NASA Astrophysics Data System (ADS)
Inoue, Shunya; Nishimura, Shun; Nakahama, Masanori; Matsutani, Akihiro; Sakaguchi, Takahiro; Koyama, Fumio
2018-04-01
For use in wavelength division multiplexing (WDM) with high-speed wavelength routing functions, the fast wavelength switching of tunable lasers is a key function. A tunable MEMS vertical cavity surface emitting laser (VCSEL) is a good candidate as a light source for this purpose. The cantilever in MEMS VCSELs has a high mechanical resonance frequency thanks to its small size, but the switching time is limited by the ringing of the cantilever structure. In this paper, we analyzed the mechanical behavior of a cantilever MEMS mirror and demonstrated ringing-free operation with an engineered voltage signal. The applied voltage waveform was optimized in a two-step format and we experimentally obtained ringing free wavelength switching. We measured the transient response of the wavelength by inserting a tunable filter, exhibiting the settling time of less than 2.5 µs, which corresponds to a half period of the cantilever resonance frequency.
NASA Astrophysics Data System (ADS)
Xia, Yidong; Cheng, Jinbo; Pan, Bai; Wu, Di; Meng, Xiangkang; Liu, Zhiguo
2005-08-01
The impact of postannealing in electric field on the structure, tunability, and dielectric behavior of rf magnetron sputtering derived (Ba,Sr)TiO3 films has been studied. It has been demonstrated that postannealing in the proper electric field can increase the dielectric constant and the tunability remarkably and destroy the symmetry of capacitance-voltage characteristics of the films. The increased out-of-plane lattice constant and the appearance of the hysteresis loops in the electric-annealed films indicated the formation of small polar regions with tetragonal structure, which are responsible for the increased dielectric constant and tunability. It was proposed that the segregation of Ti3+ ions caused by electric annealing could induce the formation of BaTiO3-like regions, which are ferroelectric at room temperature.
Dyer, Gregory Conrad; Shaner, Eric A.; Reno, John L.; Aizin, Gregory
2015-08-11
A tunable plasmonic crystal comprises several periods in a two-dimensional electron or hole gas plasmonic medium that is both extremely subwavelength (.about..lamda./100) and tunable through the application of voltages to metal electrodes. Tuning of the plasmonic crystal band edges can be realized in materials such as semiconductors and graphene to actively control the plasmonic crystal dispersion in the terahertz and infrared spectral regions. The tunable plasmonic crystal provides a useful degree of freedom for applications in slow light devices, voltage-tunable waveguides, filters, ultra-sensitive direct and heterodyne THz detectors, and THz oscillators.
NASA Astrophysics Data System (ADS)
Lin, Jia-De; Lin, Jyun-Wei; Lee, Chia-Rong
2018-02-01
Electrical tuning of photonic bandgap (PBG) of cholesteric liquid crystal (CLC) without deformation within the entire visible region at low voltages is not easy to achieve. This study demonstrates low-voltage-tunable PBG in full visible region with less deformation of the PBG based on smart materials of ferroelectric liquid crystal doped CLC (FLC-CLC) integrating with electrothermal film heaters. Experimental results show that the reflective color of the FLC-CLC can be low-voltage-tuned through entire visible region. The induced temperature change is induced by electrically heating the electrothermal film heaters at low voltages at near the smectic-CLC transition temperature. Coaxial electrospinning can be used to develop smart fibrous devices with FLC/CLC-core and polymer-shell which color is tunable in full visible region at low voltages.
Correlation between tunability and anisotropy in magnetoelectric voltage tunable inductor (VTI).
Yan, Yongke; Geng, Liwei D; Zhang, Lujie; Gao, Xiangyu; Gollapudi, Sreenivasulu; Song, Hyun-Cheol; Dong, Shuxiang; Sanghadasa, Mohan; Ngo, Khai; Wang, Yu U; Priya, Shashank
2017-11-22
Electric field modulation of magnetic properties via magnetoelectric coupling in composite materials is of fundamental and technological importance for realizing tunable energy efficient electronics. Here we provide foundational analysis on magnetoelectric voltage tunable inductor (VTI) that exhibits extremely large inductance tunability of up to 1150% under moderate electric fields. This field dependence of inductance arises from the change of permeability, which correlates with the stress dependence of magnetic anisotropy. Through combination of analytical models that were validated by experimental results, comprehensive understanding of various anisotropies on the tunability of VTI is provided. Results indicate that inclusion of magnetic materials with low magnetocrystalline anisotropy is one of the most effective ways to achieve high VTI tunability. This study opens pathway towards design of tunable circuit components that exhibit field-dependent electronic behavior.
Tunable features of magnetoelectric transformers.
Dong, Shuxiang; Zhai, Junyi; Priya, Shashank; Li, Jie-Fang; Viehland, Dwight
2009-06-01
We have found that magnetostrictive FeBSiC alloy ribbons laminated with piezoelectric Pb(Zr,Ti)O(3) fiber can act as a tunable transformer when driven under resonant conditions. These composites were also found to exhibit the strongest resonant magnetoelectric voltage coefficient of 750 V/cm-Oe. The tunable features were achieved by applying small dc magnetic biases of -5
A Microwave Tunable Bandpass Filter for Liquid Crystal Applications
NASA Astrophysics Data System (ADS)
Cao, Weiping; Jiang, Di; Liu, Yupeng; Yang, Yuanwang; Gan, Baichuan
2017-07-01
In this paper, a novel microwave continuously tunable band-pass filter, based on nematic liquid crystals (LCs), is proposed. It uses liquid crystal (LC) as the electro-optic material to mainly realize frequency shift at microwave band by changing the dielectric anisotropy, when applying the bias voltage. According to simulation results, it achieves 840 MHz offset. Comparing to the existing tunable filter, it has many advantages, such as continuously tunable, miniaturization, low processing costs, low tuning voltage, etc. Thus, it has shown great potentials in frequency domain and practical applications in modern communication.
Electrically tunable materials for microwave applications
NASA Astrophysics Data System (ADS)
Ahmed, Aftab; Goldthorpe, Irene A.; Khandani, Amir K.
2015-03-01
Microwave devices based on tunable materials are of vigorous current interest. Typical applications include phase shifters, antenna beam steering, filters, voltage controlled oscillators, matching networks, and tunable power splitters. The objective of this review is to assist in the material selection process for various applications in the microwave regime considering response time, required level of tunability, operating temperature, and loss tangent. The performance of a variety of material types are compared, including ferroelectric ceramics, polymers, and liquid crystals. Particular attention is given to ferroelectric materials as they are the most promising candidates when response time, dielectric loss, and tunability are important. However, polymers and liquid crystals are emerging as potential candidates for a number of new applications, offering mechanical flexibility, lower weight, and lower tuning voltages.
A tunable acoustic metamaterial with double-negativity driven by electromagnets
Chen, Zhe; Xue, Cheng; Fan, Li; Zhang, Shu-yi; Li, Xiao-juan; Zhang, Hui; Ding, Jin
2016-01-01
With the advance of the research on acoustic metamaterials, the limits of passive metamaterials have been observed, which prompts the studies concerning actively tunable metamaterials with adjustable characteristic frequency bands. In this work, we present a tunable acoustic metamaterial with double-negativity composed of periodical membranes and side holes, in which the double-negativity pass band can be controlled by an external direct-current voltage. The tension and stiffness of the periodically arranged membranes are actively controlled by electromagnets producing additional stresses, and thus, the transmission and phase velocity of the metamaterial can be adjusted by the driving voltage of the electromagnets. It is demonstrated that a tiny direct-current voltage of 6V can arise a shift of double-negativity pass band by 40% bandwidth, which exhibits that it is an easily controlled and highly tunable acoustic metamaterial, and furthermore, the metamaterial marginally causes electromagnetic interference to the surroundings. PMID:27443196
NASA Astrophysics Data System (ADS)
Honma, Hiroaki; Takahashi, Kazuhiro; Ishida, Makoto; Sawada, Kazuaki
2012-11-01
This paper reports on the construction of a nano-electro-mechanical system (NEMS) tunable color filter based on a subwavelength grating with high color uniformity and a low drive voltage. We recently proposed a ground-voltage-ground (GVG)-type tunable color filter with a parallel-plate actuator with three pairs of electrodes to decrease the crosstalk due to the electrostatic attractive force between each pair of actuators. Our finite element method (FEM) simulation results indicate that the drive voltage is decreased by 10 V, as compared to that of the previously reported GV type. The proposed structure was fabricated using a silicon-on-insulator (SOI) wafer. The color tuning capability of the device was demonstrated by applying a drive voltage of 6.7 V. The reflected light intensity was decreased by 34% at a wavelength of 680 nm. Color uniformity was also obtained in the filter area by reducing the variation of the displacement on the one-dimensional actuator arrays.
Electrically tunable materials for microwave applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Aftab, E-mail: aahmed@anl.gov; Goldthorpe, Irene A.; Khandani, Amir K.
2015-03-15
Microwave devices based on tunable materials are of vigorous current interest. Typical applications include phase shifters, antenna beam steering, filters, voltage controlled oscillators, matching networks, and tunable power splitters. The objective of this review is to assist in the material selection process for various applications in the microwave regime considering response time, required level of tunability, operating temperature, and loss tangent. The performance of a variety of material types are compared, including ferroelectric ceramics, polymers, and liquid crystals. Particular attention is given to ferroelectric materials as they are the most promising candidates when response time, dielectric loss, and tunability aremore » important. However, polymers and liquid crystals are emerging as potential candidates for a number of new applications, offering mechanical flexibility, lower weight, and lower tuning voltages.« less
Tunable liquid crystal photonic devices
NASA Astrophysics Data System (ADS)
Fan, Yun-Hsing
2005-07-01
Liquid crystal (LC)-based adaptive optics are important for information processing, optical interconnections, photonics, integrated optics, and optical communications due to their tunable optical properties. In this dissertation, we describe novel liquid crystal photonic devices. In Chap. 3, we demonstrate a novel electrically tunable-efficiency Fresnel lens which is devised for the first time using nanoscale PDLC. The tunable Fresnel lens is very desirable to eliminate the need of external spatial light modulator. The nanoscale LC devices are polarization independent and exhibit a fast response time. Because of the small droplet sizes, the operating voltage is higher than 100 Vrms. To lower the driving voltage, in Chap. 2 and Chap. 3, we have investigated tunable Fresnel lens using polymer-network liquid crystal (PNLC) and phase-separated composite film (PSCOF). The operating voltage is below 12 Vrms. The PNLC and PSCOF devices are polarization dependent. To overcome this shortcoming, stacking two cells with orthogonal alignment directions is a possibility. Using PNLC, we also demonstrated LC blazed grating. The diffraction efficiency of these devices is continuously controlled by the electric field. We also develop a system with continuously tunable focal length. A conventional mechanical zooming system is bulky and power hungry. In Chap. 4, we developed an electrically tunable-focus flat LC spherical lens and microlens array. A huge tunable range from 0.6 m to infinity is achieved by the applied voltage. In Chap. 5, we describe a LC microlens array whose focal length can be switched from positive to negative by the applied voltage. The fast response time feature of our LC microlens array will be very helpful in developing 3-D animated images. In Chap. 6, we demonstrate polymer network liquid crystals for switchable polarizers and optical shutters. The use of dual-frequency liquid crystal and special driving scheme leads to a sub-millisecond response time. In Chap. 7, for the first time, we demonstrate a fast-response and scattering-free homogeneously-aligned PNLC light modulator. The PNLC response time is ˜300x faster than that of a pure LC mixture. The PNLC cell also holds promise for mid and long infrared applications where response time is a critical issue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, De-Zheng; Wang, Wen-Chun; Zhang, Shuai
2013-05-13
Room temperature homogenous dielectric barrier discharge plasma with high instantaneous energy efficiency is acquired by using nanosecond pulse voltage with 20-200 ns tunable pulse width. Increasing the voltage pulse width can lead to the generation of regular and stable multiple current peaks in each discharge sequence. When the voltage pulse width is 200 ns, more than 5 organized current peaks can be observed under 26 kV peak voltage. Investigation also shows that the organized multiple current peaks only appear in homogenous discharge mode. When the discharge is filament mode, organized multiple current peaks are replaced by chaotic filament current peaks.
NASA Astrophysics Data System (ADS)
Hokmabadi, Mohammad P.; Tareki, Abubaker; Rivera, Elmer; Kung, Patrick; Lindquist, Robert G.; Kim, Seongsin M.
2017-01-01
In this letter, we report the unique design, simulation and experimental verification of an electrically tunable THz metamaterial perfect absorber consisting of complementary split ring resonator (CSRR) arrays integrated with liquid crystal as the subwavelength spacer in between. We observe a shift in resonance frequency of about 5.0 GHz at 0.567 THz with a 5 V bias voltage at 1KHz between the CSRR and the metal backplane, while the absorbance and full width at half maximum bandwidth are maintained at 90% and 0.025 THz, respectively. Simulated absorption spectrum by using a uniaxial model of LC matches perfectly the experiment data and demonstrates that the effective refractive index of LC changes between 1.5 and 1.7 by sweeping a 1 kHz bias voltage from 0 V to 5 V. By matching simulation and experiment for different bias voltages, we also estimate the angle of LC molecules versus the bias voltage. Additionally, we study the created THz fields inside the spacer to gain a better insight of the characteristics of tunable response of this device. This structure and associated study can support the design of liquid crystal based tunable terahertz detectors and sensors for various applications.
Electronically Tunable Differential Integrator: Linear Voltage Controlled Quadrature Oscillator.
Nandi, Rabindranath; Pattanayak, Sandhya; Venkateswaran, Palaniandavar; Das, Sagarika
2015-01-01
A new electronically tunable differential integrator (ETDI) and its extension to voltage controlled quadrature oscillator (VCQO) design with linear tuning law are proposed; the active building block is a composite current feedback amplifier with recent multiplication mode current conveyor (MMCC) element. Recently utilization of two different kinds of active devices to form a composite building block is being considered since it yields a superior functional element suitable for improved quality circuit design. The integrator time constant (τ) and the oscillation frequency (ω o ) are tunable by the control voltage (V) of the MMCC block. Analysis indicates negligible phase error (θ e ) for the integrator and low active ω o -sensitivity relative to the device parasitic capacitances. Satisfactory experimental verifications on electronic tunability of some wave shaping applications by the integrator and a double-integrator feedback loop (DIFL) based sinusoid oscillator with linear f o variation range of 60 KHz~1.8 MHz at low THD of 2.1% are verified by both simulation and hardware tests.
NASA Astrophysics Data System (ADS)
Tanoi, Satoru; Endoh, Tetsuo
2012-04-01
A wide-range tunable level-keeper using vertical metal-oxide-semiconductor field-effect transistors (MOSFETs) is proposed for current-reuse analog systems. The design keys for widening tunable range of the operation are a two-path feed-back and a vertical MOSFET with back-bias-effect free. The proposed circuit with the vertical MOSFETs shows the 1.23-V tunable-range of the input level with the 2.4-V internal-supply voltage (VDD) in the simulation. This tunable-range of the proposed circuit is 4.7 times wider than that of the conventional. The achieved current efficiency of the proposed level-keeper is 66% at the 1.2-V output with the 2.4-V VDD. This efficiency of the proposed circuit is twice higher than that of the traditional voltage down converter.
NASA Astrophysics Data System (ADS)
Subramanyam, Guru; Cole, M. W.; Sun, Nian X.; Kalkur, Thottam S.; Sbrockey, Nick M.; Tompa, Gary S.; Guo, Xiaomei; Chen, Chonglin; Alpay, S. P.; Rossetti, G. A.; Dayal, Kaushik; Chen, Long-Qing; Schlom, Darrell G.
2013-11-01
There has been significant progress on the fundamental science and technological applications of complex oxides and multiferroics. Among complex oxide thin films, barium strontium titanate (BST) has become the material of choice for room-temperature-based voltage-tunable dielectric thin films, due to its large dielectric tunability and low microwave loss at room temperature. BST thin film varactor technology based reconfigurable radio frequency (RF)/microwave components have been demonstrated with the potential to lower the size, weight, and power needs of a future generation of communication and radar systems. Low-power multiferroic devices have also been recently demonstrated. Strong magneto-electric coupling has also been demonstrated in different multiferroic heterostructures, which show giant voltage control of the ferromagnetic resonance frequency of more than two octaves. This manuscript reviews recent advances in the processing, and application development for the complex oxides and multiferroics, with the focus on voltage tunable RF/microwave components. The over-arching goal of this review is to provide a synopsis of the current state-of the-art of complex oxide and multiferroic thin film materials and devices, identify technical issues and technical challenges that need to be overcome for successful insertion of the technology for both military and commercial applications, and provide mitigation strategies to address these technical challenges.
Voltage color tunable OLED with (Sm,Eu)-β-diketonate complex blend
NASA Astrophysics Data System (ADS)
Reyes, R.; Cremona, M.; Teotonio, E. E. S.; Brito, H. F.; Malta, O. L.
2004-09-01
Light emission from organic electroluminescent diodes (OLEDs) in which mixed samarium and europium β-diketonate complexes, [Sm 0.7Eu 0.3(TTA) 3(TPPO) 2], was used as the emitting layer is described. The electroluminescence spectra exhibit narrow peaks arising from 4f-intraconfigurational transitions of the Sm 3+ and Eu 3+ ions and a broad emission band attributed to the electrophosphorescence of the TTA ligand. The intensity ratio of the peaks determined by the bias voltage applied to the OLED, together with the ligand electrophosphorescence, allows to obtain a voltage-tunable color light source.
Holographic Structuring of Elastomer Actuator: First True Monolithic Tunable Elastomer Optics.
Ryabchun, Alexander; Kollosche, Matthias; Wegener, Michael; Sakhno, Oksana
2016-12-01
Volume diffraction gratings (VDGs) are inscribed selectively by diffusive introduction of benzophenone and subsequent UV-holographic structuring into an electroactive dielectric elastomer actuator (DEA), to afford a continuous voltage-controlled grating shift of 17%. The internal stress coupling of DEA and optical domain allows for a new generation of true monolithic tunable elastomer optics with voltage controlled properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Cong; Yang, Shengxue; Xiong, Wenqi; Xia, Congxin; Cai, Hui; Chen, Bin; Wang, Xiaoting; Zhang, Xinzheng; Wei, Zhongming; Tongay, Sefaattin; Li, Jingbo; Liu, Qian
2016-10-12
Vertically stacked van der Waals (vdW) heterojunctions of two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted a great deal of attention due to their fascinating properties. In this work, we report two important gate-tunable phenomena in new artificial vdW p-n heterojunctions created by vertically stacking p-type multilayer ReSe 2 and n-type multilayer WS 2 : (1) well-defined strong gate-tunable diode-like current rectification across the p-n interface is observed, and the tunability of the electronic processes is attributed to the tunneling-assisted interlayer recombination induced by majority carriers across the vdW interface; (2) the distinct ambipolar behavior under gate voltage modulation both at forward and reverse bias voltages is found in the vdW ReSe 2 /WS 2 heterojunction transistors and a corresponding transport model is proposed for the tunable polarity behaviors. The findings may provide some new opportunities for building nanoscale electronic and optoelectronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subramanyam, Guru, E-mail: gsubramanyam1@udayton.edu; Cole, M. W., E-mail: melanie.w.cole.civ@mail.mil; Sun, Nian X.
2013-11-21
There has been significant progress on the fundamental science and technological applications of complex oxides and multiferroics. Among complex oxide thin films, barium strontium titanate (BST) has become the material of choice for room-temperature-based voltage-tunable dielectric thin films, due to its large dielectric tunability and low microwave loss at room temperature. BST thin film varactor technology based reconfigurable radio frequency (RF)/microwave components have been demonstrated with the potential to lower the size, weight, and power needs of a future generation of communication and radar systems. Low-power multiferroic devices have also been recently demonstrated. Strong magneto-electric coupling has also been demonstratedmore » in different multiferroic heterostructures, which show giant voltage control of the ferromagnetic resonance frequency of more than two octaves. This manuscript reviews recent advances in the processing, and application development for the complex oxides and multiferroics, with the focus on voltage tunable RF/microwave components. The over-arching goal of this review is to provide a synopsis of the current state-of the-art of complex oxide and multiferroic thin film materials and devices, identify technical issues and technical challenges that need to be overcome for successful insertion of the technology for both military and commercial applications, and provide mitigation strategies to address these technical challenges.« less
High Quality Liquid Crystal Tunable Lenses and Optimization with Floating Electrodes
ERIC Educational Resources Information Center
Li, Liwei
2013-01-01
In addition to the display application, Liquid Crystals (LC) can be very useful in other applications such as beam steering, tunable lenses, etc. Electro-optical LC tunable lenses have been considered as an alternative to conventional glass lenses because of their ability to change their focal length with the application of a control voltage, as…
Design of multi-wavelength tunable filter based on Lithium Niobate
NASA Astrophysics Data System (ADS)
Zhang, Ailing; Yao, Yuan; Zhang, Yue; Song, Hongyun
2018-05-01
A multi-wavelength tunable filter is designed. It consists of multiple waveguides among multiple waveguide gratings. A pair of electrodes were placed on both sides of each waveguide. The tunable filter uses the electro-optic effect of Lithium Niobate to tune the phase caused by each waveguide. Consequently, the wavelength and wavelength spacing of the filter are tuned by changing external voltages added on the electrode pairs. The tunable property of the filter is analyzed by phase matching condition and transfer-matrix method. Numerical results show that not only multiple wavelengths with narrow bandwidth are tuned with nearly equal spacing by synchronously changing the voltages added on all electrode pairs, but also the number of wavelengths is determined by the number of phase shifts caused by electrode pairs. Furthermore, due to the electro-optic effect of Lithium Niobate, the tuning speed of the filter can reach the order of ns.
NASA Astrophysics Data System (ADS)
Liu, Shengqiang; Wu, Ruofan; Huang, Jiang; Yu, Junsheng
2013-09-01
A voltage-controlled color-tunable and high-efficiency organic light-emitting diode (OLED) by inserting 16-nm N,N'-dicarbazolyl-3,5-benzene (mCP) interlayer between two complementary emitting layers (EMLs) was fabricated. The OLED emitted multicolor ranging from blue (77.4 cd/A @ 6 V), white (70.4 cd/A @ 7 V), to yellow (33.7 cd/A @ 9 V) with voltage variation. An equivalent model was proposed to reveal the color-tunable and high-efficiency emission of OLEDs, resulting from the swing of exciton bilateral migration zone near mCP/blue-EML interface. Also, the model was verified with a theoretical arithmetic using single-EML OLEDs to disclose the crucial role of mCP exciton adjusting layer.
2004-05-12
Structural Engineering, La Jolla, CA 92093 14. ABSTRACT Tunable optical filters based on a Fabry - Perot element are a critical component in many...wavelength based fiber optic sensor systems. This report compares the performance of two fiber-pigtailed tunable optical filters, the fiber Fabry - Perot (FFP...both filters suggests that they can operate at frequencies up to 20 kHz and possibly as high as 100 kHz. 15. SUBJECT TERMS Tunable Fabry - Perot filters
Microwave dielectric properties of BNT-BT0.08 thin films prepared by sol-gel technique
NASA Astrophysics Data System (ADS)
Huitema, L.; Cernea, M.; Crunteanu, A.; Trupina, L.; Nedelcu, L.; Banciu, M. G.; Ghalem, A.; Rammal, M.; Madrangeas, V.; Passerieux, D.; Dutheil, P.; Dumas-Bouchiat, F.; Marchet, P.; Champeaux, C.
2016-04-01
We report for the first time the microwave characterization of 0.92(Bi0.5Na0.5)TiO3-0.08BaTiO3 (BNT-BT0.08) ferroelectric thin films fabricated by the sol-gel method and integrated in both planar and out-of-plane tunable capacitors for agile high-frequency applications and particularly on the WiFi frequency band from 2.4 GHz to 2.49 GHz. The permittivity and loss tangent of the realized BNT-BT0.08 layers have been first measured by a resonant cavity method working at 12.5 GHz. Then, we integrated the ferroelectric material in planar inter-digitated capacitors (IDC) and in out-of-plane metal-insulator-metal (MIM) devices and investigated their specific properties (dielectric tunability and losses) on the whole 100 MHz-15 GHz frequency domain. The 3D finite-elements electromagnetic simulations of the IDC capacitances are fitting very well with their measured responses and confirm the dielectric properties determined with the cavity method. While IDCs are not exhibiting an optimal tunability, the MIM capacitor devices with optimized Ir/MgO(100) bottom electrodes demonstrate a high dielectric tunability, of 30% at 2.45 GHz under applied voltages as low as 10 V, and it is reaching 50% under 20 V voltage bias at the same frequency. These high-frequency properties of the MIM devices integrating the BNT-BT0.08 films, combining a high tunability under low applied voltages indicate a wide integration potential for tunable devices in the microwave domain and particularly at 2.45 GHz, corresponding to the widely used industrial, scientific, and medical frequency band.
Semiconductor light source with electrically tunable emission wavelength
Belenky, Gregory [Port Jefferson, NY; Bruno, John D [Bowie, MD; Kisin, Mikhail V [Centereach, NY; Luryi, Serge [Setauket, NY; Shterengas, Leon [Centereach, NY; Suchalkin, Sergey [Centereach, NY; Tober, Richard L [Elkridge, MD
2011-01-25
A semiconductor light source comprises a substrate, lower and upper claddings, a waveguide region with imbedded active area, and electrical contacts to provide voltage necessary for the wavelength tuning. The active region includes single or several heterojunction periods sandwiched between charge accumulation layers. Each of the active region periods comprises higher and lower affinity semiconductor layers with type-II band alignment. The charge carrier accumulation in the charge accumulation layers results in electric field build-up and leads to the formation of generally triangular electron and hole potential wells in the higher and lower affinity layers. Nonequillibrium carriers can be created in the active region by means of electrical injection or optical pumping. The ground state energy in the triangular wells and the radiation wavelength can be tuned by changing the voltage drop across the active region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swarnkar, Abhishek; Marshall, Ashley R.; Sanehira, Erin M.
Here, we show nanoscale phase stabilization of CsPbI 3 quantum dots (QDs) to low temperatures that can be used as the active component of efficient optoelectronic devices. CsPbI 3 is an all-inorganic analog to the hybrid organic cation halide perovskites, but the cubic phase of bulk CsPbI3 (..alpha..-CsPbI 3) -- the variant with desirable band gap -- is only stable at high temperatures. We also describe the formation of ..alpha..-CsPbI 3 QD films that are phase-stable for months in ambient air. The films exhibit long-range electronic transport and were used to fabricate colloidal perovskite QD photovoltaic cells with an open-circuitmore » voltage of 1.23 volts and efficiency of 10.77%. Furthermore, these devices function as light-emitting diodes with low turn-on voltage and tunable emission.« less
NASA Astrophysics Data System (ADS)
Zhang, Y. A.; Lin, C. F.; Lin, J. P.; Zeng, X. Y.; Yan, Q.; Zhou, X. T.; Guo, T. L.
2018-04-01
Electric-field-driven liquid crystal (ELC) lens with tunable focal length and their depth of field has been extensively applied in 3D display and imaging systems. In this work, a dual-layer electrode-driven liquid crystal (DELC) lens with electrically tunable focal length and controllable focal plane is demonstrated. ITO-SiO2-AZO electrodes with the dual-layer staggered structure on the top substrate are used as driven electrodes within a LC cell, which permits the establishment of an alternative controllability. The focal length of the DELC lens can be adjusted from 1.41 cm to 0.29 cm when the operating voltage changes from 15 V to 40 V. Furthermore, the focal plane of the DELC lens can selectively move by changing the driving method of the applied voltage to the next driven electrodes. This work demonstrates that the DELC lens has potential applications in imaging systems because of electrically tunable focal length and controllable focal plane.
Dynamic and Tunable Threshold Voltage in Organic Electrochemical Transistors.
Doris, Sean E; Pierre, Adrien; Street, Robert A
2018-04-01
In recent years, organic electrochemical transistors (OECTs) have found applications in chemical and biological sensing and interfacing, neuromorphic computing, digital logic, and printed electronics. However, the incorporation of OECTs in practical electronic circuits is limited by the relative lack of control over their threshold voltage, which is important for controlling the power consumption and noise margin in complementary and unipolar circuits. Here, the threshold voltage of OECTs is precisely tuned over a range of more than 1 V by chemically controlling the electrochemical potential at the gate electrode. This threshold voltage tunability is exploited to prepare inverters and amplifiers with improved noise margin and gain, respectively. By coupling the gate electrode with an electrochemical oscillator, single-transistor oscillators based on OECTs with dynamic time-varying threshold voltages are prepared. This work highlights the importance of electrochemistry at the gate electrode in determining the electrical properties of OECTs, and opens a path toward the system-level design of low-power OECT-based electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zoom system without moving element by using two liquid crystal lenses with spherical electrode
NASA Astrophysics Data System (ADS)
Yang, Ren-Kai; Lin, Chia-Ping; Su, Guo-Dung J.
2017-08-01
A traditional zoom system is composed of several elements moving relatively toward other components to achieve zooming. Unlike tradition system, an electrically control zoom system with liquid crystal (LC) lenses is demonstrated in this paper. To achieve zooming, we apply two LC lenses whose optical power is controlled by voltage to replace two moving lenses in traditional zoom system. The mechanism of zoom system is to use two LC lenses to form a simple zoom system. We found that with such spherical electrodes, we could operate LC lens at voltage range from 31V to 53 V for 3X tunability in optical power. For each LC lens, we use concave spherical electrode which provide lower operating voltage and great tunability in optical power, respectively. For such operating voltage and compact size, this zoom system with zoom ratio approximate 3:1 could be applied to mobile phone, camera and other applications.
Han, Su-Ting; Zhou, Ye; Yang, Qing Dan; Zhou, Li; Huang, Long-Biao; Yan, Yan; Lee, Chun-Sing; Roy, Vellaisamy A L
2014-02-25
Tunable memory characteristics are used in multioperational mode circuits where memory cells with various functionalities are needed in one combined device. It is always a challenge to obtain control over threshold voltage for multimode operation. On this regard, we use a strategy of shifting the work function of reduced graphene oxide (rGO) in a controlled manner through doping gold chloride (AuCl3) and obtained a gradient increase of rGO work function. By inserting doped rGO as floating gate, a controlled threshold voltage (Vth) shift has been achieved in both p- and n-type low voltage flexible memory devices with large memory window (up to 4 times for p-type and 8 times for n-type memory devices) in comparison with pristine rGO floating gate memory devices. By proper energy band engineering, we demonstrated a flexible floating gate memory device with larger memory window and controlled threshold voltage shifts.
Mid-infrared tunable metamaterials
Brener, Igal; Miao, Xiaoyu; Shaner, Eric A.; Passmore, Brandon Scott
2017-07-11
A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.
Mid-infrared tunable metamaterials
Brener, Igal; Miao, Xiaoyu; Shaner, Eric A; Passmore, Brandon Scott; Jun, Young Chul
2015-04-28
A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.
Dual-Gated Active Metasurface at 1550 nm with Wide (>300°) Phase Tunability.
Kafaie Shirmanesh, Ghazaleh; Sokhoyan, Ruzan; Pala, Ragip A; Atwater, Harry A
2018-05-09
Active metasurfaces composed of electrically reconfigurable nanoscale subwavelength antenna arrays can enable real-time control of scattered light amplitude and phase. Achievement of widely tunable phase and amplitude in chip-based active metasurfaces operating at or near 1550 nm wavelength has considerable potential for active beam steering, dynamic hologram rendition, and realization of flat optics with reconfigurable focal lengths. Previously, electrically tunable conducting oxide-based reflectarray metasurfaces have demonstrated dynamic phase control of reflected light with a maximum phase shift of 184° ( Nano Lett. 2016 , 16 , 5319 ). Here, we introduce a dual-gated reflectarray metasurface architecture that enables much wider (>300°) phase tunability. We explore light-matter interactions with dual-gated metasurface elements that incorporate two independent voltage-controlled MOS field effect channels connected in series to form a single metasurface element that enables wider phase tunability. Using indium tin oxide (ITO) as the active metasurface material and a composite hafnia/alumina gate dielectric, we demonstrate a prototype dual-gated metasurface with a continuous phase shift from 0 to 303° and a relative reflectance modulation of 89% under applied voltage bias of 6.5 V.
Silicon-Germanium Voltage-Controlled Oscillator at 105 GHz
NASA Technical Reports Server (NTRS)
Wong, Alden; Larocca, Tim; Chang, M. Frank; Samoska, Lorene A.
2011-01-01
A group at UCLA, in collaboration with the Jet Propulsion Laboratory, has designed a voltage-controlled oscillator (VCO) created specifically for a compact, integrated, electronically tunable frequency generator useable for submillimeter- wave science instruments operating in extreme cold environments.
Tunable microlens arrays using polymer network liquid crystal
NASA Astrophysics Data System (ADS)
Ren, Hongwen; Fan, Yun-Hsing; Gauza, Sebastian; Wu, Shin-Tson
2004-02-01
A tunable-focus microlens array based on polymer network liquid crystal (PNLC) is demonstrated. The PNLC was prepared using an ultraviolet (UV) light exposure through a patterned photomask. The photocurable monomer in each of the UV exposed spot forms an inhomogeneous centro-symmetrical polymer network which acts as a lens when a homogeneous electric field is applied to the cell. The focal length of the microlens arrays is tunable with the applied voltage.
Swarnkar, Abhishek; Marshall, Ashley R.; Sanehira, Erin M.; ...
2016-10-07
Here, we show nanoscale phase stabilization of CsPbI 3 quantum dots (QDs) to low temperatures that can be used as the active component of efficient optoelectronic devices. CsPbI 3 is an all-inorganic analog to the hybrid organic cation halide perovskites, but the cubic phase of bulk CsPbI3 (..alpha..-CsPbI 3) -- the variant with desirable band gap -- is only stable at high temperatures. We also describe the formation of ..alpha..-CsPbI 3 QD films that are phase-stable for months in ambient air. The films exhibit long-range electronic transport and were used to fabricate colloidal perovskite QD photovoltaic cells with an open-circuitmore » voltage of 1.23 volts and efficiency of 10.77%. Furthermore, these devices function as light-emitting diodes with low turn-on voltage and tunable emission.« less
NASA Astrophysics Data System (ADS)
Shian, Samuel; Kjeer, Peter; Clarke, David R.
2018-03-01
When a voltage is applied to a percolative, mechanically compliant mat of carbon nanotubes (CNTs) on a smooth elastomer bilayer attached to an ITO coated glass substrate, the in-line optical transmittance decreases with increasing voltage. Two regimes of behavior have been identified based on optical scattering, bright field optical microscopy, and confocal optical microscopy. In the low field regime, the electric field produces a spatially inhomogeneous surface deformation of the elastomer that causes local variations in optical refraction and modulates the light transmittance. The spatial variation is associated with the distribution of the CNTs over the surface. At higher fields, above a threshold voltage, an array of pits in the surface form by a nucleation and growth mechanism and these also scatter light. The formation of pits, and creases, in the thickness of the elastomer, is due to a previously identified electro-mechanical surface instability. When the applied voltage is decreased from its maximum, the transmittance returns to its original value although there is a transmittance hysteresis and a complicated time response. When the applied voltage exceeds the threshold voltage, there can be remnant optical contrast associated with creasing of the elastomer and the recovery time appears to be dependent on local jamming of CNTs in areas where the pits formed. A potential application of this work as an electrically tunable privacy window or camouflaging devices is demonstrated.
Voltage tunable two-color superlattice infrared photodetectors
NASA Astrophysics Data System (ADS)
Majumdar, Amlan; Choi, Kwong-Kit; Reno, John L.; Tsui, Daniel C.
2004-11-01
We present the design and fabrication of voltage tunable two-color superlattice infrared photodetectors (SLIPs), where the detection wavelength switches from the long-wavelength infrared (LWIR) range to the mid-wavelength infrared (MWIR) range upon reversing the polarity of applied bias. The photoactive region of these detectors contains multiple periods of two distinct short-period SLs that are designed for MWIR and LWIR detection. The voltage tunable operation is achieved by using two types of thick blocking barriers between adjacent SLs - undoped barriers on one side for low energy electrons and heavily-doped layers on the other side for high energy electrons. We grew two SLIP structures by molecular beam epitaxy. The first one consists of two AlGaAs/GaAs SLs with the detection range switching from the 7-11 μm band to the 4-7 μm range on reversing the bias polarity. The background-limited temperature is 55 and 80 K for LWIR and MWIR detection, respectively. The second structure comprises of strained InGaAs/GaAs/AlGaAs SLs and AlGaAs/GaAs SLs. The detection range of this SLIP changes from the 8-12 μm band to the 3-5 μm band on switching the bias polarity. The background-limited temperature is 70 and 110 K for LWIR and MWIR detection, respectively. This SLIP is the first ever voltage tunable MWIR/LWIR detector with performance comparable to those of one-color quantum-well infrared detectors designed for the respective wavelength ranges. We also demonstrate that the corrugated light coupling scheme, which enables normal-incidence absorption, is suitable for the two-color SLIPs. Since these SLIPs are two-terminal devices, they can be used with the corrugated geometry for the production of low-cost large-area two-color focal plane arrays.
Silicon graphene waveguide tunable broadband microwave photonics phase shifter.
Capmany, José; Domenech, David; Muñoz, Pascual
2014-04-07
We propose the use of silicon graphene waveguides to implement a tunable broadband microwave photonics phase shifter based on integrated ring cavities. Numerical computation results show the feasibility for broadband operation over 40 GHz bandwidth and full 360° radiofrequency phase-shift with a modest voltage excursion of 0.12 volt.
Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells.
Yuan, Yongbo; Li, Tao; Wang, Qi; Xing, Jie; Gruverman, Alexei; Huang, Jinsong
2017-03-01
Organic-inorganic hybrid perovskites (OIHPs) have been demonstrated to be highly successful photovoltaic materials yielding very-high-efficiency solar cells. We report the room temperature observation of an anomalous photovoltaic (APV) effect in lateral structure OIHP devices manifested by the device's open-circuit voltage ( V OC ) that is much larger than the bandgap of OIHPs. The persistent V OC is proportional to the electrode spacing, resembling that of ferroelectric photovoltaic devices. However, the APV effect in OIHP devices is not caused by ferroelectricity. The APV effect can be explained by the formation of tunneling junctions randomly dispersed in the polycrystalline films, which allows the accumulation of photovoltage at a macroscopic level. The formation of internal tunneling junctions as a result of ion migration is visualized with Kelvin probe force microscopy scanning. This observation points out a new avenue for the formation of large and continuously tunable V OC without being limited by the materials' bandgap.
Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells
Yuan, Yongbo; Li, Tao; Wang, Qi; Xing, Jie; Gruverman, Alexei; Huang, Jinsong
2017-01-01
Organic-inorganic hybrid perovskites (OIHPs) have been demonstrated to be highly successful photovoltaic materials yielding very-high-efficiency solar cells. We report the room temperature observation of an anomalous photovoltaic (APV) effect in lateral structure OIHP devices manifested by the device’s open-circuit voltage (VOC) that is much larger than the bandgap of OIHPs. The persistent VOC is proportional to the electrode spacing, resembling that of ferroelectric photovoltaic devices. However, the APV effect in OIHP devices is not caused by ferroelectricity. The APV effect can be explained by the formation of tunneling junctions randomly dispersed in the polycrystalline films, which allows the accumulation of photovoltage at a macroscopic level. The formation of internal tunneling junctions as a result of ion migration is visualized with Kelvin probe force microscopy scanning. This observation points out a new avenue for the formation of large and continuously tunable VOC without being limited by the materials’ bandgap. PMID:28345043
Electrospinning of gelatin with tunable fiber morphology from round to flat/ribbon.
Topuz, Fuat; Uyar, Tamer
2017-11-01
The electrospinning of gelatin with tunable fiber morphology from round to flat/ribbon was shown, and the detailed studies were conducted to correlate the fiber morphology with electrospinning process parameters and gelatin concentration in electrospinning solution. Particularly, variations in the applied voltage and the concentration of gelatin led to the transition of fiber shape from round to flat/ribbon. The formation of flat-shaped fibers was attributed to rapid evaporation of the solvent (formic acid) from the fiber matrix with increasing the applied voltage and gelatin concentration. On the other hand, round fibers were due to the steady evaporation of formic acid throughout the cross-section of fibers. WAXS analysis revealed that the loss of triple-helical crystalline structure in gelatin after the electrospinning process. The gelatin fibers were cross-linked through treatment with toluene 2,4-diisocyanate (TDI) in a mixed solution of acetone and pyridine, and XPS confirmed the cross-linking of the fibers over an increased carbon content on the elemental composition of the fiber surface due to the incorporated TDI moieties. Overall, this study focuses on morphological tuning of gelatin electrospun fibers towards a flat/ribbon-like structure by variation of electrospinning parameters and polymer concentration, and thus, the proposed concept can be adapted towards flattened/ribbon-like fibers of other protein-based systems by electrospinning. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Anyuan; Liu, Erfu; Long, Mingsheng
2016-05-30
We studied electrical transport properties including gate-tunable rectification inversion and polarity inversion, in atomically thin graphene/WSe{sub 2} heterojunctions. Such engrossing characteristics are attributed to the gate tunable mismatch of Fermi levels of graphene and WSe{sub 2}. Also, such atomically thin heterostructure shows excellent performances on photodetection. The responsivity of 66.2 mA W{sup −1} (without bias voltage) and 350 A W{sup −1} (with 1 V bias voltage) can be reached. What is more, the devices show great external quantum efficiency of 800%, high detectivity of 10{sup 13} cm Hz{sup 1/2}/W, and fast response time of 30 μs. Our study reveals that vertical stacking of 2D materials has great potentialmore » for multifunctional electronic and optoelectronic device applications in the future.« less
Moghaddam, Mohammadreza Salehi; Latifi, H; Shahraki, Hamidreza; Cheri, Mohammad Sadegh
2015-04-01
Microlenses with tunable focal length have wide applications in optofluidic devices. This work presents a numerical and experimental investigation on a tunable electrowetting-based concave lens. Optical properties such as focal length of the lens and visibility of images were investigated numerically and experimentally. A finite element analysis and a ZEMAX simulation were used for determination of surface profile and focal length of the lens. The results show that the theoretical surface profile and focal length of the lens are in good agreement with the experimental ones. The lens has a wide tuning focal length equal to 6.5 (cm). Because the polydimethylsiloxane (PDMS) layer is wedge shaped (as both the dielectric and hydrophobic layers), lower applied voltage is needed. A commercial program was used to find the focal length of the lens from maximum visibility value by tuning the applied voltage.
Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2
NASA Astrophysics Data System (ADS)
Sangwan, Vinod K.; Jariwala, Deep; Kim, In Soo; Chen, Kan-Sheng; Marks, Tobin J.; Lauhon, Lincoln J.; Hersam, Mark C.
2015-05-01
Continued progress in high-speed computing depends on breakthroughs in both materials synthesis and device architectures. The performance of logic and memory can be enhanced significantly by introducing a memristor, a two-terminal device with internal resistance that depends on the history of the external bias voltage. State-of-the-art memristors, based on metal-insulator-metal (MIM) structures with insulating oxides, such as TiO2, are limited by a lack of control over the filament formation and external control of the switching voltage. Here, we report a class of memristors based on grain boundaries (GBs) in single-layer MoS2 devices. Specifically, the resistance of GBs emerging from contacts can be easily and repeatedly modulated, with switching ratios up to ˜103 and a dynamic negative differential resistance (NDR). Furthermore, the atomically thin nature of MoS2 enables tuning of the set voltage by a third gate terminal in a field-effect geometry, which provides new functionality that is not observed in other known memristive devices.
Wang, Tengxing; Jiang, Wei; Divan, Ralu; ...
2017-08-03
A Permalloy (Py) thin film enabled tunable 3-D solenoid inductor is designed and fabricated. The special configuration of magnetic core is discussed and by selectively patterning Py thin film, the proposed tunable inductor can work at frequency up to several GHz range. The inductance of the solenoid inductor can be electrically tuned by dc current and the tunability is above 10%. Utilizing the implemented Py enabled tunable solenoid inductor and Lead Zirconate Titanate (PZT) thin film enabled metal-insulator-metal (MIM) capacitor, a compact fully electrically tunable lumped elements phase shifter is achieved. The tunable phase shifter has both inductive and capacitivemore » tunability and the dual tunability significantly improves the tuning range and design flexibility. Moreover, the dual tunability is able to retain the equivalent characteristic impedance of the device in the process of the phase being tuned. Here, the phase of the device can be tuned by fully electrical methods and when dc current and dc voltage are provided, the length normalized phase tunability is up to 210°/cm« less
Thin-Film Ferroelectric Tunable Microwave Devices Being Developed
NASA Technical Reports Server (NTRS)
VanKeuls, Frederick W.
1999-01-01
Electronically tunable microwave components have become the subject of intense research efforts in recent years. Many new communications systems would greatly benefit from these components. For example, planned low Earth orbiting satellite networks have a need for electronically scanned antennas. Thin ferroelectric films are one of the major technologies competing to fill these applications. When a direct-current (dc) voltage is applied to ferroelectric film, the dielectric constant of the film can be decreased by nearly an order of magnitude, changing the high-frequency wavelength in the microwave device. Recent advances in film growth have demonstrated high-quality ferroelectric thin films. This technology may allow microwave devices that have very low power and are compact, lightweight, simple, robust, planar, voltage tunable, and affordable. The NASA Lewis Research Center has been designing, fabricating, and testing proof-of-concept tunable microwave devices. This work, which is being done in-house with funding from the Lewis Director's Discretionary Fund, is focusing on introducing better microwave designs to utilize these materials. We have demonstrated Ku- and K-band phase shifters, tunable local oscillators, tunable filters, and tunable diplexers. Many of our devices employ SrTiO3 as the ferroelectric. Although it is one of the more tunable and easily grown ferroelectrics, SrTiO3 must be used at cryogenic temperatures, usually below 100 K. At these temperatures, we frequently use high-temperature superconducting thin films of YBa2Cu3O7-8 to carry the microwave signals. However, much of our recent work has concentrated on inserting room-temperature ferroelectric thin films, such as BaxSr1- xTiO3 into these devices. The BaxSr1-xTiO3 films are used in conjuction with normal metal conductors, such as gold.
Kim, Wonjae; Riikonen, Juha; Li, Changfeng; Chen, Ya; Lipsanen, Harri
2013-10-04
Using single-layer CVD graphene, a complementary field effect transistor (FET) device is fabricated on the top of separated back-gates. The local back-gate control of the transistors, which operate with low bias at room temperature, enables highly tunable device characteristics due to separate control over electrostatic doping of the channels. Local back-gating allows control of the doping level independently of the supply voltage, which enables device operation with very low VDD. Controllable characteristics also allow the compensation of variation in the unintentional doping typically observed in CVD graphene. Moreover, both p-n and n-p configurations of FETs can be achieved by electrostatic doping using the local back-gate. Therefore, the device operation can also be switched from inverter to voltage controlled resistor, opening new possibilities in using graphene in logic circuitry.
