Automobile diesel exhaust particles induce lipid droplet formation in macrophages in vitro.
Cao, Yi; Jantzen, Kim; Gouveia, Ana Cecilia Damiao; Skovmand, Astrid; Roursgaard, Martin; Loft, Steffen; Møller, Peter
2015-07-01
Exposure to diesel exhaust particles (DEP) has been associated with adverse cardiopulmonary health effects, which may be related to dysregulation of lipid metabolism and formation of macrophage foam cells. In this study, THP-1 derived macrophages were exposed to an automobile generated DEP (A-DEP) for 24h to study lipid droplet formation and possible mechanisms. The results show that A-DEP did not induce cytotoxicity. The production of reactive oxygen species was only significantly increased after exposure for 3h, but not 24h. Intracellular level of reduced glutathione was increased after 24h exposure. These results combined indicate an adaptive response to oxidative stress. Exposure to A-DEP was associated with significantly increased formation of lipid droplets, as well as changes in lysosomal function, assessed as reduced LysoTracker staining. In conclusion, these results indicated that exposure to A-DEP may induce formation of lipid droplets in macrophages in vitro possibly via lysosomal dysfunction. Copyright © 2015 Elsevier B.V. All rights reserved.
Antisoiling Coatings for Solar-Energy Devices
NASA Technical Reports Server (NTRS)
Cuddihy, E. F.; Willis, P.
1986-01-01
Fluorocarbons resist formation of adherent deposits. Promising coating materials reduce soiling of solar photovoltaic modules and possibly solar thermal collectors. Contaminating layers of various degrees of adherence form on surfaces of devices, partially blocking incident solar energy, reducing output power. Loose soil deposits during dry periods but washed off by rain. New coatings help prevent formation of more-adherent, chemically and physically bonded layers rain alone cannot wash away.
Yan, Mi; Qi, Zhifu; Yang, Jie; Li, Xiaodong; Ren, Jianli; Xu, Zhang
2014-11-01
The effect of ammonium sulfate ((NH4)2SO4) and urea (CO(NH2)2) on polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F) formation from active carbon was investigated in this study. Both additives could significantly inhibit PCDD/F formation, and PCDD/F (TEQ) generation was reduced to 98.5% (98%) or 64.5% (77.2%) after 5% (NH4)2SO4 or CO(NH2)2 was added into model ash, respectively. The inhibition efficiency of PCDDs was higher than the value of PCDFs, however, the reduction of PCDD/F yield was mainly from PCDFs decreasing. In addition, the solid-phase products were reduced more than the gas-phase compounds by inhibitors. By the measurement of chlorine emission in the phase of ion (Cl[Cl(-)]) and molecule gas (Cl[Cl2]), it was observed that both Cl[Cl(-)] and Cl[Cl2] were reduced after inhibitors were added into ash. Cl[Cl2] was reduced to 51.0% by urea addition, which was supposed as one possible mechanism of PCDD/F inhibition. Copyright © 2014. Published by Elsevier B.V.
Guan, Yong-Guang; Zhu, Si-Ming; Yu, Shu-Juan; Xu, Xian-Bing; Zhu, Li-Cai
2013-05-01
5-Hydroxymethyl-2-furaldehyde can undergo polymerization to form high-molecular weight molecules via the Maillard reaction during dairy thermal treatment. In this study, the effect of sulfite group on polymer formation, especially in inhibiting the formation of high-molecular weight polymers has been described. Results showed that the sulfite group significantly inhibited the increase of polymer molecular weight via prevention of the polymerization of 5-hydroxymethyl-2-furaldehyde. The formation of an intermolecular dimer based on the glucose molecule through Schiff base cyclization can lead to a competitive reaction with 1,2-enolization to reduce 5-hydroxymethyl-2-furaldehyde formation, which might be another factor in reducing the formation of high-molecular weight polymers. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Savi, Geovana D; Piacentini, Karim C; de Souza, Stephany Ramos; Costa, Maíra E B; Santos, Cristina M R; Scussel, Vildes M
2015-07-16
The efficiency of zinc compounds (zinc sulfate, ZnSO4 and zinc oxide, ZnO in regular and nanosize, respectively) on wheat plants was evaluated against growth of Fusarium graminearum and DON formation. In addition, any possible effects on the grain microstructures were observed by scanning electron microscopy (SEM), and the remaining residue of Zn on wheat plants was analyzed. The plants were inoculated with F. graminearum and treated with Zn compounds (100mM) onto spikelets at the anthesis stage. When wheat plants reached maturation, grains were harvested and evaluated for Fusarium (number of colonies, CFU/g), DON formation, and SEM observation, followed by determination of possible remaining Zn residue. The groups treated with ZnSO4 and ZnO-NP showed a reduction in number of CFU of F. graminearum when compared to the control. Similarly for DON formation, i.e. the toxin was reduced to non-detected levels in the treated group. ZnO-NP efficiently reduced F. graminearum and DON formation in the grains at low concentration. Zn remained within the international recommended level for consumption and the treatment did not cause any damage to wheat grains. New strategies of control using Zn compounds in addition to conventional treatments could increase the efficiency against FBH and DON formation. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Kyte, Frank T.
2005-01-01
We present new analyses that confirm Ir enrichment (up to 0.31 ng/g) in close proximity to the palynological Triassic-Jurassic boundary in strata near the top of the Blomidon Formation at Partridge Island, Nova Scotia. High Ir concentrations have been found in at least two samples within the uppermost 70 cm of the formation. Ratios of other PGEs and Au to Ir are generally higher by an order of magnitude than in ordinary chondrites. No impact-related materials have been identified at #is horizon in the Blomidon Formation, therefore we cannot confirm an extraterrestrial source for the anomalous Ir levels. We consider, however, the possibility that regional basaltic volcanism is a potential source for the Ir in these sediments. The elevated Ir concentrations are found in reduced, grey colored mudstones, so redox concentration is a possible explanation for the distribution of Ir in these strata.
Investigation of Thermo-Magnetic Processing in Application to Heavy Duty Truck Suspension Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makiewicz, Kurt; Yurek, Theodore; Farrell, Brian
2016-04-19
Thermomagnetic processing (TMP) was examined as a methodology for increasing transformation rate during heat treatment in steel tubes. Two potential benefits were investigated, reduced energy consumption and improved mechanical properties. It is possible to reduce energy consumption with TMP by allowing tempering at lower temperatures and shorter times. Improved mechanical properties are possible by allowing a more copious distribution of fine carbides during tempering of martensite. Improved mechanical properties are also possible by quenching under a magnetic field after austenitization by formation of martensitic twins. The experiments in this work allowed for the following conclusions: the samples could not bemore » quenched fast enough to transform the entire wall thickness to martensite; the knee of the Continuous Cooling Curve (CCT) curve was shifted to the left when quenching following austenitizing in a magnetic field. The magnetic field during tempering did enhance the kinetics and allowed fine carbides to form. Since the through wall thickness was not hardened, the bulk mechanical properties were unaffected by the magnetic field. Hardness measurements after hardening showed that hardening in a magnetic field >0.5T resulted in a significant reduction in hardness. Combined with the inadequate cooling rate it was not possible to properly harden the samples. Tempering at 600 C without a magnetic field resulted in no formation of carbides, but tempering at 600 C and 450 C with a 1-2T field resulted in carbide formation in all samples.« less
Franko, Andras; Rodriguez Camargo, Diana C; Böddrich, Annett; Garg, Divita; Rodriguez Camargo, Andres; Rathkolb, Birgit; Janik, Dirk; Aichler, Michaela; Feuchtinger, Annette; Neff, Frauke; Fuchs, Helmut; Wanker, Erich E; Reif, Bernd; Häring, Hans-Ulrich; Peter, Andreas; Hrabě de Angelis, Martin
2018-01-18
The formation of amyloid fibrils by human islet amyloid polypeptide protein (hIAPP) has been implicated in pancreas dysfunction and diabetes. However, efficient treatment options to reduce amyloid fibrils in vivo are still lacking. Therefore, we tested the effect of epigallocatechin gallate (EGCG) on fibril formation in vitro and in vivo. To determine the binding of hIAPP and EGCG, in vitro interaction studies were performed. To inhibit amyloid plaque formation in vivo, homozygous (tg/tg), hemizygous (wt/tg), and control mice (wt/wt) were treated with EGCG. EGCG bound to hIAPP in vitro and induced formation of amorphous aggregates instead of amyloid fibrils. Amyloid fibrils were detected in the pancreatic islets of tg/tg mice, which was associated with disrupted islet structure and diabetes. Although pancreatic amyloid fibrils could be detected in wt/tg mice, these animals were non-diabetic. EGCG application decreased amyloid fibril intensity in wt/tg mice, however it was ineffective in tg/tg animals. Our data indicate that EGCG inhibits amyloid fibril formation in vitro and reduces fibril intensity in non-diabetic wt/tg mice. These results demonstrate a possible in vivo effectiveness of EGCG on amyloid formation and suggest an early therapeutical application.
NASA Astrophysics Data System (ADS)
Oliveira, F. C.; Denadai, A. M. L.; Fulgêncio, F. H.; Magalhães, W. F.; Alcântara, A. F. C.; Windmöller, D.; Machado, J. C.
2012-06-01
Positronium formation in triphenylphosphine oxide (TPPO), triphenylmethanol (TPM), and systems [TPPO(1-X)ṡTPMX] has been studied. The low probability of positronium formation in complex [TPPO0.5ṡTPM0.5] was attributed to strong hydrogen bond and sixfold phenyl embrace interactions. These strong interactions in complex reduce the possibility of the n- and π-electrons to interact with positrons on the spur and consequently, the probability of positronium formation is lower. The τ3 parameter and free volume (correlated to τ3) were also sensitive to the formation of hydrogen bonds and sixfold phenyl embrace interactions within the complex. For physical mixture the positron annihilation parameters remained unchanged throughout the composition range.
Control Design and Performance Analysis for Autonomous Formation Flight Experimentss
NASA Astrophysics Data System (ADS)
Rice, Caleb Michael
Autonomous Formation Flight is a key approach for reducing greenhouse gas emissions and managing traffic in future high density airspace. Unmanned Aerial Vehicles (UAV's) have made it possible for the physical demonstration and validation of autonomous formation flight concepts inexpensively and eliminates the flight risk to human pilots. This thesis discusses the design, implementation, and flight testing of three different formation flight control methods, Proportional Integral and Derivative (PID); Fuzzy Logic (FL); and NonLinear Dynamic Inversion (NLDI), and their respective performance behavior. Experimental results show achievable autonomous formation flight and performance quality with a pair of low-cost unmanned research fixed wing aircraft and also with a solo vertical takeoff and landing (VTOL) quadrotor.
Xu, Tianhua; Shevchenko, Nikita A; Lavery, Domaniç; Semrau, Daniel; Liga, Gabriele; Alvarado, Alex; Killey, Robert I; Bayvel, Polina
2017-02-20
The relationship between modulation format and the performance of multi-channel digital back-propagation (MC-DBP) in ideal Nyquist-spaced optical communication systems is investigated. It is found that the nonlinear distortions behave independent of modulation format in the case of full-field DBP, in contrast to the cases of electronic dispersion compensation and partial-bandwidth DBP. It is shown that the minimum number of steps per span required for MC-DBP depends on the chosen modulation format. For any given target information rate, there exists a possible trade-off between modulation format and back-propagated bandwidth, which could be used to reduce the computational complexity requirement of MC-DBP.
SAR image formation with azimuth interpolation after azimuth transform
Doerry,; Armin W. , Martin; Grant D. , Holzrichter; Michael, W [Albuquerque, NM
2008-07-08
Two-dimensional SAR data can be processed into a rectangular grid format by subjecting the SAR data to a Fourier transform operation, and thereafter to a corresponding interpolation operation. Because the interpolation operation follows the Fourier transform operation, the interpolation operation can be simplified, and the effect of interpolation errors can be diminished. This provides for the possibility of both reducing the re-grid processing time, and improving the image quality.
5Alpha-Reduced Steroids Are Major Metabolites in the Early Equine Embryo Proper and Its Membranes.
Raeside, James I; Christie, Heather L; Betteridge, Keith J
2015-09-01
Steroid production and metabolism by early conceptuses are very important for the establishment and maintenance of pregnancy in horses. Our earlier work suggested the possible formation of 5alpha-reduced steroids in equine conceptuses. We have now demonstrated the formation of 5alpha-reduced metabolites of androstenedione, testosterone, and progesterone by the embryo and its membranes. A total of 44 conceptuses were collected from 26 mares between 20 and 31 days of pregnancy. Tissues from the embryo proper and from the separated components of the conceptus (bilaminar and trilaminar trophoblast, allantois) were incubated with tritium-labeled substrates. 5Alpha-reduced metabolites (5alpha-dihydro- and 3beta,5alpha-tetrahydro- steroids) as radiolabeled products were identified from a series of chromatographic steps using four solvent systems for high-performance liquid chromatography. Use of a 5alpha-reductase inhibitor confirmed the metabolites were indeed 5alpha-reduced steroids. For the embryo, the only products from androstenedione were 5alpha-dihydroandrostenedione and 3beta,5alpha-tetrahydroandrostenedione, with no evidence of more polar metabolites; there was some 3beta,5alpha-tetrahydrotestosterone but no 5alpha-dihydrotestosterone from testosterone, and formation of androstenedione was followed by the production of 5alpha-dihydroandrostenedione and 3beta,5alpha-tetrahydroandrostenedione. The major 5alpha-reduced product from progesterone was 3beta,5alpha-tetrahydroprogesterone, with lesser amounts of 5alpha-dihydroprogesterone. For the membranes, reductions to tetrahydro, 5alpha-reduced steroids were prominent in most instances, but also present were considerable amounts of products more polar than the substrates. The well-recognized activity of some 5alpha-reduced steroids--for example, 5alpha-dihydrotestosterone in male sexual differentiation--provokes interest in their even earlier appearance, as seen in this study, and suggests a possible role for them in early embryonic development in horses and, more generally, in other species. © 2015 by the Society for the Study of Reproduction, Inc.
Stability enhancement of Cu2S against Cu vacancy formation by Ag alloying
NASA Astrophysics Data System (ADS)
Barman, Sajib K.; Huda, Muhammad N.
2018-04-01
As a potential solar absorber material, Cu2S has proved its importance in the field of renewable energy. However, almost all the known minerals of Cu2S suffer from spontaneous Cu vacancy formation in the structure. The Cu vacancy formation causes the structure to possess very high p-type doping that leads the material to behave as a degenerate semiconductor. This vacancy formation tendency is a major obstacle for this material in this regard. A relatively new predicted phase of Cu2S which has an acanthite-like structure was found to be preferable than the well-known low chalcocite Cu2S. However, the Cu-vacancy formation tendency in this phase remained similar. We have found that alloying silver with this structure can help to reduce Cu vacancy formation tendency without altering its electronic property. The band gap of silver alloyed structure is higher than pristine acanthite Cu2S. In addition, Cu diffusion in the structure can be reduced with Ag doped in Cu sites. In this study, a systematic approach is presented within the density functional theory framework to study Cu vacancy formation tendency and diffusion in silver alloyed acanthite Cu2S, and proposed a possible route to stabilize Cu2S against Cu vacancy formations by alloying it with Ag.
Stability enhancement of Cu2S against Cu vacancy formation by Ag alloying.
Barman, Sajib K; Huda, Muhammad N
2018-04-25
As a potential solar absorber material, Cu 2 S has proved its importance in the field of renewable energy. However, almost all the known minerals of Cu 2 S suffer from spontaneous Cu vacancy formation in the structure. The Cu vacancy formation causes the structure to possess very high p-type doping that leads the material to behave as a degenerate semiconductor. This vacancy formation tendency is a major obstacle for this material in this regard. A relatively new predicted phase of Cu 2 S which has an acanthite-like structure was found to be preferable than the well-known low chalcocite Cu 2 S. However, the Cu-vacancy formation tendency in this phase remained similar. We have found that alloying silver with this structure can help to reduce Cu vacancy formation tendency without altering its electronic property. The band gap of silver alloyed structure is higher than pristine acanthite Cu 2 S. In addition, Cu diffusion in the structure can be reduced with Ag doped in Cu sites. In this study, a systematic approach is presented within the density functional theory framework to study Cu vacancy formation tendency and diffusion in silver alloyed acanthite Cu 2 S, and proposed a possible route to stabilize Cu 2 S against Cu vacancy formations by alloying it with Ag.
Leavey-Roback, Shannon L; Krasner, Stuart W; Suffet, Irwin H Mel
2016-12-01
N-nitrosodimethylamine (NDMA) is a disinfection byproduct preferentially formed in chloraminated water. NDMA may be formed from certain chemicals containing dimethylamine (DMA) functional groups. This reaction may be slowed by the presence of natural organic matter (NOM). In this study, NOM fractionated by size or polarity was tested for its ability to slow or impede the formation of NDMA from two DMA-containing precursors, the antibiotics tetracycline and spiramycin. The high molecular weight NOM fractions (>10KDa) were shown to be the most effective in reducing the amount of NDMA formed from the precursor chemicals. The filtrate of a C-18 non-polar cartridge was also effective at reducing NDMA formation from tetracycline (spyramycin not tested). Therefore, polar and charged NOM components may be responsible for the reduction in NDMA formation. A possible mechanism for the reduction of NDMA formation from tetracycline is complexation due to the hydrogen bonding of the DMA functional group on tetracycline to polar phenolic functional groups in the NOM. Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of garlic powder on acrylamide formation in a low-moisture model system and bread baking.
Li, Jinwang; Zuo, Jie; Qiao, Xuguang; Zhang, Yongju; Xu, Zhixiang
2016-02-01
Acrylamide (AA) is of concern worldwide because of its neurotoxicity, genotoxicity and reproductive/developmental toxicity. Consequently, methods for minimizing AA formation during food processing are vital. In this study, the formation and elimination of AA in an asparagine/glucose low-moisture model system were investigated by response surface methodology. The effect of garlic powder on the kinetics of AA formation/elimination was also evaluated. The AA content reached a maximum level (674.0 nmol) with 1.2 mmol of glucose and 1.2 mmol of asparagine after heating at 200 °C for 6 min. The AA content was greatly reduced with the addition of garlic powder. Compared to without garlic powder, an AA reduction rate of 43% was obtained with addition of garlic powder at a mass fraction of 0.05 g. Garlic powder inhibited AA formation during the generation-predominant kinetic stage and had no effect on the degradation-predominant kinetic stage. The effect of garlic powder on AA formation in bread and bread quality was also investigated. Adding a garlic powder mass fraction of 15 g to 500 g of dough significantly (P < 0.05) reduced the formation of AA (reduction rate of 46%) and had no obvious effect on the sensory qualities of the bread. This study provides a possible method for reducing the AA content in bread and other heat-treated starch-rich foods. © 2015 Society of Chemical Industry.
Chapman, C M C; Gibson, G R; Rowland, I
2014-06-01
There is increasing evidence that probiotic bacteria can inhibit and/or prevent urinary tract infections. Possible mechanisms include prevention of adhesion of pathogens to the bladder epithelium and inhibition of biofilm formation. Currently there is interest in the comparative efficacy of single probiotics vs. strain mixtures. We have therefore tested the inhibitory activity of four single probiotics and four probiotic mixtures towards the urinary tract pathogens Escherichia coli NCTC 9001 and Enterococcus faecalis NCTC 00775. Inhibition of biofilm formation by cell-free supernatants was tested using the Crystal Violet assay, while prevention of pathogen adhesion to host cells was tested by using bladder cancer cells as a model for the human urinary tract. Under pH-controlled conditions, there was no significant inhibition of biofilm formation by any treatment. Without pH control, 5/8 treatments significantly inhibited biofilm production by E. coli, while 5/8 treatments inhibited production by E. faecalis. Using data from all Crystal Violet assays, there was no significant difference in the ability of single- and multi-strain probiotics to inhibit biofilm formation. In the cell culture assays, all treatments were able to significantly reduce numbers of pathogenic cells adhering to host cells by 2.5-3.5 logs. No significant difference was observed between the displacement caused by single strains and mixtures for either pathogen. Inhibition of biofilm seems to be a major mechanism of urinary tract pathogen exclusion, related to, and possibly dependent upon, the probiotic ability to reduce environmental pH. Exclusion via competition of binding sites is a possible in vivo mechanism for these probiotics. If an additive or synergistic effect exists between strains within a mixture, it does not manifest itself in a greater effect through these two inhibitory mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yu, Jiujiang
2012-10-25
Traditional molecular techniques have been used in research in discovering the genes and enzymes that are involved in aflatoxin formation and genetic regulation. We cloned most, if not all, of the aflatoxin pathway genes. A consensus gene cluster for aflatoxin biosynthesis was discovered in 2005. The factors that affect aflatoxin formation have been studied. In this report, the author summarized the current status of research progress and future possibilities that may be used for solving aflatoxin contamination.
Yu, Jiujiang
2012-01-01
Traditional molecular techniques have been used in research in discovering the genes and enzymes that are involved in aflatoxin formation and genetic regulation. We cloned most, if not all, of the aflatoxin pathway genes. A consensus gene cluster for aflatoxin biosynthesis was discovered in 2005. The factors that affect aflatoxin formation have been studied. In this report, the author summarized the current status of research progress and future possibilities that may be used for solving aflatoxin contamination. PMID:23202305
The sustainable growth of the first black holes
NASA Astrophysics Data System (ADS)
Pezzulli, Edwige; Volonteri, Marta; Schneider, Raffaella; Valiante, Rosa
2017-10-01
Super-Eddington accretion has been suggested as a possible formation pathway of 109 M⊙ supermassive black holes (SMBHs) 800 Myr after the big bang. However, stellar feedback from BH seed progenitors and winds from BH accretion discs may decrease BH accretion rates. In this work, we study the impact of these physical processes on the formation of z ˜ 6 quasar, including new physical prescriptions in the cosmological, data-constrained semi-analytic model GAMETE/QSOdust. We find that the feedback produced by the first stellar progenitors on the surrounding does not play a relevant role in preventing SMBHs formation. In order to grow the z ≳ 6 SMBHs, the accreted gas must efficiently lose angular momentum. Moreover, disc winds, easily originated in super-Eddington accretion regime, can strongly reduce duty cycles. This produces a decrease in the active fraction among the progenitors of z ˜ 6 bright quasars, reducing the probability to observe them.
Effect of satellite formations and imaging modes on global albedo estimation
NASA Astrophysics Data System (ADS)
Nag, Sreeja; Gatebe, Charles K.; Miller, David W.; de Weck, Olivier L.
2016-05-01
We confirm the applicability of using small satellite formation flight for multi-angular earth observation to retrieve global, narrow band, narrow field-of-view albedo. The value of formation flight is assessed using a coupled systems engineering and science evaluation model, driven by Model Based Systems Engineering and Observing System Simulation Experiments. Albedo errors are calculated against bi-directional reflectance data obtained from NASA airborne campaigns made by the Cloud Absorption Radiometer for the seven major surface types, binned using MODIS' land cover map - water, forest, cropland, grassland, snow, desert and cities. A full tradespace of architectures with three to eight satellites, maintainable orbits and imaging modes (collective payload pointing strategies) are assessed. For an arbitrary 4-sat formation, changing the reference, nadir-pointing satellite dynamically reduces the average albedo error to 0.003, from 0.006 found in the static referencecase. Tracking pre-selected waypoints with all the satellites reduces the average error further to 0.001, allows better polar imaging and continued operations even with a broken formation. An albedo error of 0.001 translates to 1.36 W/m2 or 0.4% in Earth's outgoing radiation error. Estimation errors are found to be independent of the satellites' altitude and inclination, if the nadir-looking is changed dynamically. The formation satellites are restricted to differ in only right ascension of planes and mean anomalies within slotted bounds. Three satellites in some specific formations show average albedo errors of less than 2% with respect to airborne, ground data and seven satellites in any slotted formation outperform the monolithic error of 3.6%. In fact, the maximum possible albedo error, purely based on angular sampling, of 12% for monoliths is outperformed by a five-satellite formation in any slotted arrangement and an eight satellite formation can bring that error down four fold to 3%. More than 70% ground spot overlap between the satellites is possible with 0.5° of pointing accuracy, 2 Km of GPS accuracy and commands uplinked once a day. The formations can be maintained at less than 1 m/s of monthly ΔV per satellite.
Rapid gas hydrate formation processes: Will they work?
Brown, Thomas D.; Taylor, Charles E.; Bernardo, Mark P.
2010-06-07
Researchers at DOE’s National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETL’s 15-Liter Hydrate Cell. The results from this work demonstrate that the rapid and continuousmore » formation of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve.« less
Reduction of the sonic boom level in supersonic aircraft flight by the method of surface cooling
NASA Astrophysics Data System (ADS)
Fomin, V. M.; Chirkashenko, V. F.; Volkov, V. F.; Kharitonov, A. M.
2013-12-01
Based on the analysis of various aspects of creating a supersonic transport aircraft of the second generation, the necessity of developing unconventional active methods of sonic boom level reduction is demonstrated. Surface cooling is shown to exert a significant effect on formation of the disturbed flow structure up to large distances from the body by an example of a supersonic flow around a body of revolution. A method of reducing the intensity of the intermediate shock wave and excess pressure momentum near the body is proposed. This method allows the length of the reduced (by 50%) sonic boom level to be increased and the bow shock wave intensity in the far zone to be reduced by 12%. A possibility of controlling the process of formation of wave structures, such as hanging pressure shocks arising near the aircraft surface, is demonstrated. The action of the cryogenic mechanism is explained.
Closing the data gap: Creating an open data environment
NASA Astrophysics Data System (ADS)
Hester, J. R.
2014-02-01
Poor data management brought on by increasing volumes of complex data undermines both the integrity of the scientific process and the usefulness of datasets. Researchers should endeavour both to make their data citeable and to cite data whenever possible. The reusability of datasets is improved by community adoption of comprehensive metadata standards and public availability of reversibly reduced data. Where standards are not yet defined, as much information as possible about the experiment and samples should be preserved in datafiles written in a standard format.
NASA Technical Reports Server (NTRS)
Yuasa, S.; Flory, D.; Basile, B.; Oro, J.
1984-01-01
Two studies on the abiotic formation of amino acids are presented. The first study demonstrates the role of hydrogen cyanide as a precursor of amino acids detected in extracts of lunar samples. The formation of several amino acids, including glycine, alanine, aspartic acid, and glutamic acid, under conditions similar to those used for the analysis of lunar samples is demonstrated. The second study investigates the formation of hydrogen cyanide as well as amino acids from lunar-sample gas mixtures under electrical discharge conditions. These results extend the possibility of synthesis of amino acids to planetary bodies with primordial atmospheres less reducing than a mixture of methane, ammonia, hydrogen and water.
Unintended environmental consequences and co-benefits of economic restructuring.
Liang, Sai; Xu, Ming; Suh, Sangwon; Tan, Raymond R
2013-11-19
Current economic restructuring policies have ignored unintended environmental consequences and cobenefits, the understanding of which can provide foundations for effective policy decisions for green economy transformation. Using the input-output life cycle assessment model and taking China as an example, we find that household consumption, fixed capital formation, and export are main drivers to China's environmental impacts. At the product scale, major contributors to environmental impacts vary across different types of impacts. Stimulating the development of seven strategic emerging industries will cause unintended consequences, such as increasing nonferrous metal ore usage, terrestrial acidification, photochemical oxidant formation, human toxicity, and terrestrial ecotoxicity. Limiting the surplus outputs in the construction materials industry and metallurgy industry may only help mitigate some of the environmental impacts caused by China's regulated pollutants, with little effect on reducing other impacts, such as marine eutrophication, terrestrial acidification, photochemical oxidant formation, and particulate matter formation. However, it will bring cobenefits by simultaneously reducing mineral ore usage, human toxicity, marine ecotoxicity, and terrestrial ecotoxicity. Sustainable materials management and integrated policy modeling are possible ways for policy-making to avoid unintended consequences and effectively utilize cobenefits.
Yang, Guang-Chao; Zhou, Lei; Mbadinga, Serge M; Liu, Jin-Feng; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong
2016-01-01
CO2 sequestration in deep-subsurface formations including oil reservoirs is a potential measure to reduce the CO2 concentration in the atmosphere. However, the fate of the CO2 and the ecological influences in carbon dioxide capture and storage (CDCS) facilities is not understood clearly. In the current study, the fate of CO2 (in bicarbonate form; 0∼90 mM) with 10 mM of formate as electron donor and carbon source was investigated with high-temperature production water from oilfield in China. The isotope data showed that bicarbonate could be reduced to methane by methanogens and major pathway of methanogenesis could be syntrophic formate oxidation coupled with CO2 reduction and formate methanogenesis under the anaerobic conditions. The bicarbonate addition induced the shift of microbial community. Addition of bicarbonate and formate was associated with a decrease of Methanosarcinales, but promotion of Methanobacteriales in all treatments. Thermodesulfovibrio was the major group in all the samples and Thermacetogenium dominated in the high bicarbonate treatments. The results indicated that CO2 from CDCS could be transformed to methane and the possibility of microbial CO2 conversion for enhanced microbial energy recovery in oil reservoirs.
Yang, Guang-Chao; Zhou, Lei; Mbadinga, Serge M.; Liu, Jin-Feng; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong
2016-01-01
CO2 sequestration in deep-subsurface formations including oil reservoirs is a potential measure to reduce the CO2 concentration in the atmosphere. However, the fate of the CO2 and the ecological influences in carbon dioxide capture and storage (CDCS) facilities is not understood clearly. In the current study, the fate of CO2 (in bicarbonate form; 0∼90 mM) with 10 mM of formate as electron donor and carbon source was investigated with high-temperature production water from oilfield in China. The isotope data showed that bicarbonate could be reduced to methane by methanogens and major pathway of methanogenesis could be syntrophic formate oxidation coupled with CO2 reduction and formate methanogenesis under the anaerobic conditions. The bicarbonate addition induced the shift of microbial community. Addition of bicarbonate and formate was associated with a decrease of Methanosarcinales, but promotion of Methanobacteriales in all treatments. Thermodesulfovibrio was the major group in all the samples and Thermacetogenium dominated in the high bicarbonate treatments. The results indicated that CO2 from CDCS could be transformed to methane and the possibility of microbial CO2 conversion for enhanced microbial energy recovery in oil reservoirs. PMID:27047478
Lactate has the potential to promote hydrogen sulphide formation in the human colon.
Marquet, Perrine; Duncan, Sylvia H; Chassard, Christophe; Bernalier-Donadille, Annick; Flint, Harry J
2009-10-01
High concentrations of sulphide are toxic for the gut epithelium and may contribute to bowel disease. Lactate is a favoured cosubstrate for the sulphate-reducing colonic bacterium Desulfovibrio piger, as shown here by the stimulation of sulphide formation by D. piger DSM749 by lactate in the presence of sulphate. Sulphide formation by D. piger was also stimulated in cocultures with the lactate-producing bacterium Bifidobacterium adolescentis L2-32. Other lactate-utilizing bacteria such as the butyrate-producing species Eubacterium hallii and Anaerostipes caccae are, however, expected to be in competition with the sulphate-reducing bacteria (SRB) for the lactate formed in the human colon. Strains of E. hallii and A. caccae produced 65% and 96% less butyrate from lactate, respectively, in a coculture with D. piger DSM749 than in a pure culture. In triculture experiments involving B. adolescentis L2-32, up to 50% inhibition of butyrate formation by E. hallii and A. caccae was observed in the presence of D. piger DSM749. On the other hand, sulphide formation by D. piger was unaffected by E. hallii or A. caccae in these cocultures and tricultures. These experiments strongly suggest that lactate can stimulate sulphide formation by SRB present in the colon, with possible consequences for conditions such as colitis.
Formation Flying and Deformable Instruments
NASA Astrophysics Data System (ADS)
Rio, Yvon
2009-05-01
Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.
McDermott, Carmel M; Liu, Dan; Ade, Catherine; Schrader, Laura A
2015-02-01
Females experience depression, posttraumatic stress disorder (PTSD), and anxiety disorders at approximately twice the rate of males, but the mechanisms underlying this difference remain undefined. The effect of sex hormones on neural substrates presents a possible mechanism. We investigated the effect of ovariectomy at two ages, before puberty and in adulthood, and 17β-estradiol (E2) replacement administered chronically in drinking water on anxiety level, fear memory formation, and extinction. Based on previous studies, we hypothesized that estradiol replacement would impair fear memory formation and enhance extinction rate. Females, age 4 weeks and 10 weeks, were divided randomly into 4 groups; sham surgery, OVX, OVX+low E2 (200nM), and OVX+high E2 (1000nM). Chronic treatment with high levels of E2 significantly increased anxiety levels measured in the elevated plus maze. In both age groups, high levels of E2 significantly increased contextual fear memory but had no effect on cued fear memory. In addition, high E2 decreased the rate of extinction in both ages. Finally, catechol-O-methyltransferase (COMT) is important for regulation of catecholamine levels, which play a role in fear memory formation and extinction. COMT expression in the hippocampus was significantly reduced by high E2 replacement, implying increased catecholamine levels in the hippocampus of high E2 mice. These results suggest that estradiol enhanced fear memory formation, and inhibited fear memory extinction, possibly stabilizing the fear memory in female mice. This study has implications for a neurobiological mechanism for PTSD and anxiety disorders. Copyright © 2014 Elsevier Inc. All rights reserved.
H2S Injection and Sequestration into Basalt - The SulFix Project
NASA Astrophysics Data System (ADS)
Gudbrandsson, S.; Moola, P.; Stefansson, A.
2014-12-01
Atmospheric H2S emissions are among major environmental concern associated with geothermal energy utilization. It is therefore of great importance for the geothermal power sector to reduce H2S emissions. Known solutions for H2S neutralization are both expensive and include production of elemental sulfur and sulfuric acid that needs to be disposed of. Icelandic energy companies that utilize geothermal power for electricity production have decided to try to find an environmentally friendly and economically feasible solution to reduce the H2S emission, in a joint venture called SulFix. The aim of SulFix project is to explore the possibilities of injecting H2S dissolved in water into basaltic formations in close proximity to the power plants for permanent fixation as sulfides. The formation of sulfides is a natural process in geothermal systems. Due to basalt being rich in iron and dissolving readily at acidic conditions, it is feasible to re-inject the H2S dissolved in water, into basaltic formations to form pyrite. To estimate the mineralization rates of H2S, in the basaltic formation, flow through experiments in columns were conducted at various H2S concentrations, temperatures (100 - 240°C) and both fresh and altered basaltic glass. The results indicate that pyrite rapidly forms during injection into fresh basalt but the precipiation in altered basalt is slower. Three different alteration stages, as a function of distance from inlet, can be observed in the column with fresh basaltic glass; (1) dissolution features along with precipitation, (2) precipitation increases, both sulfides and other secondary minerals and (3) the basalt looks to be unaltered and little if any precipitation is observed. The sulfur has precipitated in the first half of the column and thereafter the solution is possibly close to be supersaturated with respect to the rock. These results indicate that the H2S sequestration into basalt is possible under geothermal conditions. The rate limiting step is the availability of iron released from the dissolving rock. The rapid precipitation of secondary phases in the column suggests the possibility of decreased porosity in the vicinity of the injection well.
Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination.
Mitch, William A; Sedlak, David L
2002-02-15
Chlorine disinfection of secondary wastewater effluent and drinking water can result in the production of the potent carcinogen N-nitrosodimethylamine (NDMA) at concentrations of approximately 100 and 10 parts per trillion (ng/L), respectively. Laboratory experiments with potential NDMA precursors indicate that NDMA formation can form during the chlorination of dimethylamine and other secondary amines. The formation of NDMA during chlorination may involve the slow formation of 1,1-dimethylhydrazine by the reaction of monochloramine and dimethylamine followed by its rapid oxidation to NDMA and other products including dimethylcyanamide and dimethylformamide. Other pathways also lead to NDMA formation during chlorination such as the reaction of sodium hypochlorite with dimethylamine. However, the rate of NDMA formation is approximately an order of magnitude slower than that observed when monochloramine reacts with dimethylamine. The reaction exhibits a strong pH dependence due to competing reactions. It may be possible to reduce NDMA formation during chlorination by removing ammonia prior to chlorination, by breakpoint chlorination, or by avoidance of the use of monochloramine for drinking water disinfection.
Geochemical study of the organic matter from Querecual formation, Anzoategui State, Venezuela
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garban, G.; Lopez, L.; Lo Monaco, S.
1996-08-01
Kerogen and bitumen fractions extracted from twenty-one limestone samples from kind section of Querecual formation (Querecual River, Anzoategui State, Venezuela) were analyzed for their content of Co, Cr, Fe, Mn, Mo, Ni, S, Sr, V and Zn. S and trace-metals content from the kerogen fraction were used to obtain information about paleoenvironmental sedimentation conditions of the Querecual formation. Based on these data, and especially on the V and S content variations plus V/Ni, VIV+Ni and Mo/Mo+Cr ratios, we confirm an ancient-reducer condition on this region according with a sulfur-reducer environment. Trace-metals content variations from the bitumen fraction along the studymore » section were used as possible primary migration indicators. V and Ni were the only elements showing a clear tendency to be used as primary migration indicators. The observed tendency allows us to postulate a vertical migration of the bitumen, from center to the extremes of the section.« less
Separation of metadata and pixel data to speed DICOM tag morphing.
Ismail, Mahmoud; Philbin, James
2013-01-01
The DICOM information model combines pixel data and metadata in single DICOM object. It is not possible to access the metadata separately from the pixel data. There are use cases where only metadata is accessed. The current DICOM object format increases the running time of those use cases. Tag morphing is one of those use cases. Tag morphing includes deletion, insertion or manipulation of one or more of the metadata attributes. It is typically used for order reconciliation on study acquisition or to localize the issuer of patient ID (IPID) and the patient ID attributes when data from one domain is transferred to a different domain. In this work, we propose using Multi-Series DICOM (MSD) objects, which separate metadata from pixel data and remove duplicate attributes, to reduce the time required for Tag Morphing. The time required to update a set of study attributes in each format is compared. The results show that the MSD format significantly reduces the time required for tag morphing.
Li, Hao; Pan, Bo; Liao, Shaohua; Zhang, Di; Xing, Baoshan
2014-05-01
Iron is rich in soils, and is recently reported to form stable complexes with organic free radicals, generating environmentally persistent free radicals (EPFRs). The observation may challenge the common viewpoint that iron is an effective catalyst to facilitate the degradation of various organic chemicals. But no study was specifically designed to investigate the possible inhibited degradation of organic chemicals because of the formation of EPFRs in dry environment. We observed that catechol degradation under UV irradiation was decreased over 20% in silica particles coated with 1% hematite in comparison to uncoated silica particles. Stabilized semiquinone or quinine and phenol radicals were involved in HMT-silica system. EPFR formation was thus the reason for the reduced catechol degradation on HMT-silica surface under UV irradiation at ambient temperature. EPFRs should be incorporated in the studies of organic contaminants geochemical behavior, and will be a new input in their environmental fate modeling. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gainey, Seth R.; Hausrath, Elisabeth M.; Adcock, Christopher T.
Clay mineral-bearing locations have been targeted for martian exploration as potentially habitable environments and as possible repositories for the preservation of organic matter. Although organic matter has been detected at Gale Crater, Mars, its concentrations are lower than expected from meteoritic and indigenous igneous and hydrothermal reduced carbon. We conducted synthesis experiments motivated by the hypothesis that some clay mineral formation may have occurred under oxidized conditions conducive to the destruction of organics. Previous work has suggested that anoxic and/or reducing conditions are needed to synthesize the Fe-rich clay mineral nontronite at low temperatures. In contrast, our experiments demonstrated themore » rapid formation of Fe-rich clay minerals of variable crystallinity from aqueous Fe3+ with small amounts of aqueous Mg2+. Our results suggest that Fe-rich clay minerals such as nontronite can form rapidly under oxidized conditions, which could help explain low concentrations of organics within some smectite-containing rocks or sediments on Mars.« less
Gainey, Seth R; Hausrath, Elisabeth M; Adcock, Christopher T; Tschauner, Oliver; Hurowitz, Joel A; Ehlmann, Bethany L; Xiao, Yuming; Bartlett, Courtney L
2017-11-01
Clay mineral-bearing locations have been targeted for martian exploration as potentially habitable environments and as possible repositories for the preservation of organic matter. Although organic matter has been detected at Gale Crater, Mars, its concentrations are lower than expected from meteoritic and indigenous igneous and hydrothermal reduced carbon. We conducted synthesis experiments motivated by the hypothesis that some clay mineral formation may have occurred under oxidized conditions conducive to the destruction of organics. Previous work has suggested that anoxic and/or reducing conditions are needed to synthesize the Fe-rich clay mineral nontronite at low temperatures. In contrast, our experiments demonstrated the rapid formation of Fe-rich clay minerals of variable crystallinity from aqueous Fe 3+ with small amounts of aqueous Mg 2+ . Our results suggest that Fe-rich clay minerals such as nontronite can form rapidly under oxidized conditions, which could help explain low concentrations of organics within some smectite-containing rocks or sediments on Mars.
Pears and renal stones: possible weapon for prevention? A comprehensive narrative review.
Manfredini, R; De Giorgi, A; Storari, A; Fabbian, F
2016-01-01
Urinary stones have been recognized as a human disease since dawn of history and treatment of this condition is reported by Egyptian medical writings. Also, pears have a very long history, being one of the earliest cultivated fruit trees and also known for medicinal use. Urinary tract stone formation represents a common condition and also a significant burden for health care service, due also to possible frequent relapses. Furthermore, urinary stones have been reported to have relationship with different metabolic derangements, and appropriate diet could contribute to avoid or reduce urinary stone formation. Citrate is an inhibitor of crystal growth in the urinary system, and hypocitraturia represents a main therapeutical target in stone formers. Pears contain a significant amount of malic acid, a precursor of citrate, and have antioxidant activity as well. A diet supplemented with pears, and associated with low consumption of meat and salt could impact positively cardiometabolic risk and urinary tract stone formation. However, very few studies evaluated the impact of pears utilization on health, and none on urinary tract stone formation in particular. High content in malate could warrant protection against stone formation, avoiding patients at high risk to be compelled to assume a considerable and expensive amount of pills.
Van Putte, Lennert; De Schrijver, Sofie; Moortgat, Peter
2016-01-01
Introduction: With ageing, the skin gradually loses its youthful appearance and functions like wound healing and scar formation. The pathophysiological theory of Advanced Glycation End products (AGEs) has gained traction during the last decade. This review aims to document the influence of AGEs on the mechanical and physiologic properties of the skin, how they affect dermal wound healing and scar formation in high-AGE populations like elderly patients and diabetics, and potential therapeutic strategies. Methods: This systematic literature study involved a structured search in Pubmed and Web of Science with qualitative analysis of 14 articles after a three-staged selection process with the use of in- and exclusion criteria. Results: Overall, AGEs cause shortened, thinned, and disorganized collagen fibrils, consequently reducing elasticity and skin/scar thickness with increased contraction and delayed wound closure. Documented therapeutic strategies include dietary AGE restriction, sRAGE decoy receptors, aminoguanidine, RAGE-blocking antibodies, targeted therapy, thymosin β4, anti-oxidant agents and gold nanoparticles, ethyl pyruvate, Gal-3 manipulation and metformin. Discussion: With lack of evidence concerning scars, no definitive conclusions can yet be made about the role of AGEs on possible appearance or function of scar tissue. However, all results suggest that scars tend to be more rigid and contractile with persistent redness and reduced tendency towards hypertrophy as AGEs accumulate. Conclusion: Abundant evidence supports the pathologic role of AGEs in ageing and dermal wound healing and the effectiveness of possible therapeutic agents. More research is required to conclude its role in scar formation and scar therapy.
Feedback dew-point sensor utilizing optimally cut plastic optical fibres
NASA Astrophysics Data System (ADS)
Hadjiloucas, S.; Irvine, J.; Keating, D. A.
2000-01-01
A plastic optical fibre reflectance sensor that makes full use of the critical angle of the fibres is implemented to monitor dew formation on a Peltier-cooled reflector surface. The optical configuration permits isolation of optoelectronic components from the sensing head and better light coupling between the reflector and the detecting fibre, giving a better signal of the onset of dew formation on the reflector. Continuous monitoring of the rate of change in reflectance as well as the absolute reflectance signals, the use of a novel polymethyl-methacrylate-coated hydrophobic film reflector on the Peltier element and the application of feedback around the point of dew formation, further reduces the possibility of contamination of the sensor head. Under closed-loop operation, the sensor is capable of cycling around the point of dew formation at a frequency of 2.5 Hz.
Zekaj, Edvin; Saleh, Christian; Servello, Domenico
2016-01-01
Background: A rare cause of spinal cord compression is spinal arachnoid cysts. Symptoms are caused by spinal cord compression, however, asymptomatic patients have been also reported. Treatment options depend upon symptom severity and clinical course. Case Description: We report the case of a 47-year-old patient who developed an intramedullary arachnoid cyst after removal of an intradural extramedullary cyst. Conclusion: Surgery should be considered early in a symptomatic disease course. Longstanding medullary compression may reduce the possibility of neurological recovery as well as secondary complications such as intramedullary cyst formation. PMID:27512608
Ihara, Masaki; Kawano, Yusuke; Urano, Miho; Okabe, Ayako
2013-01-01
The ultimate goal of this research is to construct a new direct CO2 fixation system using photosystems in living algae. Here, we report light-driven formate production from CO2 by using cyanobacterial photosystem I (PS I). Formate, a chemical hydrogen carrier and important industrial material, can be produced from CO2 by using the reducing power and the catalytic function of formate dehydrogenase (FDH). We created a bacterial FDH mutant that experimentally switched the cofactor specificity from NADH to NADPH, and combined it with an in vitro-reconstituted cyanobacterial light-driven NADPH production system consisting of PS I, ferredoxin (Fd), and ferredoxin-NADP+-reductase (FNR). Consequently, light-dependent formate production under a CO2 atmosphere was successfully achieved. In addition, we introduced the NADPH-dependent FDH mutant into heterocysts of the cyanobacterium Anabaena sp. PCC 7120 and demonstrated an increased formate concentration in the cells. These results provide a new possibility for photo-biological CO2 fixation. PMID:23936519
Ihara, Masaki; Kawano, Yusuke; Urano, Miho; Okabe, Ayako
2013-01-01
The ultimate goal of this research is to construct a new direct CO2 fixation system using photosystems in living algae. Here, we report light-driven formate production from CO2 by using cyanobacterial photosystem I (PS I). Formate, a chemical hydrogen carrier and important industrial material, can be produced from CO2 by using the reducing power and the catalytic function of formate dehydrogenase (FDH). We created a bacterial FDH mutant that experimentally switched the cofactor specificity from NADH to NADPH, and combined it with an in vitro-reconstituted cyanobacterial light-driven NADPH production system consisting of PS I, ferredoxin (Fd), and ferredoxin-NADP(+)-reductase (FNR). Consequently, light-dependent formate production under a CO2 atmosphere was successfully achieved. In addition, we introduced the NADPH-dependent FDH mutant into heterocysts of the cyanobacterium Anabaena sp. PCC 7120 and demonstrated an increased formate concentration in the cells. These results provide a new possibility for photo-biological CO2 fixation.
Virtual cathode formations in nested-well configurations
NASA Astrophysics Data System (ADS)
Stephens, K. F.; Ordonez, C. A.; Peterkin, R. E.
1999-12-01
Complete transmission of an electron beam through a cavity is not possible if the current exceeds the space-charge limited current. The formation of a virtual cathode reflects some of the beam electrons and reduces the current transmitted through the cavity. Transients in the injected current have been shown to lower the transmitted current below the value predicted by the electrostatic Child-Langmuir law. The present work considers the propagation of an electron beam through a nested-well configuration. Electrostatic particle-in-cell simulations are used to demonstrate that ions can be trapped in the electric potential depression of an electron beam. Furthermore, the trapped ions can prevent the formation of a virtual cathode for beam currents exceeding the space-charge limit.
Star Formation in Dusty Quasars
NASA Astrophysics Data System (ADS)
Lumsden, Stuart; Croom, Scott
2012-04-01
Quasar mode feedback is thought to be a crucial ingredient in galaxy formation for luminous merging and star-bursting systems at high redshift. The energy from the active nucleus should cause significant gas outflows, reducing the available free gas reservoir for future star formation. It is currently unknown which observational state best corresponds to the stage at which this "blowout" should occur. We intend to test one possible source population for this transition phase, by studying the molecular gas content in a small, statistically complete sample of 3 K-band selected reddened quasars from the AUS survey. All lie in the redshift range 2
NASA Astrophysics Data System (ADS)
Das, Amlan Kumar; Marwal, Avinash; Sain, Divya; Pareek, Vikram
2015-03-01
The present study demonstrates the bioreductive green synthesis of nanosized HgO using flower extracts of an ornamental plant Callistemon viminalis. The flower extracts of Callistemon viminalis seem to be environmentally friendly, so this protocol could be used for rapid production of HgO. Till date, there is no report of synthesis of nanoparticles using flower extract of Callistemon viminalis. Mercuric acetate was taken as the metal precursor in the present experiment. The flower extract was found to act as a reducing as well as a stabilizing agent. The phytochemicals present in the flower extract act as reducing agent which include proteins, saponins, phenolic compounds, phytosterols, and flavonoids. FT-IR spectroscopy confirmed that the extract had the ability to act as a reducing agent and stabilizer for HgO nanoparticles. The formation of the plant protein-coated HgO nanoparticles was first monitored using UV-Vis absorption spectroscopy. The UV-Vis spectroscopy revealed the formation of HgO nanoparticles by exhibiting the typical surface plasmon absorption maxima at 243 nm. The average particle size formed ranges from 2 to 4 nm. The dried form of synthesized nanoparticles was further characterized using TGA, XRD, TEM, and FTIR spectroscopy. FT-IR spectra of synthesized HgO nanoparticles were performed to identify the possible bio-molecules responsible for capping and stabilization of nanoparticles, which confirm the formation of plant protein-coated HgO nanoparticles that is further corroborated by TGA study. The optical band gap of HgO nanoparticle was measured to be 2.48 eV using cutoff wavelength which indicates that HgO nanoparticles can be used in metal oxide semiconductor-based photovoltaic cells. A possible core-shell structure of the HgO nanobiocomposite has been proposed.
Kong, Baohua; Zhang, Huiyun; Xiong, Youling L
2010-08-01
Three experiments were conducted to assess the antioxidant efficacy of spice extracts in cooked meat. In experiment 1, antioxidant activity of 13 common spice extracts was screened in a liposome system. Six of the extracts (clove, rosemary, cassia bark, liquorice, nutmeg, and round cardamom), identified to have the greatest total phenolic contents, were strongly inhibitory of TBARS formation. In experiment 2, 2,2-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, ferric-reducing power, and metal chelation of these six spice extracts were evaluated. Clove exhibited the greatest reducing power, and all had strong DPPH scavenging activity. In experiment 3, clove, rosemary, and cassia bark extracts were further tested for in situ antioxidant efficacy. Cooked pork patties containing these spice extracts had markedly reduced TBARS formation and off-flavour scores but a more stable red colour, during storage. The results demonstrated strong potential of spice extracts as natural antioxidants in cooked pork products. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Hunter, William J; Manter, Daniel K
2014-10-01
Furfural is an inhibitor of growth and ethanol production by Zymomonas mobilis. This study used a naturally occurring (not GMO) biological pre-treatment to reduce that amount of furfural in a model fermentation broth. Pre-treatment involved inoculating and incubating the fermentation broth with strains of Leuconostoc mesenteroides or Leuconostoc pseudomesenteroides. The Leuconostoc strains converted furfural to furfuryl alcohol without consuming large amounts of dextrose in the process. Coupling this pre-treatment to ethanolic fermentation reduced furfural in the broth and improved growth, dextrose uptake and ethanol formation. Pre-treatment permitted ethanol formation in the presence of 5.2 g L(-1) furfural, which was otherwise inhibitive. The pre-treatment and presence of the Leuconostoc strains in the fermentation broth did not interfere with Z. mobilis ethanolic fermentation or the amounts of ethanol produced. The method suggests a possible technique for reducing the effect that furfural has on the production of ethanol for use as a biofuel. Published by Elsevier Ltd.
Tripathi, Shalini; Bose, Roopa; Roy, Ahin; Nair, Sajitha; Ravishankar, N
2015-12-09
We report a facile synthesis of Zn2SiO4 nanotubes using a two-step process consisting of a wet-chemical synthesis of core-shell ZnO@SiO2 nanorods followed by thermal annealing. While annealing in air leads to the formation of hollow Zn2SiO4, annealing under reducing atmosphere leads to the formation of SiO2 nanotubes. We rationalize the formation of the silicate phase at temperatures much lower than the temperatures reported in the literature based on the porous nature of the silica shell on the ZnO nanorods. We present results from in situ transmission electron microscopy experiments to clearly show void nucleation at the interface between ZnO and the silica shell and the growth of the silicate phase by the Kirkendall effect. The porous nature of the silica shell is also responsible for the etching of the ZnO leading to the formation of silica nanotubes under reducing conditions. Both the hollow silica and silicate nanotubes exhibit good uranium sorption at different ranges of pH making them possible candidates for nuclear waste management.
2014-12-04
is determined with an on-line, continuous NDIR analyzer and O2 is measured using an electrochemical oxygen sensor . 8 3.1.2 Modelling Approach...hydrocarbons were discussed. Additionally, the possibility to extend the reach of JetSurF model and apply it for models of soot formation in gas turbine engines was addressed.
NASA Astrophysics Data System (ADS)
Buscheck, T. A.; Sun, Y.; Hao, Y.; Court, B.; Celia, M. A.; Wolery, T.; Tompson, A. F.; Aines, R. D.; Friedmann, J.
2010-12-01
CO2 capture and sequestration (CCS) in deep geological formations is regarded as a promising means of lowering the amount of CO2 emitted to the atmosphere and thereby mitigate global warming. The most promising systems for CCS are depleted oil reservoirs, particularly those suited to CO2-based Enhanced Oil Recovery (CCS-EOR), and deep saline formations, both of which are well separated from the atmosphere. For conventional, industrial-scale, saline-formation CCS, pressure buildup can have a limiting effect on CO2 storage capacity. To address this concern, we analyze Active CO2 Reservoir Management (ACRM), which combines brine extraction and residual-brine reinjection with CO2 injection, comparing it with conventional saline-formation CCS. We investigate the influence of brine extraction on pressure response and CO2 and brine migration using the NUFT code. By extracting brine from the lower portion of the storage formation, from locations progressively further from the center of injection, we can counteract buoyancy that drives CO2 to the top of the formation, which is useful in dipping formations. Using “push-pull” manipulation of the CO2 plume, we expose less of the caprock seal to CO2 and more of the storage formation to CO2, with more of the formation utilized for trapping mechanisms. Plume manipulation can also counteract the influence of heterogeneity. We consider the impact of extraction ratio, defined as net extracted brine volume (extraction minus reinjection) divided by injected CO2 volume. Pressure buildup is reduced with increasing extraction ratio, which reduces CO2 and brine migration, increases CO2 storage capacity, and reduces other risks, such as leakage up abandoned wells, caprock fracturing, fault activation, and induced seismicity. For a 100-yr injection period, a 10-yr delay in brine extraction does not diminish the magnitude of pressure reduction. Moreover, it is possible to achieve pressure management with just a few brine-extraction wells, located far from the injection zone. For an extraction ratio of 1, pressure buildup is minimized, greatly reducing the Area of Review, as well as the area required for securing mineral rights. For an extraction ratio of 1, CO2 and brine migration are unaffected by neighboring CO2 operations, which allows planning, assessing, and conducting of each operation to be carried out independently; thus, permits could be granted on a single-site basis. Brine-extraction wells will be useful during monitoring, providing information for system calibration and history matching. One of several key aspects that ACRM has in common with CCS-EOR is the possibility of generating revenue from the extracted fluids; namely, fresh water produced via brine desalination, using technologies such as Reverse Osmosis. These benefits can offset brine extraction and treatment costs, streamline permitting, and help gain public acceptance. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Influence of biofilm formation on corrosion and scaling in geothermal plants
NASA Astrophysics Data System (ADS)
Kleyböcker, Anne; Lerm, Stephanie; Monika, Kasina; Tobias, Lienen; Florian, Eichinger; Andrea, Seibt; Markus, Wolfgramm; Hilke, Würdemann
2017-04-01
Process failures may occur due to corrosion and scaling processes in open loop geothermal systems. Especially after heat extraction, sulfate reducing bacteria (SRB) contribute to corrosion processes due to a more favorable temperature for their growth. In biofilms containing FeS scales, corrosion processes are enhanced. Furthermore, scales can lead to reduced pipe profiles, to a diminished heat transfer and a decrease in the wellbore injectivity. Inhibitors are frequently applied to minimize scaling in technical systems. A prerequisite for the application of inhibitors in geothermal plants located in the Molasse basin is their degradability under reservoir conditions, e. g. in a reduced environment. In order to determine the effects of scale-inhibitors on the subsurface and microbial processes, laboratory experiments were performed focusing on the microbial inhibitor degradation. First results indicate that the inhibitor degradation under anaerobic conditions is possible. Besides the inhibitor application also other techniques are investigated to economically reduce corrosion and scaling in geothermal plants. In a mobile bypass system, the influence of biofilm formation on corrosion and scaling was investigated. The bypass system was tested at a geothermal heat store in the North German Basin. The plant is operated with highly saline fluid (salinity 130 g/L) and known to be affected by SRB. The SRB contributed to corrosion damages especially at the pump in the well on the cold side. Heat shocks were successfully used in the bypass system to reduce biofilm formation as well as corrosion and scaling processes.
Role of GPER in estrogen-dependent nitric oxide formation and vasodilation.
Fredette, Natalie C; Meyer, Matthias R; Prossnitz, Eric R
2018-02-01
Estrogens are potent regulators of vasomotor tone, yet underlying receptor- and ligand-specific signaling pathways remain poorly characterized. The primary physiological estrogen 17β-estradiol (E2), a non-selective agonist of classical nuclear estrogen receptors (ERα and ERβ) as well as the G protein-coupled estrogen receptor (GPER), stimulates formation of the vasodilator nitric oxide (NO) in endothelial cells. Here, we studied the contribution of GPER signaling in E2-dependent activation of endothelial NO formation and subsequent vasodilation. Employing E2 and the GPER-selective agonist G-1, we investigated eNOS phosphorylation and NO formation in human endothelial cells, and endothelium-dependent vasodilation in the aortae of wild-type and Gper-deficient mice. Both E2 and G-1 induced phosphorylation of eNOS at the activation site Ser1177 to similar extents. Endothelial NO production to E2 was comparable to that of G-1, and was substantially reduced after pharmacological inhibition of GPER. Similarly, the clinically used ER-targeting drugs 4OH-tamoxifen, raloxifene, and ICI182,780 (faslodex, fulvestrant™) induced NO formation in part via GPER. We identified c-Src, EGFR, PI3K and ERK signaling pathways to be involved in GPER-dependent NO formation. In line with activation of NO formation in cells, E2 and G-1 induced equally potent vasodilation in the aorta of wild-type mice. Gper deletion completely abrogated the vasodilator response to G-1, while reducing the response to E2 by ∼50%. These findings indicate that a substantial portion of E2-induced endothelium-dependent vasodilation and NO formation is mediated by GPER. Thus, selective targeting of vascular GPER may be a suitable approach to activate the endothelial NO pathway, possibly leading to reduced vasomotor tone and inhibition of atherosclerotic vascular disease. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cunha, Alexandre; Elie, Anne-Marie; Plawinski, Laurent; Serro, Ana Paula; Botelho do Rego, Ana Maria; Almeida, Amélia; Urdaci, Maria C.; Durrieu, Marie-Christine; Vilar, Rui
2016-01-01
The aim of the present work was to investigate the possibility of using femtosecond laser surface texturing as a method to reduce the colonization of Grade 2 Titanium alloy surfaces by Staphylococcus aureus and the subsequent formation of biofilm. The laser treatments were carried out with a Yb:KYW chirped-pulse-regenerative amplification laser system with a central wavelength of 1030 nm and a pulse duration of 500 fs. Two types of surface textures, consisting of laser-induced periodic surface structures (LIPSS) and nanopillars, were produced. The topography, chemical composition and phase constitution of these surfaces were investigated by atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. Surface wettability was assessed by the sessile drop method using water and diiodomethane as testing liquids. The response of S. aureus put into contact with the laser treated surfaces in controlled conditions was investigated by epifluorescence microscopy and scanning electron microscopy 48 h after cell seeding. The results achieved show that the laser treatment reduces significantly the bacterial adhesion to the surface as well as biofilm formation as compared to a reference polished surfaces and suggest that femtosecond laser texturing is a simple and promising method for endowing dental and orthopedic titanium implants with antibacterial properties, reducing the risk of implant-associated infections without requiring immobilized antibacterial substances, nanoparticles or coatings.
2010-01-01
Background The formation of native disulfide bonds is a complex and essential post-translational modification for many proteins. The large scale production of these proteins can be difficult and depends on targeting the protein to a compartment in which disulfide bond formation naturally occurs, usually the endoplasmic reticulum of eukaryotes or the periplasm of prokaryotes. It is currently thought to be impossible to produce large amounts of disulfide bond containing protein in the cytoplasm of wild-type bacteria such as E. coli due to the presence of multiple pathways for their reduction. Results Here we show that the introduction of Erv1p, a sulfhydryl oxidase and FAD-dependent catalyst of disulfide bond formation found in the inter membrane space of mitochondria, allows the efficient formation of native disulfide bonds in heterologously expressed proteins in the cytoplasm of E. coli even without the disruption of genes involved in disulfide bond reduction, for example trxB and/or gor. Indeed yields of active disulfide bonded proteins were higher in BL21 (DE3) pLysSRARE, an E. coli strain with the reducing pathways intact, than in the commercial Δgor ΔtrxB strain rosetta-gami upon co-expression of Erv1p. Conclusions Our results refute the current paradigm in the field that disruption of at least one of the reducing pathways is essential for the efficient production of disulfide bond containing proteins in the cytoplasm of E. coli and open up new possibilities for the use of E. coli as a microbial cell factory. PMID:20836848
Hatahet, Feras; Nguyen, Van Dat; Salo, Kirsi E H; Ruddock, Lloyd W
2010-09-13
The formation of native disulfide bonds is a complex and essential post-translational modification for many proteins. The large scale production of these proteins can be difficult and depends on targeting the protein to a compartment in which disulfide bond formation naturally occurs, usually the endoplasmic reticulum of eukaryotes or the periplasm of prokaryotes. It is currently thought to be impossible to produce large amounts of disulfide bond containing protein in the cytoplasm of wild-type bacteria such as E. coli due to the presence of multiple pathways for their reduction. Here we show that the introduction of Erv1p, a sulfhydryl oxidase and FAD-dependent catalyst of disulfide bond formation found in the inter membrane space of mitochondria, allows the efficient formation of native disulfide bonds in heterologously expressed proteins in the cytoplasm of E. coli even without the disruption of genes involved in disulfide bond reduction, for example trxB and/or gor. Indeed yields of active disulfide bonded proteins were higher in BL21 (DE3) pLysSRARE, an E. coli strain with the reducing pathways intact, than in the commercial Δgor ΔtrxB strain rosetta-gami upon co-expression of Erv1p. Our results refute the current paradigm in the field that disruption of at least one of the reducing pathways is essential for the efficient production of disulfide bond containing proteins in the cytoplasm of E. coli and open up new possibilities for the use of E. coli as a microbial cell factory.
Studying of kinetics of rear earth ion (REI) nanoscale complex formation by resonant energy transfer
NASA Astrophysics Data System (ADS)
Ignatova, Tetyana; Pristinski, Denis; Rotkin, Slava V.
2011-03-01
We observed formation of nanoscale complexes between multivalent REIs (Tb and Eu) and negatively charged DNA wrapped SWNTs, ionized in the water solution. Foerster Resonance Energy Transfer (FRET) was found to be an ideal method to confirm the complex formation. Because of its high sensitivity and non-destructive characterization approach FRET can be used to trace the kinetics of the complex formation. Strong dependence of SWNT photoluminescence (PL) on the REI concentration was detected and interpreted as a competition between the REI absorption on the SWNTs and subsequent FRET enhanced PL and the SWNT agglomeration followed by PL quenching. We measured the distance between REI and SWNT which appears to be much shorter than the one from their relative concentration in solution. We speculate that Manning condensation of the REIs on the SWNT/DNA surface happens thereby significantly reducing their spacing and making FRET possible.
Further factors influencing N-nitrosamine formation in bacon.
Gray, J I; Skrypec, D J; Mandagere, A K; Booren, A M; Pearson, A M
1984-01-01
The possible relationship of unsaturated fatty acids in adipose tissue to the formation of N-nitrosamines in bacon was evaluated by trials in which pigs were fed regular (control), tallow-, coconut fat- and corn oil-supplemented diets. Bacon prepared from pigs fed corn oil-supplemented diets contained significantly higher levels of N-nitrosopyrrolidine and N-nitrosodimethylamine than did control bacon samples; however, bacon produced from pigs fed a coconut fat-supplemented diet contained significantly lower levels of N-nitrosopyrrolidine. Fatty acid analyses of the adipose tissue of the bacon samples indicated that N-nitrosopyrrolidine levels in bacon correlated well with the degree of unsaturation of the adipose tissue. N-nitrosothiazolidine was detected in both brine-cured and dry-cured bacon at levels generally below 4 micrograms/kg. However, its formation was greatly reduced by the inclusion of alpha-tocopherol in the cure. The role of woodsmoke in N-nitrosothiazolidine formation in bacon is discussed.
NASA Astrophysics Data System (ADS)
Kim, Han-Shin; Cha, Eunji; Kim, Yunhye; Jeon, Young Ho; Olson, Betty H.; Byun, Youngjoo; Park, Hee-Deung
2016-05-01
Biofilm formation on biotic or abiotic surfaces has unwanted consequences in medical, clinical, and industrial settings. Treatments with antibiotics or biocides are often ineffective in eradicating biofilms. Promising alternatives to conventional agents are biofilm-inhibiting compounds regulating biofilm development without toxicity to growth. Here, we screened a biofilm inhibitor, raffinose, derived from ginger. Raffinose, a galactotrisaccharide, showed efficient biofilm inhibition of Pseudomonas aeruginosa without impairing its growth. Raffinose also affected various phenotypes such as colony morphology, matrix formation, and swarming motility. Binding of raffinose to a carbohydrate-binding protein called LecA was the cause of biofilm inhibition and altered phenotypes. Furthermore, raffinose reduced the concentration of the second messenger, cyclic diguanylate (c-di-GMP), by increased activity of a c-di-GMP specific phosphodiesterase. The ability of raffinose to inhibit P. aeruginosa biofilm formation and its molecular mechanism opens new possibilities for pharmacological and industrial applications.
Mechanisms and kinetics study on the trihalomethanes formation with carbon nanoparticle precursors.
Du, Tingting; Wang, Yingying; Yang, Xin; Wang, Wei; Guo, Haonan; Xiong, Xinyu; Gao, Rui; Wuli, Xiati; Adeleye, Adeyemi S; Li, Yao
2016-07-01
With lots of carbon nanoparticles (CNPs) applied in the industry, the possibilities of their environmental release have received much attention. As the CNPs may enter drinking water systems, and persist in water and wastewater treatment systems, their possible reaction with disinfectants should be studied. In this study, the formation of trihalomethanes (THMs) with 5 types of carbon nanotubes (CNTs), graphene oxide (GO) and reduced graphene oxide (rGO) was investigated. All CNPs could act as precursors of THMs in aqueous phase. Total concentrations of THMs formed with CNPs varied from 0.24 to 0.95 μM, much lower than that formed from chlorinated Suwannee River Natural Organic Matter (SRNOM) (approximately 9 μM). The kinetics of THMs formation with GO was 0.0814 M(-1) s(-1), which is higher than most of the chlorinated humic acid obtained from different natural waters. The study indicates that during chlorination, C-Cl bond could be formed on the surface of CNPs. However, carbon atoms at the middle of two meta-positioned OH groups on the benzene ring are more active and may prefer to form THMs with chlorine oxidation. The influences of pH and reactant doses on the formation of THMs were also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Prospects for reducing the processing cost of lithium ion batteries
Wood III, David L.; Li, Jianlin; Daniel, Claus
2014-11-06
A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; doubling the thicknesses of the anode and cathode to raise energy density; and, reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and amore » standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from $502.8 kWh-1-usable to $370.3 kWh-1-usable, a savings of $132.5/kWh (or 26.4%).« less
NASA Astrophysics Data System (ADS)
Li, Shikuo; Shen, Yuhua; Xie, Anjian; Yu, Xuerong; Zhang, Xiuzhen; Yang, Liangbao; Li, Chuanhao
2007-10-01
We describe the formation of amorphous selenium (α-Se)/protein composites using Capsicum annuum L extract to reduce selenium ions (SeO32-) at room temperature. The reaction occurs rapidly and the process is simple and easy to handle. A protein with a molecular weight of 30 kDa extracted from Capsicum annuum L not only reduces the SeO32- ions to Se0, but also controls the nucleation and growth of Se0, and even participates in the formation of α-Se/protein composites. The size and shell thickness of the α-Se/protein composites increases with high Capsicum annuum L extract concentration, and decreases with low reaction solution pH. The results suggest that this eco-friendly, biogenic synthesis strategy could be widely used for preparing inorganic/organic biocomposites. In addition, we also discuss the possible mechanism of the reduction of SeO32- ions by Capsicum annuum L extract.
NASA Astrophysics Data System (ADS)
Weckbecker, Andrea; Gröger, Harald; Hummel, Werner
Dehydrogenases which depend on nicotinamide coenzymes are of increasing interest for the preparation of chiral compounds, either by reduction of a prochiral precursor or by oxidative resolution of their racemate. The regeneration of oxidized and reduced nicotinamide cofactors is a very crucial step because the use of these cofactors in stoichiometric amounts is too expensive for application. There are several possibilities to regenerate nicotinamide cofactors: established methods such as formate/formate dehydrogenase (FDH) for the regeneration of NADH, recently developed electrochemical methods based on new mediator structures, or the application of gene cloning methods for the construction of "designed" cells by heterologous expression of appropriate genes.
Phase formation during the carbothermic reduction of eudialyte concentrate
NASA Astrophysics Data System (ADS)
Krasikov, S. A.; Upolovnikova, A. G.; Sitnikova, O. A.; Ponomarenko, A. A.; Agafonov, S. N.; Zhidovinova, S. V.; Maiorov, D. V.
2013-07-01
The phase transformations of eudialyte concentrate during the carbothermic reduction in the temperature range 25-2000°C are studied by thermodynamic simulation, differential thermal analysis, and X-ray diffraction. As the temperature increases to 1500°C, the following phases are found to form sequentially: iron and manganese carbides, free iron, niobium carbide, iron silicides, silicon and titanium carbides, and free silicon. Strontium, yttrium, and uranium in the temperature range under study are not reduced and are retained in an oxide form, and insignificant reduction of zirconium oxides with the formation of carbide ZrC is possible only at temperatures above 1500°C.
Thomas, Phillip S; Carrington, Tucker
2015-12-31
We propose a method for solving the vibrational Schrödinger equation with which one can compute hundreds of energy levels of seven-atom molecules using at most a few gigabytes of memory. It uses nested contractions in conjunction with the reduced-rank block power method (RRBPM) described in J. Chem. Phys. 2014, 140, 174111. Successive basis contractions are organized into a tree, the nodes of which are associated with eigenfunctions of reduced-dimension Hamiltonians. The RRBPM is used recursively to compute eigenfunctions of nodes in bases of products of reduced-dimension eigenfunctions of nodes with fewer coordinates. The corresponding vectors are tensors in what is called CP-format. The final wave functions are therefore represented in a hierarchical CP-format. Computational efficiency and accuracy are significantly improved by representing the Hamiltonian in the same hierarchical format as the wave function. We demonstrate that with this hierarchical RRBPM it is possible to compute energy levels of a 64-D coupled-oscillator model Hamiltonian and also of acetonitrile (CH3CN) and ethylene oxide (C2H4O), for which we use quartic potentials. The most accurate acetonitrile calculation uses 139 MB of memory and takes 3.2 h on a single processor. The most accurate ethylene oxide calculation uses 6.1 GB of memory and takes 14 d on 63 processors. The hierarchical RRBPM shatters the memory barrier that impedes the calculation of vibrational spectra.
Ginger Extract Inhibits Biofilm Formation by Pseudomonas aeruginosa PA14
Kim, Han-Shin; Park, Hee-Deung
2013-01-01
Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Some biofilm inhibitors have been screened from natural products or modified from natural compounds. Ginger has been used as a medicinal herb to treat infectious diseases for thousands of years, which leads to the hypothesis that it may contain chemicals inhibiting biofilm formation. To test this hypothesis, we evaluated ginger’s ability to inhibit Pseudomonas aeruginosa PA14 biofilm formation. A static biofilm assay demonstrated that biofilm development was reduced by 39–56% when ginger extract was added to the culture. In addition, various phenotypes were altered after ginger addition of PA14. Ginger extract decreased production of extracellular polymeric substances. This finding was confirmed by chemical analysis and confocal laser scanning microscopy. Furthermore, ginger extract formed noticeably less rugose colonies on agar plates containing Congo red and facilitated swarming motility on soft agar plates. The inhibition of biofilm formation and the altered phenotypes appear to be linked to a reduced level of a second messenger, bis-(3′-5′)-cyclic dimeric guanosine monophosphate. Importantly, ginger extract inhibited biofilm formation in both Gram-positive and Gram-negative bacteria. Also, surface biofilm cells formed with ginger extract detached more easily with surfactant than did those without ginger extract. Taken together, these findings provide a foundation for the possible discovery of a broad spectrum biofilm inhibitor. PMID:24086697
Inhibitory Effect of Sophorolipid on Candida albicans Biofilm Formation and Hyphal Growth
Haque, Farazul; Alfatah, Md.; Ganesan, K.; Bhattacharyya, Mani Shankar
2016-01-01
Candida albicans causes superficial and life-threatening systemic infections. These are difficult to treat often due to drug resistance, particularly because C. albicans biofilms are inherently resistant to most antifungals. Sophorolipid (SL), a glycolipid biosurfactant, has been shown to have antimicrobial and anticancer properties. In this study, we investigated the effect of SL on C. albicans biofilm formation and preformed biofilms. SL was found to inhibit C. albicans biofilm formation as well as reduce the viability of preformed biofilms. Moreover, SL, when used along with amphotericin B (AmB) or fluconazole (FLZ), was found to act synergistically against biofilm formation and preformed biofilms. Effect of SL on C. albicans biofilm formation was further visualized by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), which revealed absence of hyphae, typical biofilm architecture and alteration in the morphology of biofilm cells. We also found that SL downregulates the expression of hypha specific genes HWP1, ALS1, ALS3, ECE1 and SAP4, which possibly explains the inhibitory effect of SL on hyphae and biofilm formation. PMID:27030404
Sub-meninges implantation reduces immune response to neural implants.
Markwardt, Neil T; Stokol, Jodi; Rennaker, Robert L
2013-04-15
Glial scar formation around neural interfaces inhibits their ability to acquire usable signals from the surrounding neurons. To improve neural recording performance, the inflammatory response and glial scarring must be minimized. Previous work has indicated that meningeally derived cells participate in the immune response, and it is possible that the meninges may grow down around the shank of a neural implant, contributing to the formation of the glial scar. This study examines whether the glial scar can be reduced by placing a neural probe completely below the meninges. Rats were implanted with sets of loose microwire implants placed either completely below the meninges or implanted conventionally with the upper end penetrating the meninges, but not attached to the skull. Histological analysis was performed 4 weeks following surgical implantation to evaluate the glial scar. Our results found that sub-meninges implants showed an average reduction in reactive astrocyte activity of 63% compared to trans-meninges implants. Microglial activity was also reduced for sub-meninges implants. These results suggest that techniques that isolate implants from the meninges offer the potential to reduce the encapsulation response which should improve chronic recording quality and stability. Published by Elsevier B.V.
Sub-meninges Implantation Reduces Immune Response to Neural Implants
Markwardt, Neil T.; Stokol, Jodi; Rennaker, Robert L.
2013-01-01
Glial scar formation around neural interfaces inhibits their ability to acquire usable signals from the surrounding neurons. To improve neural recording performance, the inflammatory response and glial scarring must be minimized. Previous work has indicated that meningeally derived cells participate in the immune response, and it is possible that the meninges may grow down around the shank of a neural implant, contributing to the formation of the glial scar. This study examines whether the glial scar can be reduced by placing a neural probe completely below the meninges. Rats were implanted with sets of loose microwire implants placed either completely below the meninges or implanted conventionally with the upper end penetrating the meninges, but not attached to the skull. Histological analysis was performed 4 weeks following surgical implantation to evaluate the glial scar. Our results found that sub-meninges implants showed an average reduction in reactive astrocyte activity of 63% compared to trans-meninges implants. Microglial activity was also reduced for sub-meninges implants. These results suggest that techniques that isolate implants from the meninges offer the potential to reduce the encapsulation response which should improve chronic recording quality and stability. PMID:23370311
Hayrapetyan, Hasmik; Muller, Lisette; Tempelaars, Marcel; Abee, Tjakko; Nierop Groot, Masja
2015-05-04
Biofilm formation of Bacillus cereus reference strains ATCC 14579 and ATCC 10987 and 21 undomesticated food isolates was studied on polystyrene and stainless steel as contact surfaces. For all strains, the biofilm forming capacity was significantly enhanced when in contact with stainless steel (SS) as a surface as compared to polystyrene (PS). For a selection of strains, the total CFU and spore counts in biofilms were determined and showed a good correlation between CFU counts and total biomass of these biofilms. Sporulation was favoured in the biofilm over the planktonic state. To substantiate whether iron availability could affect B. cereus biofilm formation, the free iron availability was varied in BHI by either the addition of FeCl3 or by depletion of iron with the scavenger 2,2-Bipyridine. Addition of iron resulted in increased air-liquid interface biofilm on polystyrene but not on SS for strain ATCC 10987, while the presence of Bipyridine reduced biofilm formation for both materials. Biofilm formation was restored when excess FeCl3 was added in combination with the scavenger. Further validation of the iron effect for all 23 strains in microtiter plate showed that fourteen strains (including ATCC10987) formed a biofilm on PS. For eight of these strains biofilm formation was enhanced in the presence of added iron and for eleven strains it was reduced when free iron was scavenged. Our results show that stainless steel as a contact material provides more favourable conditions for B. cereus biofilm formation and maturation compared to polystyrene. This effect could possibly be linked to iron availability as we show that free iron availability affects B. cereus biofilm formation. Copyright © 2015 Elsevier B.V. All rights reserved.
