy spectrum of the hydrogen atom for the limiting cases of the strong and weak field Zeeman effects using degenerate perturbation theory. This investigation was carried out in advanced quantum mechanics courses by administering written free-response and multiple-choice questions and conducting individual interviews with students. Here we first discuss the common student difficulties related to these concepts. We then describe how the research on student difficulties was used as a guide to develop and evaluate a quantum interactive learning tutorial (QuILT) which strives to help students develop a functional understanding of the concepts necessary for finding the corrections to the energy spectrum of the hydrogen atom for the strong field and weak field Zeeman effects. The development of the QuILT and its evaluation in the undergraduate and PhD level courses are presented.

  20. Crystal structure of 2α-(1,1-di­phenyl­eth­yl)-4-methyl-4α,5α-diphenyl-1,3-dioxolane: the result of a non-acid pinacol rearrangement

    PubMed Central

    Kirchner, Richard M.; Corfield, Peter W. R.; Annabi, Michelle; Regan, John; Speina, Kevin; DiProperzio, Anthony; Ciaccio, James A.; Capitani, Joseph F.

    2015-01-01

    The title compound, C30H28O2, was obtained during recrystallization of (±)-1,2-diphenyl-1,2-propane­diol in 1-butanol, from an unexpected non-acid-catalyzed pinacol rearrangement followed by acetal formation of the newly formed aldehyde with the diol. The tri-substituted dioxolane ring has a twist conformation on the C—O bond opposite the methyl-substituted C atom. There is an intra­molecular C—H⋯π inter­action present involving one of the di­phenyl­ethyl rings and an H atom of the phenyl ring in position 4 of the dioxolane ring. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming chains along [001]. The chains are linked by a second C—H⋯π inter­action, forming sheets parallel to the bc plane. PMID:26594491

  1. (S)-N-[1-(5-Benzyl-sulfan-yl-1,3,4-oxa-diazol-2-yl)-2-phenyl-eth-yl]-4-methyl-benzene-sulfonamide.

    PubMed

    Syed, Tayyaba; Hameed, Shahid; Jones, Peter G

    2011-11-01

    The title compound, C(24)H(23)N(3)O(3)S(2), crystallizes with two independent mol-ecules in the asymmetric unit. They differ essentially in the orientation of the tolyl rings, between which there is π-π stacking (centroid-centroid distance = 3.01 Å). The absolute configuration was confirmed by the determination of the Flack parameter [x = 0.008 (9)]. In the crystal, mol-ecules are connected by two classical N-H⋯N hydrogen bonds and two weak but very short C-H⋯O(sulfon-yl) inter-actions, forming layers lying parallel to the bc plane.

  2. 3-Nitro-phenol-1,3,5-triazine-2,4,6-tri-amine (2/1).

    PubMed

    Sangeetha, V; Kanagathara, N; Chakkaravarthi, G; Marchewka, M K; Anbalagan, G

    2013-06-01

    The asymmetric unit of the title compound, C3H6N6·2C6H5NO3, contains one melamine and two 3-nitro-phenol mol-ecules. The mean planes of the 3-nitro-phenol mol-ecules are almost orthogonal to the plane of melamine, making dihedral angles of 82.77 (4) and 88.36 (5)°. In the crystal, mol-ecules are linked via O-H⋯N, N-H⋯N and N-H⋯O hydrogen bonds, forming a three-dimensional network. The crystal also features weak C-H⋯π and π-π inter-actions [centroid-centroid distance = 3.9823 (9) Å].

  3. Chemical bridges for enhancing hydrogen storage by spillover and methods for forming the same

    DOEpatents

    Yang, Ralph T.; Li, Yingwei; Qi, Gongshin; Lachawiec, Jr., Anthony J.

    2012-12-25

    A composition for hydrogen storage includes a source of hydrogen atoms, a receptor, and a chemical bridge formed between the source and the receptor. The chemical bridge is formed from a precursor material. The receptor is adapted to receive hydrogen spillover from the source.

  4. Atomistic model for excitons: Capturing Strongly Bound Excitons in Monolayer Transition-Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Tseng, Frank; Simsek, Ergun; Gunlycke, Daniel

    2015-03-01

    Monolayer transition-metal dichalcogenides form a direct bandgap predicted in the visible regime making them attractive host materials for various electronic and optoelectronic applications. Due to a weak dielectric screening in these materials, strongly bound electron-hole pairs or excitons have binding energies up to at least several hundred meV's. While the conventional wisdom is to think of excitons as hydrogen-like quasi-particles, we show that the hydrogen model breaks down for these experimentally observed strongly bound, room-temperature excitons. To capture these non-hydrogen-like photo-excitations, we introduce an atomistic model for excitons that predicts both bright excitons and dark excitons, and their broken degeneracy in these two-dimensional materials. For strongly bound exciton states, the lattice potential significantly distorts the envelope wave functions, which affects predicted exciton peak energies. The combination of large binding energies and non-degeneracy of exciton states in monolayer transition metal dichalogendies may furthermore be exploited in room temperature applications where prolonged exciton lifetimes are necessary. This work has been funded by the Office of Naval Research (ONR), directly and through the Naval Research Laboratory (NRL). F.T and E.S acknowledge support from NRL through the NRC Research Associateship Program and ONR Summer Faculty Program, respectively.

  5. Conformation, structure and molecular solvation: a spectroscopic and computational study of 2-phenoxy ethanol and its singly and multiply hydrated clusters

    NASA Astrophysics Data System (ADS)

    Macleod, Neil A.; Simons, John P.

    2002-10-01

    The conformational landscapes of 2-phenoxy ethanol (POX) and its hydrated clusters have been studied in the gas-phase, providing a model for pharmaceutical β-blockers. A combination of experimental techniques, including resonant two-photon ionisation (R2PI), laser-induced-fluorescence (LIF) and resonant ion-dip infra-red spectroscopy (RIDIRS), coupled with high-level ab initio calculations has allowed the assignment of the individually resolved spectral features to discrete conformational and supra-molecular structures. Assignments were made by comparison of experimental vibrational spectra and partially resolved ultra-violet rotational band contours with those predicted from quantum chemical calculations. The isolated molecule displays a solitary structure with an extended geometry of the side-chain which is stabilised by an intramolecular hydrogen-bond between the alcohol (proton donor) and the ether (proton acceptor) groups of the side-chain. In singly hydrated clusters the water molecule is accommodated by insertion into the intramolecular hydrogen-bond. In the doubly hydrated and higher clusters cyclic structures are generated which incorporate both the water molecules and the terminal OH group of the side-chain; additional (weak) hydrogen bonded interactions with the phenoxy group provide a degree of selectivity but essentially, the water 'droplet' forms on the end of the alcohol side-chain.

  6. Nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tashlykova-Bushkevich, Iya I.

    2015-12-31

    The present work summarizes recent progress in the investigation of nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys foils produced at exceptionally high cooling rates. We focus here on the potential of modification of hydrogen desorption kinetics in respect to weak and strong trapping sites that could serve as hydrogen sinks in Al materials. It is shown that it is important to elucidate the surface microstructure of the Al alloy foils at the submicrometer scale because rapidly solidified microstructural features affect hydrogen trapping at nanostructured defects. We discuss the profound influence of solute atoms on hydrogen−lattice defectmore » interactions in the alloys. with emphasis on role of vacancies in hydrogen evolution; both rapidly solidified pure Al and conventionally processed aluminum samples are considered.« less

  7. Hydrogenated vacancies lock dislocations in aluminium

    PubMed Central

    Xie, Degang; Li, Suzhi; Li, Meng; Wang, Zhangjie; Gumbsch, Peter; Sun, Jun; Ma, Evan; Li, Ju; Shan, Zhiwei

    2016-01-01

    Due to its high diffusivity, hydrogen is often considered a weak inhibitor or even a promoter of dislocation movements in metals and alloys. By quantitative mechanical tests in an environmental transmission electron microscope, here we demonstrate that after exposing aluminium to hydrogen, mobile dislocations can lose mobility, with activating stress more than doubled. On degassing, the locked dislocations can be reactivated under cyclic loading to move in a stick-slip manner. However, relocking the dislocations thereafter requires a surprisingly long waiting time of ∼103 s, much longer than that expected from hydrogen interstitial diffusion. Both the observed slow relocking and strong locking strength can be attributed to superabundant hydrogenated vacancies, verified by our atomistic calculations. Vacancies therefore could be a key plastic flow localization agent as well as damage agent in hydrogen environment. PMID:27808099

  8. Probing the global potential energy minimum of (CH2O)2: THz absorption spectrum of (CH2O)2 in solid neon and para-hydrogen.

    PubMed

    Andersen, J; Voute, A; Mihrin, D; Heimdal, J; Berg, R W; Torsson, M; Wugt Larsen, R

    2017-06-28

    The true global potential energy minimum configuration of the formaldehyde dimer (CH 2 O) 2 , including the presence of a single or a double weak intermolecular CH⋯O hydrogen bond motif, has been a long-standing subject among both experimentalists and theoreticians as two different energy minima conformations of C s and C 2h symmetry have almost identical energies. The present work demonstrates how the class of large-amplitude hydrogen bond vibrational motion probed in the THz region provides excellent direct spectroscopic observables for these weak intermolecular CH⋯O hydrogen bond motifs. The combination of concentration dependency measurements, observed isotopic spectral shifts associated with H/D substitutions and dedicated annealing procedures, enables the unambiguous assignment of three large-amplitude infrared active hydrogen bond vibrational modes for the non-planar C s configuration of (CH 2 O) 2 embedded in cryogenic neon and enriched para-hydrogen matrices. A (semi)-empirical value for the change of vibrational zero-point energy of 5.5 ± 0.3 kJ mol -1 is proposed for the dimerization process. These THz spectroscopic observations are complemented by CCSD(T)-F12/aug-cc-pV5Z (electronic energies) and MP2/aug-cc-pVQZ (force fields) electronic structure calculations yielding a (semi)-empirical value of 13.7 ± 0.3 kJ mol -1 for the dissociation energy D 0 of this global potential energy minimum.

  9. Probing the global potential energy minimum of (CH2O)2: THz absorption spectrum of (CH2O)2 in solid neon and para-hydrogen

    NASA Astrophysics Data System (ADS)

    Andersen, J.; Voute, A.; Mihrin, D.; Heimdal, J.; Berg, R. W.; Torsson, M.; Wugt Larsen, R.

    2017-06-01

    The true global potential energy minimum configuration of the formaldehyde dimer (CH2O)2, including the presence of a single or a double weak intermolecular CH⋯O hydrogen bond motif, has been a long-standing subject among both experimentalists and theoreticians as two different energy minima conformations of Cs and C2h symmetry have almost identical energies. The present work demonstrates how the class of large-amplitude hydrogen bond vibrational motion probed in the THz region provides excellent direct spectroscopic observables for these weak intermolecular CH⋯O hydrogen bond motifs. The combination of concentration dependency measurements, observed isotopic spectral shifts associated with H/D substitutions and dedicated annealing procedures, enables the unambiguous assignment of three large-amplitude infrared active hydrogen bond vibrational modes for the non-planar Cs configuration of (CH2O)2 embedded in cryogenic neon and enriched para-hydrogen matrices. A (semi)-empirical value for the change of vibrational zero-point energy of 5.5 ± 0.3 kJ mol-1 is proposed for the dimerization process. These THz spectroscopic observations are complemented by CCSD(T)-F12/aug-cc-pV5Z (electronic energies) and MP2/aug-cc-pVQZ (force fields) electronic structure calculations yielding a (semi)-empirical value of 13.7 ± 0.3 kJ mol-1 for the dissociation energy D0 of this global potential energy minimum.

  10. Crystal structure of N'-[(E)-(4-chloro-phen-yl)(phen-yl)methyl-idene]-4-methyl-benzene-sulfono-hydrazide.

    PubMed

    Balaji, J; Prabu, S; Xavier, J J F; Srinivasan, P

    2015-01-01

    The title compound, C20H17ClN2O2S, was obtained by a condensation reaction between 4-chloro-benzo-phenone and tosyl hydrazide. The plane of the methyl-substituted benzene ring forms dihedral angles of 20.12 (12) and 78.43 (13)° with those of the chlorine-substituted benzene ring and the benzene ring, respectively, with the last two rings forming a dihedral angle of 67.81 (13)°. The chlorine substituent was also found to be 0.868 (2):0.132 (2) disordered over these two rings. In the crystal, mol-ecules are linked through pairs of N-H⋯O hydrogen bonds, giving centrosymmetric cyclic dimers [graph set R 2 (2)(8)], which are linked by weak C-H⋯O and C-H⋯Cl inter-actions into a chain structure which extends along the a-axis direction.

  11. Crystal structure of rivastigmine hydrogen tartrate Form I (Exelon®), C 14H 23N 2O 2(C 4H 5O 6)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaduk, James A.; Zhong, Kai; Gindhart, Amy M.

    2016-03-08

    The crystal structure of rivastigmine hydrogen tartrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Rivastigmine hydrogen tartrate crystallizes in space groupP2 1(#4) witha= 17.538 34(5),b= 8.326 89(2),c= 7.261 11(2) Å,β= 98.7999(2)°,V= 1047.929(4) Å 3, andZ= 2. The un-ionized end of the hydrogen tartrate anions forms a very strong hydrogen bond with the ionized end of another anion to form a chain. The ammonium group of the rivastigmine cation forms a strong discrete hydrogen bond with the carbonyl oxygen atom of the un-ionized end of the tartrate anion. These hydrogen bondsmore » form a corrugated network in thebc-plane. Both hydroxyl groups of the tartrate anion form intramolecular O–H···O hydrogen bonds. Several C–H···O hydrogen bonds appear to contribute to the crystal energy. The powder pattern is included in the Powder Diffraction File ™as entry 00-064-1501.« less

  12. Theoretical and experimental study of the conformational and vibrational properties of benzoin

    NASA Astrophysics Data System (ADS)

    Pawelka, Zbignew; Kryachko, Eugene S.; Zeegers-Huyskens, Thérèse

    2003-02-01

    The conformational and vibrational properties of benzoin are theoretically studied at the B3LYP/6-31+G(d,p) computational level. Three lower energy stable structures are found on its potential energy surface. The two first structures correspond to cis- and trans-benzoin. The cis isomer, stabilized by an intramolecular OH⋯O hydrogen bond, is more favorable by 3.4 kcal mol -1 over the trans isomer. The third structure refers to the dienol tautomer ( cis-stilbendiol) which is less stable by 7.6 kcal mol -1. In carbon tetrachloride, benzoin is in the cis conformation. The calculated vibrational frequencies are compared with the experimental ones. When the ν(OH) and ν(CH) vibrations are corrected for anharmonicities, an average scaling factor of 0.980 is deduced. The IR and Raman spectra of solid benzoin are analyzed as well and discussed in terms of the structure determined by X-ray diffraction [Acta crystallogr. B 36 (1980) 2832]. The isotopic ratio ν(OH)/ ν(OD) reflects the weakness of the intramolecular hydrogen bond in solution and of the intermolecular hydrogen bond in the solid state. This weakness can be accounted for by the great departure of the hydrogen bond from linearity.

  13. Solid-state acid-base interactions in complexes of heterocyclic bases with dicarboxylic acids: crystallography, hydrogen bond analysis, and 15N NMR spectroscopy.

    PubMed

    Li, Z Jane; Abramov, Yuriy; Bordner, Jon; Leonard, Jason; Medek, Ales; Trask, Andrew V

    2006-06-28

    A cancer candidate, compound 1, is a weak base with two heterocyclic basic nitrogens and five hydrogen-bonding functional groups, and is sparingly soluble in water rendering it unsuitable for pharmaceutical development. The crystalline acid-base pairs of 1, collectively termed solid acid-base complexes, provide significant increases in the solubility and bioavailability compared to the free base, 1. Three dicarboxylic acid-base complexes, sesquisuccinate 2, dimalonate 3, and dimaleate 4, show the most favorable physicochemical profiles and are studied in greater detail. The structural analyses of the three complexes using crystal structure and solid-state NMR reveal that the proton-transfer behavior in these organic acid-base complexes vary successively correlating with Delta pKa. As a result, 2 is a neutral complex, 3 is a mixed ionic and zwitterionic complex and 4 is an ionic salt. The addition of the acidic components leads to maximized hydrogen bond interactions forming extended three-dimensional networks. Although structurally similar, the packing arrangements of the three complexes are considerably different due to the presence of multiple functional groups and the flexible backbone of 1. The findings in this study provide insight into the structural characteristics of complexes involving heterocyclic bases and carboxylic acids, and demonstrate that X-ray crystallography and 15N solid-state NMR are truly complementary in elucidating hydrogen bonding interactions and the degree of proton transfer of these complexes.

  14. Towards a rational design of ruthenium CO2 hydrogenation catalysts by Ab initio metadynamics.

    PubMed

    Urakawa, Atsushi; Iannuzzi, Marcella; Hutter, Jürg; Baiker, Alfons

    2007-01-01

    Complete reaction pathways relevant to CO2 hydrogenation by using a homogeneous ruthenium dihydride catalyst ([Ru(dmpe)2H2], dmpe=Me2PCH2CH2PMe2) have been investigated by ab initio metadynamics. This approach has allowed reaction intermediates to be identified and free-energy profiles to be calculated, which provide new insights into the experimentally observed reaction pathway. Our simulations indicate that CO2 insertion, which leads to the formation of formate complexes, proceeds by a concerted insertion mechanism. It is a rapid and direct process with a relatively low activation barrier, which is in agreement with experimental observations. Subsequent H2 insertion into the formate--Ru complex, which leads to the formation of formic acid, instead occurs via an intermediate [Ru(eta2-H2)] complex in which the molecular hydrogen coordinates to the ruthenium center and interacts weakly with the formate group. This step has been identified as the rate-limiting step. The reaction completes by hydrogen transfer from the [Ru(eta2-H2)] complex to the formate oxygen atom, which forms a dihydrogen-bonded Ru--HHO(CHO) complex. The activation energy for the H2 insertion step is lower for the trans isomer than for the cis isomer. A simple measure of the catalytic activity was proposed based on the structure of the transition state of the identified rate-limiting step. From this measure, the relationship between catalysts with different ligands and their experimental catalytic activities can be explained.

  15. A Computational and Theoretical Study of Conductance in Hydrogen-bonded Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Wimmer, Michael

    This thesis is devoted to the theoretical and computational study of electron transport in molecular junctions where one or more hydrogen bonds are involved in the process. While electron transport through covalent bonds has been extensively studied, in recent work the focus has been shifted towards hydrogen-bonded systems due to their ubiquitous presence in biological systems and their potential in forming nano-junctions between molecular electronic devices and biological systems. This analysis allows us to significantly expand our comprehension of the experimentally observed result that the inclusion of hydrogen bonding in a molecular junction significantly impacts its transport properties, a fact that has important implications for our understanding of transport through DNA, and nano-biological interfaces in general. In part of this work I have explored the implications of quasiresonant transport in short chains of weakly-bonded molecular junctions involving hydrogen bonds. I used theoretical and computational analysis to interpret recent experiments and explain the role of Fano resonances in the transmission properties of the junction. In a different direction, I have undertaken the study of the transversal conduction through nucleotide chains that involve a variable number of different hydrogen bonds, e.g. NH˙˙˙O, OH˙˙˙O, and NH˙˙˙N, which are the three most prevalent hydrogen bonds in biological systems and organic electronics. My effort here has focused on the analysis of electronic descriptors that allow a simplified conceptual and computational understanding of transport properties. Specifically, I have expanded our previous work where the molecular polarizability was used as a conductance descriptor to include the possibility of atomic and bond partitions of the molecular polarizability. This is important because it affords an alternative molecular description of conductance that is not based on the conventional view of molecular orbitals as transport channels. My findings suggest that the hydrogen-bond networks are crucial in understanding the conductance of these junctions. A broader impact of this work pertains the fact that characterizing transport through hydrogen bonding networks may help in developing faster and cost-effective approaches to personalized medicine, to advance DNA sequencing and implantable electronics, and to progress in the design and application of new drugs.

  16. Weak nanoscale chaos and anomalous relaxation in DNA

    NASA Astrophysics Data System (ADS)

    Mazur, Alexey K.

    2017-06-01

    Anomalous nonexponential relaxation in hydrated biomolecules is commonly attributed to the complexity of the free-energy landscapes, similarly to polymers and glasses. It was found recently that the hydrogen-bond breathing of terminal DNA base pairs exhibits a slow power-law relaxation attributable to weak Hamiltonian chaos, with parameters similar to experimental data. Here, the relationship is studied between this motion and spectroscopic signals measured in DNA with a small molecular photoprobe inserted into the base-pair stack. To this end, the earlier computational approach in combination with an analytical theory is applied to the experimental DNA fragment. It is found that the intensity of breathing dynamics is strongly increased in the internal base pairs that flank the photoprobe, with anomalous relaxation quantitatively close to that in terminal base pairs. A physical mechanism is proposed to explain the coupling between the relaxation of base-pair breathing and the experimental response signal. It is concluded that the algebraic relaxation observed experimentally is very likely a manifestation of weakly chaotic dynamics of hydrogen-bond breathing in the base pairs stacked to the photoprobe and that the weak nanoscale chaos can represent an ubiquitous hidden source of nonexponential relaxation in ultrafast spectroscopy.

  17. Weak nanoscale chaos and anomalous relaxation in DNA.

    PubMed

    Mazur, Alexey K

    2017-06-01

    Anomalous nonexponential relaxation in hydrated biomolecules is commonly attributed to the complexity of the free-energy landscapes, similarly to polymers and glasses. It was found recently that the hydrogen-bond breathing of terminal DNA base pairs exhibits a slow power-law relaxation attributable to weak Hamiltonian chaos, with parameters similar to experimental data. Here, the relationship is studied between this motion and spectroscopic signals measured in DNA with a small molecular photoprobe inserted into the base-pair stack. To this end, the earlier computational approach in combination with an analytical theory is applied to the experimental DNA fragment. It is found that the intensity of breathing dynamics is strongly increased in the internal base pairs that flank the photoprobe, with anomalous relaxation quantitatively close to that in terminal base pairs. A physical mechanism is proposed to explain the coupling between the relaxation of base-pair breathing and the experimental response signal. It is concluded that the algebraic relaxation observed experimentally is very likely a manifestation of weakly chaotic dynamics of hydrogen-bond breathing in the base pairs stacked to the photoprobe and that the weak nanoscale chaos can represent an ubiquitous hidden source of nonexponential relaxation in ultrafast spectroscopy.

  18. Charge induced enhancement of adsorption for hydrogen storage materials

    NASA Astrophysics Data System (ADS)

    Sun, Xiang

    2009-12-01

    The rising concerns about environmental pollution and global warming have facilitated research interest in hydrogen energy as an alternative energy source. To apply hydrogen for transportations, several issues have to be solved, within which hydrogen storage is the most critical problem. Lots of materials and devices have been developed; however, none is able to meet the DOE storage target. The primary issue for hydrogen physisorption is a weak interaction between hydrogen and the surface of solid materials, resulting negligible adsorption at room temperature. To solve this issue, there is a need to increase the interaction between the hydrogen molecules and adsorbent surface. In this study, intrinsic electric dipole is investigated to enhance the adsorption energy. The results from the computer simulation of single ionic compounds with hydrogen molecules to form hydrogen clusters showed that electrical charge of substances plays an important role in generation of attractive interaction with hydrogen molecules. In order to further examine the effects of static interaction on hydrogen adsorption, activated carbon with a large surface area was impregnated with various ionic salts including LiCl, NaCl, KCl, KBr, and NiCl2 and their performance for hydrogen storage was evaluated by using a volumetric method. Corresponding computer simulations have been carried out by using DFT (Density Functional Theory) method combined with point charge arrays. Both experimental and computational results prove that the adsorption capacity of hydrogen and its interaction with the solid materials increased with electrical dipole moment. Besides the intrinsic dipole, an externally applied electric field could be another means to enhance hydrogen adsorption. Hydrogen adsorption under an applied electric field was examined by using porous nickel foil as electrodes. Electrical signals showed that adsorption capacity increased with the increasing of gas pressure and external electric voltage. Direct measurement of the amount of hydrogen adsorption was also carried out with porous nickel oxides and magnesium oxides using the piezoelectric material PMN-PT as the charge supplier due to the pressure. The adsorption enhancement from the PMN-PT generated charges is obvious at hydrogen pressure between 0 and 60 bars, where the hydrogen uptake is increased at about 35% for nickel oxide and 25% for magnesium oxide. Computer simulation reveals that under the external electric field, the electron cloud of hydrogen molecules is pulled over to the adsorbent site and can overlap with the adsorbent electrons, which in turn enhances the adsorption energy. Experiments were also carried out to examine the effects of hydrogen spillover with charge induced enhancement. The results show that the overall storage capacity in nickel oxide increased remarkably by a factor of 4.

  19. CH stretching vibration of N-methylformamide as a sensitive probe of its complexation: infrared matrix isolation and computational study.

    PubMed

    Sałdyka, M; Mielke, Z; Mierzwicki, K; Coussan, S; Roubin, P

    2011-08-21

    The complexes between trans-N-methylformamide (t-NMF) and Ar, N(2), CO, H(2)O have been studied by infrared matrix isolation spectroscopy and/or ab initio calculations. The infrared spectra of NMF/Ne, NMF/Ar and NMF/N(2)(CO,H(2)O)/Ar matrices have been measured and the effect of the complexation on the perturbation of t-NMF frequencies was analyzed. The geometries of the complexes formed between t-NMF and Ar, N(2), CO and H(2)O were optimized in two steps at the MP2/6-311++G(2d,2p) level of theory. The four structures, found for every system at this level, were reoptimized on the CP-corrected potential energy surface; both normal and CP corrected harmonic frequencies and intensities were calculated. For every optimized structure the interaction energy was partitioned according to the SAPT scheme and the topological distribution of the charge density (AIM theory) was performed. The analysis of the experimental and theoretical results indicates that the t-NMF-N(2) and CO complexes present in the matrices are stabilized by very weak N-H···N and N-H···C hydrogen bonds in which the N-H group of t-NMF serves as a proton donor. In turn, the t-NMF-H(2)O complex present in the matrix is stabilized by O-H···O(C) hydrogen bonding in which the carbonyl group of t-NMF acts as a proton acceptor. Both, the theoretical and experimental results indicate that involvement of the NH group of t-NMF in formation of very weak hydrogen bonds with the N(2) or CO molecules leads to a clearly noticeable red shift of the CH stretching wavenumber whereas engagement of the CO group as a proton acceptor triggers a blue shift of this wavenumber.

  20. A new prescription for the mass-loss rates of hydrogen-free WR stars

    NASA Astrophysics Data System (ADS)

    Tramper, Frank; Sana, Hugues; de Koter, Alex

    2017-11-01

    We present a new empirical prescription for the mass-loss rates of hydrogen-free Wolf-Rayet stars based on results of detailed spectral analyses of WC and WO stars. Compared to the prescription of Nugis & Lamers (2000), M⊙ is less sensitive to the surface helium abundance, implying a stronger mass loss at the late stages of Wolf-Rayet evolution. The winds of hydrogen-free WN stars have a strong metallicity dependence, while those of WC and WO stars have a very weak metallicity dependence.

  1. Tensile properties of titanium electrolytically charged with hydrogen

    NASA Technical Reports Server (NTRS)

    Smith, R. J.; Otterson, D. A.

    1971-01-01

    Yield strength, ultimate tensile strength, and elongation were studied for annealed titanium electrolytically charged with hydrogen. The hydrogen was present as a surface hydride layer. These tensile properties were generally lower for uncharged titanium than for titanium with a continuous surface hydride; they were greater for uncharged titanium than for titanium with an assumed discontinuous surface hydride. We suggest that the interface between titanium and titanium hydride is weak. And the hydride does not necessarily impair strength and ductility of annealed titanium. The possibility that oxygen and/or nitrogen can embrittle titanium hydride is discussed.

  2. Hydrothermal syntheses, characterizations and crystal structures of a new lead(II) carboxylate-phosphonate with a double layer structure and a new nickel(II) carboxylate-phosphonate containing a hydrogen-bonded 2D layer with intercalation of ethylenediamines

    NASA Astrophysics Data System (ADS)

    Song, Jun-Ling; Mao, Jiang-Gao; Sun, Yan-Qiong; Zeng, Hui-Yi; Kremer, Reinhard K.; Clearfield, Abraham

    2004-03-01

    Hydrothermal reactions of N, N-bis(phosphonomethyl)aminoacetic acid (HO 2CCH 2N(CH 2PO 3H 2) 2) with metal(II) salts afforded two new metal carboxylate-phosphonates, namely, Pb 2[O 2CCH 2N(CH 2PO 3)(CH 2PO 3H)]·H 2O ( 1) and {NH 3CH 2CH 2NH 3}{Ni[O 2CCH 2N(CH 2PO 3H) 2](H 2O) 2} 2 ( 2). Among two unique lead(II) ions in the asymmetric unit of complex 1, one is five coordinated by five phosphonate oxygen atoms from 5 ligands, whereas the other one is five-coordinated by a tridentate chelating ligand (1 N and 2 phosphonate O atoms) and two phosphonate oxygen atoms from two other ligands. The carboxylate group of the ligand remains non-coordinated. The bridging of above two types of lead(II) ions through phosphonate groups resulted in a <002> double layer with the carboxylate group of the ligand as a pendant group. These double layers are further interlinked via hydrogen bonds between the carboxylate groups into a 3D network. The nickel(II) ion in complex 2 is octahedrally coordinated by a tetradentate chelating ligand (two phosphonate oxygen atoms, one nitrogen and one carboxylate oxygen atoms) and two aqua ligands. These {Ni[O 2CCH 2N(CH 2PO 3H) 2][H 2O] 2} - anions are further interlinked via hydrogen bonds between non-coordinated phosphonate oxygen atoms to form a <800> hydrogen bonded 2D layer. The 2H-protonated ethylenediamine cations are intercalated between two layers, forming hydrogen bonds with the non-coordinated carboxylate oxygen atoms. Results of magnetic measurements for complex 2 indicate that there is weak Curie-Weiss behavior with θ=-4.4 K indicating predominant antiferromagnetic interaction between the Ni(II) ions. Indication for magnetic low-dimension magnetism could not be detected.

  3. Hydrogenated vacancies lock dislocations in aluminium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Degang; Li, Suzhi; Li, Meng

    Due to its high diffusivity, hydrogen is often considered a weak inhibitor or even a promoter of dislocation movements in metals and alloys. By quantitative mechanical tests in an environmental transmission electron microscope, here we demonstrate that after exposing aluminium to hydrogen, mobile dislocations can lose mobility, with activating stress more than doubled. On degassing, the locked dislocations can be reactivated under cyclic loading to move in a stick-slip manner. However, relocking the dislocations thereafter requires a surprisingly long waiting time of ~10 3 s, much longer than that expected from hydrogen interstitial diffusion. Both the observed slow relocking andmore » strong locking strength can be attributed to superabundant hydrogenated vacancies, verified by our atomistic calculations. In conclusion, vacancies therefore could be a key plastic flow localization agent as well as damage agent in hydrogen environment.« less

  4. Hydrogenated vacancies lock dislocations in aluminium

    DOE PAGES

    Xie, Degang; Li, Suzhi; Li, Meng; ...

    2016-11-03

    Due to its high diffusivity, hydrogen is often considered a weak inhibitor or even a promoter of dislocation movements in metals and alloys. By quantitative mechanical tests in an environmental transmission electron microscope, here we demonstrate that after exposing aluminium to hydrogen, mobile dislocations can lose mobility, with activating stress more than doubled. On degassing, the locked dislocations can be reactivated under cyclic loading to move in a stick-slip manner. However, relocking the dislocations thereafter requires a surprisingly long waiting time of ~10 3 s, much longer than that expected from hydrogen interstitial diffusion. Both the observed slow relocking andmore » strong locking strength can be attributed to superabundant hydrogenated vacancies, verified by our atomistic calculations. In conclusion, vacancies therefore could be a key plastic flow localization agent as well as damage agent in hydrogen environment.« less

  5. Crystal structures of (2E)-1-(3-bromo-thio-phen-2-yl)-3-(2-meth-oxy-phen-yl)prop-2-en-1-one and (2E)-1-(3-bromo-thio-phen-2-yl)-3-(3,4-di-meth-oxy-phen-yl)prop-2-en-1-one.

    PubMed

    Naik, Vasant S; Shettigar, Venkataraya; Berglin, Tyler S; Coburn, Jillian S; Jasinski, Jerry P; Yathirajan, Hemmige S

    2015-08-01

    In the mol-ecules of the title compounds, (2E)-1-(3-bromo-thio-phen-2-yl)-3-(2-meth-oxy-phen-yl)prop-2-en-1-one, C14H11BrO2S, (I), which crystallizes in the space group P-1 with four independent mol-ecules in the asymmetric unit (Z' = 8), and (2E)-1-(3-bromo-thio-phen-2-yl)-3-(3,4-di-meth-oxy-phen-yl)prop-2-en-1-one, C15H13BrO3S, (II), which crystallizes with Z' = 8 in the space group I2/a, the non-H atoms are nearly coplanar. The mol-ecules of (I) pack with inversion symmetry stacked diagonally along the a-axis direction. Weak C-H⋯Br intra-molecular inter-actions in each of the four mol-ecules in the asymmetric unit are observed. In (II), weak C-H⋯O, bifurcated three-center inter-molecular inter-actions forming dimers along with weak C-H⋯π and π-π stacking inter-actions are observed, linking the mol-ecules into sheets along [001]. A weak C-H⋯Br intra-molecular inter-action is also present. There are no classical hydrogen bonds present in either structure.

  6. 3,3′′-Bis(9-hy­droxy­fluoren-9-yl)-1,1′:3′,1′′-terphen­yl

    PubMed Central

    Skobridis, Konstantinos; Theodorou, Vassiliki; Paraskevopoulos, Georgios; Seichter, Wilhelm; Weber, Edwin

    2013-01-01

    The asymmetric unit of the title compound, C44H30O2, contains two independent mol­ecules in which the terminal rings of the terphenyl element are inclined at angles of 36.3 (1) and 22.5 (1)° with respect to the central ring and the dihedral angles between the fluorenyl units are 72.3 (1) and 62.8 (1)°. In the crystal, pairs of O—H⋯O hydrogen bonds link the mol­ecules into inversion dimers. The hy­droxy H atoms not involved in these hydrogen bonds form O—H⋯π inter­actions in which the central terphenyl rings act as acceptors. Weak C—H⋯O contacts and π–π [centroid–centroid distance = 4.088 (2) Å] stacking inter­actions also occur. Taking into account directed non-covalent bonding between the molecules, the crystal is constructed of supramolecular strands extending along the a-axis direction. PMID:24098206

  7. Solvent induced synthesis, structure and properties of coordination polymers based on 5-hydroxyisophthalic acid as linker and 1,10-phenanthroline as auxiliary ligand

    NASA Astrophysics Data System (ADS)

    Kariem, Mukaddus; Yawer, Mohd; Sheikh, Haq Nawaz

    2015-11-01

    Three new coordination polymers [Mn(hip)(phen) (H2O)]n (1), [Co(hip)(phen) (H2O)]n (2), and [Cd(hip) (phen) (H2O)]n (3) (H2hip=5-hydroxyisophthalic acid; phen=1,10-phenanthroline) have been synthesized by solvo-hydrothermal method using diethyl formamide-water (DEF-H2O) as solvent system. Single-crystal X-ray diffraction analysis reveals that all three coordination polymers 1, 2 and 3 crystallize in monoclinic space group P2/n. Metal ions are inter-connected by hydroxyisophthalate anions forming zig-zag 1D chain. 1D chains are further inter-connected by hydrogen bonding and π-π stacking interactions leading to 3D supramolecular architecture. Hydrogen-bonding and π-π stacking provide thermal stability to polymers. Compounds 1 and 2 are paramagnetic at room temperature and variable temperature magnetic moment measurements revealed weak ferromagnetic interactions between metal ions at low temperature. Compound 3 exhibits excellent photoluminescence with large Stokes shift.

  8. Theoretical Study on Effects of Hydrogen-Bonding and Molecule-Cation Interactions on the Sensitivity of HMX.

    PubMed

    Li, Yunlu; Wu, Junpeng; Cao, Duanlin; Wang, Jianlong

    2016-10-04

    To assess the effects of weak interactions on the sensitivity of HMX, eleven complexes of HMX (where six of them are hydrogen-bonding complexes, and the other five are molecular-cation complexes) have been studied via quantum chemical treatment. The geometric and electronic structures were determined using DFT-B3LYP and MP2(full) methods with the 6-311++G(2df, 2p) and aug-cc-pVTZ basis sets. The changes of the bond dissociation energy (BDE) of the trigger bond (N-NO2 in HMX) and nitro group charge have been computed on the detail consideration to access the sensitivity changes of HMX. The results indicate that upon complex forming, the BDE increases and the charge of nitro group turns more negative in complexes, suggesting that the strength of the N-NO2 trigger bond is enhanced then the sensitivity of HMX is reduced. Atom-in-molecules analysis have also been carried to understand the nature of intermolecular interactions and the strength of trigger bonds.

  9. Crystal structure, vibrational and DFT simulation studies of melaminium dihydrogen phosphite monohydrate

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Kalaivani, M.; Marchewka, M. K.; Mohan, S.

    2013-08-01

    The crystal structure investigations of melamine with phosphorous acid, namely melaminium dihydrogenphosphite monohydrate (C3N6H7·H2PO3·H2O) have been investigated by means of single crystal X-ray diffraction method. The title compound crystallizes in monoclinic crystal system, and the space group is P21/c with a = 10.069 Å, b = 21.592 Å, c = 12.409 Å and Z = 12. The vibrational assignments and analysis of melaminium dihydrogen phosphite monohydrate have also been performed by FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical simulations were performed with DFT (B3LYP) method using 6-31G**, cc-pVTZ, and 6-311++G** basis sets to determine the energy, structural, thermodynamic parameters and vibrational frequencies of melaminium dihydrogen phosphite monohydrate. The hydrogen atom from phosphorous acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak Osbnd H···O and Nsbnd H···O hydrogen bonds shows notable vibrational effects.

  10. Enormous Hydrogen Bond Strength Enhancement through π-Conjugation Gain: Implications for Enzyme Catalysis.

    PubMed

    Wu, Chia-Hua; Ito, Keigo; Buytendyk, Allyson M; Bowen, K H; Wu, Judy I

    2017-08-22

    Surprisingly large resonance-assistance effects may explain how some enzymes form extremely short, strong hydrogen bonds to stabilize reactive oxyanion intermediates and facilitate catalysis. Computational models for several enzymic residue-substrate interactions reveal that when a π-conjugated, hydrogen bond donor (XH) forms a hydrogen bond to a charged substrate (Y - ), XH can become significantly more π-electron delocalized, and this "extra" stabilization may boost the [XH···Y - ] hydrogen bond strength by ≥15 kcal/mol. This reciprocal relationship departs from the widespread pK a concept (i.e., the idea that short, strong hydrogen bonds form when the interacting moieties have matching pK a values), which has been the rationale for enzymic acid-base reactions. The findings presented here provide new insight into how short, strong hydrogen bonds could form in enzymes.

  11. Apparatus and methods for storing and releasing hydrogen

    DOEpatents

    Heung, Leung K.

    2001-01-01

    A rechargeable device that stores and discharges hydrogen is described. The device stores hydrogen in a solid form and supplies hydrogen as a gas when needed. The solid storage medium may be metal hydride in a ground particle form that avoids the need for compaction or other treatment. Dividers partition a container into separate chambers, each provided with a matrix, formed from an appropriate material like a thermally-conductive aluminum foam, which forms a number of cells. For proper chamber size, the ratio of chamber length to container diameter should be between about 0.5 and 2. Metal hydride particles (or other hydrogen storage medium) may be placed within the cells, which help prevent excessive particle settling. The container is provided with a hydrogen transfer port through which hydrogen gas passes upon either discharging from or charging of the metal hydride particles. A filter may be placed within the port to allow hydrogen to flow but prevent particles from escaping. A heat transferring surface is formed by, for instance, a channel that is thermally coupled with the aluminum foam. Fluid flows through the channel to deliver or remove heat during the respective hydrogen discharging or charging processes.

  12. Apparatus and methods for storing and releasing hydrogen

    DOEpatents

    Heung, Leung K.

    2000-01-01

    A rechargeable device that stores and discharges hydrogen is described. The device stores hydrogen in a solid form and supplies hydrogen as a gas when needed. The solid storage medium may be metal hydride in a ground particle form that avoids the need for compaction or other treatment. Dividers partition a container into separate chambers, each provided with a matrix, formed from an appropriate material like a thermally-conductive aluminum foam, which forms a number of cells. For proper chamber size, the ratio of chamber length to container diameter should be between about 0.5 and 2. Metal hydride particles (or other hydrogen storage medium) may be placed within the cells, which help prevent excessive particle settling. The container is provided with a hydrogen transfer port through which hydrogen gas passes upon either discharging from or charging of the metal hydride particles. A filter may be placed within the port to allow hydrogen to flow but prevent particles from escaping. A heat transferring surface is formed by, for instance, a channel that is thermally coupled with the aluminum foam. Fluid flows through the channel to deliver or remove heat during the respective hydrogen discharging or charging processes.

  13. Acid-Group-Content-Dependent Proton Conductivity Mechanisms at the Interlayer of Poly(N-dodecylacrylamide-co-acrylic acid) Copolymer Multilayer Nanosheet Films.

