Sample records for formaldehyde concentrations ranged

  1. Formaldehyde Exposures in a University Anatomy Laboratory

    NASA Astrophysics Data System (ADS)

    Winkler, Kyle William

    Air sampling studies were conducted within a university anatomical laboratory during the embalmment of a cadaver in order to determine if dangerous concentrations of formaldehyde existed. Three air sampling studies were conducted in the anatomical laboratory on three separate days that a cadaver was being embalmed. Samples were collected and analyzed using the Occupational Safety and Health Administration (OSHA) Sampling and Analytical Methods: Method 52. Each air sampling study sampled for short term exposure limit (STEL) and time weighted mean (TWA) breathing zone formaldehyde concentrations as well as area TWA formaldehyde concentrations. A personal aldehyde monitor was also used in each air sampling study to sample for breathing zone formaldehyde concentrations. Measured TWA mean exposures to formaldehyde ranged from 0.15--1.3 parts per million (ppm), STEL formaldehyde exposures ranged from 0.019--0.64 ppm, and eight-hour TWAs ranged from 0.03 to 3.6 ppm. All 8-hour TWA formaldehyde concentrations sampled in the anatomy laboratory during an embalmment were less than the permissible exposure limit (PEL) required by OSHA.

  2. Air formaldehyde and solvent concentrations during surface coating with acid-curing lacquers and paints in the woodworking and furniture industry.

    PubMed

    Thorud, Syvert; Gjolstad, Merete; Ellingsen, Dag G; Molander, Paal

    2005-06-01

    An investigation of contemporary exposure to formaldehyde and organic solvents has been carried out during surface coating with acid-curing lacquers and paints in the Norwegian woodworking and furniture industry over a period of 3 years. The investigation covered 27 factories of different sizes and with different types of production, and totally 557 parallel formaldehyde and solvent samples were collected. The formaldehyde concentration (geometric mean) was 0.15 ppm (range 0.01-1.48 ppm) with about 10% of the samples exceeding the Norwegian occupational exposure limit of 0.5 ppm. The solvent concentration as additive effect (geometric mean) was 0.13 (range 0.0004-5.08) and about 5% of the samples exceeded the Norwegian occupational exposure limit. The most frequently occurring solvents from acid-curing lacquers were n-butyl acetate, ethanol, ethyl acetate and 1-butanol, which were found in 88-98% of the samples. Toluene, n-butyl acetate and 1-butanol were the only solvents with maximum concentrations exceeding their respective occupational exposure limits. Curtain painting machine operators were exposed to the highest concentrations of both formaldehyde (geometric mean 0.51 ppm, range 0.08-1.48 ppm) and organic solvents (additive effect, geometric mean 1.18, range 0.02-5.08). Other painting application work tasks such as automatic and manual spray-painting, manual painting and dip painting, showed on average considerably lower concentrations of both formaldehyde (geometric means 0.07-0.16 ppm) and organic solvents (additive effect, geometric mean 0.02-0.18). Non-painting work tasks also displayed moderate concentrations of formaldehyde (geometric means 0.11-0.17 ppm) and organic solvents (additive effect, geometric mean 0.04-0.07).

  3. Preliminary study: Formaldehyde exposure in laboratories of Sharjah university in UAE

    PubMed Central

    Ahmed, Hafiz Omer

    2011-01-01

    Objectives Laboratory technicians, students, and instructors are at high risk, because they deal with chemicals including formaldehyde. Thus, this preliminary study was conducted to measure the concentration of formaldehyde in the laboratories of the University of Sharjah in UAE. Materials and Methods: Thirty-two air samples were collected and analyzed for formaldehyde using National Institute for Occupational Safety and Health (NIOSH) method 3500. In this method, formaldehyde reacts with chromotropic acid in the presence of sulfuric acid to form a colored solution. The absorbance of the colored solution is read in spectrophotometer at wavelength 580 nm and is proportional to the quantity of the formaldehyde in the solution. Results: For the anatomy laboratory and in the presence of the covered cadaver, the mean concentration of formaldehyde was found to be 0.100 ppm with a range of 0.095–0.105 ppm. Whereas for the other laboratories, the highest mean concentration of formaldehyde was 0.024 ppm in the general microbiology laboratory and the lowest mean concentration of formaldehyde was 0.001 ppm in the environmental health laboratory. The 8-hour (time-weighted average) concentration of formaldehyde was found to be ranging between 0.0003 ppm in environmental health laboratory and 0.026 ppm in the anatomy laboratory. Conclusions: The highest level of concentration of formaldehyde in the presence of the covered cadaver in anatomy laboratory exceeded the recommended ceiling standard established by USA-NIOSH which is 0.1 ppm, but below the ceiling standard established by American Conference of Governmental Industrial Hygienists which is 0.3 ppm. Thus, it is recommended that formaldehyde levels should be measured periodically specially during the dissection in the anatomy laboratory, and local exhaust ventilation system should be installed and personal protective equipment such as safety glass and gloves should be available and be used to prevent direct skin or eye contact. PMID:21808499

  4. Developing a Reference Material for Formaldehyde Emissions Testing; Final Report

    EPA Science Inventory

    Exposure to formaldehyde has been shown to produce broad and potentially severe adverse human health effects. With ubiquitous formaldehyde sources in the indoor environment, formaldehyde concentrations in indoor air are usually higher than outdoors, ranging from 10 to 4000 μg/m3....

  5. Measurement of indoor formaldehyde concentrations with a passive sampler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillett, R.W.; Kreibich, H.; Ayers, G.P.

    2000-05-15

    An existing Ferm-type passive sampler technique has been further developed to measure concentrations of formaldehyde gas in indoor air. Formaldehyde forms a derivative after reaction with a filter coated with 2,4-dinitrophenylhydrazine (2,4-DNPH). The formaldehyde 2,4-dinitrophenylhydrazine derivative (formaldehyde-2,4-DNPH) is extracted from the filter, and the concentration is determined by high-performance liquid chromatography. The technique has been validated against an active sampling method, and the agreement is close when the appropriate laminar boundary layer depth is applied to the passive measurement. For this technique an exposure period of 3 days is equivalent to a limit of detection of formaldehyde of 3.4 ppbvmore » and a limit of quantification of 7.6 ppbv. To test the performance of the passive samplers ambient formaldehyde measurements were carried out inside homes and in a range of workplace environments.« less

  6. Determination of naturally occurring formaldehyde levels in sap and wood tissue of maple trees using gas chromatgraphy/mass spectrometry.

    PubMed

    Lagacé, Luc; Gaudy, Réjean; Perez-Locas, Carolina; Sadiki, Mustapha

    2012-01-01

    The occurrence of formaldehyde in sap and wood tissue of treated and untreated maple sugar trees was investigated using GC/MS. Samples were collected at different periods of the 2009 season and at different locations in Quebec, Canada. The natural concentration of formaldehyde found in untreated samples varied according to periods and locations and ranged from below the LOQ to 1.82 mg/kg for sap samples and from 2.39 to 8.92 mg/kg of fresh tissue for wood samples. Late season samples tended to have higher concentrations of formaldehyde. Samples of sap and wood tissue from tapholes treated with solutions of formaldehyde showed increased concentrations of formaldehyde for many days after treatment and were clearly distinct from untreated samples. These results will be useful to elaborate new inspection procedures for sugarbushes to control the illegal use of formaldehyde.

  7. Carbonyl levels in indoor and outdoor air in Mexico City and Xalapa, Mexico.

    PubMed

    Báez, Armando; Padilla, Hugo; García, Rocío; Torres, Ma del Carmen; Rosas, Irma; Belmont, Raúl

    2003-01-20

    Carbonyl compounds in air were measured at two houses, three museums, and two offices. All sites lacked air-conditioning systems. Although indoor and outdoor air was measured simultaneously at each site, the sites themselves were sampled in different dates. Mean concentrations were higher in indoor air. Outdoor means concentrations of acetone were the highest in all sites, ranging from 12 to 60 microg m(-3). In general, formaldehyde and acetaldehyde had similar mean concentrations, ranging from 4 to 32 and 6 to 28 microg m(-3), respectively. Formaldehyde and acetone mean indoor concentrations were the highest, ranging from 11 to 97 and 17 to 89 microg m(-3), respectively, followed by acetaldehyde with 5 to 47 microg m(-3). Formaldehyde and acetaldehyde had the highest mean concentration in the offices where there were smokers. Propionaldehyde and butyraldehyde concentrations did not show definite differences between indoor and outdoor air. In general, the highest outdoor and indoor hourly concentrations were observed from 10:00 to 15:00 h. Mean indoor/outdoor ratios of carbonyls exceeded 1. Formaldehyde and acetaldehyde risks were higher in smoking environments. Copyright 2002 Elsevier Science B.V.

  8. Formaldehyde concentrations in household air of asthma patients determined using colorimetric detector tubes

    PubMed Central

    Dannemiller, Karen C.; Murphy, Johnna S.; Dixon, Sherry L.; Pennell, Kelly G.; Suuberg, Eric M.; Jacobs, David E.; Sandel, Megan

    2013-01-01

    Formaldehyde is a colorless, pungent gas commonly found in homes that is a respiratory irritant, sensitizer, carcinogen and asthma trigger. Typical household sources include plywood and particleboard, cleaners, cosmetics, pesticides, and others. Development of a fast and simple measurement technique could facilitate continued research on this important chemical. The goal of this research is to apply an inexpensive short-term measurement method to find correlations between formaldehyde sources and concentration, and formaldehyde concentration and asthma control. Formaldehyde was measured using 30-minute grab samples in length-of-stain detector tubes in homes (n=70) of asthmatics in the Boston, MA area. Clinical status and potential formaldehyde sources were determined. The geometric mean formaldehyde level was 35.1 ppb and ranged from 5–132 ppb. Based on one-way ANOVA, t-tests, and linear regression, predictors of log-transformed formaldehyde concentration included absolute humidity, season, and the presence of decorative laminates, fiberglass, or permanent press fabrics (p<0.05), as well as temperature and household cleaner use (p<0.10). The geometric mean formaldehyde concentration was 57% higher in homes of children with very poorly controlled asthma compared to homes of other asthmatic children (p=0.078). This study provides a simple method for measuring household formaldehyde and suggests that exposure is related to poorly controlled asthma. PMID:23278296

  9. Measurements of carbonyls in a 13-story building.

    PubMed

    Báez, Armando P; Padilla, Hugo G; García, Rocío M; Belmont, Raúl D; Torres, Maria del Carmen B

    2004-01-01

    Formaldehyde and acetaldehyde are emitted by many mobile and stationary sources and secondary aldehydes are intermediates in the photo-oxidation of organic compounds in the atmosphere. These aldehydes are emitted indoors by many materials such as furniture, carpets, heating and cooling systems, an by smoking. Carbonyls, mainly formaldehyde and acetaldehyde, have been studied because of their adverse health effects. In addition, formaldehyde is a suspected carcinogen. Therefore, the concentrations of formaldehyde and acetaldehyde were determined to assess the inhalation exposure doses to carbonyls for people who work in a 13-story building and in order to evaluate the cancer hazard. Carbonyl compounds in indoor and outdoor air were measured at a 13-story building located in Mexico City. The mezzanine, fifth and tenth floors, and the third level-parking garage were selected for sampling. Samples were collected in two sampling periods, the first from April 20 to 29, 1998 and the second from December 1 to 20, 1998. Carbonyls were sampled by means of DNHP-coated cartridges at a flow rate of 1 l min(-1) from 9:00 to 19:00 hours, during 2-hour time intervals and analyzed by HPLC with hours, during 2-hour time intervals and analyzed by HPLC with UV/VIS detection. Mean carbonyl concentrations were highest in the 3rd level-parking garage, with the formaldehyde concentration being the highest ranging from 108 to 418 microg m(-3). In working areas, the highest carbonyl arithmetic mean concentrations (AM) were observed on the 5th floor. Acetone and formaldehyde concentrations were highest in April ranging from 161 to 348 microg m(-3) (AM = 226) and from 157 to 270 microg m(-3) (AM = 221), respectively. Propionaldehyde and butyraldehyde were present in smaller concentrations ranging from 2 to 25 and 1 to 28 microg m(-3), respectively, considering all the samples. Mean indoor/outdoor ratios of carbonyls ranged from 1.8 to 9.6. A reduction of inhalation exposure doses of 41% and 45% was observed in the fifth floor air after the air conditioning systems had been repaired. Formaldehyde and acetaldehyde concentrations were higher in smoking environments. Indoor carbonyl concentrations were significantly greater than outdoor concentrations. Tobacco smoke seems to be the main indoor source of formaldehyde. After the air conditioning system was maintained and repaired (as was recommended), an important reduction in the emission of formaldehyde and acetaldehyde was achieved on all floors, except for the 3rd level parking garage, thereby reducing the inhalation exposure doses. The results obtained in this research demonstrated that maintenance of air conditioning systems must be carried out regularly in order to avoid possible adverse effects on health. Additionally, it is mandatory that isolated smoking areas, with air extraction systems, be installed in every public building.

  10. Urban-air-toxics Monitoring Program carbonyl results, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-07-01

    The report summarizes the results of sampling ambient air for selected carbonyl containing compounds in 12 urban centers in the contiguous United States as part of the Urban Air Toxics Monitoring Program (UATMP). Formaldehyde, acetaldehyde, and acetone concentrations were measured using 2,4-dinitrophenylhydrazine (DNPH)-coated silica cartridges to collect the carbonyls for subsequent analysis. Sampling and analysis followed guidance provided in U.S. Environmental Protection Agency (EPA) compendium method TO-11. Formaldehyde concentrations ranged from 0.42 to 34.5 ppbv with an average concentration for all sites of 4.2 ppbv. Site average formaldehyde concentrations ranged from 1.5 ppbv for Houston, TX (H1TX) to 7.9 formore » Washington, DC (W2DC). Acetaldehyde concentrations ranged from 0.37 to 9.5 ppbv, averaging 1.7 ppbv over all 1990 UATMP sites. Site average acetaldehyde concentrations ranged from 0.76 ppbv at Houston, TX (H1TX) to 2.5 ppbv at Baton Rouge, LA (BRLA). Acetone concentrations ranged from 0.37 to 10.8 ppbv and averaged 1.8 ppbv over all sites. Site average acetone concentrations ranged from 0.68 ppbv at Houston, TX (H1TX) to 2.9 ppbv at Chicago, IL (C4IL).« less

  11. Monitoring of formaldehyde in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balmat, J.L.; Meadows, G.W.

    1985-10-01

    Any one of several monitoring methods, depending on requirement and circumstance, can be used to measure employee exposure to formaldehyde. Ordinarily, monitoring at DuPont is performed by sampling with impingers containing 1% aqueous sodium bisulfite or with silica gel tubes. The collected formaldehyde is measured spectrophotometrically after reaction with chromotropic acid. Results from studies on a selected number of formaldehyde monitoring methods reveal that reliable methods are available for area and personnel monitoring over both short term and long term. Accurate results are obtained from short-term monitoring (15 min at 1 L/min) with impingers of formaldehyde concentrations as low asmore » 0.14 ppm. The current studies show that long-term monitoring (8 hr at 0.5 L/min) can be performed accurately at concentrations as low as 0.05 ppm. Accurate results also are obtained from short-term monitoring (15 min at 500 mL/min) with silica gel tubes of concentrations as low as 0.11 ppm formaldehyde. Passive monitors provide the most convenient means of obtaining 8-hour time-weighted average (TWA) data. The Pro-Tek Formaldehyde Badge was demonstrated to reliably monitor formaldehyde concentrations varying from 0-0.5 ppm or 0-3 ppm. Investigation of the Lion Formaldemeter disclosed that instantaneous and accurate (+/- 5%) measurement of formaldehyde in air can be made over a concentration range of 0.3-5 ppm in the absence of other substances that are oxidizable in its fuel cell detector.« less

  12. Henry’s Law Constant and Overall Mass Transfer Coefficient for Formaldehyde Emission from Small Water Pools under Simulated Indoor Environmental Conditions

    EPA Science Inventory

    The Henry’s law constant (HLC) and the overall mass transfer coefficient are both important parameters for modeling formaldehyde emissions from aqueous solutions. In this work, the apparent HLCs for aqueous formaldehyde solutions were determined in the concentration range from 0....

  13. A biodegradable colorimetric film for rapid low-cost field determination of formaldehyde contamination by digital image colorimetry.

    PubMed

    Wongniramaikul, Worawit; Limsakul, Wadcharawadee; Choodum, Aree

    2018-05-30

    A biodegradable colorimetric film was fabricated on the lid of portable tube for in-tube formaldehyde detection. Based on the entrapment of colorimetric reagents within a thin film of tapioca starch, the yellow reaction product was observed with formaldehyde. Intensity of the blue channel from the digital image of yellow product showed a linear relationship in the range of 0-25 mg L -1 with low detection limit of 0.7 ± 0.1 mg L -1 . Inter-day precision of 0.61-3.10%RSD were obtained with less than 4.2% relative error from control samples. The developed method was applied for various food samples in Phuket and formaldehyde concentration range was non-detectable to 1.413 mg kg -1 . The quantified concentrations of formaldehyde in fish and squid samples provided relative errors of -7.7% and +10.8% compared to spectrophotometry. This low cost sensor (∼0.04 USD/test) with digital image colorimetry was thus an effective alternative for formaldehyde detection in food sample. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Aldehyde measurements in indoor environments in Strasbourg (France)

    NASA Astrophysics Data System (ADS)

    Marchand, C.; Bulliot, B.; Le Calvé, S.; Mirabel, Ph.

    Formaldehyde and acetaldehyde concentrations have been measured in indoor environments of various public spaces (railway station, airport, shopping center, libraries, underground parking garage, etc.) of Strasbourg area (east of France). In addition, formaldehyde, acetaldehyde propionaldehyde and hexanal concentrations have been measured in 22 private homes in the same area. In most of the sampling sites, indoor and outdoor formaldehyde and acetaldehyde concentrations were measured simultaneously. Gaseous aldehydes levels were quantified by a conventional DNHP-derivatization method followed by liquid chromatography coupled to UV detection. Outdoor formaldehyde and acetaldehyde concentrations were both in the range 1-10 μg m -3, the highest values being measured at the airport and railway station. Indoor concentrations were strongly dependant upon the sampling sites. In homes, the average concentrations were 37 μg m -3 (living rooms) and 46 μg m -3 (bedrooms) for formaldehyde, 15 μg m -3 (living rooms) and 18 μg m -3 (bedrooms) for acetaldehyde, 1.2 μg m -3 (living rooms) and 1.6 μg m -3 (bedrooms) for propionaldehyde, 9 μg m -3 (living rooms) and 10 μg m -3 (bedrooms) for hexanal. However, concentrations as high as 123, 80 and 47 μg m -3 have been found for formaldehyde, acetaldehyde and hexanal respectively. In public spaces, the highest formaldehyde concentration (62 μg m -3) was found in a library and the highest concentration of acetaldehyde (26 μg m -3) in the hall of a shopping center. Additional measurements of formaldehyde and acetaldehyde were made inside a car both at rest or in a fluid or heavy traffic as well as in a room where cigarettes were smoked. Our data have been discussed and compared with those of previous studies.

  15. Retention of Preservative Levels of Formaldehyde in Desiccated Biological Products

    PubMed Central

    Pemberton, John R.

    1975-01-01

    Concentrations ranging from 8 to 100% of the preservative level of formalin (37% formaldehyde solution) were retained by desiccated biologics, with most products retaining about 50% regardless of the amount originally present. PMID:972183

  16. Intercomparison of formaldehyde measurements in the tropical atmosphere

    NASA Astrophysics Data System (ADS)

    Trapp, Dorothea; De Serves, Claes

    An intercomparison of formaldehyde measurements at low concentrations ( < 2.0 ppbv) was performed during the ASTROS '93 field campaign in Venezuela (Atmospheric Studies in the TROpical Savannah, September 1993). Formaldehyde was collected and measured by two different techniques: a porous membrane diffusion scrubber with fluorescent detection of the Hantzsch reaction product, and DNPH-traps (2,4-dinitrophenylhydrazine) followed by high performance liquid chromatography with a UV/VIS absorption detector. The time resolution for the diffusion scrubber instrument was 5 min while the DNPH-tr;ap samples were integrated over 30-60 min. The measured concentrations range from the detection limits (0.045 ppbv for the diffusion scrubber, 0.1 ppbv for the DNPH-traps) up to 2 ppbv. The correlation coefficient between the two techniques is r2 = 0.80 (n = 48) and the slope equals unity (1.02 ± 0.03). Both methods are found to be suitable for field experiments in the low ppbv range of formaldehyde.

  17. Concentrations and stability of methyl methacrylate, glutaraldehyde, formaldehyde and nickel sulfate in commercial patch test allergen preparations.

    PubMed

    Siegel, Paul D; Fowler, Joseph F; Law, Brandon F; Warshaw, Erin M; Taylor, James S

    2014-05-01

    Epicutaneous patch tests are used to reproduce allergy and diagnose allergic contact dermatitis. Reliable allergen test preparations are required. The purpose of the present study was to measure the actual concentrations of nickel(II) sulfate hexahydrate (NiSO4 ), methyl methacrylate, formaldehyde, and glutaraldehyde, and to compare them with the labelled concentrations, in commercial patch test allergen preparations found in dermatology clinics where patch testing is routinely performed. The commercial in-date and out-of-date patch test allergen preparations concentrations of NiSO4 , methyl methacrylate, formaldehyde and glutaraldehyde from one to three participating clinics were analysed with chromatographic or wet chemical techniques. NiSO4 and formaldehyde concentrations were at or above the labelled concentrations; however, formaldehyde loss occurred with storage. NiSO4 particulate was uniformly distributed throughout the petrolatum. 'In-use' methyl methacrylate reagent syringes all contained ≤ 56% of the 2% label concentration, with no observable relationship with expiration date. Lower methyl methacrylate cocentrations were consistently measured at the syringe tip end, suggesting loss resulting from methyl methacrylate's volatility. The concentrations of glutaraldehyde patch test allergen preparations ranged from 27% to 45% of the labelled (1% in pet.) concentration, independently of expiration date. Some false-negative methyl methacrylate, formaldehyde or glutaraldehyde patch test results may be attributable to instability of the test preparations. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Determination of ultra-trace formaldehyde in air using ammonium sulfate as derivatization reagent and capillary electrophoresis coupled with on-line electrochemiluminescence detection.

    PubMed

    Deng, Biyang; Liu, Yang; Yin, Huihui; Ning, Xi; Lu, Hua; Ye, Li; Xu, Quanxiu

    2012-03-15

    The reaction between formaldehyde and ammonium ion to produce hexamethylenetetramine is well known. The reaction conditions are very easily controlled in situ and the experiment operation is very simple. However, such derivatization reaction for trace formaldehyde determination using capillary electrophoresis (CE) electrochemiluminescence (ECL) has not been reported before. In this study, the application of ammoniun sulfate as derivatization reagent to in-situ determination of formaldehyde in air was reported. Based on ECL enhancement of tris(2,2'-bipyridyl)ruthenium(II) with hexamethylenetetramine, a novel approach for the determination of ultra-trace formaldehyde in air using CE coupled with on-line ECL of tris(2,2'-bipyridyl)ruthenium(II) has been developed. The parameters affecting separation and detection such as detection potential, concentration and pH of phosphate buffer, and electrokinetic voltage, were investigated. Under the optimal conditions, the linear concentration range of formaldehyde in air was from 0.48 μg/m(3) to 96 mg/m(3) (linear range covering 5 orders of magnitude). The limit of detection (3σ) was 0.15 μg/m(3). The relative standard deviations of peak height and migration time for six consecutive injection of 1 ng/mL formaldehyde derivative were 0.9% and 0.8%, respectively. The recoveries of formaldehyde in air were between 99.3% and 101%. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Determination of Very Low Level of Free Formaldehyde in Liquid Detergents and Cosmetic Products Using Photoluminescence Method

    PubMed Central

    Mohsenikia, Atefeh; Masoum, Saeed

    2016-01-01

    Formaldehyde is commonly used in detergents and cosmetic products as antibacterial agent and preservative. This substance is unfavorable for human health because it is known to be toxic for humans and causes irritation of eyes and skins. The toxicology studies of this compound indicate risk of detergents and cosmetic formulations with a minimum content of 0.05% free formaldehyde. Therefore, determination of formaldehyde as quality control parameter is very important. In this study, a photoluminescence method was achieved by using 2-methyl acetoacetanilide. Also, the Box-Behnken design was applied for optimization of Hantzsch reaction for formaldehyde derivatization. The investigated factors (variables) were temperature, % v/v ethanol, reaction time, ammonium acetate, and 2-methyl acetoacetanilide concentration. The linear range was obtained from 0.33–20 × 10−7 M (1–60 μg·kg−1) and the limit of detection (LOD) was 0.12 μg·kg−1. The proposed method was applied for the analysis of Iranian brands of liquid detergents and cosmetic products. The formaldehyde content of these products was found to be in the range of 0.03–3.88%. Some brands of these products had higher concentration than the maximum allowed concentration of 0.2%. High recoveries (96.15%–104.82%) for the spiked dishwashing liquid and hair shampoo indicate the proposed method is proper for the assessment of formaldehyde in detergents and cosmetic products. The proposed methodology has some advantages compared with the previous methods such as being rapid, without the necessity of applying separation, low cost, and the fact that the derivatization reaction is carried out at room temperature without any heating system. PMID:27635279

  20. Formaldehyde exposure affects growth and metabolism of common bean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mutters, R.G.; Madore, M.; Bytnerowicz, A.

    Recent state and federal directives have slated a substantial increase in the use of methanol as an alternative to gasoline in both fleet and private vehicles in the coming decade. The incomplete combustion of methanol produces formaldehyde vapor, and catalytic converter technology that completely oxidizes formaldehyde has yet to be developed. The approach of this study was to use a range of methanol concentrations encompassing levels currently found or that may occur in the future in the ambient air of some heavily polluted areas to test the potential phytotoxicity of formaldehyde. The study had the following objectives: (1) design andmore » build a formaldehyde vapor generator with sufficient capacity for long-term plant fumigations; (2) determine growth response of common bean to formaldehyde; (3) evaluate physiological and biochemical changes of bean plants associated with formaldehyde exposures. 20 refs., 2 figs., 2 tabs.« less

  1. [Examination related to revised test method for determination of formaldehyde, regulated by the law for the control of household products containing harmful substances].

    PubMed

    Ikarashi, Yoshiaki; Kaniwa, Masa-aki; Tsuchiya, Toshie

    2003-01-01

    In Japan, the amount of formaldehyde in textile products was regulated by the low for the control of household products containing harmful substances. Formaldehyde was determined by measuring the optical density of acetylacetone derivative of formaldehyde extracted from textiles. The household products low stated that the increase in the optical density of color development of the extract from the textile products for babies or infants within 24 months after birth should not be more than 0.05. Collaborative study decided the amount of formaldehyde equivalent to the increase in absorbance described above, and the amount was 16 ppm. There are some reports that formaldehyde causes an allergic reaction even at a very low concentration, so continuous regulation for formaldehyde in the textiles was desirable using this level of amount. We developed HPLC method for the determination of formaldehyde in textile products. Formaldehyde was determined by the direct injection of acetylacetone derivative of samples into the system equipped with ODS column and UV-VIS detector (detection wavelength 413 nm) using the mixture of acetonitrile and water as mobile phase. The linearity was obtained between a peak area or height and the concentrations of formaldehyde solution in the range of 0.0625-2 micrograms/ml. The regulation level was sufficiently detected by the present HPLC method. We recommended that the HPLC test was adopted as a reexamination method for the products may violate the regulation as well as a dimedone test.

  2. Skincare products containing low concentrations of formaldehyde detected by the chromotropic acid method cannot be safely used in formaldehyde-allergic patients.

    PubMed

    Hauksson, I; Pontén, A; Gruvberger, B; Isaksson, M; Engfeldt, M; Bruze, M

    2016-02-01

    Formaldehyde is a well-known contact sensitizer. Formaldehyde releasers are widely used preservatives in skincare products. It has been found that formaldehyde at concentrations allowed by the European Cosmetics Directive can cause allergic contact dermatitis. However, we still lack information on whether formaldehyde at low concentrations affects dermatitis in formaldehyde-allergic individuals. To study the effects of low concentrations of formaldehyde on irritant contact dermatitis in formaldehyde-allergic individuals. Fifteen formaldehyde-allergic individuals and a control group of 12 individuals without contact allergy to formaldehyde and formaldehyde releasers were included in the study. The individuals performed the repeated open application test (ROAT) during 4 weeks with four different moisturizers releasing formaldehyde in concentrations that had been determined as > 40, 20-40, 2·5-10 and 0 p.p.m. by the chromotropic acid (CA) spot test. Dimethyloldimethylhydantoin was used as a formaldehyde releaser in the moisturizers. The ROAT was performed on areas of experimentally induced sodium lauryl sulfate dermatitis. The study was double blind, controlled and randomized. Nine of the 15 formaldehyde-allergic individuals had reappearance or worsening of dermatitis on the areas that were treated with moisturizers containing formaldehyde. No such reactions were observed in the control group (P < 0·001) or for the moisturizers without formaldehyde in the formaldehyde-allergic individuals (P < 0·001). Our results demonstrate that the low concentrations of formaldehyde often found in skincare products by the CA method are sufficient to worsen an existing dermatitis in formaldehyde-allergic individuals. © 2015 British Association of Dermatologists.

  3. Low acetaldehyde collection efficiencies for 24-hour sampling with 2,4-dinitrophenylhydrazine (DNPH)-coated solid sorbents.

    PubMed

    Herrington, Jason S; Fan, Zhi-Hua Tina; Lioy, Paul J; Zhang, Junfeng Jim

    2007-01-15

    Airborne aldehyde and ketone (carbonyl) sampling methodologies based on derivatization with 2,4-dinitrophenylhydrazine (DNPH)-coated solid sorbents could unequivocally be considered the "gold" standard. Originally developed in the late 1970s, these methods have been extensively evaluated and developed up to the present day. However, these methods have been inadequately evaluated for the long-term (i.e., 24 h or greater) sampling collection efficiency (CE) of carbonyls other than formaldehyde. The current body of literature fails to demonstrate that DNPH-coated solid sorbent sampling methods have acceptable CEs for the long-term sampling of carbonyls other than formaldehyde. Despite this, such methods are widely used to report the concentrations of multiple carbonyls from long-term sampling, assuming approximately 100% CEs. Laboratory experiments were conducted in this study to evaluate the long-term formaldehyde and acetaldehyde sampling CEs for several commonly used DNPH-coated solid sorbents. Results from sampling known concentrations of formaldehyde and acetaldehyde generated in a dynamic atmosphere generation system demonstrate that the 24-hour formaldehyde sampling CEs ranged from 83 to 133%, confirming the findings made in previous studies. However, the 24-hour acetaldehyde sampling CEs ranged from 1 to 62%. Attempts to increase the acetaldehyde CEs by adding acid to the samples post sampling were unsuccessful. These results indicate that assuming approximately 100% CEs for 24-hour acetaldehyde sampling, as commonly done with DNPH-coated solid sorbent methods, would substantially under estimate acetaldehyde concentrations.

  4. Measurement of formaldehyde concentrations in a subatmospheric steam-formaldehyde autoclave.

    PubMed Central

    Marcos, D; Wiseman, D

    1979-01-01

    A method has been developed for measuring formaldehyde concentrations in a subatmospheric steam-formaldehyde autoclave. Data obtained using this method indicate that the concentration of formaldehyde in the chamber atmosphere is not homogeneous and that it decreases rapidly with time. The penetration of formaldehyde vapour into narrow tubes has also been investigated and was shown to be dependent on the length-to-bore ratio of the tubes. The formaldehyde concentration within the tubes could be increased by using a lower vacuum in the air removal stage at the beginning of the cycle. PMID:572833

  5. Selected carbonyl compounds in the air of Silesia region

    NASA Astrophysics Data System (ADS)

    Czaplicka, Marianna; Chrobok, Michał

    2018-01-01

    This study was carried out to characterize three aldehydes of health concern (formaldehyde, acetaldehyde, and acrolein) at a three sites in Silesian region (Poland) in January and June 2015. Aldehydes in polluted atmospheres comes from both primary and secondary sources, which limits the control strategies for these reactive compounds. Average aldehyde concentration in summer period lies in range from 3.13 μg/m3 to 10.43 μg/m3, in winter period in range from 29.0 μg/m3 to 32.2 μg/m3. Acetaldehyde was dominant compound in winter period, in summer formaldehyde concentration was highest of all determined aldehydes.

  6. Simple high-performance liquid chromatography method for formaldehyde determination in human tissue through derivatization with 2,4-dinitrophenylhydrazine.

    PubMed

    Yilmaz, Bilal; Asci, Ali; Kucukoglu, Kaan; Albayrak, Mevlut

    2016-08-01

    A simple high-performance liquid chromatography method has been developed for the determination of formaldehyde in human tissue. FA Formaldehyde was derivatized with 2,4-dinitrophenylhydrazine. It was extracted from human tissue with ethyl acetate by liquid-liquid extraction and analyzed by high-performance liquid chromatography. The calibration curve was linear in the concentration range of 5.0-200 μg/mL. Intra- and interday precision values for formaldehyde in tissue were <6.9%, and accuracy (relative error) was better than 6.5%. The extraction recoveries of formaldehyde from human tissue were between 88 and 98%. The limits of detection and quantification of formaldehyde were 1.5 and 5.0 μg/mL, respectively. Also, this assay was applied to liver samples taken from a biopsy material. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Permeation-solid adsorbent sampling and GC analysis of formaldehyde.

    PubMed

    Muntuta-Kinyanta, C; Hardy, J K

    1991-12-01

    A passive method with membrane permeation sampling for the determination of time-weighted-average (TWA) concentration of formaldehyde in air is described. The sampling device was constructed by affixing an unbacked dimethyl silicone membrane to the base of a glass tube and by sealing the top with a rubber stopper. Formaldehyde permeates the membrane and reacts with 2-(hydroxymethyl)piperidine (2-HMP) coated on the surface of XAD-2. Sampling times from 15 min to 8 hr have been used. The formaldehyde-oxazolidine produced is thermally desorbed and determined by a packed column gas chromatograph equipped with a flame ionization detector (FID). The response of the monitor is directly proportional to the external concentration of formaldehyde over the concentration range 0.050-100 ppm. The permeation constant (the slope of the permeation curve) of the membrane is 0.333 mug ppm(-1). hr, and the detection limit of the method is 0.03 ppm for an 8-hr sampling period. Relative humidity (RH) (35-94%), temperature (0-82 degrees ) and storage period (0-25 days) do not affect the permeation process for sample collection. Moreover, potential chemical interferences, 10 ppm acetone or acrolein, respectively, have no detectable effect on the process. The method gives TWA concentration directly from the measurements, and the equipment is economical and convenient for personal or multi-location sample collections.

  8. Effect of an ozone-generating air-purifying device on reducing concentrations of formaldehyde in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esswein, E.J.; Boeniger, M.F.

    1994-02-01

    Formaldehyde, an air contaminant found in many indoor air investigations, poses distinct occupational exposure hazards in certain job categories (e.g., mortuary science) but is also of concern when found or suspected in office buildings and homes. A variety of air-purifying devices (APDs) are currently available or marketed for application to reduce or remove concentrations of a variety of indoor air pollutants through the use of ozone as a chemical oxidant. An investigation was conducted to determine if concentrations of formaldehyde similar to those found in industrial hygiene evaluations of funeral homes could be reduced with the use of an ozone-generatingmore » APD. An ozone-generating APD was placed in an exposure chamber and formaldehyde-containing embalming solution was allowed to evaporate naturally, creating peak and mean chamber concentrations of 2.5 and 1.3 ppm, respectively. Continuous-reading instruments were used to sample for formaldehyde and ozone. Active sampling methods were also used to sample simultaneously for formaldehyde and a possible reactant product, formic acid. Triplicate measurements were made in each of three evaluations: formaldehyde alone, ozone alone, and formaldehyde and ozone combined. Concentrations of formaldehyde were virtually identical with and without 0.5 ppm ozone. No reduction in formaldehyde concentration was found during a 90-minute evaluation using ozone at this concentration with peak and average concentrations of approximately 2.5 and 1.3 ppm formaldehyde, respectively. The results of this investigation suggest that the use of ozone is ineffective in reducing concentrations of formaldehyde. Because ozone has demonstrated health hazards, and is a regulated air contaminant in both the occupational and ambient environment, the use of ozone as an air purification agent in indoor air does not seem warranted. 25 refs., 5 figs., 4 tabs.« less

  9. Highly efficient quenching of tris(2,2'-bipyridyl)ruthenium(II) electrochemiluminescence by ozone using formaldehyde, methylglyoxal, and glyoxalate as co-reactants and its application to ozone sensing.

    PubMed

    Gao, Ying; Liu, Xiaoyun; Qi, Wenjing; Gao, Wenyue; Li, Yunhui; Xu, Guobao

    2015-06-21

    Most electrochemiluminescence (ECL) systems require high concentrations of quencher to totally quench ECL. In this study, we found that ozone can quench tris(2,2'-bipyridyl)ruthenium(II) ECL using formaldehyde, methylglyoxal, or glyoxalate as co-reactants at a glassy carbon electrode with remarkable efficiencies even when the concentration of ozone is merely 0.25% of that of the co-reactant. The strongest quenching is observed with the tris(2,2'-bipyridyl)ruthenium(II)/formaldehyde ECL system. The tris(2,2'-bipyridyl)ruthenium(II)/formaldehyde ECL intensities decrease linearly with the ozone concentration over the range of 0.025-25 μM (r = 0.9947) with a limit of detection of 8 nM. The method is more sensitive and faster than most methods. It shows high selectivity in the presence of other ROS or oxidants and some metal ions, such as H2O2, ClO(-), Mg(2+), Ni(2+), etc. The method exhibits high recoveries for the detection of ozone in a ventilated photocopy room.

  10. The aqueous photolysis of ethylene glycol adsorbed on geothite

    USGS Publications Warehouse

    Cunningham, Kirkwood M.; Goldberg, Marvin C.; Weiner, E.R.

    1985-01-01

    Suspensions of goethite (α-FeOOH) were photolyzed in aerated ethylene glycol-water solutions at pH 6.5, with ultraviolet light in the wavelength range300–400 nm. Under these conditions, formaldehyde and glycolaldehyde were detected as photoproducts. Quantum yields of formaldehyde production ranged from 1.9 7times; 10-5 to 2.9 × 10-4 over the ethylene glycol concentration range of 0.002-2.0 mol/ℓ, and gave evidence that the reaction occurred at the goethite surface. Quantum yields of glycolaldehyde were 20% less than those of formaldehyde, and displayed a concentration-dependent relationship with ethylene glycol similar to that of formaldehyde. Immediately after photolysis, Fe2+ was measured to be 4.6 × 10-7 mol/ℓ in an aerated suspension containing 1.3 mol/ℓ ethylene glycol, and 8.5 × 10-6 mol/ℓ in the corresponding deoxygenated suspension. Glycolaldehyde was not generated in the deoxygenated suspensions. These results are consistent with a mechanism involving the transfer of an electron from an adsorbed ethylene glycol molecule to an excited state of Fe3+ (Iron[III]) in the goethite lattice, to produce Fe2+ and an organic cation. In a series of reactions involving O2, FeOOH, and Fe2+, the organic cation decomposes to form formaldehyde and the intermediate radicals “OH and” CH2OH. OH reacts further with ethylene glycol in the presence of O2to yield glycolaldehyde. Aqueous photolysis of ethylene glycol sorbed onto goethite is typical of reactions that can occur in the aquatic environment.

  11. Behavior of VOCs and Carbonyl Compounds Emission from Different Types of Wallpapers in Korea

    PubMed Central

    Lim, Jungyun; Kim, Suejin; Kim, ARong; Lee, Wooseok; Han, Jinseok; Cha, Jun-Seok

    2014-01-01

    Emissions of volatile organic compounds (VOCs) and carbonyls from three types of commercially available wallpapers (i.e., PVC-coated, paper-backed, natural material-coated) in Korea were evaluated using a 20 L small chamber. A total of 332 products were tested for emission factors, frequencies of occurrence and composition ratios. Toluene and formaldehyde concentrations were below Korean standard values for all products; however, the total VOC (TVOC) concentrations exceeded current standards (4.0 mg/m2·h) for 30 products. The TVOC emission factor for PVC-coated wallpapers, for which polymer materials are used in the manufacturing process, was seven and 16 times higher than those of paper-backed and natural material-coated wallpapers, respectively. The detection frequencies for toluene and formaldehyde were the highest (82.5%) and fourth highest (79.5%), respectively among the 50 target chemical species. The composition ratios for BTEX ranged from 0.3% to 5.1% and unidentified VOCs, which were not qualitatively analyzed using standard gas methods, ranged from 90.2% to 94.8%. Among six carbonyl compounds (acrolein was not detected in any type of wallpaper), acetone had the highest concentrations in PVC-coated (44.6%) and paper-backed (66.6%) wallpapers. Formaldehyde emissions were highest (64.6%) for natural material-coated wallpapers, a result of the formaldehyde-based resin used in the manufacturing process for these products. PMID:24747540

  12. Reductive amination derivatization for the quantification of garlic components by isotope dilution analysis.

    PubMed

    Lin, Yi-Reng; Huang, Mei-Fang; Wu, You-Ying; Liu, Meng-Chieh; Huang, Jing-Heng; Chen, Ziyu; Shiue, Yow-Ling; Wu, Chia-En; Liang, Shih-Shin

    2017-09-01

    In this work, we synthesized internal standards for four garlic organosulfur compounds (OSCs) by reductive amination with 13 C, D 2 -formaldehyde, and developed an isotope dilution analysis method to quantitate these organosulfur components in garlic samples. Internal standards were synthesized for internal absolute quantification of S-allylcysteine (SAC), S-allylcysteine sulfoxide (alliin), S-methylcysteine (SMC), and S-ethylcysteine (SEC). We used a multiple reaction monitoring (MRM) to detect 13 C, D 2 -formaldehyde-modified OSCs by ultrahigh-performance liquid phase chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) and obtained MS spectra showing different ratios of 13 C, D 2 -formaldehyde-modified and H 2 -formaldehyde-modified compounds. The resulting labeled and unlabeled OSCs were exhibited correlation coefficient (R 2 ) ranged from 0.9989 to 0.9994, respectively. The average recoveries for four OSCs at three concentration levels ranged from 89% to 105%. By 13 C, D 2 -formaldehyde and sodium cyanoborohydride, the reductive amination-based method can be utilized to generate novel internal standard for isotope dilution and to extend the quantitative application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. [Attempt to reduce the formaldehyde concentration by blowing cooled fresh air down in to the breathing zone of medical students from an admission port on the ceiling during gross anatomy class].

    PubMed

    Takayanagi, Masaaki; Sakai, Makoto; Ishikawa, Youichi; Murakami, Kunio; Kimura, Akihiko; Kakuta, Sachiko; Sato, Fumi

    2008-09-01

    Cadavers in gross anatomy laboratories at most medical schools are conventionally embalmed in formaldehyde solution, which is carcinogenic to humans. Medical students and instructors are thus exposed to formaldehyde vapors emitted from cadavers during dissection. To reduce high formaldehyde concentrations in the breathing zone above cadavers being examined by anatomy medical students provisionally, dissection beds were located under existing admission ports on the ceiling to supply cooled fresh air from the admission port blowing downward on to the cadaver. In all cases, compared to normal condition, the downward flow of cooled fresh air from an admission port reduced formaldehyde concentrations by 0.09-0.98 ppm and reduced to 12.6-65.4% in the air above a cadaver in the breathing zone of students. The formaldehyde concentrations above cadavers under admission ports were not more than the formaldehyde concentrations between beds representing the indoor formaldehyde concentrations. Although the application of an existing admission port on the ceiling in this study did not remove formaldehyde, the downflow of cooled fresh air using this system reduced the formaldehyde concentration in the air above cadavers being attended by anatomy students during dissections. These results suggest the need for reducing formaldehyde levels in gross anatomy laboratories using fundamental countermeasures in order to satisfy the guidelines of 0.08 ppm established by the World Health Organization and the Japan Ministry of Health, Labor and Welfare.

  14. Shock tube measurements of growth constants in the branched chain formaldehyde-carbon monoxide-oxygen system

    NASA Technical Reports Server (NTRS)

    Brabbs, T. A.; Brokaw, R. S.

    1982-01-01

    Exponential free radical growth constants were measured for formaldehyde carbon monoxide-oxygen systems by monitoring the growth of oxygen atom concentration as manifested by CO flame band emission. Data were obtained over the temperature range of 1200 to 2000 K. The data were analyzed using a formaldehyde oxidation mechanism involving 12 elementary reaction steps. The computed growth constants are roughly in accord with experimental values, but are much more temperature dependent. The data was also analyzed assuming formaldehyde is rapidly decomposed to carbon monoxide and hydrogen. Growth constants computed for the resulting carbon monoxide hydrogen oxygen mixtures have a temperature dependence similar to experiments; however, for most mixtures, the computed growth constants were larger than experimental values.

  15. Biochemical gas sensor (bio-sniffer) for ultrahigh-sensitive gaseous formaldehyde monitoring.

    PubMed

    Kudo, Hiroyuki; Suzuki, Yuki; Gessei, Tomoko; Takahashi, Daishi; Arakawa, Takahiro; Mitsubayashi, Kohji

    2010-10-15

    An ultrahigh-sensitive fiber-optic biochemical gas sensor (bio-sniffer) for continuous monitoring of indoor formaldehyde was constructed and tested. The bio-sniffer measures gaseous formaldehyde as fluorescence of nicotinamide adenine dinucleotide (NADH), which is the product of formaldehyde dehydrogenase (FALDH) reaction. The bio-sniffer device was constructed by attaching a flow cell with a FALDH immobilized membrane onto a fiber-optic NADH measurement system. The NADH measurement system utilizes an ultraviolet-light emitting diode (UV-LED) with peak emission of 335 nm as an excitation light source. The excitation light was introduced to an optical fiber probe, and fluorescence emission of neighboring NADH, which was produced by applying formaldehyde vapor to the FALDH membrane, was concentrically measured with a photomultiplier tube. Assessment of the bio-sniffer was carried out using a standard gas generator. Response, calibration range and selectivity to other chemical substances were investigated. Circulating phosphate buffer, which contained NAD+, available for continuous monitoring of formaldehyde vapor. The calibration range of the bio-sniffer was 2.5 ppb to 10 ppm, which covers the guideline value of the World Health Organization (80 ppb). High selectivity to other gaseous substances due to specific activity of FALDH was also confirmed. Considering its high sensitivity, a possible application of the bio-sniffer is continuous indoor formaldehyde monitoring to provide healthy residential atmosphere. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Comparison of aldehyde emissions simulation with FTIR measurements in the exhaust of a spark ignition engine fueled by ethanol

    NASA Astrophysics Data System (ADS)

    Zarante, Paola Helena Barros; Sodré, José Ricardo

    2018-07-01

    This work presents a numerical simulation model for aldehyde formation and exhaust emissions from ethanol-fueled spark ignition engines. The aldehyde simulation model was developed using FORTRAN software, with the input data obtained from the dedicated engine cycle simulation software AVL BOOST. The model calculates formaldehyde and acetaldehyde concentrations from post-flame partial oxidation of methane, ethane and unburned ethanol. The calculated values were compared with experimental data obtained from a mid-size sedan powered by a 1.4-l spark ignition engine, tested on a chassis dynamometer. Exhaust aldehyde concentrations were determined using a Fourier Transform Infrared (FTIR) Spectroscopy analyzer. In general, the results demonstrate that the concentrations of aldehydes and the source elements increased with engine speed and exhaust gas temperature. The measured acetaldehyde concentrations showed values from 3 to 6 times higher than formaldehyde in the range studied. The model could predict reasonably well the qualitative experimental trends, with the quantitative results showing a maximum discrepancy of 39% for acetaldehyde concentration and 21 ppm for exhaust formaldehyde.

  17. Comparison of aldehyde emissions simulation with FTIR measurements in the exhaust of a spark ignition engine fueled by ethanol

    NASA Astrophysics Data System (ADS)

    Zarante, Paola Helena Barros; Sodré, José Ricardo

    2018-02-01

    This work presents a numerical simulation model for aldehyde formation and exhaust emissions from ethanol-fueled spark ignition engines. The aldehyde simulation model was developed using FORTRAN software, with the input data obtained from the dedicated engine cycle simulation software AVL BOOST. The model calculates formaldehyde and acetaldehyde concentrations from post-flame partial oxidation of methane, ethane and unburned ethanol. The calculated values were compared with experimental data obtained from a mid-size sedan powered by a 1.4-l spark ignition engine, tested on a chassis dynamometer. Exhaust aldehyde concentrations were determined using a Fourier Transform Infrared (FTIR) Spectroscopy analyzer. In general, the results demonstrate that the concentrations of aldehydes and the source elements increased with engine speed and exhaust gas temperature. The measured acetaldehyde concentrations showed values from 3 to 6 times higher than formaldehyde in the range studied. The model could predict reasonably well the qualitative experimental trends, with the quantitative results showing a maximum discrepancy of 39% for acetaldehyde concentration and 21 ppm for exhaust formaldehyde.

  18. Investigation of formaldehyde interaction with carbon nanotubes and quartz sand

    NASA Astrophysics Data System (ADS)

    Georgopoulou, Maria P.; Chrysikopoulos, Constantinos V.

    2017-04-01

    Assessment of the potential impact of synthetic carbon nanotubes on the fate and transport of common chemical contaminants (pesticides, pharmaceuticals, etc.) in groundwater systems is considered to be an increasingly important aspect of environmental research. This study investigates the interaction of formaldehyde with multi-walled carbon nanotubes (MWCNTs) and quartz sand under static and dynamic conditions. Due to polarity, formaldehyde, is expected to develop strong adsorptive interactions with carbon nanotubes. Several batch adsorption experiments were conducted in test tubes, under controlled conditions. Various initial formaldehyde solution concentration (2, 5, 8 ppm), contact times, and temperatures (8, 18, 25 °C) were considered. Supernatant liquid samples were collected at regular intervals, and centrifuged. Subsequently, the formaldehyde concentration in the supernatant was quantified indirectly, by derivatization with Nash reagent and subsequent measurement of the resulting complex using spectrophotometry in the visible spectral range. Experimental results suggested that formaldehyde has a low affinity for quartz sand, but an enhanced potential for adsorption onto carbon nanotubes. Formaldehyde adsorption onto both absorbents (quartz sand and MWCNTs) was more pronounced under dynamic than static conditions, probably, because agitation improves the mixing of the absorbent within the solution. Also, it was shown that the adsorption data were adequately described by the pseudo-second order kinetic model, suggesting that the primary adsorption mechanism was chemisorption, where two or more (sequential or parallel) processes (e.g. surface chemisorption, intraparticle diffusion) were taking place. Therefore, MWCNTs could be promising adsorbent materials for groundwater remediation.

  19. Cells deficient in the FANC/BRCA pathway are hypersensitive to plasma levels of formaldehyde.

    PubMed

    Ridpath, John R; Nakamura, Ayumi; Tano, Keizo; Luke, April M; Sonoda, Eiichiro; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Gillespie, David A F; Sale, Julian E; Yamazoe, Mitsuyoshi; Bishop, Douglas K; Takata, Minoru; Takeda, Shunichi; Watanabe, Masami; Swenberg, James A; Nakamura, Jun

    2007-12-01

    Formaldehyde is an aliphatic monoaldehyde and is a highly reactive environmental human carcinogen. Whereas humans are continuously exposed to exogenous formaldehyde, this reactive aldehyde is a naturally occurring biological compound that is present in human plasma at concentrations ranging from 13 to 97 micromol/L. It has been well documented that DNA-protein crosslinks (DPC) likely play an important role with regard to the genotoxicity and carcinogenicity of formaldehyde. However, little is known about which DNA damage response pathways are essential for cells to counteract formaldehyde. In the present study, we first assessed the DNA damage response to plasma levels of formaldehyde using chicken DT40 cells with targeted mutations in various DNA repair genes. Here, we show that the hypersensitivity to formaldehyde is detected in DT40 mutants deficient in the BRCA/FANC pathway, homologous recombination, or translesion DNA synthesis. In addition, FANCD2-deficient DT40 cells are hypersensitive to acetaldehyde, but not to acrolein, crotonaldehyde, glyoxal, and methylglyoxal. Human cells deficient in FANCC and FANCG are also hypersensitive to plasma levels of formaldehyde. These results indicate that the BRCA/FANC pathway is essential to counteract DPCs caused by aliphatic monoaldehydes. Based on the results obtained in the present study, we are currently proposing that endogenous formaldehyde might have an effect on highly proliferating cells, such as bone marrow cells, as well as an etiology of cancer in Fanconi anemia patients.

  20. Indoor aldehydes concentration and emission rate of formaldehyde in libraries and private reading rooms

    NASA Astrophysics Data System (ADS)

    Kim, Jeonghoon; Kim, Seojin; Lee, Kiyoung; Yoon, Dongwon; Lee, Jiryang; Ju, DaeYoung

    2013-06-01

    Aldehydes are of particularly interest due to their potential adverse impact on human health. Formaldehyde is one of the most abundant indoor pollutants. To improve indoor air quality, identifying and removing the major emission sources of formaldehyde would be desirable. The purposes of this study were to determine aldehyde concentrations in libraries and reading rooms and to identify emission sources of formaldehyde in private reading rooms. Indoor aldehyde concentrations were quantified at 66 facilities, including public libraries, children's libraries, public reading rooms, and private reading rooms, in the Seoul metropolitan area. Emission fluxes of formaldehyde from the surfaces of desks, chairs, floors, walls, and ceilings in 19 private reading rooms were measured using a passive emission colorimetric sensor. Indoor aldehyde (formaldehyde, acetaldehyde, propioaldehyde, benzaldehyde, and hexaldehyde) levels were significantly higher than outdoor levels. Indoor formaldehyde geometric mean concentrations in private reading rooms (119.3 μg m-3) were significantly higher than in public libraries (29.2 μg m-3), children's libraries (29.3 μg m-3), and public reading rooms (40.8 μg m-3). Indoor formaldehyde levels were associated with relative humidity. In private reading rooms, the emission rates from desks (255.5 ± 214.8 μg h-1) and walls (231.7 ± 192.3 μg h-1) were significantly higher than that from chairs (79.6 ± 88.5 μg h-1). Desks (31%) and walls (29%) were the major emission sources of formaldehyde in 14 facilities in which measurements exceeded the indoor standard of 100 μg m-3. The age of interior materials was a significant factor for indoor formaldehyde emission flux. Controlling the emission rates of desks and walls is recommended to improve formaldehyde concentrations in private reading rooms.

  1. Portable formaldehyde monitoring device using porous glass sensor and its applications in indoor air quality studies.

    PubMed

    Maruo, Yasuko Yamada; Nakamura, Jiro

    2011-09-30

    We have developed a portable device for formaldehyde monitoring with both high sensitivity and high temporal resolution, and carried out indoor air formaldehyde concentration analysis. The absorbance difference of the sensor element was measured in the monitoring device at regular intervals of, for example, one hour or 30 min, and the result was converted into the formaldehyde concentration. This was possible because we found that the lutidine derivative that was formed as a yellow product of the reaction between 1-phenyl-1,3-butandione and formaldehyde was stable in porous glass for at least six months. We estimated the reaction rate and to be 0.049 min(-1) and the reaction occurred quickly enough for us to monitor hourly changes in the formaldehyde concentration. The detection limit was 5 μg m(-3) h. We achieved hourly formaldehyde monitoring using the developed device under several indoor conditions, and estimated the air exchange rate and formaldehyde adsorption rate, which we adopted as a new term in the mass balance equation for formaldehyde, in one office. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Synthesis of phenol-urea-formaldehyde cocondensed resins from UF-concentrate and phenol

    Treesearch

    Bunchiro Tomita; Mashiko Ohyama; Chung-Yun Hse

    1994-01-01

    A new synthetic method to obtain phenol-urea-formaldehyde cocondensed resins was developed by reacting phenol with "UF-concentrate", which is a kind of urea-formaldehyde (UF) resin prepared with a high molar ratio of formaldehyde to urea (F/U) such as above 2.5. The products were analyzed with 13C-NMR spectroscopy and gel permeation...

  3. Study on the air pollution in typical transportation microenvironment: Characteristics and health risks.

    PubMed

    Weng, Mili; Jin, Xin

    2015-01-01

    The concentration of formaldehyde in micro-traffic atmospheric environment (including buses, cars, bus stations, and traffic artery) of Lin'an City was carefully investigated. The results showed that the formaldehyde average concentration was 0.0162 mg/m³ in the buses, 0.0225 mg/m³ in the cars, 0.0047 mg/m³ in the West Bus Stations, and 0.0133 mg/m³ in the East Bus Stations. The concentration of formaldehyde along the traffic artery decreased with the height increased. From 0 to 140 cm, the formaldehyde concentration decreased from 0.031 to 0.018 mg/m³. The formaldehyde concentration decreased when far away from the traffic artery. When the distance reached 200 m, the formaldehyde concentration decreased from 0.018 to 0.005 mg/m³. Based on the health risk assessment model, using 1 hr as the average retention time, the average health risk in buses, cars, and West/East Bus Stations was 2.106 × 10⁻⁴, 2.925 × 10⁻⁴, and 1.157 × 10⁻⁴, respectively.

  4. 40 CFR 63.1183 - How do I comply with the formaldehyde standards for existing, new, and reconstructed curing ovens?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... specification range, record the free-formaldehyde content specification range of the resin used, and the... that requires a binder formulation made with the resin containing the highest free-formaldehyde content specification range. Show compliance with the formaldehyde emission limits while the device for measuring...

  5. 40 CFR 63.1183 - How do I comply with the formaldehyde standards for existing, new, and reconstructed curing ovens?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... specification range, record the free-formaldehyde content specification range of the resin used, and the... that requires a binder formulation made with the resin containing the highest free-formaldehyde content specification range. Show compliance with the formaldehyde emission limits while the device for measuring...

  6. 40 CFR 63.1183 - How do I comply with the formaldehyde standards for existing, new, and reconstructed curing ovens?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... specification range, record the free-formaldehyde content specification range of the resin used, and the... that requires a binder formulation made with the resin containing the highest free-formaldehyde content specification range. Show compliance with the formaldehyde emission limits while the device for measuring...

  7. 40 CFR 63.1183 - How do I comply with the formaldehyde standards for existing, new, and reconstructed curing ovens?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... specification range, record the free-formaldehyde content specification range of the resin used, and the... that requires a binder formulation made with the resin containing the highest free-formaldehyde content specification range. Show compliance with the formaldehyde emission limits while the device for measuring...

  8. 40 CFR 63.1183 - How do I comply with the formaldehyde standards for existing, new, and reconstructed curing ovens?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... specification range, record the free-formaldehyde content specification range of the resin used, and the... that requires a binder formulation made with the resin containing the highest free-formaldehyde content specification range. Show compliance with the formaldehyde emission limits while the device for measuring...

  9. Preliminary data on formaldehyde content in seawater samples from Terra Nova Bay (Ross Sea - Antarctica)

    NASA Astrophysics Data System (ADS)

    Largiuni, O.; Becagli, S.; Traversi, R.; Udisti, R.

    2003-04-01

    Formaldehyde is a key reactive intermediate in the methane oxidation chain. To date, only a few measurements of HCHO in surface seawater have been reported, suggesting a net flux of HCHO from the atmosphere to the ocean surface. Ocean is considered as a sink for atmospheric HCHO, but it cannot be excluded that marine areas characterized by high biogenic activity constitute a source of HCHO to atmosphere. Indeed, laboratory experiments carried out on seawater microlayer show HCHO production by photo-oxidation of dissolved organic matter. To date no measurements on deep seawater samples were performed. A sensitive method for the formaldehyde determination in aqueous sample by Flow Injection Analysis has been applied to seawater samples analysis. The method has a detection limit of 55 ng/l and a reproducibility of 2.5% at 1 ug/l level (5 % in sea water samples). The detector response is linear in the range 0.1 - 3000 ug/l. In the framework of the Italian Research Programme in Antarctica (PNRA), 20 samples were collected in two stations in the Gerlache Inlet (Terra Nova Bay, Western Ross Sea) during the 2001/2002 field campaign (November 2001 to February 2002). The samples were collected through a hole in the sea-ice, along the water column, using a Go-Flo type bottle. Usually, just sub-pack and 30 and 50 m depth fractions were collected. For each depth profile, temperature, salinity and chlorophyll fluorescence signal were measured. Formaldehyde concentrations range from 4.5 to 40 ppb. The relationship between HCHO content and other measured parameters is discussed. The sampling repetition in time at the same sites allowed evaluating the seasonal changes in the formaldehyde concentration/depth profiles.

  10. USING THE AIR QUALITY MODEL TO ANALYZE THE CONCENTRATIONS OF AIR TOXICS OVER THE CONTINENTAL U.S.

    EPA Science Inventory

    The U.S. Environmental Protection Agency is examining the concentrations and deposition of hazardous air pollutants (HAPs), which include a large number of chemicals, ranging from non reactive (i.e. carbon tetrachloride) to reactive (i.e. formaldehyde), exist in gas, aqueous, and...

  11. The effect of clothing care activities on textile formaldehyde content.

    PubMed

    Novick, Rachel M; Nelson, Mindy L; McKinley, Meg A; Anderson, Grace L; Keenan, James J

    2013-01-01

    Textiles are commonly treated with formaldehyde-based residues that may potentially induce allergic contact dermatitis in sensitive individuals. This study examined the initial formaldehyde content in clothing and resulting changes due to care activities. Twenty clothing articles were examined and 17 of them did not have detectable levels of formaldehyde. One shirt contained a formaldehyde concentration of 3172 ppm, and two pairs of pants had formaldehyde concentrations of 1391 ppm and 86 ppm. The two highest results represent formaldehyde levels that are up to 40-fold greater than international textile regulations. The two items with the greatest formaldehyde content were washed and dried in a manner similar to that used by consumers, including hand and machine washing in hot or cold water followed by air or machine drying. The washing and drying procedures reduced formaldehyde levels to between 26 and 72% of untreated controls. Differences in the temperature or type of washing and drying did not result in a clear trend in the subsequent formaldehyde content. In addition, samples were hot ironed, which did not affect the formaldehyde content as significantly. Understanding the formaldehyde content in clothing and its potential reduction through care activities may be useful for manufacturers and formaldehyde-sensitive individuals.

  12. PPM mixtures of formaldehyde in gas cylinders: Stability and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, K.C.; Miller, S.B.; Patterson, L.M.

    1999-07-01

    Scott Specialty Gases has been successful in producing stable calibration gases of formaldehyde at low concentration. Critical to this success has been the development of a treatment process for high pressure aluminum cylinders. Formaldehyde cylinders having concentrations of 20ppm and 4ppm were found to show only small decline in concentrations over a period of approximately 12 months. Since no NIST traceable formaldehyde standards (or Standard Reference Material) are available, all Scott's formaldehyde cylinders were originally certified by traditional impinger method. This method involves an extremely tedious purification procedure for 2,4-dinitrophenylhydrazine (2,4-DNPH). A modified version of the impinger method has beenmore » developed and does not require extensive reagent purification for formaldehyde analysis. Extremely low formaldehyde blanks have been obtained with the modified method. The HPLC conditions in the original method were used for chromatographic separations. The modified method results in a lower analytical uncertainty for the formaldehyde standard mixtures. Consequently, it is possible to discern small differences between analytical results that are important for stability study.« less

  13. Gypsum-wallboard formaldehyde-sorption model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silberstein, S.

    1989-11-01

    Gypsum wallboard was shown to absorb formaldehyde in a prototype house and in a measuring chamber, as reported previously by researchers at Oak Ridge National Laboratory (ORNL). Also as reported previously, formaldehyde concentrations attained equilibrium in two phases in response to a change in the air exchange rate or to the removal of the formaldehyde source. A rapid initial phase was followed by a slow phase lasting several days. A formaldehyde sorption model that accounts for the biphasic concentration pattern is presented here. Experiments for testing the predictability of the model are proposed.

  14. Experimental studies of a zeeman-tuned xenon laser differential absorption apparatus.

    PubMed

    Linford, G J

    1973-06-01

    A Zeeman-tuned cw xenon laser differential absorption device is described. The xenon laser was tuned by axial magnetic fields up to 5500 G generated by an unusually large water-cooled dc solenoid. Xenon laser lines at 3.37 micro, 3.51 micro, and 3.99 micro were tuned over ranges of 6 A, 6 A, and 11 A, respectively. To date, this apparatus has been used principally to study the details of formaldehyde absorption lines lying near the 3 .508-micro xenon laser transition. These experiments revealed that the observed absorption spectrum of formaldehyde exhibits a sufficiently unique spectral structure that the present technique may readily be used to measure relative concentrations of formaldehyde in samples of polluted air.

  15. [Study on the acquiring data time and intervals for measuring performance of air cleaner on formaldehyde].

    PubMed

    Tang, Zhigang; Wang, Guifang; Xu, Dongqun; Han, Keqin; Li, Yunpu; Zhang, Aijun; Dong, Xiaoyan

    2004-09-01

    The measuring time and measuring intervals to evaluate different type of air cleaner performance to remove formaldehyde were provided. The natural decay measurement and formaldehyde removal measurement were conducted in 1.5 m3 and 30 m3 test chamber. The natural decay rate was determined by acquiring formaldehyde concentration data at 15 minute intervals for 2.5 hours. The measured decay rate was determined by acquiring formaldehyde concentration data at 5 minute intervals for 1.2 hours. When the wind power of air cleaner is smaller than 30 m3/h or measuring performance of no wind power air clearing product, the 1.5 m3 test chamber can be used. Both the natural decay rate and the measured decay rate are determined by acquiring formaldehyde concentration data at 8 minute intervals for 64 minutes. There were different measuring time and measuring intervals to evaluate different type of air cleaner performance to remove formaldehyde.

  16. Formaldehyde and acetaldehyde exposure mitigation in US residences: In-home measurements of ventilation control and source control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hult, Erin L.; Willem, Henry; Price, Phillip N.

    2014-10-01

    Measurements were taken in new US residences to assess the extent to which ventilation and source control can mitigate formaldehyde exposure. Increasing ventilation consistently lowered indoor formaldehyde concentrations. However, at a reference air exchange rate of 0.35 h -1, increasing ventilation was up to 60% less effective than would be predicted if the emission rate were constant. This is consistent with formaldehyde emission rates decreasing as air concentrations increase, as observed in chamber studies. In contrast, measurements suggest acetaldehyde emission was independent of ventilation rate. To evaluate the effectiveness of source control, formaldehyde concentrations were measured in Leadership in Energymore » and Environmental Design (LEED) certified/Indoor airPLUS homes constructed with materials certified to have low emission rates of volatile organic compounds (VOC). At a reference air exchange rate of 0.35 h -1, and adjusting for home age, temperature and relative humidity, formaldehyde concentrations in homes built with low-VOC materials were 42% lower on average than in reference new homes with conventional building materials. Without adjustment, concentrations were 27% lower in the low-VOC homes. The mean and standard deviation of formaldehyde concentration were 33 μg m-3 and 22 μg m -3 for low-VOC homes and 45 μg m -3 and 30 μg m -3 for conventional.« less

  17. Formaldehyde - An Assessment of its Health Effects.

    DTIC Science & Technology

    1980-03-01

    impregnated with melamine - formaldehyde resin ...1961). Airborne formaldehyde concentrations released from paper treated with urea - formaldehyde or melamine - formaldehyde resin were found to be 0.9-1.6...as preservatives, and in the preparation of vaccines. It is widely used in the manufacture of phenolic, urea , and melamine resins . These materials

  18. Measurements of formaldehyde and acetaldehyde in the urban ambient air

    NASA Astrophysics Data System (ADS)

    Salas, Louis J.; Singh, Hanwant B.

    Acetaldehyde and formaldehyde were measured in urban ambient air by analyzing their 2,4-dinitrophenylhydrazine derivatives with reverse-phase, high-performance liquid chromatography (HPLC). A series of nine short term field experiments were performed in eight cities. Concurrent formaldehyde measurements using the chromotropic-acid procedure show reasonable agreement (±30 %) between the two methods. Average summertime ambient urban formaldehyde (HCHO) concentrations of 10-20 ppb (10 -9v/v) are significantly higher than the average acetaldehyde (CH 3CHO) concentrations of 1-2 ppb. There is evidence of much reduced formaldehyde levels in winter months. Exceptionally high, absolute (8.5 ppb av.) and relative ( HCHO/CH 3CHO ~ 2 ) acetaldehyde concentrations are measured in the South Coast Air Basin of California.

  19. 40 CFR Table 4 to Subpart Zzzz of... - Requirements for Performance Tests

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... determine O2 concentration must be made at the same time as the measurements for formaldehyde or THC... formaldehyde or THC concentration. iv. If demonstrating compliance with the formaldehyde percent reduction...-hour or longer runs. v. If demonstrating compliance with the THC percent reduction requirement, measure...

  20. 40 CFR Table 4 to Subpart Zzzz of... - Requirements for Performance Tests

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... determine O2 concentration must be made at the same time as the measurements for formaldehyde or THC... formaldehyde or THC concentration. iv. If demonstrating compliance with the formaldehyde percent reduction...-hour or longer runs. v. If demonstrating compliance with the THC percent reduction requirement, measure...

  1. Effect of ventilation rate and board loading on formaldehyde concentration : a critical review of the literature

    Treesearch

    George E. Myers

    1984-01-01

    A critical literature review has been carried out on the influence of ventilation rate (N, hr.-1) and board loading (L, m2/m3) on steady state formaldehyde concentrations (Cs, ppm) resulting from particleboard and plywood emissions. Large differences exist among boards in the extent to which their formaldehyde concentrations change with N or L in laboratory chambers....

  2. Aerosol particle and organic vapor concentrations at industrial work sites in Malaysia.

    PubMed

    Armstrong, R W; Rood, M J; Sani, S; Mohamed, M; Rashid, M; Jab, A T; Landsberger, S

    2001-01-01

    The objective of this study was to establish baseline data about air pollutants potentially related to nasopharyngeal carcinoma (NPC) in the Federal Territory and Selangor, Malaysia. During 1991-1993, ambient air quality was monitored at 42 work sites representing ten industrial sectors: adhesive manufacturing, foundries, latex processing, metalworking, plywood/veneer milling, ricemilling, rubber tire manufacturing, sawmilling, shoemaking, and textile related industries. At each work site, aerosol particle size distributions and concentrations of formaldehyde, benzene, toluene, isopropyl alcohol, and furfural were measured. Mean aerosol particle concentrations ranged from 61 micrograms/m3 in foundries to 5,578 micrograms/m3 in ricemills, with five industries (adhesives, metalworking, ricemilling, sawmilling, and shoemaking) exceeding the US EPA 24-hr ambient air standard for PM-10. Formaldehyde concentrations exceeded the threshold limit value (TLV) in adhesives factories. Other vapours and elements measured were well below TLVs.

  3. 40 CFR 63.6620 - What performance tests and other procedures must I use?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Where: Ci = concentration of carbon monoxide (CO), total hydrocarbons (THC), or formaldehyde at the control device inlet, Co = concentration of CO, THC, or formaldehyde at the control device outlet, and R = percent reduction of CO, THC, or formaldehyde emissions. (2) You must normalize the CO, THC, or...

  4. 40 CFR 63.6620 - What performance tests and other procedures must I use?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Where: Ci = concentration of carbon monoxide (CO), total hydrocarbons (THC), or formaldehyde at the control device inlet, Co = concentration of CO, THC, or formaldehyde at the control device outlet, and R = percent reduction of CO, THC, or formaldehyde emissions. (2) You must normalize the CO, THC, or...

  5. 2,4 - dinitrophenylhydrazine - coated silica gel cartridge method for determination of formaldehyde in air: Identification of an ozone interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnts, R.R.; Tejada, S.B.

    1989-01-01

    Two versions of the 2,4-dinitrophenylhydrazine method, a coated silica gel cartridge (solid) and acetonitrile impinger (solvent based), were used simultaneously to sample varied concentrations of ozone (0-770 ppb) and formaldehyde (20-140 ppb). Ozone was found to be a negative interference in the determination of formaldehyde by the 2,4-dinitrophenylhydrazine-coated silica gel cartridge method. At 120 ppb of ozone, formaldehyde at 40 ppb was under-reported by the cartridge method by 34% and at 300 ppb of ozone, formaldehyde measurements were 61% low. Greater losses were seen at higher ozone concentrations. Impinger sampling (2,4-DNPH in acetonitrile) showed no formaldehyde losses due to ozone.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodgson, A.T.; Apte, M.G.; Shendell, D.G.

    Detailed studies of a new manufactured house and four new industrialized relocatable school classrooms were conducted to determine the emission sources of formaldehyde and other VOCs and to identify and implement source reduction practices. Procedures were developed to generate VOC emission factors that allowed reasonably accurate predictions of indoor air VOC concentrations. Based on the identified sources of formaldehyde and other aldehydes, practices were developed to reduce the concentrations of these compounds in new house construction. An alternate ceiling panel reduced formaldehyde concentrations in the classrooms. Overall, the classrooms had relatively low VOC concentrations.

  7. Excessive S-Adenosyl-L-Methionine-Dependent Methylation Increases Levels of Methanol, Formaldehyde and Formic Acid in Rat Brain Striatal Homogenates: Possible role in S-adenosyl-L-methionine-induced Parkinson’s disease-like disorders

    PubMed Central

    Lee, Eun-Sook; Chen, Hongtao; Hardman, Chadwick; Simm, Anthony; Charlton, Clivel

    2009-01-01

    Aims Excessive methylation may be a precipitating factor for Parkinson’s disease (PD) since S-adenosylmethionine (SAM), the endogenous methyl donor, induces PD-like changes when injected into the rat brain. The hydrolysis of the methyl ester bond of the methylated proteins produces methanol. Since methanol is oxidized into formaldehyde, and formaldehyde into formic acid in the body, we investigated the effects of SAM on the production of methanol, formaldehyde and formic acid in rat brain striatal homogenates and the toxicity of these products in PC12 cells. Main methods radio-enzymatic and colorimetric assays, cell viability, Western blot. Key findings SAM increased the formation of methanol, formaldehyde and formic acid in a concentration and time-dependent manner. Concentrations of [3H-methyl]-SAM at 0.17, 0.33, 0.67 and 1.34 nM produced 3.8, 8.0, 18.3 and 34.4 fmol/mg protein/h of [3H] methanol in rat striatal homogenates, respectively. SAM also significantly generated formaldehyde and formic acid in striatal homogenates. Formaldehyde was the most toxic metabolite to differentiated PC12 pheochromocytoma cells in cell culture studies, indicating that formaldehyde formed endogenously may contribute to neuronal damage in excessive methylation conditions. Subtoxic concentration of formaldehyde decreased the expression of tyrosine hydroxylase, the limiting factor in dopamine synthesis. Formaldehyde was more toxic to catecholaminergic PC12 cells than C6 glioma cells, indicating that neurons are more vulnerable to formaldehyde than glia cells. Significance We suggest that excessive carboxylmethylation of proteins might be involved in the SAM-induced PD-like changes and in the aging process via the toxic effects of formaldehyde. PMID:18930743

  8. Characteristics of carbonyls: Concentrations and source strengths for indoor and outdoor residential microenvironments in China

    NASA Astrophysics Data System (ADS)

    Wang, B.; Lee, S. C.; Ho, K. F.

    Indoor and outdoor carbonyl concentrations were measured simultaneously in 12 urban dwellings in Beijing, Shanghai, Guangzhou, and Xi'an, China in summer (from July to September in 2004) and winter (from December 2004 to February 2005). Formaldehyde was the most abundant indoor carbonyls species, while formaldehyde, acetaldehyde and acetone were found to be the most abundant outdoor carbonyls species. The average formaldehyde concentrations in summer indoor air varied widely between cities, ranging from a low of 19.3 μg m -3 in Xi'an to a high of 92.8 μg m -3 in Beijing. The results showed that the dwellings with tobacco smoke, incense burning or poor ventilation had significantly higher indoor concentrations of certain carbonyls. It was noticed that although one half of the dwellings in this study installed with low emission building materials or furniture, the carbonyls levels were still significantly high. It was also noted that in winter both the indoor and outdoor acetone concentrations in two dwellings in Guangzhou were significantly high, which were mainly caused by the usage of acetone as industrial solvent in many paint manufacturing and other industries located around Guangzhou and relatively longer lifetime of acetone for removal by photolysis and OH reaction than other carbonyls species. The indoor carbonyls levels in Chinese dwellings were higher than that in dwellings in the other countries. The levels of indoor and ambient carbonyls showed great seasonal differences. Six carbonyls species were carried out the estimation of indoor source strengths. Formaldehyde had the largest indoor source strength, with an average of 5.25 mg h -1 in summer and 1.98 mg h -1 in winter, respectively. However, propionaldehyde, crotonaldehyde and benzaldehyde had the weakest indoor sources.