Cady, Nathaniel C.; McKean, Kurt A.; Behnke, Jason; Kubec, Roman; Mosier, Aaron P.; Kasper, Stephen H.; Burz, David S.; Musah, Rabi A.
2012-01-01
Using a microplate-based screening assay, the effects on Pseudomonas aeruginosa PAO1 biofilm formation of several S-substituted cysteine sulfoxides and their corresponding disulfide derivatives were evaluated. From our library of compounds, S-phenyl-L-cysteine sulfoxide and its breakdown product, diphenyl disulfide, significantly reduced the amount of biofilm formation by P. aeruginosa at levels equivalent to the active concentration of 4-nitropyridine-N-oxide (NPO) (1 mM). Unlike NPO, which is an established inhibitor of bacterial biofilms, our active compounds did not reduce planktonic cell growth and only affected biofilm formation. When used in a Drosophila-based infection model, both S-phenyl-L-cysteine sulfoxide and diphenyl disulfide significantly reduced the P. aeruginosa recovered 18 h post infection (relative to the control), and were non-lethal to the fly hosts. The possibility that the observed biofilm inhibitory effects were related to quorum sensing inhibition (QSI) was investigated using Escherichia coli-based reporters expressing P. aeruginosa lasR or rhIR response proteins, as well as an endogenous P. aeruginosa reporter from the lasI/lasR QS system. Inhibition of quorum sensing by S-phenyl-L-cysteine sulfoxide was observed in all of the reporter systems tested, whereas diphenyl disulfide did not exhibit QSI in either of the E. coli reporters, and showed very limited inhibition in the P. aeruginosa reporter. Since both compounds inhibit biofilm formation but do not show similar QSI activity, it is concluded that they may be functioning by different pathways. The hypothesis that biofilm inhibition by the two active compounds discovered in this work occurs through QSI is discussed. PMID:22715388
Metsalu, Tauno; Vilo, Jaak
2015-01-01
The Principal Component Analysis (PCA) is a widely used method of reducing the dimensionality of high-dimensional data, often followed by visualizing two of the components on the scatterplot. Although widely used, the method is lacking an easy-to-use web interface that scientists with little programming skills could use to make plots of their own data. The same applies to creating heatmaps: it is possible to add conditional formatting for Excel cells to show colored heatmaps, but for more advanced features such as clustering and experimental annotations, more sophisticated analysis tools have to be used. We present a web tool called ClustVis that aims to have an intuitive user interface. Users can upload data from a simple delimited text file that can be created in a spreadsheet program. It is possible to modify data processing methods and the final appearance of the PCA and heatmap plots by using drop-down menus, text boxes, sliders etc. Appropriate defaults are given to reduce the time needed by the user to specify input parameters. As an output, users can download PCA plot and heatmap in one of the preferred file formats. This web server is freely available at http://biit.cs.ut.ee/clustvis/. PMID:25969447
Curcumin Attenuates Amyloid-β Aggregate Toxicity and Modulates Amyloid-β Aggregation Pathway.
Thapa, Arjun; Jett, Stephen D; Chi, Eva Y
2016-01-20
The abnormal misfolding and aggregation of amyloid-β (Aβ) peptides into β-sheet enriched insoluble deposits initiates a cascade of events leading to pathological processes and culminating in cognitive decline in Alzheimer's disease (AD). In particular, soluble oligomeric/prefibrillar Aβ have been shown to be potent neurotoxins. The naturally occurring polyphenol curcumin has been shown to exert a neuroprotective effect against age-related neurodegenerative diseases such as AD. However, its protective mechanism remains unclear. In this study, we investigated the effects of curcumin on the aggregation of Aβ40 as well as Aβ40 aggregate induced neurotoxicity. Our results show that the curcumin does not inhibit Aβ fibril formation, but rather enriches the population of "off-pathway" soluble oligomers and prefibrillar aggregates that were nontoxic. Curcumin also exerted a nonspecific neuroprotective effect, reducing toxicities induced by a range of Aβ conformers, including monomeric, oligomeric, prefibrillar, and fibrillar Aβ. The neuroprotective effect is possibly membrane-mediated, as curcumin reduced the extent of cell membrane permeabilization induced by Aβ aggregates. Taken together, our study shows that curcumin exerts its neuroprotective effect against Aβ induced toxicity through at least two concerted pathways, modifying the Aβ aggregation pathway toward the formation of nontoxic aggregates and ameliorating Aβ-induced toxicity possibly through a nonspecific pathway.
Interference, aging, and visuospatial working memory: the role of similarity.
Rowe, Gillian; Hasher, Lynn; Turcotte, Josée
2010-11-01
Older adults' performance on working memory (WM) span tasks is known to be negatively affected by the buildup of proactive interference (PI) across trials. PI has been reduced in verbal tasks and performance increased by presenting distinctive items across trials. In addition, reversing the order of trial presentation (i.e., starting with the longest sets first) has been shown to reduce PI in both verbal and visuospatial WM span tasks. We considered whether making each trial visually distinct would improve older adults' visuospatial WM performance, and whether combining the 2 PI-reducing manipulations, distinct trials and reversed order of presentation, would prove additive, thus providing even greater benefit. Forty-eight healthy older adults (age range = 60-77 years) completed 1 of 3 versions of a computerized Corsi block test. For 2 versions of the task, trials were either all visually similar or all visually distinct, and were presented in the standard ascending format (shortest set size first). In the third version, visually distinct trials were presented in a reverse order of presentation (longest set size first). Span scores were reliably higher in the ascending version for visually distinct compared with visually similar trials, F(1, 30) = 4.96, p = .03, η² = .14. However, combining distinct trials and a descending format proved no more beneficial than administering the descending format alone. Our findings suggest that a more accurate measurement of the visuospatial WM span scores of older adults (and possibly neuropsychological patients) might be obtained by reducing within-test interference.
Zhang, Zhongfei; Gao, Boyan; Zhang, Xiaowei; Jiang, Yuanrong; Xu, Xuebing; Yu, Liangli Lucy
2015-02-18
This study investigated whether and how triacylglycerol (TAG) may serve as a precursor for 3-monochloro-1,2-propanediol (3-MCPD) fatty acid ester formation using tristearoylglycerol (TSG). TSG was reacted with inorganic chloride compounds including NaCl, KCl, FeCl2, CuCl2, ZnCl2, FeCl3 and dry HCl, or organic chlorine compound lindane at different temperatures. Only FeCl2 and FeCl3 were able to form 3-MCPD esters from TSG. Further electron spin resonance (ESR) determination of TSG, Fe2(SO4)3 and 5,5-dimethylpyrroline-N-oxide (DMPO) reactions revealed potential of Fe ion in promoting free radical generations under the experimental conditions. To further confirm the effect of Fe ion, chelating agent (EDTA-2Na) was added to the model reactions. The results showed for the first time that EDTA-2Na was able to reduce the generation of 3-MCPD esters. In addition, FT-IR examination indicated a possible involvement of a carbonyl group during the reaction. Taking all the observations together, the possible mechanisms, involving the formation of either a cyclic acyloxonium or a glycidol ester radical intermediate, were proposed for generating 3-MCPD fatty acid di- and mono- esters from TAG under a high temperature and low moisture condition, as well as the coformation of glycidol esters. The results from this study may be useful for reducing the level of 3-MCPD esters and related toxicants in the refined edible oils and food products.
Odontogenic epithelial stem cells: hidden sources.
Padma Priya, Sivan; Higuchi, Akon; Abu Fanas, Salem; Pooi Ling, Mok; Kumari Neela, Vasantha; Sunil, P M; Saraswathi, T R; Murugan, Kadarkarai; Alarfaj, Abdullah A; Munusamy, Murugan A; Kumar, Suresh
2015-12-01
The ultimate goal of dental stem cell research is to construct a bioengineered tooth. Tooth formation occurs based on the well-organized reciprocal interaction of epithelial and mesenchymal cells. The dental mesenchymal stem cells are the best explored, but because the human odontogenic epithelium is lost after the completion of enamel formation, studies on these cells are scarce. The successful creation of a bioengineered tooth is achievable only when the odontogenic epithelium is reconstructed to produce a replica of natural enamel. This article discusses the untapped sources of odontogenic epithelial stem cells in humans, such as those present in the active dental lamina in postnatal life, in remnants of dental lamina (the gubernaculum cord), in the epithelial cell rests of Malassez, and in reduced enamel epithelium. The possible uses of these stem cells in regenerative medicine, not just for enamel formation, are discussed.
Reducing capacities and redox potentials of humic substances extracted from sewage sludge.
Yang, Zhen; Du, Mengchan; Jiang, Jie
2016-02-01
Humic substances (HS) are redox active organic materials that can be extracted from sewage sludge generated in wastewater treatment processes. Due to the poor understanding of reducing capacity, redox potentials and redox active functional groups of HS in sewage sludge, the potential contribution of sludge HS in transformation of wastewater contaminants is unclear. In the present study, the number of electrons donated or accepted by sewage sludge HS were quantified before and after reduction by iron compounds that possess different redox potentials and defined as the reducing capacity of the sewage sludge. In contrast to previous studies of soil and commercial humic acids (HA), reduced sludge HA showed a lower reducing capacity than that of native HA, which implies formation of semiquinone radicals since the semiquinone radical/hydroquinone pair has a much higher redox potential than the quinone/hydroquinone pair. It is novel that reducing capacities of sludge HA were determined in the redox potential range from -314 to 430 mV. The formation of semiquinone radicals formed during the reduction of quinone moieties in sludge HA is shown by three-dimensional excitation/emission matrix fluorescence spectroscopies information, increasing fluorescence intensities and blue-shifting of the excitation/emission peak of reduced sludge HA. Knowledge of sludge HS redox potentials and corresponding reducing capacities makes it possible to predict the transformation of redox active pollutants and facilitate manipulation and optimization of sludge loading wastewater treatment processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Trihalomethanes in Comerio Drinking Water and Their Reduction by Nanostructured Materials
Bourdon, Jorge Hernandez; Linares, Francisco Marquez
2014-01-01
The formation of disinfection by-products (DBPs) during chlorination of drinking water is an issue which has drawn significant scientific attention due to the possible adverse effects that these compounds have on human health and the formation of another DBPs. Some factors that affect the formation of DBPs include: chlorine dose and residue, contact time, temperature, pH and natural organic matter (NOM). The most frequently detected DBPs in drinking water are trihalomethanes (THMs) and haloacetic acids (HAAs). The MCLs are standards established by the United States Environmental Protection Agency (USEPA) for drinking water quality established in Stage 1, Disinfectants and Disinfectionmore » Byproducts Rule (DBPR), and they limit the amount of potentially hazardous substances that are allowed in drinking water. The water quality data for THMs were evaluated in the Puerto Rico Aqueduct and Sewer Authority (PRASA). During this evaluation, the THMs exceeded the maximum contamination limit (MCLs) for the Comerio Water Treatment Plant (CWTP). USEPA classified the THMs as Group B2 carcinogens (shown to cause cancer in laboratory animals). This research evaluated the THMs concentrations in the following sampling sites: CWTP, Río Hondo and Piñas Abajo schools, Comerio Health Center (CDT), and the Vázquez Ortiz family, in the municipality of Comerio Puerto Rcio. The results show that the factors affecting the formation of THMs occur in different concentrations across the distribution line. Furthermore, there are not specific ranges to determine the formation of THMs in drinking water when the chemical and physical parameters were evaluated. Three different nanostructured materials (graphene, mordenite (MOR) and multiwalled carbon nanotubes (MWCNTs)) were used in this research, to reduce the THMs formation by adsorption in specific contact times. The results showed that graphene is the best nanomaterial to reduce THMs in drinking water. Graphene can reduce 80 parts per billion (ppb) of THMs in about 2 hours. In addition mordenite can reduce approximately 80 ppb of THMs and MWCNTs adsorbs 71 ppb of THMs in the same period of time respectively. Finally, in order to complement the adsorption results previously obtained, total organic carbon (TOC) analyses were measured, after different contact times with the nanomaterials.« less
NASA Astrophysics Data System (ADS)
Reddy, Michael M.
2012-08-01
Increases in ocean surface water dissolved carbon dioxide (CO2) concentrations retard biocalcification by reducing calcite supersaturation (Ωc). Reduced calcification rates may influence growth-rate dependent magnesium ion (Mg) incorporation into biogenic calcite modifying the use of calcifying organisms as paleoclimate proxies. Fulvic acid (FA) at biocalcification sites may further reduce calcification rates. Calcite growth-rate inhibition by FA and Mg, two common constituents of seawater and soil water involved in the formation of biogenic calcite, was measured separately and in combination under identical, highly reproducible experimental conditions. Calcite growth rates (pH=8.5 and Ωc=4.5) are reduced by FA (0.5 mg/L) to 47% and by Mg (10-4 M) to 38%, compared to control experiments containing no added growth-rate inhibitor. Humic acid (HA) is twice as effective a calcite growth-rate inhibitor as FA. Calcite growth rate in the presence of both FA (0.5 mg/L) and Mg (10-4 M) is reduced to 5% of the control rate. Mg inhibits calcite growth rates by substitution for calcium ion at the growth site. In contrast, FA inhibits calcite growth rates by binding multiple carboxylate groups on the calcite surface. FA and Mg together have an increased affinity for the calcite growth sites reducing calcite growth rates.
Reddy, Michael M.
2012-01-01
Increases in ocean surface water dissolved carbon dioxide (CO2) concentrations retard biocalcification by reducing calcite supersaturation (Ωc). Reduced calcification rates may influence growth-rate dependent magnesium ion (Mg) incorporation into biogenic calcite modifying the use of calcifying organisms as paleoclimate proxies. Fulvic acid (FA) at biocalcification sites may further reduce calcification rates. Calcite growth-rate inhibition by FA and Mg, two common constituents of seawater and soil water involved in the formation of biogenic calcite, was measured separately and in combination under identical, highly reproducible experimental conditions. Calcite growth rates (pH=8.5 and Ωc=4.5) are reduced by FA (0.5 mg/L) to 47% and by Mg (10−4 M) to 38%, compared to control experiments containing no added growth-rate inhibitor. Humic acid (HA) is twice as effective a calcite growth-rate inhibitor as FA. Calcite growth rate in the presence of both FA (0.5 mg/L) and Mg (10−4 M) is reduced to 5% of the control rate. Mg inhibits calcite growth rates by substitution for calcium ion at the growth site. In contrast, FA inhibits calcite growth rates by binding multiple carboxylate groups on the calcite surface. FA and Mg together have an increased affinity for the calcite growth sites reducing calcite growth rates.
Liang, Y Q; Cui, Z D; Zhu, S L; Li, Z Y; Yang, X J; Chen, Y J; Ma, J M
2013-11-21
In this paper, we describe the design, fabrication and gas-sensing tests of nano-coaxial p-Co3O4/n-TiO2 heterojunction. Specifically, uniform TiO2 nanotubular arrays have been assembled by anodization and used as templates for generation of the Co3O4 one-dimensional nanorods. The structure morphology and composition of as-prepared products have been characterized by SEM, XRD, TEM, and XPS. A possible growth mechanism governing the formation of such nano-coaxial heterojunctions is proposed. The TiO2 nanotube sensor shows a normal n-type response to reducing ethanol gas, whereas TiO2-Co3O4 exhibits p-type response with excellent sensing performances. This conversion of sensing behavior can be explained by the formation of p-n heterojunction structures. A possible sensing mechanism is also illustrated, which can provide theoretical guidance for the further development of advanced gas-sensitive materials with p-n heterojunction.
Cell/surface interactions on laser micro-textured titanium-coated silicon surfaces.
Mwenifumbo, Steven; Li, Mingwei; Chen, Jianbo; Beye, Aboubaker; Soboyejo, Wolé
2007-01-01
This paper examines the effects of nano-scale titanium coatings, and micro-groove/micro-grid patterns on cell/surface interactions on silicon surfaces. The nature of the cellular attachment and adhesion to the coated/uncoated micro-textured surfaces was elucidated by the visualization of the cells and relevant cytoskeletal & focal adhesion proteins through scanning electron microscopy and immunofluorescence staining. Increased cell spreading and proliferation rates are observed on surfaces with 50 nm thick Ti coatings. The micro-groove geometries have been shown to promote contact guidance, which leads to reduced scar tissue formation. In contrast, smooth surfaces result in random cell orientations and the increased possibility of scar tissue formation. Immunofluorescence cell staining experiments also reveal that the actin stress fibers are aligned along the groove dimensions, with discrete focal adhesions occurring along the ridges, within the grooves and at the ends of the cell extensions. The implications of the observed cell/surface interactions are discussed for possible applications of silicon in implantable biomedical systems.
Furan in Thermally Processed Foods - A Review
Seok, Yun-Jeong; Her, Jae-Young; Kim, Yong-Gun; Kim, Min Yeop; Jeong, Soo Young; Kim, Mina K.; Lee, Jee-yeon; Kim, Cho-il; Yoon, Hae-Jung
2015-01-01
Furan (C4H4O) is a volatile compound formed mostly during the thermal processing of foods. The toxicity of furan has been well documented previously, and it was classified as “possible human carcinogen (Group 2B)” by the International Agency for Research on Cancer. Various pathways have been reported for the formation of furan, that is, thermal degradation and/or thermal rearrangement of carbohydrates in the presence of amino acids, thermal degradation of certain amino acids, including aspartic acid, threonine, α-alanine, serine, and cysteine, oxidation of ascorbic acid at higher temperatures, and oxidation of polyunsaturated fatty acids and carotenoids. Owing to the complexity of the formation mechanism, a vast number of studies have been published on monitoring furan in commercial food products and on the potential strategies for reducing furan. Thus, we present a comprehensive review on the current status of commercial food monitoring databases and the possible furan reduction methods. Additionally, we review analytical methods for furan detection and the toxicity of furan. PMID:26483883
47 CFR 1.913 - Application and notification forms; electronic and manual filing.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Portable Document Format (PDF) whenever possible. (2) Any associated documents submitted with an... possible. The attachment should be uploaded via ULS in Adobe Acrobat Portable Document Format (PDF... the table of contents, should be in Adobe Acrobat Portable Document Format (PDF) whenever possible...
Radiation and Nitric Oxide Formation in Turbulent Non-Premixed Jet Flames
2000-08-04
axial coordinate was nor- malized by the stoichiometric flame length . of possible soot-NO interactions and reduces inter- ference with the laser...through the top of the cylinder was small if the height of the axial traverse was 3 to 4 times the stoi- chiometric flame length . The calibration of the...jet Reynolds numbers, Re, stoichiometric flame length , Lstoich, and convective residence times, s. The convective residence time was determined by s
Renal stone risk assessment during Space Shuttle flights
NASA Technical Reports Server (NTRS)
Whitson, P. A.; Pietrzyk, R. A.; Pak, C. Y.
1997-01-01
PURPOSE: The metabolic and environmental factors influencing renal stone formation before, during, and after Space Shuttle flights were assessed. We established the contributing roles of dietary factors in relationship to the urinary risk factors associated with renal stone formation. MATERIALS AND METHODS: 24-hr. urine samples were collected prior to, during space flight, and following landing. Urinary and dietary factors associated with renal stone formation were analyzed and the relative urinary supersaturation of calcium oxalate, calcium phosphate (brushite), sodium urate, struvite and uric acid were calculated. RESULTS: Urinary composition changed during flight to favor the crystallization of calcium-forming salts. Factors that contributed to increased potential for stone formation during space flight were significant reductions in urinary pH and increases in urinary calcium. Urinary output and citrate, a potent inhibitor of calcium-containing stones, were slightly reduced during space flight. Dietary intakes were significantly reduced for a number of variables, including fluid, energy, protein, potassium, phosphorus and magnesium. CONCLUSIONS: This is the first in-flight characterization of the renal stone forming potential in astronauts. With the examination of urinary components and nutritional factors, it was possible to determine the factors that contributed to increased risk or protected from risk. In spite of the protective components, the negative contributions to renal stone risk predominated and resulted in a urinary environment that favored the supersaturation of stone-forming salts. Dietary and pharmacologic therapies need to be assessed to minimize the potential for renal stone formation in astronauts during/after space flight.
Sujkowski, Alyson; Rainier, Shirley; Fink, John K; Wessells, Robert J
2015-01-01
Human PNPLA6 gene encodes Neuropathy Target Esterase protein (NTE). PNPLA6 gene mutations cause hereditary spastic paraplegia (SPG39 HSP), Gordon-Holmes syndrome, Boucher-Neuhäuser syndromes, Laurence-Moon syndrome, and Oliver-McFarlane syndrome. Mutations in the Drosophila NTE homolog swiss cheese (sws) cause early-onset, progressive behavioral defects and neurodegeneration characterized by vacuole formation. We investigated sws5 flies and show for the first time that this allele causes progressive vacuolar formation in the brain and progressive deterioration of negative geotaxis speed and endurance. We demonstrate that inducible, neuron-specific expression of full-length human wildtype NTE reduces vacuole formation and substantially rescues mobility. Indeed, neuron-specific expression of wildtype human NTE is capable of rescuing mobility defects after 10 days of adult life at 29°C, when significant degeneration has already occurred, and significantly extends longevity of mutants at 25°C. These results raise the exciting possibility that late induction of NTE function may reduce or ameliorate neurodegeneration in humans even after symptoms begin. In addition, these results highlight the utility of negative geotaxis endurance as a new assay for longitudinal tracking of degenerative phenotypes in Drosophila.
Cinnamic acid and its derivatives inhibit fructose-mediated protein glycation.
Adisakwattana, Sirichai; Sompong, Weerachat; Meeprom, Aramsri; Ngamukote, Sathaporn; Yibchok-Anun, Sirintorn
2012-01-01
Cinnamic acid and its derivatives have shown a variety of pharmacologic properties. However, little is known about the antiglycation properties of cinnamic acid and its derivatives. The present study sought to characterize the protein glycation inhibitory activity of cinnamic acid and its derivatives in a bovine serum albumin (BSA)/fructose system. The results demonstrated that cinnamic acid and its derivatives significantly inhibited the formation of advanced glycation end products (AGEs) by approximately 11.96-63.36% at a concentration of 1 mM. The strongest inhibitory activity against the formation of AGEs was shown by cinnamic acid. Furthermore, cinnamic acid and its derivatives reduced the level of fructosamine, the formation of N(ɛ)-(carboxymethyl) lysine (CML), and the level of amyloid cross β-structure. Cinnamic acid and its derivatives also prevented oxidative protein damages, including effects on protein carbonyl formation and thiol oxidation of BSA. Our findings may lead to the possibility of using cinnamic acid and its derivatives for preventing AGE-mediated diabetic complications.
Cinnamic Acid and Its Derivatives Inhibit Fructose-Mediated Protein Glycation
Adisakwattana, Sirichai; Sompong, Weerachat; Meeprom, Aramsri; Ngamukote, Sathaporn; Yibchok-anun, Sirintorn
2012-01-01
Cinnamic acid and its derivatives have shown a variety of pharmacologic properties. However, little is known about the antiglycation properties of cinnamic acid and its derivatives. The present study sought to characterize the protein glycation inhibitory activity of cinnamic acid and its derivatives in a bovine serum albumin (BSA)/fructose system. The results demonstrated that cinnamic acid and its derivatives significantly inhibited the formation of advanced glycation end products (AGEs) by approximately 11.96–63.36% at a concentration of 1 mM. The strongest inhibitory activity against the formation of AGEs was shown by cinnamic acid. Furthermore, cinnamic acid and its derivatives reduced the level of fructosamine, the formation of Nɛ-(carboxymethyl) lysine (CML), and the level of amyloid cross β-structure. Cinnamic acid and its derivatives also prevented oxidative protein damages, including effects on protein carbonyl formation and thiol oxidation of BSA. Our findings may lead to the possibility of using cinnamic acid and its derivatives for preventing AGE-mediated diabetic complications. PMID:22408423
A New Archive of UKIRT Legacy Data at CADC
NASA Astrophysics Data System (ADS)
Bell, G. S.; Currie, M. J.; Redman, R. O.; Purves, M.; Jenness, T.
2014-05-01
We describe a new archive of legacy data from the United Kingdom Infrared Telescope (UKIRT) at the Canadian Astronomy Data Centre (CADC) containing all available data from the Cassegrain instruments. The desire was to archive the raw data in as close to the original format as possible, so where the data followed our current convention of having a single data file per observation, it was archived without alteration, except for minor fixes to headers of data in FITS format to allow it to pass fitsverify and be accepted by CADC. Some of the older data comprised multiple integrations in separate files per observation, stored in either Starlink NDF or Figaro DST format. These were placed inside HDS container files, and DST files were rearranged into NDF format. The describing the observations is ingested into the CAOM-2 repository via an intermediate MongoDB header database, which will also be used to guide the ORAC-DR pipeline in generating reduced data products.
NASA Astrophysics Data System (ADS)
Yang, Tao; Chen, Xue; Shi, Sheping; Sun, Erkun; Shi, Chen
2018-03-01
We propose a low-complexity and modulation-format-independent carrier phase estimation (CPE) scheme based on two-stage modified blind phase search (MBPS) with linear approximation to compensate the phase noise of arbitrary m-ary quadrature amplitude modulation (m-QAM) signals in elastic optical networks (EONs). Comprehensive numerical simulations are carried out in the case that the highest possible modulation format in EONs is 256-QAM. The simulation results not only verify its advantages of higher estimation accuracy and modulation-format independence, i.e., universality, but also demonstrate that the implementation complexity is significantly reduced by at least one-fourth in comparison with the traditional BPS scheme. In addition, the proposed scheme shows similar laser linewidth tolerance with the traditional BPS scheme. The slightly better OSNR performance of the scheme is also experimentally validated for PM-QPSK and PM-16QAM systems, respectively. The coexistent advantages of low-complexity and modulation-format-independence could make the proposed scheme an attractive candidate for flexible receiver-side DSP unit in EONs.
Rethinking early Earth phosphorus geochemistry
Pasek, Matthew A.
2008-01-01
Phosphorus is a key biologic element, and a prebiotic pathway leading to its incorporation into biomolecules has been difficult to ascertain. Most potentially prebiotic phosphorylation reactions have relied on orthophosphate as the source of phosphorus. It is suggested here that the geochemistry of phosphorus on the early Earth was instead controlled by reduced oxidation state phosphorus compounds such as phosphite (HPO32−), which are more soluble and reactive than orthophosphates. This reduced oxidation state phosphorus originated from extraterrestrial material that fell during the heavy bombardment period or was produced during impacts, and persisted in the mildly reducing atmosphere. This alternate view of early Earth phosphorus geochemistry provides an unexplored route to the formation of pertinent prebiotic phosphorus compounds, suggests a facile reaction pathway to condensed phosphates, and is consistent with the biochemical usage of reduced oxidation state phosphorus compounds in life today. Possible studies are suggested that may detect reduced oxidation state phosphorus compounds in ancient Archean rocks. PMID:18195373
Rethinking early Earth phosphorus geochemistry.
Pasek, Matthew A
2008-01-22
Phosphorus is a key biologic element, and a prebiotic pathway leading to its incorporation into biomolecules has been difficult to ascertain. Most potentially prebiotic phosphorylation reactions have relied on orthophosphate as the source of phosphorus. It is suggested here that the geochemistry of phosphorus on the early Earth was instead controlled by reduced oxidation state phosphorus compounds such as phosphite (HPO(3)(2-)), which are more soluble and reactive than orthophosphates. This reduced oxidation state phosphorus originated from extraterrestrial material that fell during the heavy bombardment period or was produced during impacts, and persisted in the mildly reducing atmosphere. This alternate view of early Earth phosphorus geochemistry provides an unexplored route to the formation of pertinent prebiotic phosphorus compounds, suggests a facile reaction pathway to condensed phosphates, and is consistent with the biochemical usage of reduced oxidation state phosphorus compounds in life today. Possible studies are suggested that may detect reduced oxidation state phosphorus compounds in ancient Archean rocks.
Green synthesis of silver nanoparticles using tannins
NASA Astrophysics Data System (ADS)
Raja, Pandian Bothi; Rahim, Afidah Abdul; Qureshi, Ahmad Kaleem; Awang, Khalijah
2014-09-01
Colloidal silver nanoparticles were prepared by rapid green synthesis using different tannin sources as reducing agent viz. chestnut (CN), mangrove (MG) and quebracho (QB). The aqueous silver ions when exposed to CN, MG and QB tannins were reduced which resulted in formation of silver nanoparticles. The resultant silver nanoparticles were characterized using UV-Visible, X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), and transmission electron microscopy (TEM) techniques. Furthermore, the possible mechanism of nanoparticles synthesis was also derived using FT-IR analysis. Spectroscopy analysis revealed that the synthesized nanoparticles were within 30 to 75 nm in size, while XRD results showed that nanoparticles formed were crystalline with face centered cubic geometry.
Biological agents for controlling excessive scarring.
Berman, Brian
2010-01-01
The potential of various biological agents to reduce or prevent excessive scar formation has now been evaluated in numerous in-vitro studies, experimental animal models and preliminary clinical trials, in some cases with particularly promising results. Perhaps prominent among this group of biological agents, and, to some degree, possibly representing marketed compounds already being used 'off label' to manage excessive scarring, are the tumor necrosis factor alpha antagonist etanercept, and immune-response modifiers such as IFNalpha2b and imiquimod. Additional assessment of these novel agents is now justified with a view to reducing or preventing hypertrophic scars, keloid scars and the recurrence of post-excision keloid lesions.
An Approach for Stitching Satellite Images in a Bigdata Mapreduce Framework
NASA Astrophysics Data System (ADS)
Sarı, H.; Eken, S.; Sayar, A.
2017-11-01
In this study we present a two-step map/reduce framework to stitch satellite mosaic images. The proposed system enable recognition and extraction of objects whose parts falling in separate satellite mosaic images. However this is a time and resource consuming process. The major aim of the study is improving the performance of the image stitching processes by utilizing big data framework. To realize this, we first convert the images into bitmaps (first mapper) and then String formats in the forms of 255s and 0s (second mapper), and finally, find the best possible matching position of the images by a reduce function.
Planetesimal formation during protoplanetary disk buildup
NASA Astrophysics Data System (ADS)
Drążkowska, J.; Dullemond, C. P.
2018-06-01
Context. Models of dust coagulation and subsequent planetesimal formation are usually computed on the backdrop of an already fully formed protoplanetary disk model. At the same time, observational studies suggest that planetesimal formation should start early, possibly even before the protoplanetary disk is fully formed. Aims: In this paper we investigate under which conditions planetesimals already form during the disk buildup stage, in which gas and dust fall onto the disk from its parent molecular cloud. Methods: We couple our earlier planetesimal formation model at the water snow line to a simple model of disk formation and evolution. Results: We find that under most conditions planetesimals only form after the buildup stage, when the disk becomes less massive and less hot. However, there are parameters for which planetesimals already form during the disk buildup. This occurs when the viscosity driving the disk evolution is intermediate (αv 10-3-10-2) while the turbulent mixing of the dust is reduced compared to that (αt ≲ 10-4), and with the assumption that the water vapor is vertically well-mixed with the gas. Such a αt ≪ αv scenario could be expected for layered accretion, where the gas flow is mostly driven by the active surface layers, while the midplane layers, where most of the dust resides, are quiescent. Conclusions: In the standard picture where protoplanetary disk accretion is driven by global turbulence, we find that no planetesimals form during the disk buildup stage. Planetesimal formation during the buildup stage is only possible in scenarios in which pebbles reside in a quiescent midplane while the gas and water vapor are diffused at a higher rate.
Graphical derivations of radar, sonar, and communication signals
NASA Technical Reports Server (NTRS)
Altes, R. A.; Titlebaum, E. L.
1975-01-01
The designer of a communication system often has knowledge concerning the changes in distance between transmitter and receiver as a function of time. This information can be exploited to reduce multipath interference via proper signal design. A radar or sonar may also have good a priori information about possible target trajectories. Such knowledge can again be used to reduce the receiver's response to clutter (MTI), to enhance signal-to-noise ratio, or to simplify receiver design. There are also situations in which prior knowledge about trajectories is lacking. The system should then utilize a single-filter pair which is insensitive to the effects induced by relative motion between transmitter, receiver, and reflectors. For waveforms with large time-bandwidth products, such as long pulse trains, it is possible to graphically derive signal formats for both situations (trajectory known and unknown). Although the exact form of the signal is sometimes not specified by the graphical procedure, the problem in such cases is reduced to one which has already been solved, i.e., the generation of an impulse equivalent code.
TRYPTOPHANASE-TRYPTOPHAN SYNTHETASE SYSTEMS IN ESCHERICHIA COLI I.
Freundlich, Martin; Lichstein, Herman C.
1962-01-01
Freundlich, Martin (University of Minnesota, Minneapolis) and Herman C. Lichstein. Tryptophanase-tryptophan synthetase systems in Escherichia coli. I. Effect of tryptophan and related compounds. J. Bacteriol. 84:979–987. 1962.—The effect of tryptophan and related compounds on tryptophanase and tryptophan synthetase formation in Escherichia coli was determined. Several of these compounds stimulated the formation of tryptophanase while concomitantly decreasing the production of synthetase. A number of tryptophan analogues were found to inhibit growth. The possible mode of action of these substances was examined further. 5-Hydroxytryptophan greatly inhibited the formation of synthetase and also reduced growth. Its inhibitory action on growth was attributed, at least partially, to the false feedback inhibition of anthranilic acid formation. Tryptamine was found to be a potent inhibitor of the activity of synthetase, as well as of the enzyme(s) involved in the synthesis of anthranilic acid from shikimic acid. However, growth reduction was only partially reversed by tryptophan. Indole-3-acetic acid and indole-3-propionic acid decreased growth and increased the formation of synthetase six- to eightfold. The action of these compounds was ascribed to their ability to block the endogenous formation of tryptophan. PMID:13959621
Wu, Geng; Huang, Liuqin; Jiang, Hongchen; Peng, Yue'e; Guo, Wei; Chen, Ziyu; She, Weiyu; Guo, Qinghai; Dong, Hailiang
2017-01-01
Thioarsenates are common arsenic species in sulfidic geothermal waters, yet little is known about their biogeochemical traits. In the present study, a novel sulfate-reducing bacterial strain Desulfotomaculum TC-1 was isolated from a sulfidic hot spring in Tengchong geothermal area, Yunnan Province, China. The arxA gene, encoding anaerobic arsenite oxidase, was successfully amplified from the genome of strain TC-1, indicating it has a potential ability to oxidize arsenite under anaerobic condition. In anaerobic arsenite oxidation experiments inoculated with strain TC-1, a small amount of arsenate was detected in the beginning but became undetectable over longer time. Thioarsenates (AsO 4-x S x 2- with x = 1-4) formed with mono-, di- and tri-thioarsenates being dominant forms. Tetrathioarsenate was only detectable at the end of the experiment. These results suggest that thermophilic microbes might be involved in the formation of thioarsenates and provide a possible explanation for the widespread distribution of thioarsenates in terrestrial geothermal environments.
Wu, Geng; Huang, Liuqin; Jiang, Hongchen; Peng, Yue’e; Guo, Wei; Chen, Ziyu; She, Weiyu; Guo, Qinghai; Dong, Hailiang
2017-01-01
Thioarsenates are common arsenic species in sulfidic geothermal waters, yet little is known about their biogeochemical traits. In the present study, a novel sulfate-reducing bacterial strain Desulfotomaculum TC-1 was isolated from a sulfidic hot spring in Tengchong geothermal area, Yunnan Province, China. The arxA gene, encoding anaerobic arsenite oxidase, was successfully amplified from the genome of strain TC-1, indicating it has a potential ability to oxidize arsenite under anaerobic condition. In anaerobic arsenite oxidation experiments inoculated with strain TC-1, a small amount of arsenate was detected in the beginning but became undetectable over longer time. Thioarsenates (AsO4-xSx2- with x = 1–4) formed with mono-, di- and tri-thioarsenates being dominant forms. Tetrathioarsenate was only detectable at the end of the experiment. These results suggest that thermophilic microbes might be involved in the formation of thioarsenates and provide a possible explanation for the widespread distribution of thioarsenates in terrestrial geothermal environments. PMID:28769902
Interface shape and crystallinity in LEC GaAs
NASA Astrophysics Data System (ADS)
Tower, J. P.; Tobin, R.; Pearah, P. J.; Ware, R. M.
1991-12-01
Growth striation mapping was used to relate the growth interface shape to crystallinity failure modes in LEC growth of undoped <100> GaAs. The onset of twinning and polycrystallinity were both found to depend on the interface shape near the crystal periphery. The origins of polycrystalline growth were investigated in 8 kg, 3-inch and 4-inch diameter crystals. Interface maps of these crystals show that polycrystalline growth begins when the growth interface periphery turns down, independent of the shape of the central portions. The cause of initial grain boundary formation was found to be included gallium droplets which originate on the surface and migrate through the crystal toward the growth interface. Twinning occurs on {111} facets, usually during shoulder growth. Growth striations show that the sequence of events leading to twin formation consists of deep facet growth, followed by meltback and rapid regrowth. We found it possible to avoid twinning by reducing melt instabilities or by reducing the extent of facet growth.
Fu, X; Yang, Q; Wang, B; Zhao, J; Zhu, M; Parish, S M; Du, M
2018-05-01
Mechanisms responsible for excellent marbling in Japanese black cattle, Wagyu, remain to be established. Because both muscle cells and intramuscular adipocytes are developed from mesenchymal progenitor cells during early muscle development, we hypothesized that intramuscular progenitor cells in Wagyu cattle have attenuated myogenic capacity in favor of adipogenesis, leading to high marbling but reduced muscle growth. Biceps femoris muscle biopsy samples were obtained from both Angus (n=3) and Wagyu (n=3) cattle at 12 months of age. Compared with Angus, the density of satellite cells was much lower in Wagyu muscle (by 45.8±10%, P<0.05). Consistently, the formation of myotubes from muscle-derived progenitor cells was also lower (by 64.2±12.9%, P<0.05), but adipogenic capacity was greater in Wagyu. The average muscle fiber diameter was larger in Wagyu (by 23.9±6.8%, P=0.089) despite less muscle mass, suggesting less muscle fiber formation in Wagyu compared with Angus cattle. Because satellite cells are derived from fetal myogenic cells, the reduction in satellite cell density together with lower muscle fiber formation suggests that myogenesis was attenuated during early muscle development in Wagyu cattle. Given the shared pool of mesenchymal progenitor cells, the attenuated myogenesis likely shifts progenitor cells to adipogenesis during early development, which may contribute to high intramuscular adipocyte formation in Wagyu cattle.
NASA Technical Reports Server (NTRS)
Malavergne, V.; Brunet, F.; Righter, K.; Zanda, B.; Avril, C.; Borensztajn, S.; Berthet, S.
2012-01-01
Enstatite meteorites are the most reduced naturally-occuring materials of the solar system. The cubic monosulfide series with the general formula (Mg,Mn,Ca,Fe)S are common phases in these meteorite groups. The importance of such minerals, their formation, composition and textural relationships for understanding the genesis of enstatite chondrites (EC) and aubrites, has long been recognized (e.g. [1]). However, the mechanisms of formation of these sulfides is still not well constrained certainly because of possible multiple ways to produce them. We propose to simulate different models of formation in order to check their mineralogical, chemical and textural relevancies. The solubility of sulfur in silicate melts is of primary interest for planetary mantles, particularly for the Earth and Mercury. Indeed, these two planets could have formed, at least partly, from EC materials (e.g. [2, 3, 4]). The sulfur content in silicate melts depends on the melt composition but also on pressure (P), temperature (T) and oxygen fugacity fO2. Unfortunately, there is no model of general validity in a wide range of P-T-fO2-composition which describes precisely the evolution of sulfur content in silicate melts, even if the main trends are now known. The second goal of this study is to constrain the sulfur content in silicate melts under reducing conditions and different temperatures.
1988-02-19
as much as possible so as to use the rain water that falls largely during the three months of fall when it is really needed, in the the spring. To...fullest extent and reduce its negative aspects to a minimum. To bring this about, it is necessary to create three conditions . First, it is necessary to...from the formation process of total commodity demand and commodity supply as detailed in Table 2, we can see that the national income use deficit for
Exostosis following a subepithelial connective tissue graft.
Corsair, A J; Iacono, V J; Moss, S S
2001-04-01
This case report describes the formation of an unusual unaesthetic gingival enlargement during a five year post operative period subsequent to a subepithelial connective tissue graft placed facial to teeth #4 and #6. Histological assessment of the enlarged tissue indicated that it consisted of viable bone and marrow. The exostosis was reduced with rotary instruments and acceptable soft tissue aesthetics were created using a carbon dioxide laser for gingivoplasty. Possible causes for this unusual enlargement are discussed.
2010-09-01
absorption, limiting the effectiveness of intelligence collection and weapon systems that operate in those portions of the spectrum by reducing the amount of... Intelligence Agency Web site in NITF 2.0 format. This study used basic imagery from DigitalGlobe (QuickBird, WorldView-1). This imagery is not...databases. Militarily, FASTEC could enable in-scene correction in intelligence collection and possibly influence electro- optical targeting decisions
Using Interactive 3D PDF for Exploring Complex Biomedical Data: Experiences and Solutions.
Newe, Axel; Becker, Linda
2016-01-01
The Portable Document Format (PDF) is the most commonly used file format for the exchange of electronic documents. A lesser-known feature of PDF is the possibility to embed three-dimensional models and to display these models interactively with a qualified reader. This technology is well suited to present, to explore and to communicate complex biomedical data. This applies in particular for data which would suffer from a loss of information if it was reduced to a static two-dimensional projection. In this article, we present applications of 3D PDF for selected scholarly and clinical use cases in the biomedical domain. Furthermore, we present a sophisticated tool for the generation of respective PDF documents.
NASA Astrophysics Data System (ADS)
Turner, Andrew M.; Abplanalp, Matthew J.; Blair, Tyler J.; Dayuha, Remwilyn; Kaiser, Ralf I.
2018-01-01
The only known phosphorus-containing organic compounds of extraterrestrial origin, alkylphosphonic acids, were discovered in the Murchison meteorite and have accelerated the hypothesis that reduced oxidation states of phosphorus were delivered to early Earth and served as a prebiotic source of phosphorus. While previous studies looking into the formation of these alkylphosphonic acids have focused on the iron–nickel phosphide mineral schreibersite and phosphorous acid as a source of phosphorus, this work utilizes phosphine (PH3), which has been discovered in the circumstellar envelope of IRC +10216, in the atmosphere of Jupiter and Saturn, and believed to be the phosphorus carrier in comet 67P/Churyumov–Gerasimenko. Phosphine ices prepared with interstellar molecules such as carbon dioxide, water, and methane were subjected to electron irradiation, which simulates the secondary electrons produced from galactic cosmic rays penetrating the ice, and probed using infrared spectroscopy to understand the possible formation of alkylphosphonic acids and their precursors on interstellar icy grains that could become incorporated into meteorites such as Murchison. We present the first study and results on the possible synthesis of alkylphosphonic acids produced from phosphine-mixed ices under interstellar conditions. All functional groups of alkylphosphonic acids were detected through infrared spectroscopically, suggesting that this class of molecules can be formed in interstellar ices.
Ivanova, Lena V; Cibich, Daniel; Deye, Gregory; Talipov, Marat R; Timerghazin, Qadir K
2017-04-18
Nitroxyl (HNO), a reduced form of the important gasotransmitter nitric oxide, exhibits its own unique biological activity. A possible biological pathway of HNO formation is the S-thiolation reaction between thiols and S-nitrosothiols (RSNOs). Our density functional theory (DFT) calculations suggested that S-thiolation proceeds through a proton transfer from the thiol to the RSNO nitrogen atom, which increases electrophilicity of the RSNO sulfur, followed by nucleophilic attack by thiol, yielding a charge-separated zwitterionic intermediate structure RSS + (R)N(H)O - (Zi), which decomposes to yield HNO and disulfide RSSR. In the gas phase, the proton transfer and the S-S bond formation are asynchronous, resulting in a high activation barrier (>40 kcal mol -1 ), making the reaction infeasible. However, the barrier can decrease below the S-N bond dissociation energy in RSNOs (≈30 kcal mol -1 ) upon transition into an aqueous environment that stabilizes Zi and provides a proton shuttle to synchronize the proton transfer and the S-S bond formation. These mechanistic features suggest that S-thiolation can easily lend itself to enzymatic catalysis and thus can be a possible route of endogenous HNO production. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of treatment with geraniol on ovalbumin-induced allergic asthma in mice.
Xue, Zheng; Zhang, Xin-Guang; Wu, Jie; Xu, Wan-Chao; Li, Li-Qing; Liu, Fei; Yu, Jian-Er
2016-06-01
Asthma, a complex highly prevalent airway disease, is a major public health problem for which current treatment options are inadequate. To evaluate the antiasthma activity of geraniol and investigate its underlying molecular mechanisms. In a standard experimental asthma model, Balb/c mice were sensitized with ovalbumin, treated with geraniol (100 or 200 mg/kg) or a vehicle control, during ovalbumin challenge. Treatment of ovalbumin-sensitized/challenged mice with geraniol significantly decreased airway hyperresponsiveness to inhaled methacholine. Geraniol treatment reduced eotaxin levels in bronchoalveolar lavage fluid and attenuated infiltration of eosinophils induced by ovalbumin. Geraniol treatment reduced TH2 cytokines (including interleukins 4, 5, and 13), increased TH1 cytokine interferon γ in bronchoalveolar lavage fluid, and reduced ovalbumin-specific IgE in serum. In addition, treatment of ovalbumin-sensitized/challenged mice with geraniol enhanced T-bet (TH1 response) messenger RNA expression and reduced GATA-3 (TH2 response) messenger RNA expression in lungs. Furthermore, treatment of ovalbumin -sensitized/challenged mice with geraniol further enhanced Nrf2 protein expression and activated Nrf2-directed antioxidant pathways, such as glutamate-cysteine ligase, superoxide dismutase, and glutathione S-transferase, and enhanced formation of reduced glutathione and reduced formation of malondialdehyde in lungs. Geraniol attenuated important features of allergic asthma in mice, possibly through the modulation of TH1/TH2 balance and activation the of Nrf2/antioxidant response element pathway. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Dysfunctional nitric oxide signalling increases risk of myocardial infarction.
Erdmann, Jeanette; Stark, Klaus; Esslinger, Ulrike B; Rumpf, Philipp Moritz; Koesling, Doris; de Wit, Cor; Kaiser, Frank J; Braunholz, Diana; Medack, Anja; Fischer, Marcus; Zimmermann, Martina E; Tennstedt, Stephanie; Graf, Elisabeth; Eck, Sebastian; Aherrahrou, Zouhair; Nahrstaedt, Janja; Willenborg, Christina; Bruse, Petra; Brænne, Ingrid; Nöthen, Markus M; Hofmann, Per; Braund, Peter S; Mergia, Evanthia; Reinhard, Wibke; Burgdorf, Christof; Schreiber, Stefan; Balmforth, Anthony J; Hall, Alistair S; Bertram, Lars; Steinhagen-Thiessen, Elisabeth; Li, Shu-Chen; März, Winfried; Reilly, Muredach; Kathiresan, Sekar; McPherson, Ruth; Walter, Ulrich; Ott, Jurg; Samani, Nilesh J; Strom, Tim M; Meitinger, Thomas; Hengstenberg, Christian; Schunkert, Heribert
2013-12-19
Myocardial infarction, a leading cause of death in the Western world, usually occurs when the fibrous cap overlying an atherosclerotic plaque in a coronary artery ruptures. The resulting exposure of blood to the atherosclerotic material then triggers thrombus formation, which occludes the artery. The importance of genetic predisposition to coronary artery disease and myocardial infarction is best documented by the predictive value of a positive family history. Next-generation sequencing in families with several affected individuals has revolutionized mutation identification. Here we report the segregation of two private, heterozygous mutations in two functionally related genes, GUCY1A3 (p.Leu163Phefs*24) and CCT7 (p.Ser525Leu), in an extended myocardial infarction family. GUCY1A3 encodes the α1 subunit of soluble guanylyl cyclase (α1-sGC), and CCT7 encodes CCTη, a member of the tailless complex polypeptide 1 ring complex, which, among other functions, stabilizes soluble guanylyl cyclase. After stimulation with nitric oxide, soluble guanylyl cyclase generates cGMP, which induces vasodilation and inhibits platelet activation. We demonstrate in vitro that mutations in both GUCY1A3 and CCT7 severely reduce α1-sGC as well as β1-sGC protein content, and impair soluble guanylyl cyclase activity. Moreover, platelets from digenic mutation carriers contained less soluble guanylyl cyclase protein and consequently displayed reduced nitric-oxide-induced cGMP formation. Mice deficient in α1-sGC protein displayed accelerated thrombus formation in the microcirculation after local trauma. Starting with a severely affected family, we have identified a link between impaired soluble-guanylyl-cyclase-dependent nitric oxide signalling and myocardial infarction risk, possibly through accelerated thrombus formation. Reversing this defect may provide a new therapeutic target for reducing the risk of myocardial infarction.
Formation of nucleobases in a Miller-Urey reducing atmosphere.
Ferus, Martin; Pietrucci, Fabio; Saitta, Antonino Marco; Knížek, Antonín; Kubelík, Petr; Ivanek, Ondřej; Shestivska, Violetta; Civiš, Svatopluk
2017-04-25
The Miller-Urey experiments pioneered modern research on the molecular origins of life, but their actual relevance in this field was later questioned because the gas mixture used in their research is considered too reducing with respect to the most accepted hypotheses for the conditions on primordial Earth. In particular, the production of only amino acids has been taken as evidence of the limited relevance of the results. Here, we report an experimental work, combined with state-of-the-art computational methods, in which both electric discharge and laser-driven plasma impact simulations were carried out in a reducing atmosphere containing NH 3 + CO. We show that RNA nucleobases are synthesized in these experiments, strongly supporting the possibility of the emergence of biologically relevant molecules in a reducing atmosphere. The reconstructed synthetic pathways indicate that small radicals and formamide play a crucial role, in agreement with a number of recent experimental and theoretical results.
Formation of nucleobases in a Miller–Urey reducing atmosphere
Ferus, Martin; Pietrucci, Fabio; Saitta, Antonino Marco; Knížek, Antonín; Kubelík, Petr; Ivanek, Ondřej; Shestivska, Violetta; Civiš, Svatopluk
2017-01-01
The Miller–Urey experiments pioneered modern research on the molecular origins of life, but their actual relevance in this field was later questioned because the gas mixture used in their research is considered too reducing with respect to the most accepted hypotheses for the conditions on primordial Earth. In particular, the production of only amino acids has been taken as evidence of the limited relevance of the results. Here, we report an experimental work, combined with state-of-the-art computational methods, in which both electric discharge and laser-driven plasma impact simulations were carried out in a reducing atmosphere containing NH3 + CO. We show that RNA nucleobases are synthesized in these experiments, strongly supporting the possibility of the emergence of biologically relevant molecules in a reducing atmosphere. The reconstructed synthetic pathways indicate that small radicals and formamide play a crucial role, in agreement with a number of recent experimental and theoretical results. PMID:28396441
Methods for reducing pollutant emissions from jet aircraft
NASA Technical Reports Server (NTRS)
Butze, H. F.
1971-01-01
Pollutant emissions from jet aircraft and combustion research aimed at reducing these emissions are defined. The problem of smoke formation and results achieved in smoke reduction from commercial combustors are discussed. Expermental results of parametric tests performed on both conventional and experimental combustors over a range of combustor-inlet conditions are presented. Combustor design techniques for reducing pollutant emissions are discussed. Improved fuel atomization resulting from the use of air-assist fuel nozzles has brought about significant reductions in hydrocarbon and carbon monoxide emissions at idle. Diffuser tests have shown that the combustor-inlet airflow profile can be controlled through the use of diffuser-wall bleed and that it may thus be possible to reduce emissions by controlling combustor airflow distribution. Emissions of nitric oxide from a shortlength annular swirl-can combustor were significantly lower than those from a conventional combustor operating at similar conditions.
2018-01-01
Sodium dodecyl sulfate electrophoresis (SDS) is a protein separation technique widely used, for example, prior to immunoblotting. Samples are usually prepared in a buffer containing both high concentrations of reducers and high concentrations of SDS. This conjunction renders the samples incompatible with common protein assays. By chelating the SDS, cyclodextrins make the use of simple, dye-based colorimetric assays possible. In this paper, we describe the optimization of the assay, focussing on the cyclodextrin/SDS ratio and the use of commercial assay reagents. The adaptation of the assay to a microplate format and using other detergent-containing conventional extraction buffers is also described. PMID:29641569
Cannabinoids and brain injury: therapeutic implications.
Mechoulam, Raphael; Panikashvili, David; Shohami, Esther
2002-02-01
Mounting in vitro and in vivo data suggest that the endocannabinoids anandamide and 2-arachidonoyl glycerol, as well as some plant and synthetic cannabinoids, have neuroprotective effects following brain injury. Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission and reduce the production of tumour necrosis factor-alpha and reactive oxygen intermediates, which are factors in causing neuronal damage. The formation of the endocannabinoids anandamide and 2-arachidonoyl glycerol is strongly enhanced after brain injury, and there is evidence that these compounds reduce the secondary damage incurred. Some plant and synthetic cannabinoids, which do not bind to the cannabinoid receptors, have also been shown to be neuroprotective, possibly through their direct effect on the excitatory glutamate system and/or as antioxidants.
Advanced hair damage model from ultra-violet radiation in the presence of copper.
Marsh, J M; Davis, M G; Flagler, M J; Sun, Y; Chaudhary, T; Mamak, M; McComb, D W; Williams, R E A; Greis, K D; Rubio, L; Coderch, L
2015-10-01
Damage to hair from UV exposure has been well reported in the literature and is known to be a highly complex process involving initiation via absorption of UV light followed by formation and propagation of reactive oxygen species (ROS). The objective of this work was to understand these mechanisms, explain the role of copper in accelerating the formation of ROS and identify strategies to reduce the hair damage caused by these reactive species. The location of copper in hair was measured by Transmission electron microscopy-(TEM) X-ray energy dispersive spectroscopy (XEDS) and levels measured by ICP-OES. Protein changes were measured as total protein loss via the Lowry assay, and MALDI ToF was used to identify the biomarker protein fragments. TBARS assay was used to measure lipid peroxide formation. Sensory methods and dry combing friction were used to measure hair damage due to copper and UV exposure and to demonstrate the efficacy of N,N' ethylenediamine disuccinic acid (EDDS) and histidine chelants to reduce this damage. In this work, a biomarker protein fragment formed during UV exposure is identified using mass spectrometry. This fragment originates from the calcium-binding protein S100A3. Also shown is the accelerated formation of this peptide fragment in hair containing low levels of copper absorbed from hair during washing with tap water containing copper ions. Transmission electron microscopy (TEM) X-ray energy dispersive spectroscopy (XEDS) studies indicate copper is located in the sulphur-poor endo-cuticle region, a region where the S100A3 protein is concentrated. A mechanism for formation of this peptide fragment is proposed in addition to the possible role of lipids in UV oxidation. A shampoo and conditioner containing chelants (EDDS in shampoo and histidine in conditioner) is shown to reduce copper uptake from tap water and reduce protein loss and formation of S100A3 protein fragment. In addition, the long-term consequences of UV oxidation and additional damage induced by copper are illustrated in a four-month wear study where hair was treated with a consumer relevant protocol of hair colouring treatments, UV exposure and regular shampoo and conditioning. The role of copper in accelerating UV damage to hair has been demonstrated as well as the ability of chelants such as EDDS and histidine in shampoo and conditioner products to reduce this damage. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Dioxin formation and control in a gasification-melting plant.
Kawamoto, Katsuya; Miyata, Haruo
2015-10-01
We investigated dioxin formation and removal in a commercial thermal waste treatment plant employing a gasification and melting process that has become widespread in the last decade in Japan. The aim was to clarify the possibility of dioxin formation in a process operation at high temperatures and the applicability of catalytic decomposition of dioxins. Also, the possible use of dioxin surrogate compounds for plant monitoring was further evaluated. The main test parameter was the influence of changes in the amount and type of municipal solid waste (MSW) supplied to the thermal waste treatment plant which from day to day operation is a relevant parameter also from commercial perspective. Here especially, the plastic content on dioxin release was assessed. The following conclusions were reached: (1) disturbance of combustion by adding plastic waste above the capability of the system resulted in a considerable increase in dioxin content of the flue gas at the inlet of the bag house and (2) bag filter equipment incorporating a catalytic filter effectively reduced the gaseous dioxin content below the standard of 0.1 ng toxic equivalency (TEQ)/m(3) N, by decomposition and partly adsorption, as was revealed by total dioxin mass balance and an increased levels in the fly ash. Also, the possible use of organohalogen compounds as dioxin surrogate compounds for plant monitoring was further evaluated. The levels of these surrogates did not exceed values corresponding to 0.1 ng TEQ/m(3) N dioxins established from former tests. This further substantiated that surrogate measurement therefore can well reflect dioxin levels.
Gamez-Garcia, Victoria G; Galano, Annia
2017-10-05
A massive search for chemical routes leading to methanol formation in gas phase has been conducted using computational chemistry, at the CBS-QB3 level of theory. The calculations were performed at five different temperatures (100, 80, 50, 20, and 10 K) and at three pressures (0.1, 0.01, and 0.001 atm) for each temperature. The search was focused on identifying reactions with the necessary features to be viable in the interstellar medium (ISM). A searching strategy was applied to that purpose, which allowed to reduce an initial set of 678 possible reactions to a subset of 11 chemical routes that are recommended, for the first time, as potential candidates for contributing to methanol formation in the gas phase of the ISM. They are all barrier-less, and thus they are expected to take place at collision rates. Hopefully, including these reactions in the currently available models, for the gas-phase methanol formation in the ISM, would help improving the predicted fractional abundance of this molecule in dark clouds. Further investigations, especially those dealing with grain chemistry and electronic excited states, would be crucial to get a complete picture of the methanol formation in the ISM.
NASA Technical Reports Server (NTRS)
Golden, D. C.; Ming, D. W.; Morris, R. V.; Graff, T. G.
2007-01-01
The Athena science payload onboard the Opportunity rover identified hematite-rich spherules (mean diameter of 4.2 +/- 0.8 mm) embedded in outcrops and occurring as lag deposits at Meridiani Planum. They have formed as diagenetic concretions from the rapid breakdown of pre-existing jarosite and other iron sulfates when chemically distinct groundwater passed through the sediments. Diagenetic, Fe-cemented concretions found in the Jurassic Navajo Formation, Utah and hematite-rich spherules found within sulfate-rich volcanic breccia on Mauna Kea volcano, Hawaii are possible terrestrial analogues for Meridiani spherules. The Navajo Formation concretions form in porous quartz arenite from the dissolution of iron oxides by reducing fluids and subsequent Fe precipitation to form spherical Fe- and Si-rich concretions. The Mauna Kea spherules form by hydrothermal, acid-sulfate alteration of basaltic tephra. The formation of hematite-rich spherules with similar chemical, mineralogical, and morphological properties to the Meridiani spherules is rare on Earth, so little is known about their formation conditions. In this study, we have synthesized in the laboratory hematite-rich spherules that are analogous in nearly all respects to the Meridiani spherules.
Interaction of Dendritic Polymers with Synthetic Lipid and Cell Membranes
NASA Astrophysics Data System (ADS)
Mecke, Almut; Hong, Seungpyo; Bielinska, Anna U.; Banaszak Holl, Mark M.; Orr, Bradford G.; Baker, James R., Jr.
2004-03-01
Polyamidoamine (PAMAM) dendrimers are promising candidates for the development of nanoscale therapeutic transport agents. Here we present studies on dendrimer-membrane interactions leading to a better understanding of possible uptake mechanisms into cells. Using synthetic lipid and natural cell membranes as model systems it is shown that the effect of PAMAM dendrimers on a membrane strongly depends on the dendrimer generation, architecture and chemical properties of the branch end groups. Atomic force microscopy data indicates that generation 7 dendrimers have the ability to form small ( 10-100 nm) holes in a lipid bilayer. When dendrimers with otherwise identical chemical properties are arranged in a covalently linked cluster, no hole formation occurs. Dendrimer-lipid micelle formation is proposed and investigated as a possible mechanism for this behavior. Smaller dendrimers (generation 5) have a greatly reduced ability to remove lipid molecules from a bilayer. In addition to the size of the dendrimer, the charge of the branch end groups plays a significant role for dendrimer-membrane interactions. These results agree well with biological studies using cultured cells and point to a new mechanism of specific targeting and uptake into cells.
Controlling formation and suppression of fiber-optical rogue waves.
Brée, Carsten; Steinmeyer, Günter; Babushkin, Ihar; Morgner, Uwe; Demircan, Ayhan
2016-08-01
Fiber-optical rogue waves appear as rare but extreme events during optical supercontinuum generation in photonic crystal fibers. This process is typically initiated by the decay of a high-order fundamental soliton into fundamental solitons. Collisions between these solitons as well as with dispersive radiation affect the soliton trajectory in frequency and time upon further propagation. Launching an additional dispersive wave at carefully chosen delay and wavelength enables statistical manipulation of the soliton trajectory in such a way that the probability of rogue wave formation is either enhanced or reduced. To enable efficient control, parameters of the dispersive wave have to be chosen to allow trapping of dispersive radiation in the nonlinear index depression created by the soliton. Under certain conditions, direct manipulation of soliton properties is possible by the dispersive wave. In other more complex scenarios, control is possible via increasing or decreasing the number of intersoliton collisions. The control mechanism reaches a remarkable efficiency, enabling control of relatively large soliton energies. This scenario appears promising for highly dynamic all-optical control of supercontinua.
Reconstruction of low-index graphite surfaces
NASA Astrophysics Data System (ADS)
Thinius, Sascha; Islam, Mazharul M.; Bredow, Thomas
2016-07-01
The low-index graphite surfaces (10 1 -0), (10 1 -1), (11 2 -0) and (11 2 - 1) have been studied by density functional theory (DFT) including van-der-Waals (vdW) corrections. Different from the (0001) surface which has been extensively investigated both experimentally and theoretically, there is no comprehensive study on the (10 1 -0)- (10 1 -1)-, (11 2 -0)- and (11 2 - 1)-surfaces available, although they are of relevance for Li insertion processes, e.g. in Li-ion batteries. In this study the structure and stability of all non-(0001) low-index surfaces were calculated with RPBE-D3 and converged slab models. In all cases reconstruction involving bond formation between unsaturated carbon atoms of two neighboring graphene sheets reduces the surface energy dramatically. Two possible reconstruction patterns have been considered. The first possibility leads to formation of oblong nanotubes. Alternatively, the graphene sheets form bonds to different neighboring sheets at the upper and lower sides and sinusoidal structures are formed. Both structure types have similar stabilities. Based on the calculated surface energies the Gibbs-Wulff theorem was applied to construct the macroscopic shape of graphite single crystals.
Meissner, Lena; Kauffmann, Kira; Wengeler, Timo; Mitsunaga, Hitoshi; Fukusaki, Eiichiro; Büchs, Jochen
2015-09-01
Bacillus spp. are used for the production of industrial enzymes but are also known to be capable of producing biopolymers such as poly(γ-glutamic acid). Biopolymers increase the viscosity of the fermentation broth, thereby impairing mixing, gas/liquid mass and heat transfer in any bioreactor system. Undesired biopolymer formation has a significant impact on the fermentation and downstream processing performance. This study shows how undesirable poly(γ-glutamic acid) formation of an industrial protease producing Bacillus licheniformis strain was prevented by switching the nitrogen source from ammonium to nitrate. The viscosity was reduced from 32 to 2.5 mPa s. A constant or changing pH value did not influence the poly(γ-glutamic acid) production. Protease production was not affected: protease activities of 38 and 46 U mL(-1) were obtained for ammonium and nitrate, respectively. With the presented results, protease production with industrial Bacillus strains is now possible without the negative impact on fermentation and downstream processing by undesired poly(γ-glutamic acid) formation.
Aloe vera extract reduces both growth and germ tube formation by Candida albicans.
Bernardes, Ivy; Felipe Rodrigues, Monalisa Poliana; Bacelli, Gabrielle Klug; Munin, Egberto; Alves, Leandro Procópio; Costa, Maricilia Silva
2012-05-01
Due to the increased number of immunocompromised patients, the infections associated with the pathogen of the genus Candida have significantly increased in recent years. To grow, Candida albicans may form a germ tube extension from the cells, which is essential for virulence. In this work, we studied the effect of crude glycolic extract of Aloe vera fresh leaves (20% w/v) on growth and germ tube formation by C. albicans. The C. albicans growth was determined in the presence of different concentrations of A. vera extracts in Sabouraud dextrose broth medium. In the presence of A. vera extract (10% v/v), the pronounced inhibition in the C. albicans growth (90-100%) was observed. This inhibition occurred parallel to the decrease in the germ tube formation induced by goat serum. Our results demonstrated that A. vera fresh leaves plant extract can inhibit both the growth and the germ tube formation by C. albicans. Our results suggest the possibility that A. vera extract may be used as a promising novel antifungal treatment. © 2011 Blackwell Verlag GmbH.
Scheduling double round-robin tournaments with divisional play using constraint programming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlsson, Mats; Johansson, Mikael; Larson, Jeffrey
We study a tournament format that extends a traditional double round-robin format with divisional single round-robin tournaments. Elitserien, the top Swedish handball league, uses such a format for its league schedule. We present a constraint programming model that characterizes the general double round-robin plus divisional single round-robin format. This integrated model allows scheduling to be performed in a single step, as opposed to common multistep approaches that decompose scheduling into smaller problems and possibly miss optimal solutions. In addition to general constraints, we introduce Elitserien-specific requirements for its tournament. These general and league-specific constraints allow us to identify implicit andmore » symmetry-breaking properties that reduce the time to solution from hours to seconds. A scalability study of the number of teams shows that our approach is reasonably fast for even larger league sizes. The experimental evaluation of the integrated approach takes considerably less computational effort to schedule Elitserien than does the previous decomposed approach. (C) 2016 Elsevier B.V. All rights reserved« less
Biological significance of reducing glucose degradation products in peritoneal dialysis fluids.
Wieslander, A; Linden, T; Musi, B; Carlsson, O; Deppisch, R
2000-01-01
Carbohydrates are not stable when exposed to energy; they degrade into new molecules. In peritoneal dialysis (PD) fluids, degradation of glucose occurs during the heat sterilization procedure. The biological consequences of this degradation are side effects such as impaired proliferation and impaired host defense mechanisms, demonstrated in vitro for a great variety of cells. Several highly toxic compounds--such as formaldehyde and 3-deoxyglucosone--have been identified in PD fluids. Carbonyl compounds, apart from being cytotoxic, are also well-known promoters of irreversible advanced glycation end-products (AGEs), which might participate in the long-term remodeling of the peritoneal membrane. Various approaches can be used to reduce the formation of glucose degradation products (GDPs) during heat sterilization. Some examples are shortening the sterilization time, lowering the pH, removing catalyzing substances, and increasing glucose concentration. The latter three factors are employed in the multi-compartment bag with a separate chamber containing pure glucose at high concentration and low pH. Gambrosol trio, a PD fluid produced in this way, shows reduced cytotoxicity, normalized host defense reactions, less AGE formation, and reduced concentrations of formaldehyde and 3-deoxyglucosone. Moreover, in the clinical situation, the fluid turns out to be more biocompatible for the patient, causing less mesothelial cell damage, which in the long term could lead to a more intact peritoneal membrane. Glucose degradation products in heat-sterilized fluids for peritoneal dialysis are cytotoxic, promote AGE formation, and cause negative side effects for the patient. Using improved and well-controlled manufacturing processes, it is possible to produce sterile PD fluids with glucose as the osmotic agent but without the negative side effects related to GDPs.
NASA Astrophysics Data System (ADS)
Glindemann, Dietmar; Edwards, Marc; Schrems, Otto
Phosphine (PH 3), was recently found worldwide even in the remote atmosphere (Naturwissenschaften83(1996a)131; Atmos. Environ. 37(2003)24 29). It is of interest to find natural mechanisms which could produce phosphine gas and drive a volatile link of the atmospheric phosphorus cycle and the formation of phosphoric acid as possible condensation nuclei for clouds. Here, we report on simulated lightning exposing sodium phosphate in a reducing medium (methane model atmosphere or organic matter) for 5 s to a spark induced by microwave. The gas product analyzed by gas chromatography contained phosphine (yield up to 0.6 g kg -1 phosphate P) and methylphosphine (CH 3)PH 2 (yield up to 0.02 g kg -1 phosphate P). We suggest a plasma-chemical formation mechanism where organic compounds or methane or secondary hydrogen thereof reduce phosphate to phosphine of which a small fraction can subsequently react with methyl radicals to form methylphosphine. A small yield of 6 mg phosphine per kg phosphate P was even obtained in methane free medium, by simple plasmatic recombination of inorganic phosphorus. We believe that methane and hydrogen are useful model substances of pyrolytic gases with high reducing power which may form if lightning strikes biomass, soil and aerosol. These results suggest evidence that phosphine and methylphosphine (detectable in the field by intense garlic odor) are produced when atmospheric lightning strikes the ground or aerosol which is containing oxidized forms of phosphorus and chemical reductants. Additional reviewed data show that laboratory lightning was able to reduce a much more significant portion of phosphate to phosphite (up to 25% yield), methylphosphonic acid (up to 8.5% yield) and traces of hypophosphite in a matter of seconds.
Early defect of transforming growth factor β1 formation in Huntington’s disease
Battaglia, Giuseppe; Cannella, Milena; Riozzi, Barbara; Orobello, Sara; Maat-Schieman, Marion L; Aronica, Eleonora; Busceti, Carla Letizia; Ciarmiello, Andrea; Alberti, Silvia; Amico, Enrico; Sassone, Jenny; Sipione, Simonetta; Bruno, Valeria; Frati, Luigi; Nicoletti, Ferdinando; Squitieri, Ferdinando
2011-01-01
Abstract A defective expression or activity of neurotrophic factors, such as brain- and glial-derived neurotrophic factors, contributes to neuronal damage in Huntington’s disease (HD). Here, we focused on transforming growth factor-β (TGF-β1), a pleiotropic cytokine with an established role in mechanisms of neuroprotection. Asymptomatic HD patients showed a reduction in TGF-β1 levels in the peripheral blood, which was related to trinucleotide mutation length and glucose hypometabolism in the caudate nucleus. Immunohistochemical analysis in post-mortem brain tissues showed that TGF-β1 was reduced in cortical neurons of asymptomatic and symptomatic HD patients. Both YAC128 and R6/2 HD mutant mice showed a reduced expression of TGF-β1 in the cerebral cortex, localized in neurons, but not in astrocytes. We examined the pharmacological regulation of TGF-β1 formation in asymptomatic R6/2 mice, where blood TGF-β1 levels were also reduced. In these R6/2 mice, both the mGlu2/3 metabotropic glutamate receptor agonist, LY379268, and riluzole failed to increase TGF-β1 formation in the cerebral cortex and corpus striatum, suggesting that a defect in the regulation of TGF-β1 production is associated with HD. Accordingly, reduced TGF-β1 mRNA and protein levels were found in cultured astrocytes transfected with mutated exon 1 of the human huntingtin gene, and in striatal knock-in cell lines expressing full-length huntingtin with an expanded glutamine repeat. Taken together, our data suggest that serum TGF-β1 levels are potential biomarkers of HD development during the asymptomatic phase of the disease, and raise the possibility that strategies aimed at rescuing TGF-β1 levels in the brain may influence the progression of HD. PMID:20082658
Artico, Marco; Riganò, Rachele; Buttari, Brigitta; Profumo, Elisabetta; Ionta, Brunella; Bosco, Sandro; Rasile, Manuela; Bianchi, Enrica; Bruno, Moira; Fumagalli, Lorenzo
2011-04-01
Atherosclerosis is a degenerative disease whose role in the onset and development of cardiovascular pathologies and complications is of importance. Due to its silent but progressive development, and considering the endothelial, immunological and inflammatory processes that are involved in its clinical course, this still relatively unknown pathological condition has been and continues to be a matter of investigation worldwide. Our experience with previous studies on atherosclerosis led us to investigate the possible influence of a low molecular weight heparin (LMWH) - Parnaparin® on the development and clinical course of atherosclerosis in double knock-out laboratory animals (ApoE-/- mice). Our experiments demonstrated a possible role of Parnaparin (PNP) in the control of atherogenic disease. In fact, in treated mice vs. untreated ones, PNP reduced the number and the size of atherosclerotic lesions in the aortic wall, as well as the development of liver steatosis, which was massive in untreated animals and moderate in treated ones. These preliminary observations require further clinical studies, but demonstrate a possible role of Parnaparin in the control of the development and clinical evolution of atherosclerosis and liver steatosis in laboratory animals.
Renal-Stone Risk Assessment During Space Shuttle Flights
NASA Technical Reports Server (NTRS)
Whitson, Peggy A.; Pietrzyk, Robert A.; Pak, Charles Y. C.
1996-01-01
The metabolic and environmental factors influencing renal stone formation before, during, and after Space Shuttle flights were assessed. We established the contributing roles of dietary factors in relationship to the urinary risk factors associated with renal stone formation. 24-hr urine samples were collected prior to, during space flight, and following landing. Urinary factors associated with renal stone formation were analyzed and the relative urinary supersaturation ratios of calcium oxalate, calcium phosphate (brushite), sodium urate, struvite and uric acid were calculated. Food and fluid consumption was recorded for a 48-hr period ending with the urine collection. Urinary composition changed during flight to favor the crystallization of stone-forming salts. Factors that contributed to increased potential for stone formation during space flight were significant reductions in urinary pH and increases in urinary calcium. Urinary output and citrate, a potent inhibitor of calcium-containing stones, were slightly reduced during space flight. Dietary intakes were significantly reduced for a number of variables, including fluid, energy, protein, potassium, phosphorus and magnesium. This is the first in-flight characterization of the renal stone forming potential in astronauts. With the examination of urinary components and nutritional factors, it was possible to determine the factors that contributed to increased risk or protected from risk. In spite of the protective components, the negative contributions to renal stone risk predominated and resulted in a urinary environment that favored the supersaturation of stone-forming salts. The importance of the hypercalciuria was noted since renal excretion was high relative to the intake.
Timing of Formation of a Wassonite-bearing Chondrule
NASA Technical Reports Server (NTRS)
Needham, A. W.; Nakamura-Messenger, K.; Rubin, A. E.; Choi, B.-G.; Messenger, S.
2014-01-01
Wassonite, ideally stoichiometric TiS, is a titanium monosulfide recently discovered in the Yamato 691 EH3 enstatite chondrite. Wassonite grains were located within the mesostasis of a single barred olivine chondrule. Such chondrules likely formed in the solar nebula by melting of fine grained precursor dust. The reduced nature of enstatite chondrites, and the wassonite-bearing chondrule in particular, may suggest precursor materials included Ti-bearing troilite, metallic Fe-Ni, and possibly graphite. Under the reducing conditions present in enstatite chondrites S can partition more readily into silicate melt, leading to raised Ti content of the residual Fe-FeS melt. By the time sulfide crystallized from the melt, the Ti concentration was high enough to form small grains of pure TiS - wassonite. As a mineral not previously observed in nature wassonite and its host chondrule may provide additional constraints on physical and chemical conditions in the solar nebula at a specific time and location relevant to planetary formation. Enstatite chondrites and Earth share similar isotopic compositions of Cr, Ni, Ti, O and N. Understanding the formation conditions of enstatite chondrite chondrules may therefore have wider relevance for terrestrial planet accretion and other early inner solar system processes. Here we present preliminary results of an investigation of the Al-Mg systematics of the only known wassonite-bearing chondrule. The goal of this study is to determine whether this chondrule's formation was contemporaneous with other enstatite chondrite chondrules and to establish its place in the broader timeline of solar system events.
Chu, Wenhai; Krasner, Stuart W; Gao, Naiyun; Templeton, Michael R; Yin, Daqiang
2016-01-05
Dichloroacetamide (DCAcAm), a disinfection byproduct, has been detected in drinking water. Previous research showed that amino acids may be DCAcAm precursors. However, other precursors may be present. This study explored the contribution of the antibiotic chloramphenicol (CAP) and two of its analogues (thiamphenicol, TAP; florfenicol, FF) (referred to collectively as CAPs), which occur in wastewater-impacted source waters, to the formation of DCAcAm. Their formation yields were compared to free and combined amino acids, and they were investigated in filtered waters from drinking-water-treatment plants, heavily wastewater-impacted natural waters, and secondary effluents from wastewater treatment plants. CAPs had greater DCAcAm formation potential than two representative amino acid precursors. However, in drinking waters with ng/L levels of CAPs, they will not contribute as much to DCAcAm formation as the μg/L levels of amino acids. Also, the effect of advanced oxidation processes (AOPs) on DCAcAm formation from CAPs in real water samples during subsequent chlorination was evaluated. Preoxidation of CAPs with AOPs reduced the formation of DCAcAm during postchlorination. The results of this study suggest that CAPs should be considered as possible precursors of DCAcAm, especially in heavily wastewater-impacted waters.