    PubMed

    Sato, Takuma; Tsukamoto, Mayu; Yamamoto, Shunsuke; Mitsuishi, Masaya; Miyashita, Tokuji; Nagano, Shusaku; Matsui, Jun

    2017-11-14

    The effect of the content of acid groups on the proton conductivity at the interlayer of polymer-nanosheet assemblies was investigated. For that purpose, amphiphilic poly(N-dodecylacrylamide-co-acrylic acid) copolymers [p(DDA/AA)] with varying contents of AA were synthesized by free radical polymerization. Surface pressure (π)-area (A) isotherms of these copolymers indicated that stable polymer monolayers are formed at the air/water interface for AA mole fraction (n) ≤ 0.49. In all cases, a uniform dispersion of the AA groups in the polymer monolayer was observed. Subsequently, polymer monolayers were transferred onto solid substrates using the Langmuir-Blodgett (LB) technique. X-ray diffraction (XRD) analyses of the multilayer films showed strong Bragg diffraction peaks, suggesting a highly uniform lamellar structure for the multilayer films. The proton conductivity of the multilayer films parallel to the direction of the layer planes were measured by impedance spectroscopy, which revealed that the conductivity increased with increasing values of n. Activation energies for proton conduction of ∼0.3 and 0.42 eV were observed for n ≥ 0.32 and n = 0.07, respectively. Interestingly, the proton conductivity of a multilayer film with n = 0.19 did not follow the Arrhenius equation. These results were interpreted in terms of the average distance between the AA groups (l AA ), and it was concluded that, for n ≥ 0.32, an advanced 2D hydrogen bonding network was formed, while for n = 0.07, l AA is too long to form such hydrogen bonding networks. The l AA for n = 0.19 is intermediate to these extremes, resulting in the formation of hydrogen bonding networks at low temperatures, and disruption of these networks at high temperatures due to thermally induced motion. These results indicate that a high proton conductivity with low activation energy can be achieved, even under weakly acidic conditions, by arranging the acid groups at an optimal distance.

  14. Low-Dimensional Palladium Nanostructures for Fast and Reliable Hydrogen Gas Detection

    PubMed Central

    Noh, Jin-Seo; Lee, Jun Min; Lee, Wooyoung

    2011-01-01

    Palladium (Pd) has received attention as an ideal hydrogen sensor material due to its properties such as high sensitivity and selectivity to hydrogen gas, fast response, and operability at room temperature. Interestingly, various Pd nanostructures that have been realized by recent developments in nanotechnologies are known to show better performance than bulk Pd. This review highlights the characteristic properties, issues, and their possible solutions of hydrogen sensors based on the low-dimensional Pd nanostructures with more emphasis on Pd thin films and Pd nanowires. The finite size effects, relative strengths and weaknesses of the respective Pd nanostructures are discussed in terms of performance, manufacturability, and practical applicability. PMID:22346605

  15. Corrosion Resistance of a Sand Particle-Modified Enamel Coating Applied to Smooth Steel Bars

    PubMed Central

    Tang, Fujian; Chen, Genda; Brow, Richard K.; Koenigstein, Michael L.

    2014-01-01

    The protective performance of a sand particle-modified enamel coating on reinforcing steel bars was evaluated in 3.5 wt% NaCl solution by electrochemical impedance spectroscopy (EIS). Seven percentages of sand particles by weight were investigated: 0%, 5%, 10%, 20%, 30%, 50% and 70%. The phase composition of the enamel coating and sand particles were determined with the X-ray diffraction (XRD) technique. The surface and cross-sectional morphologies of the sand particle-modified enamel coating were characterized using scanning electron microscopy (SEM). XRD tests revealed three phases of sand particles: SiO2, CaCO3 and MgCO3. SEM images demonstrated that the enamel coating wetted well with the sand particles. However, a weak enamel coating zone was formed around the sand particles due to concentrated air bubbles, leading to micro-cracks as hydrogen gas pressure builds up and exceeds the tensile strength of the weak zone. As a result, the addition of sand particles into the enamel coating reduced both the coating and corrosion resistances. PMID:28788203

  16. Use of a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin column and propionic acid as an eluent in ion-exclusion/adsorption chromatography of aliphatic carboxylic acids and ethanol in food samples.

    PubMed

    Mori, Masanobu; Hironaga, Takahiro; Kajiwara, Hiroe; Nakatani, Nobutake; Kozaki, Daisuke; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2011-01-01

    We developed an ion-exclusion/adsorption chromatography (IEAC) method employing a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin (PS-WCX) column with propionic acid as the eluent for the simultaneous determination of multivalent aliphatic carboxylic acids and ethanol in food samples. The PS-WCX column well resolved mono-, di-, and trivalent carboxylic acids in the acidic eluent. Propionic acid as the eluent gave a higher signal-to-noise ratio, and enabled sensitive conductimetric detection of analyte acids. We found the optimal separation condition to be the combination of a PS-WCX column and 20-mM propionic acid. Practical applicability of the developed method was confirmed by using a short precolumn with a strongly acidic cation-exchange resin in the H(+)-form connected before the separation column; this was to remove cations from food samples by converting them to hydrogen ions. Consequently, common carboxylic acids and ethanol in beer, wine, and soy sauce were successfully separated by the developed method.

  17. Q weak: First direct measurement of the proton’s weak charge

    DOE PAGES

    Androic, D.; Armstrong, D. S.; Asaturyan, A.; ...

    2017-03-22

    The Q weak experiment, which took data at Jefferson Lab in the period 2010 - 2012, will precisely determine the weak charge of the proton by measuring the parity-violating asymmetry in elastic e-p scattering at 1.1 GeV using a longitudinally polarized electron beam and a liquid hydrogen target at a low momentum transfer of Q 2 = 0.025 (GeV/c) 2. The weak charge of the proton is predicted by the Standard Model and any significant deviation would indicate physics beyond the Standard Model. The technical challenges and experimental apparatus for measuring the weak charge of the proton will be discussed,more » as well as the method of extracting the weak charge of the proton. Finally, the results from a small subset of the data, that has been published, will also be presented. Furthermore an update will be given of the current status of the data analysis.« less

  18. Q weak: First direct measurement of the proton’s weak charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Androic, D.; Armstrong, D. S.; Asaturyan, A.

    The Q weak experiment, which took data at Jefferson Lab in the period 2010 - 2012, will precisely determine the weak charge of the proton by measuring the parity-violating asymmetry in elastic e-p scattering at 1.1 GeV using a longitudinally polarized electron beam and a liquid hydrogen target at a low momentum transfer of Q 2 = 0.025 (GeV/c) 2. The weak charge of the proton is predicted by the Standard Model and any significant deviation would indicate physics beyond the Standard Model. The technical challenges and experimental apparatus for measuring the weak charge of the proton will be discussed,more » as well as the method of extracting the weak charge of the proton. Finally, the results from a small subset of the data, that has been published, will also be presented. Furthermore an update will be given of the current status of the data analysis.« less

  19. Synthesis, molecular and crystalline architectures, and properties of mononuclear cobalt(II)thiocyanates containing a symmetrical tailored diimine/an unsymmetrical bidentate Schiff base

    NASA Astrophysics Data System (ADS)

    Sarkar, Bhola Nath; Bhar, Kishalay; Kundu, Subhasis; Fun, Hoong-Kun; Ghosh, Barindra Kumar

    2009-11-01

    Two hexacoordinated mononuclear cobalt(II)thiocyanate complexes of general formula [Co(LL) 2(NCS) 2]. nH 2O [LL = 2,2'-dipyridylamine (dpa), n = 1, 1; LL = N-((pyridin-2-yl)benzylidene)benzylamine (pbba), n = 0, 2] have been prepared and characterized using microanalytical, spectroscopic and other physicochemical results. The compounds are non-electrolytes and behave as three-electron paramagnets. Structures of 1 and 2 are solved by X-ray diffraction measurements. Structural analyses show that each metal center in 1 and 2 adopts a distorted octahedral geometry with a CoN 6 chromophore ligated through four N atoms of two bidentate LL units; the hexacoordination is completed by two N atoms of terminal thiocyanates in mutual cis orientation. The mononuclear units in 1 are engaged in weak intermolecular N-H…S and C-H…S hydrogen bonds to give a 2D sheet structure, which is further stabilized by π…π interactions among the pyridine rings of dpa units. In the long-range form, two mononuclear units of 2 are locked by weak doubly C-H…S hydrogen bonds producing a dimeric unit, which packs through C-H…π interaction leading to a 2D continuum. In MeCN solutions, the compounds show a nearly reversible one-electron oxidative response corresponding to cobalt(III)-cobalt(II) couple. The complexes display intraligand 1(π-π∗) fluorescence at room temperature and intraligand 3(π-π∗) phosphorescence in glassy solutions (DMF at 77 K).

  20. Broadband Microwave Spectroscopy as a Tool to Study Dispersion Interactions in Camphor-Alcohol Systems

    NASA Astrophysics Data System (ADS)

    Fatima, Mariyam; Perez, Cristobal; Schnell, Melanie

    2016-06-01

    Many biological processes such as chemical recognition and protein folding are mainly controlled by the interplay between hydrogen bonds and dispersive forces. Broadband rotational spectroscopy studies of weakly bound complexes are able to accurately reveal the structures and internal dynamics of molecular clusters isolated in the gas phase. To investigate the influence of the interplay between different types of weak intermolecular interactions and how it controls the preferred active sites of an amphiphilic molecule, we are using camphor (C10H16O, 1,7,7-trimethylbicyclo[2.2.1]hepta-2-one) with different aliphatic alcohol systems. Camphor is a conformationally rigid bicyclic molecule endowed with considerable steric hindrance and has a single polar group (-C=O). The rotational spectrum of camphor and its structure has been previously reported [1] as well as multiple clusters with water [2]. In order to determine the structure of the camphor-alcohol complexes, we targeted low energy rotational transitions in the 2-8 GHz range under the isolated conditions of a molecular jet in the gas phase. The data obtained suggests that camphor forms one complex with methanol and two with ethanol, with differences in the intermolecular interaction in both complexes. With these results, we aim to study the shift in intermolecular interaction from hydrogen bonding to dispersion with the increase in the size of the aliphatic alcohol. [1] Z. Kisiel, et al., Phys. Chem. Chem. Phys., 5 (2003), 820-826. [2] C. Pérez, et al, J. Phys. Chem. Lett., 7 (2016), 154-160.

  1. Photospheres of hot stars. III - Luminosity effects at spectral type 09.5

    NASA Technical Reports Server (NTRS)

    Voels, Stephen A.; Bohannan, Bruce; Abbott, David C.; Hummer, D. G.

    1989-01-01

    Hydrogen and helium line profiles with high signal-to-noise ratios were obtained for four stars of spectral type 09.5 (Alpha Cam, Xi Ori A, Delta Ori A,AE Aur) that form a sequence in luminosity: Ia, Ib, II, V. The basic stellar parameters of these stars are determined by fitting the observed line profiles of weak photospheric absorption lines with profiles from models which include the effect of radiation scattered back onto the photosphere from their stellar winds, an effect referred to as wind blanketing. For these stars, the inclusion of wind blanketing is significant only for the most luminous star, Alpha Cam, for which the effective temperature was shifted about -2000 K relative to an unblanketed model.

  2. 4-(Di­methyl­amino)­pyridinium trichlorido[4-(di­methyl­amino)­pyridine-κN]cobaltate(II)

    PubMed Central

    Guenifa, Fatiha; Hadjadj, Nasreddine; Zeghouan, Ouahida; Bendjeddou, Lamia; Merazig, Hocine

    2013-01-01

    In the anion of the title compound, (C7H11N2)[CoCl3(C7H10N2)], the CoII ion is coordinated by one N atom from a 4-(di­methyl­amino)­pyridine (DMAP) ligand and three Cl atoms, forming a CoNCl3 polyhedron with a distorted tetra­hedral geometry. In the crystal, cations and anions are linked via weak N—H⋯Cl and C—H⋯Cl hydrogen bonds. Double layers of complex anions stack along the b- axis direction, which alternate with double layers of 4-(di­methyl­amino)-pyridinium cations. PMID:24046560

  3. Bis(μ-2-{[2-(1,3-benzothia­zol-2-yl)hydrazinyl­idene]meth­yl}-6-meth­oxy­phenolato)bis­[dinitratodysprosium(III)] methanol disolvate

    PubMed Central

    Xu, Xuebin; Ding, Shuai; Shen, Si; Tang, Jinkui; Liu, Zhiliang

    2011-01-01

    In the centrosymmetric dinuclear title compound, [Dy2(C15H12N3O2S)2(NO3)4]·2CH3OH, the two DyIII atoms are coordinated by two deprotonated 2-{[2-(1,3-benzothia­zol-2-yl)hydrazinyl­idene]meth­yl}-6-meth­oxy­phenol ligands and four nitrate ions, all of which are chelating. The crystal packing is stabilized by inter­molecular N—H⋯O hydrogen bonds and weak O—H⋯O inter­actions, forming a two-dimensional network parallel to (010). PMID:21754674

  4. Crystal structure and Hirshfeld surface analysis of ethyl 2-{[4-ethyl-5-(quinolin-8-yloxymeth­yl)-4H-1,2,4-triazol-3-yl]sulfan­yl}acetate

    PubMed Central

    Bahoussi, Rawia Imane; Djafri, Ahmed; Djafri, Ayada

    2017-01-01

    In the title compound, C18H20N4O3S, the 1,2,4-triazole ring is twisted with respect to the mean plane of quinoline moiety at 65.24 (4)°. In the crystal, mol­ecules are linked by weak C—H⋯O and C—H⋯N hydrogen bonds, forming the three-dimensional supra­molecular packing. π–π stacking between the quinoline ring systems of neighbouring mol­ecules is also observed, the centroid-to-centroid distance being 3.6169 (6) Å. Hirshfeld surface (HS) analyses were performed. PMID:28217336

  5. Rotational spectrum of 14N 2 · H 35Cl and 14N 2 · H 37Cl: electric field gradients at the nitrogen nuclei

    NASA Astrophysics Data System (ADS)

    Kisiel, Z.; Pszczólkowski, L.; Fowler, P. W.; Legon, A. C.

    1997-09-01

    Rotational spectra of the most abundant isotopic species of the weakly bound dimer formed between dinitrogen and hydrogen chloride were investigated. Spectroscopic constants for 14N 2 · H 37Cl were determined for the first time and those for 14N 2 · H 35Cl improved. Analysis of observed nuclear quadrupole spliting patterns within the framework of coupling of three nonequivalent nuclear spins allowed determination of splitting constants for both nuclei in the complexed dinitrogen molecule. Electric field gradient calculations at the SCF supermolecule level for the dimer are presented and account for the observed values of the nitrogen splitting constants.

  6. Crystal forms of the hydrogen oxalate salt of o-desmethylvenlafaxine.

    PubMed

    Dichiarante, Elena; Curzi, Marco; Giaffreda, Stefano L; Grepioni, Fabrizia; Maini, Lucia; Braga, Dario

    2015-06-01

    To prepare new crystalline forms of the antidepressant o-desmethylvenlafaxine salt as potential new commercial forms and evaluate their physicochemical properties, in particular the dissolution rate. A new hydrogen oxalate salt of o-desmethylvenlafaxine hydrogen oxalate (ODV-OX) was synthesized, and a polymorph screening was performed using different solvents and crystallization conditions. Crystalline forms were characterized by a combination of solid-state techniques: X-ray powder diffraction, differential scanning calorimetry, thermogravimetric analysis, FT-IR spectroscopy and single crystal X-ray diffraction. The stability of all crystalline phases was tested under International Conference on Harmonisation (ICH) conditions (40°C and 75% Relative Humidity (RH)) for 1 week. Dissolution tests were performed on the hydrogen oxalate salt ODV-OX Form 1 and compared with dissolution test on the commercial form of the succinate salt of o-desmethylvenlafaxine. Five crystalline forms of ODV-OX were isolated, namely three hydrated forms (Form 1, Form 2, Form 3) and two anhydrous forms (Form 4 and Form 5). Comparative solubility tests on ODV-OX Form 1 and o-desmethylvenlafaxine succinate evidenced a significant increase in solubility for the hydrogen oxalate salt (142 g/l) with respect to the succinate salt (70 g/l). © 2015 Royal Pharmaceutical Society.

  7. Diethyl 2-{[(4-meth­oxy-3-pyrid­yl)amino]­methyl­idene}malonate

    PubMed Central

    Zhang, Zhi-Fang

    2011-01-01

    In the title mol­ecule, C14H8N2O5, the amino group is involved in the formation an intra­molecular N—H⋯O hydrogen bond. In the crystal, weak inter­molecular C—H⋯O and C—H⋯N hydrogen bonds link the mol­ecules into ribbons along the b axis. PMID:22090989

  8. Bambus[6]uril as a novel macrocyclic receptor for the nitrate anion.

    PubMed

    Toman, Petr; Makrlík, Emanuel; Vanura, Petr

    2013-01-01

    By using quantum mechanical DFT calculations, the most probable structure of the bambus[6]uril x NO3(-) anionic complex species was derived. In this complex having C3 symmetry, the nitrate anion NO3(-), included in the macrocyclic cavity, is bound by twelve weak hydrogen bonds between methine hydrogen atoms on the convex face of glycoluril units and the considered NO3(-) ion.

  9. Evaluating the Energetic Driving Force for Cocrystal Formation

    PubMed Central

    2017-01-01

    We present a periodic density functional theory study of the stability of 350 organic cocrystals relative to their pure single-component structures, the largest study of cocrystals yet performed with high-level computational methods. Our calculations demonstrate that cocrystals are on average 8 kJ mol–1 more stable than their constituent single-component structures and are very rarely (<5% of cases) less stable; cocrystallization is almost always a thermodynamically favorable process. We consider the variation in stability between different categories of systems—hydrogen-bonded, halogen-bonded, and weakly bound cocrystals—finding that, contrary to chemical intuition, the presence of hydrogen or halogen bond interactions is not necessarily a good predictor of stability. Finally, we investigate the correlation of the relative stability with simple chemical descriptors: changes in packing efficiency and hydrogen bond strength. We find some broad qualitative agreement with chemical intuition—more densely packed cocrystals with stronger hydrogen bonding tend to be more stable—but the relationship is weak, suggesting that such simple descriptors do not capture the complex balance of interactions driving cocrystallization. Our conclusions suggest that while cocrystallization is often a thermodynamically favorable process, it remains difficult to formulate general rules to guide synthesis, highlighting the continued importance of high-level computation in predicting and rationalizing such systems. PMID:29445316

  10. Effects of strong hydrogen bonds and weak intermolecular interactions on supramolecular assemblies of 4-fluorobenzylamine

    NASA Astrophysics Data System (ADS)

    Wang, Shi; Ding, Xue-Hua; Li, Yong-Hua; Huang, Wei

    2015-07-01

    A series of supramolecular salts have been obtained by the self-assembly of 4-fluorobenzylamine and halide ions or metal chloride with 18-crown-6 as the host in the hydrochloric acid medium, i.e. (C7H9FN)+ṡX- (X = Cl-, 1; Br-, 2), [(C7H9FN)2ṡ(18-crown-6)2]2+ṡ(MCl4)2- (M = Mn, 3; Co, 5; Zn, 7; Cd, 8), [(C7H9FN)ṡ(18-crown-6)]+ṡ(FeCl4)- (4) and [(C7H9FN)ṡ(18-crown-6)]+ṡ1/2(CuCl4)2- (6). Structural analyses indicate that 1-2 crystallize in the triclinic space group P-1, 4 in orthorhombic space group Pnma and 3, 5, 6-8 in the monoclinic space group P21/c or C2/c. In these compounds, extensive intermolecular interactions have been utilized for the self-assembly of diverse supramolecular architectures, ranging from strong N-H⋯X (X = O, Cl, Br) hydrogen bonds to weak C-H⋯Y (Y = F, Cl, π) interactions. N-H⋯Cl/Br hydrogen bonds offer the major driving force in the crystal packing of salts 1-2 while N-H⋯O hydrogen bonds are found in salts 3-8.

  11. Evaluating the Energetic Driving Force for Cocrystal Formation.

    PubMed

    Taylor, Christopher R; Day, Graeme M

    2018-02-07

    We present a periodic density functional theory study of the stability of 350 organic cocrystals relative to their pure single-component structures, the largest study of cocrystals yet performed with high-level computational methods. Our calculations demonstrate that cocrystals are on average 8 kJ mol -1 more stable than their constituent single-component structures and are very rarely (<5% of cases) less stable; cocrystallization is almost always a thermodynamically favorable process. We consider the variation in stability between different categories of systems-hydrogen-bonded, halogen-bonded, and weakly bound cocrystals-finding that, contrary to chemical intuition, the presence of hydrogen or halogen bond interactions is not necessarily a good predictor of stability. Finally, we investigate the correlation of the relative stability with simple chemical descriptors: changes in packing efficiency and hydrogen bond strength. We find some broad qualitative agreement with chemical intuition-more densely packed cocrystals with stronger hydrogen bonding tend to be more stable-but the relationship is weak, suggesting that such simple descriptors do not capture the complex balance of interactions driving cocrystallization. Our conclusions suggest that while cocrystallization is often a thermodynamically favorable process, it remains difficult to formulate general rules to guide synthesis, highlighting the continued importance of high-level computation in predicting and rationalizing such systems.

  12. On the room-temperature phase diagram of high pressure hydrogen: an ab initio molecular dynamics perspective and a diffusion Monte Carlo study.

    PubMed

    Chen, Ji; Ren, Xinguo; Li, Xin-Zheng; Alfè, Dario; Wang, Enge

    2014-07-14

    The finite-temperature phase diagram of hydrogen in the region of phase IV and its neighborhood was studied using the ab initio molecular dynamics (MD) and the ab initio path-integral molecular dynamics (PIMD). The electronic structures were analyzed using the density-functional theory (DFT), the random-phase approximation, and the diffusion Monte Carlo (DMC) methods. Taking the state-of-the-art DMC results as benchmark, comparisons of the energy differences between structures generated from the MD and PIMD simulations, with molecular and dissociated hydrogens, respectively, in the weak molecular layers of phase IV, indicate that standard functionals in DFT tend to underestimate the dissociation barrier of the weak molecular layers in this mixed phase. Because of this underestimation, inclusion of the quantum nuclear effects (QNEs) in PIMD using electronic structures generated with these functionals leads to artificially dissociated hydrogen layers in phase IV and an error compensation between the neglect of QNEs and the deficiencies of these functionals in standard ab initio MD simulations exists. This analysis partly rationalizes why earlier ab initio MD simulations complement so well the experimental observations. The temperature and pressure dependencies for the stability of phase IV were also studied in the end and compared with earlier results.

  13. On the nature of low temperature internal friction peaks in metallic glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khonik, V.A.; Spivak, L.V.

    Low temperature (30 < T < 300 K) internal friction in a metallic glass Ni{sub 60}Nb{sub 40} subjected to preliminary inhomogeneous deformation by cold rolling, homogeneous tensile deformation or electrolytic charging with hydrogen is investigated. Cold rolling or hydrogenation result in appearance of similar internal friction peaks and hysteresis damping. Homogeneous deformation has no influence on low temperature internal friction. The phenomenon of microplastic deformation during hydrogenation of weakly stressed samples is revealed. It is argued that microplastic deformation of metallic glasses during hydrogenation without external stress takes place too. Plastic flow both on cold rolling and hydrogenation occurs viamore » formation and motion of dislocation-like defects which are the reason of the observed anelastic anomalies. It is concluded that low temperature internal friction peaks described in the literature for as-cast, cold deformed and hydrogenated samples have common dislocation-like origin.« less

  14. Thermal decomposition of silane to form hydrogenated amorphous Si

    DOEpatents

    Strongin, M.; Ghosh, A.K.; Wiesmann, H.J.; Rock, E.B.; Lutz, H.A. III

    Hydrogenated amorphous silicon is produced by thermally decomposing silane (SiH/sub 4/) or other gases comprising H and Si, at elevated temperatures of about 1700 to 2300/sup 0/C, in a vacuum of about 10/sup -8/ to 10/sup -4/ torr. A gaseous mixture is formed of atomic hydrogen and atomic silicon. The gaseous mixture is deposited onto a substrate to form hydrogenated amorphous silicon.

  15. Method and means for producing solid evacuated microspheres of hydrogen

    DOEpatents

    Turnbull, Robert J.; Foster, Christopher A.; Hendricks, Charles D.

    1976-01-01

    A method is provided for producing solid, evacuated microspheres comprised of hydrogen. The spheres are produced by forming a jet of liquid hydrogen and exciting mechanical waves on the jet of appropriate frequency so that the jet breaks up into drops with a bubble formed in each drop by cavitation. The drops are exposed to a pressure less than the vapor pressure of the liquid hydrogen so that the bubble which is formed within each drop expands. The drops which contain bubbles are exposed to an environment having a pressure just below the triple point of liquid hydrogen and they thereby freeze giving solid, evacuated spheres of hydrogen.

  16. Solid evacuated microspheres of hydrogen

    DOEpatents

    Turnbull, Robert J.; Foster, Christopher A.; Hendricks, Charles D.

    1982-01-01

    A method is provided for producing solid, evacuated microspheres comprised of hydrogen. The spheres are produced by forming a jet of liquid hydrogen and exciting mechanical waves on the jet of appropriate frequency so that the jet breaks up into drops with a bubble formed in each drop by cavitation. The drops are exposed to a pressure less than the vapor pressure of the liquid hydrogen so that the bubble which is formed within each drop expands. The drops which contain bubbles are exposed to an environment having a pressure just below the triple point of liquid hydrogen and they thereby freeze giving solid, evacuated spheres of hydrogen.

  17. Human Cystathionine-β-Synthase Phosphorylation on Serine227 Modulates Hydrogen Sulfide Production in Human Urothelium.

    PubMed

    d'Emmanuele di Villa Bianca, Roberta; Mitidieri, Emma; Esposito, Davide; Donnarumma, Erminia; Donnarumm, Erminia; Russo, Annapina; Fusco, Ferdinando; Ianaro, Angela; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella

    2015-01-01

    Urothelium, the epithelial lining the inner surface of human bladder, plays a key role in bladder physiology and pathology. It responds to chemical, mechanical and thermal stimuli by releasing several factors and mediators. Recently it has been shown that hydrogen sulfide contributes to human bladder homeostasis. Hydrogen sulfide is mainly produced in human bladder by the action of cystathionine-β-synthase. Here, we demonstrate that human cystathionine-β-synthase activity is regulated in a cGMP/PKG-dependent manner through phosphorylation at serine 227. Incubation of human urothelium or T24 cell line with 8-Bromo-cyclic-guanosine monophosphate (8-Br-cGMP) but not dibutyryl-cyclic-adenosine monophosphate (d-cAMP) causes an increase in hydrogen sulfide production. This result is congruous with the finding that PKG is robustly expressed but PKA only weakly present in human urothelium as well as in T24 cells. The cGMP/PKG-dependent phosphorylation elicited by 8-Br-cGMP is selectively reverted by KT5823, a specific PKG inhibitor. Moreover, the silencing of cystathionine-β-synthase in T24 cells leads to a marked decrease in hydrogen sulfide production either in basal condition or following 8-Br-cGMP challenge. In order to identify the phosphorylation site, recombinant mutant proteins of cystathionine-β-synthase in which Ser32, Ser227 or Ser525 was mutated in Ala were generated. The Ser227Ala mutant cystathionine-β-synthase shows a notable reduction in basal biosynthesis of hydrogen sulfide becoming unresponsive to the 8-Br-cGMP challenge. A specific antibody that recognizes the phosphorylated form of cystathionine-β-synthase has been produced and validated by using T24 cells and human urothelium. In conclusion, human cystathionine-β-synthase can be phosphorylated in a PKG-dependent manner at Ser227 leading to an increased catalytic activity.

  18. Human Cystathionine-β-Synthase Phosphorylation on Serine227 Modulates Hydrogen Sulfide Production in Human Urothelium

    PubMed Central

    d’Emmanuele di Villa Bianca, Roberta; Donnarumm, Erminia; Russo, Annapina; Fusco, Ferdinando; Ianaro, Angela; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella

    2015-01-01

    Urothelium, the epithelial lining the inner surface of human bladder, plays a key role in bladder physiology and pathology. It responds to chemical, mechanical and thermal stimuli by releasing several factors and mediators. Recently it has been shown that hydrogen sulfide contributes to human bladder homeostasis. Hydrogen sulfide is mainly produced in human bladder by the action of cystathionine-β-synthase. Here, we demonstrate that human cystathionine-β-synthase activity is regulated in a cGMP/PKG-dependent manner through phosphorylation at serine 227. Incubation of human urothelium or T24 cell line with 8-Bromo-cyclic-guanosine monophosphate (8-Br-cGMP) but not dibutyryl-cyclic-adenosine monophosphate (d-cAMP) causes an increase in hydrogen sulfide production. This result is congruous with the finding that PKG is robustly expressed but PKA only weakly present in human urothelium as well as in T24 cells. The cGMP/PKG-dependent phosphorylation elicited by 8-Br-cGMP is selectively reverted by KT5823, a specific PKG inhibitor. Moreover, the silencing of cystathionine-β-synthase in T24 cells leads to a marked decrease in hydrogen sulfide production either in basal condition or following 8-Br-cGMP challenge. In order to identify the phosphorylation site, recombinant mutant proteins of cystathionine-β-synthase in which Ser32, Ser227 or Ser525 was mutated in Ala were generated. The Ser227Ala mutant cystathionine-β-synthase shows a notable reduction in basal biosynthesis of hydrogen sulfide becoming unresponsive to the 8-Br-cGMP challenge. A specific antibody that recognizes the phosphorylated form of cystathionine-β-synthase has been produced and validated by using T24 cells and human urothelium. In conclusion, human cystathionine-β-synthase can be phosphorylated in a PKG-dependent manner at Ser227 leading to an increased catalytic activity. PMID:26368121

  19. Synthesis and characterization of a novel long-alkyl-chain ester-substituted benzimidazole gelator and its octan-1-ol solvate.

    PubMed

    Geiger, H Cristina; Zick, Patricia L; Roberts, William R; Geiger, David K

    2017-04-01

    The synthesis of a novel benzimidazole derivative with a long-chain-ester substituent, namely methyl 8-[4-(1H-benzimidazol-2-yl)phenoxy]octanoate, (3), is reported. Ester (3) shows evidence of aggregation in solution and weak gelation ability with toluene. The octan-1-ol solvate, methyl 8-[4-(1H-benzimidazol-2-yl)phenoxy]octanoate octan-1-ol monosolvate, C 22 H 26 N 2 O 3 ·C 8 H 18 O, (4), exhibits a four-molecule hydrogen-bonded motif in the solid state, with N-H...O hydrogen bonds between benzimidazole molecules and O-H...N hydrogen bonds between the octan-1-ol solvent molecules and the benzimidazole unit. The alkyl chains of the ester and the octan-1-ol molecules are in unfolded conformations. The phenylene ring is canted by 10.27 (6)° from the plane of the benzimidazole ring system. H...C contacts make up 20.7% of the Hirshfeld surface coverage. Weak C-H...π interactions involving the benzimidazole alkyl chain and three aromatic rings are observed.

  20. Phospholipid bilayer affinities and solvation characteristics by electrokinetic chromatography with a nanodisc pseudostationary phase.

    PubMed

    Penny, William M; Steele, Harmen B; Ross, J B Alexander; Palmer, Christopher P

    2017-03-01

    Phospholipid bilayer nanodiscs composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and synthetic maleic acid-styrene copolymer belts have been introduced as a pseudostationary phase (PSP) in electrokinetic chromatography and demonstrated good performance. The nanodiscs provide a suitable migration range and high theoretical plate counts. Using this nanodisc pseudostationary phase, the affinity of the bilayer structure for probe solutes was determined and characterized. Good correlation is observed between retention factors and octanol water partition coefficients for particular categories of solutes, but the general correlation is weak primarily because the nanodiscs show stronger affinity than octanol for hydrogen bond donors. This suggests that a more appropriate application of this technology is to measure and characterize interactions between solutes and lipid bilayers directly. Linear solvation energy relationship analysis of the nanodisc-solute interactions in this study demonstrates that the nanodiscs provide a solvation environment with low cohesivity and weak hydrogen bond donating ability, and provide relatively strong hydrogen bond acceptor strength. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Golden rule for buttressing vulnerable soluble proteins.

    PubMed

    Fernández, Ariel; Berry, R Stephen

    2010-05-07

    Local weaknesses in the structure of soluble proteins have received little attention. The structure may be inherently weak at sites where hydration of the protein backbone is locally hampered by formation of an intramolecular hydrogen bond which in turn is not fully stabilized through burial within a hydrophobic environment. The result is insufficient compensation for the thermodynamic cost of dehydrating the backbone polar groups. This work shows that these structural deficiencies, the unburied backbone hydrogen bonds, are compensated in natural proteins by disulfide bonds that are needed to maintain the structural integrity. Examination of all PDB-reported soluble structures reveals that, after suitable normalization, the number of disulfide bonds, X, correlates tightly with the number of unburied backbone hydrogen bonds, Y, beyond the baseline level Y = 20, revealing a simple balance relation: Y = 5X + 20. This equation introduces a 1:5 ratio associated with the buttressing of soluble proteins with structural deficiencies. The results are justified on thermodynamic grounds and have implications for biomolecular engineering as they introduce two constants of universal applicability determining the architecture of soluble proteins.

  2. Experimental and theoretical study of hydrogen thiocarbonate for heterogeneous reaction of carbonyl sulfide on magnesium oxide.

    PubMed

    Liu, Yongchun; He, Hong

    2009-04-09

    In situ diffuse reflectance infrared Fourier transform spectroscopy combined with derivative spectroscopy analysis, two-dimensional correlation spectroscopy analysis, and quantum chemical calculations were used to investigate the infrared absorbance assignment and the molecular structure of hydrogen thiocarbonate on magnesium oxide. The bands at 1283 and 1257 cm(-1), which had the typical characteristic of intermediate, were observed in experiments for the heterogeneous reaction of COS on MgO. On the basis of two-dimensional correlation spectroscopy analysis and quantum chemical calculations, the band at 1283 cm(-1) was assigned to the v(s) band of bridged thiocarbonate which formed on the two neighboring Mg atoms in the (100) face of MgO crystal, and the band at 1257 cm(-1) was the v(s) band of monodentate thiocarbonate on MgO. The v(as)(OCO) band of thiocarbonates was invisible in the experiment due to their weak absorbance and the interruption of surface carbonate. The formation mechanism of thiocarbonates is proposed, which occurred through a nucleophilic attack of preadsorbed COS by surface -OH groups followed by hydrogen atom transfer from the -OH group to the sulfur atom of preadsorbed COS. The activation energy for the intramolecular proton-transfer reaction of bridged thiocarbonate was calculated to be 18.52 kcal x mol(-1) at the B3LYP/6-31+G(d,p) level of theory.

  3. Structure of eight molecular salts assembled from noncovalent bonding between carboxylic acids, imidazole, and benzimidazole

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Zhang, Huan; Liu, Hui; Wen, Xianhong; Li, Minghui; Wang, Daqi

    2015-09-01

    Eight organic salts of imidazole/benzimidazole have been prepared with carboxylic acids as 2-methyl-2-phenoxypropanoic acid, α-ketoglutaric acid, 5-nitrosalicylic acid, isophthalic acid, 4-nitro-phthalic acid, and 3,5-dinitrosalicylic acid. The eight crystalline forms reported are proton-transfer compounds of which the crystals and compounds were characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. These structures adopted hetero supramolecular synthons, with the most common R22(7) motif observed at salts 2, 3, 5, 6 and 8. Analysis of the crystal packing of 1-8 suggests that there are extensive strong Nsbnd H⋯O, and Osbnd H⋯O hydrogen bonds (charge assisted or neutral) between acid and imidazolyl components in all of the salts. Except the classical hydrogen bonding interactions, the secondary propagating interactions also play important roles in structure extension. This variety, coupled with the varying geometries and number of acidic groups of the acids utilized, has led to the creation of eight supramolecular arrays with 1D-3D structure. The role of weak and strong noncovalent interactions in the crystal packing is analyzed. The results presented herein indicate that the strength and directionality of the Nsbnd H⋯O, and Osbnd H⋯O hydrogen bonds between acids and imidazole/benzimidazole are sufficient to bring about the formation of organic salts.

  4. Experimental and theoretical investigation of Fe-catalysis phenomenon in hydrogen thermal desorption from hydrocarbon plasma-discharge films from T-10 tokama

    NASA Astrophysics Data System (ADS)

    Stankevich, Vladimir G.; Sukhanov, Leonid P.; Svechnikov, Nicolay Yu.; Lebedev, Alexey M.; Menshikov, Kostantin A.; Kolbasov, Boris N.

    2017-10-01

    Investigations of the effect of Fe impurities on D2 thermal desorption (TD) from homogeneous CDx films (x ˜ 0.5) formed in the D-plasma discharge of the T-10 tokamak were carried out. The experimental TD spectra of the films showed two groups of peaks at 650-850 K and 900-1000 K for two adsorption states. The main result of the iron catalysis effect consists in the shift of the high-temperature peak by -24 K and in the increase in the fraction of the weakly bonded adsorption states. To describe the effect of iron impurities on TD of hydrogen isotopes, a structural cluster model based on the interaction of the Fe+ ion with the 1,3-C6H8 molecule was proposed. The potential energy surfaces of chemical reactions with the H2 elimination were calculated using ab initio methods of quantum chemistry. It was established that the activation barrier of hydrogen TD is reduced by about 1 eV due to the interaction of the Fe+ ion with the π-subsystem of the 1,3-C6H8 molecule leading to a redistribution of the double bonds along the carbon system. Contribution to the topical issue "Plasma Sources and Plasma Processes (PSPP)"", edited by Luis Lemos Alves, Thierry Belmonte and Tiberiu Minea

  5. Growth behavior of surface cracks in pipeline steels exposed to near-neutral pH environments

    NASA Astrophysics Data System (ADS)

    Egbewande, Afolabi Taiwo

    We perform Restrained hybrid Monte Carlo simulations to compute the equilibrium constant of the dissociation reaction of HF in HF(H 2O) 7. We find that, like in the bulk, hydrofluoric acid, is a weak acid also in the cubic HF(H2O)7 cluster, and that its acidity is higher at lower T. This latter phenomenon has a (vibrational) entropic origin, namely it is due to the reduction of the (negative) TDeltaS contribution to the variation of free energy between the reactant and product. We found also a temperature dependence of the reactions mechanism. At low T (≤225 K) the dissociation reaction follows a concerted path, with the H atoms belonging to the relevant hydrogen bond chain moving synchronously. At higher T (300 K), first two hydrogen atoms move together, forming an intermediate metastable state having the structure of an Eigen ion H9O 4 +, then the third hydrogen migrates completing the reaction. We also compute the dissociation rate constant, krp. We find that at very low T (≤75 K), krp depends strongly on the temperature, while it is almost constant at higher Ts. With respect to the bulk, the HF dissociation in HF(H2O)7 is about one order of magnitude faster. This is due to a lower free energy barrier for dissociation in the cluster.

  6. Hydrogen rich gas generator

    NASA Technical Reports Server (NTRS)

    Houseman, J. (Inventor)

    1976-01-01

    A process and apparatus is described for producing a hydrogen rich gas by introducing a liquid hydrocarbon fuel in the form of a spray into a partial oxidation region and mixing with a mixture of steam and air that is preheated by indirect heat exchange with the formed hydrogen rich gas, igniting the hydrocarbon fuel spray mixed with the preheated mixture of steam and air within the partial oxidation region to form a hydrogen rich gas.

  7. DFT study of hydrogen production from formic acid decomposition on Pd-Au alloy nanoclusters

    NASA Astrophysics Data System (ADS)

    Liu, D.; Gao, Z. Y.; Wang, X. C.; Zeng, J.; Li, Y. M.

    2017-12-01

    Recently, it has been reported that the hydrogen production rate of formic acid decomposition can be significantly increased using Pd-Au binary alloy nano-catalysts [Wang et al. J. Mater. Chem. A 1 (2013) 12721-12725]. To explain the reaction mechanism of this alloy catalysis method, formic acid decomposition reactions on pure Pd and Pd-Au alloy nanoclusters are studied via density functional theory simulations. The simulation results indicate that the addition of inert element Au would not influence formic acid decomposition on Pd surface sites of Pd-Au alloy nanoclusters. On the other hand, the existence of Au surface sites brings relative weak hydrogen atom adsorption. On Pd-Au alloy nanoclusters, the dissociated hydrogen atoms from formic acid are easier to combine as hydrogen molecules than that on pure Pd clusters. Via the synergetic effect between Pd and Au, both formic acid decomposition and hydrogen production are events with large probability, which eventually results in high hydrogen production rate.

  8. Altering intra- to inter-molecular hydrogen bonding by dimethylsulfoxide: A TDDFT study of charge transfer for coumarin 343

    NASA Astrophysics Data System (ADS)

    Liu, Xiaochun; Yin, Hang; Li, Hui; Shi, Ying

    2017-04-01

    DFT and TDDFT methods were carried out to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited state charge transfer for coumarin 343 (C343). Intramolecular hydrogen bonding is formed between carboxylic acid group and carbonyl group in C343 monomer. However, in dimethylsulfoxide (DMSO) solution, DMSO 'opens up' the intramolecular hydrogen bonding and forms solute-solvent intermolecular hydrogen bonded C343-DMSO complex. Analysis of frontier molecular orbitals reveals that intramolecular charge transfer (ICT) occurs in the first excited state both for C343 monomer and complex. The results of optimized geometric structures indicate that the intramolecular hydrogen bonding interaction is strengthened while the intermolecular hydrogen bonding is weakened in excited state, which is confirmed again by monitoring the shifts of characteristic peaks of infrared spectra. We demonstrated that DMSO solvent can not only break the intramolecular hydrogen bonding to form intermolecular hydrogen bonding with C343 but also alter the mechanism of excited state hydrogen bonding strengthening.

  9. Adsorption and Dissociation of Molecular Hydrogen on the (0001) Surface of DHCP Americium

    NASA Astrophysics Data System (ADS)

    Dholabhai, Pratik; Ray, Asok

    2009-03-01

    Hydrogen molecule adsorption on the (0001) surface of double hexagonal closed packed americium has been studied in detail within the framework of density functional theory. Weak molecular hydrogen adsorptions were observed. The most stable configuration corresponded to a Hor2 approach molecular adsorption at the one-fold top site where the molecule's approach is perpendicular to a lattice vector. Adsorption energies and adsorption geometries for different adsorption sites will be discussed. The change in work functions, magnetic moments, partial charges inside muffin-tins, difference charge density distributions and density of states for the bare Am slab and the Am slab after adsorption of the hydrogen molecule will be discussed. Reaction barrier for the dissociation of hydrogen molecule will be presented. The implications of adsorption on Am 5f electron localization-delocalization will be summarized.