  9. Laboratory preparation of DNPH derivatives of carbonyl compounds on Sep-Pak{reg_sign} cartridges for quality assurance purposes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrell, R.M.

    1994-12-31

    Aldehydes and ketones are receiving increased attention both as hazardous substances and as promoters in the photochemical formation of ozone in the atmosphere. They enter the atmosphere in the exhaust of motor vehicles and other equipment using hydrocarbon and alcohol fuels. Formaldehyde, the most prevalent aldehyde, is widely used as a preservative, a textile-treatment agent, and an intermediate in the manufacture of urea-formaldehyde and phenol-formaldehyde resins. The formaldehyde concentration ranges for several types of environments are presented. Waters Sep-Pak{reg_sign} DNPH-Silica cartridges are convenient, reproducible sampling devices for quantifying aldehydes and ketones in gases, including air. These cartridges trap the compoundsmore » by reacting them with the DNPH, 2,4-Dinitrophenylhydrazine, on the cartridge to form stable hydrazone derivatives. Derivatives are later eluted and analyzed by HPLC. Cartridges spiked in the laboratory are used for quality assurance and instrument performance verification.« less

  10. Forensic Investigation of Formaldehyde in Illicit Products for Hair Treatment by DAD-HPLC: A Case Study.

    PubMed

    Oiye, Erica N; Ribeiro, Maria Fernanda M; Okumura, Leonardo L; Saczk, Adelir A; Ciancaglini, Pietro; de Oliveira, Marcelo F

    2016-07-01

    The illegal use of formalin (commercial formaldehyde) in cosmetic products harms the health of individuals exposed to this substance. Over the last years, the commercial availability of these products, especially those containing irregular dosage of formaldehyde, has increased in Brazil. This work analyzes some products for hair treatment available in the Brazilian market and verifies their safety. The adopted analytical methodology involved sample derivatization with 2,4-dinitrophenylhydrazine, followed by high-performance liquid chromatography with ultraviolet detection (UV-VIS) at λ = 365 nm. The limit of quantification is 2.5 × 10 -3% w/w, and the recovery tests were around 93%. Some of the samples contained high and illegal formaldehyde levels ranging from 9% to 19% (w/w) and others presented suitable concentrations of the analyte. On the basis of the results, this work discusses the efficiency and practicality of this analytical method for forensic purposes. © 2016 American Academy of Forensic Sciences.

  11. Optimization of formaldehyde concentration on electroless copper deposition on alumina surface

    NASA Astrophysics Data System (ADS)

    Shahidin, S. A. M.; Fadil, N. A.; Yusop, M. Zamri; Tamin, M. N.; Osman, S. A.

    2018-05-01

    The effect of formaldehyde concentration on electroless copper plating on alumina wafer was studied. The main composition of plating bath was copper sulphate (CuSO4) as precursor and formaldehyde as a reducing agent. The copper deposition films were assessed by varying the ratio of CuSO4 and formaldehyde. The plating rate was calculated from the weight gained after plating process whilst the surface morphology was observed by field emission scanning electron microscopy (FESEM). The results show that 1:3 ratio of copper to formaldehyde is an optimum ratio to produce most uniform coating with good adhesion between copper layer and alumina wafer substrate.

  12. Formaldehyde and acetaldehyde emissions from residential wood combustion in Portugal

    NASA Astrophysics Data System (ADS)

    Cerqueira, Mário; Gomes, Luís; Tarelho, Luís; Pio, Casimiro

    2013-06-01

    A series of experiments were conducted to characterize formaldehyde and acetaldehyde emissions from residential combustion of common wood species growing in Portugal. Five types of wood were investigated: maritime pine (Pinus pinaster), eucalyptus (Eucalyptus globulus), cork oak (Quercus suber), holm oak (Quercus rotundifolia) and pyrenean oak (Quercus pyrenaica). Laboratory experiments were performed with a typical wood stove used for domestic heating in Portugal and operating under realistic home conditions. Aldehydes were sampled from diluted combustion flue gas using silica cartridges coated with 2,4-dinitrophenylhydrazine and analyzed by high performance liquid chromatography with diode array detection. The average formaldehyde to acetaldehyde concentration ratio (molar basis) in the stove flue gas was in the range of 2.1-2.9. Among the tested wood types, pyrenean oak produced the highest emissions for both formaldehyde and acetaldehyde: 1772 ± 649 and 1110 ± 454 mg kg-1 biomass burned (dry basis), respectively. By contrast, maritime pine produced the lowest emissions: 653 ± 151 and 371 ± 162 mg kg-1 biomass (dry basis) burned, respectively. Aldehydes were sampled separately during distinct periods of the holm oak wood combustion cycles. Significant variations in the flue gas concentrations were found, with higher values measured during the devolatilization stage than in the flaming and smoldering stages.

  13. Formaldehyde sorption and desorption characteristics of gypsum wallboard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, T.G.; Hawthorne, A.R.; Thompson, C.V.

    1987-07-01

    The sorption and subsequent desorption of formaldehyde (CH/sub 2/O) vapor from unpainted gypsum wallboard have been investigated in environmental chamber experiments conducted at 23 /sup 0/C, 50% relative humidity, an air exchange to board loading ratio of 0.43 m/h, and CH/sub 2/O concentrations ranging from 0 to 0.50 mg/m/sup 3/. Both CH/sub 2/O sorption and CH/sub 2/O desorption processes are described by a three-parameter, single-exponential model with an exponential lifetime of 2.9 +/- 0.1 days. The storage capacity of gypsum board for CH/sub 2/O vapor results in a time-dependent buffer to changes in CH/sub 2/O vapor concentration surrounding the boardmore » but appears to cause only a weak, permanent loss mechanism for CH/sub 2/O vapor. Prior to significant depletion of sorbed CH/sub 2/O, desorption rates from CH/sub 2/O-exposed gypsum board exhibit a linear dependence with negative slope on CH/sub 2/O vapor concentration. Analogous CH/sub 2/O emissions properties have been observed for pressed-wood products bonded with urea-formaldehyde resins. 17 references, 5 figures.« less

  14. Formaldehyde sorption and desorption characteristics of gypsum wallboard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, T.G.; Hawthorne, A.R.; Thompson, C.V.

    1986-01-01

    The sorption and subsequent desorption of formaldehyde (CH/sub 2/O) vapor from unpainted gypsum wallboard has been investigated in environmental chamber experiments conducted at 23/sup 0/C, 50% relative humidity, an air exchange to board loading ratio of 0.43 m/h, and CH/sub 2/O concentrations ranging from 0 to 0.50 mg/m/sup 3/. Both CH/sub 2/O sorption and desorption processes are described using a three-parameter, single-exponential model with an exponential lifetime of 2.9 +- 0.1 days. The storage capacity of gypsum board for CH/sub 2/O vapor results in a time-dependent buffer to changes in CH/sub 2/O vapor concentration surrounding the board, but appears tomore » cause only a weak, permanent loss mechanism for CH/sub 2/O vapor. Short-term CH/sub 2/O desorption rates from CH/sub 2/O-exposed gypsum board (prior to significant depletion of sorbed CH/sub 2/O) exhibit a linear dependence with negative slope on CH/sub 2/O vapor concentration analogous to CH/sub 2/O emissions from pressed-wood products bonded with urea-formaldehyde resins.« less

  15. 40 CFR 63.2262 - How do I conduct performance tests and establish operating requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... or documentation of inlet methanol or formaldehyde concentration is required) and outlet of the... HAP, formaldehyde, methanol, or total hydrocarbon (THC) emission rates. (2) When showing compliance... acetaldehyde, acrolein, formaldehyde, methanol, phenol, and propionaldehyde), THC, formaldehyde, or methanol in...

  16. 40 CFR 63.2262 - How do I conduct performance tests and establish operating requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... or documentation of inlet methanol or formaldehyde concentration is required) and outlet of the... HAP, formaldehyde, methanol, or total hydrocarbon (THC) emission rates. (2) When showing compliance... acetaldehyde, acrolein, formaldehyde, methanol, phenol, and propionaldehyde), THC, formaldehyde, or methanol in...

  17. Health-hazard evaluation report HETA 83-418-1449, Randolph County Register of Deeds Office, Asheboro, North Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hickey, J.L.; Williams, T.M.

    1984-04-01

    In response to a request from employees of Randolph County Courthouse, a health hazard evaluation was made of the Register of Deeds Office (SIC-9199, SIC-9390), Asheboro, North Carolina. Employees at this site had complained of sinus headaches, colds that hung on, and burning eyes. Some complained of headaches or sinus problems whenever they worked for some time in the office. Symptoms were most pronounced in winter and when the air conditioner was on. Five general air samples collected showed formaldehyde (50000) concentrations ranging from 0.19 to 0.69 parts per million (ppm). Air samples showed 0.34ppm formaldehyde inside built in woodedmore » office cabinets and 0.05ppm in general office air. Temperature was 75 to 77 degrees-F and relative humidity was 40 to 50%. Three air samples analyzed for 23 common organic vapors showed only trace amounts of all except benzene (71432) for which the concentration ranged from 0.38 to 0.54ppm. Bulk samples of sprayed on beam insulating material in the return air plenum were analyzed for asbestos and found to contain none. Water seals of floor drains in three restrooms were empty, permitting sewer gas to enter the building. The authors conclude that no definite cause of workers symptoms was found, although formaldehyde levels were high enough to affect sensitive individuals. Due to the carcinogenic nature of formaldehyde and benzene, and since safe levels for exposure have not been determined, the authors recommend measures for lowering the exposure to these compounds even further.« less

  18. Characterizing the range of children's air pollutant exposure during school bus commutes.

    PubMed

    Sabin, Lisa D; Behrentz, Eduardo; Winer, Arthur M; Jeong, Seong; Fitz, Dennis R; Pankratz, David V; Colome, Steven D; Fruin, Scott A

    2005-09-01

    Real-time and integrated measurements of gaseous and particulate pollutants were conducted inside five conventional diesel school buses, a diesel bus with a particulate trap, and a bus powered by compressed natural gas (CNG) to determine the range of children's exposures during school bus commutes and conditions leading to high exposures. Measurements were made during 24 morning and afternoon commutes on two Los Angeles Unified School District bus routes from South to West Los Angeles, with seven additional runs on a rural/suburban route, and three runs to test the effect of window position. For these commutes, the mean concentrations of diesel vehicle-related pollutants ranged from 0.9 to 19 microg/m(3) for black carbon, 23 to 400 ng/m(3) for particle-bound polycyclic aromatic hydrocarbon (PB-PAH), and 64 to 220 microg/m(3) for NO(2). Concentrations of benzene and formaldehyde ranged from 0.1 to 11 microg/m(3) and 0.3 to 5 microg/m(3), respectively. The highest real-time concentrations of black carbon, PB-PAH and NO(2) inside the buses were 52 microg/m(3), 2000 ng/m(3), and 370 microg/m(3), respectively. These pollutants were significantly higher inside conventional diesel buses compared to the CNG bus, although formaldehyde concentrations were higher inside the CNG bus. Mean black carbon, PB-PAH, benzene and formaldehyde concentrations were higher when the windows were closed, compared with partially open, in part, due to intrusion of the bus's own exhaust into the bus cabin, as demonstrated through the use of a tracer gas added to each bus's exhaust. These same pollutants tended to be higher on urban routes compared to the rural/suburban route, and substantially higher inside the bus cabins compared to ambient measurements. Mean concentrations of pollutants with substantial secondary formation, such as PM(2.5), showed smaller differences between open and closed window conditions and between bus routes. Type of bus, traffic congestion levels, and encounters with other diesel vehicles contributed to high exposure variability between runs.

  19. 40 CFR 86.542-90 - Records required.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... formaldehyde sampling system. (6) The formaldehyde calibration information from the HPLC standards. (7) The concentration of the HPLC analysis of the test sample (formaldehyde). (q) Additional required records for...

  20. 40 CFR 86.542-90 - Records required.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... formaldehyde sampling system. (6) The formaldehyde calibration information from the HPLC standards. (7) The concentration of the HPLC analysis of the test sample (formaldehyde). (q) Additional required records for...

  1. 40 CFR 86.542-90 - Records required.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... formaldehyde sampling system. (6) The formaldehyde calibration information from the HPLC standards. (7) The concentration of the HPLC analysis of the test sample (formaldehyde). (q) Additional required records for...

  2. 40 CFR 86.542-90 - Records required.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... formaldehyde sampling system. (6) The formaldehyde calibration information from the HPLC standards. (7) The concentration of the HPLC analysis of the test sample (formaldehyde). (q) Additional required records for...

  3. Biological indicators for low temperature steam and formaldehyde sterilization: investigation of the effect of change in temperature and formaldehyde concentration on spores of Bacillus stearothermophilus NCIMB 8224.

    PubMed

    Wright, A M; Hoxey, E V; Soper, C J; Davies, D J

    1996-03-01

    Five strains of Bacillus stearothermophilus have been studied to identify a spore strain to be used as a biological indicator organism for low temperature steam and formaldehyde sterilization. Three strains gave poor reproducibility of batch size and growth index and were discarded. The other two strains gave good reproducibility with a high growth index and gave rise to linear survivor curves when exposed to 5% aqueous formaldehyde. However, only NCIMB 8224 sporulates on a simpler medium and as it was the most resistant to formaldehyde, it was further studied. Tests were carried out in a modified miniclave and factors studied included temperature of the steam and formaldehyde concentration. All studies confirmed the suitability of this strain as a biological indicator organism.

  4. Evaluation of cost-effective sol-gel-based sensor for monitoring of formaldehyde in workplace environment and cancer risk assessment.

    PubMed

    Bunkoed, Opas; Thavarungkul, Panote; Thammakhet, Chongdee; Kanatharana, Proespichaya

    2013-01-01

    Formaldehyde was monitored in the workplace environment of an adhesive manufacturer producing formaldehyde and urea-formaldehyde resin using a cost-effective sol-gel-based sensor. The sensor was first evaluated by comparing its performance to the conventional 2,4-dinitrophynylhydrazine-devivatization method (2,4-DNPH) followed by high-performance liquid chromatography coupled to a UV detector. The formaldehyde concentrations obtained by both techniques were not significantly different. The cost-effective sol-gel-based sensor was then used for monitoring formaldehyde levels in the laboratories, production areas and storage room. Formaldehyde concentrations in this adhesive manufacturer workplace environment were lower than the limit value of, 0.75 ppm for an 8-h time weight average and 2 ppm for a short-term exposure (15 min). However, the cancer risk for employees who worked in the laboratories, (1.7±0.7)×10(-4)-(5±2)×10(-4), were higher than the acceptable cancer risk recommended by the US EPA (10(-6)). Therefore, some precaution should be taken to reduce the risk, such as an increase of ventilation to dilute the levels of formaldehyde and use air cleaners to remove formaldehyde.

  5. The formaldehyde problem in wood-based products : an annotated bibliography

    Treesearch

    F. H. Max Nestler

    1977-01-01

    Urea-formaldehyde-type adhesives have the inherent characteristic of giving off free formaldehyde under some conditions of use. The vapor can build up to concentrations which can be a nuisance, uncomfortable, or an actual health hazard. The "formaldehyde problem" is reviewed, from literature sources, in five respects : oriqins, analytical, control and removal...

  6. Influence of precision of emission characteristic parameters on model prediction error of VOCs/formaldehyde from dry building material.

    PubMed

    Wei, Wenjuan; Xiong, Jianyin; Zhang, Yinping

    2013-01-01

    Mass transfer models are useful in predicting the emissions of volatile organic compounds (VOCs) and formaldehyde from building materials in indoor environments. They are also useful for human exposure evaluation and in sustainable building design. The measurement errors in the emission characteristic parameters in these mass transfer models, i.e., the initial emittable concentration (C 0), the diffusion coefficient (D), and the partition coefficient (K), can result in errors in predicting indoor VOC and formaldehyde concentrations. These errors have not yet been quantitatively well analyzed in the literature. This paper addresses this by using modelling to assess these errors for some typical building conditions. The error in C 0, as measured in environmental chambers and applied to a reference living room in Beijing, has the largest influence on the model prediction error in indoor VOC and formaldehyde concentration, while the error in K has the least effect. A correlation between the errors in D, K, and C 0 and the error in the indoor VOC and formaldehyde concentration prediction is then derived for engineering applications. In addition, the influence of temperature on the model prediction of emissions is investigated. It shows the impact of temperature fluctuations on the prediction errors in indoor VOC and formaldehyde concentrations to be less than 7% at 23±0.5°C and less than 30% at 23±2°C.

  7. Children's exposure to indoor air in urban nurseries--Part II: Gaseous pollutants' assessment.

    PubMed

    Branco, P T B S; Nunes, R A O; Alvim-Ferraz, M C M; Martins, F G; Sousa, S I V

    2015-10-01

    This study, Part II of the larger study "Children's exposure to indoor air in urban nurseries", aimed to: (i) evaluate nursery schools' indoor concentrations of several air pollutants in class and lunch rooms; and (ii) analyse them according to guidelines and references. Indoor continuous measurements were performed, and outdoor concentrations were obtained to determine indoor/outdoor ratios. The influence of outdoor air seemed to be determinant on carbon monoxide (CO), nitrogen dioxide (NO2) and ozone (O3) indoor concentrations. The peak concentrations of formaldehyde and volatile organic compounds (VOC) registered (highest concentrations of 204 and 2320 µg m(-3) respectively), indicated the presence of specific indoor sources of these pollutants, namely materials emitting formaldehyde and products emitting VOC associated to cleaning and children's specific activities (like paints and glues). For formaldehyde, baseline constant concentrations along the day were also found in some of the studied rooms, which enhances the importance of detailing the study of children's short and long-term exposure to this indoor air pollutant. While CO, NO2 and O3 never exceeded the national and international reference values for IAQ and health protection, exceedances were found for formaldehyde and VOC. For this reason, a health risk assessment approach could be interesting for future research to assess children's health risks of exposure to formaldehyde and to VOC concentrations in nursery schools. Changing cleaning schedules and materials emitting formaldehyde, and more efficient ventilation while using products emitting VOC, with the correct amount and distribution of fresh air, would decrease children's exposure. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. A novel mass spectrometric method for formaldehyde in children's personal-care products and water via derivatization with acetylacetone.

    PubMed

    Backe, Will J

    2017-06-30

    New legislation in the state of Minnesota prohibits the sale of children's personal-care products (PCPs) that contain more than 500 ng/mg formaldehyde. Previous attempts to quantify formaldehyde in PCPs use nonspecific derivatization procedures that employ harsh reagents and/or nonspecific detection. Derivatization of formaldehyde by acetylacetone occurs under mild conditions and is specific for formaldehyde but it has not been investigated using high-performance liquid chromatography/tandem mass-spectrometry (HPLC/MS/MS). To determine formaldehyde, PCPs were dissolved and then interferences were minimized by graphitized-carbon solid-phase extraction. Formaldehyde was derivatized to 3,5-diacetyl-1,4-dihydrolutidine (DDL) using an acetylacetone solution. Post-derivatization, samples were diluted and analyzed by HPLC/MS/MS. Quantification was performed by isotopic dilution. Product-ion spectra were acquired for DDL and D 12 -DDL. The mass shifts between the two product-ion spectra were used to assign fragment structures. To confirm molecular formulas, high-resolution accurate-mass analysis of the DDL product ions was performed by quadrupole time-of-flight MS. Structures were proposed for all product ions of DDL above 10% relative intensity. Method accuracy ranged between 96-104% for all matrices at all concentrations tested. Method precision was less than 4% relative standard deviation. The reporting limit was 10 ng/mg in PCPs and 100 μg/L in water. Twenty children's PCPs were tested to demonstrate the method and formaldehyde was reported in five from 23-1500 ng/mg. Of those five, two samples contained formaldehyde above the Minnesota regulatory limit. The developed method allows for the accurate quantification of formaldehyde in PCPs at levels below those required by a new regulation on children's products in Minnesota. The method includes a derivatization procedure that is newly adapted to HPLC/MS/MS; therefore, structures were proposed for the product ions of the derivative (DDL). Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  9. An Eulerian model for scavenging of pollutants by raindrops

    NASA Astrophysics Data System (ADS)

    Kumar, Sudarshan

    An Eulerian model for simulating the coupled processes of gas-phase depletion and aqueousphase accumulation of the pollutant species during a rain event has been formulated. The model is capable of taking into account any realistic vertical profile of pollutant species concentrations and time-dependent initial aqueous-phase concentrations at the cloud base. The model considers the processes of single species absorption and dissociation in the aqueous phase. The coupled partial differential equations constituting the model are discretized into a set of ordinary differential equations by using the Galerkin method with chapeau functions as the basis functions. These equations are solved to obtain the pollutant concentrations of the gas phase and raindrops as well as the pH of raindrops as a function of time and distance below cloud-base. Simulations are performed for scavenging of gaseous HNO 3, H 2O 2, SO 2, formaldehyde and NH 3. For the case of highly soluble HNO 3 and H 2O 2, raindrops are far from equilibrium with the gas phase and their capacity for absorption of these gases is undiminished even as they reach ground level. The gas-phase concentrations for these species decrease exponentially with time and the washout is determined primarily by the rain intensity and mass-transfer coefficient of the gaseous species to the raindrops. The pollutant species concentrations in raindrops are an almost linear function of the distance below the cloud base. For the simulation conditions considered in this study, the half-life periods of these gases for removal from the atmosphere range from 15 to 40 min. For SO 2 and formaldehyde, the aqueous-phase concentrations approach equilibrium as the drops fall to ground level and the gas-phase concentrations show large gradients in the vertical. Half-life periods for SO 2 range from 1.3 to 13 h depending on the initial raindrop pH and rain intensity. For formaldehyde, the half-life ranges from 19 to 63 min. Solubility of NH 3 is a strong function of the raindrop pH. As NH 3 is absorbed, the raindrop pH increases and NH 3 solubility decreases. For pre-acidified drops (pH = 4.6), ammonia solubility is very high and the drops are far from equilibrium with the gas phase throughout the falling period. The half-life for ammonia ranges from 11 min to over 3 h in our simulations.

  10. Influence of humidity on the initial emittable concentration of formaldehyde and hexaldehyde in building materials: experimental observation and correlation.

    PubMed

    Huang, Shaodan; Xiong, Jianyin; Cai, Chaorui; Xu, Wei; Zhang, Yinping

    2016-03-30

    Humidity is one of the main environmental factors affecting the emission rate and key parameters of formaldehyde and volatile organic compounds (VOCs) from building materials. Meanwhile, the initial emittable concentration (Cm,0) is proved to be the most sensitive key parameter to the emission behaviours. However, there is no report on the relationship between humidity and Cm,0. In this paper, Cm,0 of formaldehyde and hexaldehyde from a type of medium density fiberboard in absolute humidity (AH) range of 4.6-19.6 g/m(3) at 25 °C were tested by virtue of a C-history method. Experimental results indicate that Cm,0 is dramatically dependent on AH, increased by 10 and 2 times for formaldehyde and hexaldehyde when AH rising from 4.6 g/m(3) to 19.6 g/m(3). A linear relationship between the logarithm of Cm,0 and AH is obtained based on the measured results. In addition, a correlation characterizing the association of emission rate and AH is derived. The effectiveness of the correlation is verified with our experimental results as well as data from literature. With the correlations, the Cm,0 or emission rate different from the test AH conditions can be conveniently obtained. This study should be useful for predicting the emission characteristics of humidity changing scenarios and for source control.

  11. [Microbial resistance to formaldehyde. I. Comparative quantitative studies in some selected species of vegetative bacteria, bacterial spores, fungi, bacteriophages and viruses].

    PubMed

    Spicher, G; Peters, J

    1976-12-01

    The resistence of different microorganisms to formaldehyde was determined. As test objects served gram-negative and gram-positive vegetative germs (Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella paratyphi-B, Staphylococcus aureus, Streptococcus faecalis), bacterial spores (Bacillus cereus, Bacillus pumilus, Bacillus stearothermophilus, Bacillus subtilis), fungi (Aspergillus niger, Candida albicans), bacteriophages (Escherichia coli phages, T1, T2, T3), and viruses (adenovirus, poliomyelitis virus, vaccinia virus). For the studies, suspensions of germs were exposed at identical temperature (20 degrees C) and pH (7.0). The microbicidal effect of formaldehyde was measured by the decrease of the proportion of germs capable of multiplication in the suspension (lg (N/N0); where: N0 equals initial number of germs capable of multiplication; N equals number of germs capable of multiplication after exposure to formaldehyde). For all germs the dependence of the microbicidal effect on the concentration of formaldehyde was determined. In all experiments, the duration of exposure was two hours. Pseudomonas aeruginosa, Klebsiella pneumoniae, and Salmonella paratyphi-B were found to be more susceptible than Staphylococcus aureus (vf. Fig. 1 A). The strains of Pseudomonas aeruginosa used were widely varying as to their susceptibility. To obtain equal microbicidal effects, concentrations of formaldehyde almost three times as high had to be used for the most resistant strain than were necessary for the most susceptible strain of Pseudomonas aeruginosa. All strains of Klebsiella pneumoniae examined were found to have an identical resistence to formaldehyde. Streptococcus faecalis was even more resistant to formaldehyde than Staphylococcus aureus. In the case of Streptococcus faecalis, a concentration of formaldehyde about three times as high had to be used to obtain microbicidal effects of identical magnitude. For the killing of Candida albicans cells concentrations of formaldehyde not higher than those needed for the killing of vegetative gram-negative bacteria were necessary. The conidia of Aspergillus niger were found to be more resistant than the cells of Candida albicans but did not require any higher concentrations than for the killing of Staphylococcus aureus (see Fig. 1 B). In the case of bacterial spores, a special phenomenon was observed. If the spores had been exposed to a temperature of 80 and 95 degrees C, respectively (depending on the species involved) for one or two hours following exposure to formaldehyde, a considerably higher number of spores was found to be capable of germination and colony formation than without such treatment (heat activation: cf. Fig. 2A and Fig. 2B). The spores of Bacillus cereus had only a relatively low resistance to formaldehyde. To reduce the proportion of the spores capable of colony formation to 1/10000, a 2.9% formaldehyde concentration was necessary without heat activation and one of 10.8% with heat activation...

  12. Formaldehyde in Insulation: Villain or Innocent Bystander?

    PubMed Central

    Lees, R. E. M.

    1983-01-01

    When urea formaldehyde foam insulation (UFFI) deteriorates, it produces an off-gas mixture whose major constituent is formaldehyde. Most investigative studies of UFFI have concentrated on formaldehyde. Health concerns fall into three groups: irritant characteristics, allergenic capabilities and potential carcinogenicity. Except for the first of these, formaldehyde's hazard potential is not clear. The extent to which formaldehyde may be responsible for UFFI's evil reputation is explored in this paper but the degree to which either substance is a real threat to health still appears to open to debate. PMID:21283296

  13. Phytoremediation of VOCs from indoor air by ornamental potted plants: A pilot study using a palm species under the controlled environment.

    PubMed

    Teiri, Hakimeh; Pourzamani, Hamidreza; Hajizadeh, Yaghoub

    2018-04-01

    Volatile organic compounds (VOCs) in indoor air have recently raised public concern due to their adverse health effects. One of hazardous VOC is Formaldehyde which can cause sensory irritation and induce nasopharyngeal cancer. The aim of this study was to investigate potted plant-soil system ability in formaldehyde removal from indoor air. We applied one of common interior plant from the palm species, Chamaedorea elegans, inside a chamber under the controlled environment. Entire plant, growing media and roots contribution in formaldehyde were evaluated by continuously introduction of different concentrations of formaldehyde into the chamber (0.66-16.4 mg m -3 ) each over a 48-h period. Our findings showed that the plant efficiently removed formaldehyde from polluted air by 65-100%, depending on the inlet concentrations, for a long time exposure. A maximum elimination capacity of 1.47 mg/m 2 . h was achieved with an inlet formaldehyde concentration of 14.6 mg m -3 . The removal ratio of areal part to pot soil and roots was 2.45:1 (71%: 29%). The plants could remove more formaldehyde in light rather than dark environment. Concentrations up to 16.4 mg m -3 were not high enough to affect the plants growth. However, a trivial decrease in chlorophyll content, carotenoid and water content of the treated plants was observed compared to the control plants. Thus, the palm species tested here showed high tolerance and good potential of formaldehyde removal from interior environments. Therefore, phytoremediation of VOCs from indoor air by the ornamental potted plants is an effective method which can be economically applicable in homes and offices. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. High-performance liquid chromatography of methanol released from pectins after its oxidation to formaldehyde and condensation with 2,4-dinitrophenylhydrazine.

    PubMed

    Zegota, H

    1999-11-26

    A procedure was developed to measure the content of methanol in pectins after the base-catalysed hydrolysis of galacturonic acid methyl esters and oxidation of released methanol with potassium permanganate followed by condensation of the resulting formaldehyde (HCHO) with 2,4-dinitrophenylhydrazine (DNPH) dissolved in acetonitrile. The constant yields of resultant formaldehyde 2,4-dinitrophenylhydrazone (HCHO-DNPH derivative) were obtained at molar ratios of DNPH/HCHO higher than 5. The separation of the HCHO-DNPH derivative from DNPH reagent was achieved by isocratic reversed-phase HPLC equipped with the spectrophotometric detector set at a wavelength of 351 nm. The calibration curve was linear in the methanol concentration range between 0.04 and 15 micromol/ml (R=0.9995). The total recovery from pectin solutions spiked with methanol was equal to 100.6+/-5.1%.

  15. Optical Detection of Formaldehyde

    NASA Technical Reports Server (NTRS)

    Patty, Kira D.; Gregory, Don A.

    2008-01-01

    The potential for buildup .of formaldehyde in closed space environments poses a direct health hazard to personnel. The National Aeronautic Space Agency (NASA) has established a maximum permitted concentration of 0.04 ppm for 7 to 180 days for all space craft. Early detection is critical to ensure that formaldehyde levels do not accumulate. above these limits. New sensor technologies are needed to enable real time,in situ detection in a compact and reusable form factor. Addressing this need,research into the use of reactive fluorescent dyes which reversibly bind to formaldehyde (liquid or gas) has been conducted to support the development of a formaldehyde.sensor. In the presence of formaldehyde the dyes' characteristic fluorescence peaks shift providing the basis for an optical detection. Dye responses to formaldehyde exposure were characterized; demonstrating the optical detection of formaldehyde in under 10 seconds and down to concentrations of 0.5 ppm. To .incorporate the dye .in.an optical sensor device requires. a means of containing and manipulating the dye. Multiple form factors using two dissimilar sbstrates were considered to determine a suitable configuration. A prototype sensor was demonstrated and considerations for a field able sensor were presented. This research provides a necessary first step toward the development of a compact, reusable; real time optical formaldehyde sensor suitable for use in the U.S. space program,

  16. Quantification of atmospheric formaldehyde by infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hoffnagle, John; Fleck, Derek; Rella, Chris; Kim-Hak, David

    2017-04-01

    Formaldehyde is a toxic, carcinogenic compound that can contaminate ambient air as a result of combustion or outgassing of commercial products such as adhesives used to fabricate plywood and to affix indoor carpeting. Like many small molecules, formaldehyde has an infrared absorption spectrum exhibiting bands of ro-vibrational transitions that are well resolved at low pressure and therefore well suited for optical analysis of formaldehyde concentration. We describe progress in applying cavity ring-down spectroscopy of the 2v5 band (the first overtone of the asymmetric C-H stretch, origin at 1770 nm) to the quantitative analysis of formaldehyde concentration in ambient air. Preliminary results suggest that a sensitivity of 1-2 ppb in a measurement interval of a few seconds, and 0.1-0.2 ppb in a few minutes, should be achievable with a compact, robust, and field-deployable instrument. Finally, we note that recent satellites monitoring snapshots of formaldehyde columns give insights into global formaldehyde production, migration and lifetime. The ability to monitor formaldehyde with a small and portable analyzer has the potential to aid in validation of these snapshots and to provide complementary data to show vertical dispersions with high spatial accuracy.

  17. Influence of Precision of Emission Characteristic Parameters on Model Prediction Error of VOCs/Formaldehyde from Dry Building Material

    PubMed Central

    Wei, Wenjuan; Xiong, Jianyin; Zhang, Yinping

    2013-01-01

    Mass transfer models are useful in predicting the emissions of volatile organic compounds (VOCs) and formaldehyde from building materials in indoor environments. They are also useful for human exposure evaluation and in sustainable building design. The measurement errors in the emission characteristic parameters in these mass transfer models, i.e., the initial emittable concentration (C 0), the diffusion coefficient (D), and the partition coefficient (K), can result in errors in predicting indoor VOC and formaldehyde concentrations. These errors have not yet been quantitatively well analyzed in the literature. This paper addresses this by using modelling to assess these errors for some typical building conditions. The error in C 0, as measured in environmental chambers and applied to a reference living room in Beijing, has the largest influence on the model prediction error in indoor VOC and formaldehyde concentration, while the error in K has the least effect. A correlation between the errors in D, K, and C 0 and the error in the indoor VOC and formaldehyde concentration prediction is then derived for engineering applications. In addition, the influence of temperature on the model prediction of emissions is investigated. It shows the impact of temperature fluctuations on the prediction errors in indoor VOC and formaldehyde concentrations to be less than 7% at 23±0.5°C and less than 30% at 23±2°C. PMID:24312497

  18. Airborne In-Situ Measurements of Formaldehyde over California: First Results from the Compact Formaldehyde Fluorescence Experiment (COFFEE) Instrument

    NASA Technical Reports Server (NTRS)

    Marrero, Josette; St. Clair, Jason; Yates, Emma L.; Gore, Warren; Swanson, Andrew K.; Iraci, Laura T.; Hanisco, Thomas F.

    2016-01-01

    Formaldehyde (HCHO) is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere, playing a role multiple atmospheric processes. Measurements of HCHO can be used to help quantify convective transport, the abundance of VOCs, and ozone production in urban environments. The Compact Formaldehyde FluorescencE Experiment (COFFEE) instrument uses Non-Resonant Laser Induced Fluorescence (NR-LIF) to detect trace concentrations of HCHO as part of the Alpha Jet Atmospheric eXperiment (AJAX) payload. Developed at NASA GSFC, COFFEE is a small, low maintenance instrument with a sensitivity of 100 pptv and a quick response time (1 sec). The COFFEE instrument has been customized to fit in an external wing pod on the Alpha Jet aircraft based at NASA ARC. The instrument can operate over a broad range of altitudes, from boundary layer to lower stratosphere, making it well suited for the Alpha Jet, which can access altitudes from the surface up to 40,000 ft. Results of the first COFFEE science flights preformed over the California's Central Valley will be presented. Boundary layer measurements and vertical profiles in the tropospheric column will both be included. This region is of particular interest, due to its elevated levels of HCHO, revealed in satellite images, as well as its high ozone concentrations. In addition to HCHO, the AJAX payload includes measurements of atmospheric ozone, methane, and carbon dioxide. Formaldehyde is one of the few urban pollutants that can be measured from space. Plans to compare in-situ COFFEE data with satellite-based HCHO observations such as those from OMI (Aura) and OMPS (SuomiNPP) will also be presented.

  19. Airborne In-Situ Measurements of Formaldehyde Over California: First Results from the Compact Formaldehyde Fluorescence Experiment (COFFEE) Instrument

    NASA Technical Reports Server (NTRS)

    Marrero, Josette Elizabeth; Saint Clair, Jason; Yates, Emma L.; Gore, Warren; Swanson, Andrew K.; Iraci, Laura T.; Hanisco, Thomas F.

    2016-01-01

    Formaldehyde (HCHO) is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere, playing a role multiple atmospheric processes. Measurements of HCHO can be used to help quantify convective transport, the abundance of VOCs, and ozone production in urban environments. The Compact Formaldehyde FluorescencE Experiment (COFFEE) instrument uses Non-Resonant Laser Induced Fluorescence (NR-LIF) to detect trace concentrations of HCHO as part of the Alpha Jet Atmospheric eXperiment (AJAX) payload. Developed at NASA GSFC, COFFEE is a small, low maintenance instrument with a sensitivity of 100 pptv and a quick response time (1 sec). The COFFEE instrument has been customized to fit in an external wing pod on the Alpha Jet aircraft based at NASA ARC. The instrument can operate over a broad range of altitudes, from boundary layer to lower stratosphere, making it well suited for the Alpha Jet, which can access altitudes from the surface up to 40,000 ft. Results of the first COFFEE science flights preformed over the California's Central Valley will be presented. Boundary layer measurements and vertical profiles in the tropospheric column will both be included. This region is of particular interest, due to its elevated levels of HCHO, revealed in satellite images, as well as its high ozone concentrations. In addition to HCHO, the AJAX payload includes measurements of atmospheric ozone, methane, and carbon dioxide. Formaldehyde is one of the few urban pollutants that can be measured from space. Plans to compare in-situ COFFEE data with satellite-based HCHO observations such as those from OMI (Aura) and OMPS (SuomiNPP) will also be presented.

  20. Health Risk Assessment of Inhalation Exposure to Formaldehyde and Benzene in Newly Remodeled Buildings, Beijing

    PubMed Central

    Huang, Lihui; Mo, Jinhan; Sundell, Jan; Fan, Zhihua; Zhang, Yinping

    2013-01-01

    Objective To assess health risks associated with inhalation exposure to formaldehyde and benzene mainly emitted from building and decoration materials in newly remodeled indoor spaces in Beijing. Methods We tested the formaldehyde and benzene concentrations in indoor air of 410 dwellings and 451 offices remodeled within the past year, in which the occupants had health concerns about indoor air quality. To assess non-carcinogenic health risks, we compared the data to the health guidelines in China and USA, respectively. To assess carcinogenic health risks, we first modeled indoor personal exposure to formaldehyde and benzene using the concentration data, and then estimated the associated cancer risks by multiplying the indoor personal exposure by the Inhalation Unit Risk values (IURs) provided by the U.S. EPA Integrated Risk Information System (U.S. EPA IRIS) and the California Office of Environmental Health Hazard Assessment (OEHHA), respectively. Results (1) The indoor formaldehyde concentrations of 85% dwellings and 67% offices were above the acute Reference Exposure Level (REL) recommended by the OEHHA and the concentrations of all tested buildings were above the chronic REL recommended by the OEHHA; (2) The indoor benzene concentrations of 12% dwellings and 32% offices exceeded the reference concentration (RfC) recommended by the U.S. EPA IRIS; (3) The median cancer risks from indoor exposure to formaldehyde and benzene were 1,150 and 106 per million (based on U.S. EPA IRIS IURs), 531 and 394 per million (based on OEHHA IURs). Conclusions In the tested buildings, formaldehyde exposure may pose acute and chronic non-carcinogenic health risks to the occupants, whereas benzene exposure may pose chronic non-carcinogenic risks to the occupants. Exposure to both compounds is associated with significant carcinogenic risks. Improvement in ventilation, establishment of volatile organic compounds (VOCs) emission labeling systems for decorating and refurbishing materials are recommended to reduce indoor VOCs exposure. PMID:24244522

  1. Determination of formaldehyde in Romanian cosmetic products using coupled GC/MS system after SPME extraction

    NASA Astrophysics Data System (ADS)

    Feher, I.; Schmutzer, G.; Voica, C.; Moldovan, Z.

    2013-11-01

    In this study we have made a quick review of some Romanian cosmetic products (shampoo, conditioner, face wash) in order to determine the formaldehyde content as well as other substances called "formaldehyde releasers". The process was performed based on solid-phase microextraction (SPME) followed by gas chromatography/mass spectrometry technique. Prior to SPME extraction we used a derivation step of formaldehyde using pentafluorophenyl hydrazine. The obtained product was adsorbed on SPME devices, then injected and desorbed into the GC/MS injection port. The concentration of formaldehyde (as derived compound) was calculated using calibration curve, having a regression coefficient of 0.9938. The performance parameters of the method were calculated using samples of standard concentration. The method proved to be sensitive, having a quantification limit (LOQ) of 0.15 μg/g.

  2. Formaldehyde Concentration Dynamics of the International Space Station Cabin Atmosphere

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    2005-01-01

    Formaldehyde presents a significant challenge to maintaining cabin air quality on board crewed spacecraft. Generation sources include offgassing from a variety of non-metallic materials as well as human metabolism. Because generation sources are pervasive and human health can be affected by continual exposure to low concentrations, toxicology and air quality control engineering experts jointly identified formaldehyde as a key compound to be monitored as part the International Space Station's (ISS) environmental health monitoring and maintenance program. Data acquired from in-flight air quality monitoring methods are the basis for assessing the cabin environment's suitability for long-term habitation and monitoring the performance of passive and active controls that are in place to minimize crew exposure. Formaldehyde concentration trends and dynamics served in the ISS cabin atmosphere are reviewed implications to present and future flight operations discussed.

  3. Influence of indoor formaldehyde pollution on respiratory system health in the urban area of Shenyang, China.

    PubMed

    Zhai, L; Zhao, J; Xu, B; Deng, Y; Xu, Z

    2013-03-01

    The decoration of interior spaces can lead to dangerous levels of indoor formaldehyde pollution. Exposure to indoor air pollution may be responsible for nearly 2 million deaths per year in developing countries. To assess the prevalence of indoor formaldehyde pollution caused by decoration and resultant respiratory system symptoms exhibited in exposed adults and children, due to indoor formaldehyde pollution caused by decoration. Survey sites were chosen and indoor formaldehyde concentrations determined according to the standard of formaldehyde in GB50325-2001. Logistic regression models were used to derive odds ratios (ORs) and 95% confidence intervals (95% CIs) after adjusting for potential confounders for this survey. Formaldehyde concentration was above the standard in 64% of Shenyang City. Some adults surveyed complained of common respiratory system disorders, including coughing (11.8%), nasal irritation (39.2%), Heterosmia (14.51%), and throat irritation (25.27%); 12% of children suffered from asthma. The analysis identified formaldehyde pollution and ventilation frequency as risk factors for respiratory system disorders in both adults (OR=2.603, [95% CI: 1.770-3.828], OR=1.604, [95% CI: 1.146-2.244], respectively) and children (OR=4.250, [2.064-8.753], OR=1.831, [1.006-3.333], respectively). The prevalence of common respiratory system disorders was related both to formaldehyde pollution and insufficient ventilation after decorating.

  4. Malondialdehyde-Deoxyguanosine Adduct Formation in Workers of Pathology Wards. The Role of Air Formaldehyde Exposure

    PubMed Central

    Romanazzi, Valeria; Munnia, Armelle; Piro, Sara; Allione, Alessandra; Ricceri, Fulvio; Guarrera, Simonetta; Pignata, Cristina; Matullo, Giuseppe; Wang, Poguang; Giese, Roger W.; Peluso, Marco

    2010-01-01

    Background Formaldehyde is a ubiquitous pollutant to which humans are exposed. Pathologists can experience high formaldehyde exposure levels. Formaldehyde – among other properties – induce oxidative stress and free radicals, which react with DNA and lipids, leading to oxidative damage and lipid peroxidation, respectively. We measured the levels of air-formaldehyde exposure in a group of Italian pathologists and controls. We analyzed the effect of formaldehyde exposure on leukocyte malondialdehyde-deoxyguanosine adducts (M1-dG), a biomarker of oxidative stress and lipid peroxidation. We studied the relationship between air-formaldehyde and M1-dG adducts. Methods Air-formaldehyde levels were measured by personal air samplers. M1-dG adducts were analyzed by 32P-postlabelling assay. Results Reduction rooms pathologists were significantly exposed to air-formaldehyde in respect to controls and to the pathologists working in other laboratory areas (p<0.001). A significant difference for M1-dG adducts between exposed pathologists and controls was found (p=0.045). The effect becomes stronger when the evaluation of air-formaldehyde exposure was based on personal samplers (p=0.018). Increased M1dG adduct levels were only found in individuals exposed to air-formaldehyde concentrations higher than 66 μg/m3. When the exposed workers and controls were subgrouped according to smoking, M1-dG tended to increase in all the subjects but a significant association between M1-dG and air-formaldehyde was only found in not smokers (p= 0.009). Air formaldehyde played a role positive but not significant (r = 0.355, p = 0.075, Pearson correlation) in the formation of M1-dG, only in not smokers. Conclusions Working in the reduction rooms and to be exposed to air-formaldehyde concentrations higher than 66 μg/m3 is associated with increased levels of M1-dG adducts. PMID:20707408

  5. EFFECTS OF FORMALDEHYDE AND PARTICLE-BOUND FORMALDEHYDE ON LUNG MACROPHAGE FUNCTIONS

    EPA Science Inventory

    Dr. George Jakab and associates exposed mice to varying levels (ranging from 0.5 to 15 parts per million [ppm]) of formaldehyde alone or to formaldehyde (5 and 2.5 ppm) mixed with carbon black particles. Carbon black particles were chosen because of their similarity to comb...

  6. Preparation of Diatomite Supported Nano Zinc Oxide Composite Photocatalytic Material and Study on its Formaldehyde Degradation

    NASA Astrophysics Data System (ADS)

    Xiao, Liguang; Pang, Bo

    2017-09-01

    This experiment used zinc nitrate as precursor, ethanol as solvent and polyethylene glycol as dispersant, diatomite as carrier, diatomite loaded nano Zinc Oxide was prepared by sol-gel method, in addition, the formaldehyde degradation was studied by two kinds of experimental methods: preparation and loading, preparation and post loading, The samples were characterized by SEM, XRD, BET and IR. Experimental results showed that: Diatomite based nano Zinc Oxide had a continuous adsorption and degradation of formaldehyde, formaldehyde gas with initial concentration was 0.7mg/m3, after 36h degradation, the concentration reached 0.238mg/m3, the degradation rate reached to 66%.

  7. Influence of humidity on the initial emittable concentration of formaldehyde and hexaldehyde in building materials: experimental observation and correlation

    PubMed Central

    Huang, Shaodan; Xiong, Jianyin; Cai, Chaorui; Xu, Wei; Zhang, Yinping

    2016-01-01

    Humidity is one of the main environmental factors affecting the emission rate and key parameters of formaldehyde and volatile organic compounds (VOCs) from building materials. Meanwhile, the initial emittable concentration (Cm,0) is proved to be the most sensitive key parameter to the emission behaviours. However, there is no report on the relationship between humidity and Cm,0. In this paper, Cm,0 of formaldehyde and hexaldehyde from a type of medium density fiberboard in absolute humidity (AH) range of 4.6–19.6 g/m3 at 25 °C were tested by virtue of a C-history method. Experimental results indicate that Cm,0 is dramatically dependent on AH, increased by 10 and 2 times for formaldehyde and hexaldehyde when AH rising from 4.6 g/m3 to 19.6 g/m3. A linear relationship between the logarithm of Cm,0 and AH is obtained based on the measured results. In addition, a correlation characterizing the association of emission rate and AH is derived. The effectiveness of the correlation is verified with our experimental results as well as data from literature. With the correlations, the Cm,0 or emission rate different from the test AH conditions can be conveniently obtained. This study should be useful for predicting the emission characteristics of humidity changing scenarios and for source control. PMID:27025353

  8. Unusual formaldehyde-induced hypersensitivity in two schoolgirls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gammage, R.B.; Hanna, W.T.; Painter, P.B.

    1990-01-01

    Two schoolgirls developed a syndrome resembling Henoch-Schonlein purpura while attending a recently opened school insulated with urea-formaldehyde foam (UFFI). Skin rashes and swellings were accompanied by bizarre, blue-green discoloration of the skin. Subsequent investigations by county, state and federal authorities, and low measured concentrations of formaldehyde, prompted initial conclusions that in-school formaldehyde exposures were not responsible for the girls' problems. Subsequent controlled exposures to UFFI and formaldehyde while in hospital elicited the whole cascade of symptoms. The chronology of the onset and amplification of systems make it probable that the formaldehyde exposures precipitating the girls' hypersensitivity, occurred in the school.more » 3 refs.« less

  9. Contaminant levels, source strengths, and ventilation rates in California retail stores.

    PubMed

    Chan, W R; Cohn, S; Sidheswaran, M; Sullivan, D P; Fisk, W J

    2015-08-01

    This field study measured ventilation rates and indoor air quality in 21 visits to retail stores in California. Three types of stores, such as grocery, furniture/hardware stores, and apparel, were sampled. Ventilation rates measured using a tracer gas decay method exceeded the minimum requirement of California's Title 24 Standard in all but one store. Concentrations of volatile organic compounds (VOCs), ozone, and carbon dioxide measured indoors and outdoors were analyzed. Even though there was adequate ventilation according to standard, concentrations of formaldehyde and acetaldehyde exceeded the most stringent chronic health guidelines in many of the sampled stores. The whole-building emission rates of VOCs were estimated from the measured ventilation rates and the concentrations measured indoor and outdoor. Estimated formaldehyde emission rates suggest that retail stores would need to ventilate at levels far exceeding the current Title 24 requirement to lower indoor concentrations below California's stringent formaldehyde reference level. Given the high costs of providing ventilation, effective source control is an attractive alternative. Field measurements suggest that California retail stores were well ventilated relative to the minimum ventilation rate requirement specified in the Building Energy Efficiency Standards Title 24. Concentrations of formaldehyde found in retail stores were low relative to levels found in homes but exceeded the most stringent chronic health guideline. Looking ahead, California is mandating zero energy commercial buildings by 2030. To reduce the energy use from building ventilation while maintaining or even lowering formaldehyde in retail stores, effective formaldehyde source control measures are vitally important. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  10. Volatile organic compounds in fourteen U.S. retail stores.

    PubMed

    Nirlo, E L; Crain, N; Corsi, R L; Siegel, J A

    2014-10-01

    Retail buildings have a potential for both short-term (customer) and long-term (occupational) exposure to indoor pollutants. However, little is known about volatile organic compound (VOC) concentrations in the retail sector and influencing factors, such as ventilation, in-store activities, and store type. We measured VOC concentrations and ventilation rates in 14 retail stores in Texas and Pennsylvania. With the exception of formaldehyde and acetaldehyde, VOCs were present in retail stores at concentrations well below health guidelines. Indoor formaldehyde concentrations ranged from 4.6 ppb to 67 ppb. The two mid-sized grocery stores in the sample had the highest levels of ethanol and acetaldehyde, with concentrations up to 2.6 ppm and 92 ppb, respectively, possibly due to the preparation of dough and baking activities. Indoor-to-outdoor concentration ratios indicated that indoor sources were the main contributors to indoor VOC concentrations for the majority of compounds. There was no strong correlation between ventilation and VOC concentrations across all stores. However, increasing the air exchange rates at two stores led to lower indoor VOC concentrations, suggesting that ventilation can be used to reduce concentrations for some specific stores. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Pixantrone can be activated by formaldehyde to generate a potent DNA adduct forming agent

    PubMed Central

    Evison, Ben J.; Mansour, Oula C.; Menta, Ernesto; Phillips, Don R.; Cutts, Suzanne M.

    2007-01-01

    Mitoxantrone is an anti-cancer agent used in the treatment of breast and prostate cancers. It is classified as a topoisomerase II poison, however can also be activated by formaldehyde to generate drug–DNA adducts. Despite identification of this novel form of mitoxantrone–DNA interaction, excessively high, biologically irrelevant drug concentrations are necessary to generate adducts. A search for mitoxantrone analogues that could potentially undergo this reaction with DNA more efficiently identified Pixantrone as an ideal candidate. An in vitro crosslinking assay demonstrated that Pixantrone is efficiently activated by formaldehyde to generate covalent drug–DNA adducts capable of stabilizing double-stranded DNA in denaturing conditions. Pixantrone–DNA adduct formation is both concentration and time dependent and the reaction exhibits an absolute requirement for formaldehyde. In a direct comparison with mitoxantrone–DNA adduct formation, Pixantrone exhibited a 10- to 100-fold greater propensity to generate adducts at equimolar formaldehyde and drug concentrations. Pixantrone–DNA adducts are thermally and temporally labile, yet they exhibit a greater thermal midpoint temperature and an extended half-life at 37°C when compared to mitoxantrone–DNA adducts. Unlike mitoxantrone, this enhanced stability, coupled with a greater propensity to form covalent drug–DNA adducts, may endow formaldehyde-activated Pixantrone with the attributes required for Pixantrone–DNA adducts to be biologically active. PMID:17483512

  12. Aldehydes in passenger vehicles: An analysis of data from the RIOPA Study 1999-2001

    NASA Astrophysics Data System (ADS)

    Mapou, Ashley E. M.; Shendell, Derek G.; Therkorn, Jennifer H.; Xiong, Youyou; Meng, Qingyu; Zhang, Junfeng

    2013-11-01

    In-vehicle air quality (IVAQ) can be a major health concern due to factors such as urban sprawl and increased commuting time spent by individuals in vehicles. Few studies, particularly in the U.S., have considered in-vehicle toxic air contaminants, and none to date collected/analyzed field data in multiple communities across multiple climate zones. This study presents analyses of field data collected during the RIOPA Study from participating non-smoking adults for communities in Los Angeles County, CA, Elizabeth, NJ and Houston, TX. A significant difference (p < 0.001) in in-vehicle formaldehyde concentrations was observed, with the median concentration of in-vehicle formaldehyde in the CA communities about twice as high as in the NJ and TX communities. The highest median concentration of in-vehicle acetaldehyde was observed among the TX participants, over 40% higher than the overall study median. Given small sample sizes, the community (state) differences may be driven independently by differences in individual vehicle conditions and driving habits. Positive correlations were found between average community outdoor relative humidity in CA and NJ and in-vehicle formaldehyde and acetaldehyde concentrations. The amount of time car windows were reported as closed was inversely correlated with in-vehicle formaldehyde across study locations, and for in-vehicle acetaldehyde in CA and TX. Average wind speed and varying sky conditions also had suggested associations to in-vehicle formaldehyde and acetaldehyde. In CA and TX, 88% (7/8) of participants with a diagnosis of bronchitis reported at study baseline had in-vehicle formaldehyde concentrations greater than the overall study median. Every participant with diagnoses of both asthma and bronchitis (n = 3) reported at study baseline had in-vehicle formaldehyde and acetaldehyde concentrations above the overall study median; one participant in TX with two seasonal in-vehicle samplings had in-vehicle concentrations > 75th percentile. IVAQ during commuting may vary based on human behavior and meteorological factors. Additional studies are needed to further characterize ways to help reduce in-vehicle aldehyde exposures, especially for people with existing chronic respiratory illnesses who could experience symptom exacerbations upon such exposures.

  13. Development and analysis of air quality modeling simulations for hazardous air pollutants

    NASA Astrophysics Data System (ADS)

    Luecken, D. J.; Hutzell, W. T.; Gipson, G. L.

    The concentrations of five hazardous air pollutants were simulated using the community multi-scale air quality (CMAQ) modeling system. Annual simulations were performed over the continental United States for the entire year of 2001 to support human exposure estimates. Results are shown for formaldehyde, acetaldehyde, benzene, 1,3-butadiene and acrolein. Photochemical production in the atmosphere is predicted to dominate ambient formaldehyde and acetaldehyde concentrations, and to account for a significant fraction of ambient acrolein concentrations. Spatial and temporal variations are large throughout the domain over the year. Predicted concentrations are compared with observations for formaldehyde, acetaldehyde, benzene and 1,3-butadiene. Although the modeling results indicate an overall slight tendency towards underprediction, they reproduce episodic and seasonal behavior of pollutant concentrations at many monitors with good skill.

  14. Nature of, and the formaldehyde off-gassing characteristics of, urea-formaldehyde foam insulation (UFFI). Final report to the Canadian Department of Consumer and Corporate Affairs: Product Safety Branch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gammage, R.B.

    1981-07-30

    This report is divisible into the following four sections that pertain to the nature, application, and performance of urea-formaldehyde (UF) resins and foams in regard to their formaldehyde outgassing characteristics: elements of basic chemistry that affect hydrolysis and stability; pertinent experimental findings of several studies on the release of formaldehyde from urea-formaldehyde foam insulation (UFFI); studies that model the diffusion of formaldehyde through drywall and correlate the rate of formaldehyde emission with the air exchange rate and the concentration of formaldehyde; and, viability of materials and equipment for the controlled production of UFFI. Results indicate that UFFI is a complexmore » and intrinsically unstable material that releases formaldehyde over long-time periods. Even the best foams available in the US, prepared from low formaldehyde resins according to eight different manufacturers' specifications, have abundant potential for long-term or chronic release of formaldehyde. At the present time it is not possible to state that UFFI is a material whose long-term formaldehyde release characteristics can be adequately controlled or predicted.« less

  15. Determination of formaldehyde levels in 100 furniture workshops in Ankara.

    PubMed

    Vaizoğlu, Songül Acar; Aycan, Sefer; Akin, Levent; Koçdor, Pelin; Pamukçu, Gül; Muhsinoğlu, Orkun; Ozer, Feyza; Evci, E Didem; Güler, Cağatay

    2005-10-01

    One of the airborne pollutants in wood products industry is formaldehyde, which may pose some health effects. Therefore this study is conducted to determine formaldehyde levels in 100 furniture-manufacturing workshops in Ankara and also to determine the symptoms, which may be related with formaldehyde exposure among the workers. Indoor formaldehyde levels ranged from 0.02 ppm to 2.22 ppm with a mean of 0.6 +/- 0.3 ppm. Outdoor formaldehyde levels also ranged from 0.0 ppm to 0.08 ppm with a mean of 0.03 +/- 0.03 ppm. Formaldehyde levels were higher in workplaces located at basement than in workplaces located at or above ground level (p < 0.01). An association was found between indoor formaldehyde levels and the types of fuel used (p < 0.05). The levels were higher in workplaces where only sawdust was used for heating, than in workplaces where wood, coal, and sawdust are used (p = 0.02). An association was found between runny nose and indoor formaldehyde levels (p = 0.03). Formaldehyde levels were lower in workplaces where employees had no symptoms than in those where employees had 4 or more symptoms (p = 0.02). Of 229 employees 57 subjects (24.9%) work under the formaldehyde levels of 0.75 ppm and above. Thus, approximately one fourth of the employees in workplaces are working in environments with formaldehyde levels exceeding those permitted by Occupational Safety and Health Administration (OSHA). The employees working in small-scale furniture workshops are at risk of formaldehyde exposure. Measures, such as improved ventilation, have to be taken in these workplaces, in order to decrease the formaldehyde levels.

  16. The effect of formaldehyde and nitrogen-containing compounds on the size and volume of aerosol particles

    NASA Astrophysics Data System (ADS)

    Millage, K.; Galloway, M. M.; De Haan, D. O.

    2012-12-01

    Atmospheric aerosol can interact with clouds in many ways, often resulting in the redistribution or absorption of solar energy or changes in precipitation efficiency. Secondary organic aerosol (SOA) in particular has been linked to climate change and a reduction in the number and size of cloud particles. The reactions of nitrogen containing compounds (primary amines, amino acids and ammonium sulfate) with carbonyl compounds (such as formaldehyde and glycolaldehyde) are potential sources of SOA. Aerosol containing formaldehyde and nitrogen-containing compounds (glycine, methylamine, arginine, or ammonium sulfate) was generated from buffered solutions (pH 5.4) using a nebulizer. The aerosol was then equilibrated into a chamber containing humid air (82-84% RH), and particle sizes were measured using a SMPS system over a period of 1 hour in order to examine how the size and volume of the aerosol particles changed. Formaldehyde concentrations were varied over multiple experiments. Arginine displayed a trend of increasing relative particle size with increasing formaldehyde concentration. Ammonium sulfate and formaldehyde displayed a decrease in relative particle sizes from 0:1 to 2:1 ratios of formaldehyde to ammonium sulfate, but then an increase in relative particle sizes with increasing amounts of formaldehyde. Similarly, glycine and methylamine initially displayed decreasing relative particle sizes, until reaching a 1:1 ratio of each to formaldehyde at which point the relative particle sizes steadily increased. These effects were likely caused by the evaporation of first-generation imine products.

  17. Undeclared Formaldehyde Levels in Patient Consumer Products: Formaldehyde Test Kit Utility.

    PubMed

    Ham, Jason E; Siegel, Paul; Maibach, Howard

    2018-05-03

    Formaldehyde allergic contact dermatitis (ACD) may be due to products with free formaldehyde or formaldehyde-releasing agents, however, assessment of formaldehyde levels in such products is infrequently conducted. The present study quantifies total releasable formaldehyde from "in-use" products associated with formaldehyde ACD and tests the utility of commercially available formaldehyde spot test kits. Personal care products from 2 patients with ACD to formaldehyde were initially screened at the clinic for formaldehyde using a formaldehyde spot test kit. Formaldehyde positive products were sent to the laboratory for confirmation by gas chromatography-mass spectrometry. In addition, 4 formaldehyde spot test kits were evaluated for potential utility in a clinical setting. Nine of the 10 formaldehyde spot test kit positive products obtained from formaldehyde allergic patients had formaldehyde with total releasable formaldehyde levels ranging from 5.4 to 269.4 µg/g. Of these, only 2 shampoos tested listed a formaldehyde-releasing agent in the ingredients or product literature. Subsequently, commercially available formaldehyde spot test kits were evaluated in the laboratory for ability to identify formaldehyde in personal care products. Chemical based formaldehyde spot test were more reliable than the enzymatic based test in identifying product releasable formaldehyde content. It is concluded that product labeled ingredient lists and available information are often inadequate to confirm the potential for formaldehyde exposure and chemical based spot test kits may have utility for identification of potential formaldehyde exposure from personal care products.

  18. Exposure of farm laborers and dairy cattle to formaldehyde from footbath use at a dairy farm in New York State.

    PubMed

    Doane, M; Sarenbo, S

    2014-07-15

    Formalin footbaths are commonly used in the dairy industry to prevent cattle hoof diseases. Although formalin is a well-documented disinfectant, it is also a carcinogen and irritant. The aim of this study was to estimate the exposure of farm workers and dairy cattle to formaldehyde from footbaths located in a milking facility and a heifer facility at a dairy farm in western New York, USA. The dairy farm included approximately 3900 dairy cattle including young stock; of these, 1670 cows were milked three times per day in a 60-stall carousel milking parlor, and approximately 800 heifers were located at the heifer facility where footbaths with formalin were in use. The formaldehyde concentration of the air was measured using a Formaldemeter™ htV approximately 50cm above the 3% formalin footbaths in the milking (one footbath location) and heifer (three footbath locations) facilities on three consecutive days. The measured formaldehyde concentrations varied between 0.00 and 2.28ppm, falling within the safety guidelines established by the Occupation Safety and Health Administration (OSHA) of the United States. Significant differences were found in the formaldehyde concentrations at the different footbath locations in the heifer facility, potentially due to the varying levels of ventilation at each location. Changes in the ambient temperature during the 3-day sampling period did not significantly affect the concentrations. We believe that the substantial ventilation at both the heifer and milking facilities ensured that the formaldehyde concentrations did not exceed OSHA guidelines, thus permitting the safe use of formalin footbaths in this farm. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Assessment of Air Quality in the International Space Station (ISS) and Space Shuttle Based on Samples Returned Aboard STS-110 (ISS-8A) in April 2002

    NASA Technical Reports Server (NTRS)

    James, John T.

    2002-01-01

    The toxicological assessment of grab sample canisters (GSCs) returned aboard STS-110 is reported. Analytical methods have not changed from earlier reports, and surrogate standard recoveries from the GSCs were 77-121%, with one exception. Pressure tracking indicated no leaks in the canisters. Recoveries from lab and trip controls for formaldehyde analyses ranged from 87 to 96%. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contributions). Because of the inertness of Freon 218 (octafluoropropane, OFP), its contribution to the NMVOC is subtracted and tabulated separately. Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols are also shown for each sample. Because formaldehyde is quantified from sorbent badges, its concentration is listed separately. These five indices of air quality are summarized.

  20. Carbonyl species characteristics during the evaporation of essential oils

    NASA Astrophysics Data System (ADS)

    Chiang, Hsiu-Mei; Chiu, Hua-Hsien; Lai, Yen-Ming; Chen, Ching-Yen; Chiang, Hung-Lung

    2010-06-01

    Carbonyls emitted from essential oils can affect the air quality when they are used in indoors, especially under poor ventilation conditions. Lavender, lemon, rose, rosemary, and tea tree oils were selected as typical and popular essential oils to investigate in terms of composition, thermal characteristics and fifteen carbonyl constituents. Based on thermogravimetric (TG) analysis, the activation energy was 7.6-8.3 kcal mol -1, the reaction order was in the range of 0.6-0.7 and the frequency factor was 360-2838 min -1. Formaldehyde, acetaldehyde, acetone, and propionaldehyde were the dominant carbonyl compounds, and their concentrations were 0.034-0.170 ppm. The emission factors of carbonyl compounds were 2.10-3.70 mg g -1, and acetone, propionaldehyde, acetaldehyde, and formaldehyde accounted for a high portion of the emission factor of carbonyl compounds in essential oil exhaust. Some unhealthy carbonyl species such as formaldehyde and valeraldehyde, were measured at low-temperature during the vaporization of essential oils, indicating a potential effect on indoor air quality and human health.

  1. Graphene oxide as efficient high-concentration formaldehyde scavenger and reutilization in supercapacitor.

    PubMed

    Liang, Hongyu; Bu, Yongfeng; Zhang, Yutian; Zhang, Junyan

    2015-04-15

    Graphene oxide (GO) was investigated as a low-cost and high-efficient scavenger for high-concentration formaldehyde in alkali media. It showed very high removal capacity, 411 mg of formaldehyde per milligram of GO, and strong resistant to temperature changes. Additionally, the used GO can be easily renewed by a simple electrochemical method. By analyzing the componential and electrochemical characterizations of GO before and after use, the results showed that the degradation mechanism of formaldehyde is a collaborative process of chemical oxidation and physical adsorption, and the former dominates the degradation process. With the aid of oxygen-containing groups in GO, most formaldehyde can be easily oxidized by GO in alkaline media (this is equivalent to GO was reduced by formaldehyde). On the other hand, the used GO (reduced GO, noted as rGO) exhibits more ideal electronic double-layer capacitor (EDLC) feature than GO, along with higher rate capacitance (up to 136 F g(-1) at 50 A g(-1)). In short, GO is not only an efficient formaldehyde scavenger, but the used GO (rGO) can serve as promising electrical energy storage material. This study provides new insights for us to reutilize the discarded adsorbents generated from the environmental protection. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Study on Movable gel Profiling/Flooding System Optimization at Boundary Temperature

    NASA Astrophysics Data System (ADS)

    Gao, Shanshan; Xie, Gang; Zhang, Tiantian; Wang, Zhiqiang; Jiang, Peijun; Wei, Junjie; Gu, Yi; Lei, Xiaoyang; Guo, Suzhen; Lei, Shi

    2017-12-01

    65-75°C is the boundary temperature of phenol-formaldehyde resin and organic chrome crosslink with HPAM to generate movable gel. Generally speaking, when the reservoir temperature is below 65-75°C, the crosslinking agent is Organic chrome. Phenol-formaldehyde resin is used when the temperature is above 65-75°C. In this paper the gelation properties of phenol-formaldehyde resin and organic chrome were compared at 70°C. The experiment results showed that the crosslinking time of phenol-formaldehyde resin gel was longer and more conducive to field injection. In addition the phenol-formaldehyde resin gel had greater viscosity, adhesion and shearing resistance compared with the organic chrome gel. So the phenol-formaldehyde resin was chosen for further optimization. The crosslinking time was shortened and the gel viscosity increased with the increase of the polymer concentration. As the polymer crosslinker proportion increased The crosslinking time was shortened and the gel viscosity increased first and then decreased. Reinforcer NC and stabilizer WG were added to improve the temperature and salt tolerance of the gel. The gel formula suitable for the boundary temperature was obtained. The optimum polymer concentration is 1200mg/L, the polymer crosslinker proportion is 1:1.1, the best reinforcer concentration is 400mg/L and the concentration of the stabilizer is 150mg/L. The crosslinking time is 31h, the gel viscosity is above 2100mPa·s. The gel did not shrink and no water separation was observed at 70°C for 150 days. The viscosity retention rate was more than 70%.

  3. Assessment of Air Quality in the International Space Station (ISS) and Space Shuttle Based on Samples Returned Aboard STS-ll1 (UF2) in June 2002

    NASA Technical Reports Server (NTRS)

    James, John T.

    2003-01-01

    The toxicological assessments of grab sample canisters (GSCs) and 2 solid sorbent air samplers (SSASs) returned aboard STS-111 are reported. Analytical methods have not changed from earlier reports. Surrogate standard recoveries from the GSCs were 86-106% and 62% to 136 % from the SSASs; 2 tubes with low surrogate recoveries were not reported. Pressure tracking indicated no leaks in the canisters during analysis. Recoveries from lab and trip controls for formaldehyde analyses ranged from 87 to 96%. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contributions). Because of the inertness of Freon 218 (octafluoropropane, OFP), Its contribution to the NMVOC is subtracted and tabulated separately. Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols (including acetone) are also shown for each sample. Because formaldehyde is quantified from sorbent badges, its concentration is listed separately. The table shows that the air quality in general was acceptable for crew respiration; however, certain values shown in bold require further explanation. The 1.05 T value on 2/28/02 was caused by an unusually high measurement ofhexamethylcyc1otrisiloxane (T value = 0.50), which is not a concern. The MPLM T value of 1.42 and the alcohol level of 7.5 mg/cu m were due to an overall polluted atmosphere, which was expected at first entry. The major T-value component was carbon monoxide at a contribution of 0.44 units. Since the crew was only exposed momentarily to the polluted atmosphere, no health effects are expected. The formaldehyde value of 0.060 mg/cu m found in the Lab sample from 3/27/02 is cause for concern because the Lab consistently shows higher concentrations of formaldehyde than the SM and occasionally the concentrations are above the acceptable guideline. Levels of OFP have remained low, suggesting that no further leaks of the SM air conditioner have occurred.

  4. Occupational asthma due to formaldehyde.

    PubMed Central

    Burge, P S; Harries, M G; Lam, W K; O'Brien, I M; Patchett, P A

    1985-01-01

    Bronchial provocation studies on 15 workers occupationally exposed to formaldehyde are described. The results show that formaldehyde exposure can cause asthmatic reactions, and suggest that these are sometimes due to hypersensitivity and sometimes to a direct irritant effect. Three workers had classical occupational asthma caused by formaldehyde fumes, which was likely to be due to hypersensitivity, with late asthmatic reactions following formaldehyde exposure. Six workers developed immediate asthmatic reactions, which were likely to be due to a direct irritant effect as the reactions were shorter in duration than those seen after soluble allergen exposure and were closely related to histamine reactivity. The breathing zone concentrations of formaldehyde required to elicit these irritant reactions (mean 4.8 mg/m3) were higher than those encountered in buildings recently insulated with urea formaldehyde foam, but within levels sometimes found in industry. Images PMID:4023975

  5. High temperature performance of soy-based adhesives

    Treesearch

    Jane L. O’Dell; Christopher G. Hunt; Charles R. Frihart

    2013-01-01

    We studied the high temperature performance of soy meal processed to different protein concentrations (flour, concentrate, and isolate), as well as formulated soy-based adhesives, and commercial nonsoy adhesives for comparison. No thermal transitions were seen in phenol-resorcinol-formaldehyde (PRF) or soy-phenol-formaldehyde (SoyPF) or in as-received soy flour...

  6. Investigation on formaldehyde release from preservatives in cosmetics.

    PubMed

    Lv, C; Hou, J; Xie, W; Cheng, H

    2015-10-01

    To understand formaldehyde residue in cosmetics, an investigation on formaldehyde release from eight preservatives (methenamine - MA, paraformaldehyde - PF, poly(p-toluenesulfonamide-co-formaldehyde) -PTSAF, quaternium-15 - QU, imidazolidinyl urea - IU, diazolidinyl urea - DU, dimethyloldimethyl hydantoin - DMDM and bronopol - BP) under various conditions was performed. The concentration of released formaldehyde was determined by high-performance liquid chromatography with photodiode array detection after derivatization with 2,4-dinitrophenylhydrazine. The amounts of formaldehyde release were in the order of PF > DU > DMDM ≈ QU ≈ IU > MA > BP > PTSAF. The releasing amounts of formaldehyde were the highest in the presence of aqueous matrices for the releasers except QU and IU, and the releasing effect was also relative to pH. More formaldehyde was released with longer storage time and higher temperature. Furthermore, all preservatives in cosmetic matrices released fewer amounts of formaldehyde than in pure aqueous or organic matrices, and the formaldehyde-releasing amounts were also cosmetic specific. Formaldehyde release was dependent on the matrix, pH, time and mainly temperature, and the releasing effect was also cosmetic specific. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  7. National review of ambient air toxics observations.

    PubMed

    Strum, Madeleine; Scheffe, Richard

    2016-02-01

    Ambient air observations of hazardous air pollutant (HAPs), also known as air toxics, derived from routine monitoring networks operated by states, local agencies, and tribes (SLTs), are analyzed to characterize national concentrations and risk across the nation for a representative subset of the 187 designated HAPs. Observations from the National Air Toxics Trend Sites (NATTS) network of 27 stations located in most major urban areas of the contiguous United States have provided a consistent record of HAPs that have been identified as posing the greatest risk since 2003 and have also captured similar concentration patterns of nearly 300 sites operated by SLTs. Relatively high concentration volatile organic compounds (VOCs) such as benzene, formaldehyde, and toluene exhibit the highest annual average concentration levels, typically ranging from 1 to 5 µg/m(3). Halogenated (except for methylene chloride) and semivolatile organic compounds (SVOCs) and metals exhibit concentrations typically 2-3 orders of magnitude lower. Formaldehyde is the highest national risk driver based on estimated cancer risk and, nationally, has not exhibited significant changes in concentration, likely associated with the large pool of natural isoprene and formaldehyde emissions. Benzene, toluene, ethylbenzene, and 1,3-butadiene are ubiquitous VOC HAPs with large mobile source contributions that continue to exhibit declining concentrations over the last decade. Common chlorinated organic compounds such as ethylene dichloride and methylene chloride exhibit increasing concentrations. The variety of physical and chemical attributes and measurement technologies across 187 HAPs result in a broad range of method detection limits (MDLs) and cancer risk thresholds that challenge confidence in risk results for low concentration HAPs with MDLs near or greater than risk thresholds. From a national monitoring network perspective, the ability of the HAPs observational database to characterize the multiple pollutant and spatial scale patterns influencing exposure is severely limited and positioned to benefit by leveraging a variety of emerging measurement technologies. Ambient air toxics observation networks have limited ability to characterize the broad suite of hazardous air pollutants (HAPs) that affect exposures across multiple spatial scales. While our networks are best suited to capture major urban-scale signals of ubiquitous volatile organic compound HAPs, incorporation of sensing technologies that address regional and local-scale exposures should be pursued to address major gaps in spatial resolution. Caution should be exercised in interpreting HAPs observations based on data proximity to minimum detection limit and risk thresholds.

  8. The tropospheric distribution of formaldehyde

    NASA Astrophysics Data System (ADS)

    Lowe, D. C.; Schmidt, U.; Ehhalt, D. H.

    1981-12-01

    A measurement technique for determining the very low formaldehyde concentrations in clean air is described. The method is based on the standard derivation of formaldehyde with 2,4-dinitrophenylhydrazine. The derivative is separated, using high performance liquid chromatography, and detected at 254 nm with a conventional UV absorption detector. The sampling and analysis technique was used to measure tropospheric mixing ratios at various places in Europe and New Zealand as well as during a cruise in the North and South Atlantic. The results of the measurements show that formaldehyde mixing ratios in clean air are very low. In clean maritime air no significant difference in the formaldehyde mixing ratio between the hemispheres is observed.

  9. [Binding properties of components removable from dental base plate, analysed by Fourier-Transform Surface Plasmon Resonance (FT-SPR) method].

    PubMed

    Bakó, József; Kelemen, Máté; Szalóki, Melinda; Vitályos, Géza; Radics, Tünde; Hegedüs, Csaba

    2015-03-01

    In parallel with the emergence of new dental materials the number of allergic diseases is continuously increasing. Extremely small quantities of the allergens are capable to inducing an allergic reaction. Therefore it is particularly important to examine these materials as antigens and investigate their binding properties to proteins (e.g. formaldehyde, methacrylic acid, benzoyl-peroxide...). The Fourier Transform Surface Plasmon Resonance Spectroscopy (FT-SPR) is a suitable examination method for this type of procedure. FT-SPR measurement is performed at a fixed angel of incident light, and reflectivity is measured over a range of wavelength in the near infrared. The advantages of this method are the outstanding sensitivity, the label-free detection capability and the possibility of the real-time testing procedure. Formaldehyde and methacrylic acid are among the most common dental allergens. In our study we examined these molecules by FT-SPR spectroscopy. The aim of this work was to investigate the suitability of this method to the detection of these materials, with special focuses on the analysis and evaluation concentration-dependent measurements. Different concentrations (0.01 %-0.2%) of formaldehyde and methacrylic acid solutions were measured. The individual spectra were measured for all of the solutions, and calibration curves were calculated for the materials for the possibility of the determination of an unknown concentration. The results confirmed that the method is theoretically capable to detect hundred-thousandths scale concentration-changes in the solution flowing above the SPR-chip. The concentration-dependent studies had proved that the method capable to measure directly these materials and can provide appropriate calibration for quantitative determination. These experiments show the broad applicability of the FT-SPR method, which can greatly facilitate the mapping and understanding of biomolecular interactions in the future.