A tunable microstrip SQUID amplifier for the Axion Dark Matter eXperiment (ADMX)
NASA Astrophysics Data System (ADS)
O'Kelley, Sean; Hansen, Jorn; Weingarten, Elan; Mueck, Michael; Hilton, Gene; Clarke, John
2014-03-01
We describe a microstrip SQUID (Superconducting QUantum Interference Device) amplifier (MSA) used as the photon detector in the Axion Dark Matter eXperiment (ADMX). Cooled to 100 mK or lower, an optimized MSA approaches the quantum limit of detection. The axion dark matter is detected via Primakoff conversion to a microwave photon in a high-Q (~ 105) tunable microwave cavity, currently cooled to about 1.6 K, in the presence of a 7-tesla magnetic field. The MSA consists of a square loop of thin Nb film, incorporating two Josephson tunnel junctions with resistive shunts to prevent hysteresis in the current-voltage characteristic. The microstrip is a square Nb coil deposited over an intervening insulating layer. Since the photon frequency is determined by the unknown axion mass, the cavity and amplifier must be tunable over a broad frequency range. Tunability is achieved by terminating the microstrip with a GaAs varactor diode with a voltage-controlled capacitance that enables us to vary the resonance from nearly 1/2 to 1/4 of a wavelength. With the SQUID current-biased in the voltage state, we demonstrate a gain of typically 20 dB over nearly one octave, 415 MHz to 800 MHz. Supported by DOE Grants DE-FG02-97ER41029, DE-FG02-96ER40956, DE-AC52-07NA27344, DE-AC03-76SF00098, NSF grants PHY-1067242 and PHY-1306729, and the Livermore LDRD program.
Tunable electronic lens using a gradient polymer network liquid crystal
NASA Astrophysics Data System (ADS)
Ren, Hongwen; Wu, Shin-Tson
2003-01-01
Tunable electronic lenses using gradient polymer network liquid crystal (PNLC) cells were demonstrated. By changing the photomask pattern, both positive and negative lenses were fabricated. The advantages of such a PNLC lens are low operation voltage, large aperture size, and simple electrode design. To overcome the polarization dependence, stacking two orthogonal homogeneous PNLC cells is considered.
Tunable rejection filters with ultra-wideband using zeroth shear mode plate wave resonators
NASA Astrophysics Data System (ADS)
Kadota, Michio; Sannomiya, Toshio; Tanaka, Shuji
2017-07-01
This paper reports wide band rejection filters and tunable rejection filters using ultra-wideband zeroth shear mode (SH0) plate wave resonators. The frequency range covers the digital TV band in Japan that runs from 470 to 710 MHz. This range has been chosen to meet the TV white space cognitive radio requirements of rejection filters. Wide rejection bands were obtained using several resonators with different frequencies. Tunable rejection filters were demonstrated using Si diodes connected to the band rejection filters. Wide tunable ranges as high as 31% were measured by applying a DC voltage to the Si diodes.
Tunable optical assembly with vibration dampening
NASA Technical Reports Server (NTRS)
Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)
2009-01-01
An optical assembly is formed by one or more piezoelectric fiber composite actuators having one or more optical fibers coupled thereto. The optical fiber(s) experiences strain when actuation voltage is applied to the actuator(s). Light passing through the optical fiber(s) is wavelength tuned by adjusting the actuation voltage.
Double Sided-Design of Electrodes Driving Tunable Dielectrophoretic Miniature Lens.
Almoallem, Yousuf; Jiang, Hongrui
2017-10-01
We demonstrate the design methodology, geometrical analysis, device fabrication, and testing of a double-sided design (DSD) of tunable-focus dielectrophoretic liquid miniature lenses. This design is intended to reduce the driving voltage for tuning the lens, utilizing a double-sided electrode design that enhances the electric field magnitude. Fabricated devices were tested and measurements on a goniometer showed changes of up to 14° in the contact angle when the dielectrophoretic force was applied under 25 V rms . Correspondingly, the back focal length of the liquid lens changed from 67.1 mm to 14.4 mm when the driving voltage was increased from zero to 25 V rms . The driving voltage was significantly lower than those previously reported with similar device dimensions using single-sided electrode designs. This design allows for a range of both positive and negative menisci dependent on the volume of the lens liquid initially dispensed.
Design, Fabrication and Testing of Tunable RF Meta-atoms
2012-06-14
Simple cantilever beam with actuation pad covered with a thin dielectric layer for short circuit protection...Cantilever actuation simulated with CoventorWare ® to determine the biasing voltage necessary to draw the cantilevers to the actuation pads ...Capacitive tunable meta-atom fabricated on quartz substrate. The meta-atom had to be cut at the metal trace leading to the cantilever actuation pads
Film-Evaporation MEMS Tunable Array for Picosat Propulsion and Thermal Control
NASA Technical Reports Server (NTRS)
Alexeenko, Alina; Cardiff, Eric; Martinez, Andres; Petro, Andrew
2015-01-01
The Film-Evaporation MEMS Tunable Array (FEMTA) concept for propulsion and thermal control of picosats exploits microscale surface tension effect in conjunction with temperature- dependent vapor pressure to realize compact, tunable and low-power thermal valving system. The FEMTA is intended to be a self-contained propulsion unit requiring only a low-voltage DC power source to operate. The microfabricated thermal valving and very-high-integration level enables fast high-capacity cooling and high-resolution, low-power micropropulsion for picosats that is superior to existing smallsat micropropulsion and thermal management alternatives.
Tunable blue organic light emitting diode based on aluminum calixarene supramolecular complex
NASA Astrophysics Data System (ADS)
Legnani, C.; Reyes, R.; Cremona, M.; Bagatin, I. A.; Toma, H. E.
2004-07-01
In this letter, the results of supramolecular organic light emitting diodes using a calix[4] arene complex thin film as emitter and electron transporting layer are presented. The devices were grown onto glass substrates coated with indium-tin-oxide layer and aluminum thick (150nm) cathode. By applying a dc voltage between the device electrodes in forward bias condition, a blue light emission in the active area of the device was observed. It was found that the electroluminescent emission peak can be tuned between 470 and 510nm changing the applied voltage bias from 4.3 to 5.4V. The observed tunable emission can be associated with an energy transfer from the calixarene compound.
Electrically tunable all-dielectric optical metasurfaces based on liquid crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komar, Andrei; Fang, Zheng; Bohn, Justus
2017-02-13
We demonstrate electrical tuning of the spectral response of a Mie-resonant dielectric metasurface consisting of silicon nanodisks embedded into liquid crystals. We use the reorientation of nematic liquid crystals in a moderate applied electric field to alter the anisotropic permittivity tensor around the metasurface. By switching a control voltage ‘on’ and ‘off’ we induce a large spectral shift of the metasurface resonances, resulting in an absolute transmission modulation up to 75%. To the best of our knowledge, this is the first experimental demonstration of voltage control of a dielectric metasurface, paving the way for new types of electrically tunable metadevices,more » including dynamic displays and holograms.« less
Tunable negative differential resistance in planar graphene superlattice resonant tunneling diode
NASA Astrophysics Data System (ADS)
Sattari-Esfahlan, S. M.; Fouladi-Oskuei, J.; Shojaei, S.
2017-04-01
Here, we study the negative differential resistance (NDR) of Dirac electrons in biased planar graphene superlattice (PGSL) and investigate the transport characteristics by adopted transfer matrix method within Landauer-Buttiker formalism. Our model device is based on one-dimensional Kronig-Penney type electrostatic potential in monolayer graphene deposited on a substrate, where the bias voltage is applied by two electrodes in the left and right. At Low bias voltages, we found that NDR appears due to breaking of minibands to Wannier-Stark ladders (WSLs). At the critical bias voltage, delocalization appeared by WS states leads to tunneling peak current in current-voltage (I-V) characteristics. With increasing bias voltage, crossing of rungs from various WSL results in multi-peak NDR. The results demonstrate that the structure parameters like barrier/well thickness and barrier height have remarkable effect on I-V characteristics of PGSL. In addition, Dirac gap enhances peak to valley (PVR) value due to suppressing Klein tunneling. Our results show that the tunable PVR in PGSL resonant tunneling diode can be achievable by structure parameters engineering. NDR at ultra-low bias voltages, such as 100 mV, with giant PVR of 20 is obtained. In our device, the multiple same NDR peaks with ultra-low bias voltage provide promising prospect for multi-valued memories and the low power nanoelectronic tunneling devices.
NASA Astrophysics Data System (ADS)
Jauregui, Luis A.; Kayyalha, Morteza; Kazakov, Aleksandr; Miotkowski, Ireneusz; Rokhinson, Leonid P.; Chen, Yong P.
2018-02-01
We report on the observation of gate-tunable proximity-induced superconductivity and multiple Andreev reflections (MARs) in a bulk-insulating BiSbTeSe2 topological insulator nanoribbon (TINR) Josephson junction with superconducting Nb contacts. We observe a gate-tunable critical current (IC) for gate voltages (Vg) above the charge neutrality point (VCNP), with IC as large as 430 nA. We also observe MAR peaks in the differential conductance (dI/dV) versus DC voltage (Vdc) across the junction corresponding to sub-harmonic peaks (at Vdc = Vn = 2ΔNb/en, where ΔNb is the superconducting gap of the Nb contacts and n is the sub-harmonic order). The sub-harmonic order, n, exhibits a Vg-dependence and reaches n = 13 for Vg = 40 V, indicating the high transparency of the Nb contacts to TINR. Our observations pave the way toward exploring the possibilities of using TINR in topologically protected devices that may host exotic physics such as Majorana fermions.
New highly linear tunable transconductor circuits with low number of MOS transistors
NASA Astrophysics Data System (ADS)
Yucel, Firat; Yuce, Erkan
2016-08-01
In this article, two new highly linear tunable transconductor circuits are proposed. The transconductors employ only six MOS transistors operated in saturation region. The second transconductor is derived from the first one with a slight modification. Transconductance of both transconductors can be tuned by a control voltage. Both of the transconductors do not need any additional bias voltages and currents. Another important feature of the transconductors is their high input and output impedances for cascadability with other circuits. Besides, total harmonic distortions are less than 1.5% for both transconductors. A positive lossless grounded inductor simulator with a grounded capacitor is given as an application example of the transconductors. Simulation and experimental test results are included to show effectiveness of the proposed circuits.
Wang, Xiaoxi; Lentine, Anthony; DeRose, Christopher; Starbuck, Andrew L; Trotter, Douglas; Pomerene, Andrew; Mookherjea, Shayan
2016-10-03
Tunable silicon microring resonators with small, integrated micro-heaters which exhibit a junction field effect were made using a conventional silicon-on-insulator (SOI) photonic foundry fabrication process. The design of the resistive tuning section in the microrings included a "pinched" p-n junction, which limited the current at higher voltages and inhibited damage even when driven by a pre-emphasized voltage waveform. Dual-ring filters were studied for both large (>4.9 THz) and small (850 GHz) free-spectral ranges. Thermal red-shifting was demonstrated with microsecond-scale time constants, e.g., a dual-ring filter was tuned over 25 nm in 0.6 μs 10%-90% transition time, and with efficiency of 3.2 μW/GHz.
NASA Astrophysics Data System (ADS)
Cortese, Simone; Khiat, Ali; Carta, Daniela; Light, Mark E.; Prodromakis, Themistoklis
2016-01-01
Resistive random access memory (ReRAM) crossbar arrays have become one of the most promising candidates for next-generation non volatile memories. To become a mature technology, the sneak path current issue must be solved without compromising all the advantages that crossbars offer in terms of electrical performances and fabrication complexity. Here, we present a highly integrable access device based on nickel and sub-stoichiometric amorphous titanium dioxide (TiO2-x), in a metal insulator metal crossbar structure. The high voltage margin of 3 V, amongst the highest reported for monolayer selector devices, and the good current density of 104 A/cm2 make it suitable to sustain ReRAM read and write operations, effectively tackling sneak currents in crossbars without compromising fabrication complexity in a 1 Selector 1 Resistor (1S1R) architecture. Furthermore, the voltage margin is found to be tunable by an annealing step without affecting the device's characteristics.
Smart lens: tunable liquid lens for laser tracking
NASA Astrophysics Data System (ADS)
Lin, Fan-Yi; Chu, Li-Yu; Juan, Yu-Shan; Pan, Sih-Ting; Fan, Shih-Kang
2007-05-01
A tracking system utilizing tunable liquid lens is proposed and demonstrated. Adapting the concept of EWOD (electrowetting-on-dielectric), the curvature of a droplet on a dielectric film can be controlled by varying the applied voltage. When utilizing the droplet as an optical lens, the focal length of this adaptive liquid lens can be adjusted as desired. Moreover, the light that passes through it can therefore be focused to different positions in space. In this paper, the tuning range of the curvature and focal length of the tunable liquid lens is investigated. Droplet transformation is observed and analyzed under a CCD camera. A tracking system combining the tunable liquid lens with a laser detection system is also proposed. With a feedback circuit that maximizing the returned signal by controlling the tunable lens, the laser beam can keep tracked on a distant reflected target while it is moving.
NASA Astrophysics Data System (ADS)
Chen, Yang
2018-03-01
A novel wideband photonic microwave phase shifter with 360-degree phase tunable range is proposed based on a single dual-polarization quadrature phase shift-keying (DP-QPSK) modulator. The two dual-parallel Mach-Zehnder modulators (DP-MZMs) in the DP-QPSK modulator are properly biased to serve as a carrier-suppressed single-sideband (CS-SSB) modulator and an optical phase shifter (OPS), respectively. The microwave signal is applied to the CS-SSB modulator, while a control direct-current (DC) voltage is applied to the OPS. The first-order optical sideband generated from the CS-SSB modulator and the phase tunable optical carrier from the OPS are combined and then detected in a photodetector, where a microwave signal is generated with its phase controlled by the DC voltage applied to the OPS. The proposed technique is theoretically analyzed and experimentally demonstrated. Microwave signals with a carrier frequency from 10 to 23 GHz are continuously phase shifted over 360-degree phase range. The proposed technique features very compact configuration, easy phase tuning and wide operation bandwidth.
Shuttle-promoted nano-mechanical current switch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Taegeun, E-mail: tsong@ictp.it; Kiselev, Mikhail N.; Gorelik, Leonid Y.
2015-09-21
We investigate electron shuttling in three-terminal nanoelectromechanical device built on a movable metallic rod oscillating between two drains. The device shows a double-well shaped electromechanical potential tunable by a source-drain bias voltage. Four stationary regimes controllable by the bias are found for this device: (i) single stable fixed point, (ii) two stable fixed points, (iii) two limit cycles, and (iv) single limit cycle. In the presence of perpendicular magnetic field, the Lorentz force makes possible switching from one electromechanical state to another. The mechanism of tunable transitions between various stable regimes based on the interplay between voltage controlled electromechanical instabilitymore » and magnetically controlled switching is suggested. The switching phenomenon is implemented for achieving both a reliable active current switch and sensoring of small variations of magnetic field.« less
Compact near-IR and mid-IR cavity ring down spectroscopy device
NASA Technical Reports Server (NTRS)
Miller, J. Houston (Inventor)
2011-01-01
This invention relates to a compact cavity ring down spectrometer for detection and measurement of trace species in a sample gas using a tunable solid-state continuous-wave mid-infrared PPLN OPO laser or a tunable low-power solid-state continuous wave near-infrared diode laser with an algorithm for reducing the periodic noise in the voltage decay signal which subjects the data to cluster analysis or by averaging of the interquartile range of the data.
Wang, Xiaoxi; Lentine, Anthony; DeRose, Christopher; ...
2016-09-26
Tunable silicon microring resonators with small, integrated micro-heaters which exhibit a junction field effect were made using a conventional silicon-on-insulator (SOI) photonic foundry fabrication process. The design of the resistive tuning section in the microrings included a “pinched” p-n junction, which limited the current at higher voltages and inhibited damage even when driven by a pre-emphasized voltage waveform. Dual-ring filters were studied for both large (>4.9 THz) and small (850 GHz) free-spectral ranges. In conclusion, thermal red-shifting was demonstrated with microsecond-scale time constants, e.g., a dual-ring filter was tuned over 25 nm in 0.6 μs 10%–90% transition time, and withmore » efficiency of 3.2 μW/GHz.« less
Nonlinear tuning techniques of plasmonic nano-filters
NASA Astrophysics Data System (ADS)
Kotb, Rehab; Ismail, Yehea; Swillam, Mohamed A.
2015-02-01
In this paper, a fitting model to the propagation constant and the losses of Metal-Insulator-Metal (MIM) plasmonic waveguide is proposed. Using this model, the modal characteristics of MIM plasmonic waveguide can be solved directly without solving Maxwell's equations from scratch. As a consequence, the simulation time and the computational cost that are needed to predict the response of different plasmonic structures can be reduced significantly. This fitting model is used to develop a closed form model that describes the behavior of a plasmonic nano-filter. Easy and accurate mechanisms to tune the filter are investigated and analyzed. The filter tunability is based on using a nonlinear dielectric material with Pockels or Kerr effect. The tunability is achieved by applying an external voltage or through controlling the input light intensity. The proposed nano-filter supports both red and blue shift in the resonance response depending on the type of the used non-linear material. A new approach to control the input light intensity by applying an external voltage to a previous stage is investigated. Therefore, the filter tunability to a stage that has Kerr material can be achieved by applying voltage to a previous stage that has Pockels material. Using this method, the Kerr effect can be achieved electrically instead of varying the intensity of the input source. This technique enhances the ability of the device integration for on-chip applications. Tuning the resonance wavelength with high accuracy, minimum insertion loss and high quality factor is obtained using these approaches.
Zipping dielectric elastomer actuators: characterization, design and modeling
NASA Astrophysics Data System (ADS)
Maffli, L.; Rosset, S.; Shea, H. R.
2013-10-01
We report on miniature dielectric elastomer actuators (DEAs) operating in zipping mode with an analytical model that predicts their behavior. Electrostatic zipping is a well-known mechanism in silicon MEMS to obtain large deformations and forces at lower voltages than for parallel plate electrostatic actuation. We extend this concept to DEAs, which allows us to obtain much larger out-of-plane displacements compared to silicon thanks to the softness of the elastomer membrane. We study experimentally the effect of sidewall angles and elastomer prestretch on 2.3 mm diameter actuators with PDMS membranes. With 15° and 22.5° sidewall angles, the devices zip in a bistable manner down 300 μm to the bottom of the chambers. The highly tunable bistable behavior is controllable by both chamber geometry and membrane parameters. Other specific characteristics of zipping DEAs include well-controlled deflected shape, tunable displacement versus voltage characteristics to virtually any shape, including multi-stable modes, sealing of embedded holes or channels for valving action and the reduction of the operating voltage. These properties make zipping DEAs an excellent candidate for applications such as integrated microfluidics actuators or Braille displays.
NASA Astrophysics Data System (ADS)
Shchagin, A. V.; Shul'ga, N. F.; Trofymenko, S. V.; Nazhmudinov, R. M.; Kubankin, A. S.
2016-11-01
The possibility of measurement of electrons ionization loss in Si layer of smoothly tunable thickness is shown in the proof-of-principle experiment. The Si surface-barrier detector with the depleted layer thickness controlled by the value of high voltage power supply has been used. Ionization loss spectra for electrons emitted by radioactive source 207Bi are presented and discussed. Experimental results for the most probable ionization loss in the Landau spectral peak are compared with theoretical calculations. The possibility of research of evolution of electromagnetic field of ultra-relativistic particles traversing media interface with the use of detectors with smoothly tunable thickness is proposed.
Wu, Chong-Yin; Zou, Yi-Hong; Timofeev, Ivan; Lin, Yu-Ting; Zyryanov, Victor Ya; Hsu, Jy-Shan; Lee, Wei
2011-04-11
We investigated the optical properties of a one-dimensional photonic crystal infiltrated with a bistable chiral tilted homeotropic nematic liquid crystal as the central defect layer. By modulating the nematic director orientation with applied voltage, the electrical tunability of the defect modes was observed in the transmission spectrum. The composite not only is a general tunable device but also involves the green concept in that it can operate in two stable states at 0 V. Under the parallel-polarizer scheme, the spectral characteristics suggest a potential application for this device as an energy-efficient multichannel optical switch. © 2011 Optical Society of America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Tengxing; Peng, Yujia; Jiang, Wei
Tunable radio frequency (RF) components are pivotal elements in frequency-agile and multifunctional systems. However, there is a technical barrier to achieve miniaturized fully electrically tunable RF components. This paper provides and demonstrates the efficacy of a first unique design methodology in developing fully electrically tunable RF components by integrating ferromagnetic (e.g., Permalloy) and ferroelectric (e.g., Lead Zirconate Titanate: PZT) thin films patterns. Permalloy thin film has been patterned in nanometer scale to improve its ferromagnetic resonance frequency (FMR) for RF applications. Tunable inductors are developed with the utilization of different thickness of Permalloy thin film, which show over 50% incrementmore » in inductance and over 4% in tunability with DC current. More tunability can be achieved with multiple layers of Permalloy thin film and optimized thickness. A fully electrically tunable slow wave RF transmission line with simultaneously variable inductance and capacitance density has been implemented and thoroughly investigated for the first time. Measured results show that a fixed phase shift of 90° can be achieved from 1.5 GHz to 1.85 GHz continuously by applying external DC current from 0 to 200 mA and external DC voltage from 0 to 15 Volts, respectively.« less
Wang, Tengxing; Peng, Yujia; Jiang, Wei; ...
2016-10-31
Tunable radio frequency (RF) components are pivotal elements in frequency-agile and multifunctional systems. However, there is a technical barrier to achieve miniaturized fully electrically tunable RF components. This paper provides and demonstrates the efficacy of a first unique design methodology in developing fully electrically tunable RF components by integrating ferromagnetic (e.g., Permalloy) and ferroelectric (e.g., Lead Zirconate Titanate: PZT) thin films patterns. Permalloy thin film has been patterned in nanometer scale to improve its ferromagnetic resonance frequency (FMR) for RF applications. Tunable inductors are developed with the utilization of different thickness of Permalloy thin film, which show over 50% incrementmore » in inductance and over 4% in tunability with DC current. More tunability can be achieved with multiple layers of Permalloy thin film and optimized thickness. A fully electrically tunable slow wave RF transmission line with simultaneously variable inductance and capacitance density has been implemented and thoroughly investigated for the first time. Measured results show that a fixed phase shift of 90° can be achieved from 1.5 GHz to 1.85 GHz continuously by applying external DC current from 0 to 200 mA and external DC voltage from 0 to 15 Volts, respectively.« less
Voltage switching of a VO{sub 2} memory metasurface using ionic gel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldflam, M. D.; Liu, M. K.; Chapler, B. C.
2014-07-28
We demonstrate an electrolyte-based voltage tunable vanadium dioxide (VO{sub 2}) memory metasurface. Large spatial scale, low voltage, non-volatile switching of terahertz (THz) metasurface resonances is achieved through voltage application using an ionic gel to drive the insulator-to-metal transition in an underlying VO{sub 2} layer. Positive and negative voltage application can selectively tune the metasurface resonance into the “off” or “on” state by pushing the VO{sub 2} into a more conductive or insulating regime respectively. Compared to graphene based control devices, the relatively long saturation time of resonance modification in VO{sub 2} based devices suggests that this voltage-induced switching originates primarilymore » from electrochemical effects related to oxygen migration across the electrolyte–VO{sub 2} interface.« less
Widely-duration-tunable nanosecond pulse Nd:YVO4 laser based on double Pockels cells
NASA Astrophysics Data System (ADS)
He, Li-Jiao; Liu, Ke; Bo, Yong; Wang, Xiao-Jun; Yang, Jing; Liu, Zhao; Zong, Qing-Shuang; Peng, Qin-Jun; Cui, Da-Fu; Xu, Zu-Yan
2018-05-01
The development of duration-tunable pulse lasers with constant output power is important for scientific research and materials processing. We present a widely-duration-tunable nanosecond (ns) pulse Nd:YVO4 laser based on double Pockels cells (PCs), i.e. inserting an extra PC into a conventional electro-optic Q-switched cavity dumped laser resonator. Under the absorbed pump power of 24.9 W, the pulse duration is adjustable from 31.9 ns to 5.9 ns by changing the amplitude of the high voltage on the inserted PC from 1100 V to 4400 V at the pulse repetition rate of 10 kHz. The corresponding average output power is almost entirely maintained in the range of 3.5–4.1 W. This represents more than three times increase in pulse duration tunable regime and average power compared to previously reported results for duration-tunable ns lasers. The laser beam quality factor was measured to be M 2 < 1.18.
NASA Astrophysics Data System (ADS)
Xie, Ze Tao; Ni, Feng Chao; Ma, Qi Chang; Tao, Jin; Li, Jian; Meng, Hongyun; Huang, Xu Guang
2018-07-01
Graphene metasurface has attracted a lot of attentions due to the unique tunability for exotic electromagnetic properties. In this work, we propose and numerically investigate a tunable metasurface with two non-coplanar and inter-perpendicular graphene nanoribbon arrays. The variation of transmission at different substrate thickness and the coupled mode are analyzed. It is shown that the Rabi-like splitting can be achieved by the coupling between localized and delocalized graphene surface plasmon polaritons. Tunable coupling strength and positions with different gate-voltages have been discussed. The effect of relaxation time and oblique incidences to resonant responses are also investigated. Additionally, we find an optical analogue of a spring, where the spectral dip vibrates around its equilibrium position at a certain wavelength. Our study suggests that the proposed structure is potentially attractive for realization of tunable double-channel filter, optical switch, and variable optical attenuator based on the graphene metasurface.
Broadband Electric-Field Sensor Array Technology
2012-08-05
output voltage modulation on the output RF transmission line (impedance Z0 = 50 Ω) via a transimpedance amplifier connected to the photodiode. The...voltage amplitude is where G is the conversion gain of the photodiode and amplifier . The RF power detected by an RF receiver with a matched impedance...wave (CW) tunable near-infrared laser amplified by an erbium-doped fiber amplifier (EDFA) is guided by single-mode optical fiber and coupled into
Koo, Ja Hoon; Jeong, Seongjin; Shim, Hyung Joon; Son, Donghee; Kim, Jaemin; Kim, Dong Chan; Choi, Suji; Hong, Jong-In; Kim, Dae-Hyeong
2017-10-24
With the rapid advances in wearable electronics, the research on carbon-based and/or organic materials and devices has become increasingly important, owing to their advantages in terms of cost, weight, and mechanical deformability. Here, we report an effective material and device design for an integrative wearable cardiac monitor based on carbon nanotube (CNT) electronics and voltage-dependent color-tunable organic light-emitting diodes (CTOLEDs). A p-MOS inverter based on four CNT transistors allows high amplification and thereby successful acquisition of the electrocardiogram (ECG) signals. In the CTOLEDs, an ultrathin exciton block layer of bis[2-(diphenylphosphino)phenyl]ether oxide is used to manipulate the balance of charges between two adjacent emission layers, bis[2-(4,6-difluorophenyl)pyridinato-C 2 ,N](picolinato)iridium(III) and bis(2-phenylquinolyl-N,C(2'))iridium(acetylacetonate), which thereby produces different colors with respect to applied voltages. The ultrathin nature of the fabricated devices supports extreme wearability and conformal integration of the sensor on human skin. The wearable CTOLEDs integrated with CNT electronics are used to display human ECG changes in real-time using tunable colors. These materials and device strategies provide opportunities for next generation wearable health indicators.
Ding, Tingting; Zheng, Yuanlin; Chen, Xianfeng
2018-04-30
Configurable narrow bandwidth filters are indispensable components in optical communication networks. Here, we present an easily-integrated compact tunable filtering based on polarization-coupling process in a thin periodically poled lithium niobate (PPLN) in a reflective geometry via the transverse electro-optic (EO) effect. The structure, composed of an in-line polarizer and a thinned PPLN chip, forms a phase-shift Solc-type filter with similar mechanism to defected Bragg gratings. The filtering effect can be dynamically switched on and off by a transverse electric filed. Analogy of electromagnetically induced transparency (EIT) transmission spectrum and electrically controllable group delay is experimentally observed. The mechanism features tunable center wavelength in a wide range with respect to temperature and tunable optical delay to the applied voltage, which may offer another way for optical tunable filters or delay lines.
Kim, Jae-Keun; Cho, Kyungjune; Kim, Tae-Young; Pak, Jinsu; Jang, Jingon; Song, Younggul; Kim, Youngrok; Choi, Barbara Yuri; Chung, Seungjun; Hong, Woong-Ki; Lee, Takhee
2016-01-01
We investigated the trap-mediated electronic transport properties of pentacene/molybdenum disulphide (MoS2) p-n heterojunction devices. We observed that the hybrid p-n heterojunctions were gate-tunable and were strongly affected by trap-assisted tunnelling through the van der Waals gap at the heterojunction interfaces between MoS2 and pentacene. The pentacene/MoS2 p-n heterojunction diodes had gate-tunable high ideality factor, which resulted from trap-mediated conduction nature of devices. From the temperature-variable current-voltage measurement, a space-charge-limited conduction and a variable range hopping conduction at a low temperature were suggested as the gate-tunable charge transport characteristics of these hybrid p-n heterojunctions. Our study provides a better understanding of the trap-mediated electronic transport properties in organic/2-dimensional material hybrid heterojunction devices. PMID:27829663
NASA Astrophysics Data System (ADS)
Shu, Chang; Chen, Qing-Guo; Mei, Jin-Shuo; Yin, Jing-Hua
2018-03-01
In this paper, we numerically demonstrated a dynamically tunable implementation of electromagnetically induced transparency (EIT) response with two coupling graphene-nanostrips in terahertz region. Compared to the metal-based structures or separated graphene structures, the Fermi energies of proposed two coupling graphene-nanostrips can be independently tuned by changing bias voltage between the metallic pads and substrate, the EIT window which appears from the near-field coupling between two resonators can be dynamically tuned without reoptimizing and refabricating the structures. As a result, the EIT window has a significant tunable capacity which can realize a higher frequency modulation depth and control the amplitude of transmission peak at a fixed frequency; moreover, the group delay of transmission peak at a fixed frequency with the amplitude of over 0.95 could be dynamically tuned. These results would exhibit potential applications in modulators and tunable slow light devices.
NASA Astrophysics Data System (ADS)
Kim, Jae-Keun; Cho, Kyungjune; Kim, Tae-Young; Pak, Jinsu; Jang, Jingon; Song, Younggul; Kim, Youngrok; Choi, Barbara Yuri; Chung, Seungjun; Hong, Woong-Ki; Lee, Takhee
2016-11-01
We investigated the trap-mediated electronic transport properties of pentacene/molybdenum disulphide (MoS2) p-n heterojunction devices. We observed that the hybrid p-n heterojunctions were gate-tunable and were strongly affected by trap-assisted tunnelling through the van der Waals gap at the heterojunction interfaces between MoS2 and pentacene. The pentacene/MoS2 p-n heterojunction diodes had gate-tunable high ideality factor, which resulted from trap-mediated conduction nature of devices. From the temperature-variable current-voltage measurement, a space-charge-limited conduction and a variable range hopping conduction at a low temperature were suggested as the gate-tunable charge transport characteristics of these hybrid p-n heterojunctions. Our study provides a better understanding of the trap-mediated electronic transport properties in organic/2-dimensional material hybrid heterojunction devices.
Kim, Jae-Keun; Cho, Kyungjune; Kim, Tae-Young; Pak, Jinsu; Jang, Jingon; Song, Younggul; Kim, Youngrok; Choi, Barbara Yuri; Chung, Seungjun; Hong, Woong-Ki; Lee, Takhee
2016-11-10
We investigated the trap-mediated electronic transport properties of pentacene/molybdenum disulphide (MoS 2 ) p-n heterojunction devices. We observed that the hybrid p-n heterojunctions were gate-tunable and were strongly affected by trap-assisted tunnelling through the van der Waals gap at the heterojunction interfaces between MoS 2 and pentacene. The pentacene/MoS 2 p-n heterojunction diodes had gate-tunable high ideality factor, which resulted from trap-mediated conduction nature of devices. From the temperature-variable current-voltage measurement, a space-charge-limited conduction and a variable range hopping conduction at a low temperature were suggested as the gate-tunable charge transport characteristics of these hybrid p-n heterojunctions. Our study provides a better understanding of the trap-mediated electronic transport properties in organic/2-dimensional material hybrid heterojunction devices.
Nanocontainers made of Various Materials with Tunable Shape and Size
NASA Astrophysics Data System (ADS)
Zhao, Xianglong; Meng, Guowen; Han, Fangming; Li, Xiangdong; Chen, Bensong; Xu, Qiaoling; Zhu, Xiaoguang; Chu, Zhaoqin; Kong, Mingguang; Huang, Qing
2013-07-01
Nanocontainers have great potentials in targeted drug delivery and nanospace-confined reactions. However, the previous synthetic approaches exhibited limited control over the morphology, size and materials of the nanocontainers, which are crucial in practical applications. Here, we present a synthetic approach to multi-segment linear-shaped nanopores with pre-designed morphologies inside anodic aluminium oxide (AAO), by tailoring the anodizing duration after a rational increase of the applied anodizing voltage and the number of voltage increase during Al foil anodization. Then, we achieve nanocontainers with designed morphologies, such as nanofunnels, nanobottles, nano-separating-funnels and nanodroppers, with tunable sizes and diverse materials of carbon, silicon, germanium, hafnium oxide, silica and nickel/carbon magnetic composite, by depositing a thin layer of materials on the inner walls of the pre-designed AAO nanopores. The strategy has far-reaching implications in the designing and large-scale fabrication of nanocontainers, opening up new opportunities in nanotechnology applications.
Third-harmonic generation in tunable nonlinear hyperbolic metamaterial
NASA Astrophysics Data System (ADS)
Wicharn, Surawut; Buranasiri, Prathan
2018-03-01
In this research, a third-harmonic generation (THG) in a tunable nonlinear hyperbolic metamaterial (TNHM) has been investigated numerically. The TNHM is consisted of periodically arranging of multilayered graphene layers system for controlled optical properties purpose, and ordinary nonlinear dielectric layer. The possibility of TNHM permittivity dispersion controlled by number of graphene layers and external bias voltage to graphene layers was satisfied, then the structure has created the nearly perfect phase-matching scheme based on epsilon-near-zero (ENZ) behavior of the nonlinear medium. Finally, the optimal designed TNHM structure with sufficient bias voltage have given the forwardand backward-direction TH pulses, which the backward-forward TH intensity ratio is closely unity. The THG conversion efficiencies have been maximized after increasing the pumping level to 800 MW/cm2 . From this study, the optimal designed TNHM can be applied as a bi-directional nonlinear frequency converters in nanophotonic systems.
Nanocontainers made of Various Materials with Tunable Shape and Size
Zhao, Xianglong; Meng, Guowen; Han, Fangming; Li, Xiangdong; Chen, Bensong; Xu, Qiaoling; Zhu, Xiaoguang; Chu, Zhaoqin; Kong, Mingguang; Huang, Qing
2013-01-01
Nanocontainers have great potentials in targeted drug delivery and nanospace-confined reactions. However, the previous synthetic approaches exhibited limited control over the morphology, size and materials of the nanocontainers, which are crucial in practical applications. Here, we present a synthetic approach to multi-segment linear-shaped nanopores with pre-designed morphologies inside anodic aluminium oxide (AAO), by tailoring the anodizing duration after a rational increase of the applied anodizing voltage and the number of voltage increase during Al foil anodization. Then, we achieve nanocontainers with designed morphologies, such as nanofunnels, nanobottles, nano-separating-funnels and nanodroppers, with tunable sizes and diverse materials of carbon, silicon, germanium, hafnium oxide, silica and nickel/carbon magnetic composite, by depositing a thin layer of materials on the inner walls of the pre-designed AAO nanopores. The strategy has far-reaching implications in the designing and large-scale fabrication of nanocontainers, opening up new opportunities in nanotechnology applications. PMID:23867836
NASA Astrophysics Data System (ADS)
Wei, Maocai; Liu, Meifeng; Wang, Xiuzhang; Li, Meiya; Zhu, Yongdan; Zhao, Meng; Zhang, Feng; Xie, Shuai; Hu, Zhongqiang; Liu, Jun-Ming
2017-03-01
Epitaxial Bi0.9Eu0.1FeO3 (BEFO) thin films are deposited on Nb-doped SrTiO3 (NSTO) substrates by pulsed laser deposition to fabricate the Pt/BEFO/NSTO (001) heterostructures. These heterostructures possess bipolar resistive switching, where the resistances versus writing voltage exhibits a distinct hysteresis loop and a memristive behavior with good retention and anti-fatigue characteristics. The local resistive switching is confirmed by the conductive atomic force microscopy (C-AFM), suggesting the possibility to scale down the memory cell size. The observed memristive behavior could be attributed to the ferroelectric polarization effect, which modulates the height of potential barrier and width of depletion region at the BEFO/NSTO interface. The continuously tunable resistive switching behavior could be useful to achieve non-volatile, high-density, multilevel random access memory with low energy consumption.
Yang, Chengkun; Zhang, Hao; Liu, Bo; Lin, Shiwei; Li, Yuetao; Liu, Haifeng
2017-08-01
An electrically tunable whispering gallery mode (WGM) microresonator based on an HF-etched microstructured optical fiber (MOF) infiltrated with nematic liquid crystals (NLCs) is proposed and experimentally demonstrated. Experimental results indicate that as the peak-to-peak voltage of the applied AC electric field increases from 160 to 220 V, WGM resonance peaks gradually move toward a shorter wavelength region by 0.527 nm with a wavelength sensitivity up to 0.01 nm/V for a TM1691 mode, and the Q-factor for each WGM resonance peak rapidly decreases with the increment of applied electric voltage. The proposed electrically controlled WGM tuning scheme shows a linear resonance wavelength shift with good spectral reversibility, which makes it a promising candidate to serve as an integrated functional photonic device in practical use and in related fundamental scientific studies.
Design of distributed FBG vibration measuring system based on Fabry-Perot tunable filter
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Miao, Changyun; Li, Hongqiang; Gao, Hua; Gan, Jingmeng
2011-11-01
A distributed optical fiber grating wavelength interrogator based on fiber Fabry Perot tunable filter(FFP-TF) was proposed, which could measure dynamic strain or vibration of multi-sensing fiber gratings in one optical fiber by time division way. The wavelength demodulated mathematical model was built, the formulas of system output voltage and sensitivity were deduced and the method of finding static operating point was determined. The wavelength drifting characteristic of FFP-TF was discussed when the center wavelength of FFP-TF was set on the static operating point. A wavelength locking method was proposed by introducing a high-frequency driving voltage signal. A demodulated system was established based on Labview and its demodulated wavelength dynamic range is 290pm in theory. In experiment, by digital filtering applied to the system output data, 100Hz and 250Hz vibration signals were measured. The experiment results proved the feasibility of the demodulated method.
NASA Astrophysics Data System (ADS)
Yu, Chia-Hua; Wu, Po-Chang; Lee, Wei
2017-10-01
This work demonstrates a simple approach for obtaining a well-aligned uniform lying helix (ULH) texture and a tri-bistable feature at ambient temperature in a typical 90°-twisted cell filled with a short-pitch cholesteric liquid crystal. This ULH texture is obtained at room temperature from initially field-induced helix-free homeotropic state by gradually decreasing the applied voltage. Depending on the way and rate of reducing the voltage, three stable states (i.e., Grandjean planar, focal conic, and ULH) are generated and switching between any two of them is realized. Moreover, the electrical operation of the cell in the ULH state enables the tunability in phase retardation via the deformation of the ULH. The observations made in this work may be useful for applications such as tunable phase modulators and energy-efficient photonic devices.
NASA Astrophysics Data System (ADS)
Li, Rui; Reyes, Pavel I.; Ragavendiran, Sowmya; Shen, H.; Lu, Yicheng
2015-08-01
A tunable surface acoustic wave (SAW) device is developed on a multilayer structure which consists of an n-type semiconductor ZnO layer and a Ni-doped piezoelectric ZnO layer deposited on a GaN/c-Al2O3 substrate. The unique acoustic dispersion relationship between ZnO and GaN generates the multi-mode SAW response in this structure, facilitating high frequency operation. A dc bias voltage is applied to a Ti/Au gate layer deposited on the path of SAW delay line to modulate the electrical conductivity for tuning the acoustic velocity. For devices operating at 1.25 GHz, a maximum SAW velocity change of 0.9% is achieved, equivalent to the frequency change of 11.2 MHz. This voltage-controlled frequency tuning device has potential applications in resettable sensors, adaptive signal processing, and secure wireless communication.
Low-voltage Driven Graphene Foam Thermoacoustic Speaker.
Fei, Wenwen; Zhou, Jianxin; Guo, Wanlin
2015-05-20
A low-voltage driven thermoacoustic speaker is fabricated based on three-dimensional graphene foams synthesized by a nickel-template assisted chemical vapor deposition method. The corresponding thermoacoustic performances are found to be related to its microstructure. Graphene foams exhibit low heat-leakage to substrates and feasible tunability in structures and thermoacoustic performances, having great promise for applications in flexible or ultrasonic acoustic devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrically Tunable Mid-Infrared Single-Mode High-Speed Semiconductor Laser
2010-11-01
effective and the net tunnel rate may decrease in spite of progressing carrier density buildup in the accumulation well. Enforcing the bias current at...In te ns ity , a .u . E, eV Regular ICL Figure 4 The dependence of the electroluminescence (EL) quantum energy on the bias voltage for a...spectral maximum energy increases linearly with the bias voltage. Since the dependence is measured in the sub-threshold pumping region, the linear
NASA Astrophysics Data System (ADS)
Almoallem, Yousuf Dawood
Miniaturizing camera systems as required in many new compact devices places a severe restriction on the device size and power consumption. In modern life nowadays, a daily used compact devices like mobile phones and tablets must have some essential components such as single or multiple tiny cameras, as a component of micro-optical systems. In fact, for most of the current miniaturized cameras, optical power is varied based on the traditional situation where the distances between the lenses are mechanically varied relying on old-fashioned voice coil motors or equivalent mechanical drivers. Spatial and power consumption could be scaled down drastically with much faster response time when the revolutionary alternative liquid tunable microlens is utilized after acquiring a good understanding of microfluidics. The influence of interfacial tension as a key metric in controlling microfluidics systems (e.g. liquid microlens) has drawn considerable attention in biomedical, industrial, military fields over the past decade. Tunable microlenses overcome aforementioned concerns of miniaturizing optical systems and present a viable solution by tuning the focal length of lenses via, for example, variation in the lens curvature. Here, a novel tunable dielectrophoretic (DEP)-based tunable lens is presented. Out of many other mechanisms of tuning the lenses, the dielectric mechanism is especially promising since having the capability to achieve a faster response and overcome the electrolysis issue. Nonetheless, DEP usually requires high driving voltage levels. The proposed design is operating with a lowered voltage level and is based on a tunable dielectric liquid lens with a double-sided electrode design, unlike in the conventional scheme with a single-sided electrode design. The design methodology, geometrical analysis, device fabrication, simulation, and testing are demonstrated. Furthermore, the design, simulation, fabrication and characterization of a black-silicon (BSi) based iris is discussed. Reducing undesirable light stray reflections from surfaces is desired in many 3D optical elements, such as supporting optomechanical mounts, irises, optical filters, solar cells, and photolithography underlying layers. BSi (as antireflective nanostructures) provides a potential economic solution which is highly absorptive across the visible spectrum to replace many currently used yet expensive coating materials. Si nanowires (SiNW) were formed using a metal-assisted chemical (MAC) etching process to get a conformal antireflective property on the iris 3D structure including sharp tips and sidewalls. A significant reduction in undesirable light stray reflections was achieved as a result of successful implementation of the conformal antireflective surface on all facets of fabricated irises to eliminate undesirable light stray reflections.
Toward individually tunable compound eyes with transparent graphene electrode.
Shahini, Ali; Jin, Hai; Zhou, Zhixian; Zhao, Yang; Chen, Pai-Yen; Hua, Jing; Cheng, Mark Ming-Cheng
2017-06-08
We present tunable compound eyes made of ionic liquid lenses, of which both curvatures (R 1 and R 2 in the lensmaker's equation) can be individually changed using electrowetting on dielectric (EWOD) and applied pressure. Flexible graphene is used as a transparent electrode and is integrated on a flexible polydimethylsiloxane (PDMS)/parylene hybrid substrate. Graphene electrodes allow a large lens aperture diameter of between 2.4 mm and 2.74 mm. Spherical aberration analysis is performed using COMSOL to investigate the optical property of the lens under applied voltage and pressure. The final lens system shows a resolution of 645.1 line pair per millimeter. A prototype of a tunable lens array is proposed for the application of a compound eye.
Tunable surface plasmon devices
Shaner, Eric A [Rio Rancho, NM; Wasserman, Daniel [Lowell, MA
2011-08-30
A tunable extraordinary optical transmission (EOT) device wherein the tunability derives from controlled variation of the dielectric constant of a semiconducting material (semiconductor) in evanescent-field contact with a metallic array of sub-wavelength apertures. The surface plasmon resonance wavelength can be changed by changing the dielectric constant of the dielectric material. In embodiments of this invention, the dielectric material is a semiconducting material. The dielectric constant of the semiconducting material in the metal/semiconductor interfacial region is controllably adjusted by adjusting one or more of the semiconductor plasma frequency, the concentration and effective mass of free carriers, and the background high-frequency dielectric constant in the interfacial region. Thermal heating and/or voltage-gated carrier-concentration changes may be used to variably adjust the value of the semiconductor dielectric constant.
Byun, Hye-Ran; You, Eun-Ah; Ha, Young-Geun
2017-03-01
For large-area, printable, and flexible electronic applications using advanced semiconductors, novel dielectric materials with excellent capacitance, insulating property, thermal stability, and mechanical flexibility need to be developed to achieve high-performance, ultralow-voltage operation of thin-film transistors (TFTs). In this work, we first report on the facile fabrication of multifunctional hybrid multilayer gate dielectrics with tunable surface energy via a low-temperature solution-process to produce ultralow-voltage organic and amorphous oxide TFTs. The hybrid multilayer dielectric materials are constructed by iteratively stacking bifunctional phosphonic acid-based self-assembled monolayers combined with ultrathin high-k oxide layers. The nanoscopic thickness-controllable hybrid dielectrics exhibit the superior capacitance (up to 970 nF/cm 2 ), insulating property (leakage current densities <10 -7 A/cm 2 ), and thermal stability (up to 300 °C) as well as smooth surfaces (root-mean-square roughness <0.35 nm). In addition, the surface energy of the hybrid multilayer dielectrics are easily changed by switching between mono- and bifunctional phosphonic acid-based self-assembled monolayers for compatible fabrication with both organic and amorphous oxide semiconductors. Consequently, the hybrid multilayer dielectrics integrated into TFTs reveal their excellent dielectric functions to achieve high-performance, ultralow-voltage operation (< ± 2 V) for both organic and amorphous oxide TFTs. Because of the easily tunable surface energy, the multifunctional hybrid multilayer dielectrics can also be adapted for various organic and inorganic semiconductors, and metal gates in other device configurations, thus allowing diverse advanced electronic applications including ultralow-power and large-area electronic devices.
Gate-tunable resonant tunneling in double bilayer graphene heterostructures.
Fallahazad, Babak; Lee, Kayoung; Kang, Sangwoo; Xue, Jiamin; Larentis, Stefano; Corbet, Christopher; Kim, Kyounghwan; Movva, Hema C P; Taniguchi, Takashi; Watanabe, Kenji; Register, Leonard F; Banerjee, Sanjay K; Tutuc, Emanuel
2015-01-14
We demonstrate gate-tunable resonant tunneling and negative differential resistance in the interlayer current-voltage characteristics of rotationally aligned double bilayer graphene heterostructures separated by hexagonal boron nitride (hBN) dielectric. An analysis of the heterostructure band alignment using individual layer densities, along with experimentally determined layer chemical potentials indicates that the resonance occurs when the energy bands of the two bilayer graphene are aligned. We discuss the tunneling resistance dependence on the interlayer hBN thickness, as well as the resonance width dependence on mobility and rotational alignment.
Low-bias flat band-stop filter based on velocity modulated gaussian graphene superlattice
NASA Astrophysics Data System (ADS)
Sattari-Esfahlan, S. M.; Shojaei, S.
