2015-08-19
laboratory analysis using EPA TO-15, and collection of gas samples in sorbent tubes for later analysis of aldehydes using NIOSH Method 2016. Total VOCs...measurement can be a general qualitative indicator of IAQ problems; formaldehyde and other aldehydes are common organic gases emitted from OSB; and...table in the middle of the hut. 5.1.2.3 Formaldehyde and other aldehydes Aldehydes were measured using both Dräger-tubes and by NIOSH Method 2016. The
NASA Astrophysics Data System (ADS)
Li, Hu; Altaher, Mohamed A.; Wilson, Chris W.; Blakey, Simon; Chung, Winson; Rye, Lucas
2014-02-01
In this research three renewable aviation fuel blends including two HEFA (Hydrotreated Ester and Fatty Acid) blends and one FAE (Fatty Acids Ethyl Ester) blend with conventional Jet A-1 along with a GTL (Gas To Liquid) fuel have been tested for their aldehydes emissions on a small gas turbine engine. Three strong ozone formation precursors: formaldehyde, acetaldehyde and acrolein were measured in the exhaust at different operational modes and compared to neat Jet A-1. The aim is to assess the impact of renewable and alternative aviation fuels on aldehydes emissions from aircraft gas turbine engines so as to provide informed knowledge for the future deployment of new fuels in aviation. The results show that formaldehyde was a major aldehyde species emitted with a fraction of around 60% of total measured aldehydes emissions for all fuels. Acrolein was the second major emitted aldehyde species with a fraction of ˜30%. Acetaldehyde emissions were very low for all the fuels and below the detention limit of the instrument. The formaldehyde emissions at cold idle were up to two to threefold higher than that at full power. The fractions of formaldehyde were 6-10% and 20% of total hydrocarbon emissions in ppm at idle and full power respectively and doubled on a g kg-1-fuel basis.
Cheah, Nuan P; Pennings, Jeroen L A; Vermeulen, Jolanda P; van Schooten, Frederik J; Opperhuizen, Antoon
2013-04-01
Tobacco smoke consists of thousands of harmful components. A major class of chemicals found in tobacco smoke is formed by aldehydes, in particular formaldehyde, acetaldehyde and acrolein. The present study investigates the gene expression changes in human lung alveolar epithelial cells upon exposure to formaldehyde, acrolein and acetaldehyde at sub-cytotoxic levels. We exposed A549 cells in vitro to aldehydes and non-aldehyde chemicals (nicotine, hydroquinone and 2,5-dimethylfuran) present in tobacco smoke and used microarrays to obtain a global view of the transcriptomic responses. We compared responses of the individual aldehydes with that of the non-aldehydes. We also studied the response of the aldehydes when present in a mixture at relative concentrations as present in cigarette smoke. Formaldehyde gave the strongest response; a total of 66 genes were more than 1.5-fold differentially expressed mostly involved in apoptosis and DNA damage related processes, followed by acetaldehyde (57 genes), hydroquinone (55 genes) and nicotine (8 genes). For acrolein and the mixture only one gene was upregulated involved in oxidative stress. No gene expression effect was found for exposure to 2,5-dimethylfuran. Overall, aldehyde responses are primarily indicative for genotoxicity and oxidative stress. These two toxicity mechanisms are linked to respiratory diseases such as cancer and COPD, respectively. The present findings could be important in providing further understanding of the role of aldehydes emitted from cigarette smoke in the onset of pulmonary diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Jeonghoon; Kim, Seojin; Lee, Kiyoung; Yoon, Dongwon; Lee, Jiryang; Ju, DaeYoung
2013-06-01
Aldehydes are of particularly interest due to their potential adverse impact on human health. Formaldehyde is one of the most abundant indoor pollutants. To improve indoor air quality, identifying and removing the major emission sources of formaldehyde would be desirable. The purposes of this study were to determine aldehyde concentrations in libraries and reading rooms and to identify emission sources of formaldehyde in private reading rooms. Indoor aldehyde concentrations were quantified at 66 facilities, including public libraries, children's libraries, public reading rooms, and private reading rooms, in the Seoul metropolitan area. Emission fluxes of formaldehyde from the surfaces of desks, chairs, floors, walls, and ceilings in 19 private reading rooms were measured using a passive emission colorimetric sensor. Indoor aldehyde (formaldehyde, acetaldehyde, propioaldehyde, benzaldehyde, and hexaldehyde) levels were significantly higher than outdoor levels. Indoor formaldehyde geometric mean concentrations in private reading rooms (119.3 μg m-3) were significantly higher than in public libraries (29.2 μg m-3), children's libraries (29.3 μg m-3), and public reading rooms (40.8 μg m-3). Indoor formaldehyde levels were associated with relative humidity. In private reading rooms, the emission rates from desks (255.5 ± 214.8 μg h-1) and walls (231.7 ± 192.3 μg h-1) were significantly higher than that from chairs (79.6 ± 88.5 μg h-1). Desks (31%) and walls (29%) were the major emission sources of formaldehyde in 14 facilities in which measurements exceeded the indoor standard of 100 μg m-3. The age of interior materials was a significant factor for indoor formaldehyde emission flux. Controlling the emission rates of desks and walls is recommended to improve formaldehyde concentrations in private reading rooms.
Selected carbonyl compounds in the air of Silesia region
NASA Astrophysics Data System (ADS)
Czaplicka, Marianna; Chrobok, Michał
2018-01-01
This study was carried out to characterize three aldehydes of health concern (formaldehyde, acetaldehyde, and acrolein) at a three sites in Silesian region (Poland) in January and June 2015. Aldehydes in polluted atmospheres comes from both primary and secondary sources, which limits the control strategies for these reactive compounds. Average aldehyde concentration in summer period lies in range from 3.13 μg/m3 to 10.43 μg/m3, in winter period in range from 29.0 μg/m3 to 32.2 μg/m3. Acetaldehyde was dominant compound in winter period, in summer formaldehyde concentration was highest of all determined aldehydes.
Differentiating the Toxicity of Carcinogenic Aldehydes from Noncarcinogenic Aldehydes in the Rat Nose Using cDNA Arrays.
Formaldehyde is a widely used aldehyde in many industrial settings, the tanning process, household products, and is a contaminant in cigarette smoke. H...
NASA Astrophysics Data System (ADS)
Zarante, Paola Helena Barros; Sodré, José Ricardo
2018-07-01
This work presents a numerical simulation model for aldehyde formation and exhaust emissions from ethanol-fueled spark ignition engines. The aldehyde simulation model was developed using FORTRAN software, with the input data obtained from the dedicated engine cycle simulation software AVL BOOST. The model calculates formaldehyde and acetaldehyde concentrations from post-flame partial oxidation of methane, ethane and unburned ethanol. The calculated values were compared with experimental data obtained from a mid-size sedan powered by a 1.4-l spark ignition engine, tested on a chassis dynamometer. Exhaust aldehyde concentrations were determined using a Fourier Transform Infrared (FTIR) Spectroscopy analyzer. In general, the results demonstrate that the concentrations of aldehydes and the source elements increased with engine speed and exhaust gas temperature. The measured acetaldehyde concentrations showed values from 3 to 6 times higher than formaldehyde in the range studied. The model could predict reasonably well the qualitative experimental trends, with the quantitative results showing a maximum discrepancy of 39% for acetaldehyde concentration and 21 ppm for exhaust formaldehyde.
NASA Astrophysics Data System (ADS)
Zarante, Paola Helena Barros; Sodré, José Ricardo
2018-02-01
This work presents a numerical simulation model for aldehyde formation and exhaust emissions from ethanol-fueled spark ignition engines. The aldehyde simulation model was developed using FORTRAN software, with the input data obtained from the dedicated engine cycle simulation software AVL BOOST. The model calculates formaldehyde and acetaldehyde concentrations from post-flame partial oxidation of methane, ethane and unburned ethanol. The calculated values were compared with experimental data obtained from a mid-size sedan powered by a 1.4-l spark ignition engine, tested on a chassis dynamometer. Exhaust aldehyde concentrations were determined using a Fourier Transform Infrared (FTIR) Spectroscopy analyzer. In general, the results demonstrate that the concentrations of aldehydes and the source elements increased with engine speed and exhaust gas temperature. The measured acetaldehyde concentrations showed values from 3 to 6 times higher than formaldehyde in the range studied. The model could predict reasonably well the qualitative experimental trends, with the quantitative results showing a maximum discrepancy of 39% for acetaldehyde concentration and 21 ppm for exhaust formaldehyde.
Fire Safety Aspects of Polymeric Materials. Volume 10. Mines and Bunkers
1980-01-01
Formaldehyde and Melamine / Formaldehyde Resins The basic chemistry, properties, and applications of urea / formaldehyde and melamine / formaldehyde resins ... Formaldehyde and Melamine Formaldehyde Rosins 71 4.2.3.3 Unsaturated Polyester Resins 71 4.2.3.4 Epoxy Resins 72 4.2.3.5 Furan Resins 72 4.2.3.6 Amine...aldehyde — most frequently formaldehyde . Urea is often used as a modifying agent. The
Radiation Induced Incorporation of CO in Pure and Aqueous Methanol
NASA Astrophysics Data System (ADS)
Jung, Hak-Jin; Getoff, Nikola; Lorbeer, Eberhard
1994-05-01
Pure and aqueous methanol were used for radiation induced incorporation of CO at elevated pressure (up to 15 bar). The initial yields (Gi) of the main products in pure methanol under 15 bar CO and 1 bar N2O were found to be: Gi(formaldehyde) = 3.80 and Gi(glycolic aldehyde) = 2.0. For aqueous (10-2 mol · dm-3) methanol under 15 bar CO (dose: 0.557 kGy, pH = 2): the yields were G(formaldehyde) = 5.44, G(glycolic aldehyde) = 4.0 and G(oxalic acid) = 7.7. At pH = 7 the yields were essentially lower, namely: G(formaldehyde) = 3.2, G(glycolic aldehyde) = 2.0, G(formate) = 3.8 and G(oxalate) = 5.0. Probable reaction-mechanisms for the product formation are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrell, R.M.
1994-12-31
Aldehydes and ketones are receiving increased attention both as hazardous substances and as promoters in the photochemical formation of ozone in the atmosphere. They enter the atmosphere in the exhaust of motor vehicles and other equipment using hydrocarbon and alcohol fuels. Formaldehyde, the most prevalent aldehyde, is widely used as a preservative, a textile-treatment agent, and an intermediate in the manufacture of urea-formaldehyde and phenol-formaldehyde resins. The formaldehyde concentration ranges for several types of environments are presented. Waters Sep-Pak{reg_sign} DNPH-Silica cartridges are convenient, reproducible sampling devices for quantifying aldehydes and ketones in gases, including air. These cartridges trap the compoundsmore » by reacting them with the DNPH, 2,4-Dinitrophenylhydrazine, on the cartridge to form stable hydrazone derivatives. Derivatives are later eluted and analyzed by HPLC. Cartridges spiked in the laboratory are used for quality assurance and instrument performance verification.« less
NASA Astrophysics Data System (ADS)
Reda, Ahmed A.; Schnelle-Kreis, J.; Orasche, J.; Abbaszade, G.; Lintelmann, J.; Arteaga-Salas, J. M.; Stengel, B.; Rabe, R.; Harndorf, H.; Sippula, O.; Streibel, T.; Zimmermann, R.
2014-09-01
Gas phase emission samples of carbonyl compounds (CCs) were collected from a research ship diesel engine at Rostock University, Germany. The ship engine was operated using two different types of fuels, heavy fuel oil (HFO) and diesel fuel (DF). Sampling of CCs was performed from diluted exhaust using cartridges and impingers. Both sampling methods involved the derivatization of CCs with 2,4-Dinitrophenylhydrazine (DNPH). The CCs-hydrazone derivatives were analyzed by two analytical techniques: High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD) and Gas Chromatography-Selective Ion Monitoring-Mass Spectrometry (GC-SIM-MS). Analysis of DNPH cartridges by GC-SIM-MS method has resulted in the identification of 19 CCs in both fuel operations. These CCs include ten aliphatic aldehydes (formaldehyde, acetaldehyde, propanal, isobutanal, butanal, isopentanal, pentanal, hexanal, octanal, nonanal), three unsaturated aldehydes (acrolein, methacrolein, crotonaldehyde), three aromatic aldehyde (benzaldehyde, p-tolualdehyde, m,o-molualdehyde), two ketones (acetone, butanone) and one heterocyclic aldehyde (furfural). In general, all CCs under investigation were detected with higher emission factors in HFO than DF. The total carbonyl emission factor was determined and found to be 6050 and 2300 μg MJ-1 for the operation with HFO and DF respectively. Formaldehyde and acetaldehyde were found to be the dominant carbonyls in the gas phase of ship engine emission. Formaldehyde emissions factor varied from 3500 μg MJ-1 in HFO operation to 1540 μg MJ-1 in DF operation, which is 4-30 times higher than those of other carbonyls. Emission profile contribution of CCs showed also a different pattern between HFO and DF operation. The contribution of formaldehyde was found to be 58% of the emission profile of HFO and about 67% of the emission profile of DF. Acetaldehyde showed opposite behavior with higher contribution of 16% in HFO compared to 11% for DF. Heavier carbonyls (more than two carbon atoms) showed also more contribution in the emission profile of the HFO fuel (26%) than in DF (22%).
Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust
NASA Astrophysics Data System (ADS)
Peng, Chiung-Yu; Yang, Hsi-Hsien; Lan, Cheng-Hang; Chien, Shu-Mei
Interest in use of biodiesel fuels derived from vegetable oils or animal fats as alternative fuels for petroleum-based diesels has increased due to biodiesels having similar properties of those of diesels, and characteristics of renewability, biodegradability and potential beneficial effects on exhaust emissions. Generally, exhaust emissions of regulated pollutants are widely studied and the results favor biodiesels on CO, HC and particulate emissions; however, limited and inconsistent data are showed for unregulated pollutants, such as carbonyl compounds, which are also important indicators for evaluating available vehicle fuels. For better understanding biodiesel, this study examines the effects of the biodiesel blend fuel on aldehyde chemical emissions from diesel engine exhausts in comparison with those from the diesel fuel. Test engines (Mitsubishi 4M40-2AT1) with four cylinders, a total displacement of 2.84 L, maximum horsepower of 80.9 kW at 3700 rpm, and maximum torque of 217.6 N m at 2000 rpm, were mounted and operated on a Schenck DyNAS 335 dynamometer. Exhaust emission tests were performed several times for each fuel under the US transient cycle protocol from mileages of 0-80,000 km with an interval of 20,000 km, and two additional measurements were carried out at 40,000 and 80,000 km after maintenance, respectively. Aldehyde samples were collected from diluted exhaust by using a constant volume sampling system. Samples were extracted and analyzed by the HPLC/UV system. Dominant aldehydes of both fuels' exhausts are formaldehyde and acetaldehyde. These compounds together account for over 75% of total aldehyde emissions. Total aldehyde emissions for B20 (20% waste cooking oil biodiesel and 80% diesel) and diesel fuels are in the ranges of 15.4-26.9 mg bhp-h -1 and 21.3-28.6 mg bhp-h -1, respectively. The effects of increasing mileages and maintenance practice on aldehyde emissions are insignificant for both fuels. B20 generates slightly less emission than diesel does. Major difference in both fuels is formaldehyde emission which drops by 23% on the average. Lower aldehyde emissions found in B20 correspond to lower ozone formation potentials. As a result, use of biodiesel in diesel engines has the beneficial effect in terms of aldehyde emissions.
40 CFR Table 5 to Subpart Eeee of... - Requirements for Performance Tests and Design Evaluations
Code of Federal Regulations, 2010 CFR
2010-07-01
... 1 through 10 a. A performance test to determine the organic HAP (or, upon approval, TOC) control... appendix A of 40 CFR part 63 for measuring form-aldehyde (A) Total organic HAP (or, upon approval, TOC), or... total organic HAP (or, upon approval, TOC) emissions are reduced by the required weight-percent or, as...
Contribution of ozone to airborne aldehyde formation in Paris homes.
Rancière, Fanny; Dassonville, Claire; Roda, Célina; Laurent, Anne-Marie; Le Moullec, Yvon; Momas, Isabelle
2011-09-15
Indoor aldehydes may result from ozone-initiated chemistry, mainly documented by experimental studies. As part of an environmental investigation included in the PARIS birth cohort, the aim of this study was to examine ozone contribution to airborne aldehyde formation in Paris homes. Formaldehyde, acetaldehyde and hexaldehyde levels, as well as styrene, nitrogen dioxide and nicotine concentrations, comfort parameters and carbon dioxide levels, were measured twice during the first year of life of the babies. Ambient ozone concentrations were collected from the closest background station of the regional air monitoring network. Traffic-related nitrogen oxide concentrations in front of the dwellings were estimated by an air pollution dispersion model. Home characteristics and families' way of life were described by questionnaires. Stepwise multiple linear regression models were used to link aldehyde levels with ambient ozone concentrations and a few aldehyde precursors involved in oxidation reactions, adjusting for other indoor aldehyde sources, comfort parameters and traffic-related nitrogen oxides. A 4 and 11% increase in formaldehyde and hexaldehyde levels was pointed out when 8-hour ozone concentrations increased by 20 μg/m(3). The influence of potential precursors such as indoor styrene level and frequent use of air fresheners, containing unsaturated volatile organic compounds as terpenes, was also found. Thus, our results suggest that ambient ozone can significantly impact indoor air quality, especially with regard to formaldehyde and hexaldehyde levels. Copyright © 2011 Elsevier B.V. All rights reserved.
40 CFR 80.56 - Measurement methods for formaldehyde and acetaldehyde.
Code of Federal Regulations, 2014 CFR
2014-07-01
... collecting cartridges or impingers so that the measured quantity of aldehyde is sufficiently greater than the... preparation. (d) The analysis of the aldehyde derivatives collected is accomplished with a high performance...
40 CFR 80.56 - Measurement methods for formaldehyde and acetaldehyde.
Code of Federal Regulations, 2011 CFR
2011-07-01
... collecting cartridges or impingers so that the measured quantity of aldehyde is sufficiently greater than the... preparation. (d) The analysis of the aldehyde derivatives collected is accomplished with a high performance...
40 CFR 80.56 - Measurement methods for formaldehyde and acetaldehyde.
Code of Federal Regulations, 2013 CFR
2013-07-01
... collecting cartridges or impingers so that the measured quantity of aldehyde is sufficiently greater than the... preparation. (d) The analysis of the aldehyde derivatives collected is accomplished with a high performance...
40 CFR 80.56 - Measurement methods for formaldehyde and acetaldehyde.
Code of Federal Regulations, 2012 CFR
2012-07-01
... collecting cartridges or impingers so that the measured quantity of aldehyde is sufficiently greater than the... preparation. (d) The analysis of the aldehyde derivatives collected is accomplished with a high performance...
40 CFR 80.56 - Measurement methods for formaldehyde and acetaldehyde.
Code of Federal Regulations, 2010 CFR
2010-07-01
... collecting cartridges or impingers so that the measured quantity of aldehyde is sufficiently greater than the... preparation. (d) The analysis of the aldehyde derivatives collected is accomplished with a high performance...
21 CFR 177.2410 - Phenolic resins in molded articles.
Code of Federal Regulations, 2014 CFR
2014-04-01
... paragraph (a)(1) of this section are made to react with one or more of the aldehydes listed in paragraph (a... the presence of sulfuric acid catalyst. (2) Aldehydes: Acetaldehyde. Formaldehyde. Paraldehyde. (b...
Occupational exposure of aldehydes resulting from the storage of wood pellets.
Rahman, Mohammad Arifur; Rossner, Alan; Hopke, Philip K
2017-06-01
An exposure assessment was conducted to investigate the potential for harmful concentrations of airborne short chain aldehydes emitted from recently stored wood pellets. Wood pellets can emit a number of airborne aldehydes include acetaldehyde, formaldehyde, propionaldehyde, butyraldehyde, valeraldehyde, and hexanal. Exposure limits have been set for these compounds since they can result in significant irritation of the upper respiratory system at elevated concentrations. Formaldehyde is a recognized human carcinogen and acetaldehyde is an animal carcinogen. Thus, air sampling was performed in a wood pellet warehouse at a pellet mill, two residential homes with bulk wood pellet storage bins, and in controlled laboratory experiments to evaluate the risk to occupants. Using NIOSH method 2539, sampling was conducted in five locations in the warehouse from April-June 2016 when it contained varying quantities of bagged pellets as well as two homes with ten ton bulk storage bins. The aldehyde concentrations were found to increase with the amount of stored pellets. Airborne concentrations of formaldehyde were as high as 0.45 ppm in the warehouse exceeding the NIOSH REL-C, and ACGIH TLV-C occupational exposure limits (OELs). The concentrations of aldehydes measured in the residential bins were also elevated indicating emissions may raise indoor air quality concerns for occupants. While individual exposures are of concern the combined irritant effect of all the aldehydes is a further raise the concerns for building occupants. To minimize exposure and the risk of adverse health effects to a building's occupants in storage areas with large quantities of pellets, adequate ventilation must be designed into storage areas.
Assessment and predictor determination of indoor aldehyde levels in Paris newborn babies' homes.
Dassonville, C; Demattei, C; Laurent, A-M; Le Moullec, Y; Seta, N; Momas, I
2009-08-01
Exposure to indoor chemical air pollutants expected to be potentially involved in allergic respiratory diseases in infants is poorly documented. A specific environmental investigation included in a birth cohort study was carried out to first assess indoor airborne aldehyde levels, using passive devices and their variability within 1 year (1, 6, 9 and 12 months) in the bedroom of 196 Paris infants, and second, to identify predictors for aldehyde concentrations using interviewer administered questionnaires about housing factors. Comfort parameters and carbon dioxide levels were measured simultaneously. Aldehydes were detected in almost all dwellings and geometric mean levels (geometric standard deviation) at the first visit were respectively for formaldehyde, acetaldehyde, hexanal, and pentanal 19.4 (1.7) microg/m(3), 8.9 (1.8) microg/m(3), 25.3 (3.1) microg/m(3), 3.7 (2.3) microg/m(3), consistent with earlier published results. Generalized Estimating Equation multivariate analyses showed that, apart from comfort parameters, aeration and season, the main indoor aldehyde sources were either continuous (building materials and coverings especially when they were new) or discontinuous (smoking, use of air fresheners and cleaning products, DIY etc...). Finally, the data collected by questionnaires should be sufficient to enable us to classify each infant in our cohort study according to his/her degree of exposure to the main aldehydes. This analysis contributed to document indoor aldehyde levels in Parisian homes and to identify factors determining these levels. In the major part of newborn babies' homes, indoor formaldehyde levels were above the guideline value of 10 microg/m(3) proposed by the French Agency for Environmental and Occupational Health Safety for long-term exposure. Given this result, it is essential to study the health impact of exposure to aldehydes especially formaldehyde on the incidence of respiratory and allergic symptoms, particularly during the first months of life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradpour, Tahereh; Abbasi, Alireza, E-mail: aabbassi@khayam.ut.ac.ir; Van Hecke, Kristof
A new 3D nanoporous metal–organic framework (MOF), [[Zn{sub 4}O(C{sub 24}H{sub 15}N{sub 6}O{sub 6}){sub 2}(H{sub 2}O){sub 2}]·6H{sub 2}O·DMF]{sub n} (1) based on 4,4′,4″-s-triazine-1,3,5-triyltri-p-aminobenzoate (TATAB) ligand was solvothermally synthesized and characterized by single–crystal X-ray diffraction, Powder X-ray diffraction (PXRD), infrared spectroscopy (IR) and Brunauer–Emmett–Teller (BET) analyses. X-ray single crystal diffraction analysis reveals that 1 exhibits a 3D network with new kvh1 topology. Semi-empirical (AM1) calculations were carried out to obtain stable conformers for TATAB ligand. In addition, the absorption of two typical aldehydes (benzaldehyde and formaldehyde) in the presence of 1 was investigated and the effect of the aldehyde concentration, exposure timemore » and temperature was studied. It was found that compound 1 has a potential for the absorption of aldehydes under mild conditions. - Graphical abstract: Absorption of two typical aldehydes (formaldehyde and benzaldehyde) by solvothermally synthesized of a 3D nano-porous MOF based on TATAB tricarboxylate ligand and Zn (NO{sub 3}){sub 2}·6H{sub 2}O. - Highlights: • We present a 3D Zn(II)-MOF with TATAB linker by solvothermal method. • The framework possesses a new kvh1 topology. • The framework displays formaldehyde and benzaldehyde absorption property. • Conformational analysis was performed to determine the stable linker geometry.« less
Brown Carbon Production in Aldehyde + Ammonium Sulfate Mixtures: Effects of Formaldehyde and Amines
NASA Astrophysics Data System (ADS)
Powelson, M.; De Haan, D. O.
2012-12-01
The formation of light-absorbing 'brown carbon,' or HULIS (humic- like substances), in atmospheric aerosol has an important impact on climate. However, the precursors responsible for brown carbon formation have not been identified. Several aldehydes present in clouds (methylglyoxal, glycolaldehyde, hydroxyacetone, glyoxal, and acetaldehyde) have the potential to create brown products when reacted with ammonium sulfate or primary amines such as methylamine or glycine. The formation of light-absorbing products from these reactions was characterized as a function of cloud-relevant pH (from 3- 6) using UV-Visible spectroscopy. Of the different aldehydes teste, the largest production rates of light-absorbing compounds were observed in reactions of glycolaldehyde and methylglyoxal. Primary amines produced more light- absorbing products than ammonium sulfate at lower concentrations. The addition of formaldehyde to any reaction with other aldehydes decreased the formation of light-absorbing products, while the addition of a small amount (1:5 mole ratio) of glycine to aldehyde + ammonium sulfate reactions can increase the production of light-absorbing products. These results suggest that the presence of primary amines significantly influence atmospheric brown carbon production by aldehydes even when much greater quantities of ammonium sulfate are present.
Fire Safety Aspects of Polymeric Materials. Volume 8. Land Transportation Vehicles
1979-01-01
Resins and Urea - and Melamine - Formaldehyde Resins ," in: Kurylaand Papa (1973). 188 I RtftHfcNCES...ting furfuryl alcohol and an aldehyde — most frequently formaldehyde (Siegfried 1967). Urea is often used as a modifying agent. The resins are hardened... melamine / formaldehyde and phenol/formaldehye resins may find significant utility as a char resistant coating on factory coated wood. 73 /’ I
Farsalinos, Konstantinos E; Kistler, Kurt A; Pennington, Alexander; Spyrou, Alketa; Kouretas, Dimitris; Gillman, Gene
2018-01-01
A recent study identified high aldehyde emissions from e-cigarettes (ECs), that when converted to reasonable daily human EC liquid consumption, 5 g/day, gave formaldehyde exposure equivalent to 604-3257 tobacco cigarettes. We replicated this study and also tested a new-generation atomizer under verified realistic (no dry puff) conditions. CE4v2 atomizers were tested at 3.8 V and 4.8 V, and a Nautilus Mini atomizer was tested at 9.0 W and 13.5 W. All measurements were performed in a laboratory ISO-accredited for EC aerosol collection and aldehyde measurements. CE4v2 generated dry puffs at both voltage settings. Formaldehyde levels were >10-fold lower, acetaldehyde 6-9-fold lower and acrolein 16-26-fold lower than reported in the previous study. Nautilus Mini did not generate dry puffs, and minimal aldehydes were emitted despite >100% higher aerosol production per puff compared to CE4v2 (formaldehyde: 16.7 and 16.5 μg/g; acetaldehyde: 9.6 and 10.3 μg/g; acrolein: 8.6 and 11.7 μg/g at 9.0 W and 13.5 W, respectively). EC liquid consumption of 5 g/day reduces aldehyde exposure by 94.4-99.8% compared to smoking 20 tobacco cigarettes. Checking for dry puffs is essential for EC emission testing. Under realistic conditions, new-generation ECs emit minimal aldehydes/g liquid at both low and high power. Validated methods should be used when analyzing EC aerosol. Copyright © 2017 Elsevier Ltd. All rights reserved.
YLL056C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity.
Wang, Han-Yu; Xiao, Di-Fan; Zhou, Chang; Wang, Lin-Lu; Wu, Lan; Lu, Ya-Ting; Xiang, Quan-Ju; Zhao, Ke; Li, Xi; Ma, Meng -Gen
2017-06-01
The short-chain dehydrogenase/reductase (SDR) family, the largest family in dehydrogenase/reductase superfamily, is divided into "classical," "extended," "intermediate," "divergent," "complex," and "atypical" groups. Recently, several open reading frames (ORFs) were characterized as intermediate SDR aldehyde reductase genes in Saccharomyces cerevisiae. However, no functional protein in the atypical group has been characterized in S. cerevisiae till now. Herein, we report that an uncharacterized ORF YLL056C from S. cerevisiae was significantly upregulated under high furfural (2-furaldehyde) or 5-(hydroxymethyl)-2-furaldehyde concentrations, and transcription factors Yap1p, Hsf1p, Pdr1/3p, Yrr1p, and Stb5p likely controlled its upregulated transcription. This ORF indeed encoded a protein (Yll056cp), which was grouped into the atypical subgroup 7 in the SDR family and localized to the cytoplasm. Enzyme activity assays showed that Yll056cp is not a quinone or ketone reductase but an NADH-dependent aldehyde reductase, which can reduce at least seven aldehyde compounds. This enzyme showed the best Vmax, Kcat, and Kcat/Km to glycolaldehyde, but the highest affinity (Km) to formaldehyde. The optimum pH and temperature of this enzyme was pH 6.5 for reduction of glycolaldehyde, furfural, formaldehyde, butyraldehyde, and propylaldehyde, and 30 °C for reduction of formaldehyde or 35 °C for reduction of glycolaldehyde, furfural, butyraldehyde, and propylaldehyde. Temperature and pH affected stability of this enzyme and this influence varied with aldehyde substrate. Metal ions, salts, and chemical protective additives, especially at high concentrations, had different influence on enzyme activities for reduction of different aldehydes. This research provided guidelines for study of more uncharacterized atypical SDR enzymes from S. cerevisiae and other organisms.
Formaldehyde Five-Day Passive Chemical Dosimeter Badge Validation Study
2012-11-30
of organic carbonyl compounds ( aldehydes and ketones ) with DNPH-coated silica gel badges/cartridges in the presence of a strong acid, as a catalyst...more stringent 90-day limit of 100ppb is imminent.2 Experimental Materials Aldehyde badges (#571) were obtained from Assay Technology...Inc., Livermore, CA. This badge collects aldehydes on a glass fiber filter treated with acidified 2,4- dinitrophenylhydrazine (DNPH.) Standard field
Small Molecule Protection of Bone Marrow Hematopoietic Stem Cells
2015-10-01
several recently identified small molecules can protect hematopoietic stem cells (HSCs) from damage or killing by endogenous aldehydes . Proof-of-concept...anemia bone marrow failure CD34+ hematopoietic stem cells aldehydes formaldehyde DNA damage DNA base adduct DNA-protein crosslink mass...below. Revised Specific Aim 1: Small molecule protection of human cells from aldehyde - induced killing (in vitro studies - no mice or human subjects
Formaldehyde and acetaldehyde concentrations over the Eastern half of the United States are simulated with a 3-D air quality model to identify the most important chemical precursors under January and July conditions. We find that both aldehydes primarily result from photochemical...
NASA Technical Reports Server (NTRS)
Singh, Hanwant B.; Salas, L.; Herlth, D.; Viezee, W.; Fried, A.; Jackob, D.; Blake, D.; Heikes, B.; Talbot, R.; Sachse, G.;
2002-01-01
Airborne measurements of a large number of oxygenated organics were carried out in the Pacific troposphere (to 12 km) in the Spring of 2001 (Feb. 24-April 10). Specifically these measurements included acetaldehyde, propanaldehyde, acetone, methylethyl ketone, methanol, ethanol, PAM and organic nitrates. Independent measurements of formaldehyde, peroxides, and tracers were also available. Highly polluted as well as pristine air masses were sampled. Oxygenated organics were abundant in the clean In troposphere and were greatly enhanced in the outflow regions from Asia. Extremely high concentrations of aldehydes could be measured in the troposphere. It is not possible to explain the large abundances of aldehydes in the background troposphere without invoking significant oceanic sources. A strong correlation between the observed mixing ratios of formaldehyde and acetaldehyde is present. We infer that higher aldehydes (such as acetaldehyde and propanaldehyde) may provide a large source of formaldehyde and sequester Cox throughout the troposphere. The atmospheric behavior of acetone, methylethyl ketone, and methanol is generally indicative of their common terrestrial sources with a Image contribution from biomass/biofuel burning. A vast body of data has been collected and it is being analyzed both statistically and with the help of models to better understand the role that oxygenated organics play in the atmosphere and to unravel their sources and sinks. These results will be presented.
Carbohydrates as efficient catalysts for the hydration of α-amino nitriles.
Chitale, Sampada; Derasp, Joshua S; Hussain, Bashir; Tanveer, Kashif; Beauchemin, André M
2016-11-01
Directed hydration of α-amino nitriles was achieved under mild conditions using simple carbohydrates as catalysts exploiting temporary intramolecularity. A broadly applicable procedure using both formaldehyde and NaOH as catalysts efficiently hydrated a variety of primary and secondary susbtrates, and allowed the hydration of enantiopure substrates to proceed without racemization. This work also provides a rare comparison of the catalytic activity of carbohydrates, and shows that the simple aldehydes at the basis of chemical evolution are efficient organocatalysts mimicking the function of hydratase enzymes. Optimal catalytic efficiency was observed with destabilized aldehydes, and with difficult substrates only simple carbohydrates such as formaldehyde and glycolaldehyde proved reliable.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Alcohol SW-846-8015C.a 67561 Methanol Alcohol SW-846-8015C.a 75070 Acetaldehyde Aldehyde SW-846-8315A.a 50000 Formaldehyde Aldehyde SW-846-8315A.a 51285 2,4-dinitrophenol SVOC SW-846-8270D.a 98862...
Brandão, Pedro Francisco; Ramos, Rui Miguel; Almeida, Paulo Joaquim; Rodrigues, José António
2017-02-08
A new approach is proposed for the extraction and determination of carbonyl compounds in solid samples, such as wood or cork materials. Cork products are used as building materials due to their singular characteristics; however, little is known about its aldehyde emission potential and content. Sample preparation was done by using a gas-diffusion microextraction (GDME) device for the direct extraction of volatile aldehydes and derivatization with 2,4-dinitrophenylhydrazine. Analytical determination of the extracts was done by HPLC-UV, with detection at 360 nm. The developed methodology proved to be a reliable tool for aldehyde determination in cork agglomerate samples with suitable method features. Mass spectrometry studies were performed for each sample, which enabled the identification, in the extracts, of the derivatization products of a total of 13 aldehydes (formaldehyde, acetaldehyde, furfural, propanal, 5-methylfurfural, butanal, benzaldehyde, pentanal, hexanal, trans-2-heptenal, heptanal, octanal, and trans-2-nonenal) and 4 ketones (3-hydroxy-2-butanone, acetone, cyclohexanone, and acetophenone). This new analytical methodology simultaneously proved to be consistent for the identification and determination of aldehydes in cork agglomerates and a very simple and straightforward procedure.
oxidizing methanol that could be demonstrated was a dehydrogenase that can be linked to phenazine methosulphate and required the presence of NH4(+) ions...An aldehyde dehydrogenase that reduced 2,6-dichlorophenol-indophenol or phenazine methosulphate in the presence of formaldehyde was found in cell
Formaldehyde is cytotoxic and carcinogenic to the rat nasal respiratory epithelium inducing tumors after 12 months. Glutaraldehyde is also cytotoxic but is not carcinogenic to nasal epithelium even after 24 months. Both aldehydes induce similar acute and subchronic histopathology...
40 CFR 442.2 - General definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... pesticides, hazardous waste, organic chemicals including: alcohols, aldehydes, formaldehydes, phenols...: ketones, nitriles, organo-metallic compounds containing chromium, cadmium, mercury, copper, zinc; and...
40 CFR 442.2 - General definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... pesticides, hazardous waste, organic chemicals including: alcohols, aldehydes, formaldehydes, phenols...: ketones, nitriles, organo-metallic compounds containing chromium, cadmium, mercury, copper, zinc; and...
40 CFR 442.2 - General definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... pesticides, hazardous waste, organic chemicals including: alcohols, aldehydes, formaldehydes, phenols...: ketones, nitriles, organo-metallic compounds containing chromium, cadmium, mercury, copper, zinc; and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodgson, A.T.; Apte, M.G.; Shendell, D.G.
Detailed studies of a new manufactured house and four new industrialized relocatable school classrooms were conducted to determine the emission sources of formaldehyde and other VOCs and to identify and implement source reduction practices. Procedures were developed to generate VOC emission factors that allowed reasonably accurate predictions of indoor air VOC concentrations. Based on the identified sources of formaldehyde and other aldehydes, practices were developed to reduce the concentrations of these compounds in new house construction. An alternate ceiling panel reduced formaldehyde concentrations in the classrooms. Overall, the classrooms had relatively low VOC concentrations.
40 CFR 442.2 - General definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., organic chemicals including: alcohols, aldehydes, formaldehydes, phenols, peroxides, organic salts, amines..., glycerines, and organic polymers; refractory organic compounds including: ketones, nitriles, organo-metallic...
Aldehyde measurements in indoor environments in Strasbourg (France)
NASA Astrophysics Data System (ADS)
Marchand, C.; Bulliot, B.; Le Calvé, S.; Mirabel, Ph.
Formaldehyde and acetaldehyde concentrations have been measured in indoor environments of various public spaces (railway station, airport, shopping center, libraries, underground parking garage, etc.) of Strasbourg area (east of France). In addition, formaldehyde, acetaldehyde propionaldehyde and hexanal concentrations have been measured in 22 private homes in the same area. In most of the sampling sites, indoor and outdoor formaldehyde and acetaldehyde concentrations were measured simultaneously. Gaseous aldehydes levels were quantified by a conventional DNHP-derivatization method followed by liquid chromatography coupled to UV detection. Outdoor formaldehyde and acetaldehyde concentrations were both in the range 1-10 μg m -3, the highest values being measured at the airport and railway station. Indoor concentrations were strongly dependant upon the sampling sites. In homes, the average concentrations were 37 μg m -3 (living rooms) and 46 μg m -3 (bedrooms) for formaldehyde, 15 μg m -3 (living rooms) and 18 μg m -3 (bedrooms) for acetaldehyde, 1.2 μg m -3 (living rooms) and 1.6 μg m -3 (bedrooms) for propionaldehyde, 9 μg m -3 (living rooms) and 10 μg m -3 (bedrooms) for hexanal. However, concentrations as high as 123, 80 and 47 μg m -3 have been found for formaldehyde, acetaldehyde and hexanal respectively. In public spaces, the highest formaldehyde concentration (62 μg m -3) was found in a library and the highest concentration of acetaldehyde (26 μg m -3) in the hall of a shopping center. Additional measurements of formaldehyde and acetaldehyde were made inside a car both at rest or in a fluid or heavy traffic as well as in a room where cigarettes were smoked. Our data have been discussed and compared with those of previous studies.
Flavoring Chemicals and Aldehydes in E-Cigarette Emissions.
Klager, Skylar; Vallarino, Jose; MacNaughton, Piers; Christiani, David C; Lu, Quan; Allen, Joseph G
2017-09-19
Regulations on e-cigarettes in the U.S. do not provide guidelines on the chemical content of e-cigarette liquids. We evaluated emissions of aldehydes and flavoring chemicals in e-cigarette vapor under typical usage conditions. We selected 24 e-cigarette flavors from the top selling disposable e-cigarette brands. E-cigarettes were connected to a pump drawing air for two second puffs with sixty-second intervals between puffs. The vapor was analyzed for the presence of aldehydes using high-performance liquid chromatography-ultraviolet detector and for the presence of flavoring chemicals with gas chromatography and an electron capture detector. All e-cigarette emissions tested contained at least one aldehyde and/or flavoring chemical on either the FEMA "High Priority Chemicals" or FDA Harmful and Potentially Harmful Constituents lists when sampled at typical usage conditions. Diacetyl, a known respiratory hazard, along with acetoin, were the most prevalent of the flavoring chemicals in e-cigarette vapor, being found in more than 60% of samples. The presence of propionaldehyde, acetaldehyde and formaldehyde were correlated, corroborating previous work suggesting thermal degradation as a pathway for aldehyde generation in e-cigarette vapors. Median formaldehyde concentrations of 626 μg/m 3 in e-cigarette vapor exceed the ACGIH maximum concentrations allowable for workers of 370 μg/m 3 .
Code of Federal Regulations, 2014 CFR
2014-07-01
... SW-846-8015C.a 67561 Methanol Alcohol SW-846-8015C.a 75070 Acetaldehyde Aldehyde SW-846-8315A.a 50000 Formaldehyde Aldehyde SW-846-8315A.a 51285 2,4-dinitrophenol SVOC SW-846-8270D.a 98862 Acetophenone SVOC SW-846...
Identifying Sources of Volatile Organic Compounds and Aldehydes in a High Performance Building
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz, Anna C.; Russell, Marion; Lee, Wen-Yee
The developers of the Paharpur Business Center (PBC) and Software Technology Incubator Park in New Delhi, India offer an environmentally sustainable building with a strong emphasis on energy conservation, waste minimization and superior indoor air quality (IAQ). To achieve the IAQ goal, the building utilizes a series of air cleaning technologies for treating the air entering the building. These technologies include an initial water wash followed by ultraviolet light treatment and biolfiltration using a greenhouse located on the roof and numerous plants distributed throughout the building. Even with the extensive treatment of makeup air and room air in the PBC,more » a recent study found that the concentrations of common volatile organic compounds and aldehydes appear to rise incrementally as the air passes through the building from the supply to the exhaust. This finding highlights the need to consider the minimization of chemical sources in buildings in combination with the use of advanced air cleaning technologies when seeking to achieve superior IAQ. The goal of this project was to identify potential source materials for indoor chemicals in the PBC. Samples of building materials, including wood paneling (polished and unpolished), drywall, and plastic from a hydroponic drum that was part of the air cleaning system, were collected from the building for testing. All materials were collected from the PBC building and shipped to the Lawrence Berkeley National Laboratory (LBNL) for testing. The materials were pre-conditioned for two different time periods before measuring material and chemical specific emission factors for a range of VOCs and Aldehydes. Of the six materials tested, we found that the highest emitter of formaldehyde was new plywood paneling. Although polish and paint contribute to some VOC emissions, the main influence of the polish was in altering the capacity of the surface to accumulate formaldehyde. Neither the new nor aged polish contributed significantly to formaldehyde emissions. The VOC emission stream (excluding formaldehyde) was composed of up to 18 different chemicals and the total VOC emissions ranged in magnitude from 7 mu g/m2/h (old wood with old polish) to>500 mu g/m2/h (painted drywall). The formaldehyde emissions from drywall and old wood with either new or old polish were ~;;15 mu g/m2/h while the new wood material emitted>100 mu g/m2/h. However, when the projected surface area of each material in the building was considered, the new wood, old wood and painted drywall material all contributed substantially to the indoor formaldehyde loading while the coatings contributed primarily to the VOCs.« less
Chi, Yonggui; Gellman, Samuel H.
2009-01-01
Organocatalytic Mannich addition of aldehydes to a formaldehyde-derived iminium species catalyzed by proline-derived chiral pyrrolidines provides β-amino aldehydes with ≥ 90% ee. Mechanistic analysis of the proline-catalyzed reactions suggests that non-hydrogen-bonded ionic interactions at the Mannich reaction transition state can influence stereochemical outcome. The β-amino aldehydes from our process bear a substituent adjacent to the carbonyl and can be efficiently converted to protected β2-amino acids, which are important building blocks for β-peptide foldamers that display useful biological activities. PMID:16719457
Sources and concentrations of aldehydes and ketones in indoor environments in the UK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crump, D.R.; Gardiner, D.
1989-01-01
Individual aldehydes and ketones can be separated, identified and quantitatively estimated by trapping the 2,4-dinitrophenylhydrazine (DNPH) derivatives and analysis by HPLC. Appropriate methods and detection limits are reported. Many sources of formaldehyde have been identified by this means and some are found to emit other aldehydes and ketones. The application of this method to determine the concentration of these compounds in the atmospheres of buildings is described and the results compared with those obtained using chromotropic acid or MBTH.
CO2-based hydrogen storage - Hydrogen generation from formaldehyde/water
NASA Astrophysics Data System (ADS)
Trincado, Monica; Grützmacher, Hansjörg; Prechtl, Martin H. G.
2018-04-01
Formaldehyde (CH2O) is the simplest and most significant industrially produced aldehyde. The global demand is about 30 megatons annually. Industrially it is produced by oxidation of methanol under energy intensive conditions. More recently, new fields of application for the use of formaldehyde and its derivatives as, i.e. cross-linker for resins or disinfectant, have been suggested. Dialkoxymethane has been envisioned as a combustion fuel for conventional engines or aqueous formaldehyde and paraformaldehyde may act as a liquid organic hydrogen carrier molecule (LOHC) for hydrogen generation to be used for hydrogen fuel cells. For the realization of these processes, it requires less energy-intensive technologies for the synthesis of formaldehyde. This overview summarizes the recent developments in low-temperature reductive synthesis of formaldehyde and its derivatives and low-temperature formaldehyde reforming. These aspects are important for the future demands on modern societies' energy management, in the form of a methanol and hydrogen economy, and the required formaldehyde feedstock for the manufacture of many formaldehyde-based daily products.
Plastic Media Blasting Data Gathering Study
1986-12-01
products of organic compounds containing the amino group (-NH 2 ) and an aldehyde. The better known members of this group are urea formaldehyde (a...suspected carcinogen) and melamine formaldehyde . The actual composition and toxicity of the dust from the various operations must be collected and...blasting is a paint removal technique in which small, granular amino thermoset or unsaturated polyester resins (plastic beads) are forced at high
Hsu, Yi-Chyun; Chao, How-Ran; Shih, Shun-I
2015-01-01
Many air toxicants, and especially aldehydes, are generated by moxibustion, which means burning Artemisia argyi. Our goal was to investigate indoor-air aldehyde emissions in Chinese medicine clinics (CMCs) during moxibustion to further evaluate the potential health risks, including cancer risk and non-cancer risk, to the medical staff and adult patients. First, the indoor-air-quality in 60 public sites, including 15 CMCs, was investigated. Four CMCs with frequent use of moxibustion were selected from the 15 CMCs to gather the indoor airborne aldehydes in the waiting and therapy rooms. The mean values of formaldehyde and acetaldehyde in the CMCs' indoor air were 654 and 4230 μg m(-3), respectively, in the therapy rooms, and 155 and 850 μg m(-3), respectively, in the waiting rooms. The average lifetime cancer risks (Rs) and non-cancer risks (hazard quotients: HQs) of airborne formaldehyde and acetaldehyde among the CMC medical staff exceeded the acceptable criteria (R < 1.00 × 10(-3) and HQ < 1.00) for occupational workers. The patients' Rs and HQs were also slightly higher than the critical values (R = 1.00 × 10(-6) and HQ = 1.00). Our results indicate that airborne aldehydes pose a significant threat to the health of medical staff, and slightly affected the patients' health, during moxibustion in the CMCs.
Formaldehyde Exposures in a University Anatomy Laboratory
NASA Astrophysics Data System (ADS)
Winkler, Kyle William
Air sampling studies were conducted within a university anatomical laboratory during the embalmment of a cadaver in order to determine if dangerous concentrations of formaldehyde existed. Three air sampling studies were conducted in the anatomical laboratory on three separate days that a cadaver was being embalmed. Samples were collected and analyzed using the Occupational Safety and Health Administration (OSHA) Sampling and Analytical Methods: Method 52. Each air sampling study sampled for short term exposure limit (STEL) and time weighted mean (TWA) breathing zone formaldehyde concentrations as well as area TWA formaldehyde concentrations. A personal aldehyde monitor was also used in each air sampling study to sample for breathing zone formaldehyde concentrations. Measured TWA mean exposures to formaldehyde ranged from 0.15--1.3 parts per million (ppm), STEL formaldehyde exposures ranged from 0.019--0.64 ppm, and eight-hour TWAs ranged from 0.03 to 3.6 ppm. All 8-hour TWA formaldehyde concentrations sampled in the anatomy laboratory during an embalmment were less than the permissible exposure limit (PEL) required by OSHA.
Aldehydes in Relation to Air Pollution Sources: A Case Study around the Beijing Olympics
Altemose, Brent; Gong, Jicheng; Zhu, Tong; Hu, Min; Zhang, Liwen; Cheng, Hong; Zhang, Lin; Tong, Jian; Kipen, Howard M.; Strickland, Pamela Ohman; Meng, Qingyu; Robson, Mark G.; Zhang, Junfeng
2015-01-01
This study was carried out to characterize three aldehydes of health concern (formaldehyde, acetaldehyde, and acrolein) at a central Beijing site in the summer and early fall of 2008 (from June to October). Aldehydes in polluted atmospheres come from both primary and secondary sources, which limits the control strategies for these reactive compounds. Measurements were made before, during, and after the Beijing Olympics to examine whether the dramatic air pollution control measures implemented during the Olympics had an impact on concentrations of the three aldehydes and their underlying primary and secondary sources. Average concentrations of formaldehyde, acetaldehyde and acrolein were 29.3±15.1 μg/m3, 27.1±15.7 μg/m3 and 2.3±1.0 μg/m3, respectively, for the entire period of measurements, all being at the high end of concentration ranges measured in cities around the world in photochemical smog seasons. Formaldehyde and acrolein increased during the pollution control period compared to the pre-Olympic Games, followed the changing pattern of temperature, and were significantly correlated with ozone and with a secondary formation factor identified by principal component analysis (PCA). In contrast, acetaldehyde had a reduction in mean concentration during the Olympic air pollution control period compared to the pre-Olympic period and was significantly correlated with several pollutants emitted from local emission sources (e.g., NO2, CO, and PM2.5). Acetaldehyde was also more strongly associated with primary emission sources including vegetative burning and oil combustion factors identified through the PCA. All three aldehydes were lower during the post-Olympic sampling period compared to the before and during Olympic periods, likely due to seasonal and regional effects. Our findings point to the complexity of source control strategies for secondary pollutants. PMID:25883528
Corley, Richard A.; Kabilan, Senthil; Kuprat, Andrew P.; Carson, James P.; Jacob, Richard E.; Minard, Kevin R.; Teeguarden, Justin G.; Timchalk, Charles; Pipavath, Sudhakar; Glenny, Robb; Einstein, Daniel R.
2015-01-01
Computational fluid dynamics (CFD) modeling is well suited for addressing species-specific anatomy and physiology in calculating respiratory tissue exposures to inhaled materials. In this study, we overcame prior CFD model limitations to demonstrate the importance of realistic, transient breathing patterns for predicting site-specific tissue dose. Specifically, extended airway CFD models of the rat and human were coupled with airway region-specific physiologically based pharmacokinetic (PBPK) tissue models to describe the kinetics of 3 reactive constituents of cigarette smoke: acrolein, acetaldehyde and formaldehyde. Simulations of aldehyde no-observed-adverse-effect levels for nasal toxicity in the rat were conducted until breath-by-breath tissue concentration profiles reached steady state. Human oral breathing simulations were conducted using representative aldehyde yields from cigarette smoke, measured puff ventilation profiles and numbers of cigarettes smoked per day. As with prior steady-state CFD/PBPK simulations, the anterior respiratory nasal epithelial tissues received the greatest initial uptake rates for each aldehyde in the rat. However, integrated time- and tissue depth-dependent area under the curve (AUC) concentrations were typically greater in the anterior dorsal olfactory epithelium using the more realistic transient breathing profiles. For human simulations, oral and laryngeal tissues received the highest local tissue dose with greater penetration to pulmonary tissues than predicted in the rat. Based upon lifetime average daily dose comparisons of tissue hot-spot AUCs (top 2.5% of surface area-normalized AUCs in each region) and numbers of cigarettes smoked/day, the order of concern for human exposures was acrolein > formaldehyde > acetaldehyde even though acetaldehyde yields were 10-fold greater than formaldehyde and acrolein. PMID:25858911
E-cigarettes generate high levels of aldehydes only in 'dry puff' conditions.
Farsalinos, Konstantinos E; Voudris, Vassilis; Poulas, Konstantinos
2015-08-01
Aldehydes are emitted by electronic cigarettes due to thermal decomposition of liquid components. Although elevated levels have been reported with new-generation high-power devices, it is unclear whether they are relevant to true exposure of users (vapers) because overheating produces an unpleasant taste, called a dry puff, which vapers learn to avoid. The aim was to evaluate aldehyde emissions at different power levels associated with normal and dry puff conditions. Two customizable atomizers were prepared so that one (A1) had a double wick, resulting in high liquid supply and lower chance of overheating at high power levels, while the other (A2) was a conventional setup (single wick). Experienced vapers took 4-s puffs at 6.5 watts (W), 7.5 W, 9 W and 10 W power levels with both atomizers and were asked to report whether dry puffs were generated. The atomizers were then attached to a smoking machine and aerosol was trapped. Clinic office and analytical chemistry laboratory in Greece. Seven experienced vapers. Aldehyde levels were measured in the aerosol. All vapers identified dry puff conditions at 9 W and 10 W with A2. A1 did not lead to dry puffs at any power level. Minimal amounts of aldehydes per 10 puffs were found at all power levels with A1 (up to 11.3 µg for formaldehyde, 4.5 µg for acetaldehyde and 1.0 µg for acrolein) and at 6.5 W and 7.5 W with A2 (up to 3.7 µg for formaldehyde, 0.8 µg for acetaldehyde and 1.3 µg for acrolein). The levels were increased by 30 to 250 times in dry puff conditions (up to 344.6 µg for formaldehyde, 206.3 µg for acetaldehyde and 210.4 µg for acrolein, P < 0.001), while acetone was detected only in dry puff conditions (up to 22.5 µg). Electronic cigarettes produce high levels of aldehyde only in dry puff conditions, in which the liquid overheats, causing a strong unpleasant taste that e-cigarette users detect and avoid. Under normal vaping conditions aldehyde emissions are minimal, even in new-generation high-power e-cigarettes. © 2015 Society for the Study of Addiction.
Formaldehyde and acetaldehyde emissions from residential wood combustion in Portugal
NASA Astrophysics Data System (ADS)
Cerqueira, Mário; Gomes, Luís; Tarelho, Luís; Pio, Casimiro
2013-06-01
A series of experiments were conducted to characterize formaldehyde and acetaldehyde emissions from residential combustion of common wood species growing in Portugal. Five types of wood were investigated: maritime pine (Pinus pinaster), eucalyptus (Eucalyptus globulus), cork oak (Quercus suber), holm oak (Quercus rotundifolia) and pyrenean oak (Quercus pyrenaica). Laboratory experiments were performed with a typical wood stove used for domestic heating in Portugal and operating under realistic home conditions. Aldehydes were sampled from diluted combustion flue gas using silica cartridges coated with 2,4-dinitrophenylhydrazine and analyzed by high performance liquid chromatography with diode array detection. The average formaldehyde to acetaldehyde concentration ratio (molar basis) in the stove flue gas was in the range of 2.1-2.9. Among the tested wood types, pyrenean oak produced the highest emissions for both formaldehyde and acetaldehyde: 1772 ± 649 and 1110 ± 454 mg kg-1 biomass burned (dry basis), respectively. By contrast, maritime pine produced the lowest emissions: 653 ± 151 and 371 ± 162 mg kg-1 biomass (dry basis) burned, respectively. Aldehydes were sampled separately during distinct periods of the holm oak wood combustion cycles. Significant variations in the flue gas concentrations were found, with higher values measured during the devolatilization stage than in the flaming and smoldering stages.
Martins, Eduardo Monteiro; Arbilla, Graciela; Bauerfeldt, Glauco Favilla; de Paula, Murilo
2007-05-01
A comprehensive monitoring campaign to assess aldehydes and BTEX concentrations was performed during 12 months, in the Tijuca district (Rio de Janeiro), an area with commercial activities and a high flux of vehicles. The mean concentrations of formaldehyde and acetaldehyde were 151 and 30 ppb, respectively. The high formaldehyde/acetaldehyde ratio was attributed to extensive use of compressed natural gas (CNG). The number of CNG vehicles in the metropolitan Region of Rio de Janeiro increased from 23000 in January 2001 to 161000 in January 2005. Monitoring data show that, for the same period, methane and formaldehyde concentrations increased while NO(x) and CO levels diminished. Mean concentrations for benzene, toluene, ethylbenzene, m,p-xylene and o-xylene, were 1.1, 4.8, 3.6, 10.4 and 3.0 micro gm(-3), respectively. Benzene and toluene concentrations were lower than the values determined in 1996, for the same location. The levels of ethylbenzene and xylenes determined in this work are similar to values obtained in 1996. This fact may be explained as a consequence of changes in the gasoline composition.
40 CFR 442.2 - General definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., organic chemicals including: alcohols, aldehydes, formaldehydes, phenols, peroxides, organic salts, amines, amides, other nitrogen compounds, other aromatic compounds, aliphatic organic chemicals, glycols, glycerines, and organic polymers; refractory organic compounds including: ketones, nitriles, organo-metallic...
Single-cylinder diesel engine study of four vegetable oils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobus, M.J.; Geyer, S.M.; Lestz, S.S.
A single-cylinder, 0.36l, D.I. Diesel engine was operated on Diesel fuel, sunflowerseed oil, cottonseed oil, soybean oil, and peanut oil. The purpose of this study was to provide a detailed comparison of performance and emissions data and to characterize the biological activity of the particulate soluble organic fraction for each fuel using the Ames Salmonella typhimurium test. In addition, exhaust gas aldehyde samples were collected using the DNPH method. These samples were analyzed gravimetrically and separated into components from formaldehyde to heptaldehyde with a gas chromatograph. Results comparing the vegetable oils to Diesel fuel generally show slight improvements in thermalmore » efficiency and indicated specific energy consumption; equal or higher gas-phase emissions; lower indicated specific revertant emissions; and significantly higher aldehyde emissions, including an increased percentage of formaldehyde.« less
Interstellar Antifreeze: Ethylene Glycol
NASA Technical Reports Server (NTRS)
Hollis, J. M.; Lovas, F. J.; Jewell, P. R.; Coudert, L. H.
2002-01-01
Interstellar ethylene glycol (HOCH2CH2,OH) has been detected in emission toward the Galactic center source Sagittarius B2(N-LMH) by means of several millimeter-wave rotational torsional transitions of its lowest energy conformer. The types and kinds of molecules found to date in interstellar clouds suggest a chemistry that favors aldehydes and their corresponding reduced alcohols-e.g., formaldehyde (H2CO)/methanol (CH3OH), acetaldehyde (CH3CHO)/ethanol (CH3CH2OH). Similarly, ethylene glycol is the reduced alcohol of glycolaldehyde (CH2OHCHO), which has also been detected toward Sgr B2(N-LMH). While there is no consensus as to how any such large complex molecules are formed in the interstellar clouds, atomic hydrogen (H) and carbon monoxide (CO) could form formaldehyde on grain surfaces, but such surface chemistry beyond that point is uncertain. However, laboratory experiments have shown that the gas-phase reaction of atomic hydrogen (H) and solid-phase CO at 10-20 K can produce formaldehyde and methanol and that alcohols and other complex molecules can be synthesized from cometary ice analogs when subject to ionizing radiation at 15 K. Thus, the presence of aldehyde/ reduced alcohol pairs in interstellar clouds implies that such molecules are a product of a low-temperature chemistry on grain surfaces or in grain ice mantles. This work suggests that aldehydes and their corresponding reduced alcohols provide unique observational constraints on the formation of complex interstellar molecules.
2011-01-01
Background Cigarette smoking is a well recognized cause of diseases such as lung cancer, chronic obstructive pulmonary disease and cardiovascular disease. Of the more than 5000 identified species in cigarette smoke, at least 150 have toxicological activity. For example, formaldehyde and acetaldehyde have been assigned as Group 1 and Group 2B carcinogens by IARC, and hydrogen cyanide has been identified as a respiratory and cardiovascular toxicant. Active carbon has been shown to be an effective material for the physical adsorption of many of the smoke volatile species. However, physical adsorption of acetaldehyde, formaldehyde and also hydrogen cyanide from smoke is less effective using carbon. Alternative methods for the removal of these species from cigarette smoke are therefore of interest. A macroporous, polystyrene based ion-exchange resin (Diaion®CR20) with surface amine group functionality has been investigated for its ability to react with aldehydes and HCN in an aerosol stream, and thus selectively reduce the yields of these compounds (in particular formaldehyde) in mainstream cigarette smoke. Results Resin surface chemistry was characterized using vapour sorption, XPS, TOF-SIMS and 15N NMR. Diaion®CR20 was found to have structural characteristics indicating weak physisorption properties, but sufficient surface functionalities to selectively remove aldehydes and HCN from cigarette smoke. Using 60 mg of Diaion®CR20 in a cigarette cavity filter gave reductions in smoke formaldehyde greater than 50% (estimated to be equivalent to >80% of the formaldehyde present in the smoke vapour phase) independent of a range of flow rates. Substantial removal of HCN (>80%) and acetaldehyde (>60%) was also observed. The performance of Diaion®CR20 was found to be consistent over a test period of 6 months. The overall adsorption for the majority of smoke compounds measured appeared to follow a pseudo-first order approximation to second order kinetics. Conclusions This study has shown that Diaion®CR20 is a highly selective and efficient adsorbent for formaldehyde, acetaldehyde and HCN in cigarette smoke. The reductions for these compounds were greater than those achieved using an active carbon. The results also demonstrate that chemisorption can be an effective mechanism for the removal of certain vapour phase toxicants from cigarette smoke. PMID:21463512
Kheirbek, Iyad; Johnson, Sarah; Ross, Zev; Pezeshki, Grant; Ito, Kazuhiko; Eisl, Holger; Matte, Thomas
2012-07-31
Hazardous air pollutant exposures are common in urban areas contributing to increased risk of cancer and other adverse health outcomes. While recent analyses indicate that New York City residents experience significantly higher cancer risks attributable to hazardous air pollutant exposures than the United States as a whole, limited data exist to assess intra-urban variability in air toxics exposures. To assess intra-urban spatial variability in exposures to common hazardous air pollutants, street-level air sampling for volatile organic compounds and aldehydes was conducted at 70 sites throughout New York City during the spring of 2011. Land-use regression models were developed using a subset of 59 sites and validated against the remaining 11 sites to describe the relationship between concentrations of benzene, total BTEX (benzene, toluene, ethylbenzene, xylenes) and formaldehyde to indicators of local sources, adjusting for temporal variation. Total BTEX levels exhibited the most spatial variability, followed by benzene and formaldehyde (coefficient of variation of temporally adjusted measurements of 0.57, 0.35, 0.22, respectively). Total roadway length within 100 m, traffic signal density within 400 m of monitoring sites, and an indicator of temporal variation explained 65% of the total variability in benzene while 70% of the total variability in BTEX was accounted for by traffic signal density within 450 m, density of permitted solvent-use industries within 500 m, and an indicator of temporal variation. Measures of temporal variation, traffic signal density within 400 m, road length within 100 m, and interior building area within 100 m (indicator of heating fuel combustion) predicted 83% of the total variability of formaldehyde. The models built with the modeling subset were found to predict concentrations well, predicting 62% to 68% of monitored values at validation sites. Traffic and point source emissions cause substantial variation in street-level exposures to common toxic volatile organic compounds in New York City. Land-use regression models were successfully developed for benzene, formaldehyde, and total BTEX using spatial indicators of on-road vehicle emissions and emissions from stationary sources. These estimates will improve the understanding of health effects of individual pollutants in complex urban pollutant mixtures and inform local air quality improvement efforts that reduce disparities in exposure.
Rosenberger, Wolfgang; Beckmann, Bibiana; Wrbitzky, Renate
2016-04-15
This paper presents the strategy and results of in-flight measurements of airborne aldehydes during normal operation and reported "smell events" on commercial aircraft. The aldehyde-measurement is a part of a large-scale study on cabin-air quality. The aims of this study were to describe cabin-air quality in general and to detect chemical abnormalities during the so-called "smell-events". Adsorption and derivatization of airborne aldehydes on 2,4-dinitrophenylhydrazine coated silica gel (DNPH-cartridge) was applied using tailor-made sampling kits. Samples were collected with battery supplied personal air sampling pumps during different flight phases. Furthermore, the influence of ozone was investigated by simultaneous sampling with and without ozone absorption unit (ozone converter) assembled to the DNPH-cartridges and found to be negligible. The method was validated for 14 aldehydes and found to be precise (RSD, 5.5-10.6%) and accurate (recovery, 98-103 %), with LOD levels being 0.3-0.6 μg/m(3). According to occupational exposure limits (OEL) or indoor air guidelines no unusual or noticeable aldehyde pollution was observed. In total, 353 aldehyde samples were taken from two types of aircraft. Formaldehyde (overall average 5.7 μg/m(3), overall median 4.9 μg/m(3), range 0.4-44 μg/m(3)), acetaldehyde (overall average 6.5 μg/m(3), overall median 4.6, range 0.3-90 μg/m(3)) and mostly very low concentrations of other aldehydes were measured on 108 flights. Simultaneous adsorption and derivatization of airborne aldehydes on DNPH-cartridges to the Schiff bases and their HPLC analysis with UV absorbance detection is a useful method to measure aldehydes in cabin-air of commercial aircraft. Copyright © 2015 Elsevier B.V. All rights reserved.
CARBINOLAMINES AND GEMINAL DIOLS IN AQUEOUS ENVIRONMENTAL ORGANIC CHEMISTRY
Organic chemistry textbooks generally treat geminal diols as curiosities-exceptions to the stability of the C=O double bond. However, most aldehydes of environmental significance, to wit, trichloroethanal (chloral), methanala (formaldehyde), ethanal (acetaldehyde), and propanal ...
GLOBAL INVENTORY OF VOLATILE COMPOUND EMISSIONS FROM ANTHROPOGENIC SOURCES
The report describes a global inventory anthropogenic volatile organic compound (VOC) emissions that includes a separate inventory for each of seven pollutant groups--paraffins, olefins, aromatics, formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds....
Dynamic spiking studies using the DNPH sampling train
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steger, J.L.; Knoll, J.E.
1996-12-31
The proposed aldehyde and ketone sampling method using aqueous 2,4-dinitrophenylhydrazine (DNPH) was evaluated in the laboratory and in the field. The sampling trains studied were based on the train described in SW 846 Method 0011. Nine compounds were evaluated: formaldehyde, acetaldehyde, quinone, acrolein, propionaldeyde, methyl isobutyl ketone, methyl ethyl ketone, acetophenone, and isophorone. In the laboratory, the trains were spiked both statistically and dynamically. Laboratory studies also investigated potential interferences to the method. Based on their potential to hydrolyze in acid solution to form formaldehyde, dimethylolurea, saligenin, s-trioxane, hexamethylenetetramine, and paraformaldehyde were investigated. Ten runs were performed using quadruplicate samplingmore » trains. Two of the four trains were dynamically spiked with the nine aldehydes and ketones. The test results were evaluated using the EPA method 301 criteria for method precision (< + pr - 50% relative standard deviation) and bias (correction factor of 1.00 + or - 0.30).« less
NASA Astrophysics Data System (ADS)
Schleibinger, Hans; Rüden, Henning
The emission of volatile organic compounds (VOC) from air filters of HVAC systems was to be evaluated. In a first study carbonyl compounds (14 aldehydes and two ketones) were measured by reacting them with 2,4-dinitrophenylhydrazine (DNPH). Analysis was done by HPLC and UV detection. In laboratory experiments pieces of used and unused HVAC filters were incubated in test chambers. Filters to be investigated were taken from a filter bank of a large HVAC system in the centre of Berlin. First results show that - among those compounds - formaldehyde and acetone were found in higher concentrations in the test chambers filled with used filters in comparison to those with unused filters. Parallel field measurements were carried out at the prefilter and main filter banks of the two HVAC systems. Here measurements were carried out simultaneously before and after the filters to investigate whether those aldehydes or ketones arise from the filter material on site. Formaldehyde and acetone significantly increased in concentration after the filters of one HVAC system. In parallel experiments microorganisms were proved to be able to survive on air filters. Therefore, a possible source of formaldehyde and acetone might be microbes.