A CFD Study of Jet Mixing in Reduced Flow Areas for Lower Combustor Emissions
NASA Technical Reports Server (NTRS)
Smith, C. E.; Talpallikar, M. V.; Holdeman, J. D.
1991-01-01
The Rich-burn/Quick-mix/Lean-burn (RQL) combustor has the potential of significantly reducing NO(x) emissions in combustion chambers of High Speed Civil Transport aircraft. Previous work on RQL combustors for industrial applications suggested the benefit of necking down the mixing section. A 3-D numerical investigation was performed to study the effects of neckdown on NO(x) emissions and to develop a correlation for optimum mixing designs in terms of neckdown area ratio. The results of the study showed that jet mixing in reduced flow areas does not enhance mixing, but does decrease residence time at high flame temperatures, thus reducing NO(x) formation. By necking down the mixing flow area by 4, a potential NO(x) reduction of 16:1 is possible for annual combustors. However, there is a penalty that accompanies the mixing neckdown: reduced pressure drop across the combustor swirler. At conventional combustor loading parameters, the pressure drop penalty does not appear to be excessive.
Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films
Chen, Yanan; Egan, Garth C.; Wan, Jiayu; Zhu, Shuze; Jacob, Rohit Jiji; Zhou, Wenbo; Dai, Jiaqi; Wang, Yanbin; Danner, Valencia A.; Yao, Yonggang; Fu, Kun; Wang, Yibo; Bao, Wenzhong; Li, Teng; Zachariah, Michael R.; Hu, Liangbing
2016-01-01
Nanoparticles hosted in conductive matrices are ubiquitous in electrochemical energy storage, catalysis and energetic devices. However, agglomeration and surface oxidation remain as two major challenges towards their ultimate utility, especially for highly reactive materials. Here we report uniformly distributed nanoparticles with diameters around 10 nm can be self-assembled within a reduced graphene oxide matrix in 10 ms. Microsized particles in reduced graphene oxide are Joule heated to high temperature (∼1,700 K) and rapidly quenched to preserve the resultant nano-architecture. A possible formation mechanism is that microsized particles melt under high temperature, are separated by defects in reduced graphene oxide and self-assemble into nanoparticles on cooling. The ultra-fast manufacturing approach can be applied to a wide range of materials, including aluminium, silicon, tin and so on. One unique application of this technique is the stabilization of aluminium nanoparticles in reduced graphene oxide film, which we demonstrate to have excellent performance as a switchable energetic material. PMID:27515900
NASA Astrophysics Data System (ADS)
Zümreoglu-Karan, B.
2009-07-01
Preparation of gold nanoparticles, particularly gold nanorods, by wet chemistry processes involves gold seeds, an Au(III) salt, structure directing surfactants, and metal ion additives in the growth solution into which a weak reducing agent is added. The most commonly employed weak reducing agent is l-ascorbic acid (vitamin C) which is known to reduce many metal ions in the solution phase and form complexes with relatively low stability constants. A purple-gray gold-ascorbate compound, obtained from the reaction of sodium tetrachloroaurate(III) with sodium ascorbate, is now reported. The compound possesses the expected structural features of vitamin C-metal complexes as verified by its 13C CP-MAS NMR spectrum. A discussion is also presented on the possibility of gold-ascorbate complexation operating in gold nanoparticle formation.
NASA Astrophysics Data System (ADS)
Xue, Wenhua
Bio-oils have drawn more and more attention from scientists as a promising new clean, cheap energy source. One of the most interesting relevant issues is the effect of catalysts on the catalytic reactions that are used for producing bio-oils. Furfural, as a very important intermediate during these reactions, has attracted significant studies. However, the effect of catalysts, including particularly the liquid/solid interface formed by a metal catalyst and liquid water, in the catalytic reactions involving furfural still remains elusive. In this research, we performed ab initio molecular dynamics simulations and first-principles density-functional theory calculations to investigate the atomic-scale mechanisms of catalytic hydrogenation of furfural on the palladium surface and at the liquid/state interface formed by the palladium surface and liquid water. We studied all the possible mechanisms that lead to formation of furfuryl alcohol (FOL), formation of tetrahydrofurfural (THFAL), and formation of tetrahydrofurfurfuryl alcohol (THFOL). We found that liquid water plays a significant role in the hydrogenation reactions. During the reaction in the presence of water and the palladium catalyst, in particular, water directly participates in the hydrogenation of the aldehyde group of furfural and facilitates the formation of FOL by reducing the activation energy. Our calculations show that water provides hydrogen for the hydrogenation of the aldehyde group, and at the same time, a pre-existing hydrogen atom, which is resulted from dissociation of molecular hydrogen (experimentally, molecular hydrogen is always supplied for hydrogenation) on the palladium surface, is bonded to water, making the water molecule intact in structure. In the absence of water, on the other hand, formation of FOL and THFAL on the palladium surface involves almost the same energy barriers, suggesting a comparable selectivity. Overall, as water reduces the activation energy for the formation of FOL while increases the energy barrier slightly for hydrogenation of the furan ring, water changes the reaction selectivity and promotes the formation of furfuryl alcohol.
NASA Astrophysics Data System (ADS)
Head, Ian; Gray, Neil; Aitken, Caroline; Sherry, Angela; Jones, Martin; Larter, Stephen
2010-05-01
Microbial degradation of alkanes typically involves their conversion to fatty acids which are then catabolised by beta-oxidation. The critical step in this process is activation of the hydrocarbon. Under oxic conditions this is catalyzed by monooxygenase enzymes with the formation of long chain alcohols. In the absence of oxygen alternative alkane activation mechanisms have been observed or proposed. Fumarate addition to alkanes to form alkyl succinates is considered a central process in anaerobic hydrocarbon degradation. Comparative studies of crude oil degradation under sulphate-reducing and methanogenic conditions revealed distinctive patterns of compound class removal and metabolite formation. Alkyl succinates derived from C7 to C26 n-alkanes and branched chain alkanes were found in abundance in sulfate-reducing systems but these were not detected during methanogenic crude oil degradation. Only one other mechanism of alkane activation has been elucidated to date. This involves addition of carbon derived from bicarbonate/CO2 to C-3 of an alkane chain to form a 2-ethylalkane with subsequent removal of the ethyl group leading to the formation of a fatty acid 1 carbon shorter than the original alkane. 2-ethylalkanes have never been detected as metabolites of anaerobic alkane degradation and were not detected in crude oil-degrading methanogenic systems. Due to the range of alkanes present in crude oil it was not possible to infer the generation of C-odd acids from C-even alkanes which is characteristic of the C-3 carboxylation mechanism. Furthermore genes homologous to alkysuccinate synthetases were not detected in the methanogenic hydrocarbon degrading community by pyrosequencing of total DNA extracted from methanogenic enrichments cultures. beta-oxidation genes were detected and intriguingly, alcohol and aldehyde dehydrogenase genes were present. This offers the possibility that alkane activation in the methanogenic system does not proceed via acid metabolites, but may be initiated by an anaerobic hydroxylation reaction. This is not unprecedented and hydroxylation of ethylbenzene has been demonstrated. However the C-H bond dissociation energy of alkanes is typically considered too high to readily permit alkane hydroxylation. It is however clear that alkane activation in these methanogenic crude oil-degrading systems involves mechanisms other than the well-known fumarate-addition reactions.
Effect of ethylenediamine on chemical degradation of insulin aspart in pharmaceutical solutions.
Poulsen, Christian; Jacobsen, Dorte; Palm, Lisbeth
2008-11-01
To examine the effect of different amine compounds on the chemical degradation of insulin aspart at pharmaceutical formulation conditions. Insulin aspart preparations containing amine compounds or phosphate (reference) were prepared and the chemical degradation was assessed following storage at 37 degrees C using chromatographic techniques. Ethylenediamine was examined at multiple concentrations and the resulting insulin-ethylenediamine derivates were structurally characterized using matrix assisted laser desorption ionization time-of-flight mass spectroscopy. The effects on ethylenediamine when omitting glycerol or phenolic compounds from the formulations were investigated. Ethylenediamine was superior in terms of reducing formation of high molecular weight protein and insulin aspart related impurities compared to the other amine compounds and phosphate. Monotransamidation of insulin aspart in the presence of ethylenediamine was observed at all of the six possible Asn/Gln residues with Asn(A21) having the highest propensity to react with ethylenediamine. Data from formulations studies suggests a dual mechanism of ethylenediamine and a mandatory presence of phenolic compounds to obtain the effect. The formation of high molecular weight protein and insulin aspart related impurities was reduced by ethylenediamine in a concentration dependant manner.
Improving MWA/HERA Calibration Using Extended Radio Source Models
NASA Astrophysics Data System (ADS)
Cunningham, Devin; Tasker, Nicholas; University of Washington EoR Imaging Team
2018-01-01
The formation of the first stars and galaxies in the universe is among the greatest mysteries in astrophysics. Using special purpose radio interferometers, it is possible to detect the faint 21 cm radio line emitted by neutral hydrogen in order to characterize the Epoch of Reionization (EoR) and the formation of the first stars and galaxies. We create better models of extended radio sources by reducing component number of deconvolved Murchison Widefield Array (MWA) data by up to 90%, while preserving real structure and flux information. This real structure is confirmed by comparisons to observations of the same extended radio sources from the TIFR GMRT Sky Survey (TGSS) and NRAO VLA Sky Survey (NVSS), which detect at a similar frequency range as the MWA. These sophisticated data reduction techniques not only offer improvements to the calibration of the MWA, but also hold applications for the future sky-based calibration of the Hydrogen Epoch of Reionization Array (HERA). This has the potential to reduce noise in the power spectra from these instruments, and consequently provide a deeper view into the window of EoR.
Kumar, Anil; Goyal, Richa
2008-03-01
Hypoxia is an environmental stressor that is known to elicit alterations in both the autonomic nervous system and endocrine functions. The free radical or oxidative stress theory holds that oxidative reactions are mainly underlying neurodegenerative disorders. In fact among complex metabolic reactions occurring during hypoxia, many could be related to the formation of oxygen derived free radicals, causing a wide spectrum of cell damage. In present study, we investigated possible involvement of GABAergic mechanism in the protective effect of zolpidem against acute hypoxia-induced behavioral modification and biochemical alterations in mice. Mice were subjected to acute hypoxic stress for a period of 2 h. Acute hypoxic stress for 2 h caused significant impairment in locomotor activity, anxiety-like behavior, and antinocioceptive effect in mice. Biochemical analysis revealed a significant increased malondialdehyde, nitrite concentrations and depleted reduced glutathione and catalase levels. Pretreatment with zolpidem (5 and 10 mg/kg, i.p.) significantly improved locomotor activity, anti-anxiety effect, reduced tail flick latency and attenuated oxidative damage (reduced malondialdehyde, nitrite concentration, and restoration of reduced glutathione and catalase levels) as compared to stressed control (hypoxia) (P < 0.05). Besides, protective effect of zolpidem (5 mg/kg) was blocked significantly by picrotoxin (1.0 mg/kg) or flumazenil (2 mg/kg) and potentiated by muscimol (0.05 mg/kg) in hypoxic animals (P < 0.05). These effects were significant as compared to zolpidem (5 mg/kg) per se (P < 0.05). Present study suggest that the possible involvement of GABAergic modulation in the protective effect of zolpidem against hypoxic stress.
Optical and Thermal Stability of Oligofluorene/Rubber Luminescent Blend.
Barbosa, Camila G; Faez, Roselena; Péres, Laura O
2016-09-01
This paper proposes to obtain homogeneous and stable blends of oligo(9,9-dioctylfluorene)-co-phenylene (OF), a conjugated oligomer with strong tendency of formation of excimers in the solid state, and nitrile rubber (NBR). This rubber protection reduces the formation of polymer excimers in the films. The fluorene oligomer was synthesized via Suzuki reaction and incorporated in the nitrile rubber. The films were formed by spin coating and casting techniques on the proportions of 1, 5, 10, 20 and 50 % (w/w) of OF in the nitrile rubber (NBR). The structural, optical and thermal properties of the films were evaluated with infrared, UV-Vis, fluorescence and thermogravimetry, respectively. The nitrile rubber proved to be essential for the preparation of homogeneous and stable films, since it was not possible to obtain films with only fluorene using the above-mentioned techniques. Furthermore, luminescent properties of OF are unchanged and the excimers formation in the solid state decrease suggesting the efficiency of nitrile rubber as the matrix for making films.
da Silva, Cleyton Martins; Corrêa, Sergio Machado; Arbilla, Graciela
2018-01-01
The potential role of isoprene oxidative processes, as well as the possible impact of air pollution on isoprene emissions, are more important in tropical cities, surrounded by rainforests. In this study, the contribution of isoprene to ozone formation was determined considering different scenarios, mainly volatile organic compounds/NO x (VOC/NO x ) ratios, and typical atmospheric conditions for the city of Rio de Janeiro, where more than 36% of the urbanized area is covered by vegetation. Ozone isopleths and incremental reactivity coefficients (IR) were evaluated to understand the direct contribution of isoprene to ground-level ozone formation and the negative impact of anthropogenic NO x emissions on the natural atmospheric balance. Although isoprene accounted for only 2.7% of the total VOC mass, excluding the isoprene concentration from the model reduced the maximum ozone value by 14.1%. The calculated IR coefficient (grams of O 3 formed per gram of added isoprene) was 2.2 for a VOC/NO x ratio of 8.86.
Berardo, A; De Maere, H; Stavropoulou, D A; Rysman, T; Leroy, F; De Smet, S
2016-11-01
The effects of sodium nitrite and ascorbate on lipid and protein oxidation were studied during the ripening process of dry fermented sausages. Samples were taken at day 0, 2, 8, 14, 21 and 28 of ripening to assess lipid (malondialdehyde) and protein (carbonyls and sulfhydryl groups) oxidation. Sodium ascorbate and nitrite were separately able to reduce the formation of malondialdehyde. Their combined addition resulted in higher amounts of carbonyl compounds compared to their separate addition or the treatment without any of both compounds. Moreover, sodium nitrite limited the formation of γ-glutamic semialdehyde whereas sodium ascorbate showed a pro-oxidant effect. A loss of thiol groups was observed during ripening, which was not affected by the use of sodium ascorbate nor sodium nitrite. In conclusion, sodium nitrite and ascorbate affected protein and lipid oxidation in different manners. The possible pro-oxidant effect of their combined addition on carbonyl formation might influence the technological and sensory properties of these products. Copyright © 2016 Elsevier Ltd. All rights reserved.
Automaticity in reading and the Stroop task: testing the limits of involuntary word processing.
Brown, Tracy L; Joneleit, Kelly; Robinson, Cathy S; Brown, Carli Rose
2002-01-01
We investigated the parameters of involuntary word reading in the Stroop task in 7 experiments. Experiments 1-4 varied response modality and the presence of congruent word trials in a test of the claim that presenting a Stroop color word with only one letter in the target color eliminates the Stroop effect. Experiments 5 and 6 addressed the roles of spatial attention and orthographic processing as possible mechanisms behind the reduction of Stroop effects with the single-letter format. Experiment 7 investigated the limits of involuntary reading under optimal conditions for selective processing of rectangular color patch targets. We found that the single-letter format reduced but never eliminated Stroop effects, spatial attention but not orthographic processing plays a role in the effect of the single-letter format, and word reading is not completely prevented even with austere presentation conditions. We conclude with a defense of the involuntariness criterion for automaticity in the Stroop task, particularly when word reading is viewed in the context of a skilled performance.
Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease.
Pistollato, Francesca; Sumalla Cano, Sandra; Elio, Iñaki; Masias Vergara, Manuel; Giampieri, Francesca; Battino, Maurizio
2016-10-01
It has been hypothesized that alterations in the composition of the gut microbiota might be associated with the onset of certain human pathologies, such as Alzheimer disease, a neurodegenerative syndrome associated with cerebral accumulation of amyloid-β fibrils. It has been shown that bacteria populating the gut microbiota can release significant amounts of amyloids and lipopolysaccharides, which might play a role in the modulation of signaling pathways and the production of proinflammatory cytokines related to the pathogenesis of Alzheimer disease. Additionally, nutrients have been shown to affect the composition of the gut microbiota as well as the formation and aggregation of cerebral amyloid-β. This suggests that modulating the gut microbiome and amyloidogenesis through specific nutritional interventions might prove to be an effective strategy to prevent or reduce the risk of Alzheimer disease. This review examines the possible role of the gut in the dissemination of amyloids, the role of the gut microbiota in the regulation of the gut-brain axis, the potential amyloidogenic properties of gut bacteria, and the possible impact of nutrients on modulation of microbiota composition and amyloid formation in relation to the pathogenesis of Alzheimer disease. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Evolution of Indarch (EH4 Chondrite) at 1 GPa and High Temperature
NASA Technical Reports Server (NTRS)
Berthet, S.; Malavergne, V.; Righter, K.
2008-01-01
The chondritic meteorites are materials that are as old as the solar system itself characterized by variations in bulk chemical and oxidation state, and have long been considered possible building blocks that accreted to form the terrestrial inner planets. Enstatite chondrites contain nearly FeO free enstatite, silicon-rich kamacite and various sulfides indicating formation under highly reducing conditions. These materials could have participated in the formation of the Earth. However, "fingerprinting" of meteoritic materials has shown that no known meteoritic class corresponds to a hypothetical bulk Earth composition in every aspect. To derive constraints on early accretion and differentiation processes and possibly resolve the debate on the formation of the Earth, it is required to study experimentally a variety of chondritic materials and investigate their melting relations and elemental partitioning behavior at variable pressure (P), temperature (T) and oxygen fugacities (fO2). Variations in fO2 can indeed change chemical features and phase equilibria dramatically. The P-T phase diagrams of peridotites and carbonaceous chondrites have been extensively studied experimentally up to pressures and temperatures corresponding to the transition zone and lower mantle. Even though partial melting experiments have been conducted at ambient pressure on the enstatite chondrite Indarch, enstatite meteorites have never been experimentally investigated at high PT. The following investigation focuses on the effect of the fO2 on the phase relations of Indarch, an EH4 chondrite.
Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight.
Portugal, Steven J; Hubel, Tatjana Y; Fritz, Johannes; Heese, Stefanie; Trobe, Daniela; Voelkl, Bernhard; Hailes, Stephen; Wilson, Alan M; Usherwood, James R
2014-01-16
Many species travel in highly organized groups. The most quoted function of these configurations is to reduce energy expenditure and enhance locomotor performance of individuals in the assemblage. The distinctive V formation of bird flocks has long intrigued researchers and continues to attract both scientific and popular attention. The well-held belief is that such aggregations give an energetic benefit for those birds that are flying behind and to one side of another bird through using the regions of upwash generated by the wings of the preceding bird, although a definitive account of the aerodynamic implications of these formations has remained elusive. Here we show that individuals of northern bald ibises (Geronticus eremita) flying in a V flock position themselves in aerodynamically optimum positions, in that they agree with theoretical aerodynamic predictions. Furthermore, we demonstrate that birds show wingtip path coherence when flying in V positions, flapping spatially in phase and thus enabling upwash capture to be maximized throughout the entire flap cycle. In contrast, when birds fly immediately behind another bird--in a streamwise position--there is no wingtip path coherence; the wing-beats are in spatial anti-phase. This could potentially reduce the adverse effects of downwash for the following bird. These aerodynamic accomplishments were previously not thought possible for birds because of the complex flight dynamics and sensory feedback that would be required to perform such a feat. We conclude that the intricate mechanisms involved in V formation flight indicate awareness of the spatial wake structures of nearby flock-mates, and remarkable ability either to sense or predict it. We suggest that birds in V formation have phasing strategies to cope with the dynamic wakes produced by flapping wings.
Stringer, Jessica M.; van den Bergen, Jocelyn A.; Wilhelm, Dagmar; Sinclair, Andrew H.; Western, Patrick S.
2013-01-01
The developing testis provides an environment that nurtures germ cell development, ultimately ensuring spermatogenesis and fertility. Impacts on this environment are considered to underlie aberrant germ cell development and formation of germ cell tumour precursors. The signaling events involved in testis formation and male fetal germ cell development remain largely unknown. Analysis of knockout mice lacking single Tgfβ family members has indicated that Tgfβ's are not required for sex determination. However, due to functional redundancy, it is possible that additional functions for these ligands in gonad development remain to be discovered. Using FACS purified gonadal cells, in this study we show that the genes encoding Activin's, TGFβ's, Nodal and their respective receptors, are expressed in sex and cell type specific patterns suggesting particular roles in testis and germ cell development. Inhibition of signaling through the receptors ALK4, ALK5 and ALK7, and ALK5 alone, demonstrated that TGFβ signaling is required for testis cord formation during the critical testis-determining period. We also show that signaling through the Activin/NODAL receptors, ALK4 and ALK7 is required for promoting differentiation of male germ cells and their entry into mitotic arrest. Finally, our data demonstrate that Nodal is specifically expressed in male germ cells and expression of the key pluripotency gene, Nanog was significantly reduced when signaling through ALK4/5/7 was blocked. Our strategy of inhibiting multiple Activin/NODAL/TGFβ receptors reduces the functional redundancy between these signaling pathways, thereby revealing new and essential roles for TGFβ and Activin signaling during testis formation and male germ cell development. PMID:23342175
Martínez-Fernández de la Cámara, Cristina; Salom, David; Sequedo, Ma Dolores; Hervás, David; Marín-Lambíes, Cristina; Aller, Elena; Jaijo, Teresa; Díaz-LLopis, Manuel; Millán, José María; Rodrigo, Regina
2013-01-01
Retinitis Pigmentosa is a common form of hereditary retinal degeneration constituting the largest Mendelian genetic cause of blindness in the developed world. It has been widely suggested that oxidative stress possibly contributes to its pathogenesis. We measured the levels of total antioxidant capacity, free nitrotyrosine, thiobarbituric acid reactive substances (TBARS) formation, extracellular superoxide dismutase (SOD3) activity, protein, metabolites of the nitric oxide/cyclic GMP pathway, heme oxygenase-I and inducible nitric oxide synthase expression in aqueous humor or/and peripheral blood from fifty-six patients with retinitis pigmentosa and sixty subjects without systemic or ocular oxidative stress-related disease. Multivariate analysis of covariance revealed that retinitis pigmentosa alters ocular antioxidant defence machinery and the redox status in blood. Patients with retinitis pigmentosa present low total antioxidant capacity including reduced SOD3 activity and protein concentration in aqueous humor. Patients also show reduced SOD3 activity, increased TBARS formation and upregulation of the nitric oxide/cyclic GMP pathway in peripheral blood. Together these findings confirmed the hypothesis that patients with retinitis pigmentosa present reduced ocular antioxidant status. Moreover, these patients show changes in some oxidative-nitrosative markers in the peripheral blood. Further studies are needed to clarify the relationship between these peripheral markers and retinitis pigmentosa. PMID:24069283
Hypomorphism in human NSMCE2 linked to primordial dwarfism and insulin resistance
Payne, Felicity; Colnaghi, Rita; Rocha, Nuno; Seth, Asha; Harris, Julie; Carpenter, Gillian; Bottomley, William E.; Wheeler, Eleanor; Wong, Stephen; Saudek, Vladimir; Savage, David; O’Rahilly, Stephen; Carel, Jean-Claude; Barroso, Inês; O’Driscoll, Mark; Semple, Robert
2014-01-01
Structural maintenance of chromosomes (SMC) complexes are essential for maintaining chromatin structure and regulating gene expression. Two the three known SMC complexes, cohesin and condensin, are important for sister chromatid cohesion and condensation, respectively; however, the function of the third complex, SMC5–6, which includes the E3 SUMO-ligase NSMCE2 (also widely known as MMS21) is less clear. Here, we characterized 2 patients with primordial dwarfism, extreme insulin resistance, and gonadal failure and identified compound heterozygous frameshift mutations in NSMCE2. Both mutations reduced NSMCE2 expression in patient cells. Primary cells from one patient showed increased micronucleus and nucleoplasmic bridge formation, delayed recovery of DNA synthesis, and reduced formation of foci containing Bloom syndrome helicase (BLM) after hydroxyurea-induced replication fork stalling. These nuclear abnormalities in patient dermal fibroblast were restored by expression of WT NSMCE2, but not a mutant form lacking SUMO-ligase activity. Furthermore, in zebrafish, knockdown of the NSMCE2 ortholog produced dwarfism, which was ameliorated by reexpression of WT, but not SUMO-ligase–deficient NSMCE. Collectively, these findings support a role for NSMCE2 in recovery from DNA damage and raise the possibility that loss of its function produces dwarfism through reduced tolerance of replicative stress. PMID:25105364
Hypomorphism in human NSMCE2 linked to primordial dwarfism and insulin resistance.
Payne, Felicity; Colnaghi, Rita; Rocha, Nuno; Seth, Asha; Harris, Julie; Carpenter, Gillian; Bottomley, William E; Wheeler, Eleanor; Wong, Stephen; Saudek, Vladimir; Savage, David; O'Rahilly, Stephen; Carel, Jean-Claude; Barroso, Inês; O'Driscoll, Mark; Semple, Robert
2014-09-01
Structural maintenance of chromosomes (SMC) complexes are essential for maintaining chromatin structure and regulating gene expression. Two the three known SMC complexes, cohesin and condensin, are important for sister chromatid cohesion and condensation, respectively; however, the function of the third complex, SMC5-6, which includes the E3 SUMO-ligase NSMCE2 (also widely known as MMS21) is less clear. Here, we characterized 2 patients with primordial dwarfism, extreme insulin resistance, and gonadal failure and identified compound heterozygous frameshift mutations in NSMCE2. Both mutations reduced NSMCE2 expression in patient cells. Primary cells from one patient showed increased micronucleus and nucleoplasmic bridge formation, delayed recovery of DNA synthesis, and reduced formation of foci containing Bloom syndrome helicase (BLM) after hydroxyurea-induced replication fork stalling. These nuclear abnormalities in patient dermal fibroblast were restored by expression of WT NSMCE2, but not a mutant form lacking SUMO-ligase activity. Furthermore, in zebrafish, knockdown of the NSMCE2 ortholog produced dwarfism, which was ameliorated by reexpression of WT, but not SUMO-ligase-deficient NSMCE. Collectively, these findings support a role for NSMCE2 in recovery from DNA damage and raise the possibility that loss of its function produces dwarfism through reduced tolerance of replicative stress.
Xiao, Qian; Yu, Shuili; Li, Lei; Wang, Ting; Liao, Xinlei; Ye, Yubing
2017-02-15
Bromate (BrO 3 - ) is a possible human carcinogen regulated at a strict standard of 10μg/L in drinking water. Various techniques to eliminate BrO 3 - usually fall into three main categories: reducing bromide (Br - ) prior to formation of BrO 3 - , minimizing BrO 3 - formation during the ozonation process, and removing BrO 3 - from post-ozonation waters. However, the first two approaches exhibit low degradation efficiency and high treatment cost. The third workaround has obvious advantages, such as high reduction efficiency, more stable performance and easier combination with UV disinfection, and has therefore been widely implemented in water treatment. Recently, advanced reduction processes (ARPs), the photocatalysis of BrO 3 - , have attracted much attention due to improved performance. To increase the feasibility of photocatalytic systems, the focus of this work concerns new technological developments, followed by a summary of reducing agents, activation methods, operational parameters, and applications. The reaction mechanisms of two typical processes involving UV/sulfite homogeneous photocatalysis and UV/titanium dioxide heterogeneous photocatalysis are further summarized. The future research needs for ARPs to reach full-scale potential in drinking water treatment are suggested accordingly. Copyright © 2016. Published by Elsevier B.V.
Summers, David P
2005-08-01
One issue for the origin of life under a non-reducing atmosphere is the availability of the reduced nitrogen necessary for amino acids, nucleic acids, etc. One possible source of this nitrogen is the formation of ammonia from the reduction of nitrates and nitrites produced by the shock heating of the atmosphere and subsequent chemistry. Ferrous ions will reduce these species to ammonium, but not under acidic conditions. We wish to report results on the reduction of nitrite and nitrate by another source of iron (II), ferrous sulfide, FeS. FeS reduces nitrite to ammonia at lower pHs than the corresponding reduction by aqueous Fe+ 2. The reduction follows a first order decay, in nitrite concentration, with a half-life of about 150 min (room temperature, CO2, pH 6.25). The highest product yield of ammonia measured was 53%. Under CO2, the product yield decreases from pH 5.0 to pH 6.9. The increasing concentration of bicarbonate, at higher pH, interferes with the reaction. Comparing experiments under N2 CO2 shows the interference of bicarbonate. The reaction proceeds well in the presence of such species as chloride, sulfate, and phosphate, though the yield drops significantly with phosphate. FeS also reduces nitrate and, unlike with Fe+ 2, the reduction shows more reproducibility. Again, the product yield decreases with increasing pH, from 7% at pH 4.7 to 0% at pH 6.9. It appears that nitrate is much more sensitive to the presence of added species, perhaps not competing as well for binding sites on the FeS surface. This may be the cause of the lack of reproducibility of nitrate reduction by Fe+ 2 (which also can be sensitive to binding by certain species).
NASA Astrophysics Data System (ADS)
Summers, David P.
2005-08-01
One issue for the origin of life under a non-reducing atmosphere is the availability of the reduced nitrogen necessary for amino acids, nucleic acids, etc. One possible source of this nitrogen is the formation of ammonia from the reduction of nitrates and nitrites produced by the shock heating of the atmosphere and subsequent chemistry. Ferrous ions will reduce these species to ammonium, but not under acidic conditions. We wish to report results on the reduction of nitrite and nitrate by another source of iron (II), ferrous sulfide, FeS. FeS reduces nitrite to ammonia at lower pHs than the corresponding reduction by aqueous Fe+ 2. The reduction follows a first order decay, in nitrite concentration, with a half-life of about 150 min (room temperature, CO2, pH 6.25). The highest product yield of ammonia measured was 53%. Under CO2, the product yield decreases from pH 5.0 to pH 6.9. The increasing concentration of bicarbonate, at higher pH, interferes with the reaction. Comparing experiments under N2 CO2 shows the interference of bicarbonate. The reaction proceeds well in the presence of such species as chloride, sulfate, and phosphate, though the yield drops significantly with phosphate. FeS also reduces nitrate and, unlike with Fe+ 2, the reduction shows more reproducibility. Again, the product yield decreases with increasing pH, from 7% at pH 4.7 to 0% at pH 6.9. It appears that nitrate is much more sensitive to the presence of added species, perhaps not competing as well for binding sites on the FeS surface. This may be the cause of the lack of reproducibility of nitrate reduction by Fe+ 2 (which also can be sensitive to binding by certain species)
Connecting the Cosmic Star Formation Rate with the Local Star Formation
NASA Astrophysics Data System (ADS)
Gribel, Carolina; Miranda, Oswaldo D.; Williams Vilas-Boas, José
2017-11-01
We present a model that unifies the cosmic star formation rate (CSFR), obtained through the hierarchical structure formation scenario, with the (Galactic) local star formation rate (SFR). It is possible to use the SFR to generate a CSFR mapping through the density probability distribution functions commonly used to study the role of turbulence in the star-forming regions of the Galaxy. We obtain a consistent mapping from redshift z˜ 20 up to the present (z = 0). Our results show that the turbulence exhibits a dual character, providing high values for the star formation efficiency (< \\varepsilon > ˜ 0.32) in the redshift interval z˜ 3.5{--}20 and reducing its value to < \\varepsilon > =0.021 at z = 0. The value of the Mach number ({{ M }}{crit}), from which < \\varepsilon > rapidly decreases, is dependent on both the polytropic index (Γ) and the minimum density contrast of the gas. We also derive Larson’s first law associated with the velocity dispersion (< {V}{rms}> ) in the local star formation regions. Our model shows good agreement with Larson’s law in the ˜ 10{--}50 {pc} range, providing typical temperatures {T}0˜ 10{--}80 {{K}} for the gas associated with star formation. As a consequence, dark matter halos of great mass could contain a number of halos of much smaller mass, and be able to form structures similar to globular clusters. Thus, Larson’s law emerges as a result of the very formation of large-scale structures, which in turn would allow the formation of galactic systems, including our Galaxy.
Pinske, Constanze; Sargent, Frank
2016-10-01
During mixed-acid fermentation Escherichia coli produces formate, which is initially excreted out the cell. Accumulation of formate, and dropping extracellular pH, leads to biosynthesis of the formate hydrogenlyase (FHL) complex. FHL consists of membrane and soluble domains anchored within the inner membrane. The soluble domain comprises a [NiFe] hydrogenase and a formate dehydrogenase that link formate oxidation directly to proton reduction with the release of CO 2 and H 2 . Thus, the function of FHL is to oxidize excess formate at low pH. FHL subunits share identity with subunits of the respiratory Complex I. In particular, the FHL membrane domain contains subunits (HycC and HycD) that are homologs of NuoL/M/N and NuoH, respectively, which have been implicated in proton translocation. In this work, strain engineering and new assays demonstrate unequivocally the nonphysiological reverse activity of FHL in vivo and in vitro. Harnessing FHL to reduce CO 2 to formate is biotechnologically important. Moreover, assays for both possible FHL reactions provide opportunities to explore the bioenergetics using biochemical and genetic approaches. Comprehensive mutagenesis of hycC did not identify any single amino acid residues essential for FHL operation. However, the HycD E199, E201, and E203 residues were found to be critically important for FHL function. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Functional properties of nisin-carbohydrate conjugates formed by radiation induced Maillard reaction
NASA Astrophysics Data System (ADS)
Muppalla, Shobita R.; Sonavale, Rahul; Chawla, Surinder P.; Sharma, Arun
2012-12-01
Nisin-carbohydrate conjugates were prepared by irradiating nisin either with glucose or dextran. Increase in browning and formation of intermediate products was observed with a concomitant decrease in free amino and reducing sugar groups indicating occurrence of the Maillard reaction catalyzed by irradiation. Nisin-carbohydrate conjugates showed a broad spectrum antibacterial activity against Gram negative bacteria (Escherichia coli, Pseudomonas fluorescence) as well as Gram positive bacteria (Staphylococcus aureus, Bacillus cereus). Results of antioxidant assays, including that of DPPH radical-scavenging activity and reducing power, showed that the nisin-dextran conjugates possessed better antioxidant potential than nisin-glucose conjugate. These results suggested that it was possible to enhance the functional properties of nisin by preparing radiation induced conjugates suitable for application in food industry.
Dioxin formation from waste incineration.
Shibamoto, Takayuki; Yasuhara, Akio; Katami, Takeo
2007-01-01
There has been great concern about dioxins-polychlorinated dibenzo dioxins (PCDDs), polychlorinated dibenzo furans (PCDFs), and polychlorinated biphenyls (PCBs)-causing contamination in the environment because the adverse effects of these chemicals on human health have been known for many years. Possible dioxin-contamination has received much attention recently not only by environmental scientists but also by the public, because dioxins are known to be formed during the combustion of industrial and domestic wastes and to escape into the environment via exhaust gases from incinerators. Consequently, there is a pressing need to investigate the formation mechanisms or reaction pathways of these chlorinated chemicals to be able to devise ways to reduce their environmental contamination. A well-controlled small-scale incinerator was used for the experiments in the core references of this review. These articles report the investigation of dioxin formation from the combustion of various waste-simulated samples, including different kinds of paper, various kinds of wood, fallen leaves, food samples, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), polyvinylidene chloride, polyethylene tetraphthalate (PET), and various kinds of plastic products. These samples were also incinerated with inorganic chlorides (NaCl, KCl, CuCI2, MgCl2, MnCl2, FeCl2, CoCl2, fly ash, and seawater) or organic chlorides (PVC, chlordane, and pentachlorophenol) to investigate the role of chlorine content and/or the presence of different metals in dioxin formation. Some samples, such as newspapers, were burned after they were impregnated with NaCl or PVC, as well as being cocombusted with chlorides. The roles of incineration conditions, including chamber temperatures, O2 concentrations, and CO concentrations, in dioxin formation were also investigated. Dioxins (PCDDs, PCDFs, and coplanar-PCBs) formed in the exhaust gases from a controlled small-scale incinerator, where experimental waste samples were burned, were analyzed by gas chromatography/mass spectrometry. Formation of total PCDFs was much higher than that of PCDDs in all samples. The total PCDFs comprised 70%-90% of the total dioxin formed. The amount of total PCDFs formed ranged from 0.78 ng/g (newspaper) to 8,490ng/g (PVC burned in high CO concentration). The amount of total PCDDs formed ranged from 0.02ng/g (newspaper) to 430ng/g (PVC). Coplanar PCBs were found at the lowest level of the dioxins formed. Their formation levels ranged from 0ng/g (newspaper) to 77.6ng/g (PVC). It is obvious that the samples with either inorganic or organic chlorides produced much more dioxins than the sample without chlorides when incinerated under similar conditions. It is not clear how inorganic and organic chloride contribute differently to dioxin formation. Among the metals examined, copper seems to have higher activity toward dioxin formation than other metals. It acted not only as a catalyst but also as a transmitter of heterogeneous chlorine. The toxicity equivalence quantity (TEQ) values generally correlated with the amount of chlorine content in the samples and the amount of dioxin formed in exhaust gases from an incinerator. When the same sample was incinerated at different temperatures, however, the sample burned at low temperature yielded a higher TEQ value than did the sample burned at high temperature. The samples that did not contain chlorine or were not combusted with chlorides exhibited low TEQ values. In contrast, samples with high chlorine content, such as PVC (51.3%), gave high TEQ values. Combustion temperatures may play an important role in dioxin formation in exhaust gases from the incineration of waste materials. However, no significant relationship between dioxin formation and chamber temperatures was reported in the core articles. However, It is obvious that dioxin formation occurred at temperatures above 450'C and was reduced significantly at temperatures above 850 degrees C. The reaction occurring in an incinerator is extremely complex, and there are many factors in addition to combustion temperature influencing dioxin formation. Even though it is possible to hypothesize reasonable formation mechanisms of dioxins produced in exhaust gases according to the results obtained from experiments in classical chemistry, the reactions involved in an incinerator are extremely complex and heterogeneous. More detailed investigation of the many individual factors influencing dioxin formation is needed to find ways to reduce their formation in individual and municipal incinerators.
47 CFR 1.913 - Application and notification forms; electronic and manual filing.
Code of Federal Regulations, 2011 CFR
2011-10-01
... notifications whenever possible. The files, other than the ASCII table of contents, should be in Adobe Acrobat... possible. The attachment should be uploaded via ULS in Adobe Acrobat Portable Document Format (PDF... the table of contents, should be in Adobe Acrobat Portable Document Format (PDF) whenever possible...
The cause of welding cracks in aircraft steels
NASA Technical Reports Server (NTRS)
Muller, J
1940-01-01
The discussion in this article refers to gas welding of thin-walled parts of up to about 3 mm thickness. It was proven that by restricting the sulphur, carbon, and phosphorous content, and by electric-furnace production of the steel, it was possible in a short time to remove this defect. Weld hardness - i.e., martensite formation and hardness of the overheated zone - has no connection with the tendency to weld-crack development. Si, Cr, Mo, or V content has no appreciable effect, while increased manganese content tends to reduce the crack susceptibility.
Chemical, thermal and impact processing of asteroids
NASA Technical Reports Server (NTRS)
Scott, E. R. D.; Taylor, G. J.; Newsom, H. E.; Herbert, F.; Zolensky, M.
1989-01-01
The geological effects of impacts, heating, melting, core formation, and aqueous alteration on asteroids are reviewed. A review of possible heat sources appears to favor an important role for electrical induction heating. The effects of each geologic process acting individually and in combination with others, are considered; it is concluded that there is much evidence for impacts during alteration, metamorphism and melting. These interactions vastly increased the geologic diversity of the asteroid belt. Subsequent impacts of cool asteroids did not reduce this diversity. Instead new rock types were created by mixing, brecciation and minor melting.
Torres, Jaume; Svistunenko, Dimitri; Karlsson, Bo; Cooper, Chris E; Wilson, Michael T
2002-02-13
The rapid reduction of one of the copper atoms (type 2) of tree laccase by nitric oxide (NO) has been detected. Addition of NO to native laccase in the presence of oxygen leads to EPR changes consistent with fast reduction and slow reoxidation of this metal center. These events are paralleled by optical changes that are reminiscent of formation and decay of the peroxide intermediate in a fraction of the enzyme population. Formation of this species is only possible if the trinuclear copper cluster (type 2 plus type 3) is fully reduced. This condition can only be met if, as suggested previously, a fraction of the enzyme contains both type 3 coppers already reduced before addition of NO. Our data are consistent with this assumption. We have suggested recently that fast reduction of copper is the mechanism by which NO interacts with the oxidized dinuclear center in cytochrome c oxidase. The present experiments using laccase strongly support this view and suggest this reaction as a general mechanism by which copper proteins interact with NO. In addition, this provides an unexploited way to produce a stable peroxide intermediate in copper oxidases in which the full complement of copper atoms is present. This enables the O-O scission step in the catalytic cycle to be studied by electron addition to the peroxide derivative through the native electron entry site, type 1 copper.
Speldewinde, Shaun H.; Tuite, Mick F.
2017-01-01
Mammalian and fungal prions arise de novo; however, the mechanism is poorly understood in molecular terms. One strong possibility is that oxidative damage to the non-prion form of a protein may be an important trigger influencing the formation of its heritable prion conformation. We have examined the oxidative stress-induced formation of the yeast [PSI+] prion, which is the altered conformation of the Sup35 translation termination factor. We used tandem affinity purification (TAP) and mass spectrometry to identify the proteins which associate with Sup35 in a tsa1 tsa2 antioxidant mutant to address the mechanism by which Sup35 forms the [PSI+] prion during oxidative stress conditions. This analysis identified several components of the cortical actin cytoskeleton including the Abp1 actin nucleation promoting factor, and we show that deletion of the ABP1 gene abrogates oxidant-induced [PSI+] prion formation. The frequency of spontaneous [PSI+] prion formation can be increased by overexpression of Sup35 since the excess Sup35 increases the probability of forming prion seeds. In contrast to oxidant-induced [PSI+] prion formation, overexpression-induced [PSI+] prion formation was only modestly affected in an abp1 mutant. Furthermore, treating yeast cells with latrunculin A to disrupt the formation of actin cables and patches abrogated oxidant-induced, but not overexpression-induced [PSI+] prion formation, suggesting a mechanistic difference in prion formation. [PIN+], the prion form of Rnq1, localizes to the IPOD (insoluble protein deposit) and is thought to influence the aggregation of other proteins. We show Sup35 becomes oxidized and aggregates during oxidative stress conditions, but does not co-localize with Rnq1 in an abp1 mutant which may account for the reduced frequency of [PSI+] prion formation. PMID:28369054
Transforming a large-class lecture course to a smaller-group interactive course.
Persky, Adam M; Pollack, Gary M
2010-11-10
To transition a large pharmacokinetics course that was delivered using a traditional lecture format into a smaller-group course with a discussion format. An e-book and Web-based multimedia learning modules were utilized to facilitate students' independent learning which allowed the number of classes they were required to attend to be reduced from 3 to 1 per week. Students were assigned randomly to 1 of 3 weekly class sessions. The majority of lecture time was replaced with active-learning activities including discussion, problem solving, and case studies to encourage higher-order learning. Changes in course delivery were assessed over a 4-year period by comparing students' grades and satisfaction ratings on course evaluations. Although student satisfaction with the course did not improve significantly, students preferred the smaller-group setting to a large lecture-based class. The resources and activities designed to shift responsibility for learning to the students did not affect examination grades even though a larger portion of examination questions focused on higher orders of learning (eg, application) in the smaller-group format. Transitioning to a smaller-group discussion format is possible in a pharmacokinetics course by increasing student accountability for acquiring factual content outside of the classroom. Students favored the smaller-class format over a large lecture-based class.
Motility of Pseudomonas aeruginosa contributes to SOS-inducible biofilm formation.
Chellappa, Shakinah T; Maredia, Reshma; Phipps, Kara; Haskins, William E; Weitao, Tao
2013-12-01
DNA-damaging antibiotics such as ciprofloxacin induce biofilm formation and the SOS response through autocleavage of SOS-repressor LexA in Pseudomonas aeruginosa. However, the biofilm-SOS connection remains poorly understood. It was investigated with 96-well and lipid biofilm assays. The effects of ciprofloxacin were examined on biofilm stimulation of the SOS mutant and wild-type strains. The stimulation observed in the wild-type in which SOS was induced was reduced in the mutant in which LexA was made non-cleavable (LexAN) and thus SOS non-inducible. Therefore, the stimulation appeared to involve SOS. The possible mechanisms of inducible biofilm formation were explored by subproteomic analysis of outer membrane fractions extracted from biofilms. The data predicted an inhibitory role of LexA in flagellum function. This premise was tested first by functional and morphological analyses of flagellum-based motility. The flagellum swimming motility decreased in the LexAN strain treated with ciprofloxacin. Second, the motility-biofilm assay was performed, which tested cell migration and biofilm formation. The results showed that wild-type biofilm increased significantly over the LexAN. These results suggest that LexA repression of motility, which is the initial event in biofilm development, contributes to repression of SOS-inducible biofilm formation. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Impact of Lyman alpha pressure on metal-poor dwarf galaxies
NASA Astrophysics Data System (ADS)
Kimm, Taysun; Haehnelt, Martin; Blaizot, Jérémy; Katz, Harley; Michel-Dansac, Léo; Garel, Thibault; Rosdahl, Joakim; Teyssier, Romain
2018-04-01
Understanding the origin of strong galactic outflows and the suppression of star formation in dwarf galaxies is a key problem in galaxy formation. Using a set of radiation-hydrodynamic simulations of an isolated dwarf galaxy embedded in a 1010 M⊙ halo, we show that the momentum transferred from resonantly scattered Lyman-α (Lyα) photons is an important source of stellar feedback which can shape the evolution of galaxies. We find that Lyα feedback suppresses star formation by a factor of two in metal-poor galaxies by regulating the dynamics of star-forming clouds before the onset of supernova explosions (SNe). This is possible because each Lyα photon resonantly scatters and imparts ˜10-300 times greater momentum than in the single scattering limit. Consequently, the number of star clusters predicted in the simulations is reduced by a factor of ˜5, compared to the model without the early feedback. More importantly, we find that galactic outflows become weaker in the presence of strong Lyα radiation feedback, as star formation and associated SNe become less bursty. We also examine a model in which radiation field is arbitrarily enhanced by a factor of up to 10, and reach the same conclusion. The typical mass-loading factors in our metal-poor dwarf system are estimated to be ˜5-10 near the mid-plane, while it is reduced to ˜1 at larger radii. Finally, we find that the escape of ionizing radiation and hence the reionization history of the Universe is unlikely to be strongly affected by Lyα feedback.
Lactate metabolism and cytosolic NADH reducing equivalents in ovine adipocytes.
Yang, Y T; White, L S; Muir, L A
1982-01-01
1. Isolated ovine adipocytes, unlike rat adipose tissue, could utilize lactate at a high rate. 2. When the rate of fatty acid synthesis was attenuated with 5-(tetradecyloxy)-2-furoic acid, a fatty acid synthesis inhibitor, there was a good positive correlation between the rates of lactate oxidation to CO2 and lactate incorporation into fatty acids. 3. Addition of 2,4-dinitrophenol enhanced lactate oxidation to CO2 independent of fatty acid synthesis. Under this condition, estimated cytosolic NADH formation from lactate dehydrogenation exceeded the need of NADH for cytosolic oxaloacetate reduction and for glyceride glycerol formation. 4. Mitochondria isolated from ovine adipocytes oxidized added NADH rapidly in a reconstituted alpha-glycerophosphate shuttle system. 5. It is possible that the ability of ovine adipocytes to utilize lactate may be related to the active alpha-glycerophosphate shuttle for cytosolic NADH reoxidation.
Watson-Crick base pairing controls excited-state decay in natural DNA.
Bucher, Dominik B; Schlueter, Alexander; Carell, Thomas; Zinth, Wolfgang
2014-10-13
Excited-state dynamics are essential to understanding the formation of DNA lesions induced by UV light. By using femtosecond IR spectroscopy, it was possible to determine the lifetimes of the excited states of all four bases in the double-stranded environment of natural DNA. After UV excitation of the DNA duplex, we detected a concerted decay of base pairs connected by Watson-Crick hydrogen bonds. A comparison of single- and double-stranded DNA showed that the reactive charge-transfer states formed in the single strands are suppressed by base pairing in the duplex. The strong influence of the Watson-Crick hydrogen bonds indicates that proton transfer opens an efficient decay path in the duplex that prohibits the formation or reduces the lifetime of reactive charge-transfer states. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bamford, Simeon A; Murray, Alan F; Willshaw, David J
2010-02-01
A distributed and locally reprogrammable address-event receiver has been designed, in which incoming address-events are monitored simultaneously by all synapses, allowing for arbitrarily large axonal fan-out without reducing channel capacity. Synapses can change the address of their presynaptic neuron, allowing the distributed implementation of a biologically realistic learning rule, with both synapse formation and elimination (synaptic rewiring). Probabilistic synapse formation leads to topographic map development, made possible by a cross-chip current-mode calculation of Euclidean distance. As well as synaptic plasticity in rewiring, synapses change weights using a competitive Hebbian learning rule (spike-timing-dependent plasticity). The weight plasticity allows receptive fields to be modified based on spatio-temporal correlations in the inputs, and the rewiring plasticity allows these modifications to become embedded in the network topology.
Fluorescent Filter-Trap Assay for Amyloid Fibril Formation Kinetics in Complex Solutions
2015-01-01
Amyloid fibrils are the most distinct components of the plaques associated with various neurodegenerative diseases. Kinetic studies of amyloid fibril formation shed light on the microscopic mechanisms that underlie this process as well as the contributions of internal and external factors to the interplay between different mechanistic steps. Thioflavin T is a widely used noncovalent fluorescent probe for monitoring amyloid fibril formation; however, it may suffer from limitations due to the unspecific interactions between the dye and the additives. Here, we present the results of a filter-trap assay combined with the detection of fluorescently labeled amyloid β (Aβ) peptide. The filter-trap assay separates formed aggregates based on size, and the fluorescent label attached to Aβ allows for their detection. The times of half completion of the process (t1/2) obtained by the filter-trap assay are comparable to values from the ThT assay. High concentrations of human serum albumin (HSA) and carboxyl-modified polystyrene nanoparticles lead to an elevated ThT signal, masking a possible fibril formation event. The filter-trap assay allows fibril formation to be studied in the presence of those substances and shows that Aβ fibril formation is kinetically inhibited by HSA and that the amount of fibrils formed are reduced. In contrast, nanoparticles exhibit a dual-behavior governed by their concentration. PMID:25946560
Pinske, Constanze
2018-01-01
Formate dehydrogenase H (FDH-H) and [NiFe]-hydrogenase 3 (Hyd-3) form the catalytic components of the hydrogen-producing formate hydrogenlyase (FHL) complex, which disproportionates formate to H 2 and CO 2 during mixed acid fermentation in enterobacteria. FHL comprises minimally seven proteins and little is understood about how this complex is assembled. Early studies identified a ferredoxin-like protein, HydN, as being involved in FDH-H assembly into the FHL complex. In order to understand how FDH-H and its small subunit HycB, which is also a ferredoxin-like protein, attach to the FHL complex, the possible roles of HydN and its paralogue, YsaA, in FHL complex stability and assembly were investigated. Deletion of the hycB gene reduced redox dye-mediated FDH-H activity to approximately 10%, abolished FHL-dependent H 2 -production, and reduced Hyd-3 activity. These data are consistent with HycB being an essential electron transfer component of the FHL complex. The FDH-H activity of the hydN and the ysaA deletion strains was reduced to 59 and 57% of the parental, while the double deletion reduced activity of FDH-H to 28% and the triple deletion with hycB to 1%. Remarkably, and in contrast to the hycB deletion, the absence of HydN and YsaA was without significant effect on FHL-dependent H 2 -production or total Hyd-3 activity; FDH-H protein levels were also unaltered. This is the first description of a phenotype for the E. coli ysaA deletion strain and identifies it as a novel factor required for optimal redox dye-linked FDH-H activity. A ysaA deletion strain could be complemented for FDH-H activity by hydN and ysaA , but the hydN deletion strain could not be complemented. Introduction of these plasmids did not affect H 2 production. Bacterial two-hybrid interactions showed that YsaA, HydN, and HycB interact with each other and with the FDH-H protein. Further novel anaerobic cross-interactions of 10 ferredoxin-like proteins in E. coli were also discovered and described. Together, these data indicate that FDH-H activity measured with the redox dye benzyl viologen is the sum of the FDH-H protein interacting with three independent small subunits and suggest that FDH-H can associate with different redox-protein complexes in the anaerobic cell to supply electrons from formate oxidation.
NASA Technical Reports Server (NTRS)
DeBoer, Gary D.
2005-01-01
Carbon nanotubes hold great promise for material advancements in the areas of composites and electronics. The advancement of research in these areas is dependent upon the availability of carbon nanotubes to a broad spectrum of academic and industrial researchers. Although there has been much progress made in reducing the costs of carbon nanotubes and increasing the quality and purity of the products, an increase in demand for still less expensive and specific nanotubes types has also grown. This summer's work has involved two experiments that have been designed to further the understanding of the dynamics and chemical mechanisms of carbon nanotube formation. It is expected that a better understanding of the process of formation of nanotubes will aid current production designs and stimulate ideas for future production designs increasing the quantity, quality, and production control of carbon nanotubes. The first experiment involved the measurement of surface temperature of the target as a function of time with respect to the ablation lasers. A peak surface temperature of 5000 K was determined from spectral analysis of black body emission from the target surface. The surface temperature as a function of various changes in operating parameters was also obtained. This data is expected to aid the modeling of ablation and plume dynamics. The second experiment involved a time and spatial measurement of the spectrally resolved absorbance of the laser produced plume. This experiment explored the possibility of developing absorbance and fluorescence to detect carbon nanotubes during production. To attain control over the production of nanotubes with specific properties and reduce costs, a real time in situ diagnostics method would be very beneficial. Results from this summer's work indicate that detection of nanotubes during production may possibly be used for production feed back control.
NASA Astrophysics Data System (ADS)
Maisnam, Mamata; Phanjoubam, Sumitra
2013-07-01
Effect of microwave sintering on the structural and electrical properties of Li+0.51Zn2+0.2Ti4+0.2V5+0.01Fe3+2.08O2-4 is studied in comparison with that of conventionally sintered one. The technique is advantageous in terms of significantly reduced size of microwave kilns and rapid heating compared to the cumbersome and slow heating of conventional sintering technology. Microwave sintering produced enhanced densification and much finer microstructures. The DC resistivity is markedly increased. Microwave sintering reduces chances of evaporation of lithium and oxygen during sintering of lithium based ferrites resulting in formation of lesser ferrous ions. This has profound effect on the electrical properties of microwave sintered ferrites. The dielectric constant is significantly reduced possibly due to reduced space charge polarization and the temperature dependence of the dielectric properties are also studied.
Zou, Rusen; Liao, Xiaobin; Zhao, Lei; Yuan, Baoling
2018-05-01
Formation of toxic N-nitrosodimethylamine (NDMA) by chloramination of ranitidine, a drug to block histamine, was still an ongoing issue and posed a risk to human health. In this study, the effect of ozonation prior to chloramination on NDMA formation and the transformation pathway were determined. Influencing factors, including ozone dosages, pH, hydroxyl radical scavenger, bromide, and NOM, were studied. The results demonstrated that small ozone dosage (0.5 mg/L) could effectively control NDMA formation from subsequent chloramination (from 40 to 0.8%). The NDMA molar conversion was not only influenced by pH but also by ozone dosages at various pre-ozonation pH (reached the highest value of 5% at pH 8 with 0.5 mg/L O 3 but decreased with the increasing pH with 1 mg/L O 3 ). The NDMA molar yield by chloramination of ranitidine without pre-ozonation was reduced by the presence of bromide ion due to the decomposition of disinfectant. However, due to the formation of brominated intermediate substances (i.e., dimethylamine (DMA), dimethyl-aminomethyl furfuryl alcohol (DFUR)) with higher NDMA molar yield than their parent substances, more NDMA was formed than that without bromide ion upon ozonation. Natural organic matter (NOM) and hydroxyl radical scavenger (tert-butyl alcohol, tBA) enhanced NDMA generation because of the competition of ozone and more ranitidine left. The NDMA reduction mechanism by pre-ozonation during chloramination of ranitidine may be due to the production of oxidation products with less NDMA yield (such as DMA) than parent compound. Based on the result of Q-TOF and GC-MS/MS analysis, three possible transformation pathways were proposed. Different influences of oxidation conditions and water quality parameters suggest that strategies to reduce NDMA formation should vary with drinking water sources and choose optimal ozone dosage.
Bone and Calcium Metabolism During Space Flight
NASA Technical Reports Server (NTRS)
Smith, Scott M.
2004-01-01
Understanding bone loss during space flight is one of the most critical challenges for maintaining astronaut health on space exploration missions. Flight and ground-based studies have been conducted to better understand the nature and mechanisms of weightlessness-induced bone loss, and to identify a means to counteract the loss. Maintenance of bone health requires a balance between bone formation and bone resorption. Early space research identified bone loss as a critical health issue, but could not provide a distinction between the bone formation and breakdown processes. The recent identification of collagen crosslinks as markers of bone resorption has made possible a clear understanding that a decrease in bone resorption is an important effect of space flight, with bone formation being unchanged or only slightly decreased. Calcium regulatory factors have also been studied, in an attempt to understand their role in bone loss. The lack of ultraviolet light exposure and insufficient dietary sources of vitamin D often lead to reduced vitamin D stores on long-duration flights. Serum parathyroid hormone (PTH) concentrations are decreased during flight compared to before flight, although small subject numbers often make this hard to document statistically. As expected, reduced PTH concentrations are accompanied by reduced 1,25-dihydroxyvitamin D concentrations. Calcium kinetic studies during space flight confirm and extend the information gained from biochemical markers of bone metabolism. Calcium kinetic studies demonstrate that bone resorption is increased, bone formation is unchanged or decreased, and dietary calcium absorption is reduced during space flight. Evaluations have also been conducted of countermeasures, including dietary, exercise, and pharmacological treatments. In recent studies, many potential countermeasures show promise at mitigating bone loss in ground-based analogs of weightlessness (e.g., bed rest), but require further ground and flight testing to ensure that the beneficial effects are seen in space flight. As we begin to plan for missions to go back to the Moon, and even off to Mars, many questions are yet to be answered. Maintaining bone is one of the greatest challenges, but with a better understanding of the mechanical processes of bone loss, countermeasures can be designed more efficiently, and the solution (or solutions) may be just over the horizon.
The provenance and formation of reduced carbon phases on Mars from the study of Martian meteorites.
NASA Astrophysics Data System (ADS)
Steele, A.; McCubbin, F. M.; Fries, M.
2015-12-01
Organic carbon compounds are essential building blocks of terrestrial life, so the occurrence and origin (biotic or abiotic) of organic compounds on Mars is of great significance. Indeed, the question of Martian organic matter is among the highest priority targets for robotic spacecraft missions in the next decade includ- ing the Mars Science Laboratory and Mars 2020. Sev- eral Martian meteorites contain organic carbon (i.e., macromolecular reduced carbon-rich material, not nec- essarily related to biota), but there is little agreement on its origins. Initial hypotheses for the origin of this organic carbon included: terrestrial contamination; chondritic meteoritic input; thermal decomposition of Martian carbonate minerals; direct precipitation from cooling aqueous fluids; and the remains of ancient Martian biota. We report on results from the analysis of 14 martian meteorites and show the distribution of organic phases throughout the samples analyzed. We will present formation scearios for each of the types of organic matter discovered. These studies when combined show 4 possible pools of reduced carbon on Mars. 1) impact generated graphite in the Tissint meteorite, 2) secondary hydrothermal generated graphite in ALH 84001, 3) primary igneous reduced carbon in 12 Martian meteorites associated with spinel inclusions in olivine and pyroxene 4) and potentially primary hydrothermally formed organic carbon / nitrogen containing organic species in the maskelynite phases of the Tissint meteorite. These studies show that Mars has produced reduced carbon / organic carbon via several mechanisms and reveal that the building blocks of life, if not life itself, are present on Mars.
Formation mechanism of the graphite-rich protective layer in blast furnace hearths
NASA Astrophysics Data System (ADS)
Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Liu, Feng; Liang, Li-sheng
2016-01-01
A long campaign life of blast furnaces is heavily linked to the existence of a protective layer in their hearths. In this work, we conducted dissection studies and investigated damage in blast furnace hearths to estimate the formation mechanism of the protective layer. The results illustrate that a significant amount of graphite phase was trapped within the hearth protective layer. Furthermore, on the basis of the thermodynamic and kinetic calculations of the graphite precipitation process, a precipitation potential index related to the formation of the graphite-rich protective layer was proposed to characterize the formation ability of this layer. We determined that, under normal operating conditions, the precipitation of graphite phase from hot metal was thermodynamically possible. Among elements that exist in hot metal, C, Si, and P favor graphite precipitation, whereas Mn and Cr inhibit this process. Moreover, at the same hot-face temperature, an increase of carbon concentration in hot metal can shorten the precipitation time. Finally, the results suggest that measures such as reducing the hot-face temperature and increasing the degree of carbon saturation in hot metal are critically important to improve the precipitation potential index.
Transcription of telomeric DNA leads to high levels of homologous recombination and t-loops.
Kar, Anirban; Willcox, Smaranda; Griffith, Jack D
2016-11-02
The formation of DNA loops at chromosome ends (t-loops) and the transcription of telomeres producing G-rich RNA (TERRA) represent two central features of telomeres. To explore a possible link between them we employed artificial human telomeres containing long arrays of TTAGGG repeats flanked by the T7 or T3 promoters. Transcription of these DNAs generates a high frequency of t-loops within individual molecules and homologous recombination events between different DNAs at their telomeric sequences. T-loop formation does not require a single strand overhang, arguing that both terminal strands insert into the preceding duplex. The loops are very stable and some RNase H resistant TERRA remains at the t-loop, likely adding to their stability. Transcription of DNAs containing TTAGTG or TGAGTG repeats showed greatly reduced loop formation. While in the cell multiple pathways may lead to t-loop formation, the pathway revealed here does not depend on the shelterins but rather on the unique character of telomeric DNA when it is opened for transcription. Hence, telomeric sequences may have evolved to facilitate their ability to loop back on themselves. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Zhitova, L.; Borisenko, A.; Morgunov, K.; Zhukova, I.
2007-12-01
Fluid inclusions in quartz of the Merensky Reef (Bushveld Complex, South Africa) and the Chineisky Pluton (Transbaikal Region, Russia) were studied using cryometry, microthermometry, Raman-spectroscopy, LA ICP- MS, scanning electronic microscopy, gas-chromatography and isotopic methods. This allowed us to document some examples of fluid phase separation resulting in formation of different types of PGE-sulfide mineralization for layered basic intrusions. The results obtained show at least three generations of fluid separated from boiling residual alumosilicate intercumulus liquid of the Merensky Reef. The earliest fluid phase composed of homogenous high-dense methane and nitrogen gas mixture was identified in primary gas and co-existing anomalous fluid inclusions from symplectitic quartz. The next generation, heterophase fluid, composed of brines containing a free low-dense (mostly of carbon dioxide) gas phase, was observed in primary multiphase and coexisting gas-rich inclusions of miarolitic quartz crystals. The latest generation was also a heterophase fluid (low salinity water-salt solution and free low-dense methane gas phase) found in primary water-salt and syngenetic gas inclusions from peripheral zones of miarolitic quartz crystals. For the Chineisky Pluton reduced endocontact magmatogene fluids changed to oxidized low salinity hydrothermal fluids in exocontact zone. This resulted in formation of sulfide-PGE enrichment marginal zones of intrusion. The results obtained give us a possibility to suggest that: 1) Fluid phase separation is a typical feature of magmatogene fluids for layered basic intrusions. 2) Reduced fluids can extract and transport substantial PGE and sulfide concentrations. 3) Oxidation of reduced fluids is one of the most important geochemical barriers causing abundant PGE minerals and sulfides precipitation. This in turn results in both formation of PGE reefs or enriched contact zones of layered basic intrusions. This work was supported by the Ministry for Russian Science and Education, Grant DSP.2.1.1.702, by RFBR Grants ## 07-05-00685, 07-05-00803, Grant VMTK-2007 IGM SB RAS.
Sakamoto, Yoshimasa; Hashimoto, Kazuhiro; Okuyama, Hiroshi; Ishii, Shinichi; Shingo, Taguchi; Kagawa, Hiroshi
2006-01-01
Pannus formation after aortic valve replacement is not common, but obstruction due to chronic pannus is one of the most serious complications of valve replacement. The causes of pannus formation are still unknown and effective preventive methods have not been fully elucidated. We reviewed our clinical experience of all patients who underwent reoperation for prosthetic aortic valve obstruction due to pannus formation between 1973 and 2004. We compared the initial 18-year period of surgery, when the Björk-Shiley tilting-disk valve was used, and the subsequent 13-year period of surgery, when the St. Jude Medical valve was used. Seven of a total of 390 patients (1.8%) required reoperation for prosthetic aortic valve obstruction due to pannus formation. All seven patients were women; four patients underwent resection of the pannus and three patients needed replacement of the valve. The frequency of pannus formation in the early group was 2.4% (6/253), whereas it was 0.73% (1/137) in the late group (P < 0.05). Pannus was localized at the minor orifice of the Björk-Shiley valve in the early group and turbulent transvalvular blood flow was considered to be one of the important factors triggering its growth. We also consider that small bileaflet valves have the possibility of promoting pannus formation and that the implantation of a larger prosthesis can contribute to reducing the occurrence of pannus.
Mohammadi, Ali Akbar; Eskandari, Shima; Johari, Hamed Ghoddusi; Rajabnejad, Ata'ollah
2017-01-01
Background: Several studies have shown that the application of amniotic membrane as a biological dressing in the management of burns is accompanied by rapid re-epithelialisation. In this follow-up study, we aimed to evaluate the possible role of amniotic membrane as an adjunct to split thickness skin grafting on reducing itching and severity of hypertrophic scar formation. Materials and Methods: From October 2013 to January 2015, in a prospective follow-up study, 54 patients (108 limbs) with second and third degree burns, covering 4%–15% of total body surface area (TBSA), were included in the study. All patients needed split-thickness skin grafts for burn-wound coverage. Selected patients had symmetric burns on two (upper or lower) extremities. Then, in every patient, the extremities were randomly divided into two groups: In one limb, the skin graft was traditionally fixed with skin staples (control group) and in the other limb, the skin graft was covered with an amniotic membrane (amnion group). Therefore, in every patient, the graft was covered with an amniotic membrane in one extremity and fixed with skin staples in the other extremity. Finally, after 6 months, the degree of itching and hypertrophic scar formation was compared between the two groups. Results: The study group was composed of 108 limbs in 54 patients (27 males and 27 females) with a mean age of 23.54 ± 4.9 years and burn 9.03 ± 2.69% TBSA. The patients were divided into two groups: 54 limbs in amnion group and 54 limbs in control group. In 59.25% of the cases, patient had less itching in the extremity covered with amniotic membrane. Furthermore, in 64.81% of the cases, patients had less hypertrophic scar formation in the extremity covered with amniotic membrane. These differences were statistically significant (P < 0.001). Conclusions: Amniotic membrane used as an adjunct in split thickness skin grafting is a novel modality which significantly reduces scar formation and itching that can be greatly distressing to burn patients. However, still more prospective well designed studies are needed to prove it. PMID:28529415
Knight, Jason S; Luo, Wei; O'Dell, Alexander A; Yalavarthi, Srilakshmi; Zhao, Wenpu; Subramanian, Venkataraman; Guo, Chiao; Grenn, Robert C; Thompson, Paul R; Eitzman, Daniel T; Kaplan, Mariana J
2014-03-14
Neutrophil extracellular trap (NET) formation promotes vascular damage, thrombosis, and activation of interferon-α-producing plasmacytoid dendritic cells in diseased arteries. Peptidylarginine deiminase inhibition is a strategy that can decrease in vivo NET formation. To test whether peptidylarginine deiminase inhibition, a novel approach to targeting arterial disease, can reduce vascular damage and inhibit innate immune responses in murine models of atherosclerosis. Apolipoprotein-E (Apoe)(-/-) mice demonstrated enhanced NET formation, developed autoantibodies to NETs, and expressed high levels of interferon-α in diseased arteries. Apoe(-/-) mice were treated for 11 weeks with daily injections of Cl-amidine, a peptidylarginine deiminase inhibitor. Peptidylarginine deiminase inhibition blocked NET formation, reduced atherosclerotic lesion area, and delayed time to carotid artery thrombosis in a photochemical injury model. Decreases in atherosclerosis burden were accompanied by reduced recruitment of netting neutrophils and macrophages to arteries, as well as by reduced arterial interferon-α expression. Pharmacological interventions that block NET formation can reduce atherosclerosis burden and arterial thrombosis in murine systems. These results support a role for aberrant NET formation in the pathogenesis of atherosclerosis through modulation of innate immune responses.
N-nitrosodimethylamine (NDMA) formation at an indirect potable reuse facility.
Sgroi, Massimiliano; Roccaro, Paolo; Oelker, Gregg L; Snyder, Shane A
2015-03-01
Full-scale experiments to evaluate N-nitrosodimethylamine (NDMA) formation and attenuation were performed within an advanced indirect potable reuse (IPR) treatment system, which includes, sequentially: chloramination for membrane fouling control, microfiltration (MF), reverse osmosis (RO), ultraviolet irradiation with hydrogen peroxide (UV/H₂O₂), final chloramination, and pH stabilization. Results of the study demonstrate that while RO does effectively remove the vast majority of NDMA precursors, RO permeate can still contain significant concentrations of NDMA precursors resulting in additional NDMA formation during chloramination. Thus, it is possible for this advanced treatment system to produce water with NDMA levels higher than regional requirements for potable applications (10 ng/L). The presence of H2O2 during UV oxidation reduced NDMA photolysis efficiency and increased NDMA formation (∼22 ng/L) during the secondary chloramination and lime stabilization. This is likely due to formation of UV/H₂O₂ degradation by-products with higher NDMA formation rate than the parent compounds. However, this effect was diminished with higher UV doses. Bench-scale experiments confirmed an enhanced NDMA formation during chloramination after UV/H2O2 treatment of dimethylformamide, a compound detected in RO permeate and used as model precursor in this study. The effect of pre-ozonation for membrane fouling control on NDMA formation was also evaluated at pilot- (ozone-MF-RO) and bench-scale. Relatively large NDMA formation (117-227 ng/L) occurred through ozone application that was dose dependent, whereas chloramination under typical dosages and contact times of IPR systems resulted in only a relatively small increase of NDMA (∼20 ng/L). Thus, this research shows that NDMA formation within a potable water reuse facility can be challenging and must be carefully evaluated and controlled. Copyright © 2014 Elsevier Ltd. All rights reserved.
Examining ruthenium chromophores for the photochemical reduction of CO2 to methanol
NASA Astrophysics Data System (ADS)
Boston, David J.
Our consumption of energy for transportation and electricity has been growing as quickly as our population. As this demand for energy increases we increase our production of carbon dioxide by the burning of fossil fuels to try and meet this increasing demand. A sustainable method to convert carbon dioxide (CO2) to a viable liquid fuel is one potential way in which both the increasing energy demand and increasing CO2 concentration issues can both be helped. Currently such methods being investigated include thermal, electrochemical, and photochemical processes. Because thermal conversion is not an ideal situation because of the requirement of strong reducing agents or extreme conditions such as steam reformation reactions, we need to find better alternatives such as electrochemical and photochemical methods. Both electrochemical and photochemical methods have the ability to be sustainable, however, the vast majority of these systems are limited to producing CO and/or formic acid, with only a few performing deeper reduction to products such formaldehyde, methanol and methane. All of the systems capable of reducing CO2 past two electrons involve either a heterogeneous catalyst (e.g. TiO2) or an electrode. In recent times Bocarsly and coworkers have shown that pyridine was capable of reducing CO2 to methanol through a sequential process of proton and electron transfers. This process seems to start with the formation of a CO2-pyridine adduct in solution that is reduced one more time to form formate/formic acid. The next reduction is a slow process and allows for a buildup of formate in solution leading to a higher formate concentration in solution. The subsequent reductions seem to occur very rapidly and form methanol at good efficiencies. Theoretical work done recently has argued for the necessity of the Pt, Pd, or GaP surface in the electrochemistry. Carter and coworkers have claimed that the surface of the electrode is a necessary part of the catalysis with the pyridinium being only a cocatalyst for the reduction of CO2. However, Musgrave and coworkers predict that the homogeneous reductions can take place with the aid of water molecules in solution. They allow for a PCET process to take place between the CO 2 and the pyridinium radical. This would allow for a second pathway for the catalytic reduction of CO2 to methanol. Work done during this dissertation has shown that the photochemical reduction of carbon dioxide to methanol is possible using pyridine in a similar manner to Bocarsly and coworkers in their electrochemical system. By replacing the electrode with Ru(phen)3Cl2 it is still possible to drive the reaction using excited states of the chromophore to provide the electrons with enough energy to reduce the pyridinium to the radical species. This system has been shown to produce up to 66 BM methanol after 6 hours of irradiation of 470 nm light. Production of formate is also observed, with ~27 mM being observed within the first hour of irradiation. This system was further investigated with the incorporation of the pyridine catalyst into a chromophore system using the complex [Ru(phen)2dppz](PF 6)2, [Ru(phen)2pbtpalpha](PF6) 2, and [Ru(phen)2pbtpbeta](PF6)2. Cyclic voltammetry experiments for these complexes show similar reduction potentials for with ~100 mV difference between them with [Ru(phen)2dppz](PF 6)2 being the most negative and [Ru(phen)2pbtpbeta](PF 6)2 being the most positive. When the electrolyte solution was saturated with CO2 only [Ru(phen)2pbtpalpha](PF 6)2 and [Ru(phen)2pbtpbeta](PF6) 2 showed a response signifying catalysis was taking place. Initial photochemical tests with these complexes showed that [Ru(phen)2pbtpalpha](PF 6)2 seemed to undergo dimer formation in the absence of CO 2 with [Ru(phen)2pbtpbeta](PF6)2 forming a singly reduced species that is oxidized upon introduction of additional CO2. Electrolysis of [Ru(phen)2pbtpbeta](PF6 )2 produces ~900 BM methanol with both CO and formate being produced as well. Photolysis of [Ru(phen)2pbtpbeta](PF6 )2 in DMF with 1 M H2O and 0.1M TEA, no CO formation observed, however, both methanol and formic acid were observed after 1 hours of irradiation with methanol reaching 45 BM, 285 microM formaldehyde and 650 microM formate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abgrall, N.; Arnquist, I. J.; Avignone III, F. T.
The Majorana Demonstrator is an array of point-contact Ge detectors fabricated from Ge isotopically enriched to 88% in 76Ge to search for neutrinoless double beta decay. The processing of Ge for germanium detectors is a well-known technology. However, because of the high cost of Ge enriched in 76Ge special procedures were required to maximize the yield of detector mass and to minimize exposure to cosmic rays. These procedures include careful accounting for the material; shielding it to reduce cosmogenic generation of radioactive isotopes; and development of special reprocessing techniques for contaminated solid germanium, shavings, grindings, acid etchant and cutting fluidsmore » from detector fabrication. Processing procedures were developed that resulted in a total yield in detector mass of 70%. However, none of the acid-etch solution and only 50% of the cutting fluids from detector fabrication were reprocessed. Had they been processed, the projections for the recovery yield would be between 80% and 85%. Maximizing yield is critical to justify a possible future ton-scale experiment. A process for recovery of germanium from the acid-etch solution was developed with yield of about 90%. All material was shielded or stored underground whenever possible to minimize the formation of 68Ge by cosmic rays, which contributes background in the double-beta decay region of interest and cannot be removed by zone refinement and crystal growth. Formation of 68Ge was reduced by a significant factor over that in natural abundance detectors not protected from cosmic rays.« less
Nanoscale morphology of Ni{sub 50}Ti{sub 45}Cu{sub 5} nanoglass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Śniadecki, Z., E-mail: sniadecki@ifmpan.poznan.pl; Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen; Wang, D.
2016-03-15
Nanoglasses are noncrystalline solids with a granular nano-/microstructure. In contrast to their nanocrystalline analogs, typically constituted of grains and grain boundaries, nanoglasses consist of glassy regions with a structure corresponding to melt-quenched glasses and amorphous interfaces characterized by a reduced density. Their unique properties can be controlled by modifying size and chemical composition of the granular and interfacial regions. Ni{sub 50}Ti{sub 45}Cu{sub 5} amorphous films were obtained by magnetron sputtering and analyzed to determine their nanoscale morphology and the formation mechanisms. The nanoglasses were noted to have a hierarchical nano-columnar structure with the smallest Ni-rich (Ni:Ti ratio of ca. 5:3)more » amorphous columns with diameters of about 8 nm and Ti-rich glassy interfacial regions with a substantially lower density. The results were obtained utilizing X-ray diffraction and different microscopic methods, e.g., atomic force microscopy and transmission electron microscopy. A detailed analysis indicates the complexity of the formation mechanisms of topologically and chemically distinguishable structural units with curvature driven surface diffusion, surface mobility, self-shadowing and internal stresses as the most important parameters. Common and simple synthesis method and the possibility for easy modification of the morphology and, consequently, the physical properties offer an opportunity for intensive studies of this new class of materials, opening the way towards possible applications. - Highlights: • Ni{sub 50}Ti{sub 45}Cu{sub 5} thin film nanoglasses were synthesized by magnetron sputtering. • Ti amorphous interfacial phase with reduced density is observed. • Stabilization of interfaces by specific local thermodynamic conditions.« less
Abgrall, N.; Arnquist, I. J.; Avignone III, F. T.; ...