2018-05-01
Transport properties of biased planar Gaussian graphene superlattice (PGGSL) with Fermi velocity barrier is investigated by transfer matrix method (TMM). It is observed that enlargement of bias voltage over miniband width breaks the miniband to WSLs leads to suppressing resonant tunneling. Transmission spectrum shows flat wide stop-band property controllable by external bias voltage with stop-band width of near 200 meV. The simulations demonstrate that strong velocity barriers prevent tunneling of Dirac electrons leading to controllable enhancement of stop-band width. By increasing ratio of Fermi velocity in barriers to wells υc stop-band width increase. As wide transmission stop-band width (BWT) of filter is tunable from 40 meV to 340 meV is obtained by enhancing ratio of υc from 0.2 to 1.5, respectively. Proposed structure suggests easy tunable wide band-stop electronic filter with a modulated flat stop-band characteristic by height of electrostatic barrier and structural parameters. Robust sensitivity of band width to velocity barrier intensity in certain bias voltages and flat band feature of proposed filter may be opens novel venue in GSL based flat band low noise filters and velocity modulation devices.
Electrically tunable dynamic nuclear spin polarization in GaAs quantum dots at zero magnetic field
NASA Astrophysics Data System (ADS)
Manca, M.; Wang, G.; Kuroda, T.; Shree, S.; Balocchi, A.; Renucci, P.; Marie, X.; Durnev, M. V.; Glazov, M. M.; Sakoda, K.; Mano, T.; Amand, T.; Urbaszek, B.
2018-04-01
In III-V semiconductor nano-structures, the electron and nuclear spin dynamics are strongly coupled. Both spin systems can be controlled optically. The nuclear spin dynamics are widely studied, but little is known about the initialization mechanisms. Here, we investigate optical pumping of carrier and nuclear spins in charge tunable GaAs dots grown on 111A substrates. We demonstrate dynamic nuclear polarization (DNP) at zero magnetic field in a single quantum dot for the positively charged exciton X+ state transition. We tune the DNP in both amplitude and sign by variation of an applied bias voltage Vg. Variation of ΔVg on the order of 100 mV changes the Overhauser splitting (nuclear spin polarization) from -30 μeV (-22%) to +10 μeV (+7%) although the X+ photoluminescence polarization does not change sign over this voltage range. This indicates that absorption in the structure and energy relaxation towards the X+ ground state might provide favourable scenarios for efficient electron-nuclear spin flip-flops, generating DNP during the first tens of ps of the X+ lifetime which is on the order of hundreds of ps. Voltage control of DNP is further confirmed in Hanle experiments.
Single-nanowire, low-bandgap hot carrier solar cells with tunable open-circuit voltage
NASA Astrophysics Data System (ADS)
Limpert, Steven; Burke, Adam; Chen, I.-Ju; Anttu, Nicklas; Lehmann, Sebastian; Fahlvik, Sofia; Bremner, Stephen; Conibeer, Gavin; Thelander, Claes; Pistol, Mats-Erik; Linke, Heiner
2017-10-01
Compared to traditional pn-junction photovoltaics, hot carrier solar cells offer potentially higher efficiency by extracting work from the kinetic energy of photogenerated ‘hot carriers’ before they cool to the lattice temperature. Hot carrier solar cells have been demonstrated in high-bandgap ferroelectric insulators and GaAs/AlGaAs heterostructures, but so far not in low-bandgap materials, where the potential efficiency gain is highest. Recently, a high open-circuit voltage was demonstrated in an illuminated wurtzite InAs nanowire with a low bandgap of 0.39 eV, and was interpreted in terms of a photothermoelectric effect. Here, we point out that this device is a hot carrier solar cell and discuss its performance in those terms. In the demonstrated devices, InP heterostructures are used as energy filters in order to thermoelectrically harvest the energy of hot electrons photogenerated in InAs absorber segments. The obtained photovoltage depends on the heterostructure design of the energy filter and is therefore tunable. By using a high-resistance, thermionic barrier, an open-circuit voltage is obtained that is in excess of the Shockley-Queisser limit. These results provide generalizable insight into how to realize high voltage hot carrier solar cells in low-bandgap materials, and therefore are a step towards the demonstration of higher efficiency hot carrier solar cells.
Kim, Se-Um; Lee, Sin-Hyung; Lee, In-Ho; Lee, Bo-Yeon; Na, Jun-Hee; Lee, Sin-Doo
2018-05-14
A new concept of intensity-tunable structural coloration is proposed on the basis of a helical photonic crystal (HPC). The HPCs are constructed from a mixture of chiral reactive mesogens by spin-coating, followed by the photo-polymerization. A liquid crystal (LC) layer, being homogeneously aligned, is prepared on the HPCs to serve as a tunable waveplate. The electrical modulation of the phase retardation through the LC layer directly leads to the intensity-tunable Bragg reflection from the HPCs upon the incidence of the polarized light. The bandwidths of the structural colors are found to be well preserved regardless of the applied voltage. A prototype of a full color reflective-type display, incorporated with three primary color units, is demonstrated. Our concept of decoupling two mutually independent functions, the intensity modulation by the tunable waveplate and the color reflection by the HPCs provides a simple and powerful way of producing a full color reflective-type display which possesses high color purity, high optical efficiency, the cycling durability, and the design flexibility.
Van, Ngoc Huynh; Lee, Jae-Hyun; Sohn, Jung Inn; Cha, Seung Nam; Whang, Dongmok; Kim, Jong Min; Kang, Dae Joon
2014-05-21
We successfully fabricated nanowire-based complementary metal-oxide semiconductor (NWCMOS) inverter devices by utilizing n- and p-type Si nanowire field-effect-transistors (NWFETs) via a low-temperature fabrication processing technique. We demonstrate that NWCMOS inverter devices can be operated at less than 1 V, a significantly lower voltage than that of typical thin-film based complementary metal-oxide semiconductor (CMOS) inverter devices. This low-voltage operation was accomplished by controlling the threshold voltage of the n-type Si NWFETs through effective management of the nanowire (NW) doping concentration, while realizing high voltage gain (>10) and ultra-low static power dissipation (≤3 pW) for high-performance digital inverter devices. This result offers a viable means of fabricating high-performance, low-operation voltage, and high-density digital logic circuits using a low-temperature fabrication processing technique suitable for next-generation flexible electronics.
Tan, Hung Nguyen; Matsuura, Motoharu; Kishi, Naoto
2008-11-10
An all-optical signal processing scheme coupling wavelength conversion and NRZ-to-RZ data format conversion with pulsewidth tunability into one by combination of SOA- and fiber-based switches, is experimentally demonstrated, and its transmission performance is investigated. An 1558 nm NRZ data signal is converted to RZ data format at 1546 nm with widely tunable pulsewidth from 20 % to 80 % duty cycle at the bit-rate of 10 Gb/s. The investigation on transmission performance of the converted RZ signals at each different pulsewidth is carried out over various standard single-mode fiber (SSMF) links up to 65 km long without dispersion compensation. The results clarify a significant improvement on transmission performance of converted signal in comparison with the conventional NRZ signal through tunable pulsewidth management and show the existence of an optimal pulsewidth for the RZ data format at each transmission distance with particular cumulative dispersion. The optimal pulsewidths of the converted RZ signal and its corresponding power penalties against the NRZ signal are also investigated in different SSMF links.
Khodaee, M; Banakermani, M; Baghban, H
2015-10-10
Engineering metamaterial-based devices such as terahertz bandpass filters (BPFs) play a definitive role in advancement of terahertz technology. In this article, we propose a design procedure to obtain a considerably broadband terahertz BPF at a normal incidence; it shows promising filtering characteristics, including a wide passband of ∼1.34 THz at a central frequency of 1.17 THz, a flat top in a broad band, and high transmission, compared to previous reports. Then, exploiting the voltage-dependent carrier density control in an AlGaN/GaN heterostructure with a Schottky gate configuration, we investigate the tuning of the transmission properties in a narrow-band terahertz filter. A combination of the ultra-wide, flat-top BPF in series with the tunable, narrow band filter designed in the current study offers the ability to tune the desired resonance frequency along with high out-of-band rejection and the suppression of unwanted resonances in a large spectral range. The proposed structure exhibits a frequency tunability of 103 GHz for a voltage change between -8 and 2 V, and a transmission amplitude change of ∼0.51. This scheme may open up a route for the improved design of terahertz filters and modulators.
Tunable metamaterial-induced transparency with gate-controlled on-chip graphene metasurface.
Chen, Zan Hui; Tao, Jin; Gu, Jia Hua; Li, Jian; Hu, Di; Tan, Qi Long; Zhang, Fengchun; Huang, Xu Guang
2016-12-12
We propose and numerically investigate a gate-controlled on-chip graphene metasurface consisting of a monolayer graphene sheet and silicon photonic crystal-like substrate, to achieve an electrically-tunable induced transparency. The operation mechanism of the induced transparency of the on-chip graphene metasurface is analyzed. The tunable optical properties with different gate-voltages and polarizations have been discussed. Additionally, the spectral feature of the on-chip graphene metasurface as a function of the refractive index of the local environment is also investigated. The result shows that the on-chip graphene metasurface as a refractive index sensor can achieve an overall figure of merit of 8.89 in infrared wavelength range. Our study suggests that the proposed structure is potentially attractive as optoelectronic modulators and refractive index sensors.
Chen, Chen; Zhang, Chongfu; Liu, Deming; Qiu, Kun; Liu, Shuang
2012-10-01
We propose and experimentally demonstrate a multiuser orthogonal frequency-division multiple access passive optical network (OFDMA-PON) with source-free optical network units (ONUs), enabled by tunable optical frequency comb generation technology. By cascading a phase modulator (PM) and an intensity modulator and dynamically controlling the peak-to-peak voltage of a PM driven signal, a tunable optical frequency comb source can be generated. It is utilized to assist the configuration of a multiple source-free ONUs enhanced OFDMA-PON where simultaneous and interference-free multiuser upstream transmission over a single wavelength can be efficiently supported. The proposed multiuser OFDMA-PON is scalable and cost effective, and its feasibility is successfully verified by experiment.
Tunable vertical cavity surface emitting lasers for use in the near infrared biological window
NASA Astrophysics Data System (ADS)
Kitsmiller, Vincent J.; Dummer, Matthew; Johnson, Klein; O'Sullivan, Thomas D.
2018-02-01
We present a near-infrared tunable vertical cavity surface emitting laser (VCSEL) based upon a unique electrothermally tunable microelectromechanical systems (MEMS) topside mirror designed for tissue imaging and sensing. At room temperature, the laser is tunable from 769-782nm with single mode CW output and a peak output power of 1.3mW. We show that the tunable VCSEL is suitable for use in frequency domain diffuse optical spectroscopy by measuring the optical properties of a tissue-simulating phantom over the tunable range. These results indicate that tunable VCSELs may be an attractive choice to enable high spectral resolution optical sensing in a wearable format.
Tam, A M W; Qi, G; Srivastava, A K; Wang, X Q; Fan, F; Chigrinov, V G; Kwok, H S
2014-06-10
In this paper, we present a novel design configuration of double DHFLC wave plate continuous tunable Lyot filter, which exhibits a rapid response time of 185 μs, while the high-contrast ratio between the passband and stop band is maintained throughout a wide tunable range. A DHFLC tunable filter with a high-contrast ratio is attractive for realizing high-speed optical processing devices, such as multispectral and hyperspectral imaging systems, real-time remote sensing, field sequential color display, and wavelength demultiplexing in the metro network. In this work, an experimental prototype for a single-stage DHFLC Lyot filter of this design has been fabricated using photoalignment technology. We have demonstrated that the filter has a continuous tunable range of 30 nm for a blue wavelength, 45 nm for a green wavelength, and more than 50 nm for a red wavelength when the applied voltage gradually increases from 0 to 8 V. Within this tunable range, the contrast ratio of the proposed double wave plate configuration is maintained above 20 with small deviation in the transmittance level. Simulation and experimental results showed the proposed double DHFLC wave plate configuration enhances the contrast ratio of the tunable filter and, thus, increases the tunable range of the filter when compared with the Lyot filter using a single DHFLC wave plate. Moreover, we have proposed a polarization insensitive configuration for which the efficiency of the existing prototype can theoretically be doubled by the use of polarization beam splitters.
A dynamically tunable plasmonic multi-functional device based on graphene nano-sheet pair arrays
NASA Astrophysics Data System (ADS)
Wang, Wei; Meng, Zhao; Liang, Ruisheng; Chen, Shijie; Ding, Li; Wang, Faqiang; Liu, Hongzhan; Meng, Hongyun; Wei, Zhongchao
2018-05-01
Dynamically tunable plasmonic multi-functional is particularly desirable for various nanotechnological applications. In this paper, graphene nano-sheet pair arrays separated by a substrate, which can act as a dynamically tunable plasmonic band stop filter with transmission at resonance wavelength lower than 1%, a high sensitivity refractive index sensor with sensitivity up to 4879 nm/RIU, figure of merit of 40.66 and a two circuit optical switch with the modulation depth up to 0.998, are proposed and numerically investigated. These excellent optical performances are calculated by using FDTD numerical modeling and theoretical deduction. Simulation results show that a slight variation of chemical potential of the graphene nano-sheet can achieve significant resonance wavelength shifts. In additional, the resonance wavelength and transmission of this plasmonic device can be tuned easily by two voltages owing to the simple patterned graphene. These studies may have great potential in fabrication of multi-functional and dynamically tunable optoelectronic integrated devices.
Zhang, Yuxian; Zhao, Weidong; Wen, Jiahui; Li, Jinming; Yang, Zhou; Wang, Dong; Cao, Hui; Quan, Maohua
2017-05-21
A new type of electric- or thermal-responsive multilayer device composed of SiO 2 bilayer inverse opal (IOP) and chiral nematic liquid crystals (N*LCs) was developed. Bilayer IOP was fabricated by layer-by-layer assembly of polystyrene (PS) spheres with two different sizes and showed a reflectance in an extended range of the near-infrared region. Furthermore, the electrically or thermally tunable reflectance of the bilayer-IOP-N*LC device was investigated. The device exhibited the photonic bandgap (PBG) of the N*LC-IOP composite structure with the application of an electric field (voltage-on), while it presented the reflectance of N*LCs without an electric field (voltage-off) and the electrically-responsive behaviour could be reversibly switched. Besides, the device exhibited a gradient redshift of reflectance as temperature increased below the clearing point (T C ) while it showed the PBG of the N*LC-IOP composite structure when the temperature was above T C .
A low-voltage fully balanced CMFF transconductor with improved linearity
NASA Astrophysics Data System (ADS)
Calvo, B.; Celma, S.; Alegre, J. P.; Sanz, M. T.
2007-05-01
This paper presents a new low-voltage pseudo-differential continuous-time CMOS transconductor for wideband applications. The proposed cell is based on a feedforward cancellation of the input common-mode signal and keeps the input common mode voltage constant, while the transconductance is easily tunable through a continuous bias voltage. Linearity is preserved during the tuning process for a moderate range of transconductance values. Simulation results for a 0.35 μm CMOS design show a 1:2 G m tuning range with an almost constant bandwidth over 600 MHz. Total harmonic distortion figures are below -60 dB over the whole range at 10 MHz up to a 200 μA p-p differential output. The proposed cell consumes less than 1.2 mW from a single 2.0 V supply.
NASA Astrophysics Data System (ADS)
Shen, Jian Qi; Gu, Jing
2018-04-01
Atomic phase coherence (quantum interference) in a multilevel atomic gas exhibits a number of interesting phenomena. Such an atomic quantum coherence effect can be generalized to a quantum-dot molecular dielectric. Two quantum dots form a quantum-dot molecule, which can be described by a three-level Λ-configuration model { |0> ,|1> ,|2> } , i.e., the ground state of the molecule is the lower level |0> and the highly degenerate electronic states in the two quantum dots are the two upper levels |1> ,|2> . The electromagnetic characteristics due to the |0>-|1> transition can be controllably manipulated by a tunable gate voltage (control field) that drives the |2>-|1> transition. When the gate voltage is switched on, the quantum-dot molecular state can evolve from one steady state (i.e., |0>-|1> two-level dressed state) to another steady state (i.e., three-level coherent-population-trapping state). In this process, the electromagnetic characteristics of a quantum-dot molecular dielectric, which is modified by the gate voltage, will also evolve. In this study, the transient evolutional behavior of the susceptibility of a quantum-dot molecular thin film and its reflection spectrum are treated by using the density matrix formulation of the multilevel systems. The present field-tunable and frequency-sensitive electromagnetic characteristics of a quantum-dot molecular thin film, which are sensitive to the applied gate voltage, can be utilized to design optical switching devices.
Jiang, Li; Mundoor, Haridas; Liu, Qingkun; Smalyukh, Ivan I
2016-07-26
Tunable composite materials with interesting physical behavior can be designed through integrating unique optical properties of solid nanostructures with facile responses of soft matter to weak external stimuli, but this approach remains challenged by their poorly controlled coassembly at the mesoscale. Using scalable wet chemical synthesis procedures, we fabricated anisotropic gold-silica-dye colloidal nanostructures and then organized them into the device-scale (demonstrated for square-inch cells) electrically tunable composites by simultaneously invoking molecular and colloidal self-assembly. We show that the ensuing ordered colloidal dispersions of shape-anisotropic nanostructures exhibit tunable fluorescence decay rates and intensity. We characterize how these properties depend on low-voltage fields and polarization of both the excitation and emission light, demonstrating a great potential for the practical realization of an interesting breed of nanostructured composite materials.
Mixed-Halide Perovskites with Stabilized Bandgaps.
Xiao, Zhengguo; Zhao, Lianfeng; Tran, Nhu L; Lin, Yunhui Lisa; Silver, Scott H; Kerner, Ross A; Yao, Nan; Kahn, Antoine; Scholes, Gregory D; Rand, Barry P
2017-11-08
One merit of organic-inorganic hybrid perovskites is their tunable bandgap by adjusting the halide stoichiometry, an aspect critical to their application in tandem solar cells, wavelength-tunable light emitting diodes (LEDs), and lasers. However, the phase separation of mixed-halide perovskites caused by light or applied bias results in undesirable recombination at iodide-rich domains, meaning open-circuit voltage (V OC ) pinning in solar cells and infrared emission in LEDs. Here, we report an approach to suppress halide redistribution by self-assembled long-chain organic ammonium capping layers at nanometer-sized grain surfaces. Using the stable mixed-halide perovskite films, we are able to fabricate efficient and wavelength-tunable perovskite LEDs from infrared to green with high external quantum efficiencies of up to 5%, as well as linearly tuned V OC from 1.05 to 1.45 V in solar cells.
NASA Astrophysics Data System (ADS)
Fan, Yun Hsing; Ren, Hongwen; Wu, Shin Tson
2004-05-01
Inhomogeneous nanoscale polymer-dispersed liquid crystal (PDLC) devices having gradient nanoscale droplet distribution were fabricated. This gradient refractive index nanoscale (GRIN) PDLC film was obtained by exposing the LC/ monomer with a uniform ultraviolet (UV) light through a patterned photomask. The monomer and LC were mixed at 70: 30 wt% ratio. The area exposed to a weaker UV intensity would produce a larger droplet size, and vice versa. Owing to the nanoscale LC droplets involved, the GRIN PDLC devices are highly transparent in the whole visible region. The gradient refractive index profile can be used as switchable prism gratings, Fresnel lens, and positive and negative lenses with tunable focal lengths. Such a GRIN PDLC device is a broadband device and independent of light polarization. The diffraction efficiency of the lens is controllable by the applied voltage. The major advantages of the GRIN PDLC devices are in simple fabrication process, polarization-independent, and fast switching speed, although the required driving voltage is higher than 100 Vrms. To lower the driving voltage, the technique of polymer-networked liquid crystal (PNLC) has been developed. The PNLC was also produced by exposing the LC/monomer mixture with a uniform UV light through a patterned photomask. However, the monomer concentration in PNLC is only around 2-5 wt%. The formed PNLC structure exhibits a gradient polymer network distribution. The LC in the regions stabilized by a higher polymer concentration exhibits a higher threshold voltage. By using this technique, prism grating, tunable electronic lens and Fresnel lens have been demonstrated. The driving voltage is around 10 Vrms. A drawback of this kind of device is polarization dependence. To overcome the polarization dependence, stacking two orthogonal homogeneous PNLC lens is considered.
NASA Astrophysics Data System (ADS)
Dong, Xiaofei; Xu, Jianping; Shi, Shaobo; Zhang, Xiaosong; Li, Lan; Yin, Shougen
2017-05-01
We report tunable electroluminescence (EL) from solution-processed ZnCuInS/ZnS (ZCIS/ZnS) quantum dots (QDs)/poly(9-vinlycarbazole) multilayer films. The EL spectra exhibit a red shift as the QD layer thickness increases. By analyzing the dependence of the applied voltage and the ZCIS/ZnS QD layer thickness on the EL spectra, the origin of the red shift is associated with the increased trap density of QDs that induces the injected electrons to be trapped in the deep donor level. The current conduction mechanism based on the current density-voltage curves at different voltage regions was discussed.
Voltage mode electronically tunable full-wave rectifier
NASA Astrophysics Data System (ADS)
Petrović, Predrag B.; Vesković, Milan; Đukić, Slobodan
2017-01-01
The paper presents a new realization of bipolar full-wave rectifier of input sinusoidal signals, employing one MO-CCCII (multiple output current controlled current conveyor), a zero-crossing detector (ZCD), and one resistor connected to fixed potential. The circuit provides the operating frequency up to 10 MHz with increased linearity and precision in processing of input voltage signal, with a very low harmonic distortion. The errors related to the signal processing and errors bound were investigated and provided in the paper. The PSpice simulations are depicted and agree well with the theoretical anticipation. The maximum power consumption of the converter is approximately 2.83 mW, at ±1.2 V supply voltages.
Park, Chang-Hyun; Yoon, Yeo-Taek; Shrestha, Vivek Raj; Park, Chul-Soon; Lee, Sang-Shin; Kim, Eun-Soo
2013-11-18
We have demonstrated a highly efficient electrically tunable color filter, which provides precise control of color output, taking advantage of a nano-photonic polarization-tailored dichroic resonator combined with a liquid-crystal based polarization rotator. The visible dichroic resonator based on the guided mode resonance, which incorporates a planar dielectric waveguide in Si3N4 integrated with an asymmetric two-dimensional subwavelength Al grating with unequal pitches along its principal axes, exhibited polarization specific transmission featuring high efficiency up to 75%. The proposed tunable color filters were constructed by combining three types of dichroic resonators, each of which deals with a mixture of two primary colors (i.e. blue/green, blue/red, and green/red) with a polarization rotator exploiting a twisted nematic liquid crystal cell. The output colors could be dynamically and seamlessly customized across the blend of the two corresponding primary colors, by altering the polarization via the voltage applied to the polarization rotator. For the blue/red filter, the center wavelength was particularly adjusted from 460 to 610 nm with an applied voltage variation of 2 V, leading to a tuning range of up to 150 nm. And the spectral tuning was readily confirmed via color mapping. The proposed devices may permit the tuning span to be readily extended by tailoring the grating pitches.
NASA Astrophysics Data System (ADS)
Wang, Kangni; Zheng, Jihong; Liu, Yourong; Gao, Hui; Zhuang, Songlin
2017-06-01
An electrically tunable two-dimensional (2D) holographic polymer-dispersed liquid crystal (H-PDLC) grating with variable period was fabricated by inserting a cylindrical lens in a conventional holographic interference beam. The interference between the plane wave and cylindrical wave resulting in varying intersection angles on the sample, combined with dual exposure along directions perpendicular to each other, generates a 2D H-PDLC grating with varied period. We have identified periods varying from 3.109 to 5.158 μm across a 16 mm width, with supporting theoretical equations for the period. The period exhibits a symmetrical square lattice in a diagonal direction, with an asymmetrical rectangular lattice in off-diagonal locations. With the first exposure at 2 s and the second exposure at 60 s, the phase separation between the prepolymer and liquid crystal was most evident. The diffraction properties and optic-electric characteristics were also studied. The diffraction efficiency of first-order light was observed to be 13.5% without external voltage, and the transmission efficiency of non-diffracted light was 78% with an applied voltage of 100 V. The proposed method provides the capability of generating period variation to the conventional holographic interference path, with potential application in diffractive optics such as tunable multi-wavelength organic lasing from a dye-doped 2D H-PDLC grating.
Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting
Mo, Jingke; Retterer, Scott T.; Cullen, David A.; ...
2016-06-13
Liquid/gas diffusion layers (LGDLs) play a crucial role in electrochemical energy technology and hydrogen production, and are expected to simultaneously transport electrons, heat, and reactants/products with minimum voltage, current, thermal, interfacial, and fluidic losses. In addition, carbon materials, which are typically used in proton exchange membrane fuel cells (PEMFCs), are unsuitable for PEM electrolyzer cells (PEMECs). In this study, a novel titanium thin LGDL with well-tunable pore morphologies was developed by employing nano-manufacturing and was applied in a standard PEMEC. The LGDL tests show significant performance improvements. The operating voltages required at a current density of 2.0 A/cm 2 weremore » as low as 1.69 V, and its efficiency reached a report high of up to 88%. The new thin and flat LGDL with well-tunable straight pores has been demonstrated to remarkably reduce the ohmic, interfacial and transport losses. In addition, well-tunable features, including pore size, pore shape, pore distribution, and thus porosity and permeability, will be very valuable for developing PEMEC models and for validation of its simulations with optimal and repeatable performance. The LGDL thickness reduction from greater than 350 μm of conventional LGDLs to 25 μm will greatly decrease the weight and volume of PEMEC stacks, and represents a new direction for future developments of low-cost PEMECs with high performance.« less
NASA Astrophysics Data System (ADS)
Vasić, Borislav; Zografopoulos, Dimitrios C.; Isić, Goran; Beccherelli, Romeo; Gajić, Radoš
2017-03-01
Large birefringence and its electrical modulation by means of Fréedericksz transition makes nematic liquid crystals (LCs) a promising platform for tunable terahertz (THz) devices. The thickness of standard LC cells is in the order of the wavelength, requiring high driving voltages and allowing only a very slow modulation at THz frequencies. Here, we first present the concept of overcoupled metal-isolator-metal (MIM) cavities that allow for achieving simultaneously both very high phase difference between orthogonal electric field components and large reflectance. We then apply this concept to LC-infiltrated MIM-based metamaterials aiming at the design of electrically tunable THz polarization converters. The optimal operation in the overcoupled regime is provided by properly selecting the thickness of the LC cell. Instead of the LC natural birefringence, the polarization-dependent functionality stems from the optical anisotropy of ultrathin and deeply subwavelength MIM structures. The dynamic electro-optic control of the LC refractive index enables the spectral shift of the resonant mode and, consequently, the tuning of the phase difference between the two orthogonal field components. This tunability is further enhanced by the large confinement of the resonant electromagnetic fields within the MIM cavity. We show that for an appropriately chosen linearly polarized incident field, the polarization state of the reflected field at the target operation frequency can be continuously swept between the north and south pole of the Poincaré sphere. Using a rigorous Q-tensor model to simulate the LC electro-optic switching, we demonstrate that the enhanced light-matter interaction in the MIM resonant cavity allows the polarization converter to operate at driving voltages below 10 Volt and with millisecond switching times.
Vasić, Borislav; Zografopoulos, Dimitrios C; Isić, Goran; Beccherelli, Romeo; Gajić, Radoš
2017-03-24
Large birefringence and its electrical modulation by means of Fréedericksz transition makes nematic liquid crystals (LCs) a promising platform for tunable terahertz (THz) devices. The thickness of standard LC cells is in the order of the wavelength, requiring high driving voltages and allowing only a very slow modulation at THz frequencies. Here, we first present the concept of overcoupled metal-isolator-metal (MIM) cavities that allow for achieving simultaneously both very high phase difference between orthogonal electric field components and large reflectance. We then apply this concept to LC-infiltrated MIM-based metamaterials aiming at the design of electrically tunable THz polarization converters. The optimal operation in the overcoupled regime is provided by properly selecting the thickness of the LC cell. Instead of the LC natural birefringence, the polarization-dependent functionality stems from the optical anisotropy of ultrathin and deeply subwavelength MIM structures. The dynamic electro-optic control of the LC refractive index enables the spectral shift of the resonant mode and, consequently, the tuning of the phase difference between the two orthogonal field components. This tunability is further enhanced by the large confinement of the resonant electromagnetic fields within the MIM cavity. We show that for an appropriately chosen linearly polarized incident field, the polarization state of the reflected field at the target operation frequency can be continuously swept between the north and south pole of the Poincaré sphere. Using a rigorous Q-tensor model to simulate the LC electro-optic switching, we demonstrate that the enhanced light-matter interaction in the MIM resonant cavity allows the polarization converter to operate at driving voltages below 10 Volt and with millisecond switching times.
Liquid-phase tuning of porous PVDF-TrFE film on flexible substrate for energy harvesting
NASA Astrophysics Data System (ADS)
Chen, Dajing; Chen, Kaina; Brown, Kristopher; Hang, Annie; Zhang, John X. J.
2017-04-01
Emerging wearable and implantable biomedical energy harvesting devices demand efficient power conversion, flexible structures, and lightweight construction. This paper presents Polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) micro-porous structures, which can be tuned to specific mechanical flexibilities and optimized for piezoelectric power conversion. Specifically, the water vapor phase separation method was developed to control microstructure formation, pore diameter, porosity, and mechanical flexibility. Furthermore, we investigated the effects of the piezoelectric layer to supporting layer Young's modulus ratio, through using both analytical calculation and experimentation. Both structure flexibility and stress-induced voltage were considered in the analyses. Specification of electromechanical coupling efficiency, made possible by carefully designed three-dimensional porous structures, was shown to increase the power output by five-fold relative to uncoupled structures. Therefore, flexible PVDF-TrFE films with tunable microstructures, paired with substrates of different rigidities, provide highly efficient designs of compact piezoelectric energy generating devices.
NASA Astrophysics Data System (ADS)
Xu, Ling-Fang; Feng, Xing; Sun, Kang; Liang, Ze-Yu; Xu, Qian; Liang, Jia-Yu; Yang, Chang-Ping
2017-07-01
Sandwich magnetoelectric composites of PZT/NFO/PZT (PNP) have been prepared by laminating PZT5, NiFe2O4, and PZT5 ceramics in turn with polyvinyl alcohol (PVA) paste. A systematic study of structural, magnetic and ferroelectric properties is undertaken. Structural studies carried out by X-ray diffraction indicate formation of cubic perovskite phase of PZT5 ceramic and cubic spinel phase of NiFe2O4 ceramic. As increasing the content of PZT5 phase, ferroelectric loops and magnetic loops of PNP composites showed increasing remnant electric polarizations and decreasing remnant magnetic moments separately. Both external magnetic fields and bias voltages could regulate the basal radial resonance frequency of the composites, which should be originated with the transformation and coupling of the stress between the piezoelectric phase and magnetostrictive phase. Such magnetoelectric composite provides great opportunities for electrostatically tunable devices.
Adhesive curing through low-voltage activation
Ping, Jianfeng; Gao, Feng; Chen, Jian Lin; Webster, Richard D.; Steele, Terry W. J.
2015-01-01
Instant curing adhesives typically fall within three categories, being activated by either light (photocuring), heat (thermocuring) or chemical means. These curing strategies limit applications to specific substrates and can only be activated under certain conditions. Here we present the development of an instant curing adhesive through low-voltage activation. The electrocuring adhesive is synthesized by grafting carbene precursors on polyamidoamine dendrimers and dissolving in aqueous solvents to form viscous gels. The electrocuring adhesives are activated at −2 V versus Ag/AgCl, allowing tunable crosslinking within the dendrimer matrix and on both electrode surfaces. As the applied voltage discontinued, crosslinking immediately terminated. Thus, crosslinking initiation and propagation are observed to be voltage and time dependent, enabling tuning of both material properties and adhesive strength. The electrocuring adhesive has immediate implications in manufacturing and development of implantable bioadhesives. PMID:26282730
Plenoptic camera based on a liquid crystal microlens array
NASA Astrophysics Data System (ADS)
Lei, Yu; Tong, Qing; Zhang, Xinyu; Sang, Hongshi; Xie, Changsheng
2015-09-01
A type of liquid crystal microlens array (LCMLA) with tunable focal length by the voltage signals applied between its top and bottom electrodes, is fabricated and then the common optical focusing characteristics are tested. The relationship between the focal length and the applied voltage signals is given. The LCMLA is integrated with an image sensor and further coupled with a main lens so as to construct a plenoptic camera. Several raw images at different voltage signals applied are acquired and contrasted through the LCMLA-based plenoptic camera constructed by us. Our experiments demonstrate that through utilizing a LCMLA in a plenoptic camera, the focused zone of the LCMLA-based plenoptic camera can be shifted effectively only by changing the voltage signals loaded between the electrodes of the LCMLA, which is equivalent to the extension of the depth of field.
Non-Uniform Bias Enhancement of a Varactor-Tuned FSS used with a Low Profile 2.4 GHz Dipole Antenna
NASA Technical Reports Server (NTRS)
Cure, David; Weller, Thomas M.; Miranda, Felix A.
2012-01-01
In this paper a low profile antenna using a nonuniformly biased varactor-tuned frequency selective surface (FSS) is presented. The tunable FSS avoids the use of vias and has a simplified DC bias network. The voltages to the DC bias ports can be varied independently allowing adjustment in the frequency response and enhanced radiation properties. The measured data demonstrate tunability from 2.15 GHz to 2.63 GHz with peak efficiencies that range from 50% to 90% and instantaneous bandwidths of 50 MHz to 280 MHz within the tuning range. The total antenna thickness is approximately lambda/45.
Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators.
Yao, Yu; Shankar, Raji; Kats, Mikhail A; Song, Yi; Kong, Jing; Loncar, Marko; Capasso, Federico
2014-11-12
Dynamically reconfigurable metasurfaces open up unprecedented opportunities in applications such as high capacity communications, dynamic beam shaping, hyperspectral imaging, and adaptive optics. The realization of high performance metasurface-based devices remains a great challenge due to very limited tuning ranges and modulation depths. Here we show that a widely tunable metasurface composed of optical antennas on graphene can be incorporated into a subwavelength-thick optical cavity to create an electrically tunable perfect absorber. By switching the absorber in and out of the critical coupling condition via the gate voltage applied on graphene, a modulation depth of up to 100% can be achieved. In particular, we demonstrated ultrathin (thickness < λ0/10) high speed (up to 20 GHz) optical modulators over a broad wavelength range (5-7 μm). The operating wavelength can be scaled from the near-infrared to the terahertz by simply tailoring the metasurface and cavity dimensions.
Electrotunable nanoplasmonic liquid mirror
NASA Astrophysics Data System (ADS)
Montelongo, Yunuen; Sikdar, Debabrata; Ma, Ye; McIntosh, Alastair J. S.; Velleman, Leonora; Kucernak, Anthony R.; Edel, Joshua B.; Kornyshev, Alexei A.
2017-11-01
Recently, there has been a drive to design and develop fully tunable metamaterials for applications ranging from new classes of sensors to superlenses among others. Although advances have been made, tuning and modulating the optical properties in real time remains a challenge. We report on the first realization of a reversible electrotunable liquid mirror based on voltage-controlled self-assembly/disassembly of 16 nm plasmonic nanoparticles at the interface between two immiscible electrolyte solutions. We show that optical properties such as reflectivity and spectral position of the absorption band can be varied in situ within +/-0.5 V. This observed effect is in excellent agreement with theoretical calculations corresponding to the change in average interparticle spacing. This electrochemical fully tunable nanoplasmonic platform can be switched from a highly reflective `mirror' to a transmissive `window' and back again. This study opens a route towards realization of such platforms in future micro/nanoscale electrochemical cells, enabling the creation of tunable plasmonic metamaterials.
Polarization-coupled tunable resistive behavior in oxide ferroelectric heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruverman, Alexei; Tsymbal, Evgeny Y.; Eom, Chang-Beom
2017-05-03
This research focuses on investigation of the physical mechanism of the electrically and mechanically tunable resistive behavior in oxide ferroelectric heterostructures with engineered interfaces realized via a strong coupling of ferroelectric polarization with tunneling electroresistance and metal-insulator (M-I) transitions. This report describes observation of electrically conductive domain walls in semiconducting ferroelectrics, voltage-free control of resistive switching and demonstration of a new mechanism of electrical control of 2D electron gas (2DEG) at oxide interfaces. The research goals are achieved by creating strong synergy between cutting-edge fabrication of epitaxial single-crystalline complex oxides, nanoscale electrical characterization by scanning probe microscopy and theoretical modelingmore » of the observed phenomena. The concept of the ferroelectric devices with electrically and mechanically tunable nonvolatile resistance represents a new paradigm shift in realization of the next-generation of non-volatile memory devices and low-power logic switches.« less
Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces
Franklin, Daniel; Chen, Yuan; Vazquez-Guardado, Abraham; Modak, Sushrut; Boroumand, Javaneh; Xu, Daming; Wu, Shin-Tson; Chanda, Debashis
2015-01-01
Structural colour arising from nanostructured metallic surfaces offers many benefits compared to conventional pigmentation based display technologies, such as increased resolution and scalability of their optical response with structure dimensions. However, once these structures are fabricated their optical characteristics remain static, limiting their potential application. Here, by using a specially designed nanostructured plasmonic surface in conjunction with high birefringence liquid crystals, we demonstrate a tunable polarization-independent reflective surface where the colour of the surface is changed as a function of applied voltage. A large range of colour tunability is achieved over previous reports by utilizing an engineered surface which allows full liquid crystal reorientation while maximizing the overlap between plasmonic fields and liquid crystal. In combination with imprinted structures of varying periods, a full range of colours spanning the entire visible spectrum is achieved, paving the way towards dynamic pixels for reflective displays. PMID:26066375
Wavelength-tunable thulium-doped fiber laser by employing a self-made Fabry-Perot filter
NASA Astrophysics Data System (ADS)
Wang, Y. P.; Ju, Y. L.; Wu, C. T.; Liu, W.; Yang, C.
2017-06-01
In this demonstration, we proposed a novel wavelength-tunable thulium-doped fiber laser (TDFL) with a self-made Fabry-Perot (F-P) filter. When the F-P filter was not inserted, the maximum output power of 11.1 W was achieved when the pump power was 70.2 W. The corresponding optical-to-optical conversion efficiency was 15.8% and the slope efficiency was 22.1%. When the F-P filter was inserted, the output wavelength could be tuned from 1952.9 to 1934.9 nm with the change of cavity length of F-P filter which was fixed on a piezoelectric ceramic transducer (PZT) controlled by the voltage applied to it. The full width at half maximum (FWHM) was no more than 0.19 nm. Furthermore, the wavelength fluctuations of the tunable fiber laser were kept within ±0.2 nm.
Rayleigh Scattering Measurements Using a Tunable Liquid Crystal Fabry-Perot Interferometer
NASA Technical Reports Server (NTRS)
Mielke-Fagan, Amy F.; Clem, Michelle M.; Elam, Kristie A.
2010-01-01
Spectroscopic Rayleigh scattering is an established flow diagnostic that has the ability to provide simultaneous density, velocity, and temperature measurements. The Fabry-Perot interferometer or etalon is a commonly employed instrument for resolving the spectrum of molecular Rayleigh scattered light for the purpose of evaluating these flow properties. This paper investigates the use of a tunable liquid crystal (LC) Fabry-Perot etalon in Rayleigh scattering experiments at NASA Glenn Research Center. The LC etalon provides a robust interferometry system that can be tuned rapidly by adjusting the voltage applied to the liquid crystal interface. Tuning the interferometer is often necessary to control the physical locations of the concentric interference fringes when Rayleigh light is imaged through the LC etalon. The LC etalon diagnostic system was tested in a 1-cm diameter nozzle flow in two different scattering configurations to evaluate its usefulness for Rayleigh measurements compared to a traditional non-tunable fused silica Fabry-Perot etalon.
Ghalem, Areski; Ponchel, Freddy; Remiens, Denis; Legier, Jean-Francois; Lasri, Tuami
2013-05-01
A complete microwave characterization up to 67 GHz using specific coplanar waveguides was performed to determine the dielectric properties (permittivity, losses, and tunability) of sapphire/TiOx/Ba0.3Sr0.7TiO3 (BST) (111)-oriented thin films. To that end, BaxSr1-xTiO3 thin films were deposited by RF magnetron sputtering on sapphire (0001) substrate. To control the preferred (111) orientation, a TiOx buffer layer was deposited on sapphire. According to the detailed knowledge of the material properties, it has been possible to conceive, fabricate, and test interdigitated capacitors, the basic element for future microwave tunable applications. Retention of capacitive behavior up to 67 GHz and a tunability of 32% at 67 GHz at an applied voltage of 30 V (150 kV/cm) were observed. The Q-factor remains greater than 30 over the entire frequency band. The possibility of a complete characterization of the material for the realization of high-performance interdigitated capacitors opens the door to microwave device fabrication.
Fatadin, Irshaad; Ives, David; Savory, Seb J
2013-04-22
The performance of a differential carrier phase recovery algorithm is investigated for the quadrature phase shift keying (QPSK) modulation format with an integrated tunable laser. The phase noise of the widely-tunable laser measured using a digital coherent receiver is shown to exhibit significant drift compared to a standard distributed feedback (DFB) laser due to enhanced low frequency noise component. The simulated performance of the differential algorithm is compared to the Viterbi-Viterbi phase estimation at different baud rates using the measured phase noise for the integrated tunable laser.
NASA Astrophysics Data System (ADS)
Young, Darrin Jun
The proliferation of wireless services creates a pressing need for compact and low cost RF transceivers. Modern sub-micron technologies provide the active components needed for miniaturization but fail to deliver high quality passives needed in oscillators and filters. This dissertation demonstrates procedures for adding high quality inductors and tunable capacitors to a standard silicon integrated circuits. Several voltage-controlled oscillators operating in the low Giga-Hertz range demonstrate the suitability of these components for high performance RF building blocks. Two low-temperature processes are described to add inductors and capacitors to silicon ICs. A 3-D coil geometry is used for the inductors rather than the conventional planar spiral to substantially reduce substrate loss and hence improve the quality factor and self-resonant frequency. Measured Q-factors at 1 GHz are 30 for a 4.8 nH device, 16 for 8.2 nH and 13.8 nH inductors. Several enhancements are proposed that are expected to result in a further improvement of the achievable Q-factor. This research investigates the design and fabrication of silicon-based IC-compatible high-Q tunable capacitors and inductors. The goal of this investigation is to develop a monolithic low phase noise radio-frequency voltage-controlled oscillator using these high-performance passive components for wireless communication applications. Monolithic VCOs will help the miniaturization of current radio transceivers, which offers a potential solution to achieve a single hand-held wireless phone with multistandard capabilities. IC-compatible micromachining fabrication technologies have been developed to realize on-chip high-Q RF tunable capacitors and 3-D coil inductors. The capacitors achieve a nominal capacitance value of 2 pF and can be tuned over 15% with 3 V. A quality factor over 60 has been measured at 1 GHz. 3-D coil inductors obtain values of 4.8 nH, 8.2 nH and 13.8 nH. At 1 GHz a Q factor of 30 has been achieved for a 4.8 nH device and a Q of 16 for 8.2 nH and 13.8 nH inductors. A prototype RF voltage-controlled oscillator has been implemented employing the micromachined tunable capacitors and a 8.2 nH 3-D coil inductor. The active electronics, tunable capacitors and inductor are fabricated on separated silicon substrates and wire bonded to form the VCO. This hybrid approach is used to avoid the complexity of building the prototype oscillator. Both passive components are fabricated on silicon substrates and thus amenable to monolithic integration with standard IC process. The VCO achieves a -136 dBc/Hz phase noise at a 3 MHz offset frequency from the carrier, suitable for most wireless communication applications and is tunable from 855 MHz to 863 MHz with 3 V.
Design of a Voltage Tunable Broadband Quantum Well Infrared Photodetector
2002-06-01
1 B. PROGRESS OF QWIPS ...converting some of the incident photons to an electric signal. A Quantum Well Infrared Photodetector ( QWIP ) consists of a stack of quantum wells...arsenide (GaAs ) and aluminum gallium arsenide ( AsGaAl xx −1 ) with different aluminum compositions allowed the fabrication of novel QWIP detectors
NASA Astrophysics Data System (ADS)
Lin, Gong-Ru
2002-12-01
We develop a delay-line-free and frequency traceable electro-optic sampling oscilloscope by use of a digital phase-locked loop phase shifter (PLL-PS) controlled delay-time-tunable gain-switched laser diode (GSLD). The home-made voltage-controllable PLL-PS exhibits a linear transfer function with ultra-wide phase shifting range of ±350° and tuning error of <±5%, which benefits the advantages of frequency tracking to free-running signals with suppressed timing-jitter. The maximum delay-time of PLL-PS controlled GSLD is up to 1.95 periods by changing the controlling voltage ( VREF) from -3.5 to 3.5 V, which corresponds to 3.9 ns at repetition frequency of 500 MHz. The tuning responsivity and resolution are about 0.56 ns/V and 0.15˜0.2 ps, respectively. The maximum delay-time switching bandwidth of 100 Hz is determined under the control of a saw-tooth modulated VREF function. The waveform sampling of microwave PECL signals generated from a free-running digital frequency divider is performed with acceptable measuring deviation.
Zeng, Zhenping; Yeh, Li-Hsien; Zhang, Mingkan; Qian, Shizhi
2015-10-28
Inspired by nature, functionalized nanopores with biomimetic structures have attracted growing interests in using them as novel platforms for applications of regulating ion and nanoparticle transport. To improve these emerging applications, we study theoretically for the first time the ion transport and selectivity in short nanopores functionalized with pH tunable, zwitterionic polyelectrolyte (PE) brushes. In addition to background salt ions, the study takes into account the presence of H(+) and OH(-) ions along with the chemistry reactions between functional groups on PE chains and protons. Due to ion concentration polarization, the charge density of PE layers is not homogeneously distributed and depends significantly on the background salt concentration, pH, grafting density of PE chains, and applied voltage bias, thereby resulting in many interesting and unexpected ion transport phenomena in the nanopore. For example, the ion selectivity of the biomimetic nanopore can be regulated from anion-selective (cation-selective) to cation-selective (anion-selective) by diminishing (raising) the solution pH when a sufficiently small grafting density of PE chains, large voltage bias, and low background salt concentration are applied.
Controlled electrosprayed formation of non-spherical microparticles
NASA Astrophysics Data System (ADS)
Jeyhani, Morteza; Mak, Sze Yi; Sammut, Stephen; Shum, Ho Cheung; Hwang, Dae Kun; Tsai, Scott S. H.
2017-11-01
Fabrication of biocompatible microparticles, such as alginate particles, with the possibility of controlling the particles' morphology in a high-throughput manner, is essential for pharmaceutical and cosmetic industries. Even though the shape of alginate particles has been shown to be an important parameter in controlling drug delivery, there are very limited manufacturing methods to produce non-spherical alginate microparticles in a high-throughput fashion. Here, we present a system that generates non-spherical biocompatible alginate microparticles with a tunable size and shape, and at high-throughput, using an electrospray technique. Alginate solution, which is a highly biocompatible material, is flown through a needle using a constant flow rate syringe pump. The alginate phase is connected to a high-voltage power supply to charge it positively. There is a metallic ring underneath the needle that is charged negatively. The applied voltage creates an electric field that forces the dispensing droplets to pass through the metallic ring toward the collection bath. During this migration, droplets break up to smaller droplets to dissipate their energy. When the droplets reach the calcium chloride bath, polymerization happens and solidifies the droplets. We study the effects of changing the distance from the needle to the bath, and the concentration of calcium chloride in the bath, to control the size and the shape of the resulting microparticles.