Tulpule, Ketki; Dringen, Ralf
2012-04-01
Formaldehyde is a neurotoxic compound that can be endogenously generated in the brain. Because astrocytes play a key role in metabolism and detoxification processes in brain, we have investigated the capacity of these cells to metabolize formaldehyde using primary astrocyte-rich cultures as a model system. Application of formaldehyde to these cultures resulted in the appearance of formate in cells and in a time-, concentration- and temperature-dependent disappearance of formaldehyde from the medium that was accompanied by a matching extracellular accumulation of formate. This formaldehyde-oxidizing capacity of astrocyte cultures is likely to be catalyzed by alcohol dehydrogenase 3 and aldehyde dehydrogenase 2, because the cells of the cultures contain the mRNAs of these formaldehyde-oxidizing enzymes. In addition, exposure to formaldehyde increased both glucose consumption and lactate production by the cells. Both the strong increase in the cellular formate content and the increase in glycolytic flux were only observed after application of formaldehyde to the cells, but not after treatment with exogenous methanol or formate. The accelerated lactate production was not additive to that obtained for azide, a known inhibitor of complex IV of the respiratory chain, and persisted after removal of formaldehyde after a formaldehyde exposure for 1.5 h. These data demonstrate that cultured astrocytes efficiently oxidize formaldehyde to formate, which subsequently enhances glycolytic flux, most likely by inhibition of mitochondrial respiration. Copyright © 2012 Wiley Periodicals, Inc.
Lin, Yi-Liang; Wang, Po-Yen; Hsieh, Ling-Ling; Ku, Kuan-Hsuan; Yeh, Yun-Tai; Wu, Chien-Hou
2009-09-04
A simple and sensitive method is described for the determination of picomolar amounts of C(1)-C(9) linear aliphatic aldehydes in waters containing heavy metal ions. In this method, aldehydes were first derivatized with 2,4-dinitrophenylhydrazine (DNPH) at optimized pH 1.8 for 30 min and analyzed by HPLC with UV detector at 365 nm. Factors affecting the derivatization reaction of aldehydes and DNPH were investigated. Cupric ion, an example of heavy metals, is a common oxidative reagent, which may oxidize DNPH and greatly interfere with the determination of aldehydes. EDTA was used to effectively mask the interferences by heavy metal ions. The method detection limits for direct injection of derivatized most aldehydes except formaldehyde were of the order of 7-28 nM. The detection limit can be further lowered by using off-line C(18) adsorption cartridge enrichment. The recoveries of C(1)-C(9) aldehydes were 93-115% with a relative standard deviation of 3.6-8.1% at the 0.1 microM level for aldehydes. The HPLC-DNPH method has been applied for determining aldehyde photoproducts from Cu(II)-amino acid complex systems.
Aldehydes in passenger vehicles: An analysis of data from the RIOPA Study 1999-2001
NASA Astrophysics Data System (ADS)
Mapou, Ashley E. M.; Shendell, Derek G.; Therkorn, Jennifer H.; Xiong, Youyou; Meng, Qingyu; Zhang, Junfeng
2013-11-01
In-vehicle air quality (IVAQ) can be a major health concern due to factors such as urban sprawl and increased commuting time spent by individuals in vehicles. Few studies, particularly in the U.S., have considered in-vehicle toxic air contaminants, and none to date collected/analyzed field data in multiple communities across multiple climate zones. This study presents analyses of field data collected during the RIOPA Study from participating non-smoking adults for communities in Los Angeles County, CA, Elizabeth, NJ and Houston, TX. A significant difference (p < 0.001) in in-vehicle formaldehyde concentrations was observed, with the median concentration of in-vehicle formaldehyde in the CA communities about twice as high as in the NJ and TX communities. The highest median concentration of in-vehicle acetaldehyde was observed among the TX participants, over 40% higher than the overall study median. Given small sample sizes, the community (state) differences may be driven independently by differences in individual vehicle conditions and driving habits. Positive correlations were found between average community outdoor relative humidity in CA and NJ and in-vehicle formaldehyde and acetaldehyde concentrations. The amount of time car windows were reported as closed was inversely correlated with in-vehicle formaldehyde across study locations, and for in-vehicle acetaldehyde in CA and TX. Average wind speed and varying sky conditions also had suggested associations to in-vehicle formaldehyde and acetaldehyde. In CA and TX, 88% (7/8) of participants with a diagnosis of bronchitis reported at study baseline had in-vehicle formaldehyde concentrations greater than the overall study median. Every participant with diagnoses of both asthma and bronchitis (n = 3) reported at study baseline had in-vehicle formaldehyde and acetaldehyde concentrations above the overall study median; one participant in TX with two seasonal in-vehicle samplings had in-vehicle concentrations > 75th percentile. IVAQ during commuting may vary based on human behavior and meteorological factors. Additional studies are needed to further characterize ways to help reduce in-vehicle aldehyde exposures, especially for people with existing chronic respiratory illnesses who could experience symptom exacerbations upon such exposures.
Cells deficient in the FANC/BRCA pathway are hypersensitive to plasma levels of formaldehyde.
Ridpath, John R; Nakamura, Ayumi; Tano, Keizo; Luke, April M; Sonoda, Eiichiro; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Gillespie, David A F; Sale, Julian E; Yamazoe, Mitsuyoshi; Bishop, Douglas K; Takata, Minoru; Takeda, Shunichi; Watanabe, Masami; Swenberg, James A; Nakamura, Jun
2007-12-01
Formaldehyde is an aliphatic monoaldehyde and is a highly reactive environmental human carcinogen. Whereas humans are continuously exposed to exogenous formaldehyde, this reactive aldehyde is a naturally occurring biological compound that is present in human plasma at concentrations ranging from 13 to 97 micromol/L. It has been well documented that DNA-protein crosslinks (DPC) likely play an important role with regard to the genotoxicity and carcinogenicity of formaldehyde. However, little is known about which DNA damage response pathways are essential for cells to counteract formaldehyde. In the present study, we first assessed the DNA damage response to plasma levels of formaldehyde using chicken DT40 cells with targeted mutations in various DNA repair genes. Here, we show that the hypersensitivity to formaldehyde is detected in DT40 mutants deficient in the BRCA/FANC pathway, homologous recombination, or translesion DNA synthesis. In addition, FANCD2-deficient DT40 cells are hypersensitive to acetaldehyde, but not to acrolein, crotonaldehyde, glyoxal, and methylglyoxal. Human cells deficient in FANCC and FANCG are also hypersensitive to plasma levels of formaldehyde. These results indicate that the BRCA/FANC pathway is essential to counteract DPCs caused by aliphatic monoaldehydes. Based on the results obtained in the present study, we are currently proposing that endogenous formaldehyde might have an effect on highly proliferating cells, such as bone marrow cells, as well as an etiology of cancer in Fanconi anemia patients.
Aldehyde Detection in Electronic Cigarette Aerosols
2017-01-01
Acetaldehyde, acrolein, and formaldehyde are the principal toxic aldehydes present in cigarette smoke and contribute to the risk of cardiovascular disease and noncancerous pulmonary disease. The rapid growth of the use of electronic cigarettes (e-cigarettes) has raised concerns over emissions of these harmful aldehydes. This work determines emissions of these aldehydes in both free and bound (aldehyde–hemiacetal) forms and other carbonyls from the use of e-cigarettes. A novel silicon microreactor with a coating phase of 4-(2-aminooxyethyl)-morpholin-4-ium chloride (AMAH) was used to trap carbonyl compounds in the aerosols of e-cigarettes via oximation reactions. AMAH–aldehyde adducts were measured using gas chromatography–mass spectrometry. 1H nuclear magnetic resonance spectroscopy was used to analyze hemiacetals in the aerosols. These aldehydes were detected in the aerosols of all e-cigarettes. Newer-generation e-cigarette devices generated more aldehydes than the first-generation e-cigarettes because of higher battery power output. Formaldehyde–hemiacetal was detected in the aerosols generated from some e-liquids using the newer e-cigarette devices at a battery power output of 11.7 W and above. The emission of these aldehydes from all e-cigarettes, especially higher levels of aldehydes from the newer-generation e-cigarette devices, indicates the risk of using e-cigarettes. PMID:28393137
Method development study for APR cartridge evaluation in fire overhaul exposures.
Anthony, T Renée; Joggerst, Philip; James, Leonard; Burgess, Jefferey L; Leonard, Stephen S; Shogren, Elizabeth S
2007-11-01
In the US, firefighters do not typically wear respiratory protection during overhaul activities, although fitting multi-gas or chemical, biological, radiological and nuclear cartridges to supplied air respirator facepieces has been proposed to reduce exposures. This work developed a method to evaluate the effectiveness of respirator cartridges in smoke that represents overhaul exposures to residential fires. Chamber and penetration concentrations were measured for 91 contaminants, including aldehydes, polynuclear aromatic hydrocarbons, hydrocarbons and methyl isothiocyanate, along with total and respirable particulates. These laboratory tests generated concentrations in the range of field-reported exposures from overhaul activities. With limited tests, no styrene, benzene, acrolein or particulates were detected in air filtered by the respirator cartridge, yet other compounds were detected penetrating the respirator. Because of the complexity of smoke, an exposure index was determined for challenge and filtered air to determine the relative risk of the aggregate exposure to respiratory irritants. The primary contributors to the irritant exposure index in air filtered by the respirator were formaldehyde and acetaldehyde, with total hydrocarbons contributing only 1% to the irritant index. Respirator cartridges were adequate to minimize firefighter exposures to aggregate respiratory irritants if the American Conference of Governmental Industrial Hygienists ceiling limit for formaldehyde is used (0.3 ppm) but not if National Institute for Occupational Safety and Health Recommended Exposure Limit (NIOSH REL) (0.1 ppm) is used, where three of five concentrations in filtered air exceeded the NIOSH REL. Respirator certification allows 1 ppm of formaldehyde to pass through it when challenged at 100 ppm, which may not adequately protect workers to current short-term exposure/ceiling limits. The method developed here recommends specific contaminants to measure in future work (formaldehyde, acrolein, acetaldehyde, naphthalene, benzene, total hydrocarbons as toluene and particulate mass) along with inclusion of additional irritant gases and hydrogen cyanide to fully evaluate whether air-purifying respirators reduce exposures to the aggregate gases/vapors present in overhaul activities.
Li, Ying; Yi, Fan; Zheng, Yiliang; Wang, Yu; Ye, Jiannong; Chu, Qingcui
2015-08-01
An environmentally friendly method for the trace analysis of four aliphatic aldehydes as water disinfection byproducts has been developed based on hollow-fiber liquid-phase microextraction followed by miniature capillary electrophoresis with amperometric detection. After derivatization with 2-thiobarbituric acid, four aliphatic aldehydes (formaldehyde, acetaldehyde, propylaldehyde, and butyraldehyde) became detectable by the amperometric detector. Under the optimum conditions, four aliphatic aldehydes can be well separated from the coexisting interferents as well as their homologs (pentanal, glyoxal, and methyl-glyoxal), and the limits of detection (S/N = 3) could reach sub-nanogram-per-milliliter level based on hollow-fiber liquid-phase microextraction. The proposed method has been applied for the analyses of above four aliphatic aldehydes in different water samples such as drinking water, tap water, and river water, and the average recoveries were in the range of 90-113%, providing an alternative to conventional and microchip capillary electrophoresis approaches. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Pitsch, S.; Krishnamurthy, R.; Arrhenius, G.; Bada, J. L. (Principal Investigator)
2000-01-01
Environmental conditions play an important role in conceptual studies of prebiotically relevant chemical reactions that could have led to functional biomolecules. The necessary source compounds are likely to have been present in dilute solution, raising the question of how to achieve selective concentration and to reach activation. With the assumption of an initial 'RNA World', the questions of production, concentration, and interaction of aldehydes and aldehyde phosphates, potential precursors of sugar phosphates, come into the foreground. As a possible concentration process for simple, uncharged aldehydes, we investigated their adduct formation with sulfite ion bound in the interlayer of positively charged expanding-sheet-structure double-layer hydroxide minerals. Minerals of this type, initially with chloride as interlayer counter anion, have previously been shown to induce concentration and subsequent aldolization of aldehyde phosphates to form tetrose, pentose, and hexose phosphates. The reversible uptake of the simple aldehydes formaldehyde, glycolaldehyde, and glyceraldehyde by adduct formation with the immobilized sulfite ions is characterized by equilibrium constants of K=1.5, 9, and 11, respectively. This translates into an observable uptake at concentrations exceeding 50 mM.
NASA Astrophysics Data System (ADS)
Uchiyama, Shigehisa; Hasegawa, Shuji
We developed a diffusive sampling device (DSD-carbonyl) for organic carbonyl compounds (aldehydes and ketones) which is suitable for collection and analysis of low concentration levels. This sampling device is composed of three parts, an exposure part made of a porous polytetrafluoroethylene (PPTFE) tube, an analysis part made of polypropylene (PP) tubing and an absorbent part made of 2,4-dinitrophenylhydrazine (DNPH) coated silica gel (DNPH-silica). Aldehydes and ketones diffuse to the DSD-carbonyl through PPTFE-tube by the mechanism of molecular diffusion and react specifically with DNPH to form a stable DNPH-derivatives. Collection is controlled by moving the absorbent from the exposure part to the analysis part by changing the posture of the DSD-carbonyl. DNPH-derivatives were eluted from an analysis part of DSD-carbonyl with acetonitrile directly and analyzed by high performance liquid chromatography (HPLC). The advantages of the DSD-carbonyl are the following: (1) The DSD-carbonyl can be used in a wide range of concentration of aldehydes and ketones in atmosphere, as the DSD-carbonyl exposure part has a variable diffusion area, (2) DNPH-derivatives are eluted from DNPH-silica without contamination of air. (3) The sampler can be applied to active sampling by connecting it with a pump. The limit of detection (LOD) for concentrations of major aldehydes and ketones ranged from 0.072 to 0.13 ppb, and the limit of quantitation (LOQ) ranged from 0.24 to 0.42 ppb. The coefficient variation (CV) for concentrations of major aldehydes and ketones ranged from 2.5 to 3.0% in laboratory air. The DSD-carbonyl method and active sampling method (US EPA method IP-6A) showed a good correlation (formaldehyde, r2=0.995). The uptake rates for formaldehyde, acetaldehyde, and acetone were estimated as 0.078, 0.062 and 0.079 nmol ppb -1 h -1, respectively. It is possible to estimate atmospheric aldehydes and ketones at parts per billion (ppb), with high sensitivity and precision, by using DSD-carbonyl.
Alcohol, Aldehydes, Adducts and Airways
Sapkota, Muna; Wyatt, Todd A.
2015-01-01
Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease. PMID:26556381
Alcohol, Aldehydes, Adducts and Airways.
Sapkota, Muna; Wyatt, Todd A
2015-11-05
Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease.
Control of aldehyde emissions in the diesel engines with alcoholic fuels.
Krishna, M V S Murali; Varaprasad, C M; Reddy, C Venkata Ramana
2006-01-01
The major pollutants emitted from compression ignition (CI) engine with diesel as fuel are smoke and nitrogen oxides (NOx). When the diesel engine is run with alternate fuels, there is need to check alcohols (methanol or ethanol) and aldehydes also. Alcohols cannot be used directly in diesel engine and hence engine modification is essential as alcohols have low cetane number and high latent hear of vaporization. Hence, for use of alcohol in diesel engine, it needs hot combustion chamber, which is provided by low heat rejection (LHR) diesel engine with an air gap insulated piston with superni crown and air gap insulated liner with superni insert. In the present study, the pollution levels of aldehydes are reported with the use of methanol and ethanol as alternate fuels in LHR diesel engine with varying injection pressure, injection timings with different percentage of alcohol induction. The aldehydes (formaldehyde and acetaldehyde) in the exhaust were estimated by wet chemical technique with high performance liquid chromatograph (HPLC). Aldehyde emissions increased with an increase in alcohol induction. The LHR engine showed a decrease in aldehyde emissions when compared to conventional engine. However, the variation of injection pressure showed a marginal effect in reducing aldehydes, while advancing the injection timing reduced aldehyde emissions.
Abstract
Formaldehyde (FA) is cytotoxic and is carcinogenic to the rat nasal respiratory epithelium producing tumors after twelve months of exposure. In contrast, glutaraldehyde (GA) is also cytotoxic but not carcinogenic to nasal epithelium after 2 yrs of exposure. Other...
EFFECT OF PH ON THE REACTION OF 2,4-DINITROPHENYLHYDRAZINE WITH FORMALDEHYDE AND ACETALDEHYDE
The acid-catalyzed condensation reaction of a molecule of 2,4-dinitrophenyl-hydrazine (DNPH) with a carbonyl compound is a well known reaction for characterizing aldehydes and ketones. The DNPH derivatives are used to identify qualitatively the parent carbonyl compound by melting...
NASA Technical Reports Server (NTRS)
Schwartz, Alan W.; Bakker, C. G.
1989-01-01
Oligomerization of HCN (1 molar) in the presence of added formaldehyde (0.5 molar) produced an order of magnitude more 8-hydroxymethyladenine than adenine or any other biologically significant purine. This result suggests that on the prebiotic earth, nucleoside analogs may have been synthesized directly in more complex mixtures of HCN with other aldehydes.
Pluskota-Karwatka, Donata; Le Curieux, Frank; Munter, Tony; Sjöholm, Rainer; Kronberg, Leif
2002-02-01
Malonaldehyde was reacted with cytidine in buffered aqueous solutions in the presence of acetaldehyde or formaldehyde. The reaction mixtures were analyzed by HPLC, and the products were isolated by preparative C18 chromatography and structurally characterized by UV absorbance, fluorescence emission, (1)H and (13)C NMR spectroscopy, and mass spectrometry. The major adducts formed in the reaction of malonaldehyde and acetaldehyde were identified as 7-(beta-D-ribofuranosyl)-4-methyl-6-oxo-6,7-dihydro-4H-pyrimido[1,6-a]pyrimidine-3-carbaldehyde (M(1)AA-Cyd) and 1-(beta-D-ribofuranosyl)-4-(3,5-diformyl-4-methyl-1,4-dihydro-1-pyridyl)pyrimidine (M(2)AA-Cyd). In the reaction of malonaldehyde and formaldehyde, the major product was identified as 7-(beta-D-ribofuranosyl)-6-oxo-6,7-dihydro-4H-pyrimido[1,6-a]pyrimidine-3-carbaldehyde (M(1)FA-Cyd). The highest yields of M(1)AA-Cyd and M(2)AA-Cyd, 3.2 and 0.5 mol %, respectively, were obtained in the reaction performed at pH 4.6 and 37 degrees C for 8 days, while M(1)FA-Cyd was produced at a yield of 0.3 mol % after 3 days of reaction at pH 4.0 and 37 degrees C. The products consist of units derived from malonaldehyde and acetaldehyde (M(1)AA-Cyd and M(2)AA-Cyd) or from malonaldehyde and formaldehyde (M(1)FA-Cyd), and are thus further examples of nucleoside modifications containing structural elements derived from aldehyde condensation reactions. Trace amounts of the adducts may be formed at physiological conditions and may be involved in the mutagenicity of the studied aldehydes.
A wide variety of natural and anthropogenic sources emit airborne carbonyls such as aldehydes (RCHO) and ketones (R1COR2). Vegetation, food, forest fires, fossil fuel combustion, disinfectants, fumigants, preservatives, and resins are a few examples of primary carbonyl sources. T...
A wide variety of natural and anthropogenic sources emit airborne carbonyls such as aldehydes (RCHO) and ketones (R1COR2). Vegetation, food, forest fires, fossil fuel combustion, disinfectants, fumigants, preservatives, and resins are a few examples of primary carbonyl sources. T...
Kim, Sumin; Kim, Jin-A; An, Jae-Yoon; Kim, Hyun-Joong; Kim, Shin Do; Park, Jin Chul
2007-10-01
Polyvinyl acetate (PVAc) was added as a replacement for melamine-formaldehyde (MF) resin in the formaldehyde-based resin system to reduce formaldehyde and volatile organic compound (VOC) emissions from the adhesives used between plywoods and fancy veneers. A variety of techniques, including 20-l chamber, field and laboratory emission cell (FLEC), VOC analyzer and standard formaldehyde emission test (desiccator method), were used to determine the formaldehyde and VOC emissions from engineered flooring bonded with five different MF resin and PVAc blends at MF/PVAc ratios of 100:0, 70:30, 50:50, 30:70 and 0:100. Although urea-formaldehyde (UF) resin had the highest formaldehyde emission, the emission as determined by desiccator method was reduced by exchanging with MF resin. Furthermore, the formaldehyde emission level was decreased with increasing addition of PVAc as the replacement for MF resin. UF resin in the case of beech was over 5.0 mg/l, which exceeded E2 (1.5-5.0 mg/l) grade. However, MF30:PVAc70 was
Lai, Yongquan; Yu, Rui; Hartwell, Hadley J.; Moeller, Benjamin C.; Bodnar, Wanda M.; Swenberg, James A.
2016-01-01
DNA-protein crosslinks (DPCs) arise from a wide range of endogenous and exogenous chemicals, such as chemotherapeutic drugs and formaldehyde. Importantly, recent identification of aldehydes as endogenous genotoxins in Fanconi anemia has provided new insight into disease causation. Due to their bulky nature, DPCs pose severe threats to genome stability, but previous methods to measure formaldehyde-induced DPCs were incapable of discriminating between endogenous and exogenous sources of chemical. In this study, we developed methods that provide accurate and distinct measurements of both exogenous and endogenous DPCs in a structurally-specific manner. We exposed experimental animals to stable isotope-labeled formaldehyde ([13CD2]-formaldehyde) by inhalation and performed ultrasensitive mass spectrometry to measure endogenous (unlabeled) and exogenous (13CD2-labeled) DPCs. We found that exogenous DPCs readily accumulated in nasal respiratory tissues, but were absent in tissues distant to the site of contact. This observation together with the finding that endogenous formaldehyde-induced DPCs were present in all tissues examined suggests that endogenous DPCs may be responsible for increased risks of bone marrow toxicity and leukemia. Furthermore, the slow rate of DPC repair provided evidence for persistence of DPCs. In conclusion, our method for measuring endogenous and exogenous DPCs presents a new perspective for the potential health risks inflicted by endogenous formaldehyde, and may inform improved disease prevention and treatment strategies. PMID:26984759
Origin of low-molecular mass aldehydes as disinfection by-products in beverages.
Serrano, María; Gallego, Mercedes; Silva, Manuel
2017-09-01
A novel, simple and automatic method based on static headspace-gas chromatography-mass spectrometry has been developed to determine 10 low-molecular mass aldehydes that can be found in beverages, coming from the treated water used in their production. These aldehydes are the most frequently found in treated water as water disinfection by-products, so they can be used as indicators of the addition of treated water to beverages. The study covered a large number of fruit juices and soft drinks. The presence of the whole array of analytes is related to the contact with treated water during beverage production, mainly by the addition of treated water as ingredient. In particular, propionaldehyde, valeraldehyde and benzaldehyde can be used as indicators of the addition of treated water in these kinds of beverages. Among the ten aldehydes, only formaldehyde and acetaldehyde are naturally present in all kinds of fruit, and their concentrations are related to stage of the ripening of the fruit.
Measurements of carbonyls in a 13-story building.
Báez, Armando P; Padilla, Hugo G; García, Rocío M; Belmont, Raúl D; Torres, Maria del Carmen B
2004-01-01
Formaldehyde and acetaldehyde are emitted by many mobile and stationary sources and secondary aldehydes are intermediates in the photo-oxidation of organic compounds in the atmosphere. These aldehydes are emitted indoors by many materials such as furniture, carpets, heating and cooling systems, an by smoking. Carbonyls, mainly formaldehyde and acetaldehyde, have been studied because of their adverse health effects. In addition, formaldehyde is a suspected carcinogen. Therefore, the concentrations of formaldehyde and acetaldehyde were determined to assess the inhalation exposure doses to carbonyls for people who work in a 13-story building and in order to evaluate the cancer hazard. Carbonyl compounds in indoor and outdoor air were measured at a 13-story building located in Mexico City. The mezzanine, fifth and tenth floors, and the third level-parking garage were selected for sampling. Samples were collected in two sampling periods, the first from April 20 to 29, 1998 and the second from December 1 to 20, 1998. Carbonyls were sampled by means of DNHP-coated cartridges at a flow rate of 1 l min(-1) from 9:00 to 19:00 hours, during 2-hour time intervals and analyzed by HPLC with hours, during 2-hour time intervals and analyzed by HPLC with UV/VIS detection. Mean carbonyl concentrations were highest in the 3rd level-parking garage, with the formaldehyde concentration being the highest ranging from 108 to 418 microg m(-3). In working areas, the highest carbonyl arithmetic mean concentrations (AM) were observed on the 5th floor. Acetone and formaldehyde concentrations were highest in April ranging from 161 to 348 microg m(-3) (AM = 226) and from 157 to 270 microg m(-3) (AM = 221), respectively. Propionaldehyde and butyraldehyde were present in smaller concentrations ranging from 2 to 25 and 1 to 28 microg m(-3), respectively, considering all the samples. Mean indoor/outdoor ratios of carbonyls ranged from 1.8 to 9.6. A reduction of inhalation exposure doses of 41% and 45% was observed in the fifth floor air after the air conditioning systems had been repaired. Formaldehyde and acetaldehyde concentrations were higher in smoking environments. Indoor carbonyl concentrations were significantly greater than outdoor concentrations. Tobacco smoke seems to be the main indoor source of formaldehyde. After the air conditioning system was maintained and repaired (as was recommended), an important reduction in the emission of formaldehyde and acetaldehyde was achieved on all floors, except for the 3rd level parking garage, thereby reducing the inhalation exposure doses. The results obtained in this research demonstrated that maintenance of air conditioning systems must be carried out regularly in order to avoid possible adverse effects on health. Additionally, it is mandatory that isolated smoking areas, with air extraction systems, be installed in every public building.
Synthesis of renewable bisphenols from creosol.
Meylemans, Heather A; Groshens, Thomas J; Harvey, Benjamin G
2012-01-09
A series of renewable bisphenols has been synthesized from creosol (2-methoxy-4-methylphenol) through stoichiometric condensation with short-chain aldehydes. Creosol can be readily produced from lignin, potentially allowing for the large scale synthesis of bisphenol A replacements from abundant waste biomass. The renewable bisphenols were isolated in good yields and purities without resorting to solvent-intense purification methods. Zinc acetate was shown to be a selective catalyst for the ortho-coupling of formaldehyde, but was unreactive when more sterically demanding aldehydes were used. Dilute HCl and HBr solutions were shown to be effective catalysts for the selective coupling of aldehydes in the position meta to the hydroxyl group. The acid solutions could be recycled and reused multiple times without decrease in activity or yield. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Preparation of hydrophobic organic aeorgels
Baumann, Theodore F.; Satcher, Jr., Joe H.; Gash, Alexander E.
2007-11-06
Synthetic methods for the preparation of hydrophobic organics aerogels. One method involves the sol-gel polymerization of 1,3-dimethoxybenzene or 1,3,5-trimethoxybenzene with formaldehyde in non-aqueous solvents. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be dried using either supercritical solvent extraction to generate the new organic aerogels or air dried to produce an xerogel. Other methods involve the sol-gel polymerization of 1,3,5 trihydroxy benzene (phloroglucinol) or 1,3 dihydroxy benzene (resorcinol) and various aldehydes in non-aqueous solvents. These methods use a procedure analogous to the one-step base and two-step base/acid catalyzed polycondensation of phloroglucinol and formaldehyde, but the base catalyst used is triethylamine. These methods can be applied to a variety of other sol-gel precursors and solvent systems. These hydrophobic organics aerogels have numerous application potentials in the field of material absorbers and water-proof insulation.
Preparation of hydrophobic organic aeorgels
Baumann, Theodore F.; Satcher, Jr., Joe H.; Gash, Alexander E.
2004-10-19
Synthetic methods for the preparation of hydrophobic organics aerogels. One method involves the sol-gel polymerization of 1,3-dimethoxybenzene or 1,3,5-trimethoxybenzene with formaldehyde in non-aqueous solvents. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be dried using either supercritical solvent extraction to generate the new organic aerogels or air dried to produce an xerogel. Other methods involve the sol-gel polymerization of 1,3,5 trihydroxy benzene (phloroglucinol) or 1,3 dihydroxy benzene (resorcinol) and various aldehydes in non-aqueous solvents. These methods use a procedure analogous to the one-step base and two-step base/acid catalyzed polycondensation of phloroglucinol and formaldehyde, but the base catalyst used is triethylamine. These methods can be applied to a variety of other sol-gel precursors and solvent systems. These hydrophobic organics aerogels have numerous application potentials in the field of material absorbers and water-proof insulation.
Lai, Yongquan; Yu, Rui; Hartwell, Hadley J; Moeller, Benjamin C; Bodnar, Wanda M; Swenberg, James A
2016-05-01
DNA-protein crosslinks (DPC) arise from a wide range of endogenous and exogenous chemicals, such as chemotherapeutic drugs and formaldehyde. Importantly, recent identification of aldehydes as endogenous genotoxins in Fanconi anemia has provided new insight into disease causation. Because of their bulky nature, DPCs pose severe threats to genome stability, but previous methods to measure formaldehyde-induced DPCs were incapable of discriminating between endogenous and exogenous sources of chemical. In this study, we developed methods that provide accurate and distinct measurements of both exogenous and endogenous DPCs in a structurally specific manner. We exposed experimental animals to stable isotope-labeled formaldehyde ([(13)CD2]-formaldehyde) by inhalation and performed ultrasensitive mass spectrometry to measure endogenous (unlabeled) and exogenous ((13)CD2-labeled) DPCs. We found that exogenous DPCs readily accumulated in nasal respiratory tissues but were absent in tissues distant to the site of contact. This observation, together with the finding that endogenous formaldehyde-induced DPCs were present in all tissues examined, suggests that endogenous DPCs may be responsible for increased risks of bone marrow toxicity and leukemia. Furthermore, the slow rate of DPC repair provided evidence for the persistence of DPCs. In conclusion, our method for measuring endogenous and exogenous DPCs presents a new perspective for the potential health risks inflicted by endogenous formaldehyde and may inform improved disease prevention and treatment strategies. Cancer Res; 76(9); 2652-61. ©2016 AACR. ©2016 American Association for Cancer Research.
NASA Technical Reports Server (NTRS)
Weber, Arthur L.
1998-01-01
Formaldehyde and glycolaldehyde (substrates of the formose autocatalytic cycle) were shown to react with ammonia yielding alanine and homoserine under mild aqueous conditions in the presence of thiol catalysts. Since similar reactions carried out without ammonia yielded alpha-hydroxy acid thioesters, the thiol-dependent synthesis of alanine and homoserine is presumed to occur via amino acid thioesters-intermediates capable of forming peptides. A pH 5.2 solution of 20 mM formaldehyde, 20 mM glycolaldehyde, 20 mM ammonium chloride, 23 mM 3-mercaptopropionic acid, and 23 mM acetic acid that reacted for 35 days at 40 C yielded (based on initial formaldehyde) 1.8% alanine and 0.08% homoserine. In the absence of thiol catalyst, the synthesis of alanine and homoserine was negligible. Alanine synthesis required both formaldehyde and glycolaldehyde, but homoserine synthesis required only glycolaldehyde. At 25 days the efficiency of alanine synthesis calculated from the ratio of alanine synthesized to formaldehyde reacted was 2.1%, and the yield (based on initial formaldehyde) of triose and tetrose intermediates involved in alanine and homoserine synthesis was 0.3 and 2.1%, respectively. Alanine synthesis was also seen in similar reactions containing only 10 mM each of aldehyde substrates, ammonia, and thiol. The prebiotic significance of these reactions that use the formose reaction to generate sugar intermediates that are converted to reactive amino acid thioesters is discussed.
Song, Chonglin; Zhao, Zhuang; Lv, Gang; Song, Jinou; Liu, Lidong; Zhao, Ruifen
2010-05-01
This paper presents an investigation of the carbonyl emissions from a direct injection heavy-duty diesel engine fueled with pure diesel fuel (DF) and blended fuel containing 15% by volume of ethanol (E/DF). The tests have been conducted under steady-state operating conditions at 1200, 1800, 2600 rpm and idle speed. The experimental results show that acetaldehyde is the most predominant carbonyl, followed by formaldehyde, acrolein, acetone, propionaldehyde and crotonaldehyde, produced from both fuels. The emission factors of total carbonyls vary in the range 13.8-295.9 mg(kWh)(-1) for DF and 17.8-380.2mg(kWh)(-1) for E/DF, respectively. The introduction of ethanol into diesel fuel results in a decrease in acrolein emissions, while the other carbonyls show general increases: at low engine speed (1200 rpm), 0-55% for formaldehyde, 4-44% for acetaldehyde, 38-224% for acetone, and 5-52% for crotonaldehyde; at medium engine speed (1800 rpm), 106-413% for formaldehyde, 4-143% for acetaldehyde, 74-113% for acetone, 114-1216% for propionaldehyde, and 15-163% for crotonaldehyde; at high engine speed (2600 rpm), 36-431% for formaldehyde, 18-61% for acetaldehyde, 22-241% for acetone, and 6-61% for propionaldehyde. A gradual reduction in the brake specific emissions of each carbonyl compound from both fuels is observed with increase in engine load. Among three levels of engine speed employed, both DF and E/DF emit most CBC emissions at high engine speed. On the whole, the presence of ethanol in diesel fuel leads to an increase in aldehyde emissions. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Method for recovering and using lignin in adhesive resins by extracting demethylated lignin
Schroeder, Herbert A.
1991-01-01
Lignin, or a lignin derived material, which has been significantly demethylated (e.g., the demethylated lignin found in the raffinate produced as a by-product of dimethyl sulfide production which can be carried out using the spent liquor from wood pulping operations) can be isolated by a process wherein an organic solvent is added to a lignin-containing aqueous solution. The organic solvent is typically a polar, and at least a partially water-immiscible substance such as, for example, ethyl acetate. The resulting lignin-containing aqueous solution/organic solvent mixture is acidified to produce a water layer which is discarded and an organic solvent layer which contains the demethylated lignin. Upon its recovery, the demethylated lignin is dissolved in an alkaline solution to which an aldehyde source is added to produce a resol-type resin. The aldehyde source may be formaldehyde in solution, paraformaldehyde, hexamethylenetetramine, or other aldehydes including acetaldehyde, furfural, and their derivatives.
Method for recovering and using lignin in adhesive resins
Schroeder, Herbert A.
1993-01-01
Lignin, or a lignin derived material, which has been significantly demethylated (e.g., the demethylated lignin found in the raffinate produced as a by-product of dimethyl sulfide production which can be carried out using the spent liquor from wood pulping operations) can be isolated by a process wherein an organic solvent is added to a lignin-containing aqueous solution. The organic solvent is typically a polar, and at least a partially water-immiscible substance such as, for example, ethyl acetate. The resulting lignin-containing aqueous solution/organic solvent mixture is acidified to produce a water layer which is discarded and an organic solvent layer which contains the demethylated lignin. Upon its recovery, the demethylated lignin is dissolved in an alkaline solution to which an aldehyde source is added to produce a resol-type resin. The aldehyde source may be formaldehyde in solution, paraformaldehyde, hexamethylenetetramine, or other aldehydes including acetaldehyde, furfural, and their derivatives.
A method for the determination of low molecular weight aldehydes in water using aqueous-phase derivatization with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride has been improved by the use of high-resolution capillary GC. Detection limits with GC/ECD and GC/MS with ...
Sensory irritation structure-activity study of inhaled aldehydes in B6C3F1 and Swiss-Webster mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinhagen, W.H.; Barrow, C.S.
1984-03-15
The sensory irritation potential of a series of saturated and unsaturated aliphatic and cyclic aldehydes was investigated in B6C3F1 and Swiss-Webster mice. With the reflex decrease in respiratory rate as the endpoint response, alpha, beta-unsaturated aliphatic aldehydes yielded RD/sub 50/ values (concentration which elicits a 50% decrease in respiratory rate) ranging from 1 to 5 ppm while saturated aliphatic aldehydes with two or more carbons produced RD/sub 50/ values from 750 to 4200 ppm. Cyclic aldehydes produced intermediate RD/sub 50/ values which ranged from 60 to 400 ppm. No statistically significant differences were found between concentration-response curves of B6C3F1 andmore » Swiss-Webster mice. Saturated aliphatic aldehydes with two or more carbons were nearly 1000 times less potent than formaldehyde. Although the mechanisms responsible for stimulation of trigeminal nerve endings by airborne chemicals are poorly understood, several hypotheses may help to explain the differences seen in this study. For example, the sensory irritation potency of the saturated aliphatic aldehydes diminished with their reported dehydration constants which may determine the degree to which these aldehydes crosslink with receptor proteins. The sensory irritation potency of acrolein and crotonaldehyde was probably due to 1,2 or 1,4 addition reactions. Additionally, molecular conformation and a recently published physical mechanism may contribute to sensory irritation responses, particularly for the less reactive aldehydes. Tentative threshold limit values (TLVs), based upon prevention of sensory irritation, were extrapolated from the RD/sub 50/ values of Swiss-Webster mice. With the exception of crotonaldehyde, good agreement was found with currently published TLVs.« less
Field validation of the dnph method for aldehydes and ketones. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Workman, G.S.; Steger, J.L.
1996-04-01
A stationary source emission test method for selected aldehydes and ketones has been validated. The method employs a sampling train with impingers containing 2,4-dinitrophenylhydrazine (DNPH) to derivatize the analytes. The resulting hydrazones are recovered and analyzed by high performance liquid chromatography. Nine analytes were studied; the method was validated for formaldehyde, acetaldehyde, propionaldehyde, acetophenone and isophorone. Acrolein, menthyl ethyl ketone, menthyl isobutyl ketone, and quinone did not meet the validation criteria. The study employed the validation techniques described in EPA method 301, which uses train spiking to determine bias, and collocated sampling trains to determine precision. The studies were carriedmore » out at a plywood veneer dryer and a polyester manufacturing plant.« less
The combined use of analytical tools for exploring tetanus toxin and tetanus toxoid structures.
Bayart, Caroline; Peronin, Sébastien; Jean, Elisa; Paladino, Joseph; Talaga, Philippe; Borgne, Marc Le
2017-06-01
Aldehyde detoxification is a process used to convert toxin into toxoid for vaccine applications. In the case of tetanus toxin (TT), formaldehyde is used to obtain the tetanus toxoid (TTd), which is used either for the tetanus vaccine or as carrier protein in conjugate vaccines. Several studies have already been conducted to better understand the exact mechanism of this detoxification. Those studies led to the identification of a number of formaldehyde-induced modifications on lab scale TTd samples. To obtain greater insights of the changes induced by formaldehyde, we used three industrial TTd batches to identify repeatable modifications in the detoxification process. Our strategy was to combine seven analytical tools to map these changes. Mass spectrometry (MS), colorimetric test and amino acid analysis (AAA) were used to study modifications on amino acids. SDS-PAGE, asymmetric flow field flow fractionation (AF4), fluorescence spectroscopy and circular dichroism (CD) were used to study formaldehyde modifications on the whole protein structure. We identified 41 formaldehyde-induced modifications across the 1315 amino acid primary sequence of TT. Of these, five modifications on lysine residues were repeatable across TTd batches. Changes in protein conformation were also observed using SDS-PAGE, AF4 and CD techniques. Each analytical tool brought a piece of information regarding formaldehyde induced-modifications, and all together, these methods provided a comprehensive overview of the structural changes that occurred with detoxification. These results could be the first step leading to site-directed TT mutagenesis studies that may enable the production of a non-toxic equivalent protein without using formaldehyde. Copyright © 2017 Elsevier B.V. All rights reserved.
The Involvement of Lipid Peroxide-Derived Aldehydes in Aluminum Toxicity of Tobacco Roots1[W][OA
Yin, Lina; Mano, Jun'ichi; Wang, Shiwen; Tsuji, Wataru; Tanaka, Kiyoshi
2010-01-01
Oxidative injury of the root elongation zone is a primary event in aluminum (Al) toxicity in plants, but the injuring species remain unidentified. We verified the hypothesis that lipid peroxide-derived aldehydes, especially highly electrophilic α,β-unsaturated aldehydes (2-alkenals), participate in Al toxicity. Transgenic tobacco (Nicotiana tabacum) overexpressing Arabidopsis (Arabidopsis thaliana) 2-alkenal reductase (AER-OE plants), wild-type SR1, and an empty vector-transformed control line (SR-Vec) were exposed to AlCl3 on their roots. Compared with the two controls, AER-OE plants suffered less retardation of root elongation under AlCl3 treatment and showed more rapid regrowth of roots upon Al removal. Under AlCl3 treatment, the roots of AER-OE plants accumulated Al and H2O2 to the same levels as did the sensitive controls, while they accumulated lower levels of aldehydes and suffered less cell death than SR1 and SR-Vec roots. In SR1 roots, AlCl3 treatment markedly increased the contents of the highly reactive 2-alkenals acrolein, 4-hydroxy-(E)-2-hexenal, and 4-hydroxy-(E)-2-nonenal and other aldehydes such as malondialdehyde and formaldehyde. In AER-OE roots, accumulation of these aldehydes was significantly less. Growth of the roots exposed to 4-hydroxy-(E)-2-nonenal and (E)-2-hexenal were retarded more in SR1 than in AER-OE plants. Thus, the lipid peroxide-derived aldehydes, formed downstream of reactive oxygen species, injured root cells directly. Their suppression by AER provides a new defense mechanism against Al toxicity. PMID:20023145
Bevers, Loes E.; Bol, Emile; Hagedoorn, Peter-Leon; Hagen, Wilfred R.
2005-01-01
WOR5 is the fifth and last member of the family of tungsten-containing oxidoreductases purified from the hyperthermophilic archaeon Pyrococcus furiosus. It is a homodimeric protein (subunit, 65 kDa) that contains one [4Fe-4S] cluster and one tungstobispterin cofactor per subunit. It has a broad substrate specificity with a high affinity for several substituted and nonsubstituted aliphatic and aromatic aldehydes with various chain lengths. The highest catalytic efficiency of WOR5 is found for the oxidation of hexanal (Vmax = 15.6 U/mg, Km = 0.18 mM at 60°C). Hexanal-incubated enzyme exhibits S = 1/2 electron paramagnetic resonance signals from [4Fe-4S]1+ (g values of 2.08, 1.93, and 1.87) and W5+ (g values of 1.977, 1.906, and 1.855). Cyclic voltammetry of ferredoxin and WOR5 on an activated glassy carbon electrode shows a catalytic wave upon addition of hexanal, suggesting that ferredoxin can be a physiological redox partner. The combination of WOR5, formaldehyde oxidoreductase, and aldehyde oxidoreductase forms an efficient catalyst for the oxidation of a broad range of aldehydes in P. furiosus. PMID:16199576
[Sick building syndrome and HVAC system: MVOC from air filters].
Schleibinger, H W; Wurm, D; Möritz, M; Böck, R; Rüden, H
1997-08-01
Growth and emissions of volatile metabolites of microorganisms on air filters are suspected to contribute to health complaints in ventilated rooms. To prove the microbiological production of volatile organic compounds (MVOC), concentrations of aldehydes and ketones were determined in two large HVAC systems. The in situ derivated aldehydes and ketones (as 2,4-dinitrophenyl-hydrazones) were analysed by HPLC and UV detection. The detection limit of each compound was 1 ppb (margin of error < 10%). Field measurements were carried out before and after the prefilters and the main filters, respectively, to investigate whether aldehydes and ketones increase in concentration after filters of HVAC systems. First results show that the compounds formaldehyde, acetaldehyde and acetone could be detected before and after the filters. The concentrations of these VOC after the filters were significantly increased--as a mean over twenty measurements--, especially as far as filters made of glass fibre are concerned. However the found concentrations were low and mostly comparable to outdoor findings. In simultaneous laboratory experiments pieces of used filter material of one HVAC system and unused filter pieces (for blank values) were examined in small incubation chambers to investigate the possible production of MVOC. For the incubation a temperature of 20 degrees C and a relative humidity of 95% was chosen. In these experiments an almost identical spectrum of compounds (formaldehyde and acetone) was found as in the field measurements. The concentrations of these compounds were higher in the chambers with the used filter pieces. The concentration of acetone ranged up to almost 12 mg/m3.--As our field experiments correspond with our laboratory experiments, we assume that the microbial production of volatile organic compounds in HVAC systems under operating conditions is possible.
North American Contact Dermatitis Group patch test results for 2007-2008.
Fransway, Anthony F; Zug, Kathryn A; Belsito, Donald V; Deleo, Vincent A; Fowler, Joseph F; Maibach, Howard I; Marks, James G; Mathias, C G Toby; Pratt, Melanie D; Rietschel, Robert L; Sasseville, Denis; Storrs, Frances J; Taylor, James S; Warshaw, Erin M; Dekoven, Joel; Zirwas, Matthew
2013-01-01
The North American Contact Dermatitis Group (NACDG) tests patients with suspected allergic contact dermatitis to a broad series of screening allergens and publishes periodic reports. The aims of this study were to report the NACDG patch-testing results from January 1, 2007, to December 31, 2008, and to compare results to pooled test data from the previous 2 and 10 years to analyze trends in allergen sensitivity. Standardized patch testing with 65 allergens was used at 13 centers in North America. χ analysis was used for comparisons. A total of 5085 patients were tested; 11.8% (598) had an occupationally related skin condition, and 65.3% (3319) had at least 1 allergic patch test reaction, which is identical to the NACDG data from 2005 to 2006. The top 15 most frequently positive allergens were nickel sulfate (19.5%), Myroxylon pereirae (11.0%), neomycin (10.1%), fragrance mix I (9.4%), quaternium-15 (8.6%), cobalt chloride (8.4%), bacitracin (7.9%), formaldehyde (7.7%), methyldibromoglutaronitrile/phenoxyethanol (5.5%), p-phenylenediamine (5.3%), propolis (4.9%), carba mix (4.5%), potassium dichromate (4.1%), fragrance mix II (3.6%), and methylchloroisothiazolinone/methylisothiazolinone (3.6%). There were significant increases in positivity rates to nickel, methylchloroisothiazolinone/methylisothiazolinone, and benzophenone-3. During the same period of study, there were significant decreases in positivity rates to neomycin, fragrance mix I, formaldehyde, thiuram mix, cinnamic aldehyde, propylene glycol, epoxy resin, diazolidinyl urea, amidoamine, ethylenediamine, benzocaine, p-tert-butylphenol formaldehyde resin, dimethylol dimethyl hydantoin, cocamidopropyl betaine, glutaraldehyde, mercaptobenzothiazole, tosylamide formaldehyde resin, budesonide, disperse blue 106, mercapto mix, and chloroxylenol. Twenty-four percent (1221) had a relevant positive reaction to a non-NACDG supplementary allergen; and 180 of these reactions were occupationally relevant. Periodic analysis, surveillance, and publication of multicenter study data sets document trends in allergen reactivity incidence assessed in the patch test clinic setting and provide information on new allergens of relevance.
Evidence for S(IV) compounds other than dissolved SO2 in precipitation
NASA Astrophysics Data System (ADS)
Chapman, E. G.
1986-12-01
Preliminary results from a study characterizing S(IV) compounds in wintertime precipitation samples indicate that bisulfite ion is not the primary form of S(IV), as previously believed. By employing a differencing technique that permits estimation of both SO2 aq and non-SO2 aq compound concentrations, it was found that, on an average, more than 60 percent of the total S(IV) is present in a form other than dissolved SO2. Formaldehyde analyses on selected samples suggest that the most likely form of the S(IV) is hydroxymethanesulfonate, although other aldehyde-S(IV) adducts may also be present. The non-SO2 compounds represented a significant portion of the total sulfur concentrations present in the samples analyzed, with contributions ranging from 1.2 to 27 percent. Because of the stability and oxidation resistance of these S(IV) compounds, sulfur deposition estimates that are based solely on sulfate measurements are undoubtedly low, especially for wintertime events. The study underscores the importance of S(IV) compounds in atmospheric scavenging processes.
Stockton, Amanda M; Tjin, Caroline Chandra; Huang, Grace L; Benhabib, Merwan; Chiesl, Thomas N; Mathies, Richard A
2010-11-01
A microchip CE method is developed for the analysis of two oxidized forms of carbon, aldehydes and ketones, with the Mars Organic Analyzer (MOA). Fluorescent derivitization is achieved in ∼ 15 min by hydrazone formation with Cascade Blue hydrazide in 30 mM borate pH 5-6. The microchip CE separation and analysis method is optimized via separation in 30 mM borate buffer, pH 9.5, at 20°C. A carbonyl standard consisting of ten aldehydes and ketones found in extraterrestrial matter is successfully separated; the resulting LOD depends on the reactivity of the compound and range from 70 pM for formaldehyde to 2 μM for benzophenone. To explore the utility of this method for analyzing complex samples, analyses of several fermented beverages are conducted, identifying ten aldehydes and ketones ranging from 30 nM to 5 mM. A Martian regolith simulant sample, consisting of a basalt matrix spiked with soluble ions and acetone, is designed and analyzed, but acetone is found to have a limited detectable lifetime under simulant Martian conditions. This work establishes the capability of the MOA for studying aldehydes and ketones, a critical class of oxidized organic molecules of interest in planetary and in terrestrial environmental and health studies. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Herrington, Jason S; Fan, Zhi-Hua Tina; Lioy, Paul J; Zhang, Junfeng Jim
2007-01-15
Airborne aldehyde and ketone (carbonyl) sampling methodologies based on derivatization with 2,4-dinitrophenylhydrazine (DNPH)-coated solid sorbents could unequivocally be considered the "gold" standard. Originally developed in the late 1970s, these methods have been extensively evaluated and developed up to the present day. However, these methods have been inadequately evaluated for the long-term (i.e., 24 h or greater) sampling collection efficiency (CE) of carbonyls other than formaldehyde. The current body of literature fails to demonstrate that DNPH-coated solid sorbent sampling methods have acceptable CEs for the long-term sampling of carbonyls other than formaldehyde. Despite this, such methods are widely used to report the concentrations of multiple carbonyls from long-term sampling, assuming approximately 100% CEs. Laboratory experiments were conducted in this study to evaluate the long-term formaldehyde and acetaldehyde sampling CEs for several commonly used DNPH-coated solid sorbents. Results from sampling known concentrations of formaldehyde and acetaldehyde generated in a dynamic atmosphere generation system demonstrate that the 24-hour formaldehyde sampling CEs ranged from 83 to 133%, confirming the findings made in previous studies. However, the 24-hour acetaldehyde sampling CEs ranged from 1 to 62%. Attempts to increase the acetaldehyde CEs by adding acid to the samples post sampling were unsuccessful. These results indicate that assuming approximately 100% CEs for 24-hour acetaldehyde sampling, as commonly done with DNPH-coated solid sorbent methods, would substantially under estimate acetaldehyde concentrations.
Hydrazide and hydrazine reagents as reactive matrices for MALDI-MS to detect gaseous aldehydes.
Shigeri, Yasushi; Ikeda, Shinya; Yasuda, Akikazu; Ando, Masanori; Sato, Hiroaki; Kinumi, Tomoya
2014-08-01
The reagents 19 hydrazide and 14 hydrazine were examined to function as reactive matrices for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to detect gaseous aldehydes. Among them, two hydrazide (2-hydroxybenzohydrazide and 3-hydroxy-2-naphthoic acid hydrazide) and two hydrazine reagents [2-hydrazinoquinoline and 2,4-dinitrophenylhydrazine (DNPH)] were found to react efficiently with carbonyl groups of gaseous aldehydes (formaldehyde, acetaldehyde and propionaldehyde); these are the main factors for sick building syndrome and operate as reactive matrices for MALDI-MS. Results from accurate mass measurements by JMS-S3000 Spiral-TOF suggested that protonated ion peaks corresponding to [M + H](+) from the resulting derivatives were observed in all cases with the gaseous aldehydes in an incubation, time-dependent manner. The two hydrazide and two hydrazine reagents all possessed absorbances at 337 nm (wavelength of MALDI nitrogen laser), with, significant electrical conductivity of the matrix crystal and functional groups, such as hydroxy group and amino group, being important for desorption/ionization efficiency in MALDI-MS. To our knowledge, this is the first report that gaseous molecules could be derivatized and detected directly in a single step by MALDI-MS using novel reactive matrices that were derivatizing agents with the ability to enhance desorption/ionization efficiency. Copyright © 2014 John Wiley & Sons, Ltd.
Derivatizing assay for the determination of aldehydes using micellar electrokinetic chromatography.
Donegatti, Tiago Augusto; Gonçalves, Luís Moreira; Pereira, Elisabete Alves
2017-04-01
In this work, the use of a novel derivatization agent for the determination of aldehydes (in this particular case: formaldehyde, acetaldehyde, propionaldehyde, and valeraldehyde) using micellar electrokinetic chromatography is reported. The derivatization reaction is based on the reaction of aldehydes with benzhydrazide to form the corresponding derivates with maximum absorbance at 250 nm. The experimental conditions of the derivatization reaction as well of the separation were optimized. The adducts were separated with a +22 kV voltage at a temperature of 29°C. The adducts' separation was performed in less than 14 min using as the running buffer a mixture containing 110 mmol/L of sodium dodecyl sulfate and 27 mmol/L of sodium tetraborate at pH 9.45. Samples were injected using hydrodynamic mode (50 mbar × 5 s). The calibration curves were linear up to 15.0 mg/L with r 2 above 0.99. Intra and inter-day precisions were in average 3 and 4%, respectively, and recoveries were in average of 95%. Limits of detection and quantification were around 0.5 and 1.5 mg/L, respectively. The developed method was successfully applied in the analysis of low molar weight aldehydes in yogurt and vinegar samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Undeclared Formaldehyde Levels in Patient Consumer Products: Formaldehyde Test Kit Utility.
Ham, Jason E; Siegel, Paul; Maibach, Howard
2018-05-03
Formaldehyde allergic contact dermatitis (ACD) may be due to products with free formaldehyde or formaldehyde-releasing agents, however, assessment of formaldehyde levels in such products is infrequently conducted. The present study quantifies total releasable formaldehyde from "in-use" products associated with formaldehyde ACD and tests the utility of commercially available formaldehyde spot test kits. Personal care products from 2 patients with ACD to formaldehyde were initially screened at the clinic for formaldehyde using a formaldehyde spot test kit. Formaldehyde positive products were sent to the laboratory for confirmation by gas chromatography-mass spectrometry. In addition, 4 formaldehyde spot test kits were evaluated for potential utility in a clinical setting. Nine of the 10 formaldehyde spot test kit positive products obtained from formaldehyde allergic patients had formaldehyde with total releasable formaldehyde levels ranging from 5.4 to 269.4 µg/g. Of these, only 2 shampoos tested listed a formaldehyde-releasing agent in the ingredients or product literature. Subsequently, commercially available formaldehyde spot test kits were evaluated in the laboratory for ability to identify formaldehyde in personal care products. Chemical based formaldehyde spot test were more reliable than the enzymatic based test in identifying product releasable formaldehyde content. It is concluded that product labeled ingredient lists and available information are often inadequate to confirm the potential for formaldehyde exposure and chemical based spot test kits may have utility for identification of potential formaldehyde exposure from personal care products.
Sugaya, Naeko; Sakurai, Katsumi; Nakagawa, Tomoo; Onda, Nobuhiko; Onodera, Sukeo; Morita, Masatoshi; Tezuka, Masakatsu
2004-05-01
Carbonyl compounds (aldehydes and ketones) are suspected to be among the chemical compounds responsible for Sick Building Syndrome and Multiple Chemical Sensitivities. A headspace gas chromatography/mass spectrometry (GC/MS) analysis for these compounds was developed using derivatization of the compounds into volatile derivatives with o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBOA). For GC/MS detection, two ionization modes including electron impact ionization (EI) and negative chemical ionization (NCI) were compared. The NCI mode seemed to be better because of its higher selectivity and sensitivity. This headspace GC/MS (NCI mode) was employed as analysis for aldehydes and ketones in materials (fiber products, adhesives, and printed materials). Formaldehyde was detected in the range of N.D. (not detected) to 39 microg/g; acetaldehyde, N.D. to 4.1 microg/g; propionaldehyde, N.D. to 1.0 microg/g; n-butyraldehyde, N.D. to 0.10 microg/g; and acetone, N.D. to 3.1 microg/g in the samples analyzed.
Ji, Kun; Lee, Changsuk; Janesko, Benjamin G; Simanek, Eric E
2015-08-03
Condensation of a hydrazine-substituted s-triazine with an aldehyde or ketone yields an equivalent to the widely used, acid-labile acyl hydrazone. Hydrolysis of these hydrazones using a formaldehyde trap as monitored using HPLC reveals that triazine-substituted hydrazones are more labile than acetyl hydrazones at pH>5. The reactivity trends mirror that of the corresponding acetyl hydrazones, with hydrolysis rates increasing along the series (aromatic aldehyde
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prikhodko, Vitaly Y; Curran, Scott; Barone, Teresa L
2010-01-01
Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection systemmore » to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.« less
Fu, Peng; Legako, Aaron; La, Scott; MacMillan, John B
2016-03-01
Dibohemamines A-C (5-7), three new dimeric bohemamine analogues dimerized through a methylene group, were isolated from a marine-derived Streptomyces spinoverrucosus. The structures determined by spectroscopic analysis were confirmed through the semi-synthetic derivatization of monomeric bohemamines and formaldehyde. These reactions, which could occur under mild conditions, together with the detection of formaldehyde in the culture, revealed that this dimerization is a non-enzymatic process. In addition to the unique dimerization of the dibohemamines, dibohemamines B and C were found to have nm cytotoxicity against the non-small cell-lung cancer cell line A549. In view of the potent cytotoxicity of compounds 6 and 7, a small library of bohemamine analogues was generated for biological evaluation by utilizing a series of aryl and alkyl aldehydes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A turn-on fluorescent probe for endogenous formaldehyde in the endoplasmic reticulum of living cells
NASA Astrophysics Data System (ADS)
Tang, Yonghe; Ma, Yanyan; Xu, An; Xu, Gaoping; Lin, Weiying
2017-06-01
As the simplest aldehyde compounds, formaldehyde (FA) is implicated in nervous system diseases and cancer. Endoplasmic reticulum is an organelle that plays important functions in living cells. Accordingly, the development of efficient methods for FA detection in the endoplasmic reticulum (ER) is of great biomedical importance. In this work, we developed the first ER-targeted fluorescent FA probe Na-FA-ER. The detection is based on the condensation reaction of the hydrazine group and FA to suppress the photo-induced electron transfer (PET) pathway, resulting in a fluorescence increase. The novel Na-FA-ER showed high sensitivity to FA. In addition, the Na-FA-ER enabled the bio-imaging of exogenous and endogenous FA in living HeLa cells. Most significantly, the new Na-FA-ER was employed to visualize the endogenous FA in the ER in living cells for the first time.
What Air Quality Models Tell Us About Sources and Sinks of Atmospheric Aldehydes
NASA Astrophysics Data System (ADS)
Luecken, D.; Hutzell, W. T.; Phillips, S.
2010-12-01
Atmospheric aldehydes play important roles in several aspects of air quality: they are critical radical sources that drive ozone formation, they are hazardous air pollutants that are national drivers for cancer risk, they participate in aqueous chemistry and potentially aerosol formation, and are key species for evaluating the accuracy of isoprene emissions. For these reasons, it is important to accurately understand their sources and sinks, and the sensitivity of their concentrations to emission controls. While both compounds have been included in air quality modeling for many years, current, state-of-the-science chemical mechanisms have difficulty reproducing measured values of aldehydes, which calls into question the robustness of ozone, HAPs and aerosol predictions. In the past, we have attributed discrepancies to measurement errors, inventory errors, or the focus on high-NOx urban regimes. Despite improvements in all of these areas, the measurements still diverge from model predictions, with formaldehyde often underpredicted by 50% and acetaldehyde showing a large degree of scatter - from 20% overprediction to 50% underprediction. To better examine the sources of aldehydes, we implemented the new SAPRC07T mechanism in the Community Multi-Scale Air Quality (CMAQ) model. This mechanism incorporates current recommendations for kinetic data and has the most detailed representation of product formation under a wide variety of conditions of any mechanism used in regional air quality models. We use model simulations to pinpoint where and when aldehyde concentrations tend to deviate from measurements. We demonstrate the role of secondary production versus primary emissions in aldehdye concentrations and find that secondary sources produce the largest deviations from measurements. We identify which VOCs are most responsible for aldehyde secondary production in the areas of the U.S. where the largest health effects are seen, and discuss how this affects consideration of control strategies.
Griffin, Robert J
2004-02-01
The production of HOx radicals in the South Coast Air Basin of California is investigated during the smog episode of September 9, 1993 using the California Institute of Technology (CIT) air-quality model. Sources of HOx(hydroxyl, hydroperoxy, and organic peroxy radicals) incorporated into the associated gas-phase chemical mechanism include the combination of excited-state singlet oxygen (formed from ozone (O3) photolysis (hv)) with water, the photolysis of nitrous acid, hydrogen peroxide (H2O2), and carbonyl compounds (formaldehyde (HCHO) or higher aldehydes and ketones), the consumption of aldehydes and alkenes (ALK) by the nitrate radical, and the consumption of alkenes by O3 and the oxygen atom (O). At a given time or location for surface cells and vertical averages, each route of HOx formation may be the greatest contributor to overall formation except HCHO-hv, H2O2-hv, and ALK-O, the latter two of which are insignificant pathways in general. The contribution of the ALK-O3 pathway is dependent on the stoichiometric yield of OH, but this pathway, at least for the studied smog episode, may not be as generally significant as previous research suggests. Future emissions scenarios yield lower total HOx production rates and a shift in the relative importance of individual pathways.
Gomes, Janaina F; Garcia, Amanda C; Ferreira, Eduardo B; Pires, Cleiton; Oliveira, Vanessa L; Tremiliosi-Filho, Germano; Gasparotto, Luiz H S
2015-09-07
In this report we present new insights into the formation mechanism of Ag, Au and AgAu nanoparticles with alcohols, aldehydes and ketones in alkaline medium at room temperature. We selected methanol, ethanol, glycerol, formaldehyde, acetaldehyde and acetone to demonstrate their capability of reducing gold and silver ions under the above-mentioned conditions. We showed that the particles are also formed with potassium tert-butoxide in the absence of hydroxides. Our results strongly suggest that alkoxides, formed from any molecule containing a hydroxyl or a functional group capable of generating them in alkaline medium, are the actual and universal reducing agent of silver and gold ions, in opposition to the currently accepted mechanisms. The universality of the reaction mechanism proposed in this work may impact on the production of noble nanoparticles with simple chemicals normally found in standard laboratories.
Zeng, Fangfa; Yang, Wen; Huang, Jie; Chen, Yuan; Chen, Yong
2013-05-01
The effectiveness of fixatives for fixing biological specimens has long been widely investigated. However, the lowest concentrations of fixatives needed to completely fix whole cells or various cellular structures remain unclear. Using real-time imaging and quantification, we determined the lowest concentrations of glutaraldehyde (0.001-0.005, ~0.005, 0.01-005, 0.01-005, and 0.01-0.1 %) and formaldehyde/paraformaldehyde (0.01-0.05, ~0.05, 0.5-1, 1-1.5, and 0.5-1 %) required to completely fix focal adhesions, cell-surface particles, stress fibers, the cell cortex, and the inner structures of human umbilical vein endothelial cells within 20 min. With prolonged fixation times (>20 min), the concentration of fixative required to completely fix these structures will shift to even lower values. These data may help us understand and optimize fixation protocols and understand the potential effects of the small quantities of endogenously generated aldehydes in human cells. We also determined the lowest concentration of glutaraldehyde (0.5 %) and formaldehyde/paraformaldehyde (2 %) required to induce cell blebbing. We found that the average number and size of the fixation-induced blebs per cell were dependent on both fixative concentration and cell spread area, but were independent of temperature. These data provide important information for understanding cell blebbing, and may help optimize the vesiculation-based technique used to isolate plasma membrane by suggesting ways of controlling the number or size of fixation-induced cell blebs.
Galloway, Melissa M; Powelson, Michelle H; Sedehi, Nahzaneen; Wood, Stephanie E; Millage, Katherine D; Kononenko, Julia A; Rynaski, Alec D; De Haan, David O
2014-12-16
Reactions of carbonyl compounds in cloudwater produce organic aerosol mass through in-cloud oxidation and during postcloud evaporation. In this work, postcloud evaporation was simulated in laboratory experiments on evaporating droplets that contain mixtures of common atmospheric aldehydes with ammonium sulfate (AS), methylamine, or glycine. Aerosol diameters were measured during monodisperse droplet drying experiments and during polydisperse droplet equilibration experiments at 75% relative humidity, and condensed-phase mass was measured in bulk thermogravimetric experiments. The evaporation of water from a droplet was found to trigger aldehyde reactions that increased residual particle volumes by a similar extent in room-temperature experiments, regardless of whether AS, methylamine, or glycine was present. The production of organic aerosol volume was highest from droplets containing glyoxal, followed by similar production from methylglyoxal or hydroxyacetone. Significant organic aerosol production was observed for glycolaldehyde, acetaldehyde, and formaldehyde only at elevated temperatures in thermogravimetric experiments. In many experiments, the amount of aerosol produced was greater than the sum of all solutes plus nonvolatile solvent impurities, indicating the additional presence of trapped water, likely caused by increasing aerosol-phase viscosity due to oligomer formation.
Evaluation of the Strecker synthesis as a source of amino acids on carbonaceous chondrites
NASA Technical Reports Server (NTRS)
Lerner, N. R.; Peterson, Etta; Chang, S.
1991-01-01
The Strecker synthesis (SS) has been proposed as the source of amino acids (AA) formed during aqueous alteration of carbonaceous chondrites. It is postulated that the aldehyde and ketone precursors of the meteoritic AA originated in interstellar syntheses and accreted on the meteorite parent body along with other reactant species in cometesimal ices. The SS has been run with formaldehyde, acetyldehyde, propionaldehyde, acetone, and methyl ketone as starting materials. To study the effect of minerals on the reaction, the SS was run in the presence and absence of dust from the Allende meteorite using deuterated aldehydes and ketones as starting materials. The products were studied by GC/MS. With the exception of glycine, the retention of deuterium in the AA was greater than 90 pct. Some D exchange with water does occur, however, and determination of the rate of exchange as a function of pH and temperature may allow some bounds to be placed on the duration of parent body aqueous alteration. The retention of D by the AA under conditions studied thus far is consistent with the model that a SS starting from interstellar aldehydes and ketones led to the production of meteoritic AA.
Sensitive Determination of Volatile Organic Compounds and Aldehydes in Tattoo Inks.