2017-10-07
The Majorana Demonstrator is an array of point-contact Ge detectors fabricated from Ge isotopically enriched to 88% in 76Ge to search for neutrinoless double beta decay. The processing of Ge for germanium detectors is a well-known technology. However, because of the high cost of Ge enriched in 76Ge special procedures were required to maximize the yield of detector mass and to minimize exposure to cosmic rays. These procedures include careful accounting for the material; shielding it to reduce cosmogenic generation of radioactive isotopes; and development of special reprocessing techniques for contaminated solid germanium, shavings, grindings, acid etchant and cutting fluidsmore » from detector fabrication. Processing procedures were developed that resulted in a total yield in detector mass of 70%. However, none of the acid-etch solution and only 50% of the cutting fluids from detector fabrication were reprocessed. Had they been processed, the projections for the recovery yield would be between 80% and 85%. Maximizing yield is critical to justify a possible future ton-scale experiment. A process for recovery of germanium from the acid-etch solution was developed with yield of about 90%. All material was shielded or stored underground whenever possible to minimize the formation of 68Ge by cosmic rays, which contributes background in the double-beta decay region of interest and cannot be removed by zone refinement and crystal growth. Formation of 68Ge was reduced by a significant factor over that in natural abundance detectors not protected from cosmic rays.« less
NASA Astrophysics Data System (ADS)
Abgrall, N.; Arnquist, I. J.; Avignone, F. T., III; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Caja, J.; Caja, M.; Caldwell, T. S.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Dunstan, D. T.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Haufe, C. R. S.; Henning, R.; Hoppe, E. W.; Jasinski, B. R.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; Lopez, A. M.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Meyer, J. H.; Myslik, J.; O'Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Reine, A. L.; Reising, J. A.; Rielage, K.; Robertson, R. G. H.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Toth, L. M.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.; Zhu, B. X.
2018-01-01
The MAJORANA DEMONSTRATOR is an array of point-contact Ge detectors fabricated from Ge isotopically enriched to 88% in 76 Ge to search for neutrinoless double beta decay. The processing of Ge for germanium detectors is a well-known technology. However, because of the high cost of Ge enriched in 76 Ge special procedures were required to maximize the yield of detector mass and to minimize exposure to cosmic rays. These procedures include careful accounting for the material; shielding it to reduce cosmogenic generation of radioactive isotopes; and development of special reprocessing techniques for contaminated solid germanium, shavings, grindings, acid etchant and cutting fluids from detector fabrication. Processing procedures were developed that resulted in a total yield in detector mass of 70%. However, none of the acid-etch solution and only 50% of the cutting fluids from detector fabrication were reprocessed. Had they been processed, the projections for the recovery yield would be between 80% and 85%. Maximizing yield is critical to justify a possible future ton-scale experiment. A process for recovery of germanium from the acid-etch solution was developed with yield of about 90%. All material was shielded or stored underground whenever possible to minimize the formation of 68Ge by cosmic rays, which contributes background in the double-beta decay region of interest and cannot be removed by zone refinement and crystal growth. Formation of 68Ge was reduced by a significant factor over that in natural abundance detectors not protected from cosmic rays.
Abgrall, N.; Arnquist, I. J.; Avignone III, F. T.; ...
2017-10-07
The Majorana Demonstrator is an array of point-contact Ge detectors fabricated from Ge isotopically enriched to 88% in 76Ge to search for neutrinoless double beta decay. The processing of Ge for germanium detectors is a well-known technology. However, because of the high cost of Ge enriched in 76Ge special procedures were required to maximize the yield of detector mass and to minimize exposure to cosmic rays. These procedures include careful accounting for the material; shielding it to reduce cosmogenic generation of radioactive isotopes; and development of special reprocessing techniques for contaminated solid germanium, shavings, grindings, acid etchant and cutting fluidsmore » from detector fabrication. Processing procedures were developed that resulted in a total yield in detector mass of 70%. However, none of the acid-etch solution and only 50% of the cutting fluids from detector fabrication were reprocessed. Had they been processed, the projections for the recovery yield would be between 80% and 85%. Maximizing yield is critical to justify a possible future ton-scale experiment. A process for recovery of germanium from the acid-etch solution was developed with yield of about 90%. All material was shielded or stored underground whenever possible to minimize the formation of 68Ge by cosmic rays, which contributes background in the double-beta decay region of interest and cannot be removed by zone refinement and crystal growth. Formation of 68Ge was reduced by a significant factor over that in natural abundance detectors not protected from cosmic rays.« less
Chen, Wen-Huei; Hsu, Chi-Yin; Cheng, Hao-Yun; Chang, Hsiang; Chen, Hong-Hwa; Ger, Mang-Jye
2011-06-01
Anthocyanin is the primary pigment contributing to red, violet, and blue flower color formation. The solubility of anthocyanins is enhanced by UDP glucose: flavonoid 3-O-glucosyltransferase (UFGT) through transfer of the glucosyl moiety from UDP-glucose to 3-hydroxyl group to produce the first stable pigments. To assess the possibility that UFGT is involved in the flower color formation in Phalaenopsis, the transcriptional activities of PeUFGT3, and other flower color-related genes in developing red or white flower buds were examined using RT-PCR analysis. In contrast with chalcone synthase, chalcone isomerase, and anthocyanidin synthase genes, PeUFGT3 transcriptional activity was higher expressed in the red color of Phalaenopsis cultivars. In the red labellum of Phalaenopsis 'Luchia Lady', PeUFGT3 also showed higher expression levels than that in the white perianth. PeUFGT3 was predominantly expressed in the red region of flower among various Phalaenopsis cultivars. To investigate the role of PeUFGT3 in red flower color formation, PeUFGT3 was specifically knocked down using RNA interference technology via virus inducing gene silencing in Phalaenopsis. The PeUFGT3-suppressed Phalaenopsis exhibited various levels of flower color fading that was well correlated with the extent of reduced level of PeUFGT3 transcriptional activity. Furthermore, there was a significant decrease in anthocyanin content in the PeUFGT3-suppressed Phalaenopsis flowers. The decrease of anthocyanin content due to PeUFGT3 gene silencing possibly caused the faded flower color in PeUFGT3-suppressed Phalaenopsis. Consequently, these results suggested that the glycosylation-related gene PeUFGT3 plays a critical role in red color formation in Phalaenopsis.
Milne, N; Wahl, S A; van Maris, A J A; Pronk, J T; Daran, J M
2016-12-01
It is theoretically possible to engineer Saccharomyces cerevisiae strains in which isobutanol is the predominant catabolic product and high-yielding isobutanol-producing strains are already reported by industry. Conversely, isobutanol yields of engineered S. cerevisiae strains reported in the scientific literature typically remain far below 10% of the theoretical maximum. This study explores possible reasons for these suboptimal yields by a mass-balancing approach. A cytosolically located, cofactor-balanced isobutanol pathway, consisting of a mosaic of bacterial enzymes whose in vivo functionality was confirmed by complementation of null mutations in branched-chain amino acid metabolism, was expressed in S. cerevisiae . Product formation by the engineered strain was analysed in shake flasks and bioreactors. In aerobic cultures, the pathway intermediate isobutyraldehyde was oxidized to isobutyrate rather than reduced to isobutanol. Moreover, significant concentrations of the pathway intermediates 2,3-dihydroxyisovalerate and α-ketoisovalerate, as well as diacetyl and acetoin, accumulated extracellularly. While the engineered strain could not grow anaerobically, micro-aerobic cultivation resulted in isobutanol formation at a yield of 0.018±0.003 mol/mol glucose. Simultaneously, 2,3-butanediol was produced at a yield of 0.649±0.067 mol/mol glucose. These results identify massive accumulation of pathway intermediates, as well as overflow metabolites derived from acetolactate, as an important, previously underestimated contributor to the suboptimal yields of 'academic' isobutanol strains. The observed patterns of by-product formation is consistent with the notion that in vivo activity of the iron-sulphur-cluster-requiring enzyme dihydroxyacid dehydratase is a key bottleneck in the present and previously described 'academic' isobutanol-producing yeast strains.
NASA Astrophysics Data System (ADS)
Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira; Qin, Ying; Bao, Yuping
2017-04-01
We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.
Garelick, Michael G.; Kennedy, Brian K.
2012-01-01
Signaling by target of rapamycin (mTOR in mammals) has been shown to modulate lifespan in several model organisms ranging from yeast to mice. In mice, reduced mTOR signaling by chronic rapamycin treatment leads to lifespan extension, raising the possibility that rapamycin and its analogs may benefit the aging brain and serve as effective treatments of age-related neurodegenerative diseases. Here, we review mTOR signaling and how neurons utilize mTOR to regulate brain function, including regulation of feeding, synaptic plasticity and memory formation. Additionally, we discuss recent findings that evaluate the mechanisms by which reduced mTOR activity might benefit the aging brain in normal and pathological states. We will focus on recent studies investigating mTOR and Alzheimer s disease, Parkinson s disease, and polyglutamine expansion syndromes such as Huntington s disease. PMID:20849946
Effects of formate binding on the quinone-iron electron acceptor complex of photosystem II.
Sedoud, Arezki; Kastner, Lisa; Cox, Nicholas; El-Alaoui, Sabah; Kirilovsky, Diana; Rutherford, A William
2011-02-01
EPR was used to study the influence of formate on the electron acceptor side of photosystem II (PSII) from Thermosynechococcus elongatus. Two new EPR signals were found and characterized. The first is assigned to the semiquinone form of Q(B) interacting magnetically with a high spin, non-heme-iron (Fe²(+), S=2) when the native bicarbonate/carbonate ligand is replaced by formate. This assignment is based on several experimental observations, the most important of which were: (i) its presence in the dark in a significant fraction of centers, and (ii) the period-of-two variations in the concentration expected for Q(B)(•-) when PSII underwent a series of single-electron turnovers. This signal is similar but not identical to the well-know formate-modified EPR signal observed for the Q(A)(•-)Fe²(+) complex (W.F.J. Vermaas and A.W. Rutherford, FEBS Lett. 175 (1984) 243-248). The formate-modified signals from Q(A)(•-)Fe²(+) and Q(B)(•-)Fe²(+) are also similar to native semiquinone-iron signals (Q(A)(•-)Fe²(+)/Q(B)(•-)Fe²(+)) seen in purple bacterial reaction centers where a glutamate provides the carboxylate ligand to the iron. The second new signal was formed when Q(A)(•-) was generated in formate-inhibited PSII when the secondary acceptor was reduced by two electrons. While the signal is reminiscent of the formate-modified semiquinone-iron signals, it is broader and its main turning point has a major sub-peak at higher field. This new signal is attributed to the Q(A)(•-)Fe²(+) with formate bound but which is perturbed when Q(B) is fully reduced, most likely as Q(B)H₂ (or possibly Q(B)H(•-) or Q(B)(²•-)). Flash experiments on formate-inhibited PSII monitoring these new EPR signals indicate that the outcome of charge separation on the first two flashes is not greatly modified by formate. However on the third flash and subsequent flashes, the modified Q(A)(•-)Fe²(+)Q(B)H₂ signal is trapped in the EPR experiment and there is a marked decrease in the quantum yield of formation of stable charge pairs. The main effect of formate then appears to be on Q(B)H₂ exchange and this agrees with earlier studies using different methods. Copyright © 2010 Elsevier B.V. All rights reserved.
Chambers, C; Stewart, S; Su, B; Sandy, J; Ireland, A
2013-11-01
Orthodontic treatment, like all aspects of dentistry, exposes the clinician to the risk of malpractice and litigation. Demineralisation of tooth enamel is still one of the main complications of orthodontic treatment and it is essential patients are made aware of this risk during the consent process. There are a variety of fluoride delivery systems (mouthrinse, varnish, bonding system, and elastics), which can be used to prevent white spot lesion (WSL) formation. Glass-ionomer bonding cements (GIC) have also been shown to reduce WSL formation and have the benefit of not relying on patient compliance. However, these materials have not found widespread acceptance, possibly due to handling characteristics. A number of new technologies, principally fillers and coatings, have recently become available with potential antimicrobial and antibiofilm properties. Coatings can be applied to brackets and wires, which prevent bacterial adhesion. However, the longevity of these coatings is questionable. There are a number of methods available aimed at reducing the incidence of WSL, but they all have limitations. Capitalising on technological advances will enable the production of tailor made orthodontic brackets and adhesive systems, which provide long-term protection against WSL without relying on patient compliance.
Bicarbonate dependency of betaine synthesis in cultured LLC-PK1 cells.
Moeckel, G W; Lien, Y H
1994-03-01
Betaine, one of the major renal organic osmolytes, is synthesized from choline by choline dehydrogenase (EC 1.1.99.1) and betaine-aldehyde dehydrogenase (EC 1.2.1.8) in the kidney. A recent in vitro study has shown that betaine synthesis by renal cortical homogenate is dependent on millimolar amounts of bicarbonate. The present study was aimed to investigate the bicarbonate dependency of betaine formation in cultured LLC-PK1 cells. The data show that betaine formation increases in accordance with a rise in extracellular bicarbonate levels. The measured quantities of [14C]betaine synthesis ranged from 13.4 +/- 1.5 (4.6 mM HCO3-) to 38.0 +/- 1.4 pmol.micrograms protein-1.h-1 (24 mM HCO3-). The carbonic anhydrase inhibitor acetazolamide, added to the incubation medium to block bicarbonate transport, reduced betaine synthesis from choline by 41-49%. We conclude that betaine synthesis in LLC-PK1 cells is dependent on extracellular bicarbonate levels and is reduced by the inhibition of carbonic anhydrase. Because betaine accumulates in renal medulla during antidiuresis, our observations suggest a possible link between acid-base homeostasis and concentration mechanisms in the kidney.
Li, Hong-Qiang; Jiang, Wei; Jia, Jing-Xia; Xu, Jian
2014-02-01
A challenge for lignocellulosic pretreatment is how to retain hemicellulose as much as possible. To reduce the degradation of hemicellulose and increase the recovery of sugars, an effective pH pre-corrected liquid hot water pretreatment (LHWP) was developed by employing a small amount of NaOH (⩽5/100g substrate) to accelerate the hemicellulose deacetylation and simultaneously pre-correct the acid hydrolyzate in situ. The results showed that the pH pre-correction can control the hydrolyzate pH. Under the pretreatment severity (PS) of 4.0, the pH pre-corrected LHWP reduced the hemicellulose degradation by 35.3-92.3%, decreased furfural formation by 90.5-99.8%. The highest hemicellulose recovery of 96.38% was obtained with pH pre-corrected by 2g NaOH/100g substrate. Enzymatic hydrolysis (EH) and simultaneous saccharification and fermentation (SSF) on the whole slurry from the pH pre-corrected LHWP showed that the hemicellulose retained in the solid residue did not bring significant resistance to cellulose EH (p=0.837). Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, Xinde; Sun, Daohua; Zhang, Genlei; He, Ning; Liu, Hongyu; Huang, Jiale; Odoom-Wubah, Tareque; Li, Qingbiao
2013-06-01
The effects of different biomolecules in Artocarpus heterophyllus Lam leaf extract on the morphology of obtained gold nanoparticles were investigated in this study. The results indicated that reducing sugars, flavones, and polyphenols consisting of about 79.8 % dry weight of the leaf extract were mainly involved in providing the dual function of reduction and the size/shape control during the biosynthesis. The gold nanoparticles present included 64 ± 10 nm nanospheres, 131 ± 18 nm nanoflowers, and 347 ± 136 nm (edge length) nanoplates and they were synthesized using the main content of reducing sugars, flavones, and polyphenols, respectively, after they were desorbed by the AB-8 macroporous adsorption resin column. Particularly, flower-like and triangular/hexagonal gold nanoparticles with a yield more than 80 % were obtained. Possible shape-directed agents for the nucleation and growth were characterized by FTIR, it can be seen that ketones were bound on the surface of the spherical and flower-like GNPs, while both the ketones and carbonyls bound on the Au {111} plane this may have favored the formation of the twin defects, which are very essential for nanoplates' formation.
NASA Astrophysics Data System (ADS)
Verma, S. B.; Stark, R.; Nuerenberger-Genin, C.; Haidn, O.
2010-06-01
An experimental investigation has been carried out to study the effect of test environment on transition characteristics and the flow unsteadiness associated with the transition modes of a dual-bell nozzle. Cold-gas tests using gaseous nitrogen were carried out in (i) a horizontal test-rig with nozzle exhausting into atmospheric conditions and, (ii) a high altitude simulation chamber with nozzle operation under self-evacuation mode. Transient tests indicate that increasing δP 0/ δt (the rate of stagnation chamber pressure change) reduces the amplitude of pressure fluctuations of the separation shock at the wall inflection point. This is preferable from the viewpoint of lowering the possible risk of any structural failure during the transition mode. Sea-level tests show 15-17% decrease in the transition nozzle pressure ratio (NPR) during subsequent tests in a single run primarily due to frost formation in the nozzle extension up to the wall inflection location. Frost reduces the wall inflection angle and hence, the transition NPR. However, tests inside the altitude chamber show nearly constant NPR value during subsequent runs primarily due to decrease in back temperature with decrease in back pressure that prevents any frost formation.
Kaulmann, Anouk; Bohn, Torsten
2016-01-01
Inflammatory bowel diseases (IBDs) are characterized by autoimmune and inflammation-related complications of the large intestine (ulcerative colitis) and additional parts of the digestive tract (Crohn's disease). Complications include pain, diarrhoea, chronic inflammation, and cancer. IBD prevalence has increased during the past decades, especially in Westernized countries, being as high as 1%. As prognosis is poor and medication often ineffective or causing side effects, additional preventive/adjuvant strategies are sought. A possible approach is via diets rich in protective constituents. Polyphenols, the most abundant phytochemicals, have been associated with anti-inflammatory, antioxidant, immunomodulatory, and apoptotic properties. Locally reducing oxidative stress, they can further act on cellular targets, altering gene expression related to inflammation, including NF-κB, Nrf-2, Jak/STAT, and MAPKs, suppressing downstream cytokine formation (e.g., IL-8, IL-1β, and TNF-α), and boosting the bodies' own antioxidant status (HO-1, SOD, and GPx). Moreover, they may promote, as prebiotics, healthy microbiota (e.g., Bifidobacteria, Akkermansia), short-chain fatty acid formation, and reduced gut permeability/improved tight junction stability. However, potential adverse effects such as acting as prooxidants, or perturbations of efflux transporters and phase I/II metabolizing enzymes, with increased uptake of undesired xenobiotics, should also be considered. In this review, we summarize current knowledge around preventive and arbitrary actions of polyphenols targeting IBD.
Kaulmann, Anouk
2016-01-01
Inflammatory bowel diseases (IBDs) are characterized by autoimmune and inflammation-related complications of the large intestine (ulcerative colitis) and additional parts of the digestive tract (Crohn's disease). Complications include pain, diarrhoea, chronic inflammation, and cancer. IBD prevalence has increased during the past decades, especially in Westernized countries, being as high as 1%. As prognosis is poor and medication often ineffective or causing side effects, additional preventive/adjuvant strategies are sought. A possible approach is via diets rich in protective constituents. Polyphenols, the most abundant phytochemicals, have been associated with anti-inflammatory, antioxidant, immunomodulatory, and apoptotic properties. Locally reducing oxidative stress, they can further act on cellular targets, altering gene expression related to inflammation, including NF-κB, Nrf-2, Jak/STAT, and MAPKs, suppressing downstream cytokine formation (e.g., IL-8, IL-1β, and TNF-α), and boosting the bodies' own antioxidant status (HO-1, SOD, and GPx). Moreover, they may promote, as prebiotics, healthy microbiota (e.g., Bifidobacteria, Akkermansia), short-chain fatty acid formation, and reduced gut permeability/improved tight junction stability. However, potential adverse effects such as acting as prooxidants, or perturbations of efflux transporters and phase I/II metabolizing enzymes, with increased uptake of undesired xenobiotics, should also be considered. In this review, we summarize current knowledge around preventive and arbitrary actions of polyphenols targeting IBD. PMID:27478535
Larson, Mark K; Tormoen, Garth W; Weaver, Lucinda J; Luepke, Kristen J; Patel, Ishan A; Hjelmen, Carl E; Ensz, Nicole M; McComas, Leah S; McCarty, Owen J T
2013-02-01
Several studies have implicated the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in inhibition of normal platelet function, suggesting a role for platelets in EPA- and DHA-mediated cardioprotection. However, it is unclear whether the cardioprotective mechanisms arise from alterations to platelet-platelet, platelet-matrix, or platelet-coagulation factor interactions. Our previous results led us to hypothesize that EPA and DHA alter the ability of platelets to catalyze the generation of thrombin. We tested this hypothesis by exogenously modifying platelet membranes with EPA and DHA, which resulted in compositional changes analogous to increased dietary EPA and DHA intake. Platelets treated with EPA and DHA showed reductions in the rate of thrombin generation and exposure of platelet phosphatidylserine. In addition, treatment of platelets with EPA and DHA decreased thrombus formation and altered the processing of thrombin precursor proteins. Furthermore, treatment of whole blood with EPA and DHA resulted in increased occlusion time and a sharply reduced accumulation of fibrin under flow conditions. These results demonstrate that EPA and DHA inhibit, but do not eliminate, the ability of platelets to catalyze thrombin generation in vitro. The ability of EPA and DHA to reduce the procoagulant function of platelets provides a possible mechanism behind the cardioprotective phenotype in individuals consuming high levels of EPA and DHA.
Terry, Brandon C; Sippel, Travis R; Pfeil, Mark A; Gunduz, I Emre; Son, Steven F
2016-11-05
Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (ISP). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal ISP by ∼7s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5±4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption. Copyright © 2016 Elsevier B.V. All rights reserved.
Ground-water resources of the Wind River Indian Reservation, Wyoming
McGreevy, Laurence J.; Hodson, Warren Gayler; Rucker, Samuel J.
1969-01-01
The area of this investigation is in the western part of the Wind River Basin and includes parts of the Absaroka, Washakie, Wind River, and Owl Creek Mountains. The purposes of the study were to determine the general hydrologic properties of the rocks in the area and the occurrence and quality c f the water in them. Structurally, the area is a downfolded basin surrounded by upfolded mountain ranges. Igneous and metamorphic rocks of Precambrian age are exposed in the mountains: folded sedimentary rocks representing all geologic periods, except the Silurian, crop out along the margins of the basin; and relatively flat-lying Tertiary rocks are at the surface in the central part of the basin. Surficial sand and gravel deposits of Quaternary age occur along streams and underlie numerous terraces throughout the basin. The potential yield and quality of water from most rocks in the area are poorly known, but estimates are possible, based on local well data and on data concerning similar rocks in nearby areas. Yields of more than 1,000 gpm are possible from the rocks comprising the Bighorn Dolomite (Ordovician), Darby Formation (Devonian), Madison Limestone (Mississippian), and Tensleep Sandstone (Pennsylvanian). Total dissolved solids in the water range from about 300 to 3,000 ppm. Yields of as much as several hundred gallons per minute are possible from the Nugget Sandstone (Jurassic? and Triassic?). Yields of 20 gpm or more are possible from the Crow Mountain Sandstone (Triassic) and Sundance Formation (Jurassic). Dissolved solids are generally high but are less than 1,000 ppm near outcrops in some locations. The Cloverly and Morrison (Cretaceous and Jurassic), Mesaverde (Cretaceous) and Lance(?) (Cretaceous) Formations may yield as much as several hundred gallons per minute, but most wells in Cretaceous rocks yield less than 20 gpm. Dissolved solids generally range from 1,000 to 5,000 ppm but may be higher. In some areas, water with less than 1,000 ppm dissolved solids may be available from the Cloverly and Morrison Formations. Tertiary rocks yield a few to several hundred gallons per minute and dissolved solids generally range from 1,000 to 5,000 ppm. Wells in the Wind River Formation (Eocene) yield about 1.-500 gpm of water having dissolved solids of about 200-5,000 ppm. Yields of a few to several hundred gallons per minute are available from alluvium (Quaternary). Dissolved solids range from about 200 to 5,000 ppm. Many parts of the Wind River Irrigation Project have become waterlogged. The relation of drainage problems to geology and the character and thickness of rocks in the irrigated areas are partly defined by sections drawn on the basis of test drilling. The drainage-problem areas are classified according to geologic similarities into five general groups: flood plains, terraces, underfit-stream valleys, slopes, and transitional areas. Drainage can be improved by open drains, buried drains, relief wells, and pumped wells or by pumping from sumps or drains. The methods that will be most successful depend on the local geologic and hydrologic conditions. In several areas, the most effective means of relieving the drainage problem would be to reduce the amount of infiltration of water by lining canals and ditches and by reducing irrigation water applications to the optimum. Water from underground storage in alluvium could supplement water from surface storage in some areas. A few thousand acre-feet of water per square mile are in storage in some of the alluvium. The use of both surface and underground storage would reduce the need for additional surface-storage facilities and also would alleviate drainage problems in the irrigated areas.
NASA Astrophysics Data System (ADS)
Ajitha, B.; Ashok Kumar Reddy, Y.; Reddy, P. Sreedhara
2014-03-01
In this paper we report the green synthesis of silver nanoparticles (Ag NPs) using Tephrosia purpurea leaf extract. The biomolecules present in the leaf extract are responsible for the formation of Ag NPs and they found to play dual role of both reducing as well as capping agents. The high crystallinity of Ag NPs is evident from bright circular spot array of SAED pattern and diffraction peaks in XRD profile. The synthesized Ag NPs are found to be nearly spherical ones with size approximately ∼20 nm. FTIR spectrum evidences the presence of different functional groups of biomolecules participated in encapsulating Ag NPs and the possible mechanism of Ag NPs formation was also suggested. Appearance of yellow color and surface plasmon resonance (SPR) peak at 425 nm confirms the Ag NPs formation. PL spectra showed decrement in luminescence intensity at higher excitation wavelengths. Antimicrobial activity of Ag NPs showed better inhibitory activity towards Pseudomonas spp. and Penicillium spp. compared to other test pathogens using standard Kirby-Bauer disc diffusion assay.
Mutations in Caenorhabditis elegans him-19 show meiotic defects that worsen with age.
Tang, Lois; Machacek, Thomas; Mamnun, Yasmine M; Penkner, Alexandra; Gloggnitzer, Jiradet; Wegrostek, Christina; Konrat, Robert; Jantsch, Michael F; Loidl, Josef; Jantsch, Verena
2010-03-15
From a screen for meiotic Caenorhabditis elegans mutants based on high incidence of males, we identified a novel gene, him-19, with multiple functions in prophase of meiosis I. Mutant him-19(jf6) animals show a reduction in pairing of homologous chromosomes and subsequent bivalent formation. Consistently, synaptonemal complex formation is spatially restricted and possibly involves nonhomologous chromosomes. Also, foci of the recombination protein RAD-51 occur delayed or cease altogether. Ultimately, mutation of him-19 leads to chromosome missegregation and reduced offspring viability. The observed defects suggest that HIM-19 is important for both homology recognition and formation of meiotic DNA double-strand breaks. It therefore seems to be engaged in an early meiotic event, resembling in this respect the regulator kinase CHK-2. Most astonishingly, him-19(jf6) hermaphrodites display worsening of phenotypes with increasing age, whereas defects are more severe in female than in male meiosis. This finding is consistent with depletion of a him-19-dependent factor during the production of oocytes. Further characterization of him-19 could contribute to our understanding of age-dependent meiotic defects in humans.
Solar eclipse demonstrating the importance of photochemistry in new particle formation
NASA Astrophysics Data System (ADS)
Jokinen, Tuija; Kontkanen, Jenni; Lehtipalo, Katrianne; Manninen, Hanna E.; Aalto, Juho; Porcar-Castell, Albert; Garmash, Olga; Nieminen, Tuomo; Ehn, Mikael; Kangasluoma, Juha; Junninen, Heikki; Levula, Janne; Duplissy, Jonathan; Ahonen, Lauri R.; Rantala, Pekka; Heikkinen, Liine; Yan, Chao; Sipilä, Mikko; Worsnop, Douglas R.; Bäck, Jaana; Petäjä, Tuukka; Kerminen, Veli-Matti; Kulmala, Markku
2017-04-01
Solar eclipses provide unique possibilities to investigate atmospheric processes, such as new particle formation (NPF), important to the global aerosol load and radiative balance. The temporary absence of solar radiation gives particular insight into different oxidation and clustering processes leading to NPF. This is crucial because our mechanistic understanding on how NPF is related to photochemistry is still rather limited. During a partial solar eclipse over Finland in 2015, we found that this phenomenon had prominent effects on atmospheric on-going NPF. During the eclipse, the sources of aerosol precursor gases, such as sulphuric acid and nitrogen- containing highly oxidised organic compounds, decreased considerably, which was followed by a reduced formation of small clusters and nanoparticles and thus termination of NPF. After the eclipse, aerosol precursor molecule concentrations recovered and re-initiated NPF. Our results provide direct evidence on the key role of the photochemical production of sulphuric acid and highly oxidized organic compounds in maintaining atmospheric NPF. Our results also explain the rare occurrence of this phenomenon under dark conditions, as well as its seemingly weak connection with atmospheric ions.
Solar eclipse demonstrating the importance of photochemistry in new particle formation
Jokinen, Tuija; Kontkanen, Jenni; Lehtipalo, Katrianne; Manninen, Hanna E.; Aalto, Juho; Porcar-Castell, Albert; Garmash, Olga; Nieminen, Tuomo; Ehn, Mikael; Kangasluoma, Juha; Junninen, Heikki; Levula, Janne; Duplissy, Jonathan; Ahonen, Lauri R.; Rantala, Pekka; Heikkinen, Liine; Yan, Chao; Sipilä, Mikko; Worsnop, Douglas R.; Bäck, Jaana; Petäjä, Tuukka; Kerminen, Veli-Matti; Kulmala, Markku
2017-01-01
Solar eclipses provide unique possibilities to investigate atmospheric processes, such as new particle formation (NPF), important to the global aerosol load and radiative balance. The temporary absence of solar radiation gives particular insight into different oxidation and clustering processes leading to NPF. This is crucial because our mechanistic understanding on how NPF is related to photochemistry is still rather limited. During a partial solar eclipse over Finland in 2015, we found that this phenomenon had prominent effects on atmospheric on-going NPF. During the eclipse, the sources of aerosol precursor gases, such as sulphuric acid and nitrogen- containing highly oxidised organic compounds, decreased considerably, which was followed by a reduced formation of small clusters and nanoparticles and thus termination of NPF. After the eclipse, aerosol precursor molecule concentrations recovered and re-initiated NPF. Our results provide direct evidence on the key role of the photochemical production of sulphuric acid and highly oxidized organic compounds in maintaining atmospheric NPF. Our results also explain the rare occurrence of this phenomenon under dark conditions, as well as its seemingly weak connection with atmospheric ions. PMID:28374761
Formation of {eta}-mesic nuclei by the ({pi},N) reaction and properties of N*(1535) in medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagahiro, Hideko; Jido, Daisuke; Hirenzaki, Satoru
2009-08-15
We calculate formation spectra of the {eta}-nucleus systems in the ({pi},N) reactions with nuclear targets, which can be performed at existing and/or forthcoming facilities, including the Japan Proton Accelerator Research Complex, to investigate the {eta}-nucleus interaction. Based on the N*(1535) dominance in the {eta}N system, the {eta}-mesic nuclei are suitable systems for the study of in-medium properties of the N*(1535) baryon resonance, such as reduction of the mass difference of N and N* in the nuclear medium, which affects the level structure of the {eta} and N*-hole modes. We find that clear information on the in-medium N*- and {eta}-nucleus interactionsmore » can be obtained through the formation spectra of the {eta}-mesic nuclei. We also discuss the experimental feasibilities by showing several spectra of the ({pi},N) reactions calculated with possible experimental settings. Coincident measurements of the N{pi} pairs from the N* decays in nuclei help us to reduce backgrounds.« less
Identification and functional analysis of endogenous nitric oxide in a filamentous fungus.
Pengkit, Anchalee; Jeon, Seong Sil; Son, Soo Ji; Shin, Jae Ho; Baik, Ku Yeon; Choi, Eun Ha; Park, Gyungsoon
2016-07-18
In spite of its prevalence in animals and plants, endogenous nitric oxide (NO) has been rarely reported in fungi. We present here our observations on production of intracellular NO and its possible roles during development of Neurospora crassa, a model filamentous fungus. Intracellular NO was detected in hypha 8-16 hours after incubation in Vogel's minimal liquid media and conidiophores during conidiation using a fluorescent indicator (DAF-FM diacetate). Treatment with cPTIO, an NO scavenger, significantly reduced fluorescence levels and hindered hyphal growth in liquid media and conidiation, whereas exogenous NO enhanced hyphal extension on VM agar media and conidia formation. NO scavenging also dramatically diminished transcription of con-10 and con-13, genes preferentially expressed during conidiation. Our results suggest that intracellular NO is generated in young hypha growing in submerged culture and during conidia development and regulate mycelial development and conidia formation.
Identification and functional analysis of endogenous nitric oxide in a filamentous fungus
Pengkit, Anchalee; Jeon, Seong Sil; Son, Soo Ji; Shin, Jae Ho; Baik, Ku Yeon; Choi, Eun Ha; Park, Gyungsoon
2016-01-01
In spite of its prevalence in animals and plants, endogenous nitric oxide (NO) has been rarely reported in fungi. We present here our observations on production of intracellular NO and its possible roles during development of Neurospora crassa, a model filamentous fungus. Intracellular NO was detected in hypha 8–16 hours after incubation in Vogel’s minimal liquid media and conidiophores during conidiation using a fluorescent indicator (DAF-FM diacetate). Treatment with cPTIO, an NO scavenger, significantly reduced fluorescence levels and hindered hyphal growth in liquid media and conidiation, whereas exogenous NO enhanced hyphal extension on VM agar media and conidia formation. NO scavenging also dramatically diminished transcription of con-10 and con-13, genes preferentially expressed during conidiation. Our results suggest that intracellular NO is generated in young hypha growing in submerged culture and during conidia development and regulate mycelial development and conidia formation. PMID:27425220
Ding, Guodong; Su, Ji; Zhang, Cheng; Tang, Kan; Yang, Lisha; Lin, Hongfei
2018-05-08
Conversion of carbon dioxide into value-added chemicals and fuels provides a direct solution to reduce excessive CO2 in the atmosphere. Herein, a novel catalytic reaction system is presented by coupling the dehydrogenation of glucose with the hydrogenation of a CO2 derived salt, ammonium carbonate, in the ethanol-water mixture. For the first time, the hydrogenation of CO2 into formate by glucose has been achieved under ambient conditions. Under the optimal reaction conditions, the highest yield of formate reached ~ 46 %. We find that the apparent pH value in the ethanol-water mixture plays a central role in determining the performance of the hydrogen transfer reaction. Based on the 13C NMR and ESI-MS results, a possible pathway of the coupled glucose dehydrogenation and CO2 hydrogenation reactions was proposed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hienerwadel, Rainer; Gourion-Arsiquaud, Samuel; Ballottari, Matteo; Bassi, Roberto; Diner, Bruce A; Berthomieu, Catherine
2005-06-01
Formate and phosphate affect substantially the rate of tyrosine D (TyrD) oxidation and the stability of the radical TyrD* in Photosystem II [Hienerwadel R, Boussac A, Breton J and Berthomieu C (1996) Biochemistry 35: 15447-15460]. This observation prompted us to analyze the influence of formate and phosphate on the environment of TyrD using FTIR spectroscopy. The nu (CO) IR mode of TyrD* at 1503 cm-1 remains unchanged whatever the buffer used at pH 6 and whether formate is present or not in the sample. Similarly, the main IR mode of reduced TyrD remains at approximately 1250 cm-1 in all tested conditions. We thus conclude that formate does not modify the hydrogen-bonded interactions of TyrD and TyrD* with neighbouring D2His189 and D2Gln164. In the TyrD-state, an IR mode of formate significantly different from that observed in solution, is detected using 13C-formate, showing that formate forms a strong electrostatic interaction within PS II. The presence of formate affects also IR bands that may be assigned to an arginine side chain. Upon TyrD* formation, formate does not protonate but its binding interaction weakens. A proton uptake by Mes or phosphate buffer is detected, which is not observed when BisTris is used as a buffer. In these latter conditions, IR bands characteristic of the protonation of a carboxylate group of the protein are detected instead. The present IR data and the recent structural model of the TyrD environment proposed by Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata S [(2004) Science 303: 1831-1838], suggest that the proton released upon TyrD* formation is shared within a hydrogen bonding network including D2Arg294, and CP47Glu364 and that perturbation of this network by formate - possibly binding near D2Arg294 - substantially affects the properties of TyrD.
Knight, Jason S.; Luo, Wei; O’Dell, Alexander A.; Yalavarthi, Srilakshmi; Zhao, Wenpu; Subramanian, Venkataraman; Guo, Chiao; Grenn, Robert C.; Thompson, Paul R.; Eitzman, Daniel T.; Kaplan, Mariana J.
2014-01-01
Rationale Neutrophil extracellular trap (NET) formation promotes vascular damage, thrombosis, and activation of interferon-α-producing plasmacytoid dendritic cells in diseased arteries. Peptidylarginine deiminase inhibition is a strategy that can decrease in vivo NET formation. Objective To test whether peptidylarginine deiminase inhibition, a novel approach to targeting arterial disease, can reduce vascular damage and inhibit innate immune responses in murine models of atherosclerosis. Methods and Results Apolipoprotein-E (Apoe)−/− mice demonstrated enhanced NET formation, developed autoantibodies to NETs, and expressed high levels of interferon-α in diseased arteries. Apoe−/− mice were treated for 11 weeks with daily injections of Cl-amidine, a peptidylarginine deiminase inhibitor. Peptidylarginine deiminase inhibition blocked NET formation, reduced atherosclerotic lesion area, and delayed time to carotid artery thrombosis in a photochemical injury model. Decreases in atherosclerosis burden were accompanied by reduced recruitment of netting neutrophils and macrophages to arteries, as well as by reduced arterial interferon-α expression. Conclusions Pharmacological interventions that block NET formation can reduce atherosclerosis burden and arterial thrombosis in murine systems. These results support a role for aberrant NET formation in the pathogenesis of atherosclerosis through modulation of innate immune responses. PMID:24425713
Misgav-Ladach cesarean section: general consideration.
Fatusić, Zlatan; Hudić, Igor; Musić, Asim
2011-03-01
Among obstetric techniques, cesarean section seemed to represent a well-defined procedure and significant advances in this intervention were considered to be unlikely. However, obstetric surgery has recently undergone many improvements. In 1972, Joel-Cohen presented a new method for transverse incision of the abdomen. This method, with some modifications, was integrated into the Misgav-Ladach cesarean section. The philosophy of this technique is to cause the least possible damage to tissues, to refrain from superfluous steps, and to make the intervention the simplest possible. Advantages of this method are lower incidence of fever and urinary tract infection, reduced use of antibiotics and narcotics, faster re-establishment of normal bowel function, shorter maternal hospital stay and less postoperative adhesion formation. The Misgav-Ladach method of cesarean section is suitable for emergency and elective procedures, justifying its use in daily routine.
NASA Astrophysics Data System (ADS)
Alarcón Jara, A. G.; Fellhauer, M.; Matus Carrillo, D. R.; Assmann, P.; Urrutia Zapata, F.; Hazeldine, J.; Aravena, C. A.
2018-02-01
Dwarf spheroidal galaxies are regarded as the basic building blocks in the formation of larger galaxies and are the most dark matter dominated systems in the Universe, known so far. There are several models that attempt to explain their formation and evolution, but they have problems modelling the formation of isolated dwarf spheroidal galaxies. Here, we will explain a possible formation scenario in which star clusters form inside the dark matter halo of a dwarf spheroidal galaxy. These star clusters suffer from low star formation efficiency and dissolve while orbiting inside the dark matter halo. Thereby, they build the faint luminous components that we observe in dwarf spheroidal galaxies. In this paper, we study this model by adding different star formation histories to the simulations and compare the results with our previous work and observational data to show that we can explain the formation of dwarf spheroidal galaxies.
Biological synthesis of metallic nanoparticles using algae.
Castro, Laura; Blázquez, María Luisa; Muñoz, Jesus Angel; González, Felisa; Ballester, Antonio
2013-09-01
The increasing demand and limited natural resources of noble metals make its recovery from dilute industrial wastes attractive, especially when using environmentally friendly methods. Nowadays, the high impact that nanotechnology is having in both science and society offers new research possibilities. Gold and silver nanoparticles were biosynthesised by a simple method using different algae as reducing agent. The authors explored the application of dead algae in an eco-friendly procedure. The nanoparticle formation was followed by UV-vis absorption spectroscopy and transmission electron microscopy. The functional groups involved in the bioreduction were studied by Fourier transform infrared spectroscopy.
Preliminary development of an intelligent computer assistant for engine monitoring
NASA Technical Reports Server (NTRS)
Disbrow, James D.; Duke, Eugene L.; Ray, Ronald J.
1989-01-01
As part of the F-18 high-angle-of-attack vehicle program, an AI method was developed for the real time monitoring of the propulsion system and for the identification of recovery procedures for the F404 engine. The aim of the development program is to provide enhanced flight safety and to reduce the duties of the propulsion engineers. As telemetry data is received, the results are continually displayed in a number of different color graphical formats. The system makes possible the monitoring of the engine state and the individual parameters. Anomaly information is immediately displayed to the engineer.
Multi-Detection Events, Probability Density Functions, and Reduced Location Area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eslinger, Paul W.; Schrom, Brian T.
2016-03-01
Abstract Several efforts have been made in the Comprehensive Nuclear-Test-Ban Treaty (CTBT) community to assess the benefits of combining detections of radionuclides to improve the location estimates available from atmospheric transport modeling (ATM) backtrack calculations. We present a Bayesian estimation approach rather than a simple dilution field of regard approach to allow xenon detections and non-detections to be combined mathematically. This system represents one possible probabilistic approach to radionuclide event formation. Application of this method to a recent interesting radionuclide event shows a substantial reduction in the location uncertainty of that event.
Inflammation and Macular Oedema after Pars Plana Vitrectomy
Romano, Vito; Angi, Martina; del Grosso, Renata; Romano, Davide; Vinciguerra, Paolo; Romano, Mario R.
2013-01-01
Cystoid macular oedema (CMO) is a major cause of reduced vision following intraocular surgery. Although the aetiology of CMO is not completely clarified, intraocular inflammation is known to play a major role in its development. The macula may develop cytotoxic oedema when the primary lesion and fluid accumulation occur in the parenchymatous cells (intracellular oedema) or vasogenic oedema when the primary defect occurs in the blood-retinal barrier and leads to extracellular fluid accumulation (extracellular oedema). We report on the mechanisms of CMO formation after pars plana vitrectomy and associated surgical procedures and discuss possible therapeutic approaches. PMID:24288446
An international organization for remote sensing
NASA Technical Reports Server (NTRS)
Helm, Neil R.; Edelson, Burton I.
1991-01-01
A recommendation is presented for the formation of a new commercially oriented international organization to acquire or develop, coordinate or manage, the space and ground segments for a global operational satellite system to furnish the basic data for remote sensing and meteorological, land, and sea resource applications. The growing numbers of remote sensing programs are examined and possible ways of reducing redundant efforts and improving the coordination and distribution of these global efforts are discussed. This proposed remote sensing organization could play an important role in international cooperation and the distribution of scientific, commercial, and public good data.
Prebiotic thermal polymerization of crystals of amino acids via the diketopiperazine reaction.
Mosqueira, F G; Ramos-Bernal, S; Negrón-Mendoza, A
2008-01-01
In this work, we continue our studies on the thermal prebiotic oligomerization of amino acids. The next step is to consider all four types of electromagnetic interactions that our model may admit. In addition, only the polymerization of amino acids via the formation of diketopiperazine, which arises from the cyclodehydration of two amino acids, will be considered. By assuming that only one residue group of two will predominate in the diketopiperazine molecule, it is possible to reduce the three-body problem to a simpler situation with the two objects that we have already solved.
Understanding Zipf's law of word frequencies through sample-space collapse in sentence formation
Thurner, Stefan; Hanel, Rudolf; Liu, Bo; Corominas-Murtra, Bernat
2015-01-01
The formation of sentences is a highly structured and history-dependent process. The probability of using a specific word in a sentence strongly depends on the ‘history’ of word usage earlier in that sentence. We study a simple history-dependent model of text generation assuming that the sample-space of word usage reduces along sentence formation, on average. We first show that the model explains the approximate Zipf law found in word frequencies as a direct consequence of sample-space reduction. We then empirically quantify the amount of sample-space reduction in the sentences of 10 famous English books, by analysis of corresponding word-transition tables that capture which words can follow any given word in a text. We find a highly nested structure in these transition tables and show that this ‘nestedness’ is tightly related to the power law exponents of the observed word frequency distributions. With the proposed model, it is possible to understand that the nestedness of a text can be the origin of the actual scaling exponent and that deviations from the exact Zipf law can be understood by variations of the degree of nestedness on a book-by-book basis. On a theoretical level, we are able to show that in the case of weak nesting, Zipf's law breaks down in a fast transition. Unlike previous attempts to understand Zipf's law in language the sample-space reducing model is not based on assumptions of multiplicative, preferential or self-organized critical mechanisms behind language formation, but simply uses the empirically quantifiable parameter ‘nestedness’ to understand the statistics of word frequencies. PMID:26063827
Yagura, Teiti; Schuch, André Passaglia; Garcia, Camila Carrião Machado; Rocha, Clarissa Ribeiro Reily; Moreno, Natália Cestari; Angeli, José Pedro Friedmann; Mendes, Davi; Severino, Divinomar; Bianchini Sanchez, Angelica; Di Mascio, Paolo; de Medeiros, Marisa Helena Gennari; Menck, Carlos Frederico Martins
2017-07-01
UVA light is hardly absorbed by the DNA molecule, but recent works point to a direct mechanism of DNA lesion by these wavelengths. UVA light also excite endogenous chromophores, which causes DNA damage through ROS. In this study, DNA samples were irradiated with UVA light in different conditions to investigate possible mechanisms involved in the induction of DNA damage. The different types of DNA lesions formed after irradiation were determined through the use of endonucleases, which recognize and cleave sites containing oxidized bases and cyclobutane pyrimidine dimers (CPDs), as well as through antibody recognition. The formation of 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxodG) was also studied in more detail using electrochemical detection. The results show that high NaCl concentration and concentrated DNA are capable of reducing the induction of CPDs. Moreover, concerning damage caused by oxidative stress, the presence of sodium azide and metal chelators reduce their induction, while deuterated water increases the amounts of oxidized bases, confirming the involvement of singlet oxygen in the generation of these lesions. Curiously, however, high concentrations of DNA also enhanced the formation of oxidized bases, in a reaction that paralleled the increase in the formation of singlet oxygen in the solution. This was interpreted as being due to an intrinsic photosensitization mechanism, depending directly on the DNA molecule to absorb UVA and generate singlet oxygen. Therefore, the DNA molecule itself may act as a chromophore for UVA light, locally producing a damaging agent, which may lead to even greater concerns about the deleterious impact of sunlight. Copyright © 2017 Elsevier Inc. All rights reserved.
Understanding Zipf's law of word frequencies through sample-space collapse in sentence formation.
Thurner, Stefan; Hanel, Rudolf; Liu, Bo; Corominas-Murtra, Bernat
2015-07-06
The formation of sentences is a highly structured and history-dependent process. The probability of using a specific word in a sentence strongly depends on the 'history' of word usage earlier in that sentence. We study a simple history-dependent model of text generation assuming that the sample-space of word usage reduces along sentence formation, on average. We first show that the model explains the approximate Zipf law found in word frequencies as a direct consequence of sample-space reduction. We then empirically quantify the amount of sample-space reduction in the sentences of 10 famous English books, by analysis of corresponding word-transition tables that capture which words can follow any given word in a text. We find a highly nested structure in these transition tables and show that this 'nestedness' is tightly related to the power law exponents of the observed word frequency distributions. With the proposed model, it is possible to understand that the nestedness of a text can be the origin of the actual scaling exponent and that deviations from the exact Zipf law can be understood by variations of the degree of nestedness on a book-by-book basis. On a theoretical level, we are able to show that in the case of weak nesting, Zipf's law breaks down in a fast transition. Unlike previous attempts to understand Zipf's law in language the sample-space reducing model is not based on assumptions of multiplicative, preferential or self-organized critical mechanisms behind language formation, but simply uses the empirically quantifiable parameter 'nestedness' to understand the statistics of word frequencies. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
MacGrogan, Donal; D'Amato, Gaetano; Travisano, Stanislao; Martinez-Poveda, Beatriz; Luxán, Guillermo; Del Monte-Nieto, Gonzalo; Papoutsi, Tania; Sbroggio, Mauro; Bou, Vanesa; Gomez-Del Arco, Pablo; Gómez, Manuel Jose; Zhou, Bin; Redondo, Juan Miguel; Jiménez-Borreguero, Luis J; de la Pompa, José Luis
2016-05-13
The Notch signaling pathway is crucial for primitive cardiac valve formation by epithelial-mesenchymal transition, and NOTCH1 mutations cause bicuspid aortic valve; however, the temporal requirement for the various Notch ligands and receptors during valve ontogeny is poorly understood. The aim of this study is to determine the functional specificity of Notch in valve development. Using cardiac-specific conditional targeted mutant mice, we find that endothelial/endocardial deletion of Mib1-Dll4-Notch1 signaling, possibly favored by Manic-Fringe, is specifically required for cardiac epithelial-mesenchymal transition. Mice lacking endocardial Jag1, Notch1, or RBPJ displayed enlarged valve cusps, bicuspid aortic valve, and septal defects, indicating that endocardial Jag1 to Notch1 signaling is required for post-epithelial-mesenchymal transition valvulogenesis. Valve dysmorphology was associated with increased mesenchyme proliferation, indicating that Jag1-Notch1 signaling restricts mesenchyme cell proliferation non-cell autonomously. Gene profiling revealed upregulated Bmp signaling in Jag1-mutant valves, providing a molecular basis for the hyperproliferative phenotype. Significantly, the negative regulator of mesenchyme proliferation, Hbegf, was markedly reduced in Jag1-mutant valves. Hbegf expression in embryonic endocardial cells could be readily activated through a RBPJ-binding site, identifying Hbegf as an endocardial Notch target. Accordingly, addition of soluble heparin-binding EGF-like growth factor to Jag1-mutant outflow tract explant cultures rescued the hyperproliferative phenotype. During cardiac valve formation, Dll4-Notch1 signaling leads to epithelial-mesenchymal transition and cushion formation. Jag1-Notch1 signaling subsequently restrains Bmp-mediated valve mesenchyme proliferation by sustaining Hbegf-EGF receptor signaling. Our studies identify a mechanism of signaling cross talk during valve morphogenesis involved in the origin of congenital heart defects associated with reduced NOTCH function. © 2016 American Heart Association, Inc.
Ardestani, Amin; Yazdanparast, Razieh
2007-12-01
Non-enzymatic glycation, as the chain reaction between reducing sugars and the free amino groups of proteins, has been shown to correlate with severity of diabetes and its complications. Cyperus rotundus (Cyperaceae) is used both as a food to promote health and as a drug to treat certain diseases. In this study, considering the antioxidative effects of C. rotundus, we examined whether C. rotundus also protects against protein oxidation and glycoxidation. The protein glycation inhibitory activity of hydroalcoholic extract of C. rotundus was evaluated in vitro using a model of fructose-mediated protein glycoxidation. The C. rotundus extract with glycation inhibitory activity also demonstrated antioxidant activity when a ferric reducing antioxidant power (FRAP) and Trolox equivalent antioxidant capacity (TEAC) assays as well as metal chelating activity were applied. Fructose (100mM) increased fluorescence intensity of glycated bovine serum albumin (BSA) in terms of total AGEs during 14 days of exposure. Moreover, fructose caused more protein carbonyl (PCO) formation and also oxidized thiol groups more in glycated than in native BSA. The extract of C. rotundus at different concentrations (25-250microg/ml) has significantly decreased the formation of AGEs in term of the fluorescence intensity of glycated BSA. Furthermore, we demonstrated the significant effect of C. rotundus extract on preventing oxidative protein damages including effect on PCO formation and thiol oxidation which are believed to form under the glycoxidation process. Our results highlight the protein glycation inhibitory and antioxidant activity of C. rotundus. These results might lead to the possibility of using the plant extract or its purified active components for targeting diabetic complications.
Miltefosine is effective against Candida albicans and Fusarium oxysporum nail biofilms in vitro.
Machado Vila, Taissa Vieira; Sousa Quintanilha, Natália; Rozental, Sonia
2015-11-01
Onychomycosis is a fungal nail infection that represents ∼50 % of all nail disease cases worldwide. Clinical treatment with standard antifungals frequently requires long-term systemic therapy to avoid chronic disease. Onychomycosis caused by non-dermatophyte moulds, such as Fusarium spp., and yeasts, such as Candida spp., is particularly difficult to treat, possibly due to the formation of drug-resistant fungal biofilms on affected areas. Here, we show that the alkylphospholipid miltefosine, used clinically against leishmaniasis and cutaneous breast metastases, has potent activity against biofilms of Fusarium oxysporum and Candida albicans formed on human nail fragments in vitro. Miltefosine activity was compared with that of commercially available antifungals in the treatment of biofilms at two distinct developmental phases: formation and maturation (pre-formed biofilms). Drug activity towards biofilms formed on nail fragments and on microplate surfaces (microdilution assays) was evaluated using XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] assays, and drug effects on fingernail biofilms were analysed by scanning electron microscopy (SEM). For F. oxysporum, miltefosine at 8 μg ml- 1 inhibited biofilm formation by 93%, whilst 256 μg ml- 1 reduced the metabolic activity of pre-formed nail biofilms by 93%. Treatment with miltefosine at 1000 μg ml- 1 inhibited biofilm formation by 89% and reduced the metabolic activity of pre-formed C. albicans biofilms by 99%. SEM analyses of biofilms formed on fingernail fragments showed a clear reduction in biofilm biomass after miltefosine treatment, in agreement with XTT results. Our results show that miltefosine has potential as a therapeutic agent against onychomycosis and should be considered for in vivo efficacy studies, especially in topical formulations for refractory disease treatment.
Progress toward clonable inorganic nanoparticles
NASA Astrophysics Data System (ADS)
Ni, Thomas W.; Staicu, Lucian C.; Nemeth, Richard S.; Schwartz, Cindi L.; Crawford, David; Seligman, Jeffrey D.; Hunter, William J.; Pilon-Smits, Elizabeth A. H.; Ackerson, Christopher J.
2015-10-01
Pseudomonas moraviensis stanleyae was recently isolated from the roots of the selenium (Se) hyperaccumulator plant Stanleya pinnata. This bacterium tolerates normally lethal concentrations of SeO32- in liquid culture, where it also produces Se nanoparticles. Structure and cellular ultrastructure of the Se nanoparticles as determined by cellular electron tomography shows the nanoparticles as intracellular, of narrow dispersity, symmetrically irregular and without any observable membrane or structured protein shell. Protein mass spectrometry of a fractionated soluble cytosolic material with selenite reducing capability identified nitrite reductase and glutathione reductase homologues as NADPH dependent candidate enzymes for the reduction of selenite to zerovalent Se nanoparticles. In vitro experiments with commercially sourced glutathione reductase revealed that the enzyme can reduce SeO32- (selenite) to Se nanoparticles in an NADPH-dependent process. The disappearance of the enzyme as determined by protein assay during nanoparticle formation suggests that glutathione reductase is associated with or possibly entombed in the nanoparticles whose formation it catalyzes. Chemically dissolving the nanoparticles releases the enzyme. The size of the nanoparticles varies with SeO32- concentration, varying in size form 5 nm diameter when formed at 1.0 μM [SeO32-] to 50 nm maximum diameter when formed at 100 μM [SeO32-]. In aggregate, we suggest that glutathione reductase possesses the key attributes of a clonable nanoparticle system: ion reduction, nanoparticle retention and size control of the nanoparticle at the enzyme site.Pseudomonas moraviensis stanleyae was recently isolated from the roots of the selenium (Se) hyperaccumulator plant Stanleya pinnata. This bacterium tolerates normally lethal concentrations of SeO32- in liquid culture, where it also produces Se nanoparticles. Structure and cellular ultrastructure of the Se nanoparticles as determined by cellular electron tomography shows the nanoparticles as intracellular, of narrow dispersity, symmetrically irregular and without any observable membrane or structured protein shell. Protein mass spectrometry of a fractionated soluble cytosolic material with selenite reducing capability identified nitrite reductase and glutathione reductase homologues as NADPH dependent candidate enzymes for the reduction of selenite to zerovalent Se nanoparticles. In vitro experiments with commercially sourced glutathione reductase revealed that the enzyme can reduce SeO32- (selenite) to Se nanoparticles in an NADPH-dependent process. The disappearance of the enzyme as determined by protein assay during nanoparticle formation suggests that glutathione reductase is associated with or possibly entombed in the nanoparticles whose formation it catalyzes. Chemically dissolving the nanoparticles releases the enzyme. The size of the nanoparticles varies with SeO32- concentration, varying in size form 5 nm diameter when formed at 1.0 μM [SeO32-] to 50 nm maximum diameter when formed at 100 μM [SeO32-]. In aggregate, we suggest that glutathione reductase possesses the key attributes of a clonable nanoparticle system: ion reduction, nanoparticle retention and size control of the nanoparticle at the enzyme site. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04097c
TCGA2BED: extracting, extending, integrating, and querying The Cancer Genome Atlas.
Cumbo, Fabio; Fiscon, Giulia; Ceri, Stefano; Masseroli, Marco; Weitschek, Emanuel
2017-01-03
Data extraction and integration methods are becoming essential to effectively access and take advantage of the huge amounts of heterogeneous genomics and clinical data increasingly available. In this work, we focus on The Cancer Genome Atlas, a comprehensive archive of tumoral data containing the results of high-throughout experiments, mainly Next Generation Sequencing, for more than 30 cancer types. We propose TCGA2BED a software tool to search and retrieve TCGA data, and convert them in the structured BED format for their seamless use and integration. Additionally, it supports the conversion in CSV, GTF, JSON, and XML standard formats. Furthermore, TCGA2BED extends TCGA data with information extracted from other genomic databases (i.e., NCBI Entrez Gene, HGNC, UCSC, and miRBase). We also provide and maintain an automatically updated data repository with publicly available Copy Number Variation, DNA-methylation, DNA-seq, miRNA-seq, and RNA-seq (V1,V2) experimental data of TCGA converted into the BED format, and their associated clinical and biospecimen meta data in attribute-value text format. The availability of the valuable TCGA data in BED format reduces the time spent in taking advantage of them: it is possible to efficiently and effectively deal with huge amounts of cancer genomic data integratively, and to search, retrieve and extend them with additional information. The BED format facilitates the investigators allowing several knowledge discovery analyses on all tumor types in TCGA with the final aim of understanding pathological mechanisms and aiding cancer treatments.
Fattorini, L; Veloccia, A; Della Rovere, F; D'Angeli, S; Falasca, G; Altamura, M M
2017-07-11
Indole-3-acetic acid (IAA), and its precursor indole-3-butyric acid (IBA), control adventitious root (AR) formation in planta. Adventitious roots are also crucial for propagation via cuttings. However, IBA role(s) is/are still far to be elucidated. In Arabidopsis thaliana stem cuttings, 10 μM IBA is more AR-inductive than 10 μM IAA, and, in thin cell layers (TCLs), IBA induces ARs when combined with 0.1 μM kinetin (Kin). It is unknown whether arabidopsis TCLs produce ARs under IBA alone (10 μM) or IAA alone (10 μM), and whether they contain endogenous IAA/IBA at culture onset, possibly interfering with the exogenous IBA/IAA input. Moreover, it is unknown whether an IBA-to-IAA conversion is active in TCLs, and positively affects AR formation, possibly through the activity of the nitric oxide (NO) deriving from the conversion process. Revealed undetectable levels of both auxins at culture onset, showing that arabidopsis TCLs were optimal for investigating AR-formation under the total control of exogenous auxins. The AR-response of TCLs from various ecotypes, transgenic lines and knockout mutants was analyzed under different treatments. It was shown that ARs are better induced by IBA than IAA and IBA + Kin. IBA induced IAA-efflux (PIN1) and IAA-influx (AUX1/LAX3) genes, IAA-influx carriers activities, and expression of ANTHRANILATE SYNTHASE -alpha1 (ASA1), a gene involved in IAA-biosynthesis. ASA1 and ANTHRANILATE SYNTHASE -beta1 (ASB1), the other subunit of the same enzyme, positively affected AR-formation in the presence of exogenous IBA, because the AR-response in the TCLs of their mutant wei2wei7 was highly reduced. The AR-response of IBA-treated TCLs from ech2ibr10 mutant, blocked into IBA-to-IAA-conversion, was also strongly reduced. Nitric oxide, an IAA downstream signal and a by-product of IBA-to-IAA conversion, was early detected in IAA- and IBA-treated TCLs, but at higher levels in the latter explants. Altogether, results showed that IBA induced AR-formation by conversion into IAA involving NO activity, and by a positive action on IAA-transport and ASA1/ASB1-mediated IAA-biosynthesis. Results are important for applications aimed to overcome rooting recalcitrance in species of economic value, but mainly for helping to understand IBA involvement in the natural process of adventitious rooting.
NASA Astrophysics Data System (ADS)
Tillmann, Wolfgang; Kokalj, David; Stangier, Dominic; Paulus, Michael; Sternemann, Christian; Tolan, Metin
2018-01-01
Friction minimization is an important topic which is pursued in research and industry. In addition to the use of lubricants, friction-reducing oxide phases can be utilized which occur during. These oxides are called Magnéli phases and especially vanadium oxides exhibit good friction reducing properties. Thereby, the lubrication effect can be traced back to oxygen deficiencies. AlCrN thin films are being used as coatings for tools which have to withstand high temperatures. A further improvement of AlCrN thin films concerning their friction properties is possible by incorporation of vanadium. This study analyzes the temperature dependent oxidation behavior of magnetron sputtered AlCrVN thin films with different vanadium contents up to 13.5 at.-% by means of X-ray diffraction and X-ray absorption near-edge spectroscopy. Up to 400 °C the coatings show no oxidation. A higher temperature of 700 °C leads to an oxidation and formation of Magnéli phases of the coatings with vanadium contents above 10.7 at.-%. Friction coefficients, measured by ball-on-disk test are correlated with the oxide formation in order to figure out the effect of vanadium oxides. At 700 °C a decrease of the friction coefficient with increasing vanadium content can be observed, due to the formation of VO2, V2O3 and the Magnéli phase V4O7.
Warmington, Kelly S.; Boring, Landin; Ruth, Jeffrey H.; Sonstein, Joanne; Hogaboam, Cory M.; Curtis, Jeffrey L.; Kunkel, Steven L.; Charo, Israel R.; Chensue, Stephen W.
1999-01-01
Monocyte chemotactic protein (MCP)-1 is postulated to play a role in cellular recruitment during inflammatory reactions. C-C chemokine receptor 2 (CCR2) is considered the major G-protein coupled receptor for MCP-1/JE. We reported that mice with knockout of the CCR2 gene display partially impaired type-1 granuloma formation. The present study similarly examined the effect of CCR2 deficiency on synchronously developing type-2 (Th2) cytokine-mediated lung granulomas elicited by embolization of beads coated with Ags of Schistosoma mansoni eggs. Systemically, blood monocytes were reduced by about half throughout the 8-day study period. At the local level, granuloma size and macrophage content were impaired during the early growth phase (days 1 to 2). By day 4, granuloma sizes were similar to controls. In granulomatous lungs, CCR2 knockout increased mRNA for CCR2 agonists, MCP-1, MCP-3, and MCP-5, but reduced IL-4 and IFNγ mRNA. The latter was possibly related to decreased CD4+ T cell recruitment. Regionally, draining lymph nodes showed panlymphoid hyperplasia with impaired production of IFNγ, IL-2, and IL-4, but not IL-5, IL-10, or IL-13. Analysis of procollagen gene expression indicated transient impairment of procollagen III transcripts on day 4 of granuloma formation. These findings indicate that agonists of CCR2 contribute to multiple facets of type-2 hypersensitivity granulomatous inflammation. PMID:10329593
O'Leary, Andrew P; Fox, James M; Pullar, Christine E
2015-02-01
Angiogenesis is an essential process during tissue regeneration; however, the amount of angiogenesis directly correlates with the level of wound scarring. Angiogenesis is lower in scar-free foetal wounds while angiogenesis is raised and abnormal in pathophysiological scarring such as hypertrophic scars and keloids. Delineating the mechanisms that modulate angiogenesis and could reduce scarring would be clinically useful. Beta-adrenoceptors (β-AR) are G protein-coupled receptors (GPCRs) expressed on all skin cell-types. They play a role in wound repair but their specific role in angiogenesis is unknown. In this study, a range of in vitro assays (single cell migration, scratch wound healing, ELISAs for angiogenic growth factors and tubule formation) were performed with human dermal microvascular endothelial cells (HDMEC) to investigate and dissect mechanisms underpinning β-AR-mediated modulation of angiogenesis in chick chorioallantoic membranes (CAM) and murine excisional skin wounds. β-AR activation reduced HDMEC migration via cyclic adenosine monophosphate (cAMP)-dependent and protein kinase A (PKA)-independent mechanisms as demonstrated through use of an EPAC agonist that auto-inhibited the cAMP-mediated β-AR transduced reduction in HDMEC motility; a PKA inhibitor was, conversely, ineffective. ELISA studies demonstrated that β-AR activation reduced pro-angiogenic growth factor secretion from HDMECs (fibroblast growth factor 2) and keratinocytes (vascular endothelial growth factor A) revealing possible β-AR-mediated autocrine and paracrine anti-angiogenic mechanisms. In more complex environments, β-AR activation delayed HDMEC tubule formation and decreased angiogenesis both in the CAM assay and in murine excisional skin wounds in vivo. β-AR activation reduced HDMEC function in vitro and angiogenesis in vivo; therefore, β-AR agonists could be promising anti-angiogenic modulators in skin. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
Spacecraft Maneuvering at the Sun/Earth-Moon L2 Libration Point
NASA Astrophysics Data System (ADS)
Shahid, Kamran
Spacecraft formation flying in the vicinity of the Sun/Earth-Moon libration points offers many promising possibilities for space exploration. The concept of formation flying involves the distribution of the functionality of a single spacecraft among several smaller, cooperative spacecraft. The libration points are locations relative to two large orbiting bodies where a third body with relatively small mass can remain stationary relative to the two larger bodies. The most significant perturbation experienced by a spacecraft at the libration point is effect of solar radiation pressure. This thesis presents the development of nonlinear control techniques for maneuvering control at the Sun-Earth/Moon L2 libration point. A new thruster based formation control technique is presented. We also consider a leader/follower formation architecture, and examine the station keeping control of the leader spacecraft and the formation control of the follower spacecraft using solar radiation pressure. Reference trajectories of the leader spacecraft, halo and Lissajous orbits, are determined using a numerical technique in order to take into account all major gravitational perturbations. The nonlinear controllers are developed based on Lyapunov analysis, including non-adaptive and adaptive designs. Thruster based and solar radiation pressure based control laws for spacecraft maneuvering at the Sun-Earth/Moon libration point are developed. Higher order sliding mode control is utilized to address the non-affine structure of the solar sail control inputs. The reduced input solar radiation pressure problem is properly addressed as an underactuated control problem. The development of adaptive control for solar sail equipped spacecraft is an innovation and represents and advancement in solar sailing control technology. Controller performance is evaluated in a high fidelity ephemeris model to reflect a realistic simulated space environment. The numerical results demonstrate the effectiveness of the proposed control techniques for spacecraft maneuvering using solar radiation pressure at the L2 libration point. Stationkeeping accuracies of 50m and formation maintenance accuracies of less than 1m are possible using solar radiation pressure at a sub-L2 libration point. The benefits of these control techniques include increasing libration point mission lifetimes and doubling payload mass fractions as compared to conventional propulsion methods.
NASA Astrophysics Data System (ADS)
Singh, Dheeraj K.; Jagannathan, Ramya; Khandelwal, Puneet; Abraham, Priya Mary; Poddar, Pankaj
2013-02-01
Curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) is an active component of turmeric; it is responsible for its characteristic yellow color and therapeutic potential, but its poor bioavailability remains a major challenge. In order to improve the bioavailability of curcumin, various approaches have been used. One of the possible approaches to increase the bioavailability of curcumin is its conjugation on the surface of metal nanoparticles. Therefore, in the present study, we report the binding of curcumin on the surface of gold nanoparticles (AuNPs). The AuNPs were synthesized by the direct reduction of HAuCl4 using curcumin in the aqueous phase, without the use of any other reducing agents. We found that curcumin acts both as a reducing and capping agent, stabilizing the gold sol for many months. Moreover, these curcumin-capped AuNPs also show good antioxidant activity which was confirmed by the DPPH (2,2-diphenyl-l-picrylhydrazyl) radical test. Thus, the surface functionalization of AuNPs with curcumin may pave a new way of using the curcuminoids towards possible drug delivery and therapeutics. Apart from the experimental study, a detailed quantum chemical calculation using density functional theory (DFT) has been performed, in order to investigate the formation of a complex of curcumin with Au3+ ions in different possible conformational isomeric forms. Our theoretical calculations indicate the evidence of electron transfer from curcumin into the Au center and essentially indicate that as a consequence of complexation, Au3+ ions are reduced to Au0. Our theoretical results also propose that it is the breakage of intramolecular H-bonding that probably leads to the increased availability of curcumin in the presence of gold ions and water molecules.Curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) is an active component of turmeric; it is responsible for its characteristic yellow color and therapeutic potential, but its poor bioavailability remains a major challenge. In order to improve the bioavailability of curcumin, various approaches have been used. One of the possible approaches to increase the bioavailability of curcumin is its conjugation on the surface of metal nanoparticles. Therefore, in the present study, we report the binding of curcumin on the surface of gold nanoparticles (AuNPs). The AuNPs were synthesized by the direct reduction of HAuCl4 using curcumin in the aqueous phase, without the use of any other reducing agents. We found that curcumin acts both as a reducing and capping agent, stabilizing the gold sol for many months. Moreover, these curcumin-capped AuNPs also show good antioxidant activity which was confirmed by the DPPH (2,2-diphenyl-l-picrylhydrazyl) radical test. Thus, the surface functionalization of AuNPs with curcumin may pave a new way of using the curcuminoids towards possible drug delivery and therapeutics. Apart from the experimental study, a detailed quantum chemical calculation using density functional theory (DFT) has been performed, in order to investigate the formation of a complex of curcumin with Au3+ ions in different possible conformational isomeric forms. Our theoretical calculations indicate the evidence of electron transfer from curcumin into the Au center and essentially indicate that as a consequence of complexation, Au3+ ions are reduced to Au0. Our theoretical results also propose that it is the breakage of intramolecular H-bonding that probably leads to the increased availability of curcumin in the presence of gold ions and water molecules. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33776b
Piemontese, Marilina; Onal, Melda; Xiong, Jinhu; Wang, Yiying; Almeida, Maria; Thostenson, Jeff D; Weinstein, Robert S; Manolagas, Stavros C; O'Brien, Charles A
2015-06-01
Glucocorticoid excess decreases bone mass and strength in part by acting directly on osteoblasts and osteocytes, but the mechanisms remain unclear. Macroautophagy (herein referred to as autophagy) is a lysosome-based recycling pathway that promotes the turnover of intracellular components and can promote cell function and survival under stressful conditions. Recent studies have shown that glucocorticoids stimulate autophagy in osteocytes, suggesting that autophagy may oppose the negative actions of glucocorticoids on this cell type. To address this possibility, we compared the impact of prednisolone administration on the skeletons of adult mice in which autophagy was suppressed in osteocytes, via deletion of Atg7 with a Dmp1-Cre transgene, to their control littermates. In control mice, prednisolone increased autophagic flux in osteocyte-enriched bone as measured by LC3 conversion, but this change did not occur in the mice lacking Atg7 in osteocytes. Nonetheless, prednisolone reduced femoral cortical thickness, increased cortical porosity, and reduced bone strength to similar extents in mice with and without autophagy in osteocytes. Prednisolone also suppressed osteoblast number and bone formation in the cancellous bone of control mice. As shown previously, Atg7 deletion in osteocytes reduced osteoblast number and bone formation in cancellous bone, but these parameters were not further reduced by prednisolone administration. In cortical bone, prednisolone elevated osteoclast number to a similar extent in both genotypes. Taken together, these results demonstrate that although glucocorticoids stimulate autophagy in osteocytes, suppression of autophagy in this cell type does not worsen the negative impact of glucocorticoids on the skeleton. Published by Elsevier Inc.
Piemontese, Marilina; Onal, Melda; Xiong, Jinhu; Wang, Yiying; Almeida, Maria; Thostenson, Jeff D.; Weinstein, Robert S.; Manolagas, Stavros C.; O’Brien, Charles A.
2015-01-01
Glucocorticoid excess decreases bone mass and strength in part by acting directly on osteoblasts and osteocytes, but the mechanisms remain unclear. Macroautophagy (herein referred to as autophagy) is a lysosome-based recycling pathway that promotes the turnover of intracellular components and can promote cell function and survival under stressful conditions. Recent studies have shown that glucocorticoids stimulate autophagy in osteocytes, suggesting that autophagy may oppose the negative actions of glucocorticoids on this cell type. To address this possibility, we compared the impact of prednisolone administration on the skeletons of adult mice in which autophagy was suppressed in osteocytes, via deletion of Atg7 with a Dmp1-Cre transgene, to their control littermates. In control mice, prednisolone increased autophagic flux in osteocyte-enriched bone as measured by LC3 conversion, but this change did not occur in the mice lacking Atg7 in osteocytes. Nonetheless, prednisolone reduced femoral cortical thickness, increased cortical porosity, and reduced bone strength to similar extents in mice with and without autophagy in osteocytes. Prednisolone also suppressed osteoblast number and bone formation in the cancellous bone of control mice. As shown previously, Atg7 deletion in osteocytes reduced osteoblast number and bone formation in cancellous bone, but these parameters were not further reduced by prednisolone administration. In cortical bone, prednisolone elevated osteoclast number to a similar extent in both genotypes. Taken together, these results demonstrate that although glucocorticoids stimulate autophagy in osteocytes, suppression of autophagy in this cell type does not worsen the negative impact of glucocorticoids on the skeleton. PMID:25700544
Robertson, Emma J.; Wolf, Julie M.
2012-01-01
The fungal pathogen Cryptococcus neoformans can grow as a biofilm on a range of synthetic and prosthetic materials. Cryptococcal biofilm formation can complicate the placement of shunts used to relieve increased intracranial pressure in cryptococcal meningitis and can serve as a nidus for chronic infection. Biofilms are generally advantageous to pathogens in vivo, as they can confer resistance to antimicrobial compounds, including fluconazole and voriconazole in the case of C. neoformans. EDTA can inhibit biofilm formation by several microbes and enhances the susceptibility of biofilms to antifungal drugs. In this study, we evaluated the effect of sublethal concentrations of EDTA on the growth of cryptococcal biofilms. EDTA inhibited biofilm growth by C. neoformans, and the inhibition could be reversed by the addition of magnesium or calcium, implying that the inhibitory effect was by divalent cation starvation. EDTA also reduced the amount of the capsular polysaccharide glucuronoxylomannan shed into the biofilm matrix and decreased vesicular secretion from the cell, thus providing a potential mechanism for the inhibitory effect of this cation-chelating compound. Our data imply that the growth of C. neoformans biofilms requires the presence of divalent metals in the growth medium and suggest that cations are required for the export of materials needed for biofilm formation, possibly including extracellular vesicles. PMID:22941091
Start-up of an anaerobic fluidized bed reactor treating synthetic carbohydrate rich wastewater.
Yeshanew, Martha M; Frunzo, Luigi; Luongo, Vincenzo; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni
2016-12-15
The present work studied the start-up process of a mesophilic (37 ± 2 °C) anaerobic fluidized bed reactor (AFBR) operated at a hydraulic retention time (HRT) of 20 days using synthetic carbohydrate rich wastewater. Anox Kaldness-K1 carriers were used as biofilm carrier material. The reactor performance and biofilm formation were evaluated during the process. The start-up process at lower liquid recirculation flow rate enhanced the biofilm formation and reactor performance. The organic substrate composition had a major impact on early colonization of methanogenic archaea onto the surface of the Kaldness carriers during the start-up process. Specific organic substrates favouring the growth of methanogenic archaea, such as acetate, are preferred in order to facilitate the subsequent biofilm formation and AFBR start-up. The supply of 'bio-available' nutrients and trace elements, in particular iron, had an important role on optimal methanogenic activity and speeding-up of the biofilm development on the Kaldness carriers. This paper provides possible strategies to optimize the various operational parameters that influence the initial biofilm formation and development in an AFBR and similar high rate anaerobic reactors, hence can be used to reduce the long time required for process start-up. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tan, Hor-Yue; Wang, Ning; Takahashi, Masao; Feng, Yigang; Li, Hongyun; Feng, Yibin
2016-08-05
For the first time, we discovered a small proportion of aqueous fraction from Saw Palmetto apart from the fatty acid-rich fraction exhibited pharmacological activity. Therefore, this study aims to explore the anti-tumor potential of red pigmented aqueous fraction of Saw Palmetto, NYG on human hepatocellular carcinoma and its possible targets. Subcutaneous xenograft and orthotopic implantation models of HCC were used to evaluate the tumor inhibitory effect of NYG. Human hepatocellular carcinoma (HCC) cell lines and human umbilical vein endothelial cells (HUVEC) were used as in vitro model. The mRNA expression was conducted by qPCR. Protein expression was monitored by immunoblotting and immunohistochemistry. Cell migration and blood vessel formation were determined by chamber assay and tube formation assay, respectively. Significant tumor inhibition of NYG in dose-dependent manner was observed on subcutaneous xenograft and orthotopic HCC model. NYG has no direct action on cell viability or VEGF secretion of HCC cells. However, NYG reduced in vitro migration and vessel formation activities of HUVEC cells, as well as in vivo intratumoral neovascularization. NYG attenuated extracellular signal-regulated kinases (ERK) activation in endothelial cells, which may be associated with the suppression of migration and tube formation of HUVEC. NYG suppressed tumor expansion of HCC via inhibiting neovascularization, and may be potential adjuvant treatment for HCC.