  10. Supercooling of Hydrogen on Template Materials to Deterministically Seed Ignition-Quality Solid Fuel Layers

    DOE PAGES

    Shin, S. J.; Zepeda-Ruiz, L. A.; Lee, J. R. I.; ...

    2016-09-01

    In this study, we explored templating effects of various materials for hydrogen (H 2 and D 2) solidification by measuring the degree of supercooling required for liquid hydrogen to solidify below each triple point. The results show high supercooling (>100 mK) for most metallic, covalent, and ionic solids, and low supercooling (<100 mK) for van der Waals (vdW) solids. We attribute the low supercooling of vdW solids to the weak interaction of the substrate and hydrogen. Highly ordered pyrolytic graphite showed the lowest supercooling among materials that are solid at room temperature, but did not exhibit a templating effect withinmore » a fill-tube and capsule assembly.« less

  11. Investigation of allosteric modulation mechanism of metabotropic glutamate receptor 1 by molecular dynamics simulations, free energy and weak interaction analysis

    NASA Astrophysics Data System (ADS)

    Bai, Qifeng; Yao, Xiaojun

    2016-02-01

    Metabotropic glutamate receptor 1 (mGlu1), which belongs to class C G protein-coupled receptors (GPCRs), can be coupled with G protein to transfer extracellular signal by dimerization and allosteric regulation. Unraveling the dimer packing and allosteric mechanism can be of great help for understanding specific regulatory mechanism and designing more potential negative allosteric modulator (NAM). Here, we report molecular dynamics simulation studies of the modulation mechanism of FITM on the wild type, T815M and Y805A mutants of mGlu1 through weak interaction analysis and free energy calculation. The weak interaction analysis demonstrates that van der Waals (vdW) and hydrogen bonding play an important role on the dimer packing between six cholesterol molecules and mGlu1 as well as the interaction between allosteric sites T815, Y805 and FITM in wild type, T815M and Y805A mutants of mGlu1. Besides, the results of free energy calculations indicate that secondary binding pocket is mainly formed by the residues Thr748, Cys746, Lys811 and Ser735 except for FITM-bound pocket in crystal structure. Our results can not only reveal the dimer packing and allosteric regulation mechanism, but also can supply useful information for the design of potential NAM of mGlu1.

  12. Effect of voids on Arrhenius relationship between H-solubility and temperature in nickel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Q.Y.; Sun, X.K.; Hu, Z.Q.

    1997-01-15

    Many investigations about the states of hydrogen in voids within metals have been carried out over the past years. These probable states of hydrogen in the voids are directly relevant to hydrogen embrittlement mechanisms. Therefore, a knowledge of the states of hydrogen in the voids is important to an understanding of hydrogen-related degradation of material properties. Some results show that hydrogen exists as a molecule in the voids, while others suggest it is in the chemisorbed state on the internal surface of the voids. The results of Sung-Man lee et al. suggested that hydrogen in the voids in nickel existsmore » both in the gaseous and chemisorbed stats, and most of the hydrogen trapped in the voids seems to be present as a chemisorbed state in 1 atm. hydrogen pressure in the temperature range of 350--582 C. But there is no quantitative description concerning the effects of the voids on the solubility of hydrogen in materials. The purpose of this work is to describe quantitatively the effects of the voids on hydrogen solubility in nickel, considering hydrogen exists as gaseous and chemisorbed states in the voids, and the very weak physical adsorption above room temperature is neglected.« less

  13. A DFT investigation on group 8B transition metal-doped silicon carbide nanotubes for hydrogen storage application

    NASA Astrophysics Data System (ADS)

    Tabtimsai, Chanukorn; Ruangpornvisuti, Vithaya; Tontapha, Sarawut; Wanno, Banchob

    2018-05-01

    The binding of group 8B transition metal (TMs) on silicon carbide nanotubes (SiCNT) hydrogenated edges and the adsorption of hydrogen molecule on the pristine and TM-doped SiCNTs were investigated using the density functional theory method. The B3LYP/LanL2DZ method was employed in all calculations for the considered structural, adsorption, and electronic properties. The Os atom doping on the SiCNT is found to be the strongest binding. The hydrogen molecule displays a weak interaction with pristine SiCNT, whereas it has a strong interaction with TM-doped SiCNTs in which the Os-doped SiCNT shows the strongest interaction with the hydrogen molecule. The improvement in the adsorption abilities of hydrogen molecule onto TM-doped SiCNTs is due to the protruding structure and the induced charge transfer between TM-doped SiCNT and hydrogen molecule. These observations point out that TM-doped SiCNTs are highly sensitive toward hydrogen molecule. Moreover, the adsorptions of 2-5 hydrogen molecules on TM-doped SiCNT were also investigated. The maximum storage number of hydrogen molecules adsorbed on the first layer of TM-doped SiCNTs is 3 hydrogen molecules. Therefore, TM-doped SiCNTs are suitable to be sensing and storage materials for hydrogen gas.

  14. Electrochemical hydrogenation of a homogeneous nickel complex to form a surface adsorbed hydrogen-evolving species

    DOE PAGES

    Martin, Daniel J.; McCarthy, Brian D.; Donley, Carrie L.; ...

    2014-12-04

    Here, a Ni(ii) complex with nitrogen and sulfur donor ligands degrades electrochemically in the presence of acid in acetonitrile to form an electrode adsorbed film that catalytically evolves hydrogen.

  15. The dynamics of solvation dictates the conformation of polyethylene oxide in aqueous, isobutyric acid and binary solutions.

    PubMed

    Dahal, Udaya R; Dormidontova, Elena E

    2017-04-12

    Polymers hydrogen-bonding with solvent represent an important broad class of polymers, properties of which depend on solvation. Using atomistic molecular dynamics simulations with the OPLS/AA force field we investigate the effect of hydrogen bonding on PEO conformation and chain mobility by comparing its behavior in isobutyric acid and aqueous solutions. In agreement with experimental data, we found that in isobutyric acid PEO forms a rather rigid extended helical structure, while in water it assumes a highly flexible coil conformation. We show that the difference in PEO conformation and flexibility is the result of the hydrogen bond stability and overall solvent dynamics near PEO. Isobutyric acid forms up to one hydrogen bond per repeat unit of PEO and interacts with PEO for a prolonged period of time, thereby stabilizing the helical structure of the polymer and reducing its segmental mobility. In contrast, water forms on average 1.2 hydrogen bonds per repeat unit of PEO (with 60% of water forming a single hydrogen bond and 40% of water forming two hydrogen bonds) and resides near PEO for a noticeably shorter time than isobutyric acid, leading to the well-documented high segmental mobility of PEO in water. We also analyze PEO conformation, hydrogen bonding and segmental mobility in binary water/isobutyric acid solutions and find that in the phase separated region PEO resides in the isobutyric-rich phase forming about 25% of its hydrogen bonds with isobutyric acid and 75% with water. We show that the dynamics of solvation affects the equilibrium properties of macromolecules, such as conformation, and by mixing of hydrogen bond-donating solvents one can significantly alter both polymer conformation and its local dynamics.

  16. Thermal decomposition of silane to form hydrogenated amorphous Si film

    DOEpatents

    Strongin, Myron; Ghosh, Arup K.; Wiesmann, Harold J.; Rock, Edward B.; Lutz, III, Harry A.

    1980-01-01

    This invention relates to hydrogenated amorphous silicon produced by thermally decomposing silano (SiH.sub.4) or other gases comprising H and Si, at elevated temperatures of about 1700.degree.-2300.degree. C., and preferably in a vacuum of about 10.sup.-8 to 10.sup.-4 torr, to form a gaseous mixture of atomic hydrogen and atomic silicon, and depositing said gaseous mixture onto a substrate outside said source of thermal decomposition to form hydrogenated amorphous silicon.

  17. Simulations of Early Structure Formation: Primordial Gas Clouds

    NASA Astrophysics Data System (ADS)

    Yoshida, Naoki; Abel, Tom; Hernquist, Lars; Sugiyama, Naoshi

    2003-08-01

    We use cosmological simulations to study the origin of primordial star-forming clouds in a ΛCDM universe, by following the formation of dark matter halos and the cooling of gas within them. To model the physics of chemically pristine gas, we employ a nonequilibrium treatment of the chemistry of nine species (e-, H, H+, He, He+, He++, H2, H+2, H-) and include cooling by molecular hydrogen. By considering cosmological volumes, we are able to study the statistical properties of primordial halos, and the high resolution of our simulations enables us to examine these objects in detail. In particular, we explore the hierarchical growth of bound structures forming at redshifts z~25-30 with total masses in the range ~105-106Msolar. We find that when the amount of molecular hydrogen in these objects reaches a critical level, cooling by rotational line emission is efficient, and dense clumps of cold gas form. We identify these ``gas clouds'' as sites for primordial star formation. In our simulations, the threshold for gas cloud formation by molecular cooling corresponds to a critical halo mass of ~5×105h-1Msolar, in agreement with earlier estimates, but with a weak dependence on redshift in the range z>16. The complex interplay between the gravitational formation of dark halos and the thermodynamic and chemical evolution of the gas clouds compromises analytic estimates of the critical H2 fraction. Dynamical heating from mass accretion and mergers opposes relatively inefficient cooling by molecular hydrogen, delaying the production of star-forming clouds in rapidly growing halos. We also investigate the effect of photodissociating ultraviolet radiation on the formation of primordial gas clouds. We consider two extreme cases, first by including a uniform radiation field in the optically thin limit and second by accounting for the maximum effect of gas self-shielding in virialized regions. For radiation with Lyman-Werner band flux J>10-23 ergs s-1 cm-2 Hz-1 sr-1, hydrogen molecules are rapidly dissociated, rendering gas cooling inefficient. In both the cases we consider, the overall effect can be described by computing an equilibrium H2 abundance for the radiation flux and defining an effective shielding factor. Based on our numerical results, we develop a semianalytic model of the formation of the first stars and demonstrate how it can be coupled with large N-body simulations to predict the star formation rate in the early universe.

  18. A comparative study of two novel unsymmetrically substituted triazacyclohexanes

    NASA Astrophysics Data System (ADS)

    Lamraoui, Hanane; Messai, Amel; Bilge, Duygu; Bilge, Metin; Bouchemma, Ahcen; Parlak, Cemal

    2017-06-01

    Novel unsymmetrically N-substituted N,N‧-R1N″-R2-1,3,5-triazacyclohexanes (1b and 2b; R1 = p-chlorophenyl or p-methoxyphenyl and R2 = butyl or cyclohexyl) have been synthesized in a good yield from condensation reaction by excess amine. Both triazacyclohexane rings have chair conformation. However, 1b adopts diaxial orientation of aryl groups and an equatorial form of alkyl group whereas 2b prefers an axial orientation of the alkyl group and diequatorial forms of aryl groups. 1b is consolidated by weak C-H⋯π interactions. Intra-molecular C-H⋯O or C-H⋯N hydrogen bonds and C-H⋯π may be effective in the stabilization of 2b. Both compounds have showed moderate antimicrobial activity, but 1b exhibits higher activity than 2b. All experimental results are found in good support to theoretical data. Findings of research may be helpful guide for the medicinal chemists and the field is further open for pharmacokinetics studies.

  19. Design and synthesis of vanadium hydrazide gels for Kubas-type hydrogen adsorption: a new class of hydrogen storage materials.

    PubMed

    Hoang, Tuan K A; Webb, Michael I; Mai, Hung V; Hamaed, Ahmad; Walsby, Charles J; Trudeau, Michel; Antonelli, David M

    2010-08-25

    In this paper we demonstrate that the Kubas interaction, a nondissociative form of weak hydrogen chemisorption with binding enthalpies in the ideal 20-30 kJ/mol range for room-temperature hydrogen storage, can be exploited in the design of a new class of hydrogen storage materials which avoid the shortcomings of hydrides and physisorpion materials. This was accomplished through the synthesis of novel vanadium hydrazide gels that use low-coordinate V centers as the principal Kubas H(2) binding sites with only a negligible contribution from physisorption. Materials were synthesized at vanadium-to-hydrazine ratios of 4:3, 1:1, 1:1.5, and 1:2 and characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, nitrogen adsorption, elemental analysis, infrared spectroscopy, and electron paramagnetic resonance spectroscopy. The material with the highest capacity possesses an excess reversible storage of 4.04 wt % at 77 K and 85 bar, corresponding to a true volumetric adsorption of 80 kg H(2)/m(3) and an excess volumetric adsorption of 60.01 kg/m(3). These values are in the range of the ultimate U.S. Department of Energy goal for volumetric density (70 kg/m(3)) as well as the best physisorption material studied to date (49 kg H(2)/m(3) for MOF-177). This material also displays a surprisingly high volumetric density of 23.2 kg H(2)/m(3) at room temperature and 85 bar--roughly 3 times higher than that of compressed gas and approaching the DOE 2010 goal of 28 kg H(2)/m(3). These materials possess linear isotherms and enthalpies that rise on coverage and have little or no kinetic barrier to adsorption or desorption. In a practical system these materials would use pressure instead of temperature as a toggle and can thus be used in compressed gas tanks, currently employed in many hydrogen test vehicles, to dramatically increase the amount of hydrogen stored and therefore the range of any vehicle.

  20. Lewis Acid Promoted Hydrogenation of CO2 and HCOO- by Amine Boranes: Mechanistic Insight from a Computational Approach.

    PubMed

    Roy, Lisa; Ghosh, Boyli; Paul, Ankan

    2017-07-13

    We employ quantum chemical calculations to study the hydrogenation of carbon dioxide by amine boranes, NMe 3 BH 3 ( Me3 AB) and NH 3 BH 3 (AB) weakly bonded to a bulkier Lewis acid, Al(C 6 F 5 ) 3 (LA). Additionally, computations have also been conducted to elucidate the mechanism of hydrogenation of carbon dioxide by Me3 AB while captured between one Lewis base (P(o-tol 3 ), LB) and two Lewis acids, Al(C 6 F 5 ) 3 . In agreement with the experiments, our computational study predicts that hydride transfer to conjugated HCO 2 - , generated in the reaction of Me3 AB-LA with CO 2 , is not feasible. This is in contrast to the potential hydrogenation of bound HCO 2 H, developed in the reduction of CO 2 with AB-LA, to further reduced species like H 2 C(OH) 2 . However, the FLP-trapped CO 2 effortlessly undergoes three hydride (H - ) transfers from Me3 AB to produce a CH 3 O - derivative. DFT calculations reveal that the preference for a H - abstraction by an intrinsically anionic formate moiety is specifically dependent on the electrophilicity of the 2 e - reduced carbon center, which in particular is controlled by the electron-withdrawing capability of the associated substituents on the oxygen. These theoretical predictions are justified by frontier molecular orbitals and molecular electrostatic potential plots. The global electrophicility index, which is a balance of electron affinity and hardness, reveals that the electrophilicity of the formate species undergoing hydrogenation is twice the electrophilicity of the ones where hydrogenation is not feasible. The computed activation energies at M06-2X/6-31++G(d,p) closely predict the observed reactivity. In addition, the possibility of a dissociative channel of the frustrated Lewis pair trapped CO 2 system has been ruled out on the basis of predominantly high endergonicity. Knowledge of the underlying principle of these reactions would be helpful in recruiting appropriate Lewis acids/amine boranes for effective reduction of CO 2 and its hydrogenated forms in a catalytic fashion.

  1. 2,2′-Dimethoxy-4,4′-[rel-(2R,3S)-2,3-di­methylbutane-1,4-diyl]diphenol

    PubMed Central

    Salinas-Salazar, Carmen L.; del Rayo Camacho-Corona, María; Bernès, Sylvain; Waksman de Torres, Noemi

    2009-01-01

    The title mol­ecule, C20H26O4, commonly known as meso-dihydro­guaiaretic acid, is a naturally occurring lignan extracted from Larrea tridentata and other plants. The mol­ecule has a noncrystallographic inversion center situated at the midpoint of the central C—C bond, generating the meso stereoisomer. The central C—C—C—C alkyl chain displays an all-trans conformation, allowing an almost parallel arrangement of the benzene rings, which make a dihedral angle of 5.0 (3)°. Both hydr­oxy groups form weak O—H⋯O—H chains of hydrogen bonds along [100]. The resulting supra­molecular structure is an undulating plane parallel to (010). PMID:21583141

  2. Hydrogen-Exchange Mass Spectrometry for the Study of Intrinsic Disorder in Proteins

    PubMed Central

    Balasubramaniam, Deepa; Komives, Elizabeth A.

    2012-01-01

    Amide hydrogen/deuterium exchange detected by mass spectrometry (HXMS) is seeing wider use for the identification of intrinsically disordered parts of proteins. In this review, we discuss examples of how discovery of intrinsically disordered regions and their removal can aid in structure determination, biopharmaceutical quality control, the characterization of how posttranslational modifications affect weak structuring of disordered regions, the study of coupled folding and binding, and the characterization of amyloid formation. PMID:23099262

  3. DFT Study on the Complexation of Bambus[6]uril with the Perchlorate and Tetrafluoroborate Anions.

    PubMed

    Toman, Petr; Makrlík, Emanuel; Vaňura, Petr

    2011-12-01

    By using quantum mechanical DFT calculations, the most probable structures of the bambus[6]uril.ClO4- and bambus[6]uril.BF4- anionic complex species were derived. In these two complexes having C3 symmetry, each of the considered anions, included in the macrocyclic cavity, is bound by 12 weak hydrogen bonds between methine hydrogen atoms on the convex face of glycoluril units and the respective anion.

  4. 2,2'-(Carbono-thio-yldisulfanedi-yl)bis-(2-methyl-propanoic acid).

    PubMed

    Moreno-Fuquen, Rodolfo; Grande, Carlos; Advincula, Rigoberto C; Tenorio, Juan C; Ellena, Javier

    2013-05-01

    The mol-ecular structure of the title compound, C9H14O4S3, exhibits intra-molecular C-H⋯S hydrogen bonds. In the crystal, pairs of O-H⋯O hydrogen bonds lead to the formation of centrosymmetric dimers, which are in turn connected by weak C-H⋯O inter-actions. The combination of these inter-actions generates edge-fused R 2 (2)(8) and R 2 (2)(20) rings running along [211].

  5. 1,5-Bis[(E)-cyclo-pentyl-idene]thio-carbono-hydrazide.

    PubMed

    Guo, Qingliang; Sun, Junshan; Li, Jikun; Wu, Rentao; Duan, Wenzeng

    2009-03-25

    In the title mol-ecule, C(11)H(18)N(4)S, an intra-molecular N-H⋯N hydrogen bond [N⋯N = 2.558 (3)Å] is observed. The two cyclo-pentyl rings are disordered between two conformations in 1:1 and 2:1 ratios. In the crystal structure, weak inter-molecular N-H⋯S hydrogen bonds [N⋯S = 3.547 (3) Å] link pairs of mol-ecules into centrosymmetric dimers.

  6. Theoretical Insights into Methane C–H Bond Activation on Alkaline Metal Oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aljama, Hassan; Nørskov, Jens K.; Abild-Pedersen, Frank

    Here, we investigate the role of alkaline metal oxides (AMO) (MgO, CaO, and SrO) in activating the C–H bond in methane. We also use Density Functional Theory (DFT) and microkinetic modeling to study the catalytic elementary steps in breaking the C–H bond in methane and creating the methyl radical, a precursor prior to creating C2 products. We also study the effects of surface geometry on the catalytic activity of AMO by examining terrace and step sites. We observe that the process of activating methane depends strongly on the structure of the AMO. When the AMO surface is doped with anmore » alkali metal, the transition state (TS) structure has a methyl radical-like behavior, where the methyl radical interacts weakly with the AMO surface. In this case, the TS energy scales with the hydrogen binding energy. On pure AMO, the TS interacts with AMO surface oxygen as well as the metal atom on the surface, and consequently the TS energy scales with the binding energy of hydrogen and methyl. We study the activity of AMO using a mean-field microkinetic model. The results indicate that terrace sites have similar catalytic activity, with the exception of MgO(100). Step sites bind hydrogen more strongly, making them more active, and this confirms previously reported experimental results. We map the catalytic activity of AMO using a volcano plot with two descriptors: the methyl and the hydrogen binding energies, with the latter being a more significant descriptor. The microkinetic model results suggest that C–H bond dissociation is not always the rate-limiting step. At weak hydrogen binding, the reaction is limited by C–H bond activation. At strong hydrogen binding, the reaction is limited due to poisoning of the active site. We found an increase in activity of AMO as the basicity increased. Finally, the developed microkinetic model allows screening for improved catalysts using simple calculations of the hydrogen binding energy.« less

  7. Theoretical Insights into Methane C–H Bond Activation on Alkaline Metal Oxides

    DOE PAGES

    Aljama, Hassan; Nørskov, Jens K.; Abild-Pedersen, Frank

    2017-07-17

    Here, we investigate the role of alkaline metal oxides (AMO) (MgO, CaO, and SrO) in activating the C–H bond in methane. We also use Density Functional Theory (DFT) and microkinetic modeling to study the catalytic elementary steps in breaking the C–H bond in methane and creating the methyl radical, a precursor prior to creating C2 products. We also study the effects of surface geometry on the catalytic activity of AMO by examining terrace and step sites. We observe that the process of activating methane depends strongly on the structure of the AMO. When the AMO surface is doped with anmore » alkali metal, the transition state (TS) structure has a methyl radical-like behavior, where the methyl radical interacts weakly with the AMO surface. In this case, the TS energy scales with the hydrogen binding energy. On pure AMO, the TS interacts with AMO surface oxygen as well as the metal atom on the surface, and consequently the TS energy scales with the binding energy of hydrogen and methyl. We study the activity of AMO using a mean-field microkinetic model. The results indicate that terrace sites have similar catalytic activity, with the exception of MgO(100). Step sites bind hydrogen more strongly, making them more active, and this confirms previously reported experimental results. We map the catalytic activity of AMO using a volcano plot with two descriptors: the methyl and the hydrogen binding energies, with the latter being a more significant descriptor. The microkinetic model results suggest that C–H bond dissociation is not always the rate-limiting step. At weak hydrogen binding, the reaction is limited by C–H bond activation. At strong hydrogen binding, the reaction is limited due to poisoning of the active site. We found an increase in activity of AMO as the basicity increased. Finally, the developed microkinetic model allows screening for improved catalysts using simple calculations of the hydrogen binding energy.« less

  8. Structural study of Ni- or Mg-based complexes incorporated within UiO-66-NH{sub 2} framework and their impact on hydrogen sorption properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Žunkovič, E.; Mazaj, M.; Mali, G.

    2015-05-15

    Nickel and magnesium acetylacetonate molecular complexes were post-synthetically incorporated into microporous zirconium-based MOF (UiO-66-NH{sub 2}) in order to introduce active open-metal sites for hydrogen sorption. Elemental analysis, nitrogen physisorption and DFT calculations revealed that 5 molecules of Ni(acac){sub 2} or 2 molecules of Mg(acac){sub 2} were incorporated into one unit cell of UiO-66-NH{sub 2}. {sup 1}H–{sup 13}C CPMAS and {sup 1}H MAS NMR spectroscopy showed that, although embedded within the pores, both Ni- and Mg-complexes interacted with the UiO-66-NH{sub 2} framework only through weak van der Waals bonds. Inclusion of metal complexes led to the decrease of hydrogen sorption capacitiesmore » in Ni-modified as well as in Mg-modified samples in comparison with the parent UiO-66-NH{sub 2}. The isosteric hydrogen adsorption enthalpy slightly increased in the case of Ni-modified material, but not in the case of Mg-modified analogue. - Graphical abstract: A post-synthesis impregnation of Mg- and Ni-acetylacetonate complexes performed on zirconium-based MOF UiO-66-NH{sub 2} does influence the hydrogen sorption performance with respect to the parent matrix. The structural study revealed that Mg- and Ni-acetylacetonate molecules interact with zirconium-terephthalate framework only by weak interactions and they are not covalently bonded to aminoterephthalate ligand. Still, they remain confined into the pores even after hydrogen sorption experiments. - Highlights: • Mg- and Ni-acetylacetonate molecules embedded in the pores of UiO-66-NH{sub 2} by PSM. • Molecules of complexes interact with framework only by van der Waals interactions. • Type/structure of deposited metal-complex impact hydrogen enthalpy of adsorption.« less

  9. Interaction of Hydrogen with MOF-5.

    PubMed

    Bordiga, Silvia; Vitillo, Jenny G; Ricchiardi, Gabriele; Regli, Laura; Cocina, Donato; Zecchina, Adriano; Arstad, Bjørnar; Bjørgen, Morten; Hafizovic, Jasmina; Lillerud, Karl Petter

    2005-10-06

    Hydrogen storage is among the most demanding challenges in the hydrogen-based energy cycle. One proposed strategy for hydrogen storage is based on physisorption on high surface area solids such as metal-organic frameworks (MOFs). Within this class of materials, MOF-5 has been the first structure studied for hydrogen storage. The IR spectroscopy of adsorbed H2 performed at 15 K and ab initio calculations show that the adsorptive properties of this material are mainly due to dispersive interactions with the internal wall structure and to weak electrostatic forces associated with O13Zn4 clusters. Calculated and measured binding enthalpies are between 2.26 and 3.5 kJ/mol, in agreement with the H2 rotational barriers reported in the literature. A minority of binding sites with higher adsorption enthalpy (7.4 kJ/mol) is also observed. These species are probably associated with OH groups on the external surfaces present as termini of the microcrystals.

  10. Effect of anodic treatment on the electrocatalytic activity of superficial Raney nickel catalyst in cathodic hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korovin, N.V.; Kozlova, N.I.; Kumenko, M.V.

    This work is concerned with the effect of oxidation on the activity of Raney nickel catalyst in cathodic hydrogen evolution. The superficial Raney nickel catalyst (nickel SRC) was prepared by a previously described procedure. The surface of the nickel SRC was oxidized by applying an anodic sweep over the potential range from 0.25 to 1.00 V with a potential sweep rate of 1 mV/sec. The rate of cathodic hydrogen evolution increases after pretreatment of the surface of nickel SRC by application of an anodic pulse. A significant increase in the reaction rate most probably is due to oxygen adsorption onmore » the nickel SRC surface. The largest increase in the amount of weakly bound hydrogen corresponds to the most active electrode. Oxidation of the nickel surface by an anodic pulse causes both an acceleration and a retardation of the cathodic hydrogen evolution reaction.« less

  11. Development of an Mg-Based Alloy with a Hydrogen-Storage Capacity over 6 wt% by Adding Graphene

    NASA Astrophysics Data System (ADS)

    Choi, Eunho; Kwak, Young Jun; Song, Myoung Youp

    2018-06-01

    Graphene (multilayer graphene) was chosen as an additive to improve the hydrogen uptake and release properties of magnesium (Mg). Five weight percent of graphene was added to pre-milled Mg by milling in hydrogen (reaction-involving milling). The hydrogen uptake and release properties of the graphene-added Mg were investigated. The activation of Mg-5graphene, which was prepared by adding 5 wt% graphene to Mg pre-milled for 24 h, was completed after the second cycle (cycle number, CN = 2). Mg-5graphene had a high effective hydrogen-storage capacity (the quantity of hydrogen absorbed for 60 min) of 6.21 wt% at CN = 3 at 593 K in 12 bar H2. At CN = 1, Mg-5graphene released 0.46 wt% hydrogen for 10 min and 4.99 wt% hydrogen for 60 min. Milling in hydrogen is believed to create defects (leading to facilitation of nucleation), produce cracks and clean surfaces (leading to increase in reactivity), and decrease particle size (leading to diminution of diffusion distances or increasing the flux of diffusing hydrogen atoms). The added graphene is believed to have helped the sample have higher hydrogen uptake and release rates, weakly but partly, by dispersing heat rapidly.

  12. Theoretical insights into the sites and mechanisms for base catalyzed esterification and aldol condensation reactions over Cu.

    PubMed

    Neurock, Matthew; Tao, Zhiyuan; Chemburkar, Ashwin; Hibbitts, David D; Iglesia, Enrique

    2017-04-28

    Condensation and esterification are important catalytic routes in the conversion of polyols and oxygenates derived from biomass to fuels and chemical intermediates. Previous experimental studies show that alkanal, alkanol and hydrogen mixtures equilibrate over Cu/SiO 2 and form surface alkoxides and alkanals that subsequently promote condensation and esterification reactions. First-principle density functional theory (DFT) calculations were carried out herein to elucidate the elementary paths and the corresponding energetics for the interconversion of propanal + H 2 to propanol and the subsequent C-C and C-O bond formation paths involved in aldol condensation and esterification of these mixtures over model Cu surfaces. Propanal and hydrogen readily equilibrate with propanol via C-H and O-H addition steps to form surface propoxide intermediates and equilibrated propanal/propanol mixtures. Surface propoxides readily form via low energy paths involving a hydrogen addition to the electrophilic carbon center of the carbonyl of propanal or via a proton transfer from an adsorbed propanol to a vicinal propanal. The resulting propoxide withdraws electron density from the surface and behaves as a base catalyzing the activation of propanal and subsequent esterification and condensation reactions. These basic propoxides can readily abstract the acidic C α -H of propanal to produce the CH 3 CH (-) CH 2 O* enolate, thus initiating aldol condensation. The enolate can subsequently react with a second adsorbed propanal to form a C-C bond and a β-alkoxide alkanal intermediate. The β-alkoxide alkanal can subsequently undergo facile hydride transfer to form the 2-formyl-3-pentanone intermediate that decarbonylates to give the 3-pentanone product. Cu is unique in that it rapidly catalyzes the decarbonylation of the C 2n intermediates to form C 2n-1 3-pentanone as the major product with very small yields of C 2n products. This is likely due to the absence of Brønsted acid sites, present on metal oxide catalysts, that rapidly catalyze dehydration of the hemiacetal or hemiacetalate over decarbonylation. The basic surface propoxide that forms on Cu can also attack the carbonyl of a surface propanal to form propyl propionate. Theoretical results indicate that the rates for both aldol condensation and esterification are controlled by reactions between surface propoxide and propanal intermediates. In the condensation reaction, the alkoxide abstracts the weakly acidic hydrogen of the C α -H of the adsorbed alkanal to form the surface enolate whereas in the esterification reaction the alkoxide nucleophilically attacks the carbonyl group of a vicinal bound alkanal. As both condensation and esterification involve reactions between the same two species in the rate-limiting step, they result in the same rate expression which is consistent with experimental results. The theoretical results indicate that the barriers between condensation and esterification are within 3 kJ mol -1 of one another with esterification being slightly more favored. Experimental results also report small differences in the activation barriers but suggest that condensation is slightly preferred.

  13. Metal aminoboranes

    DOEpatents

    Burrell, Anthony K.; Davis, Benjamin J.; Thorn, David L.; Gordon, John C.; Baker, R. Thomas; Semelsberger, Troy Allen; Tumas, William; Diyabalanage, Himashinie Vichalya Kaviraj; Shrestha, Roshan P.

    2010-05-11

    Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit.

  14. Chemo- and regioselective homogeneous rhodium-catalyzed hydroamidomethylation of terminal alkenes to N-alkylamides.

    PubMed

    Raoufmoghaddam, Saeed; Drent, Eite; Bouwman, Elisabeth

    2013-09-01

    A rhodium/xantphos homogeneous catalyst system has been developed for direct chemo- and regioselective mono-N-alkylation of primary amides with 1-alkenes and syngas through catalytic hydroamidomethylation with 1-pentene and acetamide as model substrates. For appropriate catalyst performance, it appears to be essential that catalytic amounts of a strong acid promoter, such as p-toluenesulfonic acid (HOTs), as well as larger amounts of a weakly acidic protic promoter, particularly hexafluoroisopropyl alcohol (HOR(F) ) are applied. Apart from the product N-1-hexylacetamide, the isomeric unsaturated intermediates, hexanol and higher mass byproducts, as well as the corresponding isomeric branched products, can be formed. Under optimized conditions, almost full alkene conversion can be achieved with more than 80% selectivity to the product N-1-hexylamide. Interestingly, in the presence of a relatively high concentration of HOR(F) , the same catalyst system shows a remarkably high selectivity for the formation of hexanol from 1-pentene with syngas, thus presenting a unique example of a selective rhodium-catalyzed hydroformylation-hydrogenation tandem reaction under mild conditions. Time-dependent product formation during hydroamidomethylation batch experiments provides evidence for aldehyde and unsaturated intermediates; this clearly indicates the three-step hydroformylation/condensation/hydrogenation reaction sequence that takes place in hydroamidomethylation. One likely role of the weakly acidic protic promoter, HOR(F) , in combination with the strong acid HOTs, is to establish a dual-functionality rhodium catalyst system comprised of a neutral rhodium(I) hydroformylation catalyst species and a cationic rhodium(III) complex capable of selectively reducing the imide and/or ene-amide intermediates that are in a dynamic, acid-catalyzed condensation equilibrium with the aldehyde and amide in a syngas environment. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Hydrogen-induced strain localisation in oxygen-free copper in the initial stage of plastic deformation

    NASA Astrophysics Data System (ADS)

    Yagodzinskyy, Yuriy; Malitckii, Evgenii; Tuomisto, Filip; Hänninen, Hannu

    2018-03-01

    Single crystals of oxygen-free copper oriented to easy glide of dislocations were tensile tested in order to study the hydrogen effects on the strain localisation in the form of slip bands appearing on the polished specimen surface under tensile straining. It was found that hydrogen increases the plastic flow stress in Stage I of deformation. The dislocation slip localisation in the form of slip bands was observed and analysed using an online optical monitoring system and atomic force microscopy. The fine structure of the slip bands observed with AFM shows that they consist of a number of dislocation slip offsets which spacing in the presence of hydrogen is markedly reduced as compared to that in the hydrogen-free specimens. The tensile tests and AFM observations were accompanied with positron annihilation lifetime measurements showing that straining of pure copper in the presence of hydrogen results in free volume generation in the form of vacancy complexes. Hydrogen-enhanced free-volume generation is discussed in terms of hydrogen interactions with edge dislocation dipoles forming in double cross-slip of screw dislocations in the initial stage of plastic deformation of pure copper.

  16. Dynamic conductivity and partial ionization in dense fluid hydrogen

    NASA Astrophysics Data System (ADS)

    Zaghoo, Mohamed

    2018-04-01

    A theoretical description for optical conduction experiments in dense fluid hydrogen is presented. Different quantum statistical approaches are used to describe the mechanism of electronic transport in hydrogen's high-temperature dense phase. We show that at the onset of the metallic transition, optical conduction could be described by a strong rise in atomic polarizability, due to increased ionization, whereas in the highly degenerate limit, the Ziman weak scattering model better accounts for the observed saturation of reflectance. The inclusion of effects of partial ionization in the highly degenerate region provides great agreement with experimental results. Hydrogen's fluid metallic state is revealed to be a partially ionized free-electron plasma. Our results provide some of the first theoretical transport models that are experimentally benchmarked, as well as an important guide for future studies.

  17. Phosphine-substrate recognition through the C-H...O hydrogen bond: application to the asymmetric Pauson-Khand reaction.

    PubMed

    Solà, Jordi; Riera, Antoni; Verdaguer, Xavier; Maestro, Miguel A

    2005-10-05

    A unique methine moiety attached to three heteroatoms (O, P, S) and contained in the PuPHOS and CamPHOS ligands serves as a strong hydrogen-bond donor. Nonclassical hydrogen bonding of this methine with an amido-carbonyl acceptor provides a completely diastereoselective ligand exchange process between an alkyne dicobalthexacarbonyl complex and a phosphine ligand. This weak contact has been studied by means of X-ray analysis, 1H NMR, and quantum mechanical calculations and revealed that the present interaction falls in the range of strong C-H...O=C bonds. The hydrogen-bond bias obtained in the ligand exchange process has been exploited in the asymmetric intermolecular Pauson-Khand reaction to yield the corresponding cyclization adducts in up to 94% ee.

  18. The Free Jet Microwave Spectrum of 2-PHENYLETHYLAMINE-WATER

    NASA Astrophysics Data System (ADS)

    Melandri, Sonia; Giuliano, B. Michela; Maris, Assimo; Caminati, Walther

    2009-06-01

    2-Phenylethylamine (PEA) is the parent structure for a variety of important compounds including dopamine, tyrosine, anphetamine and adrenaline. Due to the flexibility of the side chain, the conformational hypersurface of the isolated molecule contains several minima at relatively low energy. The conformational surface was studied by various spectroscopic and theoretical techniques and four of the five stable conformers were detected. The most stable conformers observed in isolated conditions are those in which the methylene side chain is folded into a gauche structure and the amino hydrogen is oriented towards the aromatic ring to form a weakly hydrogen bonded structure, while in the less stable conformers the amino group is in the anti position, thus the energy difference between the gauche and anti conformers (ca 4 kJ mol^{-1}) represents the energy associated with this weak interaction. Since bioactive molecules can be found in different environments including aqueous media and rotational spectroscopy coupled with high level ab initio calculations gives the most detailed structural picture, we studied the free jet microwave spectrum of the adducts formed between PEA and water in the region 60-78 GHz. The dominant spectrum is that of the 1:1 adduct of PEA and water where PEA is in its most stable gauche conformation and the water molecole is bound to the nitrogen lone pair. The orientation of the water molecole is such that the oxygen atom is closest (ca 2.5 Å) and equidistant from the ring and chain hydrogen atoms. The experimental data were complemented by ab initio calculations at the MP2/6311++G** level of theory; several stable conformations of the PEA-W have been characterized and the observed structure corresponds to the global minimum. The bonding of water seems to affect only slightly the structure of isolated PEA and the main structural parameters of the flexible amino side chain remain basically unaltered. Some lines still remain unassigned in the spectrum and we are hoping to assign them to a second conformational species of PEA-W. (a) S. J. Martinez, J. C. Alfano and D. H. Levy J. Mol. Struct. 158 82 1993. (b)P. D. Godfrey,L. D. Hatherley and R. D. Brown J. Am. Chem. Soc. 117 8204 1995. (c)S. Sun and E. R. Bernstein J. Am. Chem. Soc. 118 5086 1996. (d) J. A. Dickinson, M. R. Hockridge, R. T. Kroemer, E. G. Robertson, J. P. Simons, J. McCombie and M. Walker J. Am. Chem. Soc. 120 2622 1998. (e) J. C. Lopez, V. Cortijo, S. Blanco and J. Alonso PCCP 9 4521 2007.

  19. Proton transfer mediated by the vibronic coupling in oxygen core ionized states of glyoxalmonoxime studied by infrared-X-ray pump-probe spectroscopy.

    PubMed

    Felicíssimo, V C; Guimarães, F F; Cesar, A; Gel'mukhanov, F; Agren, H

    2006-11-30

    The theory of IR-X-ray pump-probe spectroscopy beyond the Born-Oppenheimer approximation is developed and applied to the study of the dynamics of intramolecular proton transfer in glyoxalmonoxime leading to the formation of the tautomer 2-nitrosoethenol. Due to the IR pump pulses the molecule gains sufficient energy to promote a proton to a weakly bound well. A femtosecond X-ray pulse snapshots the wave packet route and, hence, the dynamics of the proton transfer. The glyoxalmonoxime molecule contains two chemically nonequivalent oxygen atoms that possess distinct roles in the hydrogen bond, a hydrogen donor and an acceptor. Core ionizations of these form two intersecting core-ionized states, the vibronic coupling between which along the OH stretching mode partially delocalizes the core hole, resulting in a hopping of the core hole from one site to another. This, in turn, affects the dynamics of the proton transfer in the core-ionized state. The quantum dynamical simulations of X-ray photoelectron spectra of glyoxalmonoxime driven by strong IR pulses demonstrate the general applicability of the technique for studies of intramolecular proton transfer in systems with vibronic coupling.

  20. A carbohydrate-anion recognition system in aprotic solvents.

    PubMed

    Ren, Bo; Dong, Hai; Ramström, Olof

    2014-05-01

    A carbohydrate-anion recognition system in nonpolar solvents is reported, in which complexes form at the B-faces of β-D-pyranosides with H1-, H3-, and H5-cis patterns similar to carbohydrate-π interactions. The complexation effect was evaluated for a range of carbohydrate structures; it resulted in either 1:1 carbohydrate-anion complexes, or 1:2 complex formation depending on the protection pattern of the carbohydrate. The interaction was also evaluated with different anions and solvents. In both cases it resulted in significant binding differences. The results indicate that complexation originates from van der Waals interactions or weak CH⋅⋅⋅A(-) hydrogen bonds between the binding partners and is related to electron-withdrawing groups of the carbohydrates as well as increased hydrogen-bond-accepting capability of the anions. © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  1. Structural and microstructural description of the glacial state in triphenyl phosphite from powder synchrotron X-ray diffraction data and Raman scattering investigations

    NASA Astrophysics Data System (ADS)

    Derollez, P.; Hernandez, O.; Hédoux, A.; Guinet, Y.; Masson, O.; Lefebvre, J.; Descamps, M.

    2004-06-01

    The structure and microstructure (refinement of the isotropic size and microstrain parameters) of the glacial state in triphenyl phosphite (TPP, P(OC 6H 5) 3) transformed at 222K have been determined from powder synchrotron X-ray diffraction data through a Rietveld and a Le Bail refinement, respectively. It is shown that the glacial state is composed of crystallites of the stable crystal phase coexisting with non-transformed supercooled liquid, the apparent size of the crystallites—depending on the aging temperature at which the glacial state is isothermally formed, [Phys. Rev. B 60 (1999) 9390]—being equal to 329.2(2) Å at 222K. The molecular conformation is slightly less mirror-symmetric than the one in the crystal state, and correlatively only one of the two unusual weak intermolecular C-H⋯O hydrogen bonds already observed in the latter state is encountered in the glacial one. Additional Raman scattering investigations confirm the previous result and reveal in addition that no hydrogen bonding interaction is observed neither in the glass nor in the liquid states.