Lim, Hyun-Hee; Shin, Ho-Sang
2017-02-01
As the popularity of body art including tattoo ink has increased, the safety associated with it has become an important interest. In this study, twenty volatile organic compounds (VOCs) and two aldehydes in tattoo inks were identified and quantified. Headspace and gas chromatography-mass spectrometry (HS GC-MS) for the VOCs and HS GC-MS based on derivatization with 2,2,2-trifluoroethylhydrazine (TFEH) for aldehydes was developed. Benzene, chloroform, toluene, ethylbenzene, m-xylene, p-xylene, o-xylene, propylbenzene, chlorobenzene, tert-butylbenzene, 1,3,5-trimethylbenzene, styrene, 1,2,4-trimethylbenzene, 2-chlorotoluene, 4-chlorotoluene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene, 1,2,4-trichlorobenzene and isopropyl alcohol were detected with the concentration range of 0.02-207,000 mg/kg in 16 different tattoo inks. Formaldehyde and acetaldehyde were detected with the concentration range of 0.4-308 mg/kg in the same samples. Our analytical results represent solvents used intentionally or non-intentionally in tattoo inks, and thus they may provide important information for national regulation. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Altemose, Brent A.
Based on principal component analysis (PCA) of air pollution data collected during the Summer Olympic Games held in Beijing, China during 2008, the five source types of air pollution identified -- natural soil/road dust, vehicle and industrial combustion, vegetative burning, oil combustion, and secondary formation, were all distinctly lower during the Olympics. This was particularly true for vehicle and industrial combustion and oil combustion, and during the main games period between the opening and closing ceremonies. The reduction in secondary formation was reflective of a reduction in nitrogen oxides, but this also contributed to increased ozone concentrations during the Olympic period. Among three toxic aldehydes measured in Beijing during the same time period, only acetaldehyde had a reduction in mean concentration during the Olympic air pollution control period compared to the pre-Olympic period. Accordingly, acetaldehyde was significantly correlated with primary emission sources including vegetative burning and oil combustion, and with several pollutants emitted mainly from primary sources. In contrast, formaldehyde and acrolein increased during the Olympic air pollution control period; accordingly both were significantly correlated with ozone and with the secondary formation source type. These findings indicate primary sources may dominate for acetaldehyde while secondary sources may dominate for formaldehyde and acrolein. Biomarkers for pulmonary inflammation (exhaled breath condensate (EBC) pH, exhaled nitric oxide, and EBC nitrite) and hemostasis and blood coagulation (vWF and sCD62p) were most consistently associated with vehicle and industrial combustion, oil combustion, and vegetative burning. The systemic inflammation biomarker 8-OHdG was most consistently associated with vehicle and industrial combustion. In contrast, the associations between the biomarkers and the aldehydes were generally not significant or in the hypothesized direction, although EBC nitrite was associated with both acrolein and acetaldehyde, and sCD62p was associated with acetaldehyde. Notably, the biomarker sCD40L showed few significant associations with any of the air pollution source types or aldehydes. The findings indicate that implementing controls for combustion sources may have a positive impact on cardiorespiratory health, even in healthy young adults. More aggressive control of vegetative burning and further reduction of nitrogen oxide concentrations would likely have an even more positive impact.
Leßmeier, Lennart; Pfeifenschneider, Johannes; Carnicer, Marc; Heux, Stephanie; Portais, Jean-Charles; Wendisch, Volker F
2015-12-01
Methanol, a one-carbon compound, can be utilized by a variety of bacteria and other organisms as carbon and energy source and is regarded as a promising substrate for biotechnological production. In this study, a strain of non-methylotrophic Corynebacterium glutamicum, which was able to produce the polyamide building block cadaverine as non-native product, was engineered for co-utilization of methanol. Expression of the gene encoding NAD+-dependent methanol dehydrogenase (Mdh) from the natural methylotroph Bacillus methanolicus increased methanol oxidation. Deletion of the endogenous aldehyde dehydrogenase genes ald and fadH prevented methanol oxidation to carbon dioxide and formaldehyde detoxification via the linear formaldehyde dissimilation pathway. Heterologous expression of genes for the key enzymes hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase of the ribulose monophosphate (RuMP) pathway in this strain restored growth in the presence of methanol or formaldehyde, which suggested efficient formaldehyde detoxification involving RuMP key enzymes. While growth with methanol as sole carbon source was not observed, the fate of 13C-methanol added as co-substrate to sugars was followed and the isotopologue distribution indicated incorporation into central metabolites and in vivo activity of the RuMP pathway. In addition, 13C-label from methanol was traced to the secreted product cadaverine. Thus, this synthetic biology approach led to a C. glutamicum strain that converted the non-natural carbon substrate methanol at least partially to the non-native product cadaverine.
Hydrogen atom abstraction from aldehydes - OH + H2CO and O + H2CO
NASA Technical Reports Server (NTRS)
Dupuis, M.; Lester, W. A., Jr.
1984-01-01
The essential features of the potential energy surfaces governing hydrogen abstraction from formaldehyde by oxygen atom and hydroxyl radical have been characterized with ab inito multiconfiguration Hartree-Fock (MCHF) and configuration interaction (CI) wave functions. The results are consistent with a very small activation energy for the OH + H2CO reaction, and an activation energy of a few kcal/mol for the O + H2CO reaction. In the transition state structure of both systems, the attacking oxygen atom is nearly collinear with the attacked CH bond.
Formaldehyde and heavy metal migration from rubber and metallic packaging/utensils in Korea.
Kim, Su-Un; Kim, Tae-Rang; Lee, Eun-Soon; Kim, Mi-Sun; Kim, Chang-Kyu; Kim, Li-Ra; Shin, Gi-Young
2015-01-01
The aim of this study was to determine the non-intentionally added substances--formaldehyde and trace metals--at 4% acetic acid conditions in rubber and metallic packaging/utensils. The temperature effect on migration in rubber and metallic packaging/utensils was monitored at 60 °C and 100 °C under acidic (pH < 3) circumstances. The concentrations were: formaldehyde--23.1 μg kg⁻¹, lead--13.41 μg kg⁻¹, cadmium--0.15 μg kg⁻¹, total arsenic--2.02 μg kg⁻¹ and nickel--2.92 μg kg⁻¹ at 60 °C and formaldehyde--148.9 μg kg⁻¹, lead--17.04 μg kg⁻¹, cadmium--0.14 μg kg⁻¹, total arsenic--7.25 μg kg⁻¹ and nickel--8.7 μg kg⁻¹ at 100 °C. A significant difference was noticed in formaldehyde and total arsenic between both temperatures (p < 0.01), which was not present in other trace metals. In conclusion, formaldehyde and total arsenic were more sensitive with cooking temperature than the other metals.
40 CFR 63.2262 - How do I conduct performance tests and establish operating requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... or documentation of inlet methanol or formaldehyde concentration is required) and outlet of the... HAP, formaldehyde, methanol, or total hydrocarbon (THC) emission rates. (2) When showing compliance... acetaldehyde, acrolein, formaldehyde, methanol, phenol, and propionaldehyde), THC, formaldehyde, or methanol in...
40 CFR 63.2262 - How do I conduct performance tests and establish operating requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... or documentation of inlet methanol or formaldehyde concentration is required) and outlet of the... HAP, formaldehyde, methanol, or total hydrocarbon (THC) emission rates. (2) When showing compliance... acetaldehyde, acrolein, formaldehyde, methanol, phenol, and propionaldehyde), THC, formaldehyde, or methanol in...
Park, Keun-Young; Choi, Su-Young; Lee, Seung-Hoon; Kweon, Ji-Hyang; Song, Ji-Hyeon
2016-08-01
This study compared the two most frequently used disinfectants (i.e., chlorine and ozone) to understand their efficiency in wastewater effluents and the ecotoxicity of disinfection by-products created during chlorination and ozonation. Four trihalomethanes (THMs) and nine haloacetic acids (HAAs) were measured from a chlorine-disinfected sample and two aldehydes (i.e., formaldehydes and acetaldehydes) were analyzed after ozonation. Chlorination was effective for total coliform removal with Ct value in the range of 30-60 mg-min/L. Over 1.6 mg/L of ozone dose and 0.5 min of the contact time presented sufficient disinfection efficiency. The concentration of THMs increased with longer contact time (24 h), but that of HAAs showed little change with contact time. The measured concentration of formaldehyde at the ozone dose of 1.6 mg/L and the contact time of 9 min showed the greatest value in this study, approximately 330 μg L(-1), from which the corresponding ecotoxicity was determined using an indicator species, Daphnia magna. The ecotoxicity results were consistent with the toxicological features judged by occurrence, genotoxicity, and carcinogenicity. Both the disinfection efficiency as well as the DBP formation potential should therefore be considered to avoid harmful impacts on aquatic environments when a disinfection method is used for wastewater effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shamzhy, Mariya; Opanasenko, Maksym; Shvets, Oleksiy; Čejka, Jiří
2013-01-01
Catalytic behavior of isomorphously substituted B-, Al-, Ga-, and Fe-containing extra-large pore UTL zeolites was investigated in Knoevenagel condensation involving aldehydes, Pechmann condensation of 1-naphthol with ethylacetoacetate, and Prins reaction of β-pinene with formaldehyde and compared with large-pore aluminosilicate zeolite beta and representative Metal-Organic-Frameworks Cu3(BTC)2 and Fe(BTC). The yield of the target product over the investigated catalysts in Knoevenagel condensation increases in the following sequence: (Al)beta < (Al)UTL < (Ga)UTL < (Fe)UTL < Fe(BTC) < (B)UTL < Cu3(BTC)2 being mainly related to the improving selectivity with decreasing strength of active sites of the individual catalysts. The catalytic performance of Fe(BTC), containing the highest concentration of Lewis acid sites of the appropriate strength is superior over large-pore zeolite (Al)beta and B-, Al-, Ga-, Fe-substituted extra-large pore zeolites UTL in Prins reaction of β-pinene with formaldehyde and Pechmann condensation of 1-naphthol with ethylacetoacetate. PMID:24790940
Wang, Hanyu; Ouyang, Yidan; Zhou, Chang; Xiao, Difan; Guo, Yaping; Wu, Lan; Li, Xi; Gu, Yunfu; Xiang, Quanju; Zhao, Ke; Yu, Xiumei; Zou, Likou; Ma, Menggen
2017-12-01
Aldehydes generated as by-products during the pretreatment of lignocellulose are the key inhibitors to Saccharomyces cerevisiae, which is considered as the most promising microorganism for industrial production of biofuel, xylitol as well as other special chemicals from lignocellulose. S. cerevisiae has the inherent ability to in situ detoxify aldehydes to corresponding alcohols by multiple aldehyde reductases. Herein, we report that an uncharacterized open reading frame YKL071W from S. cerevisiae encodes a novel "classical" short-chain dehydrogenase/reductase (SDR) protein with NADH-dependent enzymatic activities for reduction of furfural (FF), glycolaldehyde (GA), formaldehyde (FA), and benzaldehyde (BZA). This enzyme showed much better specific activities for reduction of GA and FF than FA and BZA, and displayed much higher Km and Kcat/Km but lower Vmax and Kcat for reduction of GA than FF. For this enzyme, the optimum pH was 5.5 and 6.0 for reduction of GA and FF, and the optimum temperature was 30 °C for reduction of GA and FF. Both pH and temperature affected stability of this enzyme in a similar trend for reduction of GA and FF. Cu 2+ , Zn 2+ , Ni 2+ , and Fe 3+ had severe inhibition effects on enzyme activities of Ykl071wp for reduction of GA and FF. Transcription of YKL071W in S. cerevisiae was significantly upregulated under GA and FF stress conditions, and its transcription is most probably regulated by transcription factor genes of YAP1, CAD1, PDR3, and STB5. This research provides guidelines to identify more uncharacterized genes with reductase activities for detoxification of aldehydes derived from lignocellulose in S. cerevisiae.
Roy, Roopali; Mukund, Swarnalatha; Schut, Gerrit J.; Dunn, Dianne M.; Weiss, Robert; Adams, Michael W. W.
1999-01-01
Pyrococcus furiosus is a hyperthermophilic archaeon which grows optimally near 100°C by fermenting peptides and sugars to produce organic acids, CO2, and H2. Its growth requires tungsten, and two different tungsten-containing enzymes, aldehyde ferredoxin oxidoreductase (AOR) and glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR), have been previously purified from P. furiosus. These two enzymes are thought to function in the metabolism of peptides and carbohydrates, respectively. A third type of tungsten-containing enzyme, formaldehyde ferredoxin oxidoreductase (FOR), has now been characterized. FOR is a homotetramer with a mass of 280 kDa and contains approximately 1 W atom, 4 Fe atoms, and 1 Ca atom per subunit, together with a pterin cofactor. The low recovery of FOR activity during purification was attributed to loss of sulfide, since the purified enzyme was activated up to fivefold by treatment with sulfide (HS−) under reducing conditions. FOR uses P. furiosus ferredoxin as an electron acceptor (Km = 100 μM) and oxidizes a range of aldehydes. Formaldehyde (Km = 15 mM for the sulfide-activated enzyme) was used in routine assays, but the physiological substrate is thought to be an aliphatic C5 semi- or dialdehyde, e.g., glutaric dialdehyde (Km = 1 mM). Based on its amino-terminal sequence, the gene encoding FOR (for) was identified in the genomic database, together with those encoding AOR and GAPOR. The amino acid sequence of FOR corresponded to a mass of 68.7 kDa and is highly similar to those of the subunits of AOR (61% similarity and 40% identity) and GAPOR (50% similarity and 23% identity). The three genes are not linked on the P. furiosus chromosome. Two additional (and nonlinked) genes (termed wor4 and wor5) that encode putative tungstoenzymes with 57% (WOR4) and 56% (WOR5) sequence similarity to FOR were also identified. Based on sequence motif similarities with FOR, both WOR4 and WOR5 are also proposed to contain a tungstobispterin site and one [4Fe-4S] cluster per subunit. PMID:9973343
Xu, Jianfeng; Chen, Xingkuan; Wang, Ming; Zheng, Pengcheng; Song, Bao-An; Chi, Yonggui Robin
2015-04-20
A convergent, organocatalytic asymmetric aminomethylation of α,β-unsaturated aldehydes by N-heterocyclic carbene (NHC) and (in situ generated) Brønsted acid cooperative catalysis is disclosed. The catalytically generated conjugated acid from the base plays dual roles in promoting the formation of azolium enolate intermediate, formaldehyde-derived iminium ion (as an electrophilic reactant), and methanol (as a nucleophilic reactant). This redox-neutral strategy is suitable for the scalable synthesis of enantiomerically enriched β(2) -amino acids bearing various substituents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sakai, Nobumitsu; Yamamoto, Shuta; Matsui, Yasuto; Khan, Md Firoz; Latif, Mohd Talib; Ali Mohd, Mustafa; Yoneda, Minoru
2017-05-15
Volatile Organic Compounds (VOCs) in indoor air were investigated at 39 private residences in Selangor State, Malaysia to characterize the indoor air quality and to identify pollution sources. Twenty-two VOCs including isomers (14 aldehydes, 5 aromatic hydrocarbons, acetone, trichloroethylene and tetrachloroethylene) were collected by 2 passive samplers for 24h and quantitated using high performance liquid chromatography and gas chromatography mass spectrometry. Source profiling based on benzene/toluene ratio as well as statistical analysis (cluster analysis, bivariate correlation analysis and principal component analysis) was performed to identify pollution sources of the detected VOCs. The VOCs concentrations were compared with regulatory limits of air quality guidelines in WHO/EU, the US, Canada and Japan to clarify the potential health risks to the residents. The 39 residences were classified into 2 groups and 2 ungrouped residences based on the dendrogram in the cluster analysis. Group 1 (n=30) had mainly toluene (6.87±2.19μg/m 3 ), formaldehyde (16.0±10.1μg/m 3 ), acetaldehyde (5.35±4.57μg/m 3 ) and acetone (11.1±5.95μg/m 3 ) at background levels. Group 2 (n=7) had significantly high values of formaldehyde (99.3±10.7μg/m 3 ) and acetone (35.8±12.6μg/m 3 ), and a tendency to have higher values of acetaldehyde (23.7±13.5μg/m 3 ), butyraldehyde (3.35±0.41μg/m 3 ) and isovaleraldehyde (2.30±0.39μg/m 3 ). The 2 ungrouped residences showed particularly high concentrations of BTX (benzene, toluene and xylene: 235μg/m 3 in total) or acetone (133μg/m 3 ). The geometric mean value of formaldehyde (19.2μg/m 3 ) exceeded an 8-hour regulatory limit in Canada (9μg/m 3 ), while those in other compounds did not exceed any regulatory limits, although a few residences exceeded at least one regulatory limit of benzene or acetaldehyde. Thus, the VOCs in the private residences were effectively characterized from the limited number of monitoring, and the potential health risks of the VOCs exposure, particularly formaldehyde, should be considered in the study area. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
François, S.; Sowka, I.; Poulain, L.; Monod, A.; Wortham, H.
2003-04-01
Hydroperoxides and aldehydes are considered as atmospheric reservoirs of OH, HO_2 and RO_2 radicals and can reflect the oxidizing levels of the atmosphere. They are considered as important gas phase photo-oxidants present in the atmosphere. However, the atmospheric role of these compounds can vary from one species to another, therefore it is essential to investigate their measurement and speciation in the atmosphere. Atmospheric measurements were realized during two different field campaigns in the Marseilles area (France). Hydroperoxides were trapped in aqueous phase, with a glass coil and analyzed by HPLC/fluorescence detector with post column derivatization. Aldehydes were trapped in a liquid phase containing 2-4 DNPH, with a mist chamber and analyzed by HPLC/UV. The analytical techniques provided individual separation and quantification of seven hydroperoxides (hydrogen peroxide, hydroxymethyl hydroperoxide, bis(hydroxymethyl) peroxide, 1-hydroxyethyl hydroperoxide, methyl hydroperoxide, ethyl hydroperoxide and peroxyacetic acid) and eleven volatile aldehydes (formaldehyde, acetaldehyde, acrolein, acetone, propionaldehyde, crotonaldehyde, butyraldehyde, benzaldehyde, glyoxal, valeraldehyde and methylglyoxal). The first field campaign was part of the ESCOMPTE project (June 4th to July 16th 2001). During this campaign five different sampling sites, at low altitudes (<= 285 m), were investigated (maritime, urban, sub-industrial, biogenic and rural sites) and atmospheric measurements were realized during photochemical air pollution events. The second field campaign was part of the BOND project (July 2nd to July 14th 2002). Atmospheric measurements of hydroperoxides were carried out on one biogenic site, at altitude 690 m. The measurement system was improved allowing online sampling and analysis. During these field campaigns collection efficiencies were better than 96% for hydroperoxides, and from 78% to 96% for aldehydes. Detection limits were between 7,3× 10-3 μg.m-3 and 2,4× 10-1 μg.m-3 with standard deviations from 4% to 22% for hydroperoxides and between 0,55 μg.m-3 and 2,5 μg.m-3 with standard deviation from 8% to 29% for aldehydes. The results show that hydroperoxide concentrations were high, when the levels of NOx were low. Aldehyde concentrations were very high during photochemical events and both primary and secondary aldehydes were identified.
Báez, Armando P; Torres, Ma del Carmen B; García, Rocío M; Padilla, Hugo G
2002-01-01
A great number of studies on the ambient levels of formaldehyde and other carbonyls in the urban rural and maritime atmospheres have been published because of their chemical and toxicological characteristics, and adverse health effects. Due to their toxicological effects, it was considered necessary to measure these compounds at different sites in the metropolitan area of Mexico City, and to calculate the total rate of photolytic constants and the photolytic lifetime of formaldehyde and acetaldehyde. Four sites were chosen. Sampling was carried out at different seasons and atmospheric conditions. The results indicated that formaldehyde was the most abundant carbonyl, followed by acetone and acetaldehyde. Data sets obtained from the 4 sites were chosen to calculate the total rate of photolysis and the photolytic lifetime for formaldehyde and acetaldehyde. Maximum photolytic rate values were obtained at the maximum actinic fluxes, as was to be expected.
Does Formaldehyde Increase Cell Free DNA in Maternal Plasma Specimens?
Jacob, Rintu R; Saxena, Renu; Verma, Ishwar C
2016-11-01
There have been conflicting observations reported in the literature regarding the effects of formaldehyde in the recovery of cell free fetal DNA (CFF DNA) from maternal plasma. The aim of the present study was to assess the effect of formaldehyde treatment on circulating cell free DNA. We conducted this study using blood specimens collected from 11 pregnant women, each of whom was carrying a male fetus. DYS14 and HBB real time assays were performed to quantify fetal and total circulating cell free DNA from formaldehyde treated and untreated maternal plasma specimens, respectively. The concentration of total circulating cell free DNA in formaldehyde-treated maternal plasma was reduced, compared with untreated maternal plasma (n = 11; P = .02). The percentage of CFF DNA between formaldehyde-treated and untreated maternal plasma specimens did not differ significantly (n = 11; P = .15). Addition of formaldehyde does not significantly enhance the proportion of cell free fetal DNA when blood specimens are processed without delay. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Sutton, Jonathan E.; Danielson, Thomas; Beste, Ariana; ...
2017-11-14
C-H bond breaking is important for industrial commodity and specialty chemical transformations, including the upgrading of alcohols. Small primary alcohols – methanol and ethanol – are used industrially as precursors for the corresponding aldehydes at industrial scales. However, upgrading these primary alcohols involves C-H bond breaking and the processes are run at elevated temperatures (> 200 °C). In this work, new understanding from temperature programmed reaction (TPR) studies with methanol over a CeO 2(111) surface show the C-H bond breaking and the subsequent desorption of formaldehyde, even below room temperature. This is of particular interests because CeO 2 is amore » naturally abundant, inexpensive metal oxide. We combine density functional theory (DFT) and kinetic Monte Carlo (KMC) to simulate the TPR of methanol on CeO2. Our simulations show that the low temperature C H bond breaking occurs via disproportionation of adjacent methoxy species to form methanol and formaldehyde which each then desorb. We further show from DFT calculations that the same transition state with comparably low activation energies should be possible for other sustainable primary alcohols, with ethanol, 1-propanol, and 1-butanol having been explicitly calculated. In conclusion, these findings point out a new class of transition states to search for in seeking low temperature C-H bond breaking over inexpensive metal oxides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, Jonathan E.; Danielson, Thomas; Beste, Ariana
C-H bond breaking is important for industrial commodity and specialty chemical transformations, including the upgrading of alcohols. Small primary alcohols – methanol and ethanol – are used industrially as precursors for the corresponding aldehydes at industrial scales. However, upgrading these primary alcohols involves C-H bond breaking and the processes are run at elevated temperatures (> 200 °C). In this work, new understanding from temperature programmed reaction (TPR) studies with methanol over a CeO 2(111) surface show the C-H bond breaking and the subsequent desorption of formaldehyde, even below room temperature. This is of particular interests because CeO 2 is amore » naturally abundant, inexpensive metal oxide. We combine density functional theory (DFT) and kinetic Monte Carlo (KMC) to simulate the TPR of methanol on CeO2. Our simulations show that the low temperature C H bond breaking occurs via disproportionation of adjacent methoxy species to form methanol and formaldehyde which each then desorb. We further show from DFT calculations that the same transition state with comparably low activation energies should be possible for other sustainable primary alcohols, with ethanol, 1-propanol, and 1-butanol having been explicitly calculated. In conclusion, these findings point out a new class of transition states to search for in seeking low temperature C-H bond breaking over inexpensive metal oxides.« less
Assessment of indoor air quality in office buildings across Europe - The OFFICAIR study.
Mandin, Corinne; Trantallidi, Marilena; Cattaneo, Andrea; Canha, Nuno; Mihucz, Victor G; Szigeti, Tamás; Mabilia, Rosanna; Perreca, Erica; Spinazzè, Andrea; Fossati, Serena; De Kluizenaar, Yvonne; Cornelissen, Eric; Sakellaris, Ioannis; Saraga, Dikaia; Hänninen, Otto; De Oliveira Fernandes, Eduardo; Ventura, Gabriela; Wolkoff, Peder; Carrer, Paolo; Bartzis, John
2017-02-01
The European project OFFICAIR aimed to broaden the existing knowledge regarding indoor air quality (IAQ) in modern office buildings, i.e., recently built or refurbished buildings. Thirty-seven office buildings participated in the summer campaign (2012), and thirty-five participated in the winter campaign (2012-2013). Four rooms were investigated per building. The target pollutants were twelve volatile organic compounds, seven aldehydes, ozone, nitrogen dioxide and particulate matter with aerodynamic diameter <2.5μm (PM 2.5 ). Compared to other studies in office buildings, the benzene, toluene, ethylbenzene, and xylene concentrations were lower in OFFICAIR buildings, while the α-pinene and d-limonene concentrations were higher, and the aldehyde, nitrogen dioxide and PM 2.5 concentrations were of the same order of magnitude. When comparing summer and winter, significantly higher concentrations were measured in summer for formaldehyde and ozone, and in winter for benzene, α-pinene, d-limonene, and nitrogen dioxide. The terpene and 2-ethylhexanol concentrations showed heterogeneity within buildings regardless of the season. Considering the average of the summer and winter concentrations, the acetaldehyde and hexanal concentrations tended to increase by 4-5% on average with every floor level increase, and the nitrogen dioxide concentration tended to decrease by 3% on average with every floor level increase. A preliminary evaluation of IAQ in terms of potential irritative and respiratory health effects was performed. The 5-day median and maximum indoor air concentrations of formaldehyde and ozone did not exceed their respective WHO air quality guidelines, and those of acrolein, α-pinene, and d-limonene were lower than their estimated thresholds for irritative and respiratory effects. PM 2.5 indoor concentrations were higher than the 24-h and annual WHO ambient air quality guidelines. Copyright © 2016 Elsevier B.V. All rights reserved.
Hazwan Hussin, M; Samad, Noraini Abdul; Latif, Nur Hanis Abd; Rozuli, Nurul Adilla; Yusoff, Siti Baidurah; Gambier, François; Brosse, Nicolas
2018-07-01
Lignocellulosic materials can significantly contribute to the development of eco-friendly wood adhesives. In this work, glyoxal-phenolic resins for plywood were prepared using organosolv lignin, which was isolated from black liquor recovered from organosolv pulping of oil palm fronds (OPF) and considered to be an alternative to phenol. Glyoxal, which is a dialdehyde obtained from several natural resources, was used as substitute for formaldehyde. The structure of organosolv lignin and the resins were characterized by FTIR and NMR, and for thermal stability by TGA and DSC. The resins were further studied for their viscosity, pH, solids content and gel times. The resins performance as wood adhesive was further established from mechanical test in terms of tensile strength and modulus of elasticity (MOE) to obtain the optimum ratios of organosolv lignin, which replaces phenol in organosolv lignin phenol glyoxal (OLPG) resins. The adhesive composition having 50% (w/w) of phenol substituted by organosolv lignin, termed as 50% OLPG showed highest adhesive strength compared to phenol formaldehyde (PF) commercial adhesive. Copyright © 2018 Elsevier B.V. All rights reserved.
Bach, Cristina; Dauchy, Xavier; Severin, Isabelle; Munoz, Jean-François; Etienne, Serge; Chagnon, Marie-Christine
2014-11-01
The effect of sunlight exposure on chemical migration into PET-bottled waters was investigated. Bottled waters were exposed to natural sunlight for 2, 6 and 10 days. Migration was dependent on the type of water. Formaldehyde, acetaldehyde and Sb migration increased with sunlight exposure in ultrapure water. In carbonated waters, carbon dioxide promoted migration and only formaldehyde increased slightly due to sunlight. Since no aldehydes were detected in non-carbonated waters, we conclude that sunlight exposure has no effect. Concerning Sb, its migration levels were higher in carbonated waters. No unpredictable NIAS were identified in PET-bottled water extracts. Cyto-genotoxicity (Ames and micronucleus assays) and potential endocrine disruption effects (transcriptional-reporter gene assays) were checked in bottled water extracts using bacteria (Salmonella typhimurium) and human cell lines (HepG2 and MDA-MB453-kb2). PET-bottled water extracts did not induce any toxic effects (cyto-genotoxicity, estrogenic or anti-androgenic activity) in vitro at relevant consumer-exposure levels. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ramdzan, Adlin N; Almeida, M Inês G S; McCullough, Michael J; Kolev, Spas D
2016-05-05
A low cost, disposable and easy to use microfluidic paper-based analytical device (μPAD) was developed for simple and non-invasive determination of total aldehydes in saliva with a potential to be used in epidemiological studies to assess oral cancer risk. The μPAD is based on the colour reaction between aldehydes (e.g. acetaldehyde, formaldehyde), 3-methyl-2-benzothiazolinone hydrazone (MBTH) and iron(III) to form an intense blue coloured formazan dye. The newly developed μPAD has a 3D design with two overlapping paper layers. The first layer comprises 15 circular detection zones (8 mm in diameter), each impregnated with 8 μL of MBTH, while the second layer contains 15 reagent zones (4 mm in diameter). Two μL of iron(III) chloride are added to each one of the second layer zones after the addition of sample to the detection zones in the first layer. All hydrophilic zones of the μPAD are defined by wax printing using a commercial wax printer. Due to the 2-step nature of the analytical reaction, the two paper layers are separated by a cellulose acetate interleaving sheet to allow for the reaction between the aldehydes in the saliva sample with MBTH to proceed first with the formation of an azine, followed by a blue coloured reaction between the azine and the oxidized by iron(III) form of MBTH, produced after the removal of the interleaving sheet. After obtaining a high resolution image of the detection side zone of the device using a flatbed scanner, the intensity of the blue colour within each detection zone is measured with Image J software. Under optimal conditions, the μPAD is characterised by a working range of 20.4-114.0 μM, limit of detection of 6.1 μM, and repeatability, expressed as RSD, of less than 12.7% (n = 5). There is no statistically significant difference at the 95% confidence level between the results obtained by the μPAD and the reference method (Student's t-test: 0.090 < 0.38). The optimized μPAD is stable for more than 41 days when stored in a freezer (≤-20 °C). Copyright © 2016 Elsevier B.V. All rights reserved.
Universal electrode interface for electrocatalytic oxidation of liquid fuels.
Liao, Hualing; Qiu, Zhipeng; Wan, Qijin; Wang, Zhijie; Liu, Yi; Yang, Nianjun
2014-10-22
Electrocatalytic oxidations of liquid fuels from alcohols, carboxylic acids, and aldehydes were realized on a universal electrode interface. Such an interface was fabricated using carbon nanotubes (CNTs) as the catalyst support and palladium nanoparticles (Pd NPs) as the electrocatalysts. The Pd NPs/CNTs nanocomposite was synthesized using the ethylene glycol reduction method. It was characterized using transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, voltammetry, and impedance. On the Pd NPs/CNTs nanocomposite coated electrode, the oxidations of those liquid fuels occur similarly in two steps: the oxidations of freshly chemisorbed species in the forward (positive-potential) scan and then, in the reverse scan (negative-potential), the oxidations of the incompletely oxidized carbonaceous species formed during the forward scan. The oxidation charges were adopted to study their oxidation mechanisms and oxidation efficiencies. The oxidation efficiency follows the order of aldehyde (formaldehyde) > carboxylic acid (formic acid) > alcohols (ethanol > methanol > glycol > propanol). Such a Pd NPs/CNTs nanocomposite coated electrode is thus promising to be applied as the anode for the facilitation of direct fuel cells.
IR spectral studies of the formation of prebiological organic molecules in ion-bombarded ices
NASA Astrophysics Data System (ADS)
Hudson, R.; Moore, M.
To better understand the formation of C- and CN-containing molecules in cold cosmic environments we have performed a variety of processing experiments on icy mixtures. We will discuss details of condensed-phase synthetic pathways for several acids, alcohols, and aldehydes. For N2 -rich ices containing CH4 , we will show that several CN-bonded acids are easily formed. We will compare carbonic and formic acid production in H O-, CO- and CO2 -dominated ices.2 Condensed-phase pathways for the synthesis of several alcohols including methanol and ethylene glycol, along with several aldehydes including formaldehyde and acetaldehyde, will be discussed. While warming irradiated ices, IR spectra help track the formation of new species from, for example, radical or acid-base reactions, and the loss of species due to vaporization. These experiments demonstrate that condensed-phase reactions lead to cometary and interstellar molecules of varying volatilities. Several newly synthesized species are particularly relevant to recent radio detections, and are of high interest to astronomers and astrobiologists. This research is funded through NRA 344-33-01 and 344-02-57.
attempted prebiotic synthesis of pseudouridine
NASA Astrophysics Data System (ADS)
DWORKIN, JASON P.
1997-08-01
Pseudouridine is a modified base found in all tRNA and rRNA. Hence, it is reasonable to think that pseudouridine was important in the early evolution, if not the origin, of life. Since uracil reacts rapidly with formaldehyde and other aldehydes at the C-5 position, it is plausible that pseudouridine could be synthesized in a similar way by the reaction of the C-5 of uracil with the C-1 of ribose. The determining factor is whether the ribose could react with the uracil faster than ribose decomposes. However, both rates are determined by the amount of free aldehyde in the ribose. Various plausible prebiotic reactions were investigated and none showed pseudouridine above the detection limit (<0.01%). Only unreacted uracil and ribose decomposition products could be observed. Thus the rate of addition of ribose to uracil is much slower than the decomposition of ribose under any reasonable prebiotic conditions. Unless efficient non-biological catalysts for any of these reactions exist, pseudouridine would not have been synthesized to any significant extent without the use of biologically produced enzymes.
Attempted prebiotic synthesis of pseudouridine
NASA Technical Reports Server (NTRS)
Dworkin, J. P.; Miller, S. L. (Principal Investigator)
1997-01-01
Pseudouridine is a modified base found in all tRNA and rRNA. Hence, it is reasonable to think that pseudouridine was important in the early evolution, if not the origin, of life. Since uracil reacts rapidly with formaldehyde and other aldehydes at the C-5 position, it is plausible that pseudouridine could be synthesized in a similar way by the reaction of the C-5 of uracil with the C-1 of ribose. The determining factor is whether the ribose could react with the uracil faster than ribose decomposes. However, both rates are determined by the amount of free aldehyde in the ribose. Various plausible prebiotic reactions were investigated and none showed pseudouridine above the detection limit (<0.01%). Only unreacted uracil and ribose decomposition products could be observed. Thus the rate of addition of ribose to uracil is much slower than the decomposition of ribose under any reasonable prebiotic conditions. Unless efficient non-biological catalysts for any of these reactions exist, pseudouridine would not have been synthesized to any significant extent without the use of biologically produced enzymes.
40 CFR 63.6620 - What performance tests and other procedures must I use?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Where: Ci = concentration of carbon monoxide (CO), total hydrocarbons (THC), or formaldehyde at the control device inlet, Co = concentration of CO, THC, or formaldehyde at the control device outlet, and R = percent reduction of CO, THC, or formaldehyde emissions. (2) You must normalize the CO, THC, or...
40 CFR 63.6620 - What performance tests and other procedures must I use?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Where: Ci = concentration of carbon monoxide (CO), total hydrocarbons (THC), or formaldehyde at the control device inlet, Co = concentration of CO, THC, or formaldehyde at the control device outlet, and R = percent reduction of CO, THC, or formaldehyde emissions. (2) You must normalize the CO, THC, or...
Cordis, G A; Das, D K; Riedel, W
1998-03-06
Malonaldehyde (MDA), a product of lipid peroxidation, is a presumptive marker for the development of oxidative stress in tissues and plasmas. In this study we report the photodiode array detection of the 2,4-dinitrophenylhydrazine (DNPH) derivatives of MDA using HPLC. Oxidative stress was produced by injecting (i.p.) bacterial lipopolysaccharide (LPS) into rats at a dose of 100 micrograms/kg, or i.v. into rabbits (1 microgram/kg), or added to freshly drawn human blood (200 ng/ml). Blood was collected at several time points up to 5 h, centrifuged, and equal volumes of 20% TCA were used to precipitate proteins from the plasma. The supernatants were derivatized with DNPH, and the aldehyde-DNPHs were extracted with pentane. After evaporation, aliquots of 10 microliters in acetonitrile were injected onto a Beckman Ultrasphere C18 (3 microns) column, chromatographed with an acetonitrile-water-acetic acid gradient mobile phase and scanned using Waters 996 photodiode array detector. Peak identification and homogeneity was determined by comparing the experimental peaks and UV scans with those of authentic standards. A significant increase in the DNPH derivative of malonaldehyde (MDA-DNPH), but not of the other aldehyde-DNPH derivatives of formaldehyde (FDA), acetaldehyde (ADA), acetone and propionaldehyde (PDA) was seen over the first hour after LPS administration in anesthetized rats, while in conscious rabbits this trend lasted up to 3 h. The retention times as well as the UV scans of the derivatized aldehydes matched the authentic standards. Thus, photodiode array detection has proved valuable in establishing this HPLC method for estimating oxidative stress. This technique could accurately measure pmol amounts of MDA-DNPH indicating the usefulness of photodiode array detection method for estimating small changes in the oxidative stress.
Chum, Helena L.; Black, Stuart K.; Diebold, James P.; Kreibich, Roland E.
1993-01-01
A process for preparing phenol-formaldehyde novolak resins and molding compositions in which portions of the phenol normally contained in said resins are replaced by a phenol/neutral fractions extract obtained from fractionating fast-pyrolysis oils. The fractionation consists of a neutralization stage which can be carried out with aqueous solutions of bases or appropriate bases in the dry state, followed by solvent extraction with an organic solvent having at least a moderate solubility parameter and good hydrogen bonding capacity. Phenolic compounds-containing/neutral fractions extracts obtained by fractionating fast-pyrolysis oils from a lignocellulosic material, is such that the oil is initially in the pH range of 2-4, being neutralized with an aqueous bicarbonate base, and extracted into a solvent having a solubility parameter of approximately 8.4-9.11 [cal/cm.sup.3 ].sup.1/2 with polar components in the 1.8-3.0 range and hydrogen bonding components in the 2-4.8 range and the recovery of the product extract from the solvent with no further purification being needed for use in adhesives and molding compounds. The product extract is characterized as being a mixture of very different compounds having a wide variety of chemical functionalities, including phenolic, carbonyl, aldehyde, methoxyl, vinyl and hydroxyl. The use of the product extract on phenol-formaldehyde thermosetting resins is shown to have advantages over the conventional phenol-formaldehyde resins.
Occupational exposure assessment of highway toll station workers to vehicle engine exhaust.
Belloc-Santaliestra, Miriam; van der Haar, Rudolf; Molinero-Ruiz, Emilia
2015-01-01
Toll station workers are occupationally exposed to vehicle engine exhaust, a complex mixture of different chemical substances, including carcinogenic compounds. Therefore, a study was carried out on attendants of two highway toll stations to describe their occupational exposure to vehicle engine exhaust, based on a worst-case scenario approach. Personal sampling was conducted during the day shift for all attendants, testing for three groups of chemical substances: polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs) and aldehydes (formaldehyde and acrolein). Concentrations of total PAH, BTEX (benzene, toluene, ethylbenzene, and xylenes) and formaldehyde content varied between 97.60-336.08 ng/m3, 5.01-40.52 μg/m3, and 0.06-19.13 μg/m3, respectively. No clear relationships could be established between exposure levels and the number of vehicles. Furthermore, no differences were found between truck versus car lanes, or inside versus outside the tollbooth. Not all the detected VOCs were related to vehicle exhaust; some were consistent with the use of cleaning products. The measured concentrations were far below the established occupational exposure limits, but tended to be higher than values reported for outdoor urban environments. There are very few international studies assessing occupational exposures among toll station workers, and this is the first such study to be conducted in Spain. The results suggest that further, more detailed studies are necessary to characterize exposure properly, and ones which include other airborne pollutants, such as ultrafine particles. The comparison of the results to other similar studies was difficult, since no data related to some important exposure determinants have been provided. Therefore, it is recommended that these determinants be considered in future studies.
Effects of cooking method, cooking oil, and food type on aldehyde emissions in cooking oil fumes.
Peng, Chiung-Yu; Lan, Cheng-Hang; Lin, Pei-Chen; Kuo, Yi-Chun
2017-02-15
Cooking oil fumes (COFs) contain a mixture of chemicals. Of all chemicals, aldehydes draw a great attention since several of them are considered carcinogenic and formation of long-chain aldehydes is related to fatty acids in cooking oils. The objectives of this research were to compare aldehyde compositions and concentrations in COFs produced by different cooking oils, cooking methods, and food types and to suggest better cooking practices. This study compared aldehydes in COFs produced using four cooking oils (palm oil, rapeseed oil, sunflower oil, and soybean oil), three cooking methods (stir frying, pan frying, and deep frying), and two foods (potato and pork loin) in a typical kitchen. Results showed the highest total aldehyde emissions in cooking methods were produced by deep frying, followed by pan frying then by stir frying. Sunflower oil had the highest emissions of total aldehydes, regardless of cooking method and food type whereas rapeseed oil and palm oil had relatively lower emissions. This study suggests that using gentle cooking methods (e.g., stir frying) and using oils low in unsaturated fatty acids (e.g., palm oil or rapeseed oil) can reduce the production of aldehydes in COFs, especially long-chain aldehydes such as hexanal and t,t-2,4-DDE. Copyright © 2016 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-07-01
...=Aldehydes grams/BHP-hr=MAL mode/Measured BHP in mode. (vii) EAL mode=Aldehydes grams/BHP-hr=MAL mode/Measured BHP in mode. Where: MAL mode=Total aldehyde mass emissions (grams per hour) for each test mode. (2... mode=(DCH2O/106)30.026(DVol)/Vm MCH2O mode=(WCH2O/106)30.026(WVol)/Vm (1) If aldehydes are measured...
Code of Federal Regulations, 2010 CFR
2010-07-01
...=Aldehydes grams/BHP-hr=MAL mode/Measured BHP in mode. (vii) EAL mode=Aldehydes grams/BHP-hr=MAL mode/Measured BHP in mode. Where: MAL mode=Total aldehyde mass emissions (grams per hour) for each test mode. (2... mode=(DCH2O/106)30.026(DVol)/Vm MCH2O mode=(WCH2O/106)30.026(WVol)/Vm (1) If aldehydes are measured...
Code of Federal Regulations, 2014 CFR
2014-07-01
...=Aldehydes grams/BHP-hr=MAL mode/Measured BHP in mode. (vii) EAL mode=Aldehydes grams/BHP-hr=MAL mode/Measured BHP in mode. Where: MAL mode=Total aldehyde mass emissions (grams per hour) for each test mode. (2... mode=(DCH2O/106)30.026(DVol)/Vm MCH2O mode=(WCH2O/106)30.026(WVol)/Vm (1) If aldehydes are measured...
Code of Federal Regulations, 2011 CFR
2011-07-01
...=Aldehydes grams/BHP-hr=MAL mode/Measured BHP in mode. (vii) EAL mode=Aldehydes grams/BHP-hr=MAL mode/Measured BHP in mode. Where: MAL mode=Total aldehyde mass emissions (grams per hour) for each test mode. (2... mode=(DCH2O/106)30.026(DVol)/Vm MCH2O mode=(WCH2O/106)30.026(WVol)/Vm (1) If aldehydes are measured...
Code of Federal Regulations, 2013 CFR
2013-07-01
...=Aldehydes grams/BHP-hr=MAL mode/Measured BHP in mode. (vii) EAL mode=Aldehydes grams/BHP-hr=MAL mode/Measured BHP in mode. Where: MAL mode=Total aldehyde mass emissions (grams per hour) for each test mode. (2... mode=(DCH2O/106)30.026(DVol)/Vm MCH2O mode=(WCH2O/106)30.026(WVol)/Vm (1) If aldehydes are measured...
Molybdenum Incorporation in Tungsten Aldehyde Oxidoreductase Enzymes from Pyrococcus furiosus▿ †
Sevcenco, Ana-Maria; Bevers, Loes E.; Pinkse, Martijn W. H.; Krijger, Gerard C.; Wolterbeek, Hubert T.; Verhaert, Peter D. E. M.; Hagen, Wilfred R.; Hagedoorn, Peter-Leon
2010-01-01
The hyperthermophilic archaeon Pyrococcus furiosus expresses five aldehyde oxidoreductase (AOR) enzymes, all containing a tungsto-bispterin cofactor. The growth of this organism is fully dependent on the presence of tungsten in the growth medium. Previous studies have suggested that molybdenum is not incorporated in the active site of these enzymes. Application of the radioisotope 99Mo in metal isotope native radioautography in gel electrophoresis (MIRAGE) technology to P. furiosus shows that molybdenum can in fact be incorporated in all five AOR enzymes. Mo(V) signals characteristic for molybdopterin were observed in formaldehyde oxidoreductase (FOR) in electron paramagnetic resonance (EPR)-monitored redox titrations. Our finding that the aldehyde oxidation activity of FOR and WOR5 (W-containing oxidoreductase 5) correlates only with the residual tungsten content suggests that the Mo-containing AORs are most likely inactive. An observed W/Mo antagonism is indicative of tungstate-dependent negative feedback of the expression of the tungstate/molybdate ABC transporter. An intracellular selection mechanism for tungstate and molybdate processing has to be present, since tungsten was found to be preferentially incorporated into the AORs even under conditions with comparable intracellular concentrations of tungstate and molybdate. Under the employed growth conditions of starch as the main carbon source in a rich medium, no tungsten- and/or molybdenum-associated proteins are detected in P. furiosus other than the high-affinity transporter, the proteins of the metallopterin insertion machinery, and the five W-AORs. PMID:20562313
NASA Astrophysics Data System (ADS)
Zhao, R.; Soong, R.; Simpson, A. J.; Abbatt, J.
2012-12-01
Organic peroxides are major components of secondary organic aerosol (SOA), affecting the toxicity of SOA and its oxidative capacity. Hydroxyhydroperoxide (HHP) is a class of organic peroxide observed in ambient air, rain water, and cloud water. However, the formation pathway of HHPs remains under debate, with one potential path via reaction of water with Criegee Intermediates. The current study focuses on a formation mechanism involving reversible nucleophilic addition of H2O2 to aldehydes. This formation pathway of HHPs has been known for decades, but has long been considered as a minor reaction. This is because HHPs were observed to decompose rapidly into H2O2 and the corresponding aldehydes in dilute aqueous solutions. In the current study, proton transfer reaction mass spectrometry (PTR-MS) and proton nuclear magnetic resonance (1H NMR) spectrometry were employed to determine the equilibrium constants (Keq) of H2O2 addition to a variety of atmospherically relevant carbonyls in the aqueous phase. HHP formation was insignificant from ketones and methacrolein, but was significant from formaldehyde, acetaldehyde and propionaldehyde. The Keq values ranged from 80 to 150 M-1 at 25 °C. Based on these values, the environmental implications of HHP formation via this pathway suggest that HHP formation is unlikely to be significant in cloud water. However, in aerosol liquid water, where the concentrations of aldehydes and H2O2 can be at the mM level, this pathway may be significant.
Formation of Amino Acid Thioesters for Prebiotic Peptide Synthesis: Catalysis By Amino Acid Products
NASA Technical Reports Server (NTRS)
Weber, Arthur L.; DeVincenzi, Donald L. (Technical Monitor)
1999-01-01
The origin of life can be described as a series of events in which a prebiotic chemical process came increasingly under the control of its catalytic products. In our search for this prebiotic process that yielded catalytic takeover products (such as polypeptides), we have been investigating a reaction system that generates peptide-forming amino acid thioesters from formaldehyde, glycolaldehyde, and ammonia in the presence of thiols. As shown below, this model process begins by aldol condensation of formaldehyde and glycolaldehyde to give trioses and releases. These sugars then undergo beta-dehydration yielding their respective alpha-ketoaldehydes. Addition of ammonia to the alpha-ketoaldehydes yields imines which can either: (a) rearrange in the presence of thesis to give amino acid thioesters or (be react with another molecule of aldehyde to give imidazoles. This 'one-pot' reaction system operates under mild aqueous conditions, and like modem amino acid biosynthesis, uses sugar intermediates which are converted to products by energy-yielding redox reactions. Recently, we discovered that amino acids, such as the alanine reaction product, catalyze the first and second steps of the process. In the presence of ammonia the process also generates other synthetically useful products, like the important biochemical -- pyruvic acid.
Plaisance, H; Vignau-Laulhere, J; Mocho, P; Sauvat, N; Raulin, K; Desauziers, V
2017-05-24
Building and furniture materials are known to be major sources of volatile organic compounds (VOCs) indoors. During the construction process, an introduced material can have a more or less long-term impact on the indoor air quality according to the building characteristics. In this study, field measurements were carried out at six construction stages in three energy-efficient timber-frame houses. Data analysis focused on the ten most abundant compounds found among an initial list of fifteen target VOCs, namely formaldehyde, acetaldehyde, hexanal, toluene, m/p-xylenes, ethylbenzene, styrene, α-pinene, 3-carene and d-limonene. The chemical compositions and concentration variation patterns were recorded. The results showed a high pollution count, with m/p-xylenes and ethylbenzene concentrations ranging from 1900 to 5100 μg m -3 occurring at the time of the structural work (representing more than 88% of the sum of the target VOCs). Emission tests done on a large number of materials used in the construction revealed that this pollution is due to the emissions from the polyurethane adhesive mastic used as a sealing material. The emission kinetics of polyurethane adhesive mastic was assessed alone and also within a material assembly reconstituting a room wall. The results showed that the superposition of materials led to a slowing down of the VOC emission process from polyurethane adhesive mastic, which explains the concentration decays recorded in houses during the construction process. At the final construction stage, the concentration levels were low for all compounds (the sums of the target VOCs were between 18 and 32 μg m -3 ), with the aldehydes (formaldehyde, acetaldehyde and hexanal) now becoming the major fraction in the chemical composition in the last stages of construction (representing 50-70% of the sum of the target VOCs). This is in agreement with the fact that the sources of aldehydes are the most numerous among the materials and have rather slow emission kinetics.
NASA Astrophysics Data System (ADS)
Keenan, C. R.; Lee, C.; Sedlak, D. L.
2007-12-01
The reaction of zero-valent iron (ZVI) with oxygen can lead to the formation of oxidants, which may be used to transform recalcitrant contaminants including non-polar organics and certain metals. Nanoparticulate iron might provide a practical mechanism of remediating oxygen-containing groundwater and contaminated soil. To gain insight into the reaction mechanism and to quantify the yield of oxidants, experiments were performed with model organic compounds in the presence of nanoparticulate zero-valent iron and oxygen. At pH values below 5, ZVI nanoparticles were oxidized within 30 minutes with a stoichiometry of approximately two Fe0 oxidized per O2 consumed. Using the oxidation of methanol and ethanol to formaldehyde and acetaldehyde, respectively, we found that less than 2% of the consumed oxygen was converted to reactive oxidants under acidic conditions. The yield of aldehydes increased with pH up to pH 7, with maximum oxidant yields of around 5% relative to the mass of ZVI added. The increase of aldehyde yield with pH was attributable to changes in the processes responsible for oxidant production. At pH values below 5, the corrosion of ZVI by oxygen produces hydrogen peroxide, which subsequently reacts with ferrous iron [Fe(II)] via the Fenton reaction. At higher pH values, the aldehydes are produced when Fe(II), the initial product of ZVI oxidation, reacts with oxygen. The decrease in oxidant yield at pH values above 7 may be attributable to precipitation of Fe(II). The oxidation of benzoic acid and 2-propanol to para-hydroxybenzoic acid and acetone, respectively, followed a very different trend compared to the primary alcohols. In both cases, the highest product yields (approximately 2% with respect to ZVI added) were observed at pH 3. Yields decreased with increasing pH, with no oxidized product detected at neutral pH. These results suggest that two different oxidants may be produced by the system: hydroxyl radical (OH-·) at acidic pH and a more selective oxidant such as the ferryl ion [Fe(IV)] at neutral pH. This provides insight into the type of compounds that may be oxidized using the zero-valent iron and oxygen system. The addition of certain compounds such as oxalate and polyoxometalate (POM) may improve contaminant remediation efficiencies by enhancing oxidant yields. The introduction of 1 mM oxalate improved the formaldehyde yield by approximately 20% at neutral pH. Oxalate accelerates the Fenton reaction and limits the passivation of the ZVI surface by increasing iron solubility. The presence of excess POM greatly enhanced the yield of formaldehyde, with maximum yields of 60 and 35% with respect to ZVI added at pH 2 and 7, respectively. The mechanism of POM enhancement is a function of solution pH. At acidic pH, POM acts an electron shuttle by directly transferring electrons from ZVI to oxygen to increase the hydrogen peroxide production. At neutral pH, POM may act by forming soluble iron-complexes and preventing the build-up of an iron oxide layer on the ZVI surface.
Haghshenas, Pouyan; Gravel, Michel
2016-09-16
N-Boc-α-amino aldehydes are shown to be excellent partners in cross-benzoin reactions with aliphatic or heteroaromatic aldehydes. The chemoselectivity of the reaction and the facial selectivity on the amino aldehyde allow cross-benzoin products to be obtained in good yields and good diastereomeric ratios. The developed method is utilized as the key step in a concise total synthesis of d-arabino-phytosphingosine.
[Control of disinfection in buildings used for poultry raising].
Maris, P
1989-01-01
During a 2-year survey in turkey breeding farms, it was possible to compare six disinfection procedures by monitoring 14 first disinfections following the breeding house cleaning and 14 second disinfections prior to animal return. By swabbing all the germs from asbestos concrete surfaces, we noted that in the case of first disinfection the chloramine T-based product was more effective than phenol or quaternary ammonium-aldehyde-based products. For the second disinfection, it was demonstrated that a minimal dose of 15 kg of formaldehyde was necessary for disinfection to be satisfactory; 12 to 15 kg paraformaldehyde was as effective as 40 to 60 liters of 30-35% formol for buildings, the ground surface of which covered between 1,000 and 1,300 m2.
Daher, Nancy; Saleh, Rawad; Jaroudi, Ezzat; Sheheitli, Hiba; Badr, Thérèse; Sepetdjian, Elizabeth; Al Rashidi, Mariam; Saliba, Najat; Shihadeh, Alan
2009-01-01
The lack of scientific evidence on the constituents, properties, and health effects of second-hand waterpipe smoke has fueled controversy over whether public smoking bans should include the waterpipe. The purpose of this study was to investigate and compare emissions of ultrafine particles (UFP, <100 nm), carcinogenic polyaromatic hydrocarbons (PAH), volatile aldehydes, and carbon monoxide (CO) for cigarettes and narghile (shisha, hookah) waterpipes. These smoke constituents are associated with a variety of cancers, and heart and pulmonary diseases, and span the volatility range found in tobacco smoke. Sidestream cigarette and waterpipe smoke was captured and aged in a 1 m3 Teflon-coated chamber operating at 1.5 air changes per hour (ACH). The chamber was characterized for particle mass and number surface deposition rates. UFP and CO concentrations were measured online using a fast particle spectrometer (TSI 3090 Engine Exhaust Particle Sizer), and an indoor air quality monitor. Particulate PAH and gaseous volatile aldehydes were captured on glass fiber filters and DNPH-coated SPE cartridges, respectively, and analyzed off-line using GC–MS and HPLC–MS. PAH compounds quantified were the 5- and 6-ring compounds of the EPA priority list. Measured aldehydes consisted of formaldehyde, acetaldehyde, acrolein, methacrolein, and propionaldehyde. We found that a single waterpipe use session emits in the sidestream smoke approximately four times the carcinogenic PAH, four times the volatile aldehydes, and 30 times the CO of a single cigarette. Accounting for exhaled mainstream smoke, and given a habitual smoker smoking rate of 2 cigarettes per hour, during a typical one-hour waterpipe use session a waterpipe smoker likely generates ambient carcinogens and toxicants equivalent to 2–10 cigarette smokers, depending on the compound in question. There is therefore good reason to include waterpipe tobacco smoking in public smoking bans. PMID:20161525
NASA Astrophysics Data System (ADS)
Daher, Nancy; Saleh, Rawad; Jaroudi, Ezzat; Sheheitli, Hiba; Badr, Thérèse; Sepetdjian, Elizabeth; Al Rashidi, Mariam; Saliba, Najat; Shihadeh, Alan
2010-01-01
The lack of scientific evidence on the constituents, properties, and health effects of second-hand waterpipe smoke has fueled controversy over whether public smoking bans should include the waterpipe. The purpose of this study was to investigate and compare emissions of ultrafine particles (UFP, <100 nm), carcinogenic polyaromatic hydrocarbons (PAH), volatile aldehydes, and carbon monoxide (CO) for cigarettes and narghile (shisha, hookah) waterpipes. These smoke constituents are associated with a variety of cancers, and heart and pulmonary diseases, and span the volatility range found in tobacco smoke. Sidestream cigarette and waterpipe smoke was captured and aged in a 1 m 3 Teflon-coated chamber operating at 1.5 air changes per hour (ACH). The chamber was characterized for particle mass and number surface deposition rates. UFP and CO concentrations were measured online using a fast particle spectrometer (TSI 3090 Engine Exhaust Particle Sizer), and an indoor air quality monitor. Particulate PAH and gaseous volatile aldehydes were captured on glass fiber filters and DNPH-coated SPE cartridges, respectively, and analyzed off-line using GC-MS and HPLC-MS. PAH compounds quantified were the 5- and 6-ring compounds of the EPA priority list. Measured aldehydes consisted of formaldehyde, acetaldehyde, acrolein, methacrolein, and propionaldehyde. We found that a single waterpipe use session emits in the sidestream smoke approximately four times the carcinogenic PAH, four times the volatile aldehydes, and 30 times the CO of a single cigarette. Accounting for exhaled mainstream smoke, and given a habitual smoker smoking rate of 2 cigarettes per hour, during a typical one-hour waterpipe use session a waterpipe smoker likely generates ambient carcinogens and toxicants equivalent to 2-10 cigarette smokers, depending on the compound in question. There is therefore good reason to include waterpipe tobacco smoking in public smoking bans.
Partially-irreversible sorption of formaldehyde in five polymers
NASA Astrophysics Data System (ADS)
Ye, Wei; Cox, Steven S.; Zhao, Xiaomin; Frazier, Charles E.; Little, John C.
2014-12-01
Due to its environmental ubiquity and concern over its potential toxicity, the mass-transfer characteristics of formaldehyde are of critical importance to indoor air quality research. Previous studies have suggested that formaldehyde mass transfer in polymer is partially irreversible. In this study, mechanisms that could cause the observed irreversibility were investigated. Polycarbonate and four other polymeric matrices were selected and subjected to formaldehyde sorption/desorption cycles. Mass transfer of formaldehyde was partially irreversible in all cases, and three potential mechanisms were evaluated. First, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analysis was used to investigate possible formaldehyde polymerization on polymer surfaces. ATR-FTIR showed no detectable paraformaldehyde or formaldehyde on the film surfaces that had been exposed to formaldehyde and air. ATR-FTIR did detect aliphatic acids suggesting oxidation had occurred on film surfaces as a result of exposure to formaldehyde. However, additional study suggested that air is not the primary cause for irreversibility. Second, statistical physics theory was tested as a possible explanation. According to this theory, reversible and irreversible sorption could be taking place simultaneously. The irreversible fraction should be constant during sorption and the fraction could be determined by performing a complete sorption/desorption test. The sorption/desorption data was consistent with this theory. Third, chemisorption was considered as another possible cause for irreversibility. Extraction/fluorimetry testing of post-sorption and post-desorption polymer films showed measurable quantities of formaldehyde suggesting that some of the chemisorbed formaldehyde was reversible at the higher extraction temperature. Further quantitative study on chemical reaction products is needed.
2014-10-01
Briefly, 10 million cells were used per IP. Cells were fixed with 1% formaldehyde solution. DNA was sonicated and subjected to immunoprecipitation with... formaldehyde solution. Total chromatin and RNAs were sonicated and subjected to immunoprecipitation with the same AR and Med1 antibodies used in ChIP...were fixed with 1% formaldehyde . Cell pellets were lysed and resuspended in restriction buffer for BstY1 and 0.1% SDS for 10 min at 65 °C. Triton X
NASA Astrophysics Data System (ADS)
Moussa, Samar G.; El-Fadel, Mutassem; Saliba, Najat A.
Lower carbonyl concentrations were measured for the first time in two different sampling sites (American University of Beirut (AUB) and Abdel-Aziz (AA)) in Beirut, Lebanon. Formaldehyde (C1) and acetaldehyde (C2) were the most abundant carbonyls with respective maximum concentrations of 12.2 and 5.2 ppbv at AUB and 8.6 and 5.1 ppbv at AA. Diurnal variations of carbonyls exhibited similar behaviors, suggesting related formation and decomposition routes. Morning levels of carbonyls were either equal or higher than the ones in the afternoon at the coastal site (AUB) due to atmospheric dilution. However, morning levels were mostly lower than noon levels at a three-busy street intersection (AA) due to the enhancement of photochemical activities. Vehicle emissions constituted the dominant source of carbonyls measured as confirmed by the good correlation between C1, C2 and propanal (C3) and the C1/CO and C2/CO ratios in the mornings. Seasonal variation showed the predominance of summertime photolysis and photo-oxidation reactions of aldehydes. Based on the measured formaldehyde levels, ozone and nitrous acid concentrations, morning and afternoon OH radical fluxes are computed and consequently their contribution to photochemical smog processes are assessed.
Barkhordari, Abdullah; Azari, Mansour R; Zendehdel, Rezvan; Heidari, Mahmoud
2017-04-01
In this research, a needle trap device (NTD) packed with nanoporous silica aerogel as a sorbent was used as a new technique for sampling and analysis of formaldehyde and acrolein compounds in aqueous and urine samples. The obtained results were compared with those of the commercial sorbent Carboxen1000. Active sampling was used and a 21-G needle was applied for extraction of gas in the sample headspace. The optimization of experimental parameters like salt addition, temperature and desorption time was done and the performance of the NTD for the extraction of the compounds was evaluated. The optimum temperature and time of desorption were 280 °C and 2 min, respectively. The ranges of limit of detection, limit of quantification and relative standard deviation (RSD) were 0.01-0.03 μg L -1 , 0.03-0.1 μg L -1 and 2.8-7.3%, respectively. It was found that the NTD containing nanoporous silica aerogel had a better performance. Thus, this technique can be applied as an effective and reliable method for sampling and analysis of aldehyde compounds from different biological matrices like urine, exhalation and so on.
Biogenic carbonyl compounds within and above a coniferous forest in Germany
NASA Astrophysics Data System (ADS)
Müller, Konrad; Haferkorn, Sylvia; Grabmer, Wolfgang; Wisthaler, Armin; Hansel, Armin; Kreuzwieser, Jürgen; Cojocariu, Cristian; Rennenberg, Heinz; Herrmann, Hartmut
Diurnal mixing ratios of aldehydes and ketones were investigated during two joint experiments in summer months to identify biogenic contributions from coniferous forests to tropospheric chemistry. In a Norway spruce forest, the diurnal variation of carbonyl compounds was measured at 12 m (in the treetop) and at 24 m (above the canopy). The main findings of the experiment are that acetone (up to 9.1 ppbv), formaldehyde (up to 6.5 ppbv), acetaldehyde (up to 5.5 ppbv) and methyl ethyl ketone (MEK, up to 1.8 ppbv) were found in highest concentrations. For all major compounds with the exception of MEK, primary emissions are supposed. From α-pinene oxidation, pinonaldehyde was found with its peak concentrations (up to 0.15 ppbv) during the early morning hours. The diurnal variation of concentrations for most other compounds shows maximum concentrations near midday in 2,4-dinitrophenylhydrazine (DNPH) measurements but not for proton-transfer reaction mass spectrometry (PTR-MS) measurements of acetaldehyde and acetone. A clear correlation of carbonyl compound concentration to the radiation intensity and the temperature ( R2=0.66) was found. However, formaldehyde did not show distinct diurnal variations. A very high correlation was observed for both heights between mixing ratios of acetaldehyde and acetone ( R2=0.84), acetone and MEK ( R2=0.90) as well as acetaldehyde and MEK ( R2=0.88) but not for formaldehyde and the others. For the most time, the observed carbonyl compound concentrations above the canopy are higher than within the forest stand. This indicates an additional secondary formation in the atmosphere above the forest. The differences of acetone and acetaldehyde mixing ratios detected by DNPH technique and the PTR-MS could not be fully clarified by a laboratory intercomparison.
Effects of a single inhalative exposure to formaldehyde on the open field behavior of mice.
Malek, Fathi A; Möritz, Klaus-Uwe; Fanghänel, Jochen
2004-02-01
The effects of formaldehyde on the explorative behavior and locomotor activity of mice after a single inhalative exposure were examined in an open field. Adult male mice were exposed to approximately 1.1 ppm, 2.3 ppm, or 5.2 ppm formaldehyde vapour for 2 hours and the open field test was carried out two hours after the end of exposure (trial 1) and repeated 24 hours thereafter (trial 2). The following behavioral parameters were quantitatively examined: numbers of crossed floor squares (inner, peripheral, total), sniffing, grooming, rearing, climbing, and incidence of fecal boli. The results of the first trial revealed that the motion activity was significantly reduced in all exposed groups. In the 1.1 ppm group, the frequency of rearing was reduced and that of floor sniffing increased. The exposure to the two higher formaldehyde concentrations caused a significant decrease in total numbers of floor squares crossed by the subjects, air sniffing, and rearing. The open field test on the next day (trial 2) showed that the frequencies of floor sniffing, grooming, and rearing in all formaldehyde groups were significantly altered. In the 2.5 ppm group, an increased incidence of fecal boli was observed. From the results obtained, we conclude that the exposure of male mice to formaldehyde vapour affects their locomotor and explorative activity in the open field, and that some open field parameters are still altered in the exposed animals even after 24 hours.
Facile construction of substituted pyrimido[4,5-d]pyrimidones by transformation of enaminouracil
Hamama, Wafaa S.; Ismail, Mohamed A.; Al-Saman, Hanaa A.; Zoorob, Hanafi H.
2012-01-01
The reaction of 6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (1) as a binucleophile with primary aromatic or heterocyclic amines and formaldehyde or aromatic (heterocyclic) aldehydes in a molar ratio (1:1:2) gave the pyrimido[4,5-d]pyrimidin-2,4-dione ring systems 2–5. Treatment of 1 with diamines and formalin in molar ratio (2:1:4) gave the bis-pyrimido[4,5-d]pyrimidin-2,4-diones 6–8. Furthermore, substituted pyrimido[4,5-d]pyrimidin-2,4-diones with uracil derivative 11 or spiro indole 16 were synthesized. Synthesis of pyrimido[4,5-d]pyrimidin-2,4-diones with different substitution at C-5 and C-7 was achieved to give 13 and 18, respectively. PMID:25685408
Experimental interstellar organic chemistry: Preliminary findings
NASA Technical Reports Server (NTRS)
Khare, B. N.; Sagan, C.
1971-01-01
In a simulation of interstellar organic chemistry in dense interstellar clouds or on grain surfaces, formaldehyde, water vapor, ammonia and ethane are deposited on a quartz cold finger and ultraviolet-irradiated in high vacuum at 77K. The HCHO photolytic pathway which produces an aldehyde radical and a superthermal hydrogen atom initiates solid phase chain reactions leading to a range of new compounds, including methanol, ethanol, acetaldehyde, acetonitrile, acetone, methyl formate, and possibly formic acid. Higher nitriles are anticipated. Genetic relations among these interstellar organic molecules (e.g., the Cannizzaro and Tischenko reactions) must exist. Some of them, rather than being synthesized from smaller molecules, may be degradation products of larger organic molecules, such as hexamethylene tetramine, which are candidate consitituents of the interstellar grains. The experiments reported here may also be relevant to cometary chemistry.