The H I content of non-isolated galaxies
NASA Technical Reports Server (NTRS)
Zasov, Anatoli V.
1990-01-01
It seems obvious that the evolution of star formation rate and hence of gas content in galaxies strongly depends on their environment. It reveals itself in particular in enhanced star formation or even in a strong burst of activity of massive stars often observed in interacting galaxies. Nevertheless it should be noted that the time scale for the gas to be exhausted in these galaxies is unknown even approximately. To clarify a role of surroundings in the evolution of disk galaxies we should compare the H I content of isolated and non-isolated galaxies otherwise similar by their properties. It is concluded that there are no systematic differences between H I content in isolated and non-isolated late-type galaxies; in spite of the differences of star formation rates their hydrogen mass is determined by slowly evolving kinematic parameters of the disk. Enhanced star formation in interacting galaxies, if it lasts long enough, must have an initial mass function enriched in massive stars in order not to significantly reduce the supply of gas. Certainly these conclusions are not valid for galaxies which are members of rich clusters such as Virgo or Coma, where H I-deficiency really exists, possibly due to the interaction of interstellar H I with hot intergalactic gas.
Cho, Dae Haeng; Kim, Min Hoo; Lee, Sang Hyun; Jung, Kwang Deog; Kim, Yong Hwan
2014-01-01
NAD-dependent formate dehydrogenase (FDH) from Candida boidinii (CbFDH) has been widely used in various CO2-reduction systems but its practical applications are often impeded due to low CO2-reducing activity. In this study, we demonstrated superior CO2-reducing properties of FDH from Thiobacillus sp. KNK65MA (TsFDH) for production of formate from CO2 gas. To discover more efficient CO2-reducing FDHs than a reference enzyme, i.e. CbFDH, five FDHs were selected with biochemical properties and then, their CO2-reducing activities were evaluated. All FDHs including CbFDH showed better CO2-reducing activities at acidic pHs than at neutral pHs and four FDHs were more active than CbFDH in the CO2 reduction reaction. In particular, the FDH from Thiobacillus sp. KNK65MA (TsFDH) exhibited the highest CO2-reducing activity and had a dramatic preference for the reduction reaction, i.e., a 84.2-fold higher ratio of CO2 reduction to formate oxidation in catalytic efficiency (k cat/K B) compared to CbFDH. Formate was produced from CO2 gas using TsFDH and CbFDH, and TsFDH showed a 5.8-fold higher formate production rate than CbFDH. A sequence and structural comparison showed that FDHs with relatively high CO2-reducing activities had elongated N- and C-terminal loops. The experimental results demonstrate that TsFDH can be an alternative to CbFDH as a biocatalyst in CO2 reduction systems. PMID:25061666
Synthesis of silver nanoparticles using A. indicum leaf extract and their antibacterial activity.
Ashokkumar, S; Ravi, S; Kathiravan, V; Velmurugan, S
2015-01-05
Green synthesis of silver nanoparticles has been achieved using environmentally acceptable plant extract. It is observed that Abutilon indicum leaf extract can reduce silver ions into silver nanoparticles within 15 min of reaction time. The formation and stability of the reduced silver nanoparticles in the colloidal solution were monitored by UV-Vis spectrophotometer analysis. The mean particle diameter of silver nanoparticles was calculated from the XRD pattern. FT-IR spectra of the leaf extract after the development of nanoparticles are determined to allow identification of possible functional groups responsible for the conversion of metal ions to metal nanoparticles. The AgNPs thus obtained showed highly potent antibacterial activity toward Gram-positive (Staphyloccocus aureus and Bacillus subtilis) and Gram-negative (Salmonella typhi and Escherichia coli) microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cameron, D.C.; Cooney, C.L.
1986-07-01
Three strains of Clostridium thermosaccharolyticum were found that produce R(-)-1,2-propanediol from a variety of sugars, including D-glucose and D-xylose. The fermentation of glucose by strain HG-8 (ATCC 31960) gave 7.9 g/l of R(-)-1,2-propanediol with a best yield of 0.27 g/g glucose and an enantiomeric excess of greater than 99%. Acetol accumulated to 1.47 g/l. Product formation was not affected by phosphate concentrations up to 113 mM. A possible pathway to these products involves a variation of the methylglyoxal bypass. Methylglyoxal is reduced to acetol, which is further reduced to %(-)-1,2-propanediol. This fermentation provides a unique route to R(-)-1,2-propanediol and acetolmore » from inexpensive, readily available substrates.« less
NASA Astrophysics Data System (ADS)
Abdelmoula, M.; Zegeye, A.; Jorand, F.; Carteret, C.
2006-01-01
The activities of bacterial consortia enable organisms to maximize their metabolic capabilities. This article assesses the synergetic relationship between iron reducing bacteria (IRB), Shewanella putrefaciens and sulphate reducing bacteria (SRB) Desulfovibrio alaskensis. Thus, the aim of this study was first to form a biogenic hydroxy-sulpahte green rust GR2( {text{SO}}_{{text{4}}} ^{{2 - }} ) through the bioreduction of lepidocrocite by S. putrefaciens and secondly to investigate if sulfate anions intercalated in the biogenic GR2( {text{SO}}_{{text{4}}} ^{{2 - }} ) could serve as final electron acceptor for a sulfate reducing bacterium, D. alaskensis. The results indicate that the IRB lead to the formation of GR2( {text{SO}}_{{text{4}}} ^{{2 - }} ) and this mineral serve as an electron acceptor for SRB. GR2( {text{SO}}_{{text{4}}} ^{{2 - }} ) precipitation and its transformation was demonstrated by using X-ray diffraction (DRX), Mössbauer spectroscopy (TMS) and transmission electron spectroscopy (TEM). These observations point out the possible acceleration of steel corrosion in marine environment in presence of IRB/SRB consortia.
Thomas, Phillip S.
2017-01-01
We propose a method for solving the vibrational Schrödinger equation with which one can compute spectra for molecules with more than ten atoms. It uses sum-of-product (SOP) basis functions stored in a canonical polyadic tensor format and generated by evaluating matrix-vector products. By doing a sequence of partial optimizations, in each of which the factors in a SOP basis function for a single coordinate are optimized, the rank of the basis functions is reduced as matrix-vector products are computed. This is better than using an alternating least squares method to reduce the rank, as is done in the reduced-rank block power method. Partial optimization is better because it speeds up the calculation by about an order of magnitude and allows one to significantly reduce the memory cost. We demonstrate the effectiveness of the new method by computing vibrational spectra of two molecules, ethylene oxide (C2H4O) and cyclopentadiene (C5H6), with 7 and 11 atoms, respectively. PMID:28571348
Thomas, Phillip S; Carrington, Tucker
2017-05-28
We propose a method for solving the vibrational Schrödinger equation with which one can compute spectra for molecules with more than ten atoms. It uses sum-of-product (SOP) basis functions stored in a canonical polyadic tensor format and generated by evaluating matrix-vector products. By doing a sequence of partial optimizations, in each of which the factors in a SOP basis function for a single coordinate are optimized, the rank of the basis functions is reduced as matrix-vector products are computed. This is better than using an alternating least squares method to reduce the rank, as is done in the reduced-rank block power method. Partial optimization is better because it speeds up the calculation by about an order of magnitude and allows one to significantly reduce the memory cost. We demonstrate the effectiveness of the new method by computing vibrational spectra of two molecules, ethylene oxide (C 2 H 4 O) and cyclopentadiene (C 5 H 6 ), with 7 and 11 atoms, respectively.
Reduction of Aeromonas hidrophyla biofilm on stainless stell surface by essential oils
Millezi, Alessandra Farias; Cardoso, Maria das Graças; Alves, Eduardo; Piccoli, Roberta Hilsdorf
2013-01-01
This study demonstrates the possibility of using sanitizing detergents based on natural products for the elimination and/or reduction of Aeromonas hydrophila biofilm formed on stainless steel surfaces. The goal of this work was to determine the reduction effect of sanitizing detergents containing essential oils of Thymus vulgaris (thyme) and Cymbopogon citratus (lemongrass) on biofilm formed by A. hydrophila on AISI 304 stainless steel coupons, using UHT skimmed milk as substratum. There was adhesion and biofilm formation by A. hydrophila at 28 °C, presenting 7.60 log cfu.cm−2 after the fourth day of cultivation. There was no significant difference between the lemongrass treatment and that of the thyme oil (p < 0.05). However, both treatments significantly reduced the biofilm, differing significantly from the NaOH control (p > 0.05). The treatment with lemongrass solution reduced the biofilm by 4.51 log cfu cm−2 at 25 °C. The thyme detergent also reduced the number of cfu cm−2 by 3.84 log cycles at 25 °C. The use of the lemongrass and thyme solutions efficiently reduced the A. hydrophila biofilm. PMID:24159286
NASA Astrophysics Data System (ADS)
Stephan, Cody J.; Fortenberry, Ryan C.
2017-07-01
The sheer interstellar abundance of helium makes any bound molecules or complexes containing it of potential interest for astrophysical observation. This work utilizes high-level and trusted quantum chemical techniques to predict the rotational, vibrational and rovibrational traits of HeHHe+, HeHNe+ and HeHAr+. The first two are shown to be strongly bound, while HeHAr+ is shown to be more of a van der Waals complex of argonium with a helium atom. In any case, the formation of HeHHe+ through reactions of HeH+ with HeH3+ is exothermic. HeHHe+ exhibits the quintessentially bright proton-shuttle motion present in all proton-bound complexes in the 7.4 micron range making it a possible target for telescopic observation at the mid-/far-Infrared crossover point and a possible tracer for the as-of-yet unobserved helium hydride cation. Furthermore, a similar mode in HeHNe+ can be observed to the blue of this close to 6.9 microns. The brightest mode of HeHAr+ is dimmed due the reduced interaction of the helium atom with the central proton, but this fundamental frequency can be found slightly to the red of the Ar-H stretch in the astrophysically detected argonium cation.
Serafino, Annalucia; Andreola, Federica; Pittaluga, Eugenia; Krasnowska, Ewa K; Nicotera, Giuseppe; Sferrazza, Gianluca; Sinibaldi Vallebona, Paola; Pierimarchi, Pasquale; Garaci, Enrico
2015-01-01
The immunomodulatory activity of thymosin α1 (Tα1) on innate immunity has been extensively described, but its mechanism of action is not completely understood. We explored the possibility that Tα1-stimulation could affect the formation of podosomes, the highly dynamic, actin-rich, adhesion structures involved in macrophage adhesion/chemotaxis. The following methods were used: optical and scanning electron microscopy for analyzing morphology of human monocyte-derived macrophages (MDMs); time-lapse imaging for visualizing the time-dependent modifications induced at early times by Tα1 treatment; confocal microscopy and Western blot for analyzing localization and expression of podosome components; and Matrigel Migration Assay and zymography for testing MDM invasive ability and metalloproteinase secretion. We obtained data to support that Tα1 could affect MDM motility, invasion and chemotaxis by promptly stimulating assembly and disassembly of podosomal structures. At very early times after its addition to cell culture medium and within 1 h of treatment, Tα1 induces modifications in MDM morphology and in podosomal components that are suggestive of increased podosome turnover. Since impairment of podosome formation leads to reduced innate immunity and is associated with several immunodeficiency disorders, we confirm the validity of Tα1 as a potent activator of innate immunity and suggest possible new clinical application of this thymic peptide.
Computer-aided video exposure monitoring.
Walsh, P T; Clark, R D; Flaherty, S; Gentry, S J
2000-01-01
A computer-aided video exposure monitoring system was used to record exposure information. The system comprised a handheld camcorder, portable video cassette recorder, radio-telemetry transmitter/receiver, and handheld or notebook computers for remote data logging, photoionization gas/vapor detectors (PIDs), and a personal aerosol monitor. The following workplaces were surveyed using the system: dry cleaning establishments--monitoring tetrachoroethylene in the air and in breath; printing works--monitoring white spirit type solvent; tire manufacturing factory--monitoring rubber fume; and a slate quarry--monitoring respirable dust and quartz. The system based on the handheld computer, in particular, simplified the data acquisition process compared with earlier systems in use by our laboratory. The equipment is more compact and easier to operate, and allows more accurate calibration of the instrument reading on the video image. Although a variety of data display formats are possible, the best format for videos intended for educational and training purposes was the review-preview chart superimposed on the video image of the work process. Recommendations for reducing exposure by engineering or by modifying work practice were possible through use of the video exposure system in the dry cleaning and tire manufacturing applications. The slate quarry work illustrated how the technique can be used to test ventilation configurations quickly to see their effect on the worker's personal exposure.
The Formation of Formaldehyde on Interstellar Carbonaceous Grain Analogs by O/H Atom Addition
NASA Astrophysics Data System (ADS)
Potapov, Alexey; Jäger, Cornelia; Henning, Thomas; Jonusas, Mindaugas; Krim, Lahouari
2017-09-01
An understanding of possible scenarios for the formation of astrophysically relevant molecules, particularly complex organic molecules, will bring us one step closer to the understanding of our astrochemical heritage. In this context, formaldehyde is an important molecule as a precursor of methanol, which in turn is a starting point for the formation of more complex organic species. In the present experiments, for the first time, following the synthesis of CO, formaldehyde has been produced on the surface of interstellar grain analogs, hydrogenated fullerene-like carbon grains, by O and H atom bombardment. The formation of H2CO is an indication for a possible methanol formation route in such systems.
Stellar fibril magnetic systems. I - Reduced energy state
NASA Technical Reports Server (NTRS)
Parker, E. N.
1984-01-01
The remarkable fibril structure of the magnetic fields at the surface of the sun (with fibrils compressed to 1,000-2,000 gauss) lies outside existing statistical theories of magnetohydrodynamic turbulence. The total energy of the fibril field is enhanced by a factor of more than 100 above the energy for the mean field in a continuum state. The magnetic energy density within a fibril is of the order of 100 times the local kinetic energy density, so that no simple application of equipartition principles is possible. It is pointed out that the total energy of the atmosphere (thermal + gravitational + magnetic) is reduced by the fibril state of the field by avoiding the magnetic inhibition of the convective overturning, suggesting that the formation of the observed intense fibril state may be in response to the associated energy reduction. Calculation of the minimum total energy of a polytropic atmosphere permeated by magnetic fibrils yields theoretical fibril fields of the order of 1-5 kilogauss when characteristics appropriate to the solar convective zone are introduced, in rough agreement with the actual fields of 1-2 kilogauss. The polytrope model, although crude, establishes that a large reduction in total energy is made possible by the fibril state.
Shamla, L; Nisha, P
2017-05-01
The effect of ripening on the formation of acrylamide in deep fried plantain chips made from Nendran variety (Musa paradisiaca) was investigated. The precursors of acrylamide formation, reducing sugars (glucose and fructose) and ten major amino acids, were quantified during different stages of ripening using HPLC and correlated with acrylamide formation. The total phenolic content and total flavonoid content were also estimated and correlated with acrylamide formation. Both glucose and fructose increased during ripening and demonstrated a positive correlation on formation of acrylamide (correlation coefficient of r=0.95 and 0.94 respectively (p<0.05), whereas asparagine, was poorly correlated (p>0.05). The decreased levels of phenolic content during ripening of plantain were negatively correlated with acrylamide formation in the deep fried chips prepared. Thus the selection of proper ripening stage renders reduced formation of acrylamide in plantain chips to a reasonable extend. Copyright © 2016 Elsevier Ltd. All rights reserved.
HPLC-MS degradation study of E10 Sunset Yellow FCF in a commercial beverage.
Gosetti, Fabio; Gianotti, Valentina; Polati, Stefano; Gennaro, Maria Carla
2005-10-07
Experimental evidence has shown that a beverage containing Sunset Yellow FCF (labelled as E110 in the European Union), when exposed to natural conditions of summer temperature and sunlight, losses its colour. To possibly identify the degradation pathway and collect information on the potential toxicity of the uncoloured species formed, different degradation conditions, under both oxidising and reducing environments, were simulated in laboratory. Experiments were carried out under the following conditions: (i) thermally induced degradation, (ii) visible photo induced degradation, (iii) UV-photo induced conditions in oxidising environment (addition of hydrogen peroxide, Fenton reaction) and (iv) UV-photo induced conditions in reducing environment (addition of sulphide and ascorbic acid, addition of ascorbic acid in the absence and in the presence of saccharose). Decolourisation process was observed in oxidant conditions when applying the Fenton reaction but the reaction was too quick to be progressively followed. On the other hand, it was also possible to study the degradation reaction observed in reducing conditions in the presence of ascorbic acid. The HPLC-MS results gave evidence for the cleavage of the double bond and the protonation of the azo groups. The loss of colour is therefore not due to a mineralization process but to the formation of a dimeric form of 5-amino-6-hydroxy-2-naphthalene sulfonate and, likely, of p-amino-benzensulfonate.
Wang, Yongjie; Dang, Fei; Evans, R. Douglas; Zhong, Huan; Zhao, Jiating; Zhou, Dongmei
2016-01-01
Methylmercury (MeHg) accumulation in rice has great implications for human health. Here, effects of selenium (Se) on MeHg availability to rice are explored by growing rice under soil or foliar fertilization with Se. Results indicate that soil amendment with Se could reduce MeHg levels in soil and grain (maximally 73%). In contrast, foliar fertilization with Se enhanced plant Se levels (3–12 folds) without affecting grain MeHg concentrations. This evidence, along with the distinct distribution of MeHg and Se within the plant, demonstrate for the first time that Se-induced reduction in soil MeHg levels (i.e., MeHg-Se antagonism in soil) rather than MeHg-Se interactions within the plant might be the key process triggering the decreased grain MeHg levels under Se amendment. The reduction in soil MeHg concentrations could be mainly attributed to the formation of Hg-Se complexes (detected by TEM-EDX and XANES) and thus reduced microbial MeHg production. Moreover, selenite and selenate were equally effective in reducing soil MeHg concentrations, possibly because of rapid changes in Se speciation. The dominant role of Se-induced reduction in soil MeHg levels, which has been largely underestimated previously, together with the possible mechanisms advance our mechanistic understanding about MeHg dynamics in soil-rice systems. PMID:26778218
To share or not to share? Expected pros and cons of data sharing in radiological research.
Sardanelli, Francesco; Alì, Marco; Hunink, Myriam G; Houssami, Nehmat; Sconfienza, Luca M; Di Leo, Giovanni
2018-06-01
The aims of this paper are to illustrate the trend towards data sharing, i.e. the regulated availability of the original patient-level data obtained during a study, and to discuss the expected advantages (pros) and disadvantages (cons) of data sharing in radiological research. Expected pros include the potential for verification of original results with alternative or supplementary analyses (including estimation of reproducibility), advancement of knowledge by providing new results by testing new hypotheses (not explored by the original authors) on pre-existing databases, larger scale analyses based on individual-patient data, enhanced multidisciplinary cooperation, reduced publication of false studies, improved clinical practice, and reduced cost and time for clinical research. Expected cons are outlined as the risk that the original authors could not exploit the entire potential of the data they obtained, possible failures in patients' privacy protection, technical barriers such as the lack of standard formats, and possible data misinterpretation. Finally, open issues regarding data ownership, the role of individual patients, advocacy groups and funding institutions in decision making about sharing of data and images are discussed. • Regulated availability of patient-level data of published clinical studies (data-sharing) is expected. • Expected benefits include verification/advancement of knowledge, reduced cost/time of research, clinical improvement. • Potential drawbacks include faults in patients' identity protection and data misinterpretation.
Bolide impacts and the oxidation state of carbon in the Earth's early atmosphere
NASA Technical Reports Server (NTRS)
Kasting, J. F.
1992-01-01
A one-dimensional photochemical model was used to examine the effect of bolide impacts on the oxidation state of Earth's primitive atmosphere. The impact rate should have been high prior to 3.8 Ga before present, based on evidence derived from the Moon. Impacts of comets or carbonaceous asteroids should have enhanced the atmospheric CO/CO2 ratio by bringing in CO ice and/or organic carbon that can be oxidized to CO in the impact plume. Ordinary chondritic impactors would contain elemental iron that could have reacted with ambient CO2 to give CO. Nitric oxide (NO) should also have been produced by reaction between ambient CO2 and N2 in the hot impact plumes. High NO concentrations increase the atmospheric CO/CO2 ratio by increasing the rainout rate of oxidized gases. According to the model, atmospheric CO/CO2 ratios of unity or greater are possible during the first several hundred million years of Earth's history, provided that dissolved CO was not rapidly oxidized to bicarbonate in the ocean. Specifically, high atmospheric CO/CO2 ratios are possible if either: (1) the climate was cool (like today's climate), so that hydration of dissolved CO to formate was slow, or (2) the formate formed from CO was efficiently converted into volatile, reduced carbon compounds, such as methane. A high atmospheric CO/CO2 ratio may have helped to facilitate prebiotic synthesis by enhancing the production rates of hydrogen cyanide and formaldehyde. Formaldehyde may have been produced even more efficiently by photochemical reduction of bicarbonate and formate in Fe(++)-rich surface waters.
NASA Astrophysics Data System (ADS)
Chang, Baohua; Allen, Chris; Blackburn, Jon; Hilton, Paul; Du, Dong
2015-04-01
In this paper, a computational fluid mechanics model is developed for full penetration laser welding of titanium alloy Ti6Al4V. This has been used to analyze possible porosity formation mechanisms, based on predictions of keyhole behavior and fluid flow characteristics in the weld pool. Numerical results show that when laser welding 3 mm thickness titanium alloy sheets with given laser beam focusing optics, keyhole depth oscillates before a full penetration keyhole is formed, but thereafter keyhole collapses are not predicted numerically. For lower power, lower speed welding, the fluid flow behind the keyhole is turbulent and unstable, and vortices are formed. Molten metal is predicted to flow away from the center plane of the weld pool, and leave a gap or void within the weld pool behind the keyhole. For higher power, higher speed welding, fluid flow is less turbulent, and such vortices are not formed. Corresponding experimental results show that porosity was absent in the melt runs made at higher power and higher welding speed. In contrast, large pores were present in melt runs made at lower power and lower welding speed. Based on the combination of experimental results and numerical predictions, it is proposed that porosity formation when keyhole laser welding may result from turbulent fluid flow behind the keyhole, with the larger the value of associated Reynolds number, the higher the possibility of porosity formation. For such fluid flow controlled porosities, measures to decrease Reynolds number of the fluid flow close to the keyhole could prove effective in reducing or avoiding porosity.
IRON-TOLERANT CYANOBACTERIA: IMPLICATIONS FOR ASTROBIOLOGY
NASA Technical Reports Server (NTRS)
Brown, Igor I.; Allen, Carlton C.; Mummey, Daniel L.; Sarkisova, Svetlana A.; McKay, David S.
2006-01-01
The review is dedicated to the new group of extremophiles - iron tolerant cyanobacteria. The authors have analyzed earlier published articles about the ecology of iron tolerant cyanobacteria and their diversity. It was concluded that contemporary iron depositing hot springs might be considered as relative analogs of Precambrian environment. The authors have concluded that the diversity of iron-tolerant cyanobacteria is understudied. The authors also analyzed published data about the physiological peculiarities of iron tolerant cyanobacteria. They made the conclusion that iron tolerant cyanobacteria may oxidize reduced iron through the photosystem of cyanobacteria. The involvement of both Reaction Centers 1 and 2 is also discussed. The conclusion that iron tolerant protocyanobacteria could be involved in banded iron formations generation is also proposed. The possible mechanism of the transition from an oxygenic photosynthesis to an oxygenic one is also discussed. In the final part of the review the authors consider the possible implications of iron tolerant cyanobacteria for astrobiology.
Microbial diversity of landslide soils assessed by RFLP and SSCP fingerprints.
Guida, Marco; Cannavacciuolo, Paolo Losanno; Cesarano, Mara; Borra, Marco; Biffali, Elio; D'Alessandro, Raffaella; De Felice, Bruna
2014-08-01
Landslides are a significant component of natural disasters in most countries around the world. Understanding these destructive phenomena through the analysis of possible correlations between microbial communities and the alteration of the soil responsible for landslides is important in order to reduce their negative consequences. To address this issue, bacterial and fungal communities in soils triggering landslides in Termini-Nerano and Massa Lubrense-Nerano (Naples, Italy) were analysed by genetic profiling techniques. Fingerprints were generated by single-strand conformation polymorphisms (SSCP) and random amplified polymorphic DNA (RAPD). The microbial community in both soil types was enriched in species which could contribute to the degradation process occurring during landslides, forming biofilms and leading to the transformation or the formation of minerals. Indeed, some of the identified bacteria were found to favour the transformation of clay minerals. These findings suggest a possible relationship between bacterial and fungal community-colonising soils and the occurrence of landslides.
Electrospun cross linked rosin fibers
NASA Astrophysics Data System (ADS)
Baek, Woo-il; Nirmala, R.; Barakat, Nasser A. M.; El-Newehy, Mohamed H.; Al-Deyab, Salem S.; Kim, Hak Yong
2011-12-01
In this study, we describe the first reported preparation of rosin in fiber form through use of an electrospinning technique utilizing various solvent systems. The polymer concentration of the formed fiber was studied by using various solvents such as chloroform, ethanol, N-N dimethylformamide (DMF), tetrahydrofuran (THF), acetone, and methylene chloride (MC). An electrospray of the solution resulted in the beaded form of the rosin. By varying the polymer concentration with MC, we were then able to obtain uniform fibers. However, the fibers exhibited large diameter. We believe that it is possible to reduce the diameter of the rosin fibers through appropriate selection of electrospinning parameters. In addition, the morphological transitions from beads, to beaded fiber, to fiber were studied at different polymer concentrations. We propose a possible physical cross linking mechanism for the formation of rosin fibers during the electrospinning process. Our results demonstrate the feasibility of producing fiber nanostructures of rosin by using an electrospinning technique.
Spectral Analysis of CLU Galaxies
NASA Astrophysics Data System (ADS)
Sutter, Jessica; Cook, David O.; Kasliwal, Mansi M.; Dale, Daniel A.
2017-01-01
In order to help select possible EM signals from gravitational wave-emitting sources, a more complete catalog of local galaxies is being created. This catalog, called the Census of the Local Universe (CLU), will attempt to find the position of all star-forming galaxies within 200 Mpc. By doing this, the area on the sky from which a gravitational wave could possibly have originated is reduced by a factor of 100. Besides providing this valuable resource for gravitational wave follow-up, the CLU survey provides an exciting new opportunity for better understanding the properties of galaxies near the same age as the Milky Way. Using spectra obtained with the Palomar 200-inch double-prime spectrograph as well as data from the WISE survey, we have created a main sequence for the CLU survey. By analyzing how this main sequence behaves in local galaxies, we can better understand the relationship between current star formation rate and total galaxy stellar mass.
The role of meiotic drive in hybrid male sterility.
McDermott, Shannon R; Noor, Mohamed A F
2010-04-27
Meiotic drive causes the distortion of allelic segregation away from Mendelian expected ratios, often also reducing fecundity and favouring the evolution of drive suppressors. If different species evolve distinct drive-suppressor systems, then hybrid progeny may be sterile as a result of negative interactions of these systems' components. Although the hypothesis that meiotic drive may contribute to hybrid sterility, and thus species formation, fell out of favour early in the 1990s, recent results showing an association between drive and sterility have resurrected this previously controversial idea. Here, we review the different forms of meiotic drive and their possible roles in speciation. We discuss the recent empirical evidence for a link between drive and hybrid male sterility, also suggesting a possible mechanistic explanation for this link in the context of chromatin remodelling. Finally, we revisit the population genetics of drive that allow it to contribute to speciation.
The role of meiotic drive in hybrid male sterility
McDermott, Shannon R.; Noor, Mohamed A. F.
2010-01-01
Meiotic drive causes the distortion of allelic segregation away from Mendelian expected ratios, often also reducing fecundity and favouring the evolution of drive suppressors. If different species evolve distinct drive-suppressor systems, then hybrid progeny may be sterile as a result of negative interactions of these systems' components. Although the hypothesis that meiotic drive may contribute to hybrid sterility, and thus species formation, fell out of favour early in the 1990s, recent results showing an association between drive and sterility have resurrected this previously controversial idea. Here, we review the different forms of meiotic drive and their possible roles in speciation. We discuss the recent empirical evidence for a link between drive and hybrid male sterility, also suggesting a possible mechanistic explanation for this link in the context of chromatin remodelling. Finally, we revisit the population genetics of drive that allow it to contribute to speciation. PMID:20308102
NASA Astrophysics Data System (ADS)
Zeng, Jie; Liu, Yuhang; Han, Di; Yu, Bowen; Deng, Sha; Chen, Feng; Fu, Qiang
2018-04-01
Improving the interaction of individual reduced graphene oxide sheet is an effective way to enhance the mechanical property of reduced graphene oxide fiber. In this study, to enhance the interaction forces of graphene sheets, large-sized graphene oxide sheets were used to assemble graphene fiber, and dopamine was mixed with the graphene oxide spinning drop. During the wet-spinning procedure, polydopamine was formed by polymerizing. It is found that such obtained composite fiber shows enhanced tensile strength (increased from 314 MPa to 527 MPa) and increased toughness (increased from 3.5 MJ m‑3 to 12.9 MJ m‑3) compared with pure reduced graphene oxide fiber. Fourier-transform infrared spectra, Raman spectra and x-ray photoelectron spectroscopy were performed to characterize the interaction between reduced graphene oxide sheets and polydopamine, and a possible enhancement mechanism of C-N bonds formation was proposed. It is suggested that this newly formed C‑N bonds can not only enhance the tensile strength, but also increase the elongation simultaneously. Additionally, the graphene fiber remains great electrical conductivity (33 100 s m‑1) since the conductive network can be maintained.
78 FR 67076 - Practices and Procedures
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-08
... as an attachment in any common electronic format, including word processing applications, HTML and PDF. If possible, commenters are asked to use a text format and not an image format for attachments...
Shimotoyodome, Akira; Koudate, Takashi; Kobayashi, Hisataka; Nakamura, Junji; Tokimitsu, Ichiro; Hase, Tadashi; Inoue, Takashi; Matsukubo, Takashi; Takaesu, Yoshinori
2007-10-01
Initial attachment of the cariogenic Streptococcus mutans onto dental enamel is largely promoted by the adsorption of specific salivary proteins on enamel surface. Some phosphorylated salivary proteins were found to reduce S. mutans adhesion by competitively inhibiting the adsorption of S. mutans-binding salivary glycoproteins to hydroxyapatite (HA). The aim of this study was to develop antiadherence compounds for preventing dental biofilm development. We synthesized phosphorylated polyethylene glycol (PEG) derivatives and examined the possibility of surface pretreatment with them for preventing S. mutans adhesion in vitro and dental biofilm formation in vivo. Pretreatment of the HA surface with methacryloyloxydecyl phosphate (MDP)-PEG prior to saliva incubation hydrophilized the surface and thereby reduced salivary protein adsorption and saliva-promoted bacterial attachment to HA. However, when MDP-PEG was added to the saliva-pretreated HA (S-HA) surface, its inhibitory effect on bacterial binding was completely diminished. S. mutans adhesion onto S-HA was successfully reduced by treatment of the surface with pyrophosphate (PP), which desorbs salivary components from S-HA. Treatment of S-HA surfaces with MDP-PEG plus PP completely inhibited saliva-promoted S. mutans adhesion even when followed by additional saliva treatment. Finally, mouthwash with MDP-PEG plus PP prevented de novo biofilm development after thorough teeth cleaning in humans compared to either water or PP alone. We conclude that MDP-PEG plus PP has the potential for use as an antiadherence agent that prevents dental biofilm development.
Resveratrol decreases noise-induced cyclooxygenase-2 expression in the rat cochlea.
Seidman, Michael D; Tang, Wenxue; Bai, Venkatesh Uma; Ahmad, Nadir; Jiang, Hao; Media, Joseph; Patel, Nimisha; Rubin, Cory J; Standring, Robert T
2013-05-01
Our previous studies have demonstrated the efficacy of resveratrol, a grape constituent noted for its antioxidant and anti-inflammatory properties, in reducing temporary threshold shifts and decreasing cochlear hair cell damage following noise exposure. This study was designed to identify the potential protective mechanism of resveratrol by measuring its effect on cyclooxygenase-2 (COX-2) protein expression and reactive oxygen species (ROS) formation following noise exposure. Controlled animal intervention study. Otology Laboratory, Henry Ford Health System. Twenty-two healthy male Fischer 344 rats (2-3 months old) were exposed to acoustic trauma of variable duration with or without intervention. An additional 20 healthy male rats were used to study COX-2 expression at different time points during and following treatment of 24 hours of noise exposure. Cochlear harvest was performed at various time intervals for measurement of COX-2 protein expression via Western blot analysis and immunostaining. Peripheral blood was also obtained for ROS analysis using flow cytometry. Acoustic trauma exposure resulted in a progressive up-regulation of COX-2 protein expression, commencing at 8 hours and peaking at 32 hours. Similarly, ROS production increased after noise exposure. However, treatment with resveratrol reduced noise-induced COX-2 expression as well as ROS formation in the blood as compared with the controls. COX-2 levels are induced dramatically following noise exposure. This increased expression may be a potential mechanism of noise-induced hearing loss (NIHL) and a possible mechanism of resveratrol's ability to mitigate NIHL by its ability to reduce COX-2 expression.
2009-01-01
Hydrogen cyanide is an excellent organic reagent and is central to most of the reaction pathways leading to abiotic formation of simple organic compounds containing nitrogen, such as amino acids, purines and pyrimidines. Reduced carbon and nitrogen precursor compounds for the synthesis of HCN may be formed under off-axis hydrothermal conditions in oceanic lithosphere in the presence of native Fe and Ni and are adsorbed on authigenic layer silicates and zeolites. The native metals as well as the molecular hydrogen reducing CO2 to CO/CH4 and NO3-/NO2- to NH3/NH4+ are a result of serpentinization of mafic rocks. Oceanic plates are conveyor belts of reduced carbon and nitrogen compounds from the off-axis hydrothermal environments to the subduction zones, where compaction, dehydration, desiccation and diagenetic reactions affect the organic precursors. CO/CH4 and NH3/NH4+ in fluids distilled out of layer silicates and zeolites in the subducting plate at an early stage of subduction will react upon heating and form HCN, which is then available for further organic reactions to, for instance, carbohydrates, nucleosides or even nucleotides, under alkaline conditions in hydrated mantle rocks of the overriding plate. Convergent margins in the initial phase of subduction must, therefore, be considered the most potent sites for prebiotic reactions on Earth. This means that origin of life processes are, perhaps, only possible on planets where some kind of plate tectonics occur. PMID:19849830
Holm, Nils G; Neubeck, Anna
2009-10-22
Hydrogen cyanide is an excellent organic reagent and is central to most of the reaction pathways leading to abiotic formation of simple organic compounds containing nitrogen, such as amino acids, purines and pyrimidines. Reduced carbon and nitrogen precursor compounds for the synthesis of HCN may be formed under off-axis hydrothermal conditions in oceanic lithosphere in the presence of native Fe and Ni and are adsorbed on authigenic layer silicates and zeolites. The native metals as well as the molecular hydrogen reducing CO2 to CO/CH4 and NO3-/NO2- to NH3/NH4+ are a result of serpentinization of mafic rocks. Oceanic plates are conveyor belts of reduced carbon and nitrogen compounds from the off-axis hydrothermal environments to the subduction zones, where compaction, dehydration, desiccation and diagenetic reactions affect the organic precursors. CO/CH4 and NH3/NH4+ in fluids distilled out of layer silicates and zeolites in the subducting plate at an early stage of subduction will react upon heating and form HCN, which is then available for further organic reactions to, for instance, carbohydrates, nucleosides or even nucleotides, under alkaline conditions in hydrated mantle rocks of the overriding plate. Convergent margins in the initial phase of subduction must, therefore, be considered the most potent sites for prebiotic reactions on Earth. This means that origin of life processes are, perhaps, only possible on planets where some kind of plate tectonics occur.
The possibility of biomasses and coal co-firing in the Czech Republic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juchelkova, D.
1998-07-01
The present state of the environment in the Czech Republic is influenced by many factors and one of them is the quality of fuel used in energetic sources. The greatest share is created by coal, burned with a low capacity, big power station blocks without a significant effort to reduce the emission of pollutants. It is possible to use other provisions for improving the environment: (1) primary--changing the burning fuel, the minimization of pollutant formation resulting in a burning process, the reconstruction of a significant part of burning equipment, and others; (2) or secondary--trapping pollutants. Changing the fuel must bemore » done, however, with minimization of outgoing pollutants. It should not burden surroundings with other undesirable influences and must provide the necessary output. One of the possibilities which is getting attention in the world today is the burning of biomasses. This solution itself has great investment cost (the necessity to build special burning equipment), but an attempt to burn suitable forms of biomass together with coal directly in the existing burning equipment has been discovered as a possible solution to this problem.« less
Energy saving by using natural energy from the shallow ground depths - many years operating results
NASA Astrophysics Data System (ADS)
Besler, Maciej; Skrzycki, Maciej; Cepiński, Wojciech
2017-11-01
We pay back more and more larger attention on solutions which saving energy produced from conventional fuels. This is possible to obtainment in significant quantities in fields in which use up the large quantities of energy. The formation the microclimate of interiors is an example of such situation. Especially in the case air conditioning, heating and mechanical ventilation. There is, however, a possibility of energy saving as well as considerable reducing the pollution coming from combustion of raw materials by utilising the natural renewable energy from the shallow ground. In the paper the results gained during several year of continuous measurement on the exchanger were presented. In summer periods an air cooling occurs 10-12 K, e. g. from +30 °C to +20 °C. In winter on the other hand, a preparatory preheating of the air is possible, e.g. from-18°C to about ± 0°C. It is then possible to obtain for the air conditioning system the total energy needed for cooling purposes at the summer periods, or up to 50% of the ventilation heat energy in winter picks.
Possible significance of cubic water-ice, H2O-Ic, in the atmospheric water cycle of Mars
NASA Technical Reports Server (NTRS)
Gooding, James L.
1988-01-01
The possible formation and potential significance of the cubic ice polymorph on Mars is discussed. When water-ice crystallizes on Earth, the ambient conditions of temperature and pressure result in the formation of the hexagonal ice polymorph; however, on Mars, the much lower termperature and pressures may permit the crystallization of the cubic polymorph. Cubic ice has two properties of possible importance on Mars: it is an excellant nucleator of other volatiles (such as CO2), and it undergoes an exothermic transition to hexagonal ice at temperatures above 170 K. These properties may have significant implications for both martian cloud formation and the development of the seasonal polar caps.
An initial study of void formation during solidification of aluminum in normal and reduced-gravity
NASA Technical Reports Server (NTRS)
Chiaramonte, Francis P.; Foerster, George; Gotti, Daniel J.; Neumann, Eric S.; Johnston, J. C.; De Witt, Kenneth J.
1992-01-01
Void formation due to volumetric shrinkage during aluminum solidification was observed in real time using a radiographic viewing system in normal and reduced gravity. An end chill directional solidification furnace with water quench was developed to solidify aluminum samples during the approximately 16 seconds of reduced gravity (+/- 0.02g) achieved by flying an aircraft through a parabolic trajectory. Void formation was recorded for two cases: first a nonwetting system; and second, a wetting system where wetting occurs between the aluminum and crucible lid. The void formation in the nonwetting case is similar in normal and reduced gravity, with a single vapor cavity forming at the top of the crucible. In the wetting case in reduced gravity, surface tension causes two voids to form in the top corners of the crucible, but in normal gravity only one large voids forms across the top.
Fuel Efficient Strategies for Reducing Contrail Formations in United States Air Space
NASA Technical Reports Server (NTRS)
Sridhar, Banavar; Chen, Neil Y.; Ng, Hok K.
2010-01-01
This paper describes a class of strategies for reducing persistent contrail formation in the United States airspace. The primary objective is to minimize potential contrail formation regions by altering the aircraft's cruising altitude in a fuel-efficient way. The results show that the contrail formations can be reduced significantly without extra fuel consumption and without adversely affecting congestion in the airspace. The contrail formations can be further reduced by using extra fuel. For the day tested, the maximal reduction strategy has a 53% contrail reduction rate. The most fuel-efficient strategy has an 8% reduction rate with 2.86% less fuel-burnt compared to the maximal reduction strategy. Using a cost function which penalizes extra fuel consumed while maximizing the amount of contrail reduction provides a flexible way to trade off between contrail reduction and fuel consumption. It can achieve a 35% contrail reduction rate with only 0.23% extra fuel consumption. The proposed fuel-efficient contrail reduction strategy provides a solution to reduce aviation-induced environmental impact on a daily basis.
14 CFR 331.23 - In what format must applications be submitted?
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false In what format must applications be... SERVICE PROVIDERS IN THE WASHINGTON, DC AREA Application Procedures § 331.23 In what format must... hardcopy format and, if possible, in electronic format. The Department has made available an electronic...
The Formation of Formaldehyde on Interstellar Carbonaceous Grain Analogs by O/H Atom Addition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potapov, Alexey; Jäger, Cornelia; Henning, Thomas
An understanding of possible scenarios for the formation of astrophysically relevant molecules, particularly complex organic molecules, will bring us one step closer to the understanding of our astrochemical heritage. In this context, formaldehyde is an important molecule as a precursor of methanol, which in turn is a starting point for the formation of more complex organic species. In the present experiments, for the first time, following the synthesis of CO, formaldehyde has been produced on the surface of interstellar grain analogs, hydrogenated fullerene-like carbon grains, by O and H atom bombardment. The formation of H{sub 2}CO is an indication formore » a possible methanol formation route in such systems.« less
Modeling of Hydrate Formation Mode in Raw Natural Gas Air Coolers
NASA Astrophysics Data System (ADS)
Scherbinin, S. V.; Prakhova, M. Yu; Krasnov, A. N.; Khoroshavina, E. A.
2018-05-01
Air cooling units (ACU) are used at all the gas fields for cooling natural gas after compressing. When using ACUs on raw (wet) gas in a low temperature condition, there is a danger of hydrate plug formation in the heat exchanging tubes of the ACU. To predict possible hydrate formation, a mathematical model of the air cooler thermal behavior used in the control system shall adequately calculate not only gas temperature at the cooler's outlet, but also a dew point value, a temperature at which condensation, as well as the gas hydrate formation point, onsets. This paper proposes a mathematical model allowing one to determine the pressure in the air cooler which makes hydrate formation for a given gas composition possible.
In situ synthesis and catalytic application of reduced graphene oxide supported cobalt nanowires
NASA Astrophysics Data System (ADS)
Xu, Zhiqiang; Long, Qin; Deng, Yi; Liao, Li
2018-05-01
Controlled synthesis of magnetic nanocomposite with outstanding catalytic performances is a promising strategy in catalyst industry. We proposed a novel concept for fabrication of reduced graphene oxide-supported cobalt nanowires (RGO/Co-NWs) nanocomposite as high-efficient magnetic catalyst. Unlike the majority of experiments necessitating harsh synthesis conditions such as high-pressure, high-temperature and expensive template, here the RGO/Co-NWs were successfully prepared in aqueous solution under mild conditions with the assistance of external magnetic field. The synthetic process was facile and external magnetic force was adopted to induce the unidirectional self-assembly of cobalt crystals on graphene oxide to form RGO/Co-NWs. The possible formation mechanism laid on the fact that the dipole magnetic moments of the nanoparticles were aligned along the magnetic induction lines with the external magnetic field direction resulting in the formation of nanowires elongating in the direction of the magnetization axis. Simultaneously, a series of controlled reactions were conducted to illuminate the effect of graphene oxide, external magnetic field and PVP on the morphology and size of RGO/Co-NWs in the present approach. More importantly, the nanocomposite exhibited a high catalytic performance towards ammonia borane. Hence the novel nanocomposite holds a great potential for technological applications such as catalyst industry.
Web servlet-assisted, dial-in flow cytometry data analysis.
Battye, F
2001-02-01
The obvious benefits of centralized data storage notwithstanding, the size of modern flow cytometry data files discourages their transmission over commonly used telephone modem connections. The proposed solution is to install at the central location a web servlet that can extract compact data arrays, of a form dependent on the requested display type, from the stored files and transmit them to a remote client computer program for display. A client program and a web servlet, both written in the Java programming language, were designed to communicate over standard network connections. The client program creates familiar numerical and graphical display types and allows the creation of gates from combinations of user-defined regions. Data compression techniques further reduce transmission times for data arrays that are already much smaller than the data file itself. For typical data files, network transmission times were reduced more than 700-fold for extraction of one-dimensional (1-D) histograms, between 18 and 120-fold for 2-D histograms, and 6-fold for color-coded dot plots. Numerous display formats are possible without further access to the data file. This scheme enables telephone modem access to centrally stored data without restricting flexibility of display format or preventing comparisons with locally stored files. Copyright 2001 Wiley-Liss, Inc.
Advantages of low pH and limited oxygenation in arsenite removal from water by zero-valent iron.
Klas, Sivan; Kirk, Donald W
2013-05-15
The removal of toxic arsenic species from contaminated waters by zero-valent iron (ZVI) has drawn considerable attention in recent years. In this approach, arsenic ions are mainly removed by adsorption to the iron corrosion products. Reduction to zero-valent arsenic on the ZVI surface is possible in the absence of competing oxidants and can reduce arsenic mobility and sludge formation. However, associated removal rates are relatively low. In the current study, simultaneous high reduction and removal rates of arsenite (H3AsO3), the more toxic and mobile environmentally occurring arsenic species, was demonstrated by reacting it with ZVI under limited aeration and relatively low pH. 90% of the removed arsenic was attached to the ZVI particles and 60% of which was in the elemental state. Under the same non-acidic conditions, only 40-60% of the removed arsenic was attached to the ZVI with no change in arsenic oxidation state. Under anaerobic conditions, reduction occurred but total arsenic removal rate was significantly lower and ZVI demand was higher. The effective arsenite removal under acidic oxygen-limited conditions was explained by formation of Fe(II)-solid intermediate on the ZVI surface that provided high surface area and reducing power. Copyright © 2013 Elsevier B.V. All rights reserved.
Alhadidi, Qasim; Nash, Kevin M; Alaqel, Saleh; Sayeed, Muhammad Shahdaat Bin; Shah, Zahoor A
2018-05-08
Intracerebral hemorrhage (ICH) resulting from the rupture of the blood vessels in the brain is associated with significantly higher mortality and morbidity. Clinical studies focused on alleviating the primary injury, hematoma formation and expansion, were largely ineffective, suggesting that secondary injury-induced inflammation and the formation of reactive species also contribute to the overall injury process. In this study, we explored the effects of cofilin knockdown in a mouse model of ICH. Animals given stereotaxic injections of cofilin siRNA, 72-h prior to induction of ICH by collagenase injection within the area of siRNA administration showed significantly decreased cofilin expression levels and lower hemorrhage volume and edema, and the animals performed significantly better in neurobehavioral tasks i.e., rotarod, grip strength and neurologic deficit scores. Cofilin siRNA knocked-down mice had reduced ICH-induced DNA fragmentation, blood-brain barrier disruption and microglial activation, with a concomitant increase in astrocyte activation. Increased expression of pro-survival proteins and decreased markers of oxidative stress were also observed in cofilin siRNA-treated mice possibly due to the reduced levels of cofilin. Our results suggest that cofilin plays a major role in ICH-induced secondary injury, and could become a potential therapeutic target. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
A conserved role for calpains during myoblast fusion.
Buffolo, Marcio; Batista Possidonio, Ana Claudia; Mermelstein, Claudia; Araujo, Helena
2015-07-01
Myoblast fusion is a key step during skeletal muscle differentiation as it enables the formation of contractile fibers. Calpains have been implicated in some aspects of myogenesis in mammals, but whether they exert a conserved function during myoblast fusion has not been investigated. Here, we studied Calpain function in two models of myogenesis: in vitro analysis of chick myogenic cultures and in vivo analysis of Drosophila melanogaster muscle development. First we showed that Calpain A is important for fly muscle function. In addition, Calpain A knockdown reduced lateral body wall muscle length and width, as well as the number of nuclei in dorsal oblique muscles, consistent with fewer cells fusing to form fibers. Treatment of chick cultures with a selective Calpain inhibitor led to the formation of thinner myotubes containing a reduced number of nuclei, consistent with decreased myoblast fusion. Dynamic changes in IκBα labeling and transfection with a dominant-negative IκBα suggest a role for the NFκB pathway during chick myogenesis and a possible role of Calpains in attenuating NFκB signals that restrict myoblast fusion. Our data suggest that different model organisms may be used to study the role of Calpains in regular myogenesis and Calpain-related muscular degenerative disorders. © 2015 Wiley Periodicals, Inc.
Nucleic acids, proteins, and chirality
NASA Technical Reports Server (NTRS)
Usher, D. A.; Profy, A. T.; Walstrum, S. A.; Needels, M. C.; Bulack, S. C.; Lo, K. M.
1984-01-01
The present investigation is concerned with experimental results related, in one case, to the chirality of nucleotides, and, in another case, to the possibility of a link between the chirality of nucleic acids, and that of peptides. It has been found that aminoacylation of the 'internal' hydroxyl group of a dinucleoside monophosphate can occur stereoselectively. However, this reaction has not yet been made a part of a working peptide synthesis scheme. The formation and cleavage of oligonucleotides is considered. In the event of the formation of a helical complex between the oligonucleotide and the polymer, 1-prime,5-prime-bonds in the oligomer are found to become more resistant towards cleavage. The conditions required for peptide bond formation are examined, taking into account the known structures of RNA and possible mechanisms for prebiotic peptide bond formation. The possibility is considered that the 2-prime,5-prime-internucleotide linkage could have played an important part in the early days of biological peptide synthesis.
Magnetic chalcogenides in 3 and lower dimensions
NASA Astrophysics Data System (ADS)
Furdyna, J. K.; Dong, S.-N.; Lee, S.; Liu, X.; Dobrowolska, M.
2018-06-01
In this article we review magnetic phenomena that occur in the chalcogenide family involving transition metals. Magnetic properties displayed by bulk 3D chalcogenides compounds and alloys produced by equilibrium growth methods are discussed. 2D magnetic chalcogenide systems such as epitaxial films and more complex multilayers, whose formation is made possible by epitaxial methods and/or by van der Waals epitaxy, are presented in detail. We present a brief overview of magnetic effects emerging as the dimensionality of chalcogenide materialss is reduced to 1D (nanowires and related structures) and to zero-D (quantum dots formed by both top-down and bottom-up methods).
NASA Technical Reports Server (NTRS)
Rogozkin, V. D.; Chertkov, K. S.; Nikolov, I.
1974-01-01
The basic characteristics of prolonged radiation - increased tolerance of radiation injury - are attributed to cellular kinetics; as dose rate is reduced, the population rate is not disturbed, particularly that of stem cells which makes it possible for the organism to tolerate higher radiation loads. It is concluded that this effect makes approved radio protectors, whose effect contains an established cytostatic component, unsuitable for prolonged radiation. It is better to correct the stem pool formation process by either accelerating the proliferation of cells or limiting the effect of stimuli causing cells to lose colony forming properties.
Organic matter in meteorites and comets - Possible origins
NASA Technical Reports Server (NTRS)
Anders, Edward
1991-01-01
At least six extraterrestrial environments may have contributed organic compounds to meteorites and comets: solar nebula, giant-planet subnebulae, asteroid interiors containing liquid water, carbon star atmospheres, and diffuse or dark interstellar clouds. The record in meteorites is partly obscured by pervasive reheating that transformed much of the organic matter to kerogen; nonetheless, it seems that all six formation sites contributed. For comets, the large abundance of HCHO, HCN, and unsaturated hydrocarbons suggests an interstellar component of 50 percent or more, but the contributions of various interstellar processes, and of a solar-nebula component, are hard to quantify. A research program is outlined that may help reduce these uncertainties.
Metal-halide mixtures for latent heat energy storage
NASA Technical Reports Server (NTRS)
Chen, K.; Manvi, R.
1981-01-01
Alkali metal and alkali halide mixtures are identified which may be suitable for thermal energy storage at temperatures above 600 C. The use of metal-halides is appropriate because of their tendency to form two immiscible melts with a density difference, which reduces scale formation and solidification on heat transfer surfaces. Also, the accumulation of phase change material along the melt interface is avoided by the self-dispersing characteristic of some metal-halides, in particular Sr-SrCl2, Ba-BaCl2, and Ba-BaBr2 mixtures. Further advantages lie in their high thermal conductivities, ability to cope with thermal shock, corrosion inhibition, and possibly higher energy densities.
Dean, M C; Wood, B A
1981-01-01
This study of the developing pongid dentition is based on cross-sectional radiographic data of juvenile Pan troglodytes, Gorilla gorilla, and Pongo pygmaeus skulls. Comparisons with developmental features of the human dentition are made, and possible explanations for the formation of larger teeth within the reduced pongid growth period are discussed. The data presented in this study provide an alternative method for ageing individual pongid crania in comparative cross-sectional growth studies. The advantages of this method are demonstrated by ageing individual Gorilla crania form radiographs and plotting relative dental age against length of the jaw.
Effects of meat juice on biofilm formation of Campylobacter and Salmonella.
Li, Jiaqi; Feng, Jinsong; Ma, Lina; de la Fuente Núñez, César; Gölz, Greta; Lu, Xiaonan
2017-07-17
Campylobacter and Salmonella are leading causes of foodborne illnesses worldwide, vastly harboured by raw meat as their common food reservoir. Both microbes are prevalent in meat processing environments in the form of biofilms that contribute to cross-contamination and foodborne infection. This study applied raw meat juice (chicken juice and pork juice) as a minimally processed food model to study its effects on bacterial biofilm formation. Meat juice was collected during the freeze-thaw process of raw meat and sterilized by filtration. In 96-well polystyrene plates and glass chambers, supplementation of over 25% meat juice (v/v) in laboratory media led to an increase in biofilm formation of Campylobacter and Salmonella. During the initial attachment stage of biofilm development, more bacterial cells were present on surfaces treated with meat juice residues compared to control surfaces. Meat juice particulates on abiotic surfaces facilitated biofilm formation of Campylobacter and Salmonella under both static and flow conditions, with the latter being assessed using a microfluidic platform. Further, the deficiency in biofilm formation of selected Campylobacter and Salmonella mutant strains was restored in the presence of meat juice particulates. These results suggested that meat juice residues on the abiotic surfaces might act as a surface conditioner to support initial attachment and biofilm formation of Campylobacter and Salmonella. This study sheds light on a possible survival mechanism of Campylobacter and Salmonella in meat processing environments, and indicates that thorough cleaning of meat residues during meat production and handling is critical to reduce the bacterial load of Campylobacter and Salmonella. Copyright © 2017 Elsevier B.V. All rights reserved.
Dust formation at low metallicity
NASA Astrophysics Data System (ADS)
Ferrarotti, A. S.; Gail, H.-P.
Stars between 3Modot and 25Modot reach their final stages of stellar evolution either as AGB (asymptotic giant branch) stars and finally become white dwarfs, or end in a supernova explosion. The last evolutionary stages, shortly before the final state, are regularly accompanied by stellar winds which lead to substantial mass loss and develop optically very thick dust shells. Mass loss for smaller and medium sized stars higher up on the AGB depends predominantly on the metallicity of the star. For Pop I metallicity, the mass loss is caused by dust condensation. This process is not possible for stars of small Z. Thus, their final evolution strongly depends on the possibility of dust formation. Our research focuses on the dependence of dust formation of the first stellar generation on Z and on the initial mass of the star. Furthermore, we investigate when dust formation becomes possible in stellar winds and the effects this process has on the evolution of the star at the final evolutionary stages. With synthetic AGB evolution models some important issues in stellar evolution can tried to be answered: (1) mass loss on the AGB, (2) the shift of the limit (γ>1) for the onset of dust driven winds with Z and (3) the critical Z when dust formation becomes possible.
Investigating secondary aerosol formation from agricultural amines and reduced sulfur compounds
USDA-ARS?s Scientific Manuscript database
Gas phase amines and reduced sulfur compounds are often co-emitted from agricultural processes. Amines have been recently recognized as potentially major sources of agricultural aerosol formation, while the reduced sulfur compounds are largely ignored. There is a severe lack of knowledge and under...
Cheng, Tao; Xiao, Hai; Goddard, William A
2016-10-11
Copper is the only elemental metal that reduces a significant fraction of CO 2 to hydrocarbons and alcohols, but the atomistic reaction mechanism that controls the product distributions are not known because it has not been possible to detect the reaction intermediates on the electrode surface experimentally, or carry out Quantum Mechanics (QM) calculations with a realistic description of the electrolyte (water). Here, we carry out Quantum Mechanics (QM) calculations with an explicit description of water on the Cu(100) surface (experimentally shown to be stable under CO2RR conditions) to examine the initial reaction pathways to form CO and formate (HCOO - ) from CO 2 through free energy calculations at 298K and pH 7. We find that CO formation proceeds from physisorbed CO 2 to chemisorbed CO 2 (*CO 2 δ- ), with a free energy barrier of ΔG ‡ =0.43 eV, the rate determining step (RDS). The subsequent barriers of protonating *CO 2 δ- to form COOH* and then dissociating COOH* to form *CO are 0.37 eV and 0.30 eV, respectively. HCOO - formation proceeds through a very different pathway in which physisorbed CO 2 reacts directly with a surface H* (along with electron transfer), leading to ΔG ‡ = 0.80 eV. Thus, the competition between CO formation and HCOO - formation occurs in the first electron transfer step. On Cu(100), the RDS for CO formation is lower, making CO the predominant product. Thus, to alter the product distribution we need to control this first step of CO 2 binding, which might involve alloying or changing the structure at the nanoscale.
Structural and Mössbauer characterization of the ball milled Fe x(Cr 2O 3) 1- x system
NASA Astrophysics Data System (ADS)
Biondo, Valdecir; de Medeiros, Suzana Nóbrega; Paesano, Andrea, Jr.; Ghivelder, Luis; Hallouche, Bachir; da Cunha, João Batista Marimon
2009-08-01
The Fe x(Cr 2O 3) 1- x system, with 0.10 ≤ X ≤ 0.80, was mechanically processed for 24 h in a high-energy ball-mill. In order to examine the possible formation of iron-chromium oxides and alloys, the milled samples were, later, thermally annealed in inert (argon) and reducing (hydrogen) atmospheres. The as-milled and annealed products were characterized by X-ray diffraction, Mössbauer spectroscopy, transmission electron microscopy and magnetization. The as-milled samples showed the formation of an Fe 1+ YCr 2- YO 4- δ nanostructured and disordered spinel phase, the α 1-Fe(Cr) and α 2-Cr(Fe) solid solutions and the presence of non-exhausted precursors. For the samples annealed in inert atmosphere, the chromite (FeCr 2O 4) formation and the recrystallization of the precursors were verified. The hydrogen treated samples revealed the reduction of the spinel phase, with the phase separation of the chromia phase and retention of the Fe-Cr solid solutions. All the samples, either as-milled or annealed, presented the magnetization versus applied field curves typical for superparamagnetic systems.
The fine nebula dust component: A key to chondrule formation by lightning
NASA Technical Reports Server (NTRS)
Wasson, J. T.; Rasmussen, K. L.
1994-01-01
Our assessment indicates that chondrule formation by lightning is indeed possible in the solar nebula. Previously the overriding objection to the lightning process of chondrule formation has been that low nebula pressures prevented the buildup of large potential differences. The breakdown potential is controlled by the mean free live distance of an electron. We calculate the mean free live distance in pure H2 gas at 2 AU to be approximately 500 m. A fine dust load constituting 4 wt% of the dust in the dusty midplane region leads to a reduced mean free live distance of only 7 m. Very conservatively we estimate the breakdown potential to be at least 10, 1.8, and 0.7 V/cm at 1, 2, and 3 AU respectively. We set the radius of the lightning bolt equal to the kinetic mean free path of the gas. Our calculations based on electron drift velocities in a fully ionized H2 gas show that first strike durations are 0.96, 3.4, and 7.0 ms at 1, 2, and 3 AU respectively, in much better accordance with the meteoritic evidence than previous estimates of 10-100 s.
Investigation of flavonoid influence on peroxidation processes intensity in the blood
NASA Astrophysics Data System (ADS)
Navolokin, N. A.; Mudrak, D. A.; Plastun, I. L.; Bucharskaya, A. B.; Agandeeva, K. E.; Ivlichev, A. V.; Tychina, S. A.; Afanasyeva, G. A.; Polukonova, N. V.; Maslyakova, G. N.
2017-03-01
Influence of flavonoids on the intensity of peroxidation processes in the blood is investigated by numerical modeling and by experiment in vivo. As an example we consider the effects of flavonoid-containing extract of Helichrysum arenarium L. with antitumor activity on serum of rats with transplanted liver cancer PC-1. It was found that the content of malondialdehyde, lipid hydroperoxides and average mass molecules were decreased in animals with transplanted liver cancer after intramuscular and oral administration of Helichrysum arenarium L extract in a dose of 1000 mg/mL. The extract reduces the intensity of lipid peroxidation processes in animals. The compound formation possibility of flavonoids and products of lipid peroxidation is investigated by numerical simulations. Using the density functional theory method of molecular modeling, we analyze hydrogen bonds formation and their influence on IR - spectra and structure of molecular complex which is formed due to interaction between flavonoids and products of lipid peroxidation processes on example of naringine and malondialdehyde. We have found that naringine can form a steady molecular complex with malondialdehyde by hydrogen bonds formation. Thus, the application of Helichrysum arenarium L. extract for suppression processes of lipid peroxidation and activation of enzymatic and non-enzymatic antioxidant systems is promising.
Electronic structure of strongly reduced (1 ‾ 1 1) surface of monoclinic HfO2
NASA Astrophysics Data System (ADS)
Cheng, YingXing; Zhu, Linggang; Ying, Yile; Zhou, Jian; Sun, Zhimei
2018-07-01
Material surface is playing an increasingly important role in electronic devices as their size down to nanoscale. Here, by first-principles calculations we studied the surface oxygen-vacancies (Vos) induced electronic-structure variation of HfO2 , in order to explore its potential applications in surface-controlled electronic devices. Firstly, it is found that single Vo tends to segregate onto the surface and attracts each other as they form pairs, making the formation of vacancies-contained functional surface possible. Then extensive Vo-chains whose formation/rupture can represent the high/low conductivity state are constructed. The electronic states induced by the Vos remain localized in the band-gap region for most of the Vo-chains studied here. A transition to a metallic conductance is found in metastable Vo-chain with formation energy increased by 0.25 eV per Vo. Moreover, we highlight the significance of the Hubbard U correction for density functional theory when studying the electronic-structure based conductance in the oxides. By comprehensive calculations, we find a conductivity-stability dilemma of the Vo-chains, providing guideline for understanding and designing the electronic devices based on HfO2 surface.
Mutations in Caenorhabditis elegans him-19 Show Meiotic Defects That Worsen with Age
Tang, Lois; Machacek, Thomas; Mamnun, Yasmine M.; Penkner, Alexandra; Gloggnitzer, Jiradet; Wegrostek, Christina; Konrat, Robert; Loidl, Josef; Jantsch, Verena
2010-01-01
From a screen for meiotic Caenorhabditis elegans mutants based on high incidence of males, we identified a novel gene, him-19, with multiple functions in prophase of meiosis I. Mutant him-19(jf6) animals show a reduction in pairing of homologous chromosomes and subsequent bivalent formation. Consistently, synaptonemal complex formation is spatially restricted and possibly involves nonhomologous chromosomes. Also, foci of the recombination protein RAD-51 occur delayed or cease altogether. Ultimately, mutation of him-19 leads to chromosome missegregation and reduced offspring viability. The observed defects suggest that HIM-19 is important for both homology recognition and formation of meiotic DNA double-strand breaks. It therefore seems to be engaged in an early meiotic event, resembling in this respect the regulator kinase CHK-2. Most astonishingly, him-19(jf6) hermaphrodites display worsening of phenotypes with increasing age, whereas defects are more severe in female than in male meiosis. This finding is consistent with depletion of a him-19-dependent factor during the production of oocytes. Further characterization of him-19 could contribute to our understanding of age-dependent meiotic defects in humans. PMID:20071466
Method for the measurement of susceptibility to decubitus ulcer formation.
Meijer, J H; Schut, G L; Ribbe, M W; Goovaerts, H G; Nieuwenhuys, R; Reulen, J P; Schneider, H
1989-09-01
A method for measuring the susceptibility of a patient to develop decubitus ulcers is described and initially evaluated. It is based on an indirect, noninvasive measurement of the transient regional blood flow response after a test pressure load which simulates the external stimulus for pressure-sore formation. This method was developed to determine the individual risk of a patient and to study the subfactors which contribute to the susceptibility. This would also offer the possibility of evaluating the effect of preventive treatment aimed at reducing the susceptibility. The method was found to discriminate between preselected elderly patients at risk on the one hand, and non-risk patients and healthy young adults on the other hand. No differences in blood flow responses were found between the non-risk elderly patients and the healthy young adults. This suggests that age per se is not a factor in the formation of pressure sores. In the risk group the recovery time after pressure relief was found to be three times as long as the duration of the pressure exercise. This indicates that the recovery time after pressure exercise may be as important as the period of pressure exercise in deducing the risk of developing decubitus ulcers.
NASA Astrophysics Data System (ADS)
Li, Xiao-Fei; Lian, Ke-Yan; Liu, Lingling; Wu, Yingchao; Qiu, Qi; Jiang, Jun; Deng, Mingsen; Luo, Yi
2016-03-01
Nitrogen-doped graphene (N-graphene) has attractive properties that has been widely studied over the years. However, its possible formation process still remains unclear. Here, we propose a highly feasible formation mechanism of the graphitic-N doing in thermally treated graphene with ammonia by performing ab initio molecular dynamic simulations at experimental conditions. Results show that among the commonly native point defects in graphene, only the single vacancy 5-9 and divacancy 555-777 have the desirable electronic structures to trap N-containing groups and to mediate the subsequent dehydrogenation processes. The local structure of the defective graphene in combining with the thermodynamic and kinetic effect plays a crucial role in dominating the complex atomic rearrangement to form graphitic-N which heals the corresponding defect perfectly. The importance of the symmetry, the localized force field, the interaction of multiple trapped N-containing groups, as well as the catalytic effect of the temporarily formed bridge-N are emphasized, and the predicted doping configuration agrees well with the experimental observation. Hence, the revealed mechanism will be helpful for realizing the targeted synthesis of N-graphene with reduced defects and desired properties.
Schinke, Reinhard; Fleurat-Lessard, Paul
2005-03-01
The effect of zero-point energy differences (DeltaZPE) between the possible fragmentation channels of highly excited O(3) complexes on the isotope dependence of the formation of ozone is investigated by means of classical trajectory calculations and a strong-collision model. DeltaZPE is incorporated in the calculations in a phenomenological way by adjusting the potential energy surface in the product channels so that the correct exothermicities and endothermicities are matched. The model contains two parameters, the frequency of stabilizing collisions omega and an energy dependent parameter Delta(damp), which favors the lower energies in the Maxwell-Boltzmann distribution. The stabilization frequency is used to adjust the pressure dependence of the absolute formation rate while Delta(damp) is utilized to control its isotope dependence. The calculations for several isotope combinations of oxygen atoms show a clear dependence of relative formation rates on DeltaZPE. The results are similar to those of Gao and Marcus [J. Chem. Phys. 116, 137 (2002)] obtained within a statistical model. In particular, like in the statistical approach an ad hoc parameter eta approximately 1.14, which effectively reduces the formation rates of the symmetric ABA ozone molecules, has to be introduced in order to obtain good agreement with the measured relative rates of Janssen et al. [Phys. Chem. Chem. Phys. 3, 4718 (2001)]. The temperature dependence of the recombination rate is also addressed.
Arnold, Mayara; Batista, Jacimaria; Dickenson, Eric; Gerrity, Daniel
2018-07-01
The purpose of this research was to investigate the impacts of ozone dose and empty bed contact time (EBCT) in ozone-biofiltration systems on disinfection byproduct (DBP) formation potential. The data were used to evaluate the possibility of using DBP formation potential as an alternative guideline for total organic carbon (TOC) removal in potable reuse applications. A pilot-scale ozone-biofiltration system was operated with O 3 /TOC ratios ranging from 0.1 to 2.25 and EBCTs ranging from 2 to 20 min. The biofiltration columns contained anthracite or biological activated carbon (BAC). Bench-scale chlorination was performed using the uniform formation conditions (UFC) approach, and quenched samples were analyzed for total trihalomethanes (TTHMs) and regulated haloacetic acids (HAA5s). The data demonstrated that ozone-biofiltration achieved TOC removals ranging from ∼10 to 30%, depending on operational conditions, but biofiltration without ozone generally achieved <10% TOC removal. UFC testing demonstrated that ozone alone was efficient in transforming bulk organic matter and reducing DBP formation potential by 10-30%. The synergistic combination of ozone and biofiltration achieved average overall reductions in TTHM and HAA5 formation potential of 26% and 51%, respectively. Finally, a maximum TOC concentration of 2.0 mg/L was identified as a recommended treatment target for reliable compliance with TTHM and HAA5 regulations for potable reuse systems in the United States. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dustan, A C; Cohen, B; Petrie, J G
2005-05-30
An understanding of the mechanisms which control solids formation can provide information on the characteristics of the solids which are formed. The nature of the solids formed in turn impacts on dewatering behaviour. The 'upstream' solids formation determines a set of suspension characteristics: solids concentration, particle size distribution, solution ionic strength and electrostatic surface potential. These characteristics together define the suspension's rheological properties. However, the complicated interdependence of these has precluded the prediction of suspension rheology from such a fundamental description of suspension characteristics. Recent shear yield stress models, applied in this study to compressive yield, significantly reduce the empiricism required for the description of compressive rheology. Suspension compressibility and permeability uniquely define the dewatering behaviour, described in terms of settling, filtration and mechanical expression. These modes of dewatering may be described in terms of the same fundamental suspension mechanics model. In this way, it is possible to link dynamically the processes of solids formation and dewatering of the resultant suspension. This, ultimately, opens the door to improved operability of these processes. In part I of this paper we introduced an integrated system model for solids formation and dewatering. This model was demonstrated for the upstream processes using experimental data. In this current paper models of colloidal interactions and dewatering are presented and compared to experimental results from batch filtration tests. A novel approach to predicting suspension compressibility and permeability using a single test configuration is presented and tested.
Water-wetting surfaces as hydrate promoters during transport of carbon dioxide with impurities.
Kuznetsova, Tatiana; Jensen, Bjørnar; Kvamme, Bjørn; Sjøblom, Sara
2015-05-21
Water condensing as liquid drops within the fluid bulk has traditionally been the only scenario accepted in the industrial analysis of hydrate risks. We have applied a combination of absolute thermodynamics and molecular dynamics modeling to analyze the five primary routes of hydrate formation in a rusty pipeline carrying dense carbon dioxide with methane, hydrogen sulfide, argon, and nitrogen as additional impurities. We have revised the risk analysis of all possible routes in accordance with the combination of the first and the second laws of thermodynamics to determine the highest permissible content of water. It was found that at concentrations lower than five percent, hydrogen sulfide will only support the formation of carbon dioxide-dominated hydrate from adsorbed water and hydrate formers from carbon dioxide phase rather than formation in the aqueous phase. Our results indicate that hydrogen sulfide leaving carbon dioxide for the aqueous phase will be able to create an additional hydrate phase in the aqueous region adjacent to the first adsorbed water layer. The growth of hydrate from different phases will decrease the induction time by substantially reducing the kinetically limiting mass transport across the hydrate films. Hydrate formation via adsorption of water on rusty walls will play the decisive role in hydrate formation risk, with the initial concentration of hydrogen sulfide being the critical factor. We concluded that the safest way to eliminate hydrate risks is to ensure that the water content of carbon dioxide is low enough to prevent water dropout via the adsorption mechanism.
The Generation of Barriers to Melt Ascent in the Martian Lithosphere
NASA Astrophysics Data System (ADS)
Schools, Joe W.; Montési, Laurent G. J.
2018-01-01
Planetary mantles can be regarded as an aggregate of two phases: a solid, porous matrix and a liquid melt. Melt travels rapidly upward through the matrix due to its buoyancy. When this melt enters the colder lithosphere, it begins to crystallize. If crystallization happens at a high rate, the newly formed crystals can clog the pore space, reducing its permeability to essentially zero. This zone of zero permeability is the permeability barrier. We use the MELTS family of thermodynamic calculators to determine melt compositions and the crystallization sequence of ascending melt throughout Martian history and simulate the formation of permeability barriers. At lower strain rates (10-17-10-15 s-1) permeability barriers form deep in the lithosphere, possibly contributing to the formation of localized volcanic edifices on the Martian surface once fracturing or thermal erosion enables melt to traverse the lithosphere. Higher strain rates (10-13 s-1) yield shallower permeability barriers, perhaps producing extensive lava flows. Permeability barrier formation is investigated using an anhydrous mantle source or mantle sources that include up to 1,000 ppm H2O. Introducing even small amounts of water (25 ppm H2O) reduces mantle viscosity in a manner similar to increasing the strain rate and results in a shallower barrier than in the anhydrous case. Large amounts of water (1,000 ppm H2O) yield very shallow weak barriers or no barriers at all. The depth of the permeability barrier has evolved through time, likely resulting in a progression in the style of surface volcanism from widespread flows to massive, singular volcanoes.
Proximity of SCG10 and prion protein in membrane rafts.
Iwamaru, Yoshifumi; Kitani, Hiroshi; Okada, Hiroyuki; Takenouchi, Takato; Shimizu, Yoshihisa; Imamura, Morikazu; Miyazawa, Kohtaro; Murayama, Yuichi; Hoover, Edward A; Yokoyama, Takashi
2015-12-10
The conversion of normal cellular prion protein (PrPC) into its pathogenic isoform (PrPSc) is an essential event in prion pathogenesis. In culture models, membrane rafts are suggested to play a critical role in PrPSc formation. To identify the candidate molecules capable of interacting with PrPC and facilitating PrPSc formation in membrane rafts, we applied a novel biochemical labelling method termed 'enzyme-mediated activation of radical sources (EMARS)'. EMARS was applied to the Lubrol WX insoluble detergent-resistant membrane fractions from mouse neuroblastoma (N2a) cells in which the surface PrPC was labeled with HRP-conjugated anti-PrP antibody. Two-dimensional Western blots of these preparations revealed biotinylated spots of approximately 20 kDa with an isoelectric point of 8.0-9.0. Liquid chromatography-tandem mass spectrometry analysis resulted in the identification of peptides containing SCG10, the neuron-specific microtubule regulator. Proximity of SCG10 and PrPC was confirmed using proximity ligation assay and co-immunoprecipitation assay. Transfection of persistently 22L prion infected N2a cells with SCG10 small interfering RNA reduced SCG10 expression but did not prevent PrPSc accumulation, indicating that SCG10 appears to be unrelated to PrPSc formation of 22L prion. Immunofluorescence and Western blot analyses showed reduced levels of SCG10 in the hippocampus of prion-infected mice, suggesting a possible association between SCG10 levels and the prion neuropathogenesis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Effect of safflower oil on the protective properties of the in situ formed salivary pellicle.
Hannig, C; Wagenschwanz, C; Pötschke, S; Kümmerer, K; Kensche, A; Hoth-Hannig, W; Hannig, M
2012-01-01
The prevalence of dental erosion is still increasing. A possible preventive approach might be rinsing with edible oils to improve the protective properties of the pellicle layer. This was tested in the present in situ study using safflower oil. Pellicle formation was carried out in situ on bovine enamel slabs fixed buccally to individual upper jaw splints (6 subjects). After 1 min of pellicle formation subjects rinsed with safflower oil for 10 min, subsequently the samples were exposed in the oral cavity for another 19 min. Enamel slabs without oral exposure and slabs exposed to the oral cavity for 30 min without any rinse served as controls. After pellicle formation in situ, slabs were incubated in HCl (pH 2; 2.3; 3) for 120 s, and kinetics of calcium and phosphate release were measured photometrically (arsenazo III, malachite green). Furthermore, the ultrastructure of the pellicles was evaluated by transmission electron microscopy (TEM). Pellicle alone reduced erosive calcium and phosphate release significantly at all pH values. Pellicle modification by safflower oil resulted in an enhanced calcium loss at all pH values and caused an enhanced phosphate loss at pH 2.3. TEM indicated scattered accumulation of lipid micelles and irregular vesicle-like structures attached to the oil-treated pellicle layer. Acid etching affected the ultrastructure of the pellicle irrespective of oil rinsing. The protective properties of the pellicle layer against extensive erosive attacks are limited and mainly determined by pH. The protective effects are modified and reduced by rinses with safflower oil. Copyright © 2012 S. Karger AG, Basel.