  10. Air sampling with solid phase microextraction

    NASA Astrophysics Data System (ADS)

    Martos, Perry Anthony

    There is an increasing need for simple yet accurate air sampling methods. The acceptance of new air sampling methods requires compatibility with conventional chromatographic equipment, and the new methods have to be environmentally friendly, simple to use, yet with equal, or better, detection limits, accuracy and precision than standard methods. Solid phase microextraction (SPME) satisfies the conditions for new air sampling methods. Analyte detection limits, accuracy and precision of analysis with SPME are typically better than with any conventional air sampling methods. Yet, air sampling with SPME requires no pumps, solvents, is re-usable, extremely simple to use, is completely compatible with current chromatographic equipment, and requires a small capital investment. The first SPME fiber coating used in this study was poly(dimethylsiloxane) (PDMS), a hydrophobic liquid film, to sample a large range of airborne hydrocarbons such as benzene and octane. Quantification without an external calibration procedure is possible with this coating. Well understood are the physical and chemical properties of this coating, which are quite similar to those of the siloxane stationary phase used in capillary columns. The log of analyte distribution coefficients for PDMS are linearly related to chromatographic retention indices and to the inverse of temperature. Therefore, the actual chromatogram from the analysis of the PDMS air sampler will yield the calibration parameters which are used to quantify unknown airborne analyte concentrations (ppb v to ppm v range). The second fiber coating used in this study was PDMS/divinyl benzene (PDMS/DVB) onto which o-(2,3,4,5,6- pentafluorobenzyl) hydroxylamine (PFBHA) was adsorbed for the on-fiber derivatization of gaseous formaldehyde (ppb v range), with and without external calibration. The oxime formed from the reaction can be detected with conventional gas chromatographic detectors. Typical grab sampling times were as small as 5 seconds. With 300 seconds sampling, the formaldehyde detection limit was 2.1 ppbv, better than any other 5 minute sampling device for formaldehyde. The first-order rate constant for product formation was used to quantify formaldehyde concentrations without a calibration curve. This spot sampler was used to sample the headspace of hair gel, particle board, plant material and coffee grounds for formaldehyde, and other carbonyl compounds, with extremely promising results. The SPME sampling devices were also used for time- weighted average sampling (30 minutes to 16 hours). Finally, the four new SPME air sampling methods were field tested with side-by-side comparisons to standard air sampling methods, showing a tremendous use of SPME as an air sampler.

  11. Quantification of Atmospheric Formaldehyde by Near-Infrared Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rella, C.; Hoffnagle, J.; Fleck, D.; Kim-Hak, D.

    2017-12-01

    Formaldehyde is an important species in atmospheric chemistry, especially in urban environments, where it is a decay product of methane and volatile hydrocarbons. It is also a toxic, carcinogenic compound that can contaminate ambient air from incomplete combustion, or outgassing of commercial products such as adhesives used to fabricate plywood or to affix indoor carpeting. Formaldehyde has a clearly resolved ro-vibrational absorption spectrum that is well-suited to optical analysis of formaldehyde concentration. We describe an instrument based on cavity ring-down spectroscopy for the quantitative analysis of formaldehyde concentration in ambient air. The instrument has a precision (1-sigma) of about 1 ppb at a measurement rate of 1 second, and provides measurements of less than 100 ppt with averaging. The instrument provides stable measurements (drift < 1 ppb) over long periods of time (days). The instrument has been ruggedized for mobile applications, and with a fast response time of a couple of seconds, it is suitable for ground-based vehicle deployments for fenceline monitoring of formaldehyde emissions. In addition, we report on ambient atmospheric measurements at a 10m urban tower, which demonstrate the suitability of the instrument for applications in atmospheric chemistry.

  12. Airborne In-Situ Measurements of Formaldehyde over California: First Results from the COFFEE Instrument

    NASA Astrophysics Data System (ADS)

    Marrero, Josette; St. Clair, Jason; Yates, Emma; Swanson, Andrew; Gore, Warren; Iraci, Laura; Hanisco, Thomas

    2016-04-01

    Formaldehyde (HCHO) is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere, playing a role multiple atmospheric processes. Measurements of HCHO can be used to help quantify convective transport, the abundance of VOCs, and ozone production in urban environments. The Compact Formaldehyde FluorescencE Experiment (COFFEE) instrument uses Non-Resonant Laser Induced Fluorescence (NR-LIF) to detect trace concentrations of HCHO as part of the Alpha Jet Atmospheric eXperiment (AJAX) payload. Developed at NASA GSFC, COFFEE is a small, low maintenance instrument with a sensitivity of 100 pptv and a quick response time (1 sec). The COFFEE instrument has been customized to fit in an external wing pod on the Alpha Jet aircraft based at NASA ARC. The instrument can operate over a broad range of altitudes, from boundary layer to lower stratosphere, making it well suited for the Alpha Jet, which can access altitudes from the surface up to 40,000 ft. We will present results from flights performed over the Central Valley of California, including boundary layer measurements and vertical profiles in the tropospheric column. This region is of particular interest, due to its elevated levels of HCHO, revealed in satellite images, as well as its high ozone concentrations. In addition to HCHO, the AJAX payload includes measurements of atmospheric ozone, methane, and carbon dioxide. These results will be presented in conjunction with formaldehyde. Targets in the Central Valley consist of an oil field, agricultural areas, and highways, each of which can emit HCHO primarily and generate HCHO through secondary production. Formaldehyde is one of the few urban pollutants that can be measured from space. Plans to compare in-situ COFFEE data with satellite-based HCHO observations such as those from OMI (Aura) and OMPS (SuomiNPP) will also be presented.

  13. Development of Formaldehyde Biosensor for Determination of Formalin in Fish Samples; Malabar Red Snapper (Lutjanus malabaricus) and Longtail Tuna (Thunnus tonggol)

    PubMed Central

    Noor Aini, Bohari; Siddiquee, Shafiquzzaman; Ampon, Kamaruzaman

    2016-01-01

    Electrochemical biosensors are widely recognized in biosensing devices due to the fact that gives a direct, reliable, and reproducible measurement within a short period. During bio-interaction process and the generation of electrons, it produces electrochemical signals which can be measured using an electrochemical detector. A formaldehyde biosensor was successfully developed by depositing an ionic liquid (IL) (e.g., 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM][Otf])), gold nanoparticles (AuNPs), and chitosan (CHIT), onto a glassy carbon electrode (GCE). The developed formaldehyde biosensor was analyzed for sensitivity, reproducibility, storage stability, and detection limits. Methylene blue was used as a redox indicator for increasing the electron transfer in the electrochemical cell. The developed biosensor measured the NADH electron from the NAD+ reduction at a potential of 0.4 V. Under optimal conditions, the differential pulse voltammetry (DPV) method detected a wider linear range of formaldehyde concentrations from 0.01 to 10 ppm within 5 s, with a detection limit of 0.1 ppm. The proposed method was successfully detected with the presence of formalin in fish samples, Lutjanus malabaricus and Thunnus Tonggol. The proposed method is a simple, rapid, and highly accurate, compared to the existing technique. PMID:27376338

  14. Formaldehyde-induced acentric chromosome fragments and chromosome stickiness in Chortophaga neuroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowd, M.A.; Gaulden, M.E.; Proctor, B.L.

    1986-01-01

    Embryos of the grasshopper Chortophaga viridifasciata were exposed in vitro to formaldehyde (FA), as formalin, at concentrations ranging from 10/sup -8/ M (0.0003 ppm) to 10/sup -3/ M (30 ppm) at 38/sup 0/C. A low frequency of distinct acentric chromosome fragments was observed in the neuroblasts after 1 hr exposure to 7.5 x 10/sup -4/ or 10/sup -3/ M FA plus 3 hr recovery, but not at lower concentrations, even with 4 hr exposure. Neuroblasts with sticky chromosomes were observed at 10/sup -4/, 7.5 x 10/sup -4/, and 10/sup -3/ M FA, the percent of cells with slight, moderate, ormore » severe stickiness varying with FA concentrations. Fragments were associated with the sticky chromosomes. It is concluded that the distinct acentric fragments induced by FA result from breakage at a single sticky point (slight stickiness) between separating sister chromatids. The chromosome effects observed probably result from the action of daughter products that are formed by the interaction of FA with culture medium components, especially the fetal calf serum.« less

  15. Formaldehyde removal from air by a biodegradation system.

    PubMed

    Xu, Zhongjun; Hou, Haiping

    2010-07-01

    A biodegradation system was used for the treatment of formaldehyde-polluted air. Air pressure dropped 12 mm water in the trickling biofilter during the experiment of about 4 months. In the range 20-300 mg m(-3) influent formaldehyde, this biodegradation system obtained 4.0-40.0 mg h(-1) degradation capacity, with 100%-66.7% degradation efficiency. The amount of formaldehyde degraded by the trickling biofilter was more than that by the activated sludge bioreactor below 200 mg m(-3) influent gaseous formaldehyde while the amount by the trickling biofilter was less than that by the activated sludge bioreactor over 200 mg m(-3) influent gaseous formaldehyde.

  16. Atmospheric concentrations and temporal variations of C 1C 3 carbonyl compounds at two rural sites in central Ontario

    NASA Astrophysics Data System (ADS)

    Shepson, P. B.; Hastie, D. R.; Schiff, H. I.; Polizzi, M.; Bottenheim, J. W.; Anlauf, K.; Mackay, G. I.; Karecki, D. R.

    Measurements of formaldehyde, acetaldehyde, acetone and propionaldehyde concentrations were made at two rural sites in central Ontario. One site (at Egbert, Ont.) is located ≈60 km northwest of Toronto, while the other site (at Dorset, Ont.) is ≈150 km northeast of the Egbert site. Measurements were made using a modified version of a derivatization technique in which sample air is pumped through Teflon tubes packed with silica gel that is coated with 2,4-dinitrophenylhydrazine (DNPH). The product hydrazones were separated and quantified using HPLC. Quantitative determinations of formaldehyde, acetaldehyde and acetone were made for 49 and 47 samples at the Dorset and Egbert sites, respectively, between 25 July and 30 August 1988. The average concentrations determined at the Dorset site for formaldehyde, acetaldehyde, and acetone were 1.6, 0.46 and 1.8 ppb, respectively, and for the Egbert site the corresponding averages were 1.8, 0.57 and 1.6 ppb. A set of 10 samples from the Egbert site were analysed for propionaldehyde yielding an average concentration of 0.03 ppb. The formaldehyde measurements were compared with measurements made at the same time using Tunable Diode Laser Absorption Spectroscopy. The observed concentrations reported here are compared with previously reported measurements of these species and interpreted in terms of atmospheric variables (e.g. meteorology, concentrations of precursor hydrocarbons) influencing their concentrations.

  17. Evaluation of Feed for Thin-Tailed Sheep Fattening with Supplemented Protected and Unprotected Aldehide

    NASA Astrophysics Data System (ADS)

    Riyanto, J.; Sudibya

    2018-02-01

    The purpose of this study was to determine the effect of the use of soybean protection supplements in sheep ration in vivo in terms of consumption, digestibility, nutrient value index, and the digestible nutrients in the ration. Livestock used in this study were 15 heads of thintailed sheep male with an average body weight of 20.81 ± 1.40kg. The rations used in this study consisted of elephant grass, basal concentrate, soybean groats protected and without protected. The comparison between elephant grass and basalt concentrate is 30:70. Feed treatment in the form of supplementary concentrate from soybean groats ingredients without protection and protection. Protection of soybeans using 37% formaldehyde. The treatment given is P0 = 30% Elephant grass + 70% Basal concentrate, P1 = 30% Elephant grass + 60% Basal Concentrate + 10% soybeans groats without formaldehyde protection, and P2 = 30% Elephant grass + 60% Basal Concentrate + 10% soybeans groats formaldehyde protection. Supplementation of 10% soybean protected feeding in male thin tail sheep fattening ration had significant effect (P <0.05) on crude protein digestibility, nutrient value index and digested crude protein. The use of 10% of soybean protected 37% formaldehyde protected soy by 1% of the dry weight of the concentrate in thin tail fattening rations could improve protein digestibility, nutrient value index and abrasive proteins that can be ingested in vivo.

  18. Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry

    NASA Astrophysics Data System (ADS)

    Digangi, J. P.; Henry, S. B.; Kammrath, A.; Boyle, E. S.; Kaser, L.; Schnitzhofer, R.; Graus, M.; Turnipseed, A.; Park, J.-H.; Weber, R. J.; Hornbrook, R. S.; Cantrell, C. A.; Maudlin, R. L., III; Kim, S.; Nakashima, Y.; Wolfe, G. M.; Kajii, Y.; Apel, E. C.; Goldstein, A. H.; Guenther, A.; Karl, T.; Hansel, A.; Keutsch, F. N.

    2012-02-01

    We present simultaneous fast, in-situ measurements of formaldehyde and glyoxal from two rural campaigns, BEARPEX 2009 and BEACHON-ROCS, both located in Pinus Ponderosa forests with emissions dominated by biogenic volatile organic compounds (VOCs). Despite considerable variability in the formaldehyde and glyoxal concentrations, the ratio of glyoxal to formaldehyde, RGF, displayed a very regular diurnal cycle over nearly 2 weeks of measurements. The only deviations in RGF were toward higher values and were the result of a biomass burning event during BEARPEX 2009 and very fresh anthropogenic influence during BEACHON-ROCS. Other rapid changes in glyoxal and formaldehyde concentrations have hardly any affect on RGF and could reflect transitions between low and high NO regimes. The trend of increased RGF from both anthropogenic reactive VOC mixtures and biomass burning compared to biogenic reactive VOC mixtures is robust due to the short timescales over which the observed changes in RGF occurred. Satellite retrievals, which suggest higher RGF for biogenic areas, are in contrast to our observed trends. It remains important to address this discrepancy, especially in view of the importance of satellite retrievals and in-situ measurements for model comparison. In addition, we propose that RGF, together with the absolute concentrations of glyoxal and formaldehyde, represents a useful metric for biogenic or anthropogenic reactive VOC mixtures. In particular, RGF yields information about not simply the VOCs in an airmass, but the VOC processing that directly couples ozone and secondary organic aerosol production.

  19. Houseplants, Indoor Air Pollutants, and Allergic Reactions

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1986-01-01

    The technology of using houseplant leaves for reducing volatile organics inside closed facilities has been demonstrated with formaldehyde and benzene. Philodendrons are among the most effective plants tested to date. Philodendron domesticum had demonstrated the ability to remove formaldehyde from small experimental chambers at a rate of 4.31 micro-g/sq cm leaf surface area with initial starting concentrations of 22 ppm. At initial starting concentrations of 2.3 ppm a formaldehyde removal rate of 0.57 micro-g/sq cm was achieved during a 24 hour test. Aleo vera demonstrated a much higher formaldehyde efficiency removal rate than Philodendron domesticum at low formaldehyde concentrations. During a 24 hour exposure period 5 ppm of formaldehyde were reduced to 0.5 ppm demonstrating a removal efficiency rate of 3.27 micro-g/sq cm. Removal efficiency rates can be expected to decrease with concentration levels because fewer molecules of chemicals come in contact with the leaf surface area. Several centimeters of small washed gravel should be used to cover the surface of pot plants when large numbers of plants are kept in the home. The reason for this is to reduce the exposed area of damp potting soil which encourages the growth of molds (fungi). The leaves of Philodendron domesticum and golden pothos (Scindapsus aureus) have also demonstrated their ability to remove benzene and carbon monoxide from closed chambers. A combination of activated carbon and plant roots have demonstrated the greatest potential for removing large volumes of volatile organics along with smoke and possible radon from closed systems. Although fewer plants are required for this concept a mechanical blower motor must be used to pull or push the air through the carbon-root filter. NASA studies on motor sizes and bioregeneration rates should be completed by 1988.

  20. Formaldehyde: a candidate toxic air contaminant. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frye, B.; Parker, T.

    1988-03-01

    Formaldehyde (HCHO) is a gas widely used in adhesives and resins, textiles, embalming fluids, fungicides, air fresheners, and cosmetics. It is directly emitted into the ambient outdoor air from vehicular and stationary sources, and is also produced in the atmosphere from other substances by photochemical smog processes. The International Agency for Research on Cancer (IARC) has determined that there is sufficient evidence for carcinogenicity of formaldehyde to animals, and limited evidence for carcinogenicity to humans. EPA classifies formaldehyde as a probable human carcinogen with a one in a million risk concentration of 0.08 ppb.

  1. Hazard Assessment of Chemical Air Contaminants Measured in Residences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logue, J.M.; McKone, T.E.; Sherman, M. H.

    2010-05-10

    Identifying air pollutants that pose a potential hazard indoors can facilitate exposure mitigation. In this study, we compiled summary results from 77 published studies reporting measurements of chemical pollutants in residences in the United States and in countries with similar lifestyles. These data were used to calculate representative mid-range and upper bound concentrations relevant to chronic exposures for 267 pollutants and representative peak concentrations relevant to acute exposures for 5 activity-associated pollutants. Representative concentrations are compared to available chronic and acute health standards for 97 pollutants. Fifteen pollutants appear to exceed chronic health standards in a large fraction of homes.more » Nine other pollutants are identified as potential chronic health hazards in a substantial minority of homes and an additional nine are identified as potential hazards in a very small percentage of homes. Nine pollutants are identified as priority hazards based on the robustness of measured concentration data and the fraction of residences that appear to be impacted: acetaldehyde; acrolein; benzene; 1,3-butadiene; 1,4-dichlorobenzene; formaldehyde; naphthalene; nitrogen dioxide; and PM{sub 2.5}. Activity-based emissions are shown to pose potential acute health hazards for PM{sub 2.5}, formaldehyde, CO, chloroform, and NO{sub 2}.« less

  2. Formaldehyde Source Attribution in Houston during TexAQS II and TRAMP

    NASA Astrophysics Data System (ADS)

    Guven, B.; Olaguer, E. P.

    2010-12-01

    To determine the relative importance of primary vs secondary formaldehyde in Houston, source apportionment was performed on continuous online measurements of VOCs, formaldehyde (HCHO), CO, SO2, and HONO at one urban and two industrial sites. The results of source apportionment were used in conjunction with the meteorological, emission inventory, emission event, and back trajectory data catalogued in Air Research Information Infrastructure (ARII) to determine the dominant source regions and evaluate the accuracy of reported regular and upset emissions from industrial facilities. The contribution of industrial sources such as flares from petrochemical plants and refineries to total atmospheric formaldehyde concentrations at the urban site is estimated to be 17% compared to 23% for mobile sources, amounting to 40% for the total contribution of primary HCHO sources. The relative contribution of industrial sources to HCHO concentration at the urban site increased to about 66% on some mornings coinciding with the HCHO peak concentrations. Secondary formation of HCHO during the day and night resulted from the reactions of industrial olefins and other VOCs with OH or ozone was a significant contributor to HCHO concentrations at the urban site. An analysis of emission event, back trajectory and ambient concentration data in ARII showed that a large percentage of emission events were associated with trajectories that passed through the two industrial sites when peaks in concentrations were detected at those sites. Some peak HCHO concentrations can also be linked to emission events of other VOCs, while a significant portion remained unexplained by the reported events. It is likely, based on the results from the SHARP campaign and our analysis, that some episodic emission events containing HCHO are unreported to the TCEQ. Overlaid CPF plots for nighttime (green) and daytime (red) HCHO concentrations measured at three sites and the locations of the largest emitting point sources around the sites. Average contributions to formaldehyde concentrations.

  3. Formate generated by cellular oxidation of formaldehyde accelerates the glycolytic flux in cultured astrocytes.

    PubMed

    Tulpule, Ketki; Dringen, Ralf

    2012-04-01

    Formaldehyde is a neurotoxic compound that can be endogenously generated in the brain. Because astrocytes play a key role in metabolism and detoxification processes in brain, we have investigated the capacity of these cells to metabolize formaldehyde using primary astrocyte-rich cultures as a model system. Application of formaldehyde to these cultures resulted in the appearance of formate in cells and in a time-, concentration- and temperature-dependent disappearance of formaldehyde from the medium that was accompanied by a matching extracellular accumulation of formate. This formaldehyde-oxidizing capacity of astrocyte cultures is likely to be catalyzed by alcohol dehydrogenase 3 and aldehyde dehydrogenase 2, because the cells of the cultures contain the mRNAs of these formaldehyde-oxidizing enzymes. In addition, exposure to formaldehyde increased both glucose consumption and lactate production by the cells. Both the strong increase in the cellular formate content and the increase in glycolytic flux were only observed after application of formaldehyde to the cells, but not after treatment with exogenous methanol or formate. The accelerated lactate production was not additive to that obtained for azide, a known inhibitor of complex IV of the respiratory chain, and persisted after removal of formaldehyde after a formaldehyde exposure for 1.5 h. These data demonstrate that cultured astrocytes efficiently oxidize formaldehyde to formate, which subsequently enhances glycolytic flux, most likely by inhibition of mitochondrial respiration. Copyright © 2012 Wiley Periodicals, Inc.

  4. Method development study for APR cartridge evaluation in fire overhaul exposures.

    PubMed

    Anthony, T Renée; Joggerst, Philip; James, Leonard; Burgess, Jefferey L; Leonard, Stephen S; Shogren, Elizabeth S

    2007-11-01

    In the US, firefighters do not typically wear respiratory protection during overhaul activities, although fitting multi-gas or chemical, biological, radiological and nuclear cartridges to supplied air respirator facepieces has been proposed to reduce exposures. This work developed a method to evaluate the effectiveness of respirator cartridges in smoke that represents overhaul exposures to residential fires. Chamber and penetration concentrations were measured for 91 contaminants, including aldehydes, polynuclear aromatic hydrocarbons, hydrocarbons and methyl isothiocyanate, along with total and respirable particulates. These laboratory tests generated concentrations in the range of field-reported exposures from overhaul activities. With limited tests, no styrene, benzene, acrolein or particulates were detected in air filtered by the respirator cartridge, yet other compounds were detected penetrating the respirator. Because of the complexity of smoke, an exposure index was determined for challenge and filtered air to determine the relative risk of the aggregate exposure to respiratory irritants. The primary contributors to the irritant exposure index in air filtered by the respirator were formaldehyde and acetaldehyde, with total hydrocarbons contributing only 1% to the irritant index. Respirator cartridges were adequate to minimize firefighter exposures to aggregate respiratory irritants if the American Conference of Governmental Industrial Hygienists ceiling limit for formaldehyde is used (0.3 ppm) but not if National Institute for Occupational Safety and Health Recommended Exposure Limit (NIOSH REL) (0.1 ppm) is used, where three of five concentrations in filtered air exceeded the NIOSH REL. Respirator certification allows 1 ppm of formaldehyde to pass through it when challenged at 100 ppm, which may not adequately protect workers to current short-term exposure/ceiling limits. The method developed here recommends specific contaminants to measure in future work (formaldehyde, acrolein, acetaldehyde, naphthalene, benzene, total hydrocarbons as toluene and particulate mass) along with inclusion of additional irritant gases and hydrogen cyanide to fully evaluate whether air-purifying respirators reduce exposures to the aggregate gases/vapors present in overhaul activities.

  5. Impact of regulation on indoor volatile organic compounds in new unoccupied apartment in Korea

    NASA Astrophysics Data System (ADS)

    Lim, Soogil; Lee, Kiyoung; Seo, Sooyun; Jang, Seongki

    2011-02-01

    The Indoor Air Quality (IAQ) Control in Public Use Facilities Act in Korea, which came into effect on January 1, 2006, set standards of indoor environmental concentrations for benzene, toluene, ethylbenzene, xylenes, styrene, and formaldehyde. This study aimed to determine the impact of the Act on levels of volatile organic compounds (VOCs) and to identify factors associated with indoor VOCs levels. VOCs and formaldehyde levels were measured in 228 new, unoccupied apartments from 2005 to 2007. In 2005, the mean total VOC (TVOC) concentration in 108 unoccupied apartments was 1606 μg m -3. After 2006, mean TVOC concentration in 120 unoccupied apartments was 645 μg m -3, significantly lower than the 2005 level. In 2005, the percentages of apartments exceeding standards were 14% for xylenes, 5% for ethylbenzene, 3% for toluene, and 1% for formaldehyde. After 2006, no apartment exceeded standards. When other building characteristics were controlled, the concentrations of TVOC, toluene, ethylbenzene, xylenes, and formaldehyde after 2006 were significantly lower than 2005 levels. However, benzene and styrene levels did not change. The reduction in VOCs levels was significantly associated with flooring materials, adhesive, and paint. These findings demonstrate that regulation can reduce VOC concentrations in new apartments through the use of low-emission building materials.

  6. An assessment of formaldehyde emissions from laminate flooring manufactured in China.

    PubMed

    Pierce, Jennifer S; Abelmann, Anders; Lotter, Jason T; Ruestow, Peter S; Unice, Kenneth M; Beckett, Evan M; Fritz, Heidi A; Bare, Jennifer L; Finley, Brent L

    2016-11-01

    Formaldehyde emissions from two laminate flooring products, labeled as California Air Resources Board (CARB) compliant, were evaluated. Passive 24-hr samples (n = 79) and real-time measurements were collected following installation and removal of the products in two rooms of similar size. Mean formaldehyde concentrations following installation were 0.038 and 0.022 ppm for Products 1 and 2 respectively, and 7 days after flooring removal the concentrations returned to background pre-installation levels. Both products were also evaluated in a small chamber (ASTM D6007) using Deconstructive (de-laminated product) and Non-Deconstructive (intact product) methods. Deconstructive testing showed that Product 1 exceeded the applicable CARB emission standard by 4-fold, while Product 2 was equivalent to the standard. Non-Deconstructive measurements were far below the Deconstructive results and were used to predict 24-hr steady-state room air concentrations. Based on the products that we tested (one of which was found to not be compliant with the CARB standard), the airborne formaldehyde concentrations measured following installation in a real-world setting would not be expected to elicit adverse acute health effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Evaluation of a diffusive sampler for measurement of carbonyl compounds in air

    NASA Astrophysics Data System (ADS)

    Uchiyama, Shigehisa; Aoyagi, Shohei; Ando, Masanori

    A diffusive sampling device (DSD-DNPH) has been developed for collection of ppb levels of 21 carbonyl compounds in indoor air. It is comprised of silica gel coated with 2,4-dinitrophenylhydrazine (DNPH) as the absorbent, a porous sintered polyethylene tube (PSP-diffusion filter) which acts as a diffusive membrane, and a small polypropylene syringe (PP-reservoir) which is used for the elution of the analytes from the absorbent. As the diffusive membrane comprises the entire cylindrical surface of the tube, it allows 'radial' exposure from all sides. A side-by-side comparison was made with active samplers, demonstrating good correlation (formaldehyde r2=0.992). The sampling rate (71.9 ml min -1) of formaldehyde was determined from comparison with an active sampling method and the sampling rates of other carbonyl compounds were calculated from their diffusion coefficients. These calculated sampling rates agreed with the experimental values. Little influence of wind velocity on the sampler was observed. The relative standard deviations for formaldehyde and acetaldehyde concentrations were 5.5% and 8.6%, respectively, with face velocity from 0 to 5.0 m/s. The DSD-DNPH enables the estimation of time-weighted average concentration of carbonyl compounds. Concentrations of formaldehyde estimated by the 7-day sampling method were nearly equal to the mean value calculated from the 24-hour sampling method measured over 7 days. This confirmed that the concentration of formaldehyde could be precisely monitored by 7-day continuous sampling.

  8. [Effect of sterilisation with formaldehyde, gamma irradiation and ethylene oxide on the properties of polyethylene joint replacement components].

    PubMed

    Fulín, P; Pokorný, D; Slouf, M; Vacková, T; Dybal, J; Sosna, A

    2014-01-01

    Each method of sterilisation has some effect on the structure and properties of UHMWPE and thus also on joint replacement longevity. This study was designed to compare, using objective methods of measurement, several kinds of sterilisation and to recommend the one which has the best prospect for making joint replacements last longer. Two groups of UHMWPE samples were tested. Group 1 included virgin GUR 1020 polyethylene, non-modified and non-sterilised (Meditech, Germany). Group 2 comprised of three sets of samples sterilised with formaldehyde, gamma irradiation and ethylene oxide, respectively. In both groups, physicochemical properties were assessed by infrared spectroscopy (IR), and the oxidation (OI) and trans-vinyl (VI) indices, which show the degree of oxidation of a material, were determined. Free-radical concentrations were measured by the method of electron spin resonance (ESR). The mechanical properties of each sample were studied using small punch tests (SPT) and testing microhardness (MH). Any change in mechanical properties can affect, to various degrees, the quality and longevity of a prosthetic joint. The samples sterilised by gamma irradiation showed higher values of both the OI (0.37) and the VI index (0.038) than the other samples (OI, 0.02 to 0.05 and VI, 0). Also, the free-radical concentration was detectable only in the gamma-sterilised sample. Values obtained for mechanical properties were as follows: peak load in the range of 58.48 N (gamma irradiation) to 59.60 N (ethylene oxide); ultimate load in the range of 46.69 N (gamma irradiation) to 57.50 N (ethylene oxide); ultimate displacement in the range of 4.29 mm (gamma irradiation) to 4.58 mm (virgin polyethylene and formaldehyde); and work to failure in the range of 185.18 mJ (gamma irradiation) to 205.89 mJ (virgin polyethylene). Microhardness values were obtained in the following ranges: 41.2 to 44.6 MPa (virgin polyethylene); 40.2 to 44.1 MPa (formaldehyde); 46.1 to 49.3 MPa (gamma irradiation); and 40.3 to 44.2 MPa (ethylene oxide). The samples sterilised with formaldehyde and ethylene oxide have mechanical properties very similar to virgin polyethylene, they are not damaged by oxidation and do not contain free radicals. Owing to these characteristics, the immediate and long-term oxidation stability of the three samples is higher. The sample sterilised by gamma irradiation showed the presence of free radicals and immediate and long-term oxidative degradation. This results in the deterioration of mechanical properties and the growth of crystallinity due to enhanced oxidation and leads to higher polyethylene microhardness. Sterilisation with gamma irradiation results in oxidative degradation and mechanical property deterioration, which is one of the potential risks of a shorter life span of joint replacements. The use of ethylene oxide or formaldehyde does not change polymer properties nor has any effect on oxidation of materials. Therefore, a longer life expectancy of the joint replacements sterilised with ethylene oxide can be expected. The life span of their joint replacements is a key issue for the patients. Prosthetic joint loosening is painful and the patient often requires re-implantation. A higher number of re-implantations is associated with higher costs for the institution involved and, consequently, for the whole health care system. Although this study basically deals with chemical issues, it informs the surgeon of the latest developments leading to the improvement of implanted materials, which can increase the life expectancy of joint replacements and patients' satisfaction.

  9. Formaldehyde: a comparative evaluation of four monitoring methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coyne, L.B.; Cook, R.E.; Mann, J.R.

    1985-10-01

    The performances of four formaldehyde monitoring devices were compared in a series of laboratory and field experiments. The devices evaluated included the DuPont C-60 formaldehyde badge, the SKC impregnated charcoal tube, an impinger/polarographic method and the MDA Lion formaldemeter. The major evaluation parameters included: concentration range, effects of humidity, sample storage, air velocity, accuracy, precision, interferences from methanol, styrene, 1,3-butadiene, sulfur dioxide and dimethylamine. Based on favorable performances in the laboratory and field, each device was useful for monitoring formaldehyde in the industrial work environment; however, these devices were not evaluated for residential exposure assessment. The impinger/polarographic method had amore » sensitivity of 0.06 ppm, based on a 20-liter air sample volume, and accurately determined the short-term excursion limit (STEL). It was useful for area monitoring but was not very practical for time-weighted average (TWA) personal monitoring measurements. The DuPont badge had a sensitivity of 2.8 ppm-hr and accurately and simply determined TWA exposures. It was not sensitive enough to measure STEL exposures, however, and positive interferences resulted if 1,3-butadiene was present. The SKC impregnated charcoal tube measured both TWA and STEL concentrations and had a sensitivity of 0.06 ppm based on a 25-liter air sample volume. Lightweight and simple to use, the MDA Lion formaldemeter had a sensitivity of 0.2 ppm. It had the advantage of giving an instantaneous reading in the field; however, it must be used with caution because it responded to many interferences. The method of choice depended on the type of sampling required, field conditions encountered during sampling and an understanding of the limitations of each monitoring device.« less

  10. Emission of formaldehyde by particleboard : effect of ventilation rate and loading on air-contamination levels

    Treesearch

    George E. Myers; Muneo Nagaoka

    1981-01-01

    Dynamic tests for determining the formaldehyde emission behavior of UF-bonded boards involve the measurement of formaldehyde concentration in the air within a vessel which contains a specified board loading L (m2 of board area per m3 of vessel free volume) and is being ventilated at a specified air exchange rate N (hr.-1). Such tests constitute a primary...

  11. Indoor air quality in hairdressing salons in Taipei.

    PubMed

    Chang, C-J; Cheng, S-F; Chang, P-T; Tsai, S-W

    2018-01-01

    To improve indoor air quality and to protect public health, Taiwan has enacted the "Indoor Air Quality Act (IAQ Act)" in 2012. For the general public, the indoor air quality in hair salons is important because it is a popular location that people will often visit for hair treatments. However, only a few exposure assessments regarding air pollutants have previously been performed in hair salons. To assess the air quality of hairdressing environments in Taipei, ten hairdressing salons were included for a walk-through survey in this study. In addition, the airborne concentrations of formaldehyde, volatile organic compounds (VOCs), CO 2 , and phthalate esters were also determined in 5 salons. Charcoal, XAD-2, and OVS-Tenax tubes were used for the air sampling, while the samples were analyzed with gas chromatography/mass spectrometer. It was found that the products used in hair salons contained various chemicals. In fact, from the walk-through survey, a total of 387 different ingredients were found on 129 hair product labels. The hair salons were not well ventilated, with CO 2 levels of 600 to 3576 ppm. The formaldehyde concentrations determined in this study ranged from 12.40 to 1.04 × 10 3  μg m -3 , and the maximum level was above the permissible exposure limit (PEL) of US Occupational Safety and Health Administration (US OSHA). Additionally, 83% of the samples were with levels higher than the standard regulated by Taiwan's IAQ Act. The concentrations of VOCs and phthalate esters were below the occupational exposure limits (OELs), but higher than what was found in general residential environments. The hair products were considered as the major source of air pollutants because significantly higher concentrations were found around the working areas. The number of perming treatments, the number of workers, and the frequency of using formaldehyde releasing products, were found to be associated with the levels of formaldehyde. This study indicates that efforts are needed to improve the indoor air quality in hairdressing salons in Taipei. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. A rapid and accurate method, ventilated chamber C-history method, of measuring the emission characteristic parameters of formaldehyde/VOCs in building materials.

    PubMed

    Huang, Shaodan; Xiong, Jianyin; Zhang, Yinping

    2013-10-15

    The indoor pollution caused by formaldehyde and volatile organic compounds (VOCs) emitted from building materials poses an adverse effect on people's health. It is necessary to understand and control the behaviors of the emission sources. Based on detailed mass transfer analysis on the emission process in a ventilated chamber, this paper proposes a novel method of measuring the three emission characteristic parameters, i.e., the initial emittable concentration, the diffusion coefficient and the partition coefficient. A linear correlation between the logarithm of dimensionless concentration and time is derived. The three parameters can then be calculated from the intercept and slope of the correlation. Compared with the closed chamber C-history method, the test is performed under ventilated condition thus some commonly-used measurement instruments (e.g., GC/MS, HPLC) can be applied. While compared with other methods, the present method can rapidly and accurately measure the three parameters, with experimental time less than 12h and R(2) ranging from 0.96 to 0.99 for the cases studied. Independent experiment was carried out to validate the developed method, and good agreement was observed between the simulations based on the determined parameters and experiments. The present method should prove useful for quick characterization of formaldehyde/VOC emissions from indoor materials. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Solid phase microextraction method development for measuring Henry's Law constants of formaldehyde in aqueous solutions

    EPA Science Inventory

    Formaldehyde (HCHO) has been of special concern as an indoor air pollutant because of its existence in a wide range of products and its adverse health effects. The air-water partitioning behavior of volatile organic compounds (VOCs) such as formaldehyde is an important process th...

  14. Antibody production in rats after long-term exposure to formaldehyde

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmstroem, M.R.; Rynnel-Dagoeoe, B.Wi.; Wilhelmsson, B.

    1989-09-01

    Sprague-Dawley rats were vaccinated with pneumococcal polysaccharide antigens and tetanus toxoid to evaluate the immunologic effects of long-term formaldehyde exposure. The antibody response to vaccination was measured 3 to 4 weeks later by enzyme-linked immunosorbent assay. An IgG response to pneumococcal polysaccharides and to tetanus toxoid was found in both the formaldehyde-exposed group and a control group of rats not exposed to formaldehyde. The IgM response to tetanus toxoid was significant in both groups but neither group showed a significant IgM response to pneumococcal polysaccharides. There were thus no signs of impaired B-cell function in rats exposed to a highmore » concentration (12.6 ppm) of formaldehyde for nearly 2 years.« less

  15. Performance of ultraviolet photocatalytic oxidation for indoor air cleaning applications.

    PubMed

    Hodgson, A T; Destaillats, H; Sullivan, D P; Fisk, W J

    2007-08-01

    Ultraviolet photocatalytic oxidation (UVPCO) systems for removal of volatile organic compounds (VOCs) from air are being considered for use in office buildings. Here, we report an experimental evaluation of a UVPCO device with tungsten oxide modified titanium dioxide (TiO2) as the photocatalyst. The device was challenged with complex VOC mixtures. One mixture contained 27 VOCs characteristic of office buildings and another comprised 10 VOCs emitted by cleaning products, in both cases at realistic concentrations (low ppb range). VOC conversion efficiencies varied widely, usually exceeded 20%, and were as high as approximately 80% at about 0.03 s residence time. Conversion efficiency generally diminished with increased airflow rate, and followed the order: alcohols and glycol ethers > aldehydes, ketones, and terpene hydrocarbons > aromatic and alkane hydrocarbons > halogenated aliphatic hydrocarbons. Conversion efficiencies correlated with the Henry's law constant more closely than with other physicochemical parameters. An empirical model based on the Henry's law constant and the gas-phase reaction rate with hydroxyl radical provided reasonable estimates of pseudo-first order photocatalytic reaction rates. Formaldehyde, acetaldehyde, acetone, formic acid and acetic acid were produced by the device due to incomplete mineralization of common VOCs. Formaldehyde outlet/inlet concentration ratios were in the range 1.9-7.2. Implementation of air cleaning technologies for both VOCs and particles in office buildings may improve indoor air quality, or enable indoor air quality levels to be maintained with reduced outdoor air supply and concomitant energy savings. One promising air cleaning technology is ultraviolet photocatalytic oxidation (UVPCO) air cleaning. For the prototype device evaluated here with realistic mixtures of VOCs, conversion efficiencies typically exceeded the minimum required to counteract predicted VOC concentration increases from a 50% reduction in ventilation. However, the device resulted in the net generation of formaldehyde and acetaldehyde from the partial oxidation of ubiquitous VOCs. Further development of the technology is needed to eliminate these hazardous air pollutants before such a UVPCO device can be deployed in buildings.

  16. Report of the Federal Panel on Formaldehyde.

    PubMed Central

    1982-01-01

    The Federal Panel on Formaldehyde concluded that definitive experiments exist which demonstrate the mutagenicity and carcinogenicity of formaldehyde under laboratory conditions. Formaldehyde induces both gene mutations and chromosomal aberrations in a variety of test systems. Inhalation of formaldehyde causes cancer of the nose in rats. The concentrations of formaldehyde in inhaled air that caused nasal cancer in Fisher 344 rats are within the same order of magnitude as those to which humans may be exposed. The data presently available do not permit a direct assessment of the carcinogenicity of formaldehyde to man. Epidemiologic studies on exposed human populations are in progress and may further clarify the situation. Other experimental and human studies on toxic effects such as teratogenicity and reproductive disorders are as yet inadequate for a health risk assessment. The CIIT 24 month study on animal carcinogenicity has not yet been completely evaluated. Additional data are expected on the effects of prolonged exposure to lower doses of formaldehyde and on the possible carcinogenicity of formaldehyde in the mouse. The panel recommends that, for a comprehensive health risk assessment, further experiments be conducted on the effects of other modes of exposure (ingestion and skin penetration), the effects in humans, and on the pharmacokinetics of formaldehyde in man and animals and the possible role for formaldehyde in reproductive and chronic respiratory disorders. It is the conclusion of the panel that formaldehyde should be presumed to pose a carcinogenic risk to humans. PMID:6977445

  17. Level of endogenous formaldehyde in maple syrup as determined by spectrofluorimetry.

    PubMed

    Lagacé, Luc; Guay, Stéphane; Martin, Nathalie

    2003-01-01

    The level of endogenous formaldehyde in maple syrup was established from a large number (n = 300) of authentic maple syrup samples collected during 2000 and 2001 in the province of Quebec, Canada. The average level of formaldehyde from these authentic samples was measured at 0.18 mg/kg in 2000 and 0.28 mg/kg in 2001, which is lower than previously published. These average values can be attributed to the improved spectrofluorimetric method used for the determination. However, the formaldehyde values obtained demonstrate a relatively large distribution with maximums observed at 1.04 and 1.54 mg/kg. These values are still under the maximum tolerance level of 2.0 mg/kg paraformaldehyde pesticide residue. Extensive heat treatment of maple syrup samples greatly enhanced the formaldehyde concentration of the samples, suggesting that extensive heat degradation of the sap constituents during evaporation could be responsible for the highest formaldehyde values in maple syrup.

  18. Personal exposure and health risk assessment of carbonyls in family cars and public transports-a comparative study in Nanjing, China.

    PubMed

    Xu, Huaizhou; Zhang, Qin; Song, Ninghui; Guo, Min; Zhang, Shenghu; Ji, Guixiang; Shi, Lili

    2017-11-01

    To evaluate passenger health risks associated with inhalation exposure to carbonyl compounds mainly emitted from decoration materials of vehicles, we tested the carbonyl concentrations in interior air of 20 family cars, 6 metro lines, and 5 buses in the city of Nanjing. To assess non-carcinogenic health risks, we compared the data to the health guidelines of China, US Environmental Protection Agency (EPA), and Office of Environmental Health Hazard Assessment (OEHHA), respectively. To assess carcinogenic risks, we followed a standard approach proposed by the OEHHA to calculate lifetime cancer risks (LCR) of formaldehyde and acetaldehyde for various age groups. The results showed that there are formaldehyde, acetaldehyde, and acrolein concentrations in 40, 35, and 50% of family car samples exceeded the reference concentrations (RfCs) provided by Chinese guidelines (GB/T 27630-2011 and GB/T 18883-2002). Whereas, in the tested public transports, concentrations of the three carbonyls were all below the Chinese RfCs. Fifty and 90% of family cars had formaldehyde and acrolein concentrations exceeding the guidelines of OEHHA. Only one public transport sample (one bus) possesses formaldehyde and acetaldehyde concentrations above the chronic inhalation reference exposure limits (RELs). Furthermore, the assessments of carcinogenic risk of formaldehyde and acetaldehyde showed that lifetime cancer risks were higher than the limits of EPA for some family cars and public transports. In the study, buses and metros appear to be relatively clean environments, with total carbonyl concentrations that do not exceed 126 μg/m 3 . In family cars, carbonyl levels showed significant variations from 6.1 to 811 μg/m 3 that was greatly influenced by direct emissions from materials inside the vehicles. Public transports seemed to be the first choice for resident trips as compared to family cars. Graphical abstract ᅟ.

  19. Identifying an indoor air exposure limit for formaldehyde considering both irritation and cancer hazards

    PubMed Central

    Golden, Robert

    2011-01-01

    Formaldehyde is a well-studied chemical and effects from inhalation exposures have been extensively characterized in numerous controlled studies with human volunteers, including asthmatics and other sensitive individuals, which provide a rich database on exposure concentrations that can reliably produce the symptoms of sensory irritation. Although individuals can differ in their sensitivity to odor and eye irritation, the majority of authoritative reviews of the formaldehyde literature have concluded that an air concentration of 0.3 ppm will provide protection from eye irritation for virtually everyone. A weight of evidence-based formaldehyde exposure limit of 0.1 ppm (100 ppb) is recommended as an indoor air level for all individuals for odor detection and sensory irritation. It has recently been suggested by the International Agency for Research on Cancer (IARC), the National Toxicology Program (NTP), and the US Environmental Protection Agency (US EPA) that formaldehyde is causally associated with nasopharyngeal cancer (NPC) and leukemia. This has led US EPA to conclude that irritation is not the most sensitive toxic endpoint and that carcinogenicity should dictate how to establish exposure limits for formaldehyde. In this review, a number of lines of reasoning and substantial scientific evidence are described and discussed, which leads to a conclusion that neither point of contact nor systemic effects of any type, including NPC or leukemia, are causally associated with exposure to formaldehyde. This conclusion supports the view that the equivocal epidemiology studies that suggest otherwise are almost certainly flawed by identified or yet to be unidentified confounding variables. Thus, this assessment concludes that a formaldehyde indoor air limit of 0.1 ppm should protect even particularly susceptible individuals from both irritation effects and any potential cancer hazard. PMID:21635194

  20. A new technique for collection, concentration and determination of gaseous tropospheric formaldehyde

    NASA Astrophysics Data System (ADS)

    Cofer, Wesley R.; Edahl, Robert A.

    This article describes an improved technique for making in situ measurements of gaseous tropospheric formaldehyde (CH 2O). The new technique is based on nebulization/reflux principles that have proved very effective in quantitatively scrubbing water soluble trace gases (e.g. CH 2O) into aqueous mediums, which are subsequently analyzed. Atmospheric formaldehyde extractions and analyses have been performed with the nebulization/reflux concentrator using an acidified dinitrophenylhydrazine solution that indicate that quantitative analysis of CH 2O at global background levels (˜ 0.1 ppbv) is feasible with 20-min extractions. Analysis of CH 2O, once concentrated, is accomplished using high performance liquid chromatography (HPLC) with ultraviolet photometric detection. The CH 2O-hydrazone derivative, produced by the reaction of 2,4-dinitrophenylhydrazine in H 2SO 4 acidified aqueous solution, is detected as CH 2O.

  1. A new technique for collection, concentration and determination of gaseous tropospheric formaldehyde

    NASA Technical Reports Server (NTRS)

    Cofer, W. R., III; Edahl, R. A., Jr.

    1986-01-01

    This article describes an improved technique for making in situ measurements of gaseous tropospheric formaldehyde (CH2O). The new technique is based on nebulization/reflux principles that have proved very effective in quantitatively scrubbing water soluble trace gases (e.g., CH2O) into aqueous mediums, which are subsequently analyzed. Atmospheric formaldehyde extractions and analyses have been performed with the nebulization/reflux concentrator using an acidified dinitrophenylhydrazine solution that indicate that quantitative analysis of CH2O at global background levels (about 0.1 ppbv) is feasible with 20-min extractions. Analysis of CH2O, once concentrated, is accomplished using high performance liquid chromatography with ultraviolet photometric detection. The CH2O-hydrazone derivative, produced by the reaction of 2,4-dinitrophenylhydrazine in H2SO4 acidified aqueous solution, is detected as CH2O.

  2. PHOTOCHEMICAL REACTIONS AMONG FORMALDEHYDE, CHLORINE, AND NITROGEN DIOXIDE IN AIR

    EPA Science Inventory

    Photochemical reactions among chlorine, nitrogen dioxide, and formaldehyde were studied, using parts-per-million concentrations in 1 atm of air. The reactant mixtures were irradiated by ultraviolet fluorescent lamps and simultaneously analyzed by the Fourier transform infrared te...

  3. BIOGENIC SOURCES FOR FORMALDEHYDE AND ACETALDEHYDE DURING SUMMER MONTHS

    EPA Science Inventory

    Photochemical modeling estimated contributions to ambient concentrations of formaldehyde and acetaldehyde from biogenic emissions over the continental United States during January 2001 (Eos Trans. AGU, 83(47), Fall Meet. Suppl., Abstract A52B-0117). Results showed that maximum co...

  4. Preparation of magnetic melamine-formaldehyde resin and its application to extract nonsteroidal anti-inflammatory drugs.

    PubMed

    Xue, Shu-Wen; Li, Jing; Xu, Li

    2017-05-01

    Magnetic melamine-formaldehyde resin was prepared via water-in-oil emulsification approach by entrapping Fe 3 O 4 magnetic nanoparticles as the core. The preparation of the magnetic resin was optimized by investigating the amount of polyethylene glycol 20000 and Fe 3 O 4 nanoparticles, the concentration of the catalyst (hydrochloric acid), as well as the mechanical stirring rate. The prepared material was characteristic of excellent anion-exchange capacity, good water wettability, and proper magnetism. Its application was demonstrated by magnetic solid-phase extraction of nonsteroidal anti-inflammatory drugs coupled to high performance liquid chromatography-UV analysis. Under the optimal conditions, the proposed method showed broad linear range of 1-5000 ng mL -1 of milk and urine samples, satisfactory reproducibility with intra-day and inter-day relative standard deviations less than 12.4% and 9.7%, respectively, and low limits of detection of 0.2 ng mL -1 for the studied nonsteroidal anti-inflammatory drugs. The developed method was successfully used for the determination of the nonsteroidal anti-inflammatory drugs in spiked urine and milk samples. The magnetic melamine-formaldehyde resin was promising for the sample pretreatment of acidic analytes via anion-exchange interaction with convenient operation from complex sample matrix. Graphical abstract Magnetic solid-phase extraction based on melamine-formaldehyde resin.

  5. A rapid liquid chromatography determination of free formaldehyde in cod.

    PubMed

    Storey, Joseph M; Andersen, Wendy C; Heise, Andrea; Turnipseed, Sherri B; Lohne, Jack; Thomas, Terri; Madson, Mark

    2015-01-01

    A rapid method for the determination of free formaldehyde in cod is described. It uses a simple water extraction of formaldehyde which is then derivatised with 2,4-dinitrophenylhydrazine (DNPH) to form a sensitive and specific chromophore for high-performance liquid chromatography (HPLC) detection. Although this formaldehyde derivative has been widely used in past tissue analysis, this paper describes an improved derivatisation procedure. The formation of the DNPH formaldehyde derivative has been shortened to 2 min and a stabilising buffer has been added to the derivative to increase its stability. The average recovery of free formaldehyde in spiked cod was 63% with an RSD of 15% over the range of 25-200 mg kg(-1) (n = 48). The HPLC procedure described here was also compared to a commercial qualitative procedure - a swab test for the determination of free formaldehyde in fish. Several positive samples were compared by both methods.

  6. BIOGENIC SOURCES OF FORMALDEHYDE AND ACETALDEHYDE DURING SUMMER AND WINTER CONDITIONS

    EPA Science Inventory

    Photochemical modeling estimated contributions to ambient concentrations of formaldehyde and acetaldehyde from biogenic emissions over the continental United States during January 2001 (Eos Trans. AGU, 83(47), Fall Meet. Suppl., Abstract A52B-0117). Results showed that maximum co...

  7. Growth of Bacillus methanolicus in 2 M methanol at 50 °C: the effect of high methanol concentration on gene regulation of enzymes involved in formaldehyde detoxification by the ribulose monophosphate pathway.

    PubMed

    Bozdag, Ahmet; Komives, Claire; Flickinger, Michael C

    2015-07-01

    Bacillus methanolicus MGA3 is a Gram-positive aerobic methylotroph growing optimally at 50-53°C. Methylotrophy in B. methanolicus is encoded on pBM19 and by two chromosomal copies of the methanol dehydrogenase (mdh), hexulose phosphate synthase (hps) and phosphohexuloisomerase (phi) genes. However, there are no published studies on the regulation of methylotrophy or the dominant mechanism of detoxification of intracellular formaldehyde in response to high methanol concentration. The µ max of B. methanolicus MGA3 was assessed on methanol, mannitol and glucose. B. methanolicus achieved a µ max at 25 mM initial methanol of 0.65 ± 0.007 h(-1), which decreased to 0.231 ± 0.004 h(-1) at 2 M initial methanol. Slow growth was also observed with initial methanol concentrations of >2 M. The µ max on mannitol and glucose are 0.532 ± 0.002 and 0.336 ± 0.003 h(-1), respectively. Spiking cultures with additional methanol (100 mM) did not disturb the growth rate of methanol-grown cells, whereas, a 50 mM methanol spike halted the growth in mannitol. Surprisingly, growth in methanol was inhibited by 1 mM formaldehyde, while mannitol-grown cells tolerated 2 mM. Moreover, mannitol-grown cells removed formaldehyde faster than methanol-grown cells. Further, we show that methanol oxidation in B. methanolicus MGA3 is mainly carried out by the pBM19-encoded mdh. Formaldehyde and formate addition down-regulate the mdh and hps genes in methanol-grown cells. Similarly, they down-regulate mdh genes in mannitol-grown cells, but up-regulate hps. Phosphofructokinase (pfk) is up-regulated in both methanol and mannitol-grown cells, which suggests that pfk may be a possible synthetic methylotrophy target to reduce formaldehyde growth toxicity at high methanol concentrations.

  8. Development of a formaldehyde biosensor with application to synthetic methylotrophy.

    PubMed

    Woolston, Benjamin M; Roth, Timothy; Kohale, Ishwar; Liu, David R; Stephanopoulos, Gregory

    2018-01-01

    Formaldehyde is a prevalent environmental toxin and a key intermediate in single carbon metabolism. The ability to monitor formaldehyde concentration is, therefore, of interest for both environmental monitoring and for metabolic engineering of native and synthetic methylotrophs, but current methods suffer from low sensitivity, complex workflows, or require expensive analytical equipment. Here we develop a formaldehyde biosensor based on the FrmR repressor protein and cognate promoter of Escherichia coli. Optimization of the native repressor binding site and regulatory architecture enabled detection at levels as low as 1 µM. We then used the sensor to benchmark the in vivo activity of several NAD-dependent methanol dehydrogenase (Mdh) variants, the rate-limiting enzyme that catalyzes the first step of methanol assimilation. In order to use this biosensor to distinguish individuals in a mixed population of Mdh variants, we developed a strategy to prevent cross-talk by using glutathione as a formaldehyde sink to minimize intercellular formaldehyde diffusion. Finally, we applied this biosensor to balance expression of mdh and the formaldehyde assimilation enzymes hps and phi in an engineered E. coli strain to minimize formaldehyde build-up while also reducing the burden of heterologous expression. This biosensor offers a quick and simple method for sensitively detecting formaldehyde, and has the potential to be used as the basis for directed evolution of Mdh and dynamic formaldehyde control strategies for establishing synthetic methylotrophy. © 2017 Wiley Periodicals, Inc.

  9. A novel derivatization-free method of formaldehyde and propylene glycol determination in hydrogels by liquid chromatography with refractometric detection.

    PubMed

    Isakau, Henadz; Robert, Marielle; Shingel, Kirill I

    2009-04-05

    The paper describes the development and validation of a new derivatization-free liquid chromatography method for simultaneous determination of propylene glycol and formaldehyde in the formulations containing formaldehyde-releasing preservative. Highly swollen hydrogel made of poly(ethylene glycol)-protein conjugates was taken as a model formulation for integration of the propylene glycol and the diazolydinyl urea as formaldehyde releaser. The method is shown to be simple and selective and, more importantly, allows determining an existing level of formaldehyde at the moment of analysis instead of all available formaldehyde that might be released during chemical derivatization. After liquid extraction the propylene glycol (PG) and formaldehyde (FA) amounts are determined chromatographically on a Shodex SH 1011 ligand-exchange column using 0.01 M sulfuric acid mobile phase, a flow rate of 1.0 ml/min and RI detection. The assay is validated showing good linearity, precision, and accuracy. The limits of detection of formaldehyde and propylene glycol in the analyzed solutions were estimated to be 25 ng and 87 ng, respectively. This analytical assay is considered useful for product stability studies and in developing new formaldehyde releaser-containing formulations where the concentration of formaldehyde is a presumable subject of labeling requirements. This method can also provide a rapid and convenient alternative to gas chromatography method of propylene glycol quantification.

  10. Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry

    NASA Astrophysics Data System (ADS)

    DiGangi, J. P.; Henry, S. B.; Kammrath, A.; Boyle, E. S.; Kaser, L.; Schnitzhofer, R.; Graus, M.; Turnipseed, A.; Park, J.-H.; Weber, R. J.; Hornbrook, R. S.; Cantrell, C. A.; Maudlin, R. L., III; Kim, S.; Nakashima, Y.; Wolfe, G. M.; Kajii, Y.; Apel, E. C.; Goldstein, A. H.; Guenther, A.; Karl, T.; Hansel, A.; Keutsch, F. N.

    2012-10-01

    We present simultaneous fast, in-situ measurements of formaldehyde and glyoxal from two rural campaigns, BEARPEX 2009 and BEACHON-ROCS, both located in Pinus Ponderosa forests with emissions dominated by biogenic volatile organic compounds (VOCs). Despite considerable variability in the formaldehyde and glyoxal concentrations, the ratio of glyoxal to formaldehyde, RGF, displayed a very regular diurnal cycle over nearly 2 weeks of measurements. The only deviations in RGF were toward higher values and were the result of a biomass burning event during BEARPEX 2009 and very fresh anthropogenic influence during BEACHON-ROCS. Other rapid changes in glyoxal and formaldehyde concentrations have hardly any affect on RGF and could reflect transitions between low and high NO regimes. The trend of increased RGF from both anthropogenic reactive VOC mixtures and biomass burning compared to biogenic reactive VOC mixtures is robust due to the short timescales over which the observed changes in RGF occurred. Satellite retrievals, which suggest higher RGF for biogenic areas, are in contrast to our observed trends. It remains important to address this discrepancy, especially in view of the importance of satellite retrievals and in situ measurements for model comparison. In addition, we propose that RGF represents a useful metric for biogenic or anthropogenic reactive VOC mixtures and, in combination with absolute concentrations of glyoxal and formaldehyde, furthermore represents a useful metric for the extent of anthropogenic influence on overall reactive VOC processing via NOx. In particular, RGF yields information about not simply the VOCs dominating reactivity in an airmass, but the VOC processing itself that is directly coupled to ozone and secondary organic aerosol production.

  11. Does Formaldehyde Increase Cell Free DNA in Maternal Plasma Specimens?

    PubMed

    Jacob, Rintu R; Saxena, Renu; Verma, Ishwar C

    2016-11-01

    There have been conflicting observations reported in the literature regarding the effects of formaldehyde in the recovery of cell free fetal DNA (CFF DNA) from maternal plasma. The aim of the present study was to assess the effect of formaldehyde treatment on circulating cell free DNA. We conducted this study using blood specimens collected from 11 pregnant women, each of whom was carrying a male fetus. DYS14 and HBB real time assays were performed to quantify fetal and total circulating cell free DNA from formaldehyde treated and untreated maternal plasma specimens, respectively. The concentration of total circulating cell free DNA in formaldehyde-treated maternal plasma was reduced, compared with untreated maternal plasma (n = 11; P = .02). The percentage of CFF DNA between formaldehyde-treated and untreated maternal plasma specimens did not differ significantly (n = 11; P = .15). Addition of formaldehyde does not significantly enhance the proportion of cell free fetal DNA when blood specimens are processed without delay. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Infrared Line Intensities for Formaldehyde from Simultaneous Measurements in the Infrared and Far Infrared Spectral Ranges

    NASA Astrophysics Data System (ADS)

    Fissiaux, L.; Földes, T.; Tchana, F. Kwabia; Daumont, L.; Lepère, M.; Vander Auwera, J.

    2011-06-01

    Formaldehyde (H_2CO) is an important intermediate compound in the degradation of the volatile organic compounds (VOCs), including methane, in the terrestrial troposphere. Its observation using optical remote sensing in the infrared range relies on the 3.6 and 5.7 μm absorption bands. Band and individual line intensities have been reported in both ranges. With the present work, we aim to also derive infrared line intensities for formaldehyde, however relying on pure rotation line intensities and the known electric dipole moment to determine the particle density. Indeed, because formaldehyde polymerizes or degrades easily, the gas phase may contain polymerization or degradation products. Spectra of H_2CO diluted in 10 hPa of N_2 were therefore simultaneously recorded in the 20-60 Cm-1 and 3.6 μm ranges, respectively using a Bruker IFS125HR Fourier transform spectrometer and a tunable diode laser. see A. Perrin, D. Jacquemart, F. Kwabia Tchana, N. Lacome, J. Quant. Spectrosc. Radiat. Transfer 110 (2009) 700-716, and references therein

  13. Atmospheric levels of aldehydes and BTEX and their relationship with vehicular fleet changes in Rio de Janeiro urban area.

    PubMed

    Martins, Eduardo Monteiro; Arbilla, Graciela; Bauerfeldt, Glauco Favilla; de Paula, Murilo

    2007-05-01

    A comprehensive monitoring campaign to assess aldehydes and BTEX concentrations was performed during 12 months, in the Tijuca district (Rio de Janeiro), an area with commercial activities and a high flux of vehicles. The mean concentrations of formaldehyde and acetaldehyde were 151 and 30 ppb, respectively. The high formaldehyde/acetaldehyde ratio was attributed to extensive use of compressed natural gas (CNG). The number of CNG vehicles in the metropolitan Region of Rio de Janeiro increased from 23000 in January 2001 to 161000 in January 2005. Monitoring data show that, for the same period, methane and formaldehyde concentrations increased while NO(x) and CO levels diminished. Mean concentrations for benzene, toluene, ethylbenzene, m,p-xylene and o-xylene, were 1.1, 4.8, 3.6, 10.4 and 3.0 micro gm(-3), respectively. Benzene and toluene concentrations were lower than the values determined in 1996, for the same location. The levels of ethylbenzene and xylenes determined in this work are similar to values obtained in 1996. This fact may be explained as a consequence of changes in the gasoline composition.

  14. 29 CFR 1910.1048 - Formaldehyde.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., these tests shall consist of forced vital capacity (FVC), forced expiratory volume in one second (FEV1... of any employee within each exposure group. (ii) The initial monitoring process shall be repeated... areas where the concentration of airborne formaldehyde exceeds either the TWA or the STEL and post all...

  15. 29 CFR 1910.1048 - Formaldehyde.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., these tests shall consist of forced vital capacity (FVC), forced expiratory volume in one second (FEV1... of any employee within each exposure group. (ii) The initial monitoring process shall be repeated... areas where the concentration of airborne formaldehyde exceeds either the TWA or the STEL and post all...

  16. 29 CFR 1910.1048 - Formaldehyde.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., these tests shall consist of forced vital capacity (FVC), forced expiratory volume in one second (FEV1... of any employee within each exposure group. (ii) The initial monitoring process shall be repeated... areas where the concentration of airborne formaldehyde exceeds either the TWA or the STEL and post all...

  17. Regional Sources of Atmospheric Formaldehyde and Acetaldehyde, and Implications for Atmospheric Modeling

    EPA Science Inventory

    Formaldehyde and acetaldehyde concentrations over the Eastern half of the United States are simulated with a 3-D air quality model to identify the most important chemical precursors under January and July conditions. We find that both aldehydes primarily result from photochemical...

  18. A new system to reduce formaldehyde levels improves safety conditions during gross veterinary anatomy learning.

    PubMed

    Nacher, Víctor; Llombart, Cristina; Carretero, Ana; Navarro, Marc; Ysern, Pere; Calero, Sebastián; Fígols, Enric; Ruberte, Jesús

    2007-01-01

    Dissection is a very useful method of learning veterinary anatomy. However, formaldehyde, which is widely used to preserve cadavers, is an irritant, and it has recently been classified as a carcinogen. In 1997, the Instituto Nacional de Seguridad e Higiene en el Trabajo [National Institute of Workplace Security and Hygiene] found that the levels of formaldehyde in our dissection room were above the threshold limit values. Unfortunately, no optimal substitute for formaldehyde is currently available. Therefore, we designed a new ventilation system that combines slow propulsion of fresh air from above the dissection table and rapid aspiration of polluted air from the perimeter. Formaldehyde measurements performed in 2004, after the introduction of this new system into our dissection laboratory, showed a dramatic reduction (about tenfold, or 0.03 ppm). A suitable propelling/aspirating air system successfully reduces the concentration of formaldehyde in the dissection room, significantly improving safety conditions for students, instructors, and technical staff during gross anatomy learning.

  19. Development of real-time monitors for gaseous formaldehyde. Final report, 1 December 1988-30 September 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, T.J.; Barnes, R.H.

    1990-11-01

    Two new methods for real-time measurement of gaseous formaldehyde have been developed. One is a spectroscopic method based on direct fluorescence detection of gaseous formaldehyde following excitation with UV light. This method has been developed to the prototype stage by modifications of a commercial fluorescence SO2 detector to convert it to formaldehyde detection. The prototype spectroscopic formaldehyde monitor exhibits a detection limit of <30 ppbv, with a time response of about one minute. The second method is based on derivatization of formaldehyde in aqueous solution to form a fluorescent product. The detection of fluorescent product was made more sensitive bymore » using intense 254 nm light from a mercury lamp for excitation, thereby allowing use of a simple and efficient glass coil scrubber for collection of gaseous formaldehyde. The wet chemical formaldehyde monitor incorportating these improvements exhibits a detection limit for gaseous formaldehyde of 0.2 ppbv and for aqueous formaldehyde of 0.2 micromolar with time response of about one minute, following a lag time of 2 minutes. Both instruments were tested in the laboratory with gaseous formaldehyde standards, and the aqueous scrubbing/analysis method was field tested by continuous operation over a 10-day period in which outdoor and indoor air were sampled for alternate half-hour periods. A comparison of real-time (aqueous scrubbing/analysis) and integrated measurements, using dinitrophenylhydrazine (DNPH) impingers, showed close agreement between the real-time and DNPH data, even at concentrations as low as 1 ppbv.« less

  20. High-Collection-Efficiency Fluorescence Detection Cell

    NASA Technical Reports Server (NTRS)

    Hanisco, Thomas; Cazorla, Maria; Swanson, Andrew

    2013-01-01

    A new fluorescence cell has been developed for the laser induced fluorescence (LIF) detection of formaldehyde. The cell is used to sample a flow of air that contains trace concentrations of formaldehyde. The cell provides a hermetically sealed volume in which a flow of air containing formaldehyde can be illuminated by a laser. The cell includes the optics for transmitting the laser beam that is used to excite the formaldehyde and for collecting the resulting fluorescence. The novelty of the cell is its small size and simple design that provides a more robust and cheaper alternative to the state of the art. Despite its simplicity, the cell provides the same sensitivity to detection as larger, more complicated cells.

  1. Monitoring firefighter exposure to air toxins at prescribed burns of forest and range biomass.

    Treesearch

    Timothy E. Reinhardt

    1991-01-01

    A variety of potent air toxins are in the smoke produced by burning forest and range biomass. Preliminary data on flrefighter exposures to carbon monoxide and formaldehyde at four prescribed burns of Western United States natural fuels are presented. Formaldehyde may be correlated to carbon monoxide emissions. The firefighters' exposures to these compounds...

  2. Formaldehyde levels in traditional and portable classrooms: A pilot investigation

    PubMed Central

    2015-01-01

    This pilot study assessed formaldehyde levels in portable classrooms (PCs) and traditional classrooms (TCs) and explored factors influencing indoor air quality (e.g., carbon dioxide (CO2), temperature, and relative humidity). In a cross-sectional design, we evaluated formaldehyde levels in day and overnight indoor air samples from nine PCs renovated within three years previously and three TCs in a school district in metropolitan Atlanta, Georgia. Formaldehyde levels ranged from 0.0068 to 0.038 ppm. In both type of classrooms, overnight formaldehyde median levels (PCs = 0.018 ppm; TCs = 0.019 ppm) were higher than day formaldehyde median levels (PCs = 0.011 ppm; TCs = 0.016 ppm). CO2 levels measured 470–790 parts per million (ppm) at 7AM and 470–1800 ppm at 4PM. Afternoon medians were higher in TCs (1,400 ppm ) than in PCs (780 ppm). Consistent with previous studies, formaldehyde levels were similar among PCs and TCs. Reducing CO2 levels by improving ventilation is recommended for classrooms. PMID:27197349

  3. Sensitivity of Ambient Atmospheric Formaldehyde and Ozone to Precursor Species and Source Types Across the United States

    EPA Science Inventory

    Formaldehyde (HCHO) is an important air pollutant from both an atmospheric chemistry and human health standpoint. This study uses an instrumented photochemical Air Quality Model, CMAQ-DDM, to identify the sensitivity of HCHO concentrations across the United States (U.S.) to major...

  4. Evaluation of possible health risk associated with occupational exposure to formaldehyde

    NASA Astrophysics Data System (ADS)

    Vargova, Maria; Janota, Stanislav; Karelova, Jarmila; Barancokova, Maria; Sulcova, Margita

    1993-03-01

    Widespread us of formaldehyde in a variety of applications is known to result in appreciable exposure of workers and large segments of the general population. Because of possible genotoxic and immunotoxic effects, we investigated the health condition of people occupationally exposed to formaldehyde in a plant in which woodsplinter materials are manufactured. The concentration of formaldehyde in the workplace was greater than the average and peak concentrations of formaldehyde in Czechoslovakia (0.5 mg/m3 and 1 mg/m3 respectively). Selected parameters of genotoxicity (cytogenetic analysis, nucleolus test) and immunotoxocity (serum immunoglobulin G, A, M; complement C3, C4; alpha-1-anti-trypsine, alpha-2 macroglobulin, ceruloplasmin, transferrin, prealbumin, orosomucoid levels) were determined. The results of the evaluation of mitotic indices and the blastogen transformation point to an effect of the exposure to formaldehyde on r-RNA synthesis inhibition and lymphocyte maturation decrease. The frequency of aberrant cells in the peripheral blood lymphocytes was increased in both, exposed and control group and was above 1.2 - 2% of aberrant cells observed in the normal population in Czechoslovakia. There was no significant differences in the values of natural immunity and specific humoral immunity. Significant differences were observed in the values of mitogen-induced proliferation of lymphocytes between the exposed and the matching and background control groups. These changes are considered to be sensitive indicators of the potential effects on the integrity of a more important immunologic function.

  5. Risk assessment of population inhalation exposure to volatile organic compounds and carbonyls in urban China.

    PubMed

    Du, Zhengjian; Mo, Jinhan; Zhang, Yinping

    2014-12-01

    Over the past three decades, China has experienced rapid urbanization. The risks to its urban population posed by inhalation exposure to hazardous air pollutants (HAPs) have not been well characterized. Here, we summarize recent measurements of 16 highly prevalent HAPs in urban China and compile their distribution inputs. Based on activity patterns of urban Chinese working adults, we derive personal exposures. Using a probabilistic risk assessment method, we determine cancer and non-cancer risks for working females and males. We also assess the uncertainty associated with risk estimates using Monte Carlo simulation, accounting for variations in HAP concentrations, cancer potency factors (CPFs) and inhalation rates. Average total lifetime cancer risks attributable to HAPs are 2.27×10(-4) (2.27 additional cases per 10,000 people exposed) and 2.93×10(-4) for Chinese urban working females and males, respectively. Formaldehyde, 1,4-dichlorobenzene, benzene and 1,3-butadiene are the major risk contributors yielding the highest median cancer risk estimates, >1×10(-5). About 70% of the risk is due to exposures occurring in homes. Outdoor sources contribute most to the risk of benzene, ethylbenzene and carbon tetrachloride, while indoor sources dominate for all other compounds. Chronic exposure limits are not exceeded for non-carcinogenic effects, except for formaldehyde. Risks are overestimated if variation is not accounted for. Sensitivity analyses demonstrate that the major contributors to total variance are range of inhalation rates, CPFs of formaldehyde, 1,4-dichlorobenzene, benzene and 1,3-butadiene, and indoor home concentrations of formaldehyde and benzene. Despite uncertainty, risks exceeding the acceptable benchmark of 1×10(-6) suggest actions to reduce exposures. Future efforts should be directed toward large-scale measurements of air pollutant concentrations, refinement of CPFs and investigation of population exposure parameters. The present study is a first effort to estimate carcinogenic and non-carcinogenic risks of inhalation exposure to HAPs for the large working populations of Chinese cites. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Assessing the effectiveness of 30% sodium chloride aqueous solution for the preservation of fixed anatomical specimens: a 5-year follow-up study.

    PubMed

    de Oliveira, Fabrício Singaretti

    2014-07-01

    Anatomical specimens used in human or veterinary anatomy laboratories are usually prepared with formaldehyde (a cancerous and teratogenic substance), glycerin (an expensive and viscous fluid), or ethanol (which is flammable). This research aimed to verify the viability of an aqueous 30% sodium chloride solution for preservation of anatomical specimens previously fixed with formaldehyde. Anatomical specimens of ruminant, carnivorous, equine, swine and birds were used. All were previously fixed with an aqueous 20% formaldehyde solution and held for 7 days in a 10% aqueous solution of the same active ingredient. During the first phase of the experiment, small specimens of animal tissue previously fixed in formaldehyde were distributed in vials with different concentrations of formaldehyde, with or without 30% sodium chloride solution, a group containing only 30% sodium chloride, and a control group containing only water. During this phase, no contamination was observed in any specimen containing 30% sodium chloride solution, whether alone or in combination with different concentrations of formaldehyde. In the second phase of the experiment, the 30% sodium chloride solution, found to be optimal in the first phase of the experiment, was tested for its long-term preservation properties. For a period of 5 years, the preserved specimens were evaluated three times a week for visual contamination, odors, and changes in color and texture. There was no visual contamination or decay found in any specimen. Furthermore, no strange odors, or changes in color or softness were noted. The 30% sodium chloride solution was determined to be effective in the preservation of anatomic specimens previously fixed in formaldehyde. © 2014 Anatomical Society.

  7. Assessing the effectiveness of 30% sodium chloride aqueous solution for the preservation of fixed anatomical specimens: a 5-year follow-up study

    PubMed Central

    de Oliveira, Fabrício Singaretti

    2014-01-01

    Anatomical specimens used in human or veterinary anatomy laboratories are usually prepared with formaldehyde (a cancerous and teratogenic substance), glycerin (an expensive and viscous fluid), or ethanol (which is flammable). This research aimed to verify the viability of an aqueous 30% sodium chloride solution for preservation of anatomical specimens previously fixed with formaldehyde. Anatomical specimens of ruminant, carnivorous, equine, swine and birds were used. All were previously fixed with an aqueous 20% formaldehyde solution and held for 7 days in a 10% aqueous solution of the same active ingredient. During the first phase of the experiment, small specimens of animal tissue previously fixed in formaldehyde were distributed in vials with different concentrations of formaldehyde, with or without 30% sodium chloride solution, a group containing only 30% sodium chloride, and a control group containing only water. During this phase, no contamination was observed in any specimen containing 30% sodium chloride solution, whether alone or in combination with different concentrations of formaldehyde. In the second phase of the experiment, the 30% sodium chloride solution, found to be optimal in the first phase of the experiment, was tested for its long-term preservation properties. For a period of 5 years, the preserved specimens were evaluated three times a week for visual contamination, odors, and changes in color and texture. There was no visual contamination or decay found in any specimen. Furthermore, no strange odors, or changes in color or softness were noted. The 30% sodium chloride solution was determined to be effective in the preservation of anatomic specimens previously fixed in formaldehyde. PMID:24762210

  8. Increased formaldehyde in jet engine exhaust with changes to JP-8, lower temperature, and lower humidity irritates eyes and respiratory tract.

    PubMed

    Kobayashi, A; Kikukawa, A

    2000-04-01

    Formaldehyde (FA) in exhaust from F-4 aircraft with low smoke combustor(LSC) J79 engines has been reported to be of sufficient concentration to cause irritation. It has also been noted that eye and respiratory irritation became more frequent and severe after the fuel was changed from JP-4 to JP-8. The present sturdy investigated the effect of jet fuel and power setting on formaldehyde concentrations in the exhaust. We also investigated the exposure to formaldehyde among pilots and flight line personnel. The exhaust from LSC J79 engines using different types of fuel (JP-8 and JP-4) was sampled 50 m behind the engine at different power settings in July (summer season in Japan) and February (winter season ). It was also sampled at 75% power settings using JP-8 in July. At an idle power setting, the FA concentration was higher in the exhaust of engines using JP-8 (1.31 ppm in July and 2.78 ppm in February) than in engines using JP-4 (0.95 ppm in July and 1.84 ppm in February). The FA concentration increased as both ambient temperature and relative humility decreased in the sampling atmosphere. The FA concentration of JP-8 fuel at an idle power setting (65%) was higher than that at a 71.5% power setting (1.32 ppm and 0.86 ppm, respectively). The FA concentrations in LSCJ79 engine exhaust varies depending on the type of fuel, engine power settings, and ambient air conditions. A high FA concentration at ground level due to a change in the fuel type, low temperature, and humidity, causes frequent severe eye respiratory irritation.