Lee, Eun Gyung; Magrm, Rana; Kusti, Mohannad; Kashon, Michael L; Guffey, Steven; Costas, Michelle M; Boykin, Carie J; Harper, Martin
2017-01-01
This study was to determine occupational exposures to formaldehyde and to compare concentrations of formaldehyde obtained by active and passive sampling methods. In one pathology and one histology laboratories, exposure measurements were collected with sets of active air samplers (Supelco LpDNPH tubes) and passive badges (ChemDisk Aldehyde Monitor 571). Sixty-six sample pairs (49 personal and 17 area) were collected and analyzed by NIOSH NMAM 2016 for active samples and OSHA Method 1007 (using the manufacturer's updated uptake rate) for passive samples. All active and passive 8-hr time-weighted average (TWA) measurements showed compliance with the OSHA permissible exposure limit (PEL-0.75 ppm) except for one passive measurement, whereas 78% for the active and 88% for the passive samples exceeded the NIOSH recommended exposure limit (REL-0.016 ppm). Overall, 73% of the passive samples showed higher concentrations than the active samples and a statistical test indicated disagreement between two methods for all data and for data without outliers. The OSHA Method cautions that passive samplers should not be used for sampling situations involving formalin solutions because of low concentration estimates in the presence of reaction products of formaldehyde and methanol (a formalin additive). However, this situation was not observed, perhaps because the formalin solutions used in these laboratories included much less methanol (3%) than those tested in the OSHA Method (up to 15%). The passive samplers in general overestimated concentrations compared to the active method, which is prudent for demonstrating compliance with an occupational exposure limit, but occasional large differences may be a result of collecting aerosolized droplets or splashes on the face of the samplers. In the situations examined in this study the passive sampler generally produces higher results than the active sampler so that a body of results from passive samplers demonstrating compliance with the OSHA PEL would be a valid conclusion. However, individual passive samples can show lower results than a paired active sampler so that a single result should be treated with caution.
Migration of formaldehyde from melamine-ware: UK 2008 survey results.
Potter, E L J; Bradley, E L; Davies, C R; Barnes, K A; Castle, L
2010-06-01
Fifty melamine-ware articles were tested for the migration of formaldehyde - with hexamethylenetetramine (HMTA) expressed as formaldehyde - to see whether the total specific migration limit (SML(T)) was being observed. The SML(T), given in European Commission Directive 2002/72/EC as amended, is 15 mg kg(-1). Fourier transform-infrared (FT-IR) spectroscopy was carried out on the articles to confirm the plastic type. Articles were exposed to the food simulant 3% (w/v) aqueous acetic acid under conditions representing their worst foreseeable use. Formaldehyde and HMTA in food simulants were determined by a spectrophotometric derivatization procedure. Positive samples were confirmed by a second spectrophotometric procedure using an alternative derivatization agent. As all products purchased were intended for repeat use, three sequential exposures to the simulant were carried out. Formaldehyde was detected in the simulant exposed to 43 samples. Most of the levels found were well below the limits set in law such that 84% of the samples tested were compliant. However, eight samples had formaldehyde levels that were clearly above the legal maximum at six to 65 times the SML(T).
Emission of volatile aldehydes and ketones from wood pellets under controlled conditions.
Arshadi, Mehrdad; Geladi, Paul; Gref, Rolf; Fjällström, Pär
2009-11-01
Different qualities of biofuel pellets were made from pine and spruce sawdust according to an industrial experimental design. The fatty/resin acid compositions were determined by gas chromatography-mass spectrometry for both newly produced pellets and those after 2 and 4 weeks of storage. The aldehydes/ketones compositions were determined by high performance liquid chromatography at 0, 2, and 4 weeks. The designs were analyzed for the response variables: total fatty/resin acids and total aldehydes/ketones. The design showed a strong correlation between the pine fraction in the pellets and the fatty/resin acid content but the influence decreased over storage time. The amount of fatty/resin acids decreased approximately 40% during 4 weeks. The influence of drying temperature on the aldehyde/ketone emission of fresh pellets was also shown. The amounts of emitted aldehydes/ketones generally decreased by 45% during storage as a consequence of fatty/resin acid oxidation. The matrices of individual concentrations were subjected to multivariate data analysis. This showed clustering of the different experimental runs and demonstrated the important mechanism of fatty/resin acid conversion.
Anneken, David; Striebich, Richard; DeWitt, Matthew J; Klingshirn, Christopher; Corporan, Edwin
2015-03-01
Aircraft turbine engines are a significant source of particulate matter (PM) and gaseous emissions in the vicinity of airports and military installations. Hazardous air pollutants (HAPs) (e.g., formaldehyde, benzene, naphthalene and other compounds) associated with aircraft emissions are an environmental concern both in flight and at ground level. Therefore, effective sampling, identification, and accurate measurement of these trace species are important to assess their environmental impact. This effort evaluates two established ambient air sampling and analysis methods, U.S. Environmental Protection Agency (EPA) Method TO-11A and National Institute for Occupational Safety and Health (NIOSH) Method 1501, for potential use to quantify HAPs from aircraft turbine engines. The techniques were used to perform analysis of the exhaust from a T63 turboshaft engine, and were examined using certified gas standards transferred through the heated sampling systems used for engine exhaust gaseous emissions measurements. Test results show that the EPA Method TO-11A (for aldehydes) and NIOSH Method 1501 (for semivolatile hydrocarbons) were effective techniques for the sampling and analysis of most HAPs of interest. Both methods showed reasonable extraction efficiencies of HAP species from the sorbent tubes, with the exception of acrolein, styrene, and phenol, which were not well quantified. Formaldehyde measurements using dinitrophenylhydrazine (DNPH) tubes (EPA method TO-11A) were accurate for gas-phase standards, and compared favorably to measurements using gas-phase Fourier-transform infrared (FTIR) spectroscopy. In general, these two standard methodologies proved to be suitable techniques for field measurement of turbine engine HAPs within a reasonable (5-10 minutes) sampling period. Details of the tests, the analysis methods, calibration procedures, and results from the gas standards and T63 engine tested using a conventional JP-8 jet fuel are provided. HAPs from aviation-related sources are important because of their adverse health and environmental impacts in and around airports and flight lines. Simpler, more convenient techniques to measure the important HAPs, especially aldehydes and volatile organic HAPs, are needed to provide information about their occurrence and assist in the development of engines that emit fewer harmful emissions.
Release and Formation of Oxidation-Related Aldehydes during Wine Oxidation.
Bueno, Mónica; Carrascón, Vanesa; Ferreira, Vicente
2016-01-27
Twenty-four Spanish wines were subjected to five consecutive cycles of air saturation at 25 °C. Free and bound forms of carbonyls were measured in the initial samples and after each saturation. Nonoxidized commercial wines contain important and sensory relevant amounts of oxidation-related carbonyls under the form of odorless bound forms. Models relating the contents in total aldehydes to the wine chemical composition suggest that fermentation can be a major origin for Strecker aldehydes: methional, phenylacetaldehyde, isobutyraldehyde, 2-methylbutanal, and isovaleraldehyde. Bound forms are further cleaved, releasing free aldehydes during the first steps of wine oxidation, as a consequence of equilibrium shifts caused by the depletion of SO2. At low levels of free SO2, de novo formation and aldehyde degradation are both observed. The relative importance of these phenomena depends on both the aldehyde and the wine. Models relating aldehyde formation rates to wine chemical composition suggest that amino acids are in most cases the most important precursors for de novo formation.
Occupational exposure to formaldehyde and alterations in lymphocyte subsets
Hosgood, H. Dean; Zhang, Luoping; Tang, Xiaojiang; Vermeulen, Roel; Hao, Zhenyue; Shen, Min; Qiu, Chuangyi; Ge, Yichen; Hua, Ming; Ji, Zhiying; Li, Senhua; Xiong, Jun; Reiss, Boris; Liu, Songwang; Xin, Kerry X.; Azuma, Mariko; Xie, Yuxuan; Freeman, Laura Beane; Ruan, Xiaolin; Guo, Weihong; Galvan, Noe; Blair, Aaron; Li, Laiyu; Huang, Hanlin; Smith, Martyn T.; Rothman, Nathaniel; Lan, Qing
2012-01-01
Background Formaldehyde is used in many occupational settings, most notably in manufacturing, health care, and embalming. Formaldehyde has been classified as a human carcinogen, but its mechanism of action remains uncertain. Methods We carried out a cross-sectional study of 43 formaldehyde exposed-workers and 51 unexposed age and sex-matched controls in Guangdong, China to study formaldehyde’s early biologic effects. To follow-up our previous report that the total lymphocyte count was decreased in formaldehyde-exposed workers compared to controls, we evaluated each major lymphocyte subset (i.e., CD4+ T cells, CD8+ T cells, natural killer (NK) cells, and B cells) and T cell lymphocyte subset (CD4+ naïve and memory T cells, CD8+ naïve and memory T cells, and regulatory T cells). Linear regression of each subset was used to test for differences between exposed workers and controls, adjusting for potential confounders. Results Total NK cell and T cell counts were about 24% (p=0.037) and 16% (p=0.0042) lower, respectively, among exposed workers. Among certain T cell subsets, decreased counts among exposed workers were observed for CD8+ T cells (p=0.026), CD8+ effector memory T cells (p=0.018), and regulatory T cells (CD4+FoxP3+: p=0.04; CD25+FoxP3+: p=0.008). Conclusions Formaldehyde exposed-workers experienced decreased counts of NK cells, regulatory T cells, and CD8+ effector memory T cells; however, due to the small sample size these findings need to be confirmed in larger studies. PMID:22767408
Re-evaluation of peroxide value as an indicator of the quality of edible oils.
Shiozawa, Satoshi; Tanaka, Masaharu; Ohno, Katsutoshi; Nagao, Yasuhiro; Yamada, Toshihiro
2007-06-01
The oxidation of oils has important effects on the quality of oily foods, such as instant noodles. In particular, the generation of aldehydes, which accompanies the oxidation of oils, is one of the first factors to reduce food quality. We examined various indicators of oil quality during temperature-accelerated storage and found that peroxide value (POV) was highly correlated with the total concentration of major odorants. Moreover, the correlation of POV with the total concentration of five unsaturated aldehydes (t-2-heptenal, t-2-octenal, t-2-decenal, t-2-undecenal and t,t-2,4-decadienal) that show strong cytotoxicity was greater than the correlation of POV with the total concentration of major odorants. The maximum allowable concentration of the five aldehydes was calculated based on the 'no observed adverse-effect level' of the aldehyde that showed the highest cytotoxicity, t,t-2,4-decadienal, along with the human daily oil intake. We showed that it is useful to utilize POV as an indicator to control food quality and safety.
An, Jae-Yoon; Kim, Sumin; Kim, Hyun-Joong
2011-03-15
Formaldehyde was measured with a desiccator, a 20 L chamber and the FLEC method. The formaldehyde emission rate from laminate was the highest at 32 °C using the desiccator, which then decreased with time. The formaldehyde emission using the 20 L small chamber and FLEC showed a similar tendency. There was a strong correlation between the formaldehyde and total volatile organic compounds (TVOCs) with both types of floorings using the two different methods. The formaldehyde emission rate and TVOC results were higher when tested using the FLEC method than with the 20 L small chamber method. The emission rate was affected by the joint edge length in laminate flooring. Toluene, ethylbenzene and xylene were the main VOCs emitted from laminate flooring, and there were more unidentified VOCs emitted than identified VOCs. The samples heated with a floor heating system emitted more formaldehyde than those heated using an air circulation system due to the temperature difference between the bottom panel and flooring. The TVOC emission level of the samples was higher when an air circulation system was used than when a floor heating system was used due to the high ventilation rate. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
James, John T.
2002-01-01
The toxicological assessment of grab sample canisters (GSCs) returned aboard STS-110 is reported. Analytical methods have not changed from earlier reports, and surrogate standard recoveries from the GSCs were 77-121%, with one exception. Pressure tracking indicated no leaks in the canisters. Recoveries from lab and trip controls for formaldehyde analyses ranged from 87 to 96%. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contributions). Because of the inertness of Freon 218 (octafluoropropane, OFP), its contribution to the NMVOC is subtracted and tabulated separately. Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols are also shown for each sample. Because formaldehyde is quantified from sorbent badges, its concentration is listed separately. These five indices of air quality are summarized.
Changes on enological parameters of white wine packaged in bag-in-box during secondary shelf life.
Fu, Y; Lim, L-T; McNicholas, P D
2009-10-01
This study investigated the effects of temperature (22, 35, and 45 degrees C), storage time (48, 30, and 15 d), and packaging type on the quality of white wine in bag-in-box (BIB) during the secondary shelf life. Several enological parameters (color and contents of free and total SO2, total aldehyde, and total phenol) were monitored and correlated with oxygen transmission rate (OTR) and Fourier transform infrared (FTIR) spectral data. Time and temperature had significant effects on color development and SO2 depletion during storage. The increased absorbance at 420 nm was correlated with decreases of free SO2 and total SO2. Overall, total phenol content correlated negatively with total aldehyde content. The variance of the enological parameters can be correlated with the OTR data, indicating the barrier properties for the tested packages were different. FTIR-ATR spectra of the wine were analyzed chemometrically using PLS algorithm. The resulting models were able to predict the A(420), free SO2, total SO2, total phenol, total aldehyde, and storage time of the wines. This technique can potentially be used as an efficient tool to evaluate the quality of wine.
Hazardous airborne carbonyls emissions in industrial workplaces in China.
Ho, Steven Sai Hang; Ip, Ho Sai Simon; Ho, Kin Fai; Ng, Louisa Pan Ting; Chan, Chi Sing; Dai, Wen Ting; Cao, Jun Ji
2013-07-01
A pilot hazardous airborne carbonyls study was carried out in Hong Kong and the Mainland of China. Workplace air samples in 14 factories of various types of manufacturing and industrial operations were collected and analyzed for a panel of 21 carbonyl compounds. The factories can be classified into five general categories, including food processing, electroplating, textile dyeing, chemical manufacturer, and petroleum refinery. Formaldehyde was invariably the most abundant carbonyl compound among all the workplace air samples, accounting for 22.0-44.0% of the total measured amount of carbonyls on a molar basis. Acetone was also found to be an abundant carbonyl in workplace settings; among the selected industrial sectors, chemical manufacturers' workplaces had the highest percentage (an average of 42.6%) of acetone in the total amount of carbonyls measured in air. Benzaldehyde accounted for an average of 20.5% of the total amount of detected carbonyls in electroplating factories, but its contribution was minor in other industrial workplaces. Long-chain aliphatic carbonyls (C6-C10) accounted for a large portion (37.2%) of the total carbonyls in food-processing factories. Glyoxal and methylglyoxal existed at variable levels in the selected workplaces, ranging from 0.2% to 5.5%. The mixing ratio of formaldehyde ranged from 8.6 to 101.2 ppbv in the sampled workplaces. The observed amount of formaldehyde in two paint and wax manufacturers and food-processing factories exceeded the World Health Organization (WHO) air quality guideline of 81.8 ppbv. Carcinogenic risks of chronic exposure to formaldehyde and acetaldehyde by the workers were evaluated. The lifetime cancer hazard risks associated with formaldehyde exposure to male and female workers ranged from 2.01 x 10(-5) to 2.37 x 10(-4) and 2.68 x 10(-5) to 3.16 x 10(-4), respectively. Such elevated risk values suggest that the negative health impact of formaldehyde exposure represents a valid concern, and proper actions should be taken to protect workers from such risks. Many carbonyl species (e.g., formaldehyde, acetaldehyde, and acrolein) are air toxins and they pose public healt risks. The scope of this investigation covers 21 types of carbonyls based on samples collected from 14 different workplaces. Findings of the study will not only provide a comprehensive assessment of indoor air quality with regard to workers' healthy and safety, but also establish a theoretical foundation for future formulation of intervention strategies to reduce occupational carbonyl exposures. No similar study has been carried out either in Hong Kong or the Mainland of China.
Measurements of lower carbonyls in Rome ambient air
NASA Astrophysics Data System (ADS)
Possanzini, M.; Di Palo, V.; Petricca, M.; Fratarcangeli, R.; Brocco, D.
Ambient levels and diurnal profiles of lower carbonyls were measured in Rome during selected days of summer 1994 and winter 1995. The most abundant carbonyls were formaldehyde (up to 27 ppb) followed by ethanal (< 17 ppb) and acetone (< 9 ppb). Gas-phase concentrations of other seven carbonyls were in the 0-3 ppb range. The results were discussed with respect to direct emissions and photochemical production. Using carbonyl/CO concentration ratios mobil source emissions of carbonyls were estimated for the urban area. The secondary production of C 1-C 3 aldehydes from reactions of alkenes with O 3 and OH radicals during the early morning hours of summer days was also calculated. The daytime pattern of carbonyls was found to be similar to that of toluene in wintertime and close to that of ozone in summer periods conductive to photochemical pollution episodes.
Cinnamic aldehyde: a survey of consumer patch-test sensitization.
Danneman, P J; Booman, K A; Dorsky, J; Kohrman, K A; Rothenstein, A S; Sedlak, R I; Steltenkamp, R J; Thompson, G R
1983-12-01
The potential for cinnamic aldehyde, an important fragrance and flavour ingredient, to induce or to elicit delayed contact hypersensitivity reactions in man was evaluated by analysing patch-test data. Results of studies involving a total of 4117 patch tests on various consumer products and fragrance blends containing cinnamic aldehyde and on the material itself were collected from fragrance and formulator companies. The data indicate that cinnamic aldehyde contained in consumer products and fragrance blends at concentrations up to 6 X 10(-1)%, and patch-tested at concentrations up to 8 X 10(-3)%, has no detectable potential to induce hypersensitivity. Cinnamic aldehyde when tested alone induced a dose-related hypersensitivity response. According to published reports, cinnamic aldehyde elicited positive delayed hypersensitivity responses in dermatitic patients. However, results of the current survey show that when cinnamic aldehyde was tested alone or as part of a mixture in subjects in the general population, no pre-existing hypersensitivity reactions to the fragrance material were observed in any of the 4117 patch tests which constituted the survey. Cinnamic aldehyde at the concentrations contained in consumer products and fragrances, has a very low potential to induce hypersensitivity ('induced' reactions) or to elicit sensitization reactions ('elicited' reactions) in the general population.
NASA Astrophysics Data System (ADS)
Burkert, A.; Müller, D.; Rieger, S.; Schmidl, G.; Triebel, W.; Paa, W.
2015-12-01
Formaldehyde is an excellent tracer for the early phase of ignition of hydrocarbon fuels and can be used, e.g., for characterization of single droplet ignition. However, due to its fast thermal decomposition at elevated temperatures and pressures, the determination of concentration fields from laser-induced fluorescence (LIF) measurements is difficult. In this paper, we address LIF measurements of this important combustion intermediate using a calibration cell. Here, formaldehyde is created from evaporation of paraformaldehyde. We discuss three setups for preparation of formaldehyde/air mixtures with respect to their usability for well-defined heating of formaldehyde/air mixtures. The "basic setup" uses a resist heater around the measurement cell for investigation of formaldehyde near vacuum conditions or formaldehyde/air samples after sequential admixing of air. The second setup, described for the first time in detail here, takes advantage of a constant flow formaldehyde/air regime which uses preheated air to reduce the necessary time for gas heating. We used the constant flow system to measure new pressure dependent LIF excitation spectra in the 343 nm spectral region (414 absorption band of formaldehyde). The third setup, based on a novel concept for fast gas heating via excitation of SF6 (chemically inert gas) using a TEA (transverse excitation at atmospheric pressure) CO2 laser, allows to further minimize both gas heating time and thermal decomposition. Here, an admixture of CO2 is served for real time temperature measurement based on Raman scattering. The applicability of the fast laser heating system has been demonstrated with gas mixtures of SF6 + air, SF6 + N2, as well as SF6 + N2 + CO2 at 1 bar total pressure.
van Triel, Jos J; van Bree, Bianca W J; Roberts, David W; Muijser, Hans; Duistermaat, Evert; Woutersen, Ruud A; Kuper, C Frieke
2011-01-11
Previously, a selection of low molecular weight contact and respiratory allergens had tested positive in both a skin and a respiratory local lymph node assay (LLNA), but formaldehyde was negative for sensitization by inhalation. To investigate whether this was due to intrinsic properties of aldehyde sensitizers, the structurally related allergen glutaraldehyde (GA) was tested. BALB/c mice were exposed by inhalation to 6 or 18ppm GA (respiratory LLNA), both generated as a vapor and as an aerosol. Other groups received 0.25% or 2.5% GA on the skin of the ears (skin LLNA). Lymphocyte proliferation and cytokine production were measured in the draining lymph nodes. GA was positive in the skin LLNA and its cytokine profile (IL-4/IFN-γ) skewed towards a Th2-type immune response with increasing dose. Inhalation exposure did not result in increased lymphocyte proliferation or increased cytokine levels, despite comparable tissue damage (irritation) in the skin and respiratory tract. We hypothesize that the highly reactive and hydrophilic GA oligomerizes in the protein-rich mucous layer of the respiratory tract, which impedes sensitization but still facilitates local irritation. Within the context of risk assessment in respiratory allergy, our results stress the importance of prevention of skin--besides inhalation-- exposure to aldehydes like GA. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Respiratory cancer risks among workers with glutaraldehyde exposure.
Collins, James J; Burns, Carol; Spencer, Pam; Bodnar, Catherine M; Calhoun, Teresa
2006-02-01
Glutaraldehyde is a substance that represents a substantial portion of the human exposure to aldehydes in medicine and industry. Other aldehydes such as formaldehyde have been associated with increased cancer rates of the upper respiratory tract and leukemia. Our study is the only one, to our knowledge, to examine cancer rates among exposed glutaraldehyde workers. In an extended follow up using death certificates, we calculated standardized mortality ratios (SMRs) and 95% confidence intervals (CIs) for three cumulative exposure categories of glutaraldehyde. There were 99,730 person-years of observation among unexposed workers, 2934 person-years in the lower exposure category, < 0-100.0 parts per billion (ppb)-years, and 2805 person-years in the higher exposure category of 100.0+ ppb-years. For all respiratory cancers for these exposure categories, the SMRs were 0.9 (95% CI = 0.7-1.1), 1.0 (95% CI = 0.2-3.0), and 0.3 (95% CI = 0.0-1.5). No increasing trend of SMR with increasing exposure is observed for any cause of death examined. We observed no cancers of the nasal cavity and sinus (0.03 expected), nasopharynx (0.02 expected), or leukemia (0.6 expected) among all glutaraldehyde-exposed workers. Although our study findings should be tempered by the small size and the potentially low prevalence of smoking among glutaraldehyde workers, we found no increased rates of respiratory tract cancer or leukemia related to glutaraldehyde exposure.
Length changes in white sturgeon larvae preserved in ethanol or formaldehyde
Bayer, J.M.; Counihan, T.D.
2001-01-01
We examined the effects of two preservatives on the notochord and total lengths of white sturgeon (Acipenser transmontanus) larvae. White sturgeon larvae that were one, seven, and 14 days old were measured live and then preserved in 95% ethanol or 10% formaldehyde. Length changes were then determined at 20 and 95 days after preservation. We found mean length changes ranging from 0.4% to 3.4% shrinkage. Length changes varied with preservative, age of larvae, and length of time preserved. Constant length correction factors are provided for 10% formaldehyde or 95% ethanol valid for larvae between 1 and 14 days old preserved for less than 100 days.
NASA Astrophysics Data System (ADS)
Pilato, Louis
There are some disturbing signs that appear on the horizon as phenolic resins enter their second century of existence. The large area of wood adhesives application (~60% of the total volume of phenolic resins in North America) is under intense pressure due to many factors that are contributing to continuing reduction in the sales volume of wood adhesives. These factors include the known slow cure speed of phenolic resins compared to Urea Formaldehyde (UF), Melamine Formaldehyde (MF), or Methylene Diphenyl Isocyanate (MDI); installation of new machinery/ equipment with fast continuous lines; continued decrease in plywood consumption at the expense of Oriented Strand Board (OSB) where phenolic resin is the preferred adhesive for plywood; further reduction in formaldehyde emissions through California Air Resources Board (CARB) Phase I and Phase II; uncertainty of whether formaldehyde will be identified as a human carcinogen pending the anticipated 2009 study; and the environmental movement to reduce or eliminate formaldehyde-containing resins in wood and thermal insulation consumer products (U.S. Green Building Council and other Environmental groups like the Sierra Club). Consumers are being urged by environmental organizations to purchase composite wood products with lower formaldehyde emission levels or none at all. This is illustrated by examining the news media reports after the Hurricane Katrina in 2005. The home trailers provided by the Federal Emergency Management Agency (FEMA) that were used for Louisiana and Mississippi residents after Katrina hurricane as temporary housing further accelerated concerns over formaldehyde emissions since higher than typical indoor exposure levels of formaldehyde in travel trailers and mobile homes were determined for the FEMA trailers.
Cecinato, Angelo; Yassaa, Noureddine; Di Palo, Vincenzo; Possanzin, Massimiliano
2002-04-01
Lower carbonyls and n-alkanals from C5 to C10 were measured from late autumn 2000 to summer 2001 in two urban areas in the Algerian territory: Algiers and Ouargla. They were collected on silica cartridges coated with dinitrophenylhydrazine (DNPH) and pentafluorophenylhydrazine (PFPH), which were analysed by HPLC-UV and high-resolution GC-MS. respectively. The two methods were used in parallel samplings in a suburban Algiers site and provided consistent results for semi-volatile congeners, as differences in the concentration data did not exceed 21% on average for individual carbonyl levels ranging from 0.0 to 0.5-2.6 microg m(-3). Concentrations of formaldehyde up to 27 and 5 microg m(-3) were monitored during 10 h samplings in the daytime in Algiers and Ouargla, respectively; acetaldehyde reached values of 13 and 5 microg m(-3), whilst acetone was the most abundant ketone with peak levels of 14 and 4 microg m(-3), respectively. High night-time levels of lower carbonyls were also measured at both locations. Among the semi-volatile alkanals, the highest levels were observed in suburban Algiers for hexanal and nonanal (2.2 microg m(-3)) and in downtown Algiers for valeraldehyde (2.6 microg m(-3)), whilst in Ouargla only hexanal and nonanal levels within the C5-C10 fraction exceeded 1 microg m(-3). Moreover, benzaldehyde concentrations as high as 5 microg m(-3) were measured in the centre of Algiers. Algiers data are comparable with those found in photochemically polluted urban areas of Europe and the USA. Strong correlations between formaldehyde and acetaldehyde and between formaldehyde and benzaldehyde were observed; by contrast, acetone did not show any correlation with the lower aldehydes, suggesting the existence of carbonyl sources other than vehicular traffic. Diurnal variations of almost all carbonyls suggested that motor vehicles were the most important source in the winter, whereas photochemical production appeared to predominate during the summer.
Performance of ultraviolet photocatalytic oxidation for indoor air cleaning applications.
Hodgson, A T; Destaillats, H; Sullivan, D P; Fisk, W J
2007-08-01
Ultraviolet photocatalytic oxidation (UVPCO) systems for removal of volatile organic compounds (VOCs) from air are being considered for use in office buildings. Here, we report an experimental evaluation of a UVPCO device with tungsten oxide modified titanium dioxide (TiO2) as the photocatalyst. The device was challenged with complex VOC mixtures. One mixture contained 27 VOCs characteristic of office buildings and another comprised 10 VOCs emitted by cleaning products, in both cases at realistic concentrations (low ppb range). VOC conversion efficiencies varied widely, usually exceeded 20%, and were as high as approximately 80% at about 0.03 s residence time. Conversion efficiency generally diminished with increased airflow rate, and followed the order: alcohols and glycol ethers > aldehydes, ketones, and terpene hydrocarbons > aromatic and alkane hydrocarbons > halogenated aliphatic hydrocarbons. Conversion efficiencies correlated with the Henry's law constant more closely than with other physicochemical parameters. An empirical model based on the Henry's law constant and the gas-phase reaction rate with hydroxyl radical provided reasonable estimates of pseudo-first order photocatalytic reaction rates. Formaldehyde, acetaldehyde, acetone, formic acid and acetic acid were produced by the device due to incomplete mineralization of common VOCs. Formaldehyde outlet/inlet concentration ratios were in the range 1.9-7.2. Implementation of air cleaning technologies for both VOCs and particles in office buildings may improve indoor air quality, or enable indoor air quality levels to be maintained with reduced outdoor air supply and concomitant energy savings. One promising air cleaning technology is ultraviolet photocatalytic oxidation (UVPCO) air cleaning. For the prototype device evaluated here with realistic mixtures of VOCs, conversion efficiencies typically exceeded the minimum required to counteract predicted VOC concentration increases from a 50% reduction in ventilation. However, the device resulted in the net generation of formaldehyde and acetaldehyde from the partial oxidation of ubiquitous VOCs. Further development of the technology is needed to eliminate these hazardous air pollutants before such a UVPCO device can be deployed in buildings.
Hurley, M D; Wallington, T J; Laursen, L; Javadi, M S; Nielsen, O J; Yamanaka, T; Kawasaki, M
2009-06-25
Smog chamber/FTIR techniques were used to determine rate constants of k(Cl+n-butanol) = (2.21 +/- 0.38) x 10(-10) and k(OH+n-butanol) = (8.86 +/- 0.85) x 10(-12) cm(3) molecule(-1) s(-1) in 700 Torr of N(2)/O(2) diluent at 296 +/- 2K. The sole primary product identified from the Cl atom initiated oxidation of n-butanol in the absence of NO was butyraldehyde (38 +/- 2%, molar yield). The primary products of the Cl atom initiated oxidation of n-butanol in the presence of NO were (molar yield) butyraldehyde (38 +/- 2%), propionaldehyde (23 +/- 3%), acetaldehyde (12 +/- 4%), and formaldehyde (33 +/- 3%). The substantially lower yields of propionaldehyde, acetaldehyde, and formaldehyde as primary products in experiments conducted in the absence of NO suggests that chemical activation is important in the atmospheric chemistry of CH(3)CH(2)CH(O)CH(2)OH and CH(3)CH(O)CH(2)CH(2)OH alkoxy radicals. The primary products of the OH radical initiated oxidation of n-butanol in the presence of NO were (molar yields) butyraldehyde (44 +/- 4%), propionaldehyde (19 +/- 2%), and acetaldehyde (12 +/- 3%). In all cases, the product yields were independent of oxygen concentration over the partial pressure range of 10-600 Torr. The yields of propionaldehyde, acetaldehyde, and formaldehyde quoted above were not corrected for secondary formation via oxidation of higher aldehydes and should be treated as upper limits. The reactions of Cl atoms and OH radicals with n-butanol proceed 38 +/- 2 and 44 +/- 4%, respectively, via attack on the alpha-position to give an alpha-hydroxy alkyl radical which reacts with O(2) to give butyraldehyde. The results are discussed with respect to the atmospheric chemistry of n-butanol.
Fromme, H; Heitmann, D; Dietrich, S; Schierl, R; Körner, W; Kiranoglu, M; Zapf, A; Twardella, D
2008-02-01
Children are assumed to be more vulnerable to health hazards and spend a large part of their time in schools. To assess the exposure situation in this microenvironment, we evaluated the indoor air quality in winter 2004/5 in 92 classrooms, and in 75 classrooms in summer 2005 in south Bavaria, Germany. Indoor air climate parameters (temperature, relative humidity), carbon dioxide (CO2) and various volatile organic compounds, aldehydes and ketones were measured. Additionally, cat allergen (Fel d1) and endotoxin (LAL-test) were analysed in the settled dust of school rooms. Data on room and building characteristics were collected by use of a standardised form. Only data collected during teaching hours were considered in analysis. The median indoor CO2 concentration in the classrooms ranged in the winter and summer period from 598 to 4 172 ppm and 480 to 1 875 ppm, respectively. While during the winter period in 92% of the classrooms the CO2 daily medians went above 1 000 ppm, the percentage of classrooms with increased CO2 concentration fell to 28% in summer. In winter, in 60% of classes the daily median CO2 concentration exceeded 1 500 ppm, while in summer this threshold was reached by only 9%. A high concentration of CO2 was associated with a high number of pupils, a low room surface area and a low room volume. The levels of total volatile organic compounds (TVOC) in classrooms ranged between 110 and 1 000 microg/m3 (median in winter 345 microg/m3, in summer 260 microg/m3). Acetone, formaldehyde and acetaldehyde were measured in concentrations from 14.0 to 911 microg/m3, from 3.1 to 46.1 microg/m3, and from 2.9 to 78 microg/m3, respectively. The other aldehydes were detected in minor amounts only. The median Fel d1 level in winter was 485 ng/g dust (20 to 45 160 ng/g) and in summer it was 417 ng/g (40-7 470 ng/g). We observed no marked differences between the two sampling periods and between smooth floors and rooms with carpeted floors. No differences were found according to room surface area and room volume. The median endotoxin contents in winter and summer were 19.7 EU/mg dust (6.6 to 154 EU/mg) and 32.2 EU/mg (9.6 to 219 EU/mg), respectively. The levels varied significantly between the sampling periods, but were independent of room surface area, room volume and surface floorings. Overall the results of VOC, aldehydes, ketones and endotoxin indicate, in general, a low exposure level in classrooms. The observed concentrations of cat allergens should be considered as a meaningful exposure route and thus could be tackled within preventive programs.
NASA Technical Reports Server (NTRS)
James, John T.
2004-01-01
The toxicological assessments of SSAS and FMK analytical results are reported. Analytical methods have not changed from earlier reports. Surrogate standard recoveries from the SSAS tubes were 66-76% for 13C-acetone, 85-96% for fluorobenzene, and 73-89% for chlorobenzene. Post-flight flows were far below pre-flight flows and an investigation of the problem revealed that the reduced flow was caused by a leak at the interface of the pump inlet tube and the pump head. This resulted in degradation of pump efficiency. Further investigation showed that the problem occurred before the SSAS was operated on orbit and that use of the post-flight flows yielded consistent and useful results. Recoveries from formaldehyde control badges were 86 to 104%. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contributions). The T values will not be reported for these data due to the flow anomaly. Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols (including acetone) are also shown for each sample. Octafluoropropane (OFP) is not efficiently trapped by the sorbents used in the SSAS. Because formaldehyde is quantified from sorbent badges, its concentration is also listed separately. These five indices of air quality are summarized.
Exposure to formaldehyde in health care: an evaluation of the white blood count differential.
Sancini, Angela; Rosati, Maria Valeria; De Sio, Simone; Casale, Teodorico; Caciari, Tiziana; Samperi, Ilaria; Sacco, Carmina; Fortunato, Bruna Rita; Pimpinella, Benedetta; Andreozzi, Giorgia; Tomei, Gianfranco; Tomei, Francesco
2014-01-01
The aim of our study is to estimate if the occupational exposure to formaldehyde can cause alterations of leukocytes plasma values in health care workers employed in a big hospital compared to a control group. We studied employees in operating rooms and laboratories of Pathological Anatomy, Molecular Biology, Molecular Neurobiology, Parasitology and Experimental Oncology (exposed to formaldehyde) and employees of the Department of Internal Medicine (not exposed). The sample studied was composed of 86 workers exposed to formaldehyde and 86 workers not exposed. All subjects underwent a clinical-anamnaestic examination and for all subjects were measured the following values: total white blood cells, lymphocytes, monocytes and granulocytes (eosinophils, basophils, neutrophils). Statistical analysis of data was based on calculation of the mean, standard deviation and the distribution into classes according to the nature of each variable. Differences were considered significant when p was < 0.05. The mean and the distribution of values of the white blood cells, lymphocytes, monocytes and eosinophils were significantly higher in male subjects exposed to formaldehyde compared to not-exposed. Not significant differences were found in female subjects exposed compared to not exposed. The results underline the importance of a careful risk assessment of workers exposed to formaldehyde and the use of appropriate preventive measures. The health care trained and informed about the risks he is exposed to should observe good standards of behavior and, where it is not possible to use alternative materials, the indoor concentrations of formaldehyde should never exceed occupational limit values.
Smith, P A; Son, P S; Callaghan, P M; Jederberg, W W; Kuhlmann, K; Still, K R
1996-07-17
Components of colophony (rosin) resin acids are sensitizers through dermal and pulmonary exposure to heated and unheated material. Significant work in the literature identifies specific resin acids and their oxidation products as sensitizers. Pulmonary exposure to colophony sensitizers has been estimated indirectly through formaldehyde exposure. To assess pulmonary sensitization from airborne resin acids, direct measurement is desired, as the degree to which aldehyde exposure correlates with that of resin acids during colophony heating is undefined. Any analytical method proposed should be applicable to a range of compounds and should also identify specific compounds present in a breathing zone sample. This work adapts OSHA Sampling and Analytical Method 58, which is designed to provide airborne concentration data for coal tar pitch volatile solids by air filtration through a glass fiber filter, solvent extraction of the filter, and gravimetric analysis of the non-volatile extract residue. In addition to data regarding total soluble material captured, a portion of the extract may be subjected to compound-specific analysis. Levels of soluble solids found during personal breathing zone sampling during electronics soldering in a Naval Aviation Depot ranged from below the "reliable quantitation limit" reported in the method to 7.98 mg/m3. Colophony-spiked filters analyzed in accordance with the method (modified) produced a limit of detection for total solvent-soluble colophony solids of 10 micrograms/filter. High performance liquid chromatography was used to identify abietic acid present in a breathing zone sample.
NASA Astrophysics Data System (ADS)
Liu, Y.; Yuan, B.; Li, X.; Shao, M.; Lu, S.; Li, Y.; Chang, C.-C.; Zhu, T.
2014-10-01
Oxygenated volatile organic compounds (OVOCs) are important products of the photo-oxidation of hydrocarbons. They influence the oxidizing capacity and the ozone forming potential of the atmosphere. In the summer of 2008 two months' emission restrictions were enforced in Beijing to improve air quality during the Olympic Games. Observation evidence has been reported in related studies that these control measures were efficient in reducing the concentrations of primary anthropogenic pollutants (CO, NOx and non-methane hydrocarbons, i.e. NMHCs) by 30-40%. In this study, the influence of the emission restrictions on ambient levels of OVOCs was explored using a neural network analysis with consideration of meteorological conditions. Statistically significant reductions in formaldehyde (HCHO), acetaldehyde (CH3CHO), methyl ethyl ketone (MEK) and methanol were found to be 12.9, 15.8, 17.1 and 19.6%, respectively, when the restrictions were in place. The effect of emission control on acetone was not detected in neural network simulations, probably due to pollution transport from surrounding areas outside Beijing. Although the ambient levels of most NMHCs were decreased by ~35% during the full control period, the emission ratios of reactive hydrocarbons attributed to vehicular emissions did not present obvious difference. A zero-dimensional box model based on Master Chemical Mechanism version 3.2 (MCM3.2) was applied to evaluate how OVOCs productions respond to the reduced precursors during the emission controlled period. On average, secondary HCHO was produced from the oxidation of anthropogenic alkenes (54%), isoprene (30%) and aromatics (15%). The importance of biogenic source for the total HCHO formation was almost on a par with that of anthropogenic alkenes during the daytime. Anthropogenic alkenes and alkanes dominated the photochemical production of other OVOCs such as acetaldehyde, acetone and MEK. The relative changes of modelled aldehydes, methyl vinyl ketone and methacrolein (MVK + MACR) before and during the pollution controlled period were comparable to the estimated reductions in the neural network, reflecting that current mechanisms can largely explain secondary production of those species under urban conditions. However, it is worthy to notice that the box model overestimated the measured concentrations of aldehydes by a factor of 1.4-1.7, and simulated MEK was in good agreement with the measurements when primary sources were taken into consideration. These results suggest that the understanding of OVOCs budget in the box model remains incomplete, there is still considerable uncertainty in particular missing sinks (unknown chemical reactions and physical dilution processes) for aldehydes and absence of direct emissions for ketones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Destaillats, Hugo; Chen, Wenhao; Apte, Michael
Prior research suggests that chemical processes taking place on the surface of particle filters employed in buildings may lead to the formation of harmful secondary byproducts. We investigated ozone reactions with fiberglass, polyester, cotton/polyester and polyolefin filter media, as well as hydrolysis of filter media additives. Studies were carried out on unused media, and on filters that were installed for 3 months in buildings at two different locations in the San Francisco Bay Area. Specimens from each filter media were exposed to {approx}150 ppbv ozone in a flow tube under a constant flow of dry or humidified air (50percent RH).more » Ozone breakthrough was recorded for each sample over periods of {approx}1000 min; the ozone uptake rate was calculated for an initial transient period and for steady-state conditions. While ozone uptake was observed in all cases, we did not observe significant differences in the uptake rate and capacity for the various types of filter media tested. Most experiments were performed at an airflow rate of 1.3 L/min (face velocity = 0.013 m/s), and a few tests were also run at higher rates (8 to 10 L/min). Formaldehyde and acetaldehyde, two oxidation byproducts, were quantified downstream of each sample. Those aldehydes (m/z 31 and 45) and other volatile byproducts (m/z 57, 59, 61 and 101) were also detected in real-time using Proton-Transfer Reaction - Mass Spectrometry (PTR-MS). Low-ppbv byproduct emissions were consistently higher under humidified air than under dry conditions, and were higher when the filters were loaded with particles, as compared with unused filters. No significant differences were observed when ozone reacted over various types of filter media. Fiberglass filters heavily coated with impaction oil (tackifier) showed higher formaldehyde emissions than other samples. Those emissions were particularly high in the case of used filters, and were observed even in the absence of ozone, suggesting that hydrolysis of additives, rather than ozonolysis, is the main formaldehyde source in those filters. Emission rates of formaldehyde and acetaldehyde were not found to be large enough to substantially increase indoor concentrations in typical building scenarios. Nevertheless, ozone reactions on HVAC filters cannot be ignored as a source of low levels of indoor irritants.« less
Lewicki, James P.; Fox, Christina A.; Worsley, Marcus A.
2015-05-15
With the new impetus towards the development of hierarchical graphene and CNT macro-assemblies for application in fields such as advanced energy storage, catalysis and electronics; there is much renewed interest in organic carbon-based sol–gel processes as a synthetically convenient and versatile means of forming three dimensional, covalently bonded organic/inorganic networks. Such matrices can act as highly effective precursors, scaffolds or molecular ‘glues’ for the assembly of a wide variety of functional carbon macro-assemblies. However, despite the utility and broad use of organic sol–gel processes – such as the ubiquitous resorcinol-formaldehyde (RF) reaction, there are details of the reaction chemistries ofmore » these important sol–gel processes that remain poorly understood at present. It is therefore both timely and necessary to examine these reactions in more detail using modern analytical techniques in order to gain a more rigorous understanding of the mechanisms by which these organic networks form. The goal of such studies is to obtain improved and rational control over the organic network structure, in order to better direct and tailor the architecture of the final inorganic carbon matrix. In this study we have investigated in detail, the mechanism of the organic sol–gel network forming reaction of resorcinol and formaldehyde from a structural and kinetic standpoint, by using a combination of real-time high field solution state nuclear magnetic resonance (NMR), low field NMR relaxometry and differential scanning calorimetry (DSC). These investigations have allowed us to track the network formation processes in real-time, gain both detailed structural information on the mechanisms of the RF sol–gel process and a quantitative assessment of the kinetics of the global network formation process. Here, it has been shown that the mechanism, by which the RF organic network forms, proceeds via an initial exothermic step correlated to the formation of a free aromatic aldehyde. The network growth reaction then proceeds in a statistical manner following a first order Arrhenius type kinetic relationship – characteristic of a typical thermoset network poly-condensation process. Finally, despite the relative complexity and ill-defined nature of the formaldehyde staring material, the final network structure is to a large extent, governed by the substitution pattern of the resorcinol molecule.« less
Reductive alkylation of ribosomes as a probe to the topography of ribosomal proteins*
Moore, Graham; Crichton, Robert R.
1974-01-01
Escherichia coli ribosomes were treated with a number of different aldehydes of various sizes in the presence of NaBH4. After incorporation of either 3H or 14C, the ribosomal proteins were separated by two-dimensional polyacrylamide-gel electrophoresis and the extent of alkylation of the lysine residues in each protein was measured. The same pattern of alkylation was observed with the four reagents used, namely formaldehyde, acetone, benzaldehyde and 3,4,5-trimethoxybenzaldehyde. Every protein in 30S and 50S subunits was modified, although there was considerable variation in the degree of alkylation of individual proteins. A topographical classification of ribosomal proteins is presented, based on the degree of exposure of lysine residues. The data indicate that every protein of the ribosome has at least one lysine residue exposed at or near the surface of the ribonucleo-protein complex. PMID:4462744
Eren, Baran; Kersell, Heath; Weatherup, Robert S; Heine, Christian; Crumlin, Ethan J; Friend, Cynthia M; Salmeron, Miquel B
2018-01-18
Using ambient pressure X-ray photoelectron spectroscopy (APXPS) and high pressure scanning tunneling microscopy (HPSTM), we show that in equilibrium with 0.01-0.2 Torr of methanol vapor, at room temperature, the Cu(100) surface is covered with methoxy species forming a c(2 × 2) overlayer structure. In contrast, no methoxy is formed if the surface is saturated with an ordered oxygen layer, even when the methanol pressure is 0.2 Torr. At oxygen coverages below saturation, methanol dissociates and reacts with the atomic oxygen, producing methoxy and formate on the surface, and formaldehyde that desorbs to the gas phase. Unlike the case of pure carbon monoxide and carbon dioxide, methanol does not induce the restructuring of the Cu(100) surface. These results provide insight into catalytic anhydrous production of aldehydes.
Xing-xia Ma; Grant T. Kirker; Ming-liang Jiang; Yu-zhang Wu
2016-01-01
Surface coatings of melamine-modified urea-formaldehyde resins (MUFs) containing ammonium polyphosphate (APP) have been shown to significantly improve the fire retardancy of wood by prolonging the ignition time and reducing the heat release rate, total heat released, and mass loss rate. Dual protection of wood against both decay and fire has been proposed for remedial...
Tanaka-Kagawa, Toshiko; Jinno, Hideto; Obama, Tomoko; Miyagawa, Makoto; Yoshikawa, Jun; Komatsu, Kazuhiro; Tokunaga, Hiroshi
2007-01-01
Identification and removal/replacement of sources of indoor air pollutants, such as volatile organic compounds (VOCs) and aldehydes, are most effective measures to reduce indoor chemical exposures. For instance, formaldehyde emissions from building materials have been successfully decreased by the restrictions on interior finishing materials under the amended Building Standard Low in Japan. This study was performed to estimate quantitatively influence of household products on indoor air quality. VOC emissions were investigated for 51 products including interior materials, bedclothes, stationeries, toys and printed matters by the small chamber test method (JIS A 1901) under the standard conditions of 28 degrees C, 50% relative humidity and 0.5 times/h ventilation. Total VOC (TVOC) emissions from the tablecloth and gloves, both of which were made of polyvinyl chloride, showed the highest emission rates; over 2000 microg/(m2 x h) after 1 day, and then rapidly decreased to less than 500 microg/(m2 x h) in a week. Among stationeries/toys for schoolchildren and infants, jigsaw puzzle and play mat exhibited higher TVOC emission rates (38 and 24 microg/(m2 x h) after 1 day, respectively). As for VOCs emitted from printed matters, high boiling-point compounds (higher than that of n-tridecane) were typically identified along with toluene, xylenes and ethylbenzene. These results revealed that VOC emissions from household products may influence significantly indoor air quality.
Betaine aldehyde dehydrogenase isozymes of spinach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, A.D.; Weretilnyk, E.A.; Weigel, P.
1986-04-01
Betaine is synthesized in spinach chloroplasts via the pathway Choline ..-->.. Betaine Aldehyde ..-->.. Betaine; the second step is catalyzed by betaine aldehyde dehydrogenase (BADH). The subcellular distribution of BADH was determined in leaf protoplast lysates; BADH isozymes were separated by 6-9% native PAGE. The chloroplast stromal fraction contains a single BADH isozyme (number1) that accounts for > 80% of the total protoplast activity; the extrachloroplastic fraction has a minor isozyme (number2) which migrates more slowly than number1. Both isozymes appear specific for betaine aldehyde, are more active with NAD than NADP, and show a ca. 3-fold activity increase inmore » salinized leaves. The phenotype of a natural variant of isozyme number1 suggests that the enzyme is a dimer.« less
Uptake of aldehydes and ketones at typical indoor concentrations by houseplants.
Tani, Akira; Hewitt, C Nicholas
2009-11-01
The uptake rates of low-molecular weight aldehydes and ketones by peace lily (Spathiphyllum clevelandii) and golden pothos (Epipremnum aureum) leaves at typical indoor ambient concentrations (10(1)-10(2) ppbv) were determined. The C3-C6 aldehydes and C4-C6 ketones were taken up by the plant leaves, but the C3 ketone acetone was not. The uptake rate normalized to the ambient concentration C(a) ranged from 7 to 19 mmol m(-2) s(-1) and from 2 to 7 mmol m(-2) s(-1) for the aldehydes and ketones, respectively. Longer-term fumigation results revealed that the total uptake amounts were 30-100 times as much as the amounts dissolved in the leaf, suggesting that volatile organic carbons are metabolized in the leaf and/or translocated through the petiole. The ratio of the intercellular concentration to the external (ambient) concentration (C(i)/C(a)) was significantly lower for most aldehydes than for most ketones. In particular, a linear unsaturated aldehyde, crotonaldehyde, had a C(i)/C(a) ratio of approximately 0, probably because of its highest solubility in water.
Influence of cigarette circumference on smoke chemistry, biological activity, and smoking behaviour.
McAdam, Kevin; Eldridge, Alison; Fearon, Ian M; Liu, Chuan; Manson, Andrew; Murphy, James; Porter, Andrew
2016-12-01
Cigarettes with reduced circumference are increasingly popular in some countries, hence it is important to understand the effects of circumference reduction on their burning behaviour, smoke chemistry and bioactivity. Reducing circumference reduces tobacco mass burn rate, puff count and static burn time, and increases draw resistance and rod length burned during puff and smoulder periods. Smoulder temperature increases with decreasing circumference, but with no discernible effect on cigarette ignition propensity during a standard test. At constant packing density, mainstream (MS) and sidestream (SS) tar and nicotine yields decrease approximately linearly with decreasing circumference, as do the majority of smoke toxicants. However, volatile aldehydes, particularly formaldehyde, show a distinctly non-linear relationship with circumference and increases in the ratios of aldehydes to tar and nicotine have been observed as the circumference decreases. Mutagenic, cytotoxic and tumorigenic specific activities of smoke condensates (i.e. per unit weight of condensate) decrease as circumference decreases. Recent studies suggest that there is no statistical difference in mouth-level exposure to tar and nicotine among smokers of cigarettes with different circumferences. Commercially available slim cigarettes usually have changes in other cigarette design features compared with cigarettes with standard circumference, so it is difficult to isolate the effect of circumference on the properties of commercial products. However, available data shows that changes in cigarette circumference offer no discernible change to the harm associated with smoking. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunter, B.J.; Thoburn, T.W.; Lockey, J.E.
1985-01-01
Environmental and breathing-zone samples were analyzed for bacteria, fungi, formaldehyde, and 2,2-dichlorovinyldimethylphosphate (vapona) at Fillmore Dole Mushrooms, Castle and Cooke Foods, Fillmore, Utah in June, 1981. The survey was requested by the workers to evaluate respiratory problems. A total of 111 workers, including 59 Southeast Asians, were interviewed by questionnaire. There were 48 English-speaking and 18 Asian comparisons. The authors conclude that a potential hazard exists due to exposure to airborne fungi and bacteria. Formaldehyde and vapona are not a problem. Recommendations include conducting more intensive medical studies of the exposed workers and repeating the survey in about 5 years.
Orywal, Karolina; Jelski, Wojciech; Werel, Tadeusz; Szmitkowski, Maciej
2018-01-02
The aim of this study was to determine the differences in the activity of Alcohol Dehydrogenase (ADH) isoenzymes and Aldehyde Dehydrogenase (ALDH) in normal and cancerous bladder cells. Class III, IV of ADH and total ADH activity were measured by the photometric method and class I, II ADH and ALDH activity by the fluorometric method. Significantly higher total activity of ADH was found in both, low-grade and high-grade bladder cancer, in comparison to healthy tissues. The increased activity of total ADH in bladder cancer cells may be the cause of metabolic disorders in cancer cells, which may intensify carcinogenesis.
Behavior of VOCs and Carbonyl Compounds Emission from Different Types of Wallpapers in Korea
Lim, Jungyun; Kim, Suejin; Kim, ARong; Lee, Wooseok; Han, Jinseok; Cha, Jun-Seok
2014-01-01
Emissions of volatile organic compounds (VOCs) and carbonyls from three types of commercially available wallpapers (i.e., PVC-coated, paper-backed, natural material-coated) in Korea were evaluated using a 20 L small chamber. A total of 332 products were tested for emission factors, frequencies of occurrence and composition ratios. Toluene and formaldehyde concentrations were below Korean standard values for all products; however, the total VOC (TVOC) concentrations exceeded current standards (4.0 mg/m2·h) for 30 products. The TVOC emission factor for PVC-coated wallpapers, for which polymer materials are used in the manufacturing process, was seven and 16 times higher than those of paper-backed and natural material-coated wallpapers, respectively. The detection frequencies for toluene and formaldehyde were the highest (82.5%) and fourth highest (79.5%), respectively among the 50 target chemical species. The composition ratios for BTEX ranged from 0.3% to 5.1% and unidentified VOCs, which were not qualitatively analyzed using standard gas methods, ranged from 90.2% to 94.8%. Among six carbonyl compounds (acrolein was not detected in any type of wallpaper), acetone had the highest concentrations in PVC-coated (44.6%) and paper-backed (66.6%) wallpapers. Formaldehyde emissions were highest (64.6%) for natural material-coated wallpapers, a result of the formaldehyde-based resin used in the manufacturing process for these products. PMID:24747540
The effects of exercise on dose and dose distribution of inhaled automotive pollutants.
Kleinman, M T; Mautz, W J
1991-10-01
The purpose of this study was to determine how changes in ventilation rate and in the entry route of air pollutants into the respiratory tract (nose versus mouth breathing) affected the respiratory tract uptake and penetration of inhaled gaseous and particulate pollutants associated with automobile emissions. Experiments were performed with female beagle dogs exposed while standing at rest or while exercising on a treadmill at 5 km/hour and a 7.5 percent grade. Dogs were exposed to nitrogen dioxide at concentrations of 1 and 5 parts per million (ppm), to formaldehyde at 2 and 10 ppm, and to an aerosol of ammonium nitrate particles (0.3 micron mass median aerodynamic diameter) at 1 mg/m3. Total respiratory system uptake and effects on breath time, expired tidal volume, fractional expiration time, minute ventilation, respiratory gas exchange, ventilation equivalents for oxygen and carbon dioxide, and dynamic pulmonary resistance and compliance were measured in exercising and resting dogs exposed for two hours to 5 ppm nitrogen dioxide and 10 ppm formaldehyde in combination with 1 mg/m3 of ammonium nitrate particles. Regional penetration of pollutants through oral and nasal airways and pollutant uptake in the lung were measured in a separate group of six tracheostomized dogs standing at rest while being exposed to nitrogen dioxide, formaldehyde, and ammonium nitrate particles. Hypercapnic stimulation was used to modify ventilation rates in the tracheostomized dogs while pollutant penetration and uptake were measured. Dogs exposed to 5 ppm of nitrogen dioxide at rest tended to breathe more rapidly (p less than 0.05) and more shallowly (a nonsignificant trend) than dogs exposed to purified air. The changes observed were similar in direction, but of smaller magnitude, to changes observed when the same dogs were exposed during exercise to ozone at 0.6 ppm in a separate study. Rapid-shallow breathing was not observed when the dogs were exposed during exercise to 5 ppm nitrogen dioxide. Dogs exposed to a mixture of 10 ppm formaldehyde and 1 mg/m3 ammonium nitrate particles during exercise showed a shift to larger tidal volume breathing, but the response was much less pronounced than the slow-deep breathing pattern response observed in a separate study of dogs exposed to 10 ppm formaldehyde alone. The total respiratory system uptake of formaldehyde from the formaldehyde and ammonium nitrate mixture was larger than that measured for 10 ppm of formaldehyde alone in another exercise and exposure study.(ABSTRACT TRUNCATED AT 400 WORDS)
Collins, Jonathan; Rinner, Uwe; Moser, Michael; Hudlicky, Tomas; Ghiviriga, Ion; Romero, Anntherese E.; Kornienko, Alexander; Ma, Dennis; Griffin, Carly; Pandey, Siyaram
2010-01-01
An efficient synthesis of C-1 derivatives of 7-deoxypancratistatin is reported. The key steps include the following: selective opening of an epoxide with aluminum acetylide in the presence of an aziridine; solid-state silica-gel-catalyzed opening of an aziridine; oxidative cleavage of a phenanthrene core and its recyclization to phenanthridone to provide the key C-1 aldehyde 22. The conversion of this aldehyde to C-1 acetoxymethyl and C-1 hydroxymethyl derivatives is described along with the evaluation of their biological activity against several cancer cell lines and in an apoptosis study. The C-1 acetoxymethyl derivative has shown promising activity comparable to that of the natural product. In addition, a total synthesis of trans-dihydrolycoricidine and a formal total synthesis of 7-deoxypancratistatin are reported from aldehyde 22. Detailed experimental and spectral data are provided for all new compounds. PMID:20373760
The total synthesis of calcium atorvastatin.
Dias, Luiz C; Vieira, Adriano S; Barreiro, Eliezer J
2016-02-21
A practical and convergent asymmetric route to calcium atorvastatin (1) is reported. The synthesis of calcium atorvastatin (1) was performed using the remote 1,5-anti asymmetric induction in the boron-mediated aldol reaction of β-alkoxy methylketone (4) with pyrrolic aldehyde (3) as a key step. Calcium atorvastatin was obtained from aldehyde (3) after 6 steps, with a 41% overall yield.
Thorud, Syvert; Gjolstad, Merete; Ellingsen, Dag G; Molander, Paal
2005-06-01
An investigation of contemporary exposure to formaldehyde and organic solvents has been carried out during surface coating with acid-curing lacquers and paints in the Norwegian woodworking and furniture industry over a period of 3 years. The investigation covered 27 factories of different sizes and with different types of production, and totally 557 parallel formaldehyde and solvent samples were collected. The formaldehyde concentration (geometric mean) was 0.15 ppm (range 0.01-1.48 ppm) with about 10% of the samples exceeding the Norwegian occupational exposure limit of 0.5 ppm. The solvent concentration as additive effect (geometric mean) was 0.13 (range 0.0004-5.08) and about 5% of the samples exceeded the Norwegian occupational exposure limit. The most frequently occurring solvents from acid-curing lacquers were n-butyl acetate, ethanol, ethyl acetate and 1-butanol, which were found in 88-98% of the samples. Toluene, n-butyl acetate and 1-butanol were the only solvents with maximum concentrations exceeding their respective occupational exposure limits. Curtain painting machine operators were exposed to the highest concentrations of both formaldehyde (geometric mean 0.51 ppm, range 0.08-1.48 ppm) and organic solvents (additive effect, geometric mean 1.18, range 0.02-5.08). Other painting application work tasks such as automatic and manual spray-painting, manual painting and dip painting, showed on average considerably lower concentrations of both formaldehyde (geometric means 0.07-0.16 ppm) and organic solvents (additive effect, geometric mean 0.02-0.18). Non-painting work tasks also displayed moderate concentrations of formaldehyde (geometric means 0.11-0.17 ppm) and organic solvents (additive effect, geometric mean 0.04-0.07).
Endogenous Methanol Regulates Mammalian Gene Activity
Komarova, Tatiana V.; Petrunia, Igor V.; Shindyapina, Anastasia V.; Silachev, Denis N.; Sheshukova, Ekaterina V.; Kiryanov, Gleb I.; Dorokhov, Yuri L.
2014-01-01
We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH) converts methanol into toxic formaldehyde. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP) and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signalling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis. PMID:24587296
NASA Technical Reports Server (NTRS)
James, John T.
2003-01-01
The toxicological assessments of grab sample canisters (GSCs) and 2 solid sorbent air samplers (SSASs) returned aboard STS-111 are reported. Analytical methods have not changed from earlier reports. Surrogate standard recoveries from the GSCs were 86-106% and 62% to 136 % from the SSASs; 2 tubes with low surrogate recoveries were not reported. Pressure tracking indicated no leaks in the canisters during analysis. Recoveries from lab and trip controls for formaldehyde analyses ranged from 87 to 96%. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contributions). Because of the inertness of Freon 218 (octafluoropropane, OFP), Its contribution to the NMVOC is subtracted and tabulated separately. Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols (including acetone) are also shown for each sample. Because formaldehyde is quantified from sorbent badges, its concentration is listed separately. The table shows that the air quality in general was acceptable for crew respiration; however, certain values shown in bold require further explanation. The 1.05 T value on 2/28/02 was caused by an unusually high measurement ofhexamethylcyc1otrisiloxane (T value = 0.50), which is not a concern. The MPLM T value of 1.42 and the alcohol level of 7.5 mg/cu m were due to an overall polluted atmosphere, which was expected at first entry. The major T-value component was carbon monoxide at a contribution of 0.44 units. Since the crew was only exposed momentarily to the polluted atmosphere, no health effects are expected. The formaldehyde value of 0.060 mg/cu m found in the Lab sample from 3/27/02 is cause for concern because the Lab consistently shows higher concentrations of formaldehyde than the SM and occasionally the concentrations are above the acceptable guideline. Levels of OFP have remained low, suggesting that no further leaks of the SM air conditioner have occurred.
Gao, Ying; Liu, Xiaoyun; Qi, Wenjing; Gao, Wenyue; Li, Yunhui; Xu, Guobao
2015-06-21
Most electrochemiluminescence (ECL) systems require high concentrations of quencher to totally quench ECL. In this study, we found that ozone can quench tris(2,2'-bipyridyl)ruthenium(II) ECL using formaldehyde, methylglyoxal, or glyoxalate as co-reactants at a glassy carbon electrode with remarkable efficiencies even when the concentration of ozone is merely 0.25% of that of the co-reactant. The strongest quenching is observed with the tris(2,2'-bipyridyl)ruthenium(II)/formaldehyde ECL system. The tris(2,2'-bipyridyl)ruthenium(II)/formaldehyde ECL intensities decrease linearly with the ozone concentration over the range of 0.025-25 μM (r = 0.9947) with a limit of detection of 8 nM. The method is more sensitive and faster than most methods. It shows high selectivity in the presence of other ROS or oxidants and some metal ions, such as H2O2, ClO(-), Mg(2+), Ni(2+), etc. The method exhibits high recoveries for the detection of ozone in a ventilated photocopy room.
Mucsi, Zoltán; Chass, Gregory A; Viskolcz, Béla; Csizmadia, Imre G
2008-09-25
Despite the carbonyl group being one of the most pervasive chemical building blocks in natural, synthetic, and industrial processes, its exact description in terms of precise quantification of the degree of carbonyl conjugation has yet to be determined. The present work suggests a novel yet simple method for quantifying the conjugation in general carbonyl groups (such as ketones, aldehydes, carboxylic acids and their respective halogenides, amides, etc.) on a linear scale, defined as the "carbonylicity scale". This was achieved by use of the computed enthalpy of hydrogenation (DeltaH(H2)) of the > C=O group in the compounds examined. In the present conceptual work, the DeltaH(H2) value for formate ion is used to define complete conjugated character (carbonylicity = +100%), while formaldehyde represents complete absence of conjugation (carbonylicity = 0%). The component DeltaH(H2) values were computed at differing levels of theory, providing a nearly "method-independent" measure of carbonylicity computationally. A total of 49 common carbonyl compounds were used as accuracy scoring criteria of the methodology. For the compounds examined, correlations have been made between the computed carbonylicity percentage and the > C=O proton affinities, IR frequencies, and their reactivity values in a nucleophilic addition reaction. Selected chemical reactions were also studied to illustrate the utility of carbonylicity scale. Examples herein include demonstrating that change in the carbonylicity value represents a thermodynamic driving force in acylation reactions. The definition was extended to substituted thiocarbonyl and imino compounds.
NASA Astrophysics Data System (ADS)
Jia, Chunrong; Foran, Jeffery
2013-12-01
Southwest Memphis is a residential region surrounded by fossil fuel burning, steel, refining, and food processing industries, and considerable mobile sources whose emissions may pose adverse health risks to local residents. This study characterizes cancer and non-cancer risks resulting from exposure to ambient air toxics in southwest Memphis. Air toxics samples were collected at a central location every 6 days from June 5, 2008 to January 8, 2010. Volatile organic compounds (VOCs) were collected in evacuated stainless-steel canisters and aldehydes by DNPH cartridges, and samples were analyzed for 73 target compounds. A total of 60 compounds were detected and 39 were found in over 86% of the samples. Mean concentrations of many compounds were higher than those measured in many industrial communities throughout the U.S. The cumulative cancer risk associated with exposure to 13 carcinogens found in southwest Memphis air was 2.3 × 10-4, four times higher than the national average of 5.0 × 10-5. Three risk drivers were identified: benzene, formaldehyde, and acrylonitrile, which contributed 43%, 19%, and 14% to the cumulative risk, respectively. This is the first field study to confirm acrylonitrile as a potential risk driver. Mobile, secondary, industrial, and background sources contributed 57%, 24%, 14%, and 5% of the risk, respectively. The results of this study indicate that southwest Memphis, a region of significant income, racial, and social disparities, is also a region under significant environmental stress compared with surrounding areas and communities.
Seasonal behavior of carbonyls and source characterization of formaldehyde (HCHO) in ambient air
NASA Astrophysics Data System (ADS)
Lui, K. H.; Ho, Steven Sai Hang; Louie, Peter K. K.; Chan, C. S.; Lee, S. C.; Hu, Di; Chan, P. W.; Lee, Jeffrey Chi Wai; Ho, K. F.
2017-03-01
Gas-phase formaldehyde (HCHO) is an intermediate and a sensitive indicator for volatile organic compounds (VOCs) oxidation, which drives tropospheric ozone production. Effective photochemical pollution control strategies demand a thorough understanding of photochemical oxidation precursors, making differentiation between sources of primary and secondary generated HCHO inevitable. Spatial and seasonal variations of airborne carbonyls based on two years of measurements (2012-2013), coupled with a correlation-based HCHO source apportionment analysis, were determined for three sampling locations in Hong Kong (denoted HT, TC, and YL). Formaldehyde and acetaldehyde were the two most abundant compounds of the total quantified carbonyls. Pearson's correlation analysis (r > 0.7) implies that formaldehyde and acetaldehyde possibly share similar sources. The total carbonyl concentration trends (HT < TC < YL) reflect location characteristics (urban > rural). A regression analysis further quantifies the relative primary HCHO source contributions at HT (∼13%), TC (∼21%), and YL (∼40%), showing more direct vehicular emissions in urban than rural areas. Relative secondary source contributions at YL (∼36%) and TC (∼31%) resemble each other, implying similar urban source contributions. Relative background source contributions at TC could be due to a closed structure microenvironment that favors the trapping of HCHO. Comparable seasonal differences are observed at all stations. The results of this study will aid in the development of a new regional ozone (O3) control policy, as ambient HCHO can enhance O3 production and also be produced from atmospheric VOCs oxidation (secondary HCHO).
Power-dependent speciation of volatile organic compounds in aircraft exhaust
NASA Astrophysics Data System (ADS)
Beyersdorf, Andreas J.; Thornhill, K. Lee; Winstead, Edward L.; Ziemba, Luke D.; Blake, Donald R.; Timko, Michael T.; Anderson, Bruce E.