  2. 2-Ferrocenyl-3-meth­oxy-6-methyl­pyridine

    PubMed Central

    Xu, Chen; Hao, Xin-Qi; Liu, Fang; Wu, Xiu-Juan; Song, Mao-Ping

    2009-01-01

    In the title compound, [Fe(C5H5)(C12H12NO)], the dihedral angle between the pyridyl and substituted cyclo­penta­dienyl rings is 23.58 (3)°. The crystal structure is characterized by weak inter­molecular C—H⋯N hydrogen-bonding contacts, leading to the formation of chains running parallel to the n-glide planes. A weak inter­molecular C—H⋯π contact is also present. PMID:21583761

  3. The impact of hydrogen on the formability of AHSS in Nakajima tests

    NASA Astrophysics Data System (ADS)

    Gao, Qi; Han, Fei; Wortberg, Daniel; Bleck, Wolfgang; Liewald, Mathias

    2016-10-01

    The application of Advanced High Strength Steels (AHSS) in the design of automotive body-in-white structures meets the requirement of light weight construction. The susceptibility to Hydrogen Embrittlement however, limits the wide application of steel grades over 1000 MPa. Up to now, various published studies focused on the hydrogen effects on mechanical properties; the impact of hydrogen on formability was not clarified. The present work aims to evaluate the influence of hydrogen on forming limit and fracture behavior in different strain states during the forming process. The hydrogen concentration in the material was modified by cathodic electro-charging. Nakajima tests in three strain conditions on uncharged and pre-charged samples were carried out. The localized necking was determined on the basis of the representative thinning rate in necking areas. The results revealed the shift of forming limits and critical strains to fracture owing to the presence of massive hydrogen. The fractography by Scanning Electron Microscope gave evidence of typical hydrogen-induced cleavage fracture on pre-charged samples.

  4. On the competition between weak O-H···F and C-H···F hydrogen bonds, in cooperation with C-H···O contacts, in the difluoromethane – tert-butyl alcohol cluster

    PubMed Central

    Spada, Lorenzo; Tasinato, Nicola; Bosi, Giulio; Vazart, Fanny; Barone, Vincenzo; Puzzarini, Cristina

    2017-01-01

    The 1:1 complex of tert-butyl alcohol with difluoromethane has been characterized by means of a joint experimental-computational investigation. Its rotational spectrum has been recorded by using a pulsed-jet Fourier-Transform microwave spectrometer. The experimental work has been guided and supported by accurate quantum-chemical calculations. In particular, the computed potential energy landscape pointed out the formation of three stable isomers. However, the very low interconversion barriers explain why only one isomer, showing one O-H···F and two C-H···O weak hydrogen bonds, has been experimentally characterized. The effect of the H → tert-butyl- group substitution has been analyzed from the comparison to the difluoromethane-water adduct. PMID:28919646

  5. A Spectroscopic and Theoretical Study of Weak Intramolecular OH\\cdots π Interactions in Allyl Carbinol and Methallyl Carbinol

    NASA Astrophysics Data System (ADS)

    Schroeder, Sidsel D.; Mackeprang, Kasper; Kjaergaard, Henrik G.

    2013-06-01

    The weak intramolecular OH\\cdots π interactions in allyl carbinol and methallyl carbinol have been studied using a combination of NIR spectroscopy and theory. The third OH-stretching overtone region of vapor phase allyl carbinol and methallyl carbinol have been recorded with intracavity laser photoacoustic spectroscopy to study the effect of an enhanced OH\\cdots π interaction in methallyl carbinol arising from the electron donating methyl group. Local mode calculations were employed to assign the observed bands. The OH-stretching transition frequency of methallyl carbinol was observed to be red shifted relative to the OH-stretching transition frequency of allyl carbinol. A red shift of the transition frequency is in this context normally interpreted as a signature of hydrogen bonding. Whether the OH\\cdots π interaction can be categorized as a hydrogen bond will be discussed in this talk.

  6. 2-(Naphthalen-1-yl)-4-(naphthalen-1-yl­methyl­idene)-1,3-oxazol-5(4H)-one

    PubMed Central

    Gündoğdu, Cevher; Alp, Serap; Ergün, Yavuz; Tercan, Barış; Hökelek, Tuncer

    2011-01-01

    In the title compound, C24H15NO2, the oxazole ring is oriented at dihedral angles of 10.09 (4) and 6.04 (4)° with respect to the mean planes of the naphthalene ring systems, while the two naphthalene ring systems make a dihedral angle of 4.32 (3)°. Intra­molecular C—H⋯N hydrogen bonds link the oxazole N atom to the naphthalene ring systems. In the crystal, inter­molecular weak C—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers. π–π contacts between the oxazole and naphthalene rings and between the naphthalene ring systems [centroid–centroid distances = 3.5947 (9) and 3.7981 (9) Å] may further stabilize the crystal structure. Three weak C—H⋯π inter­actions also occur. PMID:21754548

  7. Crystal and molecular structure of eight organic acid-base adducts from 2-methylquinoline and different acids

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Jin, Shouwen; Tao, Lin; Liu, Bin; Wang, Daqi

    2014-08-01

    Eight supramolecular complexes with 2-methylquinoline and acidic components as 4-aminobenzoic acid, 2-aminobenzoic acid, salicylic acid, 5-chlorosalicylic acid, 3,5-dinitrosalicylic acid, malic acid, sebacic acid, and 1,5-naphthalenedisulfonic acid were synthesized and characterized by X-ray crystallography, IR, mp, and elemental analysis. All of the complexes are organic salts except compound 2. All supramolecular architectures of 1-8 involve extensive classical hydrogen bonds as well as other noncovalent interactions. The results presented herein indicate that the strength and directionality of the classical hydrogen bonds (ionic or neutral) between acidic components and 2-methylquinoline are sufficient to bring about the formation of binary organic acid-base adducts. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, the complexes 1-8 displayed 2D-3D framework structure.

  8. The use of the ion probe mass spectrometer in the measurement of hydrogen concentration gradients in Monel K 500

    NASA Technical Reports Server (NTRS)

    Truhan, J. J., Jr.; Hehemann, R. F.

    1974-01-01

    The ion probe mass spectrometer was used to measure hydrogen concentration gradients in cathodically charged Monel K 500. Initial work with the ion probe involved the calibration of the instrument and the establishment of a suitable experimental procedure for this application. Samples of Monel K 500 were cathodically charged in a weak sulfuric acid solution. By varying the current density, different levels of hydrogen were introduced into the samples. Hydrogen concentration gradients were taken by ion sputtering on the surface of these samples and monitoring the behavior of the hydrogen mass peak as a function of time. An attempt was made to determine the relative amounts of hydrogen in the bulk and grain boundaries by analyzing a fresh fracture surface with a higher proportion of grain boundary area. It was found that substantially more hydrogen was detected in the grain boundaries than in the bulk, confirming the predictions of previous workers. A sputter rate determination was made in order to establish the rate of erosion.

  9. Investigation on drug solubility enhancement using deep eutectic solvents and their derivatives.

    PubMed

    Li, Zheng; Lee, Ping I

    2016-05-30

    Deep eutectic solvent (DES) is a room temperature liquid typically formed by mixing two solid compounds, such as a quaternary ammonium salt (QAS) (e.g. choline chloride) and a hydrogen bond donor (HBD) (e.g. urea or a carboxylic acid) at their eutectic composition. Very often, a range of room temperature liquids can also be obtained near the eutectic composition. Hence, it is more convenient to introduce a more general term deep eutectic solvent derivatives (DESDs) to describe a wide range of DES-like derivatives including those derived from ternary mixtures. The melting point of the mixture is lowered because the hydrogen bonding between DESD components reduces the lattice energy of components of the eutectic system. Based on the analysis of available data for 22 such choline chloride-based DES pairs, we found that the observed melting point depression can be statistically correlated with the difference between the hydrogen bonding contribution (δh) and the polar contribution (δp) to the solubility parameter of the hydrogen bond donor (HBD) component. The correlation was validated with a new DESD based on glycolic acid and choline chloride, which form DESDs at a molar ratio between 1:1 and 1:4 with DES-like properties. As a room temperature liquid, this DESD exhibits a wide range of solubility enhancement on several weakly basic poorly water-soluble drugs. For example, the solubility of itraconazole, piroxicam, lidocaine, and posaconazole has been observed to increase by 6700, 430, 28, and 6400-fold, respectively as compared to their aqueous solubility at room temperature. Furthermore, another new ternary DESD based on choline chloride, glycolic acid, and oxalic acid at a molar ratio of 1:1.6:0.4 is shown to further increase the solubility of itraconazole to a remarkable level of 5.36mg/mL (a 53,600-fold increase!). Because the components of such DESDs can include those biodegradable ones that had previously been used in formulated human products, the potential applicability of suitable DESDs to drug delivery, especially in enhancing drug solubility for topical formulations could be very attractive. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Process for hydrogenation of hydrocarbon tars

    DOEpatents

    Dolbear, Geoffrey E.

    1978-07-18

    Hydrocarbon tars of high asphaltene content such as tars obtained from pyrolysis of coal are dissolved in a solvent formed from the hydrogenation of the coal tars, and the resultant mixture hydrogenated in the presence of a catalyst at a pressure from about 1500 to 5000 psig at a temperature from about 500.degree. F to about the critical temperature of the solvent to form a light hydrocarbon as a solvent for the tars. Hydrogen content is at least three times the amount of hydrogen consumed.

  11. Outflows from Compact Objects in Supernovae and Novae

    NASA Astrophysics Data System (ADS)

    Vlasov, Andrey Dmitrievich

    Originally thought of as a constant and unchanging place, the Universe is full of dramas of stars emerging, dying, eating each other, colliding, etc. One of the first transient phenomena noticed were called novae (the name means "new" in Latin). Years later, supernovae were discovered. Despite their names, both novae and supernovae are events in relatively old stars, with supernovae marking the point of stellar death. Known for thousands of years, supernovae and novae remain among the most studied events in our Universe. Supernovae strongly influence the circumstellar medium, enriching it with heavy elements and shocking it, facilitating star formation. Cosmic rays are believed to be accelerated in shocks from supernovae, with small contribution possibly coming from novae. Even though the basic physics of novae is understood, many questions remain unanswered. These include the geometry of the ejecta, why some novae are luminous radio or gamma-ray sources and others are not, what is the ultimate fate of recurrent novae, etc. Supernova explosions are the primary sources of elements heavier than hydrogen and helium. The elements up to nuclear masses A around 100 can form through successive nuclear fusion in the cores of stars starting with hydrogen. Beyond iron, the fusion becomes endothermic instead of exothermic. In addition, for these nuclear masses the temperatures required to overcome the Coulomb barriers are so high that the nuclei are dissociated into alpha particles and free nucleons. Hence all elements heavier than A around 100 should have formed by some other means. These heavier nuclear species are formed by neutron capture on seed nuclei close to or heavier than iron-group nuclei. Depending on the ratio between neutron-capture timescale and beta-decay timescale, neutron-capture processes are called rapid or slow (r- and s-processes, respectively). The s-process, which occurs near the valley of stable isotopes, terminates at Bi (Z=83), because after Bi there is a gap of four elements with no stable isotopes (Po, At, Rn, Ac) until we come to stable Th. The significant abundance of Th and U in our Universe therefore implies the presence of a robust source of r-process. The astrophysical site of r-process is still under debate. Here we present a study of a candidate site for r-process, neutrino-heated winds from newly-formed strongly magnetized, rapidly rotating neutron stars ("proto-magnetars"). Even though we find such winds are incapable of synthesizing the heaviest r-process elements like U and Th, they produce substantial amounts of weak r-process (38 Supernova explosions are the primary sources of elements heavier than hydrogen and helium. The elements up to nuclear masses A around 100 can form through successive nuclear fusion in the cores of stars starting with hydrogen. Beyond iron, the fusion becomes endothermic instead of exothermic. In addition, for these nuclear masses the temperatures required to overcome the Coulomb barriers are so high that the nuclei are dissociated into alpha particles and free nucleons. Hence all elements heavier than A around 100 should have formed by some other means. These heavier nuclear species are formed by neutron capture on seed nuclei close to or heavier than iron-group nuclei. Depending on the ratio between neutron-capture timescale and beta-decay timescale, neutron-capture processes are called rapid or slow (r- and s-processes, respectively). The s-process, which occurs near the valley of stable isotopes, terminates at Bi (Z=83), because after Bi there is a gap of four elements with no stable isotopes (Po, At, Rn, Ac) until we come to stable Th. The significant abundance of Th and U in our Universe therefore implies the presence of a robust source of r-process. The astrophysical site of r-process is still under debate. Here we present a study of a candidate site for r-process, neutrino-heated winds from newly-formed strongly magnetized, rapidly rotating neutron stars ("proto-magnetars"). Even though we find such winds are incapable of synthesizing the heaviest r-process elements like U and Th, they produce substantial amounts of weak r-process (38.

  12. Searching for magnetism in hydrogenated graphene: using highly hydrogenated graphene prepared via Birch reduction of graphite oxides.

    PubMed

    Eng, Alex Yong Sheng; Poh, Hwee Ling; Šaněk, Filip; Maryško, Miroslav; Matějková, Stanislava; Sofer, Zdeněk; Pumera, Martin

    2013-07-23

    Fully hydrogenated graphene (graphane) and partially hydrogenated graphene materials are expected to possess various fundamentally different properties from graphene. We have prepared highly hydrogenated graphene containing 5% wt of hydrogen via Birch reduction of graphite oxide using elemental sodium in liquid NH3 as electron donor and methanol as proton donor in the reduction. We also investigate the influence of preparation method of graphite oxide, such as the Staudenmaier, Hofmann or Hummers methods on the hydrogenation rate. A control experiment involving NaNH2 instead of elemental Na was also performed. The materials were characterized in detail by electron microscopy, infrared spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy both at room and low temperatures, X-ray fluorescence spectroscopy, inductively coupled plasma optical emission spectroscopy, combustible elemental analysis and electrical resistivity measurements. Magnetic measurements are provided of bulk quantities of highly hydrogenated graphene. In the whole temperature range up to room temperature, the hydrogenated graphene exhibits a weak ferromagnetism in addition to a contribution proportional to field that is caused not only by diamagnetism but also likely by an antiferromagnetic influence. The origin of the magnetism is also determined to arise from the hydrogenated graphene itself, and not as a result of any metallic impurities.

  13. Generalization of the Hartree-Fock approach to collision processes

    NASA Astrophysics Data System (ADS)

    Hahn, Yukap

    1997-06-01

    The conventional Hartree and Hartree-Fock approaches for bound states are generalized to treat atomic collision processes. All the single-particle orbitals, for both bound and scattering states, are determined simultaneously by requiring full self-consistency. This generalization is achieved by introducing two Ansäauttze: (a) the weak asymptotic boundary condition, which maintains the correct scattering energy and target orbitals with correct number of nodes, and (b) square integrable amputated scattering functions to generate self-consistent field (SCF) potentials for the target orbitals. The exact initial target and final-state asymptotic wave functions are not required and thus need not be specified a priori, as they are determined simultaneously by the SCF iterations. To check the asymptotic behavior of the solution, the theory is applied to elastic electron-hydrogen scattering at low energies. The solution is found to be stable and the weak asymptotic condition is sufficient to produce the correct scattering amplitudes. The SCF potential for the target orbital shows the strong penetration by the projectile electron during the collision, but the exchange term tends to restore the original form. Potential applicabilities of this extension are discussed, including the treatment of ionization and shake-off processes.

  14. 3-(2-Bromo-4,5-dimethoxy­phen­yl)propiononitrile

    PubMed Central

    Liu, Yan-Ping; Wang, De-Cai; Chen, Hui; Kang, Si-Shun; Huang, Xin-Ming

    2008-01-01

    In the mol­ecule of the title compound, C11H12BrNO2, a weak intra­molecular C—H⋯Br hydrogen bond results in the formation of a five-membered ring, which adopts an envelope conformation with the H atom displaced by 0.486 Å from the plane of the other ring atoms. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules. PMID:21202583

  15. 1,5-Bis[(E)-cyclo­pentyl­idene]thio­carbono­hydrazide

    PubMed Central

    Guo, Qingliang; Sun, Junshan; Li, Jikun; Wu, Rentao; Duan, Wenzeng

    2009-01-01

    In the title mol­ecule, C11H18N4S, an intra­molecular N—H⋯N hydrogen bond [N⋯N = 2.558 (3)Å] is observed. The two cyclo­pentyl rings are disordered between two conformations in 1:1 and 2:1 ratios. In the crystal structure, weak inter­molecular N—H⋯S hydrogen bonds [N⋯S = 3.547 (3) Å] link pairs of mol­ecules into centrosymmetric dimers. PMID:21582539

  16. Influence of hydrogen on formability and bendability of DP1180 steel for car body application

    NASA Astrophysics Data System (ADS)

    Gao, Q.; Han, F.; Wortberg, D.; Bleck, W.; Liewald, M.

    2016-11-01

    In order to reach future light weight targets, it is increasing necessary to use advanced high strength steels with tensile strength 980 MPa or higher in automotive body-inwhite structures. Due to the sensitivity to hydrogen embrittlement and the limited understanding of various aspects of hydrogen embrittlement on processing and function, the wide application of these steels is still limited. In the current work, the influence of hydrogen on the multiaxial forming behavior was investigated by determining the forming limit curve and bending limit curve of DP1180 steel. Hydrogen concentration in the material was modified by cathodic charging. Then Nakajima tests on hydrogen uncharged and pre-charged samples were carried out in order to adjust and study different strain states resulting in the forming limit curve. In the study of bending limit curve, the steel sheets were pre-strained by Marciniak test. Bending load on the uncharged and pre-charged samples was introduced by VDA238-100 bending tests. The experimental results indicated that the presence of hydrogen affected the formability and bendability of DP1180 steel. A clear difference in the influence of hydrogen at different strain states was observed. When formed in a biaxial strain state via the Nakajima test, the material showed the highest degradation in formability. Moreover, the samples with biaxial pre-loading showed more degradation in bendability comparing to those pre-strained in plane strain and uni-axial paths. Fractography by scanning electron microscope gave evidence of hydrogen-induced cleavage fracture on pre-charged Nakajima samples. Thus this investigation improves the understanding of influences of hydrogen on forming processes and provides important evidence for further studies on HE susceptibility of AHSS for the application on car body constructions.

  17. 5,8-Bis[bis­(pyridin-2-yl)amino]-1,3,4,6,7,9,9b-hepta­aza­phenalen-2(1H)-one dimethyl sulfoxide monosolvate dihydrate

    PubMed Central

    Schwarzer, Anke; Kroke, Edwin

    2014-01-01

    In the asymmetric unit of the title compound, C26H17N13O·C2H6OS·2H2O, there is one independent hepta­zine-based main mol­ecule, one dimethyl sulfoxide mol­ecule and two water mol­ecules as solvents. The tri-s-triazine unit is substituted with two dipyridyl amine moieties and a carbonylic O atom. As indicated by the bond lengths in this acid unit of the hepta­zine derivative [C=O = 1.213 (2) Å, while the adjacent C—N(H) bond = 1.405 (2) Å] it is best described by the keto form. The cyameluric nucleus is close to planar (r.m.s. deviation = 0.061 Å) and the pyridine rings are inclined to its mean plane by dihedral angles varying from 47.47 (5) to 70.22 (5)°. The host and guest mol­ecules are connected via N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds, forming a four-membered inversion dimer-like arrangement enclosing an R 4 4(24) ring motif. These arrangements stack along [1-10] with a weak π–π inter­action [inter-centroid distance = 3.8721 (12) Å] involving adjacent pyridine rings. There are also C—H⋯N and C—H⋯O hydrogen bonds and C—H⋯π inter­actions present within the host mol­ecule and linking inversion-related mol­ecules, forming a three-dimensional structure. PMID:24826156

  18. Qweak: First Direct Measurement of the Proton's Weak Charge

    NASA Astrophysics Data System (ADS)

    Androic, D.; Armstrong, D. S.; Asaturyan, A.; Averett, T.; Balewski, J.; Bartlett, K.; Beaufait, J.; Beminiwattha, R. S.; Benesch, J.; Benmokhtar, F.; Birchall, J.; Carlini, R. D.; Cates, G. D.; Cornejo, J. C.; Covrig, S.; Dalton, M. M.; Davis, C. A.; Deconinck, W.; Diefenbach, J.; Dowd, J. F.; Dunne, J. A.; Dutta, D.; Duvall, W. S.; Elaasar, M.; Falk, W. R.; Finn, J. M.; Forest, T.; Gal, C.; Gaskell, D.; Gericke, M. T. W.; Grames, J.; Gray, V. M.; Grimm, K.; Guo, F.; Hoskins, J. R.; Johnston, K.; Jones, D.; Jones, M.; Jones, R.; Kargiantoulakis, M.; King, P. M.; Korkmaz, E.; Kowalski, S.; Leacock, J.; Leckey, J.; Lee, A. R.; Lee, J. H.; Lee, L.; MacEwan, S.; Mack, D.; Magee, J. A.; Mahurin, R.; Mammei, J.; Martin, J. W.; McHugh, M. J.; Meekins, D.; Mei, J.; Michaels, R.; Micherdzinska, A.; Mkrtchyan, A.; Mkrtchyan, H.; Morgan, N.; Myers, K. E.; Narayan, A.; Ndukum, L. Z.; Nelyubin, V.; Nuhait, H.; Nuruzzaman; van Oers, W. T. H.; Opper, A. K.; Page, S. A.; Pan, J.; Paschke, K. D.; Phillips, S. K.; Pitt, M. L.; Poelker, M.; Rajotte, J. F.; Ramsay, W. D.; Roche, J.; Sawatzky, B.; Seva, T.; Shabestari, M. H.; Silwal, R.; Simicevic, N.; Smith, G. R.; Solvignon, P.; Spayde, D. T.; Subedi, A.; Subedi, R.; Suleiman, R.; Tadevosyan, V.; Tobias, W. A.; Tvaskis, V.; Waidyawansa, B.; Wang, P.; Wells, S. P.; Wood, S. A.; Yang, S.; Young, R. D.; Zang, P.; Zhamkochyan, S.

    2017-03-01

    The Qweak experiment, which took data at Jefferson Lab in the period 2010 - 2012, will precisely determine the weak charge of the proton by measuring the parity-violating asymmetry in elastic e-p scattering at 1.1 GeV using a longitudinally polarized electron beam and a liquid hydrogen target at a low momentum transfer of Q2 = 0.025 (GeV/c)2. The weak charge of the proton is predicted by the Standard Model and any significant deviation would indicate physics beyond the Standard Model. The technical challenges and experimental apparatus for measuring the weak charge of the proton will be discussed, as well as the method of extracting the weak charge of the proton. The results from a small subset of the data, that has been published, will also be presented. Furthermore an update will be given of the current status of the data analysis.

  19. Roughness transitions of diamond(100) induced by hydrogen-plasma treatment

    NASA Astrophysics Data System (ADS)

    Koslowski, B.; Strobel, S.; Wenig, M. J.; Ziemann, P.

    To investigate the influence of hydrogen-plasma treatment on diamond(100) surfaces, heavily boron (B)-doped HPHT diamond crystals were mechanically and chemo-mechanically polished, and exposed to a microwave-assisted hydrogen plasma on a time scale of several minutes. The resulting surface morphology was analyzed on macroscopic scales by stylus profilometry (PFM) and on microscopic scales by STM and AFM. The polished samples have a roughness of typically 100 pmrms (PFM), with no obvious anisotropic structures at the surface. After exposure of the B-doped diamond(100) to the H-plasma, the roughness increases dramatically, and pronounced anisotropic structures appear, these being closely aligned with the crystallographic axis' and planes. An exposure for 3 minutes to the plasma leads to an increase of the roughness to 2-4 nmrms (STM), and a `brick-wall' pattern appears, formed by weak cusps running along <110>. Very frequently, the cusps are replaced by `negative' pyramids that are bordered by {11X} facets. After an exposure of an additional 5 minutes, the surface roughness of the B-doped samples increases further to 20-40 nmrms (STM), and frequently exhibits a regular pattern with structures at a characteristic length scale of about 100 nm. Those structures are aligned approximately with <110> and they are faceted with faces of approximately {XX1}. These results will be discussed in terms of strain relaxation, similar to the surface roughening observed on SiGe/Si and anisotropic etching.

  20. Intramolecular CH···O hydrogen bonds in the AI and BI DNA-like conformers of canonical nucleosides and their Watson-Crick pairs. Quantum chemical and AIM analysis.

    PubMed

    Yurenko, Yevgen P; Zhurakivsky, Roman O; Samijlenko, Svitlana P; Hovorun, Dmytro M

    2011-08-01

    The aim of this work is to cast some light on the H-bonds in double-stranded DNA in its AI and BI forms. For this purpose, we have performed the MP2 and DFT quantum chemical calculations of the canonical nucleoside conformers, relative to the AI and BI DNA forms, and their Watson-Crick pairs, which were regarded as the simplest models of the double-stranded DNA. Based on the atoms-in-molecules analysis (AIM), five types of the CH···O hydrogen bonds, involving bases and sugar, were detected numerically from 1 to 3 per a conformer: C2'H···O5', C1'H···O2, C6H···O5', C8H···O5', and C6H···O4'. The energy values of H-bonds occupy the range of 2.3-5.6 kcal/mol, surely exceeding the kT value (0.62 kcal/mol). The nucleoside CH···O hydrogen bonds appeared to "survive" turns of bases against the sugar, sometimes in rather large ranges of the angle values, pertinent to certain conformations, which points out to the source of the DNA lability, necessary for the conformational adaptation in processes of its functioning. The calculation of the interactions in the dA·T nucleoside pair gives evidence, that additionally to the N6H···O4 and N1···N3H canonical H-bonds, between the bases adenine and thymine the third one (C2H···O2) is formed, which, though being rather weak (about 1 kcal/mol), satisfies the AIM criteria of H-bonding and may be classified as a true H-bond. The total energy of all the CH···O nontraditional intramolecular H-bonds in DNA nucleoside pairs appeared to be commensurable with the energy of H-bonds between the bases in Watson-Crick pairs, which implies their possible important role in the DNA shaping.

  1. Structure of complex of N-methylpiperidine betaine with p-hydroxybenzoic acid studied by X-ray, FT-IR and DFT methods

    NASA Astrophysics Data System (ADS)

    Dega-Szafran, Z.; Dutkiewicz, G.; Kosturkiewicz, Z.; Szafran, M.

    2008-03-01

    Crystal structure of the complex of N-methylpiperidine betaine ( N-carboxymethyl- N-methylpiperidinium inner salt, MPB) with p-hydroxybenzoic acid (HBA) has been determined by X-ray diffraction. The crystals are triclinic, space group Pī, with a = 6.1156(5), b = 10.6869(10), c = 12.0320(10) Å, α = 109.55(1)°, β = 95.25(1)°, γ = 99.22(1)°, Z = 2, R = 0.034. Two molecules of p-hydroxybenzoic acid and two molecules of N-methylpiperidine betaine are linked together forming a centrosymmetric dimer, (MPB·HBA) 2, by four O-H···O hydrogen bonds of lengths 2.622(1) and 2.617(1) Å, between the carboxylic and hydroxy groups of HBA and both oxygen atoms of the carboxylate group of MPB, respectively. The piperidine ring has a chair conformation with the CH 2COO - substituent in the axial position and the CH 3 group in the equatorial one. Two parallel aromatic rings in (MPB·HBA) 2 are distanced by 3.457 Å. In the crystals the complexes form "islands" related to the neighboring complexes by the inversion centers, weak C-H···O bonds and van der Waals forces. A broad band in the 3100-2400 cm -1 region and two bands attributed to the νC dbnd O (1689 cm -1) and νasCOO (1607 cm -1) vibrations in the FT-IR spectrum confirm the structure of the title complex. The two structures of MPB·HBA, denoted as A and B, have been optimized by the B3LYP/6-31G(d,p) method. In A, MPB forms a O-H···O hydrogen bond (2.562 Å) with the carboxylic group of HBA shorter than in the crystals, while in B it interacts with the phenolic group of HBA by a longer O-H···O hydrogen bond (2.661 Å) than in the crystals. Complex A is slightly more stable than B (0.15 kcal/mol).

  2. Dual hydrogen-bonding motifs in complexes formed between tropolone and formic acid

    NASA Astrophysics Data System (ADS)

    Nemchick, Deacon J.; Cohen, Michael K.; Vaccaro, Patrick H.

    2016-11-01

    The near-ultraviolet π*←π absorption system of weakly bound complexes formed between tropolone (TrOH) and formic acid (FA) under cryogenic free-jet expansion conditions has been interrogated by exploiting a variety of fluorescence-based laser-spectroscopic probes, with synergistic quantum-chemical calculations built upon diverse model chemistries being enlisted to unravel the structural and dynamical properties of the pertinent ground [X˜ 1A'] and excited [A˜ 1A'(" separators="π*π )] electronic states. For binary TrOH ṡ FA adducts, the presence of dual hydrogen-bond linkages gives rise to three low-lying isomers designated (in relative energy order) as INT, EXT1, and EXT2 depending on whether docking of the FA ligand to the TrOH substrate takes place internal or external to the five-membered reaction cleft of tropolone. While the symmetric double-minimum topography predicted for the INT potential surface mediates an intermolecular double proton-transfer event, the EXT1 and EXT2 structures are interconverted by an asymmetric single proton-transfer process that is TrOH-centric in nature. The A ˜ -X ˜ origin of TrOH ṡ FA at ν˜ 00=27 484 .45 cm-1 is displaced by δ ν˜ 00=+466 .76 cm-1 with respect to the analogous feature for bare tropolone and displays a hybrid type - a/b rotational contour that reflects the configuration of binding. A comprehensive analysis of vibrational landscapes supported by the optically connected X˜ 1A' and A˜ 1A'(" separators="π*π ) manifolds, including the characteristic isotopic shifts incurred by partial deuteration of the labile TrOH and FA protons, has been performed leading to the uniform assignment of numerous intermolecular (viz., modulating hydrogen-bond linkages) and intramolecular (viz., localized on monomer subunits) degrees of freedom. The holistic interpretation of all experimental and computational findings affords compelling evidence that an external-binding motif (attributed to EXT1), rather than the thermodynamically more stable cleft-bound (INT) form, was the carrier of fluorescence signals observed during the present work.

  3. MASTER OT J014638.27+041324.4 is a Young Type IIP Supernova

    NASA Astrophysics Data System (ADS)

    Zheng, W.; Kelly, P. L.; Clubb, K. I.; Filippenko, A. V.

    2013-12-01

    We report that a CCD spectrum (range 350-1000 nm) of MASTER OT J014638.27+041324.4 (Shurpakov et al., ATel #5630) was obtained on Dec 6.5 UT with the Shane 3-m reflector (+Kast spectrograph) at Lick Observatory. The spectrum shows a blue continuum and weak, broad hydrogen Balmer lines having P-Cyg profiles, indicating that the object is a young Type IIP supernova. Weak He I 587.6 nm is also present.

  4. Concise synthesis of the bryostatin A-ring via consecutive C-C bond forming transfer hydrogenations.

    PubMed

    Lu, Yu; Krische, Michael J

    2009-07-16

    Under the conditions of C-C bond forming transfer hydrogenation, 1,3-propanediol 1 engages in double asymmetric carbonyl allylation to furnish the C(2)-symmetric diol 2. Double ozonolysis of 2 followed by TBS protection delivers aldehyde 3, which is subject to catalyst directed carbonyl reverse prenylation via transfer hydrogenation to deliver neopentyl alcohol 4 and, ultimately, the bryostatin A-ring 7. Through use of two consecutive C-C bond forming transfer hydrogenations, the Evans' bryostatin A-ring 7 is prepared in less than half the manipulations previously reported.

  5. Hydrogen donors and acceptors and basic amino acids jointly contribute to carcinogenesis.

    PubMed

    Tang, Man; Zhou, Yanchao; Li, Yiqi; Zou, Juntong; Yang, Beicheng; Cai, Li; Zhang, Xuelan; Liu, Qiuyun

    2017-01-01

    A hypothesis is postulated that high content of hydrogen donors and acceptors, and basic amino acids cause the intracellular trapping of the H + and Cl - ions, which increases cancer risks as local formation of HCl is mutagenic to DNA. Other cations such as Ca 2+ , and weak acids such as short-chain organic acids may attenuate the intracellular gathering of the H + and Cl - , two of the most abundant ions in the cells. Current data on increased cancer risks in diabetic and obese patients are consistent with the assumption that hydrogen bonding propensity on glucose, triglycerides and other molecules is among the causative factors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Multiferroic behavior associated with an order-disorder hydrogen bonding transition in metal-organic frameworks (MOFs) with the perovskite ABX3 architecture.

    PubMed

    Jain, Prashant; Ramachandran, Vasanth; Clark, Ronald J; Zhou, Hai Dong; Toby, Brian H; Dalal, Naresh S; Kroto, Harold W; Cheetham, Anthony K

    2009-09-30

    Multiferroic behavior in perovskite-related metal-organic frameworks of general formula [(CH(3))(2)NH(2)]M(HCOO)(3), where M = Mn, Fe, Co, and Ni, is reported. All four compounds exhibit paraelectric-antiferroelectric phase transition behavior in the temperature range 160-185 K (Mn: 185 K, Fe: 160 K; Co: 165 K; Ni: 180 K); this is associated with an order-disorder transition involving the hydrogen bonded dimethylammonium cations. On further cooling, the compounds become canted weak ferromagnets below 40 K. This research opens up a new class of multiferroics in which the electrical ordering is achieved by means of hydrogen bonding.

  7. Hydrogen-based electrochemical energy storage

    DOEpatents

    Simpson, Lin Jay

    2013-08-06

    An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.

  8. Method of producing hydrogen. [KNO/sub 3/ and I/sub 2/

    DOEpatents

    Abraham, B.M.; Schreiner, F.

    1975-12-30

    Water is thermochemically decomposed to produce hydrogen by the following sequence of reactions. KNO/sub 3/ and I/sub 2/ are reacted to produce KI, NO and O/sub 2/, the NO and O/sub 2/ thus produced are reacted with water to form HNO/sub 3/, a hydrogen-containing iodide--NH/sub 4/I or HI--is formed from the HNO/sub 3/, and this iodide is thermally decomposed to produce hydrogen, all products of the reactions being recycled except hydrogen and oxygen. 2 claims, no drawings.

  9. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing.

    PubMed

    Patil, Rohan; Das, Suranjana; Stanley, Ashley; Yadav, Lumbani; Sudhakar, Akulapalli; Varma, Ashok K

    2010-08-16

    Weak intermolecular interactions such as hydrogen bonding and hydrophobic interactions are key players in stabilizing energetically-favored ligands, in an open conformational environment of protein structures. However, it is still poorly understood how the binding parameters associated with these interactions facilitate a drug-lead to recognize a specific target and improve drugs efficacy. To understand this, comprehensive analysis of hydrophobic interactions, hydrogen bonding and binding affinity have been analyzed at the interface of c-Src and c-Abl kinases and 4-amino substituted 1H-pyrazolo [3, 4-d] pyrimidine compounds. In-silico docking studies were performed, using Discovery Studio software modules LigandFit, CDOCKER and ZDOCK, to investigate the role of ligand binding affinity at the hydrophobic pocket of c-Src and c-Abl kinase. Hydrophobic and hydrogen bonding interactions of docked molecules were compared using LigPlot program. Furthermore, 3D-QSAR and MFA calculations were scrutinized to quantify the role of weak interactions in binding affinity and drug efficacy. The in-silico method has enabled us to reveal that a multi-targeted small molecule binds with low affinity to its respective targets. But its binding affinity can be altered by integrating the conformationally favored functional groups at the active site of the ligand-target interface. Docking studies of 4-amino-substituted molecules at the bioactive cascade of the c-Src and c-Abl have concluded that 3D structural folding at the protein-ligand groove is also a hallmark for molecular recognition of multi-targeted compounds and for predicting their biological activity. The results presented here demonstrate that hydrogen bonding and optimized hydrophobic interactions both stabilize the ligands at the target site, and help alter binding affinity and drug efficacy.

  10. Optimized Hydrophobic Interactions and Hydrogen Bonding at the Target-Ligand Interface Leads the Pathways of Drug-Designing

    PubMed Central

    Stanley, Ashley; Yadav, Lumbani; Sudhakar, Akulapalli; Varma, Ashok K.

    2010-01-01

    Background Weak intermolecular interactions such as hydrogen bonding and hydrophobic interactions are key players in stabilizing energetically-favored ligands, in an open conformational environment of protein structures. However, it is still poorly understood how the binding parameters associated with these interactions facilitate a drug-lead to recognize a specific target and improve drugs efficacy. To understand this, comprehensive analysis of hydrophobic interactions, hydrogen bonding and binding affinity have been analyzed at the interface of c-Src and c-Abl kinases and 4-amino substituted 1H-pyrazolo [3, 4-d] pyrimidine compounds. Methodology In-silico docking studies were performed, using Discovery Studio software modules LigandFit, CDOCKER and ZDOCK, to investigate the role of ligand binding affinity at the hydrophobic pocket of c-Src and c-Abl kinase. Hydrophobic and hydrogen bonding interactions of docked molecules were compared using LigPlot program. Furthermore, 3D-QSAR and MFA calculations were scrutinized to quantify the role of weak interactions in binding affinity and drug efficacy. Conclusions The in-silico method has enabled us to reveal that a multi-targeted small molecule binds with low affinity to its respective targets. But its binding affinity can be altered by integrating the conformationally favored functional groups at the active site of the ligand-target interface. Docking studies of 4-amino-substituted molecules at the bioactive cascade of the c-Src and c-Abl have concluded that 3D structural folding at the protein-ligand groove is also a hallmark for molecular recognition of multi-targeted compounds and for predicting their biological activity. The results presented here demonstrate that hydrogen bonding and optimized hydrophobic interactions both stabilize the ligands at the target site, and help alter binding affinity and drug efficacy. PMID:20808434

  11. Water Ice Abundance on Ceres

    NASA Image and Video Library

    2016-12-15

    This frame from an animation shows dwarf planet Ceres overlaid with the concentration of hydrogen determined from data acquired by the gamma ray and neutron detector GRaND instrument aboard NASA Dawn spacecraft. The hydrogen is in the upper yard (or meter) of regolith, the loose surface material on Ceres. The color scale gives hydrogen content in water-equivalent units, which assumes all of the hydrogen is in the form of H2O. Blue indicates where hydrogen content is higher, near the poles, while red indicates lower content at lower latitudes. In reality, some of the hydrogen is in the form of water ice, while a portion of the hydrogen is in the form of hydrated minerals (such as OH, in serpentine group minerals). The color information is superimposed on shaded relief map for context. A second animation (Figure 2) compares the hydrogen content of Ceres' regolith with that of the giant asteroid Vesta, which Dawn orbited from 2011 to 2012. These data show Vesta is a much drier world, with a much lower percent of hydrogen in its regolith. Both maps were produced from data acquired by GRaND. Videos are available at http://photojournal.jpl.nasa.gov/catalog/PIA21081

  12. Fundamental relation between molecular geometry and real-space topology. Combined AIM, ELI-D, and ASF analysis of hapticities and intramolecular hydrogen-hydrogen bonds in zincocene-related compounds.

    PubMed

    Mebs, Stefan; Chilleck, Maren Annika; Meindl, Kathrin; Hübschle, Christian Bertram

    2014-06-19

    Despite numerous advanced and widely distributed bonding theories such as MO, VB, NBO, AIM, and ELF/ELI-D, complex modes of bonding such as M-Cp*((R)) interactions (hapticities) in asymmetrical metallocenes or weak intramolecular interactions (e.g., hydrogen-hydrogen (H···H) bonds) still remain a challenge for these theories in terms of defining whether or not an atom-atom interaction line (a "chemical bond") should be drawn. In this work the intramolecular Zn-C(Cp*(R)) (R = Me, -(CH2)2NMe2, and -(CH2)3NMe2) and H···H connectivity of a systematic set of 12 zincocene-related compounds is analyzed in terms of AIM and ELI-D topology combined with the recently introduced aspherical stockholder fragment (ASF) surfaces. This computational analysis unravels a distinct dependency of the AIM and ELI-D topology against the molecular geometry for both types of interactions, which confirms and extends earlier findings on smaller sets of compounds. According to these results the complete real-space topology including strong, medium, and weak interactions of very large compounds such as proteins may be reliably predicted by sole inspection of accurately determined molecular geometries, which would on the one hand afford new applications (e.g., accurate estimation of numbers, types, and strengths of intra- and intermolecular interactions) and on the other hand have deep implications on the significance of the method.

  13. Turn-Directed α-β Conformational Transition of α-syn12 Peptide at Different pH Revealed by Unbiased Molecular Dynamics Simulations

    PubMed Central

    Liu, Lei; Cao, Zanxia

    2013-01-01

    The transition from α-helical to β-hairpin conformations of α-syn12 peptide is characterized here using long timescale, unbiased molecular dynamics (MD) simulations in explicit solvent models at physiological and acidic pH values. Four independent normal MD trajectories, each 2500 ns, are performed at 300 K using the GROMOS 43A1 force field and SPC water model. The most clustered structures at both pH values are β-hairpin but with different turns and hydrogen bonds. Turn9-6 and four hydrogen bonds (HB9-6, HB6-9, HB11-4 and HB4-11) are formed at physiological pH; turn8-5 and five hydrogen bonds (HB8-5, HB5-8, HB10-3, HB3-10 and HB12-1) are formed at acidic pH. A common folding mechanism is observed: the formation of the turn is always before the formation of the hydrogen bonds, which means the turn is always found to be the major determinant in initiating the transition process. Furthermore, two transition paths are observed at physiological pH. One of the transition paths tends to form the most-clustered turn and improper hydrogen bonds at the beginning, and then form the most-clustered hydrogen bonds. Another transition path tends to form the most-clustered turn, and turn5-2 firstly, followed by the formation of part hydrogen bonds, then turn5-2 is extended and more hydrogen bonds are formed. The transition path at acidic pH is as the same as the first path described at physiological pH. PMID:23708094

  14. New porous water ice metastable at atmospheric pressure obtained by emptying a hydrogen-filled ice

    PubMed Central

    del Rosso, Leonardo; Celli, Milva; Ulivi, Lorenzo

    2016-01-01

    The properties of some forms of water ice reserve still intriguing surprises. Besides the several stable or metastable phases of pure ice, solid mixtures of water with gases are precursors of other ices, as in some cases they may be emptied, leaving a metastable hydrogen-bound water structure. We present here the first characterization of a new form of ice, obtained from the crystalline solid compound of water and molecular hydrogen called C0-structure filled ice. By means of Raman spectroscopy, we measure the hydrogen release at different temperatures and succeed in rapidly removing all the hydrogen molecules, obtaining a new form of ice (ice XVII). Its structure is determined by means of neutron diffraction measurements. Of paramount interest is that the emptied crystal can adsorb again hydrogen and release it repeatedly, showing a temperature-dependent hysteresis. PMID:27819265

  15. Chain and mirophase-separated structures of ultrathin polyurethane films

    NASA Astrophysics Data System (ADS)

    Kojio, Ken; Uchiba, Yusuke; Yamamoto, Yasunori; Motokucho, Suguru; Furukawa, Mutsuhisa

    2009-08-01

    Measurements are presented how chain and microphase-separated structures of ultrathin polyurethane (PU) films are controlled by the thickness. The film thickness is varied by a solution concentration for spin coating. The systems are PUs prepared from commercial raw materials. Fourier-transform infrared spectroscopic measurement revealed that the degree of hydrogen bonding among hard segment chains decreased and increased with decreasing film thickness for strong and weak microphase separation systems, respectively. The microphase-separated structure, which is formed from hard segment domains and a surrounding soft segment matrix, were observed by atomic force microscopy. The size of hard segment domains decreased with decreasing film thickness, and possibility of specific orientation of the hard segment chains was exhibited for both systems. These results are due to decreasing space for the formation of the microphase-separated structure.