[Multiple emulsions; bioactive compounds and functional foods].
Jiménez-Colmenero, Francisco
2013-01-01
The continued appearance of scientific evidence about the role of diet and/or its components in health and wellness, has favored the emergence of functional foods which currently constitute one of the chief factors driving the development of new products. The application of multiple emulsions opens new possibilities in the design and development of functional foods. Multiple emulsions can be used as an intermediate product (food ingredient) into technological strategies normally used in the optimization of the presence of bioactive compounds in healthy and functional foods. This paper presents a summary of the types, characteristics and formation of multiple emulsions, possible location of bioactive compounds and their potential application in the design and preparation of healthy and functional foods. Such applications are manifested particularly relevant in relation to quantitative and qualitative aspects of lipid material (reduced fat/calories and optimization of fatty acid profile), encapsulation of bioactive compounds mainly hydrophilic and sodium reduction. This strategy offers interesting possibilities regarding masking flavours and improving sensory characteristics of foods. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.
Ma, Peiyan; Chen, Anliang; Wu, Yan; Fu, Zhengyi; Kong, Wei; Che, Liyuan; Ma, Ruifang
2014-03-01
A cost-effective Ag(I)-bovine serum albumin (BSA) supramolecular hydrosol strategy was utilized to assemble Ag3PO4 nanospheres onto reduced graphene oxide (rGO) sheets. The obtained composites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, UV-vis absorption spectroscopy and Fourier transform infrared spectroscopy. Compared with the pure Ag3PO4 crystals and Ag3PO4 particles prepared with Ag(I)-BSA hydrosol as precursor, the Ag3PO4/rGO composites obtained with different content of graphene oxide indicated improved visible-light-driven photocatalysis activity for the decomposition of Rhodamine B aqueous solution. The results pointed to the possibility of synthesizing graphene-based photocatalysts by metal ion-BSA hydrosol. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kuriyama, Kenichi; Honma, Motoyasu; Yoshiike, Takuya; Kim, Yoshiharu
2013-07-01
Sleep deprivation immediately following an aversive event reduces fear by preventing memory consolidation during homeostatic sleep. This suggests that acute insomnia might act prophylactically against the development of posttraumatic stress disorder (PTSD) even though it is also a possible risk factor for PTSD. We examined total sleep deprivation and memory suppression to evaluate the effects of these interventions on subsequent aversive memory formation and fear conditioning. Active suppression of aversive memory impaired retention of event memory. However, although the remembered fear was more reduced in sleep-deprived than sleep-control subjects, suppressed fear increased, and seemed to abandon the sleep-dependent plasticity of fear. Active memory suppression, which provides a psychological model for Freud's ego defense mechanism, enhances fear and casts doubt on the potential of acute insomnia as a prophylactic measure against PTSD. Our findings bring into question the role of sleep in aversive-memory consolidation in clinical PTSD pathophysiology.
Water induced sediment levitation enhances downslope transport on Mars.
Raack, Jan; Conway, Susan J; Herny, Clémence; Balme, Matthew R; Carpy, Sabrina; Patel, Manish R
2017-10-27
On Mars, locally warm surface temperatures (~293 K) occur, leading to the possibility of (transient) liquid water on the surface. However, water exposed to the martian atmosphere will boil, and the sediment transport capacity of such unstable water is not well understood. Here, we present laboratory studies of a newly recognized transport mechanism: "levitation" of saturated sediment bodies on a cushion of vapor released by boiling. Sediment transport where this mechanism is active is about nine times greater than without this effect, reducing the amount of water required to transport comparable sediment volumes by nearly an order of magnitude. Our calculations show that the effect of levitation could persist up to ~48 times longer under reduced martian gravity. Sediment levitation must therefore be considered when evaluating the formation of recent and present-day martian mass wasting features, as much less water may be required to form such features than previously thought.
Click chemistry modification of natural keratin fibers for sustained shrink-resist performance.
Yu, Dan; Cai, Jackie Y; Church, Jeffrey S; Wang, Lijing
2015-01-01
This paper introduces a novel chemical treatment for achieving sustained shrink-resist performance on natural keratin fibers. The new treatment involves the controlled reduction of keratin in the cuticle region of the fiber, and the application of a water soluble diacrylate, namely glycerol 1,3-diglycerolate diacrylate (GDA), on the reduced keratin substrate. The acrylate groups of the GDA react with cysteine residues in the reduced keratin through thiol-ene click reactions at room temperature, leading to GDA grafting and the formation of GDA crosslinks in the keratin structure. The modified substrates were characterized by infrared spectroscopy and scanning electron microscopy, and assessed for its shrink-resistance and wet burst strength. This chemical modification has shown to alter the fiber surface morphology and hydrophilicity, resulting in substantially improved shrink-resistance with good fiber strength retention. Possible shrink-resistance mechanisms were also discussed. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Evaporative water loss in man in a gravity-free environment
NASA Technical Reports Server (NTRS)
Leach, C. S.; Leonard, J. I.; Rambaut, P. C.; Johnson, P. C.
1978-01-01
Daily evaporative water losses (EWL) during the three Skylab missions were measured indirectly using mass and water-balance techniques. The mean daily values of EWL for the nine crew members who averaged 1 hr of daily exercise were: preflight 1,750 + or - 37 (SE) ml or 970 + or - 20 ml/sq m and inflight 1,560 + or - 26 ml or 860 + or - 14 ml/sq m. Although it was expected the EWL would increase in the hypobaric environment of Skylab, an average decrease from preflight sea-level conditions of 11% was measured. The results suggest that weightlessness decreased sweat losses during exercise and possibly reduced insensible skin losses. The weightlessness environment apparently promotes the formation of an observed sweat film on the skin surface during exercise by reducing convective flow and sweat drippage, resulting in high levels of skin wettedness that favor sweat suppression.
NASA Technical Reports Server (NTRS)
Schmid, F.; Khattak, C. P.
1978-01-01
Solar cells fabricated from HEM cast silicon yielded up to 15% conversion efficiencies. This was achieved in spite of using unpurified graphite parts in the HEM furnace and without optimization of material or cell processing parameters. Molybdenum retainers prevented SiC formation and reduced carbon content by 50%. The oxygen content of vacuum cast HEM silicon is lower than typical Czochralski grown silicon. Impregnation of 45 micrometers diamonds into 7.5 micrometers copper sheath showed distortion of the copper layer. However, 12.5 micrometers and 15 micrometers copper sheath can be impregnated with 45 micrometers diamonds to a high concentration. Electroless nickel plating of wires impregnated only in the cutting edge showed nickel concentration around the diamonds. This has the possibility of reducing kerf. The high speed slicer fabricated can achieve higher speed and longer stroke with vibration isolation.
NASA Technical Reports Server (NTRS)
Parker, E. N.
1975-01-01
The basic relation is described between conversion of thermal energy into convective fluid motion and convective transport of thermal energy, and the equilibrium configuration of a sunspot's magnetic field is shown to be unstable to the hydromagnetic exchange instability. It is determined that heat transport necessarily accompanies convective driving of fluid motion and that the formation of cool sunspots requires convection extending coherently over several scale heights, a distance of at least 500 km. Several theoretical possibilities for sunspot stabilization are reviewed, and it is suggested that a suitable redistribution of cooling in the umbra may be the stabilization mechanism. It is believed that if cooling extends to a great depth in an elongated portion of a sunspot, the magnetic pressure on the boundary will be reduced, tending to reduce the elongation.
Age differences and format effects in working memory.
Foos, Paul W; Goolkasian, Paula
2010-07-01
Format effects refer to lower recall of printed words from working memory when compared to spoken words or pictures. These effects have been attributed to an attenuation of attention to printed words. The present experiment compares younger and older adults' recall of three or six items presented as pictures, spoken words, printed words, and alternating case WoRdS. The latter stimuli have been shown to increase attention to printed words and, thus, reduce format effects. The question of interest was whether these stimuli would also reduce format effects for older adults whose working memory capacity has fewer attentional resources to allocate. Results showed that older adults performed as well as younger adults with three items but less well with six and that format effects were reduced for both age groups, but more for young, when alternating case words were used. Other findings regarding executive control of working memory are discussed. The obtained differences support models of reduced capacity in older adult working memory.
Wood, Nelson
2007-12-01
Recent evidence suggests that certain bioflavonoids reduce dental caries and cariogenic bacteria incidence. The present study evaluates two separate, but related, dietary trials -- trial 1, 0.09%, 0.18%, 0.36%, and 0.72% dietary naringenin (NAR) supplementation; and trial 2, 0.57% dietary rutin (R), quercetin (Q), and naringin (N) supplementation-on dental caries formation in 40 different male albino rats, at the expense of dextrose, for periods of 42 days. All rats were fed 40% sucrose. In dietary trial 1, rats were evaluated for dental caries, dental plaque accumulation, and saliva flow rates using oneway analysis of variance, post hoc Tukey's test, Kruskal-Wallis test, and Spearman's correlations. In dietary trial 2, rats were evaluated for occlusal dental caries only using a Kruskal-Wallis H test and analysis of variance. A 5% level of statistical significance was adopted throughout. In dietary trial 1, NAR showed a statistically significant effect on dental caries, plaque, and saliva flow rate reduction compared with the control group (P < .05-.01). An inverse dose-dependent relationship was established among the NAR experimental groups and control group. Dietary NAR supplementation significantly reduced dental caries formation, possibly because of reduced dental plaque accumulation. In dietary trial 2, statistically significant reductions in occlusal caries were observed for R, Q, and N in the maxillary molars and for Q and N in the mandibular molars compared with the control group (P < .05). Significant associations were observed among the experimental groups and maxillary (P < .05) and mandibular (P < .01) occlusal dental caries. Hence, selected bioflavonoids may show promise as an alternative means of reducing dental caries.
Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation
Li, Defang; Liu, Jin; Guo, Baosheng; Liang, Chao; Dang, Lei; Lu, Cheng; He, Xiaojuan; Cheung, Hilda Yeuk-Siu; Xu, Liang; Lu, Changwei; He, Bing; Liu, Biao; Shaikh, Atik Badshah; Li, Fangfei; Wang, Luyao; Yang, Zhijun; Au, Doris Wai-Ting; Peng, Songlin; Zhang, Zongkang; Zhang, Bao-Ting; Pan, Xiaohua; Qian, Airong; Shang, Peng; Xiao, Lianbo; Jiang, Baohong; Wong, Chris Kong-Chu; Xu, Jiake; Bian, Zhaoxiang; Liang, Zicai; Guo, De-an; Zhu, Hailong; Tan, Weihong; Lu, Aiping; Zhang, Ge
2016-01-01
Emerging evidence indicates that osteoclasts direct osteoblastic bone formation. MicroRNAs (miRNAs) have a crucial role in regulating osteoclast and osteoblast function. However, whether miRNAs mediate osteoclast-directed osteoblastic bone formation is mostly unknown. Here, we show that increased osteoclastic miR-214-3p associates with both elevated serum exosomal miR-214-3p and reduced bone formation in elderly women with fractures and in ovariectomized (OVX) mice. Osteoclast-specific miR-214-3p knock-in mice have elevated serum exosomal miR-214-3p and reduced bone formation that is rescued by osteoclast-targeted antagomir-214-3p treatment. We further demonstrate that osteoclast-derived exosomal miR-214-3p is transferred to osteoblasts to inhibit osteoblast activity in vitro and reduce bone formation in vivo. Moreover, osteoclast-targeted miR-214-3p inhibition promotes bone formation in ageing OVX mice. Collectively, our results suggest that osteoclast-derived exosomal miR-214-3p transfers to osteoblasts to inhibit bone formation. Inhibition of miR-214-3p in osteoclasts may be a strategy for treating skeletal disorders involving a reduction in bone formation. PMID:26947250
Anusaksathien, Orasa; Jin, Qiming; Zhao, Ming; Somerman, Martha J; Giannobile, William V
2004-03-01
Cementum, a mineralized tissue lining the tooth root surface, is destroyed during the inflammatory process of periodontitis. Restoration of functional cementum is considered a criterion for successful regeneration of periodontal tissues, including formation of periodontal ligament, cementum, and alveolar bone. Short-term administration of platelet-derived growth factor (PDGF) has been shown to partially regenerate periodontal structures. Nonetheless, the role of PDGF in cementogenesis is not well understood. The aim of the present study was to determine the effect of sustained PDGF gene transfer on cementum formation in an ex vivo ectopic biomineralization model. Osteocalcin (OC) promoter-driven SV40 transgenic mice were used to obtain immortalized cementoblasts (OCCM). The OCCM cells were transduced with adenoviruses (Ad) encoding either PDGF-A, an antagonist of PDGF signaling (PDGF-1308), a control virus (green fluorescent protein, GFP), or no treatment (NT). The transduced cells were incorporated into polymer scaffolds and implanted subcutaneously into severe combined immunodeficient (SCID) mice. The implants were harvested at 3 and 6 weeks for histomorphometric analysis of the newly formed mineralized tissues. Northern blot analysis was performed to determine the expression levels of mineral-associated genes including bone sialoprotein (BSP), OC, and osteopontin (OPN) in the cell-implant specimens at 3 and 6 weeks. The results indicated mineralization was significantly reduced in both the Ad/PDGF-A and Ad/PDGF-1308 treated specimens when compared to the NT or Ad/GFP groups at 3 and 6 weeks (P<0.01). In addition, the size of the implants treated with Ad/PDGF-A and Ad/PDGF-1308 was significantly reduced compared to implants from Ad/GFP and NT groups at 3 weeks (P<0.05). At 6 weeks, the size of implants and mineral formation increased in NT, Ad/GFP, and Ad/PDGF-A groups, while the Ad/PDGF-1308 treated implants continued to decrease in size and mineral formation (P<0.01). Northern blot analysis revealed that in the Ad/PDGF-A treated implants OPN was increased, whereas OC gene expression was downregulated at 3 weeks. In the Ad/PDGF-1308 treated implants, BSP, OC, and OPN were all downregulated at 3 weeks. At 3 weeks, the Ad/PDGF-A treated implants contained significantly higher multinucleated giant cell (MNGC) density compared to NT, Ad/GFP, and Ad/PDGF-1308 specimens. The MNGC density in NT, Ad/GFP, and Ad/PDGF-A treated groups reduced over time, while the Ad/PDGF-1308 transduced implants continued to exhibit significantly higher MNGC density compared with the other treatment groups at 6 weeks. The results showed that continuous exposure to PDGF-A had an inhibitory effect on cementogenesis, possibly via the upregulation of OPN and subsequent enhancement of MNGCs at 3 weeks. On the other hand, Ad/PDGF-1308 inhibited mineralization of tissue-engineered cementum possibly due to the observed downregulation of BSP and OC and a persistence of stimulation of MNGCs. These findings suggest that continuous exogenous delivery of PDGF-A may delay mineral formation induced by cementoblasts, while PDGF is clearly required for mineral neogenesis.
Holographic cosmology from BIonic solutions
NASA Astrophysics Data System (ADS)
Sepehri, Alireza; Faizal, Mir; Setare, Mohammad Reza; Ali, Ahmed Farag
2017-02-01
In this paper, we will use a BIonic solution for analyzing the holographic cosmology. A BIonic solution is a configuration of a D3-brane and an anti-D3-brane connected by a wormhole, and holographic cosmology is a recent proposal to explain cosmic expansion by using the holographic principle. In our model, a BIonic configuration will be produced by the transition of fundamental black strings. The formation of a BIonic configuration will cause inflation. As the D3-brane moves away from the anti-D3-brane, the wormhole will get annihilated, and the inflation will end with the annihilation of this wormhole. However, it is possible for a D3-brane to collide with an anti-D3-brane. Such a collision will occur if the distance between the D3-brane and the anti-D3-brane reduces, and this will create tachyonic states. We will demonstrate that these tachyonic states will lead to the formation of a new wormhole, and this will cause acceleration of the universe before such a collision.
Mio depletion links mTOR regulation to Aurora A and Plk1 activation at mitotic centrosomes
Trinkle-Mulcahy, Laura; Porter, Michael; Jeyaprakash, A. Arockia
2015-01-01
Coordination of cell growth and proliferation in response to nutrient supply is mediated by mammalian target of rapamycin (mTOR) signaling. In this study, we report that Mio, a highly conserved member of the SEACAT/GATOR2 complex necessary for the activation of mTORC1 kinase, plays a critical role in mitotic spindle formation and subsequent chromosome segregation by regulating the proper concentration of active key mitotic kinases Plk1 and Aurora A at centrosomes and spindle poles. Mio-depleted cells showed reduced activation of Plk1 and Aurora A kinase at spindle poles and an impaired localization of MCAK and HURP, two key regulators of mitotic spindle formation and known substrates of Aurora A kinase, resulting in spindle assembly and cytokinesis defects. Our results indicate that a major function of Mio in mitosis is to regulate the activation/deactivation of Plk1 and Aurora A, possibly by linking them to mTOR signaling in a pathway to promote faithful mitotic progression. PMID:26124292
Effect of a hepatitis B virus inhibitor, NZ-4, on capsid formation.
Yang, Li; Wang, Ya-Juan; Chen, Hai-Jun; Shi, Li-Ping; Tong, Xian-Kun; Zhang, Yang-Ming; Wang, Gui-Feng; Wang, Wen-Long; Feng, Chun-Lan; He, Pei-Lan; Xu, Yi-Bin; Lu, Meng-Ji; Tang, Wei; Nan, Fa-Jun; Zuo, Jian-Ping
2016-01-01
During the hepatitis B virus (HBV) life cycle, nucleocapsid assembly is essential for HBV replication. Both RNA reverse transcription and DNA replication occur within the HBV nucleocapsid. HBV nucleocapsid is consisted of core protein (HBcAg), whose carboxy-terminal domain (CTD) contains an Arg-rich domain (ARD). The ARD of HBcAg does contribute to the encapsidation of pregenomic RNA (pgRNA). Previously, we reported a small-molecule, NZ-4, which dramatically reduced the HBV DNA level in an in vitro cell setting. Here, we explore the possible mechanisms by which NZ-4 inhibits HBV function. As an HBV inhibitor, NZ-4 leads to the formation of genome-free capsids, including a new population of capsid that runs faster on agarose gels. NZ-4's activity was dependent on the presence of the ARD I, containing at least one positively charged amino acid. NZ-4 might provide a new option for further development of HBV therapeutics for the treatment of chronic hepatitis B. Copyright © 2015. Published by Elsevier B.V.
Metadata management and semantics in microarray repositories.
Kocabaş, F; Can, T; Baykal, N
2011-12-01
The number of microarray and other high-throughput experiments on primary repositories keeps increasing as do the size and complexity of the results in response to biomedical investigations. Initiatives have been started on standardization of content, object model, exchange format and ontology. However, there are backlogs and inability to exchange data between microarray repositories, which indicate that there is a great need for a standard format and data management. We have introduced a metadata framework that includes a metadata card and semantic nets that make experimental results visible, understandable and usable. These are encoded in syntax encoding schemes and represented in RDF (Resource Description Frame-word), can be integrated with other metadata cards and semantic nets, and can be exchanged, shared and queried. We demonstrated the performance and potential benefits through a case study on a selected microarray repository. We concluded that the backlogs can be reduced and that exchange of information and asking of knowledge discovery questions can become possible with the use of this metadata framework.
Processing and Structural Advantages of the Sylramic-iBN SiC Fiber for SiC/SiC Components
NASA Technical Reports Server (NTRS)
Yun, H. M.; Dicarlo, J. A.; Bhatt, R. T.; Hurst, J. B.
2008-01-01
The successful high-temperature application of complex-shaped SiC/SiC components will depend on achieving as high a fraction of the as-produced fiber strength as possible during component fabrication and service. Key issues center on a variety of component architecture, processing, and service-related factors that can reduce fiber strength, such as fiber-fiber abrasion during architecture shaping, surface chemical attack during interphase deposition and service, and intrinsic flaw growth during high-temperature matrix formation and composite creep. The objective of this paper is to show that the NASA-developed Sylramic-iBN SiC fiber minimizes many of these issues for state-of-the-art melt-infiltrated (MI) SiC/BN/SiC composites. To accomplish this, data from various mechanical tests are presented that compare how different high performance SiC fiber types retain strength during formation of complex architectures, during processing of BN interphases and MI matrices, and during simulated composite service at high temperatures.
[Osteoporosis treatment in patients with hyperthyroidism].
Saito, Jun; Nishikawa, Tetsuo
2009-05-01
Childhood thyroid hormone (T3) is essential for the normal development of endochondral and intramembranous bone and plays an important role in the linear growth and maintenance of bone mass. In adult, T3 stimulates osteoclastic bone resorption mediated primarily by TR alpha and local conversion by deiodinase D2 may play a role in local activation. TSH seems to be an inhibitor of bone resorption and formation. In thyrotoxicosis patients with Graves' disease, there is increased bone remodelling, characterized by an imbalance between bone resorption and formation, which results in a decrease of bone mineral density (BMD) and an increased risk for osteoporotic fracture. Antithyroid treatment is able to reduce dramatically the bone resorption and to normalize BMD reduction. But previous hyperthyroidism is independently associated with an increased risk for fracture. Although further studies relating to the mechanism for possible impaired bone strength in these patients will be needed, bisphosphonates may be beneficial treatment for prevention of bone fractures in patients with severe risk for fractures, such as post-menopausal women.
Wu, Yilei; Young, Ryan M; Frasconi, Marco; Schneebeli, Severin T; Spenst, Peter; Gardner, Daniel M; Brown, Kristen E; Würthner, Frank; Stoddart, J Fraser; Wasielewski, Michael R
2015-10-21
We report on a visible-light-absorbing chiral molecular triangle composed of three covalently linked 1,6,7,12-tetra(phenoxy)perylene-3,4:9,10-bis(dicarboximide) (PDI) units. The rigid triangular architecture reduces the electronic coupling between the PDIs, so ultrafast symmetry-breaking charge separation is kinetically favored over intramolecular excimer formation, as revealed by femtosecond transient absorption spectroscopy. Photoexcitation of the PDI triangle dissolved in CH2Cl2 gives PDI(+•)-PDI(-•) in τCS = 12.0 ± 0.2 ps. Fast subsequent intramolecular electron/hole hopping can equilibrate the six possible energetically degenerate ion-pair states, as suggested by electron paramagnetic resonance/electron-nuclear double resonance spectroscopy, which shows that one-electron reduction of the PDI triangle results in complete electron sharing among the three PDIs. Charge recombination of PDI(+•)-PDI(-•) to the ground state occurs in τCR = 1.12 ± 0.01 ns with no evidence of triplet excited state formation.
Spontaneous ripple formation in phosphorene: electronic properties and possible applications.
Zhou, Yungang; Yang, Li; Zu, Xiaotao; Gao, Fei
2016-06-09
According to the Mermin-Wagner theorem and theory of elasticity, long-range order in two-dimensional (2D) crystals will be inevitably destroyed due to a thermal fluctuation. Thus, a 2D lattice prefers a corrugation meaning that a 2D crystal is easy to present a ripple. In this work, we, via employing ab initio molecular dynamics (AIMD) simulations, for the first time evidenced that the inherent dynamics of phosphorene would lead to a spontaneous formation of ripples at room temperature. The height of a ripple closely associates with the temperature and the width. Via density functional theory (DFT) calculations, we further demonstrated that the emergence of ripples would remarkably reduce the bandgap of phosphorene. Via the construction of the unique phosphorene structure, we finally found that such a rippled structure is expected to be used in the light-emitting field. These results give us further knowledge of phosphorene, which goes beyond the current scope of phosphorene limited to the flat lattice.
Plasma Modeling with Speed-Limited Particle-in-Cell Techniques
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Werner, G. R.; Cary, J. R.; Stoltz, P. H.
2017-10-01
Speed-limited particle-in-cell (SLPIC) modeling is a new particle simulation technique for modeling systems wherein numerical constraints, e.g. limitations on timestep size required for numerical stability, are significantly more restrictive than is needed to model slower kinetic processes of interest. SLPIC imposes artificial speed-limiting behavior on fast particles whose kinetics do not play meaningful roles in the system dynamics, thus enabling larger simulation timesteps and more rapid modeling of such plasma discharges. The use of SLPIC methods to model plasma sheath formation and the free expansion of plasma into vacuum will be demonstrated. Wallclock times for these simulations, relative to conventional PIC, are reduced by a factor of 2.5 for the plasma expansion problem and by over 6 for the sheath formation problem; additional speedup is likely possible. Physical quantities of interest are shown to be correct for these benchmark problems. Additional SLPIC applications will also be discussed. Supported by US DoE SBIR Phase I/II Award DE-SC0015762.
Self-propagated combustion synthesis of few-layered graphene: an optical properties perspective.
Mohandoss, Manonmani; Sen Gupta, Soujit; Kumar, Ramesh; Islam, Md Rabiul; Som, Anirban; Mohd, Azhardin Ganayee; Pradeep, T; Maliyekkal, Shihabudheen M
2018-04-26
This paper describes a labour efficient and cost-effective strategy to prepare few-layered of reduced graphene oxide like (RGOL) sheets from graphite. The self-propagated combustion route enables the bulk production of RGOL sheets. Microscopic and spectroscopic analyses confirmed the formation of few-layer graphene sheets of an average thickness of ∼3 nm and the presence of some oxygen functional groups with a C/O ratio of 8.74. A possible mechanistic pathway for the formation of RGOL sheets is proposed. The optical properties of the RGOL sample were studied in detail by means of Spectroscopic Ellipsometry (SE). The experimental abilities of SE in relating the optical properties with the number of oxygen functionalities present in the samples are explored. The data were analysed by a double-layered optical model along with the Drude-Lorentz oscillatory dispersion relation. The refractive index (n = 2.24), extinction coefficient (k = 2.03), and dielectric functions are obtained using point-by-point analysis and are also checked for Kramers-Kronig (KK) consistency.
Specific plant induced biofilm formation in Methylobacterium species.
Rossetto, Priscilla B; Dourado, Manuella N; Quecine, Maria C; Andreote, Fernando D; Araújo, Welington L; Azevedo, João L; Pizzirani-Kleiner, Aline A
2011-07-01
Two endophytic strains of Methylobacterium spp. were used to evaluate biofilm formation on sugarcane roots and on inert wooden sticks. Results show that biofilm formation is variable and that plant surface and possibly root exudates have a role in Methylobacterium spp. host recognition, biofilm formation and successful colonization as endophytes.
Iron Oxide Deposition from Aqueous Solution and Iron Formations on Mars
NASA Technical Reports Server (NTRS)
Catling, David; Moore, Jeff
2000-01-01
Iron formations are ancient, laminated chemical sediments containing at least 15 wt% Fe. We discuss possible mechanisms for their formation in aqueous environments on early Mars. Such iron oxide deposits may be detectable today.
Rom, Joseph S.; Atwood, Danielle N.; Beenken, Karen E.; Meeker, Daniel G.; Loughran, Allister J.; Spencer, Horace J.; Lantz, Tamara L.; Smeltzer, Mark S.
2017-01-01
ABSTRACT Staphylococcus aureus causes acute and chronic forms of infection, the latter often associated with formation of a biofilm. It has previously been demonstrated that mutation of atl, codY, rot, sarA, and sigB limits biofilm formation in the USA300 strain LAC while mutation of agr, fur, and mgrA has the opposite effect. Here we used a murine sepsis model to assess the impact of these same loci in acute infection. Mutation of agr, atl, and fur had no impact on virulence, while mutation of mgrA and rot increased virulence. In contrast, mutation of codY, sarA, and sigB significantly attenuated virulence. Mutation of sigB resulted in reduced accumulation of AgrA and SarA, while mutation of sarA resulted in reduced accumulation of AgrA, but this cannot account for the reduced virulence of sarA or sigB mutants because the isogenic agr mutant was not attenuated. Indeed, as assessed by accumulation of alpha toxin and protein A, all of the mutants we examined exhibited unique phenotypes by comparison to an agr mutant and to each other. Attenuation of the sarA, sigB and codY mutants was correlated with increased production of extracellular proteases and global changes in extracellular protein profiles. These results suggest that the inability to repress the production of extracellular proteases plays a key role in attenuating the virulence of S. aureus in acute as well as chronic, biofilm-associated infections, thus opening up the possibility that strategies aimed at the de-repression of protease production could be used to broad therapeutic advantage. They also suggest that the impact of codY, sarA, and sigB on protease production occurs via an agr-independent mechanism. PMID:28910576
Wu, Hsuan-Chung; Chen, Hsing-Hao; Zhu, Yu-Ren
2016-08-01
We systematically investigated the effects of Al-impurity type on the formation energy, crystal structure, charge density, electronic structure, and optical properties of ZnO by using density functional theory and the Hubbard-U method. Al-related defects, such as those caused by the substitution of Zn and O atoms by Al atoms (Al s(Zn) and Al s(O) , respectively) and the presence of an interstitial Al atom at the center of a tetrahedron (Al i(tet) ) or an octahedron (Al i(oct) ), and various Al concentrations were evaluated. The calculated formation energy follows the order E f (Al s(Zn) ) < E f (Al i(tet) ) < E f (Al i(oct) ) < E f (Al s(O) ). Electronic structure analysis showed that the Al s(Zn) , Al s(O) , Al i(tet) , and Al i(oct) models follow n -type conduction, and the optical band gaps are higher than that of pure ZnO. The calculated carrier concentrations of the Al s(O) and Al i(tet) /Al i(oct) models are higher than that of the Al s(Zn) model. However, according to the curvature of the band structure, the occurrence of interstitial Al atoms or the substitution of O atoms by Al atoms results in a high effective mass, possibly reducing the carrier mobility. The average transmittance levels in the visible light and ultraviolet (UV) regions of the Al s(Zn) model are higher than those of pure ZnO. However, the presence of an interstitial Al atom within the ZnO crystal reduces transmittance in the visible light region; Al s(O) substantially reduces the transmittance in the visible light and UV regions. In addition, the properties of ZnO doped with various Al s(Zn) concentrations were analyzed.
Methanethiol abundance in high-temperature hydrothermal fluids from the Mid-Atlantic Ridge
NASA Astrophysics Data System (ADS)
Reeves, E.; Seewald, J. S.; Saccocia, P.; van der Meer, M.
2008-12-01
The formation of aqueous organic sulfur compounds in hydrothermal systems remains poorly constrained, despite their potential significance in 'prebiotic' chemistry and the origin of life. The simplest - methanethiol (CH3SH) - has been implicated as a critical abiogenic precursor to the establishment of primitive microbial metabolism in early Earth hydrothermal settings. It also represents a readily-utilized substrate for microbial sulfate-reducing communities and a potential intermediate species in abiotic CH4 formation. To assess the abundance of CH3SH and factors regulating its stability under hydrothermal conditions we measured CH3SH concentrations in a suite of hydrothermal fluids collected from the Rainbow, Lucky Strike, TAG and Lost City hydrothermal sites located on the Mid-Atlantic Ridge. Fluids were collected using isobaric gas-tight samplers and analyzed for CH3SH by shipboard purge-and-trap gas chromatography. Measured concentrations at Rainbow (1.2 -- 223nM), Lucky Strike (1.1 -- 26nM), TAG (8.5 -- 11nM) and Lost City (1.6 -- 3.0nM) are all substantially lower than predicted for thermodynamic equilibrium with CO2, H2 and H2S at measured vent conditions. The highest concentrations (91 -- 223nM), however, were observed at Rainbow in intermediate temperature (128 -- 175°C) H2-rich fluids that may have undergone conductive cooling. Increased concentrations with decreasing temperature is consistent with the thermodynamic drive for the formation from CO2, suggesting a possible abiotic origin for CH3SH in some fluids. Substantially lower concentrations in the low temperature fluids at Lost City are consistent with the extremely low levels of CO2 and H2S in these fluids. Other possible sources of CH3SH to vent fluids must be considered, however, and include thermal alteration of biomass present in low-temperature environments and microbial consortia that produce CH3SH as a byproduct of anaerobic methane oxidation. Current models for the emergence of primordial metabolism in highly-reducing alkaline hydrothermal environments invoke CH3SH as a key reactant leading to Acetyl CoA-based (Wood-Ljungdahl) carbon fixation pathways. Results of this study challenge the notion that high-pH, reducing fluids emanating from serpentinite-hosted hydrothermal systems like Lost City were favorable for the production of CH3SH, the establishment of a primitive metabolic cycle and the emergence of microbial life on Earth.
Mukilan, Murugan; Ragu Varman, Durairaj; Sudhakar, Sivasubramaniam; Rajan, Koilmani Emmanuvel
2015-04-01
The activity-dependent expression of immediate-early genes (IEGs) and microRNA (miR)-132 has been implicated in synaptic plasticity and the formation of long-term memory (LTM). In the present study, we show that olfactory training induces the expression of IEGs (EGR-1, C-fos, C-jun) and miR-132 at similar time scale in olfactory bulb (OB) of Cynopterus sphinx. We examined the role of miR-132 in the OB using antisense oligodeoxynucleotide (AS-ODN) and demonstrated that a local infusion of AS-ODN in the OB 2h prior to training impaired olfactory memory formation in C. sphinx. However, the infusion of AS-ODN post-training did not cause a deficit in memory formation. Furthermore, the inhibition of miR-132 reduced the olfactory training-induced expression of IEGs and post synaptic density protein-95 (PSD-95) in the OB. Additionally, we show that miR-132 regulates the activation of calcium/calmodulin-dependent protein kinase-II (CaMKII) and cAMP response element binding protein (CREB), possibly through miR-148a. These data suggest that olfactory training induces the expression of miR-132 and IEGs, which in turn activates post-synaptic proteins that regulate olfactory memory formation. Copyright © 2015 Elsevier Inc. All rights reserved.
Stes, Hannah; Aerts, Sven; Caluwé, Michel; Dobbeleers, Thomas; Wuyts, Sander; Kiekens, Filip; D'aes, Jolien; De Langhe, Piet; Dries, Jan
2018-05-01
A laboratory-scale sequencing batch reactor (SBR) was operated for 450 days to assess aerobic granule formation when treating brewery/bottling plant wastewater by consistent application of a feast/famine regime. The experiment was divided into three major periods according to the different operational conditions: (I) no pH control and strong fluctuations in organic loading rate (OLR) (1.18 ± 0.25 kgCOD·(m 3 ·day) -1 ), (II) pH control and aeration control strategy to reduce OLR fluctuations (1.45 ± 0.65 kgCOD·(m 3 ·day) -1 ) and (III) no pH control and stable OLR (1.42 ± 0.18 kgCOD·(m 3 ·day) -1 ). Aerobic granule formation was successful after 80 days and maintained during the subsequent 380 days. The aerobic granular sludge was characterized by SVI 5 and SVI 30 values below 60 mL.g -1 and dominated by granular, dense structures. An oxygen uptake rate based aeration control strategy insured endogenous respiration at the end of the aerobic phase, resulting in stable SBR operation when the influent composition fluctuated. The quantitative polymerase chain reaction results show no significant enrichment of Accumulibacter or Competibacter during the granulation process. The 16S rRNA sequencing results indicate enrichment of other, possibly important species during aerobic granule formation while treating brewery wastewaters.
Tan, Hor-Yue; Wang, Ning; Takahashi, Masao; Feng, Yigang; Li, Hongyun; Feng, Yibin
2016-01-01
For the first time, we discovered a small proportion of aqueous fraction from Saw Palmetto apart from the fatty acid-rich fraction exhibited pharmacological activity. Therefore, this study aims to explore the anti-tumor potential of red pigmented aqueous fraction of Saw Palmetto, NYG on human hepatocellular carcinoma and its possible targets. Subcutaneous xenograft and orthotopic implantation models of HCC were used to evaluate the tumor inhibitory effect of NYG. Human hepatocellular carcinoma (HCC) cell lines and human umbilical vein endothelial cells (HUVEC) were used as in vitro model. The mRNA expression was conducted by qPCR. Protein expression was monitored by immunoblotting and immunohistochemistry. Cell migration and blood vessel formation were determined by chamber assay and tube formation assay, respectively. Significant tumor inhibition of NYG in dose-dependent manner was observed on subcutaneous xenograft and orthotopic HCC model. NYG has no direct action on cell viability or VEGF secretion of HCC cells. However, NYG reduced in vitro migration and vessel formation activities of HUVEC cells, as well as in vivo intratumoral neovascularization. NYG attenuated extracellular signal-regulated kinases (ERK) activation in endothelial cells, which may be associated with the suppression of migration and tube formation of HUVEC. NYG suppressed tumor expansion of HCC via inhibiting neovascularization, and may be potential adjuvant treatment for HCC. PMID:27527161
Zhang, Yun; Warnock, Garth L.; Ao, Ziliang; Park, Yoo Jin; Safikhan, Nooshin; Ghahary, Aziz
2018-01-01
Amyloid formation in the pancreatic islets due to aggregation of human islet amyloid polypeptide (hIAPP) contributes to reduced β-cell mass and function in type 2 diabetes (T2D) and islet transplantation. Protein kinase B (PKB) signaling plays a key role in the regulation of β-cell survival, function and proliferation. In this study, we used human and hIAPP-expressing transgenic mouse islets in culture as two ex vivo models of human islet amyloid formation to: 1. Investigate the effects of amyloid formation on PKB phosphorylation in primary islet β-cells; 2. Test if inhibition of amyloid formation and/or interleukin-1β (IL-1β) signaling in islets can restore the changes in β-cell phospho-PKB levels mediated by amyloid formation. Human and hIAPP-expressing mouse islets were cultured in elevated glucose with an amyloid inhibitor (Congo red) or embedded within collagen matrix to prevent amyloid formation. To block the IL-1β signaling, human islets were treated with an IL-1 receptor antagonist (anakinra) or a glucagon-like peptide-1 agonist (exenatide). β-cell phospho-PKB levels, proliferation, apoptosis, islet IL-1β levels and amyloid formation were assessed. Amyloid formation in both cultured human and hIAPP-expressing mouse islets reduced β-cell phospho-PKB levels and increased islet IL-1β levels, both of which were restored by prevention of amyloid formation either by the amyloid inhibitor or embedding islets in collagen matrix, resulting in improved β-cell survival. Furthermore, inhibition of IL-1β signaling by treatment with anakinra or exenatide increased β-cell phospho-PKB levels, enhanced proliferation and reduced apoptosis in amyloid forming human islets during 7-day culture. These data suggest that amyloid formation leads to reduced PKB phosphorylation in β-cells which is associated with elevated islet IL-1β levels. Inhibitors of amyloid or amyloid-induced IL-1β production may provide a new approach to restore phospho-PKB levels thereby enhance β-cell survival and proliferation in conditions associated with islet amyloid formation such as T2D and clinical islet transplantation. PMID:29474443
NASA Astrophysics Data System (ADS)
Sharma, S.; Wilson, T.; Wrighton, K. C.; Borton, M.; O'Banion, B.
2017-12-01
The hydraulic fracturing fluids (HFF) injected into the shale formation are composed primarily of water, proppant and some chemical additives ( 0.5- 2% by volume). The additives contain a lot of organic and inorganic compounds like ammonium sulfate, guar gum, boric acid, hydrochloric acid, citric acid, potassium carbonate, glutaraldehyde, ethylene glycols which serve as friction reducers, gelling agents, crosslinkers, biocides, corrosion/scale inhibitors, etc. The water and additives introduced into the formation ensue a variety of microbiogechmical reactions in the reservoir. For this study produced, water and gas samples were collected from several old and new Marcellus wells in SE Pennsylvania and NE West Virginia to better understand these microbe-water-rock interactions. The carbon isotopic composition of dissolved inorganic carbon (δ13CDIC) in the produced fluids and CO2 in produced gas (δ13CCO2) are highly enriched with values > +10‰ and +14 ‰ V-PDB respectively. The injected hydraulic fracturing fluid had low δ13CDIC values of < -8‰ V-PDB. The high carbon isotope values in produced fluids and gas possibly indicate 1) dissolution of 13C enriched carbonates in the host rock of reservoir, cement or drilling muds or 2) biogenic methanogenesis in the reservoir. The carbon signatures of carbonates in and around the landing zone and all possible sources of carbon put downhole were analyzed for their 13C signatures. The cement and silica sand had no detectable carbon in them. The drilling mud and carbonate veins had δ13C values of -1.8 and < 2.0 ‰ V-PDB respectively. Therefore, the high δ13CDIC signatures in produced water are possibly due to the microbial utilization of lighter carbon (12C) by microbes or methanogenic bacteria in the reservoir. It is possible that introduction of C containing nutrients like guar, methanol, methylamines, etc. stimulates certain methanogen species in the reservoir to produce biogenic methane. Genomic analysis reveals that methanogen species like Methanohalophilus or Methanolobus could be the possible sources of biogenic methane in these shale reservoirs. The evidence of microbial methanogenesis raises the possibility of enhanced gas recovery from these shales using biological amendments.
Low temperature barriers with heat interceptor wells for in situ processes
McKinzie, II, Billy John
2008-10-14
A system for reducing heat load applied to a frozen barrier by a heated formation is described. The system includes heat interceptor wells positioned between the heated formation and the frozen barrier. Fluid is positioned in the heat interceptor wells. Heat transfers from the formation to the fluid to reduce the heat load applied to the frozen barrier.
Organic matter and salinity modify cadmium soil (phyto)availability.
Filipović, Lana; Romić, Marija; Romić, Davor; Filipović, Vilim; Ondrašek, Gabrijel
2018-01-01
Although Cd availability depends on its total concentration in soil, it is ultimately defined by the processes which control its mobility, transformations and soil solution speciation. Cd mobility between different soil fractions can be significantly affected by certain pedovariables such as soil organic matter (SOM; over formation of metal-organic complexes) and/or soil salinity (over formation of metal-inorganic complexes). Phytoavailable Cd fraction may be described as the proportion of the available Cd in soil which is actually accessible by roots and available for plant uptake. Therefore, in a greenhouse pot experiment Cd availability was observed in the rhizosphere of faba bean exposed to different levels of SOM, NaCl salinity (50 and 100mM) and Cd contamination (5 and 10mgkg -1 ). Cd availability in soil does not linearly follow its total concentration. Still, increasing soil Cd concentration may lead to increased Cd phytoavailability if the proportion of Cd 2+ pool in soil solution is enhanced. Reduced Cd (phyto)availability by raised SOM was found, along with increased proportion of Cd-DOC complexes in soil solution. Data suggest decreased Cd soil (phyto)availability with the application of salts. NaCl salinity affected Cd speciation in soil solution by promoting the formation of CdCl n 2-n complexes. Results possibly suggest that increased Cd mobility in soil does not result in its increased availability if soil adsorption capacity for Cd has not been exceeded. Accordingly, chloro-complex possibly operated just as a Cd carrier between different soil fractions and resulted only in transfer between solid phases and not in increased (phyto)availability. Copyright © 2017 Elsevier Inc. All rights reserved.
Sidorova, Yulia A; Perepechaeva, Maria L; Pivovarova, Elena N; Markel, Arkady L; Lyakhovich, Vyacheslav V; Grishanova, Alevtina Y
2016-01-01
Oxidative reactions that are catalyzed by cytochromes P450 1A (CYP1A) lead to formation of carcinogenic derivatives of arylamines and polycyclic aromatic hydrocarbons (PAHs), such as the widespread environmental pollutant benzo(α)pyrene (BP). These compounds upregulate CYP1A at the transcriptional level via an arylhydrocarbon receptor (AhR)-dependent signaling pathway. Because of the involvement of AhR-dependent genes in chemically induced carcinogenesis, suppression of this signaling pathway could prevent tumor formation and/or progression. Here we show that menadione (a water-soluble analog of vitamin K3) inhibits BP-induced expression and enzymatic activity of both CYP1A1 and CYP1A2 in vivo (in the rat liver) and BP-induced activity of CYP1A1 in vitro. Coadministration of BP and menadione reduced DNA-binding activity of AhR and increased DNA-binding activity of transcription factors Oct-1 and CCAAT/enhancer binding protein (C/EBP), which are known to be involved in negative regulation of AhR-dependent genes, in vivo. Expression of another factor involved in downregulation of CYP1A-pAhR repressor (AhRR)-was lower in the liver of the rats treated with BP and menadione, indicating that the inhibitory effect of menadione on CYP1A is not mediated by this protein. Furthermore, menadione was well tolerated by the animals: no signs of acute toxicity were detected by visual examination or by assessment of weight gain dynamics or liver function. Taken together, our results suggest that menadione can be used in further studies on animal models of chemically induced carcinogenesis because menadione may suppress tumor formation and possibly progression.
Pivovarova, Elena N.; Markel, Arkady L.; Lyakhovich, Vyacheslav V.; Grishanova, Alevtina Y.
2016-01-01
Oxidative reactions that are catalyzed by cytochromes P450 1A (CYP1A) lead to formation of carcinogenic derivatives of arylamines and polycyclic aromatic hydrocarbons (PAHs), such as the widespread environmental pollutant benzo(α)pyrene (BP). These compounds upregulate CYP1A at the transcriptional level via an arylhydrocarbon receptor (AhR)-dependent signaling pathway. Because of the involvement of AhR-dependent genes in chemically induced carcinogenesis, suppression of this signaling pathway could prevent tumor formation and/or progression. Here we show that menadione (a water-soluble analog of vitamin K3) inhibits BP-induced expression and enzymatic activity of both CYP1A1 and CYP1A2 in vivo (in the rat liver) and BP-induced activity of CYP1A1 in vitro. Coadministration of BP and menadione reduced DNA-binding activity of AhR and increased DNA-binding activity of transcription factors Oct-1 and CCAAT/enhancer binding protein (C/EBP), which are known to be involved in negative regulation of AhR-dependent genes, in vivo. Expression of another factor involved in downregulation of CYP1A—pAhR repressor (AhRR)—was lower in the liver of the rats treated with BP and menadione, indicating that the inhibitory effect of menadione on CYP1A is not mediated by this protein. Furthermore, menadione was well tolerated by the animals: no signs of acute toxicity were detected by visual examination or by assessment of weight gain dynamics or liver function. Taken together, our results suggest that menadione can be used in further studies on animal models of chemically induced carcinogenesis because menadione may suppress tumor formation and possibly progression. PMID:27167070
NASA Astrophysics Data System (ADS)
Cerantola, V.; Walte, N. P.; Rubie, D. C.
2015-05-01
Deformation-assisted segregation of metallic and sulphidic liquid from a solid peridotitic matrix is a process that may contribute to the early differentiation of small planetesimals into a metallic core and a silicate mantle. Here we present results of an experimental study using a simplified system consisting of a polycrystalline Fo90-olivine matrix containing a small percentage of iron sulphide and a synthetic primitive MORB melt, in order to investigate whether the silicate melt enhances the interconnection and segregation of FeS liquid under deformation conditions at varying strain rates. The experiments have been performed at 2 GPa, 1450 °C and strain rates between 1 ×10-3s-1 to 1 ×10-5s-1. Our results show that the presence of silicate melt actually hinders the migration and segregation of sulphide liquid by reducing its interconnectivity. At low to moderate strain rates the sulphide liquid pockets preserved a roundish shape, showing the liquid behavior is governed mainly by surface tension rather than by differential stress. Even at the highest strain rates, insignificant FeS segregation and interconnection were observed. On the other hand the basaltic melt was very mobile during deformation, accommodating part of the strain, which led to its segregation from the matrix at high bulk strains leaving the sulphide liquid stranded in the olivine matrix. Hence, we conclude that deformation-induced percolation of sulphide liquid does not contribute to the formation of planetary cores after the silicate solidus is overstepped. A possible early deformation enhanced core-mantle differentiation after overstepping the Fe-S solidus is not possible between the initial formation of silicate melt and the formation of a widespread magma ocean.
NASA Astrophysics Data System (ADS)
Sachko, A. V.; Zakordonskii, V. P.; Voloshinovskii, A. S.; Golod, T. Yu.
2009-07-01
A complex of physicochemical methods (light scattering, potentiometry, conductometry, viscometry, tensiometry, and fluorescence spectroscopy) were used to show the possibility of formation of intermolecular associates/complexes in systems with likely charged components. The driving forces of such interactions were analyzed and a possible scheme of complex formation between polymethacrylic acid and sodium dodecylbenzenesulfonate was suggested.
Wang, Bao-an; Li, Ming; Mu, Yi-ming; Lu, Zhao-hui; Li, Jiang-yuan
2006-06-01
To investigate the effects of tributyltin chloride (TBT) and triphenyltin chloride (TPT) on rat testicular Leydig cells. The rat Leydig cells (LC-540) were incubated with 0 to 80 nmol/L TBT and TPT for 24 to approximately 96 h, and then the cell viability was determined by MTT. DNA fragmentation ladder formation of cell apoptosis was examined by agarose electrophoresis. Effects of chelator of intracellular Ca2+ (BAPTA) and the inhibitors of PKA, PKC and TPK on cell apoptosis induced by TBT were observed. Effects of TBT on testosterone production in primary cultured rat Leydig cells treated with or without hCG were detected. TBT and TPT suppressed Leydig cell survival in a time- and dose-dependent manner. The suppressive effects of TBT and TPT on the cell survival was caused by apoptosis which was determined by DNA ladder formation. The apoptotic effect of TBT was possibly mediated by the rise in intracellular Ca2+ because it could be blocked by BAPTA, the chelator of intracellular Ca2+; PKA, PKC and TPK inhibitors did not prevent the apoptotic effects induced by TBT. TBT markedly suppressed testosterone production of primary cultured rat Leydig cells with or without hCG stimulation. TBT and TPT induced apoptosis in rat testicular Leydig cells possibly through increasing intracellular Ca2+. TBT reduced the testosterone production of rat Leydig cells.
Assessing climate adaptation options and uncertainties for cereal systems in West Africa
NASA Astrophysics Data System (ADS)
Guan, K.; Sultan, B.; Biasutti, M.; Lobell, D. B.
2015-12-01
The already fragile agriculture production system in West Africa faces further challenges in meeting food security in the coming decades, primarily due to a fast increasing population and risks of climate change. Successful adaptation of agriculture should not only benefit in the current climate but should also reduce negative (or enhance positive) impacts for climate change. Assessment of various possible adaptation options and their uncertainties provides key information for prioritizing adaptation investments. Here, based on the several robust aspects of climate projections in this region (i.e. temperature increases and rainfall pattern shifts), we use two well-validated crop models (i.e. APSIM and SARRA-H) and an ensemble of downscaled climate forcing to assess five possible and realistic adaptation options (late sowing, intensification, thermal time increase, water harvesting and increased resilience to heat stress) in West Africa for the staple crop production of sorghum. We adopt a new assessment framework to account for both the impacts of adaptation options in current climate and their ability to reduce impacts of future climate change, and also consider changes in both mean yield and its variability. Our results reveal that most proposed "adaptation options" are not more beneficial in the future than in the current climate, i.e. not really reduce the climate change impacts. Increased temperature resilience during grain number formation period is the main adaptation that emerges. We also find that changing from the traditional to modern cultivar, and later sowing in West Sahel appear to be robust adaptations.
Specific plant induced biofilm formation in Methylobacterium species
Rossetto, Priscilla B.; Dourado, Manuella N.; Quecine, Maria C.; Andreote, Fernando D.; Araújo, Welington L.; Azevedo, João L.; Pizzirani-Kleiner, Aline A.
2011-01-01
Two endophytic strains of Methylobacterium spp. were used to evaluate biofilm formation on sugarcane roots and on inert wooden sticks. Results show that biofilm formation is variable and that plant surface and possibly root exudates have a role in Methylobacterium spp. host recognition, biofilm formation and successful colonization as endophytes. PMID:24031703
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okuzumi, Satoshi; Hirose, Shigenobu, E-mail: okuzumi@nagoya-u.jp
Turbulence driven by magnetorotational instability (MRI) affects planetesimal formation by inducing diffusion and collisional fragmentation of dust particles. We examine conditions preferred for planetesimal formation in MRI-inactive 'dead zones' using an analytic dead-zone model based on our recent resistive MHD simulations. We argue that successful planetesimal formation requires not only a sufficiently large dead zone (which can be produced by tiny dust grains) but also a sufficiently small net vertical magnetic flux (NVF). Although often ignored, the latter condition is indeed important since the NVF strength determines the saturation level of turbulence in MRI-active layers. We show that direct collisionalmore » formation of icy planetesimal across the fragmentation barrier is possible when the NVF strength is lower than 10 mG (for the minimum-mass solar nebula model). Formation of rocky planetesimals via the secular gravitational instability is also possible within a similar range of the NVF strength. Our results indicate that the fate of planet formation largely depends on how the NVF is radially transported in the initial disk formation and subsequent disk accretion processes.« less
NASA Astrophysics Data System (ADS)
Kobayashi, K.; Yamanashi, H.; Ohashi, A.; Kaneko, T.; Miyakawa, S.; Saito, T.
It is suggested that primitive Earth atmosphere was only slightly reduced, which w as composed of carbon dioxide, carbon monoxide, nitrogen and water. It has been shown that bioorganic compounds can be hardly formed by energies as UV light, heat and spark discharges. We therefore examined possible formation pat hways of bioorganic compounds in the primitive E arth. A mixt ure of carbon monoxide, nitrogen and water was irradiated with high-energy prot ons generated by a van de Graaff accelerator, whi c h simulated an action of cosm ic rays. Aqueous solution of the product was hydr olyzed, and then analyzed by chromatography and mass spectrometry. A wide variety of amino acids and uracil, one of the nucle ic acid bases, wer e identified. Ribose, the RNA sugar, has not been identified, but formation of reducing polyols was suggested. A mino acids and uracil were also formed from a mixture of carbo n dioxide, carbon monoxide, nitrogen and water, and their yields correlated to the ratio of carbon monoxide and nitrogen in the mixture. Since a certain percentage of carbon monoxide could be expected to be in it [1], cosmic radiation can be regarded as an effective energ so urce for prebiotic formation of life's building blocks in they primitive Earth [2]. In the conventional scenario of chemical evolution, amino acids were formed in t he primitive ocean from such intermediates as HCN an d HCHO formed in t he atmosphere. T his scenario seem s not to be possible due to the following reasons: (1) The irradiation products were quit e complex organic com pound s whose molecular weights were ca. 1000, and they gave amino acids after hydrolysis. (2) Energy yields of amino ac ids in the hydrolysates were comparable to those of HCN and HCHO in the irradiation pro duct s. (3) Irradiation products from a mixture of carbon monoxide and nitrogen without water als o gave amino acids aft er hydrolysis. T hes e observations strongly sugge s t e d that complex precursors of bioor ganic com poun ds could be formed directly in the atmosphere. A new scenario of chemical evolution via complex organics toward the origin of life will be prop o s e d. [1] J. Kasting, Origins Life Evol. Biosph ere, 20, 199 (1990). [2] K. Kobay ashi , et al., Origins Life Evol. Biosphere, 28, 155 (1998). * Present address: Rensselaer Polytechnic Ins titut e.
NASA Technical Reports Server (NTRS)
Ferguson, F.; Lilleleht, L. U.; Nuth, J.; Stephens, J. R.; Bussoletti, E.; Colangeli, L.; Mennella, V.; Dell'Aversana, P.; Mirra, C.
1993-01-01
The formation, properties and chemical dynamics of microparticles are important in a wide variety of technical and scientific fields including synthesis of semiconductor crystals from the vapour, heterogeneous chemistry in the stratosphere and the formation of cosmic dust surrounding the stars. Gravitational effects on particle formation from vapors include gas convection and buoyancy and particle sedimentation. These processes can be significantly reduced by studying condensation and agglomeration of particles in microgravity. In addition, to accurately simulate particle formation near stars, which takes place under low gravity conditions, studies in microgravity are desired. We report here the STARDUST experience, a recent collaborative effort that brings together a successful American program of microgravity experiments on particle formation aboard NASA KC-135 Reduced Gravity Research Aircraft and several Italian research groups with expertise in microgravity research and astrophysical dust formation. The program goal is to study the formation and properties of high temperature particles and gases that are of interest in astrophysics and planetary science. To do so we are developing techniques that are generally applicable to study particle formation and properties, taking advantage of the microgravity environment to allow accurate control of system parameters.
Ferguson, F; Lilleleht, L U; Nuth, J; Stephens, J R; Bussoletti, E; Colangeli, L; Mennella, V; Dell'Aversana, P; Mirra, C
1993-01-01
The formation, properties and chemical dynamics of microparticles are important in a wide variety of technical and scientific fields including synthesis of semiconductor crystals from the vapour, heterogeneous chemistry in the stratosphere and the formation of cosmic dust surrounding the stars. Gravitational effects on particle formation from vapors include gas convection and buoyancy and particle sedimentation. These processes can be significantly reduced by studying condensation and agglomeration of particles in microgravity. In addition, to accurately simulate particle formation near stars, which takes place under low gravity conditions, studies in microgravity are desired. We report here the STARDUST experience, a recent collaborative effort that brings together a successful American program of microgravity experiments on particle formation aboard NASA KC-135 Reduced Gravity Research Aircraft and several Italian research groups with expertise in microgravity research and astrophysical dust formation. The program goal is to study the formation and properties of high temperature particles and gases that are of interest in astrophysics and planetary science. To do so we are developing techniques that are generally applicable to study particle formation and properties, taking advantage of the microgravity environment to allow accurate control of system parameters.
Influence of computational domain size on the pattern formation of the phase field crystals
NASA Astrophysics Data System (ADS)
Starodumov, Ilya; Galenko, Peter; Alexandrov, Dmitri; Kropotin, Nikolai
2017-04-01
Modeling of crystallization process by the phase field crystal method (PFC) represents one of the important directions of modern computational materials science. This method makes it possible to research the formation of stable or metastable crystal structures. In this paper, we study the effect of computational domain size on the crystal pattern formation obtained as a result of computer simulation by the PFC method. In the current report, we show that if the size of a computational domain is changed, the result of modeling may be a structure in metastable phase instead of pure stable state. The authors present a possible theoretical justification for the observed effect and provide explanations on the possible modification of the PFC method to account for this phenomenon.
Lautenschläger, Ingmar; Frerichs, Inéz; Dombrowsky, Heike; Sarau, Jürgen; Goldmann, Torsten; Zitta, Karina; Albrecht, Martin; Weiler, Norbert; Uhlig, Stefan
2015-01-01
Intestinal circulatory disturbances, atony, edema and swelling are of great clinical relevance, but the related mechanisms and possible therapeutic options are poorly characterized, in part because of the difficulties to comprehensively analyze these conditions. To overcome these limitations we have developed a model of the isolated perfused rat small intestine where all of these symptoms can be studied simultaneously. Here we used this model to study the role of eicosanoids, steroids and quinidine in platelet-activating factor (PAF)-induced intestinal disorders. A vascular bolus of PAF (0.5 nmol) triggered release of thromboxane and peptidoleukotrienes into the vascular bed (peak concentration 35 nM and 0.8 nM) and reproduced all symptoms of intestinal failure: mesenteric vasoconstriction, translocation of fluid and macromolecules from the vasculature to the lumen and lymphatics, intestinal edema formation, loss of intestinal peristalsis and decreased galactose uptake. All effects of PAF were abolished by the PAF-receptor antagonist ABT491 (2.5 μM). The COX and LOX inhibitors ASA and AA861 (500 μM, 10 μM) did not exhibit barrier-protective effects and the eicosanoid antagonists SQ29548 and MK571 (10 μM, each) only moderately attenuated the loss of vascular fluid, the redistribution to the lumen and the transfer of FITC dextran to the lumen. The steroid dexamethasone (10 μM) showed no barrier-protective properties and failed to prevent edema formation. Quinidine (100 μM) inhibited the increase in arterial pressure, stabilized all the intestinal barriers, and reduced lymph production and the transfer of FITC dextran to the lymph. While quinidine by itself reduced peristalsis, it also obviated paralysis, preserved intestinal functions and prevented edema formation. We conclude that quinidine exerts multiple protective effects against vasoconstriction, edema formation and paralysis in the intestine. The therapeutic use of quinidine for intestinal ailments deserves further study. PMID:25793535
Sillers, Ryan; Al-Hinai, Mohab Ali; Papoutsakis, Eleftherios T
2009-01-01
Metabolic engineering (ME) of Clostridium acetobutylicum has led to increased solvent (butanol, acetone, and ethanol) production and solvent tolerance, thus demonstrating that further efforts have the potential to create strains of industrial importance. With recently developed ME tools, it is now possible to combine genetic modifications and thus implement more advanced ME strategies. We have previously shown that antisense RNA (asRNA)-based downregulation of CoA transferase (CoAT, the first enzyme in the acetone-formation pathway) results in increased butanol to acetone selectivity, but overall reduced butanol yields and titers. In this study the alcohol/aldehyde dehydrogenase (aad) gene (encoding the bifunctional protein AAD responsible for butanol and ethanol production from butyryl-CoA and acetyl-CoA, respectively) was expressed from the phosphotransbutyrylase (ptb) promoter to enhance butanol formation and selectivity, while CoAT downregulation was used to minimize acetone production. This led to early production of high alcohol (butanol plus ethanol) titers, overall solvent titers of 30 g/L, and a higher alcohol/acetone ratio. Metabolic flux analysis revealed the likely depletion of butyryl-CoA. In order to increase then the flux towards butyryl-CoA, we examined the impact of thiolase (THL, thl) overexpression. THL converts acetyl-CoA to acetoacetyl-CoA, the first step of the pathway from acetyl-CoA to butyryl-CoA, and thus, combining thl overexpression with aad overexpression decreased, as expected, acetate and ethanol production while increasing acetone and butyrate formation. thl overexpression in strains with asRNA CoAT downregulation did not significantly alter product formation thus suggesting that a more complex metabolic engineering strategy is necessary to enhance the intracellular butyryl-CoA pool and reduce the acetyl-CoA pool in order to achieve improved butanol titers and selectivity.
Mao, Yong; Singh-Varma, Anya; Hoffman, Tyler; Dhall, Sandeep; Danilkovitch, Alla; Kohn, Joachim
2018-01-08
Biofilm, a community of bacteria, is tolerant to antimicrobial agents and ubiquitous in chronic wounds. In a chronic DFU (Diabetic Foot Ulcers) clinical trial, the use of a human cryopreserved viable amniotic membrane (CVAM) resulted in a high rate of wound closure and reduction of wound-related infections. Our previous study demonstrated that CVAM possesses intrinsic antimicrobial activity against a spectrum of wound-associated bacteria under planktonic culture conditions. In this study, we evaluated the effect of CVAM and cryopreserved viable umbilical tissue (CVUT) on biofilm formation of S. aureus and P. aeruginosa , the two most prominent pathogens associated with chronic wounds. Firstly, we showed that, like CVAM, CVUT released antibacterial activity against multiple bacterial pathogens and the devitalization of CVUT reduced its antibacterial activity. The biofilm formation was then measured using a high throughput method and an ex vivo porcine dermal tissue model. We demonstrate that the formation of biofilm was significantly reduced in the presence of CVAM- or CVUT-derived conditioned media compared to control assay medium. The formation of P. aeruginosa biofilm on CVAM-conditioned medium saturated porcine dermal tissues was reduced 97% compared with the biofilm formation on the control medium saturated dermal tissues. The formation of S. auerus biofilm on CVUT-conditioned medium saturated dermal tissues was reduced 72% compared with the biofilm formation on the control tissues. This study is the first to show that human cryopreserved viable placental tissues release factors that inhibit biofilm formation. Our results provide an explanation for the in vivo observation of their ability to support wound healing.
Tatsukawa, Hideki; Otsu, Risa; Tani, Yuji; Wakita, Ryosuke; Hitomi, Kiyotaka
2018-05-09
Chronic kidney disease is characterized by prolonged decline in renal function, excessive accumulation of ECM, and progressive tissue fibrosis. Transglutaminase (TG) is a crosslinking enzyme that catalyzes the formation of covalent bonds between glutamine and lysine residues, and is involved in the induction of renal fibrosis via the stabilization of ECM and the activation of TGF-β1. Despite the accumulating evidences indicating that TG2 is a key enzyme in fibrosis, genetic knockout of TG2 reduced by only 50% the elevated protein crosslinking and fibrous protein in renal fibrosis model, whereas treatment with TG inhibitor almost completely reduced these levels. Here, we also clarified the distributions of TG isozymes and their in situ activities and identified the isozyme-specific crosslinked substrates for both TG1 and TG2 in fibrotic kidney. We found that TG1 activity was markedly enhanced in renal tubular epithelium and interstitial areas, whereas TG2 activity increased only in the extracellular space. In total, 47 and 67 possible candidates were identified as TG1 and TG2 substrates, respectively, only in fibrotic kidney. Among them, several possible substrates related to renal disease and fibrosis were identified. These findings provide novel insights into the mechanisms of renal fibrosis through the targeting of isozyme-specific TG substrates.
Pressure Pulsation in a High Head Francis Turbine Operating at Variable Speed
NASA Astrophysics Data System (ADS)
Sannes, D. B.; Iliev, I.; Agnalt, E.; Dahlhaug, O. G.
2018-06-01
This paper presents the preliminary work of the master thesis of the author, written at the Norwegian University of Science and Technology. Today, many Francis turbines experience formations of cracks in the runner due to pressure pulsations. This can eventually cause failure. One way to reduce this effect is to change the operation point of the turbine, by utilizing variable speed technology. This work presents the results from measurements of the Francis turbine at the Waterpower Laboratory at NTNU. Measurements of pressure pulsations and efficiency were done for the whole operating range of a high head Francis model turbine. The results will be presented in a similar diagram as the Hill Chart, but instead of constant efficiency curves there will be curves of constant peak-peak values. This way, it is possible to find an optimal operation point for the same power production, were the pressure pulsations are at its lowest. Six points were chosen for further analysis to instigate the effect of changing the speed by ±50 rpm. The analysis shows best results for operation below BEP when the speed was reduced. The change in speed also introduced the possibility to have other frequencies in the system. It is therefore important avoid runner speeds that can cause resonance in the system.
Effect of both protective and reducing agents in the synthesis of multicolor silver nanoparticles
NASA Astrophysics Data System (ADS)
Rivero, Pedro Jose; Goicoechea, Javier; Urrutia, Aitor; Arregui, Francisco Javier
2013-02-01
In this paper, the influence of variable molar ratios between reducing and loading agents (1:100, 1:50, 1:20, 1:10, 1:5, 1:2, 1:1, 2:1) and between protective and loading agents (0.3:1, 0.75:1, 1.5:1, 3:1, 7.5:1, 30:1, 75:1) in the synthesis of silver nanoparticles by chemical reduction has been evaluated to obtain multicolor nanoparticles with a high stability in time. The protective agent poly(acrylic acid, sodium salt) (PAA) and reducing agent dimethylaminoborane (DMAB) play a key role in the formation of the resultant color. Evolution of the optical absorption bands of the silver nanoparticles as a function of PAA and DMAB molar ratios made it possible to confirm the presence of silver nanoparticles or clusters with a specific shape. The results reveal that a wide range of colors (violet, blue, green, brown, yellow, red, orange), sizes (from nanometer to micrometer), and shapes (cubic, rod, triangle, hexagonal, spherical) can be perfectly tuned by means of a fine control of the PAA and DMAB molar concentrations.
Redox status in a model of cancer stem cells.
Zaccarin, Mattia; Bosello-Travain, Valentina; Di Paolo, Maria Luisa; Falda, Marco; Maiorino, Matilde; Miotto, Giovanni; Piccolo, Stefano; Roveri, Antonella; Ursini, Fulvio; Venerando, Rina; Toppo, Stefano
2017-03-01
Reversible oxidation of Cys residues is a crucial element of redox homeostasis and signaling. According to a popular concept in oxidative stress signaling, the oxidation of targets of signals can only take place following an overwhelming of the cellular antioxidant capacity. This concept, however, ignores the activation of feedback mechanisms possibly leading to a paradoxical effect. In a model of cancer stem cells (CSC), stably overexpressing the TAZ oncogene, we observed that the increased formation of oxidants is associated with a globally more reduced state of proteins. Redox proteomics revealed that several proteins, capable of undergoing reversible redox transitions, are indeed more reduced while just few are more oxidized. Among the proteins more oxidized, G6PDH emerges as both more expressed and activated by oxidation. This accounts for the observed more reduced state of the NADPH/NADP + couple. The dynamic redox flux generating this apparently paradoxical effect is rationalized in a computational system biology model highlighting the crucial role of G6PDH activity on the rate of redox transitions eventually leading to the reduction of reversible redox switches. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Palmieri, Valentina; Barba, Marta; Di Pietro, Lorena; Gentilini, Silvia; Chiara Braidotti, Maria; Ciancico, Carlotta; Bugli, Francesca; Ciasca, Gabriele; Larciprete, Rosanna; Lattanzi, Wanda; Sanguinetti, Maurizio; De Spirito, Marco; Conti, Claudio; Papi, Massimiliano
2018-01-01
Graphene and graphene oxide (GO) are capable of inducing stem cells differentiation into bone tissue with variable efficacy depending on reductive state of the material. Thus, modulation of osteogenic process and of bone mineral density distribution is theoretically possible by controlling the GO oxidative state. In this study, we laser-printed GO surfaces in order to obtain both a local photo-thermal GO reduction and the formation of nano-wrinkles along precise geometric pattern. Initially, after cells adhered on the surface, stem cells migrated and accumulated on the reduced and wrinkled surface. When the local density of the stem cells on the reduced stripes was high, cells started to proliferate and occupy the oxidized/flat area. The designed surfaces morphology guided stem cell orientation and the reduction accelerated differentiation. Furthermore the reduced sharp nano-wrinkles were able to enhance the GO antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), a common cause of prosthetic joints infections. This strategy can offer a revolution in present and future trends of scaffolds design for regenerative medicine.
Proteomic changes in the crucian carp brain during exposure to anoxia.
Smith, Richard W; Cash, Phil; Ellefsen, Stian; Nilsson, Göran E
2009-04-01
During exposure to anoxia, the crucian carp brain is able to maintain normal overall protein synthesis rates. However, it is not known if there are alterations in the synthesis or expression of specific proteins. This investigation addresses this issue by comparing the normoxic and anoxic brain proteome. Nine proteins were found to be reduced by anoxia. Reductions in the glycolytic pathway proteins creatine kinase, fructose biphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, triosephosphate isomerase and lactate dehydrogenase reflect the reduced production and requirement for adenosine tri-phosphate during anoxia. In terms of neural protection, voltage-dependent anion channel, a protein associated with neuronal apoptosis, was reduced, along with gefiltin, a protein associated with the subsequent need for neuronal repair. Additionally the expression of proteins associated with neural degeneration and impaired cognitive function also declined; dihydropyrimidinase-like protein-3 and vesicle amine transport protein-1. One protein was found to be increased by anoxia; pre-proependymin, the precursor to ependymin. Ependymin fulfils multiple roles in neural plasticity, memory formation and learning, neuron growth and regeneration, and is able to reverse the possibility of apoptosis, thus further protecting the anoxic brain.
Xu, Heng; Wang, Cuiping; Yan, Kun; Wu, Jing; Zuo, Jiane; Wang, Kaijun
2016-09-01
Syngas based co-digestion is not only more economically attractive than separate syngas methanation but also able to upgrade biogas and increase overall CH4 amount simultaneously. However, high H2 concentration in the syngas could inhibit syntrophic degradation of propionate, resulting in propionate accumulation and even failure of the co-digestion system. In an attempt to reduce propionate accumulation via enhancing both H2 interspecies transfer (HIT) and direct interspecies electron transfer (DIET) pathways, layered granule-based biofilms induced by conductive carbon felt particles (CCFP) was employed. The results showed that propionate accumulation was effectively reduced with influent COD load up to 7gL(-1)d(-1). Two types of granule-based biofilms, namely biofilm adhered to CCFP (B-CCFP) and granules formed by self-immobilization (B-SI) were formed in the reactor. Clostridium, Syntrophobacter, Methanospirillum were possibly involved in HIT and Clostridium, Geobacter, Anaerolineaceae, Methanosaeta in DIET, both of which might be responsible for the high-rate propionate degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Ripley, E. M.; Nicol, D. L.
1979-01-01
Sulfur isotopic studies of pyrite from metasediments in the 2.6 b.y. old Deer Lake greenstone sequence, Minnesota, were conducted in order to evaluate the possible importance of sulfate reducing bacteria in sulfide formation. Pyrite occurs as ovules up to 2 cm in diameter within graphitic slates, and as fine disseminations in metagraywacke units. SEM studies indicate the pyrite is framboidal in morphology. Delta notation values of pyrite from the Deer Lake sediments range from -2.3 to 11.1 0/00, with a peak at approximately +2 o/oo. Isotopic data is consistent with either high temperature inorganic reduction of circulating seawater sulfate, or low temperature bacterial reduction. However, the lack of sulfide bands or massive occurrences in the sediments, the restriction of pyrite mineralization to the sediments, and the absence of evidence for hot spring activity suggest that a diagenetic origin of pyrite is more feasible. Sulfide in such an environment would be produced principally by the action of sulfate reducing bacteria.
Hong, Seok Hoon; Wang, Xiaoxue; Wood, Thomas K.
2010-01-01
Summary The global regulator H‐NS of Escherichia coli controls genes related to stress response, biofilm formation and virulence by recognizing curved DNA and by silencing acquired genes. Here, we rewired H‐NS to control biofilm formation using protein engineering; H‐NS variant K57N was obtained that reduces biofilm formation 10‐fold compared with wild‐type H‐NS (wild‐type H‐NS increases biofilm formation whereas H‐NS K57N reduces it). Whole‐transcriptome analysis revealed that H‐NS K57N represses biofilm formation through its interaction with the nucleoid‐associated proteins Cnu and StpA and in the absence of these proteins, H‐NS K57N was unable to reduce biofilm formation. Significantly, H‐NS K57N enhanced the excision of defective prophage Rac while wild‐type H‐NS represses excision, and H‐NS controlled only Rac excision among the nine resident E. coli K‐12 prophages. Rac prophage excision not only led to the change in biofilm formation but also resulted in cell lysis through the expression of toxin HokD. Hence, the H‐NS regulatory system may be evolved through a single‐amino‐acid change in its N‐terminal oligomerization domain to control biofilm formation, prophage excision and apoptosis. PMID:21255333
Cheng, Tao; Xiao, Hai; Goddard, William A.
2016-10-11
Copper is the only elemental metal that reduces a significant fraction of CO 2 to hydrocarbons and alcohols, but the atomistic reaction mechanism that controls the product distributions is not known because it has not been possible to detect the reaction intermediates on the electrode surface experimentally, or to carry out Quantum Mechanics (QM) calculations with a realistic description of the electrolyte (water). We carry out QM calculations with an explicit description of water on the Cu(100) surface (experimentally shown to be stable under CO 2 reduction reaction conditions) to examine the initial reaction pathways to form CO and formatemore » (HCOO –) from CO 2 through free energy calculations at 298 K and pH 7. We find that CO formation proceeds from physisorbed CO 2 to chemisorbed CO 2 (*CO 2 δ-), with a free energy barrier of ΔG ‡ = 0.43 eV, the rate-determining step (RDS). The subsequent barriers of protonating *CO 2 δ- to form COOH* and then dissociating COOH* to form *CO are 0.37 and 0.30 eV, respectively. HCOO– formation proceeds through a very different pathway in which physisorbed CO 2 reacts directly with a surface H* (along with electron transfer), leading to ΔG ‡ = 0.80 eV. Thus, the competition between CO formation and HCOO – formation occurs in the first electron-transfer step. On Cu(100), the RDS for CO formation is lower, making CO the predominant product. Therefore, to alter the product distribution, we need to control this first step of CO 2 binding, which might involve controlling pH, alloying, or changing the structure at the nanoscale.« less
Neo: an object model for handling electrophysiology data in multiple formats
Garcia, Samuel; Guarino, Domenico; Jaillet, Florent; Jennings, Todd; Pröpper, Robert; Rautenberg, Philipp L.; Rodgers, Chris C.; Sobolev, Andrey; Wachtler, Thomas; Yger, Pierre; Davison, Andrew P.
2014-01-01
Neuroscientists use many different software tools to acquire, analyze and visualize electrophysiological signals. However, incompatible data models and file formats make it difficult to exchange data between these tools. This reduces scientific productivity, renders potentially useful analysis methods inaccessible and impedes collaboration between labs. A common representation of the core data would improve interoperability and facilitate data-sharing. To that end, we propose here a language-independent object model, named “Neo,” suitable for representing data acquired from electroencephalographic, intracellular, or extracellular recordings, or generated from simulations. As a concrete instantiation of this object model we have developed an open source implementation in the Python programming language. In addition to representing electrophysiology data in memory for the purposes of analysis and visualization, the Python implementation provides a set of input/output (IO) modules for reading/writing the data from/to a variety of commonly used file formats. Support is included for formats produced by most of the major manufacturers of electrophysiology recording equipment and also for more generic formats such as MATLAB. Data representation and data analysis are conceptually separate: it is easier to write robust analysis code if it is focused on analysis and relies on an underlying package to handle data representation. For that reason, and also to be as lightweight as possible, the Neo object model and the associated Python package are deliberately limited to representation of data, with no functions for data analysis or visualization. Software for neurophysiology data analysis and visualization built on top of Neo automatically gains the benefits of interoperability, easier data sharing and automatic format conversion; there is already a burgeoning ecosystem of such tools. We intend that Neo should become the standard basis for Python tools in neurophysiology. PMID:24600386
Neo: an object model for handling electrophysiology data in multiple formats.