  9. Submicrodeterminations of thiols, disulphides and thiol esters in serum by using o-hydroxymercuribenzoic acid and dithiofluorescein

    PubMed Central

    Wroński, Mieczysław

    1967-01-01

    1. Methods are described for selective estimation of thiols, disulphides and thiol esters in standard solutions and in serum. The methods are based on the reaction with the excess of o-hydroxymercuribenzoic acid (HMB) in alkaline solution with subsequent addition of dithiofluorescein in excess and determination of the extinction at 588mμ. The sensitivity of the methods amounts to 1·5×10−9g.equiv. in 5ml. of final solution. Of results obtained on standard solutions 80% have the errors within the range ±4%. 2. It has been found that serum contains an unidentified substance (substance X) producing green complexes with dithiofluorescein which undergo decomposition on addition of formaldehyde. The correction for substance X must be estimated in a separate sample and taken into account. The concentration of substance X can be calculated from extinctions measured at 588mμ and 635mμ in the presence of dithiofluorescein in excess. 3. The selective determination of thiols and disulphides is based on different reaction rates with formaldehyde. The complexes between HMB and cysteine can be selectively decomposed by formaldehyde, and free glutathione can be selectively removed by formaldehyde in the presence of protein thiols. 4. Thiols are determined in the presence of triethylamine, thiols plus disulphides in the presence of triethylamine and sulphite, and thiols plus thiol esters in the presence of dimethylamine, with subsequent addition of ammonium sulphate. PMID:6049936

  10. Asthmatic symptoms and volatile organic compounds, formaldehyde, and carbon dioxide in dwellings.

    PubMed Central

    Norbäck, D; Björnsson, E; Janson, C; Widström, J; Boman, G

    1995-01-01

    OBJECTIVES--As a part of the worldwide European Community respiratory health survey, possible relations between symptoms of asthma, building characteristics, and indoor concentration of volatile organic compounds (VOCs) in dwellings were studied. METHODS--The study comprised 88 subjects, aged 20-45 years, from the general population in Uppsala, a mid-Swedish urban community, selected by stratified random sampling. Room temperature, air humidity, respirable dust, carbon dioxide (CO2), VOCs, formaldehyde, and house dust mites were measured in the homes of the subjects. They underwent a structured interview, spirometry, peak expiratory flow (PEF) measurements at home, methacholine provocation test for bronchial hyperresponsiveness, and skin prick tests. In addition, serum concentration of eosinophilic cationic protein (S-ECP), blood eosinophil count, and total immunoglobulin E (S-IgE) were measured. RESULTS--Symptoms related to asthma were more common in dwellings with house dust mites, and visible signs of dampness or microbial growth in the building. Significant relations were also found between nocturnal breathlessness and presence of wall to wall carpets, and indoor concentration of CO2, formaldehyde, and VOCs. The formaldehyde concentration exceeded the Swedish limit value for dwellings (100 micrograms/m3) in one building, and CO2 exceeded the recommended limit value of 1000 ppm in 26% of the dwellings, showing insufficient outdoor air supply. Bronchial hyperresponsiveness was related to indoor concentration of limonene, the most prevalent terpene. Variability in PEF was related to two other terpenes; alpha-pinen and delta-karen. CONCLUSION--Our results suggest that indoor VOCs and formaldehyde may cause asthma-like symptoms. There is a need to increase the outdoor air supply in many dwelling, and wall to wall carpeting and dampness in the building should be avoided. Improved indoor environment can also be achieved by selecting building materials, building construction, and indoor activities on the principle that the emission of volatile organic compounds should be as low as reasonably achievable, to minimise symptoms related to asthma due to indoor air pollution. PMID:7627316

  11. Problems in the disinfection of class 1 microbiology safety cabinets.

    PubMed Central

    Everall, P H; Morris, C A; Oliver, P R; Becker, J F

    1982-01-01

    Microbiology safety cabinet disinfection procedures using formaldehyde have been tested. Tubercle bacilli were killed by concentrations of formaldehyde obtained by heating commercial formalin irrespective of whether the bacilli were in the cabinet free space or above the prefilters. However, Bacillus stearothermophilus spore papers for for the testing of low temperature steam/formaldehyde sterilisers were almost never sterilised and a strain of Staphylococcus epidermidis (NCTC 7944) showed a resistance intermediate between the B stearothermophilus spores and the tubercle bacilli. Tests using a vaccine strain of poliovirus type 3 indicated a considerable degree of resistance of the virus to the action of formaldehyde. No such resistance was demonstrated by vaccinia virus or echovirus 14. Chemical and biological evidence is presented which indicates that filter paper discs are an unsuitable carrier material for a challenge organism in testing the efficiency of any formaldehyde sterilising process. Recommendations are made towards developing a satisfactory test procedure. PMID:7047573

  12. Biofiltration of waste gases containing a mixture of formaldehyde and methanol.

    PubMed

    Prado, Oscar J; Veiga, María C; Kennes, Christian

    2004-08-01

    Several biofilters and biotrickling filters were used for the treatment of a mixture of formaldehyde and methanol; and their efficiencies were compared. Results obtained with three different inert filter bed materials (lava rock, perlite, activated carbon) suggested that the packing material had only little influence on the performance. The best results were obtained in a biotrickling filter packed with lava rock and fed a nutrient solution that was renewed weekly. A maximum formaldehyde elimination capacity of 180 g m(-3) h(-1) was reached, while the methanol elimination capacity rose occasionally to more than 600 g m(-3) h(-1). Formaldehyde degradation was affected by the inlet methanol concentration. Several combinations of load vs empty bed residence time (EBRTs of 71.9, 46.5, 30.0, 20.7 s) were studied, reaching a formaldehyde elimination capacity of 112 g m(-3) h(-1) with about 80% removal efficiency at the lowest EBRT (20.7 s).

  13. Performance of optical biosensor using alcohol oxidase enzyme for formaldehyde detection

    NASA Astrophysics Data System (ADS)

    Sari, A. P.; Rachim, A.; Nurlely, Fauzia, V.

    2017-07-01

    The recent issue in the world is the long exposure of formaldehyde which is can increase the risk of human health, therefore, that is very important to develop a device and method that can be optimized to detect the formaldehyde elements accurately, have a long lifetime and can be fabricated and produced in large quantities. A new and simple prepared optical biosensor for detection of formaldehyde in aqueous solutions using alcohol oxidase (AOX) enzyme was successfully fabricated. The poly-n-butyl acrylic-co-N-acryloxysuccinimide (nBA-NAS) membranes containing chromoionophore ETH5294 were used for immobilization of alcohol oxidase enzyme (AOX). Biosensor response was based on the colour change of chromoionophore as a result of enzymatic oxidation of formaldehyde and correlated with the detection concentration of formaldehyde. The performance of biosensor parameters were measured through the optical absorption value using UV-Vis spectrophotometer including the repeatability, reproducibility, selectivity and lifetime. The results showed that the prepared biosensor has good repeatability (RSD = 1.9 %) and good reproducibility (RSD = 2.1 %). The biosensor was selective formaldehyde with no disturbance by methanol, ethanol, and acetaldehyde, and also stable before 49 days and decrease by 41.77 % after 49 days.

  14. Photochemical synthesis of biomolecules under anoxic conditions

    NASA Technical Reports Server (NTRS)

    Folsome, C.; Brittain, A.; Zelko, M.

    1983-01-01

    The long-wavelength UV anoxic photosynthesis of uracil, various sugars (including deoxyribose and glycoaldehyde), amino acids, and other organic photoproducts is reported. The reactions were conducted in a mixture of water, calcium carbonate, hydrazine, and formaldehyde which were subjected to 24 hr or 72 hr radiation. Product yields were greatest when the hydrazine/formaldehyde ratio was one, and when the reactant concentrations were low. These data suggest that organic products can be formed in variety from those amounts of formaldehyde and hydazine precursors which are themselves formed under anoxic UV photochemical conditions.

  15. Effects of extracts of fiberglass insulations on the growth of Aspergillus fumigatus and A. versicolor.

    PubMed

    Ezeonu, I M; Price, D L; Crow, S A; Ahearn, D G

    1995-11-01

    Water extracts of thermal and acoustic fiberglass insulations used in the duct work of heating, ventilation and air conditioning (HVAC) systems supported germination of conidia and growth of Aspergillus versicolor (Vuillemin) Tiraboschi 1908-9 and Aspergillus fumigatus Fresenius 1863. Urea, formaldehyde and unidentified organics were detected in the extracts. Formaldehyde in concentrations similar to those found in the extracts restricted the growth of both species in enriched media. A. versicolor, the more common species associated with fiberglass insulations, was more resistant to formaldehyde than A. fumigatus.

  16. Cystathionine metabolic enzymes play a role in the inflammation resolution of human keratinocytes in response to sub-cytotoxic formaldehyde exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eunyoung

    Low-level formaldehyde exposure is inevitable in industrialized countries. Although daily-life formaldehyde exposure level is practically impossible to induce cell death, most of mechanistic studies related to formaldehyde toxicity have been performed in cytotoxic concentrations enough to trigger cell death mechanism. Currently, toxicological mechanisms underlying the sub-cytotoxic exposure to formaldehyde are not clearly elucidated in skin cells. In this study, the genome-scale transcriptional analysis in normal human keratinocytes (NHKs) was performed to investigate cutaneous biological pathways associated with daily life formaldehyde exposure. We selected the 175 upregulated differentially expressed genes (DEGs) and 116 downregulated DEGs in NHKs treated with 200 μMmore » formaldehyde. In the Gene Ontology (GO) enrichment analysis of the 175 upregulated DEGs, the endoplasmic reticulum (ER) unfolded protein response (UPR) was identified as the most significant GO biological process in the formaldeyde-treated NHKs. Interestingly, the sub-cytotoxic formaldehyde affected NHKs to upregulate two enzymes important in the cellular transsulfuration pathway, cystathionine γ-lyase (CTH) and cystathionine-β-synthase (CBS). In the temporal expression analysis, the upregulation of the pro-inflammatory DEGs such as MMP1 and PTGS2 was detected earlier than that of CTH, CBS and other ER UPR genes. The metabolites of CTH and CBS, L-cystathionine and L-cysteine, attenuated the formaldehyde-induced upregulation of pro-inflammatory DEGs, MMP1, PTGS2, and CXCL8, suggesting that CTH and CBS play a role in the negative feedback regulation of formaldehyde-induced pro-inflammatory responses in NHKs. In this regard, the sub-cytotoxic formaldehyde-induced CBS and CTH may regulate inflammation fate decision to resolution by suppressing the early pro-inflammatory response. - Highlights: • Sub-cytotoxic formaldehyde upregulates ER UPR-associated genes in NHKs. • Formaldehyde-induced ER UPR genes includes cystathionine γ-lyase (CTH). • Sub-cytotoxic formaldehyde upregulates cystathionine-β-synthase (CBS) in NHKs. • Cystathionine metabolic enzymes may attenuate formaldehyde-induced inflammation in NHKs. • Cystathionine metabolic enzymes may play a role in the resolution of inflammation in NHKs.« less

  17. A new method for CH3O2 and C2H5O2 radical detection and kinetic studies of the CH3O2 self-reaction in HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry)

    NASA Astrophysics Data System (ADS)

    Onel, L. C.; Brennan, A.; Ingham, T.; Kirk, D.; Leggott, A.; Seakins, P. W.; Whalley, L.; Heard, D. E.

    2016-12-01

    Peroxy (RO2) radicals such as methylperoxy (CH3O2) and ethylperoxy (C2H5O2) are significant atmospheric species in the ozone formation in the presence of NO. At low concentrations of NO, the self-reaction of RO2 and RO2 + HO2 are important radical termination reactions. Despite their importance, at present typically only the sum of RO2 is measured in the atmosphere, making no distinction between different RO2 species.A new method has been developed for the direct detection of CH3O2 and C2H5O2 by FAGE (Fluorescence Assay by Gas Expansion) by titrating the peroxy radicals to RO (R = CH3 and C2H5) by reaction with NO and then detecting the resultant RO by laser induced fluorescence. The method has the potential to directly measure atmospheric levels of CH3O2 and potentially other RO2 species. The limit of detection is 3.8 × 108 molecule cm-3 for CH3O2 and 4.9 × 109 molecule cm-3 for C2H5O2 for a signal-to-noise ratio of 2 and a 4 min averaging time. The method has been used for time-resolved monitoring of CH3O2 during its self-reaction within HIRAC at 1 bar and at room temperature to determine a rate coefficient that is lower than the range of the previous results obtained by UV absorption measurements (http://iupac.pole-ether.fr/). A range of products of the CH3O2 self-reaction were also observed for the two reaction channels, (a) leading to formaldehyde and methanol and (b) forming methoxy (CH3O) radicals, over a range of temperatures from 296 - 340 K: CH3O and HO2 radicals (from reaction of CH3O + O2) were monitored by FAGE, formaldehyde was measured by FAGE and FTIR, and methanol was observed by FTIR. Good agreement was observed between the FTIR and FAGE measurements of formaldehyde. Using the concentrations of methanol and formaldehyde, the branching ratios at room temperature have been determined and are in very good agreement with the values recommended by IUPAC. Little temperature dependence of the branching ratios has been observed from 296 K to 340 K.

  18. Regulation characteristics of oxide generation and formaldehyde removal by using volume DBD reactor

    NASA Astrophysics Data System (ADS)

    Bingyan, CHEN; Xiangxiang, GAO; Ke, CHEN; Changyu, LIU; Qinshu, LI; Wei, SU; Yongfeng, JIANG; Xiang, HE; Changping, ZHU; Juntao, FEI

    2018-02-01

    Discharge plasmas in air can be accompanied by ultraviolet (UV) radiation and electron impact, which can produce large numbers of reactive species such as hydroxyl radical (OH·), oxygen radical (O·), ozone (O3), and nitrogen oxides (NO x ), etc. The composition and dosage of reactive species usually play an important role in the case of volatile organic compounds (VOCs) treatment with the discharge plasmas. In this paper, we propose a volume discharge setup used to purify formaldehyde in air, which is configured by a plate-to-plate dielectric barrier discharge (DBD) channel and excited by an AC high voltage source. The results show that the relative spectral-intensity from DBD cell without formaldehyde is stronger than the case with formaldehyde. The energy efficiency ratios (EERs) of both oxides yield and formaldehyde removal can be regulated by the gas flow velocity in DBD channel, and the most desirable processing effect is the gas flow velocity within the range from 2.50 to 3.33 m s-1. Moreover, the EERs of both the generated dosages of oxides (O3 and NO2) and the amount of removed formaldehyde can also be regulated by both of the applied voltage and power density loaded on the DBD cell. Additionally, the EERs of both oxides generation and formaldehyde removal present as a function of normal distribution with increasing the applied power density, and the peak of the function is appeared in the range from 273.5 to 400.0 W l-1. This work clearly demonstrates the regulation characteristic of both the formaldehyde removal and oxides yield by using volume DBD, and it is helpful in the applications of VOCs removal by using discharge plasma.

  19. HYDROGEN PEROXIDE FORMATION FROM THE PHOTOOXIDATION OF FORMALDEHYDE AND ITS PRESENCE IN RAINWATER

    EPA Science Inventory

    The photooxidation of formaldehyde with sunlamps (E(max) = 3100 A) produces hydrogen peroxide (H2O2) at varying concentrations depending upon the amount of water vapor present. It is postulated that the variable production of H2O2 is a result of condensation on the reactor surfac...

  20. Aldehydes in Relation to Air Pollution Sources: A Case Study around the Beijing Olympics

    PubMed Central

    Altemose, Brent; Gong, Jicheng; Zhu, Tong; Hu, Min; Zhang, Liwen; Cheng, Hong; Zhang, Lin; Tong, Jian; Kipen, Howard M.; Strickland, Pamela Ohman; Meng, Qingyu; Robson, Mark G.; Zhang, Junfeng

    2015-01-01

    This study was carried out to characterize three aldehydes of health concern (formaldehyde, acetaldehyde, and acrolein) at a central Beijing site in the summer and early fall of 2008 (from June to October). Aldehydes in polluted atmospheres come from both primary and secondary sources, which limits the control strategies for these reactive compounds. Measurements were made before, during, and after the Beijing Olympics to examine whether the dramatic air pollution control measures implemented during the Olympics had an impact on concentrations of the three aldehydes and their underlying primary and secondary sources. Average concentrations of formaldehyde, acetaldehyde and acrolein were 29.3±15.1 μg/m3, 27.1±15.7 μg/m3 and 2.3±1.0 μg/m3, respectively, for the entire period of measurements, all being at the high end of concentration ranges measured in cities around the world in photochemical smog seasons. Formaldehyde and acrolein increased during the pollution control period compared to the pre-Olympic Games, followed the changing pattern of temperature, and were significantly correlated with ozone and with a secondary formation factor identified by principal component analysis (PCA). In contrast, acetaldehyde had a reduction in mean concentration during the Olympic air pollution control period compared to the pre-Olympic period and was significantly correlated with several pollutants emitted from local emission sources (e.g., NO2, CO, and PM2.5). Acetaldehyde was also more strongly associated with primary emission sources including vegetative burning and oil combustion factors identified through the PCA. All three aldehydes were lower during the post-Olympic sampling period compared to the before and during Olympic periods, likely due to seasonal and regional effects. Our findings point to the complexity of source control strategies for secondary pollutants. PMID:25883528

  1. 40 CFR 63.1179 - For curing ovens, what standards must I meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operating limits for each curing oven: (1) Maintain the free-formaldehyde content of each resin lot and the formaldehyde content of each binder formulation at or below the specification ranges of the resin and binder...

  2. 40 CFR 63.1179 - For curing ovens, what standards must I meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operating limits for each curing oven: (1) Maintain the free-formaldehyde content of each resin lot and the formaldehyde content of each binder formulation at or below the specification ranges of the resin and binder...

  3. Evaluation of retrofit crankcase ventilation controls and diesel oxidation catalysts for reducing air pollution in school buses

    NASA Astrophysics Data System (ADS)

    Trenbath, Kim; Hannigan, Michael P.; Milford, Jana B.

    2009-12-01

    This study evaluates the effect of retrofit closed crankcase ventilation filters (CCFs) and diesel oxidation catalysts (DOCs) on the in-cabin air quality in transit-style diesel school buses. In-cabin pollution levels were measured on three buses from the Pueblo, CO District 70 fleet. Monitoring was conducted while buses were driven along their regular routes, with each bus tested three times before and three times after installation of control devices. Ultrafine number concentrations in the school bus cabins were 33-41% lower, on average, after the control devices were installed. Mean mass concentrations of particulate matter less than 2.5 μm in diameter (PM2.5) were 56% lower, organic carbon (OC) 41% lower, elemental carbon (EC) 85% lower, and formaldehyde 32% lower after control devices were installed. While carbon monoxide concentrations were low in all tests, mean concentrations were higher after control devices were installed than in pre-retrofit tests. Reductions in number, OC, and formaldehyde concentrations were statistically significant, but reductions in PM2.5 mass were not. Even with control devices installed, during some runs PM2.5 and OC concentrations in the bus cabins were elevated compared to ambient concentrations observed in the area. OC concentrations inside the bus cabins ranged from 22 to 58 μg m -3 before and 13 to 33 μg m -3 after control devices were installed. OC concentrations were correlated with particle-bound organic tracers for lubricating oil emissions (hopanes) and diesel fuel and tailpipe emissions (polycyclic aromatic hydrocarbons (PAH) and aliphatic hydrocarbons). Mean concentrations of hopanes, PAH, and aliphatic hydrocarbons were lower by 37, 50, and 43%, respectively, after the control devices were installed, suggesting that both CCFs and DOCs were effective at reducing in-cabin OC concentrations.

  4. Effects of formaldehyde-enriched mists on Pseudotsuga menziesii (Mirbel) Franco and Lobaria pulmonaria (L.) Hoffm.

    PubMed

    Muir, P S; Shirazi, A M

    1996-01-01

    The atmosphere in some areas is polluted with formaldehyde (HCHO); however, little is known about effects of HCHO on plants at concentrations resembling those in polluted areas. The effects of simulated fogwater enriched with HCHO on seedlings of Pseudotsuga menziesii (Mirbel) Franco (Douglas fir) and pendants of Lobaria pulmonaria (L.) Hoffm. were assessed. Plants were treated with HCHO-enriched fog (target concentrations of 100, 500, and 1000 microm) during five 4-night mist sessions. Growth and nitrogenase activity (acetylene reduction rate) for lichens and growth and timing of bud-break for Douglas fir were monitored. Nitrogenase activity was lowest in lichens treated at the highest HCHO concentration after all but the first mist session, and it declined significantly with increasing HCHO concentration after the final mist session (R(2) = 0.60, p = 0.02). However, differences in nitrogenase activity among treatments were generally not statistically significant (most p values from ANOVAs were >/= 0.20). Formaldehyde did not affect growth of the lichens. Budbreak of Douglas firs was slightly delayed and height growth was slightly depressed with increasing HCHO concentration, although effects were not statistically significant.

  5. Respiratory response to formaldehyde and off-gas of urea formaldehyde foam insulation.

    PubMed Central

    Day, J H; Lees, R E; Clark, R H; Pattee, P L

    1984-01-01

    In 18 subjects, 9 of whom had previously complained of various nonrespiratory adverse effects from the urea formaldehyde foam insulation (UFFI) in their homes, pulmonary function was assessed before and after exposure in a laboratory. On separate occasions formaldehyde, 1 part per million (ppm), and UFFI off-gas yielding a formaldehyde concentration of 1.2 ppm, were delivered to each subject in an environmental chamber for 90 minutes and a fume hood for 30 minutes respectively. None of the measures of pulmonary function used (forced vital capacity, forced expiratory volume in 1 second or maximal midexpiratory flow rate) showed any clinically or statistically significant response to the exposure either immediately after or 8 hours after its beginning. There were no statistically significant differences between the responses of the group that had previously complained of adverse effects and of the group that had not. There was no evidence that either formaldehyde or UFFI off-gas operates as a lower airway allergen or important bronchospastic irritant in this heterogeneous population. Images Fig. 1 PMID:6388780

  6. The detection of formaldehyde using microelectromechanical acoustic resonator with multiwalled carbon nanotubes-polyethyleneimine composite coating

    NASA Astrophysics Data System (ADS)

    Wang, Jingjing; Zhan, Da; Wang, Ke; Hang, Weiwei

    2018-01-01

    A micro-scale gas sensor based on mass-sensitive film bulk acoustic resonator is demonstrated for the detection of trace formaldehyde at room temperature. The composites mixed with multiwalled carbon nanotubes and polyethyleneimine (MWNTs-PEI) were coated on the resonator surface as the sensitive layer to specifically absorb formaldehyde molecules using a facile spray process. The influence of spraying processes on the formaldehyde sensing properties were investigated. Different response behaviors were determined by both the chemical absorption between formaldehyde molecules and the amine functional groups on PEI and the increase of absorption surface came from the nanostructure. The combination of high frequency of the film bulk acoustic resonator (~4.3 GHz) and the specific absorbability of MWNTs-PEI composites provided a high sensitivity in the detections of trace formaldehyde. The obtained ultra-low limit of detection was as low as 60 ppb with linear response, quick response/recovery time, good reproducibility and selectivity. The proposed sensor shows potential as a portable and convenient gas-sensing system for monitoring the low-level concentration of indoor air pollution.

  7. Formaldehyde and heavy metal migration from rubber and metallic packaging/utensils in Korea.

    PubMed

    Kim, Su-Un; Kim, Tae-Rang; Lee, Eun-Soon; Kim, Mi-Sun; Kim, Chang-Kyu; Kim, Li-Ra; Shin, Gi-Young

    2015-01-01

    The aim of this study was to determine the non-intentionally added substances--formaldehyde and trace metals--at 4% acetic acid conditions in rubber and metallic packaging/utensils. The temperature effect on migration in rubber and metallic packaging/utensils was monitored at 60 °C and 100 °C under acidic (pH < 3) circumstances. The concentrations were: formaldehyde--23.1 μg kg⁻¹, lead--13.41 μg kg⁻¹, cadmium--0.15 μg kg⁻¹, total arsenic--2.02 μg kg⁻¹ and nickel--2.92 μg kg⁻¹ at 60 °C and formaldehyde--148.9 μg kg⁻¹, lead--17.04 μg kg⁻¹, cadmium--0.14 μg kg⁻¹, total arsenic--7.25 μg kg⁻¹ and nickel--8.7 μg kg⁻¹ at 100 °C. A significant difference was noticed in formaldehyde and total arsenic between both temperatures (p < 0.01), which was not present in other trace metals. In conclusion, formaldehyde and total arsenic were more sensitive with cooking temperature than the other metals.

  8. Cabin air quality: indoor pollutants and climate during intercontinental flights with and without tobacco smoking.

    PubMed

    Lindgren, T; Norbäck, D

    2002-12-01

    The aim was to determine cabin air quality and in-flight exposure for cabin attendants of specific pollutants during intercontinental flights. Measurements of air humidity, temperature, carbon dioxide (CO2), respirable particles, ozone (O3), nitrogen dioxide (NO2) and formaldehyde were performed during 26 intercontinental flights with Boeing 767-300 with and without tobacco smoking onboard. The mean temperature in cabin was 22.2 degrees C (range 17.4-26.8 degrees C), and mean relative air humidity was 6% (range 1-27%). The CO2 concentration during cruises was below the recommended limit of 1000 ppm during 96% of measured time. Mean indoor concentration of NO2 and O3, were 14.1 and 19.2 micrograms/m3, with maximum values of 37 and 66 micrograms/m3, respectively. The concentration of formaldehyde was below the detection limit (< 5 micrograms/m3), in most samples (77%), and the maximum value was 15 micrograms/m3. The mean concentration of respirable particles in the rear part of the aircraft (AFT galley area) was much higher (49 micrograms/m3) during smoking as compared with non-smoking conditions (3 micrograms/m3) (P < 0.001), with maximum values of 253 and 7 micrograms/m3. In conclusion, air humidity is very low on intercontinental flights, and the large variation of temperature shows a need for better temperature control. Tobacco smoking onboard leads to a significant pollution of respirable particles, particularly in the rear part of the cabin. The result supports the view that despite the high air exchange rate and efficient air filtration, smoking in commercial aircraft leads to a significant pollution and should be prohibited.

  9. Angle-resolved photoelectron spectroscopy of formaldehyde and methanol

    NASA Astrophysics Data System (ADS)

    Keller, P. R.; Taylor, J. W.; Grimm, F. A.; Carlson, Thomas A.

    1984-10-01

    Angle-resolved photoelectron spectroscopy was employed to obtain the angular distribution parameter, β, for the valence orbitals (IP < 21.1 eV) of formaldehyde and methanol over the 10-30 eV photon energy range using dispersed polarized synchrotron radiation as the excitation source. It was found that the energy dependence of β in the photoelectron energy range between 2 and 10 eV can be related to the molecular-orbital type from which ionization occurs. This generalized energy behavior is discussed with regard to earlier energy-dependence studies on molecules of different orbital character. Evidence is presented for the presence of resonance photoionization phenomena in formaldehyde in agreement with theoretical cross-section calculations.

  10. 2-[(Hydroxymethyl)amino]ethanol in water as a preservative: Study of formaldehyde released by Taguchi's method

    NASA Astrophysics Data System (ADS)

    Wisessirikul, W.; Loykulnant, S.; Montha, S.; Fhulua, T.; Prapainainar, P.

    2016-06-01

    This research studied the quantity of free formaldehyde released from 2- [(hydroxymethyl)amino]ethanol (HAE) in DI water and natural rubber latex mixture using high-performance liquid chromatography (HPLC) technique. The quantity of formaldehyde retained in the solution was cross-checked by using titration technique. The investigated factors were the concentration of preservative (HAE), pH, and temperature. Taguchi's method was used to design the experiments. The number of experiments was reduced to 16 experiments from all possible experiments by orthogonal arrays (3 factors and 4 levels in each factor). Minitab program was used as a tool for statistical calculation and for finding the suitable condition for the preservative system. HPLC studies showed that higher temperature and higher concentration of the preservative influence the amount of formaldehyde released. It was found that conditions at which formaldehyde was released in the lowest amount were 1.6%w/v HAE, 4 to 40 °C, and the original pH. Nevertheless, the pH value of NR latex should be more than 10 (the suitable pH value was found to be 13). This preservative can be used to replace current preservative systems and can maintain the quality of latex for long-term storage. Use of the proposed preservative system was also shown to have reduced impact on the toxicity of the environment.

  11. The effects of temperature and humidity on formaldehyde emission from UF-bonded boards : a literature critique

    Treesearch

    George E. Myers

    1985-01-01

    An analysis has been conducted on available data related to temperature and humidity effects on formaldehyde concentrations that are produced by emission from particleboard and hardwood plywood paneling. Temperature changes are described by an exponential relation while a linear relation suffices for humidity effects. Large variations exist in the results from...

  12. Curing property and plywood adhesive performance of resol-type phenol-urea-formaldehyde cocondensed resins

    Treesearch

    Masahiko Ohyama; Bunchiro Tomita; Chung-Yun Hse

    1995-01-01

    The curing processes and thermal properties of resol-type phenol-urea-formaldehyde cocondensed resins, which were prepared by alkaline treatments of the cocondensed resins once synthesized from UF-concentrate and phenol, were investigated by torsional braid analysis. The resol-type cocondensed resins displayed almost the same curing behaviors and heat-resistance as a...

  13. Characteristics of urea-formaldehyde resins as related to glue bond quality of southern pine particleboard

    Treesearch

    C. -Y. Hse

    1974-01-01

    Forty-five urea resins were formulated and replicated by factorial arrangement of three variables: molar ratio of formaldehyde to urea (1.5, 1.7, 1.9, 2.1, and 2.3), reactant concentration (35, 42.5, and 50%), and reaction temperature (75°, 85°, and 95°C).

  14. Nitrogen Doped Graphene Supported Pt Nanoflowers as Electrocatalysts for Oxidation of Formaldehyde.

    PubMed

    Xie, Aijuan; Zhou, Wenting; Luo, Shiping; Chen, Yu; Zhou, Xiaoqing; Chao, Yao

    2017-02-01

    A facile Pt nanoflowers/nitrogen-doped graphene (PtNFs/NG) electrocatalyst was prepared via depositing Pt nanoflowers (PtNFs) onto the nitrogen-doped graphene (NG) matrix with urea as the nitrogen source and PtNFs/NG modified glassy carbon electrode (GCE) was prepared by electro-chemical method. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscope, X-ray photoelectron spectroscopy (XPS) and Scanning electron microscope (SEM) were used to characterize the resulting composites. Also oxidation of formaldehyde on the resulting PtNFs/NG modified electrode was investigated. The influence of deposition time, electrodeposition potential and formaldehyde concentration on electrooxidation of formaldehyde was detected, the experimental results indicate the high performance of PtNFs/NG catalyst for formaldehyde oxidation is at electrodeposition time of 300 s with the applied potential of −0.3 V. Electrochemical process, electrocatalytic stability and chronoamperometry were also inspected, it was indicated that formalde-hyde oxidation reaction on the PtNFs/NG electrode is diffusion-controlled and PtNFs/NG exhibits a high catalytic activity, stability as well as excellent poisoning-tolerance towards formaldehyde oxidation, which is attributed to the synergistic effect of PtNFs and NG. It turns out that PtNFs/NG can be used in direct liquid-feed fuel cells as a promising alternative catalyst.

  15. Core pathways operating during methylotrophy of Bacillus methanolicus MGA3 and induction of a bacillithiol-dependent detoxification pathway upon formaldehyde stress.

    PubMed

    Müller, Jonas E N; Meyer, Fabian; Litsanov, Boris; Kiefer, Patrick; Vorholt, Julia A

    2015-12-01

    Bacillus methanolicus MGA3 is a model facultative methylotroph of interest for fundamental research and biotechnological applications. Previous research uncovered a number of pathways potentially involved in one-carbon substrate utilization. Here, we applied dynamic (13) C labeling to elucidate which of these pathways operate during growth on methanol and to uncover potentially new ones. B. methanolicus MGA3 uses the assimilatory and dissimilatory ribulose monophosphate (RuMP) cycles for conversion of the central but toxic intermediate formaldehyde. Additionally, the operation of two cofactor-dependent formaldehyde oxidation pathways with distinct roles was revealed. One is dependent on tri- and tetraglutamylated tetrahydrofolate (THF) and is involved in formaldehyde oxidation during growth on methanol. A second pathway was discovered that is dependent on bacillithiol, a thiol cofactor present also in other Bacilli where it is known to function in redox-homeostasis. We show that bacillithiol-dependent formaldehyde oxidation is activated upon an upshift in formaldehyde induced by a substrate switch from mannitol to methanol. The genes and the corresponding enzymes involved in the biosynthesis of bacillithiol were identified by heterologous production of bacillithiol in Escherichia coli. The presented results indicate metabolic plasticity of the methylotroph allowing acclimation to fluctuating intracellular formaldehyde concentrations. © 2015 John Wiley & Sons Ltd.

  16. Gypsum Wallboard as a sink for formaldehyde

    EPA Science Inventory

    Formaldehyde (HCHO) has been of special concern as an indoor air pollutant because of its presence in a wide range of consumer products and its adverse health effects. Materials acting as HCHO sinks, such as painted gypsum wallboard, can become emission sources. However, adsorpti...

  17. Synthesis and Thermal Degradation Studies of Melamine Formaldehyde Resins

    PubMed Central

    Ullah, Sami; Bustam, M. A.; Nadeem, M.; Tan, W. L.; Shariff, A. M.

    2014-01-01

    Melamine formaldehyde (MF) resins have been synthesized at different reaction temperature and pH values. Different molar ratios of melamine and formaldehyde were used to synthesize the corresponding resins. The prepared resin samples were characterized by using molecular weight determination viscometry and thermogravimetric analysis (TGA). The maximum percentage of solid content (69.7%) was obtained at pH 8.5 and 75°C temperature. The molecular weight of MF resin was increased with an increase of melamine monomer concentration. The highest residual weight 14.125 wt.% was obtained with sample 10. PMID:25436237

  18. Impact of the formaldehyde concentration in the air on the sink effect of a coating material

    NASA Astrophysics Data System (ADS)

    Tiffonnet, Anne-Lise; Tourreilles, Céline; Duforestel, Thierry

    2018-02-01

    This study aims to characterize, from a numerical modelling, the sorption behaviour of a material (a plasticised flooring material) when it is exposed to a pollutant commonly encountered in indoor environments (formaldehyde). It deals with the influence of the pollutant concentration in the room air on the sink effect of the material. The numerical simulations are based on a macroscopic modelling using experimental test results obtained elsewhere. The consequences on the room inertia are also discussed, and analogies between mass transfer and heat transfer are highlighted.

  19. Monitoring firefighter exposure to air toxins at prescribed burns of forest and range biomass. Forest Service research paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinhardt, T.E.

    1991-10-01

    A variety of potent air toxins are in the smoke produced by burning forest and range biomass. Preliminary data on firefighter exposures to carbon monoxide and formaldehyde at four prescribed burns of Western United States natural fuels are presented. Formaldehyde may be correlated to carbon monoxide emissions. The firefighters' exposures to these compounds relative to workplace standards are discussed.

  20. Preservatives in cosmetics in the Israeli market conform well to the EU legislation.

    PubMed

    Horev, L; Isaksson, M; Engfeldt, M; Persson, L; Ingber, A; Bruze, M

    2015-04-01

    Preservatives are important and frequent skin sensitizers, found in a wide range of products for personal and occupational use. According to the European legislation, some cosmetic ingredients are restricted in terms of quantity and a detailed list of ingredients must be present on the product or packaging. To examine the use of preservatives in common cosmetics on the Israeli market. Sixty different Israeli brand cosmetics, including shampoos, liquid soaps, body creams and hand creams were randomly selected. Ingredient labels were examined. The products were investigated by the chromotropic acid method for release of formaldehyde and by high performance liquid chromatography for the presence of formaldehyde, DMDM hydantoin and methylchloroisothiazolinone/methylisothiazolinone (MCI/MI) and MI content. All products but one contained a detailed list of ingredients printed on the package. According to labelling, the most prevalent preservatives in Israeli shampoos and liquid soaps were DMDM hydantoin and MCI/MI. Hand creams and body creams contained mainly parabens but also iodopropynyl butylcarbamate, phenoxyethanol and DMDM hydantoin. Formaldehyde in doses from 4 to 429 ppm, and DMDM hydantoin were detected in 38 and 16 (63% and 27%) of the products, respectively. MCI/MI was detected in 11 (18%) of the products, with highest prevalence in rinse- off products (55%). Excluding one hand cream which measured 106 ppm MI, the amount of formaldehyde, DMDM hydantoin, MCI/MI and MI was within the allowed concentrations by the European directive in all cases. In Israel, adaptation of the European directive prevails, as shown by the measurements we performed on randomly selected products. © 2014 European Academy of Dermatology and Venereology.

  1. Determination of partition and diffusion coefficients of formaldehyde in selected building materials and impact of relative humidity.

    PubMed

    Xu, Jing; Zhang, Jianshun S; Liu, Xiaoyu; Gao, Zhi

    2012-06-01

    The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50%, and 70% RH). The "green" materials contained recycled materials and were friendly to environment. A dynamic dual-chamber test method was used. Results showed that a higher relative humidity led to a larger effective diffusion coefficient for two kinds of wallboards and carpet. The carpet was also found to be very permeable resulting in an effective diffusion coefficient at the same order of magnitude with the formaldehyde diffusion coefficient in air. The partition coefficient (K(ma)) of formaldehyde in conventional wallboard was 1.52 times larger at 50% RH than at 20% RH, whereas it decreased slightly from 50% to 70% RH, presumably due to the combined effects of water solubility of formaldehyde and micro-pore blocking by condensed moisture at the high RH level. The partition coefficient of formaldehyde increased slightly with the increase of relative humidity in "green" wallboard and "green" carpet. At the same relative humidity level, the "green" wallboard had larger partition coefficient and effective diffusion coefficient than the conventional wallboard, presumably due to the micro-pore structure differences between the two materials. The data generated could be used to assess the sorption effects of formaldehyde on building materials and to evaluate its impact on the formaldehyde concentration in buildings.

  2. Investigation of formaldehyde pollution of tap water and rain water using a novel visual colorimetry.

    PubMed

    Murai, K; Okano, M; Kuramitz, H; Hata, N; Kawakami, T; Taguchi, S

    2008-01-01

    The pollution of tap water and rain water with formaldehyde in Toyama Pref., Japan was investigated by means of a simple, rapid and cost-effective visual colorimetry developed by us. The levels of formaldehyde in three tap waters from different sources of dams on mountainside and a well-water pumped in urban area in Toyama Pref. were lower than 0.01 mg L(-1) that was the detection limit of the colorimetry. On the other hand, rain waters were seriously polluted with formaldehyde. Rain waters were sampled from three different sites (urban area, top of hill and industrial area) in Toyama Pref. from autumn to winter in 2006. The levels of formaldehyde in the rain waters ranged from 0.07 to 0.30 mg L(-1). The analytical results by the visual colorimetry were in good agreement with those obtained by GC-MS method. It was confirmed that the colorimetry is excellent for practical use for the determination of formaldehyde. It must be concerned about the pollution of rainwater with formaldehyde, when rain water is applied for tap water and miscellaneous purpose. Copyright IWA Publishing 2008.

  3. Indoor Levels of Formaldehyde and Other Pollutants and Relationship to Air Exchange Rates and Human Activities

    NASA Astrophysics Data System (ADS)

    Huangfu, Y.; O'Keeffe, P.; Kirk, M.; Walden, V. P.; Lamb, B. K.; Jobson, B. T.

    2017-12-01

    This paper reports results on an indoor air quality study conducted on six homes in summer and winter, contrasting indoor and outdoor concentrations of O3, CO, CO2, NOx, PM2.5, and selected volatile organic hydrocarbons measured by PTR-MS. Data were collected as 1 minute averages. Air exchange rates of the homes were determined by CO2 tracer release. Smart home sensors, recording human activity level in various places in the home, and window and doors openings, were utilized to better understand the link between human activity and indoor air pollution. From our study, averaged air exchange rates of the homes ranged from 0.2 to 1.2 hour-1 and were greatly affected by the ventilation system type and window and door openings. In general, a negative correlation between air exchange rate and indoor VOCs levels was observed, with large variation of pollutant levels between the homes. For most of the VOCs measured in the house, including formaldehyde and acetaldehyde, summer levels were much higher than winter levels. In some homes formaldehyde levels displayed a time of day variation that was linked to changes in indoor temperature. During a wildfire period in the summer of 2015, outdoor levels of PM2.5, formaldehyde, and benzene dramatically increased, significantly impacting indoor levels due to infiltration. Human activities, such as cooking, can significantly change the levels of most of the compounds measured in the house and the levels can be significantly elevated for short periods of time, with peak levels can be several orders higher compared with typical levels. The data suggest that an outcome of state energy codes that require new homes to be energy efficient, and as a consequence built with lower air exchange rates, will be unacceptable levels of air toxics, notably formaldehyde.

  4. Passive sampler for formaldehyde in air using 2,4-dinitrophenylhydrazine-coated glass fiber filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, J.O.; Lindahl, R.; Andersson, K.

    1986-12-01

    A method utilizing diffusive sampling of formaldehyde in air has been developed. A glass fiber filter, impregnated with 2,4-dinitrophenylhydrazine (DNPH) and phosphoric acid and mounted into a modified aerosol-sampling cassette, is used for sampling by controlled diffusion. The formaldehyde hydrazone formed is desorbed and determined by high-performance liquid chromatography with UV detection. The sampling rate of the sampler was determined to 61 mL/min, with a standard deviation of 5%. The sampling rate is independent of formaldehyde concentrations between 0.1 and 5 mg/m/sup 3/ and sampling times between 15 min and 8 h. The sensitivity of the diffusive method is approximatelymore » 0.005 mg/m/sup 3/ (5 ppm) in an 8-h sample, and the reproducibility is better than 3%.« less

  5. A reactive and sensitive diffusion sampler for the determination of aldehydes and ketones in ambient air

    NASA Astrophysics Data System (ADS)

    Uchiyama, Shigehisa; Hasegawa, Shuji

    We developed a diffusive sampling device (DSD-carbonyl) for organic carbonyl compounds (aldehydes and ketones) which is suitable for collection and analysis of low concentration levels. This sampling device is composed of three parts, an exposure part made of a porous polytetrafluoroethylene (PPTFE) tube, an analysis part made of polypropylene (PP) tubing and an absorbent part made of 2,4-dinitrophenylhydrazine (DNPH) coated silica gel (DNPH-silica). Aldehydes and ketones diffuse to the DSD-carbonyl through PPTFE-tube by the mechanism of molecular diffusion and react specifically with DNPH to form a stable DNPH-derivatives. Collection is controlled by moving the absorbent from the exposure part to the analysis part by changing the posture of the DSD-carbonyl. DNPH-derivatives were eluted from an analysis part of DSD-carbonyl with acetonitrile directly and analyzed by high performance liquid chromatography (HPLC). The advantages of the DSD-carbonyl are the following: (1) The DSD-carbonyl can be used in a wide range of concentration of aldehydes and ketones in atmosphere, as the DSD-carbonyl exposure part has a variable diffusion area, (2) DNPH-derivatives are eluted from DNPH-silica without contamination of air. (3) The sampler can be applied to active sampling by connecting it with a pump. The limit of detection (LOD) for concentrations of major aldehydes and ketones ranged from 0.072 to 0.13 ppb, and the limit of quantitation (LOQ) ranged from 0.24 to 0.42 ppb. The coefficient variation (CV) for concentrations of major aldehydes and ketones ranged from 2.5 to 3.0% in laboratory air. The DSD-carbonyl method and active sampling method (US EPA method IP-6A) showed a good correlation (formaldehyde, r2=0.995). The uptake rates for formaldehyde, acetaldehyde, and acetone were estimated as 0.078, 0.062 and 0.079 nmol ppb -1 h -1, respectively. It is possible to estimate atmospheric aldehydes and ketones at parts per billion (ppb), with high sensitivity and precision, by using DSD-carbonyl.

  6. Biocidal Efficacy of Dissolved Ozone, Formaldehyde and Sodium Hypochlorite Against Total Planktonic Microorganisms in Produced Water

    NASA Astrophysics Data System (ADS)

    Puyate, Y. T.; Rim-Rukeh, A.

    The performance of three biocides (dissolved ozone, formaldehyde and sodium hypochlorite) in eliminating the bacteria and fungi in produced water is investigated experimentally. The analysis involves monitoring the microbial population in nine conical flasks each containing the same volume of a mixture of produced water, culture medium that sustains the growth of microorganisms and a known concentration of biocide. The concentrations of each biocide used in the study are 0.1, 0.2 and 0.5 ppm. It is shown that dissolved ozone exhibits the best biocidal characteristics and a concentration of 0.5 ppm eliminated all the microorganisms in the produced water after 150 min contact time.

  7. Formaldehyde emissions from ventilation filters under different relative humidity conditions.

    PubMed

    Sidheswaran, Meera; Chen, Wenhao; Chang, Agatha; Miller, Robert; Cohn, Sebastian; Sullivan, Douglas; Fisk, William J; Kumagai, Kazukiyo; Destaillats, Hugo

    2013-05-21

    Formaldehyde emissions from fiberglass and polyester filters used in building heating, ventilation, and air conditioning (HVAC) systems were measured in bench-scale tests using 10 and 17 cm(2) coupons over 24 to 720 h periods. Experiments were performed at room temperature and four different relative humidity settings (20, 50, 65, and 80% RH). Two different air flow velocities across the filters were explored: 0.013 and 0.5 m/s. Fiberglass filters emitted between 20 and 1000 times more formaldehyde than polyester filters under similar RH and airflow conditions. Emissions increased markedly with increasing humidity, up to 10 mg/h-m(2) at 80% RH. Formaldehyde emissions from fiberglass filters coated with tackifiers (impaction oils) were lower than those from uncoated fiberglass media, suggesting that hydrolysis of other polymeric constituents of the filter matrix, such as adhesives or binders was likely the main formaldehyde source. These laboratory results were further validated by performing a small field study in an unoccupied office. At 80% RH, indoor formaldehyde concentrations increased by 48-64%, from 9-12 μg/m(3) to 12-20 μg/m(3), when synthetic filters were replaced with fiberglass filtration media in the HVAC units. Better understanding of the reaction mechanisms and assessing their overall contributions to indoor formaldehyde levels will allow for efficient control of this pollution source.

  8. Formaldehyde preparation methods for pressure and temperature dependent laser-induced fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Burkert, A.; Müller, D.; Rieger, S.; Schmidl, G.; Triebel, W.; Paa, W.

    2015-12-01

    Formaldehyde is an excellent tracer for the early phase of ignition of hydrocarbon fuels and can be used, e.g., for characterization of single droplet ignition. However, due to its fast thermal decomposition at elevated temperatures and pressures, the determination of concentration fields from laser-induced fluorescence (LIF) measurements is difficult. In this paper, we address LIF measurements of this important combustion intermediate using a calibration cell. Here, formaldehyde is created from evaporation of paraformaldehyde. We discuss three setups for preparation of formaldehyde/air mixtures with respect to their usability for well-defined heating of formaldehyde/air mixtures. The "basic setup" uses a resist heater around the measurement cell for investigation of formaldehyde near vacuum conditions or formaldehyde/air samples after sequential admixing of air. The second setup, described for the first time in detail here, takes advantage of a constant flow formaldehyde/air regime which uses preheated air to reduce the necessary time for gas heating. We used the constant flow system to measure new pressure dependent LIF excitation spectra in the 343 nm spectral region (414 absorption band of formaldehyde). The third setup, based on a novel concept for fast gas heating via excitation of SF6 (chemically inert gas) using a TEA (transverse excitation at atmospheric pressure) CO2 laser, allows to further minimize both gas heating time and thermal decomposition. Here, an admixture of CO2 is served for real time temperature measurement based on Raman scattering. The applicability of the fast laser heating system has been demonstrated with gas mixtures of SF6 + air, SF6 + N2, as well as SF6 + N2 + CO2 at 1 bar total pressure.

  9. STS-113/11A: Assessment of Air Quality in the International Space Station (ISS) and Space Shuttle Based on Samples Returned in December 2002 and in May 2003 aboard Soyuz 5

    NASA Technical Reports Server (NTRS)

    James, John T.

    2003-01-01

    The toxicological assessments of grab sample canisters (GSCs) returned aboard STS-l13 and Soyuz 5 are reported. Analytical methods have not changed from earlier reports. Surrogate standard recoveries from the GSCs were 79-120% except as noted in the table. One sample was returned with the valve opened. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contributions). Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols (including acetone) are also shown for each sample. Octafluoropropane (OFP) has leaked from heat-exchange units in large quantities, so its concentration is tracked separately. Because formaldehyde is quantified from sorbent badges, its concentration is also listed separately. The table shows that the air quality in general was acceptable for crew respiration through the middle of December 2002. No conclusions can be made about the air quality after that date due to NASA's inability to return air samples from the ISS . Alcohols are not being controlled to the recently lowered guideline of 5 mg/m3, which was recommended to protect the water recovery systems. The airlock sample was taken during the regeneration of Met ox canisters in the adjacent Node. The trace pollutants were not increased above background; however, inspection of table 1 in the appendix shows a CO2 concentration of 17,000 mg/cu m, which is a relatively high concentration, but still below the 24-hour SMAC of23,000 mg/cu m. The control of OFP continues to be adequate at least through December 2002. Formaldehyde concentrations suggest that the high levels that were being found in the Lab atmosphere have subsided. This is probably attributable to the restoration of IMV in early February 2003 . Before the obstructing material was removed from ducts the Lab formaldehyde concentrations approached 0.06 mg/cu m, whereas after the repair the levels were near 0.04 mg/m3 . This does not mean that local sources in the Lab have been reduced, only that the excess of formaldehyde produced in the Lab is distributed into the whole volume of the ISS.

  10. Assessment of the impact of oxidation processes on indoor air pollution using the new time-resolved INCA-Indoor model

    NASA Astrophysics Data System (ADS)

    Mendez, Maxence; Blond, Nadège; Blondeau, Patrice; Schoemaecker, Coralie; Hauglustaine, Didier A.

    2015-12-01

    INCA-Indoor, a new indoor air quality (IAQ) model, has been developed to simulate the concentrations of volatile organic compounds (VOC) and oxidants considering indoor air specific processes such as: emission, ventilation, surface interactions (sorption, deposition, uptake). Based on the detailed version of SAPRC-07 chemical mechanism, INCA-Indoor is able to analyze the contribution of the production and loss pathways of key chemical species (VOCs, oxidants, radical species). The potential of this model has been tested through three complementary analyses: a comparison with the most detailed IAQ model found in the literature, focusing on oxidant species; realistic scenarios covering a large range of conditions, involving variable OH sources like HONO; and the investigation of alkenes ozonolysis under a large range of indoor conditions that can increase OH and HO2 concentrations. Simulations have been run changing nitrous acid (HONO) concentrations, NOx levels, photolysis rates and ventilation rates, showing that HONO can be the main source of indoor OH. Cleaning events using products containing D-limonene have been simulated at different periods of the day. These scenarios show that HOX concentrations can significantly increase in specific conditions. An assessment of the impact of indoor chemistry on the potential formation of secondary species such as formaldehyde (HCHO) and acetaldehyde (CH3CHO) has been carried out under various room configuration scenarios and a study of the HOx budget for different realistic scenarios has been performed. It has been shown that, under the simulation conditions, formaldehyde can be affected by oxidant concentrations via chemical production which can account for more than 10% of the total production, representing 6.5 ppb/h. On the other hand, acetaldehyde production is affected more by oxidation processes. When the photolysis rates are high, chemical processes are responsible for about 50% of the total production of acetaldehyde (9 ppb/h).

  11. Observation of volatile and semi-volatile carbonyls in an Algerian urban environment using dinitrophenylhydrazine/silica-HPLC and pentafluorophenylhydrazine/silica-GC-MS.

    PubMed

    Cecinato, Angelo; Yassaa, Noureddine; Di Palo, Vincenzo; Possanzin, Massimiliano

    2002-04-01

    Lower carbonyls and n-alkanals from C5 to C10 were measured from late autumn 2000 to summer 2001 in two urban areas in the Algerian territory: Algiers and Ouargla. They were collected on silica cartridges coated with dinitrophenylhydrazine (DNPH) and pentafluorophenylhydrazine (PFPH), which were analysed by HPLC-UV and high-resolution GC-MS. respectively. The two methods were used in parallel samplings in a suburban Algiers site and provided consistent results for semi-volatile congeners, as differences in the concentration data did not exceed 21% on average for individual carbonyl levels ranging from 0.0 to 0.5-2.6 microg m(-3). Concentrations of formaldehyde up to 27 and 5 microg m(-3) were monitored during 10 h samplings in the daytime in Algiers and Ouargla, respectively; acetaldehyde reached values of 13 and 5 microg m(-3), whilst acetone was the most abundant ketone with peak levels of 14 and 4 microg m(-3), respectively. High night-time levels of lower carbonyls were also measured at both locations. Among the semi-volatile alkanals, the highest levels were observed in suburban Algiers for hexanal and nonanal (2.2 microg m(-3)) and in downtown Algiers for valeraldehyde (2.6 microg m(-3)), whilst in Ouargla only hexanal and nonanal levels within the C5-C10 fraction exceeded 1 microg m(-3). Moreover, benzaldehyde concentrations as high as 5 microg m(-3) were measured in the centre of Algiers. Algiers data are comparable with those found in photochemically polluted urban areas of Europe and the USA. Strong correlations between formaldehyde and acetaldehyde and between formaldehyde and benzaldehyde were observed; by contrast, acetone did not show any correlation with the lower aldehydes, suggesting the existence of carbonyl sources other than vehicular traffic. Diurnal variations of almost all carbonyls suggested that motor vehicles were the most important source in the winter, whereas photochemical production appeared to predominate during the summer.

  12. Systematic studies of tannin–formaldehyde aerogels: preparation and properties

    PubMed Central

    Amaral-Labat, Gisele; Szczurek, Andrzej; Fierro, Vanessa; Pizzi, Antonio; Celzard, Alain

    2013-01-01

    Gelation of tannin–formaldehyde (TF) solutions was systematically investigated by changing pH and concentration of TF resin in water. In this way we constructed the TF phase diagram, from which chemical hydrogels could be described, and also synthesized thermoreversible tannin-based hydrogels. Conditions of non-gelation were also determined. Hydrogels were dried in supercritical CO2, leading to a broad range of TF aerogels. The latter were investigated for volume shrinkage, total porosity, micro-, meso- and macropore volumes, Brunauer–Emmett–Teller (BET) surface area, microscopic texture, mechanical and thermal properties. All these properties are discussed in relation to each other, leading to an accurate and self-consistent description of these bioresource-based highly porous materials. The conditions for obtaining the highest BET surface area or mesopore volume were determined and explained in relation to the preparation conditions. The highest BET surface area, 880 m2 g−1, is remarkably high for organic aerogels derived from a natural resource. PMID:27877559

  13. Systematic studies of tannin-formaldehyde aerogels: preparation and properties

    NASA Astrophysics Data System (ADS)

    Amaral-Labat, Gisele; Szczurek, Andrzej; Fierro, Vanessa; Pizzi, Antonio; Celzard, Alain

    2013-02-01

    Gelation of tannin-formaldehyde (TF) solutions was systematically investigated by changing pH and concentration of TF resin in water. In this way we constructed the TF phase diagram, from which chemical hydrogels could be described, and also synthesized thermoreversible tannin-based hydrogels. Conditions of non-gelation were also determined. Hydrogels were dried in supercritical CO2, leading to a broad range of TF aerogels. The latter were investigated for volume shrinkage, total porosity, micro-, meso- and macropore volumes, Brunauer-Emmett-Teller (BET) surface area, microscopic texture, mechanical and thermal properties. All these properties are discussed in relation to each other, leading to an accurate and self-consistent description of these bioresource-based highly porous materials. The conditions for obtaining the highest BET surface area or mesopore volume were determined and explained in relation to the preparation conditions. The highest BET surface area, 880 m2 g-1, is remarkably high for organic aerogels derived from a natural resource.

  14. Archean geochemistry of formaldehyde and cyanide and the oligomerization of cyanohydrin

    NASA Technical Reports Server (NTRS)

    Arrhenius, T.; Arrhenius, G.; Paplawsky, W.

    1994-01-01

    The sources and speciation of reduced carbon and nitrogen inferred for the early Archean are reviewed in terms of current observations and models, and known chemical reactions. Within this framework hydrogen cyanide and cyanide ion in significant concentration would have been eliminated by reaction with excess formaldehyde to form cyanohydrin (glycolonitrile), and with ferrous ion to formferrocyanide. Natural reactions of these molecules would under such conditions deserve special consideration in modeling of primordial organochemical processes. As a step in this direction, transformation reactions have been investigated involving glycolonitrile in the presence of water. We find that glycolonitrile, formed from formaldehyde and hydrogen cyanide or cyanide ion, spontaneously cyclodimerizes to 4-amino-2-hydroxymethyloxazole. The crystalline dimer is the major product at low temperatue (approximately 0 C); the yield diminishes with increasing temperature at the expense of polymerization and hydrolysis products. Hydrolysis of glycolamide and of oxazole yields a number of simpler organic molecules, including ammonia and glycolamide. The spontaneous polymerization of glycolonitrile and its dimer gives rise to soluble, cationic oligomers of as yet unknown structure, and, unless arrested, to a viscous liquid, insoluble in water. A loss of cyanide by reaction with formaldehyde, inferred for the early terrestrial hydrosphere and cryosphere would present a dilemma for hypotheses invoking cyanide and related compounds as concentrated reactants capable of forming biomolecular precursor species. Attempts to escape from its horns may take advantage of the efficient concentration and separation of cyanide as solid ferriferrocyanide, and most directly of reactions of glycolonitrile and its derivatives.

  15. Formation, Accumulation, and Hydrolysis of Endogenous and Exogenous Formaldehyde-Induced DNA Damage

    PubMed Central

    Yu, Rui; Lai, Yongquan; Hartwell, Hadley J.; Moeller, Benjamin C.; Doyle-Eisele, Melanie; Kracko, Dean; Bodnar, Wanda M.; Starr, Thomas B.; Swenberg, James A.

    2015-01-01

    Formaldehyde is not only a widely used chemical with well-known carcinogenicity but is also a normal metabolite of living cells. It thus poses unique challenges for understanding risks associated with exposure. N2-hydroxymethyl-dG (N2-HOMe-dG) is the main formaldehyde-induced DNA mono-adduct, which together with DNA-protein crosslinks (DPCs) and toxicity-induced cell proliferation, play important roles in a mutagenic mode of action for cancer. In this study, N2-HOMe-dG was shown to be an excellent biomarker for direct adduction of formaldehyde to DNA and the hydrolysis of DPCs. The use of inhaled [13CD2]-formaldehyde exposures of rats and primates coupled with ultrasensitive nano ultra performance liquid chromatography-tandem mass spectrometry permitted accurate determinations of endogenous and exogenous formaldehyde DNA damage. The results show that inhaled formaldehyde only reached rat and monkey noses, but not tissues distant to the site of initial contact. The amounts of exogenous adducts were remarkably lower than those of endogenous adducts in exposed nasal epithelium. Moreover, exogenous adducts accumulated in rat nasal epithelium over the 28-days exposure to reach steady-state concentrations, followed by elimination with a half-life (t1/2) of 7.1 days. Additionally, we examined artifact formation during DNA preparation to ensure the accuracy of nonlabeled N2-HOMe-dG measurements. These novel findings provide critical new data for understanding major issues identified by the National Research Council Review of the 2010 Environmental Protection Agency’s Draft Integrated Risk Information System Formaldehyde Risk Assessment. They support a data-driven need for reflection on whether risks have been overestimated for inhaled formaldehyde, whereas underappreciating endogenous formaldehyde as the primary source of exposure that results in bone marrow toxicity and leukemia in susceptible humans and rodents deficient in DNA repair. PMID:25904104

  16. Granular Formulations of Steinernema carpocapsae (strain All) (Nematoda: Rhabditida) with Improved Shelf Life

    PubMed Central

    Connick, W. J.; Nickle, W. R.; Williams, K. S.; Vinyard, B. T.

    1994-01-01

    Shelf life (nematode survival) of Steinernema carpocapsae (strain All) nematodes at 21 C in "Pesta" granules, made by a pasta-like process, was increased from 8 to 26 weeks by incorporating low concentrations of formaldehyde. Pesta samples containing an average of 427,000 nematodes/g were prepared with wheat flour (semolina or bread flour), kaolin, bentonite, peat moss, nematode slurry, and formaldehyde (0-1.4% w/w) and were dried to a water content of 23.6-26.9%. Nematodes emerged from Pesta (S. carpocapsae) granules when placed in water or on moist filter paper. Incorporation of 0.2% w/w formaldehyde (nominal; 0.05% by analysis) was optimum for increasing nematode survival in semolina-based Pesta, and also inhibited fungal growth on the granules. Bread flour Pesta samples prepared by formaldehyde addition to the nematode slurry prior to dough preparation, rather than by addition to a mixture of dry ingredients, had longer shelf life. Nematodes recovered from granules made with 0.2% formaldehyde and stored 20 weeks at 21 C caused 100% mortality of wax moth (Galleria mellonella) larvae. PMID:19279903

  17. Formaldehyde migration in aqueous extracts from paper and cardboard food packaging materials in Turkey.

    PubMed

    Dogan, Canan Ekinci; Sancı, Rukiye

    2015-01-01

    Migration of formaldehyde to aqueous extracts from paper and cardboard food packaging materials was determined by an ultraviolet visible-spectrophotometric method at 410 nm. Intraday and interday precision of the method, expressed as coefficient of variation, varied between 1.5 to 4.4% and 7 to 8.8%, respectively. The limit of quantification was 0.28 mg kg(-1) for formaldehyde in aqueous extracts. The recovery of the method was over 90% for two different concentration levels in aqueous extracts. The method was applied to the migration of formaldehyde to aqueous extracts from 31 different paper and cardboard materials collected from the packaging sector, intended for food contact, such as tea filters, hot water filters, paper pouches and folding boxes. The results were between limit of detection 0.23 mg/kg and 40 mg kg(-1) and were evaluated according to the relevant directives.

  18. Rate coefficients for the reaction of formaldehyde with HO2 radicals from fluorescence spectroscopy of HOCH2OO radicals

    NASA Astrophysics Data System (ADS)

    Bunkan, Arne; Amédro, Damien; Crowley, John

    2017-04-01

    The reaction of formaldehyde with HO2 radicals constitutes a minor, but significant sink of formaldehyde in the troposphere as well as a possible interference in other formaldehyde photooxidation experiments. HCHO + HO2 ⇌ HOCH2OO (1) Due to the difficulty of simultaneously monitoring the reactant and product concentrations while preventing interfering secondary chemistry, there is a considerable uncertainty in the literature values for the reaction rate coefficients. We have used two photon, excited fragment spectroscopy (TPEFS), originally developed for monitoring HNO3 formation in kinetic experiments, to monitor the formation of the HOCH2OO radical. Dispersed and single wavelength fluorescence emission following the 193 nm photolysis of HOCH2OO have been recorded and analysed. Characterisation of the method is presented along with rate coefficients for the reaction of HCHO with HO2 radicals at tropospheric temperatures.

  19. Evaluation of a low-temperature steam and formaldehyde sterilizer.

    PubMed

    Kanemitsu, K; Kunishima, H; Imasaka, T; Ishikawa, S; Harigae, H; Yamato, S; Hirayama, Y; Kaku, M

    2003-09-01

    We evaluated a low-temperature steam and formaldehyde (LTSF) sterilizer based on the draft European Standard prEN 14180. Microbiological tests were conducted on small and full loads using process challenge devices in five programs (P1-P5). With small loads all tests showed no growth of Bacillus stearothermophilus (ATCC7953) spores. However, positive cultures were observed with full-load tests using P5 (sterilization temperature, 50 degrees C). Our data indicated that the load influenced the efficacy of the LTSF sterilizer. Desorption tests were conducted to determine residual formaldehyde in indicator strips. The mean concentrations of formaldehyde in P1-P5 were 31.9, 56.3, 54.9, 82.2 and 180.6 microg, respectively, which are below the limits allowed by the draft Standard. Our results indicate that the LTSF sterilizer is useful for sterilization because of its excellent efficacy, short handling time, and safety.

  20. Exposure to formaldehyde: effects on pulmonary function.

    PubMed

    Alexandersson, R; Hedenstierna, G; Kolmodin-Hedman, B

    1982-01-01

    Forty-seven subjects exposed to formaldehyde (mean air concentration 0.45 mg/m3) and 20 unexposed subjects, all of whom were employed at a carpentry shop, were studied with regard to symptoms and pulmonary function. Symptoms involving eyes and throat as well as chest oppression were significantly more common in the exposed subjects than in the unexposed controls. Spirometry and single breath nitrogen washout were normal Monday morning before exposure to formaldehyde. A reduction in forced expiratory volume in 1 sec by an average of 0.2 L (P = .002), percent forced expiratory volume by 2% (P = .04), maximum midexpiratory flow by 0.3 L/sec (P = .04) and an increase in closing volume in percentage of vital capacity by 3.4% (P - .002) were seen after a day of work and exposure to formaldehyde, suggesting bronchoconstriction. Smokers and nonsmokers displayed similar changes in spirometry and nitrogen washout.

  1. High-Performance Cellulose Nanofibril Composite Films

    Treesearch

    Yan Qing; Ronald Sabo; Yiqiang Wu; Zhiyong Cai

    2012-01-01

    Cellulose nanofibril/phenol formaldehyde (CNF/PF) composite films with high work of fracture were prepared by filtering a mixture of 2,2,6,6tetramethylpiperidine-1-oxyl (TEMPO) oxidized wood nanofibers and water-soluble phenol formaldehyde with resin contents ranging from 5 to 20 wt%, followed by hot pressing. The composites were characterized by tensile testing,...

  2. Effect of L-Cysteine Pretreatment on the Control of Formaldehyde and Browning of the Culinary-Medicinal Shiitake Mushroom, Lentinus edodes (Higher Basidiomycetes) during Drying and Canning Processes.

    PubMed

    Li, Guijie; Wang, Qiang; Sun, Peng; Chen, Feng; Chen, Xiaolin; Wang, Cun; Zhao, Xin

    2015-01-01

    Fresh culinary-medicinal Shiitake mushrooms (Lentinus edodes) were pretreated by soaking in 0.1 mg/mL of L-cysteine solution for 1 hour; then the variation in formaldehyde content and browning degree were studied during hot air-drying and canning processes. The results indicated that L-cysteine pretreatment significantly inhibited the increase of formaldehyde content and browning during the drying process; these increases in the pretreatment groups ranged from 7.0% to 14.0% and 65.4% to 68.9%, respectively, of that of the control groups. While the L-cysteine pretreatment did not seem to have a significant effect on controlling the formaldehyde content during the canning process, the increase of the browning degree of the canned products of the pretreatment groups ranged from 64.8% to 78.5% of that of the control groups, indicating the inhibitive effect of L-cysteine on browning during the canning process of L. edodes. Overall, L-cysteine pretreatment improved the sensory quality of both dried and canned L. edodes.

  3. Gas-diffusion microextraction coupled with spectrophotometry for the determination of formaldehyde in cork agglomerates.

    PubMed

    Brandão, Pedro F; Ramos, Rui M; Valente, Inês M; Almeida, Paulo J; Carro, Antonia M; Lorenzo, Rosa A; Rodrigues, José A

    2017-04-01

    In this work, a simple methodology was developed for the extraction and determination of free formaldehyde content in cork agglomerate samples. For the first time, gas-diffusion microextraction was used for the extraction of volatile formaldehyde directly from samples, with simultaneous derivatization with acetylacetone (Hantzsch reaction). The absorbance of the coloured solution was read in a spectrophotometer at 412 nm. Different extraction parameters were studied and optimized (extraction temperature, sample mass, volume of acceptor solution, extraction time and concentration of derivatization reagent) by means of an asymmetric screening. The developed methodology proved to be a reliable tool for the determination of formaldehyde in cork agglomerates with the following suitable method features: low LOD (0.14 mg kg -1 ) and LOQ (0.47 mg kg -1 ), r 2  = 0.9994, and intraday and interday precision of 3.5 and 4.9%, respectively. The developed methodology was applied to the determination of formaldehyde in different cork agglomerate samples, and contents between 1.9 and 9.4 mg kg -1 were found. Furthermore, formaldehyde was also determined by the standard method EN 717-3 for comparison purposes; no significant differences between the results of both methods were observed. Graphical abstract Representation of the GDME system and its main components.

  4. Statistical modelling of formaldehyde occupational exposure levels in French industries, 1986-2003.

    PubMed

    Lavoué, Jérôme; Vincent, Raymond; Gérin, Michel

    2006-04-01

    Occupational exposure databanks (OEDBs) have been cited as sources of exposure data for exposure surveillance and exposure assessment in epidemiology. In 2003, an extract was made from COLCHIC, the French national OEDB, of all concentrations of formaldehyde. The data were analysed with extended linear mixed-effects models in order to identify influent variables and elaborate a multi-sector picture of formaldehyde exposures. Respectively, 1401 and 1448 personal and area concentrations were available for the analysis. The fixed effects of the personal and area models explained, respectively, 57 and 53% of the total variance. Personal concentrations were related to the sampling duration (short-term higher than TWA levels), decreased with the year of sampling (-9% per year) and were higher when local exhaust ventilation was present. Personal levels taken during planned visits and for occupational illness notification purpose were consistently lower than those taken during ventilation modification programmes or because the hygienist suspected the presence of significant risk or exposure. Area concentrations were related to the sampling duration (short-term higher than TWA levels), and decreased with the year of sampling (-7% per year) and when the measurement sampling flow increased. Significant within-facility (correlation coefficient 0.4-0.5) and within-sampling campaign correlation (correlation coefficient 0.8) was found for both area and personal data. The industry/task classification appeared to have the greatest influence on exposure variability while the sample duration and the sampling flow were significant in some cases. Estimates made from the models for year 2002 showed elevated formaldehyde exposure in the fields of anatomopathological and biological analyses, operation of gluing machinery in the wood industry, operation and monitoring of mixers in the pharmaceutical industry, and garages and warehouses in urban transit authorities.

  5. Identifying Sources of Volatile Organic Compounds and Aldehydes in a High Performance Building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, Anna C.; Russell, Marion; Lee, Wen-Yee

    The developers of the Paharpur Business Center (PBC) and Software Technology Incubator Park in New Delhi, India offer an environmentally sustainable building with a strong emphasis on energy conservation, waste minimization and superior indoor air quality (IAQ). To achieve the IAQ goal, the building utilizes a series of air cleaning technologies for treating the air entering the building. These technologies include an initial water wash followed by ultraviolet light treatment and biolfiltration using a greenhouse located on the roof and numerous plants distributed throughout the building. Even with the extensive treatment of makeup air and room air in the PBC,more » a recent study found that the concentrations of common volatile organic compounds and aldehydes appear to rise incrementally as the air passes through the building from the supply to the exhaust. This finding highlights the need to consider the minimization of chemical sources in buildings in combination with the use of advanced air cleaning technologies when seeking to achieve superior IAQ. The goal of this project was to identify potential source materials for indoor chemicals in the PBC. Samples of building materials, including wood paneling (polished and unpolished), drywall, and plastic from a hydroponic drum that was part of the air cleaning system, were collected from the building for testing. All materials were collected from the PBC building and shipped to the Lawrence Berkeley National Laboratory (LBNL) for testing. The materials were pre-conditioned for two different time periods before measuring material and chemical specific emission factors for a range of VOCs and Aldehydes. Of the six materials tested, we found that the highest emitter of formaldehyde was new plywood paneling. Although polish and paint contribute to some VOC emissions, the main influence of the polish was in altering the capacity of the surface to accumulate formaldehyde. Neither the new nor aged polish contributed significantly to formaldehyde emissions. The VOC emission stream (excluding formaldehyde) was composed of up to 18 different chemicals and the total VOC emissions ranged in magnitude from 7 mu g/m2/h (old wood with old polish) to>500 mu g/m2/h (painted drywall). The formaldehyde emissions from drywall and old wood with either new or old polish were ~;;15 mu g/m2/h while the new wood material emitted>100 mu g/m2/h. However, when the projected surface area of each material in the building was considered, the new wood, old wood and painted drywall material all contributed substantially to the indoor formaldehyde loading while the coatings contributed primarily to the VOCs.« less

  6. Measurements of benzene and formaldehyde in a medium sized urban environment. Indoor/outdoor health risk implications on special population groups.

    PubMed

    Pilidis, Georgios A; Karakitsios, Spyros P; Kassomenos, Pavlos A; Kazos, Elias A; Stalikas, Constantine D

    2009-03-01

    In the present study, the results of a measurement campaign aiming to assess cancer risk among two special groups of population: policemen and laboratory technicians exposed to the toxic substances, benzene and formaldehyde are presented. The exposure is compared to general population risk. The results show that policemen working outdoor (traffic regulation, patrol on foot or in vehicles, etc.) are exposed at a significantly higher benzene concentration (3-5 times) than the general population, while the exposure to carbonyls is in general lower. The laboratory technicians appear to be highly exposed to formaldehyde while no significant variation of benzene exposure in comparison to the general population is recorded. The assessment revealed that laboratory technicians and policemen run a 20% and 1% higher cancer risk respectively compared to the general population. Indoor working place air quality is more significant in assessing cancer risk in these two categories of professionals, due to the higher Inhalation Unit Risk (IUR) of formaldehyde compared to benzene. Since the origin of the danger to laboratory technicians is clear (use of chemicals necessary for the experiments), in policemen the presence of carbonyls in indoor air concentrations due to smoking or used materials constitute a danger equal to the exposure to traffic originated air pollutants.

  7. [Sick building syndrome and HVAC system: MVOC from air filters].

    PubMed

    Schleibinger, H W; Wurm, D; Möritz, M; Böck, R; Rüden, H

    1997-08-01

    Growth and emissions of volatile metabolites of microorganisms on air filters are suspected to contribute to health complaints in ventilated rooms. To prove the microbiological production of volatile organic compounds (MVOC), concentrations of aldehydes and ketones were determined in two large HVAC systems. The in situ derivated aldehydes and ketones (as 2,4-dinitrophenyl-hydrazones) were analysed by HPLC and UV detection. The detection limit of each compound was 1 ppb (margin of error < 10%). Field measurements were carried out before and after the prefilters and the main filters, respectively, to investigate whether aldehydes and ketones increase in concentration after filters of HVAC systems. First results show that the compounds formaldehyde, acetaldehyde and acetone could be detected before and after the filters. The concentrations of these VOC after the filters were significantly increased--as a mean over twenty measurements--, especially as far as filters made of glass fibre are concerned. However the found concentrations were low and mostly comparable to outdoor findings. In simultaneous laboratory experiments pieces of used filter material of one HVAC system and unused filter pieces (for blank values) were examined in small incubation chambers to investigate the possible production of MVOC. For the incubation a temperature of 20 degrees C and a relative humidity of 95% was chosen. In these experiments an almost identical spectrum of compounds (formaldehyde and acetone) was found as in the field measurements. The concentrations of these compounds were higher in the chambers with the used filter pieces. The concentration of acetone ranged up to almost 12 mg/m3.--As our field experiments correspond with our laboratory experiments, we assume that the microbial production of volatile organic compounds in HVAC systems under operating conditions is possible.

  8. Contribution of ozone to airborne aldehyde formation in Paris homes.

    PubMed

    Rancière, Fanny; Dassonville, Claire; Roda, Célina; Laurent, Anne-Marie; Le Moullec, Yvon; Momas, Isabelle

    2011-09-15

    Indoor aldehydes may result from ozone-initiated chemistry, mainly documented by experimental studies. As part of an environmental investigation included in the PARIS birth cohort, the aim of this study was to examine ozone contribution to airborne aldehyde formation in Paris homes. Formaldehyde, acetaldehyde and hexaldehyde levels, as well as styrene, nitrogen dioxide and nicotine concentrations, comfort parameters and carbon dioxide levels, were measured twice during the first year of life of the babies. Ambient ozone concentrations were collected from the closest background station of the regional air monitoring network. Traffic-related nitrogen oxide concentrations in front of the dwellings were estimated by an air pollution dispersion model. Home characteristics and families' way of life were described by questionnaires. Stepwise multiple linear regression models were used to link aldehyde levels with ambient ozone concentrations and a few aldehyde precursors involved in oxidation reactions, adjusting for other indoor aldehyde sources, comfort parameters and traffic-related nitrogen oxides. A 4 and 11% increase in formaldehyde and hexaldehyde levels was pointed out when 8-hour ozone concentrations increased by 20 μg/m(3). The influence of potential precursors such as indoor styrene level and frequent use of air fresheners, containing unsaturated volatile organic compounds as terpenes, was also found. Thus, our results suggest that ambient ozone can significantly impact indoor air quality, especially with regard to formaldehyde and hexaldehyde levels. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Exposure to formaldehyde in health care: an evaluation of the white blood count differential.