Surawathanawises, Krissada; Cheng, Xuanhong
2014-01-01
Nanoporous anodic aluminum oxide (AAO) has been explored for various applications due to its regular cell arrangement and relatively easy fabrication processes. However, conventional two-step anodization based on self-organization only allows the fabrication of a few discrete cell sizes and formation of small domains of hexagonally packed pores. Recent efforts to pre-pattern aluminum followed with anodization significantly improve the regularity and available pore geometries in AAO, while systematic study of the anodization condition, especially the impact of acid composition on pore formation guided by nanoindentation is still lacking. In this work, we pre-patterned aluminium thin films using ordered monolayers of silica beads and formed porous AAO in a single-step anodization in phosphoric acid. Controllable cell sizes ranging from 280 nm to 760 nm were obtained, matching the diameters of the silica nanobead molds used. This range of cell size is significantly greater than what has been reported for AAO formed in phosphoric acid in the literature. In addition, the relationships between the acid concentration, cell size, pore size, anodization voltage and film growth rate were studied quantitatively. The results are consistent with the theory of oxide formation through an electrochemical reaction. Not only does this study provide useful operational conditions of nanoindentation induced anodization in phosphoric acid, it also generates significant information for fundamental understanding of AAO formation. PMID:24535886
NASA Astrophysics Data System (ADS)
Wong, Hon Fai; Ng, Sheung Mei; Cheng, Wang Fai; Liu, Yukuai; Chen, Xinxin; von Nordheim, Danny; Mak, Chee Leung; Dai, Jiyan; Ploss, Bernd; Leung, Chi Wah
2017-12-01
We investigated the tunability of the transport and magnetic properties in 7.5 nm La0.7Sr0.3MnO3 (LSMO) epitaxial films in a field effect geometry with the ferroelectric copolymer P(VDF-TrFE) as the gate insulator. Two different switching behaviors were observed upon application of gate voltages with either high or low magnitudes. The application of single voltage pulses of alternating polarity with an amplitude high enough to switch the remanent polarization of the ferroelectric copolymer led to a 15% change of the resistance of the LSMO channel at temperature 300 K (but less than 1% change at 20 K). A minimal shift of the peak in the resistance-temperature plot was observed, implying that the Curie temperature TC of the manganite layer is not changed. Alternatively, the application of a chain of low voltage pulses was found to shift TC by more than 16 K, and a change of the channel resistance by a 45% was obtained. We attribute this effect to the field-assisted injection and removal of oxygen vacancies in the LSMO layer, which can occur across the thickness of the oxide film. By controlling the oxygen migration, the low-field switching route offers a simple method for modulating the electric and magnetic properties of manganite films.
Feng, Guo-Hua; Liu, Jun-Hao
2013-02-01
This paper proposes a tunable-focus liquid lens implemented with a simple cylindrical container structure and liquid as the lens material. The cylindrical container was constructed using a Pb [Zr(0.52)Ti(0.48)]O(3) (PZT) ring transducer and a polydimethylsiloxane membrane that was attached to a flat side of the transducer. The free surface of the liquid in the cylindrical container can be driven as a static-like convex lens with different curvatures because the higher-order harmonic resonance of the PZT transducer was electrically controlled. Based on a capillary-force-dominant design, the activated liquid lens maintained surface curvature in an arbitrary orientation without a gravitational effect. Profiles of the liquid lenses were characterized with the driving voltages of the transducer ranging from 12 to 60 V peak-to-peak (Vpp) at a resonant frequency of 460 kHz. The temperature effects on the lenses caused by the continuous operation of the transducer were measured. Images showed the various curvatures of the lenses with a range of actuation voltages. A change in focal length of eight times (5.72 to 46.03 cm) was demonstrated within the 10 Vpp variation of the driving voltage. For the characterized liquid lenses, the distortion was less than 2%, and the modulation transfer function reached 63 line pairs per mm (lp/mm) using ZEMAX analysis.
Zhao, Shishun; Wang, Lei; Zhou, Ziyao; Li, Chunlei; Dong, Guohua; Zhang, Le; Peng, Bin; Min, Tai; Hu, Zhongqiang; Ma, Jing; Ren, Wei; Ye, Zuo-Guang; Chen, Wei; Yu, Pu; Nan, Ce-Wen; Liu, Ming
2018-05-29
Electric field (E-field) modulation of perpendicular magnetic anisotropy (PMA) switching, in an energy-efficient manner, is of great potential to realize magnetoelectric (ME) memories and other ME devices. Voltage control of the spin-reorientation transition (SRT) that allows the magnetic moment rotating between the out-of-plane and the in-plane direction is thereby crucial. In this work, a remarkable magnetic anisotropy field change up to 1572 Oe is achieved under a small operation voltage of 4 V through ionic liquid (IL) gating control of SRT in Au/[DEME] + [TFSI] - /Pt/(Co/Pt) 2 /Ta capacitor heterostructures at room temperature, corresponding to a large ME coefficient of 378 Oe V -1 . As revealed by both ferromagnetic resonance measurements and magnetic domain evolution observation, the magnetization can be switched stably and reversibly between the out-of-plane and in-plane directions via IL gating. The key mechanism, revealed by the first-principles calculation, is that the IL gating process influences the interfacial spin-orbital coupling as well as net Rashba magnetic field between the Co and Pt layers, resulting in the modulation of the SRT and in-plane/out-of-plane magnetization switching. This work demonstrates a unique IL-gated PMA with large ME tunability and paves a way toward IL gating spintronic/electronic devices such as voltage tunable PMA memories. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Manipulating photoinduced voltage in metasurface with circularly polarized light.
Bai, Qiang
2015-02-23
Recently, the concept of metasurface has provided one an unprecedented opportunity and ability to control the light in the deep subwavelength scale. However, so far most efforts are devoted to exploiting the novel scattering properties and applications of metasurface in optics. Here, I theoretically and numerically demonstrate that longitudinal and transverse photoinduced voltages can be simultaneously realized in the proposed metasurface utilizing the magnetic resonance under the normal incidence of circularly polarized light, which may extend the concept and functionality of metasurface into the electronics and may provide a potential scheme to realize a nanoscale tunable voltage source through a nanophotonic roadmap. The signs of longitudinal and transverse photoin-duced voltages can be manipulated by tuning the resonant frequency and the handedness of circularly polarized light, respectively. Analytical formulae of photoinduced voltage are presented based on the theory of symmetry of field. This work may bridge nanophotonics and electronics, expands the capability of metasurface and has many potential applications.
Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz.
Hornstein, Melissa K; Bajaj, Vikram S; Griffin, Robert G; Temkin, Richard J
2007-02-01
The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE(2) (,) (3) (,) (1) mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents.
Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz
Hornstein, Melissa K.; Bajaj, Vikram S.; Griffin, Robert G.; Temkin, Richard J.
2007-01-01
The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE2,3,1 mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents. PMID:17687412
Sawane, Yogesh B; Ogale, Satishchandra B; Banpurkar, Arun G
2016-09-14
We demonstrate a consistent electrowetting response on ferroelectric poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) insulator covered with a thin Teflon AF layer. This bilayer exhibits a factor of 3 enhancement in the contact angle modulation compared to that of conventional single-layered Teflon AF dielectric. On the basis of the proposed model the enhancement is attributed to the high value of effective dielectric constant (εeff ≈ 6) of the bilayer. Furthermore, the bilayer dielectric exhibits a hysteresis-free contact angle modulation over many AC voltage cycles. But the contact angle modulation for DC voltage shows a hysteresis because of the field-induced residual polarization in the ferroelectric layer. Finally, we show that a thin bilayer exhibits contact angle modulation of Δθ (U) ≈ 60° at merely 15 V amplitude of AC voltage indicating a potential dielectric for practical low voltage electrowetting applications. A proof of concept confirms electrowetting based rapid mixing of a fluorescent dye in aqueous glycerol solution for 15 V AC signal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Joonseok; Kim, Howon; Ju, Honglyoul, E-mail: tesl@yonsei.ac.kr
2016-03-28
The characteristics of onset voltages and conduction channel temperatures in the metal-insulator transition (MIT) of vanadium dioxide (VO{sub 2}) devices are investigated as a function of dimensions and ambient temperature. The MIT onset voltage varies from 18 V to 199 V as the device length increases from 5 to 80 μm at a fixed width of 100 μm. The estimated temperature at local conduction channel increases from 110 to 370 °C, which is higher than the MIT temperature (67 °C) of VO{sub 2}. A simple Joule-heating model is employed to explain voltage-induced MIT as well as to estimate temperatures of conduction channel appearing after MIT inmore » various-sized devices. Our findings on VO{sub 2} can be applied to micro- to nano-size tunable heating devices, e.g., microscale scanning thermal cantilevers and gas sensors.« less
Yang, Qu; Zhou, Ziyao; Wang, Liqian; Zhang, Hongjia; Cheng, Yuxin; Hu, Zhongqiang; Peng, Bin; Liu, Ming
2018-05-01
To meet the demand of developing compatible and energy-efficient flexible spintronics, voltage manipulation of magnetism on soft substrates is in demand. Here, a voltage tunable flexible field-effect transistor structure by ionic gel (IG) gating in perpendicular synthetic anti-ferromagnetic nanostructure is demonstrated. As a result, the interlayer Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction can be tuned electrically at room temperature. With a circuit gating voltage, anti-ferromagnetic (AFM) ordering is enhanced or converted into an AFM-ferromagnetic (FM) intermediate state, accompanying with the dynamic domain switching. This IG gating process can be repeated stably at different curvatures, confirming an excellent mechanical property. The IG-induced modification of interlayer exchange coupling is related to the change of Fermi level aroused by the disturbance of itinerant electrons. The voltage modulation of RKKY interaction with excellent flexibility proposes an application potential for wearable spintronic devices with energy efficiency and ultralow operation voltage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multi-tunable microelectromechanical system (MEMS) resonators
Stalford, Harold L [Norman, OK; Butler, Michael A [Andover, MA; Schubert, W Kent [Albuquerque, NM
2006-08-22
A method for tuning a vibratory device including a cantilevered resonator comprising the steps of increasing a voltage V.sub.0 supplied to the vibratory device to thereby increase the bandwidth of the vibratory device; and keeping the resonant frequency of the vibratory device at substantially that natural frequency of the cantilevered resonator, wherein the vibratory device comprises: a capacitor including a movable plate and a fixed plate spaced from each other, the movable plate being part of the cantilevered resonator; a voltage source connected to the capacitor for providing voltage V.sub.0 across the capacitor to produce an attractive force between movable plate and fixed plate; a circuit connecting the voltage source to the capacitor; and a load resistor in said circuit having a resistance R.sub.L satisfying the following equation: .mu..omega..times..times..lamda. ##EQU00001## where: .mu. is at least 10; .omega..sub.0 is the beam constant for the cantilevered resonator; c.sub.0 is the capacitance for the capacitor; and .lamda. is the voltage dependent coupling parameter for voltage V.sub.0.
Multicomponent doped barium strontium titanate thin films for tunable microwave applications
NASA Astrophysics Data System (ADS)
Alema, Fikadu Legesse
In recent years there has been enormous progress in the development of barium strontium titanate (BST) films for tunable microwave applications. However, the properties of BST films still remain inferior compared to bulk materials, limiting their use for microwave technology. Understanding the film/substrate mismatch, microstructure, and stoichiometry of BST films and finding the necessary remedies are vital. In this work, BST films were deposited via radio frequency magnetron sputtering method and characterized both analytically and electrically with the aim of optimizing their properties. The stoichiometry, crystal structure, and phase purity of the films were studied by varying the oxygen partial pressure (OPP) and total gas pressure (TGP) in the chamber. A better stoichiometric match between film and target was achieved when the TGP is high (> 30 mTorr). However, the O2/Ar ratio should be adjusted as exceeding a threshold of 2 mTorr in OPP facilitates the formation of secondary phases. The growth of crystalline film on platinized substrates was achieved only with a lower temperature grown buffer layer, which acts as a seed layer by crystallizing when the temperature increases. Concurrent Mg/Nb doping has significantly improved the properties of BST thin films. The doped film has shown an average tunability of 53%, which is only ˜8 % lower than the value for the undoped film. This drop is associated with the Mg ions whose detrimental effects are partially compensated by Nb ions. Conversely, the doping has reduced the dielectric loss by ˜40 % leading to a higher figure of merit. Moreover, the two dopants ensure a charge neutrality condition which resulted in significant leakage current reduction. The presence of large amounts of empty shallow traps related to Nb Ti localize the free carriers injected from the contacts; thus increase the device control voltage substantially (>10 V). A combinatorial thin film synthesis method based on co-sputtering of two BST sources doped with Mg/Nb and Ce, respectively, was applied. The composition and the dielectric properties of the deposited film were correlated and the optimal concentration of dopants corresponding to high tunability and low dielectric loss was determined in a timely fashion.
Lin, Jian; Fu, Zhixing; Zhang, Jiaxu; Zhu, Yujia; Hu, Dandan; Li, Dongsheng; Wu, Tao
2017-03-20
A series of electronically active viologen dications (RV) with tunable substituent groups were utilized to hybridize with [Ge 4 S 10 ] 4- (T2 cluster) to form the hybrids of T2@RV. These hybrids exhibited variable supermolecular assembly formation, tunable optical absorption properties, and different photoelectric response under the influence of different RV dications. Raman testing and time-dependent photocurrent response indicated that the photosensitivity and photostability of T2@RV could be integrated while choosing suitable RV dications. Current research provides a general method to build a tunable hybrid system based on crystalline metal chalcogenide compounds through the replacement of photoinactive cationic organic templates with photoactive ones with different substituent groups.
Sam, Somarith; Lim, Sungjoon
2013-04-01
This paper presents the modeling, design, fabrication, and measurement of an ultra-wideband tunable twoport resonator in which the substrate-integrated waveguide, complementary split-ring resonators (CSRRs), and varactors are embedded on the same planar platform. The tuning of the passband frequency is generated by a simple single dc voltage of 0 to 36 V, which is applied to each varactor on the CSRRs. Different capacitance values and resonant frequencies are produced while a nearly constant absolute bandwidth is maintained. The resonant frequency is varied between 0.83 and 1.58 GHz and has a wide tuning ratio of 90%.
Generation of tunable plasma photonic crystals in meshed dielectric barrier discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yongjie; Dong, Lifang, E-mail: donglfhbu@163.com; Liu, Weibo
2014-07-15
Tunable superlattice plasma photonic crystals are obtained in a meshed dielectric barrier discharge. These plasma photonic crystals are composed of thin artificial lattices and thick self-organized lattices, and can be tuned easily by adjusting the applied voltage. A plasma photonic crystal with self-organized hexagonal lattice coupled to artificial square lattice is first realized. The dispersion relations of the square sublattices with different radii, which are recorded by an intensified charge-coupled device camera, are calculated. The results show that the thick square sublattice has the higher band edge frequencies and wider band widths. Band gaps of superlattice plasma photonic crystals aremore » actually temporal integrations of those of transient sublattices.« less
Electrically tunable Dicke effect in a double-ring resonator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cetin, A. E.; Muestecaplioglu, Oe. E.; Department of Physics, Koc University, Sariyer, Istanbul 34450
We study the finite-element method analysis of the Dicke effect using numerical simulations in an all-optical system of an optical waveguide side-coupled to two interacting ring resonators in a liquid crystal environment. The system is shown to exhibit all the signatures of the Dicke effect under active and reversible control by an applied voltage.
Resonance fluorescence revival in a voltage-controlled semiconductor quantum dot
NASA Astrophysics Data System (ADS)
Reigue, Antoine; Lemaître, Aristide; Gomez Carbonell, Carmen; Ulysse, Christian; Merghem, Kamel; Guilet, Stéphane; Hostein, Richard; Voliotis, Valia
2018-02-01
We demonstrate systematic resonance fluorescence recovery with near-unity emission efficiency in single quantum dots embedded in a charge-tunable device in a wave-guiding geometry. The quantum dot charge state is controlled by a gate voltage, through carrier tunneling from a close-lying Fermi sea, stabilizing the resonantly photocreated electron-hole pair. The electric field cancels out the charging/discharging mechanisms from nearby traps toward the quantum dots, responsible for the usually observed inhibition of the resonant fluorescence. Fourier transform spectroscopy as a function of the applied voltage shows a strong increase in the coherence time though not reaching the radiative limit. These charge controlled quantum dots can act as quasi-perfect deterministic single-photon emitters, with one laser pulse converted into one emitted single photon.
Large-aperture Tunable Plasma Meta-material to Interact with Electromagnetic Waves
NASA Astrophysics Data System (ADS)
Corke, Thomas; Matlis, Eric
2016-11-01
The formation of spatially periodic arrangements of glow discharge plasma resulting from charge instabilities were investigated as a tuneable plasma meta-material. The plasma was formed between two 2-D parallel dielectric covered electrodes: one consisting of an Indium-Tin-Oxide coated glass sheet, and the other consisting of a glass-covered circular electrode. The dielectric covered electrodes were separated by a gap that formed a 2-D channel. The gap spacing was adjustable. The electrodes were powered by a variable amplitude AC generator. The parallel electrode arrangement was placed in a variable pressure vacuum chamber. Various combinations of gap spacing, pressure and voltage resulted in the formation of spatially periodic arrangements (lattice) of glow discharge plasma. The lattice spacing perfectly followed 2-D packing theory, and was fully adjustable through the three governing parameters. Lattice arrangements were designed to interact with electromagnetic (EM) waves in the frequency range between 10GHz-80GHz. Its feasibility was investigate through an EM wave simulation that we adapted to allow for plasma permittivity. The results showed a clear suppression of the EM wave amplitude through the plasma gratings. Supported by AFOSR.
Dynamically tunable extraordinary light absorption in monolayer graphene
NASA Astrophysics Data System (ADS)
Safaei, Alireza; Chandra, Sayan; Vázquez-Guardado, Abraham; Calderon, Jean; Franklin, Daniel; Tetard, Laurene; Zhai, Lei; Leuenberger, Michael N.; Chanda, Debashis
2017-10-01
The high carrier mobility of graphene makes it an attractive material for electronics, however, graphene's application for optoelectronic systems is limited due to its low optical absorption. We present a cavity-coupled nanopatterned graphene absorber designed to sustain temporal and spatial overlap between localized surface plasmon resonance and cavity modes, thereby resulting in enhanced absorption up to an unprecedented value of theoretically (60 %) and experimentally measured (45 %) monolayer graphene in the technologically relevant 8-12-μm atmospheric transparent infrared imaging band. We demonstrate a wide electrostatic tunability of the absorption band (˜2 μ m ) by modifying the Fermi energy. The proposed device design allows enhanced absorption and dynamic tunability of chemical vapor deposition grown low carrier mobility graphene which provides a significant advantage over previous strategies where absorption enhancement was limited to exfoliated high carrier mobility graphene. We developed an analytical model that incorporates the coupling of the graphene electron and substrate phonons, providing valuable and instructive insights into the modified plasmon-phonon dispersion relation necessary to interpret the experimental observations. Such gate voltage and cavity tunable enhanced absorption in chemical vapor deposited large area monolayer graphene paves the path towards the scalable development of ultrasensitive infrared photodetectors, modulators, and other optoelectronic devices.
Volumetric HiLo microscopy employing an electrically tunable lens.
Philipp, Katrin; Smolarski, André; Koukourakis, Nektarios; Fischer, Andreas; Stürmer, Moritz; Wallrabe, Ulrike; Czarske, Jürgen W
2016-06-27
Electrically tunable lenses exhibit strong potential for fast motion-free axial scanning in a variety of microscopes. However, they also lead to a degradation of the achievable resolution because of aberrations and misalignment between illumination and detection optics that are induced by the scan itself. Additionally, the typically nonlinear relation between actuation voltage and axial displacement leads to over- or under-sampled frame acquisition in most microscopic techniques because of their static depth-of-field. To overcome these limitations, we present an Adaptive-Lens-High-and-Low-frequency (AL-HiLo) microscope that enables volumetric measurements employing an electrically tunable lens. By using speckle-patterned illumination, we ensure stability against aberrations of the electrically tunable lens. Its depth-of-field can be adjusted a-posteriori and hence enables to create flexible scans, which compensates for irregular axial measurement positions. The adaptive HiLo microscope provides an axial scanning range of 1 mm with an axial resolution of about 4 μm and sub-micron lateral resolution over the full scanning range. Proof of concept measurements at home-built specimens as well as zebrafish embryos with reporter gene-driven fluorescence in the thyroid gland are shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chun; Zhang, Caihong, E-mail: chzhang@nju.edu.cn; Hu, Guoliang
2016-07-11
With the emergence and development of artificially structured electromagnetic materials, active terahertz (THz) metamaterial devices have attracted significant attention in recent years. Tunability of transmission is desirable for many applications. For example, short-range wireless THz communications and ultrafast THz interconnects require switches and modulators. However, the tunable range of transmission amplitude of existing THz metamaterial devices is not satisfactory. In this article, we experimentally demonstrate an electrically tunable superconducting niobium nitride metamaterial device and employ a hybrid coupling model to analyze its optical transmission characteristics. The maximum transmission coefficient at 0.507 THz is 0.98 and decreases to 0.19 when themore » applied voltage increases to 0.9 V. A relative transmittance change of 80.6% is observed, making this device an efficient narrowband THz switch. Additionally, the frequency of the peak is red shifted from 0.507 to 0.425 THz, which means that the device can be used to select the frequency. This study offers an alternative tuning method to existing optical, thermal, magnetic-field, and electric-field tuning, delivering a promising approach for designing active and miniaturized THz devices.« less
Electrically tunable polarizer based on graphene-loaded plasmonic cross antenna
NASA Astrophysics Data System (ADS)
Qin, Yuwei; Xiong, Xiaoyan Y. Z.; Sha, Wei E. I.; Jiang, Li Jun
2018-04-01
The unique gate-voltage dependent optical properties of graphene make it a promising electrically-tunable plasmonic material. In this work, we proposed in situ control of the polarization of nanoantennas by combining plasmonic structures with an electrostatically tunable graphene monolayer. The tunable polarizer is designed based on an asymmetric cross nanoantenna comprising two orthogonal metallic dipoles sharing the same feed gap. Graphene monolayer is deposited on a Si/SiO2 substrate, and inserted beneath the nanoantenna. Our modelling demonstrates that as the chemical potential is incremented up to 1 eV by electrostatic doping, resonant wavelength for the longer graphene-loaded dipole is blue shifted for 500 nm (~10% of the resonance) in the mid-infrared range, whereas the shorter dipole experiences much smaller influences due to the unique wavelength-dependent optical properties of graphene. In this way, the relative field amplitude and phase between the two dipole nanoantennas are electrically adjusted, and the polarization state of the reflected wave can be electrically tuned from the circular into near-linear states with the axial ratio changing over 8 dB. Our study thus confirms the strong light-graphene interaction with metallic nanostructures, and illuminates promises for high-speed electrically controllable optoelectronic devices.
Electrically tunable soft solid lens inspired by reptile and bird accommodation.
Pieroni, Michael; Lagomarsini, Clara; De Rossi, Danilo; Carpi, Federico
2016-10-26
Electrically tunable lenses are conceived as deformable adaptive optical components able to change focus without motor-controlled translations of stiff lenses. In order to achieve large tuning ranges, large deformations are needed. This requires new technologies for the actuation of highly stretchable lenses. This paper presents a configuration to obtain compact tunable lenses entirely made of soft solid matter (elastomers). This was achieved by combining the advantages of dielectric elastomer actuation (DEA) with a design inspired by the accommodation of reptiles and birds. An annular DEA was used to radially deform a central solid-body lens. Using an acrylic elastomer membrane, a silicone lens and a simple fabrication method, we assembled a tunable lens capable of focal length variations up to 55%, driven by an actuator four times larger than the lens. As compared to DEA-based liquid lenses, the novel architecture halves the required driving voltages, simplifies the fabrication process and allows for a higher versatility in design. These new lenses might find application in systems requiring large variations of focus with low power consumption, silent operation, low weight, shock tolerance, minimized axial encumbrance and minimized changes of performance against vibrations and variations in temperature.
Dynamical control on helicity of electromagnetic waves by tunable metasurfaces
Xu, He-Xiu; Sun, Shulin; Tang, Shiwei; Ma, Shaojie; He, Qiong; Wang, Guang-Ming; Cai, Tong; Li, Hai-Peng; Zhou, Lei
2016-01-01
Manipulating the polarization states of electromagnetic (EM) waves, a fundamental issue in optics, attracted intensive attention recently. However, most of the devices realized so far are either too bulky in size, and/or are passive with only specific functionalities. Here we combine theory and experiment to demonstrate that, a tunable metasurface incorporating diodes as active elements can dynamically control the reflection phase of EM waves, and thus exhibits unprecedented capabilities to manipulate the helicity of incident circular-polarized (CP) EM wave. By controlling the bias voltages imparted on the embedded diodes, we demonstrate that the device can work in two distinct states. Whereas in the “On” state, the metasurface functions as a helicity convertor and a helicity hybridizer within two separate frequency bands, it behaves as a helicity keeper within an ultra-wide frequency band in the “Off” state. Our findings pave the way to realize functionality-switchable devices related to phase control, such as frequency-tunable subwavelength cavities, anomalous reflectors and even holograms. PMID:27272350
Dynamical control on helicity of electromagnetic waves by tunable metasurfaces.
Xu, He-Xiu; Sun, Shulin; Tang, Shiwei; Ma, Shaojie; He, Qiong; Wang, Guang-Ming; Cai, Tong; Li, Hai-Peng; Zhou, Lei
2016-06-08
Manipulating the polarization states of electromagnetic (EM) waves, a fundamental issue in optics, attracted intensive attention recently. However, most of the devices realized so far are either too bulky in size, and/or are passive with only specific functionalities. Here we combine theory and experiment to demonstrate that, a tunable metasurface incorporating diodes as active elements can dynamically control the reflection phase of EM waves, and thus exhibits unprecedented capabilities to manipulate the helicity of incident circular-polarized (CP) EM wave. By controlling the bias voltages imparted on the embedded diodes, we demonstrate that the device can work in two distinct states. Whereas in the "On" state, the metasurface functions as a helicity convertor and a helicity hybridizer within two separate frequency bands, it behaves as a helicity keeper within an ultra-wide frequency band in the "Off" state. Our findings pave the way to realize functionality-switchable devices related to phase control, such as frequency-tunable subwavelength cavities, anomalous reflectors and even holograms.
Toward tunable band gap and tunable dirac point in bilayer graphene with molecular doping.
Yu, Woo Jong; Liao, Lei; Chae, Sang Hoon; Lee, Young Hee; Duan, Xiangfeng
2011-11-09
The bilayer graphene has attracted considerable attention for potential applications in future electronics and optoelectronics because of the feasibility to tune its band gap with a vertical displacement field to break the inversion symmetry. Surface chemical doping in bilayer graphene can induce an additional offset voltage to fundamentally affect the vertical displacement field and the band gap opening in bilayer graphene. In this study, we investigate the effect of chemical molecular doping on band gap opening in bilayer graphene devices with single or dual gate modulation. Chemical doping with benzyl viologen molecules modulates the displacement field to allow the opening of a transport band gap and the increase of the on/off ratio in the bilayer graphene transistors. Additionally, Fermi energy level in the opened gap can be rationally controlled by the amount of molecular doping to obtain bilayer graphene transistors with tunable Dirac points, which can be readily configured into functional devices, such as complementary inverters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Chiu-Chun; Ling, D. C.; Chi, C. C.
2014-11-03
We have developed a highly tunable, narrow band far-infrared (FIR) photodetector which utilizes the characteristic merits of graphene and two-dimensional electron gas (2DEG) in GaAs/Al{sub x}Ga{sub 1−x}As heterostructure in the Quantum Hall states (QHS). The heterostructure surface is covered with chemical vapor-deposited graphene, which functions as a transparent top-gate to vary the electron density of the 2DEG. FIR response observed in the vicinity of integer QH regime can be effectively tuned in a wide range of 27–102 cm{sup −1} with a bias voltage less than −1 V. In addition, we have found that the presence of graphene can genuinely modulate the photoresponse.more » Our results demonstrate a promising direction for realizing a tunable long-wavelength FIR detector using QHS in GaAs 2DEG/ graphene composite material.« less
Wang, Yi-Ting; Kim, Gil-Ho; Huang, C F; Lo, Shun-Tsung; Chen, Wei-Jen; Nicholls, J T; Lin, Li-Hung; Ritchie, D A; Chang, Y H; Liang, C-T; Dolan, B P
2012-10-10
We study the temperature flow of conductivities in a gated GaAs two-dimensional electron gas (2DEG) containing self-assembled InAs dots and compare the results with recent theoretical predictions. By changing the gate voltage, we are able to tune the 2DEG density and thus vary disorder and spin-splitting. Data for both the spin-resolved and spin-degenerate phase transitions are presented, the former collapsing to the latter with decreasing gate voltage and/or decreasing spin-splitting. The experimental results support a recent theory, based on modular symmetry, which predicts how the critical Hall conductivity varies with spin-splitting.
A Novel Slicing Method for Thin Supercapacitors.
Sun, Hao; Fu, Xuemei; Xie, Songlin; Jiang, Yishu; Guan, Guozhen; Wang, Bingjie; Li, Houpu; Peng, Huisheng
2016-08-01
Thin and flexible supercapacitors with low cost and individual variation are fabricated by a new and efficient slicing method. Tunable output voltage and energy can be realized with a high specific capacitance of 248.8 F g(-1) or 150.8 F cm(-3) , which is well maintained before and after bending. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2008-12-01
attached DR1 to a tunable high glass transition temperatue (Tg) polymeric backbone prepared by ROMP. Figure 1. Standard and required poling...approximately 13-15 g of polymer. The remainder of the mixed polymer adhered to screw or barrel. Norbornyl-DR1 monomer (1). 5-norbornene-2- carboxylic acid
NASA Astrophysics Data System (ADS)
Zhang, Yuanbo
2009-03-01
We have successfully performed atomically-resolved scanning tunneling microscopy and spectroscopy (STS) on mechanically exfoliated graphene samples having tunable back-gates. We have discovered that the tunneling spectra of graphene flakes display an unexpected gap-like feature that is pinned to the Fermi level for different gate voltages, and which coexists with another depression in density-of-states that moves with gate voltage. Extensive tests and careful analysis show that the gap-feature is due to phonon-assisted inelastic tunneling, and the depression directly marks the location of the graphene Dirac point. Using tunneling spectroscopy as a new tool, we further probe the local energetic variations of the graphene charge neutral point (Dirac point) to map out spatial electron density inhomogeneities in graphene. Such measurements are two orders of magnitude higher in resolution than previous experiments, and they can be directly correlated with nanometer scale topographic features. Based on our observation of energy-dependent periodic electronic interference patterns, our measurements also reveal the nature of impurity scattering of Dirac fermions in graphene. These results are significant for understanding the sources of electron density inhomogeneity and electron scattering in graphene, and the microscopic causes of graphene electron mobility.
Micro-electro-mechanically switchable near infrared complementary metamaterial absorber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitchappa, Prakash; Pei Ho, Chong; Institute of Microelectronics
2014-05-19
We experimentally demonstrate a micro-electro-mechanically switchable near infrared complementary metamaterial absorber by integrating the metamaterial layer to be the out of plane movable microactuator. The metamaterial layer is electrostatically actuated by applying voltage across the suspended complementary metamaterial layer and the stationary bottom metallic reflector. Thus, the effective spacing between the metamaterial layer and bottom metal reflector is varied as a function of applied voltage. With the reduction of effective spacing between the metamaterial and reflector layers, a strong spectral blue shift in the peak absorption wavelength can be achieved. With spacing change of 300 nm, the spectral shift of 0.7 μmmore » in peak absorption wavelength was obtained for near infrared spectral region. The electro-optic switching performance of the device was characterized, and a striking switching contrast of 1500% was achieved at 2.1 μm. The reported micro-electro-mechanically tunable complementary metamaterial absorber device can potentially enable a wide range of high performance electro-optical devices, such as continuously tunable filters, modulators, and electro-optic switches that form the key components to facilitate future photonic circuit applications.« less
Computer-aided design comparisons of monolithic and hybrid MEM-tunable VCSELs
NASA Astrophysics Data System (ADS)
Ochoa, Edward M.; Nelson, Thomas R., Jr.; Blum-Spahn, Olga; Lott, James A.
2003-07-01
We report and use our micro-electro-mechanically tunable vertical cavity surface emitting laser (MEM-TVCSEL) computer-aided design methodology to investigate the resonant frequency design space for monolithic and hybrid MEM-TVCSELs. For various initial optical air gap thickness, we examine the sensitivity of monolithic or hybrid MEM-TVCSEL resonant frequency by simulating zero, two, and four percent variations in III-V material growth thickness. As expected, as initial optical airgap increases, tuning range decreases due to less coupling between the active region and the tuning mirror. However, each design has different resonant frequency sensitivity to variations in III-V growth parameters. In particular, since the monolithic design is comprised of III-V material, the shift in all growth thicknesses significantly shifts the resonant frequency response. However, for hybrid MEMTVCSELs, less shift results, since the lower reflector is an Au mirror with reflectivity independent of III-V growth variations. Finally, since the hybrid design is comprised of a MUMPS polysilicon mechanical actuator, pull-in voltage remains independent of the initial optical airgap between the tuning reflector and the III-V material. Conversely, as the initial airgap increases in the monolithic design, the pull-in voltage significantly increases.
An Overview of Communications Technology and Development Efforts for 2015 SBIR Phase I
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2017-01-01
This report highlights innovative SBIR 2015 Phase I projects specifically addressing areas in Communications Technology and Development which is one of six core competencies at NASA Glenn Research Center. There are fifteen technologies featured with emphasis on a wide spectrum of applications such as novel solid state lasers for space-based water vapor dial; wide temperature, high voltage and energy density capacitors for aerospace exploration; instrument for airborne measurement of carbonyl sulfide; high-power tunable seed laser for methane Lidar transmitter; ROC-rib deployable ka-band antenna for nanosatellites; a SIC-based microcontroller for high-temperature in-situ instruments and systems; improved yield, performance and reliability of high-actuator-count deformable mirrors; embedded multifunctional optical sensor system; switching electronics for space-based telescopes with advanced AO systems; integrated miniature DBR laser module for Lidar instruments; and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. space-based water vapor dial; wide temperature, high voltage and energy density capacitors foraerospace exploration; instrument for airborne measurement of carbonyl sulfide; high-power tunable seed laser formethane Lidar transmitter; ROC-rib deployable ka-band antenna for nanosatellites.
NASA Astrophysics Data System (ADS)
Huang, Weichuan; Liu, Yukuai; Luo, Zhen; Hou, Chuangming; Zhao, Wenbo; Yin, Yuewei; Li, Xiaoguang
2018-06-01
The ferroelectric domain reversal dynamics and the corresponding resistance switching as well as the memristive behaviors in epitaxial BiFeO3 (BFO, ~150 nm) based multiferroic heterojunctions were systematically investigated. The ferroelectric domain reversal dynamics could be described by the nucleation-limited-switching model with the Lorentzian distribution of logarithmic domain-switching times. By engineering the domain states, multi and even continuously tunable resistances states, i.e. memristive states, could be non-volatilely achieved. The resistance switching speed can be as fast as 30 ns in the BFO-based multiferroic heterojunctions with a write voltage of ~20 V. By reducing the thickness of BFO, the La0.6Sr0.4MnO3/BFO (~5 nm)/La0.6Sr0.4MnO3 multiferroic tunnel junction (MFTJ) shows an even a quicker switching speed (20 ns) with a much lower operation voltage (~4 V). Importantly, the MFTJ exhibits a tunable interfacial magnetoelectric coupling related to the ferroelectric domain switching dynamics. These findings enrich the potential applications of multiferroic BFO based devices in high-speed, low-power, and high-density memories as well as future neuromorphic computational architectures.
Tunable reverse-biased graphene/silicon heterojunction Schottky diode sensor.
Singh, Amol; Uddin, Ahsan; Sudarshan, Tangali; Koley, Goutam
2014-04-24
A new chemical sensor based on reverse-biased graphene/Si heterojunction diode has been developed that exhibits extremely high bias-dependent molecular detection sensitivity and low operating power. The device takes advantage of graphene's atomically thin nature, which enables molecular adsorption on its surface to directly alter graphene/Si interface barrier height, thus affecting the junction current exponentially when operated in reverse bias and resulting in ultrahigh sensitivity. By operating the device in reverse bias, the work function of graphene, and hence the barrier height at the graphene/Si heterointerface, can be controlled by the bias magnitude, leading to a wide tunability of the molecular detection sensitivity. Such sensitivity control is also possible by carefully selecting the graphene/Si heterojunction Schottky barrier height. Compared to a conventional graphene amperometric sensor fabricated on the same chip, the proposed sensor demonstrated 13 times higher sensitivity for NO₂ and 3 times higher for NH₃ in ambient conditions, while consuming ∼500 times less power for same magnitude of applied voltage bias. The sensing mechanism based on heterojunction Schottky barrier height change has been confirmed using capacitance-voltage measurements. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Graphene-based active slow surface plasmon polaritons
Lu, Hua; Zeng, Chao; Zhang, Qiming; Liu, Xueming; Hossain, Md Muntasir; Reineck, Philipp; Gu, Min
2015-01-01
Finding new ways to control and slow down the group velocity of light in media remains a major challenge in the field of optics. For the design of plasmonic slow light structures, graphene represents an attractive alternative to metals due to its strong field confinement, comparably low ohmic loss and versatile tunability. Here we propose a novel nanostructure consisting of a monolayer graphene on a silicon based graded grating structure. An external gate voltage is applied to graphene and silicon, which are separated by a spacer layer of silica. Theoretical and numerical results demonstrate that the structure exhibits an ultra-high slowdown factor above 450 for the propagation of surface plasmon polaritons (SPPs) excited in graphene, which also enables the spatially resolved trapping of light. Slowdown and trapping occur in the mid-infrared wavelength region within a bandwidth of ~2.1 μm and on a length scale less than 1/6 of the operating wavelength. The slowdown factor can be precisely tuned simply by adjusting the external gate voltage, offering a dynamic pathway for the release of trapped SPPs at room temperature. The presented results will enable the development of highly tunable optoelectronic devices such as plasmonic switches and buffers. PMID:25676462
Thermally tunable-focus lenticular lens using liquid crystal.
Heo, Kyong Chan; Yu, Seung Hun; Kwon, Jin Hyuk; Gwag, Jin Seog
2013-12-10
A thermally tunable focusing lenticular liquid crystal (LC) lens array was fabricated using a polymer LC component, including a polarizer that produces linearly polarized light. The focal length in the proposed structure could be tuned by temperature-adjusted applied voltage to a transparent heater in a lenticular LC lens cell because it alters the birefringence of the LC and varies the difference in refractive index between the LC and the polymer. The results showed that the focal length of the E7 LC used varied continuously with temperature from 5.6 to 8.7 mm from 25°C to 54°C, respectively. The proposed lenticular LC lens has potential use in photonic devices such as biological imaging, phone cameras, and optical sensors.
MEMS tunable optical filter based on multi-ring resonator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dessalegn, Hailu, E-mail: hailudessalegn@yahoo.com, E-mail: tsrinu@ece.iisc.ernet.in; Srinivas, T., E-mail: hailudessalegn@yahoo.com, E-mail: tsrinu@ece.iisc.ernet.in
We propose a novel MEMS tunable optical filter with a flat-top pass band based on multi-ring resonator in an electrostatically actuated microcantilever for communication application. The filter is basically structured on a microcantilever beam and built in optical integrated ring resonator which is placed in one end of the beam to gain maximum stress on the resonator. Thus, when a DC voltage is applied, the beam will bend, that induces a stress and strain in the ring, which brings a change in refractive index and perimeter of the rings leading to change in the output spectrum shift, providing the tenabilitymore » as high as 0.68nm/μN and it is capable of tuning up to 1.7nm.« less
Graphene based terahertz phase modulators
NASA Astrophysics Data System (ADS)
Kakenov, N.; Ergoktas, M. S.; Balci, O.; Kocabas, C.
2018-07-01
Electrical control of amplitude and phase of terahertz radiation (THz) is the key technological challenge for high resolution and noninvasive THz imaging. The lack of active materials and devices hinders the realization of these imaging systems. Here, we demonstrate an efficient terahertz phase and amplitude modulation using electrically tunable graphene devices. Our device structure consists of electrolyte-gated graphene placed at quarter wavelength distance from a reflecting metallic surface. In this geometry, graphene operates as a tunable impedance surface which yields electrically controlled reflection phase. Terahertz time domain reflection spectroscopy reveals the voltage controlled phase modulation of π and the reflection modulation of 50 dB. To show the promises of our approach, we demonstrate a multipixel phase modulator array which operates as a gradient impedance surface.
Interfacial varactor characteristics of ferroelectric thin films on high-resistivity Si substrate
NASA Astrophysics Data System (ADS)
Lan, Wen-An; Wang, Tsan-Chun; Huang, Ling-Hui; Wu, Tai-Bor
2006-07-01
Ferroelectric Ba(Zr0.25Ti0.75)O3 (BZT) thin films were deposited on high-resistivity Si substrate without or with inserting a high-k buffer layer of Ta2O5. The varactor characteristics of the BZT capacitors in metal-oxide-semiconductor structure were studied. At low frequency (1MHz ), the capacitors exhibit a negatively tunable characteristic, i.e., [C(V)-C(0)]/C(0)<0, against dc bias V, but opposite tunable characteristics were found at microwave frequencies (>1GHz). The change of voltage-dependent characteristic is attributed to the effect of low-resistivity interface induced by charged defects formed from interfacial oxidation of Si in screening the microwave from penetrating into the bulk of Si.
Electro-optical tunable birefringent filter
Levinton, Fred M [Princeton, NJ
2012-01-31
An electrically tunable Lyot type filter is a Lyot that include one or more filter elements. Each filter element may have a planar, solid crystal comprised of a material that exhibits birefringence and is electro-optically active. Transparent electrodes may be coated on each face of the crystal. An input linear light polarizer may be located on one side of the crystal and oriented at 45 degrees to the optical axis of the birefringent crystal. An output linear light polarizer may be located on the other side of the crystal and oriented at -45 degrees with respect to the optical axis of the birefringent crystal. When an electric voltage is applied between the electrodes, the retardation of the crystal changes and so does the spectral transmission of the optical filter.
The gatemon: a transmon with a voltage-variable superconductor-semiconductor junction
NASA Astrophysics Data System (ADS)
Petersson, Karl
We have developed a superconducting transmon qubit with a semiconductor-based Josephson junction element. The junction is made from an InAs nanowire with in situ molecular beam epitaxy-grown superconducting Al contacts. This gate-controlled transmon, or gatemon, allows simple tuning of the qubit transition frequency using a gate voltage to vary the density of carriers in the semiconductor region. In the first generations of devices we have measured coherence times up to ~10 μs. These coherence times, combined with stable qubit operation, permit single qubit rotations with fidelities of ~99.5 % for all gates including voltage-controlled Z rotations. Towards multi-qubit operation we have also implemented a two qubit voltage-controlled cPhase gate. In contrast to flux-tuned transmons, voltage-tunable gatemons may simplify the task of scaling to multi-qubit circuits and enable new means of control for many qubit architectures. In collaboration with T.W. Larsen, L. Casparis, M.S. Olsen, F. Kuemmeth, T.S. Jespersen, P. Krogstrup, J. Nygard and C.M. Marcus. Research was supported by Microsoft Project Q, Danish National Research Foundation and a Marie Curie Fellowship.
High-intensity pulsed beam source with tunable operation mode
NASA Astrophysics Data System (ADS)
Nashilevskiy, A. V.; Kanaev, G. G.; Ezhov, V. V.; Shamanin, V. I.
2017-05-01
The report presents the design of an electron and an ion pulsed accelerator. The powerful high-voltage pulse generator of the accelerator and the vacuum bushing insulator is able to change the polarity of the output voltage. The low-inductance matching transformer provides an increase in the DFL output impedance by 4 times. The generator based on a high voltage pulse transformer and a pseudo spark switch is applied for DFL charging. The high-impedance magnetically insulated focusing diode with Br magnetic field and the “passive” anode was used to realize the ion beam generation mode. The plasma is formed on the surface of the anode caused by an electrical breakdown at the voltage edge pulse; as a result, the carbon ion and proton beam is generated. This beam has the following parameters: the current density is about 400 A/cm2 (in focus): the applied voltage is up to 450 kV. The accelerator is designed for the research on the interaction of the charged particle pulsed beams with materials and for the development of technological processes of a material modification.
Voltage control of ferromagnetic resonance
NASA Astrophysics Data System (ADS)
Zhou, Ziyao; Peng, Bin; Zhu, Mingmin; Liu, Ming
2016-05-01
Voltage control of magnetism in multiferroics, where the ferromagnetism and ferroelectricity are simultaneously exhibiting, is of great importance to achieve compact, fast and energy efficient voltage controllable magnetic/microwave devices. Particularly, these devices are widely used in radar, aircraft, cell phones and satellites, where volume, response time and energy consumption is critical. Researchers realized electric field tuning of magnetic properties like magnetization, magnetic anisotropy and permeability in varied multiferroic heterostructures such as bulk, thin films and nanostructure by different magnetoelectric (ME) coupling mechanism: strain/stress, interfacial charge, spin-electromagnetic (EM) coupling and exchange coupling, etc. In this review, we focus on voltage control of ferromagnetic resonance (FMR) in multiferroics. ME coupling-induced FMR change is critical in microwave devices, where the electric field tuning of magnetic effective anisotropic field determines the tunability of the performance of microwave devices. Experimentally, FMR measurement technique is also an important method to determine the small effective magnetic field change in small amount of magnetic material precisely due to its high sensitivity and to reveal the deep science of multiferroics, especially, voltage control of magnetism in novel mechanisms like interfacial charge, spin-EM coupling and exchange coupling.
Modulation of spin dynamics via voltage control of spin-lattice coupling in multiferroics
Zhu, Mingmin; Zhou, Ziyao; Peng, Bin; ...
2017-02-03
Our work aims at magnonics manipulation by the magnetoelectric coupling effect and is motivated by the most recent progresses in both magnonics (spin dynamics) and multiferroics fields. Here, voltage control of magnonics, particularly the surface spin waves, is achieved in La 0.7Sr 0.3MnO 3/0.7Pb(Mg 1/3Nb 2/3)O 3-0.3PbTiO 3 multiferroic heterostructures. With the electron spin resonance method, a large 135 Oe shift of surface spin wave resonance (≈7 times greater than conventional voltage-induced ferromagnetic resonance shift of 20 Oe) is determined. A model of the spin-lattice coupling effect, i.e., varying exchange stiffness due to voltage-induced anisotropic lattice changes, has been establishedmore » to explain experiment results with good agreement. In addition, an “on” and “off” spin wave state switch near the critical angle upon applying a voltage is created. The modulation of spin dynamics by spin-lattice coupling effect provides a platform for realizing energy-efficient, tunable magnonics devices.« less
Voltage-programmable liquid optical interface
NASA Astrophysics Data System (ADS)
Brown, C. V.; Wells, G. G.; Newton, M. I.; McHale, G.
2009-07-01
Recently, there has been intense interest in photonic devices based on microfluidics, including displays and refractive tunable microlenses and optical beamsteerers that work using the principle of electrowetting. Here, we report a novel approach to optical devices in which static wrinkles are produced at the surface of a thin film of oil as a result of dielectrophoretic forces. We have demonstrated this voltage-programmable surface wrinkling effect in periodic devices with pitch lengths of between 20 and 240 µm and with response times of less than 40 µs. By a careful choice of oils, it is possible to optimize either for high-amplitude sinusoidal wrinkles at micrometre-scale pitches or more complex non-sinusoidal profiles with higher Fourier components at longer pitches. This opens up the possibility of developing rapidly responsive voltage-programmable, polarization-insensitive transmission and reflection diffraction devices and arbitrary surface profile optical devices.