2012-12-01
As part of the third NASA Aircraft Particle Emissions Experiment (APEX-3, November 2005), whole air samples were collected to determine the emission rates of volatile organic compounds (VOCs) from aircraft equipped with three different gas-turbine engines (an Allison Engine 3007-A1E, a Pratt-Whitney 4158, and a Rolls-Royce RB211-535E4B). Samples were collected 1 m behind the engine exhaust plane of the engines while they were operated at powers ranging from idle up to 30% of maximum rated thrust. Exhaust emission indices (mass emitted per kilogram of fuel used) for CO and non-methane hydrocarbons (NMHCs) were calculated based on enhancements over background relative to CO2. Emissions of all NMHCs were greatest at low power with values decreasing by an order of magnitude with increasing power. Previous studies have shown that scaling idle hydrocarbon emissions to formaldehyde or ethene (which are typically emitted at a ratio of 1-to-1 at idle) reduces variability amongst engine types. NMHC emissions were found to scale at low power, with alkenes contributing over 50% of measured NMHCs. However, as the power increases hydrocarbon emissions no longer scale to ethene, as the aromatics become the dominant species emitted. This may be due in part to a shift in combustion processes from thermal cracking (producing predominantly alkenes) to production of new molecules (producing proportionally more aromatics) as power increases. The formation of these aromatics is an intermediate step in the production of soot, which also increases with increasing power. The increase in aromatics relative to alkenes additionally results in a decrease in the hydroxyl radical reactivity and ozone formation potential of aircraft exhaust. Samples collected 30 m downwind of the engine were also analyzed for NMHCs and carbonyl compounds (acetone, 2-butanone and C1-C9 aldehydes). Formaldehyde was the predominant carbonyl emitted; however, the ratio of ethene-to-formaldehyde varied between the aircraft, possibly due to the sampling of transient emissions such as engine start-up and power changes. A large portion of the measured emissions (27-42% by mass) in the plume samples was made up of hazardous air pollutants (HAPs) with oxygenated compounds being most significant.
Hauksson, Inese; Pontén, Ann; Isaksson, Marléne; Hamada, Haneen; Engfeldt, Malin; Bruze, Magnus
2016-03-01
Formaldehyde is a well-known contact sensitizer. Formaldehyde releasers are widely used preservatives in cosmetics. To survey the release of formaldehyde in cosmetics brought by patients investigated because of suspected allergic contact dermatitis, to compare it with information given by the manufacturers on the packages, and to investigate whether formaldehyde-allergic patients are potentially exposed to more cosmetics releasing formaldehyde than dermatitis patients without contact allergy to formaldehyde. Cosmetics from 10 formaldehyde-allergic and 30 non-allergic patients (controls) matched for age and sex were investigated with the chromotropic acid spot test, which is a semiquantitative method measuring the release of formaldehyde. Formaldehyde was found in 58 of 245 (23.7%) products. Twenty-six of 126 (20.6%) leave-on products released formaldehyde, and 17 of 26 (65.4%) of these were not declared to contain formaldehyde or formaldehyde releasers. Among the rinse-off products, there were 32 of 119 (26.8%) formaldehyde-releasing products, and nine of 32 (28.0%) of these were not labelled as containing formaldehyde or formaldehyde releasers. Five of 10 formaldehyde-allergic patients brought leave-on products with ≥ 40 ppm formaldehyde, as compared with 4 of 30 in the control group (p = 0.029). Cosmetic products used by formaldehyde-allergic patients that are not declared to contain formaldehyde or formaldehyde-releasing preservatives should be analysed. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Liu, Y.; Yuan, B.; Li, X.; Shao, M.; Lu, S.; Li, Y.; Chang, C.-C.; Wang, Z.; Hu, W.; Huang, X.; He, L.; Zeng, L.; Hu, M.; Zhu, T.
2015-03-01
Oxygenated volatile organic compounds (OVOCs) are important products of the photo-oxidation of hydrocarbons. They influence the oxidizing capacity and the ozone-forming potential of the atmosphere. In the summer of 2008, 2 months of emission restrictions were enforced in Beijing to improve air quality during the Olympic Games. Observational evidence reported in related studies that these control measures were efficient in reducing the concentrations of primary anthropogenic pollutants (CO, NOx and non-methane hydrocarbons, i.e., NMHCs) by 30-40%. In this study, the influence of the emission restrictions on ambient levels of OVOCs was explored using a neural network analysis with consideration of meteorological conditions. Statistically significant reductions in formaldehyde (HCHO), acetaldehyde (CH3CHO), methyl ethyl ketone (MEK) and methanol were found to be 12.9, 15.8, 17.1 and 19.6%, respectively, when the restrictions were in place. The effect of emission controls on acetone was not detected in neural network simulations, probably due to pollution transport from surrounding areas outside Beijing. Although the ambient levels of most NMHCs were reduced by ~35% during the full control period, the emission ratios of reactive alkenes and aromatics closely related to automobile sources did not present much difference (< 30%). A zero-dimensional box model based on the Master Chemical Mechanism version 3.2 (MCM3.2) was applied to evaluate how OVOC production responds to the reduced precursors during the emissions control period. On average, secondary HCHO was produced from the oxidation of anthropogenic alkenes (54%), isoprene (30%) and aromatics (15%). The importance of biogenic sources for the total HCHO formation was almost on par with that of anthropogenic alkenes during the daytime. Anthropogenic alkenes and alkanes dominated the photochemical production of other OVOCs such as acetaldehyde, acetone and MEK. The relative changes of modeled HCHO, CH3CHO, methyl vinyl ketone and methacrolein (MVK + MACR) before and during the pollution controlled period were comparable to the estimated reductions in the neural network, reflecting that current mechanisms can largely explain secondary production of those species under urban conditions. However, it is worth noting that the box model overestimated the measured concentrations of aldehydes by a factor of 1.4-1.7 without consideration of loss of aldehydes on aerosols, and simulated MEK was in good agreement with the measurements when primary sources were taken into consideration. These results suggest that the understanding of the OVOCs budget in the box model remains incomplete, and that there is still considerable uncertainty in particular missing sinks (unknown chemical and physical processes) for aldehydes and absence of direct emissions for ketones.
Aerogel and xerogel composites for use as carbon anodes
Cooper, John F.; Tillotson, Thomas M.; Hrubesh, Lawrence W.
2010-10-12
A method for forming a reinforced rigid anode monolith and fuel and product of such method. The method includes providing a solution of organic aerogel or xerogel precursors including at least one of a phenolic resin, phenol (hydroxybenzene), resorcinol(1,3-dihydroxybenzene), or catechol(1,2-dihydroxybenzene); at least one aldehyde compound selected from the group consisting of formaldehyde, acetaldehyde, and furfuraldehyde; and an alkali carbonate or phosphoric acid catalyst; adding internal reinforcement materials comprising carbon to said precursor solution to form a precursor mixture; gelling said precursor mixture to form a composite gel; drying said composite gel; and pyrolyzing said composite gel to form a wettable aerogel/carbon composite or a wettable xerogel/carbon composite, wherein said composites comprise chars and said internal reinforcement materials, and wherein said composite is suitable for use as an anode with the chars being fuel capable of being combusted in a molten salt electrochemical fuel cell in the range from 500 C to 800 C to produce electrical energy. Additional methods and systems/compositions are also provided.
Development of a test method for carbonyl compounds from stationary source emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhihua Fan; Peterson, M.R.; Jayanty, R.K.M.
1997-12-31
Carbonyl compounds have received increasing attention because of their important role in ground-level ozone formation. The common method used for the measurement of aldehydes and ketones is 2,4-dinitrophenylhydrazine (DNPH) derivatization followed by high performance liquid chromatography and ultra violet (HPLC-UV) analysis. One of the problems associated with this method is the low recovery for certain compounds such as acrolein. This paper presents a study in the development of a test method for the collection and measurement of carbonyl compounds from stationary source emissions. This method involves collection of carbonyl compounds in impingers, conversion of carbonyl compounds to a stable derivativemore » with O-2,3,4,5,6-pentafluorobenzyl hydroxylamine hydrochloride (PFBHA), and separation and measurement by electron capture gas chromatography (GC-ECD). Eight compounds were selected for the evaluation of this method: formaldehyde, acetaldehyde, acrolein, acetone, butanal, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), and hexanal.« less
Isocyanate and total inhalable particulate air measurements in the European wood panel industry.
Vangronsveld, E; Berckmans, S; Verbinnen, K; Van Leeuw, C; Bormans, C
2010-11-01
It is well known that the use of MDI (methylene diphenyldiisocyanate) as an alternative for formaldehyde-based resins is seen as a responsible option to reduce formaldehyde emissions for CWP (Composite Wood Products) in buildings. However, there are concerns raised regarding the exposure risk of workers. The purpose of this article is to provide the reader with factual information to demonstrate that the use of MDI compared to other agents used in CWP production processes does not pose increased inhalation exposure risks for workers. Personal and area air measurements were carried out at nine Composite Wood Panel plants throughout Europe to assess potential inhalation exposures to MDI and wood dust as Total Inhalable Particulates (TIP). In total, 446 pairs of samples were collected for MDI and TIP of which 283 pairs were personal samples and the remaining 163 pairs were area samples collected at key locations along the production line. This data together with published formaldehyde exposure data has been used to evaluate the exposure safety margin opposite what are considered relevant occupational exposure limits. The methods used for sampling and analysing MDI and TIP are based on internationally accepted methods, i.e. MDHS 25/3 (or ISO 16702) for MDI, and MDHS 14/3 for TIP. The job functions with an increased exposure profile for TIP were the cleaners, drying operators and quality control staff, and for MDI, the cleaners and quality control staff. The areas with an increased exposure profile for TIP are the conveyor area from OSB blender to former area and the OSB press infeed, and for MDI the OSB weigh belt and OSB former bin area. The exposure safety margin opposite the selected exposure limits can be ranked as MDI>TIP>formaldehyde (high margin of safety to low margin of safety), indicating that the use of MDI also reduces the exposure risks to workers during production of CWP compared to formaldehyde. By reducing the airborne TIP concentrations, a respiratory sensitiser, MDI workplace concentrations in general can be reduced further. This can be achieved by improving design and/or maintenance and testing programmes of existing control measures, which should be in place already to effectively control exposure to TIP and formaldehyde. The airborne concentration of MDI at workstations situated after pressing (curing) is regarded as extremely low and likely mainly constituted by workplace emissions from elsewhere in the plant. Copyright © 2010 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Dey, Tanusri; Praveena, Koduru Sri Shanthi; Pal, Sarbani; Mukherjee, Alok Kumar
2017-06-01
Three oxime ether derivatives, (E)-3-methoxy-4-(prop-2-ynyloxy)-benzaldehyde-O-prop-2-ynyl-oxime (C14H13NO3) (2), benzophenone-O-prop-2-ynyl-oxime (C16H13NO) (3) and (E)-2-chloro-6-methylquinoline-3-carbaldehyde-O-prop-2-ynyl-oxime (C14H11ClN2O) (4), have been synthesized and their crystal structures have been determined. The DFT optimized molecular geometries in 2-4 agree closely with those obtained from the crystallographic study. An interplay of intermolecular Csbnd H⋯O, Csbnd H⋯N, Csbnd H⋯Cl and Csbnd H···π(arene) hydrogen bonds and π···π interactions assembles molecules into a 2D columnar architecture in 2, a 1D molecular ribbon in 3 and a 3D framework in 4. Hirshfeld surface analysis showed that the structures of 2 and 3 are mainly characterized by H⋯H, H⋯C and H⋯O contacts but some contribution of H⋯N and H⋯Cl contacts is also observed in 4. Hydrogen-bond based interactions in 2-4 have been complemented by calculating molecular electrostatic potential (MEP) surfaces. The electronic structures of molecules reveal that the estimated band gap in 3, in which both aldehyde hydrogen atoms of formaldehyde-O-prop-2-ynyl-oxime (1) have been substituted by two benzene rings, is higher than that of 2 and 4 with only one aldehyde hydrogen atom replaced.
NASA Astrophysics Data System (ADS)
Ji, Yuemeng; Gao, Yanpeng; Li, Guiying; An, Taicheng
2012-07-01
Accurate description of atmospheric reactions of a series of low-molecular-weight (LMW) aldehydes (C1-C4) with NO2 has been modeled using a direct dynamic approach. The profiles of the potential energy surface were constructed at the BMC-CCSD//MPWB1K/6-311G(d,p) level of theory, and two different pathways have been found: H-abstraction and NO2-addition. The modeling results found that the contribution of NO2-addition reaction pathway to the total rate constant is very small and thus this kind of pathway is insignificant in atmospheric conditions. The predicted H-abstraction products are mainly reactive acyl radical and nitrous acid (HONO) which is very mutagenic and carcinogenic pollutant as well as the precursor of acid deposition. The rate constants of both pathways were also deduced by using canonical variational transition state theory incorporating with the small curvature tunneling correction within 200-360 and 360-2000 K. Theoretical overall rate constants are in good agreement with the available experimental values, whose increase in the order of kformaldehyde < kacetaldehyde < kpropanal < kbutanal, implying that relative long-chain LMW aldehydes are more reactive toward NO2 than those short-chain LMW aldehydes in the atmospheric condition. At 298 K, the total rate constants of LMW aldehydes (C1-C4) with NO2 are obtained as 1.65 × 10-25, 1.43 × 10-24, 3.39 × 10-24 and 1.83 × 10-23 cm3 molecule-1 s-1, respectively.
Németh, K; Patthy, M; Fauszt, I; Széll, E; Székely, J I; Bajusz, S
1995-12-01
Tripeptide and pentapeptide aldehydes as substrate-base inhibitors of cysteine proteases were designed in our laboratory for the inhibition of interleukin-1 beta converting enzyme (ICE), a recently described cysteine protease responsible for the processing of IL-1 beta. The biological effectivity of the peptide aldehydes was studied in THP-1 cells and human whole blood. The released and cell-associated IL-1 alpha and IL-1 beta levels were determined by ELISA from the supernatants and cell lysates, respectively. The total IL-1 like bioactivity was assayed by the D10 G4.1 cell proliferation method. The tripeptide aldehyde (Z-Val-His-Asp-H) and pentapeptide aldehyde (Eoc-Ala-Tyr-Val-Ala-Asp-H) significantly reduced IL-1 beta levels in the supernatants in relatively high concentrations (10-100 microM), but the IL-1 alpha release was unaffected by these peptides. However, a considerable decrease in the cell-associated IL-1 beta and IL-1 alpha levels was observed. N-terminal extension of the tripeptide aldehyde yielded even more potent inhibitors. Amino acid substitution at the P2 position did not cause considerable changes in the inhibitory activity. The peptide aldehydes suppressed the IL-1 beta production in a reversible manner, whereas dexamethasone, a glucocorticoid, had a prolonged inhibitory effect. The inhibitory effect of these peptides and that of dexamethasone appeared to be additive. These findings indicate that these peptide aldehydes might be used as IL-beta inhibitory agents in experimental models in which IL-1 beta is a key mediator or ICE is implicated.
Formaldehyde Source Attribution in Houston during TexAQS II and TRAMP
NASA Astrophysics Data System (ADS)
Guven, B.; Olaguer, E. P.
2010-12-01
To determine the relative importance of primary vs secondary formaldehyde in Houston, source apportionment was performed on continuous online measurements of VOCs, formaldehyde (HCHO), CO, SO2, and HONO at one urban and two industrial sites. The results of source apportionment were used in conjunction with the meteorological, emission inventory, emission event, and back trajectory data catalogued in Air Research Information Infrastructure (ARII) to determine the dominant source regions and evaluate the accuracy of reported regular and upset emissions from industrial facilities. The contribution of industrial sources such as flares from petrochemical plants and refineries to total atmospheric formaldehyde concentrations at the urban site is estimated to be 17% compared to 23% for mobile sources, amounting to 40% for the total contribution of primary HCHO sources. The relative contribution of industrial sources to HCHO concentration at the urban site increased to about 66% on some mornings coinciding with the HCHO peak concentrations. Secondary formation of HCHO during the day and night resulted from the reactions of industrial olefins and other VOCs with OH or ozone was a significant contributor to HCHO concentrations at the urban site. An analysis of emission event, back trajectory and ambient concentration data in ARII showed that a large percentage of emission events were associated with trajectories that passed through the two industrial sites when peaks in concentrations were detected at those sites. Some peak HCHO concentrations can also be linked to emission events of other VOCs, while a significant portion remained unexplained by the reported events. It is likely, based on the results from the SHARP campaign and our analysis, that some episodic emission events containing HCHO are unreported to the TCEQ. Overlaid CPF plots for nighttime (green) and daytime (red) HCHO concentrations measured at three sites and the locations of the largest emitting point sources around the sites. Average contributions to formaldehyde concentrations.
[Development and application of practical synthetic methods of imidazolines].
Murai, Kenichi
2010-08-01
This review describes the first method to prepare imidazolines from aldehydes and 1,2-diamines by condensation and successive oxidation using NBS in one-pot operation. The reaction proceeds under mild conditions and can be applied to various aromatic and aliphatic aldehydes and 1,2-diamines. The utility of this method is also demonstrated in the total synthesis of spongotine A and the preparation of a newly designed organocatalyst, C3-symmetric trisimidazoline 7.
A first principles analysis of the hydrogenation of C1C4 aldehydes and ketones over Ru(0001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinha, Nishant K.; Neurock, Matthew
The structure and degree of substitution of C₁–C₄ oxygenate molecules can influence their chemisorption and reactivity on metal surfaces. Gradient-corrected periodic density functional theory calculations were carried out to analyze alkyl substituent effects on the hydrogenation of C₁–C₄ aldehydes and ketones to their corresponding alcohols. All of these aldehydes along with acetone were found to adsorb in a di-ση1η2(C,O) mode onto the Ru(0001) surface and result in rehybridization of the C=O bond. Steric hindrance from two alkyl substituents on the carbonyl backbone of methyl ethyl ketone (MEK), however, prevents it from binding di-ση1η2(C,O). It adsorbs instead atop a Ru atommore » in an g1(O) configuration through its oxygen atom. Hydrogenation of both aldehydes and ketones can occur through either a hydroxy or an alkoxy mechanism. The hydroxy route proceeds via the formation of the hydroxyalkyl intermediate R₁R₂C*OH by the addition of hydrogen to the oxygen of the carbonyl, whereas the alkoxy mechanism proceeds by the addition of hydrogen to the carbon end to form the alkoxy intermediate R₂CHO*). DFT calculations indicate that the activation barrier for the initial addition of hydrogen to the carbon to form the C–H bond in the alkoxy mechanism is independent of the substituent groups that are attached to the carbon center as these groups are oriented away from the surface in the transition state and thus have little influence on the activation energies. The activation barriers for the addition of hydrogen to the oxygen of the carbonyl to form the O–H bond in the hydroxy mechanism, however, was found to linearly correlate with the binding energy of the hydroxyalkyl intermediate that forms. This trend can be explained through the Brønsted–Evans–Polanyi relationship and the fact that both the hydroxyalkyl products and carbonyl reactants interact via their carbon centers and are correlated with one another. All of the carbonyls follow a similar trend in that the addition of hydrogen to the carbon of the carbonyl has a much lower barrier on Ru(0001) than the addition of hydrogen to the oxygen. The carbonyls thus readily react to form their alkoxy intermediates. Simple kinetic analyses and firstprinciple- based kinetic Monte Carlo simulations for formaldehyde over Ru(0001) show that the alkoxy is the most abundant surface intermediate and that the alkoxy route is more favorable than the hydroxy route.« less
Hauksson, I; Pontén, A; Gruvberger, B; Isaksson, M; Engfeldt, M; Bruze, M
2016-02-01
Formaldehyde is a well-known contact sensitizer. Formaldehyde releasers are widely used preservatives in skincare products. It has been found that formaldehyde at concentrations allowed by the European Cosmetics Directive can cause allergic contact dermatitis. However, we still lack information on whether formaldehyde at low concentrations affects dermatitis in formaldehyde-allergic individuals. To study the effects of low concentrations of formaldehyde on irritant contact dermatitis in formaldehyde-allergic individuals. Fifteen formaldehyde-allergic individuals and a control group of 12 individuals without contact allergy to formaldehyde and formaldehyde releasers were included in the study. The individuals performed the repeated open application test (ROAT) during 4 weeks with four different moisturizers releasing formaldehyde in concentrations that had been determined as > 40, 20-40, 2·5-10 and 0 p.p.m. by the chromotropic acid (CA) spot test. Dimethyloldimethylhydantoin was used as a formaldehyde releaser in the moisturizers. The ROAT was performed on areas of experimentally induced sodium lauryl sulfate dermatitis. The study was double blind, controlled and randomized. Nine of the 15 formaldehyde-allergic individuals had reappearance or worsening of dermatitis on the areas that were treated with moisturizers containing formaldehyde. No such reactions were observed in the control group (P < 0·001) or for the moisturizers without formaldehyde in the formaldehyde-allergic individuals (P < 0·001). Our results demonstrate that the low concentrations of formaldehyde often found in skincare products by the CA method are sufficient to worsen an existing dermatitis in formaldehyde-allergic individuals. © 2015 British Association of Dermatologists.
Zegota, H
1999-11-26
A procedure was developed to measure the content of methanol in pectins after the base-catalysed hydrolysis of galacturonic acid methyl esters and oxidation of released methanol with potassium permanganate followed by condensation of the resulting formaldehyde (HCHO) with 2,4-dinitrophenylhydrazine (DNPH) dissolved in acetonitrile. The constant yields of resultant formaldehyde 2,4-dinitrophenylhydrazone (HCHO-DNPH derivative) were obtained at molar ratios of DNPH/HCHO higher than 5. The separation of the HCHO-DNPH derivative from DNPH reagent was achieved by isocratic reversed-phase HPLC equipped with the spectrophotometric detector set at a wavelength of 351 nm. The calibration curve was linear in the methanol concentration range between 0.04 and 15 micromol/ml (R=0.9995). The total recovery from pectin solutions spiked with methanol was equal to 100.6+/-5.1%.
Saba, Courage Kosi Setsoafia; Atayure, Seidu Isaac; Adzitey, Frederick
2015-03-01
Fish is an important source of protein all over the world, including in Ghana. The fishery sector plays a major role in meeting the domestic need of animal protein and also contributes greatly in foreign exchange earnings. The domestic supply of fish does not meet the demand, so Ghana imports fish and fish products from other countries. Media reports in Ghana have alleged the use of formaldehyde to preserve fish for increased shelf life and to maintain freshness. This research, therefore, sought to establish the levels of formaldehyde in imported and local fresh fish in the Tamale Metropolis by using a ChemSee formaldehyde and formalin detection test kit. Positive and negative controls were performed by using various concentrations of formalin (1, 10, 30, 50, 100, and 300 ppm) and sterile distilled water, respectively. Three times over a 6-month period, different fish species were obtained from five wholesale cold stores (where fish are sold in cartons) and some local sales points (where locally caught fish are sold). A total of 32 samples were taken during three different sampling sessions: 23 imported fish (mackerel, herring, horse mackerel, salmon, and redfish) and 9 local tilapia. The fish were cut, and 50 g was weighed and blended with an equal volume (50 ml) of sterile distilled water. Samples were transferred to test tubes and centrifuged. A test strip was dipped into the supernatant and observed for a color change. A change in color from white to pink or purple indicated the presence of formaldehyde in fish. The study showed that no formaldehyde was present in the imported and local fish obtained. The appropriate regulatory agencies should carry out this study regularly to ensure that fish consumed in Ghana is safe for consumption.
Rocket and Missile Container Engineering Guide
1982-01-01
impregnated with urea - formaldehyde and melamine - formaldehyde resins , found that a high degree of fungous resistance was imparted to the cotton...34 Phenol-aniline- formaldehyde Resorcinol- formaldehyde Urea - formaldehydes Urea -formaldehydeh Protein- formaldehydes Zein- formaldehyde ("Vicara") Casein...Practically, any cush- ioning material can be made resistant to fungi. The treatment usually involves impregnation
Lin, Yangming; Wu, Kuang-Hsu Tim; Yu, Linhui; Heumann, Saskia; Su, Dang Sheng
2017-09-11
Selective oxidation of alcohols to aldehydes is widely applicable to the synthesis of various green chemicals. The poor chemoselectivity for complicated primary aldehydes over state-of-the-art metal-free or metal-based catalysts represents a major obstacle for industrial application. Bucky nanodiamond is a potential green catalyst that exhibits excellent chemoselectivity and cycling stability for the selective oxidation of primary alcohols in diverse structures (22 examples, including aromatic, substituted aromatic, unsaturated, heterocyclic, and linear chain alcohols) to their corresponding aldehydes. The results are comparable to reported transition-metal catalysts including conventional Pt/C and Ru/C catalysts for certain substrates under solvent-free conditions. The possible activation process of the oxidant and substrates by the surface oxygen groups and defect species are revealed with model catalysts, ex situ electrochemical measurements, and ex situ attenuated total reflectance. The zigzag edges of sp 2 carbon planes are shown to play a key role in these reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Welin, Eric R.; Warkentin, Alexander A.; Conrad, Jay C.
2015-01-01
The combination of photoredox catalysis and enamine catalysis has enabled the development of an enantioselective α-cyanoalkylation of aldehydes. This synergistic catalysis protocol allows for the coupling of two highly versatile yet orthogonal functionalities, allowing rapid diversification of the oxonitrile products to a wide array of medicinally relevant derivatives and heterocycles. This methodology has also been applied to the total synthesis of the lignan natural product (−)-bursehernin. PMID:26130043
NASA Technical Reports Server (NTRS)
James, John T.
2003-01-01
The toxicological assessments of grab sample canisters (GSCs) returned aboard STS-l13 and Soyuz 5 are reported. Analytical methods have not changed from earlier reports. Surrogate standard recoveries from the GSCs were 79-120% except as noted in the table. One sample was returned with the valve opened. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contributions). Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols (including acetone) are also shown for each sample. Octafluoropropane (OFP) has leaked from heat-exchange units in large quantities, so its concentration is tracked separately. Because formaldehyde is quantified from sorbent badges, its concentration is also listed separately. The table shows that the air quality in general was acceptable for crew respiration through the middle of December 2002. No conclusions can be made about the air quality after that date due to NASA's inability to return air samples from the ISS . Alcohols are not being controlled to the recently lowered guideline of 5 mg/m3, which was recommended to protect the water recovery systems. The airlock sample was taken during the regeneration of Met ox canisters in the adjacent Node. The trace pollutants were not increased above background; however, inspection of table 1 in the appendix shows a CO2 concentration of 17,000 mg/cu m, which is a relatively high concentration, but still below the 24-hour SMAC of23,000 mg/cu m. The control of OFP continues to be adequate at least through December 2002. Formaldehyde concentrations suggest that the high levels that were being found in the Lab atmosphere have subsided. This is probably attributable to the restoration of IMV in early February 2003 . Before the obstructing material was removed from ducts the Lab formaldehyde concentrations approached 0.06 mg/cu m, whereas after the repair the levels were near 0.04 mg/m3 . This does not mean that local sources in the Lab have been reduced, only that the excess of formaldehyde produced in the Lab is distributed into the whole volume of the ISS.
Volatile organic chemical emissions from carpets. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodgson, A.T.; Wooley, J.D.; Daisey, J.M.
1992-04-01
The primary objective of this research, was to measure the emission rates of selected individual VOC, including low molecular-weight aldehydes, released by samples of four new carpets that are typical of the major types of carpets used in residences, schools and offices. The carpet samples were collected directly from the manufacturers` mills and packaged to preserve their chemical integrity. The measurements of the concentrations and emission rates of these compounds were made under simulated indoor conditions in a 20-M{sup 3} environmental chamber designed specifically for investigations of VOC. The measurements were conducted over a period of one week following themore » installation of the carpet samples in the chamber. Duplicate experiments were conducted for one carpet. In addition, the concentrations and emission rates of VOC resulting from the installation of a new carpet in a residence were measured over a period of seven weeks. The stabilities of the week-long ventilation rates and temperatures were one percent relative standard deviation. The four carpets emitted a variety of VOC, 40 of which were positively identified. Eight of these were considered to be dominant. They were (in order of chromatographic retention time) formaldehyde, vinyl acetate, 2,2,4-trimethylpentane (isooctane), 1,2-propanediol (propylene glycol), styrene, 2-ethyl-l-hexanol, 4-phenylcyclohexene (4-PCH), and 2,6 di-tert-butyl-4-methylphenol (BHT). With the exception of formaldehyde, only limited data are available on the toxicity and irritancy of these compounds at low concentrations. Therefore, it is difficult to determine at this time the potential magnitude of the health and comfort effects that may occur among the population from exposures to emissions from new carpets. The concentrations and emission rates of most compounds decreased rapidly over the first 12 h of the experiments.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-23
... Formaldehyde; Third-Party Certification Framework for the Formaldehyde Standards for Composite Wood Products..., concerning a third-party certification framework for the formaldehyde standards for composite wood products... Environmental protection, Composite wood products, Formaldehyde, Reporting and recordkeeping, Third-party...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-10
... Formaldehyde; Third-Party Certification Framework for the Formaldehyde Standards for Composite Wood Products; Formaldehyde Emissions Standards for Composite Wood Products; Proposed Rules #0;#0;Federal Register / Vol. 78... Certification Framework for the Formaldehyde Standards for Composite Wood Products AGENCY: Environmental...
Steppeler, Christina; Haugen, John-Erik; Rødbotten, Rune; Kirkhus, Bente
2016-01-20
Red meat high in heme iron may promote the formation of potentially genotoxic aldehydes during lipid peroxidation in the gastrointestinal tract. In this study, the formation of malondialdehyde (MDA) equivalents measured by the thiobarbituric acid reactive substances (TBARS) method was determined during in vitro digestion of cooked red meat (beef and pork), as well as white meat (chicken) and fish (salmon), whereas analysis of 4-hydroxyhexenal (HHE) and 4-hydroxynonenal (HNE) was performed during in vitro digestion of cooked beef and salmon. Comparing products with similar fat contents indicated that the amount of unsaturated fat and not total iron content was the dominating factor influencing the formation of aldehydes. It was also shown that increasing fat content in beef products caused increasing concentrations of MDA equivalents. The highest levels, however, were found in minced beef with added fish oil high in unsaturated fat. This study indicates that when ingested alone, red meat products low in unsaturated fat and low in total fat content contribute to relatively low levels of potentially genotoxic aldehydes in the gastrointestinal tract.
The effect of clothing care activities on textile formaldehyde content.
Novick, Rachel M; Nelson, Mindy L; McKinley, Meg A; Anderson, Grace L; Keenan, James J
2013-01-01
Textiles are commonly treated with formaldehyde-based residues that may potentially induce allergic contact dermatitis in sensitive individuals. This study examined the initial formaldehyde content in clothing and resulting changes due to care activities. Twenty clothing articles were examined and 17 of them did not have detectable levels of formaldehyde. One shirt contained a formaldehyde concentration of 3172 ppm, and two pairs of pants had formaldehyde concentrations of 1391 ppm and 86 ppm. The two highest results represent formaldehyde levels that are up to 40-fold greater than international textile regulations. The two items with the greatest formaldehyde content were washed and dried in a manner similar to that used by consumers, including hand and machine washing in hot or cold water followed by air or machine drying. The washing and drying procedures reduced formaldehyde levels to between 26 and 72% of untreated controls. Differences in the temperature or type of washing and drying did not result in a clear trend in the subsequent formaldehyde content. In addition, samples were hot ironed, which did not affect the formaldehyde content as significantly. Understanding the formaldehyde content in clothing and its potential reduction through care activities may be useful for manufacturers and formaldehyde-sensitive individuals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gammage, R.B.
1981-07-30
This report is divisible into the following four sections that pertain to the nature, application, and performance of urea-formaldehyde (UF) resins and foams in regard to their formaldehyde outgassing characteristics: elements of basic chemistry that affect hydrolysis and stability; pertinent experimental findings of several studies on the release of formaldehyde from urea-formaldehyde foam insulation (UFFI); studies that model the diffusion of formaldehyde through drywall and correlate the rate of formaldehyde emission with the air exchange rate and the concentration of formaldehyde; and, viability of materials and equipment for the controlled production of UFFI. Results indicate that UFFI is a complexmore » and intrinsically unstable material that releases formaldehyde over long-time periods. Even the best foams available in the US, prepared from low formaldehyde resins according to eight different manufacturers' specifications, have abundant potential for long-term or chronic release of formaldehyde. At the present time it is not possible to state that UFFI is a material whose long-term formaldehyde release characteristics can be adequately controlled or predicted.« less
Welin, Eric R; Warkentin, Alexander A; Conrad, Jay C; MacMillan, David W C
2015-08-10
The combination of photoredox catalysis and enamine catalysis has enabled the development of an enantioselective α-cyanoalkylation of aldehydes. This synergistic catalysis protocol allows for the coupling of two highly versatile yet orthogonal functionalities, allowing rapid diversification of the oxonitrile products to a wide array of medicinally relevant derivatives and heterocycles. This methodology has also been applied to the total synthesis of the lignan natural product (-)-bursehernin. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Thornhill, D. A.; Williams, A. E.; Onasch, T. B.; Wood, E.; Herndon, S. C.; Kolb, C. E.; Knighton, W. B.; Zavala, M.; Molina, L. T.; Marr, L. C.
2010-04-01
The goal of this research is to quantify diesel- and gasoline-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA) using on-road measurements captured by a mobile laboratory combined with positive matrix factorization (PMF) receptor modeling. During the MCMA-2006 ground-based component of the MILAGRO field campaign, the Aerodyne Mobile Laboratory (AML) measured many gaseous and particulate pollutants, including carbon dioxide, carbon monoxide (CO), nitrogen oxides (NOx), benzene, toluene, alkylated aromatics, formaldehyde, acetaldehyde, acetone, ammonia, particle number, fine particulate mass (PM2.5), and black carbon (BC). These serve as inputs to the receptor model, which is able to resolve three factors corresponding to gasoline engine exhaust, diesel engine exhaust, and the urban background. Using the source profiles, we calculate fuel-based emission factors for each type of exhaust. The MCMA's gasoline-powered vehicles are considerably dirtier, on average, than those in the US with respect to CO and aldehydes. Its diesel-powered vehicles have similar emission factors of NOx and higher emission factors of aldehydes, particle number, and BC. In the fleet sampled during AML driving, gasoline-powered vehicles are found to be responsible for 97% of total vehicular emissions of CO, 22% of NOx, 95-97% of each aromatic species, 72-85% of each carbonyl species, 74% of ammonia, negligible amounts of particle number, 26% of PM2.5, and 2% of BC; diesel-powered vehicles account for the balance. Because the mobile lab spent 17% of its time waiting at stoplights, the results may overemphasize idling conditions, possibly resulting in an underestimate of NOx and overestimate of CO emissions. On the other hand, estimates of the inventory that do not correctly account for emissions during idling are likely to produce bias in the opposite direction.The resulting fuel-based estimates of emissions are lower than in the official inventory for CO and NOx and higher for VOCs. For NOx, the fuel-based estimates are lower for gasoline-powered vehicles but higher for diesel-powered ones compared to the official inventory. While conclusions regarding the inventory should be interpreted with care because of the small sample size, 3.5 h of driving, the discrepancies with the official inventory agree with those reported in other studies.
Adsorption of formaldehyde on graphene and graphyne
NASA Astrophysics Data System (ADS)
Majidi, R.; Karami, A. R.
2014-05-01
The adsorption of formaldehyde on graphene and graphyne was investigated to search high sensitivity sensors for detection of formaldehyde. We have used density functional theory to study the effect of formaldehyde on the electronic properties of graphene and graphyne. It is found that formaldehyde is physisorbed on the graphene and graphyne with small binding energy, large binding distance, and small charge transfer. The calculations also indicate that formaldehyde adsorption modifies the electronic properties of semimetallic graphene, α-graphyne, and β-graphyne and semiconducting γ-graphyne. The graphene and graphyne show semiconducting property in the presence of formaldehyde. The effect of formaldehyde on the electronic properties of graphene and graphyne suggests the potential application of these carbon nanomaterials for formaldehyde detection.
Copper(I)/TEMPO Catalyzed Aerobic Oxidation of Primary Alcohols to Aldehydes with Ambient Air
Hoover, Jessica M.; Steves, Janelle E.; Stahl, Shannon S.
2012-01-01
This protocol describes a practical laboratory-scale method for aerobic oxidation of primary alcohols to aldehydes, using a chemoselective CuI/TEMPO catalyst system. The catalyst is prepared in situ from commercially available reagents, and the reactions are performed in a common organic solvent (acetonitrile) with ambient air as the oxidant. Three different reaction conditions and three procedures for the isolation and purification of the aldehyde product are presented. The oxidations of eight different alcohols, described here, include representative examples of each reaction condition and purification method. Reaction times vary from 20 min to 24 h, depending on the alcohol, while the purification methods each take about 2 h. The total time necessary for the complete protocol ranges from 3 – 26 h. PMID:22635108
Trost, Barry M; Chan, Vincent S; Yamamoto, Daisuke
2010-04-14
A highly enantioselective method for the catalytic addition of terminal 1,3-diynes to aldehydes was developed using our dinuclear zinc ProPhenol (1) system. Furthermore, triphenylphosphine oxide was found to interact synergistically with the catalyst to substantially enhance the chiral recognition. The generality of this catalytic transformation was demonstrated with aryl, alpha,beta-unsaturated and saturated aldehydes, of which the latter were previously limited in alkynyl zinc additions. The chiral diynol products are also versatile building blocks that can be readily elaborated; this was illustrated through highly selective trans-hydrosilylations, which enabled the synthesis of a beta-hydroxyketone and enyne. Additionally, the development of this method allowed for the rapid total syntheses of several biologically important diynol-containing natural products.
Bioreduction of α,β-unsaturated ketones and aldehydes by non-conventional yeast (NCY) whole-cells.
Goretti, Marta; Ponzoni, Chiara; Caselli, Elisa; Marchegiani, Elisabetta; Cramarossa, Maria Rita; Turchetti, Benedetta; Forti, Luca; Buzzini, Pietro
2011-03-01
The bioreduction of α,β-unsaturated ketones (ketoisophorone, 2-methyl- and 3-methyl-cyclopentenone) and aldehydes [(S)-(-)-perillaldehyde and α-methyl-cinnamaldehyde] by 23 "non-conventional" yeasts (NCYs) belonging to 21 species of the genera Candida, Cryptococcus, Debaryomyces, Hanseniaspora, Kazachstania, Kluyveromyces, Lindnera, Nakaseomyces, Vanderwaltozyma, and Wickerhamomyces was reported. The results highlight the potential of NCYs as whole-cell biocatalysts for selective biotransformation of electron-poor alkenes. A few NCYs exhibited extremely high (>90%) or even total ketoisophorone and 2-methyl-cyclopentenone bioconversion yields via asymmetric reduction of the conjugated CC bond catalyzed by enoate reductases. Catalytic efficiency declined after switching from ketones to aldehydes. High chemoselectivity due to low competing carbonyl reductases was also sometimes observed. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Raymer, J. H.; Akland, G.; Johnson, T. R.; Long, T.; Michael, L.; Cauble, L.; McCombs, M.
Oxygenated additives in gasoline are designed to decrease the ozone-forming hydrocarbons and total air toxics, yet they can increase the emissions of aldehydes and thus increase human exposure to these toxic compounds. This paper describes a study conducted to characterize targeted aldehydes in microenvironments in Sacramento, CA, and Milwaukee, WI, and to improve our understanding of the impact of the urban environment on human exposure to air toxics. Data were obtained from microenvironmental concentration measurements, integrated, 24-h personal measurements, indoor and outdoor pollutant monitors at the participants' residences, from ambient pollutant monitors at fixed-site locations in each city, and from real-time diaries and questionnaires completed by the technicians and participants. As part of this study, a model to predict personal exposures based on individual time/activity data was developed for comparison to measured concentrations. Predicted concentrations were generally within 25% of the measured concentrations. The microenvironments that people encounter daily provide for widely varying exposures to aldehydes. The activities that occur in those microenvironments can modulate the aldehyde concentrations dramatically, especially for environments such as "indoor at home." By considering personal activity, location (microenvironment), duration in the microenvironment, and a knowledge of the general concentrations of aldehydes in the various microenvironments, a simple model can do a reasonably good job of predicting the time-averaged personal exposures to aldehydes, even in the absence of monitoring data. Although concentrations of aldehydes measured indoors at the participants' homes tracked well with personal exposure, there were instances where personal exposures and indoor concentrations differed significantly. Key to the ability to predict exposure based on time/activity data is the quality and completeness of the microenvironmental characterizations for the chemicals of interest. Consistent with many earlier studies, personal exposures are difficult to predict using data from regional outdoor monitors.
Effects of Indoor Air Pollutants on Atopic Dermatitis.
Kim, JaKyoung; Kim, HyungJin; Lim, DaeHyun; Lee, Young-Kyu; Kim, Jeong Hee
2016-12-09
The increasing prevalence of atopic dermatitis (AD) is associated with variations in indoor environments. In Korea, many inner walls of homes are covered with wallpaper: such walls emit indoor air pollutants, including volatile organic compounds (VOCs) and formaldehyde. This randomized, double-blind study investigated the effects of wallpaper on indoor air quality and AD. Thirty-one children (aged three to eight years) with moderate AD were assigned to environmentally-friendly (EF) and polyvinyl chloride (PVC) wallpaper groups. Indoor air concentrations of VOCs, natural VOCs (NVOCs), formaldehyde, and total suspended bacteria were measured before and two (W₂) and eight weeks (W₈) after wallpapering. Scoring Atopic Dermatitis (SCORAD) evaluations and blood tests were performed during the same period. The EF wallpaper and PVC wallpaper groups showed similar trends in the changes in total VOCs (TVOC) and formaldehyde content in the indoor air. However, the EF wallpaper group showed more improvement on the SCORAD at W₂ and W₈ than the PVC wallpaper group. The SCORAD index was positively correlated with several indoor air pollutants. Further, the SCORAD index and NVOC % were negatively correlated. Improved SCORAD index and effects of wallpapering on indoor air quality improvements occurred within a short period of time in both groups. We believe that NVOCs in indoor air after EF wallpapering have a beneficial effect on health.
Hydrocarbon emissions from in-use commercial aircraft during airport operations.
Herndon, Scott C; Rogers, Todd; Dunlea, Edward J; Jayne, John T; Miake-Lye, Richard; Knighton, Berk
2006-07-15
The emissions of selected hydrocarbons from in-use commercial aircraft at a major airport in the United States were characterized using proton-transfer reaction mass spectrometry (PTR-MS) and tunable infrared differential absorption spectroscopy (TILDAS) to probe the composition of diluted exhaust plumes downwind. The emission indices for formaldehyde, acetaldehyde, benzene, and toluene, as well as other hydrocarbon species, were determined through analysis of 45 intercepted plumes identified as being associated with specific aircraft. As would have been predicted for high bypass turbine engines, the hydrocarbon emission index was greater in idle and taxiway acceleration plumes relative to approach and takeoff plumes. The opposite was seen in total NOy emission index, which increased from idle to takeoff. Within the idle plumes sampled in this study, the median emission index for formaldehyde was 1.1 g of HCHO per kg of fuel. For the subset of hydrocarbons measured in this work, the idle emissions levels relative to formaldehyde agree well with those of previous studies. The projected total unburned hydrocarbons (UHC) deduced from the range of in-use idle plumes analyzed in this work is greater than a plausible range of engine types using the defined idle condition (7% of rated engine thrust) in the International Civil Aviation Organization (ICAO) databank reference.
A snow pack source of aldehydes and acetone in West Antarctica between 76 and 90 degrees S
NASA Astrophysics Data System (ADS)
Frey, M. M.; Bales, R. C.; Belle-Oudry, D.
2009-04-01
The investigation of snow-atmosphere exchange of many chemical species driven by physical and photochemical processes is key for understanding atmospheric chemistry above snow covered regions and has important implications for ice core interpretation. A number of recent field and modeling studies indicates that a source of aldehydes and ketones exists in polar snowpacks, and the emission of these species may significantly impact organic and HO2 radical levels in the overlying boundary layer. However, most of the studies took place in the northern hemisphere and only few data are available from Antarctica. Here we present new measurements from the US International Trans-Antarctic Scientific Expedition (ITASE) carried out in summers of 2000-2003. 1-2 day average mixing ratios of formaldehyde (CH2O), acetaldehyde (CH3CHO) and acetone (CH3COCH3) were determined in ambient and firn air across the West Antarctic Ice Sheet (WAIS) between 76 °S and 90 °S. Organic chemical species were collected on 2,4-Dinitrophenylhydrazine (DNPH) filter cartridges and analyzed after elution using HPLC. Median (range) ambient levels of CH2O, CH3CHO and CH3COCH3 were 65 (15-205) pptv, 35 (10-195) pptv and 65 (25-150) pptv, respectively. Firn air concentrations of CH2O and CH3CHO were increased up to 15fold compared to ambient air, suggesting significant emission fluxes, while CH3COCH3 gradients between the air above and below the snow surface were less pronounced.. We discuss implications for the oxidation capacity of the WAIS boundary layer and for the interpretation of ongoing surface studies at the WAIS Divide deep coring site.
Sekine, Seiji; Kubo, Kazuhiro; Tadokoro, Tadahiro; Saito, Morio
2007-11-01
We hypothesized a suppressive mechanism for docosahexaenoic acid (22:6n-3; DHA)-induced tissue lipid peroxidation in which the degradation products, especially aldehydic compounds, are conjugated with glutathione through catalysis by glutathione S-transferases, and then excreted into urine as mercapturic acids. In the present study, ascorbic acid-requiring ODS rats were fed a diet containing DHA (3.6% of total energy) for 31 days. Lipid peroxides including degradation products and their scavengers in the liver and kidney were determined, and the temporal change in the urinary excretion of mercapturic acids was also measured. The activity of aldehyde dehydrogenase, which catalyzes the oxidation and detoxification of aldehydes, tended to be higher in the liver of DHA-fed rats. The levels of lipid peroxides as measured by thiobarbituric acid-reactive substances and aldehydic compounds were higher and that of alpha-tocopherol was lower in the liver, and the pattern of temporal changes in the urinary excretion of mercapturic acids was also different between the n-6 linoleic acid and DHA-fed rats. Accordingly, we presume from these results that after dietary DHA-induced lipid peroxidation, a proportion of the lipid peroxidation-derived aldehydic degradation products is excreted into urine as mercapturic acids.
Sekine, Seiji; Kubo, Kazuhiro; Tadokoro, Tadahiro; Saito, Morio
2007-01-01
We hypothesized a suppressive mechanism for docosahexaenoic acid (22:6n-3; DHA)-induced tissue lipid peroxidation in which the degradation products, especially aldehydic compounds, are conjugated with glutathione through catalysis by glutathione S-transferases, and then excreted into urine as mercapturic acids. In the present study, ascorbic acid-requiring ODS rats were fed a diet containing DHA (3.6% of total energy) for 31 days. Lipid peroxides including degradation products and their scavengers in the liver and kidney were determined, and the temporal change in the urinary excretion of mercapturic acids was also measured. The activity of aldehyde dehydrogenase, which catalyzes the oxidation and detoxification of aldehydes, tended to be higher in the liver of DHA-fed rats. The levels of lipid peroxides as measured by thiobarbituric acid-reactive substances and aldehydic compounds were higher and that of α-tocopherol was lower in the liver, and the pattern of temporal changes in the urinary excretion of mercapturic acids was also different between the n-6 linoleic acid and DHA-fed rats. Accordingly, we presume from these results that after dietary DHA-induced lipid peroxidation, a proportion of the lipid peroxidation-derived aldehydic degradation products is excreted into urine as mercapturic acids. PMID:18299714
Shinohara, N; Tokumura, M; Kazama, M; Yoshino, H; Ochiai, S; Mizukoshi, A
2013-08-01
This study measured air exchange rates, indoor concentrations of aldehydes and volatile organic compounds (VOCs), and radioactivity levels at 19 temporary houses in different temporary housing estate constructed in Minamisoma City following the Great East Japan Earthquake. The 19 surveyed houses represented all of the companies assigned to construct temporary houses in that Minamisoma City. Data were collected shortly after construction and before occupation, from August 2011 to January 2012. Mean air exchange rates in the temporary houses were 0.28/h, with no variation according to housing types and construction date. Mean indoor concentrations of formaldehyde, acetaldehyde, toluene, ethylbenzene, m/p-xylene, o-xylene, styrene, p-dichlorobenzene, tetradecane, and total VOCs (TVOCs) were 29.2, 72.7, 14.6, 6.35, 3.05, 1.81, 7.29, 14.3, 8.32, and 901 μg/m(3), respectively. The levels of acetaldehyde and TVOCs exceeded the indoor guideline (48 μg/m(3)) and interim target (400 μg/m(3)) in more than half of the 31 rooms tested. In addition to guideline chemicals, terpenes (α-pinene and d-limonene) and acetic esters (butyl acetate and ethyl acetate) were often detected in these houses. The indoor radiation levels measured by a Geiger-Müller tube (Mean: 0.22 μSv/h) were lower than those recorded outdoors (Mean: 0.42 μSv/h), although the shielding effect of the houses was less than for other types of buildings. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Water-Compatible Polymer Concrete Materials for use in Rapid Repair Systems for Airport Runways
1981-03-01
resin systems, resorcinol phenol- formaldehyde (RPF), urea - formaldehyde (UF), melamine - formaldehyde (MF), and furfuryl alcohol (FA), were selected for...type polymer systems. Phenol- formaldehyde (PF), melamine - formaldehyde (MF), urea -formalde- hyde (UF), and furfuryl alcohol (FA) monomers contain OH and...1-1.5) (1-2) Urea - formaldehyde NH2 CONH2 - HCHO Liquid 7150 (1.0) (1.5-2.5) Melamine - formaldehyde NH2 C:NC(NH2 ):NC(N’H2
Environmentally Safe and Effective Processes for Paint Removal
1995-04-01
Urea Formaldehyde 3.5 1.5 Type III Melamine Formaldehyde 4.0 1.5 Type IV Phenol Formaldehyde 3.5 1.5...Polyester 3.0 34 - 42 1.04 - 1.46 Type II Urea Formaldehyde 3.5 54 - 62 1.47- 1.54 Type III Melamine Formaldehyde 4.0 64- 72 1.47- 1.52 Type IV Phenol... Melamine Formaldehyde electronics industry and to remove coatings from fibreglass and composite materials. Melamine formaldehyde resin is produced
NASA Technical Reports Server (NTRS)
James, John T.
2001-01-01
The toxicological assessment of air samples returned at the end of the STS-102 (5A.1) flight to the ISS is reported. ISS air samples were taken in late February 2001 from the Service Module, FGB, and U.S. Laboratory using grab sample canisters (GSCs) and/or formaldehyde badges . A "first-entry" sample of the multipurpose logistics module (MPLM) atmosphere was taken with a GSC, and preflight and end-of-mission samples were obtained from Discovery using GSCs. Analytical methods have not changed from earlier reports, and all quality control measures were met for the data presented herein. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 contribution). Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols were also assessed in each sample. Formaldehyde is quantified separately.
Impact of regulation on indoor volatile organic compounds in new unoccupied apartment in Korea
NASA Astrophysics Data System (ADS)
Lim, Soogil; Lee, Kiyoung; Seo, Sooyun; Jang, Seongki
2011-02-01
The Indoor Air Quality (IAQ) Control in Public Use Facilities Act in Korea, which came into effect on January 1, 2006, set standards of indoor environmental concentrations for benzene, toluene, ethylbenzene, xylenes, styrene, and formaldehyde. This study aimed to determine the impact of the Act on levels of volatile organic compounds (VOCs) and to identify factors associated with indoor VOCs levels. VOCs and formaldehyde levels were measured in 228 new, unoccupied apartments from 2005 to 2007. In 2005, the mean total VOC (TVOC) concentration in 108 unoccupied apartments was 1606 μg m -3. After 2006, mean TVOC concentration in 120 unoccupied apartments was 645 μg m -3, significantly lower than the 2005 level. In 2005, the percentages of apartments exceeding standards were 14% for xylenes, 5% for ethylbenzene, 3% for toluene, and 1% for formaldehyde. After 2006, no apartment exceeded standards. When other building characteristics were controlled, the concentrations of TVOC, toluene, ethylbenzene, xylenes, and formaldehyde after 2006 were significantly lower than 2005 levels. However, benzene and styrene levels did not change. The reduction in VOCs levels was significantly associated with flooring materials, adhesive, and paint. These findings demonstrate that regulation can reduce VOC concentrations in new apartments through the use of low-emission building materials.
Charles R. Frihart; James M. Wescott; Michael J. Birkeland; Kyle M. Gonner
2010-01-01
It is well documented in the literature that temperature and humidity can influence formaldehyde emissions from composite panels that are produced using urea-formaldehyde (UF) adhesives. This work investigates the effect of temperature and humidity on newer, ultra-low emitting formaldehyde urea formaldehyde (ULEF-UF) and no-added formaldehyde (NAF) adhesives. A...
Innovative ventilation system for animal anatomy laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacey, D.R.; Smith, D.C.
1997-04-01
A unique ventilation system was designed and built to reduce formaldehyde fumes in the large animal anatomy lab at the Vet Medical Center at Cornell University. The laboratory includes four rooms totaling 5,500 ft{sup 2}. The main room has 2,300 ft{sup 2} and houses the laboratory where up to 60 students dissect as many as 12 horses at a time. Other rooms are a cold storage locker, an animal preparation room and a smaller lab for specialized instruction. The large animal anatomy laboratory has a history of air quality complaints despite a fairly high ventilation rate of over 10 airmore » changes/hour. The horses are embalmed, creating a voluminous source of formaldehyde and phenol vapors. Budget constraints and increasingly stringent exposure limits for formaldehyde presented a great challenge to design a ventilation system that yields acceptable air quality. The design solution included two innovative elements: air-to-air heat recovery, and focused ventilation.« less
Behm, R Jürgen
2014-01-01
Summary As part of a mechanistic study of the electrooxidation of C1 molecules we have systematically investigated the dissociative adsorption/oxidation of formaldehyde on a polycrystalline Pt film electrode under experimental conditions optimizing the chance for detecting weakly adsorbed reaction intermediates. Employing in situ IR spectroscopy in an attenuated total reflection configuration (ATR-FTIRS) with p-polarized IR radiation to further improve the signal-to-noise ratio, and using low reaction temperatures (3 °C) and deuterium substitution to slow down the reaction kinetics and to stabilize weakly adsorbed reaction intermediates, we could detect an IR absorption band at 1660 cm−1 characteristic for adsorbed formyl intermediates. This assignment is supported by an isotope shift in wave number. Effects of temperature, potential and deuterium substitution on the formation and disappearance of different adsorbed species (COad, adsorbed formate, adsorbed formyl), are monitored and quantified. Consequences on the mechanism for dissociative adsorption and oxidation of formaldehyde are discussed. PMID:24991512
Contact sensitivities in palmar plantar pustulosis (acropustulosis).
Yiannias, J A; Winkelmann, R K; Connolly, S M
1998-09-01
Acropustulosis, or chronic palmar plantar pustulosis (PPP), is a phenomenon of recurrent sterile pustules, erythema, and scaling affecting the palms and soles. Its pathogenesis is unclear, and it is difficult to treat. The purpose of this study was to elucidate further the factors involved in causing PPP, thereby enhancing the ability to manage this disease. All cases of PPP seen at Mayo Clinic Scottsdale from 1987 to 1993 were reviewed. 21 patients with PPP were identified, 15 of whom had been patch tested. 9 of the 15 patients (60%) showed positive patch test results. Fragrance was the most common sensitivity, but nickel, formaldehyde, para-phenylenediamine, thiuram, neomycin, mercury, balsam of Peru, and cinnamic aldehyde sensitivities were demonstrated. Less important factors included atopy, fungal and bacterial infections, and irritation. Although the mechanism of this sterile pustulosis response does not depend solely on delayed hypersensitivity mechanisms, we believe that we have demonstrated such a large number of positive patch tests in this chronic pustular dermatosis that patch testing should be considered in the routine work-up of these patients.
Saito, Yoshihiro; Ueta, Ikuo; Ogawa, Mitsuhiro; Hayashida, Makiko; Jinno, Kiyokatsu
2007-05-09
Miniaturized needle extraction device has been developed as a versatile sample preparation device designed for the rapid and simple analysis of smoking-related compounds in smokers' hair samples and environmental tobacco smoke. Packed with polymeric particle, the resulting particle-packed needle was employed as a miniaturized sample preparation device for the analysis of typical volatile organic compounds in tobacco smoke. Introducing a bundle of polymer-coated filaments as the extraction medium, the needle was further applied as a novel sample preparation device containing simultaneous derivatization/extraction process of volatile aldehydes. Formaldehyde (FA) and acetaldehyde (AA) in smoker's breath during the smoking were successfully derivatized with two derivatization reagents in the polymer-coated fiber-packed needle device followed by the separation and determination in gas chromatography (GC). Smokers' hair samples were also packed into the needle, allowing the direct extraction of nicotine from the hair sample in a conventional GC injector. Optimizing the main experimental parameters for each technique, successful determination of several smoking-related compounds with these needle extraction methods has been demonstrated.
Wang, Juli; Yu, Haiying; Song, Xuejiao; Zhu, Kun
2018-05-01
Cyanobacteria alkane synthetic pathway has been heterologously constructed in many microbial hosts. It is by far the most studied and reliable alkane generating pathway. Aldehyde deformylating oxygenase (i.e., ADO, key enzyme in this pathway) obtained from different cyanobacteria species showed diverse catalytic abilities. This work indicated that single aldehyde reductase deletions were beneficial to Nostoc punctiforme ADO-depended alkane production in Escherichia coli even better than double deletions. Fatty acid metabolism regulator (FadR) overexpression and low temperature increased C18:1 fatty acid supply, and in turn stimulated C18:1-derived heptadecene production, suggesting that supplying ADO with preferred substrate was important to overall alkane yield improvement. Using combinational methods, 1 g/L alkane was obtained in fed-batch fermentation with heptadecene accounting for nearly 84% of total alkane.
Sporostatic and sporocidal properties of aqueous formaldehyde.
NASA Technical Reports Server (NTRS)
Trujillo, R.; David, T. J.
1972-01-01
Aqueous formaldehyde is shown to exert both sporostatic and sporocidal effects on Bacillus subtilis spores. The sporostatic effect is a result of the reversible inhibition of spore germination occasioned by aqueous formaldehyde; the sporocidal effect is due to the temperature-dependent inactivation of these spores in aqueous formaldehyde. The physicochemical state of formaldehyde in solution provides a framework with which to interpret both the sporostatic and sporocidal properties of aqueous formaldehyde.
Information on formaldehyde and the regulation of formaldehyde emissions from composite wood products under the Formaldehyde Standards for Composite Wood Products Act in the Toxic Substances Control Act (TSCA).
Formaldehyde - An Assessment of its Health Effects.
1980-03-01
impregnated with melamine - formaldehyde resin ...1961). Airborne formaldehyde concentrations released from paper treated with urea - formaldehyde or melamine - formaldehyde resin were found to be 0.9-1.6...as preservatives, and in the preparation of vaccines. It is widely used in the manufacture of phenolic, urea , and melamine resins . These materials
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-21
... Formaldehyde; Third-Party Certification Framework for the Formaldehyde Standards for Composite Wood Products..., concerning a third-party certification framework for the formaldehyde standards for composite wood products... INFORMATION CONTACT. List of Subjects in 40 CFR Part 770 Environmental protection, Composite wood products...
Measurement of formaldehyde concentrations in a subatmospheric steam-formaldehyde autoclave.
Marcos, D; Wiseman, D
1979-01-01
A method has been developed for measuring formaldehyde concentrations in a subatmospheric steam-formaldehyde autoclave. Data obtained using this method indicate that the concentration of formaldehyde in the chamber atmosphere is not homogeneous and that it decreases rapidly with time. The penetration of formaldehyde vapour into narrow tubes has also been investigated and was shown to be dependent on the length-to-bore ratio of the tubes. The formaldehyde concentration within the tubes could be increased by using a lower vacuum in the air removal stage at the beginning of the cycle. PMID:572833
Investigation on formaldehyde release from preservatives in cosmetics.
Lv, C; Hou, J; Xie, W; Cheng, H
2015-10-01
To understand formaldehyde residue in cosmetics, an investigation on formaldehyde release from eight preservatives (methenamine - MA, paraformaldehyde - PF, poly(p-toluenesulfonamide-co-formaldehyde) -PTSAF, quaternium-15 - QU, imidazolidinyl urea - IU, diazolidinyl urea - DU, dimethyloldimethyl hydantoin - DMDM and bronopol - BP) under various conditions was performed. The concentration of released formaldehyde was determined by high-performance liquid chromatography with photodiode array detection after derivatization with 2,4-dinitrophenylhydrazine. The amounts of formaldehyde release were in the order of PF > DU > DMDM ≈ QU ≈ IU > MA > BP > PTSAF. The releasing amounts of formaldehyde were the highest in the presence of aqueous matrices for the releasers except QU and IU, and the releasing effect was also relative to pH. More formaldehyde was released with longer storage time and higher temperature. Furthermore, all preservatives in cosmetic matrices released fewer amounts of formaldehyde than in pure aqueous or organic matrices, and the formaldehyde-releasing amounts were also cosmetic specific. Formaldehyde release was dependent on the matrix, pH, time and mainly temperature, and the releasing effect was also cosmetic specific. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Velasco-García, R; González-Segura, L; Muñoz-Clares, R A
2000-01-01
Betaine aldehyde dehydrogenase (BADH) catalyses the irreversible oxidation of betaine aldehyde to glycine betaine with the concomitant reduction of NAD(P)(+) to NADP(H). In Pseudomonas aeruginosa this reaction is a compulsory step in the assimilation of carbon and nitrogen when bacteria are growing in choline or choline precursors. The kinetic mechanisms of the NAD(+)- and NADP(+)-dependent reactions were examined by steady-state kinetic methods and by dinucleotide binding experiments. The double-reciprocal patterns obtained for initial velocity with NAD(P)(+) and for product and dead-end inhibition establish that both mechanisms are steady-state random. However, quantitative analysis of the inhibitions, and comparison with binding data, suggest a preferred route of addition of substrates and release of products in which NAD(P)(+) binds first and NAD(P)H leaves last, particularly in the NADP(+)-dependent reaction. Abortive binding of the dinucleotides, or their analogue ADP, in the betaine aldehyde site was inferred from total substrate inhibition by the dinucleotides, and parabolic inhibition by NADH and ADP. A weak partial uncompetitive substrate inhibition by the aldehyde was observed only in the NADP(+)-dependent reaction. The kinetics of P. aeruginosa BADH is very similar to that of glucose-6-phosphate dehydrogenase, suggesting that both enzymes fulfil a similar amphibolic metabolic role when the bacteria grow in choline and when they grow in glucose. PMID:11104673
Starace, Anne K.; Black, Brenna A.; Lee, David D.; ...
2017-10-23
Catalytic fast pyrolysis (CFP) of biomass produces a liquid product consisting of organic and aqueous streams. The organic stream is typically slated for hydrotreating to produce hydrocarbon biofuels, while the aqueous stream is considered a waste stream, resulting in the loss of residual biogenic carbon. Here, we report the detailed characterization and catalytic conversion of a CFP wastewater stream with the ultimate aim to improve overall biomass utilization within a thermochemical biorefinery. An aqueous stream derived from CFP of beech wood was comprehensively characterized, quantifying 53 organic compounds to a total of 17% organics. The most abundant classes of compoundsmore » are acids, aldehydes, and alcohols. The most abundant components identified in the aqueous stream were C1-C2 organics, comprising 6.40% acetic acid, 2.16% methanol, and 1.84% formaldehyde on wet basis. The CFP aqueous stream was catalytically upgraded to olefins and aromatic hydrocarbons using a Ga/HZSM-5 catalyst at 500 degrees C. When the conversion yield of the upgraded products was measured with fresh, active catalyst, 33% of the carbon in the aqueous stream was recovered as aromatic hydrocarbons and 29% as olefins. The majority of the experiments were conducted using a molecular beam mass spectrometer and separate GC-MS/FID experiments were used to confirm the assignments and quantification of products with fresh excess catalyst. The recovered 62% carbon in the form of olefins and aromatics can be used to make coproducts and/or fuels potentially improving biorefinery economics and sustainability. Spent catalysts were collected after exposure to varying amounts of the feed, and were characterized using multipoint-Brunauer-Emmett-Teller (BET) adsorption, ammonia temperature programmed desorption (TPD), and thermogravimetric analysis (TGA) to monitor deactivation of Ga/HZSM-5. These characterization data revealed that deactivation was caused by coke deposits, which blocked access to active sites of the catalyst and spent catalysts regained total activity after regeneration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starace, Anne K.; Black, Brenna A.; Lee, David D.
Catalytic fast pyrolysis (CFP) of biomass produces a liquid product consisting of organic and aqueous streams. The organic stream is typically slated for hydrotreating to produce hydrocarbon biofuels, while the aqueous stream is considered a waste stream, resulting in the loss of residual biogenic carbon. Here, we report the detailed characterization and catalytic conversion of a CFP wastewater stream with the ultimate aim to improve overall biomass utilization within a thermochemical biorefinery. An aqueous stream derived from CFP of beech wood was comprehensively characterized, quantifying 53 organic compounds to a total of 17% organics. The most abundant classes of compoundsmore » are acids, aldehydes, and alcohols. The most abundant components identified in the aqueous stream were C1-C2 organics, comprising 6.40% acetic acid, 2.16% methanol, and 1.84% formaldehyde on wet basis. The CFP aqueous stream was catalytically upgraded to olefins and aromatic hydrocarbons using a Ga/HZSM-5 catalyst at 500 degrees C. When the conversion yield of the upgraded products was measured with fresh, active catalyst, 33% of the carbon in the aqueous stream was recovered as aromatic hydrocarbons and 29% as olefins. The majority of the experiments were conducted using a molecular beam mass spectrometer and separate GC-MS/FID experiments were used to confirm the assignments and quantification of products with fresh excess catalyst. The recovered 62% carbon in the form of olefins and aromatics can be used to make coproducts and/or fuels potentially improving biorefinery economics and sustainability. Spent catalysts were collected after exposure to varying amounts of the feed, and were characterized using multipoint-Brunauer-Emmett-Teller (BET) adsorption, ammonia temperature programmed desorption (TPD), and thermogravimetric analysis (TGA) to monitor deactivation of Ga/HZSM-5. These characterization data revealed that deactivation was caused by coke deposits, which blocked access to active sites of the catalyst and spent catalysts regained total activity after regeneration.« less
Determination of formaldehyde levels in 100 furniture workshops in Ankara.
Vaizoğlu, Songül Acar; Aycan, Sefer; Akin, Levent; Koçdor, Pelin; Pamukçu, Gül; Muhsinoğlu, Orkun; Ozer, Feyza; Evci, E Didem; Güler, Cağatay
2005-10-01
One of the airborne pollutants in wood products industry is formaldehyde, which may pose some health effects. Therefore this study is conducted to determine formaldehyde levels in 100 furniture-manufacturing workshops in Ankara and also to determine the symptoms, which may be related with formaldehyde exposure among the workers. Indoor formaldehyde levels ranged from 0.02 ppm to 2.22 ppm with a mean of 0.6 +/- 0.3 ppm. Outdoor formaldehyde levels also ranged from 0.0 ppm to 0.08 ppm with a mean of 0.03 +/- 0.03 ppm. Formaldehyde levels were higher in workplaces located at basement than in workplaces located at or above ground level (p < 0.01). An association was found between indoor formaldehyde levels and the types of fuel used (p < 0.05). The levels were higher in workplaces where only sawdust was used for heating, than in workplaces where wood, coal, and sawdust are used (p = 0.02). An association was found between runny nose and indoor formaldehyde levels (p = 0.03). Formaldehyde levels were lower in workplaces where employees had no symptoms than in those where employees had 4 or more symptoms (p = 0.02). Of 229 employees 57 subjects (24.9%) work under the formaldehyde levels of 0.75 ppm and above. Thus, approximately one fourth of the employees in workplaces are working in environments with formaldehyde levels exceeding those permitted by Occupational Safety and Health Administration (OSHA). The employees working in small-scale furniture workshops are at risk of formaldehyde exposure. Measures, such as improved ventilation, have to be taken in these workplaces, in order to decrease the formaldehyde levels.