  16. Crystal structure of N-{[3-bromo-1-(phenyl-sulfon-yl)-1H-indol-2-yl]meth-yl}benzene-sulfonamide.

    PubMed

    Umadevi, M; Raju, P; Yamuna, R; Mohanakrishnan, A K; Chakkaravarthi, G

    2015-10-01

    In the title compound, C21H17BrN2O4S2, the indole ring system subtends dihedral angles of 85.96 (13) and 9.62 (16)° with the planes of the N- and C-bonded benzene rings, respectively. The dihedral angles between the benzene rings is 88.05 (17)°. The mol-ecular conformation is stabilized by intra-molecular N-H⋯O and C-H⋯O hydrogen bonds and an aromatic π-π stacking [centroid-to-centroid distance = 3.503 (2) Å] inter-action. In the crystal, short Br⋯O [2.9888 (18) Å] contacts link the mol-ecules into [010] chains. The chains are cross-linked by weak C-H⋯π inter-actions, forming a three-dimensional network.

  17. 2,4,6,8-Tetra-kis(2-fluoro-phen-yl)-3,7-diaza-bicyclo-[3.3.1]nonan-9-one.

    PubMed

    Park, Dong Ho; Ramkumar, V; Parthiban, P

    2013-02-01

    The title compound, C(31)H(24)F(4)N(2)O, exists in a chair-boat conformation with an equatorial orientation of the 2-fluoro-phenyl groups on both sides of the secondary amino group of the chair form. The benzene rings in the 'chair' part are inclined to each other at 19.4 (1)°, while the equivalent angle between the benzene rings in the 'boat' part is 75.6 (1)°. One F atom was treated as disordered over two positions in a 0.838 (4):0.162 (4) ratio. In the crystal, N-H⋯O hydrogen bonds link the mol-ecules into chains along [001] and these chains are held together via weak N-H⋯F and C-H⋯F inter-actions.

  18. Getting the chemistry right: protonation, tautomers and the importance of H atoms in biological chemistry.

    PubMed

    Bax, Ben; Chung, Chun Wa; Edge, Colin

    2017-02-01

    There are more H atoms than any other type of atom in an X-ray crystal structure of a protein-ligand complex, but as H atoms only have one electron they diffract X-rays weakly and are `hard to see'. The positions of many H atoms can be inferred by our chemical knowledge, and such H atoms can be added with confidence in `riding positions'. For some chemical groups, however, there is more ambiguity over the possible hydrogen placements, for example hydroxyls and groups that can exist in multiple protonation states or tautomeric forms. This ambiguity is far from rare, since about 25% of drugs have more than one tautomeric form. This paper focuses on the most common, `prototropic', tautomers, which are isomers that readily interconvert by the exchange of an H atom accompanied by the switch of a single and an adjacent double bond. Hydrogen-exchange rates and different protonation states of compounds (e.g. buffers) are also briefly discussed. The difference in heavy (non-H) atom positions between two tautomers can be small, and careful refinement of all possible tautomers may single out the likely bound ligand tautomer. Experimental methods to determine H-atom positions, such as neutron crystallography, are often technically challenging. Therefore, chemical knowledge and computational approaches are frequently used in conjugation with experimental data to deduce the bound tautomer state. Proton movement is a key feature of many enzymatic reactions, so understanding the orchestration of hydrogen/proton motion is of critical importance to biological chemistry. For example, structural studies have suggested that, just as a chemist may use heat, some enzymes use directional movement to protonate specific O atoms on phosphates to catalyse phosphotransferase reactions. To inhibit `wriggly' enzymes that use movement to effect catalysis, it may be advantageous to have inhibitors that can maintain favourable contacts by adopting different tautomers as the enzyme `wriggles'.

  19. Density functional theory study of acetaldehyde hydrodeoxygenation on MoO3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Donghai; Karim, Ayman M.; Wang, Yong

    2011-04-06

    Periodic spin-polarized density functional theory calculations were performed to investigate acetaldehyde (CH3CHO) hydrodeoxygenation on the reduced molybdenum trioxide (MoO3) surface. The perfect O-terminated α-MoO3(010) surface is reduced to generate an oxygen defect site in the presence of H2. H2 dissociatively adsorbs at the surface oxygen sites forming two surface hydroxyls, which can recombine into a water molecule weakly bound at the Mo site. A terminal oxygen (Ot) defect site thus forms after water desorption. CH3CHO adsorbs at the O-deficient Mo site via either the sole O-Mo bond or the O-Mo and the C-O double bonds. The possible reaction pathways ofmore » the adsorbed CH3CHO with these two configurations were thoroughly examined using the dimer searching method. Our results show that the ideal deoxygenation of CH3CHO leading to ethylene (C2H4) on the reduced MoO3(010) surface is feasible. The adsorbed CH3CHO first dehydrogenate into CH2CHO by reacting with a neighboring terminal Ot. The hydroxyl (OtH) then hydrogenates CH2CHO into CH2CH2O to complete the hydrogen transfer cycle with an activation barrier of 1.39 eV. The direct hydrogen transfer from CH3CHO to CH2CH2O is unlikely due to the high barrier of 2.00 eV. The produced CH2CH2O readily decomposes into C2H4 that directly releases to the gas phase, and regenerates the Ot atom on the Mo site. As a result, the reduced MoO3(010) surface is reoxidized to the perfect MoO3(010) surface after CH3CHO deoxygenation. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less

  20. Hydrogen bonding between hydrides of the upper-right part of the periodic table

    NASA Astrophysics Data System (ADS)

    Simončič, Matjaž; Urbic, Tomaz

    2018-05-01

    One of the most important electrostatic interactions between molecules is most definitely the hydrogen bond. Understanding the basis of this interaction may offer us the insight needed to understand its effect on the macroscopic scale. Hydrogen bonding is for example the reason for anomalous properties in compounds like water and naturally life as we know it. The strength of the bond depends on numerous factors, among them the electronegativity of participating atoms. In this work we calculated the strength of hydrogen bonds between hydrides of the upper-right part of the periodic table (C, N, O, F, P, S, Cl, As, Se, Br) using quantum-chemical methods. The aim was to determine what influences the strength of strong and weak hydrogen bonds in simple hydrides. Various relationships were checked. A relation between the strength of the bond and the electronegativity of the participating atoms was found. We also observed a correlation between the strength of hydrogen bonds and the inter-atomic distances, along with the dependence on the charge transfer on the atom of the donor. We also report characteristic geometries of different dimers.

  1. Water electrolysis

    NASA Technical Reports Server (NTRS)

    Schubert, Franz H. (Inventor); Grigger, David J. (Inventor)

    1992-01-01

    This disclosure is directed to an electrolysis cell forming hydrogen and oxygen at space terminals. The anode terminal is porous and able to form oxygen within the cell and permit escape of the gaseous oxygen through the anode and out through a flow line in the presence of backpressure. Hydrogen is liberated in the cell at the opposing solid metal cathode which is permeable to hydrogen but not oxygen so that the migratory hydrogen formed in the cell is able to escape from the cell. The cell is maintained at an elevated pressure so that the oxygen liberated by the cell is delivered at elevated pressure without pumping to raise the pressure of the oxygen.

  2. Quantum Monte Carlo study of the phase diagram of solid molecular hydrogen at extreme pressures

    PubMed Central

    Drummond, N. D.; Monserrat, Bartomeu; Lloyd-Williams, Jonathan H.; Ríos, P. López; Pickard, Chris J.; Needs, R. J.

    2015-01-01

    Establishing the phase diagram of hydrogen is a major challenge for experimental and theoretical physics. Experiment alone cannot establish the atomic structure of solid hydrogen at high pressure, because hydrogen scatters X-rays only weakly. Instead, our understanding of the atomic structure is largely based on density functional theory (DFT). By comparing Raman spectra for low-energy structures found in DFT searches with experimental spectra, candidate atomic structures have been identified for each experimentally observed phase. Unfortunately, DFT predicts a metallic structure to be energetically favoured at a broad range of pressures up to 400 GPa, where it is known experimentally that hydrogen is non-metallic. Here we show that more advanced theoretical methods (diffusion quantum Monte Carlo calculations) find the metallic structure to be uncompetitive, and predict a phase diagram in reasonable agreement with experiment. This greatly strengthens the claim that the candidate atomic structures accurately model the experimentally observed phases. PMID:26215251

  3. First principles study of hydrogen behaviors in hexagonal tungsten carbide

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-Shan; You, Yu-Wei; Liu, C. S.; Fang, Q. F.; Chen, Jun-Ling; Luo, G.-N.

    2011-11-01

    Understanding the behaviors of hydrogen in hexagonal tungsten carbide (WC) is of particular interest for fusion reactor design due to the presence of WC in the divertor of fusion reactors. Here, we have used first principles calculations to study the hydrogen behavior in WC. It is found that the most stable interstitial site for the hydrogen atom is the projection of the octahedral interstitial site on tungsten basal plane, followed by the site near the projection of the octahedral interstitial site on carbon basal plane. The binding energy between two interstitial hydrogen atoms is negative, suggesting that hydrogen itself is not capable of trapping another hydrogen atoms to form hydrogen molecule. The calculated results on the interaction between hydrogen and vacancy indicate that hydrogen atom is preferably trapped by vacancy defects and hydrogen molecule can not be formed in mono-vacancy. In addition, the hydrogen atom bound to carbon is only found in tungsten vacancy. We also study the migrations of hydrogen in WC and find that the interstitial hydrogen atom prefers to diffuse along the c-axis. Our studies provide some explanations for the results of the thermal desorption process of energetic hydrogen ion implanted into WC.

  4. Hydrogen as the solar energy translator. [in photochemical and photovoltaic processes

    NASA Technical Reports Server (NTRS)

    Kelley, J. H.

    1979-01-01

    Many concepts are being investigated to convert sunlight to workable energy forms with emphasis on electricity and thermal energy. The electrical alternatives include direct conversion of photons to electricity via photovoltaic solar cells and solar/thermal production of electricity via heat-energy cycles. Solar cells, when commercialized, are expected to have efficiencies of about 12 to 14 percent. The cells would be active about eight hours per day. However, solar-operated water-splitting process research, initiated through JPL, shows promise for direct production of hydrogen from sunlight with efficiencies of up to 35 to 40 percent. The hydrogen, a valuable commodity in itself, can also serve as a storable energy form, easily and efficiently converted to electricity by fuel cells and other advanced-technology devices on a 24-hour basis or on demand with an overall efficiency of 25 to 30 percent. Thus, hydrogen serves as the fundamental translator of energy from its solar form to electrical form more effectively, and possibly more efficiently, than direct conversion. Hydrogen also can produce other chemical energy forms using solar energy.

  5. Concurrent synergism and inhibition in bimetallic catalysis: catalytic binuclear elimination, solute-solute interactions and a hetero-bimetallic hydrogen-bonded complex in rh-mo hydroformylations.

    PubMed

    Li, Chuanzhao; Cheng, Shuying; Tjahjono, Martin; Schreyer, Martin; Garland, Marc

    2010-04-07

    Hydroformylations of cyclopentene and 3,3-dimethylbut-1-ene were performed using both Rh(4)(CO)(12) and (eta(5)-C(5)H(5))Mo(CO)(3)H as precursors in n-hexane at 298 K. Both stoichiometric and catalytic hydroformylations were conducted as well as isotopic labeling experiments. Six organometallic pure component spectra were recovered from the high-pressure FTIR experiments, namely the known species Rh(4)(CO)(12), (eta(5)-C(5)H(5))Mo(CO)(3)H, RCORh(CO)(4), and the new heterobimetallic complexes RhMo(CO)(7)(eta(5)-C(5)H(5)), a weak hydrogen bonded species (eta(5)-C(5)H(5))Mo(CO)(3)H-C(5)H(9)CORh(CO)(4), and a substituted RhMo(CO)(7-y)(eta(5)-C(5)H(5))L(y), where y = 1 or 2 and L = (pi-C(5)H(8)). The main findings were (1) catalytic binuclear elimination (CBER) occurs between (eta(5)-C(5)H(5))Mo(CO)(3)H and RCORh(CO)(4) resulting in aldehyde and RhMo(CO)(7)(eta(5)-C(5)H(5)), and this mechanism is responsible for ca. 10% of the product formation; (2) molecular hydrogen is readily activated by the new heterobimetallic complex(es); (3) FTIR and DFT spectroscopic evidence suggests that the weak hydrogen bonded species (eta(5)-C(5)H(5))Mo(CO)(3)H-C(5)H(9)CORh(CO)(4) has an interaction of the type eta(5)-C(5)H(4)-H...O=C; and (4) independent physicochemical experiments for volumes of interaction confirm that significant solute-solute interactions are present. With respect to the efficiency of the catalytic cycle, the formation of a weak (eta(5)-C(5)H(5))Mo(CO)(3)H-C(5)H(9)CORh(CO)(4) complex results in a significant decrease in the measured turnover frequency (TOF) and is the primary reason for the inhibition observed in the bimetallic catalytic hydroformylation. Such hydrogen bonding through the eta(5)-C(5)H(5) ring might have relevance to inhibition observed in other catalytic metallocene systems. The present catalytic system is an example of concurrent synergism and inhibition in bimetallic homogeneous catalysis.

  6. Infrared emission from hydrogenated amorphous carbon and amorphous carbon grains in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Duley, W. W.; Jones, A. P.; Taylor, S. D.; Williams, D. A.

    1993-01-01

    The correlations deduced by Boulanger et al. (1990) from IRAS maps of the Chamaeleon, Taurus and Ursa Major molecular cloud complexes are interpreted in terms of the evolutionary hydrogenated amorphous carbon model of interstellar dust. In particular, regions of relatively strong 12-micron emission may be regions where recently accreted carbon is being converted by ambient UV to small PAHs in situ. Regions of weak 12-micron emission are probably quiescent regions where carbon has been annealed to amorphous carbon. Observational consequences of these inferences are briefly described.

  7. Proton conduction in electrolyte made of manganese dioxide for hydrogen gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyanaka, Hideki; Ueda, Yoshikatsu; Takeuchi, K

    2012-01-01

    We propose a network model of oxygen-pairs to store and conduct protons on the surface of manganese dioxide with a weak covalent bond like protons stored in pressured ice. The atomic distances of oxygen-pairs were estimated between 2.57 and 2.60 angstroms in crystal structures of ramsdellite-type and lambda-type manganese dioxides by using protonated samples and inelastic neutron scattering measurements. Good properties for a hydrogen gas sensor using electrolytes made of manganese dioxides that contain such oxygen-pairs were confirmed experimentally.

  8. 2,2′-(Carbono­thio­yldisulfanedi­yl)bis­(2-methyl­propanoic acid)

    PubMed Central

    Moreno-Fuquen, Rodolfo; Grande, Carlos; Advincula, Rigoberto C.; Tenorio, Juan C.; Ellena, Javier

    2013-01-01

    The mol­ecular structure of the title compound, C9H14O4S3, exhibits intra­molecular C—H⋯S hydrogen bonds. In the crystal, pairs of O—H⋯O hydrogen bonds lead to the formation of centrosymmetric dimers, which are in turn connected by weak C—H⋯O inter­actions. The combination of these inter­actions generates edge-fused R 2 2(8) and R 2 2(20) rings running along [211]. PMID:23723918

  9. Effect of Atomic Hydrogen on Preparation of Highly Moisture-Resistive SiNx Films at Low Substrate Temperatures

    NASA Astrophysics Data System (ADS)

    Heya, Akira; Niki, Toshikazu; Takano, Masahiro; Yonezawa, Yasuto; Minamikawa, Toshiharu; Muroi, Susumu; Minami, Shigehira; Izumi, Akira; Masuda, Atsushi; Umemoto, Hironobu; Matsumura, Hideki

    2004-12-01

    Highly moisture-resistive SiNx films on a Si substrate are obtained at substrate temperatures of 80°C by catalytic chemical vapor deposition (Cat-CVD) using a source gas with H2. Atomic hydrogen effected the selective etching of a weak-bond regions and an increase in atomic density induced by the energy of the surface reaction. It is concluded that Cat-CVD using H2 is a promising candidate for the fabrication of highly moisture-resistive SiNx films at low temperatures.

  10. Water in Earth's mantle: Hydrogen analysis of mantle olivine, pyroxenes and garnet using the SIMS

    NASA Technical Reports Server (NTRS)

    Kurosawa, Masanori; Yurimoto, Hisayoshi; Sueno, Shigeho

    1993-01-01

    Hydrogen (or water) in the Earth's interior plays a key role in the evolution and dynamics of the planet. However, the abundance and the existence form of the hydrogen have scarcely been clear in practice. Hydrogen in the mantle was incorporated in the interior during the formation of the Earth. The incorporated hydrogen was hardly possible to concentrate locally inside the Earth considering its high mobility and high reactivity. The hydrogen, preferably, could be distributed homogeneously over the mantle and the core by the subsequent physical and chemical processes. Therefore, hydrogen in the mantle could be present in the form of trace hydrogen in nominally anhydrous mantle minerals. The hydrogen and the other trace elements in mantle olivines, orthopyroxenes, clinopyroxenes, and garnets were determined using secondary ion mass spectrometry (SIMS) for elucidating (1) the exact hydrogen contents, (2) the correlation between the hydrogen and the other trace elements, (3) the dependence of the hydrogen contents on the depth, and (4) the dependence of the whole rock water contents on the depth.

  11. Silicone adhesive matrix of verapamil hydrochloride to provide pH-independent sustained release.

    PubMed

    Tolia, Gaurav; Li, S Kevin

    2014-02-01

    Providing pH-independent oral release of weakly basic drugs with conventional matrix tablets can be challenging because of the pH-dependent solubility characteristics of the drugs and the changing pH environment along the gastrointestinal tract. The aim of the present study was to use a hydrophobic polymer to overcome the issue of pH-dependent release of weakly basic model drug verapamil hydrochloride from matrix tablets without the use of organic buffers in the matrix formulations. Silicone pressure-sensitive adhesive (PSA) polymer was evaluated because of its unique properties of low surface energy, hydrophobicity, low glass transition temperature, high electrical resistance, and barrier to hydrogen ion diffusion. Drug release, hydrogen ion diffusion, tablet contact angle, and internal tablet microenvironment pH with matrix tablets prepared using PSA were compared with those using water-insoluble ethyl cellulose (EC). Silicone PSA films showed higher resistance to hydrogen ion diffusion compared with EC films. Verapamil hydrochloride tablets prepared using silicone PSA showed higher hydrophobicity and lower water uptake than EC tablets. Silicone PSA tablets also showed pH-independent release of verapamil and decreased in dimensions during drug dissolution. By contrast, verapamil hydrochloride tablets prepared using EC did not achieve pH-independent release.

  12. Dynamic Conductivity and Partial Ionization in Warm, Dense Hydrogen

    NASA Astrophysics Data System (ADS)

    Zaghoo, M.; Silvera, I. F.

    2017-10-01

    A theoretical description for optical conduction experiments in dense fluid hydrogen is presented. Different quantum statistical approaches are used to describe the mechanism of electron transport in hydrogen's high-temperature dense phase. We show that at the onset of the metallic transition, optical conduction could be described by a strong rise in the atomic polarizability, resulting from increased ionization; whereas in the highly degenerate limit, the Ziman weak-scattering model better describes the observed saturation of reflectance. In the highly degenerate region, the inclusion of partial ionization effects provides excellent agreement with experimental results. Hydrogen's fluid metallic state is revealed to be a partially ionized free-electron plasma. These results provide a crucial benchmark for ab initio calculations as well as an important guide for future experiments. Research supported by DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H.

  13. Photoproduction of Hydrogen by Decamethylruthenocene Combined with Electrochemical Recycling.

    PubMed

    Rivier, Lucie; Peljo, Pekka; Vannay, Laurent A C; Gschwend, Grégoire C; Méndez, Manuel A; Corminboeuf, Clémence; Scanlon, Micheál D; Girault, Hubert H

    2017-02-20

    The photoinduced hydrogen evolution reaction (HER) by decamethylruthenocene, Cp 2 *Ru II (Cp*=C 5 Me 5 ), is reported. The use of a metallocene to photoproduce hydrogen is presented as an alternative strategy to reduce protons without involving an additional photosensitizer. The mechanism was investigated by (spectro)electrochemical and spectroscopic (UV/Vis and 1 H NMR) measurements. The photoactivated hydride involved was characterized spectroscopically and the resulting [Cp 2 *Ru III ] + species was electrochemically regenerated in situ on a fluorinated tin oxide electrode surface. A promising internal quantum yield of 25 % was obtained. Optimal experimental conditions- especially the use of weakly coordinating solvent and counterions-are discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The Abundances of Methane and Ortho/Para Hydrogen in Uranus and Neptune: Implications of New Laboratory 4-0 H(sub 2) Quadrapole Line Parameters

    NASA Technical Reports Server (NTRS)

    Baines, K.; Mickelson, M.; Larson, L.; Ferguson, D.

    1994-01-01

    The tropospheric methane molar fraction (f(sub ch4,t)) and the ortho/para hydrogen ratio are derived for Uranus and Neptune based on new determinations of spectroscopic parameters for key hydrogen features as reported by Ferguson et al. (1993, J. Mol. Spec 160, 315-325). For each planet, the relatively weak laboratory linestrengths (approximately 30% and 15% less than the theoretical 4-0 S(0) and S(1) linestrengths, respectively) results, when compared to analyses adopting theoretical values, in a 30% decrease in the tropospheric methane ratio and a comparable increase in the pressure level of the optically-thick cloudtop marking the bottom of the visible atmosphere (P(sub cld)).

  15. Cytochrome P450 2C9-natural antiarthritic interactions: Evaluation of inhibition magnitude and prediction from in vitro data.

    PubMed

    Tan, Boon Hooi; Ahemad, Nafees; Pan, Yan; Palanisamy, Uma Devi; Othman, Iekhsan; Yiap, Beow Chin; Ong, Chin Eng

    2018-04-01

    Many dietary supplements are promoted to patients with osteoarthritis (OA) including the three naturally derived compounds, glucosamine, chondroitin and diacerein. Despite their wide spread use, research on interaction of these antiarthritic compounds with human hepatic cytochrome P450 (CYP) enzymes is limited. This study aimed to examine the modulatory effects of these compounds on CYP2C9, a major CYP isoform, using in vitro biochemical assay and in silico models. Utilizing valsartan hydroxylase assay as probe, all forms of glucosamine and chondroitin exhibited IC 50 values beyond 1000 μM, indicating very weak potential in inhibiting CYP2C9. In silico docking postulated no interaction with CYP2C9 for chondroitin and weak bonding for glucosamine. On the other hand, diacerein exhibited mixed-type inhibition with IC 50 value of 32.23 μM and K i value of 30.80 μM, indicating moderately weak inhibition. Diacerein's main metabolite, rhein, demonstrated the same mode of inhibition as diacerein but stronger potency, with IC 50 of 6.08 μM and K i of 1.16 μM. The docking of both compounds acquired lower CDOCKER interaction energy values, with interactions dominated by hydrogen and hydrophobic bondings. The ranking with respect to inhibition potency for the investigated compounds was generally the same in both in vitro enzyme assay and in silico modeling with order of potency being diacerein/rhein > various glucosamine/chondroitin forms. In vitro-in vivo extrapolation of inhibition kinetics (using 1 + [I]/K i ratio) demonstrated negligible potential of diacerein to cause interaction in vivo, whereas rhein was predicted to cause in vivo interaction, suggesting potential interaction risk with the CYP2C9 drug substrates. Copyright © 2018 John Wiley & Sons, Ltd.

  16. Formation of Annular Protofibrillar Assembly by Cysteine Tripeptide: Unraveling the Interactions with NMR, FTIR, and Molecular Dynamics.

    PubMed

    Banerji, Biswadip; Chatterjee, Moumita; Pal, Uttam; Maiti, Nakul C

    2017-07-06

    Both hydrogen-bonding and hydrophobic interactions play a significant role in molecular assembly, including self-assembly of proteins and peptides. In this study, we report the formation of annular protofibrillar structure (diameter ∼500 nm) made of a newly synthesized s-benzyl-protected cysteine tripeptide, which was primarily stabilized by hydrogen-bonding and hydrophobic interactions. Atomic force microscopy and field emission scanning electron microscopy analyses found small oligomers (diameter ∼60 nm) to bigger annular (outer diameter ∼300 nm; inner diameter, 100 nm) and protofibrillar structures after 1-2 days of incubation. Rotating-frame Overhauser spectroscopic (ROESY) analysis revealed the presence of several nonbonded proton-proton interactions among the residues, such as amide protons with methylene group, aromatic protons with tertiary butyl group, and methylene protons with tertiary butyl group. These added significant stability to bring the peptides closer to form a well-ordered assembled structure. Hydrogen-deuterium exchange NMR measurement further suggested that two individual amide protons among the three amide groups were strongly engaged with the adjacent tripeptide via H-bond interaction. However, the remaining amide proton was found to be exposed to solvent and remained noninteracting with other tripeptide molecules. In addition to chemical shift values, a significant change in amide bond vibrations of the tripeptide was found due to the formation of the self-assembled structure. The amide I mode of vibrations involving two amide linkages appeared at 1641 and 1695 cm -1 in the solid state. However, in the assembled state, the stretching band at 1695 cm -1 became broad and slightly shifted to ∼1689 cm -1 . On the contrary, the band at 1641 cm -1 shifted to 1659 cm -1 and indicated that the -C═O bond associated with this vibration became stronger in the assembled state. These changes in Fourier transform infrared spectroscopy frequency clearly indicated changes in the amide backbone conformation and the associated hydrogen-bonding pattern due to the formation of the assembled structure. In addition to hydrogen bonding, molecular dynamics simulation indicated that the number of π-π interactions also increased with increasing number of tripeptides participated in the self-assembly process. Combined results envisaged a cross β-sheet assembly unit consisting of four intermolecular hydrogen bonds. Such noncovalent peptide assemblies glued by hydrogen-bonding and other weak forces may be useful in developing nanocapsule and related materials.

  17. Hydrogen behaviour at twist {110} grain boundaries in α-Fe

    NASA Astrophysics Data System (ADS)

    McEniry, Eunan J.; Hickel, Tilmann; Neugebauer, Jörg

    2017-06-01

    The behaviour of hydrogen at structural defects such as grain boundaries plays a critical role in the phenomenon of hydrogen embrittlement. However, characterization of the energetics and diffusion of hydrogen in the vicinity of such extended defects using conventional ab initio techniques is challenging due to the relatively large system sizes required when dealing with realistic grain boundary geometries. In order to be able to access the required system sizes, as well as high-throughput testing of a large number of configurations, while remaining within a quantum-mechanical framework, an environmental tight-binding model for the iron-hydrogen system has been developed. The resulting model is applied to study the behaviour of hydrogen at a class of low-energy {110}-terminated twist grain boundaries in α-Fe. We find that, for particular Σ values within the coincidence site lattice description, the atomic geometry at the interface plane provides extremely favourable trap sites for H, which also possess high escape barriers for diffusion. By contrast, via simulated tensile testing, weakly trapped hydrogen at the interface plane of the bulk-like Σ3 boundary acts as a `glue' for the boundary, increasing both the energetic barrier and the elongation to rupture. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  18. Hydrogen behaviour at twist {110} grain boundaries in α-Fe.

    PubMed

    McEniry, Eunan J; Hickel, Tilmann; Neugebauer, Jörg

    2017-07-28

    The behaviour of hydrogen at structural defects such as grain boundaries plays a critical role in the phenomenon of hydrogen embrittlement. However, characterization of the energetics and diffusion of hydrogen in the vicinity of such extended defects using conventional ab initio techniques is challenging due to the relatively large system sizes required when dealing with realistic grain boundary geometries. In order to be able to access the required system sizes, as well as high-throughput testing of a large number of configurations, while remaining within a quantum-mechanical framework, an environmental tight-binding model for the iron-hydrogen system has been developed. The resulting model is applied to study the behaviour of hydrogen at a class of low-energy {110}-terminated twist grain boundaries in α -Fe. We find that, for particular Σ values within the coincidence site lattice description, the atomic geometry at the interface plane provides extremely favourable trap sites for H, which also possess high escape barriers for diffusion. By contrast, via simulated tensile testing, weakly trapped hydrogen at the interface plane of the bulk-like Σ3 boundary acts as a 'glue' for the boundary, increasing both the energetic barrier and the elongation to rupture.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).

  19. Spectroscopy and formation of lanthanum-hydrocarbon radicals formed by association and carbon-carbon bond cleavage of isoprene

    NASA Astrophysics Data System (ADS)

    Cao, Wenjin; Hewage, Dilrukshi; Yang, Dong-Sheng

    2018-05-01

    La atom reaction with isoprene is carried out in a laser-vaporization molecular beam source. The reaction yields an adduct as the major product and C—C cleaved and dehydrogenated species as the minor ones. La(C5H8), La(C2H2), and La(C3H4) are characterized with mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical computations. The MATI spectra of all three species exhibit a strong origin band and several weak vibronic bands corresponding to La-ligand stretch and ligand-based bend excitations. La(C5H8) is a five-membered metallacycle, whereas La(C2H2) and La(C3H4) are three-membered rings. All three metallacycles prefer a doublet ground state with a La 6s1-based valence electron configuration and a singlet ion. The five-membered metallacycle is formed through La addition and isoprene isomerization, whereas the two three-membered rings are produced by La addition and insertion, hydrogen migration, and carbon-carbon bond cleavage.

  20. Effect of intermolecular dipole-dipole interactions on interfacial supramolecular structures of C3-symmetric hexa-peri-hexabenzocoronene derivatives.

    PubMed

    Mu, Zhongcheng; Shao, Qi; Ye, Jun; Zeng, Zebing; Zhao, Yang; Hng, Huey Hoon; Boey, Freddy Yin Chiang; Wu, Jishan; Chen, Xiaodong

    2011-02-15

    Two-dimensional (2D) supramolecular assemblies of a series of novel C(3)-symmetric hexa-peri-hexabenzocoronene (HBC) derivatives bearing different substituents adsorbed on highly oriented pyrolytic graphite were studied by using scanning tunneling microscopy at a solid-liquid interface. It was found that the intermolecular dipole-dipole interactions play a critical role in controlling the interfacial supramolecular assembly of these C(3)-symmetric HBC derivatives at the solid-liquid interface. The HBC molecule bearing three -CF(3) groups could form 2D honeycomb structures because of antiparallel dipole-dipole interactions, whereas HBC molecules bearing three -CN or -NO(2) groups could form hexagonal superstructures because of a special trimeric arrangement induced by dipole-dipole interactions and weak hydrogen bonding interactions ([C-H···NC-] or [C-H···O(2)N-]). Molecular mechanics and dynamics simulations were performed to reveal the physics behind the 2D structures as well as detailed functional group interactions. This work provides an example of how intermolecular dipole-dipole interactions could enable fine control over the self-assembly of disklike π-conjugated molecules.

  1. Self-assembly of electronically abrupt borophene/organic lateral heterostructures

    PubMed Central

    Liu, Xiaolong; Wei, Zonghui; Balla, Itamar; Mannix, Andrew J.; Guisinger, Nathan P.; Luijten, Erik; Hersam, Mark C.

    2017-01-01

    Two-dimensional boron sheets (that is, borophene) have recently been realized experimentally and found to have promising electronic properties. Because electronic devices and systems require the integration of multiple materials with well-defined interfaces, it is of high interest to identify chemical methods for forming atomically abrupt heterostructures between borophene and electronically distinct materials. Toward this end, we demonstrate the self-assembly of lateral heterostructures between borophene and perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA). These lateral heterostructures spontaneously form upon deposition of PTCDA onto submonolayer borophene on Ag(111) substrates as a result of the higher adsorption enthalpy of PTCDA on Ag(111) and lateral hydrogen bonding among PTCDA molecules, as demonstrated by molecular dynamics simulations. In situ x-ray photoelectron spectroscopy confirms the weak chemical interaction between borophene and PTCDA, while molecular-resolution ultrahigh-vacuum scanning tunneling microscopy and spectroscopy reveal an electronically abrupt interface at the borophene/PTCDA lateral heterostructure interface. As the first demonstration of a borophene-based heterostructure, this work will inform emerging efforts to integrate borophene into nanoelectronic applications. PMID:28261662

  2. Static feed water electrolysis subsystem development

    NASA Technical Reports Server (NTRS)

    Schubert, Franz H. (Inventor); Grigger, David J. (Inventor)

    1991-01-01

    This disclosure is directed to an electrolysis cell forming hydrogen and oxygen at spaced terminals. The anode terminal is porous and able to form oxygen within the cell and permit escape of the gaseous oxygen through the anode and out through a flow line in the presence of backpressure. Hydrogen is liberated in the cell at the opposing solid metal cathode which is permeable to hydrogen but not oxygen so that the migratory hydrogen formed in the cell is able to escape from the cell. The cell is maintained at an elevated pressure so that oxygen liberated by the cell is delivered at elevated pressure without pumping to raise the pressure of the oxygen.

  3. Bis(tetra­phenyl­phospho­nium) tetra­chlorido­cobaltate(II)

    PubMed Central

    Ouahida, Zeghouan; Hadjadj, Nasreddine; Guenifa, Fatiha; Bendjeddou, Lamia; Merazig, Hocine

    2014-01-01

    The title compound, (C24H20P)2[CoCl4], was prepared under hydro­thermal conditions. In the crystal, the tetra­phenyl­phospho­nium cations are linked by pairs of weak C—H⋯π inter­actions into supra­molecular dimers; the CoII cations lie on twofold rotation axes and the tetra­hedral [CoCl4]2− anions are linked with the tetra­phenyl­phospho­nium cations via weak C—H⋯Cl hydrogen bonds. PMID:24940211

  4. Determination of organic bases in non-aqueous solvents by catalytic thermometric titration.

    PubMed

    Vajgand, V J; Kiss, T A; Gaál, F F; Zsigrai, I J

    1968-07-01

    Catalytic thermometric titrations have been developed for bases (brucine, diethylaniline, potassium acetate and triethylamine) in acetic acid by continuous and discontinuous addition of the standard solution and automatic temperature recording. The determination of weak bases, e.g., antipyrine, unsuccessful in acetic acid by catalytic thermometric titration, has been achieved by using nitromethane or acetic anhydride as solvent. Catalytic thermometric titrations were also performed by coulometric generation of hydrogen ions for the determination of micro amounts of weak bases in a mixture of acetic anhyride and acetic acid.

  5. The determination of the stacking fault energy in copper-nickel alloys

    NASA Technical Reports Server (NTRS)

    Leighly, H. P., Jr.

    1982-01-01

    Methods for determining the stacking fault energies of a series of nickel-copper alloys to gain an insight into the embrittling effect of hydrogen are evaluated. Plans for employing weak beam dark field electron microscopy to determine stacking fault energies are outlined.

  6. Organic matter on asteroid 130 Elektra

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Brown, R. H.

    1987-01-01

    Infrared absorption spectra of a low-albedo water-rich asteroid appear to show a weak 3.4-micrometer carbon-hydrogen stretching mode band, which suggests the presence of hydrocarbons on asteroid 130 Elektra. The organic extract from the primitive carbonaceous chondritic Murchison meteorite shows similar spectral bands.

  7. Detector and energy analyzer for energetic-hydrogen in beams and plasmas

    DOEpatents

    Bastasz, Robert J.; Hughes, Robert C.; Wampler, William R.

    1988-01-01

    A detector for detecting energetic hydrogen ions and atoms ranging in energy from about 1 eV up to 1 keV in an evacuated environment includes a Schottky diode with a palladium or palladium-alloy gate metal applied to a silicondioxide layer on an n-silicon substrate. An array of the energetic-hydrogen detectors having a range of energy sensitivities form a plasma energy analyzer having a rapid response time and a sensitivity for measuring fluxes of energetic hydrogen. The detector is sensitive to hydrogen and its isotopes but is insensitive to non-hydrogenic particles. The array of energetic-hydrogen detectors can be formed on a single silicon chip, with thin-film layers of gold metal applied in various thicknesses to successive detectors in the array. The gold layers serve as particle energy-filters so that each detector is sensitive to a different range of hydrogen energies.

  8. Detector and energy analyzer for energetic-hydrogen in beams and plasmas

    DOEpatents

    Bastasz, R.J.; Hughes, R.C.; Wampler, W.R.

    1988-11-01

    A detector for detecting energetic hydrogen ions and atoms ranging in energy from about 1 eV up to 1 keV in an evacuated environment includes a Schottky diode with a palladium or palladium-alloy gate metal applied to a silicon-dioxide layer on an n-silicon substrate. An array of the energetic-hydrogen detectors having a range of energy sensitivities form a plasma energy analyzer having a rapid response time and a sensitivity for measuring fluxes of energetic hydrogen. The detector is sensitive to hydrogen and its isotopes but is insensitive to non-hydrogenic particles. The array of energetic-hydrogen detectors can be formed on a single silicon chip, with thin-film layers of gold metal applied in various thicknesses to successive detectors in the array. The gold layers serve as particle energy-filters so that each detector is sensitive to a different range of hydrogen energies. 4 figs.

  9. Crystal structures of 3-fluoro-N-[2-(tri-fluoro-meth-yl)phen-yl]benzamide, 3-bromo-N-[2-(tri-fluoro-meth-yl)phen-yl]benzamide and 3-iodo-N-[2-(tri-fluoro-meth-yl)phen-yl]benzamide.

    PubMed

    Suchetan, P A; Suresha, E; Naveen, S; Lokanath, N K

    2016-06-01

    In the title compounds, C14H9F4NO, (I), C14H9BrF3NO, (II), and C14H9F3INO, (III), the two benzene rings are inclined to one another by 43.94 (8)° in mol-ecule A and 55.66 (7)° in mol-ecule B of compound (I), which crystallizes with two independent mol-ecules in the asymmetric unit, but by only 10.40 (12)° in compound (II) and 12.5 (2)° in compound (III). In the crystals of all three compounds, N-H⋯O hydrogen bonds link the mol-ecules to form chains propagating along the a-axis direction for (I), and along the b-axis direction for (II) and (III). In the crystal of (I), -A-B-A-B- chains are linked by C-H⋯O hydrogen bonds, forming layers parallel to (010). Within the layers there are weak offset π-π inter-actions present [inter-centroid distances = 3.868 (1) and 3.855 (1) Å]. In the crystals of (II) and (III), the chains are linked via short halogen-halogen contacts [Br⋯Br = 3.6141 (4) Å in (II) and I⋯I = 3.7797 (5) Å in (III)], resulting in the formation of ribbons propagating along the b-axis direction.

  10. Synthesis and characterization of two layered aluminophosphates, ( T) 2HAl 2P 3O 12 ( T=2-BuNH 3+) and ( T)H 2Al 2P 3O 12 ( T=pyH +)

    NASA Astrophysics Data System (ADS)

    Chippindale, Ann M.; Powell, Anthony V.; Bull, Lucy M.; Jones, Richard H.; Cheetham, Anthony K.; Thomas, John M.; Xu, Ruren

    1992-01-01

    Two new aluminophosphates, ( T) 2HAl 2P 3O 12 ( T=2-BuNH 3+) ( I) and ( T)H 2Al 2P 3O 12 ( T=pyH +) ( II) with the same framework stoichiometry but different layer structures have been prepared under nonaqueous conditions and the structures determined by single-crystal X-ray diffraction. Compound ( I) crystallizes in the monoclinic space group P2 1/ c ( Z=4), with lattice parameters a=9.261(1) b=8.365(6), c=27.119(4) Å, β=91.50(1)δ, and V=2100.1 Å 3 ( R=0.072 and R w=0.090). The structure consists of Al-and P-centered tetrahedra linked to form layers. Protonated 2-butylamine molecules are located in the interlayer spaces and hydrogen bonded to the layers through NH 3+ groups. Weak hydrophobic van der Waals' interactions between alkyl groups of the 2-BuNH 3+ cations hold the layers together. Compound ( II) crystallizes in the triclinic space group P-1 ( Z=2), with a=8.574(2), b=8.631(3), c=10.371(2) Å, α=81.84(3), β=87.53(2), γ=69.07(2)δ, and V=709.49Å 3 ( R=0.039 and R w=0.052). The structure contains tetrahedrally coordinated P atoms and both tetrahedral and trigonal pyramidal Al atoms linked to form layers which are held together through hydrogen bonding, creating cavities in which pyH + cations reside.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhlina, Ya. A., E-mail: altik@inbox.ru; Bolotin, B. M.; Kuz'mina, L. G., E-mail: kuzmina@igic.ras.ru

    Two crystal modifications (1o and 1y) of N-butyl-2-cyano-3-[4-(dimethylamino)phenyl]-2-propenamide, which differ in the color of crystals and the color of luminescence, have been studied by X-ray diffraction and spectral-luminescence methods. The corresponding bond lengths and bond angles in the molecules of two crystal modifications are virtually identical. In both crystal structures, there are two systems of weak intermolecular interactions: {pi}-stacking interactions and -CN Horizontal-Ellipsis H-N hydrogen bonds involving nitrile and NH groups. In the crystal structures, two hydrogen bonds connect pairs of molecules into centrosymmetric dimers. The N Horizontal-Ellipsis H distances are 2.21 and 2.41 A in 1o and 1y, respectively.more » The interplanar distances in the {pi}-stacked systems of 1o and 1y are 3.33 and 3.41 A, respectively. Both types of weak interactions are stronger in 1o than in 1y, which accounts for a larger shift of absorption and luminescence bands for the former compound.« less

  12. Nitrogen: A New Class of π-Bonding Partner in Hetero π-Stacking Interaction.

    PubMed

    Ramanathan, N; Sankaran, K; Sundararajan, K

    2017-11-30

    Spectroscopy under isolated conditions at low temperatures is an excellent tool to characterize the aggregates stabilized through weak interactions. Within the framework of weak interactions, the π-stacking interactions are considered unconventional with the limited experimental proofs, wherein the bonding associates are either aromatic and heterocyclic compounds or their combinations. Besides aromatic compounds, π-stacking networks can even be realized with molecules possessing electron rich π-clouds. In this work, the N 2 molecule as a possible π-bonding partner is explored for the first time in which hetero π-stacking was achieved between pyrrole and N 2 precursors. The matrix isolation experiments performed by seeding pyrrole and N 2 mixtures in an Ar matrix at low temperatures with subsequent infrared spectral characterization revealed the generation of adducts stabilized through a π(pyrrole)···π(N 2 ) interaction. Under identical conditions with the likelihood of two competing π-stacking and hydrogen-bonding interactions in pyrrole-N 2 associates, π-stacking dominates energetically over hydrogen-bonding interaction.