NASA Astrophysics Data System (ADS)
Hu, Nan; Chen, Dajing; Wang, Dong; Huang, Shicheng; Trase, Ian; Grover, Hannah M.; Yu, Xiaojiao; Zhang, John X. J.; Chen, Zi
2018-02-01
Kirigami, a modified form of origami which includes cutting, has been used to improve material stretchability and compliance. However, this technique is, so far, underexplored in patterning piezoelectric materials towards developing efficient and mechanically flexible thin-film energy generators. Motivated by existing kirigami-based applications, we introduce interdigitated cuts to polyvinylidene fluoride (PVDF) films to evaluate the effect on voltage generation and stretchability. Our results from theoretical analysis, numerical simulations, and experimental tests show that kirigami PVDF films exhibit an extended strain range while still maintaining significant voltage generation compared to films without cuts. Various cutting patterns are studied, and it is found that films with denser cuts have a larger voltage output. This kirigami design can enhance the properties of existing piezoelectric materials and help to integrate tunable PVDF generators into biomedical devices.
Novel optical switch with a reconfigurable dielectric liquid droplet.
Ren, Hongwen; Xu, Su; Ren, Daqiu; Wu, Shin-Tson
2011-01-31
We demonstrated a novel optical switch with a reconfigurable dielectric liquid droplet. The device consists of a clear liquid droplet (glycerol) surrounded by a black liquid (dye-doped liquid crystal). In the voltage-off state, the incident light passing through the clear liquid droplet is absorbed by the black liquid, resulting in a dark state. In the voltage-on state, the dome of the clear liquid droplet is uplifted by the dielectric force to form a light pipe which in turn transmits the incident light. Upon removing the voltage, the droplet recovers to its original shape and the switch is closed. We also demonstrated a red color light switch with ~10:1 contrast ratio and ~300 ms response time. Devices based on such an operation mechanism will find attractive applications in light shutter, tunable iris, variable optical attenuators, and displays.
Liquid-Solid Dual-Gate Organic Transistors with Tunable Threshold Voltage for Cell Sensing.
Zhang, Yu; Li, Jun; Li, Rui; Sbircea, Dan-Tiberiu; Giovannitti, Alexander; Xu, Junling; Xu, Huihua; Zhou, Guodong; Bian, Liming; McCulloch, Iain; Zhao, Ni
2017-11-08
Liquid electrolyte-gated organic field effect transistors and organic electrochemical transistors have recently emerged as powerful technology platforms for sensing and simulation of living cells and organisms. For such applications, the transistors are operated at a gate voltage around or below 0.3 V because prolonged application of a higher voltage bias can lead to membrane rupturing and cell death. This constraint often prevents the operation of the transistors at their maximum transconductance or most sensitive regime. Here, we exploit a solid-liquid dual-gate organic transistor structure, where the threshold voltage of the liquid-gated conduction channel is controlled by an additional gate that is separated from the channel by a metal-oxide gate dielectric. With this design, the threshold voltage of the "sensing channel" can be linearly tuned in a voltage window exceeding 0.4 V. We have demonstrated that the dual-gate structure enables a much better sensor response to the detachment of human mesenchymal stem cells. In general, the capability of tuning the optimal sensing bias will not only improve the device performance but also broaden the material selection for cell-based organic bioelectronics.
Nature of superconductor-insulator transition at LaAlO{sub 3}/SrTiO{sub 3} interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanta, N., E-mail: nmohanta@phy.iitkgp.ernet.in; Taraphder, A.; Centre for Theoretical Studies, Indian Institute of Technology Kharagpur, W. B. 721302
2015-05-15
The two-dimensional electron liquid, at the interface between two band insulators LaAlO{sub 3} and SrTiO{sub 3}, exhibits novel, unconventional superconductivity below 200 mK. One of the remarkable properties of the two-dimensional superconductor is its fantastic tunability by external parameters such as gate-voltage or magnetic field. We study the superconductor to insulator transition induced by gate-voltage by employing a self-consistent, mean-field Bogoliubov-de Gennes treatment based on an effective model. We show that the non-monotonic behaviour of the superconductivity with respect to gate-voltage is intrinsically due to the Rashba spin-orbit coupling. With increasing gate-voltage both the electron concentration and Rashba spin-orbit splittingmore » increases. Elevated electron filling boosts superconductivity whereas enhanced spin-orbit splitting annihilates electron-pairing. The non-monotonicity is a result of this competition. The device application of the superconductor-insulator transition in this interface is discussed.« less
Voltage-dependent formation of gramicidin channels in lipid bilayers.
Sandblom, J; Galvanovskis, J; Jilderos, B
2001-01-01
The formation kinetics of gramicidin A channels in lipid bilayer membranes has been characterized as a function of voltage for different solution conditions and membrane composition. The frequency of channel events was measured during the application of voltage ramps and counted in given intervals, a procedure that eliminated the effects of drift in gramicidin concentration. The formation rate was found to increase strongly with voltages up to approximately 50 mV and then to level off slightly. The shape of the voltage dependence was independent of lipid solvent and ramp speed but differed for different ions and different solution concentrations. This suggested an ion occupancy effect on the formation rate that was further supported by the fact that the minimum of the formation rate was shifted toward the equilibrium potential in asymmetric solution concentrations. The effects are explained in terms of a model that contains two contributions to the voltage dependence, a voltage-dependent ion binding to the monomers and a polarization of monomers by the applied electric field and by the occupied ions. The theory is found to give a good fit to experimental data. PMID:11463628
NASA Astrophysics Data System (ADS)
Tork, Hossam S.
This dissertation describes electrically tunable microwave devices utilizing low temperature co-fired ceramics (LTCC) and thick film via filled with the ferroelectric materials barium strontium titanate (BST) and barium zirconate titanate (BZT). Tunable ferroelectric capacitors, zero meta-material phase shifters, and tunable meta-material phase shifters are presented. Microwave phase shifters have many applications in microwave devices. They are essential components for active and passive phased array antennas and their most common use is in scanning phased array antennas. They are used in synthetic aperture radars (SAR), low earth orbit (LEO) communication satellites, collision warning radars, and intelligent vehicle highway systems (IVHS), in addition to various other applications. Tunable ferroelectric materials have been investigated, since they offer the possibility of lowering the total cost of phased arrays. Two of the most promising ferroelectric materials in microwave applications are BST and BZT. The proposed design and implementation in this research introduce new types of tunable meta-material phase shifters embedded inside LTCC, which use BST and BZT as capacitive tunable dielectric material controlled by changing the applied voltage. This phase shifter has the advantages of meta-material structures, which produce little phase error and compensation while having the simultaneous advantage of using LTCC technology for embedding passive components that improve signal integrity (several signal lines, power planes, and ground planes) by using different processes like via filling, screen printing, laminating and firing that can be produced in compact sizes at a low cost. The via filling technique was used to build tunable BST, BZT ferroelectric material capacitors to control phase shift. Finally, The use of the proposed ferroelectric meta-material phase shifter improves phase shifter performance by reducing insertion loss in both transmitting and receiving directions for phased array antennas, reducing phase error, improving figure of merit (FOM) and phase shifter tunability around center frequency, and also enables the integration of the phase shifters with the microwave circuits on one substrate, thus substantially reducing the size, mass, and cost of the antennas.
Performance Enhancement of Tunable Bandpass Filters Using Selective Etched Ferroelectric Thin Films
NASA Technical Reports Server (NTRS)
Miranda, Felix A.; Mueller, Carl H.; VanKeuls, Fred W.; Subramanyam, Guru; Vignesparamoorthy, Sivaruban
2003-01-01
The inclusion of voltage-tunable barium strontium titanate (BSTO) thin films into planar band pass filters offers tremendous potential to increase their versatility. The ability to tune the passband so as to correct for minor deviations in manufacturing tolerances, or to completely reconfigure the operating frequencies of a microwave communication system, are highly sought-after goals. However, use of ferroelectric films in these devices results in higher dielectric losses, which in turn increase the insertion loss and decrease the quality factors of the filters. This study explores the use of patterned ferroelectric layers to minimize dielectric losses without degrading tunability. Patterning the ferroelectric layers enables us to constrict the width of the ferroelectric layers between the coupled microstrip lines, and minimize losses due to ferroelectric layers. Coupled one-pole microstrip bandpass filters with fundamental resonances at approx. 7.2 GHz and well defined harmonic resonances at approx. 14.4 and approx. 21.6 GHz, were designed, simulated and tested. For one of the filters, experimental results verified that its center frequency was tunable by 528 MHz at a center frequency of 21.957 GHz, with insertion losses varying from 4.3 to 2.5 dB, at 0 and 3.5 V/micron, respectively. These data demonstrate that the tuning-to-loss figure of merit of tunable microstrip filters can be greatly improved using patterned ferroelectric thin films as the tuning element, and tuning can be controlled by engineering the ferroelectric constriction in the coupled sections.
Determining resistivity of a geological formation using circuitry located within a borehole casing
Vail III, William Banning
2006-01-17
Geological formation resistivity is determined. Circuitry is located within the borehole casing that is adjacent to the geological formation. The circuitry can measure one or more voltages across two or more voltage measurement electrodes associated with the borehole casing. The measured voltages are used by a processor to determine the resistivity of the geological formation. A common mode signal can also be reduced using the circuitry.
Wray, Lindsay S; Rnjak-Kovacina, Jelena; Mandal, Biman B; Schmidt, Daniel F; Gil, Eun Seok; Kaplan, David L
2012-12-01
In the field of tissue engineering and regenerative medicine there is significant unmet need for critically-sized, fully degradable biomaterial scaffold systems with tunable properties for optimizing tissue formation in vitro and tissue regeneration in vivo. To address this need, we have developed a silk-based scaffold platform that has tunable material properties, including localized and bioactive functionalization, degradation rate, and mechanical properties and that provides arrays of linear hollow channels for delivery of oxygen and nutrients throughout the scaffold bulk. The scaffolds can be assembled with dimensions that range from millimeters to centimeters, addressing the need for a critically-sized platform for tissue formation. We demonstrate that the hollow channel arrays support localized and confluent endothelialization. This new platform offers a unique and versatile tool for engineering 'tailored' scaffolds for a range of tissue engineering and regenerative medicine needs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Graphene Quantum Capacitors for High Frequency Tunable Analog Applications.
Moldovan, Clara F; Vitale, Wolfgang A; Sharma, Pankaj; Tamagnone, Michele; Mosig, Juan R; Ionescu, Adrian M
2016-08-10
Graphene quantum capacitors (GQC) are demonstrated to be enablers of radio-frequency (RF) functions through voltage-tuning of their capacitance. We show that GQC complements MEMS and MOSFETs in terms of performance for high frequency analog applications and tunability. We propose a CMOS compatible fabrication process and report the first experimental assessment of their performance at microwaves frequencies (up to 10 GHz), demonstrating experimental GQCs in the pF range with a tuning ratio of 1.34:1 within 1.25 V, and Q-factors up to 12 at 1 GHz. The figures of merit of graphene variable capacitors are studied in detail from 150 to 350 K. Furthermore, we describe a systematic, graphene specific approach to optimize their performance and predict the figures of merit achieved if such a methodology is applied.
Qian, Linyong; Zhang, Dawei; Dai, Bo; Wang, Qi; Huang, Yuanshen; Zhuang, Songlin
2015-07-13
A novel bandwidth-tunable notch filter is proposed based on the guided-mode resonance effect. The notch is created due to the superposition spectra response of two guided-mode resonant filters. The compact, bandwidth tuning capability is realized by taking advantage the effect of spectra-to-polarization sensitivity in one-dimensional classical guided-mode resonance filter, and using a liquid crystal polarization rotator for precise and simple polarization control. The operation principle and the design of the device are presented, and we demonstrate it experimentally. The central wavelength is fixed at 766.4 nm with a relatively symmetric profile. The full width at half maximum bandwidth could be tuned from 8.6 nm to 18.2 nm by controlling the applied voltage in electrically-driving polarization rotator.
NASA Astrophysics Data System (ADS)
Shin, Yong-Wook; Sung, Won Ju; Eknoyan, O.; Madsen, C. K.; Taylor, H. F.
2012-04-01
A polarization-independent four-port wavelength-tunable optical add drop multiplexer (OADM) that utilizes non-polarizing relaxed beam splitters has been analyzed and demonstrated in Ti:LiNbO3 at the 1530 nm wavelength regime. The design utilizes an asymmetric interferometer configuration with strain induced index grating for polarization coupling along its arms that are shifted in position relative to each other. Experimental results of the filter response agree with theoretical predictions. Electrooptic tuning over a range of 15.7 nm at a rate of 0.08 nm/V has been measured. A temporal response < 46 ns to a 20 V step change in tuning voltage has been demonstrated. Fiber-to-fiber insertion loss is ~ 6.5 dB.
Electrical tuning of three-dimensional photonic crystals using polymer dispersed liquid crystals
NASA Astrophysics Data System (ADS)
McPhail, Dennis; Straub, Martin; Gu, Min
2005-01-01
Electrically tunable three-dimensional photonic crystals with a tunable wavelength range of over 70nm of stop gaps between 3 and 4μm have been generated in a liquid crystal-polymer composite. The photonic crystals were fabricated by femtosecond-laser direct writing of void channels in an inverse woodpile configuration with 20 layers providing an extinction of infrared light transmission of 70% in the stacking direction. Stable structures could be manufactured up to a liquid crystal concentration of 24%. Applying a direct voltage of several hundred volts in the stacking direction of the photonic crystal changes the alignment of the liquid crystal directors and hence the average refractive index of the structure. This mechanism permits the direct tuning of the photonic stop gap.
IGZO TFT-based circuit with tunable threshold voltage by laser annealing
NASA Astrophysics Data System (ADS)
Huang, Xiaoming; Yu, Guang; Wu, Chenfei
2017-11-01
In this work, a high-performance inverter based on amorphous indium-gallium-zinc oxide thin-film transistors (TFTs) has been fabricated, which consists of a driver TFT and a load TFT. The threshold voltage (Vth) of the load TFT can be tuned by applying an area-selective laser annealing. The transfer curve of the load TFT shows a parallel shift into the negative bias direction upon laser annealing. Based on x-ray photoelectron spectroscopy analyses, the negative Vth shift can be attributed to the increase of oxygen vacancy concentration within the device channel upon laser irradiation. Compared to the untreated inverter, the laser annealed inverter shows much improved switching characteristics, including a large output swing range which is close to full swing, as well as an enhanced output voltage gain. Furthermore, the dynamic performance of ring oscillator based on the laser-annealed inverter is improved.
NASA Astrophysics Data System (ADS)
Chen, Ming-Syuan; Lin, Wei-Chih; Tsou, Yu-Shih; Lin, Yi-Hsin
2012-10-01
A polarization-independent liquid crystal (LC) phase modulation using polymer-network liquid crystals with orthogonal alignments layers (T-PNLC) is demonstrated. T-PNLC consists of three layers. LC directors in the two layers near glass substrates are orthogonal to each other. In the middle layer, LC directors are perpendicular to the glass substrate. The advantages of such T-PNLC include polarizer-free, larger phase shift (~0.4π rad) than the residual phase type (<0.05π rad), and low operating voltage (< 30Vrms). It does not require bias voltage for avoiding scattering because the refractive index of liquid crystals matches that of polymers. The phase shift of T-PNLC is affected by the cell gap and the curing voltages. The potential applications are laser beam steering, spatial light modulators and electrically tunable micro-lens arrays.
NASA Astrophysics Data System (ADS)
Chakrabartty, Joyprokash; Harnagea, Catalin; Celikin, Mert; Rosei, Federico; Nechache, Riad
2018-05-01
Inorganic ferroelectric perovskites are attracting attention for the realization of highly stable photovoltaic cells with large open-circuit voltages. However, the power conversion efficiencies of devices have been limited so far. Here, we report a power conversion efficiency of 4.20% under 1 sun illumination from Bi-Mn-O composite thin films with mixed BiMnO3 and BiMn2O5 crystal phases. We show that the photocurrent density and photovoltage mainly develop across grain boundaries and interfaces rather than within the grains. We also experimentally demonstrate that the open-circuit voltage and short-circuit photocurrent measured in the films are tunable by varying the electrical resistance of the device, which in turn is controlled by externally applying voltage pulses. The exploitation of multifunctional properties of composite oxides provides an alternative route towards achieving highly stable, high-efficiency photovoltaic solar energy conversion.
Focus tunable device actuator based on ionic polymer metal composite
NASA Astrophysics Data System (ADS)
Zhang, Yi-Wei; Su, Guo-Dung J.
2015-09-01
IPMC (Ionic Polymer Metallic Composite) is a kind of electroactive polymer (EAP) which is used as an actuator because of its low driving voltage and small size. The mechanism of IPMC actuator is due to the ionic diffusion when the voltage gradient is applied. In this paper, the complex IPMC fabrication such as Ag-IPMC be further developed in this paper. The comparison of response time and tip bending displacement of Pt-IPMC and Ag-IPMC will also be presented. We also use the optimized IPMC as the lens actuator integrated with curvilinear microlens array, and use the 3D printer to make a simple module and spring stable system. We also used modeling software, ANSYS Workbench, to confirm the effect of spring system. Finally, we successfully drive the lens system in 200μm stroke under 2.5V driving voltage within 1 seconds, and the resonant frequency is approximately 500 Hz.
Xu, He-Xiu; Tang, Shiwei; Ma, Shaojie; Luo, Weijie; Cai, Tong; Sun, Shulin; He, Qiong; Zhou, Lei
2016-01-01
Controlling the phase distributions on metasurfaces leads to fascinating effects such as anomalous light refraction/reflection, flat-lens focusing, and optics-vortex generation. However, metasurfaces realized so far largely reply on passive resonant meta-atoms, whose intrinsic dispersions limit such passive meta-devices’ performances at frequencies other than the target one. Here, based on tunable meta-atoms with varactor diodes involved, we establish a scheme to resolve these issues for microwave metasurfaces, in which the dispersive response of each meta-atom is precisely controlled by an external voltage imparted on the diode. We experimentally demonstrate two effects utilizing our scheme. First, we show that a tunable gradient metasurface exhibits single-mode high-efficiency operation within a wide frequency band, while its passive counterpart only works at a single frequency but exhibits deteriorated performances at other frequencies. Second, we demonstrate that the functionality of our metasurface can be dynamically switched from a specular reflector to a surface-wave convertor. Our approach paves the road to achieve dispersion-corrected and switchable manipulations of electromagnetic waves. PMID:27901088
Xu, He-Xiu; Tang, Shiwei; Ma, Shaojie; Luo, Weijie; Cai, Tong; Sun, Shulin; He, Qiong; Zhou, Lei
2016-11-30
Controlling the phase distributions on metasurfaces leads to fascinating effects such as anomalous light refraction/reflection, flat-lens focusing, and optics-vortex generation. However, metasurfaces realized so far largely reply on passive resonant meta-atoms, whose intrinsic dispersions limit such passive meta-devices' performances at frequencies other than the target one. Here, based on tunable meta-atoms with varactor diodes involved, we establish a scheme to resolve these issues for microwave metasurfaces, in which the dispersive response of each meta-atom is precisely controlled by an external voltage imparted on the diode. We experimentally demonstrate two effects utilizing our scheme. First, we show that a tunable gradient metasurface exhibits single-mode high-efficiency operation within a wide frequency band, while its passive counterpart only works at a single frequency but exhibits deteriorated performances at other frequencies. Second, we demonstrate that the functionality of our metasurface can be dynamically switched from a specular reflector to a surface-wave convertor. Our approach paves the road to achieve dispersion-corrected and switchable manipulations of electromagnetic waves.
NASA Astrophysics Data System (ADS)
Xu, He-Xiu; Tang, Shiwei; Ma, Shaojie; Luo, Weijie; Cai, Tong; Sun, Shulin; He, Qiong; Zhou, Lei
2016-11-01
Controlling the phase distributions on metasurfaces leads to fascinating effects such as anomalous light refraction/reflection, flat-lens focusing, and optics-vortex generation. However, metasurfaces realized so far largely reply on passive resonant meta-atoms, whose intrinsic dispersions limit such passive meta-devices’ performances at frequencies other than the target one. Here, based on tunable meta-atoms with varactor diodes involved, we establish a scheme to resolve these issues for microwave metasurfaces, in which the dispersive response of each meta-atom is precisely controlled by an external voltage imparted on the diode. We experimentally demonstrate two effects utilizing our scheme. First, we show that a tunable gradient metasurface exhibits single-mode high-efficiency operation within a wide frequency band, while its passive counterpart only works at a single frequency but exhibits deteriorated performances at other frequencies. Second, we demonstrate that the functionality of our metasurface can be dynamically switched from a specular reflector to a surface-wave convertor. Our approach paves the road to achieve dispersion-corrected and switchable manipulations of electromagnetic waves.
Dynamic Wavelength-Tunable Photodetector Using Subwavelength Graphene Field-Effect Transistors
Léonard, François; Spataru, Catalin D.; Goldflam, Michael; ...
2017-04-04
The holy grail of photodetector technology is dynamic wavelength tunability. Because of its atomic thickness and unique properties, graphene opens up new paradigms to realize this concept, but so far this has been elusive experimentally. We employ detailed quantum transport modeling of photocurrent in graphene field-effect transistors (including realistic electromagnetic fields) to show that wavelength tunability is possible by dynamically changing the gate voltage. We also reveal the phenomena that govern the behavior of this type of device and show significant departure from the simple expectations based on vertical transitions. We find strong focusing of the electromagnetic fields at themore » contact edges over the same length scale as the band-bending. Both of these spatially-varying potentials lead to an enhancement of non-vertical optical transitions, which dominate even in the absence of phonon or impurity scattering. Furthermore, we show that the vanishing density of states near the Dirac point leads to contact blocking and a gate-dependent modulation of the photocurrent. Several of the effects discussed here should be applicable to a broad range of one- and two-dimensional materials and devices.« less
Dynamic Wavelength-Tunable Photodetector Using Subwavelength Graphene Field-Effect Transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Léonard, François; Spataru, Catalin D.; Goldflam, Michael
The holy grail of photodetector technology is dynamic wavelength tunability. Because of its atomic thickness and unique properties, graphene opens up new paradigms to realize this concept, but so far this has been elusive experimentally. We employ detailed quantum transport modeling of photocurrent in graphene field-effect transistors (including realistic electromagnetic fields) to show that wavelength tunability is possible by dynamically changing the gate voltage. We also reveal the phenomena that govern the behavior of this type of device and show significant departure from the simple expectations based on vertical transitions. We find strong focusing of the electromagnetic fields at themore » contact edges over the same length scale as the band-bending. Both of these spatially-varying potentials lead to an enhancement of non-vertical optical transitions, which dominate even in the absence of phonon or impurity scattering. Furthermore, we show that the vanishing density of states near the Dirac point leads to contact blocking and a gate-dependent modulation of the photocurrent. Several of the effects discussed here should be applicable to a broad range of one- and two-dimensional materials and devices.« less
NASA Astrophysics Data System (ADS)
Fu, JiaHui; Raheem, Odai H.
2017-07-01
A novel IMSL tunable phase shifter for HMSIW-LWA-fed rectangular patches based on liquid crystal technology is proposed. Rectangular patches are used as radiators for the opening sidewall of the waveguide and matched section part for a unit cell. The transition structure is added for enhancing the efficiency of HMSIW-LWA due to converting most input power to the leaky mode. The novel IMSL phase shifter is used for investigating the tunable dielectric characteristics of N-LC by applying an electric field to the LC cell, which is controlled by the orientation angle of the LC molecules. Theoretically, the orientation angle is derived and solved numerically with the accurate method. As a result, the HMSIW-LWA can be tuned up to ± 25° for a fixed frequency by tuning the nematic LC with applied voltage from 0 to 20 V. In addition, the realized gain changed from 6 to 9.4 dB for a fixed tuned frequency, and 46° steerable for rest main beams range of the HMSIW-LWA in both forward and backward directions.
Qiu, Dongri; Kim, Eun Kyu
2015-09-03
We fabricated multi-layered graphene/MoS2 heterostructured devices by positioning mechanically exfoliated bulk graphite and single-crystalline 2H-MoS2 onto Au metal pads on a SiO2/Si substrate via a contamination-free dry transfer technique. We also studied the electrical transport properties of Au/MoS2 junction devices for systematic comparison. A previous work has demonstrated the existence of a positive Schottky barrier height (SBH) in the metal/MoS2 system. However, analysis of the SBH indicates that the contacts of the multi-layered graphene/MoS2 have tunable negative barriers in the range of 300 to -46 meV as a function of gate voltage. It is hypothesized that this tunable SBH is responsible for the modulation of the work function of the thick graphene in these devices. Despite the large number of graphene layers, it is possible to form ohmic contacts, which will provide new opportunities for the engineering of highly efficient contacts in flexible electronics and photonics.
NASA Astrophysics Data System (ADS)
Qiu, Dongri; Kim, Eun Kyu
2015-09-01
We fabricated multi-layered graphene/MoS2 heterostructured devices by positioning mechanically exfoliated bulk graphite and single-crystalline 2H-MoS2 onto Au metal pads on a SiO2/Si substrate via a contamination-free dry transfer technique. We also studied the electrical transport properties of Au/MoS2 junction devices for systematic comparison. A previous work has demonstrated the existence of a positive Schottky barrier height (SBH) in the metal/MoS2 system. However, analysis of the SBH indicates that the contacts of the multi-layered graphene/MoS2 have tunable negative barriers in the range of 300 to -46 meV as a function of gate voltage. It is hypothesized that this tunable SBH is responsible for the modulation of the work function of the thick graphene in these devices. Despite the large number of graphene layers, it is possible to form ohmic contacts, which will provide new opportunities for the engineering of highly efficient contacts in flexible electronics and photonics.
Evolution of biofunctional semiconductor nanocrystals: a calorimetric investigation.
Ghosh, Debasmita; Mondal, Somrita; Roy, Chandra Nath; Saha, Abhijit
2013-12-14
Semiconductor nanomaterials have found numerous applications in optoelectronic device fabrication and in platforms for drug delivery and hyperthermia cancer treatment, and in various other biomedical fields because of their high photochemical stability and size-tunable photoluminescence (PL). However, little attention has been paid to exploring the energetics of formation of these semiconductor nanoparticles. We demonstrate that formation of nanocrystals with biofunctionalization supported by widely used groups, BSA and cysteine, is an exothermic spontaneous process driven by enthalpy. The whole energetics of the reaction shows that formation of smaller particles is favored with lower synthesis temperature. Further, it is shown that the thermodynamics of nanoparticle formation is strongly influenced by the conformation of the protein matrix. We also demonstrate that protein supported formation of nanocrystals is thermodynamically more favorable compared to that involving smaller organic thiol groups. The favorable enthalpy of formation compensates unfavorable entropy, resulting in favorable Gibbs free energy. Thus, this study can open up new avenues for establishing a thermodynamic basis for the design of nanosystems with new and tunable properties.
Design and Fabrication of Micro-Electro-Mechanical Structures for Tunable Micro-Optical Devices
2002-03-01
purposes. Figure 2.6 shows the resulting Voltage vs. displacement curve for a 150 µm × 150 µm piston micromirror with four 150 µm flexures, and a 2 µm...2-6 2.3.2 Piston Micromirrors . . . . . . . . . . . . . . . . . . 2-7 2.4 VCSEL Design...Schematic view of basic electrostatic piston micromirror [4]. . . . . 2-7 2.5. Deflection of a flexure beam with a single fixed end [22]. . . . . . . 2
Spin filtering by field-dependent resonant tunneling.
Ristivojevic, Zoran; Japaridze, George I; Nattermann, Thomas
2010-02-19
We consider theoretically transport in a spinful one-channel interacting quantum wire placed in an external magnetic field. For the case of two pointlike impurities embedded in the wire, under a small voltage bias the spin-polarized current occurs at special points in the parameter space, tunable by a single parameter. At sufficiently low temperatures complete spin polarization may be achieved, provided repulsive interaction between electrons is not too strong.
A frequency-sensing readout using piezoelectric sensors for sensing of physiological signals.
Buxi, Dilpreet; Redouté, Jean-Michel; Yuce, Mehmet Rasit
2014-01-01
Together with a charge or voltage amplifier, piezoelectric sensors are commonly used to pick up physiological vibrations from the body. As an alternative to chopper or auto-zero amplifiers, frequency sensing is known in literature to provide advantages of noise immunity, interfacing to digital readout systems as well as tunable range of sensing. A frequency-sensing readout circuit for sensing low voltage signals from piezoelectric sensors is successfully developed and tested in this work. The output voltage of a piezoelectric sensor is fed to a varactor, which is part of an Colpitts LC oscillator. The oscillation frequency is converted into a voltage using a phase locked loop. The circuit is compared to a reference design in terms of linearity, noise and transfer function. The readout has a input-referred noise voltage of 2.24μV/√Hz and consumes 15 mA at 5V supply. Arterial pulse wave signals and the cardiac vibrations from the chest are measured from one subject to show the proof of concept of the proposed readout. The results of this work are intended to contribute towards alternative low noise analog front end designs for piezoelectric sensors.
Linear frequency tuning in an LC-resonant system using a C-V response controllable MEMS varactor
NASA Astrophysics Data System (ADS)
Han, Chang-Hoon; Yoon, Yong-Hoon; Ko, Seung-Deok; Seo, Min-Ho; Yoon, Jun-Bo
2017-12-01
This paper proposes a device level solution to achieve linear frequency tuning with respect to a tuning voltage ( V tune ) sweep in an inductor ( L)-capacitor ( C) resonant system. Since the linearity of the resonant frequency vs. tuning voltage ( f- V) relationship in an LC-resonant system is closely related to the C- V response characteristic of the varactor, we propose a C- V response tunable varactor to realize the linear frequency tuning. The proposed varactor was fabricated using microelectromechanical system (MEMS) surface micromachining. The fabricated MEMS varactor has the ability to dynamically change the C- V response characteristic according to a curve control voltage ( V curve- control ). When V curve- control was increased from zero to 9 V, the C- V response curve was changed from a linear to a concave form (i.e., the capacitance decreased quickly in the low tuning voltage region and slowly in the high tuning voltage region). This change in the C- V response characteristic resulted in a change in the f- V relationship, and we successfully demonstrated almost perfectly linear frequency tuning in the LC-resonant system, with a linearity factor of 99.95%.
Patterned Ferroelectric Films for Tunable Microwave Devices
NASA Technical Reports Server (NTRS)
Miranda, Felix A.; Mueller, Carl H.
2008-01-01
Tunable microwave devices based on metal terminals connected by thin ferroelectric films can be made to perform better by patterning the films to include suitably dimensioned, positioned, and oriented constrictions. The patterns can be formed during fabrication by means of selective etching processes. If the width of the ferroelectric film in such a device is reduced at one or more locations, then both the microwave field and any applied DC bias (tuning) electric field become concentrated at those locations. The magnitudes of both the permittivity and the dielectric loss of a ferroelectric material are reduced by application of a DC field. Because the concentration of the DC field in the constriction(s) magnifies the permittivity- and loss-reducing effects of the applied DC voltage, the permittivity and dielectric loss in the constriction(s) are smaller in the constriction(s) than they are in the wider parts of the ferroelectric film. Furthermore, inasmuch as displacement current must flow through either the constriction(s) or the low-loss dielectric substrate, the net effect of the constriction(s) is equivalent to that of incorporating one or more low-loss, low-permittivity region(s) in series with the high-loss, high-permittivity regions. In a series circuit, the properties of the low-capacitance series element (in this case, the constriction) dominate the overall performance. Concomitantly, the capacitance between the metal terminals is reduced. By making the capacitance between the metal terminals small but tunable, a constriction increases the upper limit of the frequency range amenable to ferroelectric tuning. The present patterning concept is expected to be most advantageous for devices and circuits that must operate at frequencies from about 4 to about 60 GHz. A constriction can be designed such that the magnitude of the microwave electric field and the effective width of the region occupied by the microwave electric field become functions of the applied DC electric field, so that tunability is enhanced. It should even be possible to design the constriction to obtain a specific tuning-versus-voltage profile.
Top-gate organic depletion and inversion transistors with doped channel and injection contact
NASA Astrophysics Data System (ADS)
Liu, Xuhai; Kasemann, Daniel; Leo, Karl
2015-03-01
Organic field-effect transistors constitute a vibrant research field and open application perspectives in flexible electronics. For a commercial breakthrough, however, significant performance improvements are still needed, e.g., stable and high charge carrier mobility and on-off ratio, tunable threshold voltage, as well as integrability criteria such as n- and p-channel operation and top-gate architecture. Here, we show pentacene-based top-gate organic transistors operated in depletion and inversion regimes, realized by doping source and drain contacts as well as a thin layer of the transistor channel. By varying the doping concentration and the thickness of the doped channel, we control the position of the threshold voltage without degrading on-off ratio or mobility. Capacitance-voltage measurements show that an inversion channel can indeed be formed, e.g., an n-doped channel can be inverted to a p-type inversion channel with highly p-doped contacts. The Cytop polymer dielectric minimizes hysteresis, and the transistors can be biased for prolonged cycles without a shift of threshold voltage, indicating excellent operation stability.
Method of preparing a tunable-focus liquid-crystal (LC) lens
NASA Astrophysics Data System (ADS)
Li, Xiaolong; Zhou, Zuowei; Ren, Hongwen
2018-02-01
A liquid crystal (LC) lens is prepared by controlling the alignment of a LC using a homogeneous polyimide (PI) layer and a homeotropic PI layer. The rubbed homogeneous PI layer has a concave surface and the homeotropic PI layer is flat. The LC sandwiched between the two PI layers obtains a hybrid alignment which has the largest gradient of refractive index (GRIN) distribution. The LC layer exhibits a lens character because of its convex shape. Since the effective refractive index of the LC is larger than that of the homogeneous PI, the LC lens can focus a light with the shortest focal length in the voltage-off state. By applying an external voltage, the LC molecules can be reoriented along the electric field. As a result, the focal length of the LC lens is reduced. The focal length of the LC lens can be tuned from 30 to 120 μm when the voltage is changed from 0 to 7 Vrms. This LC lens has the advantages of no threshold, low operating voltage, and simple fabrication.
NASA Astrophysics Data System (ADS)
Suzuki, Yasuo
A uniform plasma-based ion implantation and DLC film formation technologies on the surface of complicated 3-dimensional substrates have been developed by applying pulse voltage coupled with RF voltage to the substrates such as plastics, rubber as well as metals with the similar deposition rate. These technologies are widely applicable to both ion implantation and DLC film formation onto the automobile parts, mechanical parts and metal molds. A problem to be solved is reducing cost. The deposition rate of DLC films is expected to increase to around 10μm/hr, which is ten times larger than that of the conventional method, by hybridizing the ICP (Induction Coupling Plasma) with a plus-minus voltage source. This epoch-making technology will be able to substitute for the electro-plating method in the near future. In this paper, the DLC film formation technology by applying both RF and pulse voltage, its applications and its prospect are presented.
Liquid crystal materials and tunable devices for optical communications
NASA Astrophysics Data System (ADS)
Du, Fang
In this dissertation, liquid crystal materials and devices are investigated in meeting the challenges for photonics and communications applications. The first part deals with polymer-stabilized liquid crystal (PSLC) materials and devices. Three polymer-stabilized liquid crystal systems are developed for optical communications. The second part reports the experimental investigation of a novel liquid-crystal-infiltrated photonic crystal fiber (PCF) and explores its applications in fiber-optic communications. The curing temperature is found to have significant effects on the PSLC performance. The electro-optic properties of nematic polymer network liquid crystal (PNLC) at different curing temperatures are investigated experimentally. At high curing temperature, a high contrast, low drive voltage, and small hysteresis PNLC is obtained as a result of the formed large LC microdomains. With the help of curing temperature effect, it is able to develop PNLC based optical devices with highly desirable performances for optical communications. Such high performance is generally considered difficult to realize for a PNLC. In fact, the poor performance of PNLC, especially at long wavelengths, has hindered it from practical applications for optical communications for a long time. Therefore, the optimal curing temperature effect discovered in this thesis would enable PSLCs for practical industrial applications. Further more, high birefringence LCs play an important role for near infrared photonic devices. The isothiocyanato tolane liquid crystals exhibit a high birefringence and low viscosity. The high birefringence LC dramatically improves the PSLC contrast ratio while keeping a low drive voltage and fast response time. A free-space optical device by PNLC is experimentally demonstrated and its properties characterized. Most LC devices are polarization sensitive. To overcome this drawback, we have investigated the polymer-stabilized cholesteric LC (PSCLC). Combining the curing temperature effect and high birefringence LC, a polarization independent fiber-optical device is realized with over 30 dB attenuation, ˜12 V rms drive voltage and 11/28 milliseconds (rise/decay) response times. A polymer-stabilized twisted nematic LC (PS TNLC) is also proposed as a variable optical attenuator for optical communications. By using the polarization control system, the device is polarization independent. The polymer network in a PS TNLC not only results in a fast response time (0.9/9 milliseconds for rise/decay respectively), but also removes the backflow effect of TNLC which occurs in the high voltage regime. Another major achievement in this thesis is the first demonstration of an electrically tunable LC-infiltrated photonic crystal fiber (PCF). Two different LC PCF configurations are studied. For the first time, electrically tunable LC PCFs are demonstrated experimentally. The guiding mechanism and polarization properties are studied. Preliminary experimental results are also given for the thermo-optical properties of a LC filled air-core PCF. In conclusion, this dissertation has solved important issues related to PSLC and enables its applications as VOAs and light shutters in optical communications. Through experimental investigations of the LC filled PCFs, a new possibility of developing tunable micro-sized fiber devices is opened for optical communications as well.
Gate-tunable current partition in graphene-based topological zero lines
NASA Astrophysics Data System (ADS)
Wang, Ke; Ren, Yafei; Deng, Xinzhou; Yang, Shengyuan A.; Jung, Jeil; Qiao, Zhenhua
2017-06-01
We demonstrate new mechanisms for gate-tunable current partition at topological zero-line intersections in a graphene-based current splitter. Based on numerical calculations of the nonequilibrium Green's functions and Landauer-Büttiker formula, we show that the presence of a perpendicular magnetic field on the order of a few Teslas allows for carrier sign dependent current routing. In the zero-field limit the control on current routing and partition can be achieved within a range of 10-90 % of the total incoming current by tuning the carrier density at tilted intersections or by modifying the relative magnitude of the bulk band gaps via gate voltage. We discuss the implications of our findings in the design of topological zero-line networks where finite orbital magnetic moments are expected when the current partition is asymmetric.
On the Nonlinear Dynamics of a Tunable Shock Micro-switch
NASA Astrophysics Data System (ADS)
Azizi, Saber; Javaheri, Hamid; Ghanati, Parisa
2016-12-01
A tunable shock micro-switch based on piezoelectric excitation is proposed in this study. This model includes a clamped-clamped micro-beam sandwiched with two piezoelectric layers throughout the entire length. Actuation of the piezoelectric layers via a DC voltage leads to an initial axial force in the micro-beam and directly affects on its overall bending stiffness; accordingly enables two-side tuning of both the trigger time and threshold shock. The governing motion equation, in the presence of an electrostatic actuation and a shock wave, is derived using Hamilton's principle. We employ the finite element method based on the Galerkin technique to obtain the temporal and phase responses subjected to three different shock waves including half sine, triangular and rectangular forms. Subsequently, we investigate the effect of the piezoelectric excitations on the threshold shock amplitude and trigger time.
On Both Spatial And Velocity Distribution Of Sputtered Particles In Magnetron Discharge
NASA Astrophysics Data System (ADS)
Vitelaru, C.; Pohoata, V.; Tiron, V.; Costin, C.; Popa, G.
2012-12-01
The kinetics of the sputtered atoms from the metallic target as well as the time-space distribution of the argon metastable atoms have been investigated for DC and high power pulse magnetron discharge by means of Tunable Diode - Laser Absorption Spectroscopy (TD-LAS) and Tunable Diode - Laser Induced Fluorescence (TD-LIF). The discharge was operated in argon (5-30 mTorr) with two different targets, tungsten and aluminum, for pulses of 1 to 20 μs, at frequencies of 0.2 to 1 kHz. Peak current intensity of ~100 A has been attained at cathode peak voltage of ~1 kV. The mean velocity distribution functions and particle fluxes of the sputtered metal atoms, in parallel and perpendicular direction to the target, have been obtained and compared for DC and pulse mode.
Reconfigurable radio-over-fiber system based on optical switch and tunable filter
NASA Astrophysics Data System (ADS)
Li, Xiao; Yin, Rui; Ji, Wei; Sun, Kai; Zhang, Shicheng
2017-09-01
As the best candidate for wireless-access networks, radio-over-fiber (RoF) technology can carry a variety of business. It is necessary to provide differentiated services for different users, so the network needs to produce signals with different modulation formats and different frequencies. A reconfigurable RoF system based on a switch and tunable optical filter that can realize modulation format conversion and multiple frequency signal switching functions is designed. It has a good performance in terms of bit error rate and an eye diagram. The design can help to use radio frequency resources efficiently and make dynamic bandwidth resources controllable.
Gradient polymer network liquid crystal with a large refractive index change.
Ren, Hongwen; Xu, Su; Wu, Shin-Tson
2012-11-19
A simple approach for preparing gradient polymer network liquid crystal (PNLC) with a large refractive index change is demonstrated. To control the effective refractive index at a given cell position, we applied a voltage to a homogeneous cell containing LC/diacrylate monomer mixture to generate the desired tilt angle and then stabilize the LC orientation with UV-induced polymer network. By varying the applied voltage along with the cells' movement, a PNLC with a gradient refractive index distribution is obtained. In comparison with conventional approaches using patterned photomask or electrode, our method offers following advantages: large refractive index change, freedom to design specific index profile, and large panel capability. Potential applications include tunable-focus lenses, prism gratings, phase modulators, and other adaptive photonic devices.
Magnetically tunable 1D Coulomb drag: Theory
NASA Astrophysics Data System (ADS)
Tylan-Tyler, Anthony; Tang, Yuhe; Levy, Jeremy
In this work, we examine the Coulomb drag effect in 1D nanowires in close proximity, focusing on experimental parameters relevant to complex-oxide nanostructures. Previous work on this problem examined Coulomb drag through quantum point contacts, where effective capacitive coupling between the 2D leads of the system generates the drag voltage. In our case, the entire system is composed of 1D components and thus a more careful treatment of the Coulomb interactions is required. This more complex environment then leads to the ability to switch the drag voltage by an applied magnetic field without altering the current supplied to the drive system. We gratefully acknowledge financial support from ONR N00014-15-1-2847 and DOE DE-SC0014417.
Gatemon Benchmarking and Two-Qubit Operation
NASA Astrophysics Data System (ADS)
Casparis, Lucas; Larsen, Thorvald; Olsen, Michael; Petersson, Karl; Kuemmeth, Ferdinand; Krogstrup, Peter; Nygard, Jesper; Marcus, Charles
Recent experiments have demonstrated superconducting transmon qubits with semiconductor nanowire Josephson junctions. These hybrid gatemon qubits utilize field effect tunability singular to semiconductors to allow complete qubit control using gate voltages, potentially a technological advantage over conventional flux-controlled transmons. Here, we present experiments with a two-qubit gatemon circuit. We characterize qubit coherence and stability and use randomized benchmarking to demonstrate single-qubit gate errors of ~0.5 % for all gates, including voltage-controlled Z rotations. We show coherent capacitive coupling between two gatemons and coherent SWAP operations. Finally, we perform a two-qubit controlled-phase gate with an estimated fidelity of ~91 %, demonstrating the potential of gatemon qubits for building scalable quantum processors. We acknowledge financial support from Microsoft Project Q and the Danish National Research Foundation.
NASA Astrophysics Data System (ADS)
Kumar, Pawan; Balakrishnan, Viswanath
2018-04-01
We report CVD growth of WS2 nanostructures with the ability to control the evolution of 1D to 2D microstructural changes for light and field effect transistor applications. Detailed mechanistic growth sequences from WO3 nanorod to nanotube, monolayer and pyramidal structures of WS2 has been achieved using atmospheric pressure chemical vapor deposition (APCVD). Electron microscopy and Raman spectroscopy analysis showed the growth evolution of different nanostructures and their formation mechanism. Location specific growth of different WS2 nanostructures can be achieved by drop casting dispersed WO3 nanorods on required substrate. Layer dependent photoluminescence (PL) properties of WS2 indicate the effect of quantum confinement induced radiative recombination and enhanced PL intensity in monolayer WS2 provides suitability for nanoscale photodetector application. The fabricated device shows light as well as field modulated switching at ultra-low biased voltage in hybrid WS2 nanostructure that contains 1D (nanotube)-2D (flake) interface. The demonstrated aspects of CVD growth and hybrid device characteristics provide opportunities to tune electrical transport of WS2 nanostructures at low active power.
Phosphorene oxide: stability and electronic properties of a novel two-dimensional material.
Wang, Gaoxue; Pandey, Ravindra; Karna, Shashi P
2015-01-14
Phosphorene, the monolayer form of (black) phosphorus, was recently exfoliated from its bulk counterpart. Phosphorene oxide, by analogy to graphene oxide, is expected to have novel chemical and electronic properties, and may provide an alternative route to the synthesis of phosphorene. In this research, the physical and chemical properties of phosphorene oxide including its formation by oxygen adsorption on the bare phosphorene was investigated. Analysis of the phonon dispersion curves finds stoichiometric and non-stoichiometric oxide configurations to be stable at ambient conditions, thus suggesting that the oxygen adsorption may not degrade the phosphorene. The nature of the band gap of the oxides depends on the degree of functionalization of phosphorene; an indirect gap is predicted for the non-stoichiometric configurations, whereas a direct gap is predicted for the stoichiometric oxide. Application of mechanical strain or an external electric field leads to tunability of the band gap of the phosphorene oxide. In contrast to the case of the bare phosphorene, dependence of the diode-like asymmetric current-voltage response on the degree of stoichiometry is predicted for the phosphorene oxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao Bo; Liu Hongrui; Avrutin, Vitaliy
2009-11-23
High quality (001)-oriented Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) thin films have been grown on a-plane sapphire (1120) by rf magnetron sputtering using a double bridge layer consisting of (0001)-oriented ZnO (50 nm) and (001)-oriented MgO (10 nm) prepared by plasma-assisted molecular beam epitaxy. X-ray diffraction revealed the formation of three sets of in-plane BST domains, offset from one another by 30 deg., which is consistent with the in-plane symmetry of the MgO layer observed by in situ reflective high electron energy diffraction. The in-plane epitaxial relationship of BST, MgO, and ZnO has been determined to be BST [110]//MgO [110]//ZnO [1120]more » and BST [110]/MgO [110]//ZnO [1100]. Capacitance-voltage measurements performed on BST coplanar interdigitated capacitor structures revealed a high dielectric tunability of up to 84% at 1 MHz.« less
NASA Astrophysics Data System (ADS)
Qin, Xiufang; Zhang, Jinqiong; Meng, Xiaojuan; Deng, Chenhua; Zhang, Lifang; Ding, Guqiao; Zeng, Hao; Xu, Xiaohong
2015-02-01
Nanoporous anodic aluminum oxides are often used as templates for preparation of nanostructures such as nanodot, nanowire and nanotube arrays. The interpore distance of anodic aluminum oxide is the most important parameter in controlling the periodicity of these nanostructures. Herein we demonstrate a simple and yet powerful method to fabricate ordered anodic aluminum oxides with continuously tunable interpore distances. By using mixed solution of citric and oxalic acids with different molar ratio, the range of anodizing voltages within which self-ordered films can be formed were extended to between 40 and 300 V, resulting in the interpore distances change from 100 to 750 nm. Our work realized very broad range of interpore distances in a continuously tunable fashion and the experiment processes are easily controllable and reproducible. The dependence of the interpore distances on acid ratios in mixed solutions was discussed through analysis of anodizing current and it was found that the effective dissociation constant of the mixed acids is of great importance. The interpore distances achieved are comparable to wavelengths ranging from UV to near IR, and may have potential applications in optical meta-materials for photovoltaics and optical sensing.