Sjaastad, Ann Kristin; Jørgensen, Rikke Bramming; Svendsen, Kristin
2010-04-01
Cooking with gas or electric stoves produces fumes, especially during frying, that contain a range of harmful and potentially mutagenic compounds as well as high levels of fine and ultrafine particles. The aim of this study was to see if polycyclic aromatic hydrocarbons (PAHs) and higher mutagenic aldehydes which were collected in the breathing zone of the cook, could be detected in fumes from the frying of beefsteak. The frying was performed in a model kitchen in conditions similar to those in a Western European restaurant kitchen. The levels of PAHs (16 EPA standard) and higher aldehydes (trans,trans-2,4-decadienal, 2,4-decadienal, trans-trans-2,4-nonadienal, trans-2-decenal, cis-2-decenal, trans-2-undecenal, 2-undecenal) were measured during frying on an electric or gas stove with margarine or soya bean oil as the frying fat. The number concentration of particles <100 nm in size (ultrafine) was also measured, as well as the mass concentration of total particulate matter. Levels of naphthalene were in the range of 0.15-0.27 microg/m(3) air. Measured levels of mutagenic aldehydes were between non-detectable and 61.80 microg/m(3) air. The exposure level of total aerosol was between 1.6 and 7.2 mg/m(3) air. Peak number concentrations of ultrafine particles were in the range of 6.0x10(4)-89.6x10(4) particles/cm(3) air. Naphthalene and mutagenic aldehydes were detected in most of the samples. The levels were variable, and seemed to be dependent on many factors involved in the frying process. However, according to the present results, frying on a gas stove instead of an electric stove causes increased occupational exposure to some of the components in cooking fumes which may cause adverse health effects.
Effects of Indoor Air Pollutants on Atopic Dermatitis
Kim, JaKyoung; Kim, HyungJin; Lim, DaeHyun; Lee, Young-Kyu; Kim, Jeong Hee
2016-01-01
The increasing prevalence of atopic dermatitis (AD) is associated with variations in indoor environments. In Korea, many inner walls of homes are covered with wallpaper: such walls emit indoor air pollutants, including volatile organic compounds (VOCs) and formaldehyde. This randomized, double-blind study investigated the effects of wallpaper on indoor air quality and AD. Thirty-one children (aged three to eight years) with moderate AD were assigned to environmentally-friendly (EF) and polyvinyl chloride (PVC) wallpaper groups. Indoor air concentrations of VOCs, natural VOCs (NVOCs), formaldehyde, and total suspended bacteria were measured before and two (W2) and eight weeks (W8) after wallpapering. Scoring Atopic Dermatitis (SCORAD) evaluations and blood tests were performed during the same period. The EF wallpaper and PVC wallpaper groups showed similar trends in the changes in total VOCs (TVOC) and formaldehyde content in the indoor air. However, the EF wallpaper group showed more improvement on the SCORAD at W2 and W8 than the PVC wallpaper group. The SCORAD index was positively correlated with several indoor air pollutants. Further, the SCORAD index and NVOC % were negatively correlated. Improved SCORAD index and effects of wallpapering on indoor air quality improvements occurred within a short period of time in both groups. We believe that NVOCs in indoor air after EF wallpapering have a beneficial effect on health. PMID:27941696
Critical role of aldehydes in cigarette smoke-induced acute airway inflammation
2013-01-01
Background Cigarette smoking (CS) is the most important risk factor for COPD, which is associated with neutrophilic airway inflammation. We hypothesize, that highly reactive aldehydes are critical for CS-induced neutrophilic airway inflammation. Methods BALB/c mice were exposed to CS, water filtered CS (WF-CS) or air for 5 days. Levels of total particulate matter (TPM) and aldehydes in CS and WF-CS were measured. Six hours after the last exposure, inflammatory cells and cytokine levels were measured in lung tissue and bronchoalveolar lavage fluid (BALF). Furthermore, Beas-2b bronchial epithelial cells were exposed to CS extract (CSE) or WF-CS extract (WF-CSE) in the absence or presence of the aldehyde acrolein and IL-8 production was measured after 24 hrs. Results Compared to CS, in WF-CS strongly decreased (CS; 271.1 ± 41.5 μM, WF-CS; 58.5 ± 8.2 μM) levels of aldehydes were present whereas levels of TPM were only slightly reduced (CS; 20.78 ± 0.59 mg, WF-CS; 16.38 ± 0.36 mg). The numbers of mononuclear cells in BALF (p<0.01) and lung tissue (p<0.01) were significantly increased in the CS- and WF-CS-exposed mice compared to air control mice. Interestingly, the numbers of neutrophils (p<0.001) in BALF and neutrophils and eosinophils (p<0.05) in lung tissue were significantly increased in the CS-exposed but not in WF-CS-exposed mice as compared to air control mice. Levels of the neutrophil and eosinophil chemoattractants KC, MCP-1, MIP-1α and IL-5 were all significantly increased in lung tissue from CS-exposed mice compared to both WF-CS-exposed and air control mice. Interestingly, depletion of aldehydes in WF-CS extract significantly reduced IL-8 production in Beas-2b as compared to CSE, which could be restored by the aldehyde acrolein. Conclusion Aldehydes present in CS play a critical role in inflammatory cytokine production and neutrophilic- but not mononuclear airway inflammation. PMID:23594194
Plastic Media Blasting Waste Treatments
1988-07-01
melamine formaldehyde resin with a Mohr hardness of 4.0. Urea and melamine formaldehydes are highly crosslinked condensation polymers. These two...with either melamine formaldehyde or urea formaldehyde resins , which contain no chlorine. Wet scrubbers followed by demisters are added to remove any...latter problem. NARF chemists believe that methacrylate dust will be more explosive than dust from melamine or urea formaldehyde
Formaldehyde emission and high-temperature stability of cured urea-formaldehyde resins
Shin-ichiro Tohmura; Chung-Yun Hse; Mitsuo Higuchi
2000-01-01
A test method for measuring formaldehyde from urea-formaldehyde (UF) resins at high temperature was developed and used to assess the influence of the reaction pH on the formaldehyde emission and heat stability of the cured resins. Additionally, solid-state 13C CP/MAS nuclear magnetic resonance (NMR) techniques were used to investigate the...
Bunichiro Tomita; Chung-Yun Hse
1995-01-01
The urea-formaldehyde (UF) resins, melamine-formaldehyde (MF) resins, and melamine-urea-formaldehyde (MUF) cocondensed resins were synthesized using the labeling method of 13C enriched formaldehyde udner neutral conditions and their 13C-NMR (nuclear magnetic resonance) spectra were analyzed. The remarkable down-field shifts...
Tomita Bunchiro; Chung-Yun Hse
1995-01-01
The urea-formaldehyde (UF) resins, melamine-formaldehyde (MF) resins, and melamine-urea-formaldehyde (MUF) cocondensed resins were synthesized using the labeling method with 13C enriched formaldehyde unde neutral conditions and their 13C-NMR (nuclear magnetic resonance) spectra were analyzed. The remarkable down-field...
Formation and Accumulation of Acetaldehyde and Strecker Aldehydes during Red Wine Oxidation
Bueno, Mónica; Marrufo-Curtido, Almudena; Carrascón, Vanesa; Fernández-Zurbano, Purificación; Escudero, Ana; Ferreira, Vicente
2018-01-01
The main aim of the present work is to study the accumulation of acetaldehyde and Strecker aldehydes (isobutyraldehyde, 2-methylbutanal, isovaleraldehyde, methional, phenylacetaldehyde) during the oxidation of red wines, and to relate the patterns of accumulation to the wine chemical composition. For that, eight different wines, extensively chemically characterized, were subjected at 25°C to three different controlled O2 exposure conditions: low (10 mg L−1) and medium or high (the stoichiometrically required amount to oxidize all wine total SO2 plus 18 or 32 mg L−1, respectively). Levels of volatile aldehydes and carbonyls were then determined and processed by different statistical techniques. Results showed that young wines (<2 years-old bottled wines) hardly accumulate any acetaldehyde regardless of the O2 consumed. In contrast, aged wines (>3 years-old bottled wines) accumulated acetaldehyde while their content in SO2 was not null, and the aged wine containing lowest polyphenols accumulated it throughout the whole process. Models suggest that the ability of a wine to accumulate acetaldehyde is positively related to its content in combined SO2, in epigallocatechin and to the mean degree of polymerization, and negatively to its content in Aldehyde Reactive Polyphenols (ARPs) which, attending to our models, are anthocyanins and small tannins. The accumulation of Strecker aldehydes is directly proportional to the wine content in the amino acid precursor, being the proportionality factor much higher for aged wines, except for phenylacetaldehyde, for which the opposite pattern was observed. Models suggest that non-aromatic Strecker aldehydes share with acetaldehyde a strong affinity toward ARPs and that the specific pattern of phenylacetaldehyde is likely due to a much reduced reactivity toward ARPs, to the possibility that diacetyl induces Strecker degradation of phenyl alanine and to the potential higher reactivity of this amino acid to some quinones derived from catechin. All this makes that this aldehyde accumulates with intensity, particularly in young wines, shortly after wine SO2 is depleted. PMID:29492401
Formation and Accumulation of Acetaldehyde and Strecker Aldehydes during Red Wine Oxidation.
Bueno, Mónica; Marrufo-Curtido, Almudena; Carrascón, Vanesa; Fernández-Zurbano, Purificación; Escudero, Ana; Ferreira, Vicente
2018-01-01
The main aim of the present work is to study the accumulation of acetaldehyde and Strecker aldehydes (isobutyraldehyde, 2-methylbutanal, isovaleraldehyde, methional, phenylacetaldehyde) during the oxidation of red wines, and to relate the patterns of accumulation to the wine chemical composition. For that, eight different wines, extensively chemically characterized, were subjected at 25°C to three different controlled O 2 exposure conditions: low (10 mg L -1 ) and medium or high (the stoichiometrically required amount to oxidize all wine total SO 2 plus 18 or 32 mg L -1 , respectively). Levels of volatile aldehydes and carbonyls were then determined and processed by different statistical techniques. Results showed that young wines (<2 years-old bottled wines) hardly accumulate any acetaldehyde regardless of the O 2 consumed. In contrast, aged wines (>3 years-old bottled wines) accumulated acetaldehyde while their content in SO 2 was not null, and the aged wine containing lowest polyphenols accumulated it throughout the whole process. Models suggest that the ability of a wine to accumulate acetaldehyde is positively related to its content in combined SO 2 , in epigallocatechin and to the mean degree of polymerization, and negatively to its content in Aldehyde Reactive Polyphenols (ARPs) which, attending to our models, are anthocyanins and small tannins. The accumulation of Strecker aldehydes is directly proportional to the wine content in the amino acid precursor, being the proportionality factor much higher for aged wines, except for phenylacetaldehyde, for which the opposite pattern was observed. Models suggest that non-aromatic Strecker aldehydes share with acetaldehyde a strong affinity toward ARPs and that the specific pattern of phenylacetaldehyde is likely due to a much reduced reactivity toward ARPs, to the possibility that diacetyl induces Strecker degradation of phenyl alanine and to the potential higher reactivity of this amino acid to some quinones derived from catechin. All this makes that this aldehyde accumulates with intensity, particularly in young wines, shortly after wine SO 2 is depleted.
Formation and accumulation of acetaldehyde and Strecker aldehydes during red wine oxidation
NASA Astrophysics Data System (ADS)
Bueno, Mónica; Marrufo-Curtido, Almudena; Carrascón, Vanesa; Fernández-Zurbano, Purificación; Escudero, Ana; Ferreira, Vicente
2018-02-01
The main aim of the present work is to study the accumulation of acetaldehyde and Strecker aldehydes (isobutyraldehyde, 2-methylbutanal, isovaleraldehyde, methional, phenylacetaldehyde) during the oxidation of red wines, and to relate the patterns of accumulation to the wine chemical composition. For that, eight different wines, extensively chemically characterized, were subjected at 25°C to three different controlled O2 exposure conditions: low (10 mg L-1) and medium or high (the stoichiometrically required amount to oxidize all wine total SO2 plus 18 or 32 mg L-1, respectively). Levels of volatile aldehydes and carbonyls were then determined and processed by different statistical techniques. Results showed that young wines (<2 years-old bottled wines) hardly accumulate any acetaldehyde regardless of the O2 consumed. In contrast, aged wines (>3 years-old bottled wines) accumulated acetaldehyde while their content in SO2 was not null, and the aged wine containing lowest polyphenols accumulated it throughout the whole process. Models suggest that the ability of a wine to accumulate acetaldehyde is positively related to its content in combined SO2, in epigallocatechin and to the mean degree of polymerization, and negatively to its content in Aldehyde Reactive Polyphenols (ARPs) which, attending to our models, are anthocyanins and small tannins. The accumulation of Strecker aldehydes is directly proportional to the wine content in the amino acid precursor, being the proportionality factor much higher for aged wines, except for phenylacetaldehyde, for which the opposite pattern was observed. Models suggest that non-aromatic Strecker aldehydes share with acetaldehyde a strong affinity towards ARPs and that the specific pattern of phenylacetaldehyde is likely due to a much reduced reactivity towards ARPs, to the possibility that diacetyl induces Strecker degradation of phenyl alanine and to the potential higher reactivity of this amino acid to some quinones derived from catechin. All this makes that this aldehyde accumulates with intensity, particularly in young wines, shortly after wine SO2 is depleted.
Volatile composition and sensory characteristics of onion powders prepared by convective drying.
Choi, So Mang; Lee, Dong-Jin; Kim, Jong-Yea; Lim, Seung-Taik
2017-09-15
Volatile composition and sensory characteristics of onion powders prepared by convective drying at different temperatures (50, 70, and 90°C) were investigated. Dipropyl disulfide was the major volatile compound in fresh onion (77.70% of total volatile compounds). However it was considerably lost during drying, reaching 6.93-32.25µg/g solids. Dipropyl disulfide showed a positive correlation with green sensory attribute perceived by descriptive sensory analysis. Thiophenes, which were responsible for caramel and sweet attributes, were produced by drying especially when the drying temperature was high. Aldehydes, another type of volatile compound found in fresh onion, showed a positive correlation with humidity. The aldehyde content in dried onion was the highest at the lowest drying temperature, possibly because the aldehydes were produced by the residual enzymes in fresh onion. Using a low temperature for drying was ideal to retain the aroma of fresh onion. Copyright © 2017 Elsevier Ltd. All rights reserved.
Report of the Federal Panel on Formaldehyde.
1982-01-01
The Federal Panel on Formaldehyde concluded that definitive experiments exist which demonstrate the mutagenicity and carcinogenicity of formaldehyde under laboratory conditions. Formaldehyde induces both gene mutations and chromosomal aberrations in a variety of test systems. Inhalation of formaldehyde causes cancer of the nose in rats. The concentrations of formaldehyde in inhaled air that caused nasal cancer in Fisher 344 rats are within the same order of magnitude as those to which humans may be exposed. The data presently available do not permit a direct assessment of the carcinogenicity of formaldehyde to man. Epidemiologic studies on exposed human populations are in progress and may further clarify the situation. Other experimental and human studies on toxic effects such as teratogenicity and reproductive disorders are as yet inadequate for a health risk assessment. The CIIT 24 month study on animal carcinogenicity has not yet been completely evaluated. Additional data are expected on the effects of prolonged exposure to lower doses of formaldehyde and on the possible carcinogenicity of formaldehyde in the mouse. The panel recommends that, for a comprehensive health risk assessment, further experiments be conducted on the effects of other modes of exposure (ingestion and skin penetration), the effects in humans, and on the pharmacokinetics of formaldehyde in man and animals and the possible role for formaldehyde in reproductive and chronic respiratory disorders. It is the conclusion of the panel that formaldehyde should be presumed to pose a carcinogenic risk to humans. PMID:6977445
NASA Astrophysics Data System (ADS)
Puyate, Y. T.; Rim-Rukeh, A.
The performance of three biocides (dissolved ozone, formaldehyde and sodium hypochlorite) in eliminating the bacteria and fungi in produced water is investigated experimentally. The analysis involves monitoring the microbial population in nine conical flasks each containing the same volume of a mixture of produced water, culture medium that sustains the growth of microorganisms and a known concentration of biocide. The concentrations of each biocide used in the study are 0.1, 0.2 and 0.5 ppm. It is shown that dissolved ozone exhibits the best biocidal characteristics and a concentration of 0.5 ppm eliminated all the microorganisms in the produced water after 150 min contact time.
Heat stability of cured urea-formaldehyde resins by measuring formaldehyde emission
Shin-ichiro Tohmura; Chung-Yun Hse; Mitsuo Higuchi
1999-01-01
A test method for measuring formaldehyde from urea-formaldehyde (UF) resins at high temperaÂtures was developed and used to assess the influence of the reaction pH at synthesis on the formaldehyde emission during cure and heat stability of the cured resins without water. Additionally, 13C-CP/MAS solid-state nuclear magnetic resonance (NMR)...
New formaldehyde base disinfectants.
NASA Technical Reports Server (NTRS)
Trujillo, R.; Lindell, K. F.
1973-01-01
Preparations of formaldehyde in various organic liquids - ethylene glycol, glycerol, and propylene glycol - serve as effective disinfectants towards microbial vegetative cells and spores. This disinfection is a temperature-dependent process and is manifest when these formaldehyde base disinfectants are dissolved in water. The irritating vapors associated with formaldehyde disinfection are not present in either of these new formaldehyde base disinfectants or in aqueous solutions of them.
Zárate-Romero, Andrés; Murillo-Melo, Darío S; Mújica-Jiménez, Carlos; Montiel, Carmina; Muñoz-Clares, Rosario A
2016-04-01
In plants, the last step in the biosynthesis of the osmoprotectant glycine betaine (GB) is the NAD(+)-dependent oxidation of betaine aldehyde (BAL) catalysed by some aldehyde dehydrogenase (ALDH) 10 enzymes that exhibit betaine aldehyde dehydrogenase (BADH) activity. Given the irreversibility of the reaction, the short-term regulation of these enzymes is of great physiological relevance to avoid adverse decreases in the NAD(+):NADH ratio. In the present study, we report that the Spinacia oleracea BADH (SoBADH) is reversibly and partially inactivated by BAL in the absence of NAD(+)in a time- and concentration-dependent mode. Crystallographic evidence indicates that the non-essential Cys(450)(SoBADH numbering) forms a thiohemiacetal with BAL, totally blocking the productive binding of the aldehyde. It is of interest that, in contrast to Cys(450), the catalytic cysteine (Cys(291)) did not react with BAL in the absence of NAD(+) The trimethylammonium group of BAL binds in the same position in the inactivating or productive modes. Accordingly, BAL does not inactivate the C(450)SSoBADH mutant and the degree of inactivation of the A(441)I and A(441)C mutants corresponds to their very different abilities to bind the trimethylammonium group. Cys(450)and the neighbouring residues that participate in stabilizing the thiohemiacetal are strictly conserved in plant ALDH10 enzymes with proven or predicted BADH activity, suggesting that inactivation by BAL is their common feature. Under osmotic stress conditions, this novel partial and reversible covalent regulatory mechanism may contribute to preventing NAD(+)exhaustion, while still permitting the synthesis of high amounts of GB and avoiding the accumulation of the toxic BAL. © 2016 Authors; published by Portland Press Limited.
Hall, Sally E; Aitken, R John; Nixon, Brett; Smith, Nathan D; Gibb, Zamira
2017-01-01
Oxidative stress is a major determinant of mammalian sperm function stimulating lipid peroxidation cascades that culminate in the generation of potentially cytotoxic aldehydes. The aim of this study was to assess the impact of such aldehydes on the functionality of stallion spermatozoa. The impact of exposure to exogenous acrolein (ACR) and 4-hydroxynonenal (4HNE) was manifested in a highly significant dose- and time-dependent increase in mitochondrial reactive oxygen species (ROS), total cellular ROS, a decrease in sperm motility, and a time-dependent increase in lipid peroxidation. Notably, low doses of ACR and 4HNE also caused a significant decrease in zona binding. In contrast, exogenous malondialdehyde, a commonly used marker of oxidative stress, had little impact on the various sperm parameters assessed. In accounting for the negative physiological impact of ACR and 4HNE, it was noted that both aldehydes readily adducted to sperm proteins located predominantly within the head, proximal centriole, and tail. The detoxifying activity of mitochondrial aldehyde dehydrogenase 2 appeared responsible for a lack of adduction in the midpiece; however, this activity was overwhelmed by 24 h of electrophilic aldehyde exposure. Sequencing of the dominant proteins targeted for ACR and 4HNE covalent modification identified heat shock protein 90 alpha (cytosolic) class A member 1 and arylsulfatase A, respectively. These collective findings may prove useful in the identification of diagnostic biomarkers of stallion fertility and resolving the mechanistic basis of sperm dysfunction in this species. © The Authors 2016. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please journals.permissions@oup.com.
Formaldehyde in Insulation: Villain or Innocent Bystander?
Lees, R. E. M.
1983-01-01
When urea formaldehyde foam insulation (UFFI) deteriorates, it produces an off-gas mixture whose major constituent is formaldehyde. Most investigative studies of UFFI have concentrated on formaldehyde. Health concerns fall into three groups: irritant characteristics, allergenic capabilities and potential carcinogenicity. Except for the first of these, formaldehyde's hazard potential is not clear. The extent to which formaldehyde may be responsible for UFFI's evil reputation is explored in this paper but the degree to which either substance is a real threat to health still appears to open to debate. PMID:21283296
Osman, Deenah; Piergentili, Cecilia; Chen, Junjun; Sayer, Lucy N.; Usón, Isabel; Huggins, Thomas G.; Robinson, Nigel J.; Pohl, Ehmke
2016-01-01
The DUF156 family of DNA-binding transcriptional regulators includes metal sensors that respond to cobalt and/or nickel (RcnR, InrS) or copper (CsoR) plus CstR, which responds to persulfide, and formaldehyde-responsive FrmR. Unexpectedly, the allosteric mechanism of FrmR from Salmonella enterica serovar Typhimurium is triggered by metals in vitro, and variant FrmRE64H gains responsiveness to Zn(II) and cobalt in vivo. Here we establish that the allosteric mechanism of FrmR is triggered directly by formaldehyde in vitro. Sensitivity to formaldehyde requires a cysteine (Cys35 in FrmR) conserved in all DUF156 proteins. A crystal structure of metal- and formaldehyde-sensing FrmRE64H reveals that an FrmR-specific amino-terminal Pro2 is proximal to Cys35, and these residues form the deduced formaldehyde-sensing site. Evidence is presented that implies that residues spatially close to the conserved cysteine tune the sensitivities of DUF156 proteins above or below critical thresholds for different effectors, generating the semblance of specificity within cells. Relative to FrmR, RcnR is less responsive to formaldehyde in vitro, and RcnR does not sense formaldehyde in vivo, but reciprocal mutations FrmRP2S and RcnRS2P, respectively, impair and enhance formaldehyde reactivity in vitro. Formaldehyde detoxification by FrmA requires S-(hydroxymethyl)glutathione, yet glutathione inhibits formaldehyde detection by FrmR in vivo and in vitro. Quantifying the number of FrmR molecules per cell and modeling formaldehyde modification as a function of [formaldehyde] demonstrates that FrmR reactivity is optimized such that FrmR is modified and frmRA is derepressed at lower [formaldehyde] than required to generate S-(hydroxymethyl)glutathione. Expression of FrmA is thereby coordinated with the accumulation of its substrate. PMID:27474740
Romanazzi, Valeria; Munnia, Armelle; Piro, Sara; Allione, Alessandra; Ricceri, Fulvio; Guarrera, Simonetta; Pignata, Cristina; Matullo, Giuseppe; Wang, Poguang; Giese, Roger W.; Peluso, Marco
2010-01-01
Background Formaldehyde is a ubiquitous pollutant to which humans are exposed. Pathologists can experience high formaldehyde exposure levels. Formaldehyde – among other properties – induce oxidative stress and free radicals, which react with DNA and lipids, leading to oxidative damage and lipid peroxidation, respectively. We measured the levels of air-formaldehyde exposure in a group of Italian pathologists and controls. We analyzed the effect of formaldehyde exposure on leukocyte malondialdehyde-deoxyguanosine adducts (M1-dG), a biomarker of oxidative stress and lipid peroxidation. We studied the relationship between air-formaldehyde and M1-dG adducts. Methods Air-formaldehyde levels were measured by personal air samplers. M1-dG adducts were analyzed by 32P-postlabelling assay. Results Reduction rooms pathologists were significantly exposed to air-formaldehyde in respect to controls and to the pathologists working in other laboratory areas (p<0.001). A significant difference for M1-dG adducts between exposed pathologists and controls was found (p=0.045). The effect becomes stronger when the evaluation of air-formaldehyde exposure was based on personal samplers (p=0.018). Increased M1dG adduct levels were only found in individuals exposed to air-formaldehyde concentrations higher than 66 μg/m3. When the exposed workers and controls were subgrouped according to smoking, M1-dG tended to increase in all the subjects but a significant association between M1-dG and air-formaldehyde was only found in not smokers (p= 0.009). Air formaldehyde played a role positive but not significant (r = 0.355, p = 0.075, Pearson correlation) in the formation of M1-dG, only in not smokers. Conclusions Working in the reduction rooms and to be exposed to air-formaldehyde concentrations higher than 66 μg/m3 is associated with increased levels of M1-dG adducts. PMID:20707408
Charles R. Frihart; James M. Wescott; Timothy L. Chaffee; Kyle M. Gonner
2012-01-01
It is well documented that temperature and humidity can influence formaldehyde emissions from composite panels that are produced using urea-formaldehyde (UF)âtype adhesives. This work investigates the effect of temperature and humidity on newer commercial California Air Resources Board (CARB) phase IIâcompliant particleboard produced with UF-type adhesives. These...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Eunyoung
Low-level formaldehyde exposure is inevitable in industrialized countries. Although daily-life formaldehyde exposure level is practically impossible to induce cell death, most of mechanistic studies related to formaldehyde toxicity have been performed in cytotoxic concentrations enough to trigger cell death mechanism. Currently, toxicological mechanisms underlying the sub-cytotoxic exposure to formaldehyde are not clearly elucidated in skin cells. In this study, the genome-scale transcriptional analysis in normal human keratinocytes (NHKs) was performed to investigate cutaneous biological pathways associated with daily life formaldehyde exposure. We selected the 175 upregulated differentially expressed genes (DEGs) and 116 downregulated DEGs in NHKs treated with 200 μMmore » formaldehyde. In the Gene Ontology (GO) enrichment analysis of the 175 upregulated DEGs, the endoplasmic reticulum (ER) unfolded protein response (UPR) was identified as the most significant GO biological process in the formaldeyde-treated NHKs. Interestingly, the sub-cytotoxic formaldehyde affected NHKs to upregulate two enzymes important in the cellular transsulfuration pathway, cystathionine γ-lyase (CTH) and cystathionine-β-synthase (CBS). In the temporal expression analysis, the upregulation of the pro-inflammatory DEGs such as MMP1 and PTGS2 was detected earlier than that of CTH, CBS and other ER UPR genes. The metabolites of CTH and CBS, L-cystathionine and L-cysteine, attenuated the formaldehyde-induced upregulation of pro-inflammatory DEGs, MMP1, PTGS2, and CXCL8, suggesting that CTH and CBS play a role in the negative feedback regulation of formaldehyde-induced pro-inflammatory responses in NHKs. In this regard, the sub-cytotoxic formaldehyde-induced CBS and CTH may regulate inflammation fate decision to resolution by suppressing the early pro-inflammatory response. - Highlights: • Sub-cytotoxic formaldehyde upregulates ER UPR-associated genes in NHKs. • Formaldehyde-induced ER UPR genes includes cystathionine γ-lyase (CTH). • Sub-cytotoxic formaldehyde upregulates cystathionine-β-synthase (CBS) in NHKs. • Cystathionine metabolic enzymes may attenuate formaldehyde-induced inflammation in NHKs. • Cystathionine metabolic enzymes may play a role in the resolution of inflammation in NHKs.« less
Microbial Engineering for Aldehyde Synthesis
Kunjapur, Aditya M.
2015-01-01
Aldehydes are a class of chemicals with many industrial uses. Several aldehydes are responsible for flavors and fragrances present in plants, but aldehydes are not known to accumulate in most natural microorganisms. In many cases, microbial production of aldehydes presents an attractive alternative to extraction from plants or chemical synthesis. During the past 2 decades, a variety of aldehyde biosynthetic enzymes have undergone detailed characterization. Although metabolic pathways that result in alcohol synthesis via aldehyde intermediates were long known, only recent investigations in model microbes such as Escherichia coli have succeeded in minimizing the rapid endogenous conversion of aldehydes into their corresponding alcohols. Such efforts have provided a foundation for microbial aldehyde synthesis and broader utilization of aldehydes as intermediates for other synthetically challenging biochemical classes. However, aldehyde toxicity imposes a practical limit on achievable aldehyde titers and remains an issue of academic and commercial interest. In this minireview, we summarize published efforts of microbial engineering for aldehyde synthesis, with an emphasis on de novo synthesis, engineered aldehyde accumulation in E. coli, and the challenge of aldehyde toxicity. PMID:25576610
Residual formaldehyde after low-temperature steam and formaldehyde sterilization
Gibson, G. L.; Johnston, H. P.; Turkington, V. E.
1968-01-01
The levels of formaldehyde remaining in various articles have been estimated immediately after a low-temperature steam and formaldehyde sterilizing process and after various periods of aeration. These levels have been compared with the levels of ethylene oxide remaining after exposure to an ethylene oxide sterilizing process. In rubber and polythene and a plastic, formaldehyde levels are low and slowly fall even further. Ethylene oxide levels are relatively much higher even after seven days' aeration. It is not considered that the residual levels of formaldehyde in rubber, polythene, and a plastic should constitute a danger. Residual levels of formaldehyde in fabrics and paper are higher but this may be of value by giving a self-disinfecting action on storage. PMID:5717551
Optoelectrical Cooling of Formaldehyde to Sub-Millikelvin Temperatures
NASA Astrophysics Data System (ADS)
Zeppenfeld, Martin
2016-05-01
Due to their strong long-range dipole-dipole interactions and large number of internal states, polar molecules cooled to ultracold temperatures enable fascinating applications ranging from ultracold chemistry to investigation of dipolar quantum gases. However, realizing a simple and general technique to cool molecules to ultracold temperatures, akin to laser cooling of atoms, has been a formidable challenge. We present results for opto-electrical Sisyphus cooling applied to formaldehyde (H2 CO). In this generally applicable cooling scheme, molecules repeatedly move up and down electric field gradients of a trapping potential in different rotational states to efficiently extract kinetic energy. A total of about 300,000 molecules are thereby cooled by a factor of 1000 to 400uK, resulting in a record-large ensemble of ultracold molecules. In addition to cooling of the motional degrees of freedom, optical pumping via a vibrational transition allows us to control the internal rotational state. We thereby achieve a purity of over 80% of formaldehyde molecules in a single rotational M-sublevel. Our experiment provides an excellent starting point for precision spectroscopy and investigation of ultracold collisions.
Maruo, Yasuko Yamada; Nakamura, Jiro
2011-09-30
We have developed a portable device for formaldehyde monitoring with both high sensitivity and high temporal resolution, and carried out indoor air formaldehyde concentration analysis. The absorbance difference of the sensor element was measured in the monitoring device at regular intervals of, for example, one hour or 30 min, and the result was converted into the formaldehyde concentration. This was possible because we found that the lutidine derivative that was formed as a yellow product of the reaction between 1-phenyl-1,3-butandione and formaldehyde was stable in porous glass for at least six months. We estimated the reaction rate and to be 0.049 min(-1) and the reaction occurred quickly enough for us to monitor hourly changes in the formaldehyde concentration. The detection limit was 5 μg m(-3) h. We achieved hourly formaldehyde monitoring using the developed device under several indoor conditions, and estimated the air exchange rate and formaldehyde adsorption rate, which we adopted as a new term in the mass balance equation for formaldehyde, in one office. Copyright © 2011 Elsevier B.V. All rights reserved.
A C-terminal Aldehyde Analog of the Insect Kinins Inhibits Diuresis in the Housefly
2006-09-21
p e p t i d e s 2 8 ( 2 0 0 7 ) 1 4 6 – 1 5 2A C-terminal aldehyde analog of the insect kinins inhibits diuresis in the housefly Ronald J. Nachman a...secretion in crickets, but shows inhibition of both in vitro and in vivo diuresis in the housefly . R-LK-CHO reduced the total amount of urine voided over 3 h...from flies injected with 1 mL of distilled water by almost 50%. The analog not only inhibits stimulation of housefly fluid secretion by the native
Oxygenated Organic Chemicals in the Pacific Troposphere: Distribution, Sources and Chemistry
NASA Technical Reports Server (NTRS)
Singh, Hanwant B.; Salas, L.; Chatfield, R.; Czech, E.; Fried, A.; Evans, M.; Jacob, D. J.; Blake, D.; Heikes, B.; Talbot, R.
2003-01-01
Airborne measurements of a large number of oxygenated organic chemicals (Oxorgs) were carried out in the Pacific troposphere (0.1-12 km) in the Spring of 2001 (Feb. 24-April 10). Specifically these measuremen ts included acetone, methylethyl ketone (MEK), methanol, ethanol, ace taldehyde, propionaldehyde, PANS, and organic nitrates. Complementary measurements of formaldehyde, organic peroxides, and tracers were al so available. Ox-orgs were abundant in the clean troposphere and were greatly enhanced in the outflow regions from Asia. Their mixing ratios were typically highest in the lower troposphere and declined toward s the upper troposphere and the lowermost stratosphere. Their total a bundance (Ox-orgs) significantly exceeded that of NMHC (C2-C8 NMHC). A comparison of these data with observations collected some seven yea rs earlier (Feb.-March, 1994), did not reveal any significant changes . Throughout the troposphere mixing ratios of Ox-orgs were strongly c orrelated with each other as well as with tracers of fossil and bioma sshiof'uel combustion. Analysis of the relative enhancement of selected Oxorgs with respect to CH3Cl and CO in twelve sampled plumes, origi nating from fires, is used to assess their primary and secondary sour ces from biomass combustion. The composition of these plumes also ind icates a large shift of reactive nitrogen into the PAN reservoir ther eby limiting ozone formation. The Harvard 3-D photochemical model, th at uses state of the art chemistry and source information, is used to compare simulated and observed mixing ratios of selected species. A 1 -D model is used to explore the chemistry of aldehydes. These results will be presented.
Exposure to Cooking Fumes and Acute Reversible Decrement in Lung Functional Capacity.
Neghab, Masoud; Delikhoon, Mahdieh; Norouzian Baghani, Abbas; Hassanzadeh, Jafar
2017-10-01
Being exposed to cooking fumes, kitchen workers are occupationally at risk of multiple respiratory hazards. No conclusive evidence exists as to whether occupational exposure to these fumes is associated with acute and chronic pulmonary effects and symptoms of respiratory diseases. To quantify the exposure levels and evaluate possible chronic and acute pulmonary effects associated with exposure to cooking fumes. In this cross-sectional study, 60 kitchen workers exposed to cooking fumes and 60 unexposed employees were investigated. The prevalence of respiratory symptoms among these groups was determined through completion of a standard questionnaire. Pulmonary function parameters were also measured before and after participants' work shift. Moreover, air samples were collected and analyzed to quantify their aldehyde, particle, and volatile organic contents. The mean airborne concentrations of formaldehyde, acetaldehyde, and acrolein was 0.45 (SD 0.41), 0.13 (0.1), and 1.56 (0.41) mg/m 3 , respectively. The mean atmospheric concentrations of PM 1 , PM 2.5 , PM 7 , PM 10 , and total volatile organic compounds (TVOCs) was 3.31 (2.6), 12.21 (5.9), 44.16 (16.6), 57 (21.55) μg/m 3 , and 1.31 (1.11) mg/m 3 , respectively. All respiratory symptoms were significantly (p<0.05) more prevalent in exposed group. No significant difference was noted between the pre-shift mean of spirometry parameters of exposed and unexposed group. However, exposed workers showed cross-shift decrease in most spirometry parameters, significantly lower than the pre-shift values and those of the comparison group. Exposure to cooking fumes is associated with a significant increase in the prevalence of respiratory symptoms as well as acute reversible decrease in lung functional capacity.
Controlling formaldehyde emissions with boiler ash.
Cowan, Jennifer; Abu-Daabes, Malyuba; Banerjee, Sujit
2005-07-01
Fluidized wood ash reduces formaldehyde in air from about 20 to <1 ppmv. Methanol is removed to a much lower extent. The efficiency of formaldehyde reduction increases with increasing moisture content of the ash. Sorption of formaldehyde to ash can be substantially accounted for by partitioning to the water contained in the ash followed by rate-controlling binding to the ash solids. Adsorption occurs at temperatures of up to 165 degrees C; oxidation predominates thereafter. It is proposed that formaldehyde could be stripped from an air stream in a fluidized bed containing ash, which could then be returned to a boiler to incinerate the formaldehyde.
Moran, James J; Whitmore, Laura M; Isern, Nancy G; Romine, Margaret F; Riha, Krystin M; Inskeep, William P; Kreuzer, Helen W
2016-05-01
The Norris Geyser Basin in Yellowstone National Park contains a large number of hydrothermal systems, which host microbial populations supported by primary productivity associated with a suite of chemolithotrophic metabolisms. We demonstrate that Metallosphaera yellowstonensis MK1, a facultative autotrophic archaeon isolated from a hyperthermal acidic hydrous ferric oxide (HFO) spring in Norris Geyser Basin, excretes formaldehyde during autotrophic growth. To determine the fate of formaldehyde in this low organic carbon environment, we incubated native microbial mat (containing M. yellowstonensis) from a HFO spring with (13)C-formaldehyde. Isotopic analysis of incubation-derived CO2 and biomass showed that formaldehyde was both oxidized and assimilated by members of the community. Autotrophy, formaldehyde oxidation, and formaldehyde assimilation displayed different sensitivities to chemical inhibitors, suggesting that distinct sub-populations in the mat selectively perform these functions. Our results demonstrate that electrons originally resulting from iron oxidation can energetically fuel autotrophic carbon fixation and associated formaldehyde excretion, and that formaldehyde is both oxidized and assimilated by different organisms within the native microbial community. Thus, formaldehyde can effectively act as a carbon and electron shuttle connecting the autotrophic, iron oxidizing members with associated heterotrophic members in the HFO community.
de Groot, Anton C; Maibach, Howard I
2010-03-01
Recent US studies have presented case series of patient with allergic contact dermatitis (ACD) allegedly caused by formaldehyde in clothes treated with durable-press chemical finishes (DPCF), which are known formaldehyde releasers. However, the amounts of formaldehyde released by modern DPCF are thought to be well below the levels previously estimated to be able to elicit ACD. The objectives of this review are (i) to investigate whether clothes sold in the USA may contain enough free formaldehyde to elicit ACD in previously sensitized individuals and (ii) to assess the validity of US reports on ACD from formaldehyde in DPCF treated clothes. Literature was examined using various resources. The threshold level for formaldehyde in clothes that may cause ACD in sensitized individuals is unknown; we present data suggesting that levels < 200 ppm will be safe for most patients and that textiles will rarely contain higher amounts. All US studies presenting patients with ACD from formaldehyde in clothes had some weaknesses and in no report was the diagnosis proven beyond doubt. Currently, there is no definite proof that textile ACD from formaldehyde in DPCF in the USA exists. Future research should be directed at establishing the elicitation threshold and the amounts of formaldehyde present in textiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moran, James J.; Whitmore, Laura M.; Isern, Nancy G.
The Norris Geyser Basin in Yellowstone National Park contains a large number of hydrothermal systems, which host microbial populations supported by primary productivity associated with a suite of chemolithotrophic metabolisms. We demonstrate that Metallosphaera yellowstonesis MK1, a facultative autotrophic archaeon isolated from a hyperthermal acidic hydrous ferric oxide (HFO) spring in Norris Geyser Basin, excretes formaldehyde during autotrophic growth. To determine the fate of formaldehyde in this low organic carbon environment, we incubated native microbial mat (containing M. yellowstonensis) from a HFO spring with 13C-formaldehyde. Isotopic analysis of incubation-derived CO2 and biomass showed that formaldehyde was both oxidized and assimilatedmore » by members of the community. Autotrophy, formaldehyde oxidation, and formaldehyde assimilation displayed different sensitivities to chemical inhibitors, suggesting that distinct sub-populations in the mat selectively perform these functions. Our results demonstrate that electrons originally resulting from iron oxidation can energetically fuel autotrophic carbon fixation and associated formaldehyde excretion, and that formaldehyde is both oxidized and assimilated by different organisms within the native microbial community. Thus, formaldehyde can effectively act as a carbon and electron shuttle connecting the autotrophic, iron oxidizing members with associated heterotrophic members in the HFO community.« less
Takayanagi, Masaaki; Sakai, Makoto; Ishikawa, Youichi; Murakami, Kunio; Kimura, Akihiko; Kakuta, Sachiko; Sato, Fumi
2008-09-01
Cadavers in gross anatomy laboratories at most medical schools are conventionally embalmed in formaldehyde solution, which is carcinogenic to humans. Medical students and instructors are thus exposed to formaldehyde vapors emitted from cadavers during dissection. To reduce high formaldehyde concentrations in the breathing zone above cadavers being examined by anatomy medical students provisionally, dissection beds were located under existing admission ports on the ceiling to supply cooled fresh air from the admission port blowing downward on to the cadaver. In all cases, compared to normal condition, the downward flow of cooled fresh air from an admission port reduced formaldehyde concentrations by 0.09-0.98 ppm and reduced to 12.6-65.4% in the air above a cadaver in the breathing zone of students. The formaldehyde concentrations above cadavers under admission ports were not more than the formaldehyde concentrations between beds representing the indoor formaldehyde concentrations. Although the application of an existing admission port on the ceiling in this study did not remove formaldehyde, the downflow of cooled fresh air using this system reduced the formaldehyde concentration in the air above cadavers being attended by anatomy students during dissections. These results suggest the need for reducing formaldehyde levels in gross anatomy laboratories using fundamental countermeasures in order to satisfy the guidelines of 0.08 ppm established by the World Health Organization and the Japan Ministry of Health, Labor and Welfare.
Formaldehyde and LeukemiA: Epidemiology, Potential Mechanisms and Implications for Risk Assessment
Formaldehyde is widely used in the United States and other countries. Occupational and environmental exposures to formaldehyde may be associated with an increased risk of leukemia in exposed individuals. However, risk assessment of formaldehyde and leukemia has been challenging ...
Lee, Eun-Sook; Chen, Hongtao; Hardman, Chadwick; Simm, Anthony; Charlton, Clivel
2009-01-01
Aims Excessive methylation may be a precipitating factor for Parkinson’s disease (PD) since S-adenosylmethionine (SAM), the endogenous methyl donor, induces PD-like changes when injected into the rat brain. The hydrolysis of the methyl ester bond of the methylated proteins produces methanol. Since methanol is oxidized into formaldehyde, and formaldehyde into formic acid in the body, we investigated the effects of SAM on the production of methanol, formaldehyde and formic acid in rat brain striatal homogenates and the toxicity of these products in PC12 cells. Main methods radio-enzymatic and colorimetric assays, cell viability, Western blot. Key findings SAM increased the formation of methanol, formaldehyde and formic acid in a concentration and time-dependent manner. Concentrations of [3H-methyl]-SAM at 0.17, 0.33, 0.67 and 1.34 nM produced 3.8, 8.0, 18.3 and 34.4 fmol/mg protein/h of [3H] methanol in rat striatal homogenates, respectively. SAM also significantly generated formaldehyde and formic acid in striatal homogenates. Formaldehyde was the most toxic metabolite to differentiated PC12 pheochromocytoma cells in cell culture studies, indicating that formaldehyde formed endogenously may contribute to neuronal damage in excessive methylation conditions. Subtoxic concentration of formaldehyde decreased the expression of tyrosine hydroxylase, the limiting factor in dopamine synthesis. Formaldehyde was more toxic to catecholaminergic PC12 cells than C6 glioma cells, indicating that neurons are more vulnerable to formaldehyde than glia cells. Significance We suggest that excessive carboxylmethylation of proteins might be involved in the SAM-induced PD-like changes and in the aging process via the toxic effects of formaldehyde. PMID:18930743
Effect of an ozone-generating air-purifying device on reducing concentrations of formaldehyde in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esswein, E.J.; Boeniger, M.F.
1994-02-01
Formaldehyde, an air contaminant found in many indoor air investigations, poses distinct occupational exposure hazards in certain job categories (e.g., mortuary science) but is also of concern when found or suspected in office buildings and homes. A variety of air-purifying devices (APDs) are currently available or marketed for application to reduce or remove concentrations of a variety of indoor air pollutants through the use of ozone as a chemical oxidant. An investigation was conducted to determine if concentrations of formaldehyde similar to those found in industrial hygiene evaluations of funeral homes could be reduced with the use of an ozone-generatingmore » APD. An ozone-generating APD was placed in an exposure chamber and formaldehyde-containing embalming solution was allowed to evaporate naturally, creating peak and mean chamber concentrations of 2.5 and 1.3 ppm, respectively. Continuous-reading instruments were used to sample for formaldehyde and ozone. Active sampling methods were also used to sample simultaneously for formaldehyde and a possible reactant product, formic acid. Triplicate measurements were made in each of three evaluations: formaldehyde alone, ozone alone, and formaldehyde and ozone combined. Concentrations of formaldehyde were virtually identical with and without 0.5 ppm ozone. No reduction in formaldehyde concentration was found during a 90-minute evaluation using ozone at this concentration with peak and average concentrations of approximately 2.5 and 1.3 ppm formaldehyde, respectively. The results of this investigation suggest that the use of ozone is ineffective in reducing concentrations of formaldehyde. Because ozone has demonstrated health hazards, and is a regulated air contaminant in both the occupational and ambient environment, the use of ozone as an air purification agent in indoor air does not seem warranted. 25 refs., 5 figs., 4 tabs.« less
Formaldehyde exposures from tobacco smoke: a review.
Godish, T
1989-01-01
Reports of formaldehyde levels in mainstream, sidestream, and environmental tobacco smoke from nine studies are reviewed. Considerable disparity exists between formaldehyde production rates determined from mainstream-sidestream studies and those reporting levels in environmental tobacco smoke. Tobacco smoke does not appear to increase vapor-phase formaldehyde levels significantly in indoor environments, but formaldehyde exposure in mainstream smoke may pose a risk of upper respiratory system cancer and increase the risk of cancer in smokers. PMID:2665532
Concise total syntheses of (+/-)-strychnine and (+/-)-akuammicine.
Sirasani, Gopal; Paul, Tapas; Dougherty, William; Kassel, Scott; Andrade, Rodrigo B
2010-05-21
Concise total syntheses of Strychnos alkaloids strychnine (1) and akuammicine (2) have been realized in 13 and 6 operations, respectively. Key steps include (1) the vinylogous Mannich reaction; (2) a novel, sequential one-pot spirocyclization/intramolecular aza-Baylis-Hillman reaction; and (3) a Heck cyclization. The synthesis of 1 proceeds via the Wieland-Gumlich aldehyde (26).
Mohamed, Elham F; El-Hashemy, Mohammed A; Abdel-Latif, Nasser M; Shetaya, Waleed H
2015-12-01
Agricultural wastes such as rice straw, sugar beet, and sugarcane bagasse have become a critical environmental issue due to growing agriculture demand. This study aimed to investigate the valorization possibility of sugarcane bagasse waste for activated carbon preparation. It also aimed to fully characterize the prepared activated carbon (BET surface area) via scanning electron microscope (SEM) and in terms of surface functional groups to give a basic understanding of its structure and to study the adsorption capacity of the sugarcane bagasse-based activated carbon using aqueous methylene blue (MB). The second main objective was to evaluate the performance of sugarcane bagasse-based activated carbon for indoor volatile organic compounds removal using the formaldehyde gas (HCHO) as reference model in two potted plants chambers. The first chamber was labeled the polluted chamber (containing formaldehyde gas without activated carbon) and the second was taken as the treated chamber (containing formaldehyde gas with activated carbon). The results indicated that the sugarcane bagasse-based activated carbon has a moderate BET surface area (557 m2/g) with total mesoporous volume and microporous volume of 0.310 and 0.273 cm3/g, respectively. The prepared activated carbon had remarkable adsorption capacity for MB. Formaldehyde removal rate was then found to be more than 67% in the treated chamber with the sugarcane bagasse-based activated carbon. The plants' responses for this application as dry weight, chlorophyll contents, and protein concentration were also investigated. Preparation of activated carbon from sugarcane bagasse (SCBAC) is a promising approach to produce cheap and efficient adsorbent for gas pollutants removal. It may be also a solution for the agricultural wastes problems in big cities, particularly in Egypt. MB adsorption tests suggest that the SCBAC have high adsorption capacity. Formaldehyde gas removal in the plant chambers indicates that the SCBAC have potential to recover volatile gases. The results confirmed that the activated carbon produced from sugarcane bagasse waste raw materials can be used as an applicable adsorbent for treating a variety of gas pollutants from the indoor environment.
Developing a Reference Material for Formaldehyde Emissions Testing; Final Report
Exposure to formaldehyde has been shown to produce broad and potentially severe adverse human health effects. With ubiquitous formaldehyde sources in the indoor environment, formaldehyde concentrations in indoor air are usually higher than outdoors, ranging from 10 to 4000 μg/m3....
Safety in the Chemical Laboratory: Atmospheric Formaldehyde Levels in an Academic Laboratory.
ERIC Educational Resources Information Center
Clausz, John C.; And Others
1984-01-01
Determined whether improved ventilation and use of "formaldehyde-free" biological specimens could reduce the levels of formaldehyde in air to which students and faculty would be exposed. Both methods were found to be effective in reducing formaldehyde levels in air. (JN)
Liu, De-Chun; Zeng, Qiong; Ji, Qing-Xun; Liu, Chuan-Fu; Liu, Shan-Bei; Liu, Yong
2012-12-01
The altered ultrastructure and composition of cuticular wax from 'glossy Newhall' (MT) fruits lead to its glossy phenotype. A novel mutant derived from the wild-type (WT) 'Newhall' navel orange (Citrus sinensis [L.] Osbeck cv. Newhall), named 'glossy Newhall' (MT), which produced much more glossy fruits that were easily distinguishable from the WT fruits was characterized in this report. The total wax loads of both WT and MT fruits varied considerably during the fruit development. The most abundant wax fraction of WT mature fruits was triterpenoids, followed by aldehydes, alkanes, fatty acids, primary alcohol and cholesterol. The total wax load in MT mature fruits was reduced by 44.2 % compared with WT. Except for the minor wax components of primary alcohol and cholesterol, the amounts of all major wax fractions in MT mature fruits were decreased in varying degrees. The major reduction occurred in aldehydes that decreased 96.4 % and alkanes that decreased 81.9 %, which was consistent with scanning electron micrographs of MT mature fruit surfaces that showed a severe loss of wax crystals. Hence, aldehydes and alkanes were suggested to be required for wax crystal formation in 'Newhall' navel orange fruits.
Polyunsaturated Aldehydes from Large Phytoplankton of the Atlantic Ocean Surface (42°N to 33°S)
Bartual, Ana; Arandia-Gorostidi, Néstor; Cózar, Andrés; Morillo-García, Soledad; Ortega, María Jesús; Vidal, Montserrat; Cabello, Ana María; González-Gordillo, Juan Ignacio; Echevarría, Fidel
2014-01-01
Polyunsaturated aldehydes (PUAs) are organic compounds mainly produced by diatoms, after cell wounding. These compounds are increasingly reported as teratogenic for species of grazers and deleterious for phytoplanktonic species, but there is still scarce information regarding concentration ranges and the composition of PUAs in the open ocean. In this study, we analyzed the spatial distribution and the type of aldehydes produced by the large-sized (>10 μm) phytoplankton in the Atlantic Ocean surface. Analyses were conducted on PUAs released after mechanical disruption of the phytoplankton cells, referred to here as potential PUAs (pPUAs). Results show the ubiquitous presence of pPUA in the open ocean, including upwelling areas, as well as oligotrophic gyres. Total pPUA concentrations ranged from zero to 4.18 pmol from cells in 1 L. Identified PUAs were heptadienal, octadienal and decadienal, with heptadienal being the most common (79% of total stations). PUA amount and composition across the Atlantic Ocean was mainly related to the nitrogen:phosphorus ratio, suggesting nutrient-driven mechanisms of PUA production. Extending the range of trophic conditions considered by adding data reported for productive coastal waters, we found a pattern of PUA variation in relation to trophic status. PMID:24473169
Unusual formaldehyde-induced hypersensitivity in two schoolgirls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gammage, R.B.; Hanna, W.T.; Painter, P.B.
1990-01-01
Two schoolgirls developed a syndrome resembling Henoch-Schonlein purpura while attending a recently opened school insulated with urea-formaldehyde foam (UFFI). Skin rashes and swellings were accompanied by bizarre, blue-green discoloration of the skin. Subsequent investigations by county, state and federal authorities, and low measured concentrations of formaldehyde, prompted initial conclusions that in-school formaldehyde exposures were not responsible for the girls' problems. Subsequent controlled exposures to UFFI and formaldehyde while in hospital elicited the whole cascade of symptoms. The chronology of the onset and amplification of systems make it probable that the formaldehyde exposures precipitating the girls' hypersensitivity, occurred in the school.more » 3 refs.« less
Formaldehyde removal from air by a biodegradation system.
Xu, Zhongjun; Hou, Haiping
2010-07-01
A biodegradation system was used for the treatment of formaldehyde-polluted air. Air pressure dropped 12 mm water in the trickling biofilter during the experiment of about 4 months. In the range 20-300 mg m(-3) influent formaldehyde, this biodegradation system obtained 4.0-40.0 mg h(-1) degradation capacity, with 100%-66.7% degradation efficiency. The amount of formaldehyde degraded by the trickling biofilter was more than that by the activated sludge bioreactor below 200 mg m(-3) influent gaseous formaldehyde while the amount by the trickling biofilter was less than that by the activated sludge bioreactor over 200 mg m(-3) influent gaseous formaldehyde.
Bunkoed, Opas; Thavarungkul, Panote; Thammakhet, Chongdee; Kanatharana, Proespichaya
2013-01-01
Formaldehyde was monitored in the workplace environment of an adhesive manufacturer producing formaldehyde and urea-formaldehyde resin using a cost-effective sol-gel-based sensor. The sensor was first evaluated by comparing its performance to the conventional 2,4-dinitrophynylhydrazine-devivatization method (2,4-DNPH) followed by high-performance liquid chromatography coupled to a UV detector. The formaldehyde concentrations obtained by both techniques were not significantly different. The cost-effective sol-gel-based sensor was then used for monitoring formaldehyde levels in the laboratories, production areas and storage room. Formaldehyde concentrations in this adhesive manufacturer workplace environment were lower than the limit value of, 0.75 ppm for an 8-h time weight average and 2 ppm for a short-term exposure (15 min). However, the cancer risk for employees who worked in the laboratories, (1.7±0.7)×10(-4)-(5±2)×10(-4), were higher than the acceptable cancer risk recommended by the US EPA (10(-6)). Therefore, some precaution should be taken to reduce the risk, such as an increase of ventilation to dilute the levels of formaldehyde and use air cleaners to remove formaldehyde.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., appendix A, to determine compliance with the organic HAP or TOC emission limit, you may use EPA Method 18... formaldehyde control efficiency as a surrogate for total organic HAP or TOC efficiency, or at the outlet of a...
Aldehydes with high and low toxicities inactivate cells by damaging distinct cellular targets.
Xie, Ming-Zhang; Shoulkamy, Mahmoud I; Salem, Amir M H; Oba, Shunya; Goda, Mizuki; Nakano, Toshiaki; Ide, Hiroshi
2016-04-01
Aldehydes are genotoxic and cytotoxic molecules and have received considerable attention for their associations with the pathogenesis of various human diseases. In addition, exposure to anthropogenic aldehydes increases human health risks. The general mechanism of aldehyde toxicity involves adduct formation with biomolecules such as DNA and proteins. Although the genotoxic effects of aldehydes such as mutations and chromosomal aberrations are directly related to DNA damage, the role of DNA damage in the cytotoxic effects of aldehydes is poorly understood because concurrent protein damage by aldehydes has similar effects. In this study, we have analysed how saturated and α,β-unsaturated aldehydes exert cytotoxic effects through DNA and protein damage. Interestingly, DNA repair is essential for alleviating the cytotoxic effect of weakly toxic aldehydes such as saturated aldehydes but not highly toxic aldehydes such as long α,β-unsaturated aldehydes. Thus, highly toxic aldehydes inactivate cells exclusively by protein damage. Our data suggest that DNA interstrand crosslinks, but not DNA-protein crosslinks and DNA double-strand breaks, are the critical cytotoxic DNA damage induced by aldehydes. Further, we show that the depletion of intracellular glutathione and the oxidation of thioredoxin 1 partially account for the DNA damage-independent cytotoxicity of aldehydes. On the basis of these findings, we have proposed a mechanistic model of aldehyde cytotoxicity mediated by DNA and protein damage. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Yong; Zhou, Deqing; Zhao, Feng
2011-03-01
The effects of Fe2+ on the trimethylamine N-oxide (TMAO) demethylating activity of the Harpadon nehereus kidney extract were studied in this research. The activity of the kidney extract was presumably inhibited by ethylene diamine tetra-acetic acid (EDTA), which indicates that the kidney extract contains an enzyme or enzyme system with metal cations as activator. Activity of the kidney extract was enhanced significantly when Fe2+ was added into the model system in vitro. As the concentration of Fe2+ increased, the decomposing rate of TMAO increased rapidly until TMAO decomposed completely. The activity of the kidney extract was also enhanced by reductant such as ascorbic acid. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) was employed to determine the content of total iron in a number of fishery products. Significant positive correlation between the contents of total iron and endogenous formaldehyde (FA) was found, especially in marine products.
40 CFR 721.3810 - Formaldehyde, polymers with substituted phenols (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Formaldehyde, polymers with... New Uses for Specific Chemical Substances § 721.3810 Formaldehyde, polymers with substituted phenols... identified generically as Formaldehyde, polymers with substituted phenols (PMN P-99-0558) is subject to...
40 CFR 721.3810 - Formaldehyde, polymers with substituted phenols (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Formaldehyde, polymers with... New Uses for Specific Chemical Substances § 721.3810 Formaldehyde, polymers with substituted phenols... identified generically as Formaldehyde, polymers with substituted phenols (PMN P-99-0558) is subject to...
40 CFR 721.3810 - Formaldehyde, polymers with substituted phenols (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Formaldehyde, polymers with... New Uses for Specific Chemical Substances § 721.3810 Formaldehyde, polymers with substituted phenols... identified generically as Formaldehyde, polymers with substituted phenols (PMN P-99-0558) is subject to...
40 CFR 721.3810 - Formaldehyde, polymers with substituted phenols (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Formaldehyde, polymers with... New Uses for Specific Chemical Substances § 721.3810 Formaldehyde, polymers with substituted phenols... identified generically as Formaldehyde, polymers with substituted phenols (PMN P-99-0558) is subject to...
40 CFR 721.3810 - Formaldehyde, polymers with substituted phenols (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Formaldehyde, polymers with... New Uses for Specific Chemical Substances § 721.3810 Formaldehyde, polymers with substituted phenols... identified generically as Formaldehyde, polymers with substituted phenols (PMN P-99-0558) is subject to...
Guo, Xuesong; Liu, Junxin; Xiao, Benyi
2014-10-20
Extracellular polymeric substances (EPS) are susceptible to contamination by intracellular substances released during the extraction of EPS owing to the damage caused to microbial cell structures. The damage to cell walls and cell membranes in nine EPS extraction processes of activated sludge was evaluated in this study. The extraction of EPS (including proteins, carbohydrates and DNA) was the highest using the NaOH extraction method and the lowest using formaldehyde extraction. All nine EPS extraction methods in this study resulted in cell wall and membrane damage. The damage to cell walls, evaluated by 2-keto-3-deoxyoctonate (KDO) and N-acetylglucosamine content changes in extracted EPS, was the most significant in the NaOH extraction process. Formaldehyde extraction showed a similar extent of damage to cell walls to those detected in the control method (centrifugation), while those in the formaldehyde-NaOH and cation exchange resin extractions were slightly higher than those detected in the control. N-acetylglucosamine was more suitable than KDO for the evaluation of cell wall damage in the EPS extraction of activated sludge. The damage to cell membranes was characterized by two fluorochromes (propidium iodide and FITC Annexin V) with flow cytometry (FCM) measurement. The highest proportion of membrane-damaged cells was detected in NaOH extraction (26.54% of total cells) while membrane-damaged cells comprised 8.19% of total cells in the control. Copyright © 2014 Elsevier B.V. All rights reserved.
Development of a formaldehyde biosensor with application to synthetic methylotrophy.
Woolston, Benjamin M; Roth, Timothy; Kohale, Ishwar; Liu, David R; Stephanopoulos, Gregory
2018-01-01
Formaldehyde is a prevalent environmental toxin and a key intermediate in single carbon metabolism. The ability to monitor formaldehyde concentration is, therefore, of interest for both environmental monitoring and for metabolic engineering of native and synthetic methylotrophs, but current methods suffer from low sensitivity, complex workflows, or require expensive analytical equipment. Here we develop a formaldehyde biosensor based on the FrmR repressor protein and cognate promoter of Escherichia coli. Optimization of the native repressor binding site and regulatory architecture enabled detection at levels as low as 1 µM. We then used the sensor to benchmark the in vivo activity of several NAD-dependent methanol dehydrogenase (Mdh) variants, the rate-limiting enzyme that catalyzes the first step of methanol assimilation. In order to use this biosensor to distinguish individuals in a mixed population of Mdh variants, we developed a strategy to prevent cross-talk by using glutathione as a formaldehyde sink to minimize intercellular formaldehyde diffusion. Finally, we applied this biosensor to balance expression of mdh and the formaldehyde assimilation enzymes hps and phi in an engineered E. coli strain to minimize formaldehyde build-up while also reducing the burden of heterologous expression. This biosensor offers a quick and simple method for sensitively detecting formaldehyde, and has the potential to be used as the basis for directed evolution of Mdh and dynamic formaldehyde control strategies for establishing synthetic methylotrophy. © 2017 Wiley Periodicals, Inc.
Isakau, Henadz; Robert, Marielle; Shingel, Kirill I
2009-04-05
The paper describes the development and validation of a new derivatization-free liquid chromatography method for simultaneous determination of propylene glycol and formaldehyde in the formulations containing formaldehyde-releasing preservative. Highly swollen hydrogel made of poly(ethylene glycol)-protein conjugates was taken as a model formulation for integration of the propylene glycol and the diazolydinyl urea as formaldehyde releaser. The method is shown to be simple and selective and, more importantly, allows determining an existing level of formaldehyde at the moment of analysis instead of all available formaldehyde that might be released during chemical derivatization. After liquid extraction the propylene glycol (PG) and formaldehyde (FA) amounts are determined chromatographically on a Shodex SH 1011 ligand-exchange column using 0.01 M sulfuric acid mobile phase, a flow rate of 1.0 ml/min and RI detection. The assay is validated showing good linearity, precision, and accuracy. The limits of detection of formaldehyde and propylene glycol in the analyzed solutions were estimated to be 25 ng and 87 ng, respectively. This analytical assay is considered useful for product stability studies and in developing new formaldehyde releaser-containing formulations where the concentration of formaldehyde is a presumable subject of labeling requirements. This method can also provide a rapid and convenient alternative to gas chromatography method of propylene glycol quantification.
Dannemiller, Karen C.; Murphy, Johnna S.; Dixon, Sherry L.; Pennell, Kelly G.; Suuberg, Eric M.; Jacobs, David E.; Sandel, Megan
2013-01-01
Formaldehyde is a colorless, pungent gas commonly found in homes that is a respiratory irritant, sensitizer, carcinogen and asthma trigger. Typical household sources include plywood and particleboard, cleaners, cosmetics, pesticides, and others. Development of a fast and simple measurement technique could facilitate continued research on this important chemical. The goal of this research is to apply an inexpensive short-term measurement method to find correlations between formaldehyde sources and concentration, and formaldehyde concentration and asthma control. Formaldehyde was measured using 30-minute grab samples in length-of-stain detector tubes in homes (n=70) of asthmatics in the Boston, MA area. Clinical status and potential formaldehyde sources were determined. The geometric mean formaldehyde level was 35.1 ppb and ranged from 5–132 ppb. Based on one-way ANOVA, t-tests, and linear regression, predictors of log-transformed formaldehyde concentration included absolute humidity, season, and the presence of decorative laminates, fiberglass, or permanent press fabrics (p<0.05), as well as temperature and household cleaner use (p<0.10). The geometric mean formaldehyde concentration was 57% higher in homes of children with very poorly controlled asthma compared to homes of other asthmatic children (p=0.078). This study provides a simple method for measuring household formaldehyde and suggests that exposure is related to poorly controlled asthma. PMID:23278296
Occupational asthma due to formaldehyde.
Burge, P S; Harries, M G; Lam, W K; O'Brien, I M; Patchett, P A
1985-01-01
Bronchial provocation studies on 15 workers occupationally exposed to formaldehyde are described. The results show that formaldehyde exposure can cause asthmatic reactions, and suggest that these are sometimes due to hypersensitivity and sometimes to a direct irritant effect. Three workers had classical occupational asthma caused by formaldehyde fumes, which was likely to be due to hypersensitivity, with late asthmatic reactions following formaldehyde exposure. Six workers developed immediate asthmatic reactions, which were likely to be due to a direct irritant effect as the reactions were shorter in duration than those seen after soluble allergen exposure and were closely related to histamine reactivity. The breathing zone concentrations of formaldehyde required to elicit these irritant reactions (mean 4.8 mg/m3) were higher than those encountered in buildings recently insulated with urea formaldehyde foam, but within levels sometimes found in industry. Images PMID:4023975
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, T.J.; Barnes, R.H.
1990-11-01
Two new methods for real-time measurement of gaseous formaldehyde have been developed. One is a spectroscopic method based on direct fluorescence detection of gaseous formaldehyde following excitation with UV light. This method has been developed to the prototype stage by modifications of a commercial fluorescence SO2 detector to convert it to formaldehyde detection. The prototype spectroscopic formaldehyde monitor exhibits a detection limit of <30 ppbv, with a time response of about one minute. The second method is based on derivatization of formaldehyde in aqueous solution to form a fluorescent product. The detection of fluorescent product was made more sensitive bymore » using intense 254 nm light from a mercury lamp for excitation, thereby allowing use of a simple and efficient glass coil scrubber for collection of gaseous formaldehyde. The wet chemical formaldehyde monitor incorportating these improvements exhibits a detection limit for gaseous formaldehyde of 0.2 ppbv and for aqueous formaldehyde of 0.2 micromolar with time response of about one minute, following a lag time of 2 minutes. Both instruments were tested in the laboratory with gaseous formaldehyde standards, and the aqueous scrubbing/analysis method was field tested by continuous operation over a 10-day period in which outdoor and indoor air were sampled for alternate half-hour periods. A comparison of real-time (aqueous scrubbing/analysis) and integrated measurements, using dinitrophenylhydrazine (DNPH) impingers, showed close agreement between the real-time and DNPH data, even at concentrations as low as 1 ppbv.« less
Wu, Yang; You, Huihui; Ma, Ping; Li, Li; Yuan, Ye; Li, Jinquan; Ye, Xin; Liu, Xudong; Yao, Hanchao; Chen, Ruchong; Lai, Kefang; Yang, Xu
2013-01-01
Objective Asthma is a complex pulmonary inflammatory disease characterized by the hyper-responsiveness, remodeling and inflammation of airways. Formaldehyde is a common indoor air pollutant that can cause asthma in people experiencing long-term exposure. The irritant effect and adjuvant effect are the two possible pathways of formaldehyde promoted asthma. Methodology/Principal Findings To explore the neural mechanisms and adjuvant effect of formaldehyde, 48 Balb/c mice in six experimental groups were exposed to (a) vehicle control; (b) ovalbumin; (c) formaldehyde (3.0 mg/m3); (d) ovalbumin+formaldehyde (3.0 mg/m3); (e) ovalbumin+formaldehyde (3.0 mg/m3)+HC-030031 (transient receptor potential ankyrin 1 antagonist); (f) ovalbumin+formaldehyde (3.0 mg/m3)+ capsazepine (transient receptor potential vanilloid 1 antagonist). Experiments were conducted after 4 weeks of combined exposure and 1-week challenge with aerosolized ovalbumin. Airway hyper-responsiveness, pulmonary tissue damage, eosinophil infiltration, and increased levels of interleukin-4, interleukin-6, interleukin-1β, immunoglobulin E, substance P and calcitonin gene-related peptide in lung tissues were found in the ovalbumin+formaldehyde (3.0 mg/m3) group compared with the values seen in ovalbumin -only immunized mice. Except for interleukin-1β levels, other changes in the levels of biomarker could be inhibited by HC-030031 and capsazepine. Conclusions/Significance Formaldehyde might be a key risk factor for the rise in asthma cases. Transient receptor potential ion channels and neuropeptides have important roles in formaldehyde promoted-asthma. PMID:23671638
40 CFR 721.7046 - Formaldehyde, polymer with substituted phenols, glycidyl ether.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Formaldehyde, polymer with substituted... New Uses for Specific Chemical Substances § 721.7046 Formaldehyde, polymer with substituted phenols... substance identified as formaldehyde, polymer with substituted phenols, glycidyl ether (PMN P-93-955) is...