  13. Hydrogen, lithium, and lithium hydride production

    DOEpatents

    Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.; Powell, G. Louis; Campbell, Peggy J.

    2017-06-20

    A method is provided for extracting hydrogen from lithium hydride. The method includes (a) heating lithium hydride to form liquid-phase lithium hydride; (b) extracting hydrogen from the liquid-phase lithium hydride, leaving residual liquid-phase lithium metal; (c) hydriding the residual liquid-phase lithium metal to form refined lithium hydride; and repeating steps (a) and (b) on the refined lithium hydride.

  14. Ultrafine hydrogen storage powders

    DOEpatents

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  15. Low-amplitude clustering in low-redshift 21-cm intensity maps cross-correlated with 2dF galaxy densities

    NASA Astrophysics Data System (ADS)

    Anderson, C. J.; Luciw, N. J.; Li, Y.-C.; Kuo, C. Y.; Yadav, J.; Masui, K. W.; Chang, T.-C.; Chen, X.; Oppermann, N.; Liao, Y.-W.; Pen, U.-L.; Price, D. C.; Staveley-Smith, L.; Switzer, E. R.; Timbie, P. T.; Wolz, L.

    2018-05-01

    We report results from 21-cm intensity maps acquired from the Parkes radio telescope and cross-correlated with galaxy maps from the 2dF galaxy survey. The data span the redshift range 0.057 < z < 0.098 and cover approximately 1300 deg2 over two long fields. Cross-correlation is detected at a significance of 5.7 σ. The amplitude of the cross-power spectrum is low relative to the expected dark matter power spectrum, assuming a neutral hydrogen (H I) bias and mass density equal to measurements from the ALFALFA survey. The decrement is pronounced and statistically significant at small scales. At k ˜ 1.5 h Mpc-1, the cross-power spectrum is more than a factor of 6 lower than expected, with a significance of 15.3 σ. This decrement indicates a lack of clustering of neutral hydrogen (H I), a small correlation coefficient between optical galaxies and H I, or some combination of the two. Separating 2dF into red and blue galaxies, we find that red galaxies are much more weakly correlated with H I on k ˜ 1.5 h Mpc-1 scales, suggesting that H I is more associated with blue star-forming galaxies and tends to avoid red galaxies.

  16. Rapid Water Transport through Organic Layers on Ice.

    PubMed

    Kong, Xiangrui; Toubin, Céline; Habartova, Alena; Pluharova, Eva; Roeselova, Martina; Pettersson, Jan B C

    2018-05-31

    Processes involving atmospheric aerosol and cloud particles are affected by condensation of organic compounds that are omnipresent in the atmosphere. On ice particles, organic compounds with hydrophilic functional groups form hydrogen bonds with the ice and orient their hydrophobic groups away from the surface. The organic layer has been expected to constitute a barrier to gas uptake, but recent experimental studies suggest that the accommodation of water molecules on ice is only weakly affected by condensed short-chain alcohol layers. Here, we employ molecular dynamics simulations to study the water interactions with n-butanol covered ice at 200 K and show that the small effect of the condensed layer is due to efficient diffusion of water molecules along the surface plane while seeking appropriate sites to penetrate, followed by penetration driven by the combined attractive forces from butanol OH groups and water molecules within the ice. The water molecules that penetrate through the n-butanol layer become strongly bonded by approximately three hydrogen bonds at the butanol-ice interface. The obtained accommodation coefficient (0.81 ± 0.03) is in excellent agreement with results from previous environmental molecular beam experiments, leading to a picture where an adsorbed n-butanol layer does not alter the apparent accommodation coefficient but dramatically changes the detailed molecular dynamics and kinetics.

  17. Effects of Drying Process on an IgG1 Monoclonal Antibody Using Solid-State Hydrogen Deuterium Exchange with Mass Spectrometric Analysis (ssHDX-MS).

    PubMed

    Moussa, Ehab M; Wilson, Nathan E; Zhou, Qi Tony; Singh, Satish K; Nema, Sandeep; Topp, Elizabeth M

    2018-01-03

    Lyophilization and spray drying are widely used to manufacture solid forms of therapeutic proteins. Lyophilization is used to stabilize proteins vulnerable to degradation in solution, whereas spray drying is mainly used to prepare inhalation powders or as an alternative to freezing for storing bulk drug substance. Both processes impose stresses that may adversely affect protein structure, stability and bioactivity. Here, we compared lyophilization with and without controlled ice nucleation, and spray drying for their effects on the solid-state conformation and matrix interactions of a model IgG1 monoclonal antibody (mAb). Solid-state conformation and matrix interactions of the mAb were probed using solid-state hydrogen-deuterium exchange with mass spectrometric analysis (ssHDX-MS), and solid-state Fourier transform infrared (ssFTIR) and solid-state fluorescence spectroscopies. mAb conformation and/or matrix interactions were most perturbed in mannitol-containing samples and the distribution of states was more heterogeneous in sucrose and trehalose samples that were spray dried. The findings demonstrate the sensitivity of ssHDX-MS to changes weakly indicated by spectroscopic methods, and support the broader use of ssHDX-MS to probe formulation and process effects on proteins in solid samples.

  18. The cocrystal rac-1-[(N,4-dimethylbenzenesulfonamido)methyl]-2-(diphenylphosphoryl)ferrocene-rac-1-[(N,4-dimethylbenzenesulfonamido)methyl]-2-(diphenylphosphanyl)ferrocene (0.45/0.55).

    PubMed

    Wei, Muh Mei; Audin, Catherine; Manoury, Eric; Deydier, Eric; Daran, Jean Claude

    2014-03-01

    As part of our interest in the synthesis and catalytic applications of chiral (diphenylphosphanyl)ferrocene ligands, we designed a number of P,N-containing ligands for use in asymmetric transfer hydrogenation (ATH). During the synthetic procedure to obtain rac-1-[(N,4-dimethylbenzenesulfonamido)methyl]-2-(diphenylphosphanyl)ferrocene, the title compound, [Fe(C5H5)(C26H25NO2PS)]0.55 · [Fe(C5H5)(C26H25NO3PS)]0.45, was obtained as a by-product. It is composed of a ferrocene group disubstituted by a partially oxidized diphenylphosphanyl group, as confirmed by (31)P NMR analysis, and an (N,4-dimethylbenzenesulfonamido)methyl substituent. Owing to the partially oxidized diphenylphosphanyl group, it is best to view the crystal as being composed of a mixture of non-oxidized and oxidized phosphane, so it can be regarded as a cocrystal. It is also a racemate. To the best of our knowledge, the P=O distance [1.344 (4) Å] is the shortest observed for related (diphenylphosphoryl)ferrocene compounds. The packing is stabilized by weak C-H...O interactions, forming R2(2)(10) hydrogen-bonding motifs, which build up a chain along the c axis.

  19. Method for controlled hydrogen charging of metals

    DOEpatents

    Cheng, Bo-Ching; Adamson, Ronald B.

    1984-05-29

    A method for controlling hydrogen charging of hydride forming metals through a window of a superimposed layer of a non-hydriding metal overlying the portion of the hydride forming metals to be charged.

  20. Electrochemical hydrogen Storage Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy.more » A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to their hydride form. In addition to this experimental work, a parallel project was carried out to develop a new model of electrochemical impedance spectroscopy (EIS) that could be used to define the mechanisms of the electrochemical hydrogenation reactions. The EIS technique is capable of probing complex chemical and electrochemical reactions, and our model was written into a computer code that allowed the input of experimental EIS data and the extraction of kinetic parameters based on a best-fit analysis of theoretical reaction schemes. Finally, electrochemical methods for hydrogenating organic and metallo-organic materials have been explored.« less

  1. Process for obtaining liquid fuel-oil and/or gaseous hydrocarbons from solid carbonaceous feed stocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollaway, J.W.

    1978-02-28

    A process for forming a fuel-oil from coal is disclosed. The coal is treated in a low temperature carbonization retort to give coke, coal-gas and tar-oil. The coke is converted to water-gas which is then synthesized in a Fischer-Tropsch synthesizer to form fuel-oil. The tar-oil is hydrogenated in a hydro-treater by hydrogen produced from the coal-gas. Hydrogen is produced from coal-gas either in a thermal cracking chamber or by reforming the methane content to hydrogen and passing the resultant hydrogen/carbon monoxide mixture through a water-gas shift reactor and a carbon dioxide scrubber.

  2. Thermal method for fabricating a hydrogen separation membrane on a porous substrate

    DOEpatents

    Song, Sun-Ju [Orland Park, IL; Lee, Tae H [Naperville, IL; Chen, Ling [Woodridge, IL; Dorris, Stephen E [LaGrange Park, IL; Balachandran, Uthamalingam [Hinsdale, IL

    2009-10-20

    A thermal method of making a hydrogen permeable composition is disclosed. A mixture of metal oxide powder and ceramic oxide powder and optionally a pore former is formed and pressed to form an article. The article is dried at elevated temperatures and then sintered in a reducing atmosphere to provide a dense hydrogen permeable portion near the surface of the sintered mixture. The dense hydrogen permeable portion has a higher initial concentration of metal than the remainder of the sintered mixture and is present in the range of from about 20 to about 80 percent by volume of the dense hydrogen permeable portion.

  3. Analysis of hydrogen isotope mixtures

    DOEpatents

    Villa-Aleman, Eliel

    1994-01-01

    An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

  4. Spin-dependent polarizabilities of hydrogenic atoms in magnetic fields of arbitrary strength

    NASA Astrophysics Data System (ADS)

    Castner, T. G.; Dexter, D. L.; Druger, S. D.

    1981-12-01

    Utilizing the magnetic field-dependent spin-orbit interaction, the relativistic correction to the Zeeman energy, and the usual diamagnetic interaction, we have calculated spin-dependent electrical polarizabilities of hydrogenic atoms using the Hassé variational approach. The polarizabilities α(↑) and α(↓) for the two spin directions have been obtained for the electric field both parallel and perpendicular to the magnetic field Hz in the weak-field (γ<<1), intermediate-field (γ~1), and strong-field (γ>>1) limits, where γ=(ɛ2ℏ3Hzm*2e3c), with ɛ a static dielectric constant and m* an isotropic effective mass. The results for hydrogen atoms (ɛ=1 and m*=m) in the weak-field limit yield [α(↓)-α(↑)]α(0)~2.31α2fsγ (αfs=1137) with a negligible anisotropy. In the strong-field limit [α⊥(↓)-α⊥(↑)] falls precipitously while [α∥(↓)-α∥(↑)] continues to increase up to at least γ=104, but more slowly than linearly with γ. The spin-independent quantities [α∥(↓)+α∥(↑)] and [α⊥(↓)+α⊥(↑)] are discussed in the intermediate- and high-field limits and represent an extension of the earlier low-field results obtained by Dexter. The implications of these results for shallow-donor impurity atoms in semiconductors and for hydrogen-atom atmospheres of magnetic white dwarfs and neutron stars are briefly considered. The effects of the dramatic shrinkage of the electron's wave function on the spin Zeeman energy and the electron-proton hyperfine interaction are also discussed.

  5. Hydrogenation of coal liquid utilizing a metal carbonyl catalyst

    DOEpatents

    Feder, Harold M.; Rathke, Jerome W.

    1979-01-01

    Coal liquid having a dissolved transition metal, catalyst as a carbonyl complex such as Co.sub.2 (CO.sub.8) is hydrogenated with hydrogen gas or a hydrogen donor. A dissociating solvent contacts the coal liquid during hydrogenation to form an immiscible liquid mixture at a high carbon monoxide pressure. The dissociating solvent, e.g. ethylene glycol, is of moderate coordinating ability, while sufficiently polar to solvate the transition metal as a complex cation along with a transition metal, carbonyl anion in solution at a decreased carbon monoxide pressure. The carbon monoxide pressure is reduced and the liquids are separated to recover the hydrogenated coal liquid as product. The dissociating solvent with the catalyst in ionized form is recycled to the hydrogenation step at the elevated carbon monoxide pressure for reforming the catalyst complex within fresh coal liquid.

  6. Hydrogenation of carbonaceous materials

    DOEpatents

    Friedman, Joseph; Oberg, Carl L.; Russell, Larry H.

    1980-01-01

    A method for reacting pulverized coal with heated hydrogen-rich gas to form hydrocarbon liquids suitable for conversion to fuels wherein the reaction involves injection of pulverized coal entrained in a minimum amount of gas and mixing the entrained coal at ambient temperature with a separate source of heated hydrogen. In accordance with the present invention, the hydrogen is heated by reacting a small portion of the hydrogen-rich gas with oxygen in a first reaction zone to form a gas stream having a temperature in excess of about 1000.degree. C. and comprising a major amount of hydrogen and a minor amount of water vapor. The coal particles then are reacted with the hydrogen in a second reaction zone downstream of the first reaction zone. The products of reaction may be rapidly quenched as they exit the second reaction zone and are subsequently collected.

  7. Hydrogen bonding: part 78. Ab initio molecular orbital study of intra- and intermolecular hydrogen bonding in choline and betaine and their compounds with HF and H 2O

    NASA Astrophysics Data System (ADS)

    Harmon, K. M.; Avci, G. F.; Madeira, S. L.; Mounts, P. A.; Thiel, A. C.

    2001-10-01

    We previously prepared several compounds of the zwitterions [(CH3)3NCH2CH2O]0 (deprotonated choline, herein named cholaine) and [(CH3)3NCH2CO2]0 (betaine) and proposed structures based on infrared spectroscopy. We now examine these compounds with use of ab initio molecular orbital methods to further elucidate possible structure. These calculations demonstrate that: (1) cholaine and betaine both have internal CHO hydrogen bonds, and these are retained in some form in all other compounds. (2) Cholaine hydrate and hydrofluoride and betaine hydrofluoride monomers have covalent three-center hydrogen bonds between H2O or HF and negative zwitterion oxygen, and additional CHX hydrogen bonds to H2O oxygen or HF fluorine. (3) Cholaine monohydrate and cholaine hydrofluoride monohydrate form dimers of Ci symmetry which contain planar C2h (H2O·O)2 and (HOH·F)2 clusters. (4) Cholaine hydrofluoride forms head-to-tail dimers bound by intermolecular CHX hydrogen bonds; this arrangement could lead to extended linear structures in the solid state. (5) Betaine hydrofluoride, in contrast, forms a tightly bound discrete dimeric unit in which two molecules join in a head-to-head manner held together by five intermolecular hydrogen bonds and by the mutual proximities of negative fluorides to positive nitrogens.

  8. The effect of urea on microstructures of Ni{sub 3}S{sub 2} on nickel foam and its hydrogen evolution reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jinlong, Lv, E-mail: ljltsinghua@126.com; State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084; Tongxiang, Liang, E-mail: txliang@mail.tsinghua.edu.cn

    The effects of urea concentration on microstructures of Ni{sub 3}S{sub 2}formed on nickel foam and its hydrogen evolution reaction were investigated. The Ni{sub 3}S{sub 2} nanosheets with porous structure were formed on nickel foam during hydrothermal process due to low urea concentration. While high urea concentration facilitated the forming of Ni{sub 3}S{sub 2} nanotube arrays. The resulting Ni{sub 3}S{sub 2} nanotube arrays exhibited higher catalytic activity than Ni3S2nanosheets for hydrogen evolution reaction. This was mainly attributed to a fact that Ni{sub 3}S{sub 2} nanotube arrays facilitated diffusion of electrolyte for hydrogen evolution reaction. - Graphical abstract: The resulting Ni{sub 3}S{submore » 2} nanotube arrays exhibited higher catalytic activity than Ni{sub 3}S{sub 2} nanosheets for hydrogen evolution reaction. This was mainly attributed to a fact that Ni{sub 3}S{sub 2} nanotube arrays facilitated diffusion of electrolyte for hydrogen evolution reaction and hydrogen evolution. - Highlights: • Urea promoted to forming more Ni{sub 3}S{sub 2} nanotube arrays on nickel foam. • Ni{sub 3}S{sub 2} nanotube arrays showed higher catalytic activity in alkaline solution. • Ni{sub 3}S{sub 2} nanotube arrays promoted electron transport and reaction during the HER.« less

  9. Towards the synthesis of prenylated phloroglucinol derivatives: An X-ray crystallographic and DFT study of unexpected reaction products

    NASA Astrophysics Data System (ADS)

    Akerman, Matthew P.; Mkhize, Zimbili; van Heerden, Fanie R.

    2018-07-01

    Owing to their bioactivity and prevalence in medicinal plant extracts, prenylated phloroglucinols have garnered significant interest. Towards the synthesis of prenylated phloroglucinol derivatives, 2,4,6-trihydroxy-3-(3-methylbut-2-enyl)acetophenone is required as an intermediate. Herein, this was synthesised by a tandem Claisen-Cope rearrangement reaction on 2,4-bis(methoxymethoxy)-6-(3-methylbut-2-enyloxy)acetophenone and a subsequent hydrolysis to remove protecting groups. This reaction yielded the desired product as well as three by-products. Two of these by-products were isomeric chromane derivatives (2 and 3) and the third was a methoxy derivative (4). These compounds have been studied by single crystal X-ray crystallography and DFT methods. Compound (2) crystallised in the P21/c space group with two hydrogen-bonded molecules in the asymmetric unit (Z = 8). Compound (4) crystallised in the Pbca space group with a single molecule in the asymmetric unit (Z = 8). Both compounds formed extensive supramolecular structures supported by hydrogen bonds in the solid state. Compound (2) forms a simple one-dimensional hydrogen-bonded chain co-linear with the a-axis. Compound (4) forms a two-dimensional supramolecular structure comprising "pentameric" hydrogen-bonded motifs linked by additional H-bonds to form the supramolecular structure. Both structures showed intramolecular hydrogen bonds between the acetyl oxygen and adjacent OH group. DFT simulations were used to probe the relative energies of the molecules and hydrogen bonds. These simulations showed that the intramolecular hydrogen bond has a substantial stabilising effect with an interaction strength of 70.64 kJ mol-1. The formation of the hydrogen-bonded dimer of (2) from which the supramolecular structure is formed has a ΔHassoc constant of -42.32 kJ mol-1, illustrating that the formation of the hydrogen-bonded structure is energetically favourable.

  10. Identification of N-ethylmethylamine as a novel scaffold for inhibitors of soluble epoxide hydrolase by crystallographic fragment screening.

    PubMed

    Amano, Yasushi; Tanabe, Eiki; Yamaguchi, Tomohiko

    2015-05-15

    Soluble epoxide hydrolase (sEH) is a potential target for the treatment of inflammation and hypertension. X-ray crystallographic fragment screening was used to identify fragment hits and their binding modes. Eight fragment hits were identified via soaking of sEH crystals with fragment cocktails, and the co-crystal structures of these hits were determined via individual soaking. Based on the binding mode, N-ethylmethylamine was identified as a promising scaffold that forms hydrogen bonds with the catalytic residues of sEH, Asp335, Tyr383, and Tyr466. Compounds containing this scaffold were selected from an in-house chemical library and assayed. Although the starting fragment had a weak inhibitory activity (IC50: 800μM), we identified potent inhibitors including 2-({[2-(adamantan-1-yl)ethyl]amino}methyl)phenol exhibiting the highest inhibitory activity (IC50: 0.51μM). This corresponded to a more than 1500-fold increase in inhibitory activity compared to the starting fragment. Co-crystal structures of the hit compounds demonstrate that the binding of N-ethylmethylamine to catalytic residues is similar to that of the starting fragment. We therefore consider crystallographic fragment screening to be appropriate for the identification of weak but promising fragment hits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. System for operating solid oxide fuel cell generator on diesel fuel

    NASA Technical Reports Server (NTRS)

    Singh, Prabhu (Inventor); George, Raymond A. (Inventor)

    1997-01-01

    A system is provided for operating a solid oxide fuel cell generator on diesel fuel. The system includes a hydrodesulfurizer which reduces the sulfur content of commercial and military grade diesel fuel to an acceptable level. Hydrogen which has been previously separated from the process stream is mixed with diesel fuel at low pressure. The diesel/hydrogen mixture is then pressurized and introduced into the hydrodesulfurizer. The hydrodesulfurizer comprises a metal oxide such as ZnO which reacts with hydrogen sulfide in the presence of a metal catalyst to form a metal sulfide and water. After desulfurization, the diesel fuel is reformed and delivered to a hydrogen separator which removes most of the hydrogen from the reformed fuel prior to introduction into a solid oxide fuel cell generator. The separated hydrogen is then selectively delivered to the diesel/hydrogen mixer or to a hydrogen storage unit. The hydrogen storage unit preferably comprises a metal hydride which stores hydrogen in solid form at low pressure. Hydrogen may be discharged from the metal hydride to the diesel/hydrogen mixture at low pressure upon demand, particularly during start-up and shut-down of the system.

  12. Hydrogen and elemental carbon production from natural gas and other hydrocarbons

    DOEpatents

    Detering, Brent A.; Kong, Peter C.

    2002-01-01

    Diatomic hydrogen and unsaturated hydrocarbons are produced as reactor gases in a fast quench reactor. During the fast quench, the unsaturated hydrocarbons are further decomposed by reheating the reactor gases. More diatomic hydrogen is produced, along with elemental carbon. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The product is a substantially clean-burning hydrogen fuel that leaves no greenhouse gas emissions, and elemental carbon that may be used in powder form as a commodity for several processes.

  13. Hydrogen bonding directed self-assembly of small-molecule amphiphiles in water.

    PubMed

    Xu, Jiang-Fei; Niu, Li-Ya; Chen, Yu-Zhe; Wu, Li-Zhu; Tung, Chen-Ho; Yang, Qing-Zheng

    2014-08-01

    Compounds comprising one or two quadruply hydrogen bonding units, 2-ureido-4[1H]-pyrimidinone (UPy) and tris(tetraethylene glycol monomethyl ether) moieties, were reported to form highly stable hydrogen-bonded assemblies in water. Compound 1, containing one UPy, assembles into vesicles, and compound 2, containing two UPy units, forms micelles. The aggregates disassemble reversibly when the solution pH is raised to 9.0 or above. The results demonstrate the utility of hydrogen bonding to direct the self-assembly of small-molecule building blocks in aqueous media.

  14. Interaction of alkanes with an amorphous methanol film at 15-180 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souda, Ryutaro

    2005-09-15

    The hydrogen-bond imperfections and glass-liquid transition of the amorphous methanol film have been investigated on the basis of the film dewetting and the incorporation/desorption of alkane molecules adsorbed on the surface. The butane is incorporated completely in the bulk of the porous methanol film up to 70 K. At least two distinct states exist for the incorporated butane; one is assignable to solvated molecules in the bulk and the other is weakly bound species at the surface or in the subsurface site. For the nonporous methanol film, the uptake of butane in the bulk is quenched but butane forms amore » surface complex with methanol above 80 K. The butane incorporated in the bulk of the glassy methanol film is released at 120 K, where dewetting of the methanol film occurs simultaneously due to evolution of the supercooled liquid phase.« less

  15. (2-{[2-(1H-Benzimidazol-2-yl-κN 3)phen­yl]imino­methyl-κN}-5-methyl­phenolato-κO)chloridozinc(II)

    PubMed Central

    Eltayeb, Naser Eltaher; Teoh, Siang Guan; Chantrapromma, Suchada; Fun, Hoong-Kun

    2011-01-01

    In the title mononuclear complex, [Zn(C21H16N3O)Cl], the ZnII ion is coordinated in a distorted tetra­hedral geometry by two benzimidazole N atoms and one phenolate O atom from the tridentate Schiff base ligand and a chloride ligand. The benzimidazole ring system forms dihedral angles of 26.68 (9) and 56.16 (9)° with the adjacent benzene ring and the methyl­phenolate group benzene ring, respectively. In the crystal, mol­ecules are linked by N—H⋯Cl hydrogen bonds into chains along [100]. Furthermore, weak C—H⋯O and C—H⋯π inter­actions, in addition to π–π inter­actions with centroid–centroid distances in the range 3.5826 (13)–3.9681 (13) Å, are also observed. PMID:22065469

  16. Controlling nitrogen migration through micro-nano networks

    NASA Astrophysics Data System (ADS)

    Cai, Dongqing; Wu, Zhengyan; Jiang, Jiang; Wu, Yuejin; Feng, Huiyun; Brown, Ian G.; Chu, Paul K.; Yu, Zengliang

    2014-01-01

    Nitrogen fertilizer unabsorbed by crops eventually discharges into the environment through runoff, leaching and volatilization, resulting in three-dimensional (3D) pollution spanning from underground into space. Here we describe an approach for controlling nitrogen loss, developed using loss control fertilizer (LCF) prepared by adding modified natural nanoclay (attapulgite) to traditional fertilizer. In the aqueous phase, LCF self-assembles to form 3D micro/nano networks via hydrogen bonds and other weak interactions, obtaining a higher nitrogen spatial scale so that it is retained by a soil filtering layer. Thus nitrogen loss is reduced and sufficient nutrition for crops is supplied, while the pollution risk of the fertilizer is substantially lowered. As such, self-fabrication of nano-material was used to manipulate the nitrogen spatial scale, which provides a novel and promising approach for the research and control of the migration of other micro-scaled pollutants in environmental medium.

  17. 8-Fluoro-4-oxo-4H-chromene-3-carbalde­hyde

    PubMed Central

    Ishikawa, Yoshinobu

    2014-01-01

    In the title compound, C10H5FO3, the non-H atoms of the 8-fluoro­chromone unit are essentially coplanar (r.m.s. deviation = 0.0259 Å), with a largest deviation from the mean plane of 0.0660 (12) Å for the chromone carbonyl O atom. The formyl group is twisted with respect to the attached ring [C—C—C—O torsion angles = −11.00 (19) and 170.81 (11)°]. In the crystal, mol­ecules are linked via weak C—H⋯O hydrogen bonds along the a axis and [-101], forming corrugated layers parallel to (010). In addition, π–π stacking inter­actions [centroid–centroid distance between the planes of the pyran and benzene rings = 3.519 (2) Å] are observed between these layers. PMID:25161562

  18. Controlling nitrogen migration through micro-nano networks.

    PubMed

    Cai, Dongqing; Wu, Zhengyan; Jiang, Jiang; Wu, Yuejin; Feng, Huiyun; Brown, Ian G; Chu, Paul K; Yu, Zengliang

    2014-01-14

    Nitrogen fertilizer unabsorbed by crops eventually discharges into the environment through runoff, leaching and volatilization, resulting in three-dimensional (3D) pollution spanning from underground into space. Here we describe an approach for controlling nitrogen loss, developed using loss control fertilizer (LCF) prepared by adding modified natural nanoclay (attapulgite) to traditional fertilizer. In the aqueous phase, LCF self-assembles to form 3D micro/nano networks via hydrogen bonds and other weak interactions, obtaining a higher nitrogen spatial scale so that it is retained by a soil filtering layer. Thus nitrogen loss is reduced and sufficient nutrition for crops is supplied, while the pollution risk of the fertilizer is substantially lowered. As such, self-fabrication of nano-material was used to manipulate the nitrogen spatial scale, which provides a novel and promising approach for the research and control of the migration of other micro-scaled pollutants in environmental medium.

  19. Crystal structure and absolute configuration of (3aS,4S,5R,7aR)-2,2,7-trimethyl-3a,4,5,7a-tetra-hydro-1,3-benzodioxole-4,5-diol.

    PubMed

    Macías, Mario A; Suescun, Leopoldo; Pandolfi, Enrique; Schapiro, Valeria; Tibhe, Gaurao D; Mombrú, Álvaro W

    2015-09-01

    The absolute configuration of the title compound, C10H16O4, determined as 3aS,4S,5R,7aR on the basis of the synthetic pathway, was confirmed by X-ray diffraction. The mol-ecule contains a five- and a six-membered ring that adopt twisted and envelope conformations, respectively. The dihedral angle between the mean planes of the rings is 76.80 (11)° as a result of their cis-fusion. In the crystal, mol-ecules are linked by two pairs of O-H⋯O hydrogen bonds, forming chains along [010]. These chains are further connected by weaker C-H⋯O inter-actions along [100], creating (001) sheets that inter-act only by weak van der Waals forces.

  20. Solid-state modeling of the terahertz spectrum of the high explosive HMX.

    PubMed

    Allis, Damian G; Prokhorova, Darya A; Korter, Timothy M

    2006-02-09

    The experimental solid-state terahertz (THz) spectrum (3-120 cm(-1)) of the beta-crystal form of the high explosive octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) has been analyzed using solid-state density functional theory calculations. Various density functionals (both generalized gradient approximation and local density approximation) are compared in terms of their abilities to reproduce the experimentally observed solid-state structure and low-frequency vibrational motions. Good-to-excellent agreement between solid-state theory and experiment can be achieved in the THz region where isolated-molecule calculations fail to reproduce the observed spectral features, demonstrating a clear limitation of using isolated-molecule calculations for the assignment of THz frequency motions in molecular solids. The deficiency of isolated-molecule calculations is traced to modification of the molecular structure in the solid state through crystal packing effects and the formation of weak C-H...O hydrogen bonds.

  1. Controlling nitrogen migration through micro-nano networks

    PubMed Central

    Cai, Dongqing; Wu, Zhengyan; Jiang, Jiang; Wu, Yuejin; Feng, Huiyun; Brown, Ian G.; Chu, Paul K.; Yu, Zengliang

    2014-01-01

    Nitrogen fertilizer unabsorbed by crops eventually discharges into the environment through runoff, leaching and volatilization, resulting in three-dimensional (3D) pollution spanning from underground into space. Here we describe an approach for controlling nitrogen loss, developed using loss control fertilizer (LCF) prepared by adding modified natural nanoclay (attapulgite) to traditional fertilizer. In the aqueous phase, LCF self-assembles to form 3D micro/nano networks via hydrogen bonds and other weak interactions, obtaining a higher nitrogen spatial scale so that it is retained by a soil filtering layer. Thus nitrogen loss is reduced and sufficient nutrition for crops is supplied, while the pollution risk of the fertilizer is substantially lowered. As such, self-fabrication of nano-material was used to manipulate the nitrogen spatial scale, which provides a novel and promising approach for the research and control of the migration of other micro-scaled pollutants in environmental medium. PMID:24419037

  2. {2,2′-[Ethane-1,2-diylbis(nitrilo­methan­yl­yl­idene)]diphenolato}(iso­propano­lato)aluminium di­chloro­methane hemisolvate

    PubMed Central

    Zaitsev, Kirill V.; Kuchuk, Ekaterina A.; Karlov, Sergey S.; Zaitseva, Galina S.; Churakov, Andrei V.

    2013-01-01

    In the title compound, [Al(C16H14N2O2)(C3H7O)]·0.5CH2Cl2, the salen complex is monomeric and the dichlormethane solvent mol­ecule lies on a crystallographic twofold axis. The central Al atom is fivefold coordinated and possesses a square-based pyramidal environment. The Al—OAlk(iprop­yl) bond [1.7404 (14) Å] is much shorter than the Al—OAr(salen) bond lengths [1.7974 (15) and 1.8094 (14) Å]. The iso­propyl­oxo group forms an intra­molecular C—H⋯N hydrogen bond. In the crystal, the complex mol­ecules are linked by weak C—H⋯O inter­actions. PMID:24454153

  3. Crystal structure of (1S,2S,2′R,3a′S,5R)-2′-[(5-bromo-1H-indol-3-yl)meth­yl]-2-isopropyl-5,5′-dimethyl­dihydro-2′H-spiro­[cyclo­hexane-1,6′-imidazo[1,5-b]isoxazol]-4′(5′H)-one

    PubMed Central

    Ghannay, Siwar; Brahmi, Jihed; Nasri, Soumaya; Aouadi, Kaïss; Jeanneau, Erwann; Msaddek, Moncef

    2016-01-01

    In the title compound, C24H32BrN3O2, the six-membered cyclo­hexane ring adopts a chair conformation and the isoxasolidine ring adopts a twisted conformation. The mol­ecule has five chiral centres and the absolute configuration has been determined in this analysis. The mol­ecular structure is stabilized by weak intra­molecular C—H⋯O and C—H⋯N contacts. In the crystal, mol­ecules are linked by N—H⋯N and C—H⋯O hydrogen bonds, forming undulating sheets parallel to the bc plane. PMID:27536387

  4. Conjugating binary systems for spacecraft thermal control

    NASA Technical Reports Server (NTRS)

    Grodzka, Philomena G.; Dean, William G.; Sisk, Lori A.; Karu, Zain S.

    1989-01-01

    The materials search was directed to liquid pairs which can form hydrogen bonds of just the right strength, i.e., strong enough to give a high heat of mixing, but weak enough to enable phase change to occur. The cursory studies performed in the area of additive effects indicate that Conjugating Binary (CB) performance can probably be fine-tuned by this means. The Fluid Loop Test Systems (FLTS) tests of candidate CBs indicate that the systems Triethylamine (TEA)/water and propionaldehyde/water show close to the ideal, reversible behavior, at least initially. The Quick Screening Tests QSTs and FLTS tests, however, both suffer from rather severe static due either to inadequate stirring or temperature control. Thus it is not possible to adequately evaluate less than ideal CB performers. Less than ideal performers, it should be noted, may have features that make them better practical CBs than ideal performers. Improvement of the evaluation instrumentation is thus indicated.

  5. DFT study of CO2 conversion on InZr3(110) surface.

    PubMed

    Zhang, Minhua; Dou, Maobin; Yu, Yingzhe

    2017-11-01

    Methanol and methane synthesis from CO 2 hydrogenation on a InZr 3 (110) surface has been studied using density functional theory calculations. The CO 2 can be chemically adsorbed via a polydentated configuration and the H 2 molecule can dissociate to H atoms spontaneously. The methanol is primarily formed via the HCOO route instead of the RWGS route, due to its higher activation barrier of 1.35 eV for HCO hydrogenation. In the HCOO route, the adsorbed CO 2 consecutively hydrogenates to form HCOO, H 2 COO and the H 3 CO species. The H 3 COH is produced via the reaction of H 3 CO with a surface OH group. Furthermore, the C-O bonds of CO, CHO, CH 2 O and CH 3 O species prefer to dissociate to C, CH, CH 2 CH 3 and surface O species. Methane is formed via the hydrogenation of CH x (x = 0-3) monomers with the highest activation barrier of 1.19 eV for CH 3 hydrogenation, which is higher than that of the hydrogenation of H 2 COO in methanol synthesis via the HCOO route. The surface O species formed during CO 2 hydrogenation reacts with the adsorbed H 2 molecule to produce an OH group which reacts with a surface H atom to form H 2 O with an activation barrier of 1.13 eV, which then desorbs to the gas phase. Our calculated results indicate that the InZr 3 alloy is a potential candidate catalyst for CO 2 utilization and conversion.

  6. Ice method for production of hydrogen clathrate hydrates

    DOEpatents

    Lokshin, Konstantin [Santa Fe, NM; Zhao, Yusheng [Los Alamos, NM

    2008-05-13

    The present invention includes a method for hydrogen clathrate hydrate synthesis. First, ice and hydrogen gas are supplied to a containment volume at a first temperature and a first pressure. Next, the containment volume is pressurized with hydrogen gas to a second higher pressure, where hydrogen clathrate hydrates are formed in the process.

  7. Molecular complexes of alprazolam with carboxylic acids, boric acid, boronic acids, and phenols. Evaluation of supramolecular heterosynthons mediated by a triazole ring.

    PubMed

    Varughese, Sunil; Azim, Yasser; Desiraju, Gautam R

    2010-09-01

    A series of molecular complexes, both co-crystals and salts, of a triazole drug-alprazolam-with carboxylic acids, boric acid, boronic acids, and phenols have been analyzed with respect to heterosynthons present in the crystal structures. In all cases, the triazole ring behaves as an efficient hydrogen bond acceptor with the acidic coformers. The hydrogen bond patterns exhibited with aromatic carboxylic acids were found to depend on the nature and position of the substituents. Being a strong acid, 2,6-dihydroxybenzoic acid forms a salt with alprazolam. With aliphatic dicarboxylic acids alprazolam forms hydrates and the water molecules play a central role in synthon formation and crystal packing. The triazole ring makes two distinct heterosynthons in the molecular complex with boric acid. Boronic acids and phenols form consistent hydrogen bond patterns, and these are seemingly independent of the substitutional effects. Boronic acids form noncentrosymmetric cyclic synthons, while phenols form O--H...N hydrogen bonds with the triazole ring.

  8. The onsite manufacture of propellant oxygen from lunar resources

    NASA Technical Reports Server (NTRS)

    Rosenberg, Sanders D.; Beegle, Robert L., Jr.; Guter, Gerald A.; Miller, Frederick E.; Rothenberg, Michael

    1992-01-01

    The Aerojet carbothermal process for the manufacture of oxygen from lunar materials has three essential steps: the reduction of silicate with methane to form carbon monoxide and hydrogen; the reduction of carbon monoxide with hydrogen to form methane and water; and the electrolysis of water to form hydrogen and oxygen. The reactions and the overall process are shown. It is shown with laboratory experimentation that the carbothermal process is feasible. Natural silicates can be reduced with carbon or methane. The important products are carbon monoxide, metal, and slag. The carbon monoxide can be completely reduced to form methane and water. The water can be electrolyzed to produce hydrogen and oxygen. A preliminary engineering study shows that the operation of plants using this process for the manufacture of propellant oxygen has a large economic advantage when the cost of the plant and its operation is compared to the cost of delivering oxygen from Earth.

  9. Crystal water as the mol-ecular glue for obtaining different co-crystal ratios: the case of gallic acid tris-caffeine hexa-hydrate.

    PubMed

    Vella-Zarb, L; Baisch, U

    2018-04-01

    The crystal structure of the hexa-hydrate co-crystal of gallic acid and caffeine, C 7 H 6 O 5 ·3C 8 H 10 N 4 O 2 ·6H 2 O or GAL3CAF·6H 2 O , is a remarkable example of the importance of hydrate water acting as structural glue to facilitate the crystallization of two components of different stoichiometries and thus to compensate an imbalance of hydrogen-bond donors and acceptors. The water mol-ecules provide the additional hydrogen bonds required to form a crystalline solid. Whereas the majority of hydrogen bonds forming the inter-molecular network between gallic acid and caffeine are formed by crystal water, only one direct classical hydrogen bond between two mol-ecules is formed between the carb-oxy-lic oxygen of gallic acid and the carbonyl oxygen of caffeine with d ( D ⋯ A ) = 2.672 (2) Å. All other hydrogen bonds either involve crystal water or utilize protonated carbon atoms as donors.

  10. Hormetic concentrations of hydrogen peroxide but not ethanol induce cross-adaptation to different stresses in budding yeast.

    PubMed

    Semchyshyn, Halyna M

    2014-01-01

    The biphasic-dose response of microorganisms to hydrogen peroxide is a phenomenon of particular interest in hormesis research. In different animal models, the dose-response curve for ethanol is also nonlinear showing an inhibitory effect at high doses but a stimulatory effect at low doses. In this study, we observed the hormetic-dose response to ethanol in budding yeast S. cerevisiae. Cross-protection is a phenomenon in which exposure to mild stress results in the acquisition of cellular resistance to lethal stress induced by different factors. Since both hydrogen peroxide and ethanol at low concentrations were found to stimulate yeast colony growth, we evaluated the role of one substance in cell cross-adaptation to the other substance as well as some weak organic acid preservatives. This study demonstrates that, unlike ethanol, hydrogen peroxide at hormetic concentrations causes cross-resistance of S. cerevisiae to different stresses. The regulatory protein Yap1 plays an important role in the hormetic effects by low concentrations of either hydrogen peroxide or ethanol, and it is involved in the yeast cross-adaptation by low sublethal doses of hydrogen peroxide.

  11. Additional hydrogen bonds and base-pair kinetics in the symmetrical AMP-DNA aptamer complex.

    PubMed Central

    Nonin-Lecomte, S; Lin, C H; Patel, D J

    2001-01-01

    The solution structure of an adenosine monophosphate (AMP)-DNA aptamer complex has been determined previously [Lin, C. H., and Patel, D. J. (1997) Chem. Biol. 4:817-832]. On a symmetrical aptamer complex containing the same binding loop, but with better resolved spectra, we have identified two additional hydrogen bond-mediated associations in the binding loop. One of these involves a rapidly exchanging G imino proton. The phosphate group of the AMP ligand was identified as the acceptor by comparison with other aptamer complexes. Imino proton exchange measurements also yielded the dissociation constants of the stem and binding loop base pairs. This study shows that nuclear magnetic resonance-based imino proton exchange is a good probe for detection of weak hydrogen-bond associations. PMID:11721004

  12. Rocket and spacecraft studies of ultraviolet emissions from astrophysical targets

    NASA Technical Reports Server (NTRS)

    Fastie, W. G.; Moos, H. W.; Feldman, P. D.; Henry, R. C.