Ali, Mubarak; Ramirez, Patricio; Nguyen, Hung Quoc; Nasir, Saima; Cervera, Javier; Mafe, Salvador; Ensinger, Wolfgang
2012-04-24
We present an experimental and theoretical characterization of single cigar-shaped nanopores with pH-responsive carboxylic acid and lysine chains functionalized on the pore surface. The nanopore characterization includes (i) optical images of the nanostructure obtained by FESEM; (ii) different chemical procedures for the nanopore preparation (etching time and functionalizations; pH and electrolyte concentration of the external solution) allowing externally tunable nanopore responses monitored by the current-voltage (I-V) curves; and (iii) transport simulations obtained with a multilayer nanopore model. We show that a single, approximately symmetric nanopore can be operated as a reconfigurable diode showing different rectifying behaviors by applying chemical and electrical signals. The remarkable characteristics of the new nanopore are the sharp response observed in the I-V curves, the improved tunability (with respect to previous designs of symmetric nanopores) which is achieved because of the direct external access to the nanostructure mouths, and the broad range of rectifying properties. The results concern both fundamental concepts useful for the understanding of transport processes in biological systems (ion channels) and applications relevant for tunable nanopore technology (information processing and drug controlled release).
Li, Yingsong; Li, Wenxing; Ye, Qiubo
2013-01-01
A coplanar waveguide (CPW)-fed circular slot antenna with wide tunable dual band-notched function and frequency reconfigurable characteristic is designed, and its performance is verified experimentally for ultra-wideband (UWB) communication applications. The dual band-notched function is achieved by using a T-shaped stepped impedance resonator (T-SIR) inserted inside the circular ring radiation patch and by etching a parallel stub loaded resonator (PSLR) in the CPW transmission line, while the wide tunable bands can be implemented by adjusting the dimensions of the T-SIR and the PSLR. The notch band reconfigurable characteristic is realized by integrating three switches into the T-SIR and the PSLR. The numerical and experimental results show that the proposed antenna has a wide bandwidth ranging from 2.7 GHz to 12 GHz with voltage standing wave ratio (VSWR) less than 2, except for the two notch bands operating at 3.8-5.9 GHz and 7.7-9.2 GHz, respectively. In addition, the proposed antenna has been optimized to a compact size and can provide omnidirectional radiation patterns, which are suitable for UWB communication applications.
Li, Yingsong; Li, Wenxing; Ye, Qiubo
2013-01-01
A coplanar waveguide (CPW)-fed circular slot antenna with wide tunable dual band-notched function and frequency reconfigurable characteristic is designed, and its performance is verified experimentally for ultra-wideband (UWB) communication applications. The dual band-notched function is achieved by using a T-shaped stepped impedance resonator (T-SIR) inserted inside the circular ring radiation patch and by etching a parallel stub loaded resonator (PSLR) in the CPW transmission line, while the wide tunable bands can be implemented by adjusting the dimensions of the T-SIR and the PSLR. The notch band reconfigurable characteristic is realized by integrating three switches into the T-SIR and the PSLR. The numerical and experimental results show that the proposed antenna has a wide bandwidth ranging from 2.7 GHz to 12 GHz with voltage standing wave ratio (VSWR) less than 2, except for the two notch bands operating at 3.8–5.9 GHz and 7.7–9.2 GHz, respectively. In addition, the proposed antenna has been optimized to a compact size and can provide omnidirectional radiation patterns, which are suitable for UWB communication applications. PMID:24222733
NASA Astrophysics Data System (ADS)
Zhai, Jiwei; Yao, Xi; Xu, Zhengkui; Chen, Haydn
2006-08-01
Thin films of ferroelectric PbxSr1-xTiO3 (PST) with x =0.3-0.7 and graded composition were fabricated on LaNiO3 buffered Pt /Ti/SiO2/Si substrates by a sol-gel deposition method. The thin films crystallized into a single perovskite structure and exhibited highly (100) preferred orientation after postdeposition annealing at 650°C. The grain size of PST thin films systematically decreased with the increase of Sr content. Dielectric and ferroelectric properties were investigated as a function of temperature, frequency, and dc applied field. Pb0.6Sr0.4TiO3 films showed a dominant voltage dependence of dielectric constant with a high tunability in a temperature range of 25-230°C. The compositionally graded PST thin films with x =0.3-0.6 also showed the high tunability. The graded thin films exhibited a diffused phase transition accompanied by a diffused peak in the temperature variations of dielectric constants. This kind of thin films has a potential in a fabrication of a temperature stable tunable device.
A tunable electronic beam splitter realized with crossed graphene nanoribbons
NASA Astrophysics Data System (ADS)
Brandimarte, Pedro; Engelund, Mads; Papior, Nick; Garcia-Lekue, Aran; Frederiksen, Thomas; Sánchez-Portal, Daniel
2017-03-01
Graphene nanoribbons (GNRs) are promising components in future nanoelectronics due to the large mobility of graphene electrons and their tunable electronic band gap in combination with recent experimental developments of on-surface chemistry strategies for their growth. Here, we explore a prototype 4-terminal semiconducting device formed by two crossed armchair GNRs (AGNRs) using state-of-the-art first-principles transport methods. We analyze in detail the roles of intersection angle, stacking order, inter-GNR separation, GNR width, and finite voltages on the transport characteristics. Interestingly, when the AGNRs intersect at θ =60° , electrons injected from one terminal can be split into two outgoing waves with a tunable ratio around 50% and with almost negligible back-reflection. The split electron wave is found to propagate partly straight across the intersection region in one ribbon and partly in one direction of the other ribbon, i.e., in analogy with an optical beam splitter. Our simulations further identify realistic conditions for which this semiconducting device can act as a mechanically controllable electronic beam splitter with possible applications in carbon-based quantum electronic circuits and electron optics. We rationalize our findings with a simple model suggesting that electronic beam splitters can generally be realized with crossed GNRs.
Vail, W.B. III.
1991-08-27
Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the differential current conducted into the formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes. 48 figures.
Vail, W.B. III.
1989-11-21
Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes. 48 figs.
Vail, III, William B.
1991-01-01
Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas present. Lithological characteristics of the formation such as the pressence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes.
Vail, III, William B.
1989-01-01
Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes.
Design techniques for a stable operation of cryogenic field-programmable gate arrays.
Homulle, Harald; Visser, Stefan; Patra, Bishnu; Charbon, Edoardo
2018-01-01
In this paper, we show how a deep-submicron field-programmable gate array (FPGA) can be operated more stably at extremely low temperatures through special firmware design techniques. Stability at low temperatures is limited through long power supply wires and reduced performance of various printed circuit board components commonly employed at room temperature. Extensive characterization of these components shows that the majority of decoupling capacitor types and voltage regulators are not well behaved at cryogenic temperatures, asking for an ad hoc solution to stabilize the FPGA supply voltage, especially for sensitive applications. Therefore, we have designed a firmware that enforces a constant power consumption, so as to stabilize the supply voltage in the interior of the FPGA. The FPGA is powered with a supply at several meters distance, causing significant resistive voltage drop and thus fluctuations on the local supply voltage. To achieve the stabilization, the variation in digital logic speed, which directly corresponds to changes in supply voltage, is constantly measured and corrected for through a tunable oscillator farm, implemented on the FPGA. The impact of the stabilization technique is demonstrated together with a reconfigurable analog-to-digital converter (ADC), completely implemented in the FPGA fabric and operating at 15 K. The ADC performance can be improved by at most 1.5 bits (effective number of bits) thanks to the more stable supply voltage. The method is versatile and robust, enabling seamless porting to other FPGA families and configurations.
Design techniques for a stable operation of cryogenic field-programmable gate arrays
NASA Astrophysics Data System (ADS)
Homulle, Harald; Visser, Stefan; Patra, Bishnu; Charbon, Edoardo
2018-01-01
In this paper, we show how a deep-submicron field-programmable gate array (FPGA) can be operated more stably at extremely low temperatures through special firmware design techniques. Stability at low temperatures is limited through long power supply wires and reduced performance of various printed circuit board components commonly employed at room temperature. Extensive characterization of these components shows that the majority of decoupling capacitor types and voltage regulators are not well behaved at cryogenic temperatures, asking for an ad hoc solution to stabilize the FPGA supply voltage, especially for sensitive applications. Therefore, we have designed a firmware that enforces a constant power consumption, so as to stabilize the supply voltage in the interior of the FPGA. The FPGA is powered with a supply at several meters distance, causing significant resistive voltage drop and thus fluctuations on the local supply voltage. To achieve the stabilization, the variation in digital logic speed, which directly corresponds to changes in supply voltage, is constantly measured and corrected for through a tunable oscillator farm, implemented on the FPGA. The impact of the stabilization technique is demonstrated together with a reconfigurable analog-to-digital converter (ADC), completely implemented in the FPGA fabric and operating at 15 K. The ADC performance can be improved by at most 1.5 bits (effective number of bits) thanks to the more stable supply voltage. The method is versatile and robust, enabling seamless porting to other FPGA families and configurations.
NASA Astrophysics Data System (ADS)
Si, Liu-Gang; Guo, Ling-Xia; Xiong, Hao; Wu, Ying
2018-02-01
We investigate the high-order-sideband generation (HSG) in a hybrid cavity electro-photomechanical system in which an optical cavity is driven by two optical fields (a monochromatic pump field and a nanosecond Gaussian probe pulse with huge numbers of wave cycles), and at the same time a microwave cavity is driven by a monochromatic ac voltage bias. We show that even if the input powers of two driven optical fields are comparatively low the HSG spectra can be induced and enhanced, and the sideband plateau is extended remarkably with the power of the ac voltage bias increasing. It is also shown that the driven ac voltage bias has profound effects on the carrier-envelope-phase-dependent effects of the HSG in the hybrid cavity electro-photomechanical system. Our research may provide an effective way to control the HSG of optical fields by using microwave fields in cavity optomechanics systems.
Reversible control of doping in graphene-on-SiO2 by cooling under gate-voltage
NASA Astrophysics Data System (ADS)
Singh, Anil Kumar; Gupta, Anjan Kumar
2017-11-01
The electronic properties of graphene can be modulated by various doping techniques other than back-gate, but most such methods are not easily reversible and also lead to mobility reduction. Here, we report on the reversible control of doping in graphene by cooling under back-gate-voltage. The observed variation in hysteresis in our devices with the temperature and interface preparation method is attributed to the variation in the density of redox species, namely, H2O and O2, at the graphene/SiO2 interface, and their diffusion. With careful interface preparation, we have been able to make devices with negligible hysteresis at room temperature and by exploiting hysteresis at high temperatures, we get a wide, but reversible tunability of interface charge density and graphene doping, by cooling to room temperature under gate-voltage. Such reversible control of graphene doping by manipulating the interface defect charge density can help in making new data storage devices using graphene.
Josephson coupling between superconducting islands on single- and bi-layer graphene
NASA Astrophysics Data System (ADS)
Mancarella, Francesco; Fransson, Jonas; Balatsky, Alexander
2016-05-01
We study the Josephson coupling of superconducting (SC) islands through the surface of single-layer graphene (SLG) and bilayer graphene (BLG) in the long-junction regime, as a function of the distance between the grains, temperature, chemical potential and external (transverse) gate-voltage. For SLG, we provide a comparison with existing literature. The proximity effect is analyzed through a Matsubara Green’s function approach. This represents the first step in a discussion of the conditions for the onset of a granular superconductivity within the film, made possible by Josephson currents flowing between superconductors. To ensure phase coherence over the 2D sample, a random spatial distribution can be assumed for the SC islands on the SLG sheet (or intercalating the BLG sheets). The tunable gate-voltage-induced band gap of BLG affects the asymptotic decay of the Josephson coupling-distance characteristic for each pair of SC islands in the sample, which results in a qualitatively strong field dependence of the relation between Berezinskii-Kosterlitz-Thouless transition critical temperature and gate voltage.
Liu, Zhe; Jiang, Liwei; Zheng, Yisong
2015-02-04
By means of an appropriate wave function connection condition, we study the electronic structure of a line defect superlattice of graphene with the Dirac equation method. We obtain the analytical dispersion relation, which can simulate well the tight-binding numerical result about the band structure of the superlattice. Then, we generalize this theoretical method to study the electronic transmission through a potential barrier where multiple line defects are periodically patterned. We find that there exists a critical incident angle which restricts the electronic transmission through multiple line defects within a specific incident angle range. The critical angle depends sensitively on the potential barrier height, which can be modulated by a gate voltage. As a result, non-trivial transmissions of K and K' valley electrons are restricted, respectively, in two distinct ranges of the incident angle. Our theoretical result demonstrates that a gate voltage can act as a feasible measure to tune the valley polarization when electrons tunnel through multiple line defects.
A Wide Field of View Plasma Spectrometer
Skoug, Ruth M.; Funsten, Herbert O.; Moebius, Eberhard; ...
2016-07-01
Here we present a fundamentally new type of space plasma spectrometer, the wide field of view plasma spectrometer, whose field of view is >1.25π ster using fewer resources than traditional methods. The enabling component is analogous to a pinhole camera with an electrostatic energy-angle filter at the image plane. Particle energy-per-charge is selected with a tunable bias voltage applied to the filter plate relative to the pinhole aperture plate. For a given bias voltage, charged particles from different directions are focused by different angles to different locations. Particles with appropriate locations and angles can transit the filter plate and aremore » measured using a microchannel plate detector with a position-sensitive anode. Full energy and angle coverage are obtained using a single high-voltage power supply, resulting in considerable resource savings and allowing measurements at fast timescales. Lastly, we present laboratory prototype measurements and simulations demonstrating the instrument concept and discuss optimizations of the instrument design for application to space measurements.« less
Low voltage arc formation in railguns
Hawke, R.S.
1985-08-05
A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.
Low voltage arc formation in railguns
Hawke, Ronald S.
1987-01-01
A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.
Low voltage arc formation in railguns
Hawke, R.S.
1987-11-17
A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile. 2 figs.
Switchable and Tunable Bulk Acoustic Wave Devices Based on Ferroelectric Material
NASA Astrophysics Data System (ADS)
Mansour, Almonir
The explosive development of personal communications systems, navigation, satellite communications as well as personal computer and data processing systems together with the constant demand for higher speeds and larger bandwidths has driven fabrication technology to its limits. This, in turn, necessitates the development of novel functional materials for the fabrication of devices with superior performance and higher capacity at reduced manufacturing costs. Ferroelectric materials such as barium strontium titanate (BST) and strontium titanium oxide (STO) have received more attention by researchers and industry because of their field-induced piezoelectric property. This property gives these types of ferroelectric materials the ability to be switchable and tunable in the presence of an electric field. These features have allowed the ferroelectric materials to be used in many applications such as non-volatile memory and DRAMs, sensors, pyroelectric detectors, and tunable microwave devices. Therefore, with the ever increasing complexity in RF front-end receivers, and the demand for services (which in turn requires more functionalities), ferroelectric bulk acoustic wave (BAW) resonators and filters that are intrinsically switchable and tunable promise to reduce the size and complexity of component parts. In this work, we present the design, fabrication and experimental evaluation of switchable and tunable thin film bulk acoustic wave (BAW) resonators, filters and duplexers for radio frequency (RF) applications. The switchability and tunability of these devices come from utilizing the electrostrictive effect of ferroelectric materials such as barium strontium titanate (BST) with the application of an external DC-bias voltage. The BAW resonators, filters and duplexers in this work were fabricated on different substrates as solidly mounted resonator (SMR) structure with number of periodic layers of silicon dioxide and tantalum oxide as a Bragg reflector in order to acoustically isolate the resonator from the damping effect of the substrate, enhancing the quality factor and temperature compensation.
Aiba, Akira; Demir, Firuz; Kaneko, Satoshi; Fujii, Shintaro; Nishino, Tomoaki; Tsukagoshi, Kazuhito; Saffarzadeh, Alireza; Kirczenow, George; Kiguchi, Manabu
2017-08-11
The thermoelectric voltage developed across an atomic metal junction (i.e., a nanostructure in which one or a few atoms connect two metal electrodes) in response to a temperature difference between the electrodes, results from the quantum interference of electrons that pass through the junction multiple times after being scattered by the surrounding defects. Here we report successfully tuning this quantum interference and thus controlling the magnitude and sign of the thermoelectric voltage by applying a mechanical force that deforms the junction. The observed switching of the thermoelectric voltage is reversible and can be cycled many times. Our ab initio and semi-empirical calculations elucidate the detailed mechanism by which the quantum interference is tuned. We show that the applied strain alters the quantum phases of electrons passing through the narrowest part of the junction and hence modifies the electronic quantum interference in the device. Tuning the quantum interference causes the energies of electronic transport resonances to shift, which affects the thermoelectric voltage. These experimental and theoretical studies reveal that Au atomic junctions can be made to exhibit both positive and negative thermoelectric voltages on demand, and demonstrate the importance and tunability of the quantum interference effect in the atomic-scale metal nanostructures.
On a Road to "Soft" Optical MEMS
NASA Astrophysics Data System (ADS)
Yang, Shu; Mach, Peter; Krupenkin, Tom
2003-03-01
A phenomenon of electrowetting has been applied to the actuation of micro-optical devices. The devices use small droplets of transparent conductive liquids to manipulate light in a useful way. The form and position of these droplets is controlled by the applied voltage. Both fiber based and open space optical devices are demonstrated. As an example of an open space optical device, a tunable liquid microlens capable of adjusting its focal length and lateral position is discussed. The microlens consists of a droplet of a transparent conductive liquid placed on a dielectric substrate with underlying electrodes. By varying the voltage applied to the structure, both the position and curvature of microlens can be reversibly changed. Similarly, electrowetting actuation of fluids in micro channels is employed to provide dynamic and reversible tuning of the optical fiber structures. When combined with in-fiber gratings or etched fibers this approach yields tunable broadband and narrowband filters with a large dynamic range. Both the surface and bulk properties of the materials are found important to control the device performance. Fundamental problems, such as stick-slip behavior and contact angle hysteresis associated with the surface roughness and surface contamination, are studied to optimize the choice of dielectric materials and their coatings. Some of the possible ways to control these phenomena are outlined. Several potential applications of the proposed approach are also discussed.
Zhang, Guichuan; Zhou, Cheng; Sun, Chen; Jia, Xiaoe; Xu, Baomin; Ying, Lei; Huang, Fei; Cao, Yong
2017-07-01
Variations in the open-circuit voltage (V oc ) of ternary organic solar cells are systematically investigated. The initial study of these devices consists of two electron-donating oligomers, S2 (two units) and S7 (seven units), and the electron-accepting [6,6]-phenyl C71 butyric acid methyl ester (PC 71 BM) and reveals that the V oc is continuously tunable due to the changing energy of the charge transfer state (E ct ) of the active layers. Further investigation suggests that V oc is also continuously tunable upon change in E ct in a ternary blend system that consists of S2 and its corresponding polymer (P11):PC 71 BM. It is interesting to note that higher power conversion efficiencies can be obtained for both S2:S7:PC 71 BM and S2:P11:PC 71 BM ternary systems compared with their binary systems, which can be ascribed to an improved V oc due to the higher E ct and an improved fill factor due to the improved film morphology upon the incorporation of S2. These findings provide a new guideline for the future design of conjugated polymers for achieving higher performance of ternary organic solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Co-dispersion of plasmonic nanorods in thermotropic nematic liquid crystals
NASA Astrophysics Data System (ADS)
Sheetah, Ghadah; Liu, Qinkun; Smalukh, Ivan
Colloidal dispersions of plasmonic metal nanoparticles in liquid crystals promise the capability of pre-engineering tunable optical properties of mesostructured metal-dielectric composites. Recently, concentrated dispersions of anisotropic gold, silver, and metal alloy nanoparticles in nematic hosts have been achieved and successfully controlled by low-voltage fields. However, to enable versatile designs of material behavior of the composites, simultaneous co-dispersion of anisotropic particles with different shapes, alignment properties, and compositions are often needed. We achieve such co-dispersions and explore their switching characteristics in response to external stimuli like light and electric fields. We demonstrated that spectral characteristics of co-dispersions of multiple types of anisotropic nanoparticles in a common nematic host provides unprecedented variety of electrically- and optically-tunable material behavior, with a host of potential practical applications in electro-optic devices and displays Ghadah acknowledges support from the King Faisal University (KFU) graduate fellowship.
Lin, Jiuning; Tong, Qing; Lei, Yu; Xin, Zhaowei; Wei, Dong; Zhang, Xinyu; Liao, Jing; Wang, Haiwei; Xie, Changsheng
2017-03-01
An electrically tunable infrared (IR) filter based on a key cascaded liquid-crystal Fabry-Perot (C-LC-FP) working in the wavelength range of 3-5 μm is presented. The C-LC-FP is constructed by closely stacking two FP microcavities with different depths of 12 and 15 μm and fully filled by nematic LC materials. Through continuous wavelength selection of both microcavities, radiation with a high transmittance and narrow bandwidth can pass through the filter. According to the electrically controlled birefringence characteristics of nematic LC molecules, the transmission spectrum can be shifted through applying a dual voltage signal over the C-LC-FP. Compared with common LC-FPs with a single microcavity, the C-LC-FP demonstrates better transmittance peak morphology and spectral selection performance. To be more specific, the number and the shifted scope of the IR transmission peak can be decreased and widened, respectively.
Electrowetting Controlled Tunable Liquid Microlens
NASA Astrophysics Data System (ADS)
Krupenkin, Tom; Yang, Shu
2002-03-01
Electrowetting potentially provides a convenient way to control the shape and position of the liquid droplet on a rigid substrate. However, the effectiveness of this method relies strongly on the precise control of the surface properties of the substrate. Here we present a tunable liquid microlens capable of adjusting the position of its focal spot in all three dimensions. The microlens consists of a droplet of a transparent conductive liquid placed on a dielectric substrate with a hydrophobic coating. By varying the voltage applied to the structure, both the position and the curvature of the microlens can be changed. The influence of the bulk and surface properties of the materials on the microlens behavior is experimentally investigated and supported by theoretical calculations. Some of the potential problems associated with the stick-slip behavior and contact angle hysteresis are outlined and possible ways to prevent them are suggested.
Phase locking of a semiconductor double-quantum-dot single-atom maser
NASA Astrophysics Data System (ADS)
Liu, Y.-Y.; Hartke, T. R.; Stehlik, J.; Petta, J. R.
2017-11-01
We experimentally study the phase stabilization of a semiconductor double-quantum-dot (DQD) single-atom maser by injection locking. A voltage-biased DQD serves as an electrically tunable microwave frequency gain medium. The statistics of the maser output field demonstrate that the maser can be phase locked to an external cavity drive, with a resulting phase noise L =-99 dBc/Hz at a frequency offset of 1.3 MHz. The injection locking range, and the phase of the maser output relative to the injection locking input tone are in good agreement with Adler's theory. Furthermore, the electrically tunable DQD energy level structure allows us to rapidly switch the gain medium on and off, resulting in an emission spectrum that resembles a frequency comb. The free running frequency comb linewidth is ≈8 kHz and can be improved to less than 1 Hz by operating the comb in the injection locked regime.
Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter.
Boutami, S; Ben Bakir, B; Leclercq, J-L; Letartre, X; Rojo-Romeo, P; Garrigues, M; Viktorovitch, P; Sagnes, I; Legratiet, L; Strassner, M
2006-04-17
The authors report a compact and highly selective tunable filter using a Fabry-Perot resonator combining a bottom micromachined 3-pair-InP/air-gap Bragg reflector with a top photonic crystal slab mirror. It is based on the coupling between radiated vertical cavity modes and waveguided modes of the photonic crystal. The full-width at half maximum (FWHM) of the resonance, as measured by microreflectivity experiments, is close to 1.5nm (around 1.55 microm). The presence of the photonic crystal slab mirror results in a very compact resonator, with a limited number of layers. The demonstrator was tuned over a 20nm range for a 4V tuning voltage, the FWHM being kept below 2.5nm. Bending of membranes is a critical issue, and better results (FWHM=0.5nm) should be obtained on the same structure if this technological point is fixed.
Local tuning of the order parameter in superconducting weak links: A zero-inductance nanodevice
NASA Astrophysics Data System (ADS)
Winik, Roni; Holzman, Itamar; Dalla Torre, Emanuele G.; Buks, Eyal; Ivry, Yachin
2018-03-01
Controlling both the amplitude and the phase of the superconducting quantum order parameter (" separators="|ψ ) in nanostructures is important for next-generation information and communication technologies. The lack of electric resistance in superconductors, which may be advantageous for some technologies, hinders convenient voltage-bias tuning and hence limits the tunability of ψ at the microscopic scale. Here, we demonstrate the local tunability of the phase and amplitude of ψ, obtained by patterning with a single lithography step a Nb nano-superconducting quantum interference device (nano-SQUID) that is biased at its nanobridges. We accompany our experimental results by a semi-classical linearized model that is valid for generic nano-SQUIDs with multiple ports and helps simplify the modelling of non-linear couplings among the Josephson junctions. Our design helped us reveal unusual electric characteristics with effective zero inductance, which is promising for nanoscale magnetic sensing and quantum technologies.
Dynamically tunable electromagnetically induced transparency analogy in terahertz metamaterial
NASA Astrophysics Data System (ADS)
Liu, Chenxi; Liu, Peiguo; Bian, Lian; Zhou, Qihui; Li, Gaosheng; Liu, Hanqin
2018-03-01
A metamaterial analogy of tunable electromagnetically induced transparency (EIT) is theoretically investigated in terahertz regime. The proposed metamaterial consists of vertical gold strips and horizontal graphene wires, which perform as bright elements and dark elements, respectively. The EIT-like phenomenon can be induced by bright-dark mode coupling on condition of structural lateral displacement. Numerical result reveals that the EIT-like effect remains noticeable with a wide range of incidence polarization angles. Most importantly, by manipulating gate voltages, the EIT window can be dynamically controlled without refabricating the structure. The amplitude modulation depth can reach 81%, 79%, and 68% respectively at three characteristic frequencies as Fermi energy changes in the scope of 0.8-1.0 eV. Furthermore, a sensitivity of 0.95 THz per refractive index unit (RIU) is realized varying the refractive index in the surrounding medium. This structure provides potential applications for detectors, sensors, and modulators.
Electronic thermometry in tunable tunnel junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maksymovych, Petro
A tunable tunnel junction thermometry circuit includes a variable width tunnel junction between a test object and a probe. The junction width is varied and a change in thermovoltage across the junction with respect to the change in distance across the junction is determined. Also, a change in biased current with respect to a change in distance across the junction is determined. A temperature gradient across the junction is determined based on a mathematical relationship between the temperature gradient, the change in thermovoltage with respect to distance and the change in biased current with respect to distance. Thermovoltage may bemore » measured by nullifying a thermoelectric tunneling current with an applied voltage supply level. A piezoelectric actuator may modulate the probe, and thus the junction width, to vary thermovoltage and biased current across the junction. Lock-in amplifiers measure the derivatives of the thermovoltage and biased current modulated by varying junction width.« less
High Speed Terahertz Modulator on the Chip Based on Tunable Terahertz Slot Waveguide
Singh, P. K.; Sonkusale, S.
2017-01-01
This paper presents an on-chip device that can perform gigahertz-rate amplitude modulation and switching of broadband terahertz electromagnetic waves. The operation of the device is based on the interaction of confined THz waves in a novel slot waveguide with an electronically tunable two dimensional electron gas (2DEG) that controls the loss of the THz wave propagating through this waveguide. A prototype device is fabricated which shows THz intensity modulation of 96% at 0.25 THz carrier frequency with low insertion loss and device length as small as 100 microns. The demonstrated modulation cutoff frequency exceeds 14 GHz indicating potential for the high-speed modulation of terahertz waves. The entire device operates at room temperature with low drive voltage (<2 V) and zero DC power consumption. The device architecture has potential for realization of the next generation of on-chip modulators and switches at THz frequencies. PMID:28102306
Myoung, Nojoon; Park, Hee Chul; Lee, Seung Joo
2016-01-01
Controlling tunneling properties through graphene vertical heterostructures provides advantages in achieving large conductance modulation which has been known as limitation in lateral graphene device structures. Despite of intensive research on graphene vertical heterosturctures for recent years, the potential of spintronics based on graphene vertical heterostructures remains relatively unexplored. Here, we present an analytical device model for graphene-based spintronics by using ferromagnetic graphene in vertical heterostructures. We consider a normal or ferroelectric insulator as a tunneling layer. The device concept yields a way of controlling spin transport through the vertical heterostructures, resulting in gate-tunable spin-switching phenomena. Also, we revealed that a ‘giant’ resistance emerges through a ferroelectric insulating layer owing to the anti-parallel configuration of ferromagnetic graphene layers by means of electric fields via gate and bias voltages. Our findings discover the prospect of manipulating the spin transport properties in vertical heterostructures without use of magnetic fields. PMID:27126101
Vail, W.B. III.
1991-08-27
Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation. 9 figures.
Vail, III, William B.
1991-01-01
Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation.
A voltage-controlled superconducting quantum bus
NASA Astrophysics Data System (ADS)
Casparis, Lucas; Pearson, Natalie; KringhøJ, Anders; Larsen, Thorvald; Kuemmeth, Ferdinand; Krogstrup, Peter; Nygard, Jesper; Petersson, Karl; Marcus, Charles
Superconducting qubits couple strongly to microwave photons and can therefore be coupled over long distances through a superconducting cavity acting as a quantum bus. To avoid frequency-crowding it is desirable to turn qubit coupling off while rearranging qubit frequencies. Here, we present experiments with two gatemon qubits coupled through a cavity, which can be tuned by a voltage-controlled superconducting switch. We characterize the bus tunability and demonstrate switchable qubit coupling with an on/off ratio up to 8. We find that pulsing the bus switch on nanosecond timescales results in the apparent loss of qubit coherence. Further work is needed to understand how dynamic control of the tuneable bus affects qubit operation. We acknowledge financial support from Microsoft Project Q, the Danish National Research Foundation and the US Army Research Office.
Color Gamut of a Nematic Liquid Crystal Display
NASA Astrophysics Data System (ADS)
Shimomura, Teruo; Mada, Hitoshi; Kobayashi, Shunsuke
1980-05-01
The theoretical color gamut of a nematic liquid crystal display is described. The color gamut of a tunable birefringence mode and a guest host mode are revealed with the CIE chromaticity diagram and color solid. In order to account for the quantitative color gamut, color matching between the given chromaticity coordinates and those calculated is investigated. Color matching is performed by a combination of three liquid crystal subcells (A, B, C), where each subcell receives the voltage VA, VB, VC or contains the dye amount a, b, c. Calculation of the value of voltage or dye amount was executed by the matrix representation method. The calculated data are in good agreement with the given data within 0.50 CIE-UNIT color difference in the 1964 CIE (U*, V*, W*) color scale.
The a.c. Josephson effect without superconductivity
Gaury, Benoit; Weston, Joseph; Waintal, Xavier
2015-01-01
Superconductivity derives its most salient features from the coherence of the associated macroscopic wave function. The related physical phenomena have now moved from exotic subjects to fundamental building blocks for quantum circuits such as qubits or single photonic modes. Here we predict that the a.c. Josephson effect—which transforms a d.c. voltage Vb into an oscillating signal cos (2eVbt/ħ)—has a mesoscopic counterpart in normal conductors. We show that when a d.c. voltage Vb is applied to an electronic interferometer, there exists a universal transient regime where the current oscillates at frequency eVb/h. This effect is not limited by a superconducting gap and could, in principle, be used to produce tunable a.c. signals in the elusive 0.1–10-THz ‘terahertz gap’. PMID:25765929
Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging.
Strathman, Matthew; Liu, Yunbo; Li, Xingde; Lin, Lih Y
2013-10-07
We demonstrate a 3-D scanning micromirror device that combines 2-D beam scanning with focus control in the same device using micro-electro-mechanical-systems (MEMS) technology. 2-D beam scanning is achieved with a biaxial gimbal structure and focus control is obtained with a deformable mirror membrane surface. The micromirror with 800 micrometer diameter is designed to be sufficiently compact and efficient so that it can be incorporated into an endoscopic imaging probe in the future. The design, fabrication and characterization of the device are described in this paper. Using the focus-tracking MEMS scanning mirror, we achieved an optical scanning range of >16 degrees with <40 V actuation voltage at resonance and a tunable focal length between infinity and 25 mm with <100V applied bias.
Floquet high Chern insulators in periodically driven chirally stacked multilayer graphene
NASA Astrophysics Data System (ADS)
Li, Si; Liu, Cheng-Cheng; Yao, Yugui
2018-03-01
Chirally stacked N-layer graphene is a semimetal with ±p N band-touching at two nonequivalent corners in its Brillioun zone. We predict that an off-resonant circularly polarized light (CPL) drives chirally stacked N-layer graphene into a Floquet Chern insulators (FCIs), aka quantum anomalous Hall insulators, with tunable high Chern number C F = ±N and large gaps. A topological phase transition between such a FCI and a valley Hall (VH) insulator with high valley Chern number C v = ±N induced by a voltage gate can be engineered by the parameters of the CPL and voltage gate. We propose a topological domain wall between the FCI and VH phases, along which perfectly valley-polarized N-channel edge states propagate unidirectionally without backscattering.
A ballistic two-dimensional-electron-gas Andreev interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amado, M., E-mail: mario.amadomontero@sns.it; Fornieri, A.; Sorba, L.
2014-06-16
We report the realization and investigation of a ballistic Andreev interferometer based on an InAs two dimensional electron gas coupled to a superconducting Nb loop. We observe strong magnetic modulations in the voltage drop across the device due to quasiparticle interference within the weak-link. The interferometer exhibits flux noise down to ∼80 μΦ{sub 0}/√(Hz) and a robust behavior in temperature with voltage oscillations surviving up to ∼7 K. Besides this remarkable performance, the device represents a crucial first step for the realization of a fully-tunable ballistic superconducting magnetometer and embodies a potential advanced platform for the investigation of Majorana bound states, non-localmore » entanglement of Cooper pairs, as well as the manipulation and control of spin triplet correlations.« less
Tong, Liuchuan; Chen, Qing; Wong, Andrew A; Gómez-Bombarelli, Rafael; Aspuru-Guzik, Alán; Gordon, Roy G; Aziz, Michael J
2017-12-06
Quinone-based aqueous flow batteries provide a potential opportunity for large-scale, low-cost energy storage due to their composition from earth abundant elements, high aqueous solubility, reversible redox kinetics and their chemical tunability such as reduction potential. In an operating flow battery utilizing 9,10-anthraquinone-2,7-disulfonic acid, the aggregation of an oxidized quinone and a reduced hydroquinone to form a quinhydrone dimer causes significant variations from ideal solution behavior and of optical absorption from the Beer-Lambert law. We utilize in situ UV-Vis spectrophotometry to establish (a), quinone, hydroquinone and quinhydrone molar attenuation profiles and (b), an equilibrium constant for formation of the quinhydrone dimer (K QHQ ) ∼ 80 M -1 . We use the molar optical attenuation profiles to identify the total molecular concentration and state of charge at arbitrary mixtures of quinone and hydroquinone. We report density functional theory calculations to support the quinhydrone UV-Vis measurements and to provide insight into the dimerization conformations. We instrument a quinone-bromine flow battery with a Pd-H reference electrode in order to demonstrate how complexation in both the negative (quinone) and positive (bromine) electrolytes directly impacts measured half-cell and full-cell voltages. This work shows how accounting for electrolyte complexation improves the accuracy of electrochemical modeling of flow battery electrolytes.
Observation of Dust Stream Formation Produced by Low Current, High Voltage Cathode Spots
NASA Technical Reports Server (NTRS)
Foster, John E.
2004-01-01
Macro-particle acceleration driven by low current, high voltage cathode spots has been investigated. The phenomenon was observed to occur when nanometer and micrometer-sized particles in the presence of a discharge plasma were exposed to a high voltage pulse. The negative voltage pulse initiates the formation of multiple, high voltage, low current cathode spots which provides the mechanism of actual acceleration of the charged dust particles. Dust streams generated by this process were detected using laser scattering techniques. The particle impact craters observed at the surface of downstream witness badges were documented using SEM and light microscopy.
NASA Astrophysics Data System (ADS)
Lee, Hyun Ji; Kim, Sung-Jo; Ko, Myeong Ock; Kim, Jong-Hyun; Jeon, Min Yong
2018-03-01
We propose a tunable multiwavelength-swept laser based on a nematic liquid crystal (NLC) Fabry-Perot (FP) etalon, which is embedded in the resonator of a wavelength-swept laser. We achieve the continuous wavelength tuning of the multiwavelength-swept laser by applying the electric field to the NLC FP etalon. The free spectral range of the fabricated NLC FP etalon is approximately 7.9 nm. When the electric field applied to the NLC FP etalon exceeds the threshold value (Fréedericksz threshold voltage), the output of the multiwavelength-swept laser can be tuned continuously. The tuning range of the multiwavelength-swept laser can be achieved at a value greater than 75 nm, which has a considerably wider tunable range than a conventional multiwavelength laser based on an NLC FP etalon. The slope efficiencies in the spectral and temporal domains for the tunable multiwavelength-swept laser are 22.2 nm/(mVrms / μm) and 0.17 ms/(mVrms / μm), respectively in the linear region. Therefore, the developed multiwavelength-swept laser based on the NLC FP etalon can be applied to an electric-field sensor. Because the wavelength measurement and time measurement have a linear relationship, the electric-field sensor can detect a rapid change in the electric-field intensity by measuring the peak change of the pulse in the temporal domain using the NLC FP etalon-based multiwavelength-swept laser.
NASA Astrophysics Data System (ADS)
Janjua, Bilal; Ng, Tien K.; Zhao, Chao; Anjum, Dalaver H.; Prabaswara, Aditya; Consiglio, Giuseppe Bernardo; Shen, Chao; Ooi, Boon S.
2017-02-01
White light based on blue laser - YAG: Ce3+ phosphor has the advantage of implementing solid-state lighting and optical wireless communications combined-functionalities in a single lamp. However, the blue light was found to disrupt melatonin production, and therefore the human circadian rhythm in general; while the yellow phosphor is susceptible to degradation by laser irradiation and also lack tunability in color rendering index (CRI). In this investigation, by using a violet laser, which has 50% less impact on circadian response, as compared to blue light, and an InGaN-quantum-disks nanowires-based light-emitting diode (NWs-LED), we address both issues simultaneously. The white light is therefore generated using violet-green-red lasers, in conjunction with a yellow NWs-LED realized using molecular beam epitaxy technique, on titanium-coated silicon substrates. Unlike the conventional quantum-well-based LED, the NWs-LED showed efficiency-droop free behavior up to 9.8 A/cm2 with peak output power of 400 μW. A low turn-on voltage of 2.1 V was attributed to the formation of conducting titanium nitride layer at NWs nucleation site and improved fabrication process in the presence of relatively uniform height distribution. The 3D quantum confinement and the reduced band bending improve carriers-wavefunctions overlap, resulting in an IQE of 39 %. By changing the relative intensities of the individual color components, CRI of >85 was achieved with tunable correlated color temperature (CCT), thus covering the desired room lighting conditions. Our architecture provides important considerations in designing smart solid-state lighting while addressing the harmful effect of blue light.
Modeling of dielectric elastomer as electromechanical resonator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Bo, E-mail: liboxjtu@mail.xjtu.edu.cn; Liu, Lei; Chen, Hualing
Dielectric elastomers (DEs) feature nonlinear dynamics resulting from an electromechanical coupling. Under alternating voltage, the DE resonates with tunable performances. We present an analysis of the nonlinear dynamics of a DE as electromechanical resonator (DEER) configured as a pure shear actuator. A theoretical model is developed to characterize the complex performance under different boundary conditions. Physical mechanisms are presented and discussed. Chaotic behavior is also predicted, illustrating instabilities in the dynamics. The results provide a guide to the design and application of DEER in haptic devices.
Voltage tunability of thermal conductivity in ferroelectric materials
Ihlefeld, Jon; Hopkins, Patrick Edward
2016-02-09
A method to control thermal energy transport uses mobile coherent interfaces in nanoscale ferroelectric films to scatter phonons. The thermal conductivity can be actively tuned, simply by applying an electrical potential across the ferroelectric material and thereby altering the density of these coherent boundaries to directly impact thermal transport at room temperature and above. The invention eliminates the necessity of using moving components or poor efficiency methods to control heat transfer, enabling a means of thermal energy control at the micro- and nano-scales.
Jensen, Kenneth J; Zettl, Alexander K; Weldon, Jeffrey A
2014-05-06
A fully-functional radio receiver fabricated from a single nanotube is being disclosed. Simultaneously, a single nanotube can perform the functions of all major components of a radio: antenna, tunable band-pass filter, amplifier, and demodulator. A DC voltage source, as supplied by a battery, can power the radio. Using carrier waves in the commercially relevant 40-400 MHz range and both frequency and amplitude modulation techniques, successful music and voice reception has been demonstrated. Also disclosed are a radio transmitter and a mass sensor using a nanotube resonator device.
Continuously-Tunable High-Repetition Rate RF-Excited CO2 Waveguide Laser,
1982-07-01
may be transformed to the appropriate level at the laser head, which elimi- nates the ueed for the very high voltage power supply . Several gas lasers...Figure 5.5 is shown a picture of the rack containing the 50 W amplifier (at the bottom) the 40 V power - supply (in the middle) and the eight final-stage...experimentally. Experimentally 40.68 MHz rf-excitation of discharges between parallel plate electrodes with up to 7-8 kW peak rf- power hus been investigated
Tunable optical lens array using viscoelastic material and acoustic radiation force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koyama, Daisuke, E-mail: dkoyama@mail.doshisha.ac.jp; Kashihara, Yuta; Matsukawa, Mami
2015-10-28
A movable optical lens array that uses acoustic radiation force was investigated. The lens array consists of a glass plate, two piezoelectric bimorph transducers, and a transparent viscoelastic gel film. A cylindrical lens array with a lens pitch of 4.6 mm was fabricated using the acoustic radiation force generated by the flexural vibration of the glass plate. The focal point and the positioning of the lenses can be changed using the input voltage and the driving phase difference between the two transducers, respectively.
NASA Astrophysics Data System (ADS)
McCormick, Mark Alan
The goal of this work was to produce BaTiO3 and BaxSr (1-x)TiO3 (BST) thin films with high dielectric constants, using a low-temperature (<100°C) hydrothermal synthesis route. To accomplish this, titanium metal-organic precursor films were spin-cast onto metal-coated glass substrates and converted to polycrystalline BaTiO3 or BST upon reacting in aqueous solutions of Ba(OH)2 or Ba(OH)2 and Sr(OH)2. The influences of solution molarity, processing temperature, and reaction time on thin film reaction kinetics, microstructure, and dielectric properties were examined for BaTiO3 films. Post-deposition annealing at temperatures as low as 200°C substantially affected the lattice parameter, dielectric constant, and dielectric loss. This behavior is explained in terms of hydroxyl defect incorporation during film formation. Current-voltage (I-V) measurements were performed to determine the dominant conduction mechanism(s) during application of a do field, and to extract the metal/ceramic barrier height. In particular, Schottky barrier-limited conduction and Poole-Frenkel conduction were investigated as potential leakage mechanisms. For BST thin films, film stoichiometry deviated from the initial solution composition, with a preferred incorporation of Sr2+ into the perovskite lattice. The dielectric constant of the BST films was measured as a function of composition (Ba:Sr ratio) and temperature over the range 25--150°C. Finally, capacitance-voltage (C-V) measurements were made for BST films to determine the influence of film composition on dielectric tunability.
NASA Astrophysics Data System (ADS)
Tombak, Ali
The recent advancement in wireless communications demands an ever increasing improvement in the system performance and functionality with a reduced size and cost. This thesis demonstrates novel RF and microwave components based on ferroelectric and solid-state based tunable capacitor (varactor) technologies for the design of low-cost, small-size and multi-functional wireless communication systems. These include tunable lumped element VHF filters based on ferroelectric varactors, a beam-steering technique which, unlike conventional systems, does not require separate power divider and phase shifters, and a predistortion linearization technique that uses a varactor based tunable R-L-C resonator. Among various ferroelectric materials, Barium Strontium Titanate (BST) is actively being studied for the fabrication of high performance varactors at RF and microwave frequencies. BST based tunable capacitors are presented with typical tunabilities of 4.2:1 with the application of 5 to 10 V DC bias voltages and typical loss tangents in the range of 0.003--0.009 at VHF frequencies. Tunable lumped element lowpass and bandpass VHF filters based on BST varactors are also demonstrated with tunabilities of 40% and 57%, respectively. A new beam-steering technique is developed based on the extended resonance power dividing technique. Phased arrays based on this technique do not require separate power divider and phase shifters. Instead, the power division and phase shifting circuits are combined into a single circuit, which utilizes tunable capacitors. This results in a substantial reduction in the circuit complexity and cost. Phased arrays based on this technique can be employed in mobile multimedia services and automotive collision avoidance radars. A 2-GHz 4-antenna and a 10-GHz 8-antenna extended resonance phased arrays are demonstrated with scan ranges of 20 degrees and 18 degrees, respectively. A new predistortion linearization technique for the linearization of RF/microwave power amplifiers is also presented. This technique utilizes a varactor based tunable R-L-C resonator in shunt configuration. Due to the small number of circuit elements required, linearizers based on this technique offer low-cost and simple circuitry, hence can be utilized in handheld and cellular applications. A 1.8 GHz power amplifier with 9 dB gain is linearized using this technique. The linearizer improves the output 1-dB compression point of the power amplifier from 21 to 22.8 dBm. Adjacent channel power ratio (ACPR) is improved approximately 11 dB at an output RF power level of 17.5 dBm. The thesis is concluded by summarizing the main achievements and discussing the future work directions.
Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers
Yao, B. C.; Rao, Y. J.; Wang, Z. N.; Wu, Y.; Zhou, J. H.; Wu, H.; Fan, M. Q.; Cao, X. L.; Zhang, W. L.; Chen, Y. F.; Li, Y. R.; Churkin, D.; Turitsyn, S.; Wong, C. W.
2015-01-01
Pulse generation often requires a stabilized cavity and its corresponding mode structure for initial phase-locking. Contrastingly, modeless cavity-free random lasers provide new possibilities for high quantum efficiency lasing that could potentially be widely tunable spectrally and temporally. Pulse generation in random lasers, however, has remained elusive since the discovery of modeless gain lasing. Here we report coherent pulse generation with modeless random lasers based on the unique polarization selectivity and broadband saturable absorption of monolayer graphene. Simultaneous temporal compression of cavity-free pulses are observed with such a polarization modulation, along with a broadly-tunable pulsewidth across two orders of magnitude down to 900 ps, a broadly-tunable repetition rate across three orders of magnitude up to 3 MHz, and a singly-polarized pulse train at 41 dB extinction ratio, about an order of magnitude larger than conventional pulsed fiber lasers. Moreover, our graphene-based pulse formation also demonstrates robust pulse-to-pulse stability and wide-wavelength operation due to the cavity-less feature. Such a graphene-based architecture not only provides a tunable pulsed random laser for fiber-optic sensing, speckle-free imaging, and laser-material processing, but also a new way for the non-random CW fiber lasers to generate widely tunable and singly-polarized pulses. PMID:26687730
Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers.