Garcia, Samuel; Guarino, Domenico; Jaillet, Florent; Jennings, Todd; Pröpper, Robert; Rautenberg, Philipp L; Rodgers, Chris C; Sobolev, Andrey; Wachtler, Thomas; Yger, Pierre; Davison, Andrew P
2014-01-01
Neuroscientists use many different software tools to acquire, analyze and visualize electrophysiological signals. However, incompatible data models and file formats make it difficult to exchange data between these tools. This reduces scientific productivity, renders potentially useful analysis methods inaccessible and impedes collaboration between labs. A common representation of the core data would improve interoperability and facilitate data-sharing. To that end, we propose here a language-independent object model, named "Neo," suitable for representing data acquired from electroencephalographic, intracellular, or extracellular recordings, or generated from simulations. As a concrete instantiation of this object model we have developed an open source implementation in the Python programming language. In addition to representing electrophysiology data in memory for the purposes of analysis and visualization, the Python implementation provides a set of input/output (IO) modules for reading/writing the data from/to a variety of commonly used file formats. Support is included for formats produced by most of the major manufacturers of electrophysiology recording equipment and also for more generic formats such as MATLAB. Data representation and data analysis are conceptually separate: it is easier to write robust analysis code if it is focused on analysis and relies on an underlying package to handle data representation. For that reason, and also to be as lightweight as possible, the Neo object model and the associated Python package are deliberately limited to representation of data, with no functions for data analysis or visualization. Software for neurophysiology data analysis and visualization built on top of Neo automatically gains the benefits of interoperability, easier data sharing and automatic format conversion; there is already a burgeoning ecosystem of such tools. We intend that Neo should become the standard basis for Python tools in neurophysiology.
Shaw, Frances L.; Mulholland, Francis; Le Gall, Gwénaëlle; Porcelli, Ida; Hart, Dave J.; Pearson, Bruce M.
2012-01-01
The food-borne bacterial pathogen Campylobacter jejuni efficiently utilizes organic acids such as lactate and formate for energy production. Formate is rapidly metabolized via the activity of the multisubunit formate dehydrogenase (FDH) enzyme, of which the FdhA subunit is predicted to contain a selenocysteine (SeC) amino acid. In this study we investigated the function of the cj1500 and cj1501 genes of C. jejuni, demonstrate that they are involved in selenium-controlled production of FDH, and propose the names fdhT and fdhU, respectively. Insertional inactivation of fdhT or fdhU in C. jejuni resulted in the absence of FdhA and FdhB protein expression, reduced fdhABC RNA levels, the absence of FDH enzyme activity, and the lack of formate utilization, as assessed by 1H nuclear magnetic resonance. The fdhABC genes are transcribed from a single promoter located two genes upstream of fdhA, and the decrease in fdhABC RNA levels in the fdhU mutant is mediated at the posttranscriptional level. FDH activity and the ability to utilize formate were restored by genetic complementation with fdhU and by supplementation of the growth media with selenium dioxide. Disruption of SeC synthesis by inactivation of the selA and selB genes also resulted in the absence of FDH activity, which could not be restored by selenium supplementation. Comparative genomic analysis suggests a link between the presence of selA and fdhTU orthologs and the predicted presence of SeC in FdhA. The fdhTU genes encode accessory proteins required for FDH expression and activity in C. jejuni, possibly by contributing to acquisition or utilization of selenium. PMID:22609917
Selforganized Structure Formation in Organized Microstructuring by Laser-Jet Etching
NASA Astrophysics Data System (ADS)
Rabbow, T. J.; Plath, P. J.; Mora, A.; Haase, M.
Laser-jet induced wet etching of stainless steel in 5M H3PO4 has been investigated. By this method, it is possible to cut and microstructure metals and alloys that form passive layers in strong etchants. Due to the laser heating of the metal and the adjacent layers of the etchant, the passive layer is removed and an active dissolution of the base metal together with the formation of hydrogen is observed. The reactions are limited by the transport of fresh acid and the removal of dissolved metal. A jet of etchant reduces the transport limitations. For definite ranges of the laser power, the feed velocity and the etchant jet velocity, a regime of periodic structure formation of the kerf, often called ripples, has been found. The ripple length depends on all three parameters. The ripple formation can be brought into correlation with a periodic change of the intensity of the reflected light as well as oscillations of the potential workpiece. It could be shown that the periodic structure formation is connected to a spreading of an etching front from the laser activated area, that temporarily moves ahead to the laser. This leads to modulations of the interface for the laser absorption, which results, for example, in oscillations of the intensity of the reflected light. This means the laser induced etching reaction attracts a feedback based on the conditions of absorption for the laser. For those parameters of feed velocity, laser power and etchant jet velocity, without ripple formation the laser induced etching front is of a constant distance to the laser which results in steady conditions at the interface for the absorption of the laser.
Gyrd-Hansen, Dorte; Halvorsen, Peder; Nexøe, Jørgen; Nielsen, Jesper; Støvring, Henrik; Kristiansen, Ivar
2011-01-01
When people make choices, they may have multiple options presented simultaneously or, alternatively, have options presented 1 at a time. It has been shown that if decision makers have little experience with or difficulties in understanding certain attributes, these attributes will have greater impact in joint evaluations than in separate evaluations. The authors investigated the impact of separate versus joint evaluations in a health care context in which laypeople were presented with the possibility of participating in risk-reducing drug therapies. In a randomized study comprising 895 subjects aged 40 to 59 y in Odense, Denmark, subjects were randomized to receive information in terms of absolute risk reduction (ARR), relative risk reduction (RRR), number needed to treat (NNT), or prolongation of life (POL), all with respect to heart attack, and they were asked whether they would be willing to receive a specified treatment. Respondents were randomly allocated to valuing the interventions separately (either great effect or small effect) or jointly (small effect and large effect). Joint evaluation reduced the propensity to accept the intervention that offered the smallest effect. Respondents were more sensitive to scale when faced with a joint evaluation for information formats ARR, RRR, and POL but not for NNT. Evaluability bias appeared to be most pronounced for POL and ARR. Risk information appears to be prone to evaluability bias. This suggests that numeric information on health gains is difficult to evaluate in isolation. Consequently, such information may bear too little weight in separate evaluations of risk-reducing interventions.
NASA Astrophysics Data System (ADS)
Prabhu, S.; Pudukudy, M.; Sohila, S.; Harish, S.; Navaneethan, M.; Navaneethan, D.; Ramesh, R.; Hayakawa, Y.
2018-05-01
In the present work, spindle-shaped ZnO and reduced graphene oxide sheets were successfully synthesized by a hydrothermal method and then ZnO/r-GO composite was prepared by a direct solution mixing method. Various characterization results confirmed the interior and surface decoration of spindle-shaped ZnO on the reduced graphene oxide sheets. The phase formation, crystalline structure, morphology, surface states and optical properties were characterized using Powder X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR) and UV-Vis spectroscopy. The X-ray diffraction analysis showed the formation of the hexagonal wurtzite crystalline structure of ZnO with high crystalline quality. The band gap of the ZnO/r-GO composite was found to be low (3.03eV) compared to the band gap of spindle shaped ZnO (3.13 eV), as calculated from optical studies. The spindle-like morphology of the single crystalline ZnO was clearly shown in the electron microscopic images. The chemical bonding and surface states of the samples were studied using XPS measurement. Moreover, a possible growth mechanism for the ZnO spindle was proposed. The catalytic activity of the as-synthesized samples was evaluated for the photodegradation of methylene blue under visible light irradiation. Among the synthesized samples, the ZnO/r-GO composite showed higher degradation efficiency of 93% and successfully reused for four consecutive run without any activity loss.
Drag reducing polymers decrease hepatic injury and metastases after liver ischemia-reperfusion
Yazdani, Hamza O.; Sud, Vikas; Goswami, Julie; Loughran, Patricia; Huang, Hai; Simmons, Richard L.; Tsung, Allan
2017-01-01
Introduction Surgery, a crucial therapeutic modality in the treatment of solid tumors, can induce sterile inflammatory processes which can result in metastatic progression. Liver ischemia and reperfusion (I/R) injury, an inevitable consequence of hepatic resection of metastases, has been shown to foster hepatic capture of circulating cancer cells and accelerate metastatic growth. Efforts to reduce these negative consequences have not been thoroughly investigated. Drag reducing polymers (DRPs) are blood-soluble macromolecules that can, in nanomolar concentrations, increase tissue perfusion, decrease vascular resistance and decrease near-wall microvascular concentration of neutrophils and platelets thereby possibly reducing the inflammatory microenvironment. We hypothesize that DRP can potentially be used to ameliorate metastatic capture of tumor cells and tumor growth within the I/R liver. Methods Experiments were performed utilizing a segmental ischemia model of mice livers. Five days prior or immediately prior to ischemia, murine colon adenocarcinoma cells (MC38) were injected into the spleen. DRP (polyethylene oxide) or a control of low-molecular-weight polyethylene glycol without drag reducing properties were administered intraperitoneally at the onset of reperfusion. Results After three weeks from I/R, we observed that liver I/R resulted in an increased ability to capture and foster growth of circulating tumor cells; in addition, the growth of pre-existing micrometastases was accelerated three weeks later. These effects were significantly curtailed when mice were treated with DRPs at the time of I/R. Mechanistic investigations in vivo indicated that DRPs protected the livers from I/R injury as evidenced by significant decreases in hepatocellular damage, neutrophil recruitment into the liver, formation of neutrophil extracellular traps, deposition of platelets, formation of microthrombi within the liver sinusoids and release of inflammatory cytokines. Conclusions DRPs significantly attenuated metastatic tumor development and growth. DRPs warrant further investigation as a potential treatment for liver I/R injury in the clinical setting to improve cancer-specific outcomes. PMID:28938688
NASA Technical Reports Server (NTRS)
Halmann, M.; Aurian-Blajeni, B.; Bloch, S.
1981-01-01
The photoassisted reduction of aqueous carbon dioxide in the presence of naturally occurring minerals is investigated as a possible abiotic precursor of photosynthesis. Aqueous carbon dioxide saturated suspensions or surfaces of the minerals nontronite, bentonite, anatase, wolframite, molybdenite, minium, cinnabar and hematite were irradiated with high-pressure mercury lamps or sunlight. Chemical analyses reveal the production of formic acid, formaldehyde, methanol and methane, and the two and three-carbon compounds glyoxal (CHOCHO) and malonaldehyde (CH2(CHO)2). It is suggested that such photosynthetic reactions with visible light in the presence of semiconducting minerals may provide models for prebiological carbon and nitrogen fixation in both oxidized and reduced atmospheres.
Review: Rusticle Formation on the RMS Titanic and the Potential Influence of Oceanography
NASA Astrophysics Data System (ADS)
Salazar, Maxsimo; Little, Brenda
2017-04-01
Meter length iron-rich rusticles on the RMS Titanic contain bacteria that reportedly mobilize iron from the ship structure at a rate that will reduce the wreck to rust in decades. Other sunken ships, such as the World War II shipwrecks in the Gulf of Mexico (GOM) are also similarly covered. However, at the GOM sites, rusticles are only centimeters in length. Minimal differences in water temperature (a few °C) between the two sites and comparable exposure times from wreckage to discovery cannot rationalize the extreme differences in rusticle length. One possible explanation for the observed difference in rusticle size is the differing amounts of dissolved or colloidal iron at the two locations.
The QuakeSim Project: Numerical Simulations for Active Tectonic Processes
NASA Technical Reports Server (NTRS)
Donnellan, Andrea; Parker, Jay; Lyzenga, Greg; Granat, Robert; Fox, Geoffrey; Pierce, Marlon; Rundle, John; McLeod, Dennis; Grant, Lisa; Tullis, Terry
2004-01-01
In order to develop a solid earth science framework for understanding and studying of active tectonic and earthquake processes, this task develops simulation and analysis tools to study the physics of earthquakes using state-of-the art modeling, data manipulation, and pattern recognition technologies. We develop clearly defined accessible data formats and code protocols as inputs to the simulations. these are adapted to high-performance computers because the solid earth system is extremely complex and nonlinear resulting in computationally intensive problems with millions of unknowns. With these tools it will be possible to construct the more complex models and simulations necessary to develop hazard assessment systems critical for reducing future losses from major earthquakes.
Melting of isolated tin nanoparticles
Bachels; Guntherodt; Schafer
2000-08-07
The melting of isolated neutral tin cluster distributions with mean sizes of about 500 atoms has been investigated in a molecular beam experiment by calorimetrically measuring the clusters' formation energies as a function of their internal temperature. For this purpose the possibility to adjust the temperature of the clusters' internal degrees of freedom by means of the temperature of the cluster source's nozzle was exploited. The melting point of the investigated tin clusters was found to be lowered by 125 K and the latent heat of fusion per atom is reduced by 35% compared to bulk tin. The melting behavior of the isolated tin clusters is discussed with respect to the occurrence of surface premelting.
NASA Technical Reports Server (NTRS)
Bitterlich, E.
1977-01-01
Technical possibilities and economic advantages of integrating hot water storage systems into power plants fired with fossil fuels are discussed. The systems can be charged during times of load reduction and then used for back-up during peak load periods. Investment costs are higher for such systems than for gas turbine power plants fired with natural gas or light oil installed to meet peak load demand. However, by improving specific heat consumption by about 1,000 kcal/k ohm, which thus reduces the related costs, investment costs will be compensated for, so that power production costs will not increase.
Molecules as Drives and Witnesses of Star Formation
NASA Astrophysics Data System (ADS)
Shustov, B. M.
2017-07-01
The progress in understanding the role of molecules in star formation is discussed. After very brief introduction which we note in that no star formation would be possible without molecules at the dawn of the Universe and that molecules are important drivers and witnesses of star formation in the current epoch, we consider observational technologies and emphasize the prospective role of UV observations. Special attention is paid to possibilities of UV spectroscopy with coming space observatory Spektr-UF (World Space Observatory - Ultraviolet; WSO-UV). Only one example (observations of CO-dark clouds) from vast scientific program of the WSO-UV is mentioned. Also very briefly disclosed is a model approach to study complex evolution of very young (prestellar) object focusing on chemical (molecular) evolution.
Koskinen, Cecilia; Persson, Emelie; Baldock, Paul; Stenberg, Åsa; Boström, Ingrid; Matozaki, Takashi; Oldenborg, Per-Arne; Lundberg, Pernilla
2013-01-01
Here, we investigated whether the cell surface glycoprotein CD47 was required for normal formation of osteoblasts and osteoclasts and to maintain normal bone formation activity in vitro and in vivo. In parathyroid hormone or 1α,25(OH)2-vitamin D3 (D3)-stimulated bone marrow cultures (BMC) from CD47−/− mice, we found a strongly reduced formation of multinuclear tartrate-resistant acid phosphatase (TRAP)+ osteoclasts, associated with reduced expression of osteoclastogenic genes (nfatc1, Oscar, Trap/Acp, ctr, catK, and dc-stamp). The production of M-CSF and RANKL (receptor activator of nuclear factor κβ ligand) was reduced in CD47−/− BMC, as compared with CD47+/+ BMC. The stromal cell phenotype in CD47−/− BMC involved a blunted expression of the osteoblast-associated genes osterix, Alp/Akp1, and α-1-collagen, and reduced mineral deposition, as compared with that in CD47+/+ BMC. CD47 is a ligand for SIRPα (signal regulatory protein α), which showed strongly reduced tyrosine phosphorylation in CD47−/− bone marrow stromal cells. In addition, stromal cells lacking the signaling SIRPα cytoplasmic domain also had a defect in osteogenic differentiation, and both CD47−/− and non-signaling SIRPα mutant stromal cells showed a markedly reduced ability to support osteoclastogenesis in wild-type bone marrow macrophages, demonstrating that CD47-induced SIRPα signaling is critical for stromal cell support of osteoclast formation. In vivo, femoral bones of 18- or 28-week-old CD47−/− mice showed significantly reduced osteoclast and osteoblast numbers and exhibited an osteopenic bone phenotype. In conclusion, lack of CD47 strongly impairs SIRPα-dependent osteoblast differentiation, deteriorate bone formation, and cause reduced formation of osteoclasts. PMID:23990469
[Clinical usefulness of bone turnover markers in the management of osteoporosis].
Yano, Shozo
2013-09-01
Osteoporosis is a state of elevated risk for bone fracture due to depressed bone strength, which is considered to be the sum of bone mineral density and bone quality. Since a measure of bone quality has not been established, bone mineral density and bone turnover markers are the only way to evaluate bone strength. Bone turnover markers are classified into bone formation marker and resorption marker, which are correlated with the bone formation rate and resorption rate, respectively, and bone matrix-related marker. Bone is always metabolized; old tissue is resorbed by acids and proteases derived from osteoclasts, whereas new bone is produced by osteoblasts. Bone formation and resorption rates should be balanced (also called coupled). When the bone resorption rate exceeds the formation rate(uncoupled state), bone volume will be reduced. Thus, we can comprehend bone metabolism by measuring both formation and resorption markers at the same time. Increased fracture risk is recognized by elevated bone resorption markers and undercarboxylated osteocalcin, which reflects vitamin K insufficiency and bone turnover. These values and the time course give us helpful information to choose medicine suitable for the patients and to judge the responsiveness. If the value is extraordinarily high without renal failure, metabolic bone disorder or bone metastatic tumor should be considered. Bone quality may be assessed by measuring bone matrix-related markers such as homocystein and pentosidine. Since recent studies indicate that the bone is a hormone-producing organ, it is possible that glucose metabolism or an unknown mechanism could be assessed in the future.
Mintziras, Ioannis; Miligkos, Michael; Bartsch, Detlef Klaus
2016-08-01
The aim of this study was to evaluate the efficacy of vacuum-assisted closure therapy in patients with open abdomen due to secondary peritonitis and to identify possible risk factors of fistula formation. The hospital OPS-database (time period 2005-2014) was searched to identify patients treated with an open abdomen due to secondary peritonitis, who underwent vacuum-assisted closure therapy. Medical records were retrospectively analyzed for patients' characteristics, cause of peritonitis, duration of vacuum therapy, number of relaparotomies, fascial closure rates, and risk factors of fistula formation. Forty-three patients (19 male, 24 female) with a median age of 65 years (range 24-90 years) were identified. The major cause of secondary peritonitis was anastomotic leakage after intestinal anastomosis or bowel perforation, the median APACHE II score was 11. Median duration of VAC treatment was 12 days (range 3-88 days). Twenty of 43 (47 %) patients died from septic complications. Delayed fascial closure was obtained by suturing in 20 of 43 patients (47 %). Overall 16 of 43 (37 %) patients developed enteroatmospheric fistulas. Re-explorations after starting VAC treatment and duration of VAC therapy were significantly associated with the occurrence of enteroatmospheric fistulas (p < 0.001). ROC curve analysis determined the optimal duration of VAC therapy to reduce the risk of fistula formation at 13 days. Long-term VAC treatment of patients with an open abdomen due to secondary peritonitis results in a relatively low fascial closure rate and a high risk of fistula formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Tao; Xiao, Hai; Goddard, William A.
Copper is the only elemental metal that reduces a significant fraction of CO 2 to hydrocarbons and alcohols, but the atomistic reaction mechanism that controls the product distributions is not known because it has not been possible to detect the reaction intermediates on the electrode surface experimentally, or to carry out Quantum Mechanics (QM) calculations with a realistic description of the electrolyte (water). We carry out QM calculations with an explicit description of water on the Cu(100) surface (experimentally shown to be stable under CO 2 reduction reaction conditions) to examine the initial reaction pathways to form CO and formatemore » (HCOO –) from CO 2 through free energy calculations at 298 K and pH 7. We find that CO formation proceeds from physisorbed CO 2 to chemisorbed CO 2 (*CO 2 δ-), with a free energy barrier of ΔG ‡ = 0.43 eV, the rate-determining step (RDS). The subsequent barriers of protonating *CO 2 δ- to form COOH* and then dissociating COOH* to form *CO are 0.37 and 0.30 eV, respectively. HCOO– formation proceeds through a very different pathway in which physisorbed CO 2 reacts directly with a surface H* (along with electron transfer), leading to ΔG ‡ = 0.80 eV. Thus, the competition between CO formation and HCOO – formation occurs in the first electron-transfer step. On Cu(100), the RDS for CO formation is lower, making CO the predominant product. Therefore, to alter the product distribution, we need to control this first step of CO 2 binding, which might involve controlling pH, alloying, or changing the structure at the nanoscale.« less
2014-01-01
Background Selenite (SeO32−) oxyanion shows severe toxicity to biota. Different bacterial strains exist that are capable of reducing SeO32− to non-toxic elemental selenium (Se0), with the formation of Se nanoparticles (SeNPs). These SeNPs might be exploited for technological applications due to their physico-chemical and biological characteristics. The present paper discusses the reduction of selenite to SeNPs by a strain of Bacillus sp., SeITE01, isolated from the rhizosphere of the Se-hyperaccumulator legume Astragalus bisulcatus. Results Use of 16S rRNA and GyrB gene sequence analysis positioned SeITE01 phylogenetically close to B. mycoides. On agarized medium, this strain showed rhizoid growth whilst, in liquid cultures, it was capable of reducing 0.5 and 2.0 mM SeO32− within 12 and 24 hours, respectively. The resultant Se0 aggregated to form nanoparticles and the amount of Se0 measured was equivalent to the amount of selenium originally added as selenite to the growth medium. A delay of more than 24 hours was observed between the depletion of SeO32 and the detection of SeNPs. Nearly spherical-shaped SeNPs were mostly found in the extracellular environment whilst rarely in the cytoplasmic compartment. Size of SeNPs ranged from 50 to 400 nm in diameter, with dimensions greatly influenced by the incubation times. Different SeITE01 protein fractions were assayed for SeO32− reductase capability, revealing that enzymatic activity was mainly associated with the membrane fraction. Reduction of SeO32− was also detected in the supernatant of bacterial cultures upon NADH addition. Conclusions The selenite reducing bacterial strain SeITE01 was attributed to the species Bacillus mycoides on the basis of phenotypic and molecular traits. Under aerobic conditions, the formation of SeNPs were observed both extracellularly or intracellullarly. Possible mechanisms of Se0 precipitation and SeNPs assembly are suggested. SeO32− is proposed to be enzimatically reduced to Se0 through redox reactions by proteins released from bacterial cells. Sulfhydryl groups on peptides excreted outside the cells may also react directly with selenite. Furthermore, membrane reductases and the intracellular synthesis of low molecular weight thiols such as bacillithiols may also play a role in SeO32− reduction. Formation of SeNPs seems to be the result of an Ostwald ripening mechanism. PMID:24606965
OK-432 (Sapylin) Reduces Seroma Formation After Axillary Lymphadenectomy in Breast Cancer.
Kong, Deguang; Liu, Yu; Li, Zhihua; Cui, Qiuxia; Wang, Kun; Wu, Kongming; Wu, Gaosong
2017-02-01
Purpose/aim: Modified radical mastectomy is the standard surgery for breast cancer in developing countries. However, seroma formation regarded as the most frequent postoperative complication limits the therapeutic benefit of mastectomy and axillary surgery. The purpose of this study was to evaluate the efficacy of OK-432 in reducing seroma formation after axillary dissection. This prospective cohort study included 80 patients with advanced breast cancer who underwent modified radical mastectomy. Patients were randomized into two groups, which differed with the OK-432 administration. N = 40 patients per group were treated with either OK-432 plus closed suction drainage or drainage-only. In comparison with the drainage-only group, we found that patients in the OK-432 group had a lower drainage volume (p = .030) and a shorter duration of axillary drainage (p < .01). Besides, the use of OK-432 could reduce the incidence of seroma formation (p < .01) and the volume of seroma (p = .040). There were also significant differences in reducing the chance of evacuative punctures (p = .036) and the healing time (p < .01) between control and OK-432 group. OK-432 not only shortened the suction drainage duration, but also significantly reduced seroma formation as well as the needs for aspiration punctures after modified radical mastectomy.
Hayami, Tadashi; Pickarski, Maureen; Wesolowski, Gregg A; McLane, Julia; Bone, Ashleigh; Destefano, James; Rodan, Gideon A; Duong, Le T
2004-04-01
It has been suggested that subchondral bone remodeling plays a role in the progression of osteoarthritis (OA). To test this hypothesis, we characterized the changes in the rat anterior cruciate ligament transection (ACLT) model of OA and evaluated the effects of alendronate (ALN), a potent inhibitor of bone resorption, on cartilage degradation and on osteophyte formation. Male Sprague-Dawley rats underwent ACLT or sham operation of the right knee. Animals were then treated with ALN (0.03 and 0.24 microg/kg/week subcutaneously) and necropsied at 2 or 10 weeks postsurgery. OA changes were evaluated. Subchondral bone volume and osteophyte area were measured by histomorphometric analysis. Coimmunostaining for transforming growth factor beta (TGF beta), matrix metalloproteinase 9 (MMP-9), and MMP-13 was performed to investigate the effect of ALN on local activation of TGF beta. ALN was chondroprotective at both dosages, as determined by histologic criteria and collagen degradation markers. ALN suppressed subchondral bone resorption, which was markedly increased 2 weeks postsurgery, and prevented the subsequent increase in bone formation 10 weeks postsurgery, in the untreated tibial plateau of ACLT joints. Furthermore, ALN reduced the incidence and area of osteophytes in a dose-dependent manner. ALN also inhibited vascular invasion into the calcified cartilage in rats with OA and blocked osteoclast recruitment to subchondral bone and osteophytes. ALN treatment reduced the local release of active TGF beta, possibly via inhibition of MMP-13 expression in articular cartilage and MMP-9 expression in subchondral bone. Subchondral bone remodeling plays an important role in the pathogenesis of OA. ALN or other inhibitors of bone resorption could potentially be used as disease-modifying agents in the treatment of OA.
Beye, B; Barret, M; Alatawi, A; Beuvon, F; Nicco, C; Pratico, C A; Chereau, C; Chaussade, S; Batteux, F; Prat, F
2016-08-01
The development of techniques for endoscopic resection has provided new strategies for radical conservative treatment of superficial esophageal neoplasms, even those that are circumferential, such as Barrett's neoplasia. However, it is necessary to prevent the formation of scar tissue that can be responsible for esophageal strictures following circumferential resection. Preliminary data have suggested the possible efficacy of a hemostatic powder in the promotion of wound healing. The study aims to assess the effectiveness of Hemospray (Cook Medical) in a swine model of post-endoscopic esophageal stricture. Our prospective controlled study included 21 pigs. A 6-cm circumferential submucosal dissection of the esophagus (CESD) was performed in each pig. Group 1 (n = 11) only underwent CESD and Group 2 (n = 10) had repeated Hemospray applications after CESD. Clinical, endoscopic, and radiological monitoring were performed, blood levels of four inflammatory or pro-fibrotic cytokines were assessed, and histological analysis was performed. Median esophageal diameter was greater in the group treated with Hemospray (2 mm [1-3] vs. 3 mm [2-4], P = 0.01), and the rate of symptomatic esophageal stricture was 100% and 60% in Groups 1 and 2, respectively (P = 0.09). The thicknesses of esophageal fibrosis and inflammatory cell infiltrate were significantly lower in Group 2 than in Group 1 (P = 0.002 and 0.0003, respectively). The length of the neoepithelium was greater in Group 2 than in Group 1 (P = 0.0004). Transforming growth factor-β levels were significantly lower in Group 2 than in Group 1 (P = 0.01). The application of Hemospray after esophageal CESD reduces scar tissue formation and promotes reepithelialization, and therefore is a promising therapeutic approach in the prevention of post-endoscopic esophageal stricture. © 2015 International Society for Diseases of the Esophagus.
Geophysical anomalies of Osage County and its relationship to Oklahoma seismicity
NASA Astrophysics Data System (ADS)
Crain, K.; Chang, J. C.; Walter, J. I.
2017-12-01
Substantial increases in seismicity across northcentral Oklahoma in the last decade have been generally attributed to human activity. During the last oil and gas boom, the Cherokee Platform was generally targeted by many energy companies. However, these new production wells yielded sometimes as much as 90% (or more) formation saltwater, along with hydrocarbons, which was commonly disposed of into deeper formations of the Arbuckle Group. Wastewater injection into the Arbuckle group, which directly overlies crystalline basement, has been proposed to hydraulically or elastically perturb the stresses on basement faults, causing them to slip. An Oklahoma seismicity map shows Osage County as an anomalously "quiet" region. Seismicity in counties surrounding Osage County experienced hundreds of earthquakes during the past couple of years, yet the area of Osage experienced less than a dozen earthquakes in the decades-long history of the Oklahoma seismic network. This is surprising since the fundamental geologic settings and possible anthropogenic triggers are essentially the same for these seismically active and quiet areas. We present a possible geologic explanation for the anomalously quiescent Osage County. We model gravity and magnetics data to show that there are dense bodies beneath the study area, and use vitrinite reflectance data from the sedimentary strata to constrain the relative age of a possible intrusion event, which might have produced the dense bodies. We propose that the intrusion of dense bodies could have caused significant basement alteration thereby reducing the seismogenic potential for basement faults to host larger, detectable earthquakes such as is observed in other regions of Oklahoma. If our hypothesis is correct, researchers may be able to use geologic criteria to identify anthropogenic earthquake-triggering mechanisms, which in turn could help to delineate areas where wastewater injection is, or is not, expected to induce earthquakes.
NASA Astrophysics Data System (ADS)
Lin, Shin-Hsun; Liou, Tai-Sheng
2013-04-01
In this study, migration of CO2 in a deep saline aquifer with anticlines under various injection schemes was numerically simulated using the ECO2N simulator. The hypothetical study site was selected at the Taoyuan Plateau near the second largest coal-fired power plant, Datan power plant (annual CO2 emission of 1.5 Mt/yr), in Northwestern Taiwan. A 15x15 km2 simulation domain, containing two sub-parallel east-northeast Hukou and Pingzhen anticlines, was discretized into unstructured grid with spatial refinement at the injection borehole. Kueichulin sandstone and Chinshui shale in the simulation domain were considered as the storage formation and the cap rock, respectively. It was assumed that no CO2 exists in the aquifer prior to injection, and that the aquifer has a hydrostatic pressure distribution and a constant salinity of 3%. All boundaries were assumed to be "open". Isothermal simulations with 1 Mt/yr injection rate and 20 years of injection period were considered. van Genuchten capillary pressure and Corey relative permeability were assumed for all rock formations. Simulation results indicated that pressure buildup characterized the CO2 migration into three different phases: drainage of brine, formation dry-out, and dissolution and gravity take-over . It was found that the worst leakage scenario occurs if a single injection borehole is placed along the anticline axis. In this case, rock formations near the anticline axis provide a leakage path such that CO2 ultimately leaks out of the upper boundary. On the other hand, CO2 can be safely sequestrated in the storage formation if the injection borehole was placed away from the anticline axis. This is because gas phase CO2 migrates along the counter dipping direction of the anticline as a result of buoyancy. More favorable scenarios were found if a multiple-borehole injection scheme was used. In such cases, not only pressure buildup was significantly mitigated but the amount of precipitated salt was reduced. If a five-borehole scheme was used, for example, pressure buildup and the amount of precipitated salt can be reduced by 20% and 90%, respectively. More interestingly, if injection borehole was placed midway between the two anticlines, buoyancy dominates the migration of CO2 such that most CO2 is accumulated under the apex of anticline. Therefore, it is suggested that a multiple-borehole injection scheme would be a preferable scenario because of the reduced risks of pressure buildup and salt precipitation. Moreover, it would be better to place the injection boreholes away from the anticline axis in order to make good use of all possible trapping mechanisms to permanently sequestrate CO2 in deep rock formations.
Ferraro Petrillo, Umberto; Roscigno, Gianluca; Cattaneo, Giuseppe; Giancarlo, Raffaele
2017-05-15
MapReduce Hadoop bioinformatics applications require the availability of special-purpose routines to manage the input of sequence files. Unfortunately, the Hadoop framework does not provide any built-in support for the most popular sequence file formats like FASTA or BAM. Moreover, the development of these routines is not easy, both because of the diversity of these formats and the need for managing efficiently sequence datasets that may count up to billions of characters. We present FASTdoop, a generic Hadoop library for the management of FASTA and FASTQ files. We show that, with respect to analogous input management routines that have appeared in the Literature, it offers versatility and efficiency. That is, it can handle collections of reads, with or without quality scores, as well as long genomic sequences while the existing routines concentrate mainly on NGS sequence data. Moreover, in the domain where a comparison is possible, the routines proposed here are faster than the available ones. In conclusion, FASTdoop is a much needed addition to Hadoop-BAM. The software and the datasets are available at http://www.di.unisa.it/FASTdoop/ . umberto.ferraro@uniroma1.it. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Singh, Preeti; Hanson, Peter S; Morris, Christopher M
2017-06-02
Sirtuins (SIRTs) are NAD + dependent lysine deacetylases which are conserved from bacteria to humans and have been associated with longevity and lifespan extension. SIRT1, the best studied mammalian SIRT is involved in many physiological and pathological processes and changes in SIRT1 have been implicated in neurodegenerative disorders, with SIRT1 having a suggested protective role in Parkinson's disease. In this study, we determined the effect of SIRT1 on cell survival and α-synuclein aggregate formation in SH-SY5Y cells following oxidative stress. Over-expression of SIRT1 protected SH-SY5Y cells from toxin induced cell death and the protection conferred by SIRT1 was partially independent of its deacetylase activity, which was associated with the repression of NF-кB and cPARP expression. SIRT1 reduced the formation of α-synuclein aggregates but showed minimal co-localisation with α-synuclein. In post-mortem brain tissue obtained from patients with Parkinson's disease, Parkinson's disease with dementia, dementia with Lewy bodies and Alzheimer's disease, the activity of SIRT1 was observed to be down-regulated. These findings suggests a negative effect of oxidative stress in neurodegenerative disorders and possibly explain the reduced activity of SIRT1 in neurodegenerative disorders. Our study shows that SIRT1 is a pro-survival protein that is downregulated under cellular stress.
Tennant, Gail M; Wadsworth, Roger M; Kennedy, Simon
2008-05-01
Activation of PAR-2 in the vasculature affects vascular tone and adhesion of leukocytes to the endothelium. Since adhesion of leukocytes is increased following vascular injury and is important in determining the extent of neointima formation, we hypothesised that mice lacking PAR-2 may have reduced neointima formation following vascular injury. PAR-2 activating peptides and trypsin induced endothelium-dependent relaxation of mouse carotid artery which was absent in the knockout mouse. Lack of a PAR-2 receptor did not affect lymphocyte adhesion under basal conditions, but reduced the contractile response produced by lymphocytes. Twenty-eight days after denuding injury, vessel contraction to lymphocytes was reduced in both strains while lymphocyte adhesion was significantly greater in PAR-2(+/+) mice compared to the PAR-2 knockout mice. Neointimal area was markedly reduced in the PAR-2 knockout mouse. Our data show that PAR-2 modulates inflammatory cell adhesion when stimulated and in mice lacking the PAR-2 receptor, adhesion to injured vessels is reduced with a consequent reduction in neointima formation.
Price, Morgan N.; Ray, Jayashree; Wetmore, Kelly M.; Kuehl, Jennifer V.; Bauer, Stefan; Deutschbauer, Adam M.; Arkin, Adam P.
2014-01-01
Sulfate-reducing bacteria play major roles in the global carbon and sulfur cycles, but it remains unclear how reducing sulfate yields energy. To determine the genetic basis of energy conservation, we measured the fitness of thousands of pooled mutants of Desulfovibrio alaskensis G20 during growth in 12 different combinations of electron donors and acceptors. We show that ion pumping by the ferredoxin:NADH oxidoreductase Rnf is required whenever substrate-level phosphorylation is not possible. The uncharacterized complex Hdr/flox-1 (Dde_1207:13) is sometimes important alongside Rnf and may perform an electron bifurcation to generate more reduced ferredoxin from NADH to allow further ion pumping. Similarly, during the oxidation of malate or fumarate, the electron-bifurcating transhydrogenase NfnAB-2 (Dde_1250:1) is important and may generate reduced ferredoxin to allow additional ion pumping by Rnf. During formate oxidation, the periplasmic [NiFeSe] hydrogenase HysAB is required, which suggests that hydrogen forms in the periplasm, diffuses to the cytoplasm, and is used to reduce ferredoxin, thus providing a substrate for Rnf. During hydrogen utilization, the transmembrane electron transport complex Tmc is important and may move electrons from the periplasm into the cytoplasmic sulfite reduction pathway. Finally, mutants of many other putative electron carriers have no clear phenotype, which suggests that they are not important under our growth conditions, although we cannot rule out genetic redundancy. PMID:25400629
NASA Astrophysics Data System (ADS)
Kudryavtsev, I. V.; Jungner, H.
2011-10-01
The possible mechanism by which cosmic rays affect the formation of neutral water droplets and ice crystals in the Earth's atmosphere has been considered. This mechanism is based on changes in atmospheric transparency and vertical temperature distribution. It has been indicated that a change in the optical thickness for visible and IR radiation by several percents, which can take place when cosmic-ray particles penetrate into the atmosphere, results in a change in the temperature vertical distribution, affecting the growth of water droplets, concentration of active condensation nuclei, and the formation of ice particles. This mechanism makes it possible to explain the correlation between the intensity of galactic cosmic rays at low altitudes and the absence of this correlation at middle altitudes.
NASA Technical Reports Server (NTRS)
Lee, L. C.; Ma, Z. W.; Fu, Z. F.; Otto, A.
1993-01-01
A mechanism for the formation of fossil flux transfer events and the low-level boundary layer within the framework of multiple X-line reconnection is proposed. Attention is given to conditions for which the bulk of magnetic flux in a flux rope of finite extent has a simple magnetic topology, where the four possible connections of magnetic field lines are: IMF to MSP, MSP to IMF, IMF to IMF, and MSP to MSP. For a sufficient relative shift of the X lines, magnetic flux may enter a flux rope from the magnetosphere and exit into the magnetosphere. This process leads to the formation of magnetic flux ropes which contain a considerable amount of magnetosheath plasma on closed magnetospheric field lines. This process is discussed as a possible explanation for the formation of fossil flux transfer events in the magnetosphere and the formation of the low-latitude boundary layer.
DOE R&D Accomplishments Database
Calvin, Melvin
1955-03-21
A cyclic sequence of transformations, including the carboxylation of RuDP (ribulose diphosphate) and its re-formation, has been deduced as the route for the creation of reduced carbon compounds in photosynthetic organisms. With the demonstration of RuDP as substrate for the carboxylation in a cell-free system, each of the reactions has now been carried out independently in vitro. Further purification of this last enzyme system has confirmed the deduction that the carboxylation of RuDP leads directly to the two molecules of PGA (phosphoglyceric acid) involving an internal dismutation and suggesting the name "carboxydismutase" for the enzyme. As a consequence of this knowledge of each of the steps in the photosynthetic CO{sub 2} reduction cycle, it is possible to define the reagent requirements to maintain it. The net requirement for the reduction of one molecule of CO{sub 2} is four equivalents of [H]and three molecules of ATP (adenine triphosphate). These must ultimately be supplied by the photochemical reaction. Some possible ways in which this may be accomplished are discussed.
Extrinsic doping of the half-Heusler compounds
NASA Astrophysics Data System (ADS)
Stern, Robin; Dongre, Bonny; Madsen, Georg K. H.
2016-08-01
Controlling the p- and n-type doping is a key tool to improve the power-factor of thermoelectric materials. In the present work we provide a detailed understanding of the defect thermochemistry in half-Heusler compounds. We calculate the formation energies of intrinsic and extrinsic defects in state of the art n-type TiNiSn and p-type TiCoSb thermoelectric materials. It is shown how the incorporation of online repositories can reduce the workload in these calculations. In TiNiSn we find that Ni- and Ti-interstitial defects play a crucial role in the carrier concentration of TiNiSn. Furthermore, we find that extrinsic doping with Sb can substantially enhance the carrier concentration, in agreement with experiment. In case of TiCoSb, we find ScTi, FeCo and SnSb being possible p-type dopants. While experimental work has mainly focussed on Sn-doping of the Sb site, the present result underlines the possibility to p-dope TiCoSb on all lattice sites.
Chronic swine instrumentation techniques utilizing the GOR-REX peritoneal catheter
NASA Astrophysics Data System (ADS)
Gray, C. C.; White, F. C.; Crisman, R. P.; Wisniewski, J.; McKirnan, D.
1985-05-01
The GORE-TEX peritoneal catheter interface is an effective skin interface device for many types of instrumentation in the swine. When properly utilized, the interface allows the development of a stable and effective biological seal which will reduce or eliminate sinus tract formation and resultant systemic infection. The interface is suitable for running any wire or catheter (up to about 2.5mm diameter) through the integument of the animal, thus increasing the possibilities for chronic instrumentation while maintaining a healthy animal. The lack of evidence of any growth phenomenon acting to extrude the interface segment, similar to that observed using other synthetic materials, and the superior biological seal which the interface develops, may allow many chronic studies which were previously not feasible. Using special catheter adapter stubs and an intermittent infusion plug, a sterile, sealed catheter system has decreased the possibilities for introducing pathogens while allowing ready access to the blood stream. Detailed descriptions of surgical implantation techniques and catheter set up and maintenance techniques are included.
Few-cycle pulse laser induced damage threshold determination of ultra-broadband optics.
Kafka, Kyle R P; Talisa, Noah; Tempea, Gabriel; Austin, Drake R; Neacsu, Catalin; Chowdhury, Enam A
2016-12-12
A systematic study of few-cycle pulse laser induced damage threshold (LIDT) determination was performed for commercially-available ultra-broadband optics, (i.e. chirped mirrors, silver mirrors, beamsplitters, etc.) in vacuum and in air, for single and multi-pulse regime (S-on-1). Multi-pulse damage morphology at fluences below the single-pulse LIDT was studied in order to investigate the mechanisms leading to the onset of damage. Stark morphological contrast was observed between multi-pulse damage sites formed in air versus those in vacuum. One effect of vacuum testing compared to air included suppression of laser-induced periodic surface structures (LIPSS) formation, possibly influenced by a reduced presence of damage debris. Another effect of vacuum was occasional lowering of LIDT, which appears to be due to the stress-strain performance of the coating design during laser irradiation and under the external stress of vacuum ambience. A fused silica substrate is also examined, and a non-LIPSS nanostructuring is observed on the surface. Possible mechanisms are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Xiaojia, E-mail: wangxj@cau.edu.cn; Li Chuangen; Chi Xiaojing
Mixed virus infections can cause livestock losses that are more devastating than those caused by single virus infections. Newcastle disease virus (NDV) and infectious bronchitis virus (IBV), serious threats to the poultry industry, can give rise to complex mixed infections that hinder diagnosis and prevention. In this study, we show that newly designed peptides, which are based on the heptad repeat (HR) region of the fusion glycoproteins from NDV and IBV, have more potent antiviral activity than the mother HR peptides. Plaque formation and chicken embryo infectivity assays confirmed these results. The novel peptides completely inhibited single virus infections andmore » mixed infections caused by NDV and IBV. Furthermore, we assessed cell toxicity and possible targets for the peptides, thereby strengthening the notion that HR2 is an attractive site for therapeutic intervention. These results suggest the possibility of designing a relatively broad-spectrum class of antiviral peptides that can reduce the effects of mixed-infections.« less
Gentamicin induces efaA expression and biofilm formation in Enterococcus faecalis.
Kafil, Hossein Samadi; Mobarez, Ashraf Mohabati; Moghadam, Mehdi Forouzandeh; Hashemi, Zahra Sadat; Yousefi, Mehdi
2016-03-01
Enterococci have been ranked among the leading causes of nosocomial bacteremia and urinary tract infection. This study aimed to investigate the effect of ampicillin, vancomycin, gentamicin and ceftizoxime on biofilm formation and gene expression of colonization factors on Enterococcus faecalis. Twelve clinical isolates of E. faecalis were used to investigate the effect of antibiotics on biofilm formation and gene expression of efaA, asa1, ebpA, esp and ace. Flow system assay and Microtiter plates were used for biofilm assay. Two hundred clinical isolates were used for confirming the effect of antibiotics on biofilm formation. Ampicillin, vancomycin and ceftizoxime did not have any significant effect on biofilm formation, but gentamicin induced biofilm formation in 89% of isolates. In twelve selected isolate gentamicin increased expression of esp (+50.9%) and efaA (+33.9%) genes and reduced or maintained expression of others (asa1:-47.4%, ebpA: 0, ace:-19.2%). Vancomycin increased expression of esp (+89.1%) but reduced the others (asa1: -34.9%, ebpA:-11%, ace:-30%, efaA:-60%). Ceftizoxime increased slightly ebpA (+19.7%) and reduced others (asa1:-66.2%, esp:-35%, ace:-28.1%, efaA:-38.4%). and ampicillin strongly increased expression of ace (+231%), esp (+131%) and ebpA (+83%) but reduced others (asa1:-85.5%, efaA:-47.4%). The findings of the present study showed that antibiotics may have a role in biofilm formation and sustainability of enterococci, especially in case of gentamicin. efaA gene may have an important role, especially in antibiotic induced biofilm formation by gentamicin. Experiments with efaA mutants are needed to investigate the exact effect of efaA on biofilm formation with antibiotic induced cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bauer, F. H.; Bristow, J. O.; Carpenter, J. R.; Garrison, J. L.; Hartman, K. R.; Lee, T.; Long, A. C.; Kelbel, D.; Lu, V.; How, J. P.;
2000-01-01
Formation flying is quickly revolutionizing the way the space community conducts autonomous science missions around the Earth and in space. This technological revolution will provide new, innovative ways for this community to gather scientific information, share this information between space vehicles and the ground, and expedite the human exploration of space. Once fully matured, this technology will result in swarms of space vehicles flying as a virtual platform and gathering significantly more and better science data than is possible today. Formation flying will be enabled through the development and deployment of spaceborne differential Global Positioning System (GPS) technology and through innovative spacecraft autonomy techniques, This paper provides an overview of the current status of NASA/DoD/Industry/University partnership to bring formation flying technology to the forefront as quickly as possible, the hurdles that need to be overcome to achieve the formation flying vision, and the team's approach to transfer this technology to space. It will also describe some of the formation flying testbeds, such as Orion, that are being developed to demonstrate and validate these innovative GPS sensing and formation control technologies.
Andrzejewski, Przemysław; Nawrocki, Jacek
2009-03-01
The reactivity of permanganate with dimethylamine, as possible path of NDMA formation, has been investigated. The results have shown that potassium permanganate reaction with aqueous solutions of dimethylamine (DMA) leads to the formation of N-nitrosodimethylamine (NDMA). The contact time, the molar ratio of permanganate and DMA, pH and presence of nitrite are the key factors influencing the efficiency of NDMA formation. Significant conversion rates of DMA to NDMA were observed only for the high doses of permanganate, which were many times higher than those typically used in water treatment. This reaction however is of importance for water treatment technology, since it shows the possibility of NDMA formation as a result of oxidation of DMA. It is likely that nitrosation is the main path of the reaction. An important role of MnO2 suspension, formed as a result of permanganate reduction in NDMA formation is emphasized. Significant influence of MnO2 suspension on NDMA formation should draw our attention to the potential impact of MnO2 activated filtration beds on NDMA formation.
Effects of cortisol suppression on sleep-associated consolidation of neutral and emotional memory.
Wagner, Ullrich; Degirmenci, Metin; Drosopoulos, Spyridon; Perras, Boris; Born, Jan
2005-12-01
Previous research indicates that hippocampus-dependent declarative memory benefits from early nocturnal sleep, when slow-wave sleep (SWS) prevails and cortisol release is minimal, whereas amygdala-dependent emotional memory is enhanced through late sleep, when rapid eye movement (REM) sleep predominates. The role of the strong cortisol rise accompanying late sleep for emotional memory consolidation has not yet been investigated. Effects of the cortisol synthesis inhibitor metyrapone on sleep-associated consolidation of memory for neutral and emotional texts were investigated in a randomized, double-blind, placebo-controlled study in 14 healthy men. Learning took place immediately before treatment, which was followed by 8 hours of sleep. Retrieval was tested at 11 am the next morning. Metyrapone suppressed cortisol during sleep and blocked particularly the late-night rise in cortisol. It reduced SWS and concomitantly impaired the consolidation of neutral texts. Emotional texts were spared from this impairing influence, however. Metyrapone even amplified emotional enhancement in text recall indicating amygdala-dependent memory. Cortisol blockade during sleep impairs hippocampus-dependent declarative memory formation but enhances amygdala-dependent emotional memory formation. The natural cortisol rise during late sleep may thus protect from overshooting emotional memory formation, a mechanism possibly pertinent to the development of posttraumatic stress disorder.
Wu, Ming-Fang; Lu, Hsu-Feng; Hsu, Yu-Ming; Tang, Ming-Chu; Chen, Hsueh-Chin; Lee, Ching-Sung; Yang, Yi-Yuan; Yeh, Ming-Yang; Chung, Hsiung-Kwang; Huang, Yi-Ping; Wu, Chih-Chung; Chung, Jing-Gung
2011-01-01
Agaricus blazei Murill extract (ABM) has been reported to possess antitumor effects. In this study, the role of ABM in tumor growth and metastasis in vivo was evaluated in experimental Smmu 7721 hepatoma cells in severe combined immunodeficiency (SCID) mice and B16F10 melanoma cells lung metastasis in C57BL/6 mice. For the tumor growth model, the size of the liver tumor mass was about 10 mm to 20 mm in the control group. In comparison with the control group, the tumor mass seem to grow slowly with ABM treatment, especially at the high dose. For the tumor metastasis model, after a six-week treatment, the survival rates of B6 mice were 0%, 30%, 10% and 50% for control group, low, median and high concentration ABM treatment groups, respectively. The survival rate showed that pretreatment of C57BL/6 (B6) mice with ABM lengthened their lifespan after tumor cell inoculation, which supports the notion that ABM successfully reduced lung metastasis formation by B16F10 melanoma cells. The treatment effect was dependent on the concentration of ABM for tumor growth and metastasis in these models.
Lavin, Paola; de Saravia, Sandra Gómez; Guiamet, Patricia
2016-04-01
Fungi produce pigments and acids, generating particular local conditions which modify the physicochemical properties of materials. The aims of this work are (i) to investigate bioadhesion, foxing production and biofilm formation by Scopulariopsis sp. and Fusarium sp. isolated from document collections under laboratory conditions; (ii) to verify attack on cellulose fibres and (iii) to study the possibility of reducing fungal growth using natural products. Biofilm formation and extracellular polymeric substance (EPS) production by fungi were demonstrated in laboratory assays and by scanning electron microscopy (SEM) observations. The biocidal activity of two essential oils of Origanum vulgare L. and Thymus vulgaris L. was evaluated using the microatmosphere method. SEM observations showed that these strains were able to attach to paper and form biofilms, causing damage on them, which demonstrates the biodeterioration ability of these microorganisms. Scopulariopsis sp. and Fusarium sp. isolated from paper books showed the formation of fox-like reddish-brown colour spots, attack to the paper structure and pigment production on aged paper samples. The strains tested produced a decrease in the pH of one unit. This would substantiate the effect of the strains in paper biodeterioration. The microatmosphere method showed that volatile compounds of the essential oils have antifungal activity.
Acrylamide formation in different foods and potential strategies for reduction.
Stadler, Richard H
2005-01-01
This paper summarizes the progress made to date on acrylamide research pertaining to analytical methods, mechanisms of formation, and mitigation research in the major food categories. Initial difficulties with the establishment of reliable analytical methods have today in most cases been overcome, but challenges still remain in terms of the needs to develop simple and rapid test methods. Several researchers have identified that the main pathway of formation of acrylamide in foods is linked to the Maillard reaction and in particular the amino acid asparagine. Decarboxylation of the resulting Schiff base is a key step, and the reaction product may either furnish acrylamide directly or via 3-aminopropionamide. An alternative proposal is that the corresponding decarboxylated Amadori compound may release acrylamide by a beta-elimination reaction. Many experimental trials have been conducted in different foods, and a number of possible measures identified to relatively lower the amounts of acrylamide in food. The validity of laboratory trials must, however, be assessed under actual food processing conditions. Some progress in relatively lowering acrylamide in certain food categories has been achieved, but can at this stage be considered marginal. However, any options that are chosen to reduce acrylamide must be technologically feasible and also not negatively impact the quality and safety of the final product.
Novel Radiomitigator for Radiation-Induced Bone Loss
NASA Technical Reports Server (NTRS)
Schreurs, A-S; Shirazi-fard, Y.; Terada, M.; Alwood, J. S.; Steczina, S.; Medina, C.; Tahimic, C. G. T.; Globus, R. K.
2016-01-01
Radiation-induced bone loss can occur with radiotherapy patients, accidental radiation exposure and during long-term spaceflight. Bone loss due to radiation is due to an early increase in oxidative stress, inflammation and bone resorption, resulting in an imbalance in bone remodeling. Furthermore, exposure to high-Linear Energy Transfer (LET) radiation will impair the bone forming progenitors and reduce bone formation. Radiation can be classified as high-LET or low-LET based on the amount of energy released. Dried Plum (DP) diet prevents bone loss in mice exposed to total body irradiation with both low-LET and high-LET radiation. DP prevents the early radiation-induced bone resorption, but furthermore, we show that DP protects the bone forming osteoblast progenitors from high-LET radiation. These results provide insight that DP re-balances the bone remodeling by preventing resorption and protecting the bone formation capacity. This data is important considering that most of the current osteoporosis treatments only block the bone resorption but do not protect bone formation. In addition, DP seems to act on both the oxidative stress and inflammation pathways. Finally, we have preliminary data showing the potential of DP to be radio-protective at a systemic effect and could possible protect other tissues at risk of total body-irradiation such as skin, brain and heart.
NASA Astrophysics Data System (ADS)
Subotić, Vanja; Schluckner, Christoph; Mathe, Jörg; Rechberger, Jürgen; Schroettner, Hartmuth; Hochenauer, Christoph
2015-11-01
Carbon deposition is a primary concern during operation of solid oxide fuel cells (SOFCs) fueled with carbon-containing fuels. It leads to cell degradation and thus reduces SOFC sustained operation and durability. This paper reports on an experimental investigation of carbon formation on the nickel/yttria-stabilized zirconia (Ni/YSZ) anode of an anode-supported SOFC and its regeneration. The cell was fueled with a synthetically produced diesel reformate to investigate and simulate the cell behavior under real operating conditions. For this purpose the cell was operated under load to determine the critical operating time. Rapid carbon generation, such as at open circuit voltage (OCV), can be prevented when the cell is under load. Carbon depositions were detected using scanning electron microscopy (SEM) and further analyzed by Raman spectroscopy. Industrial-size cells suitable for commercial applications were studied. This study proves the reversibility of carbon formation and the reproducibility of the regeneration process. It shows that carbon formations can be recognized and effectively, fully and cell-protecting regenerated. It indicates the excellent possibility of using SOFCs in the automotive industry as an auxiliary power unit (APU) or combined power-heat unit, operated with diesel reformate, without danger from cell degradation caused by carbon-containing fuels.
Biofilm formation by pathogenic Prototheca algae.
Kwiecinski, J
2015-12-01
Prototheca microalgae are the only plants known to cause infections in humans and animals. The mechanisms of Prototheca infections are poorly understood, and no good treatments are available. Biofilms-surface-attached, three-dimensional microbial communities contributing to chronic infections-are formed by many pathogenic bacteria and fungi, but it is not known if Prototheca algae also have this ability. This study shows that various Prototheca species form biofilms composed of surface-attached cells in all growth phases, linked together by matrix containing DNA and polysaccharides. Biofilm formation was modulated by the presence of host plasma or milk. Compared to planktonic cells, Prototheca biofilms caused decreased release of IL-6 by mononuclear immune cells and responded differently to treatment with antimicrobials. Prototheca biofilms possibly contribute to chronic and hard-to-treat character of those algal infections. Prototheca algae are the only existing pathogenic plants. Almost nothing is known about mechanisms of Prototheca infections. This study identifies that, similar to pathogenic bacteria and fungi, Prototheca algae can form biofilms. These biofilms induce reduced immune cell activation relative to planktonic cells, and are also less susceptible to antimicrobials. Biofilm formation by Prototheca could be the first in vitro correlate of pathogenicity, opening a new research field for this pathogen. © 2015 The Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Thomas, R.; Le Fèvre, O.; Scodeggio, M.; Cassata, P.; Garilli, B.; Le Brun, V.; Lemaux, B. C.; Maccagni, D.; Pforr, J.; Tasca, L. A. M.; Zamorani, G.; Bardelli, S.; Hathi, N. P.; Tresse, L.; Zucca, E.; Koekemoer, A. M.
2017-06-01
In this paper we aim at improving constraints on the epoch of galaxy formation by measuring the ages of 3597 galaxies with reliable spectroscopic redshifts 2 ≤ z ≤ 6.5 in the VIMOS Ultra Deep Survey (VUDS). We derive ages and other physical parameters from the simultaneous fitting with the GOSSIP+ software of observed UV rest-frame spectra and photometric data from the u band up to 4.5 μm using model spectra from composite stellar populations. We perform extensive simulations and conclude that at z ≥ 2 the joint analysis of spectroscopy and photometry, combined with restricted age possibilities when taking the age of the Universe into account, substantially reduces systematic uncertainties and degeneracies in the age derivation; we find that age measurements from this process are reliable. We find that galaxy ages range from very young with a few tens of million years to substantially evolved with ages up to 1.5 Gyr or more. This large age spread is similar for different age definitions including ages corresponding to the last major star formation event, stellar mass-weighted ages, and ages corresponding to the time since the formation of 25% of the stellar mass. We derive the formation redshift zf from the measured ages and find galaxies that may have started forming stars as early as zf 15. We produce the formation redshift function (FzF), the number of galaxies per unit volume formed at a redshift zf, and compare the FzF in increasing observed redshift bins finding a remarkably constant FzF. The FzF is parametrized with (1 + z)ζ, where ζ ≃ 0.58 ± 0.06, indicating a smooth increase of about 2 dex from the earliest redshifts, z 15, to the lowest redshifts of our sample at z 2. Remarkably, this observed increase in the number of forming galaxies is of the same order as the observed rise in the star formation rate density (SFRD). The ratio of the comoving SFRD with the FzF gives an average SFR per galaxy of 7-17M⊙/yr at z 4-6, in agreement with the measured SFR for galaxies at these redshifts. From the smooth rise in the FzF we infer that the period of galaxy formation extends all the way from the highest possible formation redshifts that we can probe at z 15 down to redshifts z 2. This indicates that galaxy formation is a continuous process over cosmic time, with a higher number of galaxies forming at the peak in SFRD at z 2 than at earlier epochs. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Programme 185.A-0791.
Sukhanov, Sergiy; Snarski, Patricia; Vaughn, Charlotte; Lobelle-Rich, Patricia; Kim, Catherine; Higashi, Yusuke; Shai, Shaw-Yung; Delafontaine, Patrice
2015-02-01
We have shown that insulin-like growth factor I (IGF-1) infusion in Apoe(-/-) mice decreased atherosclerotic plaque size and plaque macrophage and lipid content suggesting that IGF-1 suppressed formation of macrophage-derived foam cells. Since 12/15-lipoxygenase (12/15-LOX) plays an important role in OxLDL and foam cell formation, we hypothesized that IGF-1 downregulates 12/15-LOX, thereby suppressing lipid oxidation and foam cell formation. We found that IGF-1 decreased 12/15-LOX plaque immunopositivity and serum OxLDL levels in Apoe(-/-) mice. IGF-1 reduced 12/15-LOX protein and mRNA levels in cultured THP-1 macrophages and IGF-1 also decreased expression of STAT6 transcription factor. IGF-1 reduction in macrophage 12/15-LOX was mediated in part via a PI3 kinase- and STAT6-dependent transcriptional mechanism. IGF-1 suppressed THP-1 macrophage ability to oxidize lipids and form foam cells. IGF-1 downregulated 12/15-LOX in human blood-derived primary macrophages and IGF-1 decreased LDL oxidation induced by these cells. IGF-1 reduced LDL oxidation and formation of foam cells by wild type murine peritoneal macrophages, however these effects were completely blocked in 12/15-LOX-null macrophages suggesting that the ability of IGF-1 to reduce LDL oxidation and foam cells formation is dependent on its ability to downregulate 12/15-LOX. Overall our data demonstrate that IGF-1 reduces lipid oxidation and foam cell formation via downregulation of 12/15-LOX and this mechanism may play a major role in the anti-atherosclerotic effects of IGF-1. Published by Elsevier Ireland Ltd.
Sukhanov, Sergiy; Snarski, Patricia; Vaughn, Charlotte; Lobelle-Rich, Patricia; Kim, Catherine; Higashi, Yusuke; Shai, Shaw-Yung; Delafontaine, Patrice
2014-01-01
Objective We have shown that insulin-like growth factor I (IGF-1) infusion in Apoe−/− mice decreased atherosclerotic plaque size and plaque macrophage and lipid content suggesting that IGF-1 suppressed formation of macrophage-derived foam cells. Since 12/15-lipoxygenase (12/15-LOX) plays an important role in OxLDL and foam cell formation, we hypothesized that IGF-1 downregulates 12/15-LOX, thereby suppressing lipid oxidation and foam cell formation. Approach and Results We found that IGF-1 decreased 12/15-LOX plaque immunopositivity and serum OxLDL levels in Apoe−/− mice. IGF-1 reduced 12/15-LOX protein and mRNA levels in cultured THP-1 macrophages and IGF-1 also decreased expression of STAT6 transcription factor. IGF-1 reduction in macrophage 12/15-LOX was mediated in part via a PI3 kinase- and STAT6-dependent transcriptional mechanism. IGF-1 suppressed THP-1 macrophage ability to oxidize lipids and form foam cells. IGF-1 downregulated 12/15-LOX in human blood-derived primary macrophages and IGF-1 decreased LDL oxidation induced by these cells. IGF-1 reduced LDL oxidation and formation of foam cells by wild type murine peritoneal macrophages, however these effects were completely blocked in 12/15-LOX-null macrophages suggesting that the ability of IGF-1 to reduce LDL oxidation and foam cells formation is dependent on its ability to downregulate 12/15-LOX. Conclusions Overall our data demonstrate that IGF-1 reduces lipid oxidation and foam cell formation via downregulation of 12/15-LOX and this mechanism may play a major role in the anti-atherosclerotic effects of IGF-1. PMID:25549319
Brange, J; Langkjaer, L; Havelund, S; Vølund, A
1992-06-01
Hydrolysis of insulin has been studied during storage of various preparations at different temperatures. Insulin deteriorates rapidly in acid solutions due to extensive deamidation at residue AsnA21. In neutral formulations deamidation takes place at residue AsnB3 at a substantially reduced rate under formation of a mixture of isoAsp and Asp derivatives. The rate of hydrolysis at B3 is independent of the strength of the preparation, and in most cases the species of insulin, but varies with storage temperature and formulation. Total transformation at B3 is considerably reduced when insulin is in the crystalline as compared to the amorphous or soluble state, indicating that formation of the rate-limiting cyclic imide decreases when the flexibility of the tertiary structure is reduced. Neutral solutions containing phenol showed reduced deamidation probably because of a stabilizing effect of phenol on the tertiary structure (alpha-helix formation) around the deamidating residue, resulting in a reduced probability for formation of the intermediate imide. The ratio of isoAsp/Asp derivative was independent of time and temperature, suggesting a pathway involving only intermediate imide formation, without any direct side-chain hydrolysis. However, increasing formation of Asp relative to isoAsp derivative was observed with decreasing flexibility of the insulin three-dimensional structure in the formulation. In certain crystalline suspensions a cleavage of the peptide bond A8-A9 was observed. Formation of this split product is species dependent: bovine greater than porcine greater than human insulin. The hydrolytic cleavage of the peptide backbone takes place only in preparations containing rhombohedral crystals in addition to free zinc ions.
Asking Better Questions: How Presentation Formats Influence Information Search
ERIC Educational Resources Information Center
Wu, Charley M.; Meder, Björn; Filimon, Flavia; Nelson, Jonathan D.
2017-01-01
While the influence of presentation formats have been widely studied in Bayesian reasoning tasks, we present the first systematic investigation of how presentation formats influence information search decisions. Four experiments were conducted across different probabilistic environments, where subjects (N = 2,858) chose between 2 possible search…
Format Comparison of the Old and New Esquire: A Survey of Graduate Communication Students.
ERIC Educational Resources Information Center
Misisco, Peter
A survey of 194 graduate students compared the old and new formats of "Esquire" magazine, combining two issues of each format in a sequence of four viewing pairs (to negate possible bias effects of content). The subjects indicated their preferences and reasons for preferences for old and new logos, typefaces, tables of content formats,…
NASA Astrophysics Data System (ADS)
Joshi, Akshay; Mangal, R.; Bhojak, N.
2018-05-01
Ziziphus is the one of the most abundant plant of arid region of Rajasthan and rest part of desert land in world. There are a lots of research work going on and has been done on medical applications of this plant and it is playing very important role in economy of desert areas. In this paper our discussion will bring the attention its physical properties so that we can find the possibility of its applications in the various field of fiber reinforced composites which either can be used in such as interior & exterior part of automotive so it can reduce their overall weight, cost and improve its fuel efficiency without compromising in strength or can be used in flywheel technology for energy saving in automobiles or in building materials and so on. In this paper our approach is to extract the fiber from this plant, analyze the mechanical properties of the fiber and then discuss the various possibility of its application in appropriate field of composites. To find the possibility in FRC for Ziziphus fiber our next step is to compare it with other fibers whose composites have already been formed and studied.
Functional Quality Criterion of Rock Handling Mechanization at Open-pit Mines
NASA Astrophysics Data System (ADS)
Voronov, Yuri; Voronov, Artyoni
2017-11-01
Overburden and mining operations at open-pit mines are performed mainly by powerful shovel-truck systems (STSs). One of the main problems of the STSs is a rather low level of their operating quality, mainly due to unjustified over-trucking. In this article, a functional criterion for assessing the qualify of the STS operation at open-pit mines is formulated, derived and analyzed. We introduce the rationale and general principles for the functional criterion formation, its general form, as well as variations for various STS structures: a mixed truck fleet and a homogeneous shovel fleet, a mixed shove! fleet and a homogeneous truck fleet, mixed truck and shovel fleets. The possibility of assessing the quality of the STS operation is of great importance for identifying the main directions for improving their operational performance and operating quality, optimizing the main performance indicators by the qualify criterion, and. as a result, for possible saving of material and technical resources for open-pit mining. Improvement of the quality of the STS operation also allows increasing the mining safety and decreasing the atmosphere pollution - by means of possible reducing of the number of the operating trucks.
2013-01-01
Background Finely regulating the carbon flux through the glycerol pathway by regulating the expression of the rate controlling enzyme, glycerol-3-phosphate dehydrogenase (GPDH), has been a promising approach to redirect carbon from glycerol to ethanol and thereby increasing the ethanol yield in ethanol production. Here, strains engineered in the promoter of GPD1 and deleted in GPD2 were used to investigate the possibility of reducing glycerol production of Saccharomyces cerevisiae without jeopardising its ability to cope with process stress during ethanol production. For this purpose, the mutant strains TEFmut7 and TEFmut2 with different GPD1 residual expression were studied in Very High Ethanol Performance (VHEP) fed-batch process under anaerobic conditions. Results Both strains showed a drastic reduction of the glycerol yield by 44 and 61% while the ethanol yield improved by 2 and 7% respectively. TEFmut2 strain showing the highest ethanol yield was accompanied by a 28% reduction of the biomass yield. The modulation of the glycerol formation led to profound redox and energetic changes resulting in a reduction of the ATP yield (YATP) and a modulation of the production of organic acids (acetate, pyruvate and succinate). Those metabolic rearrangements resulted in a loss of ethanol and stress tolerance of the mutants, contrarily to what was previously observed under aerobiosis. Conclusions This work demonstrates the potential of fine-tuned pathway engineering, particularly when a compromise has to be found between high product yield on one hand and acceptable growth, productivity and stress resistance on the other hand. Previous study showed that, contrarily to anaerobiosis, the resulting gain in ethanol yield was accompanied with no loss of ethanol tolerance under aerobiosis. Moreover those mutants were still able to produce up to 90 gl-1 ethanol in an anaerobic SSF process. Fine tuning metabolic strategy may then open encouraging possibilities for further developing robust strains with improved ethanol yield. PMID:23537043
Pagliardini, Julien; Hubmann, Georg; Alfenore, Sandrine; Nevoigt, Elke; Bideaux, Carine; Guillouet, Stephane E
2013-03-28
Finely regulating the carbon flux through the glycerol pathway by regulating the expression of the rate controlling enzyme, glycerol-3-phosphate dehydrogenase (GPDH), has been a promising approach to redirect carbon from glycerol to ethanol and thereby increasing the ethanol yield in ethanol production. Here, strains engineered in the promoter of GPD1 and deleted in GPD2 were used to investigate the possibility of reducing glycerol production of Saccharomyces cerevisiae without jeopardising its ability to cope with process stress during ethanol production. For this purpose, the mutant strains TEFmut7 and TEFmut2 with different GPD1 residual expression were studied in Very High Ethanol Performance (VHEP) fed-batch process under anaerobic conditions. Both strains showed a drastic reduction of the glycerol yield by 44 and 61% while the ethanol yield improved by 2 and 7% respectively. TEFmut2 strain showing the highest ethanol yield was accompanied by a 28% reduction of the biomass yield. The modulation of the glycerol formation led to profound redox and energetic changes resulting in a reduction of the ATP yield (YATP) and a modulation of the production of organic acids (acetate, pyruvate and succinate). Those metabolic rearrangements resulted in a loss of ethanol and stress tolerance of the mutants, contrarily to what was previously observed under aerobiosis. This work demonstrates the potential of fine-tuned pathway engineering, particularly when a compromise has to be found between high product yield on one hand and acceptable growth, productivity and stress resistance on the other hand. Previous study showed that, contrarily to anaerobiosis, the resulting gain in ethanol yield was accompanied with no loss of ethanol tolerance under aerobiosis. Moreover those mutants were still able to produce up to 90 gl-1 ethanol in an anaerobic SSF process. Fine tuning metabolic strategy may then open encouraging possibilities for further developing robust strains with improved ethanol yield.
Heart disease management by women: does intervention format matter?
Clark, Noreen M; Janz, Nancy K; Dodge, Julia A; Lin, Xihong; Trabert, Britton L; Kaciroti, Niko; Mosca, Lori; Wheeler, John R; Keteyian, Steven
2014-10-01
A randomized controlled trial of two formats of a program (Women Take PRIDE) to enhance management of heart disease by patients was conducted. Older women (N = 575) were randomly assigned to a group or self-directed format or to a control group. Data regarding symptoms, functional health status, and weight were collected at baseline and at 4, 12, and 18 months. The formats produced different outcomes. At 18 months, the self-directed format was better than the control in reducing the number (p ≤ .02), frequency (p ≤ .03), and bothersomeness (p ≤ .02) of cardiac symptoms. The self-directed format was also better than the group format in reducing symptom frequency of all types (p ≤ .04). The group format improved ambulation at 12 months (p ≤ .04) and weight loss at 18 months (p ≤ .03), and group participants were more likely to complete the program (p ≤ .05). The availability of different learning formats could enhance management of cardiovascular disease by patients. © 2014 Society for Public Health Education.
Heart disease management by women: does intervention format matter?
Clark, Noreen M; Janz, Nancy K; Dodge, Julia A; Lin, Xihong; Trabert, Britton L; Kaciroti, Niko; Mosca, Lori; Wheeler, John R; Keteyian, Steven
2009-04-01
A randomized controlled trial of two formats of a program (Women Take PRIDE) to enhance management of heart disease by patients was conducted. Older women (N = 575) were randomly assigned to a group or self-directed format or to a control group. Data regarding symptoms, functional health status, and weight were collected at baseline and at 4, 12, and 18 months. The formats produced different outcomes. At 18 months, the self-directed format was better than the control in reducing the number (p < or = .02), frequency (p < or = .03), and bothersomeness (p < or = .02) of cardiac symptoms. The self-directed format was also better than the group format in reducing symptom frequency of all types (p < or = .04). The group format improved ambulation at 12 months (p < or = .04) and weight loss at 18 months (p < or = .03), and group participants were more likely to complete the program ( p < or = .05). The availability of different learning formats could enhance management of cardiovascular disease by patients.
Alkali Silicate Glass Coatings for Mitigating the Risks of Tin Whiskers
NASA Astrophysics Data System (ADS)
Hillman, Dave; Wilcoxon, Ross; Lower, Nate; Grossman, Dan
2015-12-01
Alkali silicate glass (ASG) coatings were investigated as a possible method for inhibiting tin whisker initiation and growth. The aqueous-based ASG formulations used in this study were deposited with equipment and conditions that are typical of those used to apply conventional conformal coatings. Processes for controlling ASG coating properties were developed, and a number of ASG-based coating combinations were applied to test components with pure tin surfaces. Coatings were applied both in a laboratory environment at Rockwell Collins and in a manufacturing environment at Plasma Ruggedized Solutions. Testing in elevated humidity/temperature environments and subsequent inspection of the test articles identified coating combinations that inhibited tin whisker growth as well as other material combinations that actually accelerated tin whisker growth. None of the coatings evaluated in this study, including conventional acrylic and Parylene conformal coatings, completely prevented the formation of tin whiskers. Two of the coatings were particularly effective at reducing the risks of whisker growth, albeit through different mechanisms. Parylene conformal coating almost, but not completely, eliminated whisker formation, and only a few tin whiskers were found on these surfaces during the study. A composite of ASG and alumina nanoparticles inhibited whisker formation to a lesser degree than Parylene, but did disrupt whisker growth mechanisms so as to inhibit the formation of long, and more dangerous, tin whiskers. Additional testing also demonstrated that the conformal coatings had relatively little effect on the dielectric loss of a stripline test structure operating at frequencies over 30 GHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatli, Emre; Ferroni, Paolo; Mazzoccoli, Jason
The possible use of compact heat exchangers (HXs) in sodium-cooled fast reactors (SFR) employing a Brayton cycle is promising due to their high power density and resulting small volume in comparison with conventional shell-and-tube HXs. However, the small diameter of their channels makes them more susceptible to plugging due to Na2O deposition during accident conditions. Although cold traps are designed to reduce oxygen impurity levels in the sodium coolant, their failure, in conjunction with accidental air ingress into the sodium boundary, could result in coolant oxygen levels that are above the saturation limit in the cooler parts of the HXmore » channels. This can result in Na2O crystallization and the formation of solid deposits on cooled channel surfaces, limiting or even blocking coolant flow. The development of analysis tools capable of modeling the formation of these deposits in the presence of sodium flow will allow designers of SFRs to properly size the HX channels so that, in the scenario mentioned above, the reactor operator has sufficient time to detect and react to the affected HX. Until now, analytical methodologies to predict the formation of these deposits have been developed, but never implemented in a high-fidelity computational tool suited to modern reactor design techniques. This paper summarizes the challenges and the current status in the development of a Computational Fluid Dynamics (CFD) methodology to predict deposit formation, with particular emphasis on sensitivity studies on some parameters affecting deposition.« less
Park, Yeonhwa; Yang, Heewon; Storkson, Jayne M; Albright, Karen J; Liu, Wei; Lindsay, Robert C; Pariza, Michael W
2005-01-01
We previously reported that in potato chip and French fry models, the formation of acrylamide can be reduced by controlling pH during processing steps, either by organic (acidulants) or inorganic acids. Use of phytate, a naturally occurring chelator, with or without Ca++ (or divalent ions), can reduce acrylamide formation in both models. However, since phytate itself is acidic, the question remains as to whether the effect of phytate is due to pH alone or to additional effects. In the French fry model, the effects on acrylamide formation of pH, phytate, and/or Ca++ in various combinations were tested in either blanching or soaking (after blanching) steps. All treatments significantly reduced acrylamide levels compared to control. Among variables tested, pH may be the single most important factor for reducing acrylamide levels, while there were independent effects of phytate and/or Ca++ in this French fry model. We also developed a mathematical formula to estimate the final concentration of acrylamide in a potato chip model, using variables that can affect acrylamide formation: glucose and asparagine concentrations, cut potato surface area and shape, cooking temperature and time, and other processing conditions.
Possible formation pathways for the low-density Neptune-mass planet HAT-P-26b
NASA Astrophysics Data System (ADS)
Ali-Dib, Mohamad; Lakhlani, Gunjan
2018-01-01
We investigate possible pathways for the formation of the low-density Neptune-mass planet HAT-P-26b. We use two different formation models based on pebble and planetesimal accretion, and includes gas accretion, disc migration and simple photoevaporation. The models track the atmospheric oxygen abundance, in addition to the orbital period, and mass of the forming planets, which we compare to HAT-P-26b. We find that pebble accretion can explain this planet more naturally than planetesimal accretion that fails completely unless we artificially enhance the disc metallicity significantly. Pebble accretion models can reproduce HAT-P-26b with either a high initial core mass and low amount of envelope enrichment through core erosion or pebbles dissolution, or the opposite, with both scenarios being possible. Assuming a low envelope enrichment factor as expected from convection theory and comparable to the values we can infer from the D/H measurements in Uranus and Neptune, our most probable formation pathway for HAT-P-26b is through pebble accretion starting around 10 au early in the disc's lifetime.
Debiasing comparative optimism and increasing worry for health outcomes.
Rose, Jason P
2012-11-01
Comparative optimism - feeling at less personal risk for negative outcomes than one's peers - has been linked to reduced prevention efforts. This study examined a novel debiasing technique aimed at simultaneously reducing both indirectly and directly measured comparative optimism. Before providing direct comparative estimates, participants provided absolute self and peer estimates in a joint format (same computer screen) or a separate format (different computer screens). Relative to the separate format condition, participants in the joint format condition showed (1) lower comparative optimism in absolute/indirect measures, (2) lower direct comparative optimism, and (3) heightened worry. Implications for risk perception screening are discussed.
ERIC Educational Resources Information Center
Rhodes, Katherine T.; Branum-Martin, Lee; Washington, Julie A.; Fuchs, Lynn S.