    PubMed

    Sancini, Angela; Rosati, Maria Valeria; De Sio, Simone; Casale, Teodorico; Caciari, Tiziana; Samperi, Ilaria; Sacco, Carmina; Fortunato, Bruna Rita; Pimpinella, Benedetta; Andreozzi, Giorgia; Tomei, Gianfranco; Tomei, Francesco

    2014-01-01

    The aim of our study is to estimate if the occupational exposure to formaldehyde can cause alterations of leukocytes plasma values in health care workers employed in a big hospital compared to a control group. We studied employees in operating rooms and laboratories of Pathological Anatomy, Molecular Biology, Molecular Neurobiology, Parasitology and Experimental Oncology (exposed to formaldehyde) and employees of the Department of Internal Medicine (not exposed). The sample studied was composed of 86 workers exposed to formaldehyde and 86 workers not exposed. All subjects underwent a clinical-anamnaestic examination and for all subjects were measured the following values: total white blood cells, lymphocytes, monocytes and granulocytes (eosinophils, basophils, neutrophils). Statistical analysis of data was based on calculation of the mean, standard deviation and the distribution into classes according to the nature of each variable. Differences were considered significant when p was < 0.05. The mean and the distribution of values of the white blood cells, lymphocytes, monocytes and eosinophils were significantly higher in male subjects exposed to formaldehyde compared to not-exposed. Not significant differences were found in female subjects exposed compared to not exposed. The results underline the importance of a careful risk assessment of workers exposed to formaldehyde and the use of appropriate preventive measures. The health care trained and informed about the risks he is exposed to should observe good standards of behavior and, where it is not possible to use alternative materials, the indoor concentrations of formaldehyde should never exceed occupational limit values.

  10. 'Real-world' compensatory behaviour with low nicotine concentration e-liquid: subjective effects and nicotine, acrolein and formaldehyde exposure.

    PubMed

    Dawkins, Lynne; Cox, Sharon; Goniewicz, Maciej; McRobbie, Hayden; Kimber, Catherine; Doig, Mira; Kośmider, Leon

    2018-06-07

    To compare the effects of i) high versus low nicotine concentration e-liquid, ii) fixed versus adjustable power and iii) the interaction between the two on: a) vaping behaviour, b) subjective effects, c) nicotine intake, and d) exposure to acrolein and formaldehyde in e-cigarette users vaping in their everyday setting. Counterbalanced, repeated measures with four conditions: i) low nicotine (6 mg/mL)/fixed power; ii) low nicotine/adjustable power; iii) high nicotine (18 mg/mL)/fixed power; iv) high nicotine/adjustable power. London and the South East, England. Twenty experienced e-cigarette users (recruited between September 2016 and February 2017) vaped ad libitum using an eVic Supreme™ with a 'Nautilus Aspire' tank over four weeks (one week per condition). Puffing patterns (daily puff number [PN], puff duration [PD], inter-puff interval [IPI]), mL of e-liquid consumed, changes to power (where permitted), and subjective effects (urge to vape, nicotine withdrawal symptoms) were measured in each condition. Nicotine intake was measured via salivary cotinine. 3-hydroxypropylmercapturic acid (3-HPMA), a metabolite of the toxicant acrolein, and formate, a metabolite of the carcinogen formaldehyde, were measured in urine. There was a significant nicotine concentration x power interaction for PD (p<0.01). PD was longer with low nicotine/fixed power compared with i) high nicotine/fixed power (p< 0.001 and ii) low nicotine/adjustable power (p< 0.01). PN and liquid consumed were higher in the low versus high nicotine condition (main effect of nicotine, p<0.05). Urge to vape and withdrawal symptoms were lower, and nicotine intake was higher, in the high nicotine condition (main effects of nicotine: p<0.01). Whilst acrolein levels did not differ, there was a significant nicotine x power interaction for formaldehyde (p<0.05). Use of a lower nicotine concentration e-liquid may be associated with compensatory behaviour (e.g., higher number and duration of puffs) and increases in negative affect, urge to vape, and formaldehyde exposure. This article is protected by copyright. All rights reserved.

  11. Formaldehyde activation of mitoxantrone yields CpG and CpA specific DNA adducts

    PubMed Central

    Parker, Belinda S.; Cutts, Suzanne M.; Cullinane, Carleen; Phillips, Don R.

    2000-01-01

    Recently we have found that mitoxantrone, like Adriamycin, can be activated by formaldehyde and subsequently form adducts which stabilise double-stranded DNA in vitro. This activation by formaldehyde may be biologically relevant since formaldehyde levels are elevated in those tumours in which mitoxantrone is most cytotoxic. In vitro transcription analysis revealed that these adducts block the progression of RNA polymerase during transcription and cause truncated RNA transcripts. There was an absolute requirement for both mitoxantrone and formaldehyde in transcriptional blockage formation and the activated complex was found to exhibit site specificity, with blockage occurring prior to CpG and CpA sites in the DNA (non-template strand). The stability of the adduct at 37°C was site dependent. The half-lives ranged from 45 min to ~5 h and this was dependent on both the central 2 bp blockage site as well as flanking sequences. The CpG specificity of mitoxantrone adduct sites was also confirmed independently by a λ exonuclease digestion assay. PMID:10648792

  12. Assessment of lipid peroxidation and p53 as a biomarker of carcinogenesis among workers exposed to formaldehyde in the cosmetic industry.

    PubMed

    Attia, Dalia; Mansour, Neveen; Taha, Fatma; Seif El Dein, Aisha

    2016-06-01

    Despite the wide use of cosmetic products, they exert a number of health effects on tissues ranging from irritation to cancer. Our study aimed at assessing the effect of formaldehyde on lipid peroxidation and verifying the susceptibility to carcinogenesis using p53 as a biomarker among workers exposed to formaldehyde in cosmetic industry. Our entire exposed group (n = 40) and the controls (n = 20) were subjected to estimation of formate in urine, serum malondialdehyde (MDA), and p53. Also, complete blood picture, liver, and kidney function tests were carried out. The study revealed significant increase in the levels of formate, MDA, and p53 in the exposed group compared with their control group. Our results showed that workers in cosmetic industry had significant exposure to formaldehyde. Furthermore, the study pointed to the negative impact of formaldehyde as a cause of oxidative stress and suspicious carcinogen. © The Author(s) 2014.

  13. A Novel Enzyme-Linked Immunosorbent Assay for Diagnosis of Mycobacterium avium subsp. paratuberculosis Infections (Johne's Disease) in Cattle

    PubMed Central

    Speer, C. A.; Scott, M. Cathy; Bannantine, John P.; Waters, W. Ray; Mori, Yasuyuki; Whitlock, Robert H.; Eda, Shigetoshi

    2006-01-01

    Enzyme-linked immunosorbent assays (ELISAs) for the diagnosis of Johne's disease (JD), caused by Mycobacterium avium subsp. paratuberculosis, were developed using whole bacilli treated with formaldehyde (called WELISA) or surface antigens obtained by treatment of M. avium subsp. paratuberculosis bacilli with formaldehyde and then brief sonication (called SELISA). ELISA plates were coated with either whole bacilli or sonicated antigens and tested for reactivity against serum obtained from JD-positive and JD-negative cattle or from calves experimentally inoculated with M. avium subsp. paratuberculosis, Mycobacterium avium subsp. avium, or Mycobacterium bovis. Because the initial results obtained from the WELISA and SELISA were similar, most of the subsequent experiments reported herein were performed using the SELISA method. To optimize the SELISA test, various concentrations (3.7 to 37%) of formaldehyde and intervals of sonication (2 to 300 s) were tested. With an increase in formaldehyde concentration and a decreased interval of sonication, there was a concomitant decrease in nonspecific binding by the SELISA. SELISAs prepared by treating M. avium subsp. paratuberculosis with 37% formaldehyde and then a 2-s burst of sonication produced the greatest difference (7×) between M. avium subsp. paratuberculosis-negative and M. avium subsp. paratuberculosis-positive serum samples. The diagnostic sensitivity and specificity for JD by the SELISA were greater than 95%. The SELISA showed subspecies-specific detection of M. avium subsp. paratuberculosis infections in calves experimentally inoculated with M. avium subsp. paratuberculosis or other mycobacteria. Based on diagnostic sensitivity and specificity, the SELISA appears superior to the commercial ELISAs routinely used for the diagnosis of JD. PMID:16682472

  14. Production and in vitro evaluation of soy protein-based biofilms as a support for human keratinocyte and fibroblast culture.

    PubMed

    Curt, Sèverine; Subirade, Muriel; Rouabhia, Mahmoud

    2009-06-01

    This study presents results on soy protein isolate (SPI) biofilm production and the corresponding effect on the stability and toxicity of the derived films. SPI biofilms were prepared from SPI chemically treated with formaldehyde at various concentrations (0%, 1%, 2%, and 3%) as cross-linking agents. In vitro SPI biofilm degradation was evaluated as a function of water absorption leading to weight and size modifications. SPI biofilm toxicity was determined as a function of human keratinocyte and fibroblast adhesion, viability, and proliferation. Cytokine gene expression supported this using reverse transcriptase polymerase chain reaction techniques. Our results confirm that SPI can be used to produce biofilms. The resulting SPI biofilms without formaldehyde swell significantly, which leads to their physical instability. Formaldehyde treatment enhanced the mechanical properties of these biofilms by covalently cross-linking polypeptide chains. The decreased water absorption was dependent on the amount of formaldehyde present. SPI biofilms with 2% and 3% formaldehyde were highly stable and easier to manipulate than those with 0% and 1% formaldehyde. Tissue culture analyses revealed that the SPI biofilms without formaldehyde were non-toxic to human cells (keratinocytes and fibroblasts). The presence of formaldehyde in biofilms did not have any effects on cell viability, adhesion, or proliferation. This was supported by the high level of messenger RNA expression of interleukin-1 beta (IL-1beta) and tumor necrosis factor alpha by the keratinocytes and of IL-6 and IL-8 by the fibroblasts. Overall, we produced a stable, non-toxic soy protein support, which may be of potential interest in medical applications such as cell culture matrices and damaged tissue replacement.

  15. Measurement of endogenous versus exogenous formaldehyde-induced DNA-protein crosslinks in animal tissues by stable isotope labeling and ultrasensitive mass spectrometry

    PubMed Central

    Lai, Yongquan; Yu, Rui; Hartwell, Hadley J.; Moeller, Benjamin C.; Bodnar, Wanda M.; Swenberg, James A.

    2016-01-01

    DNA-protein crosslinks (DPCs) arise from a wide range of endogenous and exogenous chemicals, such as chemotherapeutic drugs and formaldehyde. Importantly, recent identification of aldehydes as endogenous genotoxins in Fanconi anemia has provided new insight into disease causation. Due to their bulky nature, DPCs pose severe threats to genome stability, but previous methods to measure formaldehyde-induced DPCs were incapable of discriminating between endogenous and exogenous sources of chemical. In this study, we developed methods that provide accurate and distinct measurements of both exogenous and endogenous DPCs in a structurally-specific manner. We exposed experimental animals to stable isotope-labeled formaldehyde ([13CD2]-formaldehyde) by inhalation and performed ultrasensitive mass spectrometry to measure endogenous (unlabeled) and exogenous (13CD2-labeled) DPCs. We found that exogenous DPCs readily accumulated in nasal respiratory tissues, but were absent in tissues distant to the site of contact. This observation together with the finding that endogenous formaldehyde-induced DPCs were present in all tissues examined suggests that endogenous DPCs may be responsible for increased risks of bone marrow toxicity and leukemia. Furthermore, the slow rate of DPC repair provided evidence for persistence of DPCs. In conclusion, our method for measuring endogenous and exogenous DPCs presents a new perspective for the potential health risks inflicted by endogenous formaldehyde, and may inform improved disease prevention and treatment strategies. PMID:26984759

  16. Consumer inhalation exposure to formaldehyde from the use of personal care products/cosmetics.

    PubMed

    Lefebvre, Marc-André; Meuling, Wim J A; Engel, Roel; Coroama, Manuela C; Renner, Gerald; Pape, Wolfgang; Nohynek, Gerhard J

    2012-06-01

    We measured consumer exposure to formaldehyde (FA) from personal care products (PCP) containing FA-releasing preservatives. Six study subjects applied facial moisturiser, foundation, shower gel, shampoo, deodorant, hair conditioner, hair styling gel or body lotion at the 90th percentile amount of EU PCP consumer use. FA air concentrations were measured in the empty room, in the presence of study subjects prior to PCP use, and for one hour (breathing zone, area monitoring) after PCP use. The mean FA air concentration in the empty bathroom was 1.32 ± 0.67 μg/m³, in the presence of subjects it was 2.33 ± 0.86 μg/m³). Except for body lotion and hair conditioner (6.2 ± 0.1.9 or 4.5 ± 0.1.5 μg/m³, respectively), mean 1-h FA air concentrations after PCP use were similar to background. Peak FA air concentrations, ranging from baseline values (2.2 μg/m³; shower gel) to 11.5 μg/m³ (body lotion), occurred during 0-5 to 5-10 min after PCP use. Despite of exaggerated exposure conditions, FA air levels were a fraction of those considered to be safe (120 μg/m³), occurring in indoor air (22-124 μg/m³) or expired human breath (1.4-87 μg/m³). Overall, our data yielded evidence that inhalation of FA from the use of PCP containing FA-releasers poses no risk to human health. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Phenoxyethanol as a nontoxic substitute for formaldehyde in long-term preservation of human anatomical specimens for dissection and demonstration purposes.

    PubMed

    Frølich, K W; Andersen, L M; Knutsen, A; Flood, P R

    1984-02-01

    Formaldehyde has recently been declared a potential carcinogen. Occupational health authorities throughout the world are therefore likely to put stricter regulations to its use also within anatomical disciplines. We have been able to reduce the atmospheric concentration of formaldehyde in our dissection rooms to below the detection limit of a conventional Dräger tube multigas analyzer (i.e., below 0.5 ppm or 0.6 mg formaldehyde/m3 air), by extracting previously formaldehyde-fixed material for more than 3 months in 1% phenoxyethanol in tap water. In this fluid our material has remained soft and flexible with a consistency and color retention suitable for dissection and demonstration purposes for up to 10 years. Fungal attacks are rare and we have been unable to raise bacteria from such specimens. Even the microscopical structure of most tissues remains satisfactory after 5 years in 1% phenoxyethanol. The unpleasant and irritating smell traditionally felt in dissection rooms is almost absent in our facilities, but some of our students still mention slight odor, headache, drowsiness, and mild eye, nose, and throat irritation during their dissection practice periods.

  18. Ventilation in homes infested by house-dust mites.

    PubMed

    Sundell, J; Wickman, M; Pershagen, G; Nordvall, S L

    1995-02-01

    Thirty single-family homes with either high (> or = 2000 ng/g) or low (< or = 1000 ng/g) house-dust mite (HDM) allergen levels in mattress dust were examined for ventilation, thermal climate, and air quality (formaldehyde and total volatile organic compounds (TVOC). Elevated concentrations of HDM allergen in mattress and floor dust were associated with the difference in absolute humidity between indoor and outdoor air, as well as with low air-change rates of the home, particularly the bedroom. No correlation was found between concentration of TVOC or formaldehyde in bedroom air and HDM allergen concentration. In regions with a cold winter climate, the air-change rate of the home and the infiltration of outdoor air into the bedroom appear to be important for the infestation of HDM.

  19. Gas-phase formaldehyde adsorption isotherm studies on activated carbon: correlations of adsorption capacity to surface functional group density.

    PubMed

    Carter, Ellison M; Katz, Lynn E; Speitel, Gerald E; Ramirez, David

    2011-08-01

    Formaldehyde (HCHO) adsorption isotherms were developed for the first time on three activated carbons representing one activated carbon fiber (ACF) cloth, one all-purpose granular activated carbon (GAC), and one GAC commercially promoted for gas-phase HCHO removal. The three activated carbons were evaluated for HCHO removal in the low-ppm(v) range and for water vapor adsorption from relative pressures of 0.1-0.9 at 26 °C where, according to the IUPAC isotherm classification system, the adsorption isotherms observed exhibited Type V behavior. A Type V adsorption isotherm model recently proposed by Qi and LeVan (Q-L) was selected to model the observed adsorption behavior because it reduces to a finite, nonzero limit at low partial pressures and it describes the entire range of adsorption considered in this study. The Q-L model was applied to a polar organic adsorbate to fit HCHO adsorption isotherms for the three activated carbons. The physical and chemical characteristics of the activated carbon surfaces were characterized using nitrogen adsorption isotherms, X-ray photoelectron spectroscopy (XPS), and Boehm titrations. At low concentrations, HCHO adsorption capacity was most strongly related to the density of basic surface functional groups (SFGs), while water vapor adsorption was most strongly influenced by the density of acidic SFGs.

  20. Transformation efficiency and formation of transformation products during photochemical degradation of TCE and PCE at micromolar concentrations

    PubMed Central

    2014-01-01

    Background Trichloroethene and tetrachloroethene are the most common pollutants in groundwater and two of the priority pollutants listed by the U.S. Environmental Protection Agency. In previous studies on TCE and PCE photolysis and photochemical degradation, concentration ranges exceeding environmental levels by far with millimolar concentrations of TCE and PCE have been used, and it is not clear if the obtained results can be used to explain the degradation of these contaminants at more realistic environmental concentration levels. Methods Experiments with micromolar concentrations of TCE and PCE in aqueous solution using direct photolysis and UV/H2O2 have been conducted and product formation as well as transformation efficiency have been investigated. SPME/GC/MS, HPLC/UV and ion chromatography with conductivity detection have been used to determine intermediates of degradation. Results The results showed that chloride was a major end product in both TCE and PCE photodegradation. Several intermediates such as formic acid, dichloroacetic acid, dichloroacetaldehyede, chloroform, formaldehyde and glyoxylic acid were formed during both, UV and UV/H2O2 treatment of TCE. However chloroacetaldehyde and chloroacetic acid were only detected during direct UV photolysis of TCE and oxalic acid was only formed during the UV/H2O2 process. For PCE photodegradation, formic acid, di- and trichloroacetic acids were detected in both UV and UV/H2O2 systems, but formaldehyde and glyoxylic acid were only detected during direct UV photolysis. Conclusions For water treatment UV/H2O2 seems to be favorable over direct UV photolysis because of its higher degradation efficiency and lower risk for the formation of harmful intermediates. PMID:24401763

  1. Transformation efficiency and formation of transformation products during photochemical degradation of TCE and PCE at micromolar concentrations.

    PubMed

    Dobaradaran, Sina; Lutze, Holger; Mahvi, Amir Hossein; Schmidt, Torsten C

    2014-01-08

    Trichloroethene and tetrachloroethene are the most common pollutants in groundwater and two of the priority pollutants listed by the U.S. Environmental Protection Agency. In previous studies on TCE and PCE photolysis and photochemical degradation, concentration ranges exceeding environmental levels by far with millimolar concentrations of TCE and PCE have been used, and it is not clear if the obtained results can be used to explain the degradation of these contaminants at more realistic environmental concentration levels. Experiments with micromolar concentrations of TCE and PCE in aqueous solution using direct photolysis and UV/H2O2 have been conducted and product formation as well as transformation efficiency have been investigated. SPME/GC/MS, HPLC/UV and ion chromatography with conductivity detection have been used to determine intermediates of degradation. The results showed that chloride was a major end product in both TCE and PCE photodegradation. Several intermediates such as formic acid, dichloroacetic acid, dichloroacetaldehyede, chloroform, formaldehyde and glyoxylic acid were formed during both, UV and UV/H2O2 treatment of TCE. However chloroacetaldehyde and chloroacetic acid were only detected during direct UV photolysis of TCE and oxalic acid was only formed during the UV/H2O2 process. For PCE photodegradation, formic acid, di- and trichloroacetic acids were detected in both UV and UV/H2O2 systems, but formaldehyde and glyoxylic acid were only detected during direct UV photolysis. For water treatment UV/H2O2 seems to be favorable over direct UV photolysis because of its higher degradation efficiency and lower risk for the formation of harmful intermediates.

  2. Chemical Characterization of the Indoor Air Quality of a University Hospital: Penetration of Outdoor Air Pollutants.

    PubMed

    Scheepers, Paul T J; Van Wel, Luuk; Beckmann, Gwendolyn; Anzion, Rob B M

    2017-05-08

    For healthcare centers, local outdoor sources of air pollution represent a potential threat to indoor air quality (IAQ). The aim of this study was to study the impact of local outdoor sources of air pollution on the IAQ of a university hospital. IAQ was characterized at thirteen indoor and two outdoor locations and source samples were collected from a helicopter and an emergency power supply. Volatile organic compounds (VOC), acrolein, formaldehyde, nitrogen dioxide (NO₂), respirable particulate matter (PM-4.0 and PM-2.5) and their respective benz(a)pyrene contents were determined over a period of two weeks. Time-weighted average concentrations of NO₂ (4.9-17.4 μg/m³) and formaldehyde (2.5-6.4 μg/m³) were similar on all indoor and outdoor locations. The median concentration VOC in indoor air was 119 μg/m³ (range: 33.1-2450 μg/m³) and was fivefold higher in laboratories (316 μg/m³) compared to offices (57.0 μg/m³). PM-4.0 and benzo(a)pyrene concentration were lower in buildings serviced by a >99.95% efficiency particle filter, compared to buildings using a standard 80-90% efficiency filter ( p < 0.01). No indications were found that support a significant contribution of known local sources such as fuels or combustion engines to any of the IAQ parameters measured in this study. Chemical IAQ was primarily driven by known indoor sources and activities.

  3. Indoor Air in Beauty Salons and Occupational Health Exposure of Cosmetologists to Chemical Substances

    PubMed Central

    Tsigonia, Alexandra; Lagoudi, Argyro; Chandrinou, Stavroula; Linos, Athena; Evlogias, Nikos; Alexopoulos, Evangelos C.

    2010-01-01

    The indoor environment in four beauty salons located in Athens (Greece) was examined in order to investigate the occupational health exposure of cosmetologists to various chemical products typically used in their work. Chemical substances chosen for investigation were volatile organic compounds (VOCs), formaldehyde, ozone and carbon dioxide. Total VOCs levels measured showed significant variation (100–1,450 μg m−3) depending on the products used and the number of treatments carried out, as well as ventilation. The main VOCs found in the salons were aromatics (toluene, xylene), esters and ketones (ethyl acetate, acetone, etc.) which are used as solvents in various beauty products; terpenes (pinene, limonene, camphor, menthenol) which have a particular odor and others like camphor which have specific properties. Ozone concentrations measured in all salons were quite low (0.1 and 13.3 μg m−3) and formaldehyde concentrations detected were lower than the detection limit of the method in all salons (<0.05 ppm). Carbon dioxide levels ranged between 402 and 1,268 ppm, depending on the number of people present in the salons during measurements and ventilation. Cosmetologists may be exposed to high concentrations of a mixture of volatile organic compounds although these levels could be decreased significantly by following certain practices such as good ventilation of the areas, closing the packages of the beauty products when not in use and finally selecting safer beauty products without strong odor. PMID:20195448

  4. New curing system of urea-formaldehyde resind with polyhydrazides. I. Curing with dihydrazie compounds

    Treesearch

    Bunichiro Tomita; Hideaki Osawa; Chung-Yun Hse; George E. Myers

    1989-01-01

    A nonconventional curing system was developed using a simple mixing of urea-formaldehyde (UF) resins with polyfunctional hydrazide compounds under neutral contition. Several kinds of low molecular-weight dihydrazide compounds were investigated as hardners of the UF resins. Results were as follows: 1) As the minimum gelation times were observed in the range of molar...

  5. Simulation study on the impact of air distribution on formaldehyde pollutant distribution in room

    NASA Astrophysics Data System (ADS)

    Wu, Jingtao; Wang, Jun; Cheng, Zhu

    2017-01-01

    In this paper, physical and mathematical model of a room was established based on the Airpak software. The velocity distribution, air age distribution, formaldehyde concentration distribution and Predicted Mean Vote(PMV), Predicted Percentage Dissatisfied(PPD) distribution in the ward of a hospital were simulated. In addition, the air volume was doubled, the change of indoor pollutant concentration distribution was simulated. And further, the change of air age was simulated. Through the simulation, it can help arrange the position of the air supply port, so it is very necessary to increase the comfort of the staff in the room. Finally, through the simulation of pollutant concentration distribution, it can be seen that when concentration of indoor pollutants was high, the supply air flow rate should be increased appropriately. Indoor pollutant will be discharged as soon as possible, which is very beneficial to human body health.

  6. Reductions in commuter exposure to volatile organic compounds in Mexico City due to the environmental program ProAire2002-2010.

    PubMed

    Shinohara, Naohide; Ángeles, Felipe; Basaldud, Roberto; Cardenas, Beatriz; Wakamatsu, Shinji

    2017-05-01

    We investigated commuter exposure to volatile organic compounds in the metropolitan area of Mexico City in 2011 in private car, microbus, bus, metro, metrobus, and trolley bus. A similar survey was conducted in 2002 before initiation of the ProAire2002-2010 program aimed at reducing air pollution. Formaldehyde, acetaldehyde, benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene were sampled while traveling during the morning rush hour in May 2011. Compared with the 2002 survey, in-vehicle concentrations were substantially lower in 2011, except for formaldehyde in microbuses (35% higher than in 2002). The reductions were 17-42% (except microbuses), 25-44%, 41-61%, 43-61%, 71-79%, 80-91%, and 79-93% for formaldehyde, acetaldehyde, benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene, respectively. These reductions are considered to be the outcome of some of the actions in the ProAire2002-2010 program. In some microbuses, use of liquid petroleum gas may have increased in-vehicle formaldehyde concentrations. The reduction in predicted excess cancer incidence of commuters because of ProAire2002-2010 was estimated to be 1.4 cases/yr. In addition, if every microbus commuter changed their transport mode to bus, metro, or metrobus in the future, the estimated excess cancer incidence of commuters could be further decreased from 6.4 to 0.88-2.2 cases/year.

  7. Simultaneous removal of formaldehyde and benzene in indoor air with a combination of sorption- and decomposition-type air filters.

    PubMed

    Sekine, Yoshika; Fukuda, Mitsuru; Takao, Yosuke; Ozano, Takahiro; Sakuramoto, Hikaru; Wang, Kuan Wei

    2011-12-01

    Urgent measures for indoor air pollution caused by volatile organic compounds are required in urban areas of China. Considering indoor air concentration levels and hazardous properties, formaldehyde and benzene should be given priority for pollution control in China. The authors proposed the use of air-cleaning devices, including stand-alone room air cleaners and in-duct devices. This study aimed to find the best combination of sorption and decomposition filters for the simultaneous removal of formaldehyde and benzene, employing four types of air filter units: an activated charcoal filter (ACF), an ACF impregnated with a trapping agent for acidic gases (ACID), a MnO2 filter (MDF) for oxidative decomposition of formaldehyde at room temperature and a photocatalyst filter (PHOTO) coupled with a parallel beam ultraviolet (UV) irradiation device. The performance of the combined systems under air flow rates of 35-165 m3 h(-1) was evaluated in a test chamber (2 m3) with a constant gas generation system. The experimental results and data analysis using a kinetic approach showed the combined system of ACF, PHOTO and MDF significantly reduced both concentrations of formaldehyde and benzene in air without any unpleasant odours caused by the UV-induced photocatalytic reaction. The system was then evaluated in a full-size laboratory (22 m3). This test proved the practical performance of the system even at full scale, and also suggested that the filters should be arranged in the order of PHOTO/ACF/MDF from upstream to downstream. The proposed system has the potential of being used for improving indoor air quality of houses and buildings in China.

  8. Ecological risk assessment of toxic organic pollutant and heavy metals in water and sediment from a landscape lake in Tianjin City, China.

    PubMed

    Zhang, Ying; Liu, Yuanyuan; Niu, Zhiguang; Jin, Shaopei

    2017-05-01

    To estimate the ecological risk of toxic organic pollutant (formaldehyde) and heavy metals (mercury (Hg), arsenic (As), cadmium (Cd), and chromium (Cr)) in water and sediment from a landscape Lake in Tianjin City, an ecological risk assessment was performed. The risk quotient (RQ) method and the AQUATOX model were used to assess the ecological risk of formaldehyde in landscape water. Meanwhile, the RQ method and the potential ecological risk index method were used to assess the ecological risk of four heavy metals in water and sediment from the studied landscape lake, respectively. The results revealed that the maximum concentration of formaldehyde in landscape water was lower than the environmental quality standards of surface water in China. The maximum simulated concentrations of formaldehyde in phytoplankton and invertebrates were 3.15 and 22.91 μg/L, respectively, which were far less than its toxicity data values (1000 and 510 μg/L, respectively), suggesting that formaldehyde in landscape water was at a safe level for aquatic organisms. The RQ model indicated that the risks of phytoplankton and invertebrates were higher than that of fish posed by Hg and Cd in landscape water, and the risks from As and Cr were acceptable for all test organisms. Cd is the most important pollution factor among all heavy metals in sediment from studied landscape lake, and the pollution factor sequence of heavy metals was Hg > As > Cr > Cd. The values of risk index (RI) for four heavy metals in samples a and b were 43.48 and 72.66, which were much lower than the threshold value (150), suggesting that the ecological risk posed by heavy metals in sediment was negligible.

  9. Exposure and inequality for select urban air pollutants in the Tampa Bay area.

    PubMed

    Yu, Haofei; Stuart, Amy L

    2016-05-01

    Air pollution exposure has been linked to numerous adverse health effects, with some disadvantaged subgroups disproportionately burdened. The objective of this work was to characterize distributions of emissions and concentrations of a few important urban air toxics at high spatiotemporal resolution in order to assess exposure and inequality. Benzene, 1,3-butadiene, formaldehyde, and acetaldehyde were the focus pollutants, with oxides of nitrogen (NOx) estimated for comparisons. Primary pollutant emissions were estimated for the full spectrum of source types in the Tampa area using a hybrid approach that is most detailed for major roadways and includes hourly variations in vehicle speed. Resultant pollutant concentrations were calculated using the CALPUFF dispersion model, and combined with CMAQ model output to account for secondary formation of formaldehyde and acetaldehyde. Census demographic data were applied to estimate residential pollution exposures and inequality among population subgroups. Estimated concentrations of benzene, 1,3-butadiene, and NOx were generally higher in urban areas and lower in rural areas. Exposures to these pollutants were disproportionately high for subgroups characterized as black, Hispanic and low income (annual household income less than $20,000). For formaldehyde and acetaldehyde, the patterns of concentration and exposure were largely reversed. Results suggest that disparities in exposure depend on pollutant type. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Length changes in white sturgeon larvae preserved in ethanol or formaldehyde

    USGS Publications Warehouse

    Bayer, J.M.; Counihan, T.D.

    2001-01-01

    We examined the effects of two preservatives on the notochord and total lengths of white sturgeon (Acipenser transmontanus) larvae. White sturgeon larvae that were one, seven, and 14 days old were measured live and then preserved in 95% ethanol or 10% formaldehyde. Length changes were then determined at 20 and 95 days after preservation. We found mean length changes ranging from 0.4% to 3.4% shrinkage. Length changes varied with preservative, age of larvae, and length of time preserved. Constant length correction factors are provided for 10% formaldehyde or 95% ethanol valid for larvae between 1 and 14 days old preserved for less than 100 days.

  11. Impedimetric detection of alcohol vapours using nanostructured zinc ferrite.

    PubMed

    Kannan, Padmanathan Karthick; Saraswathi, Ramiah

    2014-11-01

    A comparative study on the sensing characteristics of nanostructured zinc ferrite to three primary alcohols viz. methanol, ethanol and propanol has been carried out. The zinc ferrite has been prepared by a combustion method and characterized by XRD, FTIR, AFM and SEM. Impedance studies in the alcohol concentration range varying from 100 to 1000 ppm show definite variations in response to both the nature of the alcohol and its concentration. The nanostructured zinc ferrite shows the highest sensor response to methanol and least to propanol. Equivalent circuit modelling and calibration have been made for all the three alcohol sensors. The material shows a better selectivity to the alcohols compared to formaldehyde, ammonia and acetone vapours. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Determination of sub-part-per-million levels of formaldehyde in air using active or passive sampling on 2,4-dinitrophenylhydrazine-coated glass fiber filters and high-performance liquid chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, J.O.; Andersson, K.; Lindahl, R.

    1985-05-01

    Formaldehyde is sampled from air with the use of a standard miniature glass fiber filter impregnated with 2,4-dinitrophenylhydrazine and phosphoric acid. The formaldehyde hydrazone is desorbed from the filter with acetonitrile and determined by high-performance liquid chromatography using UV detection at 365 nm. Recovery of gas-phase-generated formaldehyde as hydrazone from a 13-mm impregnated filter is 80-100% in the range 0.3-30 ..mu..g of formaldehyde. This corresponds to 0.1-10 mg/m/sup 3/ in a 3-L air sample. When the filter sampling system is used in the active mode, air can be sampled at a rate of up to 1 L/min, affording an overallmore » sensitivity of about 1 ..mu..g/m/sup 3/ based on a 60-L air sample. Results are given from measurements of formaldehyde in indoor air. The DNP-coated filters were also evaluated for passive sampling. In this case 37-mm standard glass fibers were used and the sampling rate was 55-65 mL/min in two types of dosimeters. The diffusion samplers are especially useful for personal exposure monitoring in the work environment. 24 references, 2 figures, 4 tables.« less

  13. Simultaneous Detection and Removal of Formaldehyde at Room Temperature: Janus Au@ZnO@ZIF-8 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Dawei; Li, Zhiwei; Zhou, Jian; Fang, Hong; He, Xiang; Jena, Puru; Zeng, Jing-Bin; Wang, Wei-Ning

    2018-03-01

    The detection and removal of volatile organic compounds (VOCs) are of great importance to reduce the risk of indoor air quality concerns. This study reports the rational synthesis of a dual-functional Janus nanostructure and its feasibility for simultaneous detection and removal of VOCs. The Janus nanostructure was synthesized via an anisotropic growth method, composed of plasmonic nanoparticles, semiconductors, and metal organic frameworks (e.g., Au@ZnO@ZIF-8). It exhibits excellent selective detection to formaldehyde (HCHO, as a representative VOC) at room temperature over a wide range of concentrations (from 0.25 to 100 ppm), even in the presence of water and toluene molecules as interferences. In addition, HCHO was also found to be partially oxidized into non-toxic formic acid simultaneously with detection. The mechanism underlying this technology was unraveled by both experimental measurements and theoretical calculations: ZnO maintains the conductivity, while ZIF-8 improves the selective gas adsorption; the plasmonic effect of Au nanorods enhances the visible-light-driven photocatalysis of ZnO at room temperature. [Figure not available: see fulltext.

  14. Simultaneous Detection and Removal of Formaldehyde at Room Temperature: Janus Au@ZnO@ZIF-8 Nanoparticles

    DOE PAGES

    Wang, Dawei; Li, Zhiwei; Zhou, Jian; ...

    2017-10-09

    The detection and removal of volatile organic compounds (VOCs) are of great importance to reduce the risk of indoor air quality concerns. Our study reports the rational synthesis of a dual-functional Janus nanostructure and its feasibility for simultaneous detection and removal of VOCs. The Janus nanostructure was synthesized via an anisotropic growth method, composed of plasmonic nanoparticles, semiconductors, and metal organic frameworks (e.g., Au@ZnO@ZIF-8). It exhibits excellent selective detection to formaldehyde (HCHO, as a representative VOC) at room temperature over a wide range of concentrations (from0.25 to 100 ppm), even in the presence of water and toluene molecules as interferences.more » Additionally, HCHOwas also found to be partially oxidized into non-toxic formic acid simultaneously with detection. The mechanism underlying this technology was unraveled by both experimental measurements and theoretical calculations: ZnO maintains the conductivity, while ZIF-8 improves the selective gas adsorption; the plasmonic effect of Au nanorods enhances the visible-light-driven photocatalysis of ZnO at room temperature.« less

  15. Simultaneous Detection and Removal of Formaldehyde at Room Temperature: Janus Au@ZnO@ZIF-8 Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dawei; Li, Zhiwei; Zhou, Jian

    The detection and removal of volatile organic compounds (VOCs) are of great importance to reduce the risk of indoor air quality concerns. Our study reports the rational synthesis of a dual-functional Janus nanostructure and its feasibility for simultaneous detection and removal of VOCs. The Janus nanostructure was synthesized via an anisotropic growth method, composed of plasmonic nanoparticles, semiconductors, and metal organic frameworks (e.g., Au@ZnO@ZIF-8). It exhibits excellent selective detection to formaldehyde (HCHO, as a representative VOC) at room temperature over a wide range of concentrations (from0.25 to 100 ppm), even in the presence of water and toluene molecules as interferences.more » Additionally, HCHOwas also found to be partially oxidized into non-toxic formic acid simultaneously with detection. The mechanism underlying this technology was unraveled by both experimental measurements and theoretical calculations: ZnO maintains the conductivity, while ZIF-8 improves the selective gas adsorption; the plasmonic effect of Au nanorods enhances the visible-light-driven photocatalysis of ZnO at room temperature.« less

  16. Environment-friendly adhesives for surface bonding of wood-based flooring using natural tannin to reduce formaldehyde and TVOC emission.

    PubMed

    Kim, Sumin

    2009-01-01

    The objective of this research was to develop environment-friendly adhesives for face fancy veneer bonding of engineered flooring using the natural tannin form bark in the wood. The natural wattle tannin adhesive were used to replace UF resin in the formaldehyde-based resin system in order to reduce formaldehyde and volatile organic compound (VOC) emissions from the adhesives used between plywoods and fancy veneers. PVAc was added to the natural tannin adhesive to increase viscosity of tannin adhesive for surface bonding. For tannin/PVAc hybrid adhesives, 5%, 10%, 20% and 30% of PVAc to the natural tannin adhesives were added. tannin/PVAc hybrid adhesives showed better bonding than the commercial natural tannin adhesive with a higher level of wood penetration. The initial adhesion strength was sufficient to be maintained within the optimum initial tack range. The standard formaldehyde emission test (desiccator method), field and laboratory emission cell (FLEC) and VOC analyzer were used to determine the formaldehyde and VOC emissions from engineered flooring bonded with commercial the natural tannin adhesive and tannin/PVAc hybrid adhesives. By desiccator method and FLEC, the formaldehyde emission level of each adhesive showed the similar tendency. All adhesives satisfied the E(1) grade (below 1.5 mg/L) and E(0) grade (below 0.5 mg/L) with UV coating. VOC emission results by FLEC and VOC analyzer were different with the formaldehyde emission results. TVOC emission was slightly increased as adding PVAc.

  17. Measurement of Endogenous versus Exogenous Formaldehyde-Induced DNA-Protein Crosslinks in Animal Tissues by Stable Isotope Labeling and Ultrasensitive Mass Spectrometry.

    PubMed

    Lai, Yongquan; Yu, Rui; Hartwell, Hadley J; Moeller, Benjamin C; Bodnar, Wanda M; Swenberg, James A

    2016-05-01

    DNA-protein crosslinks (DPC) arise from a wide range of endogenous and exogenous chemicals, such as chemotherapeutic drugs and formaldehyde. Importantly, recent identification of aldehydes as endogenous genotoxins in Fanconi anemia has provided new insight into disease causation. Because of their bulky nature, DPCs pose severe threats to genome stability, but previous methods to measure formaldehyde-induced DPCs were incapable of discriminating between endogenous and exogenous sources of chemical. In this study, we developed methods that provide accurate and distinct measurements of both exogenous and endogenous DPCs in a structurally specific manner. We exposed experimental animals to stable isotope-labeled formaldehyde ([(13)CD2]-formaldehyde) by inhalation and performed ultrasensitive mass spectrometry to measure endogenous (unlabeled) and exogenous ((13)CD2-labeled) DPCs. We found that exogenous DPCs readily accumulated in nasal respiratory tissues but were absent in tissues distant to the site of contact. This observation, together with the finding that endogenous formaldehyde-induced DPCs were present in all tissues examined, suggests that endogenous DPCs may be responsible for increased risks of bone marrow toxicity and leukemia. Furthermore, the slow rate of DPC repair provided evidence for the persistence of DPCs. In conclusion, our method for measuring endogenous and exogenous DPCs presents a new perspective for the potential health risks inflicted by endogenous formaldehyde and may inform improved disease prevention and treatment strategies. Cancer Res; 76(9); 2652-61. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. Autonomic Healing of Low-Velocity Impact Damage in Fiber-Reinforced Composites

    DTIC Science & Technology

    2010-01-01

    formaldehyde) microencapsulation using the method described by Brown et al. [37]. Two different size ranges of microcapsules were employed to promote even...agent. The components for self-healing, urea–formaldehyde microcapsules containing dicyclopentadiene (DCPD) liquid healing agent and paraffin wax...impact damage is the employment of self-healing materials. In particular, the strat- egy using microencapsulated healing agent, demonstrated by White

  19. In-depth survey report: Evaluation of a ventilation system to control formaldehyde exposures during embalming at Cincinnati College of Mortuary Science, Cincinnati, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gressel, M.G.

    1990-12-01

    The goal of the study was to develop and evaluate local exhaust ventilation controls which will reduce the embalmer's exposure to formaldehyde (50000). The Cincinnati College of Mortuary Science had three tables set up for conducting embalmings. Two of the tables were in a large room which serves as a laboratory for the students. The third was located in an isolation room and was used primarily for suspected infectious cases. All the embalmings conducted for the study were conducted in the isolation room and all involved noninfectious bodies. The local exhaust ventilation system developed for the mortuary consisted of 6more » foot slot hoods on either side of the embalming table. Of the 32 personal samples taken, the formaldehyde concentration of five samples showed a concentration of 1 part per million. The author recommends that a local exhaust ventilation system similar to the design tested here be installed permanently in the isolation room and on the other tables in the main embalming laboratory.« less

  20. Hazardous properties of paint residues from the furniture industry.

    PubMed

    Vaajasaari, Kati; Kulovaara, Maaret; Joutti, Anneli; Schultz, Eija; Soljamo, Kari

    2004-01-30

    The objective of this study was to screen nine excess paint residues for environmental hazard and to evaluate their disposability in a non-hazardous or hazardous-waste landfill. These residues were produced in the process of spray-painting furniture. Residues were classified according to their leaching and ecotoxicological properties. Leaching properties were determined with the European standard SFS-EN 12457-2 leaching-test. The toxicity of the leaching-test eluates was measured with plant-, bacteria- and enzyme-inhibition bioassays. Total organic carbon, formaldehyde and solvent concentrations in the solid wastes and in the leaching-test eluates were analysed. It seemed likely that leached formaldehyde caused very high acute toxicity in leaching-test eluates of the dry-booth residues. This hypothesis was based on the fact that the formaldehyde concentrations in the leaching-test eluates of the dry-booth residues were 62-75 times higher than the EC50 value reported in the literature for formaldehyde. The results of the water-curtain booth residues showed that the samples with the highest TOC and aromatic solvent concentrations were also the most toxic. The studied excess paint residues were complex organic mixtures and contained large amounts of compounds not identifiable from chemical data. Therefore, the evaluation of the hazard based solely on available chemical data is unlikely to be sufficient, as evidenced by our study. Our results show that harmful compounds remain in the solid waste and the toxicity results of their leaching-test eluates show that toxicity may leach from residues in contact with water at landfill sites. They also confirm the benefit of combining chemical and ecotoxicological assays in assessing the potential environmental hazard of complex organic mixtures found in wastes. Copyright 2003 Elsevier B.V.

  1. Effects of a single inhalative exposure to formaldehyde on the open field behavior of mice.

    PubMed

    Malek, Fathi A; Möritz, Klaus-Uwe; Fanghänel, Jochen

    2004-02-01

    The effects of formaldehyde on the explorative behavior and locomotor activity of mice after a single inhalative exposure were examined in an open field. Adult male mice were exposed to approximately 1.1 ppm, 2.3 ppm, or 5.2 ppm formaldehyde vapour for 2 hours and the open field test was carried out two hours after the end of exposure (trial 1) and repeated 24 hours thereafter (trial 2). The following behavioral parameters were quantitatively examined: numbers of crossed floor squares (inner, peripheral, total), sniffing, grooming, rearing, climbing, and incidence of fecal boli. The results of the first trial revealed that the motion activity was significantly reduced in all exposed groups. In the 1.1 ppm group, the frequency of rearing was reduced and that of floor sniffing increased. The exposure to the two higher formaldehyde concentrations caused a significant decrease in total numbers of floor squares crossed by the subjects, air sniffing, and rearing. The open field test on the next day (trial 2) showed that the frequencies of floor sniffing, grooming, and rearing in all formaldehyde groups were significantly altered. In the 2.5 ppm group, an increased incidence of fecal boli was observed. From the results obtained, we conclude that the exposure of male mice to formaldehyde vapour affects their locomotor and explorative activity in the open field, and that some open field parameters are still altered in the exposed animals even after 24 hours.

  2. Establishing a molecular relationship between chondritic and cometary organic solids

    PubMed Central

    Cody, George D.; Heying, Emily; Alexander, Conel M. O.; Nittler, Larry R.; Kilcoyne, A. L. David; Sandford, Scott A.

    2011-01-01

    Multidimensional solid-state NMR spectroscopy is used to refine the identification and abundance determination of functional groups in insoluble organic matter (IOM) isolated from a carbonaceous chondrite (Murchison, CM2). It is shown that IOM is composed primarily of highly substituted single ring aromatics, substituted furan/pyran moieties, highly branched oxygenated aliphatics, and carbonyl groups. A pathway for producing an IOM-like molecular structure through formaldehyde polymerization is proposed and tested experimentally. Solid-state 13C NMR analysis of aqueously altered formaldehyde polymer reveals considerable similarity with chondritic IOM. Carbon X-ray absorption near edge structure spectroscopy of formaldehyde polymer reveals the presence of similar functional groups across certain Comet 81P/Wild 2 organic solids, interplanetary dust particles, and primitive IOM. Variation in functional group concentration amongst these extraterrestrial materials is understood to be a result of various degrees of processing in the parent bodies, in space, during atmospheric entry, etc. These results support the hypothesis that chondritic IOM and cometary refractory organic solids are related chemically and likely were derived from formaldehyde polymer. The fine-scale morphology of formaldehyde polymer produced in the experiment reveals abundant nanospherules that are similar in size and shape to organic nanoglobules that are ubiquitous in primitive chondrites. PMID:21464292

  3. Exposure to hazardous volatile pollutants back diffusing from automobile exhaust systems.

    PubMed

    Rahman, Md Mahmudur; Kim, Ki-Hyun

    2012-11-30

    As back diffusion gases from automobiles are significant sources of in-vehicular pollution, we investigated eight automobiles, five for back diffusion (driving) measurements and three for reference conditions (non-driving). To characterize the back diffusion emission conditions, seven volatile organic compounds (VOC) and four carbonyl compounds (CCs) were measured along with dilution-to-threshold (D/T) ratio. The data obtained from back diffusion measurements were examined after having been divided into three subcategories: (i) driving and non-driving, (ii) with and without automobile upgrading (sealing the inner line), and (iii) differences in CO emission levels. Among the VOCs, the concentrations of toluene (T) was found to be the highest (range: 13.6-155 ppb), while benzene (0.19-1.47 ppb) was hardly distinguishable from its ambient levels. Other VOCs (xylene, trimethylbenzene, and styrene) were generally below <1 ppb. Unlike VOCs, the concentrations (ppb) of CCs were seen at fairly enhanced levels: 30.1-95 (formaldehyde), 34.6-87.2 (acetaldehyde), 4.56-34.7 (propionaldehyde), and 3.45-68.8 (butyraldehyde). The results of our study suggest that the back diffusion phenomenon, if occurring, can deteriorate in-vehicle air, especially with the most imminent health hazards from a compound such as formaldehyde in view of its exceedance pattern over common guidelines. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Effect of Temperature on Electrical Conductivity of Guaiacol-Guanidine Hydrochloride-Formaldehyde Copolymer Resin

    NASA Astrophysics Data System (ADS)

    Kukade, S. D.; Bawankar, S. V.

    2018-02-01

    The purpose of the present paper is to report temperature dependence of electrical conductivity on Guaiacol-guanidine hydrochloride-formaldehyde copolymer resin. By using a microwave irradiation technique, various ratios of copolymer resin were synthesized from the reacting monomers, i.e., guaiacol, guanidine hydrochloride and formaldehyde. The characterization of the copolymer resins has been fulfilled by spectral methods viz. ultraviolet visible (UV visible), infrared and proton nuclear magnetic spectroscopy (1H-NMR). The solid state direct current electrical conductivity of synthesized copolymer resins has been measured as a function of temperature. The electrical conductivity values of all the copolymers have been found in the range of a semiconductor.

  5. Evaluation of genotoxicity in workers exposed to low levels of formaldehyde in a furniture manufacturing facility.

    PubMed

    Peteffi, Giovana Piva; da Silva, Luciano Basso; Antunes, Marina Venzon; Wilhelm, Camila; Valandro, Eduarda Trevizani; Glaeser, Jéssica; Kaefer, Djeine; Linden, Rafael

    2016-10-01

    Formaldehyde (FA) is a chemical widely used in the furniture industry and has been classified as a potential human carcinogen. The purpose of this study was to evaluate the occupational exposure of workers to FA at a furniture manufacturing facility and the relationship between environmental concentrations of FA, formic acid concentration in urine, and DNA damage. The sample consisted of 46 workers exposed to FA and a control group of 45 individuals with no history of occupational exposure. Environmental concentrations of FA were determined by high-performance liquid chromatography. Urinary formic acid concentrations were determined by gas chromatography with flame ionization detector. DNA damage was evaluated by the micronucleus (MN) test performed in exfoliated buccal cells and comet assay with venous blood. The 8-h time-weighted average of FA environmental concentration ranged from 0.03 ppm to 0.09 ppm at the plant, and the control group was exposed to a mean concentration of 0.012 ppm. Workers exposed to higher environmental FA concentrations had urinary formic acid concentrations significantly different from those of controls (31.85 mg L(-1) vs. 19.35 mg L(-), p ≤ 0.01 Mann-Whitney test). Significant differences were found between control and exposed groups for the following parameters: damage frequency and damage index in the comet assay, frequency of binucleated cells in the MN test, and formic acid concentration in urine. The frequency of micronuclei, nuclear buds, and karyorrhexis did not differ between groups. There was a positive correlation between environmental concentrations of FA and damage frequency (Spearman's rank correlation coefficient [r s] = 0.24), damage index (r s = 0.21), binucleated cells (r s = 0.34), and urinary formic acid concentration (r s = 0.63). The results indicate that, although workers in the furniture manufacturing facility were exposed to low environmental levels of FA, this agent contributes to the observed increase in cytogenetic damage. In addition, urinary formic acid concentrations correlated strongly with occupational exposure to FA. © The Author(s) 2015.

  6. Novel Concept of Frequency-Combs Interferometric Spectroscopy in the Mid-IR for Significantly Enhanced Detection of Explosives

    DTIC Science & Technology

    2015-12-01

    frequency combs. Ultrasensitive detection of methane, isotopic carbon dioxide, carbon monoxide, formaldehyde, acetylene, and ethylene was performed in...rmaldehyde, acetylene, and ethylene was perfo rmed in the spectral range 2.5- 5 11111 using intracav ity spectroscopy in broadband optical parametric osc...trace point detection of methane, carbon dioxide, isotopic (13C02) carbon dioxide, carbon monoxide, ethylene , acetylene, and formaldehyde and

  7. Fixative Composition Alters Distributions of Immunoreactivity for Glutaminase and Two Markers of Nociceptive Neurons, Nav1.8 and TRPV1, in the Rat Dorsal Root Ganglion

    PubMed Central

    Hoffman, E. Matthew; Schechter, Ruben; Miller, Kenneth E.

    2010-01-01

    Most, if not all, dorsal root ganglion (DRG) neurons use the neurotransmitter glutamate. There are, however, conflicting reports of the percentages of DRG neurons that express glutaminase (GLS), the enzyme that synthesizes glutamate, ranging from 30% to 100% of DRG neurons. Defining DRG neuron populations by the expression of proteins like GLS, which indicates function, is routinely accomplished with immunolabeling techniques. Proper characterization of DRG neuron populations relies on accurate detection of such antigens. It is known intuitively that fixation can alter immunoreactivity (IR). In this study, we compared the effects of five formaldehyde concentrations between 0.25% and 4.0% (w/v) and five picric acid concentrations between 0.0% and 0.8% (w/v) on the IR of GLS, the voltage-gated sodium channel 1.8 (Nav1.8), and the capsaicin receptor TRPV1. We also compared the effects of five incubation time lengths from 2 to 192 hr, in primary antiserum on IR. Lowering formaldehyde concentration elevated IR for all three antigens, while raising picric acid concentration increased Nav1.8 and TRPV1 IR. Increasing IR improved detection sensitivity, which led to higher percentages of labeled DRG neurons. By selecting fixation conditions that optimized IR, we found that all DRG neurons express GLS, 69% of neurons express Nav1.8, and 77% of neurons express TRPV1, indicating that some previous studies may have underestimated the percentages of DRG neurons expressing these proteins. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials. (J Histochem Cytochem 58:329–344, 2010) PMID:20026672

  8. Versatile microanalytical system with porous polypropylene capillary membrane for calibration gas generation and trace gaseous pollutants sampling applied to the analysis of formaldehyde, formic acid, acetic acid and ammonia in outdoor air.

    PubMed

    Coelho, Lúcia H G; Melchert, Wanessa R; Rocha, Flavio R; Rocha, Fábio R P; Gutz, Ivano G R

    2010-11-15

    The analytical determination of atmospheric pollutants still presents challenges due to the low-level concentrations (frequently in the μg m(-3) range) and their variations with sampling site and time. In this work, a capillary membrane diffusion scrubber (CMDS) was scaled down to match with capillary electrophoresis (CE), a quick separation technique that requires nothing more than some nanoliters of sample and, when combined with capacitively coupled contactless conductometric detection (C(4)D), is particularly favorable for ionic species that do not absorb in the UV-vis region, like the target analytes formaldehyde, formic acid, acetic acid and ammonium. The CMDS was coaxially assembled inside a PTFE tube and fed with acceptor phase (deionized water for species with a high Henry's constant such as formaldehyde and carboxylic acids, or acidic solution for ammonia sampling with equilibrium displacement to the non-volatile ammonium ion) at a low flow rate (8.3 nL s(-1)), while the sample was aspirated through the annular gap of the concentric tubes at 2.5 mL s(-1). A second unit, in all similar to the CMDS, was operated as a capillary membrane diffusion emitter (CMDE), generating a gas flow with know concentrations of ammonia for the evaluation of the CMDS. The fluids of the system were driven with inexpensive aquarium air pumps, and the collected samples were stored in vials cooled by a Peltier element. Complete protocols were developed for the analysis, in air, of NH(3), CH(3)COOH, HCOOH and, with a derivatization setup, CH(2)O, by associating the CMDS collection with the determination by CE-C(4)D. The ammonia concentrations obtained by electrophoresis were checked against the reference spectrophotometric method based on Berthelot's reaction. Sensitivity enhancements of this reference method were achieved by using a modified Berthelot reaction, solenoid micro-pumps for liquid propulsion and a long optical path cell based on a liquid core waveguide (LCW). All techniques and methods of this work are in line with the green analytical chemistry trends. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Occupational exposure of aldehydes resulting from the storage of wood pellets.

    PubMed

    Rahman, Mohammad Arifur; Rossner, Alan; Hopke, Philip K

    2017-06-01

    An exposure assessment was conducted to investigate the potential for harmful concentrations of airborne short chain aldehydes emitted from recently stored wood pellets. Wood pellets can emit a number of airborne aldehydes include acetaldehyde, formaldehyde, propionaldehyde, butyraldehyde, valeraldehyde, and hexanal. Exposure limits have been set for these compounds since they can result in significant irritation of the upper respiratory system at elevated concentrations. Formaldehyde is a recognized human carcinogen and acetaldehyde is an animal carcinogen. Thus, air sampling was performed in a wood pellet warehouse at a pellet mill, two residential homes with bulk wood pellet storage bins, and in controlled laboratory experiments to evaluate the risk to occupants. Using NIOSH method 2539, sampling was conducted in five locations in the warehouse from April-June 2016 when it contained varying quantities of bagged pellets as well as two homes with ten ton bulk storage bins. The aldehyde concentrations were found to increase with the amount of stored pellets. Airborne concentrations of formaldehyde were as high as 0.45 ppm in the warehouse exceeding the NIOSH REL-C, and ACGIH TLV-C occupational exposure limits (OELs). The concentrations of aldehydes measured in the residential bins were also elevated indicating emissions may raise indoor air quality concerns for occupants. While individual exposures are of concern the combined irritant effect of all the aldehydes is a further raise the concerns for building occupants. To minimize exposure and the risk of adverse health effects to a building's occupants in storage areas with large quantities of pellets, adequate ventilation must be designed into storage areas.

  10. Hazardous airborne carbonyls emissions in industrial workplaces in China.

    PubMed

    Ho, Steven Sai Hang; Ip, Ho Sai Simon; Ho, Kin Fai; Ng, Louisa Pan Ting; Chan, Chi Sing; Dai, Wen Ting; Cao, Jun Ji

    2013-07-01

    A pilot hazardous airborne carbonyls study was carried out in Hong Kong and the Mainland of China. Workplace air samples in 14 factories of various types of manufacturing and industrial operations were collected and analyzed for a panel of 21 carbonyl compounds. The factories can be classified into five general categories, including food processing, electroplating, textile dyeing, chemical manufacturer, and petroleum refinery. Formaldehyde was invariably the most abundant carbonyl compound among all the workplace air samples, accounting for 22.0-44.0% of the total measured amount of carbonyls on a molar basis. Acetone was also found to be an abundant carbonyl in workplace settings; among the selected industrial sectors, chemical manufacturers' workplaces had the highest percentage (an average of 42.6%) of acetone in the total amount of carbonyls measured in air. Benzaldehyde accounted for an average of 20.5% of the total amount of detected carbonyls in electroplating factories, but its contribution was minor in other industrial workplaces. Long-chain aliphatic carbonyls (C6-C10) accounted for a large portion (37.2%) of the total carbonyls in food-processing factories. Glyoxal and methylglyoxal existed at variable levels in the selected workplaces, ranging from 0.2% to 5.5%. The mixing ratio of formaldehyde ranged from 8.6 to 101.2 ppbv in the sampled workplaces. The observed amount of formaldehyde in two paint and wax manufacturers and food-processing factories exceeded the World Health Organization (WHO) air quality guideline of 81.8 ppbv. Carcinogenic risks of chronic exposure to formaldehyde and acetaldehyde by the workers were evaluated. The lifetime cancer hazard risks associated with formaldehyde exposure to male and female workers ranged from 2.01 x 10(-5) to 2.37 x 10(-4) and 2.68 x 10(-5) to 3.16 x 10(-4), respectively. Such elevated risk values suggest that the negative health impact of formaldehyde exposure represents a valid concern, and proper actions should be taken to protect workers from such risks. Many carbonyl species (e.g., formaldehyde, acetaldehyde, and acrolein) are air toxins and they pose public healt risks. The scope of this investigation covers 21 types of carbonyls based on samples collected from 14 different workplaces. Findings of the study will not only provide a comprehensive assessment of indoor air quality with regard to workers' healthy and safety, but also establish a theoretical foundation for future formulation of intervention strategies to reduce occupational carbonyl exposures. No similar study has been carried out either in Hong Kong or the Mainland of China.

  11. Biogenic carbonyl compounds within and above a coniferous forest in Germany

    NASA Astrophysics Data System (ADS)

    Müller, Konrad; Haferkorn, Sylvia; Grabmer, Wolfgang; Wisthaler, Armin; Hansel, Armin; Kreuzwieser, Jürgen; Cojocariu, Cristian; Rennenberg, Heinz; Herrmann, Hartmut

    Diurnal mixing ratios of aldehydes and ketones were investigated during two joint experiments in summer months to identify biogenic contributions from coniferous forests to tropospheric chemistry. In a Norway spruce forest, the diurnal variation of carbonyl compounds was measured at 12 m (in the treetop) and at 24 m (above the canopy). The main findings of the experiment are that acetone (up to 9.1 ppbv), formaldehyde (up to 6.5 ppbv), acetaldehyde (up to 5.5 ppbv) and methyl ethyl ketone (MEK, up to 1.8 ppbv) were found in highest concentrations. For all major compounds with the exception of MEK, primary emissions are supposed. From α-pinene oxidation, pinonaldehyde was found with its peak concentrations (up to 0.15 ppbv) during the early morning hours. The diurnal variation of concentrations for most other compounds shows maximum concentrations near midday in 2,4-dinitrophenylhydrazine (DNPH) measurements but not for proton-transfer reaction mass spectrometry (PTR-MS) measurements of acetaldehyde and acetone. A clear correlation of carbonyl compound concentration to the radiation intensity and the temperature ( R2=0.66) was found. However, formaldehyde did not show distinct diurnal variations. A very high correlation was observed for both heights between mixing ratios of acetaldehyde and acetone ( R2=0.84), acetone and MEK ( R2=0.90) as well as acetaldehyde and MEK ( R2=0.88) but not for formaldehyde and the others. For the most time, the observed carbonyl compound concentrations above the canopy are higher than within the forest stand. This indicates an additional secondary formation in the atmosphere above the forest. The differences of acetone and acetaldehyde mixing ratios detected by DNPH technique and the PTR-MS could not be fully clarified by a laboratory intercomparison.

  12. Inhalation exposure and health risk levels to BTEX and carbonyl compounds of traffic policeman working in the inner city of Bangkok, Thailand

    NASA Astrophysics Data System (ADS)

    Kanjanasiranont, Navaporn; Prueksasit, Tassanee; Morknoy, Daisy

    2017-03-01

    Benzene, toluene, ethylbenzene and xylenes (BTEX) and carbonyl compounds (CCs) are recognized traffic-related air pollutants in urban environments and are the focus of this study. In Bangkok, the BTEX and CC concentrations in both ambient air and personal exposure samples were studied during two periods (April-May and August-September 2014) at four different sampling sites around the Pathumwan District (three intersections and one T-junction). Traffic policemen, representing the high-exposure group for these toxic air pollutants, were observed, and the health risk to these workers was evaluated. Toluene was the predominant aromatic compound in the ambient and personal exposure samples. The maximum average ambient concentration of BTEX was 2968.96 μg/m3. Formaldehyde and acetaldehyde were the most abundant CCs at all of the sampling sites, with the greatest mean concentrations of these substances being 21.50 μg/m3 and 64.82 μg/m3, respectively. In the personal exposure samples, the highest levels of BTEX, formaldehyde and acetaldehyde concentrations were 2231.85 μg/m3, 10.61 μg/m3, and 16.03 μg/m3, respectively. In terms of risk assessment, benzene posed the greatest cancer risk (at the 95% CI), followed by toluene, acetaldehyde and formaldehyde (1.15E-02, 5.14E-03, 2.84E-04, and 2.52E-04, respectively). Three risk factors were investigated to reduce the total cancer risk levels: reducing the chemical concentration, exposure time and exposure duration. The use of a mask (chemical concentration) was the best way to reduce the risk to traffic police. However, the risk value of benzene (average 1.57E-05) was still higher than an acceptable value when using a mask.

  13. Importance of formaldehyde in cloud chemistry

    NASA Technical Reports Server (NTRS)

    Adewuyi, Y. G.; Cho, S.-Y.; Tsay, R.-P.; Carmichael, G. R.

    1984-01-01

    A physical-chemical model which is an extension of that of Hong and Carmichael (1983) is used to investigate the role of formaldehyde in cloud chemistry. This model takes into account the mass transfer of SO2, O3, NH3, HNO3, H2O2, CO2, HCl, HCHO, O2, OH and HO2 into cloud droplets and their subsequent chemical reactions. The model is used to assess the importance of S(IV)-HCHO adduct formation, the reduction of H2O2 by HCHO, HCHO-free radical interactions, and the formation of HCOOH in the presence of HCHO in cloud droplets. Illustrative calculations indicate that the presence of HCHO inhibits sulfate production rate in cloud droplets. The direct inhibition of sulfate production rate in cloudwater due to nucleophilic addition of HSO3(-) to HCHO(aq) to form hydroxymethanesulfonate is generally low for concentrations of HCHO typical of ambient air. However, inhibition of sulfate production due to formaldehyde-free radical interactions in solution can be important. These formaldehyde-free radical reactions can also generate appreciable quantities of formic acid.

  14. Formaldehyde gas sensor based on TiO2 thin membrane integrated with nano silicon structure

    NASA Astrophysics Data System (ADS)

    Zheng, Xuan; Ming, An-jie; Ye, Li; Chen, Feng-hua; Sun, Xi-long; Liu, Wei-bing; Li, Chao-bo; Ou, Wen; Wang, Wei-bing; Chen, Da-peng

    2016-07-01

    An innovative formaldehyde gas sensor based on thin membrane type metal oxide of TiO2 layer was designed and fabricated. This sensor under ultraviolet (UV) light emitting diode (LED) illumination exhibits a higher response to formaldehyde than that without UV illumination at low temperature. The sensitivities of the sensor under steady working condition were calculated for different gas concentrations. The sensitivity to formaldehyde of 7.14 mg/m3 is about 15.91 under UV illumination with response time of 580 s and recovery time of 500 s. The device was fabricated through micro-electro-mechanical system (MEMS) processing technology. First, plasma immersion ion implantation (PIII) was adopted to form black polysilicon, then a nanoscale TiO2 membrane with thickness of 53 nm was deposited by DC reactive magnetron sputtering to obtain the sensing layer. By such fabrication approaches, the nanoscale polysilicon presents continuous rough surface with thickness of 50 nm, which could improve the porosity of the sensing membrane. The fabrication process can be mass-produced for the MEMS process compatibility.

  15. Amperometric Enzyme-based Gas Sensor for Formaldehyde: Impact of Possible Interferences

    PubMed Central

    Achmann, Sabine; Hämmerle, Martin; Moos, Ralf

    2008-01-01

    In this work, cross-sensitivities and environmental influences on the sensitivity and the functionality of an enzyme-based amperometric sensor system for the direct detection of formaldehyde from the gas phase are studied. The sensor shows a linear response curve for formaldehyde in the tested range (0 - 15 vppm) with a sensitivity of 1.9 μA/ppm and a detection limit of about 130 ppb. Cross-sensitivities by environmental gases like CO2, CO, NO, H2, and vapors of organic solvents like methanol and ethanol are evaluated as well as temperature and humidity influences on the sensor system. The sensor showed neither significant signal to CO, H2, methanol or ethanol nor to variations in the humidity of the test gas. As expected, temperature variations had the biggest influence on the sensor sensitivity with variations in the sensor signal of up to 10 % of the signal for 5 vppm CH2O in the range of 25 - 30 °C. PMID:27879770

  16. Isocyanate and total inhalable particulate air measurements in the European wood panel industry.

    PubMed

    Vangronsveld, E; Berckmans, S; Verbinnen, K; Van Leeuw, C; Bormans, C

    2010-11-01

    It is well known that the use of MDI (methylene diphenyldiisocyanate) as an alternative for formaldehyde-based resins is seen as a responsible option to reduce formaldehyde emissions for CWP (Composite Wood Products) in buildings. However, there are concerns raised regarding the exposure risk of workers. The purpose of this article is to provide the reader with factual information to demonstrate that the use of MDI compared to other agents used in CWP production processes does not pose increased inhalation exposure risks for workers. Personal and area air measurements were carried out at nine Composite Wood Panel plants throughout Europe to assess potential inhalation exposures to MDI and wood dust as Total Inhalable Particulates (TIP). In total, 446 pairs of samples were collected for MDI and TIP of which 283 pairs were personal samples and the remaining 163 pairs were area samples collected at key locations along the production line. This data together with published formaldehyde exposure data has been used to evaluate the exposure safety margin opposite what are considered relevant occupational exposure limits. The methods used for sampling and analysing MDI and TIP are based on internationally accepted methods, i.e. MDHS 25/3 (or ISO 16702) for MDI, and MDHS 14/3 for TIP. The job functions with an increased exposure profile for TIP were the cleaners, drying operators and quality control staff, and for MDI, the cleaners and quality control staff. The areas with an increased exposure profile for TIP are the conveyor area from OSB blender to former area and the OSB press infeed, and for MDI the OSB weigh belt and OSB former bin area. The exposure safety margin opposite the selected exposure limits can be ranked as MDI>TIP>formaldehyde (high margin of safety to low margin of safety), indicating that the use of MDI also reduces the exposure risks to workers during production of CWP compared to formaldehyde. By reducing the airborne TIP concentrations, a respiratory sensitiser, MDI workplace concentrations in general can be reduced further. This can be achieved by improving design and/or maintenance and testing programmes of existing control measures, which should be in place already to effectively control exposure to TIP and formaldehyde. The airborne concentration of MDI at workstations situated after pressing (curing) is regarded as extremely low and likely mainly constituted by workplace emissions from elsewhere in the plant. Copyright © 2010 Elsevier GmbH. All rights reserved.

  17. Chemical Characterization of the Indoor Air Quality of a University Hospital: Penetration of Outdoor Air Pollutants

    PubMed Central

    Scheepers, Paul T. J.; Van Wel, Luuk; Beckmann, Gwendolyn; Anzion, Rob B. M.

    2017-01-01

    For healthcare centers, local outdoor sources of air pollution represent a potential threat to indoor air quality (IAQ). The aim of this study was to study the impact of local outdoor sources of air pollution on the IAQ of a university hospital. IAQ was characterized at thirteen indoor and two outdoor locations and source samples were collected from a helicopter and an emergency power supply. Volatile organic compounds (VOC), acrolein, formaldehyde, nitrogen dioxide (NO2), respirable particulate matter (PM-4.0 and PM-2.5) and their respective benz(a)pyrene contents were determined over a period of two weeks. Time-weighted average concentrations of NO2 (4.9–17.4 μg/m3) and formaldehyde (2.5–6.4 μg/m3) were similar on all indoor and outdoor locations. The median concentration VOC in indoor air was 119 μg/m3 (range: 33.1–2450 μg/m3) and was fivefold higher in laboratories (316 μg/m3) compared to offices (57.0 μg/m3). PM-4.0 and benzo(a)pyrene concentration were lower in buildings serviced by a >99.95% efficiency particle filter, compared to buildings using a standard 80–90% efficiency filter (p < 0.01). No indications were found that support a significant contribution of known local sources such as fuels or combustion engines to any of the IAQ parameters measured in this study. Chemical IAQ was primarily driven by known indoor sources and activities. PMID:28481324

  18. A simple and sensitive flow injection method based on the catalytic activity of CdS quantum dots in an acidic permanganate chemiluminescence system for determination of formaldehyde in water and wastewater.

    PubMed

    Khataee, Alireza; Lotfi, Roya; Hasanzadeh, Aliyeh; Iranifam, Mortaza

    2016-04-01

    A simple and sensitive flow injection chemiluminescence (CL) method in which CdS quantum dots (QDs) enhanced the CL intensity of a KMnO4-formaldehyde (HCHO) reaction was offered for the determination of HCHO. This CL system was based on the catalytic activity of CdS QDs and their participation in the CL resonance energy transfer (CRET) phenomenon. A possible mechanism for the supplied CL system was proposed using the kinetic curves of the CL systems and the spectra of CL, photoluminescence (PL) and ultraviolet-visible (UV-Vis). The emanated CL intensity of the KMnO4-CdS QDs system was amplified in the presence of a trace level of HCHO. Based on this enhancement effect, a simple and sensitive flow injection CL method was suggested for the determination of HCHO concentration in environmental water and wastewater samples. Under selected optimized experimental conditions, the increased CL intensity was proportional to the HCHO concentration in the range of 0.03-4.5 μg L(-1) and 4.5-10.0 μg L(-1). The detection limits (3σ) were 0.0003 μg L(-1) and 1.2 μg L(-1). The relative standard deviations (RSD%) for eleven replicate determinations of 4.0 μg L(-1) HCHO were 2.2%. Furthermore, the feasibility of the developed method was investigated via the determination of HCHO concentration in environmental water and wastewater samples.

  19. Performance measurements of C{sub 1}-C{sub 3} carbonyl compounds using DNPH-coated silica gel and C{sub 18} cartridges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleindienst, T.E.; Corse, E.W.; Blanchard, F.T.

    1994-12-31

    Measurements have been conducted to examine the performance of formaldehyde, acetaldehyde, and acetone using silica and C{sub 18} cartridges coated with 2,4-dinitrophenylhydrazine. Laboratory measurements for formaldehyde were conducted using a paraformaldehyde generator to produce reproducible and constant concentrations of the compound. For acetaldehyde and acetone, known concentrations were generated in Teflon chambers. The compounds were routed into a sampling manifold where simultaneous measurements could be made with multiple cartridges. Typical concentrations employed in the study were as follows. HCHO: 0.5--25 ppbv; CH{sub 3}CHO; 0.5--10 ppbv; CH{sub 3}C(O)CH{sub 3}: 0.5--10 ppbv. Additional measurements were conducted for these compounds in the presencemore » of potentially interfering compounds such as ozone and water vapor. Serial cartridge collections were periodically used to investigate breakthrough of the carbonyl compounds.« less

  20. Indoor air quality and health in two office buildings with different ventilation systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hedge, A.; Sterling, T.D.; Sterling, E.M.

    1989-01-01

    Measurements of indoor air pollutants were taken in (1) an air conditioned and (2) an adjacent, naturally ventilated office of a public sector organization. Self-administered questionnaires on the work environment and health were distributed to all workers. No differences in concentrations of carbon monoxide, carbon dioxide, ozone, and total oxidants were found between buildings. Concentrations of formaldehyde, volatile organic compounds, and respirable particulates were higher in the air conditioned offices. Symptoms of sleepiness, nasal irritation, concentration difficulties, cold/flu-like symptoms, and eye focusing problems were significantly more prevalent in the air conditioned offices. In the air conditioned offices, most symptoms weremore » significantly more prevalent among women than men. Passive smoking was associated with symptom prevalence, but alcohol, tea, and coffee consumption was unrelated. No significant correlations between pollutant concentrations and symptom prevalence were found, however, recalled reports of leaving work early because of feeling ill were significantly correlated with formaldehyde levels in the air conditioned building.« less

  1. Healthy Zero Energy Buildings (HZEB) Program - Cross-Sectional Study of Contaminant Levels, Source, Strengths, and Ventilation Rates in Retail Stores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Wanyu R.; Sidheswaran, Meera; Cohn, Sebastian

    2014-02-01

    This field study measured ventilation rates and indoor air quality parameters in 21 visits to retail stores in California. The data was collected to guide the development of new, science-based commercial building ventilation rate standards that balance the dual objectives of increasing energy efficiency and maintaining acceptable indoor air quality. Data collection occurred between September 2011 and March 2013. Three types of stores participated in this study: grocery stores, furniture/hardware stores, and apparel stores. Ventilation rates and indoor air contaminant concentrations were measured on a weekday, typically between 9 am and 6 pm. Ventilation rates measured using a tracer gasmore » decay method exceeded the minimum requirement of California’s Title 24 Standard in all but one store. Even though there was adequate ventilation according to Title 24, concentrations of formaldehyde, acetaldehyde, and acrolein exceeded the most stringent chronic health guidelines. Other indoor air contaminants measured included carbon dioxide (CO{sub 2}), carbon monoxide (CO), ozone (O{sub 3}), and particulate matter (PM). Concentrations of CO{sub 2} were kept low by adequate ventilation, and were assumed low also because the sampling occurred on a weekday when retail stores were less busy. CO concentrations were also low. The indoor-outdoor ratios of O{sub 3} showed that the first-order loss rate may vary by store trade types and also by ventilation mode (mechanical versus natural). Analysis of fine and ultrafine PM measurements showed that a substantial portion of the particle mass in grocery stores with cooking-related emissions was in particles less than 0.3 μm. Stores without cooking as an indoor source had PM size distributions that were more similar indoors and outdoors. The whole-building emission rates of volatile organic compounds (VOCs) and PM were estimated from the measured ventilation rates and indoor and outdoor contaminant concentrations. Mass balance models were then used to determine the ventilation rates, filtration strategies, or source reductions needed to maintain indoor contaminant concentrations below reference levels. Several scenarios of potential concern were considered: (i) formaldehyde levels in furniture/hardware stores, (ii) contaminants associated with cooking (e.g., PM, acrolein, and acetaldehyde) in grocery stores, and (iii) outdoor contaminants (e.g., PM and O{sub 3}) impacting stores that use natural ventilation. Estimated formaldehyde emission rates suggest that retail stores would need to ventilate at levels far exceeding the current Title 24 requirement to lower indoor concentrations below California’s stringent formaldehyde reference level. Given the high costs of providing ventilation but only modest chronic health benefit is expected, effective source control is an attractive alternative, as demonstrated by some retail stores in this study. Predictions showed that grocery stores need MERV 13 air filters, instead of MERV 8 filters that are more commonly used, to maintain indoor PM at levels that meet the chronic health standards for PM. Exposure to acrolein is a potential health concern in grocery stores, and should be addressed by increasing the use of kitchen range hoods or improving their contaminant removal efficiency. In stores that rely on natural ventilation, indoor PM can be a health concern if the stores are located in areas with high outdoor PM. This concern may be addressed by switching to mechanical ventilation when the outdoor air quality is poor, while continuing natural ventilation when outdoor air quality is good.« less

  2. Air filters from HVAC systems as possible source of volatile organic compounds (VOC) - laboratory and field assays

    NASA Astrophysics Data System (ADS)

    Schleibinger, Hans; Rüden, Henning

    The emission of volatile organic compounds (VOC) from air filters of HVAC systems was to be evaluated. In a first study carbonyl compounds (14 aldehydes and two ketones) were measured by reacting them with 2,4-dinitrophenylhydrazine (DNPH). Analysis was done by HPLC and UV detection. In laboratory experiments pieces of used and unused HVAC filters were incubated in test chambers. Filters to be investigated were taken from a filter bank of a large HVAC system in the centre of Berlin. First results show that - among those compounds - formaldehyde and acetone were found in higher concentrations in the test chambers filled with used filters in comparison to those with unused filters. Parallel field measurements were carried out at the prefilter and main filter banks of the two HVAC systems. Here measurements were carried out simultaneously before and after the filters to investigate whether those aldehydes or ketones arise from the filter material on site. Formaldehyde and acetone significantly increased in concentration after the filters of one HVAC system. In parallel experiments microorganisms were proved to be able to survive on air filters. Therefore, a possible source of formaldehyde and acetone might be microbes.