Yao, B C; Rao, Y J; Wang, Z N; Wu, Y; Zhou, J H; Wu, H; Fan, M Q; Cao, X L; Zhang, W L; Chen, Y F; Li, Y R; Churkin, D; Turitsyn, S; Wong, C W
2015-12-21
Pulse generation often requires a stabilized cavity and its corresponding mode structure for initial phase-locking. Contrastingly, modeless cavity-free random lasers provide new possibilities for high quantum efficiency lasing that could potentially be widely tunable spectrally and temporally. Pulse generation in random lasers, however, has remained elusive since the discovery of modeless gain lasing. Here we report coherent pulse generation with modeless random lasers based on the unique polarization selectivity and broadband saturable absorption of monolayer graphene. Simultaneous temporal compression of cavity-free pulses are observed with such a polarization modulation, along with a broadly-tunable pulsewidth across two orders of magnitude down to 900 ps, a broadly-tunable repetition rate across three orders of magnitude up to 3 MHz, and a singly-polarized pulse train at 41 dB extinction ratio, about an order of magnitude larger than conventional pulsed fiber lasers. Moreover, our graphene-based pulse formation also demonstrates robust pulse-to-pulse stability and wide-wavelength operation due to the cavity-less feature. Such a graphene-based architecture not only provides a tunable pulsed random laser for fiber-optic sensing, speckle-free imaging, and laser-material processing, but also a new way for the non-random CW fiber lasers to generate widely tunable and singly-polarized pulses.
Lindley, Sarah A; Cooper, Jason K; Rojas-Andrade, Mauricio D; Fung, Victoria; Leahy, Conor J; Chen, Shaowei; Zhang, Jin Z
2018-04-18
In principle, the diameter and surface plasmon resonance (SPR) frequency of hollow metal nanostructures can be independently adjusted, allowing the formation of targeted photoactivated structures of specific size and optical functionality. Although tunable SPRs have been reported for various systems, the shift in SPR is usually concomitant with a change in particle size. As such, more advanced tunability, including constant diameter with varying SPR or constant SPR with varying diameter, has not been properly achieved experimentally. Herein, we demonstrate this advanced tunability with hollow gold nanospheres (HGNs). HGNs were synthesized through galvanic exchange using cobalt-based nanoparticles (NPs) as sacrificial scaffolds. Co 2 B NP scaffolds were prepared by sodium borohydride nucleation of aqueous cobalt chloride and characterized using UV-vis, dynamic light scattering, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. Careful control over the size of the Co 2 B scaffold and its galvanic conversion is essential to realize fine control of the resultant HGN diameter and shell thickness. In pursuit of size control, we introduce B(OH) 4 - (the final product of NaBH 4 hydrolysis) as a growth agent to obtain hydrodynamic diameters ranging from ∼17-85 nm with relative standard deviation <3%. The highly monodisperse Co 2 B NPs were then used as scaffolds for the formation of HGNs. In controlling HGN shell thickness and uniformity, environmental oxygen was shown to affect both the structural and optical properties of the resultant gold shells. With careful control of these key factors, we demonstrate an HGN synthesis that enables independent variation of diameter and shell thickness, and thereby SPR, with unprecedented uniformity. The new synthesis method creates a truly tunable plasmonic nanostructure platform highly desirable for a wide range of applications, including sensing, catalysis, and photothermal therapy.
Ferroelectric thin-film capacitors and piezoelectric switches for mobile communication applications.
Klee, Mareike; van Esch, Harry; Keur, Wilco; Kumar, Biju; van Leuken-Peters, Linda; Liu, Jin; Mauczok, Rüdiger; Neumann, Kai; Reimann, Klaus; Renders, Christel; Roest, Aarnoud L; Tiggelman, Mark P J; de Wild, Marco; Wunnicke, Olaf; Zhao, Jing
2009-08-01
Thin-film ferroelectric capacitors have been integrated with resistors and active functions such as ESD protection into small, miniaturized modules, which enable a board space saving of up to 80%. With the optimum materials and processes, integrated capacitors with capacitance densities of up to 100 nF/mm2 for stacked capacitors combined with breakdown voltages of 90 V have been achieved. The integration of these high-density capacitors with extremely high breakdown voltage is a major accomplishment in the world of passive components and has not yet been reported for any other passive integration technology. Furthermore, thin-film tunable capacitors based on barium strontium titanate with high tuning range and high quality factor at 1 GHz have been demonstrated. Finally, piezoelectric thin films for piezoelectric switches with high switching speed have been realized.
APPLIED OPTICS. Voltage-tunable circular photogalvanic effect in silicon nanowires.
Dhara, Sajal; Mele, Eugene J; Agarwal, Ritesh
2015-08-14
Electronic bands in crystals can support nontrivial topological textures arising from spin-orbit interactions, but purely orbital mechanisms can realize closely related dynamics without breaking spin degeneracies, opening up applications in materials containing only light elements. One such application is the circular photogalvanic effect (CPGE), which is the generation of photocurrents whose magnitude and polarity depend on the chirality of optical excitation. We show that the CPGE can arise from interband transitions at the metal contacts to silicon nanowires, where inversion symmetry is locally broken by an electric field. Bias voltage that modulates this field further controls the sign and magnitude of the CPGE. The generation of chirality-dependent photocurrents in silicon with a purely orbital-based mechanism will enable new functionalities in silicon that can be integrated with conventional electronics. Copyright © 2015, American Association for the Advancement of Science.
Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging
Strathman, Matthew; Liu, Yunbo; Li, Xingde; Lin, Lih Y.
2013-01-01
We demonstrate a 3-D scanning micromirror device that combines 2-D beam scanning with focus control in the same device using micro-electro-mechanical-systems (MEMS) technology. 2-D beam scanning is achieved with a biaxial gimbal structure and focus control is obtained with a deformable mirror membrane surface. The micromirror with 800 micrometer diameter is designed to be sufficiently compact and efficient so that it can be incorporated into an endoscopic imaging probe in the future. The design, fabrication and characterization of the device are described in this paper. Using the focus-tracking MEMS scanning mirror, we achieved an optical scanning range of >16 degrees with <40 V actuation voltage at resonance and a tunable focal length between infinity and 25 mm with <100V applied bias. PMID:24104304
A monostable piezoelectric energy harvester for broadband low-level excitations
NASA Astrophysics Data System (ADS)
Fan, Kangqi; Tan, Qinxue; Zhang, Yiwei; Liu, Shaohua; Cai, Meiling; Zhu, Yingmin
2018-03-01
This letter presents a monostable piezoelectric energy harvester (PEH) for achieving enhanced energy extraction from low-level excitations. The proposed PEH is realized by introducing symmetric magnetic attraction to a piezoelectric cantilever beam and a pair of stoppers to confine the maximum deflection of the beam. The lumped parameter model of such a system is presented and experimentally validated. Theoretical simulations and experimental measurements demonstrate that the proposed design can bring about a wider operating bandwidth and higher output voltage than the linear PEH. Under a sinusoidal vibration with an amplitude of 3 m/s2, a 54% increase in the operating bandwidth and a 253% increase in the magnitude of output power are achieved compared to its linear counterpart. Moreover, the proposed PEH exhibits rich dynamic features, including the tunable operating bandwidth, adjustable voltage and power levels, and softening hysteresis.
Flexible electronic control system based on FPGA for liquid-crystal microlens
NASA Astrophysics Data System (ADS)
Zhang, Bo; Xin, Zhaowei; Li, Dapeng; Wei, Dong; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng
2018-02-01
Traditional imaging based on common optical lens can only be used to collect intensity information of incident beams, but actually lightwave also carries other mode information about targets and environment, including: spectrum, wavefront, and depth of target, and so on. It is very important to acquire those information mentioned for efficiently detecting and identifying targets in complex background. There is a urgent need to develop new high-performance optical imaging components. The liquid-crystal microlens (LCMs) only by applying spatial electrical field to change optical performance, have demonstrated remarkable advantages comparing conventional lenses, and therefore show a widely application prospect. Because the physical properties of the spatial electric fields between electrode plates in LCMs are directly related to the light-field performances of LCMs, the quality of voltage signal applied to LCMs needs high requirements. In this paper, we design and achieve a new type of digital voltage equipment with a wide adjustable voltage range and high precise voltage to effectively drive and adjust LCMs. More importantly, the device primarily based on field-programmable gate array(FPGA) can generate flexible and stable voltage signals to cooperate with the various functions of LCMs. Our experiments show that through the electronic control system, the LCMs already realize several significant functions including: electrically swing focus, wavefront imaging, electrically tunable spectral imaging and light-field imaging.
Optoelectronic frequency discriminated phase tuning technology and its applications
NASA Astrophysics Data System (ADS)
Lin, Gong-Ru; Chang, Yung-Cheng
2000-07-01
By using a phase-tunable optoelectronic phase-locked loop, we are able to continuously change the phase as well as the delay-time of optically distributed microwave clock signals or optical pulse train. The advantages of the proposed technique include such as wide-band operation up to 20GHz, wide-range tuning up to 640 degrees, high tuning resolution of <6x10-2 degree/mV, ultra-low short-term phase fluctuation and drive of 4.7x10-2 degree and 3.4x10- 3 degree/min, good linearity with acceptable deviations, and frequency-independent transferred function with slope of nearly 90 degrees/volt, etc. The novel optoelectronic phase shifter is performed by using a DC-voltage controlled, optoelectronic-mixer-based, frequency-down-converted digital phase-locked-loop. The maximum delay-time is continuously tunable up to 3.9 ns for optical pulses repeated at 500 MHz from a gain-switched laser diode. This corresponds to a delay responsivity of about 0.54 ps/mV. The using of the OEPS as being an optoelectronic delay-time controller for optical pulses is demonstrated with temporal resolution of <0.2 ps. Electro-optic sampling of high-frequency microwave signals by using the in-situ delay-time-tunable pulsed laser as a novel optical probe is primarily reported.
Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas.
Tatoli, Teresa; Conteduca, Donato; Dell'Olio, Francesco; Ciminelli, Caterina; Armenise, Mario N
2016-06-01
The design of an integrated graphene-based fine-tunable optical delay line on silicon nitride for optical beamforming in phased-array antennas is reported. A high value of the optical delay time (τg=920 ps) together with a compact footprint (4.15 mm2) and optical loss <27 dB make this device particularly suitable for highly efficient steering in active phased-array antennas. The delay line includes two graphene-based Mach-Zehnder interferometer switches and two vertically stacked microring resonators between which a graphene capacitor is placed. The tuning range is obtained by varying the value of the voltage applied to the graphene electrodes, which controls the optical path of the light propagation and therefore the delay time. The graphene provides a faster reconfigurable time and low values of energy dissipation. Such significant advantages, together with a negligible beam-squint effect, allow us to overcome the limitations of conventional RF beamformers. A highly efficient fine-tunable optical delay line for the beamsteering of 20 radiating elements up to ±20° in the azimuth direction of a tile in a phased-array antenna of an X-band synthetic aperture radar has been designed.
Development of High Power Vacuum Tubes for Accelerators and Plasma Heating
NASA Astrophysics Data System (ADS)
Srivastava, Vishnu
2012-11-01
High pulsed power magnetrons and klystrons for medical and industrial accelerators, and high CW power klystrons and gyrotrons for plasma heating in tokamak, are being developed at CEERI. S-band 2.0MW pulsed tunable magnetrons of centre frequency 2856MHz and 2998 MHz were developed, and S-band 2.6MW pulsed tunable magnetron is being developed for medical LINAC, and 3MW pulsed tunable magnetron is being developed for industrial accelerator. S-band (2856MHz), 5MW pulsed klystron was developed for particle accelerator, and S-band 6MW pulsed klystron is under development for 10MeV industrial accelerator. 350MHz, 100kW (CW) klystron is being developed for proton accelerator, and C-band 250kW (CW) klystron is being developed for plasma heating. 42GHz, 200kW (CW/Long pulse) gyrotron is under development for plasma heating. Plasma filled tubes are also being developed for switching. 25kV/1kA and 40kV/3kA thyratrons were developed for high voltage high current switching in pulse modulators for magnetrons and klystrons. 25kV/3kA Pseudospark switch of current rise time of 1kA/|a-sec and pulse repetition rate of 500Hz is being developed. Plasma assisted high power microwave device is also being investigated.
NASA Astrophysics Data System (ADS)
Im, Jaemo; Auciello, O.; Baumann, P. K.; Streiffer, S. K.; Kaufman, D. Y.; Krauss, A. R.
2000-01-01
Precise control of composition and microstructure is critical for the production of (BaxSr1-x)Ti1+yO3+z (BST) dielectric thin films with the large dependence of permittivity on electric field, low losses, and high electrical breakdown fields that are required for successful integration of BST into tunable high-frequency devices. Here, we present results on composition-microstructure-electrical property relationships for polycrystalline BST films produced by magnetron-sputter deposition, that are appropriate for microwave and millimeter-wave applications such as varactors and frequency triplers. Films with controlled compositions were grown from a stoichiometric Ba0.5Sr0.5TiO3 target by control of the background processing gas pressure. It was determined that the (Ba+Sr)/Ti ratios of these BST films could be adjusted from 0.73 to 0.98 by changing the total (Ar+O2) process pressure, while the O2/Ar ratio did not strongly affect the metal ion composition. Film crystalline structure and dielectric properties as a function of the (Ba+Sr)/Ti ratio are discussed. Optimized BST films yielded capacitors with low dielectric losses (0.0047), among the best reported for sputtered BST, while still maintaining tunabilities suitable for device applications.
NASA Astrophysics Data System (ADS)
Mikhelashvili, V.; Cristea, D.; Meyler, B.; Yofis, S.; Shneider, Y.; Atiya, G.; Cohen-Hyams, T.; Kauffmann, Y.; Kaplan, W. D.; Eisenstein, G.
2015-01-01
We describe a new type of optically sensitive tunable capacitor with a wide band response ranging from the ultraviolet (245 nm) to the near infrared (880 nm). It is based on a planar Metal-Oxide-Semiconductor (MOS) structure fabricated on an insulator on silicon substrate where the insulator layer comprises a double layer dielectric stack of SiO2-HfO2. Two operating configurations have been examined, a single diode and a pair of back-to-back connected devices, where either one or both diodes are illuminated. The varactors exhibit, in all cases, very large sensitivities to illumination. Near zero bias, the capacitance dependence on illumination intensity is sub linear and otherwise it is nearly linear. In the back-to-back connected configuration, the reverse biased diode acts as a light tunable resistor whose value affects strongly the capacitance of the second, forward biased, diode and vice versa. The proposed device is superior to other optical varactors in its large sensitivity to illumination in a very broad wavelength range (245 nm-880 nm), the strong capacitance dependence on voltage and the superior current photo responsivity. Above and beyond that structure requires a very simple fabrication process which is CMOS compatible.
Oliva, Nicoló; Casu, Emanuele Andrea; Yan, Chen; Krammer, Anna; Rosca, Teodor; Magrez, Arnaud; Stolichnov, Igor; Schueler, Andreas; Martin, Olivier J F; Ionescu, Adrian Mihai
2017-10-27
Junctions between n-type semiconductors of different electron affinity show rectification if the junction is abrupt enough. With the advent of 2D materials, we are able to realize thin van der Waals (vdW) heterostructures based on a large diversity of materials. In parallel, strongly correlated functional oxides have emerged, having the ability to show reversible insulator-to-metal (IMT) phase transition by collapsing their electronic bandgap under a certain external stimulus. Here, we report for the first time the electronic and optoelectronic characterization of ultra-thin n-n heterojunctions fabricated using deterministic assembly of multilayer molybdenum disulphide (MoS 2 ) on a phase transition material, vanadium dioxide (VO 2 ). The vdW MoS 2 /VO 2 heterojunction combines the excellent blocking capability of an n-n junction with a high conductivity in on-state, and it can be turned into a Schottky rectifier at high applied voltage or at temperatures higher than 68 °C, exploiting the metal state of VO 2 . We report tunable diode-like current rectification with a good diode ideality factor of 1.75 and excellent conductance swing of 120 mV/dec. Finally, we demonstrate unique tunable photosensitivity and excellent junction photoresponse in the 500/650 nm wavelength range.
Vail, III, William Banning
2000-01-01
Methods of operation of different types of multiple electrode apparatus vertically disposed in a cased well to measure information related to the resistivity of adjacent geological formations from within the cased well are described. The multiple electrode apparatus has a minimum of two spaced apart voltage measurement electrodes that electrically engage a first portion of the interior of the cased well and that provide at least first voltage information. Current control means are used to control the magnitude of any selected current that flows along a second portion of the interior of the casing to be equal to a predetermined selected constant. The first portion of the interior of the cased well is spaced apart from the second portion of the interior of the cased well. The first voltage information and the predetermined selected constant value of any selected current flowing along the casing are used in part to determine a magnitude related to the formation resistivity adjacent to the first portion of the interior of the cased well. Methods and apparatus having a plurality of voltage measurement electrodes are disclosed that provide voltage related information in the presence of constant currents flowing along the casing which is used to provide formation resistivity.
Spin-torque diode with tunable sensitivity and bandwidth by out-of-plane magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X.; Zheng, C.; Pong, Philip W. T.
Spin-torque diodes based on nanosized magnetic tunnel junctions are novel microwave detectors with high sensitivity and wide frequency bandwidth. While previous reports mainly focus on improving the sensitivity, the approaches to extend the bandwidth are limited. This work experimentally demonstrates that through optimizing the orientation of the external magnetic field, wide bandwidth can be achieved while maintaining high sensitivity. The mechanism of the frequency- and sensitivity-tuning is investigated through analyzing the dependence of resonant frequency and DC voltage on the magnitude and the tilt angle of hard-plane magnetic field. The frequency dependence is qualitatively explicated by Kittel's ferromagnetic resonance model.more » The asymmetric resonant frequency at positive and negative magnetic field is verified by the numerical simulation considering the in-plane anisotropy. The DC voltage dependence is interpreted through evaluating the misalignment angle between the magnetization of the free layer and the reference layer. The tunability of the detector performance by the magnetic field angle is evaluated through characterizing the sensitivity and bandwidth under 3D magnetic field. The frequency bandwidth up to 9.8 GHz or maximum sensitivity up to 154 mV/mW (after impedance mismatch correction) can be achieved by tuning the angle of the applied magnetic field. The results show that the bandwidth and sensitivity can be controlled and adjusted through optimizing the orientation of the magnetic field for various applications and requirements.« less
Tunable microstrip SQUID amplifiers for the Gen 2 Axion Dark Matter eXperiment (ADMX)
NASA Astrophysics Data System (ADS)
O'Kelley, Sean; Hilton, Gene; Clarke, John; ADMX Collaboration
2016-03-01
We present a series of tunable microstrip SQUID (Superconducting Quantum Interference Device) amplifiers (MSAs) for installation in ADMX. The axion dark matter candidate is detected via Primakoff conversion to a microwave photon in a high-Q (~100,000) tunable microwave cavity cooled with a dilution refrigerator in a 7-tesla magnetic field. The microwave photon frequency ν is a function of the unknown axion mass, so both the cavity and amplifier must be scanned over a wide frequency range. An MSA is a linear, phase-preserving amplifier consisting of a square washer loop, fabricated from a thin Nb film, incorporating two Josephson tunnel junctions with resistive shunts to prevent hysteresis. The input is coupled via a microstrip made from a square Nb coil deposited over the washer with an intervening insulating layer. Tunability is achieved by terminating the microstrip with GaAs varactors that operate below 100 mK. By varying the varactor capacitance with a bias voltage, the resonant frequency is varied by up to a factor of 2. We demonstrate several devices operating below 100 mK, matched to the discrete operating bands of ADMX at frequencies ranging from 560 MHz to 1 GHz. The MSAs exhibit gains exceeding 20 dB and the associated noise temperatures, measured with a hot/cold load, approach the standard quantum limit (hν/kB) . Supported by DOE Grants DE - FG02 - 97ER41029, DE - FG02 - 96ER40956, DE - AC52 - 07NA27344, DE - AC03 - 76SF00098, and the Livermore LDRD program.
Hlaing, Htay; Kim, Chang-Hyun; Carta, Fabio; Nam, Chang-Yong; Barton, Rob A; Petrone, Nicholas; Hone, James; Kymissis, Ioannis
2015-01-14
The vertical integration of graphene with inorganic semiconductors, oxide semiconductors, and newly emerging layered materials has recently been demonstrated as a promising route toward novel electronic and optoelectronic devices. Here, we report organic thin film transistors based on vertical heterojunctions of graphene and organic semiconductors. In these thin heterostructure devices, current modulation is accomplished by tuning of the injection barriers at the semiconductor/graphene interface with the application of a gate voltage. N-channel devices fabricated with a thin layer of C60 show a room temperature on/off ratio >10(4) and current density of up to 44 mAcm(-2). Because of the ultrashort channel intrinsic to the vertical structure, the device is fully operational at a driving voltage of 200 mV. A complementary p-channel device is also investigated, and a logic inverter based on two complementary transistors is demonstrated. The vertical integration of graphene with organic semiconductors via simple, scalable, and low-temperature fabrication processes opens up new opportunities to realize flexible, transparent organic electronic, and optoelectronic devices.
NASA Astrophysics Data System (ADS)
Agarwalla, Bijay Kumar; Kulkarni, Manas; Mukamel, Shaul; Segal, Dvira
2016-07-01
We investigate gain in microwave photonic cavities coupled to voltage-biased double quantum dot systems with an arbitrarily strong dot-lead coupling and with a Holstein-like light-matter interaction, by employing the diagrammatic Keldysh nonequilibrium Green's function approach. We compute out-of-equilibrium properties of the cavity: its transmission, phase response, mean photon number, power spectrum, and spectral function. We show that by the careful engineering of these hybrid light-matter systems, one can achieve a significant amplification of the optical signal with the voltage-biased electronic system serving as a gain medium. We also study the steady-state current across the device, identifying elastic and inelastic tunneling processes which involve the cavity mode. Our results show how recent advances in quantum electronics can be exploited to build hybrid light-matter systems that behave as microwave amplifiers and photon source devices. The diagrammatic Keldysh approach is primarily discussed for a cavity-coupled double quantum dot architecture, but it is generalizable to other hybrid light-matter systems.
Industrial integration of high coherence tunable VECSEL in the NIR and MIR
NASA Astrophysics Data System (ADS)
Denet, Stéphane; Chomet, Baptiste; Lecocq, Vincent; Ferrières, Laurence; Myara, Mikhaël.; Cerutti, Laurent; Sagnes, Isabelle; Garnache, Arnaud
2016-03-01
Laser technology is finding applications in areas such as high resolution spectroscopy, radar-lidar, velocimetry, or atomic clock where highly coherent tunable high power light sources are required. The Vertical External Cavity Surface Emitting Laser (VECSEL) technology [1] has been identified for years as a good candidate to reach high power, high coherence and broad tunability while covering a wide emission wavelength range exploiting III-V semiconductor technologies. Offering such performances in the Near- and Middle-IR range, GaAs- and Sb-based VECSEL technologies seem to be a well suited path to meet the required specifications of demanding applications. Built up in this field, our expertise allows the realization of compact and low power consumption marketable products, with performances that do not exist on the market today in the 0.8- 1.1 μm and 2-2.5 μm spectral range. Here we demonstrate highly coherent broadly tunable single frequency micro-chip, intracavity element free, patented VECSEL technology, integrated into a compact module with driving electronics. VECSEL devices emitting in the Near and Middle-IR developed in the frame of this work [2] exhibit exciting features compared to diode-pumped solid-state lasers and DFB diode lasers; they combine high power (>100mW) high coherence with a low divergence diffraction limited TEM00 beam, class A dynamics with Relative Intensity Noise as low as -140dB/Hz and at shot noise level above 200MHz RF frequency (up to 160GHz), free running narrow linewidth at sub MHz level (fundamental limit at Hz level) with high spectral purity (SMSR >55dB), linear polarization (50dB suppression ratio), and broadband continuous tunability greater than 400GHz (< 30V piezo voltage, 6kHz cut off frequency) with total tunability up to 3THz. Those performances can all be reached thanks to the high finesse cavity of VECSEL technology, associated to ideal homogeneous QW gain behaviour [3]. In addition, the compact design without any movable intracavity elements offers a robust single frequency regime with a long term wavelength stability better than few GHz/h (ambient thermal drift limited). Those devices surpass the state of the art commercial technologies thanks to a combination of power-coherence wavelength tunability performances and integration.
NASA Technical Reports Server (NTRS)
Miranda, Felix A.; Romanofsky, Robert R.; VanKeuls, Frederick W.; Mueller, Carl H.; Treece, Randolph E.; Rivkin, Tania V.
1997-01-01
High Temperature Superconductor/Ferroelectric (HTS/FE ) thin film multilayered structures deposited onto dielectric substrates are currently being investigated for use in low loss, tunable microwave components for satellite and ground based communications. The main goal for this technology is to achieve maximum tunability while keeping the microwave losses as low as possible, so as to avoid performance degradation when replacing conventional technology (e.g., filters and oscillators) with HTS/FE components. Therefore, for HTS/FE components to be successfully integrated into current working systems, full optimization of the material and electrical properties of the ferroelectric films, without degrading those of the HTS film; is required. Hence, aspects such as the appropriate type of ferroelectric and optimization of the deposition conditions (e.g., deposition temperature) should be carefully considered. The tunability range as well as the microwave losses of the desired varactor (i.e., tunable component) are also dependent on the geometry chosen (e.g., parallel plate capacitor, interdigital capacitor, coplanar waveguide, etc.). In addition, the performance of the circuit is dependent on the location of the varactor in the circuit and the biasing circuitry. In this paper, we will present our results on the study of the SrTiO3/YBa2Cu3O(7-delta)/LaAl03 (STO/YBCO/LAO) and the Ba(x)Sr(1-x)TiO3/YBa2Cu3O(7-delta)/LaAl03(BSTO/YBCO/ILAO) HTS/FE multilayered structures. We have observed that the amount of variation of the dielectric constant upon the application of a dc electric field is closely related to the microstructure of the film. The largest tuning of the STO/YBCO/LAO structure corresponded to single-phased, epitaxial STO films deposited at 800 C and with a thickness of 500 nm. Higher temperatures resulted in interfacial degradation and poor film quality, while lower deposition temperatures resulted in films with lower dielectric constants, lower tunabilities, and higher losses. For STO/LAO multilayer structures having STO film of similar quality we have observed that interdigital capacitor configurations allow for higher tunabilities and lower losses than parallel plate configurations, but required higher dc voltage. Results on the use of these geometries in working microwave components such as filters and stabilizing resonators for local oscillators (LO) will be discussed.
Yang, Paul; Park, Daehoon; Beom, Keonwon; Kim, Hyung Jun; Kang, Chi Jung; Yoon, Tae-Sik
2018-07-20
We report a variety of synaptic behaviors in a thin-film transistor (TFT) with a metal-oxide-semiconductor gate stack that has a Pt/HfO x /n-type indium-gallium-zinc oxide (n-IGZO) structure. The three-terminal synaptic TFT exhibits a tunable synaptic weight with a drain current modulation upon repeated application of gate and drain voltages. The synaptic weight modulation is analog, voltage-polarity dependent reversible, and strong with a dynamic range of multiple orders of magnitude (>10 4 ). This modulation process emulates biological synaptic potentiation, depression, excitatory-postsynaptic current, paired-pulse facilitation, and short-term to long-term memory transition behaviors as a result of repeated pulsing with respect to the pulse amplitude, width, repetition number, and the interval between pulses. These synaptic behaviors are interpreted based on the changes in the capacitance of the Pt/HfO x /n-IGZO gate stack, the channel mobility, and the threshold voltage that result from the redistribution of oxygen ions by the applied gate voltage. These results demonstrate the potential of this structure for three-terminal synaptic transistor using the gate stack composed of the HfO x gate insulator and the IGZO channel layer.
NASA Astrophysics Data System (ADS)
Yang, Paul; Park, Daehoon; Beom, Keonwon; Kim, Hyung Jun; Kang, Chi Jung; Yoon, Tae-Sik
2018-07-01
We report a variety of synaptic behaviors in a thin-film transistor (TFT) with a metal-oxide-semiconductor gate stack that has a Pt/HfO x /n-type indium–gallium–zinc oxide (n-IGZO) structure. The three-terminal synaptic TFT exhibits a tunable synaptic weight with a drain current modulation upon repeated application of gate and drain voltages. The synaptic weight modulation is analog, voltage-polarity dependent reversible, and strong with a dynamic range of multiple orders of magnitude (>104). This modulation process emulates biological synaptic potentiation, depression, excitatory-postsynaptic current, paired-pulse facilitation, and short-term to long-term memory transition behaviors as a result of repeated pulsing with respect to the pulse amplitude, width, repetition number, and the interval between pulses. These synaptic behaviors are interpreted based on the changes in the capacitance of the Pt/HfO x /n-IGZO gate stack, the channel mobility, and the threshold voltage that result from the redistribution of oxygen ions by the applied gate voltage. These results demonstrate the potential of this structure for three-terminal synaptic transistor using the gate stack composed of the HfO x gate insulator and the IGZO channel layer.
NASA Astrophysics Data System (ADS)
Kaur, Jotinder; Sharma, Vinay; Sharma, Vipul; Veerakumar, V.; Kuanr, Bijoy K.
2016-05-01
Barium Hexaferrite (BaM) is an extensively studied magnetic material due to its potential device application. In this paper, we study Schottky junction diodes fabricated using gold and BaM and demonstrate the function of a spintronic device. Gold (50 nm)/silicon substrate was used to grow the BaM thin films (100-150 nm) using pulsed laser deposition. I-V characteristics were measured on the Au/BaM structure sweeping the voltage from ±5 volts. The forward and reverse bias current-voltage curves show diode like rectifying characteristics. The threshold voltage decreases while the output current increases with increase in the applied external magnetic field showing that the I-V characteristics of the BaM based Schottky junction diodes can be tuned by external magnetic field. It is also demonstrated that, the fabricated Schottky diode can be used as a half-wave rectifier, which could operate at high frequencies in the range of 1 MHz compared to the regular p-n junction diodes, which rectify below 10 kHz. In addition, it is found that above 1 MHz, Au/BaM diode can work as a rectifier as well as a capacitor filter, making the average (dc) voltage much larger.
TULIPs: tunable, light-controlled interacting protein tags for cell biology.
Strickland, Devin; Lin, Yuan; Wagner, Elizabeth; Hope, C Matthew; Zayner, Josiah; Antoniou, Chloe; Sosnick, Tobin R; Weiss, Eric L; Glotzer, Michael
2012-03-04
Naturally photoswitchable proteins offer a means of directly manipulating the formation of protein complexes that drive a diversity of cellular processes. We developed tunable light-inducible dimerization tags (TULIPs) based on a synthetic interaction between the LOV2 domain of Avena sativa phototropin 1 (AsLOV2) and an engineered PDZ domain (ePDZ). TULIPs can recruit proteins to diverse structures in living yeast and mammalian cells, either globally or with precise spatial control using a steerable laser. The equilibrium binding and kinetic parameters of the interaction are tunable by mutation, making TULIPs readily adaptable to signaling pathways with varying sensitivities and response times. We demonstrate the utility of TULIPs by conferring light sensitivity to functionally distinct components of the yeast mating pathway and by directing the site of cell polarization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willner, A.E.; Kuznetsov, M.; Kaminow, I.P.
1989-12-01
Two-electrode DFB lasers show promise for combining high speed and frequency tunability for FDM-FSK networks. The authors have measured the FM and FSK response of such lasers up to modulation frequencies of {approximately} GHz. Using these lasers in a noncoherent detection system in which a fiber Fabry-Perot tunable optical filter converts an FSK signal into ASK format, the authors demonstrate 10{sup {minus}9} BER up to 1 Gbit/s. Nonuniform FM response and consequent tone broadening of the optical-filtering FSK spectra can lead to system power penalties due to optical-filtering effects. Thus, for a given FM response, they can project the behaviormore » of these lasers in FSK optical systems.« less
Goldschen-Ohm, Marcel P.; Capes, Deborah L.; Oelstrom, Kevin M.; Chanda, Baron
2013-01-01
Voltage-dependent Na+ channels are crucial for electrical signalling in excitable cells. Membrane depolarization initiates asynchronous movements in four non-identical voltage-sensing domains of the Na+ channel. It remains unclear to what extent this structural asymmetry influences pore gating as compared with outwardly rectifying K+ channels, where channel opening results from a final concerted transition of symmetric pore gates. Here we combine single channel recordings, cysteine accessibility and voltage clamp fluorimetry to probe the relationships between voltage sensors and pore conformations in an inactivation deficient Nav1.4 channel. We observe three distinct conductance levels such that DI-III voltage sensor activation is kinetically correlated with formation of a fully open pore, whereas DIV voltage sensor movement underlies formation of a distinct subconducting pore conformation preceding inactivation in wild-type channels. Our experiments reveal that pore gating in sodium channels involves multiple transitions driven by asynchronous movements of voltage sensors. These findings shed new light on the mechanism of coupling between activation and fast inactivation in voltage-gated sodium channels. PMID:23322038
NASA Astrophysics Data System (ADS)
Huang, Hailong; Xia, Hui; Xie, Wenke; Guo, Zhibo; Li, Hongjian
2018-06-01
A size-efficient tunable metamaterial absorber (MA) composed of metallic leaf-shaped cell, graphene layer, silicon substrate, and bottom metal film is investigated theoretically and numerically at near-infrared (NIR) regions. Simulation results reveal that the single-band high absorption of 91.9% is obtained at 1268.7 nm. Further results show that the single-band can be simply changed into dual-band high absorption by varying the geometric parameters of top metallic layer at same wavelength regions, yielding two high absorption coefficients of 96.6% and 95.3% at the wavelengths of 1158.7 nm and 1323.6 nm, respectively. And the effect of related geometric parameter on dual-band absorption intensities is also investigated to obtain the optimized one. The peak wavelength can be tuned via modifying the Fermi energy of the graphene layer through controlling the external gate voltage. The work shows that the proposed strategy can be applied to other design of the dual-band structure at infrared regions.
Kim, Haegyeom; Lim, Hee-Dae; Kim, Sung-Wook; Hong, Jihyun; Seo, Dong-Hwa; Kim, Dae-chul; Jeon, Seokwoo; Park, Sungjin; Kang, Kisuk
2013-01-01
High-performance and cost-effective rechargeable batteries are key to the success of electric vehicles and large-scale energy storage systems. Extensive research has focused on the development of (i) new high-energy electrodes that can store more lithium or (ii) high-power nano-structured electrodes hybridized with carbonaceous materials. However, the current status of lithium batteries based on redox reactions of heavy transition metals still remains far below the demands required for the proposed applications. Herein, we present a novel approach using tunable functional groups on graphene nano-platelets as redox centers. The electrode can deliver high capacity of ~250 mAh g−1, power of ~20 kW kg−1 in an acceptable cathode voltage range, and provide excellent cyclability up to thousands of repeated charge/discharge cycles. The simple, mass-scalable synthetic route for the functionalized graphene nano-platelets proposed in this work suggests that the graphene cathode can be a promising new class of electrode. PMID:23514953
Magnetostatic wave tunable resonators
NASA Astrophysics Data System (ADS)
Castera, J.-P.; Hartemann, P.
1983-06-01
Theoretical principles and techniques for the implementation of magnetostatic surface wave and volume wave resonators in high frequency oscillators are discussed. Magnetostatic waves are magnetic waves that propagate in materials exposed to a polarized magnetic field. The propagation speed ranges from 3-300 km/sec for wavelengths between 1 micron and 10 mm, in the presence of lags from 10-1000 nsec/ cm. Tunable resonators in the 1-20 GHz frequency range have been manufactured with YIG using liquid phase epitaxy for deposition on gadolinium and gallium substrates. Distributed-mirror Fabry-Perot cavity resonators are described and performance tests results are reported, including losses of 8 dB, a quality coefficient under voltage of 450, and frequency rejection outside of resonance better than 10 dB. However, saturation occurs at low power levels at frequencies lower than 4.2 GHz, a feature overcome with forward volume magnetostatic wave generators, which have a quality factor of 500, an insertion loss of 22 dB, and rejection around 15 dB.
Huang, Kuan-Chung; Hsiao, Yu-Cheng; Timofeev, Ivan V; Zyryanov, Victor Ya; Lee, Wei
2016-10-31
We report on the spectral properties of an optically switchable tristable chiral-tilted homeotropic nematic liquid crystal (LC) incorporated as a tunable defect layer in one-dimensional photonic crystal. By varying the polarization angle of the incident light and modulating the light intensity ratio between UV and green light, various transmission characteristics of the composite were obtained. The hybrid structure realizes photo-tunability in transmission of defect-mode peaks within the photonic bandgap in addition to optical switchability among three distinct sets of defect modes via photoinduced tristable state transitions. Because the fabrication process is easier and less critical in terms of cell parameters or sample preparation conditions and the LC layer itself possesses an extra stable state compared with the previously reported bistable counterpart operating on the basis of biased-voltage dual-frequency switching, it has much superior potential for photonic applications such as a low-power-consumption multichannel filter and an optically controllable intensity modulator.
Ihlefeld, Jon F; Foley, Brian M; Scrymgeour, David A; Michael, Joseph R; McKenzie, Bonnie B; Medlin, Douglas L; Wallace, Margeaux; Trolier-McKinstry, Susan; Hopkins, Patrick E
2015-03-11
Dynamic control of thermal transport in solid-state systems is a transformative capability with the promise to propel technologies including phononic logic, thermal management, and energy harvesting. A solid-state solution to rapidly manipulate phonons has escaped the scientific community. We demonstrate active and reversible tuning of thermal conductivity by manipulating the nanoscale ferroelastic domain structure of a Pb(Zr0.3Ti0.7)O3 film with applied electric fields. With subsecond response times, the room-temperature thermal conductivity was modulated by 11%.
Broadband Ge/SiGe quantum dot photodetector on pseudosubstrate
2013-01-01
We report the fabrication and characterization of a ten-period Ge quantum dot photodetector grown on SiGe pseudosubstrate. The detector exhibits tunable photoresponse in both 3- to 5- μm and 8- to 12- μm spectral regions with responsivity values up to about 1 mA/W at a bias of −3 V and operates under normal incidence radiation with background limited performance at 100 K. The relative response in the mid- and long-wave atmospheric windows could be controlled through the applied voltage. PMID:23651470
Detection of non-Gaussian fluctuations in a quantum point contact.
Gershon, G; Bomze, Yu; Sukhorukov, E V; Reznikov, M
2008-07-04
An experimental study of current fluctuations through a tunable transmission barrier, a quantum point contact, is reported. We measure the probability distribution function of transmitted charge with precision sufficient to extract the first three cumulants. To obtain the intrinsic quantities, corresponding to voltage-biased barrier, we employ a procedure that accounts for the response of the external circuit and the amplifier. The third cumulant, obtained with a high precision, is found to agree with the prediction for the statistics of transport in the non-Poissonian regime.
Detection of Non-Gaussian Fluctuations in a Quantum Point Contact
NASA Astrophysics Data System (ADS)
Gershon, G.; Bomze, Yu.; Sukhorukov, E. V.; Reznikov, M.
2008-07-01
An experimental study of current fluctuations through a tunable transmission barrier, a quantum point contact, is reported. We measure the probability distribution function of transmitted charge with precision sufficient to extract the first three cumulants. To obtain the intrinsic quantities, corresponding to voltage-biased barrier, we employ a procedure that accounts for the response of the external circuit and the amplifier. The third cumulant, obtained with a high precision, is found to agree with the prediction for the statistics of transport in the non-Poissonian regime.
Babinet principle applied to the design of metasurfaces and metamaterials.
Falcone, F; Lopetegi, T; Laso, M A G; Baena, J D; Bonache, J; Beruete, M; Marqués, R; Martín, F; Sorolla, M
2004-11-05
The electromagnetic theory of diffraction and the Babinet principle are applied to the design of artificial metasurfaces and metamaterials. A new particle, the complementary split rings resonator, is proposed for the design of metasurfaces with high frequency selectivity and planar metamaterials with a negative dielectric permittivity. Applications in the fields of frequency selective surfaces and polarizers, as well as in microwave antennas and filter design, can be envisaged. The tunability of all these devices by an applied dc voltage is also achievable if these particles are etched on the appropriate substrate.
Signal digitizing system and method based on amplitude-to-time optical mapping
Chou, Jason; Bennett, Corey V; Hernandez, Vince
2015-01-13
A signal digitizing system and method based on analog-to-time optical mapping, optically maps amplitude information of an analog signal of interest first into wavelength information using an amplitude tunable filter (ATF) to impress spectral changes induced by the amplitude of the analog signal onto a carrier signal, i.e. a train of optical pulses, and next from wavelength information to temporal information using a dispersive element so that temporal information representing the amplitude information is encoded in the time domain in the carrier signal. Optical-to-electrical conversion of the optical pulses into voltage waveforms and subsequently digitizing the voltage waveforms into a digital image enables the temporal information to be resolved and quantized in the time domain. The digital image may them be digital signal processed to digitally reconstruct the analog signal based on the temporal information with high fidelity.
Strain-assisted magnetization reversal in Co/Ni multilayers with perpendicular magnetic anisotropy
Gopman, D. B.; Dennis, C. L.; Chen, P. J.; Iunin, Y. L.; Finkel, P.; Staruch, M.; Shull, R. D.
2016-01-01
Multifunctional materials composed of ultrathin magnetic films with perpendicular magnetic anisotropy combined with ferroelectric substrates represent a new approach toward low power, fast, high density spintronics. Here we demonstrate Co/Ni multilayered films with tunable saturation magnetization and perpendicular anisotropy grown directly on ferroelectric PZT [Pb(Zr0.52Ti0.48)O3] substrate plates. Electric fields up to ±2 MV/m expand the PZT by 0.1% and generate at least 0.02% in-plane compression in the Co/Ni multilayered film. Modifying the strain with a voltage can reduce the coercive field by over 30%. We also demonstrate that alternating in-plane tensile and compressive strains (less than 0.01%) can be used to propagate magnetic domain walls. This ability to manipulate high anisotropy magnetic thin films could prove useful for lowering the switching energy for magnetic elements in future voltage-controlled spintronic devices. PMID:27297638
Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates and Method Relating Thereto
NASA Technical Reports Server (NTRS)
Simpson, Joycelyn O. (Inventor); St.Claire, Terry L. (Inventor)
2002-01-01
A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared, This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers, acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors. in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches. adjustable fresnel lenses, speakers, tactile sensors, weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 100 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrates; heating the metal electrode coated polymeric substrate in a low dielectric medium; applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.
Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates
NASA Technical Reports Server (NTRS)
Simpson, Joycely O. (Inventor); St.Clair, Terry L. (Inventor)
1999-01-01
A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers. acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors, in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors. weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 1000 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrate; heating the metal electrode coated polymeric substrate in a low dielectric medium; applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.
Method of Making Thermally Stable, Piezoelectric and Proelectric Polymeric Substrates
NASA Technical Reports Server (NTRS)
Simpson, Joycelyn O. (Inventor); St.Clair, Terry L. (Inventor)
1999-01-01
A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers, acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors. in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors, weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 100 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrate; heating the metal electrode coated polymeric substrate in a low dielectric medium: applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.
NASA Astrophysics Data System (ADS)
Velev, Julian P.; Merodio, Pablo; Pollack, Cesar; Kalitsov, Alan; Chshiev, Mairbek; Kioussis, Nicholas
2017-12-01
Using model calculations, we demonstrate a very high level of control of the spin-transfer torque (STT) by electric field in multiferroic tunnel junctions with composite dielectric/ferroelectric barriers. We find that, for particular device parameters, toggling the polarization direction can switch the voltage-induced part of STT between a finite value and a value close to zero, i.e. quench and release the torque. Additionally, we demonstrate that under certain conditions the zero-voltage STT, i.e. the interlayer exchange coupling, can switch sign with polarization reversal, which is equivalent to reversing the magnetic ground state of the tunnel junction. This bias- and polarization-tunability of the STT could be exploited to engineer novel functionalities such as softening/hardening of the bit or increasing the signal-to-noise ratio in magnetic sensors, which can have important implications for magnetic random access memories or for combined memory and logic devices.
Laser optogalvanic spectroscopy of molecules
NASA Technical Reports Server (NTRS)
Webster, C. R.; Rettner, C. T.
1983-01-01
In laser optogalvanic (LOG) spectroscopy, a tunable laser is used to probe the spectral characteristics of atomic or molecular species within an electrical discharge in a low pressure gas. Optogalvanic signals arise when the impedance of the discharge changes in response to the absorption of laser radiation. The technique may, therefore, be referred to as impedance spectroscopy. This change in impedance may be monitored as a change in the voltage across the discharge tube. LOG spectra are recorded by scanning the wavelength of a chopped CW dye laser while monitoring the discharge voltage with a lock-in amplifier. LOG signals are obtained if the laser wavelength matches a transition in a species present in the discharge (or flame), and if the absorption of energy in the laser beam alters the impedance of the discharge. Infrared LOG spectroscopy of molecules has been demonstrated and may prove to be the most productive application in the field of optogalvanic techniques.
The effect of different oxygen exchange layers on TaO x based RRAM devices
NASA Astrophysics Data System (ADS)
Alamgir, Zahiruddin; Holt, Joshua; Beckmann, Karsten; Cady, Nathaniel C.
2018-01-01
In this work, we investigated the effect of the oxygen exchange layer (OEL) on the resistive switching properties of TaO x based memory cells. It was found that the forming voltage, SET-RESET voltage, R off, R on and retention properties are strongly correlated with the oxygen scavenging ability of the OEL, and the resulting oxygen vacancy formation ability of this layer. Higher forming voltage was observed for OELs having lower electronegativity/lower Gibbs free energy for oxide formation, and devices fabricated with these OELs exhibited an increased memory window, when using similar SET-RESET voltage range.
NASA Astrophysics Data System (ADS)
Aubry, Eric; Weber, Sylvain; Billard, Alain; Martin, Nicolas
2014-01-01
Silicon oxynitride thin films were sputter deposited by the reactive gas pulsing process. Pure silicon target was sputtered in Ar, N2 and O2 mixture atmosphere. Oxygen gas was periodically and solely introduced using exponential signals. In order to vary the injected O2 quantity in the deposition chamber during one pulse at constant injection time (TON), the tau mounting time τmou of the exponential signals was systematically changed for each deposition. Taking into account the real-time measurements of the discharge voltage and the I(O*)/I(Ar*) emission lines ratio, it is shown that the oscillations of the discharge voltage during the TON and TOFF times (injection of O2 stopped) are attributed to the preferential adsorption of the oxygen compared to that of the nitrogen. The sputtering mode alternates from a fully nitrided mode (TOFF time) to a mixed mode (nitrided and oxidized mode) during the TON time. For the highest injected O2 quantities, the mixed mode tends toward a fully oxidized mode due to an increase of the trapped oxygen on the target. The oxygen (nitrogen) concentration in the SiOxNy films similarly (inversely) varies as the oxygen is trapped. Moreover, measurements of the contamination speed of the Si target surface are connected to different behaviors of the process. At low injected O2 quantities, the nitrided mode predominates over the oxidized one during the TON time. It leads to the formation of Si3N4-yOy-like films. Inversely, the mixed mode takes place for high injected O2 quantities and the oxidized mode prevails against the nitrided one producing SiO2-xNx-like films.
Yin, Guolu; Saxena, Bhavaye; Bao, Xiaoyi
2011-12-19
A tunable and single longitudinal mode Er-doped fiber ring laser (SLM-EDFRL) is proposed and demonstrated based on Rayleigh backscattering (RBS) in single mode fiber-28e (SMF-28e). Theory and experimental study on formation of SLM from normal multi-mode ring laser is demonstrated. The RBS feedback in 660 m SMF-28e is the key to ensure SLM laser oscillation. This tunable SLM laser can be tuned over 1549.7-1550.18 nm with a linewidth of 2.5-3.0 kHz and a side mode suppression ratio (SMSR) of ~72 dB for electrical signal power. The tuning range is determined by the bandpass filter and gain medium used in the experiment. The laser is able to operate at S+C+L band.