2017-01-01
Using multitrait, multimethod data, and confirmatory factor analysis, the current study examined the effects of arithmetic item formatting and the possibility that across formats, abilities other than arithmetic may contribute to children's answers. Measurement hypotheses were guided by several leading theories of arithmetic cognition. With a…
NASA Technical Reports Server (NTRS)
Wetherill, George W.
1993-01-01
Observation of circumstellar disks, regular satellite systems of outer planets, and planet-size objects orbiting pulsars support the supposition that formation of planetary systems is a robust, rather than a fragile, byproduct of the formation and evolution of stars. The extent to which these systems may be expected to resemble one another and our Solar System, either in overall structure or in detail remains uncertain. When the full range of possible stellar masses, disk masses, and initial specific angular momenta are considered, the possible variety of planetary configurations is very large. Numerical modeling indicates a difference between the formation of small, inner, terrestrial planets and the outer planets.
Ice formation in subglacial Lake Vostok, Central Antarctica
NASA Astrophysics Data System (ADS)
Souchez, R.; Petit, J. R.; Tison, J.-L.; Jouzel, J.; Verbeke, V.
2000-09-01
The investigation of chemical and isotopic properties in the lake ice from the Vostok ice core gives clues to the mechanisms involved in ice formation within the lake. A small lake water salinity can be reasonably deduced from the chemical data. Possible implications for the water circulation of Lake Vostok are developed. The characteristics of the isotopic composition of the lake ice indicate that ice formation in Lake Vostok occurred by frazil ice crystal generation due to supercooling as a consequence of rising waters and a possible contrast in water salinity. Subsequent consolidation of the developed loose ice crystals results in the accretion of ice to the ceiling of the lake.
Looks and linguistics: Impression formation in online exchange marketplaces.
Ciuchta, Michael P; O'Toole, Jay
2016-01-01
This study advances theories of impression formation by focusing on two factors that generate emotional responses: physical attractiveness and positive word use. Although considerable research on impression formation exists, most studies consider factors in isolation and neglect possible interactions. Our theory introduces competing mechanisms regarding possible interaction effects, and we empirically test them in an online marketplace. Results from the analysis of 729 loan requests from a leading online peer-to-peer lending market suggest that physical attractiveness and positive word use work together to influence the likelihood of acquiring resources and establish an important boundary condition to the general "beauty is good" effect.
SIRT1 decreases Lox-1-mediated foam cell formation in atherogenesis
Stein, Sokrates; Lohmann, Christine; Schäfer, Nicola; Hofmann, Janin; Rohrer, Lucia; Besler, Christian; Rothgiesser, Karin M.; Becher, Burkhard; Hottiger, Michael O.; Borén, Jan; McBurney, Michael W.; Landmesser, Ulf; Lüscher, Thomas F.; Matter, Christian M.
2010-01-01
Aims Endothelial activation, macrophage infiltration, and foam cell formation are pivotal steps in atherogenesis. Our aim in this study was to analyse the role of SIRT1, a class III deacetylase with important metabolic functions, in plaque macrophages and atherogenesis. Methods and results Using partial SIRT1 deletion in atherosclerotic mice, we demonstrate that SIRT1 protects against atherosclerosis by reducing macrophage foam cell formation. Peritoneal macrophages from heterozygous SIRT1 mice accumulate more oxidized low-density lipoprotein (oxLDL), thereby promoting foam cell formation. Bone marrow-restricted SIRT1 deletion confirmed that SIRT1 function in macrophages is sufficient to decrease atherogenesis. Moreover, we show that SIRT1 reduces the uptake of oxLDL by diminishing the expression of lectin-like oxLDL receptor-1 (Lox-1) via suppression of the NF-κB signalling pathway. Conclusion Our findings demonstrate protective effects of SIRT1 in atherogenesis and suggest pharmacological SIRT1 activation as a novel anti-atherosclerotic strategy by reducing macrophage foam cell formation. PMID:20418343
NASA Astrophysics Data System (ADS)
Fagerquist, Clifton K.; Sultan, Omar; Carter, Michelle Q.
2012-12-01
We previously reported the apparent formation of matrix adducts of 3,5-dimethoxy-4-hydroxy-cinnamic acid (sinapinic acid or SA) via covalent attachment to disulfide bond-containing proteins (HdeA, Hde, and YbgS) from bacterial cell lysates ionized by matrix-assisted laser desorption/ionization (MALDI) time-of-flight-time-of-flight tandem mass spectrometry (TOF-TOF-MS/MS) and post-source decay (PSD). We also reported the absence of adduct formation when using α-cyano-4-hydroxycinnamic acid (CHCA) matrix. Further mass spectrometric analysis of disulfide-intact and disulfide-reduced over-expressed HdeA and HdeB proteins from lysates of gene-inserted E. coli plasmids suggests covalent attachment of SA occurs not at cysteine residues but at lysine residues. In this revised hypothesis, the attachment of SA is preceded by formation of a solid phase ammonium carboxylate salt between SA and accessible lysine residues of the protein during sample preparation under acidic conditions. Laser irradiation at 355 nm of the dried sample spot results in equilibrium retrogradation followed by nucleophilic attack by the amine group of lysine at the carbonyl group of SA and subsequent amide bond formation and loss of water. The absence of CHCA adducts suggests that the electron-withdrawing effect of the α-cyano group of this matrix may inhibit salt formation and/or amide bond formation. This revised hypothesis is supported by dissociative loss of SA (-224 Da) and the amide-bound SA (-206 Da) from SA-adducted HdeA and HdeB ions by MS/MS (PSD). It is proposed that cleavage of the amide-bound SA from the lysine side-chain occurs via rearrangement involving a pentacyclic transition state followed by hydrogen abstraction/migration and loss of 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-ynal (-206 Da).
Königsbrügge, Oliver; Weigel, Günter; Quehenberger, Peter; Pabinger, Ingrid; Ay, Cihan
2018-02-07
The effect of direct oral anticoagulants (DOACs) on turbidimetric measurements of plasma clot formation and susceptibility to fibrinolysis may facilitate a comparison between different classes of anticoagulants in plasma samples. We obtained 424 citrate plasma samples from 226 atrial fibrillation patients on anticoagulation and 24 samples without anticoagulation serving as controls. As comparators, we measured the international normalized ratio (INR) for phenprocoumon samples (N = 166), anti-Xa for low molecular weight heparin (LMWH) samples (N = 42), and DOAC levels with mass spectrometry (dabigatran N = 40, rivaroxaban N = 110, apixaban N = 42). Plasma clot formation and lysis were recorded continuously on a photometer after addition of an activation mix (tissue factor 2 pmol/l and tissue plasminogen activator 333 ng/ml). We used linear regression and ANCOVA for correlation analysis. Clot formation lag phase was prolonged in the presence of anticoagulants in a concentration-dependent manner for DOACs (dabigatran Spearman r = 0.74; rivaroxaban r = 0.78; apixaban r = 0.72, all p < 0.0001), INR dependent for phenprocoumon (r = 0.59, p < 0.0001), anti-Xa level dependent in LMWH samples (r = 0.90, p < 0.0001). Maximum rate of clot formation and peak clot turbidity were reduced in the presence of anticoagulants, but correlated only moderately with the comparator measures of anticoagulation. The clot lysis time was inversely correlated with DOAC concentrations in the presence of recombinant thrombomodulin. A direct ex vivo comparison between the effects of different classes of anticoagulants is possible with turbidimetric measurement of plasma clot formation and lysis. Anticoagulation inhibited clot formation in a plasma concentration manner for DOACs, INR dependent for phenprocoumon, and anti-Xa dependent for LMWH. Susceptibility to fibrinolysis increased with increasing DOAC concentrations.
Organic chemistry in a CO2 rich early Earth atmosphere
NASA Astrophysics Data System (ADS)
Fleury, Benjamin; Carrasco, Nathalie; Millan, Maëva; Vettier, Ludovic; Szopa, Cyril
2017-12-01
The emergence of life on the Earth has required a prior organic chemistry leading to the formation of prebiotic molecules. The origin and the evolution of the organic matter on the early Earth is not yet firmly understood. Several hypothesis, possibly complementary, are considered. They can be divided in two categories: endogenous and exogenous sources. In this work we investigate the contribution of a specific endogenous source: the organic chemistry occurring in the ionosphere of the early Earth where the significant VUV contribution of the young Sun involved an efficient formation of reactive species. We address the issue whether this chemistry can lead to the formation of complex organic compounds with CO2 as only source of carbon in an early atmosphere made of N2, CO2 and H2, by mimicking experimentally this type of chemistry using a low pressure plasma reactor. By analyzing the gaseous phase composition, we strictly identified the formation of H2O, NH3, N2O and C2N2. The formation of a solid organic phase is also observed, confirming the possibility to trigger organic chemistry in the upper atmosphere of the early Earth. The identification of Nitrogen-bearing chemical functions in the solid highlights the possibility for an efficient ionospheric chemistry to provide prebiotic material on the early Earth.
Current issues in dietary acrylamide: formation, mitigation and risk assessment.
Pedreschi, Franco; Mariotti, María Salomé; Granby, Kit
2014-01-15
Acrylamide (AA) is known as a neurotoxin in humans and it is classified as a probable human carcinogen by the International Agency of Research on Cancer. AA is produced as by-product of the Maillard reaction in starchy foods processed at high temperatures (>120 °C). This review includes the investigation of AA precursors, mechanisms of AA formation and AA mitigation technologies in potato, cereal and coffee products. Additionally, most relevant issues of AA risk assessment are discussed. New technologies tested from laboratory to industrial scale face, as a major challenge, the reduction of AA content of browned food, while still maintaining its attractive organoleptic properties. Reducing sugars such as glucose and fructose are the major contributors to AA in potato-based products. On the other hand, the limiting substrate of AA formation in cereals and coffee is the free amino acid asparagine. For some products the addition of glycine or asparaginase reduces AA formation during baking. Since, for potatoes, the limiting substrate is reducing sugars, increases in sugar content in potatoes during storage then introduce some difficulties and potentially quite large variations in the AA content of the final product. Sugars in potatoes may be reduced by blanching. Levels of AA in different foods show large variations and no general upper limit is easily applicable, since some formation will always occur. Current policy is that practical measures should be taken voluntarily to reduce AA formation in vulnerable foods since AA is considered a health risk at the concentrations found in foods. © 2013 Society of Chemical Industry.
A Chitosan-Based Sinus Sealant for Reduction of Adhesion Formation in Rabbit and Sheep Models
Medina, Jennifer G.; Steinke, John W.; Das, Subinoy
2013-01-01
Objective Chronic sinusitis is the most prevalent chronic disease in the United States in adults aged 18 to 44 years, with approximately 250,000 operations performed annually. Although often successful, sinus surgery fails in greater than 15% of patients. Adhesion formation is a common complication and cause for subsequent revision surgery. Here, the authors evaluate a sprayable chitosan/starch-based sinus sealant and demonstrate its ability to reduce adhesion formation both in vitro and in 2 animal models. Study Design Randomized, controlled, animal trials. Setting Academic medical center (fibroblast experiments) and animal laboratories (sheep and rabbit studies). Subjects and Methods This sinus sealant was applied to human cultured fibroblasts obtained from surgically removed polyps to examine its ability to inhibit fibroblast migration and proliferation. The sinus sealant was applied to New Zealand White rabbits (n = 20) in an established cecal-sidewall abrasion model and to sheep (n = 10) in a sinus surgical adhesion model to examine its ability to reduce adhesion formation. Results This sinus sealant inhibited migration and proliferation of human cultured fibroblasts and reduced the total adhesion score from 4.9 to 0.3 for a total reduction of 94% (95th percentile confidence interval [CI], 78%, 100%; P < .001) in a well-established rabbit cecal-sidewall model commonly used for adhesion testing. Moreover, this sealant reduced adhesion formation from 80% to 10% for a total reduction of 70% (95th percentile CI, 57%, 93%; P = .003) in a sheep sinus adhesion surgical model. Conclusion This chitosan-based sealant demonstrates promise for reducing adhesion formation in sinus surgery. PMID:22492298
NASA Technical Reports Server (NTRS)
Coleman, Max
2005-01-01
The MER Opportunity Athena Science team has described spheroidal hematite nodules in sediments at Meridiani Planum on Mars [1]. They were informally referred to as "Blueberries" in the initial press releases and for brevity that is the name to be used in this abstract. Not all spheroidal objects in sediments are nodular concretions, but this paper will discuss the diagenetic processes possibly relevant to understanding the origin of the Blueberries. There are many occurrences of spheroidal diagenetic concretions in terrestrial sediments and detailed work has been done to understand the processes of their formation. In particular, it is possible to reconstruct the controls on their shapes and compositions, both mineral and chemical. Although there may not be good analogs for the Meridiani Planum hematite spherules on Earth, it may be possible to deduce the former environmental conditions that led to their formation and whether they might retain (or even be) biosignatures.
Enhancing the utility of existing antibiotics by targeting bacterial behaviour?
Rogers, Geraint B; Carroll, Mary P; Bruce, Kenneth D
2012-01-01
The discovery of novel classes of antibiotics has slowed dramatically. This has occurred during a time when the appearance of resistant strains of bacteria has shown a substantial increase. Concern is therefore mounting over our ability to continue to treat infections in an effective manner using the antibiotics that are currently available. While ongoing efforts to discover new antibiotics are important, these must be coupled with strategies that aim to maintain as far as possible the spectrum of activity of existing antibiotics. In many instances, the resistance to antibiotics exhibited by bacteria in chronic infections is mediated not by direct resistance mechanisms, but by the adoption of modes of growth that confer reduced susceptibility. These include the formation of biofilms and the occurrence of subpopulations of ‘persister’ cells. As our understanding of these processes has increased, a number of new potential drug targets have been revealed. Here, advances in our ability to disrupt these systems that confer reduced susceptibility, and in turn increase the efficacy of antibiotic therapy, are discussed. PMID:21864314
Horn, Patricia; Nausch, Henrik; Baars, Susanne; Schmidtke, Jörg; Schmidt, Kerstin; Schneider, Anja; Leister, Dario; Broer, Inge
2017-12-01
As already demonstrated in greenhouse trials, outcrossing of transgenic plants can be drastically reduced via transgene integration into the plastid. We verified this result in the field with Petunia , for which the highest paternal leakage has been observed. The variety white 115 (W115) served as recipient and Pink Wave (PW) and the transplastomic variant PW T16, encoding the uid A reporter gene, as pollen donor. While manual pollination in the greenhouse led to over 90% hybrids for both crossings, the transgenic donor resulted only in 2% hybrids in the field. Nevertheless paternal leakage was detected in one case which proves that paternal inheritance of plastid-located transgenes is possible under artificial conditions. In the greenhouse, paternal leakage occurred in a frequency comparable to published results. As expected natural pollination reduced the hybrid formation in the field from 90 to 7.6% and the transgenic donor did not result in any hybrid.
Analysis of evaporative water loss in the Skylab astronauts
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1977-01-01
Daily evaporative water losses (EWL) during the three Skylab missions were measured using the indirect mass and water balance techniques. A mean inflight EWL of 860 ml/day-m 2 was obtained for nine men who averaged one hour of daily exercise. Although it was expected the EWL would increase in the hypobaric environment of Skylab (1/3 atmosphere), an average decrease from preflight sea level conditions of 11 percent was measured. The results suggest that weightlessness may have been a factor in modifying EWL primarily by decreasing sweat losses during exercise and possibly by reducing insensible skin losses as well. The weightless environment apparently promotes the formation of a sweat film on the skin surface both directly, by reducing heat and mass convective flow and sweat drippage, and perhaps indirectly by inducing measurable biochemical changes resulting in high initial sweating rates. It is proposed that these high levels of skin wettedness favor sweat suppression by a previously described mechanism.
Applicability of Yeast Extracellular Proteinases in Brewing: Physiological and Biochemical Aspects
Bilinski, Carl A.; Russell, Inge; Stewart, Graham G.
1987-01-01
A general screening survey for expression of extracellular acid proteinase production was performed on over 100 cultures belonging to the genus Saccharomyces. Although two strains of Saccharomyces cerevisiae showed positive extracellular proteinase phenotypes in plate tests, it was not possible to demonstrate proteolytic activities in cell-free culture supernatants in assays performed at beer pH values. Of several yeasts from other genera examined, Saccharomycopsis fibuligera and Torulopsis magnoliae produced extracellular proteinases with desirable properties. Proteolytic activities were detected in assays performed at beer pH values and at lower temperature. Brewer's wort served as a highly inducing medium for extracellular proteinase production, with T. magnoliae yielding enzyme of highest specific activity. In fact, commencement of enzyme production was detected shortly after the onset of exponential growth in brewer's wort. Inclusion of crude enzyme preparations in brewer's wort inoculated simultaneously with brewer's yeast reduced final ethanol yields slightly and was found to be effective in reducing chill haze formation in bottled beer. PMID:16347298
Corte-Real, Joana; Bohn, Torsten
2018-06-30
Several divalent minerals, including the macroelements calcium and magnesium, are essential nutrients for humans. However, their intake, especially via high-dose supplements, has been suspected to reduce the availability of lipophilic dietary constituents, including lipids, liposoluble vitamins, and several phytochemicals such as carotenoids. These constituents require emulsification in order to be bioavailable, and high divalent mineral concentrations may perturb this process, due to precipitations of free fatty acids or bile salt complexation, both pivotal for mixed micelle formation. Though in part based on in vitro or indirect evidence, it appears likely that high-dose supplements of divalent minerals around or even below their recommended dietary allowance perturb the availability of certain liposoluble miroconstituents, in addition to reducing absorption of dietary lipids/cholesterol. In this review, we investigate possible negative influences of divalent minerals, including trace elements (iron, zinc), on the digestion and intestinal uptake of lipophilic dietary constituents, with a focus on carotenoids. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoeters, Bob, E-mail: bob.schoeters@uantwerpen.be; IMEC, Kapeldreef 75, B-3001 Leuven; Leenaerts, Ortwin, E-mail: ortwin.leenaerts@uantwerpen.be
We perform first-principles calculations to investigate the preferred positions of B and P dopants, both neutral and in their preferred charge state, in Si and Si/SiO{sub 2} core-shell nanowires (NWs). In order to understand the observed trends in the formation energy, we isolate the different effects that determine these formation energies. By making the distinction between the unrelaxed and the relaxed formation energy, we separate the impact of the relaxation from that of the chemical environment. The unrelaxed formation energies are determined by three effects: (i) the effect of strain caused by size mismatch between the dopant and the hostmore » atoms, (ii) the local position of the band edges, and (iii) a screening effect. In the case of the SiNW (Si/SiO{sub 2} NW), these effects result in an increase of the formation energy away from the center (interface). The effect of relaxation depends on the relative size mismatch between the dopant and host atoms. A large size mismatch causes substantial relaxation that reduces the formation energy considerably, with the relaxation being more pronounced towards the edge of the wires. These effects explain the surface segregation of the B dopants in a SiNW, since the atomic relaxation induces a continuous drop of the formation energy towards the edge. However, for the P dopants, the formation energy starts to rise when moving from the center but drops to a minimum just next to the surface, indicating a different type of behavior. It also explains that the preferential location for B dopants in Si/SiO{sub 2} core-shell NWs is inside the oxide shell just next to the interface, whereas the P dopants prefer the positions next to the interface inside the Si core, which is in agreement with recent experiments. These preferred locations have an important impact on the electronic properties of these core-shell NWs. Our simulations indicate the possibility of hole gas formation when B segregates into the oxide shell.« less
Intrinsic Determinants of Neurotoxic Aggregate Formation by the Amyloid β Peptide
Brorsson, Ann-Christin; Bolognesi, Benedetta; Tartaglia, Gian Gaetano; Shammas, Sarah L.; Favrin, Giorgio; Watson, Ian; Lomas, David A.; Chiti, Fabrizio; Vendruscolo, Michele; Dobson, Christopher M.; Crowther, Damian C.; Luheshi, Leila M.
2010-01-01
Abstract The extent to which proteins aggregate into distinct structures ranging from prefibrillar oligomers to amyloid fibrils is key to the pathogenesis of many age-related degenerative diseases. We describe here for the Alzheimer's disease-related amyloid β peptide (Aβ) an investigation of the sequence-based determinants of the balance between the formation of prefibrillar aggregates and amyloid fibrils. We show that by introducing single-point mutations, it is possible to convert the normally harmless Aβ40 peptide into a pathogenic species by increasing its relative propensity to form prefibrillar but not fibrillar aggregates, and, conversely, to abolish the pathogenicity of the highly neurotoxic E22G Aβ42 peptide by reducing its relative propensity to form prefibrillar species rather than mature fibrillar ones. This observation can be rationalized by the demonstration that whereas regions of the sequence of high aggregation propensity dominate the overall tendency to aggregate, regions with low intrinsic aggregation propensities exert significant control over the balance of the prefibrillar and fibrillar species formed, and therefore play a major role in determining the neurotoxicity of the Aβ peptide. PMID:20409489
Al Rowaihi, Israa Salem; Paillier, Alexis; Rasul, Shahid; Karan, Ram; Grötzinger, Stefan Wolfgang; Takanabe, Kazuhiro; Eppinger, Jörg
2018-01-01
Poly(3-hydroxybutyrate) (PHB), a biodegradable polymer, can be produced by different microorganisms. The PHB belongs to the family of polyhydroxyalkanoate (PHA) that mostly accumulates as a granule in the cytoplasm of microorganisms to store carbon and energy. In this study, we established an integrated one-pot electromicrobial setup in which carbon dioxide is reduced to formate electrochemically, followed by sequential microbial conversion into PHB, using the two model strains, Methylobacterium extorquens AM1 and Cupriavidus necator H16. This setup allows to investigate the influence of different stress conditions, such as coexisting electrolysis, relatively high salinity, nutrient limitation, and starvation, on the production of PHB. The overall PHB production efficiency was analyzed in reasonably short reaction cycles typically as short as 8 h. As a result, the PHB formation was detected with C. necator H16 as a biocatalyst only when the electrolysis was operated in the same solution. The specificity of the source of PHB production is discussed, such as salinity, electricity, concurrent hydrogen production, and the possible involvement of reactive oxygen species (ROS).
Al Rowaihi, Israa Salem; Paillier, Alexis; Rasul, Shahid; Karan, Ram; Grötzinger, Stefan Wolfgang; Eppinger, Jörg
2018-01-01
Poly(3-hydroxybutyrate) (PHB), a biodegradable polymer, can be produced by different microorganisms. The PHB belongs to the family of polyhydroxyalkanoate (PHA) that mostly accumulates as a granule in the cytoplasm of microorganisms to store carbon and energy. In this study, we established an integrated one-pot electromicrobial setup in which carbon dioxide is reduced to formate electrochemically, followed by sequential microbial conversion into PHB, using the two model strains, Methylobacterium extorquens AM1 and Cupriavidus necator H16. This setup allows to investigate the influence of different stress conditions, such as coexisting electrolysis, relatively high salinity, nutrient limitation, and starvation, on the production of PHB. The overall PHB production efficiency was analyzed in reasonably short reaction cycles typically as short as 8 h. As a result, the PHB formation was detected with C. necator H16 as a biocatalyst only when the electrolysis was operated in the same solution. The specificity of the source of PHB production is discussed, such as salinity, electricity, concurrent hydrogen production, and the possible involvement of reactive oxygen species (ROS). PMID:29698424
Song, Gwang Yeom; Oh, Chadol; Sinha, Soumyadeep; Son, Junwoo; Heo, Jaeyeong
2017-07-19
Atomic layer deposition was adopted to deposit VO x thin films using vanadyl tri-isopropoxide {VO[O(C 3 H 7 )] 3 , VTIP} and water (H 2 O) at 135 °C. The self-limiting and purge-time-dependent growth behaviors were studied by ex situ ellipsometry to determine the saturated growth conditions for atomic-layer-deposited VO x . The as-deposited films were found to be amorphous. The structural, chemical, and optical properties of the crystalline thin films with controlled phase formation were investigated after postdeposition annealing at various atmospheres and temperatures. Reducing and oxidizing atmospheres enabled the formation of pure VO 2 and V 2 O 5 phases, respectively. The possible band structures of the crystalline VO 2 and V 2 O 5 thin films were established. Furthermore, an electrochemical response and a voltage-induced insulator-to-metal transition in the vertical metal-vanadium oxide-metal device structure were observed for V 2 O 5 and VO 2 films, respectively.
Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal
NASA Astrophysics Data System (ADS)
Vreeland, Russell H.; Rosenzweig, William D.; Powers, Dennis W.
2000-10-01
Bacteria have been found associated with a variety of ancient samples, however few studies are generally accepted due to questions about sample quality and contamination. When Cano and Borucki isolated a strain of Bacillus sphaericus from an extinct bee trapped in 25-30 million-year-old amber, careful sample selection and stringent sterilization techniques were the keys to acceptance. Here we report the isolation and growth of a previously unrecognized spore-forming bacterium (Bacillus species, designated 2-9-3) from a brine inclusion within a 250million-year-old salt crystal from the Permian Salado Formation. Complete gene sequences of the 16S ribosomal DNA show that the organism is part of the lineage of Bacillus marismortui and Virgibacillus pantothenticus. Delicate crystal structures and sedimentary features indicate the salt has not recrystallized since formation. Samples were rejected if brine inclusions showed physical signs of possible contamination. Surfaces of salt crystal samples were sterilized with strong alkali and acid before extracting brines from inclusions. Sterilization procedures reduce the probability of contamination to less than 1 in 10 9.
Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal.
Vreeland, R H; Rosenzweig, W D; Powers, D W
2000-10-19
Bacteria have been found associated with a variety of ancient samples, however few studies are generally accepted due to questions about sample quality and contamination. When Cano and Borucki isolated a strain of Bacillus sphaericus from an extinct bee trapped in 25-30 million-year-old amber, careful sample selection and stringent sterilization techniques were the keys to acceptance. Here we report the isolation and growth of a previously unrecognized spore-forming bacterium (Bacillus species, designated 2-9-3) from a brine inclusion within a 250 million-year-old salt crystal from the Permian Salado Formation. Complete gene sequences of the 16S ribosomal DNA show that the organism is part of the lineage of Bacillus marismortui and Virgibacillus pantothenticus. Delicate crystal structures and sedimentary features indicate the salt has not recrystallized since formation. Samples were rejected if brine inclusions showed physical signs of possible contamination. Surfaces of salt crystal samples were sterilized with strong alkali and acid before extracting brines from inclusions. Sterilization procedures reduce the probability of contamination to less than 1 in 10(9).
NASA Astrophysics Data System (ADS)
Vives, Serge; Meunier, Cathy
2018-02-01
The CeO2(110) surface properties are largely involved in the catalysis, energy and biological phenomenon. The Static Force Fields simulations are able to describe large atomic systems surface even if no information on the electronic structure can be obtained. We employ those simulations to study the formation of the neutral 2 CeCe‧ VO•• cluster. We focus on seven different cluster configurations and find that the defect formation energy is the lower for the 1N-2N configurations. Two geometries are possible, as it is the case for the ab initio studies, the in plane and the more stable bridging one. We evidence the modifications of the surface energy and the Potential Energy Surface due to the presence of the 2 CeCe‧ VO•• defect. The physical adsorption of a water molecule is calculated and the geometry described for all the cluster configurations. The H2O molecule physisorption stabilizes the Ce(110) surface and the presence of the 2 CeCe‧ VO•• defect increases this effect.
Formation of Gd-Al Alloy Films by a Molten Salt Electrochemical Process
NASA Astrophysics Data System (ADS)
Caravaca, Concha; De Córdoba, Guadalupe
2008-02-01
The electrochemistry of molten LiCl-KCl-GdCl3 at a reactive Al electrode has been studied at 723 to 823 K. Electrochemical techniques such as cyclic voltammetry and chronopotentiometry have been used in order to identify the intermetallic compounds formed. Cyclic voltammetry showed that, while at an inert W electrode GdCl3 is reduced to Gd metal in a single step at a potential close to the reduction of the solvent, at an Al electrode a shift towards more positive values occurs. This shift of the cathodic potential indicated a reduction of the activity of Gd in Al with respect to that ofW, due to the formation of alloys. The surface characterization of samples formed by both galvanostatic and potentiostatic electrolysis has shown the presence of two intermetallic compounds: GdAl3 and GdAl2. Using open-circuit chronopotentiometry it has been possible to measure the potentials at which these compounds are transformed into each other. The values of these potential plateaus, once transformed into e. f. m. values, allowed to determine the thermodynamic properties of the GdAl3 intermetallic compound.
Jiang, Yunyao; Piao, Jingpei; Cho, Hyun-Jong; Kang, Wie-Soo; Kim, Hye-Young
2015-01-01
Angelica gigas Nakai (AGN) is one of the most popular herbal medicines and widely used as a functional food product. In this study, AGN was firstly processed by a low-temperature turbo mill and a hot melting extruder to reduce particle size and form solid dispersion (SD). Anticancer activity against HeLa cells was then examined. AGN-SD based on Soluplus was formed via hot-melt extrusion (HME) and showed the strongest cytotoxic effect on HeLa cells. In addition, the possible mechanism of cell death induced by AGN-SD on HeLa cells was also investigated. AGN-SD decreased cell viability, induced apoptosis, increased the production of reactive oxygen species, regulated the expression of Bcl-2 and Bax, and induced G2/M phase arrest in HeLa cells. This study suggested that AGN-SD based on Soluplus and the method to improve antiproliferative effect by SD formation via HME may be suitable for application in the pharmaceutical industry.
Luo, Hong-Wei; Yin, Xiangping; Jubb, Aaron M.; ...
2016-11-09
Atmospheric deposition of mercury (Hg) to surface water is one of the dominant sources of Hg in aquatic environments and ultimately drives methylmercury (MeHg) toxin accumulation in fish. It is known that freshly deposited Hg is more readily methylated by microorganisms than aged or preexisting Hg; however the underlying mechanism of this process is unclear. Here we report that Hg bioavailability is decreased by photochemical reactions between Hg and dissolved organic matter (DOM) in water. Photo-irradiation of Hg-DOM complexes results in loss of Sn(II)-reducible (i.e. reactive) Hg and up to an 80% decrease in MeHg production by the methylating bacteriummore » Geobacter sulfurreducens PCA. Loss of reactive Hg proceeded at a faster rate with a decrease in the Hg to DOM ratio and is attributed to the possible formation of mercury sulfide (HgS). Lastly, these results suggest a new pathway of abiotic photochemical formation of HgS in surface water and provide a mechanism whereby freshly deposited Hg is readily methylated but, over time, progressively becomes less available for microbial uptake and methylation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Hong-Wei; Yin, Xiangping; Jubb, Aaron M.
Atmospheric deposition of mercury (Hg) to surface water is one of the dominant sources of Hg in aquatic environments and ultimately drives methylmercury (MeHg) toxin accumulation in fish. It is known that freshly deposited Hg is more readily methylated by microorganisms than aged or preexisting Hg; however the underlying mechanism of this process is unclear. Here we report that Hg bioavailability is decreased by photochemical reactions between Hg and dissolved organic matter (DOM) in water. Photo-irradiation of Hg-DOM complexes results in loss of Sn(II)-reducible (i.e. reactive) Hg and up to an 80% decrease in MeHg production by the methylating bacteriummore » Geobacter sulfurreducens PCA. Loss of reactive Hg proceeded at a faster rate with a decrease in the Hg to DOM ratio and is attributed to the possible formation of mercury sulfide (HgS). Lastly, these results suggest a new pathway of abiotic photochemical formation of HgS in surface water and provide a mechanism whereby freshly deposited Hg is readily methylated but, over time, progressively becomes less available for microbial uptake and methylation.« less
Super Resolution Imaging of Genetically Labeled Synapses in Drosophila Brain Tissue
Spühler, Isabelle A.; Conley, Gaurasundar M.; Scheffold, Frank; Sprecher, Simon G.
2016-01-01
Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labeled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation. PMID:27303270
Super Resolution Imaging of Genetically Labeled Synapses in Drosophila Brain Tissue.
Spühler, Isabelle A; Conley, Gaurasundar M; Scheffold, Frank; Sprecher, Simon G
2016-01-01
Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labeled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation.
Sivasankar, Chandran; Maruthupandiyan, Shanmugam; Balamurugan, Krishnaswamy; James, Prabhanand Bhaskar; Krishnan, Venkat; Pandian, Shunmugiah Karutha
2016-01-01
Propionibacterium acnes is an opportunistic pathogen which has become notorious owing to its ability to form a recalcitrant biofilm and to develop drug resistance. The current study aimed to develop anti-biofilm treatments against clinical isolates of P. acnes under in vitro and in vivo conditions. A combination of ellagic acid and tetracycline (ETC; 250 μg ml(-1) + 0.312 μg ml(-1)) was determined to effectively inhibit biofilm formation by P. acnes (80-91%) without affecting its growth, therefore potentially limiting the possibility of the bacterium attaining resistance. In addition, ETC reduced the production of extracellular polymeric substances (EPS) (20-26%), thereby making P. acnes more susceptible to the human immune system and antibiotics. The anti-biofilm potential of ETC was further substantiated under in vivo conditions using Caenorhabditis elegans. This study reports a novel anti-biofilm combination that could be developed as an ideal therapeutic agent with broad cosmeceutical and pharmaceutical applicability in the era of antibiotic resistance.
AGE/RAGE-Induced EMP Release via the NOX-Derived ROS Pathway
Chen, Ying-Hua; Chen, Zhang-Wei; Li, Hong-Mei
2018-01-01
Objective Diabetes is associated with accelerated formation of advanced glycation end products (AGEs) that are extensively found in circulating endothelial microparticles (EMPs). This study aimed to investigate whether AGEs have a direct effect on EMP formation and the possible underlying mechanism. Methods In vitro, cultured human umbilical vein endothelial cells (HUVECs) were incubated with AGEs (200 and 400 μg/ml) for 24 hours with or without pretreatment with anti-RAGE antibody, NOX inhibitor, or ROS scavenger. The number of CD31-positive EMPs was assessed by flow cytometry. Results The number of EMPs was significantly increased in HUVECs stimulated by AGEs in a dose-dependent manner. In addition, receptors for AGEs (RAGE), NAD(P)H oxidase (NOX), and reactive oxygen species (ROS) were increased by AGEs as compared to the control group. These changes could be reversed when HUVECs were pretreated with anti-RAGE antibody. Moreover, inhibition of NOX as well as antioxidant treatment reduced the release of EMPs induced by AGEs. Conclusion Our study suggested that AGEs increased EMP generation, which was mediated by RAGE signaling through NOX-derived ROS. PMID:29744367
AGE/RAGE-Induced EMP Release via the NOX-Derived ROS Pathway.
Chen, Ying-Hua; Chen, Zhang-Wei; Li, Hong-Mei; Yan, Xin-Feng; Feng, Bo
2018-01-01
Diabetes is associated with accelerated formation of advanced glycation end products (AGEs) that are extensively found in circulating endothelial microparticles (EMPs). This study aimed to investigate whether AGEs have a direct effect on EMP formation and the possible underlying mechanism. In vitro, cultured human umbilical vein endothelial cells (HUVECs) were incubated with AGEs (200 and 400 μ g/ml) for 24 hours with or without pretreatment with anti-RAGE antibody, NOX inhibitor, or ROS scavenger. The number of CD31-positive EMPs was assessed by flow cytometry. The number of EMPs was significantly increased in HUVECs stimulated by AGEs in a dose-dependent manner. In addition, receptors for AGEs (RAGE), NAD(P)H oxidase (NOX), and reactive oxygen species (ROS) were increased by AGEs as compared to the control group. These changes could be reversed when HUVECs were pretreated with anti-RAGE antibody. Moreover, inhibition of NOX as well as antioxidant treatment reduced the release of EMPs induced by AGEs. Our study suggested that AGEs increased EMP generation, which was mediated by RAGE signaling through NOX-derived ROS.
Gao, Qi; Han, Jingman; Ma, Zhanfang
2013-11-15
In this work, polyamidoamine dendrimers capped-carbon dots (PAMAM-CDs) were fabricated by one-step microwave assisted pyrolysis of citric acid (CA) and PAMAM, where the formation of CDs and the surface passivation were accomplished simultaneously. The obtained graphitic PAMAM-CDs, with abundant amine groups, were employed as reducing and capping agents for the formation of PAMAM-CDs/Au nanocrystal nanocomposites. The resulting nanocomposites exhibited excellent conductivity, stability and biocompatibility on the surface of electrode and were designed as an immobilized matrix for sensitive immunosensing of alpha-fetoprotein (AFP). The proposed immunosensor showed a wide linear detection range from 100 fg mL(-1) to 100 ng mL(-1). The detection limit for AFP was 0.025 pg mL(-1). Importantly, the immunosensor was evaluated for the analysis of clinical serum samples, obtaining a good correlation with enzyme-linked immunosorbent assay (ELISA). The results indicated that the immunosensor provided a possible application for the detection of AFP in clinical diagnosis. Copyright © 2013 Elsevier B.V. All rights reserved.
Winds from accretion disks - Ultraviolet line formation in cataclysmic variables
NASA Technical Reports Server (NTRS)
Shlosman, Isaac; Vitello, Peter
1993-01-01
Winds from accretion disks in cataclysmic variable stars are ubiquitous. Observations by IUE reveal P Cygni-shaped profiles of high-ionization lines which are attributed to these winds. We have studied the formation of UV emission lines in cataclysmic variables by constructing kinematical models of biconical rotating outflows from disks around white dwarfs. The photoionization in the wind is calculated taking into account the radiation fields of the disk, the boundary layer, and the white dwarf. The 3D radiative transfer is solved in the Sobolev approximation. Effects on the line shapes of varying basic physical parameters of the wind are shown explicitly. We identify and map the resonant scattering regions in the wind which have strongly biconical character regardless of the assumed velocity and radiation fields. Rotation at the base of the wind introduces a radial shear which decreases the line optical depth and reduces the line core intensity. We find that it is possible to reproduce the observed P Cygni line shapes and make some predictions to be verified in high-resolution observations.
Krutkramelis, K.; Xia, B.; Oakey, J.
2016-01-01
PEG-based hydrogels have become widely used as drug delivery and tissue scaffolding materials. Common among PEG hydrogel-forming polymers are photopolymerizable acrylates such as polyethylene glycol diacrylate (PEGDA). Microfluidics and microfabrication technologies have recently enabled the miniaturization of PEGDA structures, thus enabling many possible applications for nano- and micro- structured hydrogels. The presence of oxygen, however, dramatically inhibits the photopolymerization of PEGDA, which in turn frustrates hydrogel formation in environments of persistently high oxygen concentration. Using PEGDA that has been emulsified in fluorocarbon oil via microfluidic flow focusing within polydimethylsiloxane (PDMS) devices, we show that polymerization is completely inhibited below critical droplet diameters. By developing an integrated model incorporating reaction kinetics and oxygen diffusion, we demonstrate that the critical droplet diameter is largely determined by the oxygen transport rate, which is dictated by the oxygen saturation concentration of the continuous oil phase. To overcome this fundamental limitation, we present a nitrogen micro-jacketed microfluidic device to reduce oxygen within the droplet, enabling the continuous on-chip photopolymerization of microscale PEGDA particles. PMID:26987384
Bruk Artinger, Kristin; Chitnis, Ajay B.; Mercola, Mark; Driever, Wolfgang
2014-01-01
SUMMARY In the developing vertebrate nervous system, both neural crest and sensory neurons form at the boundary between non-neural ectoderm and the neural plate. From an in situ hybridization based expression analysis screen, we have identified a novel zebrafish mutation, narrowminded (nrd), which reduces the number of early neural crest cells and eliminates Rohon-Beard (RB) sensory neurons. Mosaic analysis has shown that the mutation acts cell autonomously suggesting that nrd is involved in either the reception or interpretation of signals at the lateral neural plate boundary. Characterization of the mutant phenotype indicates that nrd is required for a primary wave of neural crest cell formation during which progenitors generate both RB sensory neurons and neural crest cells. Moreover, the early deficit in neural crest cells in nrd homozygotes is compensated later in development. Thus, we propose that a later wave can compensate for the loss of early neural crest cells but, interestingly, not the RB sensory neurons. We discuss the implications of these findings for the possibility that RB sensory neurons and neural crest cells share a common evolutionary origin. PMID:10457007
Energy restriction and the prevention of breast cancer.
Harvie, Michelle; Howell, Anthony
2012-05-01
Energy restriction (ER) to control weight is a potential strategy for breast cancer prevention. The protective effects of habitual continuous energy restriction (CER) and weight loss on breast tumour formation have been conclusively demonstrated in animal studies over the past 100 years, and more recently in women using data from observational studies and bariatric surgery. Intermittent energy restriction (IER) and intermittent fasting (IF) are possible alternative preventative approaches which may be easier for individuals to undertake and possibly more effective than standard CER. Here, we summarise the available data on CER, IER and IF with special emphasis on their potential for breast cancer prevention. In animals, IER is superior or equivalent to CER with the exception of carcinogen-induced tumour models when initiated soon after carcinogen exposure. There are no human data on IER and breast cancer risk, but three studies demonstrated IER and CER to be equivalent for weight loss. IF regimens also reduce mammary tumour formation in animal models and also led to weight loss in human subjects, but have not been directly compared with CER. Animal and some human data suggest that both IER and IF may differ mechanistically compared with CER and may bring about greater reduction in hepatic and visceral fat stores, insulin-like growth factor 1 (IGF-1) levels and cell proliferation, and increased insulin sensitivity and adiponectin levels. Although IER and IF were first studied 65 years ago, we conclude that further studies are required to assess their values compared with CER.
Visual-conformal display format for helicopter guidance
NASA Astrophysics Data System (ADS)
Doehler, H.-U.; Schmerwitz, Sven; Lueken, Thomas
2014-06-01
Helicopter guidance in situations where natural vision is reduced is still a challenging task. Beside new available sensors, which are able to "see" through darkness, fog and dust, display technology remains one of the key issues of pilot assistance systems. As long as we have pilots within aircraft cockpits, we have to keep them informed about the outside situation. "Situational awareness" of humans is mainly powered by their visual channel. Therefore, display systems which are able to cross-fade seamless from natural vision to artificial computer vision and vice versa, are of greatest interest within this context. Helmet-mounted displays (HMD) have this property when they apply a head-tracker for measuring the pilot's head orientation relative to the aircraft reference frame. Together with the aircraft's position and orientation relative to the world's reference frame, the on-board graphics computer can generate images which are perfectly aligned with the outside world. We call image elements which match the outside world, "visual-conformal". Published display formats for helicopter guidance in degraded visual environment apply mostly 2D-symbologies which stay far behind from what is possible. We propose a perspective 3D-symbology for a head-tracked HMD which shows as much as possible visual-conformal elements. We implemented and tested our proposal within our fixed based cockpit simulator as well as in our flying helicopter simulator (FHS). Recently conducted simulation trials with experienced helicopter pilots give some first evaluation results of our proposal.
Li, Li; Li, Yixing; Song, Shufeng; Deng, Huafeng; Li, Na; Fu, Xiqin; Chen, Guanghui; Yuan, Longping
2015-01-01
In this study, we reported that a F-box protein, OsADF, as one of the direct targets of TDR , plays a critical role in rice tapetum cell development and pollen formation. The tapetum, the innermost sporophytic tissue of anther, plays an important supportive role in male reproduction in flowering plants. After meiosis, tapetal cells undergo programmed cell death (PCD) and provide nutrients for pollen development. Previously we showed that tapetum degeneration retardation (TDR), a basic helix-loop-helix transcription factor, can trigger tapetal PCD and control pollen wall development during anther development. However, the comprehensive regulatory network of TDR remains to be investigated. In this study, we cloned and characterized a panicle-specific expression F-box protein, anther development F-box (OsADF). By qRT-PCR and RNA in situ hybridization, we further confirmed that OsADF expressed specially in tapetal cells from stage 9 to stage 12 during anther development. In consistent with this specific expression pattern, the RNAi transgenic lines of OsADF exhibited abnormal tapetal degeneration and aborted microspores development, which eventually grew pollens with reduced fertility. Furthermore, we demonstrated that the TDR, a key regulator in controlling rice anther development, could regulate directly the expression of OsADF by binding to E-box motifs of its promoter. Therefore, this work highlighted the possible regulatory role of TDR, which regulates tapetal cell development and pollen formation via triggering the possible ADF-mediated proteolysis pathway.
Alves, Lívia Araújo; Freires, Irlan de Almeida; Pereira, Tricia Murielly; de Souza, Andrade; Lima, Edeltrudes de Oliveira; de Castro, Ricardo Dias
2013-01-01
To evaluate the anti-fungal activity of a tincture from Schinus terebinthifolius (Brazilian pepper tree) on Candida albicans (ATCC 289065), a micro-organism associated with fungal infections of the oral cavity. Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) were determined through microdilution technique, as well as the microbial growth curve of C. albicans promoted by S. terebinthifolius. In addition, this study investigated a possible activity of the product on the fungal cell wall and its biological activity on fungal morphology. Nystatin was used as control and all tests were performed in triplicate. S. terebinthifolius showed MIC of 312.5 µg/mL and MFC of 2500 µg/mL upon the strain tested, while Nystatin showed MIC and MFC of 6.25 µg/mL. As regards the microbial growth curve, S. terebinthifolius was able to significantly reduce the number of CFU/mL when compared to growth control until the time of 60 min. In the times 120 and 180 min there was no statistically significant difference between the growth control and the experimental product. S. terebinthifolius possibly acts on the fungal cell wall, once the sorbitol test indicated a MIC of 1250 µg/mL. In the fungal morphology, a reduction was observed of pseudo-hyphae, chlamydoconidia and blastoconidia in the presence of the experimental product. S. terebinthifolius showed anti-fungal activity against C. albicans, inhibiting, probably, the fungal cell wall formation.
Fullerene ion chemistry: a journey of discovery and achievement
Böhme, Diethard K.
2016-01-01
An account is provided of the extraordinary features of buckminster fullerene cations and their chemistry that we discovered in our Ion Chemistry Laboratory at York University (Canada) during a ‘golden’ period of research in the early 1990s, just after C60 powder became available. We identified new chemical ways of C60 ionization and tracked novel chemistry of C60n+ as a function of charge state (n=1–3) with some 50 different reagent molecules. We found that multiple charges enhance reaction rates and diversify reaction products and mechanisms. Strong electrostatic interactions with reagent molecules were seen to reduce barriers to carbon surface bonding and charge-separation reactions, while intramolecular Coulomb repulsion appeared to localize charge on the surface or the substituent and so influence higher order chemistry, including ‘spindle’, ‘star’, ‘fuzzy ball’, ‘ball-and-chain’ and dimer ion formation. We introduced the notion of ‘apparent’ gas-phase acidity with measurements of proton-transfer reactions of multiply charged fullerene cations. We also explored the attachment of atomic metal cations to C60 and their subsequent reactions. All these findings were applied to the possible chemistry of fullerene cations in the interstellar medium with a focus on multiply charged fullerene ion formation and the intervention of fullerene cations in fullerene derivatization and molecular synthesis, with a view to their possible future detection. This article is part of the themed issue ‘Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene’. PMID:27501972
Subsonic islands within a high-mass star-forming infrared dark cloud
NASA Astrophysics Data System (ADS)
Sokolov, Vlas; Wang, Ke; Pineda, Jaime E.; Caselli, Paola; Henshaw, Jonathan D.; Barnes, Ashley T.; Tan, Jonathan C.; Fontani, Francesco; Jiménez-Serra, Izaskun; Zhang, Qizhou
2018-03-01
High-mass star forming regions are typically thought to be dominated by supersonic motions. We present combined Very Large Array and Green Bank Telescope (VLA+GBT) observations of NH3 (1,1) and (2,2) in the infrared dark cloud (IRDC) G035.39-00.33, tracing cold and dense gas down to scales of 0.07 pc. We find that, in contrast to previous, similar studies of IRDCs, more than a third of the fitted ammonia spectra show subsonic non-thermal motions (mean line width of 0.71 km s-1), and sonic Mach number distribution peaks around ℳ = 1. As possible observational and instrumental biases would only broaden the line profiles, our results provide strong upper limits to the actual value of ℳ, further strengthening our findings of narrow line widths. This finding calls for a re-evaluation of the role of turbulent dissipation and subsonic regions in massive-star and cluster formation. Based on our findings in G035.39, we further speculate that the coarser spectral resolution used in the previous VLA NH3 studies may have inhibited the detection of subsonic turbulence in IRDCs. The reduced turbulent support suggests that dynamically important magnetic fields of the 1 mG order would be required to support against possible gravitational collapse. Our results offer valuable input into the theories and simulations that aim to recreate the initial conditions of high-mass star and cluster formation.
Singh, Dheeraj K; Jagannathan, Ramya; Khandelwal, Puneet; Abraham, Priya Mary; Poddar, Pankaj
2013-03-07
Curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) is an active component of turmeric; it is responsible for its characteristic yellow color and therapeutic potential, but its poor bioavailability remains a major challenge. In order to improve the bioavailability of curcumin, various approaches have been used. One of the possible approaches to increase the bioavailability of curcumin is its conjugation on the surface of metal nanoparticles. Therefore, in the present study, we report the binding of curcumin on the surface of gold nanoparticles (AuNPs). The AuNPs were synthesized by the direct reduction of HAuCl(4) using curcumin in the aqueous phase, without the use of any other reducing agents. We found that curcumin acts both as a reducing and capping agent, stabilizing the gold sol for many months. Moreover, these curcumin-capped AuNPs also show good antioxidant activity which was confirmed by the DPPH (2,2-diphenyl-l-picrylhydrazyl) radical test. Thus, the surface functionalization of AuNPs with curcumin may pave a new way of using the curcuminoids towards possible drug delivery and therapeutics. Apart from the experimental study, a detailed quantum chemical calculation using density functional theory (DFT) has been performed, in order to investigate the formation of a complex of curcumin with Au(3+) ions in different possible conformational isomeric forms. Our theoretical calculations indicate the evidence of electron transfer from curcumin into the Au center and essentially indicate that as a consequence of complexation, Au(3+) ions are reduced to Au(0). Our theoretical results also propose that it is the breakage of intramolecular H-bonding that probably leads to the increased availability of curcumin in the presence of gold ions and water molecules.
NASA Astrophysics Data System (ADS)
Rieder, Maximilian; Wegner, Wencke; Horschinegg, Monika; Preto, Nereo; Breda, Anna; Klötzli, Urs; Peckmann, Jörn; Meister, Patrick
2016-04-01
The study of large amounts of dolomite that formed in the Triassic Tethyan realm is hampered by late diagenetic or hydrothermal overprint. These dolomites are difficult to link to past environmental and early diagenetic conditions, and their correlation to models for dolomite formation in modern environments is problematic. Preto et al. (2015) suggested, based on evidence from nano-scale structure analysis by transmission electron microscopy and petrographic observations, that dolomites in the Carnian Travenanzes Formation of the Southern Alps (Dolomites area) represent a preserved primary phase. The Travenanzes Formation was deposited in an extended alluvial plain or coastal sabkha environment subject to a semi-arid climate. Beds and nodules of nearly stoichiometric dolomite are embedded in large amounts of clay, which shielded early formed dolomite from diagenetic fluids. This finding of penecontemporaneous dolomite provides an ideal model case for reconstructing past environmental conditions at the time of dolomite precipitation. While Preto et al. (2015) argued that dolomite formation was mediated by extracellular polymeric substances produced by sulphate-reducing bacteria, it remains unclear whether precipitation occurred from evaporating seawater or mainly from brine derived from evaporating continental groundwater. Both cases exist in modern environments of dolomite formation. In the coastal sabkhas of Abu Dhabi and Qatar, dolomite precipitates from concentrated brine derived from seawater, either through seepage and reflux or through evaporative pumping (the sabkha model). In the coastal ephemeral lakes of the Coorong Lagoon system (South Australia) dolomite precipitation occurs from evaporating groundwater. The goal of this study is to distinguish marine from continental influence during formation of Carnian dolomite using 87Sr/86Sr isotope ratios. Sr isotopes could reveal different origins of ionic solutions for dolomite precipitation, which is not indicated by oxygen isotopes. The marine 87Sr/86Sr values have been reconstructed for most of the Phanerozoic and are nearly constant in the Carnian (McArthur et al., 2012), while the age of the dolomite beds of the Travenanzes Formation is constrained by their stratigraphic position in the measured section (Dibona Section; Preto et al., 2015). The continental Sr isotope signal is governed by weathering rates, especially during silicate weathering of the source rock in the catchment area (McArthur et al., 2012). Through 87Sr/86Sr isotope investigation of primary dolomite in beds and nodules of the coastal sabkha or alluvial plain environment, the influence of marine or continental conditions can be determined. The finding of celestine SrSO4 and Sr-rich barite BaSO4 within the cemented dolomite by SEM indicates enrichment of Sr, possibly during strong evaporative conditions. Hence, the generation of phase-specific Sr-isotope data will allow for a more precise reconstruction of the conditions that led to dolomite formation in the Triassic shallow coastal sabkha/alluvial plain environment. McArthur et al. (2012) Strontium isotope stratigraphy. In: "The geologic time scale" (F.M Gradstein et al., eds.), Elsevier, p. 127-144. Preto et al. (2015) Primary dolomite in the Late Triassic Travenanzes Formation Dolomites, Northern Italy: Facies control and possible bacterial influence. Sedimentology 62, p. 697-716.
Bromate formation in a hybrid ozonation-ceramic membrane filtration system.
Moslemi, Mohammadreza; Davies, Simon H; Masten, Susan J
2011-11-01
The effect of pH, ozone mass injection rate, initial bromide concentration, and membrane molecular weight cut off (MWCO) on bromate formation in a hybrid membrane filtration-ozonation reactor was studied. Decreasing the pH, significantly reduced bromate formation. Bromate formation increased with increasing gaseous ozone mass injection rate, due to increase in dissolved ozone concentrations. Greater initial bromide concentrations resulted in higher bromate concentrations. An increase in the bromate concentration was observed by reducing MWCO, which resulted in a concomitant increase in the retention time in the system. A model to estimate the rate of bromate formation was developed. Good correlation between the model simulation and the experimental data was achieved. Copyright © 2011 Elsevier Ltd. All rights reserved.
Effects of Rivaroxaban on Platelet Activation and Platelet–Coagulation Pathway Interaction
Heitmeier, Stefan; Laux, Volker
2015-01-01
Introduction: Activation of coagulation and platelets is closely linked, and arterial thrombosis involves coagulation activation as well as platelet activation and aggregation. In these studies, we investigated the possible synergistic effects of rivaroxaban in combination with antiplatelet agents on thrombin generation and platelet aggregation in vitro and on arterial thrombosis and hemostasis in rat models. Materials and Methods: Thrombin generation was measured by the Calibrated Automated Thrombogram method (0.5 pmol/L tissue factor) using human platelet-rich plasma (PRP) spiked with rivaroxaban (15, 30, or 60 ng/mL), ticagrelor (1.0 µg/mL), and acetylsalicylic acid (ASA; 100 µg/mL). Tissue factor-induced platelet aggregation was measured in PRP spiked with rivaroxaban (15 or 30 ng/mL), ticagrelor (1 or 3 µg/mL), or a combination of these. An arteriovenous (AV) shunt model in rats was used to determine the effects of rivaroxaban (0.01, 0.03, or 0.1 mg/kg), clopidogrel (1 mg/kg), ASA (3 mg/kg), and combinations on arterial thrombosis. Results: Rivaroxaban inhibited thrombin generation in a concentration-dependent manner and the effect was enhanced with ticagrelor and ticagrelor plus ASA. Rivaroxaban and ticagrelor also concentration-dependently inhibited tissue factor-induced platelet aggregation, and their combination increased the inhibition synergistically. In the AV shunt model, rivaroxaban dose-dependently reduced thrombus formation. Combining subefficacious or weakly efficacious doses of rivaroxaban with ASA or ASA plus clopidogrel increased the antithrombotic effect. Conclusion: These data indicate that the combination of rivaroxaban with single or dual antiplatelet agents works synergistically to reduce platelet activation, which may in turn lead to the delayed/reduced formation of coagulation complexes and vice versa, thereby enhancing antithrombotic potency. PMID:25848131
Comparison of para-aminophenol cytotoxicity in rat renal epithelial cells and hepatocytes.
Li, Ying; Bentzley, Catherine M; Tarloff, Joan B
2005-04-01
Several chemicals, including para-aminophenol (PAP), produce kidney damage in the absence of hepatic damage. Selective nephrotoxicity may be related to the ability of the kidney to reabsorb filtered water, thereby raising the intraluminal concentration of toxicants and exposing tubular epithelial cells to higher concentrations than would be present in other tissues. The present experiments tested the hypothesis that hepatocytes and renal epithelial cells exposed to equivalent concentrations of PAP would be equally susceptible to toxicity. Hepatocytes and renal epithelial cells were prepared by collagenase digestion of tissues obtained from female Sprague-Dawley rats. Toxicity was monitored using trypan blue exclusion, oxygen consumption and ATP content. We measured the rate of PAP clearance and formation of PAP-glutathione conjugate by HPLC. We found that renal epithelial cells accumulated trypan blue and showed declines in oxygen consumption and ATP content at significantly lower concentrations of PAP and at earlier time points than hepatocytes. The half-life of PAP in hepatocyte incubations was significantly shorter (0.71+/-0.07 h) than in renal epithelial cell incubations (1.33+/-0.23 h), suggesting that renal epithelial cells were exposed to PAP for longer time periods than hepatocytes. Renal epithelial cells formed significantly less glutathione conjugates of PAP (PAP-SG) than did hepatocytes, consistent with less efficient detoxification of reactive PAP intermediates by renal epithelial cells. Finally, hepatocytes contained significant more reduced glutathione (NPSH) than did renal epithelial cells, possibly explaining the enhanced formation of PAP-SG by this cell population. In conclusion, our data indicates that renal epithelial cells are intrinsically more susceptible to PAP cytotoxicity than are hepatocytes. This enhanced cytotoxicity may be due to longer exposure to PAP and/or reduced detoxification of reactive intermediates due to lower concentrations of reduced NPSH in renal epithelial cells than in hepatocytes.
Synthesis and Characterization of a New Co-Crystal Explosive with High Energy and Good Sensitivity
NASA Astrophysics Data System (ADS)
Gao, Han; Jiang, Wei; Liu, Jie; Hao, Gazi; Xiao, Lei; Ke, Xiang; Chen, Teng
2017-10-01
A new energetic co-crystal consisting of one of the most powerful explosive molecules 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and the military explosive cyclotrimethylenetrinitramine (RDX) was prepared with a simple solvent evaporation method. Scanning electron microscopy (SEM) revealed the morphology of the bar-shaped product, which differed greatly from the morphology of the individual components. Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction spectrum (XRD), and differential scanning calorimetry (DSC) proved the formation of the co-crystal at the molecular level. The result of mechanical sensitivity test indicated the sensitivity was effectively reduced compared to raw CL-20. Finally, a possible crystallization mechanism was discussed.
NASA Astrophysics Data System (ADS)
Tlidi, Mustapha; Panajotov, Krassimir; Ferré, Michel; Clerc, Marcel G.
2017-11-01
Time-delayed feedback plays an important role in the dynamics of spatially extended systems. In this contribution, we consider the generic Lugiato-Lefever model with delay feedback that describes Kerr optical frequency comb in all fiber cavities. We show that the delay feedback strongly impacts the spatiotemporal dynamical behavior resulting from modulational instability by (i) reducing the threshold associated with modulational instability and by (ii) decreasing the critical frequency at the onset of this instability. We show that for moderate input intensities it is possible to generate drifting cavity solitons with an asymmetric radiation emitted from the soliton tails. Finally, we characterize the formation of rogue waves induced by the delay feedback.
Streeck, Jürgen
2011-01-01
This paper describes speaking practices enacted by young female in-patients during psychotherapy sessions. The patients are in treatment for anxiety and panic disorders (social phobias). The practices involve prosodic, lexical and pragmatic aspects of utterance construction. An effect that they share is that the speaker's embodied presence in her talk and her epistemic commitment to it are reduced as the utterance progresses. The practices are interpreted in light of Bateson's interactional theory of character formation: as elements of a self-sustaining system Angst (anxiety). The study has grown out of an interdisciplinary effort to explore possible relationships between types of anxiety and the communicative and linguistic patterns by which patients describe panic attacks and other highly emotional experiences.
Time-gated real-time pump-probe imaging spectroscopy
NASA Astrophysics Data System (ADS)
Ferrari, Raffaele; D'Andrea, Cosimo; Bassi, Andrea; Valentini, Gianluca; Cubeddu, Rinaldo
2007-07-01
An experimental technique which allows one to perform pump-probe transient absorption spectroscopy in real-time is an important tool to study irreversible processes. This is particularly interesting in the case of biological samples which easily deteriorate upon exposure to light pulses, with the formation of permanent photoproducts and structural changes. In particular pump-probe spectroscopy can provide fundamental information for the design of optical chromophores. In this work a real-time pump-probe imaging spectroscopy system has been realized and we have explored the possibility to further reduce the number of laser pulses by using a time-gated camera. We believe that the use of a time-gated camera can provide an important step towards the final goal of pump-probe single shot spectroscopy.
Hossack, Aaron C; Firman, Taylor; Jarboe, Thomas R; Prager, James R; Victor, Brian S; Wrobel, Jonathan S; Ziemba, Timothy
2013-10-01
A helicon based pre-ionization source has been developed and installed on the Helicity Injected Torus with Steady Inductance (HIT-SI) spheromak. The source initiates plasma breakdown by injecting impurity-free, unmagnetized plasma into the HIT-SI confinement volume. Typical helium spheromaks have electron density reduced from (2-3) × 10(19) m(-3) to 1 × 10(19) m(-3). Deuterium spheromak formation is possible with density as low as 2 × 10(18) m(-3). The source also enables HIT-SI to be operated with only one helicity injector at injector frequencies above 14.5 kHz. A theory explaining the physical mechanism driving the reduction of breakdown density is presented.
Concentrator optical characterization using computer mathematical modelling and point source testing
NASA Technical Reports Server (NTRS)
Dennison, E. W.; John, S. L.; Trentelman, G. F.
1984-01-01
The optical characteristics of a paraboloidal solar concentrator are analyzed using the intercept factor curve (a format for image data) to describe the results of a mathematical model and to represent reduced data from experimental testing. This procedure makes it possible not only to test an assembled concentrator, but also to evaluate single optical panels or to conduct non-solar tests of an assembled concentrator. The use of three-dimensional ray tracing computer programs to calculate the mathematical model is described. These ray tracing programs can include any type of optical configuration from simple paraboloids to array of spherical facets and can be adapted to microcomputers or larger computers, which can graphically display real-time comparison of calculated and measured data.
Sharma, Nilesh C.; Nath, Sudip; Parsons, Jason G.; Gardea- Torresdey, Jorge L.; Pal, Tarasankar
2008-01-01
Growth of Sesbania seedlings in chloroaurate solution resulted in the accumulation of gold with the formation of stable gold nanoparticles in plant tissues. Transmission electron microscopy revealed the intracellular distribution of monodisperse nanospheres, possibly due to reduction of the metal ions by secondary metabolites present in cells. X-ray absorption near-edge structure and extended X-ray absorption fine structure demonstrated a high degree of efficiency for the biotransformation of Au(III) into Au(0) by plant tissues. The catalytic function of the nanoparticle-rich biomass was substantiated by the reduction of aqueous 4-nitrophenol (4-NP). This is the first report of gold nanoparticle-bearing biomatrix directly reducing a toxic pollutant, 4-NP. PMID:17711235
Interactive computer graphics - Why's, wherefore's and examples
NASA Technical Reports Server (NTRS)
Gregory, T. J.; Carmichael, R. L.
1983-01-01
The benefits of using computer graphics in design are briefly reviewed. It is shown that computer graphics substantially aids productivity by permitting errors in design to be found immediately and by greatly reducing the cost of fixing the errors and the cost of redoing the process. The possibilities offered by computer-generated displays in terms of information content are emphasized, along with the form in which the information is transferred. The human being is ideally and naturally suited to dealing with information in picture format, and the content rate in communication with pictures is several orders of magnitude greater than with words or even graphs. Since science and engineering involve communicating ideas, concepts, and information, the benefits of computer graphics cannot be overestimated.
Blasi, Francesco; Page, Clive; Rossolini, Gian Maria; Pallecchi, Lucia; Matera, Maria Gabriella; Rogliani, Paola; Cazzola, Mario
2016-08-01
In airway infections, biofilm formation has been demonstrated to be responsible for both acute and chronic events, and constitutes a genuine challenge in clinical practice. Difficulty in eradicating biofilms with systemic antibiotics has led clinicians to consider the possible role of non-antibiotic therapy. The aim of this review is to examine current evidence for the use of N-acetylcysteine (NAC) in the treatment of biofilm-related respiratory infections. Electronic searches of PUBMED up to September 2015 were conducted, searching for 'biofilm', 'respiratory tract infection', 'N-acetylcysteine', 'cystic fibrosis', 'COPD', 'bronchiectasis', 'otitis', and 'bronchitis' in titles and abstracts. Studies included for review were primarily in English, but a few in Italian were also selected. Biofilm formation may be involved in many infections, including ventilator-associated pneumonia, cystic fibrosis, bronchiectasis, bronchitis, and upper respiratory airway infections. Many in vitro studies have demonstrated that NAC is effective in inhibiting biofilm formation, disrupting preformed biofilms (both initial and mature), and reducing bacterial viability in biofilms. There are fewer clinical studies on the use of NAC in disruption of biofilm formation, although there is some evidence that NAC alone or in combination with antibiotics can decrease the risk of exacerbations of chronic bronchitis, chronic obstructive pulmonary disease, and rhinosinusitis. However, the usefulness of NAC in the treatment of cystic fibrosis and bronchiectasis is still matter of debate. Most of the studies published to date have used oral or intramuscular NAC formulations. Evidence from in vitro studies indicates that NAC has good antibacterial properties and the ability to interfere with biofilm formation and disrupt biofilms. Results from clinical studies have provided some encouraging findings that need to be confirmed and expanded using other routes of administration of NAC such as inhalation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Desmarais, Samantha M.; Leitner, Thomas; Barron, Annelise E.
2012-01-01
DNA barcodes are short, unique ssDNA primers that “mark” individual biomolecules. To gain better understanding of biophysical parameters constraining primer-dimer formation between primers that incorporate barcode sequences, we have developed a capillary electrophoresis method that utilizes drag-tag-DNA conjugates to quantify dimerization risk between primer-barcode pairs. Results obtained with this unique free-solution conjugate electrophoresis (FSCE) approach are useful as quantitatively precise input data to parameterize computation models of dimerization risk. A set of fluorescently labeled, model primer-barcode conjugates were designed with complementary regions of differing lengths to quantify heterodimerization as a function of temperature. Primer-dimer cases comprised two 30-mer primers, one of which was covalently conjugated to a lab-made, chemically synthesized poly-N-methoxyethylglycine drag-tag, which reduced electrophoretic mobility of ssDNA to distinguish it from ds primer-dimers. The drag-tags also provided a shift in mobility for the dsDNA species, which allowed us to quantitate primer-dimer formation. In the experimental studies, pairs of oligonucleotide primer-barcodes with fully or partially complementary sequences were annealed, and then separated by free-solution conjugate CE at different temperatures, to assess effects on primer-dimer formation. When less than 30 out of 30 basepairs were bonded, dimerization was inversely correlated to temperature. Dimerization occurred when more than 15 consecutive basepairs formed, yet non-consecutive basepairs did not create stable dimers even when 20 out of 30 possible basepairs bonded. The use of free-solution electrophoresis in combination with a peptoid drag-tag and different fluorophores enabled precise separation of short DNA fragments to establish a new mobility shift assay for detection of primer-dimer formation. PMID:22331820
Evolution of specific 3'-5'-linkages in RNA in pre-biotic soup: a new hypothesis.
Kumar, Vaijayanti A
2016-11-02
This article reviews the different possibilities towards progression of the formation of DNA/RNA in the chemical world, before life, in enzyme-free conditions. The advent of deoxyribo- and ribopentose-sugars, nucleosides, nucleotides and oligonucleotides in the prebiotic soup is briefly discussed. Further, the formation of early single stranded oligomers, base-pairing possibilities and information transfer based on the stability parameters of the derived duplexes is reviewed. Each theory has its own merits and demerits which we have elaborated upon. Lastly, using clues from this literature, a possible explanation for the specific 3'-5'-linkages in RNA is proposed.
Biogeochemistry of anaerobic crude oil biodegradation
NASA Astrophysics Data System (ADS)
Head, Ian; Gray, Neil; Aitken, Caroline; Sherry, Angela; Jones, Martin; Larter, Stephen
2010-05-01
Anaerobic degradation of crude oil and petroleum hydrocarbons is widely recognized as a globally significant process both in the formation of the world's vast heavy oil deposits and for the dissipation of hydrocarbon pollution in anoxic contaminated environments. Comparative analysis of crude oil biodegradation under methanogenic and sulfate-reducing conditions has revealed differences not only in the patterns of compound class removal but also in the microbial communities responsible. Under methanogenic conditions syntrophic associations dominated by bacteria from the Syntropheaceae are prevalent and these are likely key players in the initial anaerobic degradation of crude oil alkanes to intermediates such as hydrogen and acetate. Syntrophic acetate oxidation plays an important role in these systems and often results in methanogenesis dominated by CO2 reduction by members of the Methanomicrobiales. By contrast the bacterial communities from sulfate-reducing crude oil-degrading systems were more diverse and no single taxon dominated the oil-degrading sulfate-reducing systems. All five proteobacterial subdivisions were represented with Delta- and Gammaproteobacteria being detected most consistently. In sediments which were pasteurized hydrocarbon degradation continued at a relatively low rate. Nevertheless, alkylsuccinates characteristic of anaerobic hydrocarbon degradation accumulated to high concentrations. This suggested that the sediments harbour heat resistant, possibly spore-forming alkane degrading sulfate-reducers. This is particularly interesting since it has been proposed recently, that spore-forming sulfate-reducing bacteria found in cold arctic sediments may have originated from seepage of geofluids from deep subsurface hydrocarbon reservoirs.
Experimental studies on ion mobility in xenon-trimethylamine mixtures
NASA Astrophysics Data System (ADS)
Trindade, A. M. F.; Encarnação, P. M. C. C.; Escada, J.; Cortez, A. F. V.; Neves, P. N. B.; Conde, C. A. N.; Borges, F. I. G. M.; Santos, F. P.
2017-07-01
In this paper we present experimental results for ion reduced mobilities (K0) in gaseous trimethylamine, TMA—(CH3)3N, and xenon-TMA mixtures for reduced electric fields E/N between 7.5 and 60 Td and in the pressure range from 0.5 to 10 Torr, at room temperature. Both in the mixtures and in pure TMA only one peak was observed in the time of arrival spectra, which is believed to be due to two TMA ions with similar mass, (CH3)3N+ (59 u) and (CH3)2CH2N+ (58 u), whose mobility is indistinguishable in our experimental system. The possibility of ion cluster formation is also discussed. In pure TMA, for the E/N range investigated, an average value of 0.56 cm2V-1s-1 was obtained for the reduced mobility of TMA ions. For the studied mixtures, it was observed that even a very small amount of gaseous TMA (~0.2%) in xenon leads to the production of the above referred TMA ions or clusters. The reduced mobility value of this ion or ions in Xe-TMA mixtures is higher than the value in pure TMA: around 0.8 cm2V-1s-1 for TMA concentrations from 0.2% to about 10%, decreasing for higher TMA percentages, eventually converging to the reduced mobility value in pure TMA.
Mechanotransduction and the functional response of bone to mechanical strain
NASA Technical Reports Server (NTRS)
Duncan, R. L.; Turner, C. H.
1995-01-01
Mechanotransduction plays a crucial role in the physiology of many tissues including bone. Mechanical loading can inhibit bone resorption and increase bone formation in vivo. In bone, the process of mechanotransduction can be divided into four distinct steps: (1) mechanocoupling, (2) biochemical coupling, (3) transmission of signal, and (4) effector cell response. In mechanocoupling, mechanical loads in vivo cause deformations in bone that stretch bone cells within and lining the bone matrix and create fluid movement within the canaliculae of bone. Dynamic loading, which is associated with extracellular fluid flow and the creation of streaming potentials within bone, is most effective for stimulating new bone formation in vivo. Bone cells in vitro are stimulated to produce second messengers when exposed to fluid flow or mechanical stretch. In biochemical coupling, the possible mechanisms for the coupling of cell-level mechanical signals into intracellular biochemical signals include force transduction through the integrin-cytoskeleton-nuclear matrix structure, stretch-activated cation channels within the cell membrane, G protein-dependent pathways, and linkage between the cytoskeleton and the phospholipase C or phospholipase A pathways. The tight interaction of each of these pathways would suggest that the entire cell is a mechanosensor and there are many different pathways available for the transduction of a mechanical signal. In the transmission of signal, osteoblasts, osteocytes, and bone lining cells may act as sensors of mechanical signals and may communicate the signal through cell processes connected by gap junctions. These cells also produce paracrine factors that may signal osteoprogenitors to differentiate into osteoblasts and attach to the bone surface. Insulin-like growth factors and prostaglandins are possible candidates for intermediaries in signal transduction. In the effector cell response, the effects of mechanical loading are dependent upon the magnitude, duration, and rate of the applied load. Longer duration, lower amplitude loading has the same effect on bone formation as loads with short duration and high amplitude. Loading must be cyclic to stimulate new bone formation. Aging greatly reduces the osteogenic effects of mechanical loading in vivo. Also, some hormones may interact with local mechanical signals to change the sensitivity of the sensor or effector cells to mechanical load.
The formation of an ion beam in a vacuum neutron tube
NASA Astrophysics Data System (ADS)
Agafonov, A. V.; Tarakanov, V. P.
2014-09-01
The formation of a deuteron beam in a diode with a plasma emitter that is integrated into the structure of a vacuum neutron tube is considered. Computations are carried out for plasma with given time dependences of parameters (density, relative concentration, and expansion velocity) at the inlet to an accelerating gap. It is shown that it is possible to increase the ion-beam current possible by sectioning the diode at the given external parameters.
Electro-autotrophic synthesis of higher alcohols
Liao, James C.; Cho, Kwang Myung
2016-11-01
The disclosure provides a process that converts CO.sub.2 to higher alcohols (e.g. isobutanol) using electricity as the energy source. This process stores electricity (e.g. from solar energy, nuclear energy, and the like) in liquid fuels that can be used as high octane number gasoline substitutes. Instead of deriving reducing power from photosynthesis, this process derives reducing power from electrically generated mediators, either H.sub.2 or formate. H.sub.2 can be derived from electrolysis of water. Formate can be generated by electrochemical reduction of CO.sub.2. After delivering the reducing power in the cell, formate becomes CO.sub.2 and recycles back. Therefore, the biological CO.sub.2 fixation process can occur in the dark.
Electro-autotrophic synthesis of higher alcohols
Liao, James C.; Cho, Kwang Myung
2015-10-06
The disclosure provides a process that converts CO.sub.2 to higher alcohols (e.g. isobutanol) using electricity as the energy source. This process stores electricity (e.g. from solar energy, nuclear energy, and the like) in liquid fuels that can be used as high octane number gasoline substitutes. Instead of deriving reducing power from photosynthesis, this process derives reducing power from electrically generated mediators, either H.sub.2 or formate. H.sub.2 can be derived from electrolysis of water. Formate can be generated by electrochemical reduction of CO.sub.2. After delivering the reducing power in the cell, formate becomes CO.sub.2 and recycles back. Therefore, the biological CO.sub.2 fixation process can occur in the dark.
Method of fracturing a geological formation
Johnson, James O.
1990-01-01
An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.
De León, Kara B.; Zane, Grant M.; Trotter, Valentine V.; ...
2017-10-17
Biofilms of sulfate-reducing bacteria (SRB) are of particular interest as members of this group are culprits in corrosion of industrial metal and concrete pipelines as well as being key players in subsurface metal cycling. Yet the mechanism of biofilm formation by these bacteria has not been determined. Here in this paper, we show that two supposedly identical wild-type cultures of the SRBDesulfovibrio vulgarisHildenborough maintained in different laboratories have diverged in biofilm formation. From genome resequencing and subsequent mutant analyses, we discovered that a single nucleotide change within DVU1017, the ABC transporter of a type I secretion system (T1SS), was sufficientmore » to eliminate biofilm formation inD. vulgarisHildenborough. Two T1SS cargo proteins were identified as likely biofilm structural proteins, and the presence of at least one (with either being sufficient) was shown to be required for biofilm formation. Antibodies specific to these biofilm structural proteins confirmed that DVU1017, and thus the T1SS, is essential for localization of these adhesion proteins on the cell surface. We propose that DVU1017 is a member of the lapB category of microbial surface proteins because of its phenotypic similarity to the adhesin export system described for biofilm formation in the environmental pseudomonads. These findings have led to the identification of two functions required for biofilm formation in D. vulgaris Hildenborough and focus attention on the importance of monitoring laboratory-driven evolution, as phenotypes as fundamental as biofilm formation can be altered. The growth of bacteria attached to a surface (i.e., biofilm), specifically biofilms of sulfate-reducing bacteria, has a profound impact on the economy of developed nations due to steel and concrete corrosion in industrial pipelines and processing facilities. Furthermore, the presence of sulfate-reducing bacteria in oil wells causes oil souring from sulfide production, resulting in product loss, a health hazard to workers, and ultimately abandonment of wells. Identification of the required genes is a critical step for determining the mechanism of biofilm formation by sulfate reducers. Here, the transporter by which putative biofilm structural proteins are exported from sulfate-reducing Desulfovibrio vulgaris Hildenborough cells was discovered, and a single nucleotide change within the gene coding for this transporter was found to be sufficient to completely stop formation of biofilm.« less