  3. A passive sampler for airborne formaldehyde

    NASA Astrophysics Data System (ADS)

    Grosjean, Daniel; Williams, Edwin L.

    A simple, inexpensive passive sampler is described that is capable of reliable measurements of formaldehyde at the parts per billion (ppb) levels relevant to indoor and outdoor air quality. The passive sampler consists of a modified dual filter holder in which the upper stage serves as the diffusion barrier, the lower stage includes a 2,4-dinitrophenylhydrazine (DNPH)-coated filter which collects formaldehyde, and the space between the two stages serve as the diffusion gap. The measured sampling rate, 18.8 ± 1.8 ml min -1, was determined in experiments involving sampling of ppb levels of formaldehyde with the passive sampler and with DNPH-coated C 18 cartridges and agrees well with the value of 19.4 ± 2.0 ml min -1 calculated from theory. The measured sampling rate was independent of formaldehyde concentration (16-156 ppb) and sampling duration (1.5-72 h). The precision of the measurements for colocated passive samplers averaged 8.6% in purified and indoor air (office and museums) and 10.2% in photochemically polluted outdoor air. With a 1.2-μm pore size Teflon filter as the diffusion barrier, the detection limit is 32 ppb h, e.g. 4 ppb in an 8-h sample, 1.3 ppb in a 24-h sample, and so on. Perceived advantages and limitations of the sampler are discussed including flexibility, cost effectiveness and possible negative bias at high ambient levels of ozone.

  4. Evaluation of two commercial and three home-made fixatives for the substitution of formalin: a formaldehyde-free laboratory is possible.

    PubMed

    Zanini, Cristina; Gerbaudo, Elisa; Ercole, Elisabetta; Vendramin, Anna; Forni, Marco

    2012-09-04

    Formaldehyde (HCHO) is a gas (available as a 37% concentrated solution, stabilized with methanol). The 10% dilution (approximately 4% formaldehyde) has been used as a fixative since the end of the 19th century. Alternative fixatives are also commercially available or may be prepared in-house in laboratories. Statements by the IARC, along with other USA agencies (CalEPA, RoC/NTP) on the carcinogenicity of formaldehyde for humans renders its substitution in Pathology Departments necessary since the annual use of formalin may exceed 3,500 liters for a medium-large laboratory. To achieve a "formalin-free laboratory" we tested straightforward-to-make fixatives along with registered reagents offered as formalin substitutes. More than two hundreds specimens were fixed in parallel with in-laboratory made fixatives PAGA (Polyethylenglycol, ethyl Alcohol, Glycerol, Acetic acid), two zinc-based fixatives (ZBF, Z7), and commercially-available alternatives (RCL2 and CellBlock). Tissue micro arrays were used for morphological and immunohistochemical comparison. Extraction of RNA was carried out to evaluate preservation of nucleic acids. Differences compared to formalin fixation were evident in alcohol-based fixatives, mainly restricted to higher stain affinity and considerable tissue shrinkage. Conversely, nuclear detail was superior with these alcohol-based formulas compared to formalin or glyoxale-based recipes. RNA extraction was superior for Z7, PAGA and RCL2 with regard to concentration but relatively comparable regarding quality. Abolition of the human carcinogen formaldehyde from pathology laboratories is possible even in contexts whereby commercial alternatives to formalin are unavailable or are too expensive for routine use, and aspiration devices are lacking or not adequately serviced. The use of known formulations, possibly with simple and not-noxious ("alimentary grade") constituents, comparable with registered proprietary products, may expand the search for the ideal fixative combining satisfactory morphology with improved preservation of nucleic acids and proteins as well as being easy and safe to dispose of.

  5. Pollutant exposures from natural gas cooking burners: a simulation-based assessment for Southern California.

    PubMed

    Logue, Jennifer M; Klepeis, Neil E; Lobscheid, Agnes B; Singer, Brett C

    2014-01-01

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants, and they are typically used without venting range hoods. We quantified pollutant concentrations and occupant exposures resulting from NGCB use in California homes. A mass-balance model was applied to estimate time-dependent pollutant concentrations throughout homes in Southern California and the exposure concentrations experienced by individual occupants. We estimated nitrogen dioxide (NO2), carbon monoxide (CO), and formaldehyde (HCHO) concentrations for 1 week each in summer and winter for a representative sample of Southern California homes. The model simulated pollutant emissions from NGCBs as well as NO2 and CO entry from outdoors, dilution throughout the home, and removal by ventilation and deposition. Residence characteristics and outdoor concentrations of NO2 and CO were obtained from available databases. We inferred ventilation rates, occupancy patterns, and burner use from household characteristics. We also explored proximity to the burner(s) and the benefits of using venting range hoods. Replicate model executions using independently generated sets of stochastic variable values yielded estimated pollutant concentration distributions with geometric means varying by <10%. The simulation model estimated that-in homes using NGCBs without coincident use of venting range hoods-62%, 9%, and 53% of occupants are routinely exposed to NO2, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3,000, and 20 ppb for NO2, CO, and HCHO, respectively. Reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health-based standards.

  6. Optimization of Ventilation Energy Demands and Indoor Air Quality in High-Performance Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hun, Diana E; Jackson, Mark C; Shrestha, Som S

    2014-01-01

    High-performance homes require that ventilation energy demands and indoor air quality (IAQ) be simultaneously optimized. We attempted to bridge these two areas by conducting tests in a research house located in Oak Ridge, TN, that was 20 months old, energy-efficient (i.e., expected to consume 50% less energy than a house built per the 2006 IRC), tightly-built (i.e., natural ventilation rate ~0.02 h-1), unoccupied, and unfurnished. We identified air pollutants of concern in the test home that could generally serve as indicators of IAQ, and conduced field experiments and computer simulations to determine the effectiveness and energy required by various techniquesmore » that lessened the concentration of these contaminants. Formaldehyde was selected as the main pollutant of concern among the contaminants that were sampled in the initial survey because it was the only compound that showed concentrations that were greater than the recommended exposure levels. Field data indicate that concentrations were higher during the summer primarily because emissions from sources rise with increases in temperature. Furthermore, supply ventilation and gas-phase filtration were effective means to reduce formaldehyde concentrations; however, exhaust ventilation had minimal influence on this pollutant. Results from simulations suggest that formaldehyde concentrations obtained while ventilating per ASHRAE 62.2-2010 could be decreased by about 20% from May through September through three strategies: 1) increasing ASHRAE supply ventilation by a factor of two, 2) reducing the thermostat setpoint from 76 to 74 F, or 3) running a gas-phase filtration system while decreasing supply ventilation per ASHRAE by half. In the mixed-humid climate of Oak Ridge, these strategies caused increases in electricity cost of ~$5 to ~$15/month depending on outdoor conditions.« less

  7. Formaldehyde: a chemical of concern in the vicinity of MBT plants of municipal solid waste.

    PubMed

    Vilavert, Lolita; Figueras, María J; Schuhmacher, Marta; Nadal, Martí; Domingo, José L

    2014-08-01

    The mechanical-biological treatment (MBT) of municipal solid waste (MSW) has a number of advantages in comparison to other MSW management possibilities. However, adverse health effects related to this practice are not well known yet, as a varied typology of microbiological and chemical agents may be generated and released. In 2010, we initiated an environmental monitoring program to control air levels of volatile organic compounds (VOCs) and microbiological pollutants near an MBT plant in Montcada i Reixac (Catalonia, Spain). In order to assess any temporal and seasonal trends, four 6-monthly campaigns were performed. Important fluctuations were observed in the levels of different biological indicators (total and Gram-negative bacteria, fungi grown at 25 °C and 37 °C, and more specifically, Aspergillus fumigatus). Although overall bioaerosols concentrations were rather low, a certain increase in the mean values of bacteria and fungi was observed in summer. In contrast, higher concentrations of VOCs were found in winter, with the only exception of formaldehyde. Interestingly, although this compound was not detected in one of the sampling campaigns, current airborne levels of formaldehyde were higher than those previously reported in urban areas across Europe. Furthermore, the non-carcinogenic risks (Hazard Quotient), particularly in winter, as well as the cancer risks associated with the inhalation of VOCs, exceeded the threshold values (1 and 10(-5), respectively), reaffirming the need of continuing with the monitoring program, with special emphasis on formaldehyde, a carcinogenic/mutagenic substance. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Molecular dynamics investigations of liquid-vapor interaction and adsorption of formaldehyde, oxocarbons, and water in graphitic slit pores.

    PubMed

    Huang, Pei-Hsing; Hung, Shang-Chao; Huang, Ming-Yueh

    2014-08-07

    Formaldehyde exposure has been associated with several human cancers, including leukemia and nasopharyngeal carcinoma, motivating the present investigation on the microscopic adsorption behaviors of formaldehyde in multi-component-mixture-filled micropores. Molecular dynamics (MD) simulation was used to investigate the liquid-vapor interaction and adsorption of formaldehyde, oxocarbons, and water in graphitic slit pores. The effects of the slit width, system temperature, concentration, and the constituent ratio of the mixture on the diffusion and adsorption properties are studied. As a result of interactions between the components, the z-directional self-diffusivity (D(z)) in the mixture substantially decreased by about one order of magnitude as compared with that of pure (single-constituent) adsorbates. When the concentration exceeds a certain threshold, the D(z) values dramatically decrease due to over-saturation inducing barriers to diffusion. The binding energy between the adsorbate and graphite at the first adsorption monolayer is calculated to be 3.99, 2.01, 3.49, and 2.67 kcal mol(-1) for CO2, CO, CH2O, and H2O, respectively. These values agree well with those calculated using the density functional theory coupled cluster method and experimental results. A low solubility of CO2 in water and water preferring to react with CH2O, forming hydrated methanediol clusters, are observed. Because the cohesion in a hydrated methanediol cluster is much higher than the adhesion between clusters and the graphitic surface, the hydrated methanediol clusters were hydrophobic, exhibiting a large contact angle on graphite.

  9. Aqueous Phase Non Enzymatic Chemistry of Cyanide, Formaldehyde and RNH2

    NASA Technical Reports Server (NTRS)

    Lerner, Narcinda R.; Chang, Sherwood (Technical Monitor)

    1994-01-01

    It is postulated that amino acids were produced on the early earth from dilute aqueous solution of cyanide, carbonyls and ammonia (the Strecker synthesis RNH2 + R"R""C=O + KCN yields H-N(R)-C(R")(R"")-CO2H. We have studied the products obtained from dilute aqueous solutions of cyanide, formaldehyde (R"=R""=H), ammonia (R=H) and amino acids. Solutions in the pH range from 8 to 10. at room temperature and at reactant concentrations from 0.001 M to 0.3 M have been studied. With R= H product yields were low (less than 3%). Only with R"=R""=H and R represented by the following: CH2CO2H (glycine); CH(CH3)CO2H (alanine); CH(CH2CH3)CO2H (a-amino n=butyric acids); C(CH3)2(CO2H) (a-aminoisobutyric acid); CH(CH(CH3)2)CO2H (valine); and CH(CH2CO2H)CO2H (aspartic acid), were product yields high (greater than 10%). The yields of glycine were larger with R not equal to H. The prebiotic implications of these findings will be discussed.

  10. High sensitive formaldehyde graphene gas sensor modified by atomic layer deposition zinc oxide films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Haichuan; Zhang, Zhiqiang; Wang, Keke

    2014-07-21

    Zinc oxide (ZnO) thin films with various thicknesses were fabricated by Atomic Layer Deposition on Chemical Vapor Deposition grown graphene films and their response to formaldehyde has been investigated. It was found that 0.5 nm ZnO films modified graphene sensors showed high response to formaldehyde with the resistance change up to 52% at the concentration of 9 parts-per-million (ppm) at room temperature. Meanwhile, the detection limit could reach 180 parts-per-billion (ppb) and fast response of 36 s was also obtained. The high sensitivity could be attributed to the combining effect from the highly reactive, top mounted ZnO thin films, and high conductivemore » graphene base network. The dependence of ZnO films surface morphology and its sensitivity on the ZnO films thickness was also investigated.« less

  11. Formaldehyde in cosmetics in patch tested dermatitis patients with and without contact allergy to formaldehyde.

    PubMed

    Hauksson, Inese; Pontén, Ann; Isaksson, Marléne; Hamada, Haneen; Engfeldt, Malin; Bruze, Magnus

    2016-03-01

    Formaldehyde is a well-known contact sensitizer. Formaldehyde releasers are widely used preservatives in cosmetics. To survey the release of formaldehyde in cosmetics brought by patients investigated because of suspected allergic contact dermatitis, to compare it with information given by the manufacturers on the packages, and to investigate whether formaldehyde-allergic patients are potentially exposed to more cosmetics releasing formaldehyde than dermatitis patients without contact allergy to formaldehyde. Cosmetics from 10 formaldehyde-allergic and 30 non-allergic patients (controls) matched for age and sex were investigated with the chromotropic acid spot test, which is a semiquantitative method measuring the release of formaldehyde. Formaldehyde was found in 58 of 245 (23.7%) products. Twenty-six of 126 (20.6%) leave-on products released formaldehyde, and 17 of 26 (65.4%) of these were not declared to contain formaldehyde or formaldehyde releasers. Among the rinse-off products, there were 32 of 119 (26.8%) formaldehyde-releasing products, and nine of 32 (28.0%) of these were not labelled as containing formaldehyde or formaldehyde releasers. Five of 10 formaldehyde-allergic patients brought leave-on products with ≥ 40 ppm formaldehyde, as compared with 4 of 30 in the control group (p = 0.029). Cosmetic products used by formaldehyde-allergic patients that are not declared to contain formaldehyde or formaldehyde-releasing preservatives should be analysed. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. A review of the impacts of tobacco heating system on indoor air quality versus conventional pollution sources.

    PubMed

    Kaunelienė, Violeta; Meišutovič-Akhtarieva, Marija; Martuzevičius, Dainius

    2018-05-08

    With the introduction of novel and potentially less polluting nicotine containing products to the market, the impacts of their usage to indoor air quality as opposed to conventional pollution sources must be reviewed and considered. This review study aimed to comparatively analyse changes in indoor air quality as the consequence of tobacco heating system (THS) generated pollution against general indoor air quality in various micro-environments, especially with combustion-based pollution sources present. Indoor concentrations of formaldehyde, acetaldehyde, benzene, toluene, nicotine and PM 2.5 were reviewed and compared; concentrations of other harmful and potentially harmful substances (HPHCs) were discussed. Generally, the usage of THS has been associated with lower or comparable indoor air pollutant concentrations compared against other conventional indoor sources or environments, in most cases distinguishable above background, thus potentially being associated with health effects at prolonged exposures as any other artificial air pollution source. In the controlled environment the use of THS (as well as an electronic cigarette) resulted in the lowest concentrations of formaldehyde, benzene, toluene, PM 2.5, among majority researched pollution sources (conventional cigarettes, waterpipe, incense, mosquito coils). The exposure to significantly higher pollution levels of benzene, toluene, and formaldehyde occurred in public environments, especially transport micro-environments. Such low levels of conventionally-assessed indoor pollutants resulting from the use of new nicotine containing products raise challenges for epidemiological studies of second-hand exposure to THS aerosol in real-life environments. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Microwave-assisted extraction coupled online with derivatization, restricted access material cleanup, and high-performance liquid chromatography for determination of formaldehyde in aquatic products.

    PubMed

    Chen, Ligang; Jin, Haiyan; Xu, Haoyan; Sun, Lei; Yu, Aimin; Zhang, Hanqi; Ding, Lan

    2009-05-27

    A rapid technique based on microwave-assisted extraction (MAE) coupled online with derivatization, restricted access material cleanup, and high-performance liquid chromatography (HPLC) was developed for the determination of formaldehyde in aquatic products. Formaldehyde was first extracted with water under the action of microwaves and then directly introduced into a derivatization reservoir containing 2,4-dinitrophenylhydrazine (DNPH). The formaldehyde-DNPH derivative (100 μL) was loaded into a restricted access material (RAM) precolumn for online cleanup. Subsequently, the analyte was transferred from the precolumn to an analytical column and determined by UV absorption spectrum at 352 nm. The limit of detection (LOD) was 0.27 mg kg(-1). The intraday and interday precisions expressed as RSDs were 3.5% and 5.0%, respectively. This method was applied to determine the presence of formaldehyde in various aquatic products. The results were in agreement with those obtained by the state standard method (steam-distillation and offline HPLC analysis) used in China and higher than those obtained by the online ultrasound-assisted extraction (UAE) method. The recoveries obtained by analyzing 11 spiked aquatic products were in the range of 70.0%-105.0%. The online technique was demonstrated to be rapid with little consumption of samples and reagents.

  14. [LC-MS/MS analysis of determination of strychnine and brucine in formaldehyde fixed tissue].

    PubMed

    Zhan, Lan-fen; Liu, Ming-dong; Yan, You-yi; Ye, Yi; Wang, Wei; Wang, Zhi-hui; Zhao, Jun-hong; Liao, Lin-chuan

    2012-10-01

    To establish a method for determination of strychnine and brucine in formaldehyde fixed tissue by LC-MS/MS analysis. The samples were pretreated with solid phase extraction using SCX cartridges and separated on SB-C18 column with mobile phase 0.1% formic acid : 0.1% formic acid-acetonitrile (75:25). Electrospray ionization (ESI) source was utilized and operated in positive ion mode. Multiple reactions monitoring (MRM) mode was applied. External standard method was applied for quantitation. The chromatographic separation of strychnine and brucine in formaldehyde fixed nephritic and hepatic tissues resulted successfully. The standard curve was linear in the range of 0.002-2.0 microg/g for strychnine and brucine in formaldehyde fixed tissues, and the correlation coefficient was more than 0.996. The limits of detection (LOD) of strychnine and brucine in nephritic tissues were 0.06ng/g and 0.03 ng/g, respectively. The LOD of both chemicals were 0.3 ng/g in hepatic tissues. The extraction recovery rate was more than 74.5%. The precision of intra-day and inter-day were both less than 8.2%. Strychnine and brucine can be sensitive to be determined in formaldehyde fixed tissue by LC-MS/MS analysis. It can be applied in the forensic toxicological analysis.

  15. Volatile organic compounds concentrations during the construction process in newly-built timber-frame houses: source identification and emission kinetics.

    PubMed

    Plaisance, H; Vignau-Laulhere, J; Mocho, P; Sauvat, N; Raulin, K; Desauziers, V

    2017-05-24

    Building and furniture materials are known to be major sources of volatile organic compounds (VOCs) indoors. During the construction process, an introduced material can have a more or less long-term impact on the indoor air quality according to the building characteristics. In this study, field measurements were carried out at six construction stages in three energy-efficient timber-frame houses. Data analysis focused on the ten most abundant compounds found among an initial list of fifteen target VOCs, namely formaldehyde, acetaldehyde, hexanal, toluene, m/p-xylenes, ethylbenzene, styrene, α-pinene, 3-carene and d-limonene. The chemical compositions and concentration variation patterns were recorded. The results showed a high pollution count, with m/p-xylenes and ethylbenzene concentrations ranging from 1900 to 5100 μg m -3 occurring at the time of the structural work (representing more than 88% of the sum of the target VOCs). Emission tests done on a large number of materials used in the construction revealed that this pollution is due to the emissions from the polyurethane adhesive mastic used as a sealing material. The emission kinetics of polyurethane adhesive mastic was assessed alone and also within a material assembly reconstituting a room wall. The results showed that the superposition of materials led to a slowing down of the VOC emission process from polyurethane adhesive mastic, which explains the concentration decays recorded in houses during the construction process. At the final construction stage, the concentration levels were low for all compounds (the sums of the target VOCs were between 18 and 32 μg m -3 ), with the aldehydes (formaldehyde, acetaldehyde and hexanal) now becoming the major fraction in the chemical composition in the last stages of construction (representing 50-70% of the sum of the target VOCs). This is in agreement with the fact that the sources of aldehydes are the most numerous among the materials and have rather slow emission kinetics.

  16. Comparison between active (pumped) and passive (diffusive) sampling methods for formaldehyde in pathology and histology laboratories.

    PubMed

    Lee, Eun Gyung; Magrm, Rana; Kusti, Mohannad; Kashon, Michael L; Guffey, Steven; Costas, Michelle M; Boykin, Carie J; Harper, Martin

    2017-01-01

    This study was to determine occupational exposures to formaldehyde and to compare concentrations of formaldehyde obtained by active and passive sampling methods. In one pathology and one histology laboratories, exposure measurements were collected with sets of active air samplers (Supelco LpDNPH tubes) and passive badges (ChemDisk Aldehyde Monitor 571). Sixty-six sample pairs (49 personal and 17 area) were collected and analyzed by NIOSH NMAM 2016 for active samples and OSHA Method 1007 (using the manufacturer's updated uptake rate) for passive samples. All active and passive 8-hr time-weighted average (TWA) measurements showed compliance with the OSHA permissible exposure limit (PEL-0.75 ppm) except for one passive measurement, whereas 78% for the active and 88% for the passive samples exceeded the NIOSH recommended exposure limit (REL-0.016 ppm). Overall, 73% of the passive samples showed higher concentrations than the active samples and a statistical test indicated disagreement between two methods for all data and for data without outliers. The OSHA Method cautions that passive samplers should not be used for sampling situations involving formalin solutions because of low concentration estimates in the presence of reaction products of formaldehyde and methanol (a formalin additive). However, this situation was not observed, perhaps because the formalin solutions used in these laboratories included much less methanol (3%) than those tested in the OSHA Method (up to 15%). The passive samplers in general overestimated concentrations compared to the active method, which is prudent for demonstrating compliance with an occupational exposure limit, but occasional large differences may be a result of collecting aerosolized droplets or splashes on the face of the samplers. In the situations examined in this study the passive sampler generally produces higher results than the active sampler so that a body of results from passive samplers demonstrating compliance with the OSHA PEL would be a valid conclusion. However, individual passive samples can show lower results than a paired active sampler so that a single result should be treated with caution.

  17. Characterization of indoor air quality and resident health in an Arizona senior housing apartment building.

    PubMed

    Frey, Sarah E; Destaillats, Hugo; Cohn, Sebastian; Ahrentzen, Sherry; Fraser, Matthew P

    2014-11-01

    A survey of key indoor air quality (IAQ) parameters and resident health was carried out in 72 apartments within a single low-income senior housing building in Phoenix, Arizona. Air sampling was carried out simultaneously with a questionnaire on personal habits and general health of residents. Mean PM10 concentrations are 66 +/- 16, 58 +/- 13, and 24 +/- 3 microg/m3 and mean PM2.5 concentrations are 62 +/- 16, 53 +/- 13, and 20 +/- 2 microg/m3 for the living room, kitchen, and outdoor balcony, respectively. Median PM10 concentrations are 17, 18 and 17 microg/m3 and median PM25 concentrations are 13, 14, and 13 microg/m3, respectively. The initial results indicate that increased indoor particle concentrations coincide with residents who report smoking cigarettes. Indoor formaldehyde concentrations revealed median levels of 36.9, 38.8, and 4.3 ppb in the living room, kitchen, and balcony, respectively. Results show that 36% of living room samples and 44% of kitchen samples exceeded the Health Canada REL for chronic exposure to formaldehyde (40 ppb). Associations between occupants' behavior self-reported health conditions, and IAQ are evaluated.

  18. Intercomparison of 4 Years of Global Formaldehyde Observations from the GOME-2 and OMI Sensors

    NASA Astrophysics Data System (ADS)

    De Smedt, Isabelle; Van Roozendael, Michel; Stravrakou, Trissevgeni; Muller, Jean-Francois; Chance, Kelly; Kurosu, Thomas

    2012-11-01

    Formaldehyde (H2CO) tropospheric columns have been retrieved since 2007 from backscattered UV radiance measurements performed by the GOME-2 instrument on the EUMETSAT METOP-A platform. This data set extends the successful time-series of global H2CO observations established with GOME/ ERS-2 (1996-2003), SCIAMACHY/ ENVISAT (2003-2012), and OMI on the NASA AURA platform (2005-now). In this work, we perform an intercomparison of the H2CO tropospheric columns retrieved from GOME-2 and OMI between 2007 and 2010, respectively at BIRA-IASB and at Harvard SAO. We first compare the global formaldehyde data products that are provided by each retrieval group. We then investigate each step of the retrieval procedure: the slant column fitting, the reference sector correction and the air mass factor calculation. New air mass factors are computed for OMI using external parameters consistent with those used for GOME-2. By doing so, the impacts of the different a priori profiles and aerosol corrections are quantified. The remaining differences are evaluated in view of the expected diurnal variations of the formaldehyde concentrations, based on ground-based measurements performed in the Beijing area.

  19. Assessment of formaldehyde levels in local and imported fresh fish in Ghana: a case study in the Tamale Metropolis of Ghana.

    PubMed

    Saba, Courage Kosi Setsoafia; Atayure, Seidu Isaac; Adzitey, Frederick

    2015-03-01

    Fish is an important source of protein all over the world, including in Ghana. The fishery sector plays a major role in meeting the domestic need of animal protein and also contributes greatly in foreign exchange earnings. The domestic supply of fish does not meet the demand, so Ghana imports fish and fish products from other countries. Media reports in Ghana have alleged the use of formaldehyde to preserve fish for increased shelf life and to maintain freshness. This research, therefore, sought to establish the levels of formaldehyde in imported and local fresh fish in the Tamale Metropolis by using a ChemSee formaldehyde and formalin detection test kit. Positive and negative controls were performed by using various concentrations of formalin (1, 10, 30, 50, 100, and 300 ppm) and sterile distilled water, respectively. Three times over a 6-month period, different fish species were obtained from five wholesale cold stores (where fish are sold in cartons) and some local sales points (where locally caught fish are sold). A total of 32 samples were taken during three different sampling sessions: 23 imported fish (mackerel, herring, horse mackerel, salmon, and redfish) and 9 local tilapia. The fish were cut, and 50 g was weighed and blended with an equal volume (50 ml) of sterile distilled water. Samples were transferred to test tubes and centrifuged. A test strip was dipped into the supernatant and observed for a color change. A change in color from white to pink or purple indicated the presence of formaldehyde in fish. The study showed that no formaldehyde was present in the imported and local fish obtained. The appropriate regulatory agencies should carry out this study regularly to ensure that fish consumed in Ghana is safe for consumption.

  20. Upregulated Transcription of Plasmid and Chromosomal Ribulose Monophosphate Pathway Genes Is Critical for Methanol Assimilation Rate and Methanol Tolerance in the Methylotrophic Bacterium Bacillus methanolicus

    PubMed Central

    Jakobsen, Øyvind M.; Benichou, Aline; Flickinger, Michael C.; Valla, Svein; Ellingsen, Trond E.; Brautaset, Trygve

    2006-01-01

    The natural plasmid pBM19 carries the key mdh gene needed for the oxidation of methanol into formaldehyde by Bacillus methanolicus. Five more genes, glpX, fba, tkt, pfk, and rpe, with deduced roles in the cell primary metabolism, are also located on this plasmid. By using real-time PCR, we show that they are transcriptionally upregulated (6- to 40-fold) in cells utilizing methanol; a similar induction was shown for two chromosomal genes, hps and phi. These seven genes are involved in the fructose bisphosphate aldolase/sedoheptulose bisphosphatase variant of the ribulose monophosphate (RuMP) pathway for formaldehyde assimilation. Curing of pBM19 causes higher methanol tolerance and reduced formaldehyde tolerance, and the methanol tolerance is reversed to wild-type levels by reintroducing mdh. Thus, the RuMP pathway is needed to detoxify the formaldehyde produced by the methanol dehydrogenase-mediated conversion of methanol, and the in vivo transcription levels of mdh and the RuMP pathway genes reflect the methanol tolerance level of the cells. The transcriptional inducer of hps and phi genes is formaldehyde, and not methanol, and introduction of multiple copies of these two genes into B. methanolicus made the cells more tolerant of growth on high methanol concentrations. The recombinant strain also had a significantly higher specific growth rate on methanol than the wild type. While pBM19 is critical for growth on methanol and important for formaldehyde detoxification, the maintenance of this plasmid represents a burden for B. methanolicus when growing on mannitol. Our data contribute to a new and fundamental understanding of the regulation of B. methanolicus methylotrophy. PMID:16585766

  1. Comparison of the effects of formaldehyde and gaseous ozone on HBV-contaminated hospital quilts

    PubMed Central

    Guo, Dan; Li, Ziqiong; Jia, Bei; Che, Xiaoqiong; Song, Tianshuang; Huang, Wenxiang

    2015-01-01

    Background: Besides being highly infectious, Hepatitis B virus (HBV) is a major cause of liver disease worldwide. In hospital settings, it is easy for the environment and quilts to be contaminated by HBV patient blood and body fluids. Therefore, HBV can be transmitted to other patients via contaminated environmental surfaces or quilts, resulting in an HBV nosocomial infection. Formaldehyde and ozone are commonly used disinfectants that may influence this infectious situation. Objective: To investigate the clinical effectiveness of formaldehyde and gaseous ozone for the terminal cleaning of hospital quilts contaminated by HBV. Methods: Thin cloth and thick cotton soaked with the serum from high HBV copy number patients were prepared and disinfected using formaldehyde fumigation and gaseous ozone at different times. The copy numbers of HBV DNA in the HBV-contaminated cloth and cotton samples were measured quantitatively with fluorescent quantitative polymerase chain reaction (PCR). Results: When gaseous ozone was used to disinfect HBV-contaminated quilts for 23 minutes (min), 36 min, 49 min, and 90 min, the HBV DNA copy number displayed no significant decrease compared with the copy number before disinfection (P > 0.05). In comparison, the copy number of the HBV DNA in the cloth group decreased significantly (P < 0.05) after formaldehyde fumigation disinfection for 1 hour (h), and there was no difference when longer times and increased concentrations were used. In the thick cotton group, there was also a significant decrease (P < 0.05) of the HBV DNA copy numbers, but the decrease was not as dramatic. In addition, in this group, the disinfection effect observed at 4 h was the strongest. Conclusions: The application of ozone to disinfect HBV-contaminated hospital quilts possibly has no effect, whereas, formaldehyde oxide fumigation effectively reduced HBV copy numbers. PMID:26770591

  2. Upregulated transcription of plasmid and chromosomal ribulose monophosphate pathway genes is critical for methanol assimilation rate and methanol tolerance in the methylotrophic bacterium Bacillus methanolicus.

    PubMed

    Jakobsen, Øyvind M; Benichou, Aline; Flickinger, Michael C; Valla, Svein; Ellingsen, Trond E; Brautaset, Trygve

    2006-04-01

    The natural plasmid pBM19 carries the key mdh gene needed for the oxidation of methanol into formaldehyde by Bacillus methanolicus. Five more genes, glpX, fba, tkt, pfk, and rpe, with deduced roles in the cell primary metabolism, are also located on this plasmid. By using real-time PCR, we show that they are transcriptionally upregulated (6- to 40-fold) in cells utilizing methanol; a similar induction was shown for two chromosomal genes, hps and phi. These seven genes are involved in the fructose bisphosphate aldolase/sedoheptulose bisphosphatase variant of the ribulose monophosphate (RuMP) pathway for formaldehyde assimilation. Curing of pBM19 causes higher methanol tolerance and reduced formaldehyde tolerance, and the methanol tolerance is reversed to wild-type levels by reintroducing mdh. Thus, the RuMP pathway is needed to detoxify the formaldehyde produced by the methanol dehydrogenase-mediated conversion of methanol, and the in vivo transcription levels of mdh and the RuMP pathway genes reflect the methanol tolerance level of the cells. The transcriptional inducer of hps and phi genes is formaldehyde, and not methanol, and introduction of multiple copies of these two genes into B. methanolicus made the cells more tolerant of growth on high methanol concentrations. The recombinant strain also had a significantly higher specific growth rate on methanol than the wild type. While pBM19 is critical for growth on methanol and important for formaldehyde detoxification, the maintenance of this plasmid represents a burden for B. methanolicus when growing on mannitol. Our data contribute to a new and fundamental understanding of the regulation of B. methanolicus methylotrophy.

  3. Comparison of formation of disinfection by-products by chlorination and ozonation of wastewater effluents and their toxicity to Daphnia magna.

    PubMed

    Park, Keun-Young; Choi, Su-Young; Lee, Seung-Hoon; Kweon, Ji-Hyang; Song, Ji-Hyeon

    2016-08-01

    This study compared the two most frequently used disinfectants (i.e., chlorine and ozone) to understand their efficiency in wastewater effluents and the ecotoxicity of disinfection by-products created during chlorination and ozonation. Four trihalomethanes (THMs) and nine haloacetic acids (HAAs) were measured from a chlorine-disinfected sample and two aldehydes (i.e., formaldehydes and acetaldehydes) were analyzed after ozonation. Chlorination was effective for total coliform removal with Ct value in the range of 30-60 mg-min/L. Over 1.6 mg/L of ozone dose and 0.5 min of the contact time presented sufficient disinfection efficiency. The concentration of THMs increased with longer contact time (24 h), but that of HAAs showed little change with contact time. The measured concentration of formaldehyde at the ozone dose of 1.6 mg/L and the contact time of 9 min showed the greatest value in this study, approximately 330 μg L(-1), from which the corresponding ecotoxicity was determined using an indicator species, Daphnia magna. The ecotoxicity results were consistent with the toxicological features judged by occurrence, genotoxicity, and carcinogenicity. Both the disinfection efficiency as well as the DBP formation potential should therefore be considered to avoid harmful impacts on aquatic environments when a disinfection method is used for wastewater effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Measurements of lower carbonyls in Rome ambient air

    NASA Astrophysics Data System (ADS)

    Possanzini, M.; Di Palo, V.; Petricca, M.; Fratarcangeli, R.; Brocco, D.

    Ambient levels and diurnal profiles of lower carbonyls were measured in Rome during selected days of summer 1994 and winter 1995. The most abundant carbonyls were formaldehyde (up to 27 ppb) followed by ethanal (< 17 ppb) and acetone (< 9 ppb). Gas-phase concentrations of other seven carbonyls were in the 0-3 ppb range. The results were discussed with respect to direct emissions and photochemical production. Using carbonyl/CO concentration ratios mobil source emissions of carbonyls were estimated for the urban area. The secondary production of C 1-C 3 aldehydes from reactions of alkenes with O 3 and OH radicals during the early morning hours of summer days was also calculated. The daytime pattern of carbonyls was found to be similar to that of toluene in wintertime and close to that of ozone in summer periods conductive to photochemical pollution episodes.

  5. Optoelectrical Cooling of Formaldehyde to Sub-Millikelvin Temperatures

    NASA Astrophysics Data System (ADS)

    Zeppenfeld, Martin

    2016-05-01

    Due to their strong long-range dipole-dipole interactions and large number of internal states, polar molecules cooled to ultracold temperatures enable fascinating applications ranging from ultracold chemistry to investigation of dipolar quantum gases. However, realizing a simple and general technique to cool molecules to ultracold temperatures, akin to laser cooling of atoms, has been a formidable challenge. We present results for opto-electrical Sisyphus cooling applied to formaldehyde (H2 CO). In this generally applicable cooling scheme, molecules repeatedly move up and down electric field gradients of a trapping potential in different rotational states to efficiently extract kinetic energy. A total of about 300,000 molecules are thereby cooled by a factor of 1000 to 400uK, resulting in a record-large ensemble of ultracold molecules. In addition to cooling of the motional degrees of freedom, optical pumping via a vibrational transition allows us to control the internal rotational state. We thereby achieve a purity of over 80% of formaldehyde molecules in a single rotational M-sublevel. Our experiment provides an excellent starting point for precision spectroscopy and investigation of ultracold collisions.

  6. Insights from two industrial hygiene pilot e-cigarette passive vaping studies.

    PubMed

    Maloney, John C; Thompson, Michael K; Oldham, Michael J; Stiff, Charles L; Lilly, Patrick D; Patskan, George J; Shafer, Kenneth H; Sarkar, Mohamadi A

    2016-01-01

    While several reports have been published using research methods of estimating exposure risk to e-cigarette vapors in nonusers, only two have directly measured indoor air concentrations from vaping using validated industrial hygiene sampling methodology. Our first study was designed to measure indoor air concentrations of nicotine, menthol, propylene glycol, glycerol, and total particulates during the use of multiple e-cigarettes in a well-characterized room over a period of time. Our second study was a repeat of the first study, and it also evaluated levels of formaldehyde. Measurements were collected using active sampling, near real-time and direct measurement techniques. Air sampling incorporated industrial hygiene sampling methodology using analytical methods established by the National Institute of Occupational Safety and Health and the Occupational Safety and Health Administration. Active samples were collected over a 12-hr period, for 4 days. Background measurements were taken in the same room the day before and the day after vaping. Panelists (n = 185 Study 1; n = 145 Study 2) used menthol and non-menthol MarkTen prototype e-cigarettes. Vaping sessions (six, 1-hr) included 3 prototypes, with total number of puffs ranging from 36-216 per session. Results of the active samples were below the limit of quantitation of the analytical methods. Near real-time data were below the lowest concentration on the established calibration curves. Data from this study indicate that the majority of chemical constituents sampled were below quantifiable levels. Formaldehyde was detected at consistent levels during all sampling periods. These two studies found that indoor vaping of MarkTen prototype e-cigarette does not produce chemical constituents at quantifiable levels or background levels using standard industrial hygiene collection techniques and analytical methods.

  7. Biological indicators for low temperature steam and formaldehyde sterilization: the effect of defined media on sporulation, growth index and formaldehyde resistance of spores of Bacillus stearothermophilus strains.

    PubMed

    Wright, A M; Hoxey, E V; Soper, C J; Davies, D J

    1995-10-01

    Preliminary screening was carried out on spores of 29 strains of Bacillus stearothermophilus to determine their potential as biological indicator organisms for low temperature steam and formaldehyde sterilization. Each strain was sporulated on four chemically defined media. Fourteen strains produced satisfactory sporulation on one or more of the media but there was considerable variation in the extent of sporulation. The growth index of the spores, which was dependent on both the strain of organism and the sporulation medium, ranged from 1% to 90%. The spores were appraised on the basis of their resistance to inactivation by 0.5% w/v formaldehyde in aqueous solution at 70 degrees C. The survivor curves obtained could be characterized into five types on the basis of the shape of the curve. Only five strains of Bacillus stearothermophilus produced spores with the characteristics of high resistance, linear semi-logarithmic survivor curve and high growth index that would be required of a potential biological indicator organism.

  8. Passive emission colorimetric sensor (PECS) for measuring emission rates of formaldehyde based on an enzymatic reaction and reflectance photometry.

    PubMed

    Shinohara, Naohide; Kajiwara, Tomohisa; Ohnishi, Masato; Kodama, Kenichi; Yanagisawa, Yukio

    2008-06-15

    A coin-sized passive emission colorimetric sensor (PECS) based on an enzymatic reaction and a portable reflectance photometry device were developed to determine the emission rates of formaldehyde from building materials and other materials found indoors in only 30 minutes on-site. The color change of the PECS linearly correlated to the concentration of formaldehyde aqueous solutions up to 28 microg/mL. The correlation between the emission rates measured by using the PECS and those measured by using a desiccator method or by using a chamber method was fitted with a linear function and a power function, and the determination coefficients were more than 0.98. The reproducible results indicate that the emission rates could be obtained with the correlation equations from the data measured by using the PECS and the portable reflectance photometry device. Limits of detection (LODs) were 0.051 mg/L for the desiccator method and 3.1 microg/m2/h for the chamber method. Thus, it was confirmed that the emission rates of formaldehyde from the building materials classified as F four-star (< 0.3 mg/L (desiccator method) or < 5.0 microg/m2/h (chamber method)), based on Japanese Industrial Standards (JIS), could be measured with the PECS. The measurement with PECS was confirmed to be precise (RSD < 10%). Other chemicals emitted from indoor materials, such as methanol, ethanol, acetone, toluene, and xylene, interfered little with the measurement of formaldehyde emission rates by using the PECS.

  9. Exploring the limitations of the Hantzsch method used for quantification of hydroxyl radicals in systems of relevance for interfacial radiation chemistry

    NASA Astrophysics Data System (ADS)

    Yang, Miao; Soroka, Inna; Jonsson, Mats

    2017-01-01

    In the presence of Tris or methanol, hydroxyl radicals in systems of relevance for interfacial radiation chemistry can be quantified indirectly via the Hantzsch method by determining the amount of the scavenging product formaldehyde formed. In this work, the influence of the presence of H2O2 on the Hantzsch method using acetoacetanilide (AAA) as derivatization reagent is studied. The experiments show that the measured CH2O concentration deviates from the actual concentration in the presence of H2O2 and the deviation increases with increasing [H2O2]0/[CH2O]0. The deviation is negative, i.e., the measured formaldehyde concentration is lower than the actual concentration. This leads to an underestimation of the hydroxyl radical production in systems containing significant amount of H2O2. The main reason for the deviation is found to be three coupled equilibria involving H2O2, CH2O and the derivative produced in the Hantzsch method.

  10. Methanol-enhanced removal and metabolic conversion of formaldehyde by a black soybean from formaldehyde solutions.

    PubMed

    Tan, Hao; Xiong, Yun; Li, Kun-Zhi; Chen, Li-Mei

    2017-02-01

    Methanol regulation of some biochemical and physiological characteristics in plants has been documented in several references. This study showed that the pretreatment of methanol with an appropriate concentration could stimulate the HCHO uptake by black soybean (BS) plants. The process of methanol-stimulated HCHO uptake by BS plants was optimized using the Central Composite Design and response surface methodology for the three variables, methanol concentration, HCHO concentration, and treatment time. Under optimized conditions, the best stimulation effect of methanol on HCHO uptake was obtained. 13 C-NMR analysis indicated that the H 13 CHO metabolism produced H 13 COOH, [2- 13 C]Gly, and [3- 13 C]Ser in BS plant roots. Methanol pretreatment enhanced the metabolic conversion of H 13 CHO in BS plant roots, which consequently increased HCHO uptake by BS plants. Therefore, methanol pretreatment might be used to increase HCHO uptake by plants in the phytoremediation of HCHO-polluted solutions.

  11. How to avoid glucose degradation products in peritoneal dialysis fluids.

    PubMed

    Erixon, Martin; Wieslander, Anders; Lindén, Torbjörn; Carlsson, Ola; Forsbäck, Gunita; Svensson, Eva; Jönsson, Jan Ake; Kjellstrand, Per

    2006-01-01

    The formation of glucose degradation products (GDPs) during sterilization of peritoneal dialysis fluids (PDFs) is one of the most important aspects of biocompatibility of glucose-containing PDFs. Producers of PDFs are thus trying to minimize the level of GDPs in their products. 3,4-Dideoxyglucosone-3-ene (3,4-DGE) has been identified as the most bioreactive GDP in PDFs. It exists in a temperature-dependent equilibrium with a pool of 3-deoxyglucosone (3-DG) and is a precursor in the irreversible formation of 5-hydroxymethyl furaldehyde (5-HMF). The aim of the present study was to investigate how to minimize GDPs in PDFs and how different manufacturers have succeeded in doing so. Glucose solutions at different pHs and concentrations were heat sterilized and 3-DG, 3,4-DGE, 5-HMF, formaldehyde, and acetaldehyde were analyzed. Conventional as well as biocompatible fluids from different manufacturers were analyzed in parallel for GDP concentrations. The concentrations of 3-DG and 3,4-DGE produced during heat sterilization decreased when pH was reduced to about 2. Concentration of 5-HMF decreased when pH was reduced to 2.6. After further decrease to a pH of 2.0, concentration of 5-HMF increased slightly, and below a pH of 2.0 it increased considerably, together with formaldehyde; 3-DG continued to drop and 3,4-DGE remained constant. Inhibition of cell growth was paralleled by 3,4-DGE concentration at pH 2.0 - 6.0. A high glucose concentration lowered concentrations of 3,4-DGE and 3-DG at pH 5.5 and of 5-HMF at pH 1. At pH 2.2 and 3.2, glucose concentration had a minor effect on the formation of GDPs. All conventional PDFs contained high levels of 3,4-DGE and 3-DG. Concentrations were considerably lower in the biocompatible fluids. However, the concentration of 5-H M F was slightly higher in all the biocompatible fluids. The best way to avoid reactive GDPs is to have a pH between 2.0 and 2.6 during sterilization. If pHs outside this range are used, it becomes more important to have high glucose concentration during the sterilization process. There are large variations in GDPs, both within and between biocompatible and conventionally manufactured PDFs.

  12. Growth characteristics of a new methylomonad.

    PubMed Central

    Chen, B J; Hirt, W; Lim, H C; Tsao, G T

    1977-01-01

    A methylomonad culture was isolated from pond water and examined as a potential source of single-cell protein. A medium containing magnesium sulfate, ammonium hydroxide, sodium phosphate, tap water, and methanol supported the growth of the isolate. Optimal growth conditions in batch cultures for the organism were: temperature, 30 to 33 degrees C; pH 7.1; and phosphate concentration, 0.015 M. The minimum doubling time obtained was 1.6 h. The specific growth rate in batch culture was dependent on the methanol concentration, reaching a maximum around 0.2% (wt/vol). Growth inhibition was apparent above 0.3% (wt/vol), and growth was completely inhibited above 4.6% (wt/vol) methanol. Although the inhibitory effect of formaldehyde on the specific growth rate was much greater than that of formate, the organism utilized formaldehyde, but not formate, as a sole carbon and energy source in batch cultures. The isolate was identified primarily by its inability to utilize any carbon source other than methanol and formaldehyde for growth. Although it is capable of rapid growth on methanol, the organism showed a very weak catalase activity. The amino acid content of the cells compared favorably with the reference levels for the essential amino acids specific by the Food and Agricultural Organization of the United Nations. PMID:15510

  13. Personal formaldehyde exposure level in the gross anatomy dissecting room at College of Medicine King Saud University Riyadh.

    PubMed

    Vohra, Muhammad Saeed

    2011-03-01

    This study was conducted to correlate the personal formaldehyde (FA) exposure levels of instructors and students with the indoor FA concentrations in gross anatomy laboratory at King Saud University. The personal FA levels of instructors and students are higher than the indoor FA concentration in the gross anatomy laboratory. The gross anatomy laboratory at college of medicine, King Saud University Riyadh, was observed for indoor FA concentration and the personal exposure levels of instructors and the medical students during the 4th, 10th and 14th weeks of the dissection sessions. All air samples were collected by the diffusive sampling device and analyzed by using high performance liquid chromatography (HPLC). The personal exposure level of FA was higher than the indoor concentration, and the personal exposure levels of instructors were higher than that of the students. The concentration of FA was also higher in the center of the room than the corners and near the doors. Both the indoor FA concentrations and personal FA exposure levels are higher near the dissecting table than at locations away from it during the gross anatomy laboratory sessions. Thus, the instructors and students are exposed to the higher concentration of FA than the general population.

  14. Airborne exposures to monoethanolamine, glycol ethers, and benzyl alcohol during professional cleaning: a pilot study.

    PubMed

    Melchior Gerster, Fabian; Brenna Hopf, Nancy; Pierre Wild, Pascal; Vernez, David

    2014-08-01

    A growing body of epidemiologic evidence suggests an association between exposure to cleaning products and respiratory dysfunction. Due to the lack of quantitative assessments of respiratory exposures to airborne irritants and sensitizers among professional cleaners, the culpable substances have yet to be identified. Focusing on previously identified irritants, our aims were to determine (i) airborne concentrations of monoethanolamine (MEA), glycol ethers, and benzyl alcohol (BA) during different cleaning tasks performed by professional cleaning workers and assess their determinants; and (ii) air concentrations of formaldehyde, a known indoor air contaminant. Personal air samples were collected in 12 cleaning companies, and analyzed by conventional methods. Nearly all air concentrations [MEA (n = 68), glycol ethers (n = 79), BA (n = 15), and formaldehyde (n = 45)] were far below (<1/10) of the corresponding Swiss occupational exposure limits (OEL), except for ethylene glycol mono-n-butyl ether (EGBE). For butoxypropanol and BA, no OELs exist. Although only detected once, EGBE air concentrations (n = 4) were high (49.48-58.72mg m(-3)), and close to the Swiss OEL (49mg m(-3)). When substances were not noted as present in safety data sheets of cleaning products used but were measured, air concentrations showed no presence of MEA, while the glycol ethers were often present, and formaldehyde was universally detected. Exposure to MEA was affected by its amount used (P = 0.036), and spraying (P = 0.000) and exposure to butoxypropanol was affected by spraying (P = 0.007) and cross-ventilation (P = 0.000). Professional cleaners were found to be exposed to multiple airborne irritants at low concentrations, thus these substances should be considered in investigations of respiratory dysfunctions in the cleaning industry; especially in specialized cleaning tasks such as intensive floor cleaning. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  15. Molecularly Imprinted Polymer Nanoparticles for Formaldehyde Sensing with QCM.

    PubMed

    Hussain, Munawar; Kotova, Kira; Lieberzeit, Peter A

    2016-06-30

    Herein, we report on molecularly imprinted polymers (MIPs) for detecting formaldehyde vapors in air streams. A copolymer thin film consisting of styrene, methacrylic acid, and ethylene glycol dimethacrylate on quartz crystal microbalance (QCM) yielded a detection limit of 500 ppb formaldehyde in dry air. Surprisingly, these MIPs showed specific behavior when tested against a range of volatile organic compounds (VOCs), such as acetaldehyde, methanol, formic acid, and dichloromethane. Despite thus being a suitable receptor in principle, the MIPs were not useful for measurements at 50% humidity due to surface saturation by water. This was overcome by introducing primary amino groups into the polymer via allyl amine and by changing the coating morphology from thin film to nanoparticles. This led to the same limit of detection (500 ppb) and selectivity as before, but at the real-life conditions of 50% relative humidity.

  16. Rocket and Missile Container Engineering Guide

    DTIC Science & Technology

    1982-01-01

    impregnated with urea - formaldehyde and melamine - formaldehyde resins , found that a high degree of fungous resistance was imparted to the cotton...34 Phenol-aniline- formaldehyde Resorcinol- formaldehyde Urea - formaldehydes Urea -formaldehydeh Protein- formaldehydes Zein- formaldehyde ("Vicara") Casein...Practically, any cush- ioning material can be made resistant to fungi. The treatment usually involves impregnation

  17. Efficacy of disinfectants and detergents intended for a pig farm environment where Salmonella is present.

    PubMed

    Gosling, Rebecca J; Mawhinney, Ian; Vaughan, Kelly; Davies, Robert H; Smith, Richard P

    2017-05-01

    Disinfection is a useful component of disease control, although products and chemical groups vary in their activity against different pathogens. This study investigated the ability of fifteen disinfectants to eliminate pig-associated Salmonella. Active compounds of products included chlorocresol, glutaraldehyde/formaldehyde, glutaraldehyde/quaternary ammonium compounds (QAC), iodine, peracetic acid and potassium peroxomonosulphate. Six detergents were also tested for their ability to dislodge faecal material, and interactions with specific disinfectants. Eight serovars were screened against all products using dilution tests and a monophasic Salmonella Typhimurium strain was selected for further testing. The disinfectants were tested using models to replicate boot dip (faecal suspension) and animal housing (surface contamination) disinfection respectively at the Department for Environment, Food and Rural Affairs Approved Disinfectant General Orders (GO) concentration, half GO and twice GO. Stability over time and ability to eliminate Salmonella in biofilm was also assessed. The most effective products were then field tested. Most products at GO concentration eliminated Salmonella in the faecal suspension model. One glutaraldehyde/QAC and one glutaraldehyde/formaldehyde-based product at GO concentration eliminated Salmonella in the surface contamination model. Chlorocresol-based products were more stable in the faecal suspension model. One chlorocresol and the glutaraldehyde/formaldehyde-based product were most successful in eliminating Salmonella from biofilms. All products tested on farm reduced bacterial log counts; the glutaraldehyde/QAC based product produced the greatest reduction. The type of product and the application concentration can impact on efficacy of farm disinfection; therefore, clearer guidance is needed to ensure the appropriate programmes are used for specific environments. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  18. Degradation of formaldehyde at high concentrations by phenol-adapted Ralstonia eutropha closely related to pink-pigmented facultative methylotrophs.

    PubMed

    Habibi, Alireza; Vahabzadeh, Farzaneh

    2013-01-01

    The ability of the phenol-adapted Ralstonia eutropha to utilize formaldehyde (FD) as the sole source of carbon and energy was studied. Adaptation to FD was accomplished by substituting FD for glucose in a stepwise manner. The bacterium in the liquid test culture could tolerate concentrations of FD up to 900 mg L(-1). Degradation of FD was complete in 528 h at 30°C with shaking at 150 rpm (r = 1.67 mg L(-1) h(-1)), q = 0.035 g(FD) g(cell) (-1) h(-1). Substrate inhibition kinetics (Haldane and Luong equations) are used to describe the experimental data. At non-inhibitory concentrations of FD, the Monod equation was used. According to the Luong model, the values of the maximum specific growth rate (μ(max)), half-saturation coefficient (k(S)), the maximum allowable formaldehyde concentration (S(m)), and the shape factor (n) were 0.117 h(-1), 47.6 mg L(-1), 900 mg L(-1), and 2.2, respectively. The growth response of the test bacterium to consecutive FD feedings was examined, and the FD-adapted R. eutropha cells were able to degrade 1000 mg L(-1) FD in 150 h through 4 cycles of FD feeds. During FD degradation, formic acid metabolite was formed. Assimilation of FD, methanol, formic acid, and oxalate by the test bacterium was accompanied by the formation of a pink pigment. The carotenoid nature of the cellular pigment has been confirmed and the test bacterium appeared to be closely related to pink-pigmented facultative methylotrophs (PPFM). The extent of harm to soil exposed to biotreated wastewaters containing FD may be moderated due to the association between methylotrophic/oxalotrophic bacteria and plants.

  19. Fogwater chemistry in a wood-burning community, western Oregon.

    PubMed

    Muir, P S

    1991-01-01

    Fogwater chemistry in Corvallis, Oregon, a wood-burning community (pop. approximately 43,000) was compared with the chemistry of fogwater collected in more remote and in more highly industrialized areas. The fogwater was not acidic (median pH = 5.7) and was usually dominated by SO4=, NO3-, and NH4+ whose concentrations were generally lower than in fogwater in other urban areas but higher than in remote areas. Concentrations of formic and acetic acids (medians = 61 and 52 microN, respectively) were comparable to those in fogwater in Los Angeles, California and were typically much higher than concentrations in fogwater from more remote areas. Formate and acetate concentrations were often comparable to those of SO4= and NO3-. Formaldehyde concentrations (range = 0.4-3.0 mg L-1) were comparable to those in fogwater in some urban areas of southern California, yet lower than concentrations in highly industrialized areas of southern California. Because concentrations of organic compounds in Corvallis fogwater were often comparable to those in larger urban areas, sources in addition to motor vehicles must be important in Corvallis. Additional sources may be natural and anthropogenic, the latter including residential wood burning and wood products industries.

  20. Variational study on the vibrational level structure and IVR behavior of highly vibrationally excited S0 formaldehyde.

    PubMed

    Rashev, Svetoslav; Moule, David C

    2012-02-15

    We perform large scale converged variational vibrational calculations on S(0) formaldehyde up to very high excess vibrational energies (E(v)), E(v)∼17,000cm(-1), using our vibrational method, consisting of a specific search/selection/Lanczos iteration procedure. Using the same method we investigate the vibrational level structure and intramolecular vibrational redistribution (IVR) characteristics for various vibrational levels in this energy range in order to assess the onset of IVR. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Contact dermatitis caused by preservatives.

    PubMed

    Yim, Elizabeth; Baquerizo Nole, Katherine L; Tosti, Antonella

    2014-01-01

    Preservatives are biocidal chemicals added to food, cosmetics, and industrial products to prevent the growth of microorganisms. They are usually nontoxic and inexpensive and have a long shelf life. Unfortunately, they commonly cause contact dermatitis. This article reviews the most important classes of preservatives physicians are most likely to encounter in their daily practice, specifically isothiazolinones, formaldehyde and formaldehyde-releasers, iodopropynyl butylcarbamate, methyldibromoglutaronitrile, and parabens. For each preservative mentioned, the prevalence of sensitization, clinical presentation of contact dermatitis, patch testing concentrations, cross reactions, and related legislation will be discussed. Mandatory labeling of preservatives is required in some countries, but not required in others. Until policies are made, physicians and patients must be proactive in identifying potential sensitizers and removing their use. We hope that this article will serve as a guide for policy makers in creating legislation and future regulations on the use and concentration of certain preservatives in cosmetics and industrial products.

  2. A simple and highly sensitive colorimetric detection method for gaseous formaldehyde.

    PubMed

    Feng, Liang; Musto, Christopher J; Suslick, Kenneth S

    2010-03-31

    A colorimetric detection method using amine-functionalized polymer films doped with a pH indicator has been developed for the rapid, sensitive, and quantitative detection of gaseous formaldehyde at concentrations well below the immediately dangerous to life or health (IDLH) limit. In 1 min, visible color changes are easily observed, even down to the permissible exposure limit (PEL) at 750 ppb. The limit of detection is below 50 ppb (7% of the PEL) after 10 min of exposure. This sensor is essentially unaffected by changes in humidity or temperature (4 to 50 degrees C) and is not sensitive to common interferents.

  3. Visible-light-responsive photocatalyst prepared by sintering a TiO2/Cu plate

    NASA Astrophysics Data System (ADS)

    Kogoshi, Sumio; Araki, Syota; Yazawa, Syota; Nakano, Takuma; Takeuchi, Tomohiko; Katayama, Noboru; Kudo, Yusuke; Nakanishi, Tetsuya

    2014-09-01

    A visible-light-responsive photocatalyst has been prepared simply by sintering a TiO2-coated Cu plate. The new photocatalyst was able to reduce the concentration of formaldehyde by 8-12% at ca. 296 K with an air flow rate of ca. 0.5 L/min (ca. 1 ppm formaldehyde included), a photocatalyst cross section of 50 × 100 mm2, ca. 50% humidity, and light intensity of 30 W/m2 (white LED light). The reduction rate was approximately two times higher than that for N-doped TiO2 (TiO2-xNx) under almost the same test conditions.

  4. REDUCTION OF ACIDITY OF NITRIC ACID SOLUTIONS BY USE OF FORMALDEHYDE

    DOEpatents

    Healy, T.V.

    1958-05-20

    A continuous method is described of concentrating by evaporation and reducing the nitrate ion content of an aqueous solution of metallic salts containing nitric acid not in excess of 8N. It consists of heating the solution and then passing formaldehyde into the heated solution to bring about decomposition of the nitric acid. The evolved gases containing NO are contacted countercurrently with an aqueous metal salt solution containing nitric acid in excess of 8N so as to bring about decomposition of the nitric acid and lower the normality to at least 8N, whereupon it is passed into the body of heated solution.

  5. Growth of Pseudomonas C on C1 Compounds: Continuous Culture

    PubMed Central

    Battat, E.; Goldberg, I.; Mateles, R. I.

    1974-01-01

    Pseudomonas C was grown in continuous culture on methanol, formaldehyde, or formate as sole carbon source. On methanol μmax = 0.49/h and yield constant (Y) = 0.54; on formaldehyde and on unsupplemented media, μmax was about 0.2/h and Y was 0.15, whereas addition of p-aminobenzoic acid, folic acid, serine, or glycine to the medium raised Y to about 0.26 to 0.29, and addition of p-aminobenzoic acid, folic acid, serine, nicotinamide adenine dinucleotide, and Tween 80 raised the yield to 0.35. On formate and on unsupplemented media, μmax = 0.2/h and Y = 0.02, whereas addition of 0.1 mM p-aminobenzoic acid increased μmax to about 0.47 and Y to about 0.23. At low cell concentrations or growth rates a beneficial effect of CO2 was observed. Formaldehyde or formate, when added together with methanol, were utilized simultaneously with the methanol. PMID:4375436

  6. 78 FR 44090 - Formaldehyde; Third-Party Certification Framework for the Formaldehyde Standards for Composite...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ... Formaldehyde; Third-Party Certification Framework for the Formaldehyde Standards for Composite Wood Products..., concerning a third-party certification framework for the formaldehyde standards for composite wood products... Environmental protection, Composite wood products, Formaldehyde, Reporting and recordkeeping, Third-party...

  7. [Exploratory study of air quality in elementary schools, Coimbra, Portugal].

    PubMed

    Ferreira, Ana Maria Conceiçã; Cardoso, Salvador Massano

    2013-12-01

    To analyze the air quality in elementary schools and their structural and functional conditions. Air quality in 51 elementary schools (81 classrooms) in the city of Coimbra, Portugal, both inside and outside of the rooms was evaluated during the four seasons, from 2010 to 2011. Temperature (T°), relative humidity (Hr), concentrations of carbon monoxide (CO), carbon dioxide (CO2), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), compounds were evaluated, as were volatile organics (VOC), formaldehyde and particulate matter (PM10), from November 2010 to February 2011 (autumn/winter) and March 2011 to June 2011 (spring/summer). A grid characterizing the structural and functional conditions of the schools was created. The statistical Student t test for paired samples and the Wilcoxon t test were applied. In 47 schools, the average CO2 concentrations were above the maximum reference concentration (984 ppm) mentioned in Portuguese legislation. The maximum concentration values found inside the rooms were critical, especially in the fall/winter (5,320 ppm). In some schools the average concentrations of VOC and PM10 within the maximum concentration exceeded the reference legislated. The values (risk) of CO, formaldehyde, NO2, SO2 and O3 detected were not relevant. There was a higher concentration of pollutants inside the rooms compared with outside. Inadequate ventilation is associated with high CO2 concentration in the classroom.

  8. 78 FR 34795 - Formaldehyde; Third-Party Certification Framework for the Formaldehyde Standards for Composite...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... Formaldehyde; Third-Party Certification Framework for the Formaldehyde Standards for Composite Wood Products; Formaldehyde Emissions Standards for Composite Wood Products; Proposed Rules #0;#0;Federal Register / Vol. 78... Certification Framework for the Formaldehyde Standards for Composite Wood Products AGENCY: Environmental...

  9. Effects of creatine supplementation along with resistance training on urinary formaldehyde and serum enzymes in wrestlers.

    PubMed

    Nasseri, Azadeh; Jafari, Afshar

    2016-04-01

    Formaldehyde is a cytotoxic agent produced from creatine through a metabolic pathway, and in this regard, it has been claimed that creatine supplementation could be cytotoxic. Even though the cytotoxic effects of creatine supplementation have been widely studied, yet little is known about how resistance training can alter these toxic effects. This study aimed to determine the effects of short-term creatine supplementation plus resistance training on the level of urinary formaldehyde and concentrations of serum enzymes in young male wrestlers. In a double-blind design twenty-one subjects were randomized into creatine supplementation (Cr), creatine supplementation plus resistance training (Cr + T) and placebo plus resistance training (Pl + T) groups. Participants ingested creatine (0.3 g/kg/day) or placebo for 7 days. The training protocol consisted of 3 sessions in one week, each session including three sets of 6-9 repetitions at 80-85% of one-repetition maximum for whole-body exercise. Urine and blood samples were collected at baseline and at the end of the supplementation. Creatine supplementation significantly increased the excretion rate of urinary formaldehyde in the Cr and Cr + T groups by 63.4% and 30.4%, respectively (P<0.05), indicating that resistance training could partially lower this rate by 17.7%. No significant differences were detected in the levels of serum enzymes across time and groups (P>0.05). These findings indicate that resistance training may lower the increase of urinary formaldehyde excretion induced by creatine supplementation, suggesting that creatine consumption could be relatively less toxic when combined with resistance training.

  10. On-cartridge derivatisation using a calixarene solid-phase extraction sorbent for facile, sensitive and fast determination of formaldehyde in beer.

    PubMed

    Deng, Zhifen; Hu, Kai; Zhang, Yongming; Zhao, Wenjie; Wang, Fei; Guo, Ling; Zhang, Wenfen; He, Juan; Huang, Yanjie; Zhang, Shusheng

    2016-11-15

    This work demonstrates the successful application of an on-cartridge derivatisation procedure for facile, fast and sensitive determination of formaldehyde in beer by HPLC-UV. The derivatisation and solid-phase extraction (SPE) were integrated into a novel calixarene SPE sorbent: tetraazacalix[2]arene[2]triazine bonded silica gel. Specifically, 2,4-dinitrophenylhydrazine was adsorbed onto the sorbent in advance, based on the charge-transfer interaction between the macrocyclic molecule and nitrobenzenes. The method was optimised and validated: under the optimal conditions of derivatisation, SPE and HPLC separation, good linearity was obtained in the range of 0.080-3.2μgmL(-1) with a correlation coefficient of 0.9939, the limit of detection was 3.0ngmL(-1) (S/N=3), the limit of quantification was 10ngmL(-1) (S/N=10), and the recovery level using this method was desirable at 75-84%. The developed method was successfully applied to determine formaldehyde content in real beer samples; the results were in the range of 0.11-1.1μgmL(-1). Copyright © 2016. Published by Elsevier Ltd.

  11. Fire Safety Aspects of Polymeric Materials. Volume 10. Mines and Bunkers

    DTIC Science & Technology

    1980-01-01

    Formaldehyde and Melamine / Formaldehyde Resins The basic chemistry, properties, and applications of urea / formaldehyde and melamine / formaldehyde resins ... Formaldehyde and Melamine Formaldehyde Rosins 71 4.2.3.3 Unsaturated Polyester Resins 71 4.2.3.4 Epoxy Resins 72 4.2.3.5 Furan Resins 72 4.2.3.6 Amine...aldehyde — most frequently formaldehyde . Urea is often used as a modifying agent. The

  12. Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air

    NASA Astrophysics Data System (ADS)

    Hak, C.; Pundt, I.; Trick, S.; Kern, C.; Platt, U.; Dommen, J.; Ordóñez, C.; Prévôt, A. S. H.; Junkermann, W.; Astorga-Lloréns, C.; Larsen, B. R.; Mellqvist, J.; Strandberg, A.; Yu, Y.; Galle, B.; Kleffmann, J.; Lörzer, J. C.; Braathen, G. O.; Volkamer, R.

    2005-11-01

    Results from an intercomparison of several currently used in-situ techniques for the measurement of atmospheric formaldehyde (CH2O) are presented. The measurements were carried out at Bresso, an urban site in the periphery of Milan (Italy) as part of the FORMAT-I field campaign. Eight instruments were employed by six independent research groups using four different techniques: Differential Optical Absorption Spectroscopy (DOAS), Fourier Transform Infra Red (FTIR) interferometry, the fluorimetric Hantzsch reaction technique (five instruments) and a chromatographic technique employing C18-DNPH-cartridges (2,4-dinitrophenylhydrazine). White type multi-reflection systems were employed for the optical techniques in order to avoid spatial CH2O gradients and ensure the sampling of nearly the same air mass by all instruments. Between 23 and 31 July 2002, up to 13 ppbv of CH2O were observed. The concentrations lay well above the detection limits of all instruments. The formaldehyde concentrations determined with DOAS, FTIR and the Hantzsch instruments were found to agree within ±11%, with the exception of one Hantzsch instrument, which gave systematically higher values. The two hour integrated samples by DNPH yielded up to 25% lower concentrations than the data of the continuously measuring instruments averaged over the same time period. The consistency between the DOAS and the Hantzsch method was better than during previous intercomparisons in ambient air with slopes of the regression line not significantly differing from one. The differences between the individual Hantzsch instruments could be attributed in part to the calibration standards used. Possible systematic errors of the methods are discussed.

  13. Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air

    NASA Astrophysics Data System (ADS)

    Hak, C.; Pundt, I.; Kern, C.; Platt, U.; Dommen, J.; Ordóñez, C.; Prévôt, A. S. H.; Junkermann, W.; Astorga-Lloréns, C.; Larsen, B. R.; Mellqvist, J.; Strandberg, A.; Yu, Y.; Galle, B.; Kleffmann, J.; Lörzer, J. C.; Braathen, G. O.; Volkamer, R.

    2005-05-01

    Results from an intercomparison of several currently used in-situ techniques for the measurement of atmospheric formaldehyde (CH2O) are presented. The measurements were carried out at Bresso, an urban site in the periphery of Milan (Italy) as part of the FORMAT-I field campaign. Eight instruments were employed by six independent research groups using four different techniques: Differential Optical Absorption Spectroscopy (DOAS), Fourier Transform Infra Red (FTIR) interferometry, the fluorimetric Hantzsch reaction technique (five instruments) and a chromatographic technique employing C18-DNPH-cartridges (2,4-dinitrophenylhydrazine). White type multi-reflection systems were employed for the optical techniques in order to avoid spatial CH2O gradients and ensure the sampling of nearly the same air mass by all instruments. Between 23 and 31 July 2002, up to 13 ppbv of CH2O were observed. The concentrations lay well above the detection limits of all instruments. The formaldehyde concentrations determined with DOAS, FTIR and the Hantzsch instruments were found to agree within ±11%, with the exception of one Hantzsch instrument, which gave systematically higher values. The two hour integrated samples by DNPH yielded up to 25% lower concentrations than the data of the continuously measuring instruments averaged over the same time period. The consistency between the DOAS and the Hantzsch method was better than during previous intercomparisons in ambient air with slopes of the regression line not significantly differing from one. The differences between the individual Hantzsch instruments could be attributed in part to the calibration standards used. Possible systematic errors of the methods are discussed.

  14. Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN.

    PubMed

    Rehle, D; Leleux, D; Erdelyi, M; Tittel, F; Fraser, M; Friedfeld, S

    2001-01-01

    A laser spectrometer based on difference-frequency generation in periodically poled LiNbO3 (PPLN) has been used to quantify atmospheric formaldehyde with a detection limit of 0.32 parts per billion in a given volume (ppbV) using specifically developed data-processing techniques. With state-of-the-art fiber-coupled diode-laser pump sources at 1083 nm and 1561 nm, difference-frequency radiation has been generated in the 3.53-micrometers (2832-cm-1) spectral region. Formaldehyde in ambient air in the 1- to 10-ppb V range has been detected continuously for nine and five days at two separate field sites in the Greater Houston area operated by the Texas Natural Resource Conservation Commission (TNRCC) and the Houston Regional Monitoring Corporation (HRM). The acquired spectroscopic data are compared with results obtained by a well-established wet-chemical o-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine (PFBHA) technique.

  15. Molecularly Imprinted Polymer Nanoparticles for Formaldehyde Sensing with QCM

    PubMed Central

    Hussain, Munawar; Kotova, Kira; Lieberzeit, Peter A.

    2016-01-01

    Herein, we report on molecularly imprinted polymers (MIPs) for detecting formaldehyde vapors in air streams. A copolymer thin film consisting of styrene, methacrylic acid, and ethylene glycol dimethacrylate on quartz crystal microbalance (QCM) yielded a detection limit of 500 ppb formaldehyde in dry air. Surprisingly, these MIPs showed specific behavior when tested against a range of volatile organic compounds (VOCs), such as acetaldehyde, methanol, formic acid, and dichloromethane. Despite thus being a suitable receptor in principle, the MIPs were not useful for measurements at 50% humidity due to surface saturation by water. This was overcome by introducing primary amino groups into the polymer via allyl amine and by changing the coating morphology from thin film to nanoparticles. This led to the same limit of detection (500 ppb) and selectivity as before, but at the real-life conditions of 50% relative humidity. PMID:27376287

  16. Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN

    NASA Technical Reports Server (NTRS)

    Rehle, D.; Leleux, D.; Erdelyi, M.; Tittel, F.; Fraser, M.; Friedfeld, S.

    2001-01-01

    A laser spectrometer based on difference-frequency generation in periodically poled LiNbO3 (PPLN) has been used to quantify atmospheric formaldehyde with a detection limit of 0.32 parts per billion in a given volume (ppbV) using specifically developed data-processing techniques. With state-of-the-art fiber-coupled diode-laser pump sources at 1083 nm and 1561 nm, difference-frequency radiation has been generated in the 3.53-micrometers (2832-cm-1) spectral region. Formaldehyde in ambient air in the 1- to 10-ppb V range has been detected continuously for nine and five days at two separate field sites in the Greater Houston area operated by the Texas Natural Resource Conservation Commission (TNRCC) and the Houston Regional Monitoring Corporation (HRM). The acquired spectroscopic data are compared with results obtained by a well-established wet-chemical o-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine (PFBHA) technique.

  17. Investigation, control and epizootiology of anthrax in a geographically isolated, free-roaming bison population in northern Canada.

    PubMed Central

    Gates, C C; Elkin, B T; Dragon, D C

    1995-01-01

    In July 1993 anthrax caused significant mortality in an isolated, free-ranging population of bison (Bos bison athabascae) west of Great Slave Lake in the Northwest Territories. There was no previous record of anthrax in this area. An emergency response was undertaken to reduce the scale of environmental contamination and dissemination of anthrax spores and hence to reduce the likelihood of future outbreaks. One-hundred-and-seventy-two bison, 3 moose (Alces alces), and 3 black bear (Ursus americanus) carcasses were found. Visual detection of carcasses was enhanced with the use of an airborne, remote infrared sensing camera mounted externally on a helicopter. Fifty-five percent of the carcasses were located in forested or shrub-covered sites where detection would not have been likely without the thermal imaging equipment. Carcasses were disposed of by incineration and the sites were decontaminated with formaldehyde. Application of formaldehyde to carcasses prevented scavenging. The outbreak occurred after a prolonged period of drying between April and mid-July 1993 which followed several successive years of flooding of bison habitat. The "spore concentration hypothesis" provides the most conservative explanation for the occurrence of anthrax under the observed conditions. Images Fig. 1. Fig. 2. PMID:8548686

  18. Adsorption of formaldehyde on graphene and graphyne

    NASA Astrophysics Data System (ADS)

    Majidi, R.; Karami, A. R.

    2014-05-01

    The adsorption of formaldehyde on graphene and graphyne was investigated to search high sensitivity sensors for detection of formaldehyde. We have used density functional theory to study the effect of formaldehyde on the electronic properties of graphene and graphyne. It is found that formaldehyde is physisorbed on the graphene and graphyne with small binding energy, large binding distance, and small charge transfer. The calculations also indicate that formaldehyde adsorption modifies the electronic properties of semimetallic graphene, α-graphyne, and β-graphyne and semiconducting γ-graphyne. The graphene and graphyne show semiconducting property in the presence of formaldehyde. The effect of formaldehyde on the electronic properties of graphene and graphyne suggests the potential application of these carbon nanomaterials for formaldehyde detection.

  19. A BIOGENIC ROLE IN EXPOSURE TO TWO TOXIC COMPOUNDS

    EPA Science Inventory

    Biogenic sources play an important role in ozone and particulate concentrations through emissions of volatile organic compounds. The same emissions also contribute to chronic toxic exposures from formaldehyde and acetaldehyde because each compound arises through primary and se...