    1975-01-01

    Rocket and spacecraft far-UV spectral measurements of several astrophysical targets are reviewed. These include observations of Ly-alpha emissions from Arcturus, Apollo-17 far-UV spectrometry of eta UMa and five other stars, Apollo-17 observations of the lunar atmosphere and the diffuse UV background, and far-UV spectral studies of Venus, Jupiter, and Comet Kohoutek. The Arcturus observations indicated a chromosphere with neutral atomic-hydrogen and atomic-oxygen emissions as well as a very weak atomic-carbon line. The planetary studies revealed O I and C I emissions in the Venusian spectrum as well as large Ly-alpha emissions and possible molecular-hydrogen emissions in that of Jupiter. The lunar observations demonstrated that solar protons do not produce an atomic-hydrogen atmosphere on the moon.

  13. 2-Amino-5-chloro-pyrimidin-1-ium hydrogen maleate.

    PubMed

    Fun, Hoong-Kun; Hemamalini, Madhukar; Rajakannan, Venkatachalam

    2012-01-01

    In the title salt, C(4)H(5)ClN(3) (+)·C(4)H(3)O(4) (-), the 2-amino-5-chloro-pyrimidinium cation is protonated at one of its pyrimidine N atoms. In the roughly planar (r.m.s. deviation = 0.026 Å) hydrogen malate anion, an intra-molecular O-H⋯O hydrogen bond generates an S(7) ring. In the crystal, the protonated N atom and the 2-amino group of the cation are hydrogen bonded to the carboxyl-ate O atoms of the anion via a pair of N-H⋯O hydrogen bonds, forming an R(2) (2)(8) ring motif. The ion pairs are connected via further N-H⋯O hydrogen bonds and a short C-H⋯O inter-action, forming layers lying parallel to the bc plane.

  14. Stability of surface and subsurface hydrogen on and in Au/Ni near-surface alloys

    DOE PAGES

    Celik, Fuat E.; Mavrikakis, Manos

    2015-01-12

    Periodic, self-consistent DFT-GGA (PW91) calculations were used to study the interaction of hydrogen atoms with the (111) surfaces of substitutional near-surface alloys (NSAs) of Au and Ni with different surface layer compositions and different arrangements of Au atoms in the surface layer. The effect of hydrogen adsorption on the surface and in the first and second subsurface layers of the NSAs was studied. Increasing the Au content in the surface layer weakens hydrogen binding on the surface, but strengthens subsurface binding, suggesting that the distribution of surface and subsurface hydrogen will be different than that on pure Ni(111). While themore » metal composition of the surface layer has an effect on the binding energy of hydrogen on NSA surfaces, the local composition of the binding site has a stronger effect. For example, fcc hollow sites consisting of three Ni atoms bind H nearly as strongly as on Ni(111), and fcc sites consisting of three Au atoms bind H nearly as weakly as on Au(111). Sites with one or two Au atoms show intermediate binding energies. The preference of hydrogen for three-fold Ni hollow sites alters the relative stabilities of different surface metal atom arrangements, and may provide a driving force for adsorbate-induced surface rearrangement.« less

  15. Stability of Surface and Subsurface Hydrogen on and in Au/Ni Near-Surface Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celik, Fuat E.; Mavrikakis, Manos

    2015-10-01

    Periodic, self-consistent DFT-GGA (PW91) calculations were used to study the interaction of hydrogen atoms with the (111) surfaces of substitutional near-surface alloys (NSAs) of Au and Ni with different surface layer compositions and different arrangements of Au atoms in the surface layer. The effect of hydrogen adsorption on the surface and in the first and second subsurface layers of the NSAs was studied. Increasing the Au content in the surface layer weakens hydrogen binding on the surface, but strengthens subsurface binding, suggesting that the distribution of surface and subsurface hydrogen will be different than that on pure Ni(111). While themore » metal composition of the surface layer has an effect on the binding energy of hydrogen on NSA surfaces, the local composition of the binding site has a stronger effect. For example, fcc hollow sites consisting of three Ni atoms bind H nearly as strongly as on Ni(111), and fcc sites consisting of three Au atoms bind H nearly as weakly as on Au(111). Sites with one or two Au atoms show intermediate binding energies. The preference of hydrogen for three-fold Ni hollow sites alters the relative stabilities of different surface metal atom arrangements, and may provide a driving force for adsorbate-induced surface rearrangement.« less

  16. Stability of surface and subsurface hydrogen on and in Au/Ni near-surface alloys

    NASA Astrophysics Data System (ADS)

    Celik, Fuat E.; Mavrikakis, Manos

    2015-10-01

    Periodic, self-consistent DFT-GGA (PW91) calculations were used to study the interaction of hydrogen atoms with the (111) surfaces of substitutional near-surface alloys (NSAs) of Au and Ni with different surface layer compositions and different arrangements of Au atoms in the surface layer. The effect of hydrogen adsorption on the surface and in the first and second subsurface layers of the NSAs was studied. Increasing the Au content in the surface layer weakens hydrogen binding on the surface, but strengthens subsurface binding, suggesting that the distribution of surface and subsurface hydrogen will be different than that on pure Ni(111). While the metal composition of the surface layer has an effect on the binding energy of hydrogen on NSA surfaces, the local composition of the binding site has a stronger effect. For example, fcc hollow sites consisting of three Ni atoms bind H nearly as strongly as on Ni(111), and fcc sites consisting of three Au atoms bind H nearly as weakly as on Au(111). Sites with one or two Au atoms show intermediate binding energies. The preference of hydrogen for three-fold Ni hollow sites alters the relative stabilities of different surface metal atom arrangements, and may provide a driving force for adsorbate-induced surface rearrangement.

  17. Can Csbnd H⋯Fsbnd C hydrogen bonds alter crystal packing features in the presence of Nsbnd H⋯Odbnd C hydrogen bond?

    NASA Astrophysics Data System (ADS)

    Yadav, Hare Ram; Choudhury, Angshuman Roy

    2017-12-01

    Intermolecular interactions involving organic fluorine have been the contemporary field of research in the area of organic solid state chemistry. While a group of researchers had refuted the importance of "organic fluorine" in guiding crystal structures, others have provided evidences for in favor of fluorine mediated interactions in the solid state. Many systematic studies have indicated that the "organic fluorine" is capable of offering weak hydrogen bonds through various supramolecular synthons, mostly in the absence of other stronger hydrogen bonds. Analysis of fluorine mediated interaction in the presence of strong hydrogen bonds has not been highlighted in detail. Hence a thorough structural investigation is needed to understand the role of "organic fluorine" in crystal engineering of small organic fluorinated molecules having the possibility of strong hydrogen bond formation in the solution and in the solid state. To fulfil this aim, we have synthesized a series of fluorinated amides using 3-methoxyphenylacetic acid and fluorinated anilines and studied their structural properties through single crystal and powder X-ray diffraction methods. Our results indicated that the "organic fluorine" plays a significant role in altering the packing characteristics of the molecule in building specific crystal lattices even in the presence of strong hydrogen bond.

  18. Hydrogen axion star: metallic hydrogen bound to a QCD axion BEC

    DOE PAGES

    Bai, Yang; Barger, Vernon; Berger, Joshua

    2016-12-23

    As a cold dark matter candidate, the QCD axion may form Bose-Einstein condensates, called axion stars, with masses around 10 -11M⊙ . In this paper, we point out that a brand new astrophysical object, a Hydrogen Axion Star (HAS), may well be formed by ordinary baryonic matter becoming gravitationally bound to an axion star. Here, we study the properties of the HAS and nd that the hydrogen cloud has a high pressure and temperature in the center and is likely in the liquid metallic hydrogen state. Because of the high particle number densities for both the axion star and themore » hydrogen cloud, the feeble interaction between axion and hydrogen can still generate enough internal power, around 10 13W (m a/=5 meV) 4, to make these objects luminous point sources. Furthermore, high resolution ultraviolet, optical and infrared telescopes can discover HAS via black-body radiation.« less

  19. Hydrogen axion star: metallic hydrogen bound to a QCD axion BEC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Yang; Barger, Vernon; Berger, Joshua

    As a cold dark matter candidate, the QCD axion may form Bose-Einstein condensates, called axion stars, with masses around 10 -11M⊙ . In this paper, we point out that a brand new astrophysical object, a Hydrogen Axion Star (HAS), may well be formed by ordinary baryonic matter becoming gravitationally bound to an axion star. Here, we study the properties of the HAS and nd that the hydrogen cloud has a high pressure and temperature in the center and is likely in the liquid metallic hydrogen state. Because of the high particle number densities for both the axion star and themore » hydrogen cloud, the feeble interaction between axion and hydrogen can still generate enough internal power, around 10 13W (m a/=5 meV) 4, to make these objects luminous point sources. Furthermore, high resolution ultraviolet, optical and infrared telescopes can discover HAS via black-body radiation.« less

  20. Ab initio molecular dynamics simulation study of successive hydrogenation reactions of carbon monoxide producing methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Thi Nu; Ono, Shota; Ohno, Kaoru, E-mail: ohno@ynu.ac.jp

    Doing ab initio molecular dynamics simulations, we demonstrate a possibility of hydrogenation of carbon monoxide producing methanol step by step. At first, the hydrogen atom reacts with the carbon monoxide molecule at the excited state forming the formyl radical. Formaldehyde was formed after adding one more hydrogen atom to the system. Finally, absorption of two hydrogen atoms to formaldehyde produces methanol molecule. This study is performed by using the all-electron mixed basis approach based on the time dependent density functional theory within the adiabatic local density approximation for an electronic ground-state configuration and the one-shot GW approximation for an electronicmore » excited state configuration.« less

  1. 1,5-Bis[1-(2,4-dihy­droxy­phen­yl)ethyl­idene]carbonohydrazide dimethyl­formamide disolvate

    PubMed Central

    He, Qing-Peng; Tan, Bo; Lu, Ze-Hua

    2010-01-01

    In the title compound, C17H18N4O5·2C3H7NO, two solvent mol­ecules are linked to the main mol­ecule via N—H⋯O and O—H⋯O hydrogen bonds, forming a hydrogen-bonded trimer. Intra­molecular O—H⋯N hydrogen bonds influence the mol­ecular conformation of the main mol­ecule, and the two benzene rings form a dihedral angle of 10.55 (18)°. In the crystal, inter­molecular O—H⋯O hydrogen bonds link hydrogen-bonded trimers into ribbons extending along the b axis. PMID:21589135

  2. Effect of hydrogen on the strength and microstructure of selected ceramics

    NASA Technical Reports Server (NTRS)

    Herbell, Thomas P.; Eckel, Andrew J.; Hull, David R.; Misra, Ajay K.

    1990-01-01

    Ceramics in monolithic form and as composite constituents in the form of fibers, matrices, and coatings are currently being considered for a variety of high-temperature applications in aeronautics and space. Many of these applications involve exposure to a hydrogen-containing environment. The compatibility of selected ceramics in gaseous high-temperature hydrogen is assessed. Environmental stability regimes for the long term use of ceramic materials are defined by the parameters of temperature, pressure, and moisture content. Thermodynamically predicted reactions between hydrogen and several monolithic ceramics are compared with actual performance in a controlled environment. Morphology of hydrogen attack and the corresponding strength degradation is reported for silicon carbide, silicon nitride, alumina, magnesia, and mullite.

  3. 2-Amino­pyrimidin-1-ium 4-methyl­benzene­sulfonate

    PubMed Central

    Tabatabaee, Masoumeh; Noozari, Najmeh

    2011-01-01

    In the crystal structure of the title compound, C4H6N3 +·C7H7O3S−, inter­molecular N—H⋯O hydrogen bonds link the cations and anions into chains along [100]. Additional stabilization is provided by weak C—H⋯O hydrogen bonds. An inter­molecular π–π stacking inter­action with a centroid–centroid distance of 3.6957 (7) Å is also observed. The H atoms of the methyl group were refined as disordered over two sets of sites with equal occupancies PMID:21754830

  4. Precision measurements and computations of transition energies in rotationally cold triatomic hydrogen ions up to the midvisible spectral range.

    PubMed

    Pavanello, Michele; Adamowicz, Ludwik; Alijah, Alexander; Zobov, Nikolai F; Mizus, Irina I; Polyansky, Oleg L; Tennyson, Jonathan; Szidarovszky, Tamás; Császár, Attila G; Berg, Max; Petrignani, Annemieke; Wolf, Andreas

    2012-01-13

    First-principles computations and experimental measurements of transition energies are carried out for vibrational overtone lines of the triatomic hydrogen ion H(3)(+) corresponding to floppy vibrations high above the barrier to linearity. Action spectroscopy is improved to detect extremely weak visible-light spectral lines on cold trapped H(3)(+) ions. A highly accurate potential surface is obtained from variational calculations using explicitly correlated Gaussian wave function expansions. After nonadiabatic corrections, the floppy H(3)(+) vibrational spectrum is reproduced at the 0.1 cm(-1) level up to 16600 cm(-1).

  5. Study of hydrogen bonding in ethanol-water binary solutions by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Fabing; Men, Zhiwei; Li, Shuo; Wang, Shenghan; Li, Zhanlong; Sun, Chenglin

    2018-01-01

    Raman spectra of ethanol-water binary solutions have been observed at room temperature and atmospheric pressure. We find that with increasing ethanol concentration, the symmetric and asymmetric Osbnd H stretching vibrational mode (3286 and 3434 cm- 1) of water are shifted to lower frequency and the weak shoulder peak at 3615 cm- 1 (free OH) disappears. These results indicate that ethanol strengthens hydrogen bonds in water. Simultaneously, our experiment shows that Raman shifts of ethanol reverses when the volume ratio of ethanol and the overall solution is 0.2, which demonstrates that ethanol-water structure undergoes a phase transition.

  6. Theoretical predictions of vibration-rotation-tunneling dynamics of the weakly bound trimer (H 2O) 2HCl

    NASA Astrophysics Data System (ADS)

    Struniewicz, Cezary; Korona, Tatiana; Moszynski, Robert; Milet, Anne

    2001-08-01

    In this Letter we report a theoretical study of the vibration-rotation-tunneling (VRT) states of the (H 2O) 2HCl trimer. Five degrees of freedom are considered: two angles corresponding to the torsional (flipping) motions of the free, non-hydrogen-bonded, hydrogen atoms in the complex, and three angles describing the overall rotation of the trimer in the space. A two-dimensional potential energy surface is generated ab initio by symmetry-adapted perturbation theory (SAPT). Tunneling splittings, frequencies of the intermolecular vibrations, and vibrational line strengths of spectroscopic transitions are predicted.

  7. Nature of hydrogen embrittlement of steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archakov, Yu. I.; Grebeshkova, I.D.

    1986-01-01

    The hydrogen embrittlement of metals is the result of the origin and development of microcracks, which are formed as the result of the occurence of internal stresses. The specific feature of the appearance of hydrogen embrittlement are the result of the physical properties of the metals and the character of their interaction with hydrogen. The tendency of metals toward hydrogen embrittlement is determined by the following characteristics: their capacity to dissolve hydrogen and its maximum solubility; the chemical activity of the metals and other phases in relation to hydrogen, that is, the capacity toward hydride formation and failure of themore » carbided sand oxides, and the tendency of the metal toward the occurence and propagation of cracks. The authors cite and discuss two general forms of action of hydrogen on metals, the physical action of hydrogen on metals and the physicochemical action when chemical interaction of hydrogen with the different phases and the individual components of the alloy on the surface and in the volume occurs. The tendency toward hydrogen embrittlement is shown to increase with an increase in the strength of the steel. In addition to the strength, this characteristic also depends upon the chemical composition and structural condition of the steel.« less

  8. Design and Analysis of a Hydrogen Compression and Storage Station

    DTIC Science & Technology

    2017-12-01

    Holmes THIS PAGE INTENTIONALLY LEFT BLANK i REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188 Public reporting burden for this collection...SECURITY CLASSIFICATION OF ABSTRACT Unclassified 20. LIMITATION OF ABSTRACT UU NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89...than fossil fuels [2]. Renewably generated hydrogen gas, such as the hydrogen station demonstrated at NPS, falls into this category of alternative

  9. 40 CFR 61.51 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... produce chlorine gas, hydrogen gas, and alkali metal hydroxide. (f) Mercury chlor-alkali electrolyzer... converted to alkali metal hydroxide, mercury, and hydrogen gas in a short-circuited, electrolytic reaction. (h) Hydrogen gas stream means a hydrogen stream formed in the chlor-alkali cell denuder. (i) End box...

  10. 40 CFR 61.51 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... produce chlorine gas, hydrogen gas, and alkali metal hydroxide. (f) Mercury chlor-alkali electrolyzer... converted to alkali metal hydroxide, mercury, and hydrogen gas in a short-circuited, electrolytic reaction. (h) Hydrogen gas stream means a hydrogen stream formed in the chlor-alkali cell denuder. (i) End box...

  11. 40 CFR 61.51 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... produce chlorine gas, hydrogen gas, and alkali metal hydroxide. (f) Mercury chlor-alkali electrolyzer... converted to alkali metal hydroxide, mercury, and hydrogen gas in a short-circuited, electrolytic reaction. (h) Hydrogen gas stream means a hydrogen stream formed in the chlor-alkali cell denuder. (i) End box...

  12. 40 CFR 61.51 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... produce chlorine gas, hydrogen gas, and alkali metal hydroxide. (f) Mercury chlor-alkali electrolyzer... converted to alkali metal hydroxide, mercury, and hydrogen gas in a short-circuited, electrolytic reaction. (h) Hydrogen gas stream means a hydrogen stream formed in the chlor-alkali cell denuder. (i) End box...

  13. 40 CFR 61.51 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... produce chlorine gas, hydrogen gas, and alkali metal hydroxide. (f) Mercury chlor-alkali electrolyzer... converted to alkali metal hydroxide, mercury, and hydrogen gas in a short-circuited, electrolytic reaction. (h) Hydrogen gas stream means a hydrogen stream formed in the chlor-alkali cell denuder. (i) End box...

  14. Borazine-boron nitride hybrid hydrogen storage system

    DOEpatents

    Narula, Chaitanya K [Knoxville, TN; Simonson, J Michael [Knoxville, TN; Maya, Leon [Knoxville, TN; Paine, Robert T [Albuquerque, NM

    2008-04-22

    A hybrid hydrogen storage composition includes a first phase and a second phase adsorbed on the first phase, the first phase including BN for storing hydrogen by physisorption and the second phase including a borazane-borazine system for storing hydrogen in combined form as a hydride.

  15. Mechanical properties of several nickel alloys in hydrogen at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Warren, J. R.; Harris, J. A., Jr.; Vanwanderham, M. C.

    1977-01-01

    Tests were performed to determine low cycle fatigue and crack growth rate properties of one iron-base and two forms of one cast nickel-base alloy. The alloys were tested in various forms and/or heat-treat conditions that are proposed for use in a high-pressure hydrogen or a hydrogen-water vapor environment. Some general conclusions can be made comparing the results of tests in a hydrogen environment with those in a hydrogen-water vapor environment. The hydrogen-water vapor environment caused a 50 percent average reduction in fatigue life, indicating extreme degradation when compared with tests conducted in air, for Incoloy 903 at 1033 K (1400 F). Crack growth rates increased significantly for all materials with increasing test temperature. A very significant increase (three orders of magnitude) in crack growth rate occurred for Incoloy 903 tested in the hydrogen-water vapor environment when compared with testing done in hydrogen along at 922 K (1200 F).

  16. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide

    PubMed Central

    Chen, Long; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2016-01-01

    Low-cost alkaline water electrolysis has been considered a sustainable approach to producing hydrogen using renewable energy inputs, but preventing hydrogen/oxygen mixing and efficiently using the instable renewable energy are challenging. Here, using nickel hydroxide as a redox mediator, we decouple the hydrogen and oxygen production in alkaline water electrolysis, which overcomes the gas-mixing issue and may increase the use of renewable energy. In this architecture, the hydrogen production occurs at the cathode by water reduction, and the anodic Ni(OH)2 is simultaneously oxidized into NiOOH. The subsequent oxygen production involves a cathodic NiOOH reduction (NiOOH→Ni(OH)2) and an anodic OH− oxidization. Alternatively, the NiOOH formed during hydrogen production can be coupled with a zinc anode to form a NiOOH-Zn battery, and its discharge product (that is, Ni(OH)2) can be used to produce hydrogen again. This architecture brings a potential solution to facilitate renewables-to-hydrogen conversion. PMID:27199009

  17. Hydroperoxides as Hydrogen Bond Donors

    NASA Astrophysics Data System (ADS)

    Møller, Kristian H.; Tram, Camilla M.; Hansen, Anne S.; Kjaergaard, Henrik G.

    2016-06-01

    Hydroperoxides are formed in the atmosphere following autooxidation of a wide variety of volatile organics emitted from both natural and anthropogenic sources. This raises the question of whether they can form hydrogen bonds that facilitate aerosol formation and growth. Using a combination of Fourier transform infrared spectroscopy, FT-IR, and ab initio calculations, we have compared the gas phase hydrogen bonding ability of tert-butylhydroperoxide (tBuOOH) to that of tert-butanol (tBuOH) for a series of bimolecular complexes with different acceptors. The hydrogen bond acceptor atoms studied are nitrogen, oxygen, phosphorus and sulphur. Both in terms of calculated redshifts and binding energies (BE), our results suggest that hydroperoxides are better hydrogen bond donors than the corresponding alcohols. In terms of hydrogen bond acceptor ability, we find that nitrogen is a significantly better acceptor than the other three atoms, which are of similar strength. We observe a similar trend in hydrogen bond acceptor ability with other hydrogen bond donors including methanol and dimethylamine.

  18. Effect of quantum nuclear motion on hydrogen bonding

    NASA Astrophysics Data System (ADS)

    McKenzie, Ross H.; Bekker, Christiaan; Athokpam, Bijyalaxmi; Ramesh, Sai G.

    2014-05-01

    This work considers how the properties of hydrogen bonded complexes, X-H⋯Y, are modified by the quantum motion of the shared proton. Using a simple two-diabatic state model Hamiltonian, the analysis of the symmetric case, where the donor (X) and acceptor (Y) have the same proton affinity, is carried out. For quantitative comparisons, a parametrization specific to the O-H⋯O complexes is used. The vibrational energy levels of the one-dimensional ground state adiabatic potential of the model are used to make quantitative comparisons with a vast body of condensed phase data, spanning a donor-acceptor separation (R) range of about 2.4 - 3.0 Å, i.e., from strong to weak hydrogen bonds. The position of the proton (which determines the X-H bond length) and its longitudinal vibrational frequency, along with the isotope effects in both are described quantitatively. An analysis of the secondary geometric isotope effect, using a simple extension of the two-state model, yields an improved agreement of the predicted variation with R of frequency isotope effects. The role of bending modes is also considered: their quantum effects compete with those of the stretching mode for weak to moderate H-bond strengths. In spite of the economy in the parametrization of the model used, it offers key insights into the defining features of H-bonds, and semi-quantitatively captures several trends.

  19. DISCOVERY OF RELATIVELY HYDROGEN-POOR GIANTS IN THE GALACTIC GLOBULAR CLUSTER ω CENTAURI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hema, B. P.; Pandey, Gajendra, E-mail: hema@iiap.res.in, E-mail: pandey@iiap.res.in

    2014-09-10

    In this Letter, the results of our low-resolution spectroscopic survey for identifying hydrogen-deficient stars in the red giant sample of the globular cluster ω Cen are reported. Spectral analyses were carried out on the basis of the strengths of the (0, 0) MgH band and the Mg b triplet. In our sample, four giants were identified with weak/absent MgH bands in their observed spectra, which was unexpected for their well determined stellar parameters. The Mg abundances for the program stars were determined from the subordinate lines of the MgH band to the blue of the Mg b triplet, using the spectral synthesis technique. Themore » derived Mg abundances for the program stars were as expected for the red giants of ω Cen, except for the four identified candidates. The determined Mg abundances of these four candidates are much lower than that expected for the red giants of ω Cen, and are unacceptable based on the strengths of the Mg b triplet in their observed spectra. Hence, a plausible explanation for the weak/absent MgH bands in the observed spectra of these stars is a relatively lower abundance of hydrogen in their atmospheres. These giants may belong to the group of helium-enriched red giants of ω Cen.« less

  20. Novel bimetallic thiocyanate-bridged Cu(II)-Hg(II) compounds-synthesis, X-Ray studies and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machura, B., E-mail: basia@ich.us.edu.pl; Switlicka, A.; Zwolinski, P.

    2013-01-15

    Seven novel heterobimetallic Cu/Hg polymers based on thiocyanate bridges have been synthesised and characterised by means of IR, EPR, magnetic measurements and single crystal X-Ray. Three of them, [Cu(pzH){sub 4}Hg(SCN){sub 4}]{sub n} (1) [Cu(indH){sub 4}Hg(SCN){sub 4}]{sub n} (2) and [Cu(ampy){sub 2}Hg(SCN){sub 4}]{sub n} (3), have one-dimensional coordination structure. Two compounds [Cu(pzH){sub 2}Hg(SCN){sub 4}]{sub n} (4) and [Cu(abzimH)Hg(SCN){sub 4}]{sub n} (5) form two-dimensional nets, whereas the complexes [Cu(pyCN){sub 2}Hg(SCN){sub 4}]{sub n} (6) and [Cu(pyCH(OH)(OMe)){sub 2}Hg(SCN){sub 4}]{sub n} (7) are three-dimensional coordination polymers. The chains of 1 are connected by the intermolecular N-H Bullet Bullet Bullet N hydrogen bonds to the threemore » dimensional net. In 2 the N-H Bullet Bullet Bullet S hydrogen bonds link the polymeric chains to the two dimensional layer extending along crystallographic (0 0 1) plane. The polymeric chains of compound 3 are joined by the intermolecular N-H Bullet Bullet Bullet N and N-H Bullet Bullet Bullet S hydrogen bonds to the three dimensional net. The polymeric layers of 4 are connected by the intermolecular N-H Bullet Bullet Bullet N hydrogen bonds to the three dimensional net. - Graphical abstract: Novel bimetallic thiocyanate-bridged Cu(II)-Hg(II) compound-synthesis,X-Ray studies and magnetic properties. Highlights: Black-Right-Pointing-Pointer Novel heterobimetallic Cu/Hg coordination polymers were synthesised. Black-Right-Pointing-Pointer The multidimensional structures have been proved by single X-ray analysIs. Black-Right-Pointing-Pointer A variation in the crystalline architectures was observed depending on auxiliary ligands. Black-Right-Pointing-Pointer Magnetic measurements indicate weak exchange interaction between Cu(II) in the crystal lattices below 10 K.« less

  1. Active superconducting devices formed of thin films

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1991-05-28

    Active superconducting devices are formed of thin films of superconductor which include a main conduction channel which has an active weak link region. The weak link region is composed of an array of links of thin film superconductor spaced from one another by voids and selected in size and thickness such that magnetic flux can propagate across the weak link region when it is superconducting. Magnetic flux applied to the weak link region will propagate across the array of links causing localized loss of superconductivity in the links and changing the effective resistance across the links. The magnetic flux can be applied from a control line formed of a superconducting film deposited coplanar with the main conduction channel and weak link region on a substrate. The devices can be formed of any type to superconductor but are particularly well suited to the high temperature superconductors since the devices can be entirely formed from coplanar films with no overlying regions. The devices can be utilized for a variety of electrical components, including switching circuits, amplifiers, oscillators and modulators, and are well suited to microwave frequency applications.

  2. Hydrogen storage in the form of metal hydrides

    NASA Technical Reports Server (NTRS)

    Zwanziger, M. G.; Santana, C. C.; Santos, S. C.

    1984-01-01

    Reversible reactions between hydrogen and such materials as iron/titanium and magnesium/ nickel alloy may provide a means for storing hydrogen fuel. A demonstration model of an iron/titanium hydride storage bed is described. Hydrogen from the hydride storage bed powers a converted gasoline electric generator.

  3. Hydrogen sulfide production from cysteine and homocysteine by periodontal and oral bacteria.

    PubMed

    Yoshida, Akihiro; Yoshimura, Mamiko; Ohara, Naoya; Yoshimura, Shigeru; Nagashima, Shiori; Takehara, Tadamichi; Nakayama, Koji

    2009-11-01

    Hydrogen sulfide is one of the predominant volatile sulfur compounds (VSCs) produced by oral bacteria. This study developed and evaluated a system for detecting hydrogen sulfide production by oral bacteria. L-methionine-alpha-deamino-gamma-mercaptomethane-lyase (METase) and beta carbon-sulfur (beta C-S) lyase were used to degrade homocysteine and cysteine, respectively, to produce hydrogen sulfide. Enzymatic reactions resulting in hydrogen sulfide production were assayed by reaction with bismuth trichloride, which forms a black precipitate when mixed with hydrogen sulfide. The enzymatic activities of various oral bacteria that result in hydrogen sulfide production and the capacity of bacteria from periodontal sites to form hydrogen sulfide in reaction mixtures containing L-cysteine or DL-homocysteine were assayed. With L-cysteine as the substrate, Streptococcus anginosus FW73 produced the most hydrogen sulfide, whereas Porphyromonas gingivalis American Type Culture Collection (ATCC) 33277 and W83 and Fusobacterium nucleatum ATCC 10953 produced approximately 35% of the amount produced by the P. gingivalis strains. Finally, the hydrogen sulfide found in subgingival plaque was analyzed. Using bismuth trichloride, the hydrogen sulfide produced by oral bacteria was visually detectable as a black precipitate. Hydrogen sulfide production by oral bacteria was easily analyzed using bismuth trichloride. However, further innovation is required for practical use.

  4. Thermal and FTIR spectroscopic analysis of the interactions of aniline adsorbed on to MCM-41 mesoporous material.

    PubMed

    Eimer, Griselda A; Gómez Costa, Marcos B; Pierella, Liliana B; Anunziata, Oscar A

    2003-07-15

    The adsorption of aniline on Na-AlMCM-41 synthesized by us has been characterized by infrared spectroscopy, temperature programmed desorption (TPD), and differential thermal analysis methods. Aniline would be mostly bound to the mesostructure through weak pi interactions. On the mesostructure containing adsorbed water, the co-adsorption of aniline could occur by weak hydrogen bonding through surface water molecules. For water, two possible modes of adsorption have been identified. Different associations between aniline and hydrated and nonhydrated mesostructures have been evaluated in order to favor the posterior in situ polymerization of adsorbed aniline.

  5. Status of the NPDGamma experiment

    NASA Astrophysics Data System (ADS)

    Fry, J.; Alarcon, R.; Allen, R.; Askanazi, E.; Balascuta, S.; Barron-Palos, L.; Baeßler, S.; Barzilov, A.; Blessinger, C.; Blyth, D.; Bowman, J. D.; Calarco, J. R.; Chupp, T. E.; Coppola, C. E.; Crawford, C.; Craycraft, K.; Dabaghyan, M.; Evans, D.; Favela, J.; Fieseler, C.; Fomin, N.; Fox, W.; Freedman, S.; Frlež, E.; Fu, C.; Garcia, C.; Garishvili, I.; Gericke, M. T.; Gillis, R. C.; Grammer, K.; Greene, G. L.; Hamblen, J.; Hayes, C.; Hersman, F. W.; Ino, T.; Iverson, E. B.; Jones, G. L.; Kabir, L.; Kucucker, S.; Lauss, B.; Li, Y.; Mahurin, R.; Maldonado-Velazquez, M.; McCrea, M.; Masuda, Y.; Mei, J.; Milburn, R.; Mitchell, G. S.; Mueller, P.; Muto, S.; Musgrave, M.; Nann, H.; Novikov, I.; Page, S.; Parsons, D.; Počanić, D.; Penttilä, S. I.; Ramsay, W. D.; Salas-Bacci, A.; Santra, S.; Seo, P.-N.; Sharapov, E.; Sharma, M.; Simmons, F.; Smith, T.; Snow, W. M.; Stuart, J.; Tang, E.; Tang, Z.; Thomison, J.; Tong, T.; Vanderwerp, J.; Waldecker, S.; Wilburn, W. S.; Xu, W.; Yuan, V.; Zhang, Y.

    2017-11-01

    The NPDGamma experiment measures the parity-violating (PV) gamma asymmetry from polarized cold neutrons captured on protons at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). The (PV) neutron spin asymmetry A γ of photons from polarized cold neutron capture on protons is proportional to the Δ I=1 long range weak meson coupling h_{π }1 between nucleons in the hadronic weak interaction (HWI). Liquid para-hydrogen production data taking concluded in April 2014 and once the background aluminum asymmetry measurements are complete, the PV asymmetry A γ can be extracted. Preliminary results of the analysis of A γ are presented.

  6. Method of producing hydrogen

    DOEpatents

    Bingham, Dennis N.; Klingler, Kerry M.; Wilding, Bruce M.; Zollinger, William T.

    2006-12-26

    A method of producing hydrogen is disclosed and which includes providing a first composition; providing a second composition; reacting the first and second compositions together to produce a chemical hydride; providing a liquid and reacting the chemical hydride with the liquid in a manner to produce a high pressure hydrogen gas and a byproduct which includes the first composition; and reusing the first composition formed as a byproduct in a subsequent chemical reaction to form additional chemical hydride.

  7. Acoustically Forced Coaxial Hydrogen/Liquid Oxygen Jet Flames

    DTIC Science & Technology

    2016-05-15

    Briefing Charts 3. DATES COVERED (From - To) 25 April 2016 - 15 May 2016 4. TITLE AND SUBTITLE Acoustically Forced Coaxial Hydrogen / Liquid Oxygen Jet...area code) N/A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 1 Acoustically Forced Coaxial Hydrogen / Liquid Oxygen Jet Flames...propellants be stored in condensed form – e.g., kerosene, liquid oxygen in rockets • Combustion systems can no longer be designed to meet modern

  8. A molecular dynamics study of ethanol-water hydrogen bonding in binary structure I clathrate hydrate with CO2

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Ohmura, Ryo; Ripmeester, John A.

    2011-02-01

    Guest-host hydrogen bonding in clathrate hydrates occurs when in addition to the hydrophilic moiety which causes the molecule to form hydrates under high pressure-low temperature conditions, the guests contain a hydrophilic, hydrogen bonding functional group. In the presence of carbon dioxide, ethanol clathrate hydrate has been synthesized with 10% of large structure I (sI) cages occupied by ethanol. In this work, we use molecular dynamics simulations to study hydrogen bonding structure and dynamics in this binary sI clathrate hydrate in the temperature range of 100-250 K. We observe that ethanol forms long-lived (>500 ps) proton-donating and accepting hydrogen bonds with cage water molecules from both hexagonal and pentagonal faces of the large cages while maintaining the general cage integrity of the sI clathrate hydrate. The presence of the nondipolar CO2 molecules stabilizes the hydrate phase, despite the strong and prevalent alcohol-water hydrogen bonding. The distortions of the large cages from the ideal form, the radial distribution functions of the guest-host interactions, and the ethanol guest dynamics are characterized in this study. In previous work through dielectric and NMR relaxation time studies, single crystal x-ray diffraction, and molecular dynamics simulations we have observed guest-water hydrogen bonding in structure II and structure H clathrate hydrates. The present work extends the observation of hydrogen bonding to structure I hydrates.

  9. Hydrogen atoms in protein structures: high-resolution X-ray diffraction structure of the DFPase

    PubMed Central

    2013-01-01

    Background Hydrogen atoms represent about half of the total number of atoms in proteins and are often involved in substrate recognition and catalysis. Unfortunately, X-ray protein crystallography at usual resolution fails to access directly their positioning, mainly because light atoms display weak contributions to diffraction. However, sub-Ångstrom diffraction data, careful modeling and a proper refinement strategy can allow the positioning of a significant part of hydrogen atoms. Results A comprehensive study on the X-ray structure of the diisopropyl-fluorophosphatase (DFPase) was performed, and the hydrogen atoms were modeled, including those of solvent molecules. This model was compared to the available neutron structure of DFPase, and differences in the protein and the active site solvation were noticed. Conclusions A further examination of the DFPase X-ray structure provides substantial evidence about the presence of an activated water molecule that may constitute an interesting piece of information as regard to the enzymatic hydrolysis mechanism. PMID:23915572

  10. Structure and screening in molecular and metallic hydrogen at high pressure

    NASA Technical Reports Server (NTRS)

    Wood, D. M.; Ashcroft, N. W.

    1981-01-01

    A variational wavefunction is used to express the (spin restricted) Hartree-Fock energy as reciprocal lattice sums for static lattice FCC monatomic hydrogen and diatomic Pa3 molecular hydrogen. In the monatomic phase the hydrogenic orbital range closely parallels the inverse Thomas-Fermi wavevector; the corresponding energy E has a minimum of -0.929 Ryd/electron at r sub s = 1.67. For the diatomic phase E(r sub s) is similar, but the constituent energies, screening, and bond length reflect a qualitative change in the nature of the solid at r sub s = 2.8. This change is interpreted in terms of a transition from protons as structural units (at high density) to weakly interacting models (at low density). Insensitivity of the total energy to a rapid fall in the bond length suggests association with the rotational transition where the rapid molecular orientations characteristic of high pressures disappear and the molecules rotate freely at low pressure.

  11. Crystal structure of 6-chloro-5-iso-propyl-pyrimidine-2,4(1H,3H)-dione.

    PubMed

    Haress, Nadia G; Ghabbour, Hazem A; El-Emam, Ali A; Chidan Kumar, C S; Fun, Hoong-Kun

    2014-11-01

    In the mol-ecule of the title compound, C7H9ClN2O2, the conformation is determined by intra-molecular C-H⋯O and C-H⋯Cl hydrogen bonds, which generate S(6) and S(5) ring motifs. The isopropyl group is almost perpendicular to the pyrimidine ring with torsion angles of -70.8 (3) and 56.0 (3)°. In the crystal, two inversion-related mol-ecules are linked via a pair of N-H⋯O hydrogen bonds into R 2 (2)(8) dimers; these dimers are connected into chains extending along the bc plane via an additional N-H⋯O hydrogen bond and weaker C-H⋯O hydrogen bonds. The crystal structure is further stabilized by a weak π-π inter-action [3.6465 (10) Å] between adjacent pyrimidine-dione rings arranged in a head-to-tail fashion, producing a three-dimensional network.

  12. Effects of residual hydrogen in sputtering atmosphere on structures and properties of amorphous In-Ga-Zn-O thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Haochun; Ishikawa, Kyohei; Ide, Keisuke

    2015-11-28

    We investigated the effects of residual hydrogen in sputtering atmosphere on subgap states and carrier transport in amorphous In-Ga-Zn-O (a-IGZO) using two sputtering systems with different base pressures of ∼10{sup −4} and 10{sup −7 }Pa (standard (STD) and ultrahigh vacuum (UHV) sputtering, respectively), which produce a-IGZO films with impurity hydrogen contents at the orders of 10{sup 20} and 10{sup 19 }cm{sup −3}, respectively. Several subgap states were observed by hard X-ray photoemission spectroscopy, i.e., peak-shape near-valence band maximum (near-VBM) states, shoulder-shape near-VBM states, peak-shape near-conduction band minimum (near-CBM) states, and step-wise near-CBM states. It was confirmed that the formation of these subgapmore » states were affected strongly by the residual hydrogen (possibly H{sub 2}O). The step-wise near-CBM states were observed only in the STD films deposited without O{sub 2} gas flow and attributed to metallic In. Such step-wise near-CBM state was not detected in the other films including the UHV films even deposited without O{sub 2} flow, substantiating that the metallic In is segregated by the strong reduction effect of the hydrogen/H{sub 2}O. Similarly, the density of the near-VBM states was very high for the STD films deposited without O{sub 2}. These films had low film density and are consistent with a model that voids in the amorphous structure form a part of the near-VBM states. On the other hand, the UHV films had high film densities and much less near-VBM states, keeping the possibility that some of the near-VBM states, in particular, of the peak-shape ones, originate from –OH and weakly bonded oxygen. These results indicate that 2% of excess O{sub 2} flow is required for the STD sputtering to compensate the effects of the residual hydrogen/H{sub 2}O. The high-density near-VBM states and the metallic In segregation deteriorated the electron mobility to 0.4 cm{sup 2}/(V s)« less

  13. Rotational spectra of the van der Waals complexes of molecular hydrogen and OCS.

    PubMed

    Yu, Zhenhong; Higgins, Kelly J; Klemperer, William; McCarthy, Michael C; Thaddeus, Patrick; Liao, Kristine; Jäger, Wolfgang

    2007-08-07

    The a- and b-type rotational transitions of the weakly bound complexes formed by molecular hydrogen and OCS, para-H2-OCS, ortho-H2-OCS, HD-OCS, para-D2-OCS, and ortho-D2-OCS, have been measured by Fourier transform microwave spectroscopy. All five species have ground rotational states with total rotational angular momentum J=0, regardless of whether the hydrogen rotational angular momentum is j=0 as in para-H2, ortho-D2, and HD or j=1 as in ortho-H2 and para-D2. This indicates quenching of the hydrogen angular momentum for the ortho-H2 and para-D2 species by the anisotropy of the intermolecular potential. The ground states of these complexes are slightly asymmetric prolate tops, with the hydrogen center of mass located on the side of the OCS, giving a planar T-shaped molecular geometry. The hydrogen spatial distribution is spherical in the three j=0 species, while it is bilobal and oriented nearly parallel to the OCS in the ground state of the two j=1 species. The j=1 species show strong Coriolis coupling with unobserved low-lying excited states. The abundance of para-H2-OCS relative to ortho-H2-OCS increases exponentially with decreasing normal H2 component in H2He gas mixtures, making the observation of para-H2-OCS in the presence of the more strongly bound ortho-H2-OCS dependent on using lower concentrations of H2. The determined rotational constants are A=22 401.889(4) MHz, B=5993.774(2) MHz, and C=4602.038(2) MHz for para-H2-OCS; A=22 942.218(6) MHz, B=5675.156(7) MHz, and C=4542.960(7) MHz for ortho-H2-OCS; A=15 970.010(3) MHz, B=5847.595(1) MHz, and C=4177.699(1) MHz for HD-OCS; A=12 829.2875(9) MHz, B=5671.3573(7) MHz, and C=3846.7041(6) MHz for ortho-D2-OCS; and A=13 046.800(3) MHz, B=5454.612(2) MHz, and C=3834.590(2) MHz for para-D2-OCS.