24 CFR 3280.309 - Health Notice on formaldehyde emissions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Health Notice on formaldehyde... Construction Requirements § 3280.309 Health Notice on formaldehyde emissions. (a) Each manufactured home shall have a Health Notice on formaldehyde emissions prominently displayed in a temporary manner in the...
24 CFR 3280.309 - Health Notice on formaldehyde emissions.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Health Notice on formaldehyde... Construction Requirements § 3280.309 Health Notice on formaldehyde emissions. (a) Each manufactured home shall have a Health Notice on formaldehyde emissions prominently displayed in a temporary manner in the...
24 CFR 3280.309 - Health Notice on formaldehyde emissions.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Health Notice on formaldehyde... Construction Requirements § 3280.309 Health Notice on formaldehyde emissions. (a) Each manufactured home shall have a Health Notice on formaldehyde emissions prominently displayed in a temporary manner in the...
40 CFR 721.7046 - Formaldehyde, polymer with substituted phenols, glycidyl ether.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Formaldehyde, polymer with substituted... New Uses for Specific Chemical Substances § 721.7046 Formaldehyde, polymer with substituted phenols... substance identified as formaldehyde, polymer with substituted phenols, glycidyl ether (PMN P-93-955) is...
40 CFR 721.7046 - Formaldehyde, polymer with substituted phenols, glycidyl ether.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Formaldehyde, polymer with substituted... New Uses for Specific Chemical Substances § 721.7046 Formaldehyde, polymer with substituted phenols... substance identified as formaldehyde, polymer with substituted phenols, glycidyl ether (PMN P-93-955) is...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Formaldehyde, polymers with acetone... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10237 Formaldehyde, polymers with... subject to reporting. (1) The chemical substance identified as formaldehyde, polymers with acetone-phenol...
40 CFR 721.7046 - Formaldehyde, polymer with substituted phenols, glycidyl ether.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Formaldehyde, polymer with substituted... New Uses for Specific Chemical Substances § 721.7046 Formaldehyde, polymer with substituted phenols... substance identified as formaldehyde, polymer with substituted phenols, glycidyl ether (PMN P-93-955) is...
40 CFR 721.7046 - Formaldehyde, polymer with substituted phenols, glycidyl ether.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Formaldehyde, polymer with substituted... New Uses for Specific Chemical Substances § 721.7046 Formaldehyde, polymer with substituted phenols... substance identified as formaldehyde, polymer with substituted phenols, glycidyl ether (PMN P-93-955) is...
40 CFR 721.3805 - Formaldehyde, reaction products with 1,3-benzenedimethanamine and bisphenol A.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Formaldehyde, reaction products with 1... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3805 Formaldehyde, reaction products... to reporting. (1) The chemical substance identified as formaldehyde, reaction products with 1,3...
40 CFR 721.3805 - Formaldehyde, reaction products with 1,3-benzenedimethanamine and bisphenol A.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Formaldehyde, reaction products with 1... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3805 Formaldehyde, reaction products... to reporting. (1) The chemical substance identified as formaldehyde, reaction products with 1,3...
21 CFR 573.460 - Formaldehyde.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.460 Formaldehyde. The food additive formaldehyde may be safely used in the manufacture of... each batch. (b)(1) The food additive is formaldehyde (CAS No. 50-00-0; 37 percent aqueous solution). It...
21 CFR 573.460 - Formaldehyde.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.460 Formaldehyde. The food additive formaldehyde may be safely used in the manufacture of... each batch. (b)(1) The food additive is formaldehyde (CAS No. 50-00-0; 37 percent aqueous solution). It...
21 CFR 573.460 - Formaldehyde.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.460 Formaldehyde. The food additive formaldehyde may be safely used in the manufacture of... each batch. (b)(1) The food additive is formaldehyde (CAS No. 50-00-0; 37 percent aqueous solution). It...
21 CFR 573.460 - Formaldehyde.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.460 Formaldehyde. The food additive formaldehyde may be safely used in the manufacture of... each batch. (b)(1) The food additive is formaldehyde (CAS No. 50-00-0; 37 percent aqueous solution). It...
21 CFR 573.460 - Formaldehyde.
Code of Federal Regulations, 2014 CFR
2014-04-01
..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.460 Formaldehyde. The food additive formaldehyde may be safely used in the manufacture of... each batch. (b)(1) The food additive is formaldehyde (CAS No. 50-00-0; 37 percent aqueous solution). It...
EFFECTS OF FORMALDEHYDE AND PARTICLE-BOUND FORMALDEHYDE ON LUNG MACROPHAGE FUNCTIONS
Dr. George Jakab and associates exposed mice to varying levels (ranging from 0.5 to 15 parts per million [ppm]) of formaldehyde alone or to formaldehyde (5 and 2.5 ppm) mixed with carbon black particles. Carbon black particles were chosen because of their similarity to comb...
A method of detecting carbonyl compounds in tree leaves in China.
Huang, Juan; Feng, Yanli; Fu, Jiamo; Sheng, Guoying
2010-06-01
Carbonyl compounds have been paid more and more attention because some carbonyl species have been proven to be carcinogenic or a risk for human health. Plant leaves are both an important emission source and an important sink of carbonyl compounds. But the research on carbonyl compounds from plant leaves is very scarce. In order to make an approach to the emission mechanism of plant leaves, a new method was established to extract carbonyl compounds from fresh plant leaves. The procedure combining derivatization with ultrasonication was developed for the fast extraction of carbonyl compounds from tree leaves. Fresh leaves (< 0.01 g) were minced and ultrasonicated in acidic 2,4-dinitrophenylhydrazine (DNPH)-acetonitrile solution for 30 min and then holding 30 min to allow aldehydes and ketones in leaves to react completely with DNPH. The extraction process was performed under room temperature and only took 60 min. The advantages of this method were very little sample preparation, requiring short treatment time and usual equipment. Four greening trees, i.e., camphor tree (Cinnamomum camphora), sweet olive (Osmanthus fragrans), cedar (Cedrus deodara), and dawn redwood (Metasequoia glyptostroboides), were selected and extracted by this method. Seven carbonyl compounds, including formaldehyde, acetaldehyde, acetone, acrolein, p-tolualdehyde, m/o-tolualdehyde, and hexaldehyde were determined and quantified. The most common carbonyl species of the four tree leaves were formaldehyde, acrolein, and m/o-tolualdehyde. They accounted for 67.3% in cedar, 50.8% in sweet olive, 45.8% in dawn redwood, and 44.6% in camphor tree, respectively. Camphor tree had the highest leaf level of m/o-tolualdehyde with 15.0 +/- 3.4 microg g(-1)(fresh leaf weight), which indicated that camphor tree may be a bioindicator of the level of tolualdehyde or xylene in the atmosphere. By analyzing carbonyl compounds from different tree leaves, it is not only helpful for further studying the relationship between sink and emission of carbonyls from plants, but also helpful for exploring optimum plant population in urban greening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortega-Atienza, Sara; Green, Samantha E.; Zhitkovich, Anatoly, E-mail: anatoly_zhitkovich@brown.edu
2015-07-15
Formaldehyde (FA) is a human carcinogen with numerous sources of environmental and occupational exposures. This reactive aldehyde is also produced endogenously during metabolism of drugs and other processes. DNA–protein crosslinks (DPCs) are considered to be the main genotoxic lesions for FA. Accumulating evidence suggests that DPC repair in high eukaryotes involves proteolysis of crosslinked proteins. Here, we examined a role of the main cellular proteolytic machinery proteasomes in toxic responses of human lung cells to low FA doses. We found that transient inhibition of proteasome activity increased cytotoxicity and diminished clonogenic viability of FA-treated cells. Proteasome inactivation exacerbated suppressive effectsmore » of FA on DNA replication and increased the levels of the genotoxic stress marker γ-H2AX in normal human cells. A transient loss of proteasome activity in FA-exposed cells also caused delayed perturbations of cell cycle, which included G2 arrest and a depletion of S-phase populations at FA doses that had no effects in control cells. Proteasome activity diminished p53-Ser15 phosphorylation but was important for FA-induced CHK1 phosphorylation, which is a biochemical marker of DPC proteolysis in replicating cells. Unlike FA, proteasome inhibition had no effect on cell survival and CHK1 phosphorylation by the non-DPC replication stressor hydroxyurea. Overall, we obtained evidence for the importance of proteasomes in protection of human cells against biologically relevant doses of FA. Biochemically, our findings indicate the involvement of proteasomes in proteolytic repair of DPC, which removes replication blockage by these highly bulky lesions. - Highlights: • Proteasome inhibition enhances cytotoxicity of low-dose FA in human lung cells. • Active proteasomes diminish replication-inhibiting effects of FA. • Proteasome activity prevents delayed G2 arrest in FA-treated cells. • Proteasome inhibition exacerbates replication stress by FA in normal human cells. • Protective role of proteasomes is linked to repair of DNA–protein crosslinks.« less
21 CFR 182.60 - Synthetic flavoring substances and adjuvants.
Code of Federal Regulations, 2014 CFR
2014-04-01
... aldehyde). N-Butyric acid (butanoic acid). d- or l-Carvone (carvol). Cinnamaldehyde (cinnamic aldehyde... aldehyde, caprinaldehyde, aldehyde C-10). Ethyl acetate. Ethyl butyrate. 3-Methyl-3-phenyl glycidic acid ethyl ester (ethyl-methyl-phenyl-glycidate, so-called strawberry aldehyde, C-16 aldehyde). Ethyl...
Ishikawa, Naoyoshi; Miyata, Toshio; Ueda, Yasuhiko; Inagi, Reiko; Izuhara, Yuko; Yuzawa, Hiroko; Onogi, Hiroshi; Nishina, Makoto; Nangaku, Masaomi; Van Ypersele De Strihou, Charles; Kurokawa, Kiyoshi
2003-01-01
Reactive carbonyl compounds (RCOs) present in peritoneal dialysis (PD) fluid have been incriminated in the progressive deterioration of the peritoneal membrane in long-term PD patients. They are initially present in fresh conventional heat-sterilized glucose PD fluid and are supplemented during dwell time by the diffusion of blood RCOs within the peritoneal cavity. In the present study, RCO entrapping agents were immobilized on affinity beads to adsorb RCOs both in fresh PD fluid and in PD effluent. The RCO trapping potential of various compounds was assessed in vitro first by dissolving them in the tested fluid and subsequently after coupling with either epoxy- or amino-beads. The tested fluids include fresh heat-sterilized glucose and non-glucose PD fluids, and PD effluent. Their RCOs contents, that is, glyoxal (GO), methylglyoxal (MGO), 3-deoxyglucosone (3-DG), formaldehyde, 5-hydroxymethylfuraldehyde, acetaldehyde, and 2-furaldehyde were monitored by reverse-phase high-pressure liquid chromatography. The biocompatibility of PD fluid was assessed by a cytotoxic assay with either human epidermoid cell line A431 cells or with primary cultured human peritoneal mesothelial cells. Among the tested RCO entrapping agents, hydrazine coupled to epoxy-beads proved the most efficient. It lowered the concentrations of three dicarbonyl compounds (GO, MGO, and 3-DG) and those of aldehydes present in fresh heat-sterilized glucose PD fluid toward the low levels observed in filter-sterilized glucose PD fluid. It did not change the glucose and electrolytes concentration of the PD fluid but raised its pH from 5.2 to 5.9. Hydrazine-coupled epoxy-bead also lowered the PD effluent content of total RCOs, measured by the 2,4-dinitrophenylhydrazone (DNPH) method. The cytotoxicity of heat-sterilized PD fluid incubated with hydrazine-coupled epoxy-beads was decreased to the level observed in filter-sterilized PD fluid as the result of the raised pH and the lowered RCOs levels. Hydrazine-coupled epoxy-beads reduce the levels of a variety of dicarbonyls and aldehydes present in heat-sterilized glucose PD fluid to those in filter-sterilized PD fluid, without altering glucose, lactate, and electrolytes contents but with a rise in pH. Incubated with PD effluents, it is equally effective in reducing the levels of serum-derived RCOs. RCO entrapping agents immobilized on affinity beads improve in vitro the biocompatibility of conventional heat-sterilized glucose PD fluid. Their clinical applicability requires further studies.
NASA Astrophysics Data System (ADS)
Singh, H. B.; Salas, L. J.; Chatfield, R. B.; Czech, E.; Fried, A.; Walega, J.; Evans, M. J.; Field, B. D.; Jacob, D. J.; Blake, D.; Heikes, B.; Talbot, R.; Sachse, G.; Crawford, J. H.; Avery, M. A.; Sandholm, S.; Fuelberg, H.
2004-08-01
Airborne measurements of a large number of oxygenated volatile organic chemicals (OVOC) were carried out in the Pacific troposphere (0.1-12 km) in winter/spring of 2001 (24 February to 10 April). Specifically, these measurements included acetone (CH3COCH3), methylethyl ketone (CH3COC2H5, MEK), methanol (CH3OH), ethanol (C2H5OH), acetaldehyde (CH3CHO), propionaldehyde (C2H5CHO), peroxyacylnitrates (PANs) (CnH2n+1COO2NO2), and organic nitrates (CnH2n+1ONO2). Complementary measurements of formaldehyde (HCHO), methyl hydroperoxide (CH3OOH), and selected tracers were also available. OVOC were abundant in the clean troposphere and were greatly enhanced in the outflow regions from Asia. Background mixing ratios were typically highest in the lower troposphere and declined toward the upper troposphere and the lowermost stratosphere. Their total abundance (ΣOVOC) was nearly twice that of nonmethane hydrocarbons (ΣC2-C8 NMHC). Throughout the troposphere, the OH reactivity of OVOC is comparable to that of methane and far exceeds that of NMHC. A comparison of these data with western Pacific observations collected some 7 years earlier (February-March 1994) did not reveal significant differences. Mixing ratios of OVOC were strongly correlated with each other as well as with tracers of fossil and biomass/biofuel combustion. Analysis of the relative enhancement of selected OVOC with respect to CH3Cl and CO in 12 plumes originating from fires and sampled in the free troposphere (3-11 km) is used to assess their primary and secondary emissions from biomass combustion. The composition of these plumes also indicates a large shift of reactive nitrogen into the PAN reservoir thereby limiting ozone formation. A three-dimensional global model that uses state of the art chemistry and source information is used to compare measured and simulated mixing ratios of selected OVOC. While there is reasonable agreement in many cases, measured aldehyde concentrations are significantly larger than predicted. At their observed levels, acetaldehyde mixing ratios are shown to be an important source of HCHO (and HOx) and PAN in the troposphere. On the basis of presently known chemistry, measured mixing ratios of aldehydes and PANs are mutually incompatible. We provide rough estimates of the global sources of several OVOC and conclude that collectively these are extremely large (150-500 Tg C yr-1) but remain poorly quantified.
NASA Technical Reports Server (NTRS)
Singh, H. B.; Salas, L. J.; Chatfield, r. B.; Czech, E.; Fried, A.; Walega, J.; Evans, M. J.; Field, B. D.; Jacob, D. J.; Blake, D.;
2004-01-01
Airborne measurements of a large number of oxygenated volatile organic chemicals (OVOC) were carried out in the Pacific troposphere (0.1-12 km) in winter/spring of 2001 (24 February to 10 April). Specifically, these measurements included acetone (CH3COCH3), methylethyl ketone (CH3COC2H5, MEK), methanol (CH3OH), ethanol (C2H5OH), acetaldehyde (CH3CHO), propionaldehyde (C2H5CHO), peroxyacylnitrates (PANs) (C(sub n)H(sub 2n+1)COO2NO2), and organic nitrates (C(sub n)H(sub 2n+1)ONO2). Complementary measurements of formaldehyde (HCHO), methyl hydroperoxide (CH3OOH), and selected tracers were also available. OVOC were abundant in the clean troposphere and were greatly enhanced in the outflow regions from Asia. Background mixing ratios were typically highest in the lower troposphere and declined toward the upper troposphere and the lowermost stratosphere. Their total abundance (Summation of OVOC) was nearly twice that of nonmethane hydrocarbons (Summation of C2-C8 NMHC). Throughout the troposphere, the OH reactivity of OVOC is comparable to that of methane and far exceeds that of NMHC. A comparison of these data with western Pacific observations collected some 7 years earlier (February-March 1994) did not reveal significant differences. Mixing ratios of OVOC were strongly correlated with each other as well as with tracers of fossil and biomass/biofuel combustion. Analysis of the relative enhancement of selected OVOC with respect to CH3Cl and CO in 12 plumes originating from fires and sampled in the free troposphere (3-11 km) is used to assess their primary and secondary emissions from biomass combustion. The composition of these plumes also indicates a large shift of reactive nitrogen into the PAN reservoir thereby limiting ozone formation. A three-dimensional global model that uses state of the art chemistry and source information is used to compare measured and simulated mixing ratios of selected OVOC. While there is reasonable agreement in many cases, measured aldehyde concentrations are significantly larger than predicted. At their observed levels, acetaldehyde mixing ratios are shown to be an important source of HCHO (and HO x ) and PAN in the troposphere. On the basis of presently known chemistry, measured mixing ratios of aldehydes and PANs are mutually incompatible. We provide rough estimates of the global sources of several OVOC and conclude that collectively these are extremely large (150-500 Tg C / yr) but remain poorly quantified.
FACTORS DETERMINING DEGREE OF INFLATION IN INTRATRACHEALLY FIXED RAT LUNGS
The total lung capacity (TLC) of rats was measured in vivo and was compared to the displacement volume of the lungs following intratracheal fixation with glutaraldehyde or formaldehyde solution. When glutaraldehyde was used the speed of infusion of the fixative was an important f...
40 CFR 86.1342-94 - Calculations; exhaust emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., if appropriate, the weighted mass total hydrocarbon equivalent, formaldehyde, or non-methane... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED... see § 86.1342-90. (b)(8) Non-methane hydrocarbon mass: NMHCmass = Vmix × DensityNMHC × (NMHCconc/1,000...
40 CFR 86.1342-94 - Calculations; exhaust emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., if appropriate, the weighted mass total hydrocarbon equivalent, formaldehyde, or non-methane... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED... see § 86.1342-90. (b)(8) Non-methane hydrocarbon mass: NMHCmass = Vmix × DensityNMHC × (NMHCconc/1,000...
40 CFR 86.1342-94 - Calculations; exhaust emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., if appropriate, the weighted mass total hydrocarbon equivalent, formaldehyde, or non-methane... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED... see § 86.1342-90. (b)(8) Non-methane hydrocarbon mass: NMHCmass = Vmix × DensityNMHC × (NMHCconc/1,000...
Formaldehyde exposure affects growth and metabolism of common bean
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mutters, R.G.; Madore, M.; Bytnerowicz, A.
Recent state and federal directives have slated a substantial increase in the use of methanol as an alternative to gasoline in both fleet and private vehicles in the coming decade. The incomplete combustion of methanol produces formaldehyde vapor, and catalytic converter technology that completely oxidizes formaldehyde has yet to be developed. The approach of this study was to use a range of methanol concentrations encompassing levels currently found or that may occur in the future in the ambient air of some heavily polluted areas to test the potential phytotoxicity of formaldehyde. The study had the following objectives: (1) design andmore » build a formaldehyde vapor generator with sufficient capacity for long-term plant fumigations; (2) determine growth response of common bean to formaldehyde; (3) evaluate physiological and biochemical changes of bean plants associated with formaldehyde exposures. 20 refs., 2 figs., 2 tabs.« less
A rapid liquid chromatography determination of free formaldehyde in cod.
Storey, Joseph M; Andersen, Wendy C; Heise, Andrea; Turnipseed, Sherri B; Lohne, Jack; Thomas, Terri; Madson, Mark
2015-01-01
A rapid method for the determination of free formaldehyde in cod is described. It uses a simple water extraction of formaldehyde which is then derivatised with 2,4-dinitrophenylhydrazine (DNPH) to form a sensitive and specific chromophore for high-performance liquid chromatography (HPLC) detection. Although this formaldehyde derivative has been widely used in past tissue analysis, this paper describes an improved derivatisation procedure. The formation of the DNPH formaldehyde derivative has been shortened to 2 min and a stabilising buffer has been added to the derivative to increase its stability. The average recovery of free formaldehyde in spiked cod was 63% with an RSD of 15% over the range of 25-200 mg kg(-1) (n = 48). The HPLC procedure described here was also compared to a commercial qualitative procedure - a swab test for the determination of free formaldehyde in fish. Several positive samples were compared by both methods.
Measurement of indoor formaldehyde concentrations with a passive sampler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillett, R.W.; Kreibich, H.; Ayers, G.P.
2000-05-15
An existing Ferm-type passive sampler technique has been further developed to measure concentrations of formaldehyde gas in indoor air. Formaldehyde forms a derivative after reaction with a filter coated with 2,4-dinitrophenylhydrazine (2,4-DNPH). The formaldehyde 2,4-dinitrophenylhydrazine derivative (formaldehyde-2,4-DNPH) is extracted from the filter, and the concentration is determined by high-performance liquid chromatography. The technique has been validated against an active sampling method, and the agreement is close when the appropriate laminar boundary layer depth is applied to the passive measurement. For this technique an exposure period of 3 days is equivalent to a limit of detection of formaldehyde of 3.4 ppbvmore » and a limit of quantification of 7.6 ppbv. To test the performance of the passive samplers ambient formaldehyde measurements were carried out inside homes and in a range of workplace environments.« less
Lagacé, Luc; Gaudy, Réjean; Perez-Locas, Carolina; Sadiki, Mustapha
2012-01-01
The occurrence of formaldehyde in sap and wood tissue of treated and untreated maple sugar trees was investigated using GC/MS. Samples were collected at different periods of the 2009 season and at different locations in Quebec, Canada. The natural concentration of formaldehyde found in untreated samples varied according to periods and locations and ranged from below the LOQ to 1.82 mg/kg for sap samples and from 2.39 to 8.92 mg/kg of fresh tissue for wood samples. Late season samples tended to have higher concentrations of formaldehyde. Samples of sap and wood tissue from tapholes treated with solutions of formaldehyde showed increased concentrations of formaldehyde for many days after treatment and were clearly distinct from untreated samples. These results will be useful to elaborate new inspection procedures for sugarbushes to control the illegal use of formaldehyde.
The formaldehyde problem in wood-based products : an annotated bibliography
F. H. Max Nestler
1977-01-01
Urea-formaldehyde-type adhesives have the inherent characteristic of giving off free formaldehyde under some conditions of use. The vapor can build up to concentrations which can be a nuisance, uncomfortable, or an actual health hazard. The "formaldehyde problem" is reviewed, from literature sources, in five respects : oriqins, analytical, control and removal...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Formaldehyde, polymer with aliphatic... Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2-pentanone (generic... identified generically as formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4...
Code of Federal Regulations, 2014 CFR
2014-07-01
... specification range, record the free-formaldehyde content specification range of the resin used, and the... that requires a binder formulation made with the resin containing the highest free-formaldehyde content specification range. Show compliance with the formaldehyde emission limits while the device for measuring...
Code of Federal Regulations, 2012 CFR
2012-07-01
... specification range, record the free-formaldehyde content specification range of the resin used, and the... that requires a binder formulation made with the resin containing the highest free-formaldehyde content specification range. Show compliance with the formaldehyde emission limits while the device for measuring...
Code of Federal Regulations, 2011 CFR
2011-07-01
... specification range, record the free-formaldehyde content specification range of the resin used, and the... that requires a binder formulation made with the resin containing the highest free-formaldehyde content specification range. Show compliance with the formaldehyde emission limits while the device for measuring...
Code of Federal Regulations, 2013 CFR
2013-07-01
... specification range, record the free-formaldehyde content specification range of the resin used, and the... that requires a binder formulation made with the resin containing the highest free-formaldehyde content specification range. Show compliance with the formaldehyde emission limits while the device for measuring...
Code of Federal Regulations, 2010 CFR
2010-07-01
... specification range, record the free-formaldehyde content specification range of the resin used, and the... that requires a binder formulation made with the resin containing the highest free-formaldehyde content specification range. Show compliance with the formaldehyde emission limits while the device for measuring...
Bunichiro Tomita; Chung-Yun Hse
1995-01-01
The urea-formaldehyde (UF) resins, melamine-formaldehyde (MF) resins, and melamine-ureaformaldehyde (MUF) cocondensed resins were synthesized using the labeling method with 13C enriched formaldehyde under neutral conditions and their 13C-NMR (nuclear magnetic resonance) spectra were analyzed. The remarkable down-field...
PPM mixtures of formaldehyde in gas cylinders: Stability and analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, K.C.; Miller, S.B.; Patterson, L.M.
1999-07-01
Scott Specialty Gases has been successful in producing stable calibration gases of formaldehyde at low concentration. Critical to this success has been the development of a treatment process for high pressure aluminum cylinders. Formaldehyde cylinders having concentrations of 20ppm and 4ppm were found to show only small decline in concentrations over a period of approximately 12 months. Since no NIST traceable formaldehyde standards (or Standard Reference Material) are available, all Scott's formaldehyde cylinders were originally certified by traditional impinger method. This method involves an extremely tedious purification procedure for 2,4-dinitrophenylhydrazine (2,4-DNPH). A modified version of the impinger method has beenmore » developed and does not require extensive reagent purification for formaldehyde analysis. Extremely low formaldehyde blanks have been obtained with the modified method. The HPLC conditions in the original method were used for chromatographic separations. The modified method results in a lower analytical uncertainty for the formaldehyde standard mixtures. Consequently, it is possible to discern small differences between analytical results that are important for stability study.« less
Optical Detection of Formaldehyde
NASA Technical Reports Server (NTRS)
Patty, Kira D.; Gregory, Don A.
2008-01-01
The potential for buildup .of formaldehyde in closed space environments poses a direct health hazard to personnel. The National Aeronautic Space Agency (NASA) has established a maximum permitted concentration of 0.04 ppm for 7 to 180 days for all space craft. Early detection is critical to ensure that formaldehyde levels do not accumulate. above these limits. New sensor technologies are needed to enable real time,in situ detection in a compact and reusable form factor. Addressing this need,research into the use of reactive fluorescent dyes which reversibly bind to formaldehyde (liquid or gas) has been conducted to support the development of a formaldehyde.sensor. In the presence of formaldehyde the dyes' characteristic fluorescence peaks shift providing the basis for an optical detection. Dye responses to formaldehyde exposure were characterized; demonstrating the optical detection of formaldehyde in under 10 seconds and down to concentrations of 0.5 ppm. To .incorporate the dye .in.an optical sensor device requires. a means of containing and manipulating the dye. Multiple form factors using two dissimilar sbstrates were considered to determine a suitable configuration. A prototype sensor was demonstrated and considerations for a field able sensor were presented. This research provides a necessary first step toward the development of a compact, reusable; real time optical formaldehyde sensor suitable for use in the U.S. space program,
Ikarashi, Yoshiaki; Kaniwa, Masa-aki; Tsuchiya, Toshie
2003-01-01
In Japan, the amount of formaldehyde in textile products was regulated by the low for the control of household products containing harmful substances. Formaldehyde was determined by measuring the optical density of acetylacetone derivative of formaldehyde extracted from textiles. The household products low stated that the increase in the optical density of color development of the extract from the textile products for babies or infants within 24 months after birth should not be more than 0.05. Collaborative study decided the amount of formaldehyde equivalent to the increase in absorbance described above, and the amount was 16 ppm. There are some reports that formaldehyde causes an allergic reaction even at a very low concentration, so continuous regulation for formaldehyde in the textiles was desirable using this level of amount. We developed HPLC method for the determination of formaldehyde in textile products. Formaldehyde was determined by the direct injection of acetylacetone derivative of samples into the system equipped with ODS column and UV-VIS detector (detection wavelength 413 nm) using the mixture of acetonitrile and water as mobile phase. The linearity was obtained between a peak area or height and the concentrations of formaldehyde solution in the range of 0.0625-2 micrograms/ml. The regulation level was sufficiently detected by the present HPLC method. We recommended that the HPLC test was adopted as a reexamination method for the products may violate the regulation as well as a dimedone test.
Preliminary study: Formaldehyde exposure in laboratories of Sharjah university in UAE
Ahmed, Hafiz Omer
2011-01-01
Objectives Laboratory technicians, students, and instructors are at high risk, because they deal with chemicals including formaldehyde. Thus, this preliminary study was conducted to measure the concentration of formaldehyde in the laboratories of the University of Sharjah in UAE. Materials and Methods: Thirty-two air samples were collected and analyzed for formaldehyde using National Institute for Occupational Safety and Health (NIOSH) method 3500. In this method, formaldehyde reacts with chromotropic acid in the presence of sulfuric acid to form a colored solution. The absorbance of the colored solution is read in spectrophotometer at wavelength 580 nm and is proportional to the quantity of the formaldehyde in the solution. Results: For the anatomy laboratory and in the presence of the covered cadaver, the mean concentration of formaldehyde was found to be 0.100 ppm with a range of 0.095–0.105 ppm. Whereas for the other laboratories, the highest mean concentration of formaldehyde was 0.024 ppm in the general microbiology laboratory and the lowest mean concentration of formaldehyde was 0.001 ppm in the environmental health laboratory. The 8-hour (time-weighted average) concentration of formaldehyde was found to be ranging between 0.0003 ppm in environmental health laboratory and 0.026 ppm in the anatomy laboratory. Conclusions: The highest level of concentration of formaldehyde in the presence of the covered cadaver in anatomy laboratory exceeded the recommended ceiling standard established by USA-NIOSH which is 0.1 ppm, but below the ceiling standard established by American Conference of Governmental Industrial Hygienists which is 0.3 ppm. Thus, it is recommended that formaldehyde levels should be measured periodically specially during the dissection in the anatomy laboratory, and local exhaust ventilation system should be installed and personal protective equipment such as safety glass and gloves should be available and be used to prevent direct skin or eye contact. PMID:21808499
Chemical composition of the essential oil from Jasminum pubescens leaves and flowers.
Temraz, Abeer; Cioni, Pier Luigi; Flamini, Guido; Braca, Alessandra
2009-12-01
The essential oil obtained from the leaves and flowers of Jasminum pubescens (Retz.) Willd. (Oleaceae) has been analyzed by GC/MS. Sixty-three and sixty-four components of the essential oils, representing 95.0% of the total oil for the leaves and 91.9% for the flowers, were identified, respectively. Both the oils were mainly constituted by non-terpene derivatives (58.2% and 50.8%, respectively), among which aldehydes (44.7%) characterized the essential oil from the leaves. Besides aldehydes (14.3%) and other carbonylic compounds (acids, esters, and ketones, 38.1%) were the main non-terpene compounds of the oil from the flowers.
NASA Technical Reports Server (NTRS)
James, John T.
2001-01-01
The toxicological assessment of air samples returned at the end of the STS-100 (6A) flight to the ISS is reported. ISS air samples were taken in March and April 2001 from the Service Module, FGB, and U.S. Laboratory using grab sample canisters (GSCs) and/or formaldehyde badges. An unplanned "first-entry" sample of the MPLM2 (multipurpose logistics module) atmosphere was taken with a GSC, and preflight and end-of-mission samples were obtained from Endeavour using GSCs. Analytical methods have not changed from earlier reports, and all quality control measures were met for the data presented herein. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contribution). Because of the Freon 218 (octafluoropropane, OFP) leak, its contribution to the NMVOC is indicated in brackets. When comparing the NMVOC values with the 25 mg/cubic m guideline, the OFP contributions should be subtracted. Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols were also assessed in each sample.
40 CFR 721.3807 - Formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Formaldehyde, polymer with phenol and... Significant New Uses for Specific Chemical Substances § 721.3807 Formaldehyde, polymer with phenol and 1,2,3... chemical substance identified as formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated (PMN...
40 CFR 721.3807 - Formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Formaldehyde, polymer with phenol and... Significant New Uses for Specific Chemical Substances § 721.3807 Formaldehyde, polymer with phenol and 1,2,3... chemical substance identified as formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated (PMN...
Byung-Dae Park; Charles R. Frihart; Yan Yu; Adya P. Singh
2013-01-01
To understand the influence of formaldehyde/urea (F/U) mole ratio on the properties of ureaâformaldehyde (UF) resins, this study investigated hardness of cured UF resins with different F/U mole ratios using a nanoindentation method. The traditional Brinell hardness (HB) method was also used...
40 CFR 721.3807 - Formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Formaldehyde, polymer with phenol and... Significant New Uses for Specific Chemical Substances § 721.3807 Formaldehyde, polymer with phenol and 1,2,3... chemical substance identified as formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated (PMN...
40 CFR 721.3807 - Formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Formaldehyde, polymer with phenol and... Significant New Uses for Specific Chemical Substances § 721.3807 Formaldehyde, polymer with phenol and 1,2,3... chemical substance identified as formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated (PMN...
40 CFR 721.3807 - Formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Formaldehyde, polymer with phenol and... Significant New Uses for Specific Chemical Substances § 721.3807 Formaldehyde, polymer with phenol and 1,2,3... chemical substance identified as formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated (PMN...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Formaldehyde, polymer with 1,3... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10205 Formaldehyde, polymer with 1,3... to reporting. (1) The chemical substance identified as formaldehyde, polymer with 1,3-benzenediol and...
Tomita Bunchiro; Chung-Yun Hse
1995-01-01
The 13C-NMR (carbon 13 nuclear magnetic resonance) spectra of urea-formaldehyde (UF) resins, melamine-formaldehyde (MF) resins, and melamine-urea-formaldehyde (MUF) cocondensed resins synthesized under various conditions were taken with a frequency of 75 MHz. The main purpose was to investigate whether or not the occurrences of cocondensation...
Bunichiro Tomita; Chung-Yun Hse
1995-01-01
The 13C-NMR (carbon 13 nuclear magnetic resonance) spectra of urea-formaldehyde (UF) resins, melamine-formaldehyde (MF) resins, and melamine-urea-formaldehyde (MUF) cocondensed resins synthesized under various conditions were taken with a frequency of 75 MHz. The main purpose was to investigate whether or not the occurrences of cocondensation...
Gypsum-wallboard formaldehyde-sorption model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silberstein, S.
1989-11-01
Gypsum wallboard was shown to absorb formaldehyde in a prototype house and in a measuring chamber, as reported previously by researchers at Oak Ridge National Laboratory (ORNL). Also as reported previously, formaldehyde concentrations attained equilibrium in two phases in response to a change in the air exchange rate or to the removal of the formaldehyde source. A rapid initial phase was followed by a slow phase lasting several days. A formaldehyde sorption model that accounts for the biphasic concentration pattern is presented here. Experiments for testing the predictability of the model are proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnts, R.R.; Tejada, S.B.
1989-01-01
Two versions of the 2,4-dinitrophenylhydrazine method, a coated silica gel cartridge (solid) and acetonitrile impinger (solvent based), were used simultaneously to sample varied concentrations of ozone (0-770 ppb) and formaldehyde (20-140 ppb). Ozone was found to be a negative interference in the determination of formaldehyde by the 2,4-dinitrophenylhydrazine-coated silica gel cartridge method. At 120 ppb of ozone, formaldehyde at 40 ppb was under-reported by the cartridge method by 34% and at 300 ppb of ozone, formaldehyde measurements were 61% low. Greater losses were seen at higher ozone concentrations. Impinger sampling (2,4-DNPH in acetonitrile) showed no formaldehyde losses due to ozone.
Exposures to multiple air toxics in New York City.
Kinney, Patrick L; Chillrud, Steven N; Ramstrom, Sonja; Ross, James; Spengler, John D
2002-01-01
Efforts to assess health risks associated with exposures to multiple urban air toxics have been hampered by the lack of exposure data for people living in urban areas. The TEACH (Toxic Exposure Assessment, a Columbia/Harvard) study was designed to characterize levels of and factors influencing personal exposures to urban air toxics among high school students living in inner-city neighborhoods of New York City and Los Angeles, California. This present article reports methods and data for the New York City phase of TEACH, focusing on the relationships between personal, indoor, and outdoor concentrations in winter and summer among a group of 46 high school students from the A. Philip Randolph Academy, a public high school located in the West Central Harlem section of New York City. Air pollutants monitored included a suite of 17 volatile organic compounds (VOCs) and aldehydes, particulate matter with a mass median aerodynamic diameter
Exposures to multiple air toxics in New York City.
Kinney, Patrick L; Chillrud, Steven N; Ramstrom, Sonja; Ross, James; Spengler, John D
2002-08-01
Efforts to assess health risks associated with exposures to multiple urban air toxics have been hampered by the lack of exposure data for people living in urban areas. The TEACH (Toxic Exposure Assessment, a Columbia/Harvard) study was designed to characterize levels of and factors influencing personal exposures to urban air toxics among high school students living in inner-city neighborhoods of New York City and Los Angeles, California. This present article reports methods and data for the New York City phase of TEACH, focusing on the relationships between personal, indoor, and outdoor concentrations in winter and summer among a group of 46 high school students from the A. Philip Randolph Academy, a public high school located in the West Central Harlem section of New York City. Air pollutants monitored included a suite of 17 volatile organic compounds (VOCs) and aldehydes, particulate matter with a mass median aerodynamic diameter
The effect of an ion generator on indoor air quality in a residential room.
Waring, M S; Siegel, J A
2011-08-01
Ion generators charge particles with a corona prior to their removal on collector plates or indoor surfaces and also emit ozone, which can react with terpenes to yield secondary organic aerosol, carbonyls, carboxylic acids, and free radicals. This study characterized the indoor air quality implications of operating an ion generator in a 27 m(3) residential room, with four different test room configurations. Two room configurations had carpet overlaying the original flooring of stained/sealed concrete, and for one configuration with and without carpet, a plug-in air freshener was used as a terpene source. Measurements included airborne sampling of particulate matter (0.015-20 μm), terpenes and C(1) -C(4) and C(6) -C(10) aldehydes, ozone concentrations, and air exchange rates. When the heating, ventilating, and air-conditioning system was not operating (room air exchange rate = ∼0.5/h), the use of the ion generator in the presence of the air freshener led to a net increase in ultrafine particles (<0.1 μm). Also, increased concentrations of ozone were observed regardless of air freshener presence, as well as increases in formaldehyde and nonanal, albeit within measurement uncertainty in some cases. Thus, it may be prudent to limit ion generator use indoors until evidence of safety can be ascertained. Portable ion generators are intended to clean the air of particles, but they may emit ozone as a byproduct of their operation, which has the potential to degrade indoor air quality. This study showed that under certain conditions in a residential room, the use of a portable ion generator can increase concentrations of ozone and, to a lesser degree, potentially aldehydes. Also, if operated in the presence of a plug-in air freshener that emits terpenes, its use can increase concentrations of secondary organic aerosol in the ultrafine size range. © 2010 John Wiley & Sons A/S.
Xu, Huaizhou; Zhang, Qin; Song, Ninghui; Guo, Min; Zhang, Shenghu; Ji, Guixiang; Shi, Lili
2017-11-01
To evaluate passenger health risks associated with inhalation exposure to carbonyl compounds mainly emitted from decoration materials of vehicles, we tested the carbonyl concentrations in interior air of 20 family cars, 6 metro lines, and 5 buses in the city of Nanjing. To assess non-carcinogenic health risks, we compared the data to the health guidelines of China, US Environmental Protection Agency (EPA), and Office of Environmental Health Hazard Assessment (OEHHA), respectively. To assess carcinogenic risks, we followed a standard approach proposed by the OEHHA to calculate lifetime cancer risks (LCR) of formaldehyde and acetaldehyde for various age groups. The results showed that there are formaldehyde, acetaldehyde, and acrolein concentrations in 40, 35, and 50% of family car samples exceeded the reference concentrations (RfCs) provided by Chinese guidelines (GB/T 27630-2011 and GB/T 18883-2002). Whereas, in the tested public transports, concentrations of the three carbonyls were all below the Chinese RfCs. Fifty and 90% of family cars had formaldehyde and acrolein concentrations exceeding the guidelines of OEHHA. Only one public transport sample (one bus) possesses formaldehyde and acetaldehyde concentrations above the chronic inhalation reference exposure limits (RELs). Furthermore, the assessments of carcinogenic risk of formaldehyde and acetaldehyde showed that lifetime cancer risks were higher than the limits of EPA for some family cars and public transports. In the study, buses and metros appear to be relatively clean environments, with total carbonyl concentrations that do not exceed 126 μg/m 3 . In family cars, carbonyl levels showed significant variations from 6.1 to 811 μg/m 3 that was greatly influenced by direct emissions from materials inside the vehicles. Public transports seemed to be the first choice for resident trips as compared to family cars. Graphical abstract ᅟ.
Asthmatic symptoms and volatile organic compounds, formaldehyde, and carbon dioxide in dwellings.
Norbäck, D; Björnsson, E; Janson, C; Widström, J; Boman, G
1995-01-01
OBJECTIVES--As a part of the worldwide European Community respiratory health survey, possible relations between symptoms of asthma, building characteristics, and indoor concentration of volatile organic compounds (VOCs) in dwellings were studied. METHODS--The study comprised 88 subjects, aged 20-45 years, from the general population in Uppsala, a mid-Swedish urban community, selected by stratified random sampling. Room temperature, air humidity, respirable dust, carbon dioxide (CO2), VOCs, formaldehyde, and house dust mites were measured in the homes of the subjects. They underwent a structured interview, spirometry, peak expiratory flow (PEF) measurements at home, methacholine provocation test for bronchial hyperresponsiveness, and skin prick tests. In addition, serum concentration of eosinophilic cationic protein (S-ECP), blood eosinophil count, and total immunoglobulin E (S-IgE) were measured. RESULTS--Symptoms related to asthma were more common in dwellings with house dust mites, and visible signs of dampness or microbial growth in the building. Significant relations were also found between nocturnal breathlessness and presence of wall to wall carpets, and indoor concentration of CO2, formaldehyde, and VOCs. The formaldehyde concentration exceeded the Swedish limit value for dwellings (100 micrograms/m3) in one building, and CO2 exceeded the recommended limit value of 1000 ppm in 26% of the dwellings, showing insufficient outdoor air supply. Bronchial hyperresponsiveness was related to indoor concentration of limonene, the most prevalent terpene. Variability in PEF was related to two other terpenes; alpha-pinen and delta-karen. CONCLUSION--Our results suggest that indoor VOCs and formaldehyde may cause asthma-like symptoms. There is a need to increase the outdoor air supply in many dwelling, and wall to wall carpeting and dampness in the building should be avoided. Improved indoor environment can also be achieved by selecting building materials, building construction, and indoor activities on the principle that the emission of volatile organic compounds should be as low as reasonably achievable, to minimise symptoms related to asthma due to indoor air pollution. PMID:7627316
Osakabe, Keishi; Tsao, Cheng Chung; Li, Laigeng; Popko, Jacqueline L.; Umezawa, Toshiaki; Carraway, Daniel T.; Smeltzer, Richard H.; Joshi, Chandrashekhar P.; Chiang, Vincent L.
1999-01-01
A central question in lignin biosynthesis is how guaiacyl intermediates are hydroxylated and methylated to the syringyl monolignol in angiosperms. To address this question, we cloned cDNAs encoding a cytochrome P450 monooxygenase (LsM88) and a caffeate O-methyltransferase (COMT) from sweetgum (Liquidambar styraciflua) xylem. Mass spectrometry-based functional analysis of LsM88 in yeast identified it as coniferyl aldehyde 5-hydroxylase (CAld5H). COMT expressed in Escherichia coli methylated 5-hydroxyconiferyl aldehyde to sinapyl aldehyde. Together, CAld5H and COMT converted coniferyl aldehyde to sinapyl aldehyde, suggesting a CAld5H/COMT-mediated pathway from guaiacyl to syringyl monolignol biosynthesis via coniferyl aldehyde that contrasts with the generally accepted route to sinapate via ferulate. Although the CAld5H/COMT enzyme system can mediate the biosynthesis of syringyl monolignol intermediates through either route, kcat/Km of CAld5H for coniferyl aldehyde was ≈140 times greater than that for ferulate. More significantly, when coniferyl aldehyde and ferulate were present together, coniferyl aldehyde was a noncompetitive inhibitor (Ki = 0.59 μM) of ferulate 5-hydroxylation, thereby eliminating the entire reaction sequence from ferulate to sinapate. In contrast, ferulate had no effect on coniferyl aldehyde 5-hydroxylation. 5-Hydroxylation also could not be detected for feruloyl-CoA or coniferyl alcohol. Therefore, in the presence of coniferyl aldehyde, ferulate 5-hydroxylation does not occur, and the syringyl monolignol can be synthesized only from coniferyl aldehyde. Endogenous coniferyl, 5-hydroxyconiferyl, and sinapyl aldehydes were detected, consistent with in vivo operation of the CAld5H/COMT pathway from coniferyl to sinapyl aldehydes via 5-hydroxyconiferyl aldehyde for syringyl monolignol biosynthesis. PMID:10430877
Liu, Chuanjun; Wyszynski, Bartosz; Yatabe, Rui; Hayashi, Kenshi; Toko, Kiyoshi
2017-02-16
The detection and recognition of metabolically derived aldehydes, which have been identified as important products of oxidative stress and biomarkers of cancers; are considered as an effective approach for early cancer detection as well as health status monitoring. Quartz crystal microbalance (QCM) sensor arrays based on molecularly imprinted sol-gel (MISG) materials were developed in this work for highly sensitive detection and highly selective recognition of typical aldehyde vapors including hexanal (HAL); nonanal (NAL) and bezaldehyde (BAL). The MISGs were prepared by a sol-gel procedure using two matrix precursors: tetraethyl orthosilicate (TEOS) and tetrabutoxytitanium (TBOT). Aminopropyltriethoxysilane (APT); diethylaminopropyltrimethoxysilane (EAP) and trimethoxy-phenylsilane (TMP) were added as functional monomers to adjust the imprinting effect of the matrix. Hexanoic acid (HA); nonanoic acid (NA) and benzoic acid (BA) were used as psuedotemplates in view of their analogous structure to the target molecules as well as the strong hydrogen-bonding interaction with the matrix. Totally 13 types of MISGs with different components were prepared and coated on QCM electrodes by spin coating. Their sensing characters towards the three aldehyde vapors with different concentrations were investigated qualitatively. The results demonstrated that the response of individual sensors to each target strongly depended on the matrix precursors; functional monomers and template molecules. An optimization of the 13 MISG materials was carried out based on statistical analysis such as principle component analysis (PCA); multivariate analysis of covariance (MANCOVA) and hierarchical cluster analysis (HCA). The optimized sensor array consisting of five channels showed a high discrimination ability on the aldehyde vapors; which was confirmed by quantitative comparison with a randomly selected array. It was suggested that both the molecularly imprinting (MIP) effect and the matrix effect contributed to the sensitivity and selectivity of the optimized sensor array. The developed MISGs were expected to be promising materials for the detection and recognition of volatile aldehydes contained in exhaled breath or human body odor.
Serrano, Maria; Montesinos, Isabel; Cardador, M J; Silva, Manuel; Gallego, Mercedes
2015-06-01
In this work, we studied a total of 46 regulated and non-regulated disinfection by-products (DBPs) including 10 trihalomethanes (THMs), 13 haloacetic acids (HAAs), 6 halonitromethanes (HNMs), 6 haloacetonitriles (HANs) and 11 aldehydes at different points in a drinking water treatment plant (DWTP) and its distribution network. Determining an increased number of compounds and using accurate, sensitive analytical methodologies for new DBPs can be useful to overcome some challenges encountered in the comprehensive assessment of the quality and safety of drinking water. This paper provides a detailed picture of the spatial and seasonal variability of DBP concentrations from raw water to distribution network. Samples were collected on a monthly basis at seven different points in the four seasons of a year to acquire robust data for DBPs and supplementary quality-related water parameters. Only 5 aldehydes and 2 HAAs were found in raw water. Chlorine dioxide caused the formation of 3 new aldehydes (benzaldehyde included), 5 HAAs and chloroform. The concentrations of DBPs present in raw water were up to 6 times higher in the warmer seasons (spring and summer). The sedimentation process further increased their concentrations and caused the formation of three new ones. Sand filtration substantially removed aldehydes and HAAs (15-50%), but increased the levels of THMs, HNMs and HANs by up to 70%. Chloramination raised the levels of 8 aldehydes and 7 HAAs; also, it caused the formation of monoiodoacetic acid, dibromochloromethane, dichloroiodomethane and bromochloroacetonitrile. Therefore, this treatment increases the levels of existing DBPs and leads to the formation of new ones to a greater extent than does chlorine dioxide. Except for 5 aldehydes, the 23 DBPs encountered at the DWTP exit were found at increased concentrations in the warmer seasons (HAAs by about 50% and THMs by 350%). Copyright © 2015 Elsevier B.V. All rights reserved.
Liu, Chuanjun; Wyszynski, Bartosz; Yatabe, Rui; Hayashi, Kenshi; Toko, Kiyoshi
2017-01-01
The detection and recognition of metabolically derived aldehydes, which have been identified as important products of oxidative stress and biomarkers of cancers; are considered as an effective approach for early cancer detection as well as health status monitoring. Quartz crystal microbalance (QCM) sensor arrays based on molecularly imprinted sol-gel (MISG) materials were developed in this work for highly sensitive detection and highly selective recognition of typical aldehyde vapors including hexanal (HAL); nonanal (NAL) and bezaldehyde (BAL). The MISGs were prepared by a sol-gel procedure using two matrix precursors: tetraethyl orthosilicate (TEOS) and tetrabutoxytitanium (TBOT). Aminopropyltriethoxysilane (APT); diethylaminopropyltrimethoxysilane (EAP) and trimethoxy-phenylsilane (TMP) were added as functional monomers to adjust the imprinting effect of the matrix. Hexanoic acid (HA); nonanoic acid (NA) and benzoic acid (BA) were used as psuedotemplates in view of their analogous structure to the target molecules as well as the strong hydrogen-bonding interaction with the matrix. Totally 13 types of MISGs with different components were prepared and coated on QCM electrodes by spin coating. Their sensing characters towards the three aldehyde vapors with different concentrations were investigated qualitatively. The results demonstrated that the response of individual sensors to each target strongly depended on the matrix precursors; functional monomers and template molecules. An optimization of the 13 MISG materials was carried out based on statistical analysis such as principle component analysis (PCA); multivariate analysis of covariance (MANCOVA) and hierarchical cluster analysis (HCA). The optimized sensor array consisting of five channels showed a high discrimination ability on the aldehyde vapors; which was confirmed by quantitative comparison with a randomly selected array. It was suggested that both the molecularly imprinting (MIP) effect and the matrix effect contributed to the sensitivity and selectivity of the optimized sensor array. The developed MISGs were expected to be promising materials for the detection and recognition of volatile aldehydes contained in exhaled breath or human body odor. PMID:28212347
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noda, Taichi; Department of Dermatology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521; Takahashi, Akihisa
2011-01-07
The role of the Fanconi anemia (FA) repair pathway for DNA damage induced by formaldehyde was examined in the work described here. The following cell types were used: mouse embryonic fibroblast cell lines FANCA{sup -/-}, FANCC{sup -/-}, FANCA{sup -/-}C{sup -/-}, FANCD2{sup -/-} and their parental cells, the Chinese hamster cell lines FANCD1 mutant (mt), FANCGmt, their revertant cells, and the corresponding wild-type (wt) cells. Cell survival rates were determined with colony formation assays after formaldehyde treatment. DNA double strand breaks (DSBs) were detected with an immunocytochemical {gamma}H2AX-staining assay. Although the sensitivity of FANCA{sup -/-}, FANCC{sup -/-} and FANCA{sup -/-}C{sup -/-}more » cells to formaldehyde was comparable to that of proficient cells, FANCD1mt, FANCGmt and FANCD2{sup -/-} cells were more sensitive to formaldehyde than the corresponding proficient cells. It was found that homologous recombination (HR) repair was induced by formaldehyde. In addition, {gamma}H2AX foci in FANCD1mt cells persisted for longer times than in FANCD1wt cells. These findings suggest that formaldehyde-induced DSBs are repaired by HR through the FA repair pathway which is independent of the FA nuclear core complex. -- Research highlights: {yields} We examined to clarify the repair pathways of formaldehyde-induced DNA damage. Formaldehyde induces DNA double strand breaks (DSBs). {yields} DSBs are repaired through the Fanconi anemia (FA) repair pathway. {yields} This pathway is independent of the FA nuclear core complex. {yields} We also found that homologous recombination repair was induced by formaldehyde.« less
Zhai, L; Zhao, J; Xu, B; Deng, Y; Xu, Z
2013-03-01
The decoration of interior spaces can lead to dangerous levels of indoor formaldehyde pollution. Exposure to indoor air pollution may be responsible for nearly 2 million deaths per year in developing countries. To assess the prevalence of indoor formaldehyde pollution caused by decoration and resultant respiratory system symptoms exhibited in exposed adults and children, due to indoor formaldehyde pollution caused by decoration. Survey sites were chosen and indoor formaldehyde concentrations determined according to the standard of formaldehyde in GB50325-2001. Logistic regression models were used to derive odds ratios (ORs) and 95% confidence intervals (95% CIs) after adjusting for potential confounders for this survey. Formaldehyde concentration was above the standard in 64% of Shenyang City. Some adults surveyed complained of common respiratory system disorders, including coughing (11.8%), nasal irritation (39.2%), Heterosmia (14.51%), and throat irritation (25.27%); 12% of children suffered from asthma. The analysis identified formaldehyde pollution and ventilation frequency as risk factors for respiratory system disorders in both adults (OR=2.603, [95% CI: 1.770-3.828], OR=1.604, [95% CI: 1.146-2.244], respectively) and children (OR=4.250, [2.064-8.753], OR=1.831, [1.006-3.333], respectively). The prevalence of common respiratory system disorders was related both to formaldehyde pollution and insufficient ventilation after decorating.
Mundt, Kenneth A; Gentry, P Robinan; Dell, Linda D; Rodricks, Joseph V; Boffetta, Paolo
2018-02-01
Shortly after the International Agency for Research on Cancer (IARC) determined that formaldehyde causes leukemia, the United States Environmental Protection Agency (EPA) released its Draft IRIS Toxicological Review of Formaldehyde ("Draft IRIS Assessment"), also concluding that formaldehyde causes leukemia. Peer review of the Draft IRIS Assessment by a National Academy of Science committee noted that "causal determinations are not supported by the narrative provided in the draft" (NRC 2011). They offered recommendations for improving the Draft IRIS assessment and identified several important research gaps. Over the six years since the NRC peer review, significant new science has been published. We identify and summarize key recommendations made by NRC and map them to this new science, including extended analysis of epidemiological studies, updates of earlier occupational cohort studies, toxicological experiments using a sensitive mouse strain, mechanistic studies examining the role of exogenous versus endogenous formaldehyde in bone marrow, and several critical reviews. With few exceptions, new findings are consistently negative, and integration of all available evidence challenges the earlier conclusions that formaldehyde causes leukemia. Given formaldehyde's commercial importance, environmental ubiquity and endogenous production, accurate hazard classification and risk evaluation of whether exposure to formaldehyde from occupational, residential and consumer products causes leukemia are critical. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Lu, Kun; Craft, Sessaly; Nakamura, Jun; Moeller, Benjamin C.; Swenberg, James A.
2012-01-01
Formaldehyde is a known human and animal carcinogen that forms DNA adducts, and causes mutations. While there is widespread exposure to formaldehyde in the environment, formaldehyde is also an essential biochemical in all living cells. The presence of both endogenous and exogenous sources of formaldehyde makes it difficult to develop exposure-specific DNA biomarkers. Furthermore, chemicals such as nitrosodimethylamine form one mole of formaldehyde for every mole of methylating agent, raising questions about potential co-carcinogenesis. Formaldehyde-induced hydroxymethyl DNA adducts are not stable and need to be reduced to stable methyl adducts for detection, which adds another layer of complexity to identifying the origins of these adducts. In this study, highly sensitive mass spectrometry methods and isotope labeled compounds were used to differentiate between endogenous and exogenous hydroxymethyl and methyl DNA adducts. We demonstrate that N2-hydroxymethyl-dG is the primary DNA adduct formed in cells following formaldehyde exposure. In addition, we show that alkylating agents induce methyl adducts at N2-dG and N6-dA positions, which are identical to the reduced forms of hydroxymethyl adducts arising from formaldehyde. The use of highly sensitive LC-MS/MS and isotope labeled compounds for exposure solves these challenges and provides mechanistic insights on the formation and role of these DNA adducts. PMID:22148432
Synthesis of phenol-urea-formaldehyde cocondensed resins from UF-concentrate and phenol
Bunchiro Tomita; Mashiko Ohyama; Chung-Yun Hse
1994-01-01
A new synthetic method to obtain phenol-urea-formaldehyde cocondensed resins was developed by reacting phenol with "UF-concentrate", which is a kind of urea-formaldehyde (UF) resin prepared with a high molar ratio of formaldehyde to urea (F/U) such as above 2.5. The products were analyzed with 13C-NMR spectroscopy and gel permeation...
IRIS Toxicological Review of Formaldehyde (Inhalation) ...
UPDATE EPA is currently revising its Integrated Risk Information System (IRIS) assessment of formaldehyde to address the 2011 NAS peer review recommendations. This assessment addresses both noncancer and cancer human health effects that are relevant to assessing the risks from chronic inhalation exposure to formaldehyde. To facilitate discussion of several scientific issues pertinent to the assessment, EPA convened a state-of-the-science workshop on April 30 and May 1, 2014. This workshop focused on the following three themes: Evidence pertaining to the influence of formaldehyde that is produced endogenously (by the body during normal biological processes) on the toxicity of inhaled formaldehyde, and implications for the health assessment; Mechanistic evidence relevant to formaldehyde inhalation exposure and lymphohematopoietic cancers (leukemia and lymphomas); and Epidemiological research examining the potential association between formaldehyde exposure and lymphohematopoietic cancers (leukemia and lymphomas). June 2010: EPA is conducting an independent expert peer review by the National Academy of Sciences and public comment of the scientific basis supporting the human health hazard and dose-response assessment of Formaldehyde-Inhalation that when finalized will appear on the Integrated Risk Information System (IRIS) database. This draft IRIS health assessment addresses both noncancer and cancer human health effects that may result from chronic inhal
Quantification of atmospheric formaldehyde by infrared absorption spectroscopy
NASA Astrophysics Data System (ADS)
Hoffnagle, John; Fleck, Derek; Rella, Chris; Kim-Hak, David
2017-04-01
Formaldehyde is a toxic, carcinogenic compound that can contaminate ambient air as a result of combustion or outgassing of commercial products such as adhesives used to fabricate plywood and to affix indoor carpeting. Like many small molecules, formaldehyde has an infrared absorption spectrum exhibiting bands of ro-vibrational transitions that are well resolved at low pressure and therefore well suited for optical analysis of formaldehyde concentration. We describe progress in applying cavity ring-down spectroscopy of the 2v5 band (the first overtone of the asymmetric C-H stretch, origin at 1770 nm) to the quantitative analysis of formaldehyde concentration in ambient air. Preliminary results suggest that a sensitivity of 1-2 ppb in a measurement interval of a few seconds, and 0.1-0.2 ppb in a few minutes, should be achievable with a compact, robust, and field-deployable instrument. Finally, we note that recent satellites monitoring snapshots of formaldehyde columns give insights into global formaldehyde production, migration and lifetime. The ability to monitor formaldehyde with a small and portable analyzer has the potential to aid in validation of these snapshots and to provide complementary data to show vertical dispersions with high spatial accuracy.
Zhu, Min; Carvalho, Regina; Scher, Aubrey; Wu, Christine D
2011-01-01
The present study investigated the short-term germ-killing effect of sugar-sweetened cinnamon chewing gum on total and H2S-producing salivary anaerobes. Fifteen healthy adult subjects were recruited in the double-blind, crossover clinical study. The three test chewing gums included: 1) sugared chewing gum containing cinnamic aldehyde and natural flavors (CinA+); 2) sugared chewing gum without cinnamic aldehyde but with natural flavors (CinA-); and 3) non-sugared chewing gum base (GB) without any flavors and without cinnamic aldehyde. A three-day "washout" period followed each treatment. Each subject chewed gum under supervision for 20 minutes at 60 chews/minute. Unstimulated whole saliva samples were collected before the subjects chewed the gum and at 20 minutes after expectoration of the gum. All saliva samples were serially diluted, plated on blood agar or agar plates that select for bacteria producing H2S, incubated anaerobically for three days, and enumerated for viable colony counts of total and H2S-producing salivary anaerobes. Significant reductions in total salivary anaerobes (p < 0.01) and H2S-producing salivary anaerobes (p < 0.01) were observed 20 minutes after subjects chewed the CinA+ gum. The chewing of CinA- gum also significantly reduced total salivary anaerobes (p < 0.05) and H2S-producing salivary anaerobes (p < 0.05). However, no statistically significant difference in germ-killing effect was detected between the CinA+ and CinA- gums, although there was a numeric difference. The chewing of a gum base (GB) alone did not result in a significant reduction in the total or H2S-producing salivary anaerobes (p > 0.05). The commercially available sugar-sweetened cinnamon chewing gum may benefit halitosis by reducing volatile sulfur compounds producing anaerobes in the oral cavity.
Tang, Zhigang; Wang, Guifang; Xu, Dongqun; Han, Keqin; Li, Yunpu; Zhang, Aijun; Dong, Xiaoyan
2004-09-01
The measuring time and measuring intervals to evaluate different type of air cleaner performance to remove formaldehyde were provided. The natural decay measurement and formaldehyde removal measurement were conducted in 1.5 m3 and 30 m3 test chamber. The natural decay rate was determined by acquiring formaldehyde concentration data at 15 minute intervals for 2.5 hours. The measured decay rate was determined by acquiring formaldehyde concentration data at 5 minute intervals for 1.2 hours. When the wind power of air cleaner is smaller than 30 m3/h or measuring performance of no wind power air clearing product, the 1.5 m3 test chamber can be used. Both the natural decay rate and the measured decay rate are determined by acquiring formaldehyde concentration data at 8 minute intervals for 64 minutes. There were different measuring time and measuring intervals to evaluate different type of air cleaner performance to remove formaldehyde.
Tracking Site-specific C-C Coupling of Formaldehyde Molecules on Rutile TiO2(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Ke; Xia, Yaobiao; Tang, Miru
2015-06-25
Direct imaging of site-specific reactions of individual mole-cules as a function of temperature is a long-sought goal in molecular science. Here, we report the direct visualization of molecular coupling of formaldehyde on reduced rutile TiO2(110) surfaces as we track the same set of molecules when the temperature is increased from 75 to 170 K using scanning tunneling microscope (STM). Our recent study showed that formaldehyde preferably adsorbs on bridging-bonded oxygen (Ob) vacancy (VO) defect site. Herein, images from the same area as the temperature is increased show that VO-bound formaldehyde couples with Ti-bound formaldehyde forming a diolate intermediate. Exposure ofmore » formaldehyde at room temperature leads to diolate as the majority species on the surface and no VO-bound formaldehyde is observed. The diolate species are the key reaction intermediates in the formation of ethylene reported in previous ensemble-averaged studies.« less
Formaldehyde levels in traditional and portable classrooms: A pilot investigation
2015-01-01
This pilot study assessed formaldehyde levels in portable classrooms (PCs) and traditional classrooms (TCs) and explored factors influencing indoor air quality (e.g., carbon dioxide (CO2), temperature, and relative humidity). In a cross-sectional design, we evaluated formaldehyde levels in day and overnight indoor air samples from nine PCs renovated within three years previously and three TCs in a school district in metropolitan Atlanta, Georgia. Formaldehyde levels ranged from 0.0068 to 0.038 ppm. In both type of classrooms, overnight formaldehyde median levels (PCs = 0.018 ppm; TCs = 0.019 ppm) were higher than day formaldehyde median levels (PCs = 0.011 ppm; TCs = 0.016 ppm). CO2 levels measured 470–790 parts per million (ppm) at 7AM and 470–1800 ppm at 4PM. Afternoon medians were higher in TCs (1,400 ppm ) than in PCs (780 ppm). Consistent with previous studies, formaldehyde levels were similar among PCs and TCs. Reducing CO2 levels by improving ventilation is recommended for classrooms. PMID:27197349
Ventilation in homes infested by house-dust mites.
Sundell, J; Wickman, M; Pershagen, G; Nordvall, S L
1995-02-01
Thirty single-family homes with either high (> or = 2000 ng/g) or low (< or = 1000 ng/g) house-dust mite (HDM) allergen levels in mattress dust were examined for ventilation, thermal climate, and air quality (formaldehyde and total volatile organic compounds (TVOC). Elevated concentrations of HDM allergen in mattress and floor dust were associated with the difference in absolute humidity between indoor and outdoor air, as well as with low air-change rates of the home, particularly the bedroom. No correlation was found between concentration of TVOC or formaldehyde in bedroom air and HDM allergen concentration. In regions with a cold winter climate, the air-change rate of the home and the infiltration of outdoor air into the bedroom appear to be important for the infestation of HDM.
40 CFR 86.542-90 - Records required.
Code of Federal Regulations, 2013 CFR
2013-07-01
... formaldehyde sampling system. (6) The formaldehyde calibration information from the HPLC standards. (7) The concentration of the HPLC analysis of the test sample (formaldehyde). (q) Additional required records for...
40 CFR 86.542-90 - Records required.
Code of Federal Regulations, 2014 CFR
2014-07-01
... formaldehyde sampling system. (6) The formaldehyde calibration information from the HPLC standards. (7) The concentration of the HPLC analysis of the test sample (formaldehyde). (q) Additional required records for...
40 CFR 86.542-90 - Records required.
Code of Federal Regulations, 2011 CFR
2011-07-01
... formaldehyde sampling system. (6) The formaldehyde calibration information from the HPLC standards. (7) The concentration of the HPLC analysis of the test sample (formaldehyde). (q) Additional required records for...
40 CFR 86.542-90 - Records required.
Code of Federal Regulations, 2012 CFR
2012-07-01
... formaldehyde sampling system. (6) The formaldehyde calibration information from the HPLC standards. (7) The concentration of the HPLC analysis of the test sample (formaldehyde). (q) Additional required records for...