  20. Water-Compatible Polymer Concrete Materials for use in Rapid Repair Systems for Airport Runways

    DTIC Science & Technology

    1981-03-01

    resin systems, resorcinol phenol- formaldehyde (RPF), urea - formaldehyde (UF), melamine - formaldehyde (MF), and furfuryl alcohol (FA), were selected for...type polymer systems. Phenol- formaldehyde (PF), melamine - formaldehyde (MF), urea -formalde- hyde (UF), and furfuryl alcohol (FA) monomers contain OH and...1-1.5) (1-2) Urea - formaldehyde NH2 CONH2 - HCHO Liquid 7150 (1.0) (1.5-2.5) Melamine - formaldehyde NH2 C:NC(NH2 ):NC(N’H2

  1. Environmentally Safe and Effective Processes for Paint Removal

    DTIC Science & Technology

    1995-04-01

    Urea Formaldehyde 3.5 1.5 Type III Melamine Formaldehyde 4.0 1.5 Type IV Phenol Formaldehyde 3.5 1.5...Polyester 3.0 34 - 42 1.04 - 1.46 Type II Urea Formaldehyde 3.5 54 - 62 1.47- 1.54 Type III Melamine Formaldehyde 4.0 64- 72 1.47- 1.52 Type IV Phenol... Melamine Formaldehyde electronics industry and to remove coatings from fibreglass and composite materials. Melamine formaldehyde resin is produced

  2. Indoor exposure to formaldehyde and relation to asthma ...

    EPA Pesticide Factsheets

    Formaldehyde exposure is associated with asthma-like symptoms in occupational settings, but does exposure at lower concentrations in residential settings contribute to the current high burden of this respiratory disease? We conducted a systematic review and meta-analysis of asthma and lung function in humans, focusing on effects from long-term exposures. Our literature search through August 2013 identified 20 studies of asthma or asthma symptoms and 11 studies of lung function in PubMed and Web of Science meeting our inclusion criteria. For the asthma analysis, significant heterogeneity was present in the entire set of studies (p 0.051 mg/m3) and high occupational (> 0.1 mg/m3). Risk ratios (95% confidence interval) for these three categories, respectively, were 0.99 (0.93, 1.06), 1.5 (1.04, 2.1) and 6.3 (3.8, 10.6). The studies of lung function reported results as percent of predicted accounting for gender, age and height. These were occupational exposures with time-weighted formaldehyde concentrations of 0.1 – 1.5 mg/m3, primarily involving woodworking or chemical production. Overall, mean differences in lung function (95% confidence interval) between exposed and referent groups were -4.48 percent (-6.88, -2.09) for forced expiratory volume 1 second (FEV1), -4.08 percent (-6.33, -1.82) for forced vital capacity (FVC) and -7.29 percent (-11.

  3. Foliar trichome-aided formaldehyde uptake in the epiphytic Tillandsia velutina and its response to formaldehyde pollution.

    PubMed

    Li, Peng; Pemberton, Robert; Zheng, Guiling

    2015-01-01

    Epiphytic Tillandsia (Bromeliaceae) species have been found to be efficient biomonitors of atmospheric heavy metals and persistent organic pollutants, but have not been used to monitor or remove the primary indoor atmospheric pollutant formaldehyde (FA). The absorptive capacity of Tillandsia trichomes is well-established, but potential secondary effects of foliar trichomes on gas exchange remain unclear. Our study investigated whether Tillandsia species can absorb FA efficiently and if the leaf trichomes function to improve FA uptake, using Tillandsia velutina. Plants with intact trichomes, decreased FA concentration by 48.42% in 12 h from 1060 μg m(-3) to 546.67 μg m(-3), while FA concentration decreased only by 22.51% in the plants without trichomes. Moreover, the more trichomes removed from the leaves, the lower the capability of FA uptake per unit leaf area, which suggested that T. velutina was capable of absorbing a large amount of FA via the leaves and specialized trichomes facilitated the whole leaf tissue FA absorption. In addition, all plants exposed to FA were chloric, had a reduction in measured leaf chlorophyll, and an increment in permeability of plasma membranes. However, plants in which trichomes had been removed declined or increased more quickly than plants with intact trichomes, indicating Tillandsia leaf trichomes also give the leaves some protection against this toxin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. C-history method: rapid measurement of the initial emittable concentration, diffusion and partition coefficients for formaldehyde and VOCs in building materials.

    PubMed

    Xiong, Jianyin; Yao, Yuan; Zhang, Yinping

    2011-04-15

    The initial emittable concentration (C(m,0)), the diffusion coefficient (D(m)), and the material/air partition coefficient (K) are the three characteristic parameters influencing emissions of formaldehyde and volatile organic compounds (VOCs) from building materials or furniture. It is necessary to determine these parameters to understand emission characteristics and how to control them. In this paper we develop a new method, the C-history method for a closed chamber, to measure these three parameters. Compared to the available methods of determining the three parameters described in the literature, our approach has the following salient features: (1) the three parameters can be simultaneously obtained; (2) it is time-saving, generally taking less than 3 days for the cases studied (the available methods tend to need 7-28 days); (3) the maximum relative standard deviations of the measured C(m,0), D(m) and K are 8.5%, 7.7%, and 9.8%, respectively, which are acceptable for engineering applications. The new method was validated by using the characteristic parameters determined in the closed chamber experiment to predict the observed emissions in a ventilated full scale chamber experiment, proving that the approach is reliable and convincing. Our new C-history method should prove useful for rapidly determining the parameters required to predict formaldehyde and VOC emissions from building materials as well as for furniture labeling.

  5. [Hygienic assessment of intraschool environment in rural and urban secondary school institutions].

    PubMed

    Mylnikova, I V

    The purpose of the research is to assess the intra-environment indices in urban and rural secondary schools. In the course of special studies there was given the hygienic assessment of the climate, illumination and air quality of classrooms. In classrooms in rural schools microclimate indices were established to fail to meet hygienic requirements mainly on the temperature and humidity parameters. In rural schools, the temperature was decreased to 16-17 °C in 19.0 ± 8.6% of classrooms, humidity was elevated to 63.1% in 25.7 ± 7.4% of classrooms. Among urban schools the humidity in 49.6 ± 4.4% of classrooms reduced to 23.3 ± 0.3%, in 20.8 ± 5.4% of offices it was increased to 71.9 ± 0.9%. The coefficient of the natural illumination in rural schools has been reduced to 0.86-1.4% in 33.9 ± 14.2% of classrooms. In 25.1 ± 2.3% of classrooms in urban schools the level of natural light ratio was below the normative values and varied in the range of 0.32-1.3%. It is noted that in the offices of informatics natural light indices are significantly lower than in the classrooms for core subjects. The artificial lighting in urban schools was found to be lower than hygienic standards on the desks by 1.9 times, 2.2 times - at the board. There were obtained statistically significant handshaking health problems of urban schoolchildren due to intraenvironmental factors. The c dimate in surveyed gyms in rural schools is different in the low temperature and high humidity. The hygienic assessment of the air pollution classrooms’ medium was executed for a range of chemicals: formaldehyde, carbon monoxide, nitrogen dioxide, sulfur dioxide, particulate matter. Concentrations of formaldehyde; nitrogen dioxide, suspended solids in the air in classrooms in urban schools appeared to be higher than in rural schools. Carbon monoxide concentrations in classrooms in rural schools was found to exceed their values in urban schools. The air in classrooms of the one of the cities was found to be differed by a specific atmosphere for its chemical - hydrogen fluoride, in concentrations exceeding the maximum allowed concentration by 3-3.5 times.

  6. Compatible validated spectrofluorimetric and spectrophotometric methods for determination of vildagliptin and saxagliptin by factorial design experiments.

    PubMed

    Abdel-Aziz, Omar; Ayad, Miriam F; Tadros, Mariam M

    2015-04-05

    Simple, selective and reproducible spectrofluorimetric and spectrophotometric methods have been developed for the determination of vildagliptin and saxagliptin in bulk and their pharmaceutical dosage forms. The first proposed spectrofluorimetric method is based on the dansylation reaction of the amino group of vildagliptin with dansyl chloride to form a highly fluorescent product. The formed product was measured spectrofluorimetrically at 455 nm after excitation at 345 nm. Beer's law was obeyed in a concentration range of 100-600 μg ml(-1). The second proposed spectrophotometric method is based on the charge transfer complex of saxagliptin with tetrachloro-1,4-benzoquinone (p-chloranil). The formed charge transfer complex was measured spectrophotometrically at 530 nm. Beer's law was obeyed in a concentration range of 100-850 μg ml(-1). The third proposed spectrophotometric method is based on the condensation reaction of the primary amino group of saxagliptin with formaldehyde and acetyl acetone to form a yellow colored product known as Hantzsch reaction, measured at 342.5 nm. Beer's law was obeyed in a concentration range of 50-300 μg ml(-1). All the variables were studied to optimize the reactions' conditions using factorial design. The developed methods were validated and proved to be specific and accurate for quality control of vildagliptin and saxagliptin in their pharmaceutical dosage forms. Copyright © 2015. Published by Elsevier B.V.

  7. Compatible validated spectrofluorimetric and spectrophotometric methods for determination of vildagliptin and saxagliptin by factorial design experiments

    NASA Astrophysics Data System (ADS)

    Abdel-Aziz, Omar; Ayad, Miriam F.; Tadros, Mariam M.

    2015-04-01

    Simple, selective and reproducible spectrofluorimetric and spectrophotometric methods have been developed for the determination of vildagliptin and saxagliptin in bulk and their pharmaceutical dosage forms. The first proposed spectrofluorimetric method is based on the dansylation reaction of the amino group of vildagliptin with dansyl chloride to form a highly fluorescent product. The formed product was measured spectrofluorimetrically at 455 nm after excitation at 345 nm. Beer's law was obeyed in a concentration range of 100-600 μg ml-1. The second proposed spectrophotometric method is based on the charge transfer complex of saxagliptin with tetrachloro-1,4-benzoquinone (p-chloranil). The formed charge transfer complex was measured spectrophotometrically at 530 nm. Beer's law was obeyed in a concentration range of 100-850 μg ml-1. The third proposed spectrophotometric method is based on the condensation reaction of the primary amino group of saxagliptin with formaldehyde and acetyl acetone to form a yellow colored product known as Hantzsch reaction, measured at 342.5 nm. Beer's law was obeyed in a concentration range of 50-300 μg ml-1. All the variables were studied to optimize the reactions' conditions using factorial design. The developed methods were validated and proved to be specific and accurate for quality control of vildagliptin and saxagliptin in their pharmaceutical dosage forms.

  8. Assessment of workplace air concentrations of formaldehyde during and before working hours in medical facilities.

    PubMed

    Higashikubo, Ichiro; Miyauchi, Hiroyuki; Yoshida, Satoru; Tanaka, Shinsuke; Matsuoka, Mitsunori; Arito, Heihachiro; Araki, Akihiro; Shimizu, Hidesuke; Sakurai, Haruhiko

    2017-04-07

    Workplace air concentrations of formaldehyde (FA) in medical facilities where FA and FA-treated organs were stored and handled were measured before and during working hours and assessed by the official method specified by Work Environment Measurement Law. Sixty-percent of the total facilities examined were judged as inappropriately controlled work environment. The concentrations of FA before working hours by spot sampling were found to exceed 0.1 ppm in some facilities, and tended to increase with increasing volume of containers storing FA and FA-treated materials. Regression analysis revealed that logarithmic concentrations of FA during working hours by the Law-specified analytical method were highly correlated with those before working hours by spot sampling, suggesting the importance for appropriate storing methods of FA and FA-treated materials. The concentrations of FA during working hours are considered to be lowered by effective ventilation of FA-contaminated workplace air and appropriate storage of FA and FA-treated materials in plastic containers in the medical facilities. In particular, such improvement by a local exhaust ventilation system and tightly-sealed containment of FA-treated material were urgently needed for the dissecting room where FA-treated cadavers were prepared and handled for a gross anatomy course in a medical school.

  9. Formaldehyde emissions from ULEF- and NAF-bonded commercial hardwood plywood as influenced by temperature and relative humidity

    Treesearch

    Charles R. Frihart; James M. Wescott; Michael J. Birkeland; Kyle M. Gonner

    2010-01-01

    It is well documented in the literature that temperature and humidity can influence formaldehyde emissions from composite panels that are produced using urea-formaldehyde (UF) adhesives. This work investigates the effect of temperature and humidity on newer, ultra-low emitting formaldehyde urea formaldehyde (ULEF-UF) and no-added formaldehyde (NAF) adhesives. A...

  10. The ALMA-PILS Survey: Formaldehyde deuteration in warm gas on small scales toward IRAS 16293-2422 B

    NASA Astrophysics Data System (ADS)

    Persson, M. V.; Jørgensen, J. K.; Müller, H. S. P.; Coutens, A.; van Dishoeck, E. F.; Taquet, V.; Calcutt, H.; van der Wiel, M. H. D.; Bourke, T. L.; Wampfler, S. F.

    2018-02-01

    Context. The enhanced degrees of deuterium fractionation observed in envelopes around protostars demonstrate the importance of chemistry at low temperatures, relevant in pre- and protostellar cores. Formaldehyde is an important species in the formation of methanol and more complex molecules. Aims: Here, we aim to present the first study of formaldehyde deuteration on small scales around the prototypical low-mass protostar IRAS 16293-2422 using high spatial and spectral resolution Atacama Large Millimeter/submillimeter Array (ALMA) observations. We determine the excitation temperature, abundances and fractionation level of several formaldehyde isotopologues, including its deuterated forms. Methods: Excitation temperature and column densities of formaldehyde in the gas close to one of the components of the binary were constrained through modeling of optically thin lines assuming local thermodynamical equilibrium. The abundance ratios were compared to results from previous single dish observations, astrochemical models and local ISM values. Results: Numerous isotopologues of formaldehyde are detected, among them H2C17O, and D213CO for the first time in the ISM. The large range of upper energy levels covered by the HDCO lines help constrain the excitation temperature to 106 ± 13 K. Using the derived column densities, formaldehyde shows a deuterium fractionation of HDCO/H2CO = 6.5 ± 1%, D2CO/HDCO = 12.8-4.1+3.3%, and D2CO/H2CO = 0.6(4) ± 0.1%. The isotopic ratios derived are 16O/18O = 805-79+43, 18O/17O = 3.2-0.3+0.2, and 12C/13C = 56-11+8. Conclusions: The HDCO/H2CO ratio is lower than that found in previous studies, highlighting the uncertainties involved in interpreting single dish observations of the inner warm regions. The D2CO/HDCO ratio is only slightly larger than the HDCO/H2CO ratio. This is consistent with formaldehyde forming in the ice as soon as CO has frozen onto the grains, with most of the deuteration happening toward the end of the prestellar core phase. A comparison with available time-dependent chemical models indicates that the source is in the early Class 0 stage.

  11. Solvent-induced synthesis of nitrogen-doped hollow carbon spheres with tunable surface morphology for supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Yuan, Ren-Lu; Zhang, Ning; Ke, Chang-Ce; Ma, Shao-Xia; Zhang, Ru-Liang; Liu, Lei

    2018-04-01

    Nitrogen doped hollow carbon spheres (NHCSs) with tunable surface morphology have been prepared through one-pot carbonization method by using melamine-formaldehyde spheres as template and resorcinol-based resin as carbon precursor in ethanol-water solution. Well-dispersed NHCSs with particle size of 800 nm were obtained and the surface of NHCSs turn from smooth to tough, wrinkled, and finally concave by increasing the ethanol concentration. The fabricated NHCSs possessed high nitrogen content (3.99-4.83%) and hierarchical micro-dual mesoporous structure with surface area range of 265-405 m2 g-1 and total pore volume of 0.18-0.29 cm3 g-1, which contributed to high specific capacitance, excellent rate capability and long cycle life.

  12. The "New Polyethylene Glycol Dilemma": Polyethylene Glycol Impurities and Their Paradox Role in mAb Crystallization.

    PubMed

    Hildebrandt, Christian; Joos, Lea; Saedler, Rainer; Winter, Gerhard

    2015-06-01

    Polyethylene glycols (PEG) represent the most successful and frequently applied class of excipients used for protein crystallization. PEG auto-oxidation and formation of impurities such as peroxides and formaldehydes that foster protein drug degradation is known. However, their effect on mAb crystallization has not been studied in detail before. During the present study, a model IgG1 antibody (mAb1) was crystallized in PEG solutions. Aggregate formation was observed during crystallization and storage that was ascribed to PEG degradation products. Reduction of peroxide and formaldehyde levels prior to crystallization by vacuum and freeze-drying was investigated for its effect on protein degradation. Vacuum drying was superior in removal of peroxides but inferior in reducing formaldehyde residues. Consequently, double purification allowed extensive removal of both impurities. Applying of purified PEG led to 50% lower aggregate fractions. Surprisingly, PEG double purification or addition of methionine prior to crystallization prevented crystal formation. With increased PEG concentration or spiking with peroxides and formaldehydes, crystal formation could be recovered again. With these results, we demonstrate that minimum amounts of oxidizing impurities and thus in consequence chemically altered proteins are vital to initiate mAb1 crystallization. The present study calls PEG as good precipitant for therapeutic biopharmaceuticals into question. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Integration of C₁ and C₂ Metabolism in Trees.

    PubMed

    Jardine, Kolby J; Fernandes de Souza, Vinicius; Oikawa, Patty; Higuchi, Niro; Bill, Markus; Porras, Rachel; Niinemets, Ülo; Chambers, Jeffrey Q

    2017-09-23

    C₁ metabolism in plants is known to be involved in photorespiration, nitrogen and amino acid metabolism, as well as methylation and biosynthesis of metabolites and biopolymers. Although the flux of carbon through the C₁ pathway is thought to be large, its intermediates are difficult to measure and relatively little is known about this potentially ubiquitous pathway. In this study, we evaluated the C₁ pathway and its integration with the central metabolism using aqueous solutions of 13 C-labeled C₁ and C₂ intermediates delivered to branches of the tropical species Inga edulis via the transpiration stream. Delivery of [ 13 C]methanol and [ 13 C]formaldehyde rapidly stimulated leaf emissions of [ 13 C]methanol, [ 13 C]formaldehyde, [ 13 C]formic acid, and 13 CO₂, confirming the existence of the C1 pathway and rapid interconversion between methanol and formaldehyde. However, while [ 13 C]formate solutions stimulated emissions of 13 CO₂, emissions of [ 13 C]methanol or [ 13 C]formaldehyde were not detected, suggesting that once oxidation to formate occurs it is rapidly oxidized to CO₂ within chloroplasts. 13 C-labeling of isoprene, a known photosynthetic product, was linearly related to 13 CO₂ across C₁ and C₂ ([ 13 C₂]acetate and [2- 13 C]glycine) substrates, consistent with reassimilation of C₁, respiratory, and photorespiratory CO₂. Moreover, [ 13 C]methanol and [ 13 C]formaldehyde induced a quantitative labeling of both carbon atoms of acetic acid emissions, possibly through the rapid turnover of the chloroplastic acetyl-CoA pool via glycolate oxidation. The results support a role of the C₁ pathway to provide an alternative carbon source for glycine methylation in photorespiration, enhance CO₂ concentrations within chloroplasts, and produce key C₂ intermediates (e.g., acetyl-CoA) central to anabolic and catabolic metabolism.

  14. The effects of exercise on dose and dose distribution of inhaled automotive pollutants.

    PubMed

    Kleinman, M T; Mautz, W J

    1991-10-01

    The purpose of this study was to determine how changes in ventilation rate and in the entry route of air pollutants into the respiratory tract (nose versus mouth breathing) affected the respiratory tract uptake and penetration of inhaled gaseous and particulate pollutants associated with automobile emissions. Experiments were performed with female beagle dogs exposed while standing at rest or while exercising on a treadmill at 5 km/hour and a 7.5 percent grade. Dogs were exposed to nitrogen dioxide at concentrations of 1 and 5 parts per million (ppm), to formaldehyde at 2 and 10 ppm, and to an aerosol of ammonium nitrate particles (0.3 micron mass median aerodynamic diameter) at 1 mg/m3. Total respiratory system uptake and effects on breath time, expired tidal volume, fractional expiration time, minute ventilation, respiratory gas exchange, ventilation equivalents for oxygen and carbon dioxide, and dynamic pulmonary resistance and compliance were measured in exercising and resting dogs exposed for two hours to 5 ppm nitrogen dioxide and 10 ppm formaldehyde in combination with 1 mg/m3 of ammonium nitrate particles. Regional penetration of pollutants through oral and nasal airways and pollutant uptake in the lung were measured in a separate group of six tracheostomized dogs standing at rest while being exposed to nitrogen dioxide, formaldehyde, and ammonium nitrate particles. Hypercapnic stimulation was used to modify ventilation rates in the tracheostomized dogs while pollutant penetration and uptake were measured. Dogs exposed to 5 ppm of nitrogen dioxide at rest tended to breathe more rapidly (p less than 0.05) and more shallowly (a nonsignificant trend) than dogs exposed to purified air. The changes observed were similar in direction, but of smaller magnitude, to changes observed when the same dogs were exposed during exercise to ozone at 0.6 ppm in a separate study. Rapid-shallow breathing was not observed when the dogs were exposed during exercise to 5 ppm nitrogen dioxide. Dogs exposed to a mixture of 10 ppm formaldehyde and 1 mg/m3 ammonium nitrate particles during exercise showed a shift to larger tidal volume breathing, but the response was much less pronounced than the slow-deep breathing pattern response observed in a separate study of dogs exposed to 10 ppm formaldehyde alone. The total respiratory system uptake of formaldehyde from the formaldehyde and ammonium nitrate mixture was larger than that measured for 10 ppm of formaldehyde alone in another exercise and exposure study.(ABSTRACT TRUNCATED AT 400 WORDS)

  15. Sporostatic and sporocidal properties of aqueous formaldehyde.

    NASA Technical Reports Server (NTRS)

    Trujillo, R.; David, T. J.

    1972-01-01

    Aqueous formaldehyde is shown to exert both sporostatic and sporocidal effects on Bacillus subtilis spores. The sporostatic effect is a result of the reversible inhibition of spore germination occasioned by aqueous formaldehyde; the sporocidal effect is due to the temperature-dependent inactivation of these spores in aqueous formaldehyde. The physicochemical state of formaldehyde in solution provides a framework with which to interpret both the sporostatic and sporocidal properties of aqueous formaldehyde.

  16. A32A-0126: A BIOGENIC ROLE IN EXPOSURE TO TWO TOXIC COMPOUNDS

    EPA Science Inventory

    Biogenic sources play an important role in ozone and particulate concentrations through emissions of volatile organic compounds. The same emissions also contribute to chronic toxic exposures from formaldehyde and acetaldehyde because each compound arises through primary and sec...

  17. INTERDEPENDENCIES OF MULTI-POLLUTANT CONTROL SIMULATIONS IN AN AIR QUALITY MODEL

    EPA Science Inventory

    In this work, we use the Community Multi-Scale Air Quality (CMAQ) modeling system to examine the effect of several control strategies on simultaneous concentrations of ozone, PM2.5, and three important HAPs: formaldehyde, acetaldehyde and benzene.

  18. 40 CFR Table 3 to Subpart Yyyy of... - Requirements for Performance Tests and Initial Compliance Demonstrations

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the Administrator formaldehyde concentration must be corrected to 15 percent O2, dry basis. Results of... 100 percent load. b. select the sampling port location and the number of traverse points AND Method 1... concentration at the sampling port location AND Method 3A or 3B of 40 CFR part 60, appendix A measurements to...

  19. Formaldehyde

    EPA Pesticide Factsheets

    Information on formaldehyde and the regulation of formaldehyde emissions from composite wood products under the Formaldehyde Standards for Composite Wood Products Act in the Toxic Substances Control Act (TSCA).

  20. Ozone-initiated terpene reaction products in five European offices: replacement of a floor cleaning agent.

    PubMed

    Nørgaard, A W; Kofoed-Sørensen, V; Mandin, C; Ventura, G; Mabilia, R; Perreca, E; Cattaneo, A; Spinazzè, A; Mihucz, V G; Szigeti, T; de Kluizenaar, Y; Cornelissen, H J M; Trantallidi, M; Carrer, P; Sakellaris, I; Bartzis, J; Wolkoff, P

    2014-11-18

    Cleaning agents often emit terpenes that react rapidly with ozone. These ozone-initiated reactions, which occur in the gas-phase and on surfaces, produce a host of gaseous and particulate oxygenated compounds with possible adverse health effects in the eyes and airways. Within the European Union (EU) project OFFICAIR, common ozone-initiated reaction products were measured before and after the replacement of the regular floor cleaning agent with a preselected low emitting floor cleaning agent in four offices located in four EU countries. One reference office in a fifth country did not use any floor cleaning agent. Limonene, α-pinene, 3-carene, dihydromyrcenol, geraniol, linalool, and α-terpineol were targeted for measurement together with the common terpene oxidation products formaldehyde, 4-acetyl-1-methylcyclohexene (4-AMCH), 3-isopropenyl-6-oxo-heptanal (IPOH), 6-methyl-5-heptene-2-one, (6-MHO), 4-oxopentanal (4-OPA), and dihydrocarvone (DHC). Two-hour air samples on Tenax TA and DNPH cartridges were taken in the morning, noon, and in the afternoon and analyzed by thermal desorption combined with gas chromatography/mass spectrometry and HPLC/UV analysis, respectively. Ozone was measured in all sites. All the regular cleaning agents emitted terpenes, mainly limonene and linalool. After the replacement of the cleaning agent, substantially lower concentrations of limonene and formaldehyde were observed. Some of the oxidation product concentrations, in particular that of 4-OPA, were also reduced in line with limonene. Maximum 2 h averaged concentrations of formaldehyde, 4-AMCH, 6-MHO, and IPOH would not give rise to acute eye irritation-related symptoms in office workers; similarly, 6-AMCH, DHC and 4-OPA would not result in airflow limitation to the airways.

  1. 78 FR 51696 - Formaldehyde; Third-Party Certification Framework for the Formaldehyde Standards for Composite...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... Formaldehyde; Third-Party Certification Framework for the Formaldehyde Standards for Composite Wood Products..., concerning a third-party certification framework for the formaldehyde standards for composite wood products... INFORMATION CONTACT. List of Subjects in 40 CFR Part 770 Environmental protection, Composite wood products...

  2. [Physical and chemical methods for eliminating propagules of indigenous mycorrhizal fungi from soil samples].

    PubMed

    Covacevich, Fernanda; Castellari, Claudia C; Echeverría, Hernán E

    2014-01-01

    The objective of this work was to evaluate methods to eliminate or reduce the number of indigenous arbuscular mycorrhizal fungi (AMF) from soil samples without affecting their edaphic or microbiological properties. At an early trial we evaluated moist heat (autoclaving), dry heat (oven), sodium hypochlorite (NaClO) and formaldehyde at a range of 100.0-3.3μl/g and 16.7-3.3μl/g respectively. There was no germination in plants of ryegrass (Lolium multiflorum Lam.) sown on substrates receiving NaClO (100.0-33.3μl/g), whereas autoclaving significantly increased the available soil phosphorous content. Both treatments failed to eradicate AMF colonization at 9 weeks; therefore, they were discarded. In a second trial, oven and formaldehyde (10.0μl/g) treatments were analyzed to assess the effects of seed decontamination and AMF reinoculation. Both procedures were effective in reducing or eliminating indigenous AMF at a range of soil P availability of 12-29mg/kg. However, the time between soil treatment and AMF multiplication and safety requirements were greater in the case of formaldehyde application. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España. All rights reserved.

  3. Hydrocarbon emissions from in-use commercial aircraft during airport operations.

    PubMed

    Herndon, Scott C; Rogers, Todd; Dunlea, Edward J; Jayne, John T; Miake-Lye, Richard; Knighton, Berk

    2006-07-15

    The emissions of selected hydrocarbons from in-use commercial aircraft at a major airport in the United States were characterized using proton-transfer reaction mass spectrometry (PTR-MS) and tunable infrared differential absorption spectroscopy (TILDAS) to probe the composition of diluted exhaust plumes downwind. The emission indices for formaldehyde, acetaldehyde, benzene, and toluene, as well as other hydrocarbon species, were determined through analysis of 45 intercepted plumes identified as being associated with specific aircraft. As would have been predicted for high bypass turbine engines, the hydrocarbon emission index was greater in idle and taxiway acceleration plumes relative to approach and takeoff plumes. The opposite was seen in total NOy emission index, which increased from idle to takeoff. Within the idle plumes sampled in this study, the median emission index for formaldehyde was 1.1 g of HCHO per kg of fuel. For the subset of hydrocarbons measured in this work, the idle emissions levels relative to formaldehyde agree well with those of previous studies. The projected total unburned hydrocarbons (UHC) deduced from the range of in-use idle plumes analyzed in this work is greater than a plausible range of engine types using the defined idle condition (7% of rated engine thrust) in the International Civil Aviation Organization (ICAO) databank reference.

  4. An outbreak of illness among aerospace workers.

    PubMed Central

    Sparks, P. J.; Simon, G. E.; Katon, W. J.; Altman, L. C.; Ayars, G. H.; Johnson, R. L.

    1990-01-01

    A multispecialty panel of physicians evaluated a case series of 53 composite-materials workers in a large aircraft manufacturing facility who filed workers' compensation claims for illness labeled by the media as the "aerospace syndrome." Possible skin and respiratory tract exposures included formaldehyde, phenol, particulates, epoxy resins, and trace organic solvents, but measured concentrations were well below all regulatory and consensus standards. Most workers had histories of transient skin or respiratory tract irritation consistent with the known potential toxicity of these materials. None of the workers tested had immunoglobulin IgG or IgE antibodies to human serum albumin complexed with formaldehyde. A majority (74%) met DSM-III-R [Diagnostic and Statistical Manual of Mental Disorders, 3rd edition, revised] criteria for major depression, panic disorder, or both. Most of these psychiatric disorders were of a recent onset, correlating in time with the use of phenol- and formaldehyde-impregnated composite material. Psychosocial factors were thought to have played a major role in the high prevalence of illness in this group and should be evaluated directly in well-controlled epidemiologic studies of similar crisis-building situations in the future. PMID:2098006

  5. A kinetic study of the formation of organic solids from formaldehyde: Implications for the origin of extraterrestrial organic solids in primitive Solar System objects

    NASA Astrophysics Data System (ADS)

    Kebukawa, Yoko; Cody, George D.

    2015-03-01

    Aqueous organic solid formation from formaldehyde via the formose reaction and subsequent reactions is a possible candidate for the origin of complex primitive chondritic insoluble organic matter (IOM) and refractory carbon in comets. The rate of formation of organic solids from formaldehyde was studied as a function of temperature and time, with and without ammonia, in order to derive kinetic expressions for polymer yield. The evolution in molecular structure as a function of time and temperature was studied using infrared spectroscopy. Using these kinetic expressions, the yield of organic solids is estimated for extended time and temperature ranges. For example, the half-life for organic solid formation is ∼5 days at 373 K, ∼200 days at 323 K, and ∼70 years at 273 K with ammonia, and ∼25 days at 373 K, ∼13 years at 323 K, and ∼2 × 104 years at 273 K without ammonia. These results indicate that organic solids could form during the aqueous alteration in meteorite parent bodies. If liquid water existed early in the interiors of Kuiper belt objects (KBOs), formaldehyde could convert into organic solids at temperatures close to 273 K, and possibly even below 273 K in the ammonia-water system.

  6. Indoor Environmental Contaminants in Schools

    EPA Pesticide Factsheets

    A wide range of environmental contaminants can affect the health and safety of a school environment. This page covers the basics on issues your school may face, including asbestos, chemicals, formaldehyde, lead, mercury, PCBs and radon.

  7. Evaluation of two commercial and three home-made fixatives for the substitution of formalin: a formaldehyde–free laboratory is possible

    PubMed Central

    2012-01-01

    Background Formaldehyde (HCHO) is a gas (available as a 37% concentrated solution, stabilized with methanol). The 10% dilution (approximately 4% formaldehyde) has been used as a fixative since the end of the 19th century. Alternative fixatives are also commercially available or may be prepared in-house in laboratories. Statements by the IARC, along with other USA agencies (CalEPA, RoC/NTP) on the carcinogenicity of formaldehyde for humans renders its substitution in Pathology Departments necessary since the annual use of formalin may exceed 3,500 liters for a medium-large laboratory. To achieve a “formalin-free laboratory” we tested straightforward-to-make fixatives along with registered reagents offered as formalin substitutes. Methods More than two hundreds specimens were fixed in parallel with in-laboratory made fixatives PAGA (Polyethylenglycol, ethyl Alcohol, Glycerol, Acetic acid), two zinc-based fixatives (ZBF, Z7), and commercially-available alternatives (RCL2 and CellBlock). Tissue micro arrays were used for morphological and immunohistochemical comparison. Extraction of RNA was carried out to evaluate preservation of nucleic acids. Results Differences compared to formalin fixation were evident in alcohol-based fixatives, mainly restricted to higher stain affinity and considerable tissue shrinkage. Conversely, nuclear detail was superior with these alcohol-based formulas compared to formalin or glyoxale-based recipes. RNA extraction was superior for Z7, PAGA and RCL2 with regard to concentration but relatively comparable regarding quality. Conclusions Abolition of the human carcinogen formaldehyde from pathology laboratories is possible even in contexts whereby commercial alternatives to formalin are unavailable or are too expensive for routine use, and aspiration devices are lacking or not adequately serviced. The use of known formulations, possibly with simple and not-noxious (“alimentary grade”) constituents, comparable with registered proprietary products, may expand the search for the ideal fixative combining satisfactory morphology with improved preservation of nucleic acids and proteins as well as being easy and safe to dispose of. PMID:22947094

  8. Phenolic compounds containing/neutral fractions extract and products derived therefrom from fractionated fast-pyrolysis oils

    DOEpatents

    Chum, Helena L.; Black, Stuart K.; Diebold, James P.; Kreibich, Roland E.

    1993-01-01

    A process for preparing phenol-formaldehyde novolak resins and molding compositions in which portions of the phenol normally contained in said resins are replaced by a phenol/neutral fractions extract obtained from fractionating fast-pyrolysis oils. The fractionation consists of a neutralization stage which can be carried out with aqueous solutions of bases or appropriate bases in the dry state, followed by solvent extraction with an organic solvent having at least a moderate solubility parameter and good hydrogen bonding capacity. Phenolic compounds-containing/neutral fractions extracts obtained by fractionating fast-pyrolysis oils from a lignocellulosic material, is such that the oil is initially in the pH range of 2-4, being neutralized with an aqueous bicarbonate base, and extracted into a solvent having a solubility parameter of approximately 8.4-9.11 [cal/cm.sup.3 ].sup.1/2 with polar components in the 1.8-3.0 range and hydrogen bonding components in the 2-4.8 range and the recovery of the product extract from the solvent with no further purification being needed for use in adhesives and molding compounds. The product extract is characterized as being a mixture of very different compounds having a wide variety of chemical functionalities, including phenolic, carbonyl, aldehyde, methoxyl, vinyl and hydroxyl. The use of the product extract on phenol-formaldehyde thermosetting resins is shown to have advantages over the conventional phenol-formaldehyde resins.

  9. Spatial variability in levels of benzene, formaldehyde, and total benzene, toluene, ethylbenzene and xylenes in New York City: a land-use regression study.

    PubMed

    Kheirbek, Iyad; Johnson, Sarah; Ross, Zev; Pezeshki, Grant; Ito, Kazuhiko; Eisl, Holger; Matte, Thomas

    2012-07-31

    Hazardous air pollutant exposures are common in urban areas contributing to increased risk of cancer and other adverse health outcomes. While recent analyses indicate that New York City residents experience significantly higher cancer risks attributable to hazardous air pollutant exposures than the United States as a whole, limited data exist to assess intra-urban variability in air toxics exposures. To assess intra-urban spatial variability in exposures to common hazardous air pollutants, street-level air sampling for volatile organic compounds and aldehydes was conducted at 70 sites throughout New York City during the spring of 2011. Land-use regression models were developed using a subset of 59 sites and validated against the remaining 11 sites to describe the relationship between concentrations of benzene, total BTEX (benzene, toluene, ethylbenzene, xylenes) and formaldehyde to indicators of local sources, adjusting for temporal variation. Total BTEX levels exhibited the most spatial variability, followed by benzene and formaldehyde (coefficient of variation of temporally adjusted measurements of 0.57, 0.35, 0.22, respectively). Total roadway length within 100 m, traffic signal density within 400 m of monitoring sites, and an indicator of temporal variation explained 65% of the total variability in benzene while 70% of the total variability in BTEX was accounted for by traffic signal density within 450 m, density of permitted solvent-use industries within 500 m, and an indicator of temporal variation. Measures of temporal variation, traffic signal density within 400 m, road length within 100 m, and interior building area within 100 m (indicator of heating fuel combustion) predicted 83% of the total variability of formaldehyde. The models built with the modeling subset were found to predict concentrations well, predicting 62% to 68% of monitored values at validation sites. Traffic and point source emissions cause substantial variation in street-level exposures to common toxic volatile organic compounds in New York City. Land-use regression models were successfully developed for benzene, formaldehyde, and total BTEX using spatial indicators of on-road vehicle emissions and emissions from stationary sources. These estimates will improve the understanding of health effects of individual pollutants in complex urban pollutant mixtures and inform local air quality improvement efforts that reduce disparities in exposure.

  10. Irritants and allergens at school in relation to furnishings and cleaning.

    PubMed

    Smedje, G; Norbäck, D

    2001-06-01

    In order to study the influence of furnishings and cleaning on the indoor air quality at school, 181 randomly chosen classrooms were investigated. The amounts of open shelves, textiles and other fittings were noted, data were gathered on cleaning routines, and a number of pollutants were measured in the classrooms. In classrooms with more fabrics there was more settled dust and the concentration of formaldehyde was higher. Classrooms with more open shelves had more formaldehyde, and more pet allergens in settled dust, and classrooms with a white board, instead of a chalk board, were less dusty. Classrooms mainly cleaned through wet mopping had more airborne viable bacteria but less settled dust than classrooms mainly cleaned by dry methods. In rooms where the desks and curtains were more often cleaned, the concentrations of cat and dog allergen in settled dust were lower. It is concluded that furnishings and textiles in the classroom act as significant reservoirs of irritants and allergens and have an impact on the indoor air quality at school.

  11. Ambient levels of carbonyl compounds and their sources in Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Feng, Yanli; Wen, Sheng; Chen, Yingjun; Wang, Xinming; Lü, Huixiong; Bi, Xinhui; Sheng, Guoying; Fu, Jiamo

    Ambient levels of carbonyl compounds and their possible sources, vehicular exhaust and cooking exhaust, were studied at seven places in Guangzhou, including five districts (a residential area, an industrial area, a botanical garden, a downtown area and a semi-rural area), a bus station and a restaurant during the period of June-September 2003. Nineteen carbonyl compounds were identified in the ambient air, of which acetone was the most abundant carbonyl, followed by formaldehyde and acetaldehyde. Only little changes were found in carbonyl concentration levels in the five different districts because of their dispersion and mixture in the atmosphere in summer. The lower correlations between the carbonyls' concentrations might result from the mixture of carbonyls derived from different sources, including strong photochemical reactions at noon in summer. Formaldehyde and acetaldehyde were the main carbonyls in bus station, while straight-chain carbonyls were comparatively abundant in cooking exhaust. Besides vehicular exhaust, cooking might be another major source of carbonyl compounds in Guangzhou City, especially for high molecular weight carbonyls.

  12. Facile hydrothermal synthesis of mesoporous In2O3 nanoparticles with superior formaldehyde-sensing properties

    NASA Astrophysics Data System (ADS)

    Zhang, Su; Song, Peng; Yang, Zhongxi; Wang, Qi

    2018-03-01

    Mesoporous In2O3 nanoparticles were successfully synthesized via a facile, template free, and low-cost hydrothermal method. Their morphology and structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal and thermogravimetry analysis (DSC-TG), and N2 adsorption-desorption analyses. The results reveal that mesoporous In2O3 nanoparticles with a size range of 40-60 nm, possess plenty of pores, and average pore size is about 5 nm. Importantly, the mesoporous structure, large specific surface area, and small size endow the mesoporous In2O3 nanoparticles with highly sensing performance for formaldehyde detection. The response value to 10 ppm HCHO is 20 at an operating temperature of 280 °C, and the response and recovery time are 4 and 8 s, respectively. It is expected that the mesoporous In2O3 nanoparticles with large specific surface area and excellent sensing properties will become a promising functional material in monitoring and detecting formaldehyde.

  13. Fluorine-Induced Chemiluminescence Detection of Biologically Methylated Tellurium, Selenium, and Sulfur Compounds and Methyldithiocarbhydrazide as a Formaldehyde Derivatization Reagent

    NASA Astrophysics Data System (ADS)

    Chasteen, Thomas Girard

    1990-01-01

    The first part of this dissertation describes capillary chromatography coupled to a fluorine-induced chemiluminescence detector as a sensitive method by which biologically methylated metalloids can be determined in the presence of high concentrations of potentially interfering molecules. With a wide linear range and excellent sensitivity, this method was applied to the detection of dimethyl selenide (DMSe), dimethyl diselenide (DMDSe), and dimethyl telluride (DMTe), often found in biological environments in the presence of interfering methylated sulfur gases, such as methanethiol, dimethyl sulfide, dimethyl disulfide, and dimethyl trisulfide. Detection limits for DMSe, DMDSe, and DMTe were 30, 9, and 7 picograms, respectively. This DMTe detection limit is the lowest reported to date for a volatile tellurium gas. A variety of selenium-resistant bacteria emitted mixtures of methylated sulfur/selenium gases when dosed with inorganic selenium salts in the presence of sulfur containing growth media. One of the gases detected was dimethyl selenenyl sulfide, CH_3SeSCH _3, reported here for the first time in headspace above microorganisms. In addition, this detector responded to reduced phosphorus compounds such as phosphine. The detection limit for this compound was 2.8 picograms. Detection limits for alkylated phosphines trimethyl and triethyl phosphine were 0.5 and 17 picograms respectively, based on the relative response of these compounds compared to dimethyl sulfide. This method can be used for the simultaneous determination of methylated sulfur, selenium, tellurium compounds found in biological systems. Part II of this dissertation describes work with methyldithiocarbhydrazide, a compound that has been synthesized for use as a derivatization reagent to capture formaldehyde in the gas phase. Chosen for its ability to react in a manner similar to 2,4-dinitrophenylhydrazine, this molecule was selected based on two structural characteristics: a hydrazine tag to react with and thereby capture carbonyls and a methyl sulfide group to allow for sensitive detection by fluorine-induced chemiluminescence. Although in the final analysis methyldithiocarbohydrazide failed as a successful means by which formaldehyde can be determined using gas chromatography in conjunction with fluorine-induced chemiluminescence, it did successfully derivatize formaldehyde in both solution and the gas phase without the need for low pH conditions.

  14. The influence of reactive side products on the electrooxidation of methanol--a combined in situ infrared spectroscopy and online mass spectrometry study.

    PubMed

    Reichert, R; Schnaidt, J; Jusys, Z; Behm, R J

    2014-07-21

    Aiming at a better understanding of the impact of reaction intermediates and reactive side products on electrocatalytic reactions under conditions characteristic for technical applications, i.e., at high reactant conversions, we have investigated the electrooxidation of methanol on a Pt film electrode in mixtures containing defined concentrations of the reaction intermediates formaldehyde or formic acid. Employing simultaneous in situ infrared spectroscopy and online mass spectrometry in parallel to voltammetric measurements, we examined the effects of the latter molecules on the adlayer build-up and composition and on the formation of volatile reaction products CO2 and methylformate, as well as on the overall reaction rate. To assess the individual contributions of each component, we used isotope labeling techniques, where one of the two C1 components in the mixtures of methanol with either formaldehyde or formic acid was (13)C-labeled. The data reveal pronounced effects of the additional components formaldehyde and formic acid on the reaction, although their concentration was much lower (10%) than that of the main reactant methanol. Most important, the overall Faradaic current responses and the amounts of CO2 formed upon oxidation of the mixtures are always lower than the sums of the contributions from the individual components, indicative of a non-additive behavior of both Faradaic current and CO2 formation in the mixtures. Mechanistic reasons and consequences for reactions in a technical reactor, with high reactant conversion, are discussed.

  15. New methodology for specific inhalation challenges with occupational agents

    PubMed Central

    2010-01-01

    Background Inhalation challenges are used for diagnosing occupational asthma (OA). The initial methodology consisted of a "realistic" exposure without monitoring nor controlling exposure. Our aim was to design an equipment, called the GenaSIC, that allows the generation of various agents regardless of the formulation and to assess the feasibility of its use in patients investigated for OA. Results GenaSIC can generate lactose, flour, malt, isocyanates, formaldehyde and N-butyl acetate with precise and fairly stable concentrations. Using N-butyl-acetate as a control agent and real time measurement, we show that normal breathing has a negligible effect on the concentration. We exposed forty-four different subjects to a control agent and/or to a suspected occupational agent. Nineteen of the subjects were only exposed to N-butyl acetate as a control agent without experiencing any significant irritant effect (no significant changes in spirometry thereafter). Eight subjects who were exposed to both N-butyl acetate and formaldehyde did not show significant reactions. Seven subjects were exposed to dry particles (flour in six instances, malt in the other) and five showed immediate asthmatic reactions which changes in FEV1 from 20% to a maximum of 28%. Finally, ten subjects were exposed to isocyanates, four of whom showed a positive reaction, including one subject with immediate maximum changes in FEV1 of 22%. Conclusion GenaSIC offers the possibility of reliable and safe exposures to dry particles, formaldehyde and isocyanates in the investigation of OA. PMID:20534154

  16. The role of bacteria in the nutrient exchange between sediment and water in a flow-through system.

    PubMed

    Kairesalo, T; Tuominen, L; Hartikainen, H; Rankinen, K

    1995-03-01

    The contribution of bacteria to phosphorus (P) and nitrogen (N ) release from, or retention in, sediment was studied in a flow-through system. "Live" and formaldehyde-"killed" sediment communities were incubated in 25-liter bottles with a continuous flow of P- or P + N-enriched water. Sediment bacteria in the killed communities were inhibited by adding formaldehyde (final concentration 0.04% v/v) to the sediment before the start of the experiment. Bacterial activity in the live sediments measured with [(3)H]thymidine and [(14)C]leucine incorporation techniques did not change essentially during the experiment period (7-8 days). Chemical mechanisms were found to be of principal importance in PO4-P retention in the sediment. In the live samples, the net retention of PO4-P was lower than in the killed samples, which was likely due to the reduced O2 conditions in the sediment as a consequence of bacterial mineralization. In total P exchange, however, bacteria increased the retention rate by recycling dissolved organic P in the sediment. In the live communities the retention of N was very efficient, and all the introduced NH4 -N and NO3-N was immobilized by sediment bacteria. Nitrogen enrichment, however, did not alter the P exchange rates. The gradual emergence of bacterial activity (and grazing) in the killed communities, subsequent to the dilution of formaldehyde concentration, enhanced the release of PO4-P and NH4-N from sediment.

  17. Plastic Media Blasting Waste Treatments

    DTIC Science & Technology

    1988-07-01

    melamine formaldehyde resin with a Mohr hardness of 4.0. Urea and melamine formaldehydes are highly crosslinked condensation polymers. These two...with either melamine formaldehyde or urea formaldehyde resins , which contain no chlorine. Wet scrubbers followed by demisters are added to remove any...latter problem. NARF chemists believe that methacrylate dust will be more explosive than dust from melamine or urea formaldehyde

  18. Formaldehyde emission and high-temperature stability of cured urea-formaldehyde resins

    Treesearch

    Shin-ichiro Tohmura; Chung-Yun Hse; Mitsuo Higuchi

    2000-01-01

    A test method for measuring formaldehyde from urea-formaldehyde (UF) resins at high temperature was developed and used to assess the influence of the reaction pH on the formaldehyde emission and heat stability of the cured resins. Additionally, solid-state 13C CP/MAS nuclear magnetic resonance (NMR) techniques were used to investigate the...

  19. Analysis on cocondensation of melamine and urea through carbon 13 enriched formaldehyde with carbon 13 nuclear magnetic resonance spectroscopy

    Treesearch

    Bunichiro Tomita; Chung-Yun Hse

    1995-01-01

    The urea-formaldehyde (UF) resins, melamine-formaldehyde (MF) resins, and melamine-urea-formaldehyde (MUF) cocondensed resins were synthesized using the labeling method of 13C enriched formaldehyde udner neutral conditions and their 13C-NMR (nuclear magnetic resonance) spectra were analyzed. The remarkable down-field shifts...

  20. Analyses of cocondensation of melamine and urea through carbon 13 enriched formaldehyde with carbon 13 nuclear magnetic resonance spectroscopy

    Treesearch

    Tomita Bunchiro; Chung-Yun Hse

    1995-01-01

    The urea-formaldehyde (UF) resins, melamine-formaldehyde (MF) resins, and melamine-urea-formaldehyde (MUF) cocondensed resins were synthesized using the labeling method with 13C enriched formaldehyde unde neutral conditions and their 13C-NMR (nuclear magnetic resonance) spectra were analyzed. The remarkable down-field...

  1. CO2-based hydrogen storage - Hydrogen generation from formaldehyde/water

    NASA Astrophysics Data System (ADS)

    Trincado, Monica; Grützmacher, Hansjörg; Prechtl, Martin H. G.

    2018-04-01

    Formaldehyde (CH2O) is the simplest and most significant industrially produced aldehyde. The global demand is about 30 megatons annually. Industrially it is produced by oxidation of methanol under energy intensive conditions. More recently, new fields of application for the use of formaldehyde and its derivatives as, i.e. cross-linker for resins or disinfectant, have been suggested. Dialkoxymethane has been envisioned as a combustion fuel for conventional engines or aqueous formaldehyde and paraformaldehyde may act as a liquid organic hydrogen carrier molecule (LOHC) for hydrogen generation to be used for hydrogen fuel cells. For the realization of these processes, it requires less energy-intensive technologies for the synthesis of formaldehyde. This overview summarizes the recent developments in low-temperature reductive synthesis of formaldehyde and its derivatives and low-temperature formaldehyde reforming. These aspects are important for the future demands on modern societies' energy management, in the form of a methanol and hydrogen economy, and the required formaldehyde feedstock for the manufacture of many formaldehyde-based daily products.

  2. 40 CFR Table 2b to Subpart Zzzz of... - Operating Limitations for New and Reconstructed 2SLB and CI Stationary RICE >500 HP Located at a...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... complying with the requirement to reduce CO emissions and using an oxidation catalyst; andNew and... requirement to limit the concentration of formaldehyde in the stationary RICE exhaust and using an oxidation... limit or reduce the concentration of CO in the stationary RICE exhaust and using an oxidation catalyst a...

  3. 40 CFR Table 2b to Subpart Zzzz of... - Operating Limitations for New and Reconstructed 2SLB and CI Stationary RICE >500 HP Located at a...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... complying with the requirement to reduce CO emissions and using an oxidation catalyst; andNew and... requirement to limit the concentration of formaldehyde in the stationary RICE exhaust and using an oxidation... limit or reduce the concentration of CO in the stationary RICE exhaust and using an oxidation catalyst a...

  4. Hydroxyl Radical Formation in Solutions of Fe(III) and Hydrogen Peroxide - Impact of Freezing and Thawing Process

    NASA Astrophysics Data System (ADS)

    Arakaki, T.; Kinjo, M.; Shiroma, K.; Shibata, M.; Miyake, T.; Hirakawa, T.; Sakugawa, H.

    2003-12-01

    Hydroxyl radical formation was studied by detecting concentration of formate in solutions of hydrated formaldehyde, HOOH, and Fe(III) or Cu(II). Oxidation of hydrated formaldehyde by OH radical is known to form formate. Formate formation increased by about 4 times when the solution underwent freezing and thawing. Although the reaction mechanisms are not clearly understood, we believe that the concentration effect of freezing enhanced the catalytic reactions between HOOH and Fe(III) or Cu(II) and the reduction of transition metals, i.e., Fe(III) to Fe(II) and Cu(II) to Cu(I). The concentration effect also enhanced reactions between Fe(II) and HOOH or Cu(I) and HOOH, which generated OH radical (freeze-Fenton reaction). Study of the effects of pH showed that formate formation was the highest at pH = 4.0, indicating that the speciation of Fe(III) affected the formation of formate. Concentration-dependent experiments demonstrated that Fe is probably the limiting agent under typical atmospheric conditions. Our results suggested that the freezing process could be an important source of hydroxyl radical in high cloud, winter fog, rime ice and freezing acidic rain, and more importantly, a potentially additional oxidation mechanism in the atmosphere.

  5. Safety Profile of TiO2-Based Photocatalytic Nanofabrics for Indoor Formaldehyde Degradation

    PubMed Central

    Cui, Guixin; Xin, Yan; Jiang, Xin; Dong, Mengqi; Li, Junling; Wang, Peng; Zhai, Shumei; Dong, Yongchun; Jia, Jianbo; Yan, Bing

    2015-01-01

    Anatase TiO2 nanoparticles (TNPs) are synthesized using the sol-gel method and loaded onto the surface of polyester-cotton (65/35) fabrics. The nanofabrics degrade formaldehyde at an efficiency of 77% in eight hours with visible light irradiation or 97% with UV light. The loaded TNPs display very little release from nanofabrics (~0.0%) during a standard fastness to rubbing test. Assuming TNPs may fall off nanofabrics during their life cycles, we also examine the possible toxicity of TNPs to human cells. We found that up to a concentration of 220 μg/mL, they do not affect viability of human acute monocytic leukemia cell line THP-1 macrophages and human liver and kidney cells. PMID:26610470

  6. An interfaced system for production of methane in a spacecraft

    NASA Technical Reports Server (NTRS)

    Weiss, A. H.

    1973-01-01

    The formose reaction, the homogeneously catalyzed condensation of formaldehyde to sugars, proceeds simultaneously with Cannizzaro and crossed Cannizzaro reactions. Reaction studies in a continuous stirred tank reactor have shown that rate instabilities are exhibited. There are temperature instabilities as well as concentration instabilities in calcium hydroxide catalyst, formaldehyde reactant, and hydroxyl ion. It is postulated that Ca(OH)+ is the actual catalytic species for the formose system. A unifying mechanism is developed that postulates that reactions proceed from a common intermediate complexed species, and that the selectivity for each reaction depends on the nature of the catalyst forming the carbohydrate complex. The catalytic mechanism explains the Lobry de Bruyn-van Eckenstein aldose ketose rearrangements and mutarotations of sugars that also proceed in the system.

  7. Sensitive Determination of Volatile Organic Compounds and Aldehydes in Tattoo Inks.

    PubMed

    Lim, Hyun-Hee; Shin, Ho-Sang

    2017-02-01

    As the popularity of body art including tattoo ink has increased, the safety associated with it has become an important interest. In this study, twenty volatile organic compounds (VOCs) and two aldehydes in tattoo inks were identified and quantified. Headspace and gas chromatography-mass spectrometry (HS GC-MS) for the VOCs and HS GC-MS based on derivatization with 2,2,2-trifluoroethylhydrazine (TFEH) for aldehydes was developed. Benzene, chloroform, toluene, ethylbenzene, m-xylene, p-xylene, o-xylene, propylbenzene, chlorobenzene, tert-butylbenzene, 1,3,5-trimethylbenzene, styrene, 1,2,4-trimethylbenzene, 2-chlorotoluene, 4-chlorotoluene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene, 1,2,4-trichlorobenzene and isopropyl alcohol were detected with the concentration range of 0.02-207,000 mg/kg in 16 different tattoo inks. Formaldehyde and acetaldehyde were detected with the concentration range of 0.4-308 mg/kg in the same samples. Our analytical results represent solvents used intentionally or non-intentionally in tattoo inks, and thus they may provide important information for national regulation. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Approaches for characterizing threshold dose-response relationships for DNA-damage pathways involved in carcinogenicity in vivo and micronuclei formation in vitro.

    PubMed

    Clewell, Rebecca A; Andersen, Melvin E

    2016-05-01

    Assessing the shape of dose-response curves for DNA-damage in cellular systems and for the consequences of DNA damage in intact animals remains a controversial topic. This overview looks at aspects of the pharmacokinetics (PK) and pharmacodynamics (PD) of cellular DNA-damage/repair and their role in defining the shape of dose-response curves using an in vivo example with formaldehyde and in vitro examples for micronuclei (MN) formation with several test compounds. Formaldehyde is both strongly mutagenic and an endogenous metabolite in cells. With increasing inhaled concentrations, there were transitions in gene changes, from activation of selective stress pathway genes at low concentrations, to activation of pathways for cell-cycle control, p53-DNA damage, and stem cell niche pathways at higher exposures. These gene expression changes were more consistent with dose-dependent transitions in the PD responses to formaldehyde in epithelial cells in the intact rat rather than the low-dose linear extrapolation methods currently used for carcinogens. However, more complete PD explanations of non-linear dose response for creation of fixed damage in cells require detailed examination of cellular responses in vitro using measures of DNA damage and repair that are not easily accessible in the intact animal. In the second section of the article, we illustrate an approach from our laboratory that develops fit-for-purpose, in vitro assays and evaluates the PD of DNA damage and repair through studies using prototypical DNA-damaging agents. Examination of a broad range of responses in these cells showed that transcriptional upregulation of cell cycle control and DNA repair pathways only occurred at doses higher than those causing overt damage fixed damage-measured as MN formation. Lower levels of damage appear to be handled by post-translational repair process using pre-existing proteins. In depth evaluation of the PD properties of one such post-translational process (formation of DNA repair centers; DRCs) has indicated that the formation of DRCs and their ability to complete repair before replication are consistent with threshold behaviours for mutagenesis and, by extension, with chemical carcinogenesis. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Emissions of volatile organic compounds from new carpets measured in a large-scale environmental chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodgson, A.T.; Wooley, J.D.; Daisey, J.M.

    1993-03-01

    This study was undertaken to quantify the emissions of volatile organic compounds (VOCs) released by new carpets. Samples of four typical carpets, including two with styrene-butadiene rubber (SBR) latex adhesive and two with different backings, were collected from the finish lines at manufacturers' mills. Individual VOCs released from these samples were identified, and their concentrations, emission rates and mass emissions were measured under simulated indoor conditions in a 20 m[sup 3] environmental chamber over one week periods. Concentrations and emission rates of VOCs emitted by a new SBR carpet were also measured in a house. The carpets emitted a varietymore » of VOCs. The two SBR carpets primarily emitted 4-phenylcyclohexene (4-PCH), the source of [open quotes]new carpet[close quotes] odor, and styrene. The concentrations and emission rates of 4-PCH were similar for the two carpets, while the styrene values varied significantly. The carpet with a polyvinyl chloride backing emitted formaldehyde, vinyl acetate, isooctane, 1,2-propanediol, and 2-ethyl-1-hexanol. Of these, vinyl acetate and propanediol had the highest concentrations and emission rates. The carpet with a polyurethane backing primarily emitted butylated hydroxytoluene. With the exception of formaldehyde, little is known about the health effects of these VOCs at low concentrations. 23 refs., 3 figs., 6 tabs.« less

  10. Heat stability of cured urea-formaldehyde resins by measuring formaldehyde emission

    Treesearch

    Shin-ichiro Tohmura; Chung-Yun Hse; Mitsuo Higuchi

    1999-01-01

    A test method for measuring formaldehyde from urea-formaldehyde (UF) resins at high tempera­tures was developed and used to assess the influence of the reaction pH at synthesis on the formaldehyde emission during cure and heat stability of the cured resins without water. Additionally, 13C-CP/MAS solid-state nuclear magnetic resonance (NMR)...

  11. New formaldehyde base disinfectants.

    NASA Technical Reports Server (NTRS)

    Trujillo, R.; Lindell, K. F.

    1973-01-01

    Preparations of formaldehyde in various organic liquids - ethylene glycol, glycerol, and propylene glycol - serve as effective disinfectants towards microbial vegetative cells and spores. This disinfection is a temperature-dependent process and is manifest when these formaldehyde base disinfectants are dissolved in water. The irritating vapors associated with formaldehyde disinfection are not present in either of these new formaldehyde base disinfectants or in aqueous solutions of them.

  12. Production of sugarcane bagasse-based activated carbon for formaldehyde gas removal from potted plants exposure chamber.

    PubMed

    Mohamed, Elham F; El-Hashemy, Mohammed A; Abdel-Latif, Nasser M; Shetaya, Waleed H

    2015-12-01

    Agricultural wastes such as rice straw, sugar beet, and sugarcane bagasse have become a critical environmental issue due to growing agriculture demand. This study aimed to investigate the valorization possibility of sugarcane bagasse waste for activated carbon preparation. It also aimed to fully characterize the prepared activated carbon (BET surface area) via scanning electron microscope (SEM) and in terms of surface functional groups to give a basic understanding of its structure and to study the adsorption capacity of the sugarcane bagasse-based activated carbon using aqueous methylene blue (MB). The second main objective was to evaluate the performance of sugarcane bagasse-based activated carbon for indoor volatile organic compounds removal using the formaldehyde gas (HCHO) as reference model in two potted plants chambers. The first chamber was labeled the polluted chamber (containing formaldehyde gas without activated carbon) and the second was taken as the treated chamber (containing formaldehyde gas with activated carbon). The results indicated that the sugarcane bagasse-based activated carbon has a moderate BET surface area (557 m2/g) with total mesoporous volume and microporous volume of 0.310 and 0.273 cm3/g, respectively. The prepared activated carbon had remarkable adsorption capacity for MB. Formaldehyde removal rate was then found to be more than 67% in the treated chamber with the sugarcane bagasse-based activated carbon. The plants' responses for this application as dry weight, chlorophyll contents, and protein concentration were also investigated. Preparation of activated carbon from sugarcane bagasse (SCBAC) is a promising approach to produce cheap and efficient adsorbent for gas pollutants removal. It may be also a solution for the agricultural wastes problems in big cities, particularly in Egypt. MB adsorption tests suggest that the SCBAC have high adsorption capacity. Formaldehyde gas removal in the plant chambers indicates that the SCBAC have potential to recover volatile gases. The results confirmed that the activated carbon produced from sugarcane bagasse waste raw materials can be used as an applicable adsorbent for treating a variety of gas pollutants from the indoor environment.

  13. Atmospheric chemistry of n-butanol: kinetics, mechanisms, and products of Cl atom and OH radical initiated oxidation in the presence and absence of NO(x).

    PubMed

    Hurley, M D; Wallington, T J; Laursen, L; Javadi, M S; Nielsen, O J; Yamanaka, T; Kawasaki, M

    2009-06-25

    Smog chamber/FTIR techniques were used to determine rate constants of k(Cl+n-butanol) = (2.21 +/- 0.38) x 10(-10) and k(OH+n-butanol) = (8.86 +/- 0.85) x 10(-12) cm(3) molecule(-1) s(-1) in 700 Torr of N(2)/O(2) diluent at 296 +/- 2K. The sole primary product identified from the Cl atom initiated oxidation of n-butanol in the absence of NO was butyraldehyde (38 +/- 2%, molar yield). The primary products of the Cl atom initiated oxidation of n-butanol in the presence of NO were (molar yield) butyraldehyde (38 +/- 2%), propionaldehyde (23 +/- 3%), acetaldehyde (12 +/- 4%), and formaldehyde (33 +/- 3%). The substantially lower yields of propionaldehyde, acetaldehyde, and formaldehyde as primary products in experiments conducted in the absence of NO suggests that chemical activation is important in the atmospheric chemistry of CH(3)CH(2)CH(O)CH(2)OH and CH(3)CH(O)CH(2)CH(2)OH alkoxy radicals. The primary products of the OH radical initiated oxidation of n-butanol in the presence of NO were (molar yields) butyraldehyde (44 +/- 4%), propionaldehyde (19 +/- 2%), and acetaldehyde (12 +/- 3%). In all cases, the product yields were independent of oxygen concentration over the partial pressure range of 10-600 Torr. The yields of propionaldehyde, acetaldehyde, and formaldehyde quoted above were not corrected for secondary formation via oxidation of higher aldehydes and should be treated as upper limits. The reactions of Cl atoms and OH radicals with n-butanol proceed 38 +/- 2 and 44 +/- 4%, respectively, via attack on the alpha-position to give an alpha-hydroxy alkyl radical which reacts with O(2) to give butyraldehyde. The results are discussed with respect to the atmospheric chemistry of n-butanol.

  14. Chemical kinetic modeling of propene oxidation at low and intermediate temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilk, R.D.; Cernansky, N.P.; Pitz, W.J.

    1986-01-13

    A detailed chemical kinetic mechanism for propene oxidation is developed and used to model reactions in a static reactor at temperatures of 590 to 740/sup 0/K, equivalence ratios of 0.8 to 2.0, and a pressure of 600 torr. Modeling of hydrocarbon oxidation in this temperature range is important for the validation of detailed models to be used for performing calculations related to automotive engine knock. The model predicted induction periods and species concentrations for all the species measured experimentally in a static reactor by Wilk, Cernansky, and Cohen. The detailed model predicted a temperature region of approximately constant induction periodmore » which corresponded very closely to the region of negative temperature coefficient behavior found in the experiment. Overall, the calculated concentrations of acetaldehyde, ethene, and methane were somewhat low compared to the experimental measurements, and the calculated concentrations of formaldehyde and methanol were high. The characteristic s-shape of the fuel concentration history was well predicted. The importance of OH+C/sub 3/H/sub 6/ and related rections in determining product distributions and the importance of consumption reactions for allyl radicals was demonstrated by the modeling calculations. 18 refs., 4 figs., 1 tab.« less

  15. The Effectors and Sensory Sites of Formaldehyde-responsive Regulator FrmR and Metal-sensing Variant *

    PubMed Central

    Osman, Deenah; Piergentili, Cecilia; Chen, Junjun; Sayer, Lucy N.; Usón, Isabel; Huggins, Thomas G.; Robinson, Nigel J.; Pohl, Ehmke

    2016-01-01

    The DUF156 family of DNA-binding transcriptional regulators includes metal sensors that respond to cobalt and/or nickel (RcnR, InrS) or copper (CsoR) plus CstR, which responds to persulfide, and formaldehyde-responsive FrmR. Unexpectedly, the allosteric mechanism of FrmR from Salmonella enterica serovar Typhimurium is triggered by metals in vitro, and variant FrmRE64H gains responsiveness to Zn(II) and cobalt in vivo. Here we establish that the allosteric mechanism of FrmR is triggered directly by formaldehyde in vitro. Sensitivity to formaldehyde requires a cysteine (Cys35 in FrmR) conserved in all DUF156 proteins. A crystal structure of metal- and formaldehyde-sensing FrmRE64H reveals that an FrmR-specific amino-terminal Pro2 is proximal to Cys35, and these residues form the deduced formaldehyde-sensing site. Evidence is presented that implies that residues spatially close to the conserved cysteine tune the sensitivities of DUF156 proteins above or below critical thresholds for different effectors, generating the semblance of specificity within cells. Relative to FrmR, RcnR is less responsive to formaldehyde in vitro, and RcnR does not sense formaldehyde in vivo, but reciprocal mutations FrmRP2S and RcnRS2P, respectively, impair and enhance formaldehyde reactivity in vitro. Formaldehyde detoxification by FrmA requires S-(hydroxymethyl)glutathione, yet glutathione inhibits formaldehyde detection by FrmR in vivo and in vitro. Quantifying the number of FrmR molecules per cell and modeling formaldehyde modification as a function of [formaldehyde] demonstrates that FrmR reactivity is optimized such that FrmR is modified and frmRA is derepressed at lower [formaldehyde] than required to generate S-(hydroxymethyl)glutathione. Expression of FrmA is thereby coordinated with the accumulation of its substrate. PMID:27474740

  16. Seasonal behavior of carbonyls and source characterization of formaldehyde (HCHO) in ambient air

    NASA Astrophysics Data System (ADS)

    Lui, K. H.; Ho, Steven Sai Hang; Louie, Peter K. K.; Chan, C. S.; Lee, S. C.; Hu, Di; Chan, P. W.; Lee, Jeffrey Chi Wai; Ho, K. F.

    2017-03-01

    Gas-phase formaldehyde (HCHO) is an intermediate and a sensitive indicator for volatile organic compounds (VOCs) oxidation, which drives tropospheric ozone production. Effective photochemical pollution control strategies demand a thorough understanding of photochemical oxidation precursors, making differentiation between sources of primary and secondary generated HCHO inevitable. Spatial and seasonal variations of airborne carbonyls based on two years of measurements (2012-2013), coupled with a correlation-based HCHO source apportionment analysis, were determined for three sampling locations in Hong Kong (denoted HT, TC, and YL). Formaldehyde and acetaldehyde were the two most abundant compounds of the total quantified carbonyls. Pearson's correlation analysis (r > 0.7) implies that formaldehyde and acetaldehyde possibly share similar sources. The total carbonyl concentration trends (HT < TC < YL) reflect location characteristics (urban > rural). A regression analysis further quantifies the relative primary HCHO source contributions at HT (∼13%), TC (∼21%), and YL (∼40%), showing more direct vehicular emissions in urban than rural areas. Relative secondary source contributions at YL (∼36%) and TC (∼31%) resemble each other, implying similar urban source contributions. Relative background source contributions at TC could be due to a closed structure microenvironment that favors the trapping of HCHO. Comparable seasonal differences are observed at all stations. The results of this study will aid in the development of a new regional ozone (O3) control policy, as ambient HCHO can enhance O3 production and also be produced from atmospheric VOCs oxidation (secondary HCHO).

  17. The sugar model: catalysis by amines and amino acid products

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    2001-01-01

    Ammonia and amines (including amino acids) were shown to catalyze the formation of sugars from formaldehyde and glycolaldehyde, and the subsequent conversion of sugars to carbonylcontaining products under the conditions studied (pH 5.5 and 50 degrees C). Sterically unhindered primary amines were better catalysts than ammonia, secondary amines, and sterically hindered primary amines (i.e. alpha-aminoisobutyric acid). Reactions catalyzed by primary amines initially consumed formaldehyde and glycolaldehyde about 15-20 times faster than an uncatalyzed control reaction. The amine-catalyzed reactions yielded aldotriose (glyceraldehyde), ketotriose (dihydroxyacetone), aldotetroses (erythrose and threose), ketotetrose (erythrulose), pyruvaldehyde, acetaldehyde, glyoxal, pyruvate, glyoxylate, and several unindentified carbonyl products. The concentrations of the carbonyl products, except pyruvate and ketotetrose, initially increased and then declined during the reaction, indicating their ultimate conversion to other products (like larger sugars or pyruvate). The uncatalyzed control reaction yielded no pyruvate or glyoxylate, and only trace amounts of pyruvaldehyde, acetaldehyde and glyoxal. In the presence of 15 mM catalytic primary amine, such as alanine, the rates of triose and pyruvaldehyde of synthesis were about 15-times and 1200-times faster, respectively, than the uncatalyzed reaction. Since previous studies established that alanine is synthesized from glycolaldehyde and formaldehyde via pyruvaldehyde as its direct precursor, the demonstration that the alanine catalyzes the conversion of glycolaldehyde and formaldehyde to pyruvaldehyde indicates that this synthetic pathway is capable of autocatalysis. The relevance of this synthetic process, named the Sugar Model, to the origin of life is discussed.

  18. 6S Return Samples: Assessment of Air Quality in the International Space Station (ISS) Based on Solid Sorbent Air Sampler (SSAS) and Formaldehyde Monitoring Kit (FMK) Analyses

    NASA Technical Reports Server (NTRS)

    James, John T.

    2004-01-01

    The toxicological assessments of SSAS and FMK analytical results are reported. Analytical methods have not changed from earlier reports. Surrogate standard recoveries from the SSAS tubes were 66-76% for 13C-acetone, 85-96% for fluorobenzene, and 73-89% for chlorobenzene. Post-flight flows were far below pre-flight flows and an investigation of the problem revealed that the reduced flow was caused by a leak at the interface of the pump inlet tube and the pump head. This resulted in degradation of pump efficiency. Further investigation showed that the problem occurred before the SSAS was operated on orbit and that use of the post-flight flows yielded consistent and useful results. Recoveries from formaldehyde control badges were 86 to 104%. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contributions). The T values will not be reported for these data due to the flow anomaly. Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols (including acetone) are also shown for each sample. Octafluoropropane (OFP) is not efficiently trapped by the sorbents used in the SSAS. Because formaldehyde is quantified from sorbent badges, its concentration is also listed separately. These five indices of air quality are summarized.

  19. California's program: Indoor air problems aren't amenable to regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wesolowski, J.

    In 1982, California's legislature established an Indoor Air Quality Program (CIAQP) in the Department of Health Services to carry out research on the nature and extent of the indoor air problem (excluding industrial worksites), to find appropriate mitigation measures, and to promote and coordinate the efforts of other state agencies. Since indoor air problems usually are not amenable to regulatory solutions, regulatory authority was not included in the mandate. The program conducts research into a wide range of contaminants--radon, asbestos, formaldehyde, carbon monoxide, volatile organic compounds, environmental tobacco smoke (ETS), as well as into biological aerosols that cause such diseasesmore » as Legionnaires disease, tuberculosis, allergies, and asthma. Studies are also carried out to better understand the Sick Building Syndrome. The research includes field surveys to determine the exposure of the population to specific contaminants and experiments in the laboratory to develop protocols for reducing exposures. The research emphasizes measurement of exposure--concentration multiplied by the time a person is exposed--as opposed to measurement of concentration only.« less

  20. Evidence for S(IV) compounds other than dissolved SO2 in precipitation

    NASA Astrophysics Data System (ADS)

    Chapman, E. G.

    1986-12-01

    Preliminary results from a study characterizing S(IV) compounds in wintertime precipitation samples indicate that bisulfite ion is not the primary form of S(IV), as previously believed. By employing a differencing technique that permits estimation of both SO2 aq and non-SO2 aq compound concentrations, it was found that, on an average, more than 60 percent of the total S(IV) is present in a form other than dissolved SO2. Formaldehyde analyses on selected samples suggest that the most likely form of the S(IV) is hydroxymethanesulfonate, although other aldehyde-S(IV) adducts may also be present. The non-SO2 compounds represented a significant portion of the total sulfur concentrations present in the samples analyzed, with contributions ranging from 1.2 to 27 percent. Because of the stability and oxidation resistance of these S(IV) compounds, sulfur deposition estimates that are based solely on sulfate measurements are undoubtedly low, especially for wintertime events. The study underscores the importance of S(IV) compounds in atmospheric scavenging processes.

  1. Formaldehyde Emissions from Urea-Formaldehyde- and no-added-formaldehyde-Bonded particleboard as Influenced by Temperature and Relative Humidity

    Treesearch

    Charles R. Frihart; James M. Wescott; Timothy L. Chaffee; Kyle M. Gonner

    2012-01-01

    It is well documented that temperature and humidity can influence formaldehyde emissions from composite panels that are produced using urea-formaldehyde (UF)–type adhesives. This work investigates the effect of temperature and humidity on newer commercial California Air Resources Board (CARB) phase II–compliant particleboard produced with UF-type adhesives. These...

  2. Residual formaldehyde after low-temperature steam and formaldehyde sterilization

    PubMed Central

    Gibson, G. L.; Johnston, H. P.; Turkington, V. E.

    1968-01-01

    The levels of formaldehyde remaining in various articles have been estimated immediately after a low-temperature steam and formaldehyde sterilizing process and after various periods of aeration. These levels have been compared with the levels of ethylene oxide remaining after exposure to an ethylene oxide sterilizing process. In rubber and polythene and a plastic, formaldehyde levels are low and slowly fall even further. Ethylene oxide levels are relatively much higher even after seven days' aeration. It is not considered that the residual levels of formaldehyde in rubber, polythene, and a plastic should constitute a danger. Residual levels of formaldehyde in fabrics and paper are higher but this may be of value by giving a self-disinfecting action on storage. PMID:5717551

  3. Determination of the lowest concentrations of aldehyde fixatives for completely fixing various cellular structures by real-time imaging and quantification.

    PubMed

    Zeng, Fangfa; Yang, Wen; Huang, Jie; Chen, Yuan; Chen, Yong

    2013-05-01

    The effectiveness of fixatives for fixing biological specimens has long been widely investigated. However, the lowest concentrations of fixatives needed to completely fix whole cells or various cellular structures remain unclear. Using real-time imaging and quantification, we determined the lowest concentrations of glutaraldehyde (0.001-0.005, ~0.005, 0.01-005, 0.01-005, and 0.01-0.1 %) and formaldehyde/paraformaldehyde (0.01-0.05, ~0.05, 0.5-1, 1-1.5, and 0.5-1 %) required to completely fix focal adhesions, cell-surface particles, stress fibers, the cell cortex, and the inner structures of human umbilical vein endothelial cells within 20 min. With prolonged fixation times (>20 min), the concentration of fixative required to completely fix these structures will shift to even lower values. These data may help us understand and optimize fixation protocols and understand the potential effects of the small quantities of endogenously generated aldehydes in human cells. We also determined the lowest concentration of glutaraldehyde (0.5 %) and formaldehyde/paraformaldehyde (2 %) required to induce cell blebbing. We found that the average number and size of the fixation-induced blebs per cell were dependent on both fixative concentration and cell spread area, but were independent of temperature. These data provide important information for understanding cell blebbing, and may help optimize the vesiculation-based technique used to isolate plasma membrane by suggesting ways of controlling the number or size of fixation-induced cell blebs.