  14. 21 CFR 529.1150 - Hydrogen peroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... DRUGS, FEEDS, AND RELATED PRODUCTS CERTAIN OTHER DOSAGE FORM NEW ANIMAL DRUGS § 529.1150 Hydrogen peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen peroxide...

  15. 21 CFR 529.1150 - Hydrogen peroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... DRUGS, FEEDS, AND RELATED PRODUCTS CERTAIN OTHER DOSAGE FORM NEW ANIMAL DRUGS § 529.1150 Hydrogen peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen peroxide...

  16. 21 CFR 529.1150 - Hydrogen peroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... DRUGS, FEEDS, AND RELATED PRODUCTS CERTAIN OTHER DOSAGE FORM NEW ANIMAL DRUGS § 529.1150 Hydrogen peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen peroxide...

  17. 21 CFR 529.1150 - Hydrogen peroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... DRUGS, FEEDS, AND RELATED PRODUCTS CERTAIN OTHER DOSAGE FORM NEW ANIMAL DRUGS § 529.1150 Hydrogen peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen peroxide...

  18. 21 CFR 529.1150 - Hydrogen peroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... DRUGS, FEEDS, AND RELATED PRODUCTS CERTAIN OTHER DOSAGE FORM NEW ANIMAL DRUGS § 529.1150 Hydrogen peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen peroxide...

  19. A new technique for pumping hydrogen gas

    USGS Publications Warehouse

    Friedman, I.; Hardcastle, K.

    1970-01-01

    A system for pumping hydrogen gas without isotopic fractionation has been developed. The pump contains uranium metal, which when heated to about 80??C reacts with hydrogen to form UH3. The UH3 is heated to above 500??C to decompose the hydride and regenerate the hydrogen. ?? 1970.

  20. Hydrogen from coal

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Hydrogen production from coal by hydrogasification is described. The process involves the solubilization of coal to form coal liquids, which are hydrogasified to produce synthetic pipeline gas; steam reforming this synthetic gas by a nuclear heat source produces hydrogen. A description is given of the hydrogen plant, its performance, and its effect on the environment.

  1. Purification of Hydrogen

    DOEpatents

    Newton, A S

    1950-12-05

    Disclosed is a process for purifying hydrogen containing various gaseous impurities by passing the hydrogen over a large surface of uranium metal at a temperature above the decomposition temperature of uranium hydride, and below the decomposition temperature of the compounds formed by the combination of the uranium with the impurities in the hydrogen.

  2. Eisenstein Hecke algebras and Iwasawa theory

    NASA Astrophysics Data System (ADS)

    Wake, Preston

    We show that if an Eisenstein component of the p-adic Hecke algebra associated to modular forms is Gorenstein, then it is necessary that the plus-part of a certain ideal class group is trivial. We also show that this condition is sufficient whenever a conjecture of Sharifi holds. We also formulate a weaker Gorenstein property, and show that this weak Gorenstein property holds if and only if a weak form of Sharifi's conjecture and a weak form of Greenberg's conjecture hold.

  3. Isothermal Decomposition of Hydrogen Peroxide Dihydrate

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Baragiola, R. A.

    2011-01-01

    We present a new method of growing pure solid hydrogen peroxide in an ultra high vacuum environment and apply it to determine thermal stability of the dihydrate compound that forms when water and hydrogen peroxide are mixed at low temperatures. Using infrared spectroscopy and thermogravimetric analysis, we quantified the isothermal decomposition of the metastable dihydrate at 151.6 K. This decomposition occurs by fractional distillation through the preferential sublimation of water, which leads to the formation of pure hydrogen peroxide. The results imply that in an astronomical environment where condensed mixtures of H2O2 and H2O are shielded from radiolytic decomposition and warmed to temperatures where sublimation is significant, highly concentrated or even pure hydrogen peroxide may form.

  4. Stereochemistry and solvent role in protein folding: nuclear magnetic resonance and molecular dynamics studies of poly-L and alternating-L,D homopolypeptides in dimethyl sulfoxide.

    PubMed

    Srivastava, Kinshuk Raj; Kumar, Anil; Goyal, Bhupesh; Durani, Susheel

    2011-05-26

    The competing interactions folding and unfolding protein structure remain obscure. Using homopolypeptides, we ask if poly-L structure may have a role. We mutate the structure to alternating-L,D stereochemistry and substitute water as the fold-promoting solvent with methanol and dimethyl sulfoxide (DMSO) as the fold-denaturing solvents. Circular dichroism and molecular dynamics established previously that, while both isomers were folded in water, the poly-L isomer was unfolded and alternating-L,D isomer folded in methanol. Nuclear magnetic resonance and molecular dynamics establish now that both isomers are unfolded in DMSO. We calculated energetics of folding-unfolding equilibrium with water and methanol as solvents. We have now calculated interactions of unfolded polypeptide structures with DMSO as solvent. Methanol was found to unfold and water fold poly-L structure as a dielectric. DMSO has now been found to unfold both poly-L and alternating-L,D structures by strong solvation of peptides to disrupt their hydrogen bonds. Accordingly, we propose that while linked peptides fold protein structure with hydrogen bonds they unfold the structure electrostatically due to the stereochemical effect of the poly-L structure. Protein folding to ordering of peptide hydrogen bonds with water as canonical solvent may thus involve two specific and independent solvent effects-one, strong screening of electrostatics of poly-L linked peptides, and two, weak dipolar solvation of peptides. Correspondingly, protein denaturation may involve two independent solvent effects-one, weak dielectric to unfold poly-L structure electrostatically, and two, strong polarity to disrupt peptide hydrogen bonds by solvation of peptides.

  5. Storing Data from Qweak--A Precision Measurement of the Proton's Weak Charge

    NASA Astrophysics Data System (ADS)

    Pote, Timothy

    2008-10-01

    The Qweak experiment will perform a precision measurement of the proton's parity violating weak charge at low Q-squared. The experiment will do so by measuring the asymmetry in parity-violating electron scattering. The proton's weak charge is directly related to the value of the weak mixing angle--a fundamental quantity in the Standard Model. The Standard Model makes a firm prediction for the value of the weak mixing angle and thus Qweak may provide insight into shortcomings in the SM. The Qweak experiment will run at Thomas Jefferson National Accelerator Facility in Newport News, VA. A database was designed to hold data directly related to the measurement of the proton's weak charge such as detector and beam monitor yield, asymmetry, and error as well as control structures such as the voltage across photomultiplier tubes and the temperature of the liquid hydrogen target. In order to test the database for speed and stability, it was filled with fake data that mimicked the data that Qweak is expected to collect. I will give a brief overview of the Qweak experiment and database design, and present data collected during these tests.

  6. Isothermal vapor-liquid equilibria for the systems 1-chloro-1,1-difluoroethane + hydrogen fluoride, 1,1-dichloro-1-fluoroethane + hydrogen fluoride, and chlorodifluoromethane + hydrogen fluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Y.W.; Lee, Y.Y.

    1997-03-01

    Isothermal vapor-liquid equilibria for the three binary systems (1-chloro-1,1-difluoroethane + hydrogen fluoride, 1,1-dichloro-1-fluoroethane + hydrogen fluoride, and chlorodifluoromethane + hydrogen fluoride) have been measured. The experimental data for the binary systems are correlated with the NRTL equation with the vapor-phase association model for the mixtures containing hydrogen fluoride, and the relevant parameters are presented. All of the systems form minimum boiling heterogeneous azeotropes.

  7. Study on four polymorphs of bifendate based on X-ray crystallography.

    PubMed

    Nie, Jinju; Yang, Dezhi; Hu, Kun; Lu, Yang

    2016-05-01

    Bifendate, a synthetic anti-hepatitis drug, exhibits polycrystalline mode phenomena with 2 polymorphs reported (forms A and B). Single crystals of the known crystalline form B and 3 new crystallosolvates involving bifendate solvated with tetrahydrofuran (C), dioxane (D), and pyridine (E) in a stoichiometric ratio of 1:1 were obtained and characterized by X-ray crystallography, thermal analysis, and Fourier transform infrared (FT-IR) spectroscopy. The differences in molecular conformation, intermolecular interaction and crystal packing arrangement for the four polymorphs were determined and the basis for the polymorphisms was investigated. The rotation of single bonds resulted in different orientations for the biphenyl, methyl ester and methoxyl groups. All guest solvent molecules interacted with the host molecule via an interesting intercalative mode along the [1 0 0] direction in the channel formed by the host molecules through weak aromatic stacking interactions or non-classical hydrogen bonds, of which the volume and planarity played an important role in the intercalation of the host with the guest. The incorporation of solvent-augmented rotation of the C-C bond of the biphenyl group had a striking effect on the host molecular conformation and contributed to the formation of bifendate polymorphs. Moreover, the simulated powder X-ray diffraction (PXRD) patterns for each form were calculated on the basis of the single-crystal data and proved to be unique. The single-crystal structures of the four crystalline forms are reported in this paper.

  8. Nickel hydrogen battery cell storage matrix test

    NASA Technical Reports Server (NTRS)

    Wheeler, James R.; Dodson, Gary W.

    1993-01-01

    Test were conducted to evaluate post storage performance of nickel hydrogen cells with various design variables, the most significant being nickel precharge versus hydrogen precharge. Test procedures and results are presented in outline and graphic form.

  9. Nickel hydrogen capacity loss

    NASA Technical Reports Server (NTRS)

    Goualard, Jacques; Paugam, D.; Borthomieu, Y.

    1993-01-01

    The results of tests to assess capacity loss in nickel hydrogen cells are presented in outline form. The effects of long storage (greater than 1 month), high hydrogen pressure storage, high cobalt content, and recovery actions are addressed.

  10. Supramolecular packing and polymorph screening of N-isonicotinoyl arylketone hydrazones with phenol and amino modifications

    NASA Astrophysics Data System (ADS)

    Hean, Duane; Michael, Joseph P.; Lemmerer, Andreas

    2018-04-01

    Thirteen structural variants based on the (E)-N‧-(1-arylethylidene)pyridohydrazide template were prepared, investigated and screened for possible polymorphic behaviour. Four variants showed from Differential Scanning Calorimetry Scans thermal events indicative of new solid-state phases. The thirteen variants included substituents R = sbnd OH or sbnd NH2 placed at ortho, meta and para positions on the phenyl ring; and shifting the pyridyl nitrogen between positions 4-, 3- and 2-. The crystal structures of twelve of the compounds were determined to explore their supramolecular structures. The outcomes of these modifications demonstrated that the pyridyl nitrogen at the 2- position is 'locked' by forming a hydrogen bond with the amide hydrogen; while placing the pyridyl nitrogen at positions 3- and 4- offers a greater opportunity for hydrogen bonding with neighbouring molecules. Such interactions include Osbnd H⋯N, Nsbnd H⋯N, Osbnd H⋯O, Nsbnd H⋯O, Nsbnd H⋯π, π⋯π stacking, as well as other weaker interactions such as Csbnd H⋯N, Csbnd H⋯O, Csbnd H⋯N(pyridyl). When OH or NH2 donors are placed in the ortho position, an intramolecular hydrogen bond is formed between the acceptor hydrazone nitrogen and the respective donor. The meta- and para-positioned donors form an unpredictable array of supramolecular structures by forming hydrogen-bonded chains with the pyridyl nitrogen and carbonyl acceptors respectively. In addition to the intramolecular and chain hydrogen bond formation demonstrated throughout the crystal structures under investigation, larger order hydrogen-bonded rings were also observed in some of the supramolecular aggregations. The extent of the hydrogen-bonded ring formations range from two to six molecular participants depending on the specific crystal structure.

  11. Hydrogen bonding in ionic liquids.

    PubMed

    Hunt, Patricia A; Ashworth, Claire R; Matthews, Richard P

    2015-03-07

    Ionic liquids (IL) and hydrogen bonding (H-bonding) are two diverse fields for which there is a developing recognition of significant overlap. Doubly ionic H-bonds occur when a H-bond forms between a cation and anion, and are a key feature of ILs. Doubly ionic H-bonds represent a wide area of H-bonding which has yet to be fully recognised, characterised or explored. H-bonds in ILs (both protic and aprotic) are bifurcated and chelating, and unlike many molecular liquids a significant variety of distinct H-bonds are formed between different types and numbers of donor and acceptor sites within a given IL. Traditional more neutral H-bonds can also be formed in functionalised ILs, adding a further level of complexity. Ab initio computed parameters; association energies, partial charges, density descriptors as encompassed by the QTAIM methodology (ρBCP), qualitative molecular orbital theory and NBO analysis provide established and robust mechanisms for understanding and interpreting traditional neutral and ionic H-bonds. In this review the applicability and extension of these parameters to describe and quantify the doubly ionic H-bond has been explored. Estimating the H-bonding energy is difficult because at a fundamental level the H-bond and ionic interaction are coupled. The NBO and QTAIM methodologies, unlike the total energy, are local descriptors and therefore can be used to directly compare neutral, ionic and doubly ionic H-bonds. The charged nature of the ions influences the ionic characteristics of the H-bond and vice versa, in addition the close association of the ions leads to enhanced orbital overlap and covalent contributions. The charge on the ions raises the energy of the Ylp and lowers the energy of the X-H σ* NBOs resulting in greater charge transfer, strengthening the H-bond. Using this range of parameters and comparing doubly ionic H-bonds to more traditional neutral and ionic H-bonds it is clear that doubly ionic H-bonds cover the full range of weak through to very strong H-bonds.

  12. Hydrogen storage composition and method

    DOEpatents

    Wicks, G.G.; Heung, L.K.

    1994-01-01

    A hydrogen storage composition based on a metal hydride dispersed in an aerogel prepared by a sol-gel process. The starting material for the aerogel is an organometallic compound, including the alkoxysilanes, organometals of the form M(OR){sub X} where R is an organic ligand of the form C{sub n}H{sub 2n+1}, and organometals of the form MO{sub x}Ry where R is an alkyl group, where M is an oxide-forming metal, n, x and y are integers and y is two less than the valence of M. A sol is prepared by combining the starting material, alcohol, water, and an acid. The sol is conditioned to the proper viscosity and a hydride in the form of a fine powder is added. The mixture is polymerized and dried under supercritical conditions. The final product is a composition having a hydride uniformly dispersed throughout an inert, stable and highly porous matrix. It is capable of absorbing up to 30 motes of hydrogen per kilogram at room temperature and pressure, rapidly and reversibly. Hydrogen absorbed by the composition can be readily be recovered by heat or evacuation.

  13. Study on glass-forming ability and hydrogen storage properties of amorphous Mg{sub 60}Ni{sub 30}La{sub 10−x}Co{sub x} (x = 0, 4) alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Peng; Wang, Zhong-min, E-mail: zmwang@guet.edu.cn; Zhang, Huai-gang

    2013-12-15

    Mg{sub 60}Ni{sub 30}La{sub 10−x}Co{sub x} (x = 0, 4) amorphous alloys were prepared by rapid solidification, using a melt-spinning technique. X-ray diffraction and differential scanning calorimetry analysis were employed to measure their microstructure, thermal stability and glass-forming ability, and hydrogen storage properties were studied by means of PCTPro2000. Based on differential scanning calorimetry results, their glass-forming ability and thermal stability were investigated by Kissinger method, Lasocka curves and atomic cluster model, respectively. The results indicate that glass-forming ability, thermal properties and hydrogen storage properties in the Mg-rich corner of Mg–Ni–La–Co system alloys were enhanced by Co substitution for La. Itmore » can be found that the smaller activation energy (ΔΕ) and frequency factor (υ{sub 0}), the bigger value of B (glass transition point in Lasocka curves), and higher glass-forming ability of Mg–Ni–La–Co alloys would be followed. In addition, atomic structure parameter (λ), deduced from atomic cluster model is valuable in the design of Mg–Ni–La–Co system alloys with good glass-forming ability. With an increase of Co content from 0 to 4, the hydrogen desorption capacity within 4000 s rises from 2.25 to 2.85 wt.% at 573 K. - Highlights: • Amorphous Mg{sub 60}Ni{sub 30}La{sub 10−x}Co{sub x} (x = 0 and 4) alloys were produced by melt spinning. • The GFA and hydrogen storage properties were enhanced by Co substitution for La. • With an increase of Co content, the hydrogen desorption capacity rises at 573 K.« less

  14. Measuring the Weak Charge of the Proton via Elastic Electron-Proton Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Donald C.

    2015-10-01

    The Qweak experiment which ran in Hall C at Jefferson Lab in Newport News, VA, and completed data taking in May 2012, measured the weak charge of the proton Q p W via elastic electron-proton scattering. Longitudinally polarized electrons were scattered from an unpolarized liquid hydrogen target. The helicity of the electron beam was flipped at approximately 1 kHz between left and right spin states. The Standard Model predicts a small parity-violating asymmetry of scattering rates between right and left helicity states due to the weak interaction. An initial result using 4% of the data was published in October 2013more » [1] with a measured parity-violating asymmetry of -279 ± 35(stat) ± 31 (syst) ppb. This asymmetry, along with other data from parity-violating electron scattering experiments, provided the world's first determination of the weak charge of the proton. The weak charge of the proton was found to be p W = 0.064 ± 0.012, in good agreement with the Standard Model prediction of p W(SM) = 0.0708 ± 0.0003[2].« less

  15. First result from Q weak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, David S.; Battaglieri, M.; D'Angelo, A.

    2014-01-01

    Initial results are presented from the recently-completed Q{sub weak} experiment at Jefferson Lab. The goal is a precise measurement of the proton's weak charge Q{sub w}{sup p}, to yield a test of the standard model and to search for evidence of new physics. The weak charge is extracted from the parity-violating asymmetry in elastic {rvec e}p scattering at low momentum transfer, Q{sup 2} = 0.025GeV{sup 2}. A 180 {micro} A longitudinally-polarized 1.16 GeV electron beam was scattered from a 35 cm long liquid hydrogen at small angles, 6 {degrees} < {theta} < 12 {degrees} Scattered electrons were analyzed in amore » toroidal magnetic field and detected using an array of eight Cerenkov detectors arranged symmetrically about the beam axis. The initial result, from 4% of the complete data set, is Q{sub W}{sup p} = 0.064 ± 0.012, in excellent agreement with the standard model expectation. Full analysis of the data is expected to yield a value for the weak charge to about 5% precision.« less

  16. Crystal structures of 2-[(4,6-di-amino-pyrimidin-2-yl)sulfan-yl]-N-(naphthalen-1-yl)acetamide and 2-[(4,6-di-amino-pyrimidin-2-yl)sulfan-yl]-N-(4-fluoro-phen-yl)acetamide.

    PubMed

    Subasri, S; Kumar, Timiri Ajay; Sinha, Barij Nayan; Jayaprakash, Venkatesan; Viswanathan, Vijayan; Velmurugan, Devadasan

    2017-02-01

    The title compounds, C 16 H 15 N 5 OS, (I), and C 12 H 12 FN 5 OS, (II), are [(di-amino-pyrimidine)-sulfan-yl]acetamide derivatives. In (I), the pyrimidine ring is inclined to the naphthalene ring system by 55.5 (1)°, while in (II), the pyrimidine ring is inclined to the benzene ring by 58.93 (8)°. In (II), there is an intra-molecular N-H⋯N hydrogen bond and a short C-H⋯O contact. In the crystals of (I) and (II), mol-ecules are linked by pairs of N-H⋯N hydrogen bonds, forming inversion dimers with R 2 2 (8) ring motifs. In the crystal of (I), the dimers are linked by bifurcated N-H⋯(O,O) and C-H⋯O hydrogen bonds, forming layers parallel to (100). In the crystal of (II), the dimers are linked by N-H⋯O hydrogen bonds, also forming layers parallel to (100). The layers are linked by C-H⋯F hydrogen bonds, forming a three-dimensional architecture.

  17. Composition and method for hydrogen storage

    NASA Technical Reports Server (NTRS)

    Mao, Wendy L. (Inventor); Mao, Ho-Kwang (Inventor)

    2004-01-01

    A method for hydrogen storage includes providing water and hydrogen gas to a containment volume, reducing the temperature of the water and hydrogen gas to form a hydrogen clathrate at a first cryogenic temperature and a first pressure and maintaining the hydrogen clathrate at second cryogenic temperature within a temperature range of up to 250 K to effect hydrogen storage. The low-pressure hydrogen hydrate includes H.sub.2 O molecules, H.sub.2 molecules and a unit cell including polyhedron cages of hydrogen-bonded frameworks of the H.sub.2 O molecules built around the H.sub.2 molecules.

  18. Role of S…O non-bonded interaction in controlling supramolecular assemblies in a new series of 2-aminobenzothiazole based organic salts/ co-crystals

    NASA Astrophysics Data System (ADS)

    Yadav, Priyanka; Patel, Vatsa; Ballabh, Amar

    2018-07-01

    A new series of 2-aminobenzothiazole based organic salts were synthesized with mono- / di-carboxylic acid and characterized with various physico-chemical methods. One of the synthesized salt 2-aminobenzothiazolium-hydrogen fumarate (BTzA4) was found to be capable of gelling water with minimum gelator concentration (MGC) around 1.25 wt% (w/v). The single crystal structures of gelator (BTzA4) and non-gelators were analyzed for the presence of various supramolecular synthons especially the rarely occurring non-bonded S…O interactions and their role in controlling the overall hydrogen bonded network in these series of salts/ cocrystals. Charge assisted hydrogen bonded network was found to be governing the weak non-bonded S…O supramolecular synthons in the present study.

  19. Aqua-(3-fluoro-benzoato-κO)(3-fluoro-benzoato-κO,O')(1,10-phenanthroline-κN,N')cobalt(II).

    PubMed

    Wang, Xiao-Hui; Sun, Li-Mei

    2012-01-01

    In the title compound, [Co(C(7)H(4)FO(2))(2)(C(12)H(8)N(2))(H(2)O)], the Co(II) ion is coordinated by two O atoms from one 3-fluoro-benzoate (fb) ligand and one O atom from another fb ligand, two N atoms from the 1,10-phenanthroline ligand and a water mol-ecule in a distorted octa-hedral geometry. An intra-molecular O-H⋯O hydrogen bond occurs. Inter-molecular O-H⋯O hydrogen bonds link pairs of mol-ecules into centrosymmetric dimers. Weak inter-molecular C-H⋯O and C-H⋯F hydrogen bonds and π-π inter-actions between the aromatic rings [shortest centroid-centroid distance = 3.4962 (2) Å] further stabilize the crystal packing.

  20. Interaction between dimer interface residues of native and mutated SOD1 protein: a theoretical study.

    PubMed

    Keerthana, S P; Kolandaivel, P

    2015-04-01

    Cu-Zn superoxide dismutase 1 (SOD1) is a highly conserved bimetallic protein enzyme, used for the scavenging the superoxide radicals (O2 (-)) produced due to aerobic metabolism in the mitochondrial respiratory chain. Over 100 mutations have been identified and found to be in the homodimeric structure of SOD1. The enzyme has to be maintained in its dimeric state for the structural stability and enzymatic activity. From our investigation, we found that the mutations apart from the dimer interface residues are found to affect the dimer stability of protein and hence enhancing the aggregation and misfolding tendency of mutated protein. The homodimeric state of SOD1 is found to be held together by the non-covalent interactions. The molecular dynamics simulation has been used to study the hydrogen bond interactions between the dimer interface residues of the monomers in native and mutated forms of SOD1 in apo- and holo-states. The results obtained by this analysis reveal the fact that the loss of hydrogen bond interactions between the monomers of the dimer is responsible for the reduced stability of the apo- and holo-mutant forms of SOD1. The conformers with dimer interface residues in native and mutated protein obtained by the molecular dynamics simulation is subjected to quantum mechanical study using M052X/6-31G(d) level of theory. The charge transfer between N-H···O interactions in the dimer interface residues were studied. The weak interaction between the monomers of the dimer accounts for the reduced dimerization and enhanced deformation energy in the mutated SOD1 protein.

  1. The Roles of Acids and Bases in Enzyme Catalysis

    ERIC Educational Resources Information Center

    Weiss, Hilton M.

    2007-01-01

    Many organic reactions are catalyzed by strong acids or bases that protonate or deprotonate neutral reactants leading to reactive cations or anions that proceed to products. In enzyme reactions, only weak acids and bases are available to hydrogen bond to reactants and to transfer protons in response to developing charges. Understanding this…

  2. Catalytic coal liquefaction process

    DOEpatents

    Garg, D.; Sunder, S.

    1986-12-02

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

  3. Catalytic coal liquefaction process

    DOEpatents

    Garg, Diwakar; Sunder, Swaminathan

    1986-01-01

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.

  4. Evidence for multiple hydrogen-ion donor systems in rain

    Treesearch

    Sagar V. Krupa; M. R., Jr. Coscio; F. A. Wood

    1976-01-01

    An integrated analytical system consisting of combined scanning electron microscopy and x-ray analysis, atomic absorption, colorimetry and coulometry was used to study rain water chemistry. The coulometry facilitated the determination in molarities of strong and non-volatile and volatile weak acids. The pH of individual rains in St. Paul - Minneapolis, Minnesota ranged...

  5. Halocarbons as hydrogen bond acceptors: a spectroscopic study of haloethylbenzenes (PhCH2CH2X, X = F, Cl, Br) and their hydrate clusters.

    PubMed

    Robertson, Patrick A; Villani, Luigi; Dissanayake, Uresha L M; Duncan, Luke F; Abbott, Belinda M; Wilson, David J D; Robertson, Evan G

    2018-03-28

    The electronic spectra of 2-bromoethylbenzene and its chloro and fluoro analogues have been recorded by resonant two-photon ionisation (R2PI) spectroscopy. Anti and gauche conformers have been assigned by rotational band contour analysis and IR-UV ion depletion spectroscopy in the CH region. Hydrate clusters of the anti conformers have also been observed, allowing the role of halocarbons as hydrogen bond acceptors to be examined in this context. The donor OH stretch of water bound to chlorine is red-shifted by 36 cm -1 , or 39 cm -1 in the case of bromine. Although classed as weak H-bond acceptors, halocarbons are favourable acceptor sites compared to π systems. Fluorine stands out as the weakest H-bond acceptor amongst the halogens. Chlorine and bromine are also weak H-bond acceptors, but allow for more geometric lability, facilitating complimentary secondary interactions within the host molecule. Ab initio and DFT quantum chemical calculations, both harmonic and anharmonic, aid the structural assignments and analysis.

  6. Role of nuclear charge change and nuclear recoil on shaking processes and their possible implication on physical processes

    NASA Astrophysics Data System (ADS)

    Sharma, Prashant

    2017-12-01

    The probable role of the sudden nuclear charge change and nuclear recoil in the shaking processes during the neutron- or heavy-ion-induced nuclear reactions and weakly interacting massive particle-nucleus scattering has been investigated in the present work. Using hydrogenic wavefunctions, general analytical expressions of survival, shakeup/shakedown, and shakeoff probability have been derived for various subshells of hydrogen-like atomic systems. These expressions are employed to calculate the shaking, shakeup/shakedown, and shakeoff probabilities in some important cases of interest in the nuclear astrophysics and the dark matter search experiments. The results underline that the shaking processes are one of the probable channels of electronic transitions during the weakly interacting massive particle-nucleus scattering, which can be used to probe the dark matter in the sub-GeV regime. Further, it is found that the shaking processes initiating due to nuclear charge change and nuclear recoil during the nuclear reactions may influence the electronic configuration of the participating atomic systems and thus may affect the nuclear reaction measurements at astrophysically relevant energies.

  7. Lifshitz phase: the microscopic structure of aqueous and ethanol mixtures of 1,n-diols.

    PubMed

    Požar, Martina; Perera, Aurélien

    2017-06-14

    We study binary mixtures of ethylene glycol and 1,3-propandiol with water or ethanol using computer simulations. Despite strong hydrogen bonding tendencies between all these molecules, we find that these mixtures are surprisingly homogeneous, in contrast to the strong micro-heterogeneity found in aqueous ethanol mixtures. The aqueous diol mixtures are found to be close to ideal mixtures, with near-ideal Kirkwood-Buff integrals. Ethanol-diol mixtures show weak non-ideality. The origin of this unexpected randomness is due to the fact that the two hydrogen bonding hydroxyl groups of the 1,n-diol are bound by the neutral alkyl bond, which prevents the micro-segregation of the different types of hydroxyl groups. These findings suggest that random disorder can arise in the presence of strong interactions - in contrast to the usual picture of random disorder due to weak interactions between the components. They point to the important role of molecular topology in tuning concentration fluctuations in complex liquids. We propose and justify herein the name of Lifshitz phases to designate such types of disordered systems.

  8. Hydrogen storage composition and method

    DOEpatents

    Heung, Leung K; Wicks, George G.

    2003-01-01

    A hydrogen storage composition based on a metal hydride dispersed in an aerogel prepared by a sol-gel process. The starting material for the aerogel is an organometallic compound, including the alkoxysilanes, organometals of the form M(OR)x and MOxRy, where R is an alkyl group of the form C.sub.n H.sub.2n+1, M is an oxide-forming metal, n, x, and y are integers, and y is two less than the valence of M. A sol is prepared by combining the starting material, alcohol, water, and an acid. The sol is conditioned to the proper viscosity and a hydride in the form of a fine powder is added. The mixture is polymerized and dried under supercritical conditions. The final product is a composition having a hydride uniformly dispersed throughout an inert, stable and highly porous matrix. It is capable of absorbing up to 30 moles of hydrogen per kilogram at room temperature and pressure, rapidly and reversibly. Hydrogen absorbed by the composition can be readily be recovered by heat or evacuation.

  9. Molecular processes in astrophysics: Calculations of hydrogen + hydrogen gas excitation, de-excitation, and cooling

    NASA Astrophysics Data System (ADS)

    Kelley, Matthew Thomas

    The implications of H+H2 cooling in astrophysics is important to several applications. One of the most significant and pure applications is its role in cooling in the early universe. Other applications would include molecular dynamics in nebulae and their collapse into stars and astrophysical shocks. Shortly after the big bang, the universe was a hot primordial gas of photons, electrons, and nuclei among other ingredients. By far the most dominant nuclei in the early universe was hydrogen. In fact, in the early universe the matter density was 90 percent hydrogen and only 10 percent helium with small amounts of lithium and deuterium. In order for structure to form in the universe, this primordial gas must form atoms and cool. One of the significant cooling mechanisms is the collision of neutral atomic hydrogen with a neutral diatomic hydrogen molecule. This work performs calculations to determine collisional cooling rates of hydrogen using two potential surfaces.

  10. Hydrogen bonds and heat diffusion in α-helices: a computational study.

    PubMed

    Miño, German; Barriga, Raul; Gutierrez, Gonzalo

    2014-08-28

    Recent evidence has shown a correlation between the heat diffusion pathways and the known allosteric communication pathways in proteins. Allosteric communication in proteins is a central, yet unsolved, problem in biochemistry, and the study and characterization of the structural determinants that mediate energy transfer among different parts of proteins is of major importance. In this work, we characterized the role of hydrogen bonds in diffusivity of thermal energy for two sets of α-helices with different abilities to form hydrogen bonds. These hydrogen bonds can be a constitutive part of the α-helices or can arise from the lateral chains. In our in vacuo simulations, it was observed that α-helices with a higher possibility of forming hydrogen bonds also had higher rates of thermalization. Our simulations also revealed that heat readily flowed through atoms involved in hydrogen bonds. As a general conclusion, according to our simulations, hydrogen bonds fulfilled an important role in heat diffusion in structural patters of proteins.

  11. Electric-field control of tri-state phase transformation with a selective dual-ion switch

    NASA Astrophysics Data System (ADS)

    Lu, Nianpeng; Zhang, Pengfei; Zhang, Qinghua; Qiao, Ruimin; He, Qing; Li, Hao-Bo; Wang, Yujia; Guo, Jingwen; Zhang, Ding; Duan, Zheng; Li, Zhuolu; Wang, Meng; Yang, Shuzhen; Yan, Mingzhe; Arenholz, Elke; Zhou, Shuyun; Yang, Wanli; Gu, Lin; Nan, Ce-Wen; Wu, Jian; Tokura, Yoshinori; Yu, Pu

    2017-06-01

    Materials can be transformed from one crystalline phase to another by using an electric field to control ion transfer, in a process that can be harnessed in applications such as batteries, smart windows and fuel cells. Increasing the number of transferrable ion species and of accessible crystalline phases could in principle greatly enrich material functionality. However, studies have so far focused mainly on the evolution and control of single ionic species (for example, oxygen, hydrogen or lithium ions). Here we describe the reversible and non-volatile electric-field control of dual-ion (oxygen and hydrogen) phase transformations, with associated electrochromic and magnetoelectric effects. We show that controlling the insertion and extraction of oxygen and hydrogen ions independently of each other can direct reversible phase transformations among three different material phases: the perovskite SrCoO3-δ (ref. 12), the brownmillerite SrCoO2.5 (ref. 13), and a hitherto-unexplored phase, HSrCoO2.5. By analysing the distinct optical absorption properties of these phases, we demonstrate selective manipulation of spectral transparency in the visible-light and infrared regions, revealing a dual-band electrochromic effect that could see application in smart windows. Moreover, the starkly different magnetic and electric properties of the three phases—HSrCoO2.5 is a weakly ferromagnetic insulator, SrCoO3-δ is a ferromagnetic metal, and SrCoO2.5 is an antiferromagnetic insulator—enable an unusual form of magnetoelectric coupling, allowing electric-field control of three different magnetic ground states. These findings open up opportunities for the electric-field control of multistate phase transformations with rich functionalities.

  12. High Level ab initio Predictions of the Energetics of mCO2•(H2O)n (n = 1-3, m = 1-12) Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanthiriwatte, Sahan; Duke, Jessica R.; Jackson, Virgil E.

    Electronic structure calculations at the correlated molecular orbital theory and density functional theory levels have been used to generate a reliable set of clustering energies for up to three water molecules in carbon dioxide clusters up to n = 12. The structures and energetics are dominated by Lewis acid-base interactions with hydrogen bonding interactions playing a lesser energetic role. The actual binding energies are somewhat larger than might be expected. The correlated molecular orbital MP2 method and density functional theory with the ωB97X exchange-correlation functional provide good results for the energetics of the clusters but the B3LYP and ωB97X-D functionalsmore » do not. Seven CO2 molecules form the first solvent shell about a single H2O with four CO2 molecules interacting with the H2O via Lewis acid-base interactions, two CO2 interacting with the H2O by hydrogen bonds, and the seventh CO2 completing the shell. The Lewis acid-base and weak hydrogen bond interactions between the water molecules and the CO2 molecules are strong enough to disrupt the trimer ring configuration for as few as seven CO2 molecules. Calculated 13C NMR chemical shifts for mCO2•(H2O)n show little change with respect to the number of H2O or CO2 molecules in the cluster. The O-H stretching frequencies do exhibit shifts that can provide information about the interactions between water and CO2 molecules.« less

  13. Velocity-resolved [{\\rm{C}}\\,{\\rm{II}}] Emission from Cold Diffuse Clouds in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Goldsmith, Paul F.; Pineda, Jorge L.; Neufeld, David A.; Wolfire, Mark G.; Risacher, Christophe; Simon, Robert

    2018-04-01

    We have combined emission from the 158 μm fine structure transition of C+ observed with the GREAT and upGREAT instruments on SOFIA with 21 cm absorption spectra and visual extinction to characterize the diffuse interstellar clouds found along the lines of sight. The weak [C II] emission is consistent in velocity and line width with the strongest H I component produced by the cold neutral medium. The H I column density and kinetic temperature are known from the 21 cm data and, assuming a fractional abundance of ionized carbon, we calculate the volume density and thermal pressure of each source, which vary considerably, with 27 {cm}}-3≤slant n({{{H}}}0) ≤slant 210 cm‑3 considering only the atomic hydrogen along the lines of sight to be responsible for the C+, while 13 {cm}}-3≤slant n({{{H}}}0+{{{H}}}2)≤slant 190 cm‑3 including the hydrogen in both forms. The thermal pressure varies widely with 1970 cm‑3 K ≤slant {P}th}/k≤slant 10,440 cm‑3 K for H0 alone and 750 cm‑3 K ≤ P th/k ≤ 9360 cm‑3 K including both H0 and H2. The molecular hydrogen fraction varies between 0.10 and 0.67. Photoelectric heating is the dominant heating source, supplemented by a moderately enhanced cosmic ray ionization rate, constrained by the relatively low 45 K to 73 K gas temperatures of the clouds. The resulting thermal balance for the two lower-density clouds is satisfactory, but for the two higher-density clouds, the combined heating rate is insufficient to balance the observed C+ cooling.

  14. Zwitterionic and free forms of arylmethyl Meldrum's acids.

    PubMed

    Mierina, Inese; Mishnev, Anatoly; Jure, Mara

    2015-09-01

    C-Alkyl (including C-arylmethyl) derivatives of Meldrum's acids are attractive building blocks in organic synthesis, mainly due to the unusually high acidity of the resulting compounds. Three examples, namely 5-[4-(diethylamino)benzyl]-2,2-dimethyl-1,3-dioxane-4,6-dione, C17H23NO4, (I), 2,2-dimethyl-5-(2,4,6-trimethoxybenzyl)-1,3-dioxane-4,6-dione, C16H20O7, (II), and 5-(4-hydroxy-3,5-dimethoxybenzyl)-2,2-dimethyl-1,3-dioxane-4,6-dione, C15H18O7, (III), have been synthesized, characterized by NMR and IR spectroscopy, and studied by single-crystal X-ray structure analysis. The nature of the different substituents resulted in remarkable differences in both the molecular conformations and the crystal packing arrangements. The presence of a substituent with a basic centre in compound (I) leads to the formation of an inner salt accompanied by drastic changes in the conformation of the 1,3-dioxane-4,6-dione fragment. By virtue of strong N-H···O hydrogen bonds, the residues are assembled into infinite chains with the graph-set descriptor C(10). Compound (II) contains methoxy groups in both the ortho- and para-positions of the arylmethyl fragment. Because of the absence of classical hydrogen-bond donors in this structure, the crystal packing is controlled by van der Waals forces and weak C-H···O interactions. Compound (III) contains methoxy groups in both meta-positions and a hydroxy group in the para-position. Supramolecular tetrameric synthons which comprise hydrogen-bonded dimers associated into tetramers through π-π interactions of overlapping benzene rings were observed.

  15. Hydrogen Hotspots on Vesta

    NASA Image and Video Library

    2012-09-20

    This image shows that NASA Dawn mission detected abundances of hydrogen in a wide swath around the equator of the giant asteroid Vesta. The hydrogen probably exists in the form of hydroxyl or water bound to minerals in Vesta surface.

  16. Removal of hydrogen bubbles from nuclear reactors

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.

    1980-01-01

    Method proposed for removing large hydrogen bubbles from nuclear environment uses, in its simplest form, hollow spheres of palladium or platinum. Methods would result in hydrogen bubble being reduced in size without letting more radioactivity outside reactor.

  17. [Mechanism of oxidation reaction of NADH models and phynylglyoxal with hydrogen peroxide. Hypothesis on separate transport of hydrogen and electron atom in certain enzymatic reactions with the participation of NADH and NADPH].

    PubMed

    Iasnikov, A A; Ponomarenko, S P

    1976-05-01

    Kinetics of co-oxidation of 1-benzen-3-carbamido-1,4-dihydropyridine (BDN) and phenylglyoxal (PG) with hydrogen peroxide is studied. Dimeric product (di-e11-benzen-5-carbamido-1,2-dihydropyridyl-2]) is found to be formed at pH 9, and quaternal pyridinium salt (BNA)--at pH 7. Molecular oxigen is determined to participate in the reaction at pH 7. Copper (II) ions catalyze this process. Significant catalytic effect of p-dinitrobenzen (p-DNB) is found. The reaction mechanism is postulated to form hydroperoxide from PG and hydrogen peroxide which are capable to split the hydrogen attom from dihydropyridine, molecular oxigen or p-DNB being an acceptor of the electrone. Hypothesis on separate transfer of hydrogen atom and electrone in biological systems are proposed.

  18. 40 CFR 63.8266 - What definitions apply to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., that is used in the electrolyzer as a raw material. By-product hydrogen stream means the hydrogen gas from each decomposer that passes through the hydrogen system and is burned as fuel, transferred to... cylindrical vessel), producing caustic and hydrogen gas and returning mercury to its elemental form for re-use...

  19. 40 CFR 63.8266 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., that is used in the electrolyzer as a raw material. By-product hydrogen stream means the hydrogen gas from each decomposer that passes through the hydrogen system and is burned as fuel, transferred to... cylindrical vessel), producing caustic and hydrogen gas and returning mercury to its elemental form for re-use...

  20. Defect studies of ZnO single crystals electrochemically doped with hydrogen

    NASA Astrophysics Data System (ADS)

    Čížek, J.; Žaludová, N.; Vlach, M.; Daniš, S.; Kuriplach, J.; Procházka, I.; Brauer, G.; Anwand, W.; Grambole, D.; Skorupa, W.; Gemma, R.; Kirchheim, R.; Pundt, A.

    2008-03-01

    Various defect studies of hydrothermally grown (0001) oriented ZnO crystals electrochemically doped with hydrogen are presented. The hydrogen content in the crystals is determined by nuclear reaction analysis and it is found that already 0.3at.% H exists in chemically bound form in the virgin ZnO crystals. A single positron lifetime of 182ps is detected in the virgin crystals and attributed to saturated positron trapping at Zn vacancies surrounded by hydrogen atoms. It is demonstrated that a very high amount of hydrogen (up to ˜30at.%) can be introduced into the crystals by electrochemical doping. More than half of this amount is chemically bound, i.e., incorporated into the ZnO crystal lattice. This drastic increase of the hydrogen concentration is of marginal impact on the measured positron lifetime, whereas a contribution of positrons annihilated by electrons belonging to O-H bonds formed in the hydrogen doped crystal is found in coincidence Doppler broadening spectra. The formation of hexagonal shape pyramids on the surface of the hydrogen doped crystals by optical microscopy is observed and discussed.

Top