Ghandi, Mehdi; Salimi, Farshid; Olyaei, Abolfazl
2006-07-26
The acid-catalyzed cyclocondensation of N,N'-bisaryl (aryl = 2-pyrimidinyl, 2-pyrazinyl and 4-nitrophenyl) methanediamines 5a-c with aqueous formaldehyde in refluxing acetonitrile leads to the formation of the corresponding 1,3,5-triaryl-1,3,5-hexa-hydrotriazines 6a-c. The stoichiometric reactions of 2-aminopyrimidine and 2-amino-pyrazine with aqueous formaldehyde in acetonitrile under reflux conditions also afforded 6a and 6b, respectively. Treatment of 2-aminopyrimidine with aqueous formaldehyde in a 3:2 ratio yielded N,N',N"-tris(2-pyrimidinyl)dimethylenetriamine (7a) as a sole product, which upon subsequent reaction with formaldehyde also afforded 6a. The reaction of N,N'-biphenylmethanediamine with formaldehyde was also investigated.
ALDEHYDE DEHYDROGENASES EXPRESSION DURING POSTNATAL DEVELOPMENT: LIVER VS. LUNG
Aldehydes are highly reactive molecules present in the environment, and can be produced during biotransformation of xenobiotics. Although the lung can be a major target for aldehyde toxicity, development of aldehyde dehydrogenases (ALDHs), which detoxify aldehydes, in lung has be...
[Characteristics of organic pollutants in the sediments from a typical electronics industrial zone].
Liu, Jin; Deng, Dai-Yong; Xu, Mei-Ying; Sun, Guo-Ping
2013-03-01
In order to investigate the contamination status of organic pollutants in a river of a typical electrical equipment industrial area, Ronggui, Foshan, the sediments were sampled for the composition, concentration and occurrence analysis of organic pollutants. The polar and non-polar fractionation methods were employed for the fingerprint establishment of organic pollutants. One hundred and seventy-one of organic chemicals including ten categories of alkanes, alkenes, polycyclic aromatic hydrocarbons, benzene, heterocyclic compounds, phthalate esters, aldehydes, ketones, polar compounds, silicon-containing material as well as alkyl esters were examined. The number of different categories of the detected organic pollutants in a descending order was: alkanes > polar compounds > polycyclic aromatic hydrocarbons > aldehydes and ketones > heterocyclic compounds > benzene homologues, phthalate ester > alkyl esters > silicon material > olefins. The abundance of detected organic pollutants in a descending order was: alkanes > polar compounds > alkyl esters > olefins > polycyclic aromatic hydrocarbons > phthalates > silicon material > aldehydes and ketones > heterocyclic compounds > benzene homologues. Among the 51 kinds of alkanes detected, nonadecane accounted for 14.83%, and the persistent organic pollutants accounted for 2.33% of the total organic matter. Compared to similar studies, there were 51 kinds of alkanes and they accounted for 55.5% of the total organic chemicals, showing high diversity and abundance. In addition, some electronics industry-related organic pollutants such as silicone materials were also detected in high frequency.
Formaldehyde: a chemical of concern in the vicinity of MBT plants of municipal solid waste.
Vilavert, Lolita; Figueras, María J; Schuhmacher, Marta; Nadal, Martí; Domingo, José L
2014-08-01
The mechanical-biological treatment (MBT) of municipal solid waste (MSW) has a number of advantages in comparison to other MSW management possibilities. However, adverse health effects related to this practice are not well known yet, as a varied typology of microbiological and chemical agents may be generated and released. In 2010, we initiated an environmental monitoring program to control air levels of volatile organic compounds (VOCs) and microbiological pollutants near an MBT plant in Montcada i Reixac (Catalonia, Spain). In order to assess any temporal and seasonal trends, four 6-monthly campaigns were performed. Important fluctuations were observed in the levels of different biological indicators (total and Gram-negative bacteria, fungi grown at 25 °C and 37 °C, and more specifically, Aspergillus fumigatus). Although overall bioaerosols concentrations were rather low, a certain increase in the mean values of bacteria and fungi was observed in summer. In contrast, higher concentrations of VOCs were found in winter, with the only exception of formaldehyde. Interestingly, although this compound was not detected in one of the sampling campaigns, current airborne levels of formaldehyde were higher than those previously reported in urban areas across Europe. Furthermore, the non-carcinogenic risks (Hazard Quotient), particularly in winter, as well as the cancer risks associated with the inhalation of VOCs, exceeded the threshold values (1 and 10(-5), respectively), reaffirming the need of continuing with the monitoring program, with special emphasis on formaldehyde, a carcinogenic/mutagenic substance. Copyright © 2014 Elsevier Inc. All rights reserved.
Melamine-bridged alkyl resorcinol modified urea - formaldehyde resin for bonding hardwood plywood
Chung-Yun Hse; Mitsuo Higuchi
2010-01-01
A powdery product was obtained by the reaction of methylolated melamine with alkyl resorcinols to form melamine-bridged alkyl resorcinols (MARs). The effects of the addition of this powder on the bonding strength and formaldehyde emission of ureaâformaldehyde (UF) resins were investigated. Three types of UF resins with a formaldehyde/urea molar ratio of 1.3 synthesized...
Xie, Xilei; Tang, Fuyan; Shangguan, Xiaoyan; Che, Shiyi; Niu, Jinye; Xiao, Yongsheng; Wang, Xu; Tang, Bo
2017-06-13
Lyso-TPFP presents lysosomal targetability and an acidic pH-activatable response toward formaldehyde. Thus, it exclusively visualizes lysosomal formaldehyde and is immune against it in neutral cytosol and other organelles. In addition, two-photon fluorescence imaging endows Lyso-TPFP with the capability of in situ tracking formaldehyde in live cells and animals.
George E. Myers
1984-01-01
A critical review was made of the literature concerned with how the formaldehyde to urea mole ratio (F/U) affects formaldehyde emission from particleboard and plywood bonded with urea-formaldehyde (UF) adhesives, and how this ratio affects certain other adhesive and board properties. It is difficult to quantify the dependence of various properties on mole ratio or...
Srivastava, Sudhakar; Brychkova, Galina; Yarmolinsky, Dmitry; Soltabayeva, Aigerim; Samani, Talya; Sagi, Moshe
2017-04-01
The Arabidopsis ( Arabidopsis thaliana ) aldehyde oxidases are a multigene family of four oxidases (AAO1-AAO4) that oxidize a variety of aldehydes, among them abscisic aldehyde, which is oxidized to the phytohormone abscisic acid. Toxic aldehydes are generated in plants both under normal conditions and in response to stress. The detoxification of such aldehydes by oxidation is attributed to aldehyde dehydrogenases but never to aldehyde oxidases. The feasibility of the detoxification of aldehydes in siliques via oxidation by AAO4 was demonstrated, first, by its ability to efficiently oxidize an array of aromatic and aliphatic aldehydes, including the reactive carbonyl species (RCS) acrolein, hydroxyl-2-nonenal, and malondialdehyde. Next, exogenous application of several aldehydes to siliques in AAO4 knockout (KO) Arabidopsis plants induced severe tissue damage and enhanced malondialdehyde levels and senescence symptoms, but not in wild-type siliques. Furthermore, abiotic stresses such as dark and ultraviolet C irradiation caused an increase in endogenous RCS and higher expression levels of senescence marker genes, leading to premature senescence of KO siliques, whereas RCS and senescence marker levels in wild-type siliques were hardly affected. Finally, in naturally senesced KO siliques, higher endogenous RCS levels were associated with enhanced senescence molecular markers, chlorophyll degradation, and earlier seed shattering compared with the wild type. The aldehyde-dependent differential generation of superoxide and hydrogen peroxide by AAO4 and the induction of AAO4 expression by hydrogen peroxide shown here suggest a self-amplification mechanism for detoxifying additional reactive aldehydes produced during stress. Taken together, our results indicate that AAO4 plays a critical role in delaying senescence in siliques by catalyzing aldehyde detoxification. © 2017 American Society of Plant Biologists. All Rights Reserved.
Yarmolinsky, Dmitry; Soltabayeva, Aigerim; Samani, Talya
2017-01-01
The Arabidopsis (Arabidopsis thaliana) aldehyde oxidases are a multigene family of four oxidases (AAO1–AAO4) that oxidize a variety of aldehydes, among them abscisic aldehyde, which is oxidized to the phytohormone abscisic acid. Toxic aldehydes are generated in plants both under normal conditions and in response to stress. The detoxification of such aldehydes by oxidation is attributed to aldehyde dehydrogenases but never to aldehyde oxidases. The feasibility of the detoxification of aldehydes in siliques via oxidation by AAO4 was demonstrated, first, by its ability to efficiently oxidize an array of aromatic and aliphatic aldehydes, including the reactive carbonyl species (RCS) acrolein, hydroxyl-2-nonenal, and malondialdehyde. Next, exogenous application of several aldehydes to siliques in AAO4 knockout (KO) Arabidopsis plants induced severe tissue damage and enhanced malondialdehyde levels and senescence symptoms, but not in wild-type siliques. Furthermore, abiotic stresses such as dark and ultraviolet C irradiation caused an increase in endogenous RCS and higher expression levels of senescence marker genes, leading to premature senescence of KO siliques, whereas RCS and senescence marker levels in wild-type siliques were hardly affected. Finally, in naturally senesced KO siliques, higher endogenous RCS levels were associated with enhanced senescence molecular markers, chlorophyll degradation, and earlier seed shattering compared with the wild type. The aldehyde-dependent differential generation of superoxide and hydrogen peroxide by AAO4 and the induction of AAO4 expression by hydrogen peroxide shown here suggest a self-amplification mechanism for detoxifying additional reactive aldehydes produced during stress. Taken together, our results indicate that AAO4 plays a critical role in delaying senescence in siliques by catalyzing aldehyde detoxification. PMID:28188272
Two-carbon homologation of aldehydes and ketones to α,β-unsaturated aldehydes.
Petroski, Richard J; Vermillion, Karl; Cossé, Allard A
2011-06-17
Phosphonate reagents were developed for the two-carbon homologation of aldehydes or ketones to unbranched- or methyl-branched α,β-unsaturated aldehydes. The phosphonate reagents, diethyl methylformyl-2-phosphonate dimethylhydrazone and diethyl ethylformyl-2-phosphonate dimethylhydrazone, contained a protected aldehyde group instead of the usual ester group. A homologation cycle entailed condensation of the reagent with the starting aldehyde, followed by removal of the dimethylhydrazone protective group with a biphasic mixture of 1 M HCl and petroleum ether. This robust two-step process worked with a variety of aldehydes and ketones. Overall isolated yields of unsaturated aldehyde products ranged from 71% to 86% after the condensation and deprotection steps.
Hornshøj, Bettina Høj; Kobbelgaard, Sara; Blakemore, William R; Stapelfeldt, Henrik; Bixler, Harris J; Klinger, Markus
2015-01-01
In 2010 the European Commission placed a limit on the amount of free formaldehyde in carrageenan and processed Eucheuma seaweed (PES) of 5 mg kg(-1). Formaldehyde is not used in carrageenan and PES processing and accordingly one would not expect free formaldehyde to be present in carrageenan and PES. However, surprisingly high levels up to 10 mg kg(-1) have been found using the generally accepted AOAC and Hach tests. These findings are, per proposed reaction pathways, likely due to the formation of formaldehyde when sulphated galactose, the backbone of carrageenan, is hydrolysed with the strong acid used in these conventional tests. In order to minimise the risk of false-positives, which may lead to regulatory non-compliance, a new high-performance liquid chromatography (HPLC) method has been developed. Initially, carrageenan or PES is extracted with 2-propanol and subsequently reacted with 2,4-dinitrophenylhydrazine (DNPH) to form the chromophore formaldehyde-DNPH, which is finally quantified by reversed-phase HPLC with ultraviolet light detection at 355 nm. This method has been found to have a limit of detection of 0.05 mg kg(-1) and a limit of quantification of 0.2 mg kg(-1). Recoveries from samples spiked with known quantities of formaldehyde were 95-107%. Using this more specific technique, 20 samples of carrageenan and PES were tested for formaldehyde. Only one sample had a detectable content of formaldehyde (0.40 mg kg(-1)), thus demonstrating that the formaldehyde content of commercial carrageenan and PES products are well below the European Commission maximum limit of 5 mg kg(-1).
Panoutsopoulos, Georgios I
2006-01-01
3,4-Dimethoxy-2-phenylethylamine is catalyzed to its aldehyde derivative by monoamine oxidase B, but the subsequent oxidation into the corresponding acid has not yet been studied. Oxidation of aromatic aldehydes is catalyzed mainly by aldehyde dehydrogenase and aldehyde oxidase. The present study examines the metabolism of 3,4-dimethoxy-2-phenylethylamine in vitro and in freshly prepared and cryopreserved guinea pig liver slices and the relative contribution of different aldehyde-oxidizing enzymes was estimated by pharmacological means. 3,4-Dimethoxy-2- phenylethylamine was converted into the corresponding aldehyde when incubated with monoamine oxidase and further oxidized into the acid when incubated with both, monoamine oxidase and aldehyde oxidase. In freshly prepared and cryopreserved liver slices, 3,4-dimethoxyphenylacetic acid was the main metabolite of 3,4-dimethoxy-2- phenylethylamine. 3,4-Dimethoxyphenylacetic acid formation was inhibited by 85% from disulfiram (aldehyde dehydrogenase inhibitor) and by 75-80% from isovanillin (aldehyde oxidase inhibitor), whereas allopurinol (xanthine oxidase inhibitor) inhibited acid formation by only 25-30%. 3,4- Dimethoxy-2-phenylethylamine is oxidized mainly to its acid, via 3,4-dimethoxyphenylacetaldehyde, by aldehyde dehydrogenase and aldehyde oxidase with a lower contribution from xanthine oxidase.
VOLATILE ORGANIC CHEMICALS IN 10 PUBLIC-ACCESS BUILDINGS
The U.S. EPA carried out studies of indoor air quality in 10 buildings. Qualitative analysis identified over 200 aromatics, halogens, esters, alcohols, phenols, ethers, ketones, aldehydes, and epoxides, in addition to several hundred aliphatic hydrocarbons. The total organic load...
NMR spectroscopy for assessment of lipid oxidation during frying
USDA-ARS?s Scientific Manuscript database
Except for total polar compounds (TPC), polymerized triacylglycerols (PTAG) and fatty acid composition, most other current standard methods for lipid oxidation detect very small amounts of oxidation products such as hydroperoxides, conjugated dienes, aldehydes, and epoxides. Therefore, amounts of th...
Al-Khayat, Mohammad Ammar; Karabet, Francois; Al-Mardini, Mohammad Amer
2018-01-01
Formaldehyde is a highly reactive impurity that can be found in many pharmaceutical excipients. Trace levels of this impurity may affect drug product stability, safety, efficacy, and performance. A static headspace gas chromatographic method was developed and validated to determine formaldehyde in pharmaceutical excipients after an effective derivatization procedure using acidified ethanol. Diethoxymethane, the derivative of formaldehyde, was then directly analyzed by GC-FID. Despite the simplicity of the developed method, however, it is characterized by its specificity, accuracy, and precision. The limits of detection and quantification of formaldehyde in the samples were of 2.44 and 8.12 µg/g, respectively. This method is characterized by using simple and economic GC-FID technique instead of MS detection, and it is successfully used to analyze formaldehyde in commonly used pharmaceutical excipients. PMID:29686930
Wright, A M; Hoxey, E V; Soper, C J; Davies, D J
1996-03-01
Five strains of Bacillus stearothermophilus have been studied to identify a spore strain to be used as a biological indicator organism for low temperature steam and formaldehyde sterilization. Three strains gave poor reproducibility of batch size and growth index and were discarded. The other two strains gave good reproducibility with a high growth index and gave rise to linear survivor curves when exposed to 5% aqueous formaldehyde. However, only NCIMB 8224 sporulates on a simpler medium and as it was the most resistant to formaldehyde, it was further studied. Tests were carried out in a modified miniclave and factors studied included temperature of the steam and formaldehyde concentration. All studies confirmed the suitability of this strain as a biological indicator organism.
NASA Astrophysics Data System (ADS)
Millage, K.; Galloway, M. M.; De Haan, D. O.
2012-12-01
Atmospheric aerosol can interact with clouds in many ways, often resulting in the redistribution or absorption of solar energy or changes in precipitation efficiency. Secondary organic aerosol (SOA) in particular has been linked to climate change and a reduction in the number and size of cloud particles. The reactions of nitrogen containing compounds (primary amines, amino acids and ammonium sulfate) with carbonyl compounds (such as formaldehyde and glycolaldehyde) are potential sources of SOA. Aerosol containing formaldehyde and nitrogen-containing compounds (glycine, methylamine, arginine, or ammonium sulfate) was generated from buffered solutions (pH 5.4) using a nebulizer. The aerosol was then equilibrated into a chamber containing humid air (82-84% RH), and particle sizes were measured using a SMPS system over a period of 1 hour in order to examine how the size and volume of the aerosol particles changed. Formaldehyde concentrations were varied over multiple experiments. Arginine displayed a trend of increasing relative particle size with increasing formaldehyde concentration. Ammonium sulfate and formaldehyde displayed a decrease in relative particle sizes from 0:1 to 2:1 ratios of formaldehyde to ammonium sulfate, but then an increase in relative particle sizes with increasing amounts of formaldehyde. Similarly, glycine and methylamine initially displayed decreasing relative particle sizes, until reaching a 1:1 ratio of each to formaldehyde at which point the relative particle sizes steadily increased. These effects were likely caused by the evaporation of first-generation imine products.
Monitoring of formaldehyde in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balmat, J.L.; Meadows, G.W.
1985-10-01
Any one of several monitoring methods, depending on requirement and circumstance, can be used to measure employee exposure to formaldehyde. Ordinarily, monitoring at DuPont is performed by sampling with impingers containing 1% aqueous sodium bisulfite or with silica gel tubes. The collected formaldehyde is measured spectrophotometrically after reaction with chromotropic acid. Results from studies on a selected number of formaldehyde monitoring methods reveal that reliable methods are available for area and personnel monitoring over both short term and long term. Accurate results are obtained from short-term monitoring (15 min at 1 L/min) with impingers of formaldehyde concentrations as low asmore » 0.14 ppm. The current studies show that long-term monitoring (8 hr at 0.5 L/min) can be performed accurately at concentrations as low as 0.05 ppm. Accurate results also are obtained from short-term monitoring (15 min at 500 mL/min) with silica gel tubes of concentrations as low as 0.11 ppm formaldehyde. Passive monitors provide the most convenient means of obtaining 8-hour time-weighted average (TWA) data. The Pro-Tek Formaldehyde Badge was demonstrated to reliably monitor formaldehyde concentrations varying from 0-0.5 ppm or 0-3 ppm. Investigation of the Lion Formaldemeter disclosed that instantaneous and accurate (+/- 5%) measurement of formaldehyde in air can be made over a concentration range of 0.3-5 ppm in the absence of other substances that are oxidizable in its fuel cell detector.« less
The Fracture of Thermosetting Resins after Exposure to Water.
1980-09-01
formaldehyde , urea - formaldehyde and melamine - formaldehyde resins , epoxides, unsaturated polyesters, diallyl phthalate resins , furanes and certain kinds...linked phenol- formaldehyde (27) and epoxy resins (22), but some work on the fracture surfaces of polyesters with varying flexibiliser additions has been...AO0-A099 975 KINGSTON POLYTECHNIC KINGSTON UPON THAMES (ENGLAND) F/G 11/9 THE FRACTURE OF THERMOSETTING RESINS AFTER EXPOSURE TO WATER.(U) SEP 80 6
Chung-Yun Hse
2009-01-01
To upgrade the performance of urea-formaldehyde (UF) resin bonded particleboards, melamine modified urea-formaldehyde (MUF) resins based on strong acidic pH catalyzed UF polymers were investigated. The study was conducted in a series of two experiments: 1) formulation of MUF resins based on a UF polymer catalyzed with strong acidic pH and 2) determination of the...
Du, Zhengjian; Mo, Jinhan; Zhang, Yinping
2014-12-01
Over the past three decades, China has experienced rapid urbanization. The risks to its urban population posed by inhalation exposure to hazardous air pollutants (HAPs) have not been well characterized. Here, we summarize recent measurements of 16 highly prevalent HAPs in urban China and compile their distribution inputs. Based on activity patterns of urban Chinese working adults, we derive personal exposures. Using a probabilistic risk assessment method, we determine cancer and non-cancer risks for working females and males. We also assess the uncertainty associated with risk estimates using Monte Carlo simulation, accounting for variations in HAP concentrations, cancer potency factors (CPFs) and inhalation rates. Average total lifetime cancer risks attributable to HAPs are 2.27×10(-4) (2.27 additional cases per 10,000 people exposed) and 2.93×10(-4) for Chinese urban working females and males, respectively. Formaldehyde, 1,4-dichlorobenzene, benzene and 1,3-butadiene are the major risk contributors yielding the highest median cancer risk estimates, >1×10(-5). About 70% of the risk is due to exposures occurring in homes. Outdoor sources contribute most to the risk of benzene, ethylbenzene and carbon tetrachloride, while indoor sources dominate for all other compounds. Chronic exposure limits are not exceeded for non-carcinogenic effects, except for formaldehyde. Risks are overestimated if variation is not accounted for. Sensitivity analyses demonstrate that the major contributors to total variance are range of inhalation rates, CPFs of formaldehyde, 1,4-dichlorobenzene, benzene and 1,3-butadiene, and indoor home concentrations of formaldehyde and benzene. Despite uncertainty, risks exceeding the acceptable benchmark of 1×10(-6) suggest actions to reduce exposures. Future efforts should be directed toward large-scale measurements of air pollutant concentrations, refinement of CPFs and investigation of population exposure parameters. The present study is a first effort to estimate carcinogenic and non-carcinogenic risks of inhalation exposure to HAPs for the large working populations of Chinese cites. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yamauchi, Mitsuo; Noyes, Claudia; Kuboki, Yoshinori; Mechanic, Gerald L.
1982-01-01
A three-chained peptide from type I collagen, crosslinked by hydroxyaldolhistidine, has been isolated from a tryptic digest of 5 M guanidine·HCl-insoluble bovine skin collagen (a small but as yet unknown percentage of the total collagen in whole skin). OsO4/NaIO4 specifically cleaved the crosslink at its double bond into a two-chained crosslink peptide and a single peptide. The sequence of the two-chained peptide containing the bifunctional crosslink was determined after amino acid analysis of the separated peptides. The crosslink consists of an aldehyde derived from hydroxylysine-87 in the aldehyde-containing cyanogen bromide fragment α1CB5ald and an aldehyde derived from the lysine in the COOH-terminal nonhelical region of the α1CB6ald fragment. The α1CB6ald portion of the peptide exhibited structural microheterogeneity, containing the inverted sequence Ala-Lys-His instead of the normal sequence Lys-Ala-His. This indicates that another structural gene exists for α1(I) chain. The original three-chained peptide did not contain any glycosylated hydroxylysine or glycosylated hydroxyaldolhistidine. The lack of glycosylation of hydroxylysine-87 in α1CB5, which is usually glycosylated, allowed formation of the aldehyde, and this, coupled with the sequence inversion, may have allowed formation of the nonreducible crosslink hydroxyaldolhistidine. We suggest that the role of glycosylation, a posttranslational modification, of specific hydroxylysine residues is to prevent their oxidative deamination to aldehydes, thereby precluding formation of complex stable crosslinks. Complex crosslinks would decrease the rate of collagen turnover. The decrease, with time, would increase the population of stable crosslinked collagen molecules, which would eventually accumulate with age. PMID:6961443
27 CFR 24.183 - Use of distillates containing aldehydes.
Code of Federal Regulations, 2013 CFR
2013-04-01
... containing aldehydes. 24.183 Section 24.183 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... distillates containing aldehydes. Distillates containing aldehydes may be received on wine premises for use in... fermentation of wine made from a different kind of fruit. Distillates containing aldehydes which are received...
27 CFR 24.183 - Use of distillates containing aldehydes.
Code of Federal Regulations, 2012 CFR
2012-04-01
... containing aldehydes. 24.183 Section 24.183 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... distillates containing aldehydes. Distillates containing aldehydes may be received on wine premises for use in... fermentation of wine made from a different kind of fruit. Distillates containing aldehydes which are received...
27 CFR 24.183 - Use of distillates containing aldehydes.
Code of Federal Regulations, 2014 CFR
2014-04-01
... containing aldehydes. 24.183 Section 24.183 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... distillates containing aldehydes. Distillates containing aldehydes may be received on wine premises for use in... fermentation of wine made from a different kind of fruit. Distillates containing aldehydes which are received...
27 CFR 24.183 - Use of distillates containing aldehydes.
Code of Federal Regulations, 2011 CFR
2011-04-01
... containing aldehydes. 24.183 Section 24.183 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... distillates containing aldehydes. Distillates containing aldehydes may be received on wine premises for use in... fermentation of wine made from a different kind of fruit. Distillates containing aldehydes which are received...
Optimization of formaldehyde concentration on electroless copper deposition on alumina surface
NASA Astrophysics Data System (ADS)
Shahidin, S. A. M.; Fadil, N. A.; Yusop, M. Zamri; Tamin, M. N.; Osman, S. A.
2018-05-01
The effect of formaldehyde concentration on electroless copper plating on alumina wafer was studied. The main composition of plating bath was copper sulphate (CuSO4) as precursor and formaldehyde as a reducing agent. The copper deposition films were assessed by varying the ratio of CuSO4 and formaldehyde. The plating rate was calculated from the weight gained after plating process whilst the surface morphology was observed by field emission scanning electron microscopy (FESEM). The results show that 1:3 ratio of copper to formaldehyde is an optimum ratio to produce most uniform coating with good adhesion between copper layer and alumina wafer substrate.
The tropospheric distribution of formaldehyde
NASA Astrophysics Data System (ADS)
Lowe, D. C.; Schmidt, U.; Ehhalt, D. H.
1981-12-01
A measurement technique for determining the very low formaldehyde concentrations in clean air is described. The method is based on the standard derivation of formaldehyde with 2,4-dinitrophenylhydrazine. The derivative is separated, using high performance liquid chromatography, and detected at 254 nm with a conventional UV absorption detector. The sampling and analysis technique was used to measure tropospheric mixing ratios at various places in Europe and New Zealand as well as during a cruise in the North and South Atlantic. The results of the measurements show that formaldehyde mixing ratios in clean air are very low. In clean maritime air no significant difference in the formaldehyde mixing ratio between the hemispheres is observed.
Release rate of diazinon from microcapsule based on melamine formaldehyde
NASA Astrophysics Data System (ADS)
Noviana Utami C., S.; Rochmadi
2018-04-01
The microcapsule containing diazinon as the core material and melamine formaldehyde as the membrane material have been synthesized by in situ polymerization method. The microcapsule membrane in this research is melamine formaldehyde (MF). This research aims to study the effect of pH and temperature on the release rate of diazinon from microcapsule based on melamine formaldehyde in aqueous medium. The results showed that pH and temperature has little effect on the release rate of diazinon from microcapsule based on melamine formaldehyde. This is due to the diffusion through the microcapsule membrane is not influenced by the pH and temperature of the solution outside of microcapsule.
Learn about formaldehyde, which can raise your risk of myeloid leukemia and rare cancers of or near the nasal cavity. Formaldehyde is used in pressed-wood building materials, fungicides, germicides, disinfectants, and certain preservatives. Other sources include tobacco smoke and car emissions.
Melamine-formaldehyde aerogels
Pekala, Richard W.
1992-01-01
Organic aerogels that are transparent and essentially colorless are prepa from the aqueous, sol-gel polymerization of melamine with formaldehyde. The melamine-formaldehyde (MF) aerogels have low densities, high surface areas, continuous porsity, ultrafine cell/pore sizes, and optical clarity.
40 CFR 63.2992 - How do I conduct a performance test?
Code of Federal Regulations, 2010 CFR
2010-07-01
... specified free-formaldehyde content that will be used. (2) You must operate at the maximum feasible urea-formaldehyde resin solids application rate (pounds urea-formaldehyde resin solids applied per hour) that will...
Rogers, J V; Choi, Y W; Richter, W R; Rudnicki, D C; Joseph, D W; Sabourin, C L K; Taylor, M L; Chang, J C S
2007-10-01
To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using formaldehyde gas. B. anthracis, B. subtilis, and G. stearothermophilus spores were dried on seven types of indoor surfaces and exposed to approx. 1100 ppm formaldehyde gas for 10 h. Formaldehyde exposure significantly decreased viable B. anthracis, B. subtilis, and G. stearothermophilus spores on all test materials. Significant differences were observed when comparing the reduction in viable spores of B. anthracis with B. subtilis (galvanized metal and painted wallboard paper) and G. stearothermophilus (industrial carpet and painted wallboard paper). Formaldehyde gas inactivated>or=50% of the biological indicators and spore strips (approx. 1x10(6) CFU) when analyzed after 1 and 7 days. Formaldehyde gas significantly reduced the number of viable spores on both porous and nonporous materials in which the two surrogates exhibited similar log reductions to that of B. anthracis on most test materials. These results provide new comparative information for the decontamination of B. anthracis spores with surrogates on indoor surfaces using formaldehyde gas.
Hoshimoto, Yoichi; Ohashi, Masato; Ogoshi, Sensuke
2015-06-16
Chemists no longer doubt the importance of a methodology that could activate and utilize aldehydes in organic syntheses since many products prepared from them support our daily life. Tremendous effort has been devoted to the development of these methods using main-group elements and transition metals. Thus, many organic chemists have used an activator-(aldehyde oxygen) interaction, namely, η(1) coordination, whereby a Lewis or Brønsted acid activates an aldehyde. In the field of coordination chemistry, η(2) coordination of aldehydes to transition metals by coordination of a carbon-oxygen double bond has been well-studied; this activation mode, however, is rarely found in transition-metal catalysis. In view of the distinctive reactivity of an η(2)-aldehyde complex, unprecedented reactions via this intermediate are a distinct possibility. In this Account, we summarize our recent results dealing with nickel(0)-catalyzed transformations of aldehydes via η(2)-aldehyde nickel and oxanickelacycle intermediates. The combination of electron-rich nickel(0) and strong electron-donating N-heterocyclic carbene (NHC) ligands adequately form η(2)-aldehyde complexes in which the aldehyde is highly activated by back-bonding. With Ni(0)/NHC catalysts, processes involving intramolecular hydroacylation of alkenes and homo/cross-dimerization of aldehydes (the Tishchenko reaction) have been developed, and both proceed via the simultaneous η(2) coordination of aldehydes and other π components (alkenes or aldehydes). The results of the mechanistic studies are consistent with a reaction pathway that proceeds via an oxanickelacycle intermediate generated by the oxidative cyclization with a nickel(0) complex. In addition, we have used the η(2)-aldehyde nickel complex as an effective activator for an organosilane in order to generate a silicate reactant. These reactions show 100% atom efficiency, generate no wastes, and are conducted under mild conditions.
Melamine-formaldehyde aerogels
Pekala, R.W.
1992-01-14
Organic aerogels that are transparent and essentially colorless are prepared from the aqueous, sol-gel polymerization of melamine with formaldehyde. The melamine-formaldehyde (MF) aerogels have low densities, high surface areas, continuous porosity, ultrafine cell/pore sizes, and optical clarity. 3 figs.
Effects of reaction pH on properties and performance of urea-formaldehyde resins
Chung-Yun Hse; Zhi-Yuan Xia; Bunchiro Tomita
1994-01-01
Urea formaldehyde resins were formulated with combination variables of three reaction pH (1.0, 4.8, and 8.0) and four molar ratios of formaldehyde to urea (2.5, 3.0, 3.5, and 4.0). The resins were prepared by placing all formaldehyde and water in reaction kettle and pH was adjusted with sulfuric acid and sodium hydroxide, respectively. Urea was added in 15 equal parts...
Baraniak, Z; Nagpal, D S; Neidert, E
1988-01-01
A procedure is presented for the quantitative extraction and determination of formaldehyde in maple sap and syrup. The method is based on the reaction between formaldehyde and 2,4-dinitrophenylhydrazine and determination of the derivative by gas chromatography. The procedure was used to evaluate formaldehyde in saps and syrups of paraformaldehyde implanted trees. Average recoveries were 101.5 +/- 5.7%. The detection limit was 0.078 mg/kg.
Yilmaz, Bilal; Asci, Ali; Kucukoglu, Kaan; Albayrak, Mevlut
2016-08-01
A simple high-performance liquid chromatography method has been developed for the determination of formaldehyde in human tissue. FA Formaldehyde was derivatized with 2,4-dinitrophenylhydrazine. It was extracted from human tissue with ethyl acetate by liquid-liquid extraction and analyzed by high-performance liquid chromatography. The calibration curve was linear in the concentration range of 5.0-200 μg/mL. Intra- and interday precision values for formaldehyde in tissue were <6.9%, and accuracy (relative error) was better than 6.5%. The extraction recoveries of formaldehyde from human tissue were between 88 and 98%. The limits of detection and quantification of formaldehyde were 1.5 and 5.0 μg/mL, respectively. Also, this assay was applied to liver samples taken from a biopsy material. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of electric field on adsorption of formaldehyde by β-cellobiose in micro-scale
NASA Astrophysics Data System (ADS)
Xu, Bo; Chen, Zhenqian
2018-05-01
To provide a microcosmic theoretical support for the reduction of formaldehyde in building material by the effect of electric fields, the adsorption between formaldehyde molecule and β-cellobiose was studied by density function theory (DFT). Details of geometric structures, molecule bonds and adsorption energy were discussed respectively. The obtained results indicated the energy of formaldehyde molecule decreased while the energy of β-cellobiose increased with greater electric intensity. In addition, the adsorption energy between formaldehyde molecule and β-cellobiose was greatly influenced by external electric field. The adsorption energy reduced gradually with greater electric intensity, and the changing curve of adsorption energy could be fitted as an exponential function, verified by the experiment. The results of this study confirmed the external electric field would be a good strategy for decreasing formaldehyde within building materials in the microcosmic view.
Level of endogenous formaldehyde in maple syrup as determined by spectrofluorimetry.
Lagacé, Luc; Guay, Stéphane; Martin, Nathalie
2003-01-01
The level of endogenous formaldehyde in maple syrup was established from a large number (n = 300) of authentic maple syrup samples collected during 2000 and 2001 in the province of Quebec, Canada. The average level of formaldehyde from these authentic samples was measured at 0.18 mg/kg in 2000 and 0.28 mg/kg in 2001, which is lower than previously published. These average values can be attributed to the improved spectrofluorimetric method used for the determination. However, the formaldehyde values obtained demonstrate a relatively large distribution with maximums observed at 1.04 and 1.54 mg/kg. These values are still under the maximum tolerance level of 2.0 mg/kg paraformaldehyde pesticide residue. Extensive heat treatment of maple syrup samples greatly enhanced the formaldehyde concentration of the samples, suggesting that extensive heat degradation of the sap constituents during evaporation could be responsible for the highest formaldehyde values in maple syrup.
Contribution of formaldehyde to respiratory cancer.
Nelson, N; Levine, R J; Albert, R E; Blair, A E; Griesemer, R A; Landrigan, P J; Stayner, L T; Swenberg, J A
1986-01-01
This article reviews the available data on the carcinogenicity of formaldehyde from experimental and epidemiologic studies and makes recommendations for further research. Two definitive chronic inhalation bioassays on rodents have demonstrated that formaldehyde produces nasal cancer in rats and mice at 14 ppm and in rats at 6 ppm, which is within the domain of present permissible human exposure (8-hr time-weighted average of 3 ppm, a 5 ppm ceiling, and a 10 ppm short-term exposure limit). Biochemical and physiologic studies in rats have shown that inhaled formaldehyde can depress respiration, inhibit mucociliary clearance, stimulate cell proliferation, and crosslink DNA and protein in the nasal mucosa. No deaths from nasal cancer have been reported in epidemiologic studies of cohorts exposed to formaldehyde, but three case-control studies suggest the possibility of increased risk. Although excesses of lung cancer deaths have been observed in some studies at industrial plants with formaldehyde exposure, uncertainties in interpretation limit the evaluation of these findings. Excess cancers of the brain and of lymphatic and hematopoietic tissues have been reported in certain studies of industrial groups and in most studies of formaldehyde-exposed professionals, but whether these excesses are related to formaldehyde exposure is not known. Several properties of formaldehyde pose unique problems for future research: the mechanisms responsible for its nonlinear response; its probable mechanism of carcinogenic action as a cross-linking agent; its formation in tissues as a normal metabolite; its possible action as a promoter and/or a cocarcinogen; and the importance of glutathione as a host defense at low exposure. PMID:3830109
Evaluation of phototoxic properties of fragrances.
Placzek, Marianne; Frömel, Wolfgang; Eberlein, Bernadette; Gilbertz, Klaus-Peter; Przybilla, Bernhard
2007-01-01
Fragrances are widely used in topical formulations and can cause photoallergic or phototoxic reactions. To identify phototoxic effects, 43 fragrances were evaluated in vitro with a photohaemolysis test using suspensions of human erythrocytes exposed to radiation sources rich in ultraviolet (UV) A or B in the presence of the test compounds. Haemolysis was measured by reading the absorbance values, and photohaemolysis was calculated as a percentage of total haemolysis. Oakmoss caused photohaemolysis of up to 100% with radiation rich in UVA and up to 26% with radiation rich in UVB. Moderate UVA-induced haemolysis (5-11%) was found with benzyl alcohol, bergamot oil, costus root oil, lime oil, orange oil, alpha-amyl cinnamic aldehyde and laurel leaf oil. Moderate UVB-induced haemolysis was induced by hydroxy citronellal, cinnamic alcohol, cinnamic aldehyde, alpha-amyl cinnamic aldehyde and laurel leaf oil. The phototoxic effects depended on the concentration of the compounds and the UV doses administered. We conclude that some, but not all, fragrances exert phototoxic effects in vitro. Assessment of the correlation of the clinical effects of these findings could lead to improved protection of the skin from noxious compounds.
10 CFR 26.161 - Cutoff levels for validity testing.
Code of Federal Regulations, 2012 CFR
2012-01-01
... aliquot; (5) The presence of glutaraldehyde is verified using either an aldehyde test (aldehyde present... glutaraldehyde is determined using the same aldehyde test (aldehyde present) or the characteristic immunoassay...
10 CFR 26.161 - Cutoff levels for validity testing.
Code of Federal Regulations, 2013 CFR
2013-01-01
... aliquot; (5) The presence of glutaraldehyde is verified using either an aldehyde test (aldehyde present... glutaraldehyde is determined using the same aldehyde test (aldehyde present) or the characteristic immunoassay...
10 CFR 26.161 - Cutoff levels for validity testing.
Code of Federal Regulations, 2014 CFR
2014-01-01
... aliquot; (5) The presence of glutaraldehyde is verified using either an aldehyde test (aldehyde present... glutaraldehyde is determined using the same aldehyde test (aldehyde present) or the characteristic immunoassay...
10 CFR 26.161 - Cutoff levels for validity testing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... aliquot; (5) The presence of glutaraldehyde is verified using either an aldehyde test (aldehyde present... glutaraldehyde is determined using the same aldehyde test (aldehyde present) or the characteristic immunoassay...
10 CFR 26.161 - Cutoff levels for validity testing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... aliquot; (5) The presence of glutaraldehyde is verified using either an aldehyde test (aldehyde present... glutaraldehyde is determined using the same aldehyde test (aldehyde present) or the characteristic immunoassay...
Porphinogen Formation from the Co-Oligomerization of Formaldehyde and Pyrrole: Free Energy Pathways.
Kua, Jeremy; Loli, Helen
2017-10-26
We have investigated the nonoxidative stepwise co-oligomerization of formaldehyde and pyrrole to form porphinogen using density functional theory calculations that include free energy corrections. While the addition of formaldehyde to the pyrrole nitrogen is kinetically favored, thermodynamics suggest that this reaction is reversible in aqueous solution. The more thermodynamically favorable addition of formaldehyde to the ortho-carbon of pyrrole begins a stepwise process, forming dipyrromethane via an azafulvene intermediate. Subsequent additions of formaldehyde and pyrrole lead to bilanes (linear tetrapyrroles), which favorably cyclize to form porphinogen. Porphinogen is a precursor to porphin, the simplest unsubstituted porphyrin that could have played a role in primitive metabolism at the origin of life.
Formaldehyde cross-linking and structural proteomics: Bridging the gap.
Srinivasa, Savita; Ding, Xuan; Kast, Juergen
2015-11-01
Proteins are dynamic entities constantly moving and altering their structures based on their functions and interactions inside and outside the cell. Formaldehyde cross-linking combined with mass spectrometry can accurately capture interactions of these rapidly changing biomolecules while maintaining their physiological surroundings. Even with its numerous established uses in biology and compatibility with mass spectrometry, formaldehyde has not yet been applied in structural proteomics. However, formaldehyde cross-linking is moving toward analyzing tertiary structure, which conventional cross-linkers have already accomplished. The purpose of this review is to describe the potential of formaldehyde cross-linking in structural proteomics by highlighting its applications, characteristics and current status in the field. Copyright © 2015 Elsevier Inc. All rights reserved.
Deodorants: an experimental provocation study with cinnamic aldehyde.
Bruze, Magnus; Johansen, J D; Andersen, K E; Frosch, P; Lepoittevin, J-P; Rastogi, S; Wakelin, S; White, I; Menné, T
2003-02-01
Axillary dermatitis is common and overrepresented in individuals with contact allergy to fragrances. Many individuals suspect their deodorants to be the incriminating products. Our aim was to investigate the significance of cinnamic aldehyde in deodorants for the development of axillary dermatitis when used by individuals with and without contact allergy to cinnamic aldehyde. Patch tests with deodorants and ethanol solutions with cinnamic aldehyde, and repeated open application tests with roll-on deodorants without and with cinnamic aldehyde at different concentrations, were performed in 37 patients with dermatitis, 20 without and 17 with contact allergy to cinnamic aldehyde. A repeated open application test with positive findings was noted only in patients hypersensitive to cinnamic aldehyde (P <.001) and only in the axilla to which the deodorants containing cinnamic aldehyde had been applied (P <.001). Deodorants containing cinnamic aldehyde in the concentration range 0.01% to 0.32%, used twice daily on healthy skin, can elicit axillary dermatitis within a few weeks.
Li, Li Jun; Hong, Peng; Chen, Feng; Sun, Hao; Yang, Yuan Fan; Yu, Xiang; Huang, Gao Ling; Wu, Li Ming; Ni, Hui
2016-06-22
Aldehydes are key aroma contributors of citrus essential oils. White Guanxi honey pummelo essential oil (WPEO) was investigated in its aldehyde constituents and their transformations induced by UV irradiation and air exposure by GC-MS, GC-O, and sensory evaluation. Nine aldehydes, i.e., octanal, nonanal, citronellal, decanal, trans-citral, cis-citral, perilla aldehyde, dodecanal, and dodecenal, were detected in WPEO. After treatment, the content of citronellal increased, but the concentrations of other aldehydes decreased. The aliphatic aldehydes were transformed to organic acids. Citral was transformed to neric acid, geranic acid, and cyclocitral. Aldehyde transformation caused a remarkable decrease in the minty, herbaceous, and lemon notes of WPEO. In fresh WPEO, β-myrcene, d-limonene, octanal, decanal, cis-citral, trans-citral, and dodecenal had the highest odor dilution folds. After the treatment, the dilution folds of decanal, cis-citral, trans-citral, and dodecenal decreased dramatically. This result provides information for the production and storage of aldehyde-containing products.
Al Lawati, Haider A J; Al Mughairy, Baqia; Al Lawati, Iman; Suliman, FakhrEldin O
2018-04-30
A novel mixing approach was utilized with a highly sensitive chemiluminescence (CL) method to determine the total phenolic content (TPC) in honey samples using an acidic potassium permanganate-formaldehyde system. The mixing approach was based on exploiting the mixing efficiency of nanodroplets generated in a microfluidic platform. Careful optimization of the instrument setup and various experimental conditions were employed to obtain excellent sensitivity. The mixing efficiency of the droplets was compared with the CL signal intensity obtained using the common serpentine chip design, with both approaches using at a total flow rate of 15 μl min -1 ; the results showed that the nanodroplets provided 600% higher CL signal intensity at this low flow rate. Using the optimum conditions, calibration equations, limits of detection (LOD) and limits of quantification (LOQ) for gallic acid (GA), caffeic acid (CA), kaempferol (KAM), quercetin (QRC) and catechin (CAT) were obtained. The LOD ranged from 6.2 ppb for CA to 11.0 ppb for QRC. Finally, the method was applied for the determination of TPC in several local and commercial honey samples. Copyright © 2018 John Wiley & Sons, Ltd.
Factsheet -- EPA’s Rule to Implement the Formaldehyde Standards for Composite Wood Products Act
This factsheet explains EPA's final rule to implement the Formaldehyde Standards for Composite Wood Products Act and reduce exposure to formaldehyde vapors from certain wood products produced domestically or imported into the United States.
We would like to comment on the paper by Crump et al. (2008), ‘Sensitivity analysis of biologically motivated model for formaldehyde-induced respiratory cancer in humans’. We are authors of the formaldehyde cancer risk assessment described in Conolly et al. (2003, 2004) that is t...
Formation, Accumulation, and Hydrolysis of Endogenous and Exogenous Formaldehyde-Induced DNA Damage
Yu, Rui; Lai, Yongquan; Hartwell, Hadley J.; Moeller, Benjamin C.; Doyle-Eisele, Melanie; Kracko, Dean; Bodnar, Wanda M.; Starr, Thomas B.; Swenberg, James A.
2015-01-01
Formaldehyde is not only a widely used chemical with well-known carcinogenicity but is also a normal metabolite of living cells. It thus poses unique challenges for understanding risks associated with exposure. N2-hydroxymethyl-dG (N2-HOMe-dG) is the main formaldehyde-induced DNA mono-adduct, which together with DNA-protein crosslinks (DPCs) and toxicity-induced cell proliferation, play important roles in a mutagenic mode of action for cancer. In this study, N2-HOMe-dG was shown to be an excellent biomarker for direct adduction of formaldehyde to DNA and the hydrolysis of DPCs. The use of inhaled [13CD2]-formaldehyde exposures of rats and primates coupled with ultrasensitive nano ultra performance liquid chromatography-tandem mass spectrometry permitted accurate determinations of endogenous and exogenous formaldehyde DNA damage. The results show that inhaled formaldehyde only reached rat and monkey noses, but not tissues distant to the site of initial contact. The amounts of exogenous adducts were remarkably lower than those of endogenous adducts in exposed nasal epithelium. Moreover, exogenous adducts accumulated in rat nasal epithelium over the 28-days exposure to reach steady-state concentrations, followed by elimination with a half-life (t1/2) of 7.1 days. Additionally, we examined artifact formation during DNA preparation to ensure the accuracy of nonlabeled N2-HOMe-dG measurements. These novel findings provide critical new data for understanding major issues identified by the National Research Council Review of the 2010 Environmental Protection Agency’s Draft Integrated Risk Information System Formaldehyde Risk Assessment. They support a data-driven need for reflection on whether risks have been overestimated for inhaled formaldehyde, whereas underappreciating endogenous formaldehyde as the primary source of exposure that results in bone marrow toxicity and leukemia in susceptible humans and rodents deficient in DNA repair. PMID:25904104
Backe, Will J
2017-06-30
New legislation in the state of Minnesota prohibits the sale of children's personal-care products (PCPs) that contain more than 500 ng/mg formaldehyde. Previous attempts to quantify formaldehyde in PCPs use nonspecific derivatization procedures that employ harsh reagents and/or nonspecific detection. Derivatization of formaldehyde by acetylacetone occurs under mild conditions and is specific for formaldehyde but it has not been investigated using high-performance liquid chromatography/tandem mass-spectrometry (HPLC/MS/MS). To determine formaldehyde, PCPs were dissolved and then interferences were minimized by graphitized-carbon solid-phase extraction. Formaldehyde was derivatized to 3,5-diacetyl-1,4-dihydrolutidine (DDL) using an acetylacetone solution. Post-derivatization, samples were diluted and analyzed by HPLC/MS/MS. Quantification was performed by isotopic dilution. Product-ion spectra were acquired for DDL and D 12 -DDL. The mass shifts between the two product-ion spectra were used to assign fragment structures. To confirm molecular formulas, high-resolution accurate-mass analysis of the DDL product ions was performed by quadrupole time-of-flight MS. Structures were proposed for all product ions of DDL above 10% relative intensity. Method accuracy ranged between 96-104% for all matrices at all concentrations tested. Method precision was less than 4% relative standard deviation. The reporting limit was 10 ng/mg in PCPs and 100 μg/L in water. Twenty children's PCPs were tested to demonstrate the method and formaldehyde was reported in five from 23-1500 ng/mg. Of those five, two samples contained formaldehyde above the Minnesota regulatory limit. The developed method allows for the accurate quantification of formaldehyde in PCPs at levels below those required by a new regulation on children's products in Minnesota. The method includes a derivatization procedure that is newly adapted to HPLC/MS/MS; therefore, structures were proposed for the product ions of the derivative (DDL). Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Gayoso, Lucía; Poyato, Candelaria; Calvo, María Isabel; Cavero, Rita Yolanda; Ansorena, Diana; Astiasarán, Iciar
2017-08-01
Gelled emulsions with carrageenan are a novel type of emulsion that could be used as a carrier of unsaturated fatty acids in functional foods formulations. Lipid degradation through volatile compounds was studied in gelled emulsions which were high in polyunsaturated oils (sunflower or algae oil) after 49 days of storage. Aqueous Lavandula latifolia extract was tested as a natural antioxidant. Analysis of the complete volatile profile of the samples resulted in a total of 40 compounds, classified in alkanes, alkenes, aldehydes, ketones, acids, alcohols, furans, terpenes and aromatic hydrocarbons. During storage, the formation of the volatile compounds was mostly related to the oxidation of the main fatty acids of the sunflower oil (linolenic acid) and the algae oil (docosahexaenoic acid). Despite the antioxidant capacity shown by the L. latifolia extract, its influence in the oxidative stability in terms of total volatiles was only noticed in sunflower oil gels ( p < 0.05), where a significant decrease in the aldehydes fraction was found.
Volatiles from roasted byproducts of the poultry-processing industry.
Wettasinghe, M; Vasanthan, T; Temelli, F; Swallow, K
2000-08-01
Volatiles of roasted chicken breast muscle and byproducts, such as backbones, breastbones, spent bones, and skin, were investigated. Total volatile concentrations ranged from 2030 ppb in the roasted backbones to 4049 ppb in the roasted skin. The major classes of volatile compounds detected in roasted samples were aldehydes (648-1532 ppb) and alcohols (336-1006 ppb). Nitrogen- and/or sulfur-containing compounds were also detected in appreciable quantities (161-706 ppb) in all samples. For all samples, hexanal and 2-methyl-2-buten-1-ol were dominant among the aldehydes and alcohols, respectively. Among the nitrogen- and sulfur-containing compounds, Maillard reaction products, such as tetrahydropyridazines, piperidines, and thiazoles, were the major contributors to the total volatile content in all samples. The composition of volatiles observed in roasted byproducts was markedly different from that of the roasted breast muscle. Therefore, the blending of the byproducts in appropriate proportions or blending of volatile flavor extracts from different byproducts may be necessary to obtain an aroma that mimics roasted chicken aroma.
Gound, Tom G; Marx, David; Schwandt, Nathan A
2003-10-01
The purpose of this retrospective study was to evaluate the quality of treatment and incidence of flare-ups when teeth with resorcinol-formaldehyde resin are retreated in a postgraduate endodontic clinic. Fifty-eight cases were included in this study. Obturated and unfilled canal space was measured on radiographs. Forty-eight percent of the total canal space was filled before retreatment; 90% was filled after retreatment. After retreatment, obturations were rated as optimal in 59%, improved in 33%, unchanged in 6%, and worse in 2%. Seven patients (12%) had postretreatment flare-ups. Data were statistically analyzed using the Cochran-Armitage Test for Discrete Variables. No statistical difference in the incidence of flare-ups was found in teeth that before treatment had more than half the canal space filled compared to teeth with less than half, cases with pre-existing periradicular radiolucencies compared to cases with normal periradicular appearance, symptomatic cases compared to asymptomatic cases, or cases with optimal fillings after retreatment compared to less than optimal cases. It was concluded that teeth with resorcinol-formaldehyde fillings might be retreated with a good prognosis for improving the radiographic quality, but a higher than normal incidence of flare-ups may occur.
Positive concomitant test reactions to allergens in the standard patch test series.
Landeck, Lilla; González, Ernesto; Baden, Lynn; Neumann, Konrad; Schalock, Peter
2010-05-01
Patch testing is performed to evaluate suspected allergic contact dermatitis. Common wisdom suggests that various allergens cross-react but only a few larger studies have published confirmations of this. The purpose of our study was to identify significant correlations between positive test reactions in a screening series. A total of 1235 patients undergoing patch testing to the Hermal standard series at the Massachusetts General Hospital, Contact Dermatitis Clinic between 1990 and 2006 were investigated. Two or more positive reactions were seen in 411 patients (33.3%). Sensitizations to eight pairs of allergens were found to have significant correlation (P
First general methods toward aldehyde enolphosphates.
Barthes, Nicolas; Grison, Claude
2012-02-01
We herein report two innovative methods toward aldehyde enolphosphates and the first saccharidic aldehyde enolphosphates. Aldehyde enolphosphate function is worthwhile to be considered as a good phosphoenolpyruvate analogue. Copyright © 2011 Elsevier Inc. All rights reserved.
Direct catalytic asymmetric alpha-amination of aldehydes.
List, Benjamin
2002-05-22
The first direct catalytic asymmetric alpha-amination of aldehydes is described herein. alpha-Unbranched aldehydes react in this novel proline-catalyzed reaction with dialkyl azodicarboxylates to give alpha-amino aldehydes in excellent yields and enantioselectivities.
Primary Formation Path of Formaldehyde in Hydrothermal Vents
NASA Astrophysics Data System (ADS)
Inaba, Satoshi
2018-03-01
Formaldehyde is abundant in the universe and one of the fundamental molecules for life. Hydrothermal vents produce a substantial amount of hydrogen molecules by serpentinization and promote reductive reactions of single carbon compounds. The abundance of formaldehyde is expected to be low due to the high Gibbs free energy in hydrothermal vents. We consider two competing formation pathways of formaldehyde: (1) the reduction of CO by H2 and (2) the reduction of HCOOH by H2 to form a methanediol, followed by the dehydration of the methanediol. We performed a number of quantum chemical simulations to examine the formation of formaldehyde in the gas phase as well as in aqueous solution. The energy barrier is significantly reduced by the catalytic effect of water molecules in aqueous solution and becomes lowest when a water cluster consisted of 5 water molecules catalyzes the reduction. The energy barrier to form a methanediol by the reduction of HCOOH is lower by 17.5 kcal/mol than that to form a formaldehyde by the reduction of CO. Considering the low energy barrier to dehydrate methanediol, the primary pathway to form formaldehyde in hydrothermal vents is concluded to be the reduction of HCOOH by H2, followed by the dehydration of methanediol.
Murai, K; Okano, M; Kuramitz, H; Hata, N; Kawakami, T; Taguchi, S
2008-01-01
The pollution of tap water and rain water with formaldehyde in Toyama Pref., Japan was investigated by means of a simple, rapid and cost-effective visual colorimetry developed by us. The levels of formaldehyde in three tap waters from different sources of dams on mountainside and a well-water pumped in urban area in Toyama Pref. were lower than 0.01 mg L(-1) that was the detection limit of the colorimetry. On the other hand, rain waters were seriously polluted with formaldehyde. Rain waters were sampled from three different sites (urban area, top of hill and industrial area) in Toyama Pref. from autumn to winter in 2006. The levels of formaldehyde in the rain waters ranged from 0.07 to 0.30 mg L(-1). The analytical results by the visual colorimetry were in good agreement with those obtained by GC-MS method. It was confirmed that the colorimetry is excellent for practical use for the determination of formaldehyde. It must be concerned about the pollution of rainwater with formaldehyde, when rain water is applied for tap water and miscellaneous purpose. Copyright IWA Publishing 2008.
Performance of optical biosensor using alcohol oxidase enzyme for formaldehyde detection
NASA Astrophysics Data System (ADS)
Sari, A. P.; Rachim, A.; Nurlely, Fauzia, V.
2017-07-01
The recent issue in the world is the long exposure of formaldehyde which is can increase the risk of human health, therefore, that is very important to develop a device and method that can be optimized to detect the formaldehyde elements accurately, have a long lifetime and can be fabricated and produced in large quantities. A new and simple prepared optical biosensor for detection of formaldehyde in aqueous solutions using alcohol oxidase (AOX) enzyme was successfully fabricated. The poly-n-butyl acrylic-co-N-acryloxysuccinimide (nBA-NAS) membranes containing chromoionophore ETH5294 were used for immobilization of alcohol oxidase enzyme (AOX). Biosensor response was based on the colour change of chromoionophore as a result of enzymatic oxidation of formaldehyde and correlated with the detection concentration of formaldehyde. The performance of biosensor parameters were measured through the optical absorption value using UV-Vis spectrophotometer including the repeatability, reproducibility, selectivity and lifetime. The results showed that the prepared biosensor has good repeatability (RSD = 1.9 %) and good reproducibility (RSD = 2.1 %). The biosensor was selective formaldehyde with no disturbance by methanol, ethanol, and acetaldehyde, and also stable before 49 days and decrease by 41.77 % after 49 days.
Primary Formation Path of Formaldehyde in Hydrothermal Vents.
Inaba, Satoshi
2018-03-01
Formaldehyde is abundant in the universe and one of the fundamental molecules for life. Hydrothermal vents produce a substantial amount of hydrogen molecules by serpentinization and promote reductive reactions of single carbon compounds. The abundance of formaldehyde is expected to be low due to the high Gibbs free energy in hydrothermal vents. We consider two competing formation pathways of formaldehyde: (1) the reduction of CO by H 2 and (2) the reduction of HCOOH by H 2 to form a methanediol, followed by the dehydration of the methanediol. We performed a number of quantum chemical simulations to examine the formation of formaldehyde in the gas phase as well as in aqueous solution. The energy barrier is significantly reduced by the catalytic effect of water molecules in aqueous solution and becomes lowest when a water cluster consisted of 5 water molecules catalyzes the reduction. The energy barrier to form a methanediol by the reduction of HCOOH is lower by 17.5 kcal/mol than that to form a formaldehyde by the reduction of CO. Considering the low energy barrier to dehydrate methanediol, the primary pathway to form formaldehyde in hydrothermal vents is concluded to be the reduction of HCOOH by H 2 , followed by the dehydration of methanediol.
Hazardous properties of paint residues from the furniture industry.
Vaajasaari, Kati; Kulovaara, Maaret; Joutti, Anneli; Schultz, Eija; Soljamo, Kari
2004-01-30
The objective of this study was to screen nine excess paint residues for environmental hazard and to evaluate their disposability in a non-hazardous or hazardous-waste landfill. These residues were produced in the process of spray-painting furniture. Residues were classified according to their leaching and ecotoxicological properties. Leaching properties were determined with the European standard SFS-EN 12457-2 leaching-test. The toxicity of the leaching-test eluates was measured with plant-, bacteria- and enzyme-inhibition bioassays. Total organic carbon, formaldehyde and solvent concentrations in the solid wastes and in the leaching-test eluates were analysed. It seemed likely that leached formaldehyde caused very high acute toxicity in leaching-test eluates of the dry-booth residues. This hypothesis was based on the fact that the formaldehyde concentrations in the leaching-test eluates of the dry-booth residues were 62-75 times higher than the EC50 value reported in the literature for formaldehyde. The results of the water-curtain booth residues showed that the samples with the highest TOC and aromatic solvent concentrations were also the most toxic. The studied excess paint residues were complex organic mixtures and contained large amounts of compounds not identifiable from chemical data. Therefore, the evaluation of the hazard based solely on available chemical data is unlikely to be sufficient, as evidenced by our study. Our results show that harmful compounds remain in the solid waste and the toxicity results of their leaching-test eluates show that toxicity may leach from residues in contact with water at landfill sites. They also confirm the benefit of combining chemical and ecotoxicological assays in assessing the potential environmental hazard of complex organic mixtures found in wastes. Copyright 2003 Elsevier B.V.
Statistical modelling of formaldehyde occupational exposure levels in French industries, 1986-2003.
Lavoué, Jérôme; Vincent, Raymond; Gérin, Michel
2006-04-01
Occupational exposure databanks (OEDBs) have been cited as sources of exposure data for exposure surveillance and exposure assessment in epidemiology. In 2003, an extract was made from COLCHIC, the French national OEDB, of all concentrations of formaldehyde. The data were analysed with extended linear mixed-effects models in order to identify influent variables and elaborate a multi-sector picture of formaldehyde exposures. Respectively, 1401 and 1448 personal and area concentrations were available for the analysis. The fixed effects of the personal and area models explained, respectively, 57 and 53% of the total variance. Personal concentrations were related to the sampling duration (short-term higher than TWA levels), decreased with the year of sampling (-9% per year) and were higher when local exhaust ventilation was present. Personal levels taken during planned visits and for occupational illness notification purpose were consistently lower than those taken during ventilation modification programmes or because the hygienist suspected the presence of significant risk or exposure. Area concentrations were related to the sampling duration (short-term higher than TWA levels), and decreased with the year of sampling (-7% per year) and when the measurement sampling flow increased. Significant within-facility (correlation coefficient 0.4-0.5) and within-sampling campaign correlation (correlation coefficient 0.8) was found for both area and personal data. The industry/task classification appeared to have the greatest influence on exposure variability while the sample duration and the sampling flow were significant in some cases. Estimates made from the models for year 2002 showed elevated formaldehyde exposure in the fields of anatomopathological and biological analyses, operation of gluing machinery in the wood industry, operation and monitoring of mixers in the pharmaceutical industry, and garages and warehouses in urban transit authorities.
Developing a Reference Material for Diffusion-Controlled Formaldehyde Emissions Testing
Emissions of formaldehyde from building materials can contaminate indoor air and create significant risks to human health. The need to control formaldehyde emissions from indoor materials is made more urgent by the prevailing drive to improve building energy by decreasing ventil...
Urea formaldehyde foam: a dangerous insulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keough, C.
1980-12-01
Insulating a home with urea formaldehyde foam can lead to severe health problems due to poisoning from formaldehyde gas. Respiratory problems, allergies, memory loss, and mental problems can result from exposure to foam insulation fumes. Research is now under way at the Chemical Industry Inst., Univ. of Washington, and other institutions to learn more about the health effects of formaldehyde foam and to develop possible remedies to these problems. Several states are either banning or controlling the use of this type of home insulation.
40 CFR 86.1342-94 - Calculations; exhaust emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., if appropriate, the weighted mass total hydrocarbon equivalent, formaldehyde, or non-methane... see § 86.1342-90. (b)(8) Non-methane hydrocarbon mass: NMHCmass = Vmix × DensityNMHC × (NMHCconc/1,000... non-methane hydrocarbon, is 1.1771(12.011 + H/C (1.008)) g/ft3-carbon atom (0.04157(12.011 + H/C (1...
Bond quality of phenol-based adhesives containing liquefied creosote-treated wood
Chung-Yun Hse; Feng Fu; Hui Pan
2009-01-01
Liquefaction of spent creosote-treated wood was studied to determine the technological practicability of its application in converting treated wood waste into resin adhesives. A total of 144 plywood panels were fabricated with experimental variables included 2 phenol to wood (P/W) ratios in liquefaction, 6 resin formulations (3 formaldehyde/liquefied wood (F/...
NASA Technical Reports Server (NTRS)
Schulte, Mitchell D.; Shock, Everett L.
1993-01-01
Aldehydes are common in a variety of geologic environments and are derived from a number of sources, both natural and anthropogenic. Experimental data for aqueous aldehydes were taken from the literature and used, along with parameters for the revised Helgeson-Kirkham-Flowers (HKF) equations of state, to estimate standard partial molal thermodynamic data for aqueous straight-chain alkyl aldehydes at high temperatures and pressures. Examples of calculations involving aldehydes in geological environments are given, and the stability of aldehydes relative to carboxylic acids is evaluated. These calculations indicate that aldehydes may be intermediates in the formation of carboxylic acids from hydrocarbons in sedimentary basin brines and hydrothermal systems like they are in the atmosphere. The data and parameters summarized here allow evaluation of the role of aldehydes in the formation of prebiotic precursors, such as amino acids and hydroxy acids on the early Earth and in carbonaceous chondrite parent bodies.
Syazwan, Aizat Ismail; Hafizan, Juahir; Baharudin, Mohd Rafee; Azman, Ahmad Zaid Fattah; Izwyn, Zulkapri; Zulfadhli, Ismail; Syahidatussyakirah, Katis
2013-01-01
Objectives: The purpose of this study was to analyze the relationship of airborne chemicals and the physical work environment risk element on the indoor air symptoms of nonindustrial workers. Design: A cross-sectional study consisting of 200 office workers. A random selection of 200 buildings was analyzed for exposure and indoor air symptoms based on a pilot study in the Klang Valley, Malaysia. Methods: A set of modified published questionnaires by the Department of Occupational Safety and Health (DOSH), Malaysia and a previous study (MM040NA questionnaire) pertaining to indoor air symptoms was used in the evaluation process of the indoor air symptoms. Statistical analyses involving logistic regression and linear regression were used to determine the relationship between exposure and indoor air symptoms for use in the development of an indoor risk matrix. Results: The results indicate that some indoor air pollutants (carbon monoxide, formaldehyde, total volatile organic compound, and dust) are related to indoor air symptoms of men and women. Temperature and relative humidity showed a positive association with complaints related to the perceived indoor environmental condition (drafts and inconsistency of temperature). Men predominantly reported general symptoms when stratification of gender involved exposure to formaldehyde. Women reported high levels of complaints related to mucosal and general symptoms from exposure to the dust level indoors. Conclusion: Exposure to pollutants (total volatile organic compounds, carbon monoxide, and formaldehyde) and physical stressors (air temperature and relative humidity) influence reported symptoms of office workers. These parameters should be focused upon and graded as one of the important elements in the grading procedure when qualitatively evaluating the indoor environment. PMID:23526736
Syazwan, Aizat Ismail; Hafizan, Juahir; Baharudin, Mohd Rafee; Azman, Ahmad Zaid Fattah; Izwyn, Zulkapri; Zulfadhli, Ismail; Syahidatussyakirah, Katis
2013-01-01
The purpose of this study was to analyze the relationship of airborne chemicals and the physical work environment risk element on the indoor air symptoms of nonindustrial workers. A cross-sectional study consisting of 200 office workers. A random selection of 200 buildings was analyzed for exposure and indoor air symptoms based on a pilot study in the Klang Valley, Malaysia. A set of modified published questionnaires by the Department of Occupational Safety and Health (DOSH), Malaysia and a previous study (MM040NA questionnaire) pertaining to indoor air symptoms was used in the evaluation process of the indoor air symptoms. Statistical analyses involving logistic regression and linear regression were used to determine the relationship between exposure and indoor air symptoms for use in the development of an indoor risk matrix. The results indicate that some indoor air pollutants (carbon monoxide, formaldehyde, total volatile organic compound, and dust) are related to indoor air symptoms of men and women. Temperature and relative humidity showed a positive association with complaints related to the perceived indoor environmental condition (drafts and inconsistency of temperature). Men predominantly reported general symptoms when stratification of gender involved exposure to formaldehyde. Women reported high levels of complaints related to mucosal and general symptoms from exposure to the dust level indoors. Exposure to pollutants (total volatile organic compounds, carbon monoxide, and formaldehyde) and physical stressors (air temperature and relative humidity) influence reported symptoms of office workers. These parameters should be focused upon and graded as one of the important elements in the grading procedure when qualitatively evaluating the indoor environment.