  4. Formaldehyde Production From Isoprene Oxidation Across NOx Regimes

    NASA Technical Reports Server (NTRS)

    Wolfe, G. M.; Kaiser, J.; Hanisco, T. F.; Keutsch, F. N.; de Gouw, J. A.; Gilman, J. B.; Graus, M.; Hatch, C. D.; Holloway, J.; Horowitz, L. W.; hide

    2016-01-01

    The chemical link between isoprene and formaldehyde (HCHO) is a strong, non-linear function of NOx (= NO + NO2). This relationship is a linchpin for top-down isoprene emission inventory verification from orbital HCHO column observations. It is also a benchmark for overall photochemical mechanism performance with regard to VOC oxidation. Using a comprehensive suite of airborne in situ observations over the southeast US, we quantify HCHO production across the urban-rural spectrum. Analysis of isoprene and its major first-generation oxidation products allows us to define both a prompt yield of HCHO (molecules of HCHO produced per molecule of freshly emitted isoprene) and the background HCHO mixing ratio (from oxidation of longer-lived hydrocarbons). Over the range of observed NOx values (roughly 0.1 - 2 ppbv), the prompt yield increases by a factor of 3 (from 0.3 to 0.9 ppbv ppbv(exp. -10), while background HCHO increases by a factor of 2 (from 1.6 to 3.3 ppbv). We apply the same method to evaluate the performance of both a global chemical transport model (AM3) and a measurement-constrained 0-D steady-state box model. Both models reproduce the NOx dependence of the prompt HCHO yield, illustrating that models with updated isoprene oxidation mechanisms can adequately capture the link between HCHO and recent isoprene emissions. On the other hand, both models underestimate background HCHO mixing ratios, suggesting missing HCHO precursors, inadequate representation of later-generation isoprene degradation and/or underestimated hydroxyl radical concentrations. Detailed process rates from the box model simulation demonstrate a 3-fold increase in HCHO production across the range of observed NOx values, driven by a 100% increase in OH and a 40% increase in branching of organic peroxy radical reactions to produce HCHO.

  5. Formaldehyde production from isoprene oxidation across NOx regimes

    PubMed Central

    Wolfe, G. M.; Kaiser, J.; Hanisco, T. F.; Keutsch, F. N.; de Gouw, J. A.; Gilman, J. B.; Graus, M.; Hatch, C. D.; Holloway, J.; Horowitz, L. W.; Lee, B. H.; Lerner, B. M.; Lopez-Hilifiker, F.; Mao, J.; Marvin, M. R.; Peischl, J.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Thornton, J. A.; Veres, P. R.; Warneke, C.

    2018-01-01

    The chemical link between isoprene and formaldehyde (HCHO) is a strong, non-linear function of NOx (= NO + NO2). This relationship is a linchpin for top-down isoprene emission inventory verification from orbital HCHO column observations. It is also a benchmark for overall photochemical mechanism performance with regard to VOC oxidation. Using a comprehensive suite of airborne in situ observations over the Southeast U.S., we quantify HCHO production across the urban-rural spectrum. Analysis of isoprene and its major first-generation oxidation products allows us to define both a “prompt” yield of HCHO (molecules of HCHO produced per molecule of freshly-emitted isoprene) and the background HCHO mixing ratio (from oxidation of longer-lived hydrocarbons). Over the range of observed NOx values (roughly 0.1 – 2 ppbv), the prompt yield increases by a factor of 3 (from 0.3 to 0.9 ppbv ppbv−1), while background HCHO increases by a factor of 2 (from 1.6 to 3.3 ppbv). We apply the same method to evaluate the performance of both a global chemical transport model (AM3) and a measurement-constrained 0-D steady state box model. Both models reproduce the NOx dependence of the prompt HCHO yield, illustrating that models with updated isoprene oxidation mechanisms can adequately capture the link between HCHO and recent isoprene emissions. On the other hand, both models under-estimate background HCHO mixing ratios, suggesting missing HCHO precursors, inadequate representation of later-generation isoprene degradation and/or under-estimated hydroxyl radical concentrations. Detailed process rates from the box model simulation demonstrate a 3-fold increase in HCHO production across the range of observed NOx values, driven by a 100% increase in OH and a 40% increase in branching of organic peroxy radical reactions to produce HCHO. PMID:29619046

  6. Formaldehyde production from isoprene oxidation across NOx regimes.

    PubMed

    Wolfe, G M; Kaiser, J; Hanisco, T F; Keutsch, F N; de Gouw, J A; Gilman, J B; Graus, M; Hatch, C D; Holloway, J; Horowitz, L W; Lee, B H; Lerner, B M; Lopez-Hilifiker, F; Mao, J; Marvin, M R; Peischl, J; Pollack, I B; Roberts, J M; Ryerson, T B; Thornton, J A; Veres, P R; Warneke, C

    2016-01-01

    The chemical link between isoprene and formaldehyde (HCHO) is a strong, non-linear function of NO x (= NO + NO 2 ). This relationship is a linchpin for top-down isoprene emission inventory verification from orbital HCHO column observations. It is also a benchmark for overall photochemical mechanism performance with regard to VOC oxidation. Using a comprehensive suite of airborne in situ observations over the Southeast U.S., we quantify HCHO production across the urban-rural spectrum. Analysis of isoprene and its major first-generation oxidation products allows us to define both a "prompt" yield of HCHO (molecules of HCHO produced per molecule of freshly-emitted isoprene) and the background HCHO mixing ratio (from oxidation of longer-lived hydrocarbons). Over the range of observed NO x values (roughly 0.1 - 2 ppbv), the prompt yield increases by a factor of 3 (from 0.3 to 0.9 ppbv ppbv -1 ), while background HCHO increases by a factor of 2 (from 1.6 to 3.3 ppbv). We apply the same method to evaluate the performance of both a global chemical transport model (AM3) and a measurement-constrained 0-D steady state box model. Both models reproduce the NO x dependence of the prompt HCHO yield, illustrating that models with updated isoprene oxidation mechanisms can adequately capture the link between HCHO and recent isoprene emissions. On the other hand, both models under-estimate background HCHO mixing ratios, suggesting missing HCHO precursors, inadequate representation of later-generation isoprene degradation and/or under-estimated hydroxyl radical concentrations. Detailed process rates from the box model simulation demonstrate a 3-fold increase in HCHO production across the range of observed NO x values, driven by a 100% increase in OH and a 40% increase in branching of organic peroxy radical reactions to produce HCHO.

  7. Carbonyl compounds in electronic cigarette vapors: effects of nicotine solvent and battery output voltage.

    PubMed

    Kosmider, Leon; Sobczak, Andrzej; Fik, Maciej; Knysak, Jakub; Zaciera, Marzena; Kurek, Jolanta; Goniewicz, Maciej Lukasz

    2014-10-01

    Glycerin (VG) and propylene glycol (PG) are the most common nicotine solvents used in e-cigarettes (ECs). It has been shown that at high temperatures both VG and PG undergo decomposition to low molecular carbonyl compounds, including the carcinogens formaldehyde and acetaldehyde. The aim of this study was to evaluate how various product characteristics, including nicotine solvent and battery output voltage, affect the levels of carbonyls in EC vapor. Twelve carbonyl compounds were measured in vapors from 10 commercially available nicotine solutions and from 3 control solutions composed of pure glycerin, pure propylene glycol, or a mixture of both solvents (50:50). EC battery output voltage was gradually modified from 3.2 to 4.8V. Carbonyl compounds were determined using the HPLC/DAD method. Formaldehyde and acetaldehyde were found in 8 of 13 samples. The amounts of formaldehyde and acetaldehyde in vapors from lower voltage EC were on average 13- and 807-fold lower than in tobacco smoke, respectively. The highest levels of carbonyls were observed in vapors generated from PG-based solutions. Increasing voltage from 3.2 to 4.8V resulted in a 4 to more than 200 times increase in formaldehyde, acetaldehyde, and acetone levels. The levels of formaldehyde in vapors from high-voltage device were in the range of levels reported in tobacco smoke. Vapors from EC contain toxic and carcinogenic carbonyl compounds. Both solvent and battery output voltage significantly affect levels of carbonyl compounds in EC vapors. High-voltage EC may expose users to high levels of carbonyl compounds. © The Author 2014. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Sort-Seq Approach to Engineering a Formaldehyde-Inducible Promoter for Dynamically Regulated Escherichia coli Growth on Methanol

    PubMed Central

    2017-01-01

    Tight and tunable control of gene expression is a highly desirable goal in synthetic biology for constructing predictable gene circuits and achieving preferred phenotypes. Elucidating the sequence–function relationship of promoters is crucial for manipulating gene expression at the transcriptional level, particularly for inducible systems dependent on transcriptional regulators. Sort-seq methods employing fluorescence-activated cell sorting (FACS) and high-throughput sequencing allow for the quantitative analysis of sequence–function relationships in a robust and rapid way. Here we utilized a massively parallel sort-seq approach to analyze the formaldehyde-inducible Escherichia coli promoter (Pfrm) with single-nucleotide resolution. A library of mutated formaldehyde-inducible promoters was cloned upstream of gfp on a plasmid. The library was partitioned into bins via FACS on the basis of green fluorescent protein (GFP) expression level, and mutated promoters falling into each expression bin were identified with high-throughput sequencing. The resulting analysis identified two 19 base pair repressor binding sites, one upstream of the −35 RNA polymerase (RNAP) binding site and one overlapping with the −10 site, and assessed the relative importance of each position and base therein. Key mutations were identified for tuning expression levels and were used to engineer formaldehyde-inducible promoters with predictable activities. Engineered variants demonstrated up to 14-fold lower basal expression, 13-fold higher induced expression, and a 3.6-fold stronger response as indicated by relative dynamic range. Finally, an engineered formaldehyde-inducible promoter was employed to drive the expression of heterologous methanol assimilation genes and achieved increased biomass levels on methanol, a non-native substrate of E. coli. PMID:28463494

  9. Controlling formaldehyde emissions with boiler ash.

    PubMed

    Cowan, Jennifer; Abu-Daabes, Malyuba; Banerjee, Sujit

    2005-07-01

    Fluidized wood ash reduces formaldehyde in air from about 20 to <1 ppmv. Methanol is removed to a much lower extent. The efficiency of formaldehyde reduction increases with increasing moisture content of the ash. Sorption of formaldehyde to ash can be substantially accounted for by partitioning to the water contained in the ash followed by rate-controlling binding to the ash solids. Adsorption occurs at temperatures of up to 165 degrees C; oxidation predominates thereafter. It is proposed that formaldehyde could be stripped from an air stream in a fluidized bed containing ash, which could then be returned to a boiler to incinerate the formaldehyde.

  10. Formaldehyde as a carbon and electron shuttle between autotroph and heterotroph populations in acidic hydrothermal vents of Norris Geyser Basin, Yellowstone National Park.

    PubMed

    Moran, James J; Whitmore, Laura M; Isern, Nancy G; Romine, Margaret F; Riha, Krystin M; Inskeep, William P; Kreuzer, Helen W

    2016-05-01

    The Norris Geyser Basin in Yellowstone National Park contains a large number of hydrothermal systems, which host microbial populations supported by primary productivity associated with a suite of chemolithotrophic metabolisms. We demonstrate that Metallosphaera yellowstonensis MK1, a facultative autotrophic archaeon isolated from a hyperthermal acidic hydrous ferric oxide (HFO) spring in Norris Geyser Basin, excretes formaldehyde during autotrophic growth. To determine the fate of formaldehyde in this low organic carbon environment, we incubated native microbial mat (containing M. yellowstonensis) from a HFO spring with (13)C-formaldehyde. Isotopic analysis of incubation-derived CO2 and biomass showed that formaldehyde was both oxidized and assimilated by members of the community. Autotrophy, formaldehyde oxidation, and formaldehyde assimilation displayed different sensitivities to chemical inhibitors, suggesting that distinct sub-populations in the mat selectively perform these functions. Our results demonstrate that electrons originally resulting from iron oxidation can energetically fuel autotrophic carbon fixation and associated formaldehyde excretion, and that formaldehyde is both oxidized and assimilated by different organisms within the native microbial community. Thus, formaldehyde can effectively act as a carbon and electron shuttle connecting the autotrophic, iron oxidizing members with associated heterotrophic members in the HFO community.

  11. Does allergic contact dermatitis from formaldehyde in clothes treated with durable-press chemical finishes exist in the USA?

    PubMed

    de Groot, Anton C; Maibach, Howard I

    2010-03-01

    Recent US studies have presented case series of patient with allergic contact dermatitis (ACD) allegedly caused by formaldehyde in clothes treated with durable-press chemical finishes (DPCF), which are known formaldehyde releasers. However, the amounts of formaldehyde released by modern DPCF are thought to be well below the levels previously estimated to be able to elicit ACD. The objectives of this review are (i) to investigate whether clothes sold in the USA may contain enough free formaldehyde to elicit ACD in previously sensitized individuals and (ii) to assess the validity of US reports on ACD from formaldehyde in DPCF treated clothes. Literature was examined using various resources. The threshold level for formaldehyde in clothes that may cause ACD in sensitized individuals is unknown; we present data suggesting that levels < 200 ppm will be safe for most patients and that textiles will rarely contain higher amounts. All US studies presenting patients with ACD from formaldehyde in clothes had some weaknesses and in no report was the diagnosis proven beyond doubt. Currently, there is no definite proof that textile ACD from formaldehyde in DPCF in the USA exists. Future research should be directed at establishing the elicitation threshold and the amounts of formaldehyde present in textiles.

  12. Formaldehyde as a carbon and electron shuttle between autotroph and heterotroph populations in acidic hydrothermal vents of Norris Geyser Basin, Yellowstone National Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moran, James J.; Whitmore, Laura M.; Isern, Nancy G.

    The Norris Geyser Basin in Yellowstone National Park contains a large number of hydrothermal systems, which host microbial populations supported by primary productivity associated with a suite of chemolithotrophic metabolisms. We demonstrate that Metallosphaera yellowstonesis MK1, a facultative autotrophic archaeon isolated from a hyperthermal acidic hydrous ferric oxide (HFO) spring in Norris Geyser Basin, excretes formaldehyde during autotrophic growth. To determine the fate of formaldehyde in this low organic carbon environment, we incubated native microbial mat (containing M. yellowstonensis) from a HFO spring with 13C-formaldehyde. Isotopic analysis of incubation-derived CO2 and biomass showed that formaldehyde was both oxidized and assimilatedmore » by members of the community. Autotrophy, formaldehyde oxidation, and formaldehyde assimilation displayed different sensitivities to chemical inhibitors, suggesting that distinct sub-populations in the mat selectively perform these functions. Our results demonstrate that electrons originally resulting from iron oxidation can energetically fuel autotrophic carbon fixation and associated formaldehyde excretion, and that formaldehyde is both oxidized and assimilated by different organisms within the native microbial community. Thus, formaldehyde can effectively act as a carbon and electron shuttle connecting the autotrophic, iron oxidizing members with associated heterotrophic members in the HFO community.« less

  13. Assessment of indoor air quality in office buildings across Europe - The OFFICAIR study.

    PubMed

    Mandin, Corinne; Trantallidi, Marilena; Cattaneo, Andrea; Canha, Nuno; Mihucz, Victor G; Szigeti, Tamás; Mabilia, Rosanna; Perreca, Erica; Spinazzè, Andrea; Fossati, Serena; De Kluizenaar, Yvonne; Cornelissen, Eric; Sakellaris, Ioannis; Saraga, Dikaia; Hänninen, Otto; De Oliveira Fernandes, Eduardo; Ventura, Gabriela; Wolkoff, Peder; Carrer, Paolo; Bartzis, John

    2017-02-01

    The European project OFFICAIR aimed to broaden the existing knowledge regarding indoor air quality (IAQ) in modern office buildings, i.e., recently built or refurbished buildings. Thirty-seven office buildings participated in the summer campaign (2012), and thirty-five participated in the winter campaign (2012-2013). Four rooms were investigated per building. The target pollutants were twelve volatile organic compounds, seven aldehydes, ozone, nitrogen dioxide and particulate matter with aerodynamic diameter <2.5μm (PM 2.5 ). Compared to other studies in office buildings, the benzene, toluene, ethylbenzene, and xylene concentrations were lower in OFFICAIR buildings, while the α-pinene and d-limonene concentrations were higher, and the aldehyde, nitrogen dioxide and PM 2.5 concentrations were of the same order of magnitude. When comparing summer and winter, significantly higher concentrations were measured in summer for formaldehyde and ozone, and in winter for benzene, α-pinene, d-limonene, and nitrogen dioxide. The terpene and 2-ethylhexanol concentrations showed heterogeneity within buildings regardless of the season. Considering the average of the summer and winter concentrations, the acetaldehyde and hexanal concentrations tended to increase by 4-5% on average with every floor level increase, and the nitrogen dioxide concentration tended to decrease by 3% on average with every floor level increase. A preliminary evaluation of IAQ in terms of potential irritative and respiratory health effects was performed. The 5-day median and maximum indoor air concentrations of formaldehyde and ozone did not exceed their respective WHO air quality guidelines, and those of acrolein, α-pinene, and d-limonene were lower than their estimated thresholds for irritative and respiratory effects. PM 2.5 indoor concentrations were higher than the 24-h and annual WHO ambient air quality guidelines. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. 40 CFR 63.2984 - What operating limits must I meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... limits or ranges specified in your operation, maintenance, and monitoring (OMM) plan described in § 63.2987. If there is a deviation of any of the specified parameters from the limit or range specified in...) You must not use a resin with a free-formaldehyde content greater than that of the resin used during...

  15. 40 CFR 63.2984 - What operating limits must I meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... limits or ranges specified in your operation, maintenance, and monitoring (OMM) plan described in § 63.2987. If there is a deviation of any of the specified parameters from the limit or range specified in...) You must not use a resin with a free-formaldehyde content greater than that of the resin used during...

  16. Health-hazard-evaluation report HETA 87-387-2050, Ithaca College, Ithaca, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almaguer, D.; Klein, M.; Klincewicz, S.

    1990-06-01

    In response to a request from an authorized representative of the employees of Ithaca College located in Ithaca, New York, a study was made of possible hazardous conditions at the college stemming from the use of formalin solutions during the embalming and fixing of primates for study. Samples were collected in the anatomy laboratory, the refrigeration room, and the hallway which separated the two rooms. Analyses of the 22 samples collected ranged from nondetectable to 0.12 parts per million for formaldehyde. Two samples which contained quantifiable levels of formaldehyde were collected in the anatomy laboratory. All tests for phenol andmore » ethylene-glycol showed nondetectable levels. Measurements indicated the ventilation system supplied air to the location in line with requirements but that air distribution and exhaust within the laboratory were not conducive to minimizing occupant exposure to contaminants. Only one set of exhaust conditions was under negative pressure. Ventilation may have been inadequate. The staff reported symptoms of headache, sinus congestion, odors in the office, sore throat, and itching and burning eyes. The authors conclude that exposures to low levels of formaldehyde existed at the time of the survey. Formaldehyde levels measured during the study were not deemed high enough to be causing reported symptoms. The authors recommend measures to improve the ventilation system.« less

  17. Formaldehyde and LeukemiA: Epidemiology, Potential Mechanisms and Implications for Risk Assessment

    EPA Science Inventory

    Formaldehyde is widely used in the United States and other countries. Occupational and environmental exposures to formaldehyde may be associated with an increased risk of leukemia in exposed individuals. However, risk assessment of formaldehyde and leukemia has been challenging ...

  18. Miniaturised enzymatic conductometric biosensor with Nafion membrane for the direct determination of formaldehyde in water samples.

    PubMed

    Nguyen-Boisse, Thanh-Thuy; Saulnier, Joëlle; Jaffrezic-Renault, Nicole; Lagarde, Florence

    2014-02-01

    A new conductometric enzyme-based biosensor was developed for the determination of formaldehyde (FA) in aqueous solutions. The biosensor was prepared by cross-linking formaldehyde dehydrogenase from Pseudomonas putida with bovine serum albumin in saturated glutaraldehyde vapours (GA) at the surface of interdigitated gold microelectrodes. Nicotinamide adenine dinucleotide cofactor (NAD(+)) was added in solution at each measurement to maintain enzyme activity. Addition of a Nafion layer over the enzyme modified electrode resulted in a significant increase of biosensor signal due to enhanced accumulation of protons generated by enzymatic reaction at the electrode surface. Different parameters affecting enzyme activity or playing a role in ionic transfer through the Nafion membrane were optimised. In optimal conditions (0.045 mg enzyme, 30 min exposure to GA, 0.3 μL of a 1% (v/v) Nafion solution deposit, measurement in 5 mM phosphate buffer pH 7 containing 20 μM NAD(+)), the biosensor signal was linear up to 10 mM FA, and the detection limit was 18 μM. Relative standard deviations calculated from five consecutive replicates of FA solutions were lower than 5% in the 1-10 mM range. The biosensor was successfully applied to the determination of FA in spiked water samples (tap water and Rhone river water), with recoveries in the 95-110% range.

  19. Formaldehyde exposures from tobacco smoke: a review.

    PubMed Central

    Godish, T

    1989-01-01

    Reports of formaldehyde levels in mainstream, sidestream, and environmental tobacco smoke from nine studies are reviewed. Considerable disparity exists between formaldehyde production rates determined from mainstream-sidestream studies and those reporting levels in environmental tobacco smoke. Tobacco smoke does not appear to increase vapor-phase formaldehyde levels significantly in indoor environments, but formaldehyde exposure in mainstream smoke may pose a risk of upper respiratory system cancer and increase the risk of cancer in smokers. PMID:2665532

  20. Safety in the Chemical Laboratory: Atmospheric Formaldehyde Levels in an Academic Laboratory.

    ERIC Educational Resources Information Center

    Clausz, John C.; And Others

    1984-01-01

    Determined whether improved ventilation and use of "formaldehyde-free" biological specimens could reduce the levels of formaldehyde in air to which students and faculty would be exposed. Both methods were found to be effective in reducing formaldehyde levels in air. (JN)

  1. Measurement and health risk assessment of PM2.5, flame retardants, carbonyls and black carbon in indoor and outdoor air in kindergartens in Hong Kong.

    PubMed

    Deng, Wen-Jing; Zheng, Hai-Long; Tsui, Anita K Y; Chen, Xun-Wen

    2016-11-01

    Indoor air pollution is closely related to children's health. Polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DP) transmitted through indoor PM 2.5 and dust, along with carbonyl compounds and black carbon (BC) aerosol were analysed in five Hong Kong kindergartens. The results showed that 60% of the median PM 2.5 levels (1.3×10 1 to 2.9×10 1 μg/m 3 for indoor; 9.5 to 8.8×10 1 μg/m 3 for outdoor) in the five kindergartens were higher than the guidelines set by the World Health Organization (2.5×10 1 μg/m 3 ). Indoor PM 2.5 mass concentrations were correlated with outdoor PM 2.5 in four of the kindergartens. The PBDEs (0.10-0.64ng/m 3 in PM 2.5 ; 0.30-2.0×10 2 ng/g in dust) and DP (0.05-0.10ng/m 3 in PM 2.5 ; 1.3-8.7ng/g in dust) were detected in 100% of the PM 2.5 and dust samples. Fire retardant levels in the air were not correlated with the levels of dust in this study. The median BC concentrations varied by >7-fold from 8.8×10 2 ng/m -3 to 6.7×10 3 ng/m -3 and cooking events might have caused BC concentrations to rise both indoors and outdoors. The total concentrations of 16 carbonyls ranged from 4.7×10 1 μg/m 3 to 9.3×10 1 μg/m 3 indoors and from 1.9×10 1 μg/m 3 to 4.3×10 1 μg/m 3 outdoors, whilst formaldehyde was the most abundant air carbonyl. Indoor carbonyl concentrations were correlated with outdoor carbonyls in three kindergartens. The health risk assessment showed that hazard indexes (HIs) HIs of non-cancer risks from PBDEs and DPs were all lower than 0.08, whilst non-cancer HIs of carbonyl compounds ranged from 0.77 to 1.85 indoors and from 0.50 to 0.97 outdoors. The human intake of PBDEs and DP through inhalation of PM 2.5 accounted for 78% to 92% of the total intake. The cancer hazard quotients (HQs) of formaldehyde ranged from 4.5E-05 to 2.1E-04 indoors and from 1.9E-05 to 6.2E-05 outdoors. In general, the indoor air pollution in the five Hong Kong kindergartens might present adverse effects to children, although different schools showed distinct pollution levels, so indoor air quality might be improved through artificial measures. The data will be useful to developing a feasible management protocol for indoor environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Ag-Modified In2O3/ZnO Nanobundles with High Formaldehyde Gas-Sensing Performance

    PubMed Central

    Fang, Fang; Bai, Lu; Song, Dongsheng; Yang, Hongping; Sun, Xiaoming; Sun, Hongyu; Zhu, Jing

    2015-01-01

    Ag-modified In2O3/ZnO bundles with micro/nano porous structures have been designed and synthesized with by hydrothermal method continuing with dehydration process. Each bundle consists of nanoparticles, where nanogaps of 10–30 nm are present between the nanoparticles, leading to a porous structure. This porous structure brings high surface area and fast gas diffusion, enhancing the gas sensitivity. Consequently, the HCHO gas-sensing performance of the Ag-modified In2O3/ZnO bundles have been tested, with the formaldehyde-detection limit of 100 ppb (parts per billion) and the response and recover times as short as 6 s and 3 s, respectively, at 300 °C and the detection limit of 100 ppb, response time of 12 s and recover times of 6 s at 100 °C. The HCHO sensing detect limitation matches the health standard limitation on the concentration of formaldehyde for indoor air. Moreover, the strategy to synthesize the nanobundles is just two-step heating and easy to scale up. Therefore, the Ag-modified In2O3/ZnO bundles are ready for industrialization and practical applications. PMID:26287205

  3. 40 CFR 721.3810 - Formaldehyde, polymers with substituted phenols (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Formaldehyde, polymers with... New Uses for Specific Chemical Substances § 721.3810 Formaldehyde, polymers with substituted phenols... identified generically as Formaldehyde, polymers with substituted phenols (PMN P-99-0558) is subject to...

  4. 40 CFR 721.3810 - Formaldehyde, polymers with substituted phenols (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Formaldehyde, polymers with... New Uses for Specific Chemical Substances § 721.3810 Formaldehyde, polymers with substituted phenols... identified generically as Formaldehyde, polymers with substituted phenols (PMN P-99-0558) is subject to...

  5. 40 CFR 721.3810 - Formaldehyde, polymers with substituted phenols (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Formaldehyde, polymers with... New Uses for Specific Chemical Substances § 721.3810 Formaldehyde, polymers with substituted phenols... identified generically as Formaldehyde, polymers with substituted phenols (PMN P-99-0558) is subject to...

  6. 40 CFR 721.3810 - Formaldehyde, polymers with substituted phenols (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Formaldehyde, polymers with... New Uses for Specific Chemical Substances § 721.3810 Formaldehyde, polymers with substituted phenols... identified generically as Formaldehyde, polymers with substituted phenols (PMN P-99-0558) is subject to...

  7. 40 CFR 721.3810 - Formaldehyde, polymers with substituted phenols (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Formaldehyde, polymers with... New Uses for Specific Chemical Substances § 721.3810 Formaldehyde, polymers with substituted phenols... identified generically as Formaldehyde, polymers with substituted phenols (PMN P-99-0558) is subject to...

  8. Characterizing pollutant emissions from mosquito repellents incenses and implications in risk assessment of human health.

    PubMed

    Wang, Lina; Zheng, Xinran; Stevanovic, Svetlana; Xiang, Zhiyuan; Liu, Jing; Shi, Huiwen; Liu, Jing; Yu, Mingzhou; Zhu, Chun

    2018-01-01

    Mosquito-repellent incense is one of the most popular products used for dispelling mosquitos during summer in China. It releases large amounts of particulate and gaseous pollutants which constitute a potential hazard to human health. We conducted chamber experiment to characterize major pollutants from three types of mosquito-repellent incenses, further assessed the size-fractionated deposition in human respiratory system, and evaluated the indoor removing efficiency by fresh air. Results showed that the released pollutant concentrations were greater than permissible levels in regulations in GB3095-2012, as well as suggested by the World Health Organization (WHO). Formaldehyde accounted for 10-20% of the total amount of pollutants. Fine particles dominated in the total particulate concentrations. Geometric standard deviation (GSD) of particle number size distributions was in the range of 1.45-1.93. Count median diameter (CMD) ranged from 100 to 500 nm. Emission rates, burning rates and emission factors of both particulate and gaseous pollutants were compared and discussed. The deposition fractions in pulmonary airway from the disc solid types reached up to 52.7% of the total deposition, and the largest deposition appeared on juvenile group. Computational Fluid Dynamics (CFD) modellings indicated air-conditioner on and windows closed was the worst case. The highest concentration was 180-200 times over the standard limit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Evaluation of model-predicted hazardous air pollutants (HAPs) near a mid-sized U.S. airport

    NASA Astrophysics Data System (ADS)

    Vennam, Lakshmi Pradeepa; Vizuete, William; Arunachalam, Saravanan

    2015-10-01

    Accurate modeling of aircraft-emitted pollutants in the vicinity of airports is essential to study the impact on local air quality and to answer policy and health-impact related issues. To quantify air quality impacts of airport-related hazardous air pollutants (HAPs), we carried out a fine-scale (4 × 4 km horizontal resolution) Community Multiscale Air Quality model (CMAQ) model simulation at the T.F. Green airport in Providence (PVD), Rhode Island. We considered temporally and spatially resolved aircraft emissions from the new Aviation Environmental Design Tool (AEDT). These model predictions were then evaluated with observations from a field campaign focused on assessing HAPs near the PVD airport. The annual normalized mean error (NME) was in the range of 36-70% normalized mean error for all HAPs except for acrolein (>70%). The addition of highly resolved aircraft emissions showed only marginally incremental improvements in performance (1-2% decrease in NME) of some HAPs (formaldehyde, xylene). When compared to a coarser 36 × 36 km grid resolution, the 4 × 4 km grid resolution did improve performance by up to 5-20% NME for formaldehyde and acetaldehyde. The change in power setting (from traditional International Civil Aviation Organization (ICAO) 7% to observation studies based 4%) doubled the aircraft idling emissions of HAPs, but led to only a 2% decrease in NME. Overall modeled aircraft-attributable contributions are in the range of 0.5-28% near a mid-sized airport grid-cell with maximum impacts seen only within 4-16 km from the airport grid-cell. Comparison of CMAQ predictions with HAP estimates from EPA's National Air Toxics Assessment (NATA) did show similar annual mean concentrations and equally poor performance. Current estimates of HAPs for PVD are a challenge for modeling systems and refinements in our ability to simulate aircraft emissions have made only incremental improvements. Even with unrealistic increases in HAPs aviation emissions the model could not match observed concentrations near the runway airport site. Our results suggest other uncertainties in the modeling system such as meteorology, HAPs chemistry, or other emission sources require increased scrutiny.

  10. Integration of C1 and C2 Metabolism in Trees

    PubMed Central

    Jardine, Kolby J.; Higuchi, Niro; Bill, Markus; Porras, Rachel; Chambers, Jeffrey Q.

    2017-01-01

    C1 metabolism in plants is known to be involved in photorespiration, nitrogen and amino acid metabolism, as well as methylation and biosynthesis of metabolites and biopolymers. Although the flux of carbon through the C1 pathway is thought to be large, its intermediates are difficult to measure and relatively little is known about this potentially ubiquitous pathway. In this study, we evaluated the C1 pathway and its integration with the central metabolism using aqueous solutions of 13C-labeled C1 and C2 intermediates delivered to branches of the tropical species Inga edulis via the transpiration stream. Delivery of [13C]methanol and [13C]formaldehyde rapidly stimulated leaf emissions of [13C]methanol, [13C]formaldehyde, [13C]formic acid, and 13CO2, confirming the existence of the C1 pathway and rapid interconversion between methanol and formaldehyde. However, while [13C]formate solutions stimulated emissions of 13CO2, emissions of [13C]methanol or [13C]formaldehyde were not detected, suggesting that once oxidation to formate occurs it is rapidly oxidized to CO2 within chloroplasts. 13C-labeling of isoprene, a known photosynthetic product, was linearly related to 13CO2 across C1 and C2 ([13C2]acetate and [2-13C]glycine) substrates, consistent with reassimilation of C1, respiratory, and photorespiratory CO2. Moreover, [13C]methanol and [13C]formaldehyde induced a quantitative labeling of both carbon atoms of acetic acid emissions, possibly through the rapid turnover of the chloroplastic acetyl-CoA pool via glycolate oxidation. The results support a role of the C1 pathway to provide an alternative carbon source for glycine methylation in photorespiration, enhance CO2 concentrations within chloroplasts, and produce key C2 intermediates (e.g., acetyl-CoA) central to anabolic and catabolic metabolism. PMID:28946627

  11. Integration of C 1 and C 2 Metabolism in Trees

    DOE PAGES

    Jardine, Kolby J.; Fernandes de Souza, Vinicius; Oikawa, Patty; ...

    2017-09-23

    C 1 metabolism in plants is known to be involved in photorespiration, nitrogen and amino acid metabolism, as well as methylation and biosynthesis of metabolites and biopolymers. Although the flux of carbon through the C 1 pathway is thought to be large, its intermediates are difficult to measure and relatively little is known about this potentially ubiquitous pathway. In this study, we evaluated the C 1 pathway and its integration with the central metabolism using aqueous solutions of 13C-labeled C 1 and C 2 intermediates delivered to branches of the tropical species Inga edulis via the transpiration stream. Delivery ofmore » [ 13C]methanol and [ 13C]formaldehyde rapidly stimulated leaf emissions of [ 13C]methanol, [ 13C]formaldehyde, [ 13C]formic acid, and 13CO 2, confirming the existence of the C 1 pathway and rapid interconversion between methanol and formaldehyde. However, while [ 13C]formate solutions stimulated emissions of 13CO 2, emissions of [ 13C]methanol or [ 13C]formaldehyde were not detected, suggesting that once oxidation to formate occurs it is rapidly oxidized to CO 2 within chloroplasts. 13C-labeling of isoprene, a known photosynthetic product, was linearly related to 13CO 2 across C 1 and C 2 ([ 13C 2]acetate and [2- 13C]glycine) substrates, consistent with reassimilation of C 1, respiratory, and photorespiratory CO 2. Moreover, [ 13C]methanol and [ 13C]formaldehyde induced a quantitative labeling of both carbon atoms of acetic acid emissions, possibly through the rapid turnover of the chloroplastic acetyl-CoA pool via glycolate oxidation. The results support a role of the C 1 pathway to provide an alternative carbon source for glycine methylation in photorespiration, enhance CO 2 concentrations within chloroplasts, and produce key C 2 intermediates (e.g., acetyl-CoA) central to anabolic and catabolic metabolism.« less

  12. Integration of C 1 and C 2 Metabolism in Trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardine, Kolby J.; Fernandes de Souza, Vinicius; Oikawa, Patty

    C 1 metabolism in plants is known to be involved in photorespiration, nitrogen and amino acid metabolism, as well as methylation and biosynthesis of metabolites and biopolymers. Although the flux of carbon through the C 1 pathway is thought to be large, its intermediates are difficult to measure and relatively little is known about this potentially ubiquitous pathway. In this study, we evaluated the C 1 pathway and its integration with the central metabolism using aqueous solutions of 13C-labeled C 1 and C 2 intermediates delivered to branches of the tropical species Inga edulis via the transpiration stream. Delivery ofmore » [ 13C]methanol and [ 13C]formaldehyde rapidly stimulated leaf emissions of [ 13C]methanol, [ 13C]formaldehyde, [ 13C]formic acid, and 13CO 2, confirming the existence of the C 1 pathway and rapid interconversion between methanol and formaldehyde. However, while [ 13C]formate solutions stimulated emissions of 13CO 2, emissions of [ 13C]methanol or [ 13C]formaldehyde were not detected, suggesting that once oxidation to formate occurs it is rapidly oxidized to CO 2 within chloroplasts. 13C-labeling of isoprene, a known photosynthetic product, was linearly related to 13CO 2 across C 1 and C 2 ([ 13C 2]acetate and [2- 13C]glycine) substrates, consistent with reassimilation of C 1, respiratory, and photorespiratory CO 2. Moreover, [ 13C]methanol and [ 13C]formaldehyde induced a quantitative labeling of both carbon atoms of acetic acid emissions, possibly through the rapid turnover of the chloroplastic acetyl-CoA pool via glycolate oxidation. The results support a role of the C 1 pathway to provide an alternative carbon source for glycine methylation in photorespiration, enhance CO 2 concentrations within chloroplasts, and produce key C 2 intermediates (e.g., acetyl-CoA) central to anabolic and catabolic metabolism.« less

  13. Acute airway effects of airborne formaldehyde in sensitized and non-sensitized mice housed in a dry or humid environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Søren Thor, E-mail: stl@nrcwe.dk; Wolkoff, Peder, E-mail: pwo@nrcwe.dk; Hammer, Maria, E-mail: mha@nrcwe.dk

    We investigated the role of air humidity and allergic sensitization on the acute airway response to inhaled formaldehyde (FA) vapor. Mice were sensitized to the immunogen ovalbumin (OVA) by three intraperitoneal injections followed by two aerosol challenges, giving rise to allergic airway inflammation. Control mice were sham sensitized by saline injections and challenged by saline aerosols. Once sensitized, the mice were housed at high (85–89%) or low (< 10%) relative humidity, respectively for 48 h prior to a 60-min exposure to either 0.4, 1.8 or about 5 ppm FA. Before, during and after exposure, breathing parameters were monitored. These includedmore » the specific markers of nose and lung irritations as well as the expiratory flow rate, the latter being a marker of airflow limitation. The sensory irritation response in the upper airways was not affected by allergic inflammation or changes in humidity. At high relative humidity, the OVA-sensitized mice had a decreased expiratory airflow rate compared to the saline control mice after exposure to approximately 5 ppm FA. This is in accordance with the observations that asthmatics are more sensitive than non-asthmatics to higher concentrations of airway irritants including FA. In the dry environment, the opposite trend was seen; here, the saline control mice had a significantly decreased expiratory airflow rate compared to OVA-sensitized mice when exposed to 1.8 and 4 ppm FA. We speculate that increased mucus production in the OVA-sensitized mice has increased the “scrubber effect” in the nose, consequently protecting the conducting and lower airways. - Highlights: ► Role of air humidity and allergy on sensitivity to an airway irritant was studied. ► In the humid environment, allergy amplified the effects of formaldehyde. ► In the dry environment, allergy reduced the effect of formaldehyde. ► Neither allergy nor humidity changed the formaldehyde-induced nasal irritation.« less

  14. [A simple testing installation for the production of aerosols with constant bacteria-contaminated concentrations].

    PubMed

    Herbst, M; Lehmhus, H; Oldenburg, B; Orlowski, C; Ohgke, H

    1983-04-01

    A simple experimental set for the production and investigation of bacterially contaminated solid-state aerosols with constant concentration is described. The experimental set consists mainly of a fluidized bed-particle generator within a modified chamber for formaldehyde desinfection. The special conditions for the production of a defined concentration of particles and microorganisms are to be found out empirically. In a first application aerosol-sizing of an Andersen sampler is investigated. The findings of Andersen (1) are confirmed with respect to our experimental conditions.

  15. Partially-irreversible sorption of formaldehyde in five polymers

    NASA Astrophysics Data System (ADS)

    Ye, Wei; Cox, Steven S.; Zhao, Xiaomin; Frazier, Charles E.; Little, John C.

    2014-12-01

    Due to its environmental ubiquity and concern over its potential toxicity, the mass-transfer characteristics of formaldehyde are of critical importance to indoor air quality research. Previous studies have suggested that formaldehyde mass transfer in polymer is partially irreversible. In this study, mechanisms that could cause the observed irreversibility were investigated. Polycarbonate and four other polymeric matrices were selected and subjected to formaldehyde sorption/desorption cycles. Mass transfer of formaldehyde was partially irreversible in all cases, and three potential mechanisms were evaluated. First, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analysis was used to investigate possible formaldehyde polymerization on polymer surfaces. ATR-FTIR showed no detectable paraformaldehyde or formaldehyde on the film surfaces that had been exposed to formaldehyde and air. ATR-FTIR did detect aliphatic acids suggesting oxidation had occurred on film surfaces as a result of exposure to formaldehyde. However, additional study suggested that air is not the primary cause for irreversibility. Second, statistical physics theory was tested as a possible explanation. According to this theory, reversible and irreversible sorption could be taking place simultaneously. The irreversible fraction should be constant during sorption and the fraction could be determined by performing a complete sorption/desorption test. The sorption/desorption data was consistent with this theory. Third, chemisorption was considered as another possible cause for irreversibility. Extraction/fluorimetry testing of post-sorption and post-desorption polymer films showed measurable quantities of formaldehyde suggesting that some of the chemisorbed formaldehyde was reversible at the higher extraction temperature. Further quantitative study on chemical reaction products is needed.

  16. Role of Transient Receptor Potential Ion Channels and Evoked Levels of Neuropeptides in a Formaldehyde-Induced Model of Asthma in Balb/c Mice

    PubMed Central

    Wu, Yang; You, Huihui; Ma, Ping; Li, Li; Yuan, Ye; Li, Jinquan; Ye, Xin; Liu, Xudong; Yao, Hanchao; Chen, Ruchong; Lai, Kefang; Yang, Xu

    2013-01-01

    Objective Asthma is a complex pulmonary inflammatory disease characterized by the hyper-responsiveness, remodeling and inflammation of airways. Formaldehyde is a common indoor air pollutant that can cause asthma in people experiencing long-term exposure. The irritant effect and adjuvant effect are the two possible pathways of formaldehyde promoted asthma. Methodology/Principal Findings To explore the neural mechanisms and adjuvant effect of formaldehyde, 48 Balb/c mice in six experimental groups were exposed to (a) vehicle control; (b) ovalbumin; (c) formaldehyde (3.0 mg/m3); (d) ovalbumin+formaldehyde (3.0 mg/m3); (e) ovalbumin+formaldehyde (3.0 mg/m3)+HC-030031 (transient receptor potential ankyrin 1 antagonist); (f) ovalbumin+formaldehyde (3.0 mg/m3)+ capsazepine (transient receptor potential vanilloid 1 antagonist). Experiments were conducted after 4 weeks of combined exposure and 1-week challenge with aerosolized ovalbumin. Airway hyper-responsiveness, pulmonary tissue damage, eosinophil infiltration, and increased levels of interleukin-4, interleukin-6, interleukin-1β, immunoglobulin E, substance P and calcitonin gene-related peptide in lung tissues were found in the ovalbumin+formaldehyde (3.0 mg/m3) group compared with the values seen in ovalbumin -only immunized mice. Except for interleukin-1β levels, other changes in the levels of biomarker could be inhibited by HC-030031 and capsazepine. Conclusions/Significance Formaldehyde might be a key risk factor for the rise in asthma cases. Transient receptor potential ion channels and neuropeptides have important roles in formaldehyde promoted-asthma. PMID:23671638

  17. TVOC and formaldehyde emission behaviors from flooring materials bonded with environmental-friendly MF/PVAc hybrid resins.

    PubMed

    Kim, Sumin; Kim, Jin-A; An, Jae-Yoon; Kim, Hyun-Joong; Kim, Shin Do; Park, Jin Chul

    2007-10-01

    Polyvinyl acetate (PVAc) was added as a replacement for melamine-formaldehyde (MF) resin in the formaldehyde-based resin system to reduce formaldehyde and volatile organic compound (VOC) emissions from the adhesives used between plywoods and fancy veneers. A variety of techniques, including 20-l chamber, field and laboratory emission cell (FLEC), VOC analyzer and standard formaldehyde emission test (desiccator method), were used to determine the formaldehyde and VOC emissions from engineered flooring bonded with five different MF resin and PVAc blends at MF/PVAc ratios of 100:0, 70:30, 50:50, 30:70 and 0:100. Although urea-formaldehyde (UF) resin had the highest formaldehyde emission, the emission as determined by desiccator method was reduced by exchanging with MF resin. Furthermore, the formaldehyde emission level was decreased with increasing addition of PVAc as the replacement for MF resin. UF resin in the case of beech was over 5.0 mg/l, which exceeded E2 (1.5-5.0 mg/l) grade. However, MF30:PVAc70 was

  18. 40 CFR 721.7046 - Formaldehyde, polymer with substituted phenols, glycidyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Formaldehyde, polymer with substituted... New Uses for Specific Chemical Substances § 721.7046 Formaldehyde, polymer with substituted phenols... substance identified as formaldehyde, polymer with substituted phenols, glycidyl ether (PMN P-93-955) is...

  19. 24 CFR 3280.309 - Health Notice on formaldehyde emissions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Health Notice on formaldehyde... Construction Requirements § 3280.309 Health Notice on formaldehyde emissions. (a) Each manufactured home shall have a Health Notice on formaldehyde emissions prominently displayed in a temporary manner in the...

  20. 24 CFR 3280.309 - Health Notice on formaldehyde emissions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Health Notice on formaldehyde... Construction Requirements § 3280.309 Health Notice on formaldehyde emissions. (a) Each manufactured home shall have a Health Notice on formaldehyde emissions prominently displayed in a temporary manner in the...

  1. 24 CFR 3280.309 - Health Notice on formaldehyde emissions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Health Notice on formaldehyde... Construction Requirements § 3280.309 Health Notice on formaldehyde emissions. (a) Each manufactured home shall have a Health Notice on formaldehyde emissions prominently displayed in a temporary manner in the...

  2. 40 CFR 721.7046 - Formaldehyde, polymer with substituted phenols, glycidyl ether.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Formaldehyde, polymer with substituted... New Uses for Specific Chemical Substances § 721.7046 Formaldehyde, polymer with substituted phenols... substance identified as formaldehyde, polymer with substituted phenols, glycidyl ether (PMN P-93-955) is...

  3. 40 CFR 721.7046 - Formaldehyde, polymer with substituted phenols, glycidyl ether.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Formaldehyde, polymer with substituted... New Uses for Specific Chemical Substances § 721.7046 Formaldehyde, polymer with substituted phenols... substance identified as formaldehyde, polymer with substituted phenols, glycidyl ether (PMN P-93-955) is...

  4. 40 CFR 721.10237 - Formaldehyde, polymers with acetone-phenol reaction products and phenol, sodium salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Formaldehyde, polymers with acetone... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10237 Formaldehyde, polymers with... subject to reporting. (1) The chemical substance identified as formaldehyde, polymers with acetone-phenol...

  5. 40 CFR 721.7046 - Formaldehyde, polymer with substituted phenols, glycidyl ether.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Formaldehyde, polymer with substituted... New Uses for Specific Chemical Substances § 721.7046 Formaldehyde, polymer with substituted phenols... substance identified as formaldehyde, polymer with substituted phenols, glycidyl ether (PMN P-93-955) is...

  6. 40 CFR 721.7046 - Formaldehyde, polymer with substituted phenols, glycidyl ether.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Formaldehyde, polymer with substituted... New Uses for Specific Chemical Substances § 721.7046 Formaldehyde, polymer with substituted phenols... substance identified as formaldehyde, polymer with substituted phenols, glycidyl ether (PMN P-93-955) is...

  7. 40 CFR 721.3805 - Formaldehyde, reaction products with 1,3-benzenedimethanamine and bisphenol A.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Formaldehyde, reaction products with 1... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3805 Formaldehyde, reaction products... to reporting. (1) The chemical substance identified as formaldehyde, reaction products with 1,3...

  8. 40 CFR 721.3805 - Formaldehyde, reaction products with 1,3-benzenedimethanamine and bisphenol A.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Formaldehyde, reaction products with 1... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3805 Formaldehyde, reaction products... to reporting. (1) The chemical substance identified as formaldehyde, reaction products with 1,3...

  9. 21 CFR 573.460 - Formaldehyde.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.460 Formaldehyde. The food additive formaldehyde may be safely used in the manufacture of... each batch. (b)(1) The food additive is formaldehyde (CAS No. 50-00-0; 37 percent aqueous solution). It...

  10. 21 CFR 573.460 - Formaldehyde.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.460 Formaldehyde. The food additive formaldehyde may be safely used in the manufacture of... each batch. (b)(1) The food additive is formaldehyde (CAS No. 50-00-0; 37 percent aqueous solution). It...

  11. 21 CFR 573.460 - Formaldehyde.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.460 Formaldehyde. The food additive formaldehyde may be safely used in the manufacture of... each batch. (b)(1) The food additive is formaldehyde (CAS No. 50-00-0; 37 percent aqueous solution). It...

  12. 21 CFR 573.460 - Formaldehyde.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.460 Formaldehyde. The food additive formaldehyde may be safely used in the manufacture of... each batch. (b)(1) The food additive is formaldehyde (CAS No. 50-00-0; 37 percent aqueous solution). It...

  13. 21 CFR 573.460 - Formaldehyde.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.460 Formaldehyde. The food additive formaldehyde may be safely used in the manufacture of... each batch. (b)(1) The food additive is formaldehyde (CAS No. 50-00-0; 37 percent aqueous solution). It...

  14. Evaluating a Space-Based Indicator of Surface Ozone-NOx-VOC Sensitivity Over Midlatitude Source Regions and Application to Decadal Trends

    EPA Science Inventory

    Determining effective strategies for mitigating surface ozone (O3) pollution requires knowledge of the relative ambient concentrations of its precursors, NOx, and VOCs. The space-based tropospheric column ratio of formaldehyde to NO2 (FNR) has been used as an indicator to identif...

  15. Impact of simulated climate and building features on the penetration of toxic gases from the ambient into the indoor environment

    EPA Science Inventory

    This research is a combination of experimental results and analysis of formaldehyde penetration across a residential building envelope with the objective of developing an understanding of the factors that govern indoor air concentrations of air toxics and to provide linkages betw...

  16. Characteristics of carbonyl compounds in public vehicles of Beijing city: Concentrations, sources, and personal exposures

    NASA Astrophysics Data System (ADS)

    Pang, Xiaobing; Mu, Yujing

    The characteristics of carbonyl compounds (carbonyls) including concentrations, major sources, and personal exposure were investigated for 29 vehicles including taxi, bus and subway in Beijing. It was found that the taxis (Xiali, TA) and buses (Huanghe, BA) fueled by gasoline with longer service years had the higher indoor carbonyl levels (178±42.7 and 188±31.6 μg m -3) while subways energized by electricity without exhaust and the jingwa buses (BB) driven in the suburb had the lower levels with total concentrations of 98.5±26.3 and 92.1±20.3 μg m -3, respectively. Outdoor carbonyls of taxi cars and buses were nearly at the same level with their total concentrations varying from 80 to 110 μg m -3. The level of outdoor subways carbonyls was equal with the ambient air levels. Exhaust leakage, indoor material emissions, photochemical formation, and infiltration of outdoor air were considered to be the major sources to in-vehicle carbonyls. Personal exposures and cancer risk to formaldehyde and acetaldehyde were calculated for professional bus and taxi drivers, respectively. Taxi drivers had the highest cancer risk with personal exposure to formaldehyde and acetaldehyde of 212 and 243 μg day -1, respectively. The public concern should pay considerable attention to professional drivers' health.

  17. Comparison of Fourier transform infrared spectrometry and 2,4-dinitrophenylhydrazine impinger techniques for the measurement of formaldehyde in vehicle exhaust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haack, L.P.; LaCourse, D.L.; Korniski, T.J.

    1986-01-01

    Experiments were conducted to validate a Fourier transform infrared (FT-IR) sampling and analysis system for measurement of trace gases in vehicle exhaust utilizing gasoline-, gasohol-, diesel-, and methanol-fueled vehicles as the emission source and formaldehyde (HCHO) as the test molecule. The 2,4-dinitrophenylhydrazine impinger method was chosen as the reference method. Diluted exhaust was drawn continuously though the FT-IR cell and measured every 3 s. The FT-IR signals were averaged over a complete driving-test cycle and compared to the concentration determined from concurrent impinger sampling. By impinger measurements it was shown that HCHO losses between the tailpipe and the FT-IR cellmore » were on the order of only 5%, independent of vehicle type or HCHO concentration (0.02-8.5 ppm). Comparisons between FT-IR and impinger measurements on 43 tests of methanol-fueled vehicles under transient conditions (diluted-exhaust HCHO 0.28-8.5 ppm) showed FT-IR/impinger = 1.055 +/- 0.095. 19 references, 5 figures, 5 tables.« less

  18. Relationships between socioeconomic and lifestyle factors and indoor air quality in French dwellings.

    PubMed

    Brown, Terry; Dassonville, Claire; Derbez, Mickael; Ramalho, Olivier; Kirchner, Severine; Crump, Derrick; Mandin, Corinne

    2015-07-01

    To date, few studies have analyzed the relationships between socioeconomic status (SES) and indoor air quality (IAQ). The aim of this study was to examine the relationships between socioeconomic and other factors and indoor air pollutant levels in French homes. The indoor air concentrations of thirty chemical, biological and physical parameters were measured over one week in a sample of 567 dwellings representative of the French housing stock between September 2003 and December 2005. Information on SES (household structure, educational attainment, income, and occupation), building characteristics, and occupants' habits and activities (smoking, cooking, cleaning, etc.) were collected through administered questionnaires. Separate stepwise linear regression models were fitted to log-transformed concentrations on SES and other factors. Logistic regression was performed on fungal contamination data. Households with lower income were more likely to have higher indoor concentrations of formaldehyde, but lower perchloroethylene indoor concentrations. Formaldehyde indoor concentrations were also associated with newly built buildings. Smoking was associated with increasing acetaldehyde and PM2.5 levels and the risk of a positive fungal contamination index. BTEX levels were also associated with occupant density and having an attached garage. The major predictors for fungal contamination were dampness and absolute humidity. These results, obtained from a large sample of dwellings, show for the first time in France the relationships between SES factors and indoor air pollutants, and believe they should be considered alongside occupant activities and building characteristics when study IAQ in homes. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  19. 40 CFR 721.10190 - Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Formaldehyde, polymer with aliphatic... Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2-pentanone (generic... identified generically as formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4...

  20. Analysis of cocondensation of melamine and urea through carbon 13 enriched formaldehyde with C-13 nuclear magnetic resonance spectroscopy

    Treesearch

    Bunichiro Tomita; Chung-Yun Hse

    1995-01-01

    The urea-formaldehyde (UF) resins, melamine-formaldehyde (MF) resins, and melamine-ureaformaldehyde (MUF) cocondensed resins were synthesized using the labeling method with 13C enriched formaldehyde under neutral conditions and their 13C-NMR (nuclear magnetic resonance) spectra were analyzed. The remarkable down-field...

  1. Ambient measurement of ammonia and formaldehyde: Open path vs. extractive approach.

    NASA Astrophysics Data System (ADS)

    Rajamäki, Timo

    2017-04-01

    Ammonia NH3 and formaldehyde CH2O are some of the most critical chemicals for air quality. Reliable online measurement of these gases is one of the key operations for air quality and safety monitoring, in indoor, outdoor and process applications alike. Ammonia and formaldehyde are reactive compounds and they are harmful, even in very low ppb level concentrations. This means challenges for measurement system in all of its critical aspects: sampling, calibration and sensitivity. We are applying techniques so far successfully used to measure reactive inorganic compounds like ammonia NH3 and hydrogen fluoride HF to tackle these challenges. Now a novel setup based on direct laser absorption with cavity enhancement employing fundamental vibration level excitations of ammonia and formaldehyde molecules is constructed in connection with new mechanics and algorithms optimized for gas exchange and sampling in the case of these reactive molecules easily sticking to surfaces. An aberration corrected multipass sample cell in vacuum pressure is used in parallel with an open path multipass setup. The CH2O and NH3 calibration gases necessary for system calibration are dynamically generated using traceable standards and components. We compare these two approaches with special emphasis on the system's response time, robustness, sensitivity, usability in field conditions, maintenance need and long term stability. A further coal is to enable the use of the same setups also for simultaneous measurement of other reactive compounds often encountered in air quality monitoring. This would make possible more comprehensive and also economic monitoring of these compounds with a single device.

  2. Advanced Catalysts for the Ambient Temperature Oxidation of Carbon Monoxide and Formaldehyde

    NASA Technical Reports Server (NTRS)

    Nalette, Tim; Eldridge, Christopher; Yu, Ping; Alpetkin, Gokhan; Graf, John

    2010-01-01

    The primary applications for ambient temperature carbon monoxide (CO) oxidation catalysts include emergency breathing masks and confined volume life support systems, such as those employed on the Shuttle. While Hopcalite is typically used in emergency breathing masks for terrestrial applications, in the 1970s, NASA selected a 2% platinum (Pt) on carbon for use on the Shuttle since it is more active and also more tolerant to water vapor. In the last 10-15 years there have been significant advances in ambient temperature CO oxidation catalysts. Langley Research Center developed a monolithic catalyst for ambient temperature CO oxidation operating under stoichiometric conditions for closed loop carbon dioxide (CO2) laser applications which is also advertised as having the potential to oxidize formaldehyde (HCHO) at ambient temperatures. In the last decade it has been discovered that appropriate sized nano-particles of gold are highly active for CO oxidation, even at sub-ambient temperatures, and as a result there has been a wealth of data reported in the literature relating to ambient/low temperature CO oxidation. In the shorter term missions where CO concentrations are typically controlled via ambient temperature oxidation catalysts, formaldehyde is also a contaminant of concern, and requires specially treated carbons such as Calgon Formasorb as untreated activated carbon has effectively no HCHO capacity. This paper examines the activity of some of the newer ambient temperature CO and formaldehyde (HCHO) oxidation catalysts, and measures the performance of the catalysts relative to the NASA baseline Ambient Temperature Catalytic Oxidizer (ATCO) catalyst at conditions of interest for closed loop trace contaminant control systems.

  3. A nanoporous 3D zinc(II) metal–organic framework for selective absorption of benzaldehyde and formaldehyde

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moradpour, Tahereh; Abbasi, Alireza, E-mail: aabbassi@khayam.ut.ac.ir; Van Hecke, Kristof

    A new 3D nanoporous metal–organic framework (MOF), [[Zn{sub 4}O(C{sub 24}H{sub 15}N{sub 6}O{sub 6}){sub 2}(H{sub 2}O){sub 2}]·6H{sub 2}O·DMF]{sub n} (1) based on 4,4′,4″-s-triazine-1,3,5-triyltri-p-aminobenzoate (TATAB) ligand was solvothermally synthesized and characterized by single–crystal X-ray diffraction, Powder X-ray diffraction (PXRD), infrared spectroscopy (IR) and Brunauer–Emmett–Teller (BET) analyses. X-ray single crystal diffraction analysis reveals that 1 exhibits a 3D network with new kvh1 topology. Semi-empirical (AM1) calculations were carried out to obtain stable conformers for TATAB ligand. In addition, the absorption of two typical aldehydes (benzaldehyde and formaldehyde) in the presence of 1 was investigated and the effect of the aldehyde concentration, exposure timemore » and temperature was studied. It was found that compound 1 has a potential for the absorption of aldehydes under mild conditions. - Graphical abstract: Absorption of two typical aldehydes (formaldehyde and benzaldehyde) by solvothermally synthesized of a 3D nano-porous MOF based on TATAB tricarboxylate ligand and Zn (NO{sub 3}){sub 2}·6H{sub 2}O. - Highlights: • We present a 3D Zn(II)-MOF with TATAB linker by solvothermal method. • The framework possesses a new kvh1 topology. • The framework displays formaldehyde and benzaldehyde absorption property. • Conformational analysis was performed to determine the stable linker geometry.« less

  4. Evaluation of Ultra-Violet Photocatalytic Oxidation (UVPCO) forIndoor Air Applications: Conversion of Volatile Organic Compounds at LowPart-per-Billion Concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

    2005-09-30

    Efficient removal of indoor generated airborne particles and volatile organic compounds (VOCs) in office buildings and other large buildings may allow for a reduction in outdoor air supply rates with concomitant energy savings while still maintaining acceptable indoor air quality in these buildings. Ultra-Violet Photocatalytic Oxidation (UVPCO) air cleaners have the potential to achieve the necessary reductions in indoor VOC concentrations at relatively low cost. In this study, laboratory experiments were conducted with a scaled, prototype UVPCO device designed for use in a duct system. The experimental UVPCO contained two 30 by 30-cm honeycomb monoliths coated with titanium dioxide andmore » 3% by weight tungsten oxide. The monoliths were irradiated with 12 UVC lamps arranged in four banks. The UVPCO was challenged with four mixtures of VOCs typical of mixtures encountered in indoor air. A synthetic office mixture contained 27 VOCs commonly measured in office buildings. A cleaning product mixture contained three cleaning products with high market shares. A building product mixture was created by combining sources including painted wallboard, composite wood products, carpet systems, and vinyl flooring. A fourth mixture contained formaldehyde and acetaldehyde. Steady-state concentrations were produced in a classroom laboratory or a 20-m{sup 3} environmental chamber. Air was drawn through the UVPCO, and single pass conversion efficiencies were measured from replicate air samples collected upstream and downstream of the reactor section. Concentrations of the mixtures were manipulated, with concentrations of individual VOCs mostly maintained below 10 ppb. Device flow rates were varied between 165 and 580 m{sup 3}/h. Production of formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid as reaction products was investigated. Conversion efficiency data were generated for 48 individual VOCs or groups of closely related compounds. Alcohols and glycol ethers were the most reactive chemical classes with conversion efficiencies often near or above 70% at the low flow rate and near 40% at the high flow rate. Ketones and terpene hydrocarbons were somewhat less reactive. The relative VOC conversion rates are generally favorable for treatment of indoor air since many contemporary products used in buildings employ oxygenated solvents. A commercial UVPCO device likely would be installed in the supply air stream of a building and operated to treat both outdoor and recirculated air. Assuming a recirculation rate comparable to three times the normal outdoor air supply rate, simple mass-balance modeling suggests that a device with similar characteristics to the study unit has sufficient conversion efficiencies for most VOCs to compensate for a 50% reduction in outdoor air supply without substantially impacting indoor VOC concentrations. Formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid were produced in these experiments as reaction byproducts. No other significant byproducts were observed. A coupled steady-state mass balance model is presented and applied to VOC data from a study of a single office building. For the operating assumptions described above, the model estimated a three-fold increase in indoor formaldehyde and acetaldehyde concentrations. The outcome of this limited assessment suggests that evaluation of the potential effects of the operation of a UVPCO device on indoor concentrations of these contaminants is warranted. Other suggested studies include determining VOC conversion efficiencies in actual buildings and evaluating changes in VOC conversion efficiency as monoliths age with long-term operation.« less

  5. Novel analytical method to measure formaldehyde release from heated hair straightening cosmetic products: Impact on risk assessment.

    PubMed

    Galli, Corrado Lodovico; Bettin, Federico; Metra, Pierre; Fidente, Paola; De Dominicis, Emiliano; Marinovich, Marina

    2015-08-01

    Hair straightening cosmetic products may contain formaldehyde (FA). In Europe, FA is permitted for use in personal care products at concentrations ⩽ 0.2g/100g. According to the Cosmetic Ingredient Review (CIR) Expert Panel products are safe when formalin (a 37% saturated solution of FA in water) concentration does not exceed 0.2g/100g (0.074 g/100g calculated as FA). The official method of reference does not discriminate between "free" FA and FA released into the air after heating FA donors. The method presented here captures and collects the FA released into the air from heated cosmetic products by derivatization with 2,4-dinitrophenylhydrazine and final analysis by UPLC/DAD instrument. Reliable data in terms of linearity, recovery, repeatability and sensitivity are obtained. On a total of 72 market cosmetic products analyzed, 42% showed FA concentrations very close to or above the threshold value (0.074 g/100g calculated as FA) suggested by the Cosmetic Ingredient Review committee, whereas 11 products, negative using the official method of reference, were close to or above the threshold value (0.074 g/100g calculated as FA). This may pose a health problem for occasional users and professional hair stylists. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Seasonal, diurnal and nocturnal behaviors of lower carbonyl compounds in the urban environment of Beirut, Lebanon

    NASA Astrophysics Data System (ADS)

    Moussa, Samar G.; El-Fadel, Mutassem; Saliba, Najat A.

    Lower carbonyl concentrations were measured for the first time in two different sampling sites (American University of Beirut (AUB) and Abdel-Aziz (AA)) in Beirut, Lebanon. Formaldehyde (C1) and acetaldehyde (C2) were the most abundant carbonyls with respective maximum concentrations of 12.2 and 5.2 ppbv at AUB and 8.6 and 5.1 ppbv at AA. Diurnal variations of carbonyls exhibited similar behaviors, suggesting related formation and decomposition routes. Morning levels of carbonyls were either equal or higher than the ones in the afternoon at the coastal site (AUB) due to atmospheric dilution. However, morning levels were mostly lower than noon levels at a three-busy street intersection (AA) due to the enhancement of photochemical activities. Vehicle emissions constituted the dominant source of carbonyls measured as confirmed by the good correlation between C1, C2 and propanal (C3) and the C1/CO and C2/CO ratios in the mornings. Seasonal variation showed the predominance of summertime photolysis and photo-oxidation reactions of aldehydes. Based on the measured formaldehyde levels, ozone and nitrous acid concentrations, morning and afternoon OH radical fluxes are computed and consequently their contribution to photochemical smog processes are assessed.

  7. 40 CFR 721.3807 - Formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Formaldehyde, polymer with phenol and... Significant New Uses for Specific Chemical Substances § 721.3807 Formaldehyde, polymer with phenol and 1,2,3... chemical substance identified as formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated (PMN...

  8. 40 CFR 721.3807 - Formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Formaldehyde, polymer with phenol and... Significant New Uses for Specific Chemical Substances § 721.3807 Formaldehyde, polymer with phenol and 1,2,3... chemical substance identified as formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated (PMN...

  9. Hardness evaluation of cured urea-formaldehyde resins with different formaldehyde/urea mole ratios using nanoindentation method

    Treesearch

    Byung-Dae Park; Charles R. Frihart; Yan Yu; Adya P. Singh

    2013-01-01

    To understand the influence of formaldehyde/urea (F/U) mole ratio on the properties of urea–formaldehyde (UF) resins, this study investigated hardness of cured UF resins with different F/U mole ratios using a nanoindentation method. The traditional Brinell hardness (HB) method was also used...

  10. 40 CFR 721.3807 - Formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Formaldehyde, polymer with phenol and... Significant New Uses for Specific Chemical Substances § 721.3807 Formaldehyde, polymer with phenol and 1,2,3... chemical substance identified as formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated (PMN...

  11. 40 CFR 721.3807 - Formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Formaldehyde, polymer with phenol and... Significant New Uses for Specific Chemical Substances § 721.3807 Formaldehyde, polymer with phenol and 1,2,3... chemical substance identified as formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated (PMN...

  12. 40 CFR 721.3807 - Formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Formaldehyde, polymer with phenol and... Significant New Uses for Specific Chemical Substances § 721.3807 Formaldehyde, polymer with phenol and 1,2,3... chemical substance identified as formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated (PMN...

  13. 40 CFR 721.10205 - Formaldehyde, polymer with 1,3-benzenediol and 1,1′-methylenebis[isocyanatobenzene].

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Formaldehyde, polymer with 1,3... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10205 Formaldehyde, polymer with 1,3... to reporting. (1) The chemical substance identified as formaldehyde, polymer with 1,3-benzenediol and...

  14. Analyses of cocondensation of melamine and urea through formaldehyde with carbon 13 nuclear magnetic resonance spectroscopy

    Treesearch

    Tomita Bunchiro; Chung-Yun Hse

    1995-01-01

    The 13C-NMR (carbon 13 nuclear magnetic resonance) spectra of urea-formaldehyde (UF) resins, melamine-formaldehyde (MF) resins, and melamine-urea-formaldehyde (MUF) cocondensed resins synthesized under various conditions were taken with a frequency of 75 MHz. The main purpose was to investigate whether or not the occurrences of cocondensation...

  15. Analysis of cocondensation of melamine and urea through formaldehyde with carbon 13 nuclear magnetic resonance spectroscopy

    Treesearch

    Bunichiro Tomita; Chung-Yun Hse

    1995-01-01

    The 13C-NMR (carbon 13 nuclear magnetic resonance) spectra of urea-formaldehyde (UF) resins, melamine-formaldehyde (MF) resins, and melamine-urea-formaldehyde (MUF) cocondensed resins synthesized under various conditions were taken with a frequency of 75 MHz. The main purpose was to investigate whether or not the occurrences of cocondensation...

  16. Performance and characterization of a new tannin-based coagulant

    NASA Astrophysics Data System (ADS)

    Beltrán-Heredia, J.; Sánchez-Martín, J.; Gómez-Muñoz, C.

    2012-09-01

    Diethanolamine and formaldehyde were employed to cationize tannins from black wattle. This novel coagulant called CDF was functionally characterized in removing sodium dodecylbenzene sulfonate (anionic surfactant) and Palatine Fast Black WAN (azoic dye). Refined tannin-derived commercial coagulants exhibited similar efficiency, while CDF presented higher coagulant ability than alum, a usual coagulant agent. Low doses of CDF (ca. 100 mg L-1) were able to remove more than 70 % of surfactant and more than 85 % of dye (initial pollutant concentration of ca. 100 mg L-1) and it presented no temperature affection and worked at a relatively wide pH range. Surfactant and dye removal responded to the classical coagulant-and-adsorption models, such as Frumkin-Fowler-Guggenheim or Gu and Zhu in the case of surfactant, and Langmuir and Freundlich in the case of dye.

  17. Indoor air quality in green-renovated vs. non-green low-income homes of children living in a temperate region of US (Ohio).

    PubMed

    Coombs, Kanistha C; Chew, Ginger L; Schaffer, Christopher; Ryan, Patrick H; Brokamp, Cole; Grinshpun, Sergey A; Adamkiewicz, Gary; Chillrud, Steve; Hedman, Curtis; Colton, Meryl; Ross, Jamie; Reponen, Tiina

    2016-06-01

    Green eco-friendly housing includes approaches to reduce indoor air pollutant sources and to increase energy efficiency. Although sealing/tightening buildings can save energy and reduce the penetration of outdoor pollutants, an adverse outcome can be increased buildup of pollutants with indoor sources. The objective of this study was to determine the differences in the indoor air quality (IAQ) between green and non-green homes in low-income housing complexes. In one housing complex, apartments were renovated using green principles (n=28). Home visits were conducted immediately after the renovation, and subsequently at 6 months and at 12 months following the renovation. Of these homes, eight homes had pre-renovation home visits; this allowed pre- and post-renovation comparisons within the same homes. Parallel visits were conducted in non-green (control) apartments (n=14) in a nearby low-income housing complex. The IAQ assessments included PM2.5, black carbon, ultrafine particles, sulfur, total volatile organic compounds (VOCs), formaldehyde, and air exchange rate. Data were analyzed using linear mixed-effects models. None of the indoor pollutant concentrations were significantly different between green and non-green homes. However, we found differences when comparing the concentrations before and after renovation. Measured immediately after renovation, indoor black carbon concentrations were significantly lower averaging 682 ng/m(3) in post-renovation vs. 2364 ng/m(3) in pre-renovation home visits (p=0.01). In contrast, formaldehyde concentrations were significantly higher in post-renovated (0.03 ppm) than in pre-renovated homes (0.01 ppm) (p=0.004). Questionnaire data showed that opening of windows occurred less frequently in homes immediately post-renovation compared to pre-renovation; this factor likely affected the levels of indoor black carbon (from outdoor sources) and formaldehyde (from indoor sources) more than the renovation status itself. To reduce IAQ problems and potentially improve health, careful selection of indoor building materials and ensuring sufficient ventilation are important for green building designs. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Sources of Nitrous Acid, Formaldehyde, and Hydroxyl Radical in Doha, Qatar.

    NASA Astrophysics Data System (ADS)

    Ackermann, Luis; Rappenglueck, Bernhard; Ayoub, Mohammed

    2017-04-01

    One of the most important species in the atmosphere is the hydroxyl radical (OH), due to its role controlling the oxidizing capacity of an air shed. The main formation processes of OH include the photolysis of ozone (O3), nitrous acid (HONO), formaldehyde (HCHO), and the ozonolysis of alkenes. Still, the sources of HONO in the atmosphere are not sufficiently well known, with indications that heterogeneous reactions on surfaces may contribute to the observed concentrations. The city of Doha in Qatar presents a unique opportunity to explore photochemical processes including the effects of high particulates concentrations under extreme weather conditions (high temperatures and humidity) and complex emission sources. Two Intensive Observational Periods (IOP) were conducted in Doha in 2016, one during the winter and the other during the summer. These consisted of meteorological measurements, ozone (O3), nitrous acid (HONO), formaldehyde (HCHO), nitrogen monoxide (NO), direct nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), as well as particulate matter with an aerodynamic diameter ≤ 10 μm and 2.5 μm (PM10 and PM2.5). In addition photolysis rates of HONO, HCHO, NO2, and singlet oxygen (O1D) were measured. The photostationary state concentration of OH was calculated from its known sources and sinks. The maximum hourly average concentration of OH was determined to be around 1.1 ppt for summer and 0.5 ppt for winter IOP. For the 24-hr average, the photolysis of HONO was the main precursor for OH production with 54.3 % and 72.7 % (summer and winter IOP), while the photolysis of O3 was responsible for 23.8 % and 19.7 % and the photolysis of HCHO accounted for 21.9 % and 7.6 % (summer and winter IOP, respectively). In this study we present source apportionment analysis for the radical precursors HONO and HCHO during the winter and summer IOP and its diurnal variation and elucidate their impact on OH production. We also infer NOx vs VOC limitation of O3 production from NO2 and HCHO observations.

  19. Formaldehyde exposure in gross anatomy laboratory of Suranaree University of Technology: a comparison of area and personal sampling.

    PubMed

    Saowakon, Naruwan; Ngernsoungnern, Piyada; Watcharavitoon, Pornpun; Ngernsoungnern, Apichart; Kosanlavit, Rachain

    2015-12-01

    Cadavers are usually preserved by embalming solution which is composed of formaldehyde (FA), phenol, and glycerol. Therefore, medical students and instructors have a higher risk of exposure to FA inhalation from cadavers during dissection. Therefore, the objective of this study was to evaluate the FA exposure in indoor air and breathing zone of medical students and instructors during dissection classes in order to investigate the relationship between them. The indoor air and personal air samples in breathing zone were collected three times during anatomy dissection classes (in January, August, and October of 2014) with sorbent tubes, which were analyzed by high-performance liquid chromatography (HPLC). The air cleaner machines were determined by weight measurement. Pulmonary function tests and irritation effects were also investigated. The mean of FA concentrations ranged from 0.117 to 0.415 ppm in the indoor air and from 0.126 to 1.176 ppm in the breathing zone of students and instructors. All the personal exposure data obtained exceeded the threshold limit of NIOSH and WHO agencies. The air cleaner machines were not significant difference. The pulmonary function of instructors showed a decrease during attention of classes and statistically significant decreasing in the instructors more than those of the students. Clinical symptoms that were observed in nose and eyes were irritations with general fatigue. We suggested that the modified exhaust ventilation and a locally ventilated dissection work table were considered for reducing FA levels in the gross anatomy dissection room.

  20. Repair pathways independent of the Fanconi anemia nuclear core complex play a predominant role in mitigating formaldehyde-induced DNA damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noda, Taichi; Department of Dermatology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521; Takahashi, Akihisa

    2011-01-07

    The role of the Fanconi anemia (FA) repair pathway for DNA damage induced by formaldehyde was examined in the work described here. The following cell types were used: mouse embryonic fibroblast cell lines FANCA{sup -/-}, FANCC{sup -/-}, FANCA{sup -/-}C{sup -/-}, FANCD2{sup -/-} and their parental cells, the Chinese hamster cell lines FANCD1 mutant (mt), FANCGmt, their revertant cells, and the corresponding wild-type (wt) cells. Cell survival rates were determined with colony formation assays after formaldehyde treatment. DNA double strand breaks (DSBs) were detected with an immunocytochemical {gamma}H2AX-staining assay. Although the sensitivity of FANCA{sup -/-}, FANCC{sup -/-} and FANCA{sup -/-}C{sup -/-}more » cells to formaldehyde was comparable to that of proficient cells, FANCD1mt, FANCGmt and FANCD2{sup -/-} cells were more sensitive to formaldehyde than the corresponding proficient cells. It was found that homologous recombination (HR) repair was induced by formaldehyde. In addition, {gamma}H2AX foci in FANCD1mt cells persisted for longer times than in FANCD1wt cells. These findings suggest that formaldehyde-induced DSBs are repaired by HR through the FA repair pathway which is independent of the FA nuclear core complex. -- Research highlights: {yields} We examined to clarify the repair pathways of formaldehyde-induced DNA damage. Formaldehyde induces DNA double strand breaks (DSBs). {yields} DSBs are repaired through the Fanconi anemia (FA) repair pathway. {yields} This pathway is independent of the FA nuclear core complex. {yields} We also found that homologous recombination repair was induced by formaldehyde.« less

Top