Thue-Morse nanostructures for tunable light extraction in the visible region
NASA Astrophysics Data System (ADS)
Rippa, M.; Castagna, R.; Marino, A.; Tkachenko, V.; Palermo, G.; Pane, A.; Umeton, C.; Tabiryan, N.; Petti, L.
2018-05-01
Controlling light propagation at the nanoscale is a fascinating opportunity offered by modern photonics, more than a challenge to face off. This study is aimed at investigating a particular kind of nanocomposite and reconfigurable optical metamaterials that can be exploited for the realization of a new class of switchable photonic devices, representing a breakthrough with respect to the state of the art. Existing photonic devices exhibit, in general, a drawback in the absence of tunability; this work aims to the design and characterization of metamaterials exploiting reconfigurable media, like LCs, which enable realization of a tunable, high quality, photonic quasi-crystal based switchable mode selector. It turned out that, starting from an unpolarized white light source, through a light extraction mechanism based on the diffraction of light, the high quality structure, combined with a uniformly aligned Photo-responsive Liquid Crystal (PLC), is able to give rise to an extremely narrow (FWHM ≈5 nm) and linearly polarized single mode peak of the extracted light intensity. Moreover, we have shown that the spectral properties (switching) of the samples can be finely controlled by using both an external applied voltage and a suitable pump light source with a maximum increase of 45% of the extracted light. Finally, both Scanning Electron Microscopy (SEM) and Far Field Diffraction (FFD) analysis have shown the high quality morphology of the realized structure.
Chen, Shaoqiang; Diao, Shengxi; Li, Pengtao; Nakamura, Takahiro; Yoshita, Masahiro; Weng, Guoen; Hu, Xiaobo; Shi, Yanling; Liu, Yiqing; Akiyama, Hidefumi
2017-07-31
High power pulsed lasers with tunable pulse widths are highly favored in many applications. When combined with power amplification, gain-switched semiconductor lasers driven by broadband tunable electric pulsers can meet such requirements. For this reason, we designed and produced a low-cost integrated CMOS pulse generator with a minimum pulse width of 80 ps and a wide tuning range of up to 270 ns using a 40-nm microelectronic process technique. We used this pulser to drive a 1.3-µm semiconductor laser diode directly, and thereafter investigated the gain-switching properties of the laser system. The optical pulses consist of a spike followed by a steady state region. Tuning the width of the electrical pulse down to approximately 1.5 ns produces optical pulses consisting only of the spike, which has a minimum pulse-width of 100 ps. Moreover, the duration of the steady state can be tuned continuously by tuning the electrical pulse width, with a peak power of approximately 5 mW. The output voltage of the electric pulser has a tuning range of 0.8-1.5 V that can be used to directly drive semiconductor laser diodes with wavelengths in the near-infrared spectrum, which are suitable for power amplification with rare-earth doped fiber amplifiers.
Development of a tunable filter for coronal polarimetry
NASA Astrophysics Data System (ADS)
Tomczyk, S.; Mathew, S. K.; Gallagher, D.
2016-07-01
Measuring magnetic fields in the solar corona is crucial to understanding and predicting the Sun's generation of space weather that affects communications, GPS systems, space flight, and power transmission. The Coronal Solar Magnetism Observatory Large Coronagraph (COSMO LC) is a proposed 1.5 m aperture coronagraph designed to synoptically observe magnetic fields and plasma properties in the large-scale corona to improve our understanding of solar processes that cause space weather. The LC will observe coronal emission lines over the wavelength range from 500 to 1100 nm with a field of view of 1° and a spatial resolution of 2 arcsec. A spectral resolution greater than 8000 over the wavelength range is needed to resolve the polarization signatures of magnetic fields in the emission line profiles. The aperture and field of view of the LC set an étendue requirement of 1.39 m2 deg2 for the postfocus instrumentation. We find that a tunable wide-field birefringent filter using Lithium Niobate crystals can meet the étendue and spectral resolution requirements for the LC spectrometer. We have tested a number of commercially available crystals and verify that crystals of the required size and birefringence uniformity are available. We also evaluate electro-optical tuning of a Lithium Niobate birefringent filter by the application of high voltage. This tunable filter represents a key enabling technology for the COSMO LC.
Zhang, Huaidong; Muhammmad, Afzal; Luo, Jun; Tong, Qing; Lei, Yu; Zhang, Xinyu; Sang, Hongshi; Xie, Changsheng
2014-09-01
An electrically tunable infrared (IR) filter based on the liquid crystal (LC) Fabry-Perot (FP) key structure, which works in the wavelength range from 5.5 to 12 μm, is designed and fabricated successfully. Both planar reflective mirrors with a very high reflectivity of ∼95%, which are shaped by depositing a layer of aluminum (Al) film over one side of a double-sided polished zinc selenide wafer, are coupled into a dual-mirror FP cavity. The LC materials are filled into the FP cavity with a thickness of ∼7.5 μm for constructing the LC-FP filter, which is a typical type of sandwich architecture. The top and bottom mirrors of the FP cavity are further coated by an alignment layer with a thickness of ∼100 nm over Al film. The formed alignment layer is rubbed strongly to shape relatively deep V-grooves to anchor LC molecules effectively. Common optical tests show some particular properties; for instance, the existing three transmission peaks in the measured wavelength range, the minimum full width at half-maximum being ∼120 nm, and the maximum adjustment extent of the imaging wavelength being ∼500 nm through applying the voltage driving signal with a root mean square (RMS) value ranging from 0 to ∼19.8 V. The experiment results are consistent with the simulation, according to our model setup. The spectral images obtained in the long-wavelength IR range, through the LC-FP device driven by the voltage signal with a different RMS value, demonstrates the prospect of the realization of smart spectral imaging and further integrating the LC-FP filter with IR focal plane arrays. The developed LC-FP filters show some advantages, such as electrically tunable imaging wavelength, very high structural and photoelectronic response stability, small size and low power consumption, and a very high filling factor of more than 95% compared with common MEMS-FP spectral imaging approaches.
Mechanism of voltage-gated channel formation in lipid membranes.
Guidelli, Rolando; Becucci, Lucia
2016-04-01
Although several molecular models for voltage-gated ion channels in lipid membranes have been proposed, a detailed mechanism accounting for the salient features of experimental data is lacking. A general treatment accounting for peptide dipole orientation in the electric field and their nucleation and growth kinetics with ion channel formation is provided. This is the first treatment that explains all the main features of the experimental current-voltage curves of peptides forming voltage-gated channels available in the literature. It predicts a regime of weakly voltage-dependent conductance, followed by one of strong voltage-dependent conductance at higher voltages. It also predicts values of the parameters expressing the exponential dependence of conductance upon voltage and peptide bulk concentration for both regimes, in good agreement with those reported in the literature. Most importantly, the only two adjustable parameters involved in the kinetics of nucleation and growth of ion channels can be varied over broad ranges without affecting the above predictions to a significant extent. Thus, the fitting of experimental current-voltage curves stems naturally from the treatment and depends only slightly upon the choice of the kinetic parameters. Copyright © 2015 Elsevier B.V. All rights reserved.
Sensitivity-Enhanced CMOS Phase Luminometry System Using Xerogel-Based Sensors.
Lei Yao; Khan, R; Chodavarapu, V P; Tripathi, V S; Bright, F V
2009-10-01
We present the design and implementation of a phase luminometry sensor system with improved and tunable detection sensitivity achieved using a complementary metal-oxide semiconductor (CMOS) integrated circuit. We use sol-gel derived xerogel thin films as an immobilization media to house oxygen (O2) responsive luminescent molecules. The sensor operates on the principal of phase luminometry wherein a sinusoidal modulation signal is used to excite the luminophores encapsulated in the porous xerogel films and the corresponding phase shift of the emission signals is monitored. The phase shift is directly related to excited state lifetimes of the luminophores which in turn are related to the concentration of the target analyte species present in the vicinity of the luminophores. The CMOS IC, which consists of a 16 times 16 high-gain phototransistor array, current-to-voltage converter, amplifier and tunable phase shift detector, consumes an average power of 14 mW with 5-V power supply operating at a 38-kHz modulation frequency. The output of the IC is a dc voltage that corresponds to the detected luminescence phase shift with respect to the excitation signal. As a prototype, we demonstrate an oxygen sensor system by encapsulating the luminophore tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) within the xerogel matrices. The sensor system showed a fast response on the order of few seconds and we obtained a detection sensitivity of 118 mV per 1% change in O2 concentration. The system demonstrates a novel concept to tune and improve the detection sensitivity for specific concentrations of the target analyte in many biomedical monitoring applications.
High performance printed oxide field-effect transistors processed using photonic curing.
Garlapati, Suresh Kumar; Marques, Gabriel Cadilha; Gebauer, Julia Susanne; Dehm, Simone; Bruns, Michael; Winterer, Markus; Tahoori, Mehdi Baradaran; Aghassi-Hagmann, Jasmin; Hahn, Horst; Dasgupta, Subho
2018-06-08
Oxide semiconductors are highly promising candidates for the most awaited, next-generation electronics, namely, printed electronics. As a fabrication route for the solution-processed/printed oxide semiconductors, photonic curing is becoming increasingly popular, as compared to the conventional thermal curing method; the former offers numerous advantages over the latter, such as low process temperatures and short exposure time and thereby, high throughput compatibility. Here, using dissimilar photonic curing concepts (UV-visible light and UV-laser), we demonstrate facile fabrication of high performance In 2 O 3 field-effect transistors (FETs). Beside the processing related issues (temperature, time etc.), the other known limitation of oxide electronics is the lack of high performance p-type semiconductors, which can be bypassed using unipolar logics from high mobility n-type semiconductors alone. Interestingly, here we have found that our chosen distinct photonic curing methods can offer a large variation in threshold voltage, when they are fabricated from the same precursor ink. Consequently, both depletion and enhancement-mode devices have been achieved which can be used as the pull-up and pull-down transistors in unipolar inverters. The present device fabrication recipe demonstrates fast processing of low operation voltage, high performance FETs with large threshold voltage tunability.
NASA Astrophysics Data System (ADS)
Li, Yunlong; Oh, Inkyu; Chen, Jiehao; Hu, Yuhang
2018-06-01
Conventional membrane resonators are bulky, and once the geometries and materials are fixed in the fabricated device, the resonators’ characteristics are fixed. In this work, we introduce the active membrane, dielectric elastomer (DE), into the resonator design. Attaching a stiffer passive membrane onto the active DE membrane forms a two-layer system, which generates an out-of-plane deformation when the DE is actuated through a DC voltage applied across the thickness of the DE membrane. When an AC voltage is applied, the two-layer system can generate an out-of-plane oscillation which enables its use as membrane resonators. Both experiments and simulations are carried out to study the dynamic characteristics of the system. The resonant frequencies and mode shapes of the resonator can be tuned through the passive layer properties such as the modulus, thickness, density, and size. The effective stiffness of the DE film changes as the magnitude of the voltage applied on the film changes, which provides an active way to tune the dynamic characteristics of the two-layer resonator even after the device is set. The system is also light weight, low cost, and easy to fabricate, and has great potential in many engineering applications.
High performance printed oxide field-effect transistors processed using photonic curing
NASA Astrophysics Data System (ADS)
Garlapati, Suresh Kumar; Cadilha Marques, Gabriel; Gebauer, Julia Susanne; Dehm, Simone; Bruns, Michael; Winterer, Markus; Baradaran Tahoori, Mehdi; Aghassi-Hagmann, Jasmin; Hahn, Horst; Dasgupta, Subho
2018-06-01
Oxide semiconductors are highly promising candidates for the most awaited, next-generation electronics, namely, printed electronics. As a fabrication route for the solution-processed/printed oxide semiconductors, photonic curing is becoming increasingly popular, as compared to the conventional thermal curing method; the former offers numerous advantages over the latter, such as low process temperatures and short exposure time and thereby, high throughput compatibility. Here, using dissimilar photonic curing concepts (UV–visible light and UV-laser), we demonstrate facile fabrication of high performance In2O3 field-effect transistors (FETs). Beside the processing related issues (temperature, time etc.), the other known limitation of oxide electronics is the lack of high performance p-type semiconductors, which can be bypassed using unipolar logics from high mobility n-type semiconductors alone. Interestingly, here we have found that our chosen distinct photonic curing methods can offer a large variation in threshold voltage, when they are fabricated from the same precursor ink. Consequently, both depletion and enhancement-mode devices have been achieved which can be used as the pull-up and pull-down transistors in unipolar inverters. The present device fabrication recipe demonstrates fast processing of low operation voltage, high performance FETs with large threshold voltage tunability.
Frequency pulling in a low-voltage medium-power gyrotron
NASA Astrophysics Data System (ADS)
Luo, Li; Du, Chao-Hai; Huang, Ming-Guang; Liu, Pu-Kun
2018-04-01
Many recent biomedical applications use medium-power frequency-tunable terahertz (THz) sources, such as sensitivity-enhanced nuclear magnetic resonance, THz imaging, and biomedical treatment. As a promising candidate, a low-voltage gyrotron can generate watt-level, continuous THz-wave radiation. In particular, the frequency-pulling effect in a gyrotron, namely, the effect of the electron beam parameters on the oscillation frequency, can be used to tune the operating frequency. Most previous investigations used complicated and time-consuming gyrotron nonlinear theory to study the influence of many beam parameters on the interaction performance. While gyrotron linear theory investigation demonstrates the advantages of rapidly and clearly revealing the physical influence of individual key beam parameters on the overall system performance, this paper demonstrates systematically the use of gyrotron linear theory to study the frequency-pulling effect in a low-voltage gyrotron with either a Gaussian or a sinusoidal axial-field profile. Furthermore, simulations of a gyrotron operating in the first axial mode are carried out in the framework of nonlinear theory as a contrast. Close agreement is achieved between the two theories. Besides, some interesting results are obtained. In a low-current sinusoidal-profile cavity, the ranges of frequency variation for different axial modes are isolated from each other, and the frequency tuning bandwidth for each axial mode increases by increasing either the beam voltage or pitch factor. Lowering the voltage, the total tuning ranges are squeezed and become concentrated. However, the isolated frequency regions of each axial mode cannot be linked up unless the beam current is increased, meaning that higher current operation is the key to achieving a wider and continuous tuning frequency range. The results presented in this paper can provide a reference for designing a broadband low-voltage gyrotron.
NASA Astrophysics Data System (ADS)
Lecocq, Vincent; Chomet, Baptiste; Ferrières, Laurence; Myara, Mikhaël.; Beaudoin, Grégoire; Sagnes, Isabelle; Cerutti, Laurent; Denet, Stéphane; Garnache, Arnaud
2017-02-01
Laser technology is finding applications in areas such as high resolution spectroscopy, radar-lidar, velocimetry, or atomic clock where highly coherent tunable high power light sources are required. The Vertical External Cavity Surface Emitting Laser (VECSEL) technology [1] has been identified for years as a good candidate to reach high power, high coherence and broad tunability while covering a wide emission wavelength range exploiting III-V semiconductor technologies. Offering such performances in the Near- and Middle-IR range, GaAs- and Sb-based VECSEL technologies seem to be a well suited path to meet the required specifications of demanding applications. Built up in this field, our expertise allows the realization of compact and low power consumption marketable products, with performances that do not exist on the market today in the 0.8-1.1 μm and 2-2.5 μm spectral range. Here we demonstrate highly coherent broadly tunable single frequency laser micro-chip, intracavity element free, based on a patented VECSEL technology, integrated into a compact module with driving electronics. VECSEL devices emitting in the Near and Middle-IR developed in the frame of this work [2] exhibit exciting features compared to diode-pumped solid-state lasers and DFB diode lasers; they combine high power (>100mW) high temporal coherence together with a low divergence diffraction limited TEM00 beam. They exhibit a class-A dynamics with a Relative Intensity Noise as low as -140dB/Hz and at shot noise level reached above 200MHz RF frequency (up to 160GHz), a free running narrow linewidth at sub MHz level (fundamental limit at Hz level) with high spectral purity (SMSR >55dB), a linear polarization (>50dB suppression ratio), and broadband continuous tunability greater than 400GHz (< 30V piezo voltage, 6kHz cut off frequency) with total tunability up to 3THz. Those performances can all be reached thanks to the high finesse cavity of VECSEL technology, associated to ideal homogeneous QW gain behaviour [3]. In addition, the compact design without any movable intracavity elements offers a robust single frequency regime with a long term wavelength stability better than few GHz/h (ambient thermal drift limited). Those devices surpass the state of the art commercial technologies thanks to a combination of power-coherence-wavelength tunability performances and integration.
Elliott, Winston H; Bonani, Walter; Maniglio, Devid; Motta, Antonella; Tan, Wei; Migliaresi, Claudio
2015-06-10
Catering the hydrogel manufacturing process toward defined viscoelastic properties for intended biomedical use is important to hydrogel scaffolding function and cell differentiation. Silk fibroin hydrogels may undergo "physical" cross-linking through β-sheet crystallization during high pressure carbon dioxide treatment, or covalent "chemical" cross-linking by genipin. We demonstrate here that time-dependent mechanical properties are tunable in silk fibroin hydrogels by altering the chronological order of genipin cross-linking with β-sheet formation. Genipin cross-linking before β-sheet formation affects gelation mechanics through increased molecular weight, affecting gel morphology, and decreasing stiffness response. Alternately, genipin cross-linking after gelation anchored amorphous regions of the protein chain, and increasing stiffness. These differences are highlighted and validated through large amplitude oscillatory strain near physiologic levels, after incorporation of material characterization at molecular and micron length scales.
Electrodeposited silk coatings for functionalized implant applications
NASA Astrophysics Data System (ADS)
Elia, Roberto
The mechanical and morphological properties of titanium as well as its biocompatibility and osteoinductive characteristics have made it the material of choice for dental implant systems. Although the success rate of titanium implants exceeds 90% in healthy individuals, a large subset of the population has one or more risk factors that inhibit implant integration. Treatments and coatings have been developed to improve clinical outcomes via introduction of appropriate surface topography, texture and roughness or incorporation of bioactive molecules. It is essential that the coatings and associated deposition techniques are controllable and reproducible. Currently, methods of depositing functional coatings are dictated by numerous parameters (temperature, particle size distribution, pH and voltage), which result in variable coating thickness, strength, porosity and weight, and hinder or preclude biomolecule incorporation. Silk is a highly versatile protein with a unique combination of mechanical and physical properties, including tunable degradation, biocompatibility, drug stabilizing capabilities and mechanical properties. Most recently an electrogelation technique was developed which allows for the deposition of gels which dry seamlessly over the contoured topography of the conductive substrate. In this work we examine the potential use of silk electrogels as mechanically robust implant coatings capable of sequestering and releasing therapeutic agents. Electrodeposition of silk electrogels formed in uniform electric fields was characterized with respect to field intensity and deposition time. Gel formation kinetics were used to derive functions which allowed for the prediction of coating deposition over a range of process and solution parameters. Silk electrogel growth orientation was shown to be influenced by the applied electric field. Coatings were reproducible and tunable via intrinsic silk solution properties and extrinsic process parameters. Adhesion was modulated over a 10-fold range and implant insertion into bone mimics demonstrated that the coatings were able to withstand delamination forces experienced during these mock implantations. Antibiotic release from coated implant studs inhibited bacterial growth and dexamethasone release was shown to stimulate calcium deposition in mesenchymal stem cells.
NASA Astrophysics Data System (ADS)
Santiago-Alvarado, A.; Cruz-Félix, A.; Hernández Méndez, A.; Pérez-Maldonado, Y.; Domínguez-Osante, C.
2015-05-01
Tunable lenses have attracted much attention due to their potential applications in such areas like machine vision, laser projection, ophthalmology, etc. In this work we present the design of a tunable opto-mechatronic system capable of focusing and to regulate the entrance illumination that mimics the performance made by the iris and the crystalline lens of the human eye. A solid elastic lens made of PDMS has been used in order to mimic the crystalline lens and an automatic diaphragm has been used to mimic the iris of the human eye. Also, a characterization of such system has been performed with standard values of luminosity for the human eye have been taken into account to calibrate and to validate the entrance illumination levels to the overall optical system.
Enzyme Induced Formation of Monodisperse Hydrogel Nanoparticles Tunable in Size
Bocharova, Vera; Sharp, Danna; Jones, Aaron; ...
2015-03-09
Here, we report a novel approach to synthesize monodisperse hydrogel nanoparticles that are tunable in size. The distinctive feature of our approach is the use of a multicopper oxidase enzyme, laccase, as both a biocatalyst and template for nanoparticle growth. We utilize the ferroxidase activity of laccase to initiate localized production of iron(III) cations from the oxidation of iron(II) cations. We demonstrate that nanoparticles are formed in a dilute polymer solution of alginate as a result of cross-linking between alginate and enzymatically produced iron(III) cations. Exerting control over the enzymatic reaction allows for nanometer-scale tuning of the hydrogel nanoparticle radiimore » in the range of 30–100 nm. Moreover, the nanoparticles and their growth kinetics were characterized via dynamic light scattering, atomic force microscopy, and UV–vis spectroscopy. Our finding opens up a new avenue for the synthesis of tunable nanoscale hydrogel particles for biomedical applications.« less
Vail, III, William B.
1996-01-01
Methods of operation of different types of multiple electrode apparatus vertically disposed in a cased well to measure information related to the resistivity of adjacent geological formations from inside the cased well. The multiple electrode apparatus have a minimum of three spaced apart voltage measurement electrodes that electrically engage the interior of the cased well. Measurement information is obtained related to current which is caused to flow from the cased well into the adjacent geological formation. First compensation information is obtained related to a first casing resistance between a first pair of the spaced apart voltage measurement electrodes. Second compensation information is obtained related to a second casing resistance between a second pair of the spaced apart voltage measurement electrodes. The measurement information, and first and second compensation information are used to determine a magnitude related to the adjacent formation resistivity.
Vail, W.B. III
1996-10-29
Methods of operation are disclosed for different types of multiple electrode apparatus vertically disposed in a cased well to measure information related to the resistivity of adjacent geological formations from inside the cased well. The multiple electrode apparatus have a minimum of three spaced-apart voltage measurement electrodes that electrically engage the interior of the cased well. Measurement information is obtained related to current which is caused to flow from the cased well into the adjacent geological formation. First compensation information is obtained related to a first casing resistance between a first pair of the spaced-apart voltage measurement electrodes. Second compensation information is obtained related to a second casing resistance between a second pair of the spaced-apart voltage measurement electrodes. The measurement information, and first and second compensation information are used to determine a magnitude related to the adjacent formation resistivity. 13 figs.
Novel design of low noise preamplifier for medical ultrasound transducers.
Amer, Mashhour Bani
2011-02-01
A novel design of low noise amplifier for medical ultrasound transducers is described in this paper. Unlike conventional low noise preamplifiers, this design proposes a new circuit configuration which has electronically adjustable matching resistance that allows the preamplifier to be compatible with a variety of medical ultrasound transducers. The design employs current feedback operational amplifier to enhance the gain-bandwidth independence and improve the design slew rate. Simulation results show that the proposed design has very low output noise voltage spectral density and the level of this noise does not increase when its tunable matching resistance is increased or decreased.
Fabrication and metrology of lithium niobate narrowband optical filters for the solar orbiter
NASA Astrophysics Data System (ADS)
Gensemer, Stephen D.; Farrant, David
2014-06-01
We report on the fabrication of custom voltage tunable etalons for the SO/PHI spaceborne solar imaging instrument [A. Gandorfer, S. K. Solanki, J. Woch, V. M. Pillet, A. A. Herrero, and T. Appourchaux, J. Phys.: Conference Series 271, 012086 (2011)]. The etalons were manufactured to place a transmission maximum within 0.3 Å of the FeI emission line at 6175.0 Å. Meeting this specification requires an overall thickness specified to within ±15 nm, over a 60 mm aperture. We describe here the metrology, modelling and coating procedures we developed to achieve this.
Tunable terahertz optical properties of graphene in dc electric fields
NASA Astrophysics Data System (ADS)
Dong, H. M.; Huang, F.; Xu, W.
2018-03-01
We develop a simple theoretical approach to investigate terahertz (THz) optical properties of monolayer graphene in the presence of an external dc electric field. The analytical results for optical coefficients such as the absorptance and reflectivity are obtained self-consistently on the basis of a diagrammatic self-consistent field theory and a Boltzmann equilibrium equation. It is found that the optical refractive index, reflectivity and conductivity can be effectively tuned by not only a gate voltage but also a driving dc electric field. This study is relevant to the applications of graphene as advanced THz optoelectronic devices.
Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics
NASA Astrophysics Data System (ADS)
Lee, Che-Hui; Orloff, Nathan D.; Birol, Turan; Zhu, Ye; Goian, Veronica; Rocas, Eduard; Haislmaier, Ryan; Vlahos, Eftihia; Mundy, Julia A.; Kourkoutis, Lena F.; Nie, Yuefeng; Biegalski, Michael D.; Zhang, Jingshu; Bernhagen, Margitta; Benedek, Nicole A.; Kim, Yongsam; Brock, Joel D.; Uecker, Reinhard; Xi, X. X.; Gopalan, Venkatraman; Nuzhnyy, Dmitry; Kamba, Stanislav; Muller, David A.; Takeuchi, Ichiro; Booth, James C.; Fennie, Craig J.; Schlom, Darrell G.
2013-10-01
The miniaturization and integration of frequency-agile microwave circuits--relevant to electronically tunable filters, antennas, resonators and phase shifters--with microelectronics offers tantalizing device possibilities, yet requires thin films whose dielectric constant at gigahertz frequencies can be tuned by applying a quasi-static electric field. Appropriate systems such as BaxSr1-xTiO3 have a paraelectric-ferroelectric transition just below ambient temperature, providing high tunability. Unfortunately, such films suffer significant losses arising from defects. Recognizing that progress is stymied by dielectric loss, we start with a system with exceptionally low loss--Srn+1TinO3n+1 phases--in which (SrO)2 crystallographic shear planes provide an alternative to the formation of point defects for accommodating non-stoichiometry. Here we report the experimental realization of a highly tunable ground state arising from the emergence of a local ferroelectric instability in biaxially strained Srn+1TinO3n+1 phases with n>=3 at frequencies up to 125GHz. In contrast to traditional methods of modifying ferroelectrics--doping or strain--in this unique system an increase in the separation between the (SrO)2 planes, which can be achieved by changing n, bolsters the local ferroelectric instability. This new control parameter, n, can be exploited to achieve a figure of merit at room temperature that rivals all known tunable microwave dielectrics.
NASA Astrophysics Data System (ADS)
Balliou, Angelika; Bouroushian, Mirtat; Douvas, Antonios M.; Skoulatakis, George; Kennou, Stella; Glezos, Nikos
2018-07-01
All-inorganic self-arranged molecular transition metal oxide hyperstructures based on polyoxometalate molecules (POMs) are fabricated and tested as electronically tunable components in emerging electronic devices. POM hyperstructures reveal great potential as charging nodes of tunable charging level for molecular memories and as enhancers of interfacial electron/hole injection for photovoltaic stacks. STM, UPS, UV–vis spectroscopy and AFM measurements show that this functionality stems from the films’ ability to structurally tune their HOMO–LUMO levels and electron localization length at room temperature. By adapting POM nanocluster size in solution, self-doping and current modulation of four orders of magnitude is monitored on a single nanocluster on SiO2 at voltages as low as 3 Volt. Structurally driven insulator-to-semi-metal transitions and size-dependent current regulation through single electron tunneling are demonstrated and examined with respect to the stereochemical and electronic structure of the molecular entities. This extends the value of self-assembly as a tool for correlation length and electronic properties tuning and demonstrate POM hyperstructures’ plausibility for on-chip molecular electronics operative at room temperature.
Microelectrofluidic lens for variable curvature
NASA Astrophysics Data System (ADS)
Chang, Jong-hyeon; Lee, Eunsung; Jung, Kyu-Dong; Lee, Seungwan; Choi, Minseog; Kim, Woonbae
2012-10-01
This paper presents a tunable liquid lens based on microelectrofluidic technology which integrates electrowetting and microfluidics. In the novel microelectrofluidic lens (MEFL), electrowetting in the hydrophobic surface channel induces the Laplace pressure difference between two fluidic interfaces on the lens aperture and the surface channel. Then, the pressure difference makes the lens curvature tunable. The previous electrowetting lens in which the contact angle changes at the side wall has a certain limitation of the curvature variation because of the contact angle saturation. Although the contact angle saturation also appears in the surface channel of the MEFL, the low surface channel increases the Laplace pressure and it makes the MEFL to have full variation of the optical power possible. The magnitude of the applied voltage determines the lens curvature in the analog mode MEFL as well as the electrowetting lens. Digital operation is also possible when the control electrodes of the MEFL are patterned to have an array. It is expected that the proposed MEFL is able to be widely used because of its full variation of the optical power without the use of oil and digital operation with fast response.
Tunable graphene-based mid-infrared plasmonic multispectral and narrow band-stop filter
NASA Astrophysics Data System (ADS)
Wang, Xianjun; Meng, Hongyun; Liu, Shuai; Deng, Shuying; Jiao, Tao; Wei, Zhongchao; Wang, Faqiang; Tan, Chunhua; Huang, Xuguang
2018-04-01
In this paper, we numerically investigate the band-stop properties of single- or few-layers doped graphene ribbon arrays operating in the mid-infrared region by finite-difference time-domain method (FDTD). A perfect band-stop filter with extinction ratio (ER) ∼17 dB, 3 dB bandwidth ∼200 nm and the resonance notch located at 6.64 μm can be achieved. And desired working regions can be obtained by tuning the Fermi level (E f ) of the graphene ribbons and the geometrical parameters of the structure. Besides, by tuning the Fermi level of odd or even graphene ribbons with terminal gate voltage, we can achieve a dual-circuit switch with four states combinations of on-to-off. Furthermore, the multiple filter notches can be achieved by stacking few-layers structure, and the filter dips can be dynamically tuned to achieve the tunability and selective characteristics by tuning the Fermi-level of the graphene ribbons in the system. We believe that our proposal has the potential applications in selective filters and active plasmonic switching in the mid-infrared region.
Balliou, Angelika; Bouroushian, Mirtat; Douvas, Antonios M; Skoulatakis, George; Kennou, Stella; Glezos, Nikos
2018-07-06
All-inorganic self-arranged molecular transition metal oxide hyperstructures based on polyoxometalate molecules (POMs) are fabricated and tested as electronically tunable components in emerging electronic devices. POM hyperstructures reveal great potential as charging nodes of tunable charging level for molecular memories and as enhancers of interfacial electron/hole injection for photovoltaic stacks. STM, UPS, UV-vis spectroscopy and AFM measurements show that this functionality stems from the films' ability to structurally tune their HOMO-LUMO levels and electron localization length at room temperature. By adapting POM nanocluster size in solution, self-doping and current modulation of four orders of magnitude is monitored on a single nanocluster on SiO 2 at voltages as low as 3 Volt. Structurally driven insulator-to-semi-metal transitions and size-dependent current regulation through single electron tunneling are demonstrated and examined with respect to the stereochemical and electronic structure of the molecular entities. This extends the value of self-assembly as a tool for correlation length and electronic properties tuning and demonstrate POM hyperstructures' plausibility for on-chip molecular electronics operative at room temperature.
Huang, Po-Hsun; Chan, Chung Yu; Li, Peng; Nama, Nitesh; Xie, Yuliang; Wei, Cheng-Hsin; Chen, Yuchao; Ahmed, Daniel; Huang, Tony Jun
2015-11-07
The ability to generate stable, spatiotemporally controllable concentration gradients is critical for resolving the dynamics of cellular response to a chemical microenvironment. Here we demonstrate an acoustofluidic gradient generator based on acoustically oscillating sharp-edge structures, which facilitates in a step-wise fashion the rapid mixing of fluids to generate tunable, dynamic chemical gradients. By controlling the driving voltage of a piezoelectric transducer, we demonstrated that the chemical gradient profiles can be conveniently altered (spatially controllable). By adjusting the actuation time of the piezoelectric transducer, moreover, we generated pulsatile chemical gradients (temporally controllable). With these two characteristics combined, we have developed a spatiotemporally controllable gradient generator. The applicability and biocompatibility of our acoustofluidic gradient generator are validated by demonstrating the migration of human dermal microvascular endothelial cells (HMVEC-d) in response to a generated vascular endothelial growth factor (VEGF) gradient, and by preserving the viability of HMVEC-d cells after long-term exposure to an acoustic field. Our device features advantages such as simple fabrication and operation, compact and biocompatible device, and generation of spatiotemporally tunable gradients.
Perovskite Photovoltachromic Supercapacitor with All-Transparent Electrodes.
Zhou, Feichi; Ren, Zhiwei; Zhao, Yuda; Shen, Xinpeng; Wang, Aiwu; Li, Yang Yang; Surya, Charles; Chai, Yang
2016-06-28
Photovoltachromic cells (PVCCs) are of great interest for the self-powered smart windows of architectures and vehicles, which require widely tunable transmittance and automatic color change under photostimuli. Organolead halide perovskite possesses high light absorption coefficient and enables thin and semitransparent photovoltaic device. In this work, we demonstrate co-anode and co-cathode photovoltachromic supercapacitors (PVCSs) by vertically integrating a perovskite solar cell (PSC) with MoO3/Au/MoO3 transparent electrode and electrochromic supercapacitor. The PVCSs provide a seamless integration of energy harvesting/storage device, automatic and wide color tunability, and enhanced photostability of PSCs. Compared with conventional PVCC, the counter electrodes of our PVCSs provide sufficient balancing charge, eliminate the necessity of reverse bias voltage for bleaching the device, and realize reasonable in situ energy storage. The color states of PVCSs not only indicate the amount of energy stored and energy consumed in real time, but also enhance the photostability of photovoltaic component by preventing its long-time photoexposure under fully charged state of PVCSs. This work designs PVCS devices for multifunctional smart window applications commonly made of glass.
Xue, Hai-Bin; Liang, Jiu-Qing; Liu, Wu-Ming
2015-01-01
Molecular spintroinic device based on a single-molecule magnet is one of the ultimate goals of semiconductor nanofabrication technologies. It is thus necessary to understand the electron transport properties of a single-molecule magnet junction. Here we study the negative differential conductance and super-Poissonian shot noise properties of electron transport through a single-molecule magnet weakly coupled to two electrodes with either one or both of them being ferromagnetic. We predict that the negative differential conductance and super-Poissonian shot noise, which can be tuned by a gate voltage, depend sensitively on the spin polarization of the source and drain electrodes. In particular, the shot noise in the negative differential conductance region can be enhanced or decreased originating from the different formation mechanisms of negative differential conductance. The effective competition between fast and slow transport channels is responsible for the observed negative differential conductance and super-Poissonian shot noise. In addition, we further discuss the skewness and kurtosis properties of transport current in the super-Poissonian shot noise regions. Our findings suggest a tunable negative differential conductance molecular device, and the predicted properties of high-order current cumulants are very interesting for a better understanding of electron transport through single-molecule magnet junctions. PMID:25736094
Xue, Hai-Bin; Liang, Jiu-Qing; Liu, Wu-Ming
2015-03-04
Molecular spintroinic device based on a single-molecule magnet is one of the ultimate goals of semiconductor nanofabrication technologies. It is thus necessary to understand the electron transport properties of a single-molecule magnet junction. Here we study the negative differential conductance and super-Poissonian shot noise properties of electron transport through a single-molecule magnet weakly coupled to two electrodes with either one or both of them being ferromagnetic. We predict that the negative differential conductance and super-Poissonian shot noise, which can be tuned by a gate voltage, depend sensitively on the spin polarization of the source and drain electrodes. In particular, the shot noise in the negative differential conductance region can be enhanced or decreased originating from the different formation mechanisms of negative differential conductance. The effective competition between fast and slow transport channels is responsible for the observed negative differential conductance and super-Poissonian shot noise. In addition, we further discuss the skewness and kurtosis properties of transport current in the super-Poissonian shot noise regions. Our findings suggest a tunable negative differential conductance molecular device, and the predicted properties of high-order current cumulants are very interesting for a better understanding of electron transport through single-molecule magnet junctions.
Vicario, C.; Monoszlai, B.; Jazbinsek, M.; Lee, S. -H.; Kwon, O. -P.; Hauri, C. P.
2015-01-01
In Terahertz (THz) science, one of the long-standing challenges has been the formation of spectrally dense, single-cycle pulses with tunable duration and spectrum across the frequency range of 0.1–15 THz (THz gap). This frequency band, lying between the electronically and optically accessible spectra hosts important molecular fingerprints and collective modes which cannot be fully controlled by present strong-field THz sources. We present a method that provides powerful single-cycle THz pulses in the THz gap with a stable absolute phase whose duration can be continuously selected between 68 fs and 1100 fs. The loss-free and chirp-free technique is based on optical rectification of a wavelength-tunable pump pulse in the organic emitter HMQ-TMS that allows for tuning of the spectral bandwidth from 1 to more than 7 octaves over the entire THz gap. The presented source tunability of the temporal carrier frequency and spectrum expands the scope of spectrally dense THz sources to time-resolved nonlinear THz spectroscopy in the entire THz gap. This opens new opportunities towards ultrafast coherent control over matter and light. PMID:26400005
NASA Astrophysics Data System (ADS)
Asquini, Rita; d'Alessandro, Antonio; Salusti, Andrea; Gizzi, Claudio
2003-08-01
A tunable waveguide grating router (WGR) design is reported, where a subpicosecond phase shift is obtained by means of the electro-optically induced refractive index change in the arms of an arrayed-waveguide grating (AWG) made of highly nonlinear poled polymer CLD-75/APC. The polymer consists of a guest-host system, formed by a ring-locked phenyltetraene bridged cromophore dispersed in an amorphous polycarbonate, with coefficient r33=55pm/V and propagation losses of 1.7dB/cm. We propose a multilayer structure on Si substrate, where segments of each waveguide of the AWG are sandwiched between a ground gold electrode and electrodes whose length varies over the AWG. Numerical simulations of a device with electrode length difference of 250μm show a tuning range of 11nm centered at 1550nm by varying the applied voltage from -90V to +90V. From the optimized AWG, a WGR operating with 16 channels spaced by 100GHz has been designed. The WGR is made of single-mode rib waveguides and buffers whose thicknesses are respectively 1.8μm and 1.7μm. A broader tunability range is obtained using the push-pull technique, which induces a refractive index change of opposite sign in two halves of the AWG. A crosstalk of -40dB with tuning range of 22nm over the C-band was figured out.
Liquid crystal waveguides: new devices enabled by >1000 waves of optical phase control
NASA Astrophysics Data System (ADS)
Davis, Scott R.; Farca, George; Rommel, Scott D.; Johnson, Seth; Anderson, Michael H.
2010-02-01
A new electro-optic waveguide platform, which provides unprecedented voltage control over optical phase delays (> 2mm), with very low loss (< 0.5 dB/cm) and rapid response time (sub millisecond), will be presented. This technology, developed by Vescent Photonics, is based upon a unique liquid-crystal waveguide geometry, which exploits the tremendous electro-optic response of liquid crystals while circumventing their historic limitations. The waveguide geometry provides nematic relaxation speeds in the 10's of microseconds and LC scattering losses that are reduced by orders of magnitude from bulk transmissive LC optics. The exceedingly large optical phase delays accessible with this technology enable the design and construction of a new class of previously unrealizable photonic devices. Examples include: 2-D analog non-mechanical beamsteerers, chip-scale widely tunable lasers, chip-scale Fourier transform spectrometer (< 5 nm resolution demonstrated), widely tunable micro-ring resonators, tunable lenses, ultra-low power (< 5 microWatts) optical switches, true optical time delay devices for phased array antennas, and many more. All of these devices may benefit from established manufacturing technologies and ultimately may be as inexpensive as a calculator display. Furthermore, this new integrated photonic architecture has applications in a wide array of commercial and defense markets including: remote sensing, micro-LADAR, OCT, FSO, laser illumination, phased array radar, etc. Performance attributes of several example devices and application data will be presented. In particular, we will present a non-mechanical beamsteerer that steers light in both the horizontal and vertical dimensions.
NASA Astrophysics Data System (ADS)
Hirabayashi, Katsuhiko
2005-03-01
Simple Pb_1-x La_x(Zr_y Ti_z)_1-x/4 O3 (PLZT) electrooptic ceramic photonic device arrays for surface-normal operation have been developed for application to polarization-controller arrays and Fabry-Pérot tunable filter arrays. These arrays are inserted in trenches cut across fiber arrays. Each element of the arrayed structure corresponds to one optical beam and takes the form of a cell. Each sidewall of the cell (width: 50-80 μm) is coated to form an electrode. The arrays have 16 elements at a pitch of 250 μm. The phase modulator has about 1 dB of loss and a half-wavelength voltage of 120 V. A cascade of two PLZT phase modulators (thickness: 300 μm), with each attached to a polyimide lambda/2 plate (thickness:15 μm), is capable of converting an arbitrary polarization to the transverse-electric (TE) or transverse-magnetic (TM) polarization. The response time is 1 μs. The Fabry-Pérot tunable filters have a thickness of 50 μm . The front and back surfaces of each cell are coated by 99%-reflective mirror. The free spectral range (FSR) of the filters is about 10 nm, tunable range is about 10 nm, loss is 2.2 dB, and finesse is 150. The tuning speed of these devices is high, taking only 1 μs.
Radiofrequency generation by coherently moving fluxons
NASA Astrophysics Data System (ADS)
Dobrovolskiy, O. V.; Sachser, R.; Huth, M.; Shklovskij, V. A.; Vovk, R. V.; Bevz, V. M.; Tsindlekht, M. I.
2018-04-01
A lattice of Abrikosov vortices in type II superconductors is characterized by a periodic modulation of the magnetic induction perpendicular to the applied magnetic field. For a coherent vortex motion under the action of a transport current, the magnetic induction at a given point of the sample varies in time with a washboard frequency fWB = v/d, where v is the vortex velocity and d is the distance between the vortices in the direction of motion. Here, by using a spectrum analyzer connected to a 50 nm-wide Au nanowire meander near the surface of a superconducting Nb film, we detect an ac voltage induced by coherently moving fluxons. The voltage is peaked at the washboard frequency, fWB, and its subharmonics, fTOF = fWB/5, determined by the antenna width. By sweeping the dc current value, we reveal that fWB can be tuned from 100 MHz to 1.5 GHz, thereby demonstrating that patterned normal metal/superconductor nanostructures can be used as dc-tunable generators operating in the radiofrequency range.
Three dimensional measurement with an electrically tunable focused plenoptic camera
NASA Astrophysics Data System (ADS)
Lei, Yu; Tong, Qing; Xin, Zhaowei; Wei, Dong; Zhang, Xinyu; Liao, Jing; Wang, Haiwei; Xie, Changsheng
2017-03-01
A liquid crystal microlens array (LCMLA) with an arrayed microhole pattern electrode based on nematic liquid crystal materials using a fabrication method including traditional UV-photolithography and wet etching is presented. Its focusing performance is measured under different voltage signals applied between the electrodes of the LCMLA. The experimental outcome shows that the focal length of the LCMLA can be tuned easily by only changing the root mean square value of the voltage signal applied. The developed LCMLA is further integrated with a main lens and an imaging sensor to construct a LCMLA-based focused plenoptic camera (LCFPC) prototype. The focused range of the LCFPC can be shifted electrically along the optical axis of the imaging system. The principles and methods for acquiring several key parameters such as three dimensional (3D) depth, positioning, and motion expression are given. The depth resolution is discussed in detail. Experiments are carried out to obtain the static and dynamic 3D information of objects chosen.
Three dimensional measurement with an electrically tunable focused plenoptic camera.
Lei, Yu; Tong, Qing; Xin, Zhaowei; Wei, Dong; Zhang, Xinyu; Liao, Jing; Wang, Haiwei; Xie, Changsheng
2017-03-01
A liquid crystal microlens array (LCMLA) with an arrayed microhole pattern electrode based on nematic liquid crystal materials using a fabrication method including traditional UV-photolithography and wet etching is presented. Its focusing performance is measured under different voltage signals applied between the electrodes of the LCMLA. The experimental outcome shows that the focal length of the LCMLA can be tuned easily by only changing the root mean square value of the voltage signal applied. The developed LCMLA is further integrated with a main lens and an imaging sensor to construct a LCMLA-based focused plenoptic camera (LCFPC) prototype. The focused range of the LCFPC can be shifted electrically along the optical axis of the imaging system. The principles and methods for acquiring several key parameters such as three dimensional (3D) depth, positioning, and motion expression are given. The depth resolution is discussed in detail. Experiments are carried out to obtain the static and dynamic 3D information of objects chosen.
Hu, Zhongqiang; Wang, Xinjun; Nan, Tianxiang; Zhou, Ziyao; Ma, Beihai; Chen, Xiaoqin; Jones, John G; Howe, Brandon M; Brown, Gail J; Gao, Yuan; Lin, Hwaider; Wang, Zhiguang; Guo, Rongdi; Chen, Shuiyuan; Shi, Xiaoling; Shi, Wei; Sun, Hongzhi; Budil, David; Liu, Ming; Sun, Nian X
2016-09-01
Magnetoelectric effect, arising from the interfacial coupling between magnetic and electrical order parameters, has recently emerged as a robust means to electrically manipulate the magnetic properties in multiferroic heterostructures. Challenge remains as finding an energy efficient way to modify the distinct magnetic states in a reliable, reversible, and non-volatile manner. Here we report ferroelectric switching of ferromagnetic resonance in multiferroic bilayers consisting of ultrathin ferromagnetic NiFe and ferroelectric Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films, where the magnetic anisotropy of NiFe can be electrically modified by low voltages. Ferromagnetic resonance measurements confirm that the interfacial charge-mediated magnetoelectric effect is dominant in NiFe/PLZT heterostructures. Non-volatile modification of ferromagnetic resonance field is demonstrated by applying voltage pulses. The ferroelectric switching of magnetic anisotropy exhibits extensive applications in energy-efficient electronic devices such as magnetoelectric random access memories, magnetic field sensors, and tunable radio frequency (RF)/microwave devices.
Hu, Zhongqiang; Wang, Xinjun; Nan, Tianxiang; Zhou, Ziyao; Ma, Beihai; Chen, Xiaoqin; Jones, John G.; Howe, Brandon M.; Brown, Gail J.; Gao, Yuan; Lin, Hwaider; Wang, Zhiguang; Guo, Rongdi; Chen, Shuiyuan; Shi, Xiaoling; Shi, Wei; Sun, Hongzhi; Budil, David; Liu, Ming; Sun, Nian X.
2016-01-01
Magnetoelectric effect, arising from the interfacial coupling between magnetic and electrical order parameters, has recently emerged as a robust means to electrically manipulate the magnetic properties in multiferroic heterostructures. Challenge remains as finding an energy efficient way to modify the distinct magnetic states in a reliable, reversible, and non-volatile manner. Here we report ferroelectric switching of ferromagnetic resonance in multiferroic bilayers consisting of ultrathin ferromagnetic NiFe and ferroelectric Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films, where the magnetic anisotropy of NiFe can be electrically modified by low voltages. Ferromagnetic resonance measurements confirm that the interfacial charge-mediated magnetoelectric effect is dominant in NiFe/PLZT heterostructures. Non-volatile modification of ferromagnetic resonance field is demonstrated by applying voltage pulses. The ferroelectric switching of magnetic anisotropy exhibits extensive applications in energy-efficient electronic devices such as magnetoelectric random access memories, magnetic field sensors, and tunable radio frequency (RF)/microwave devices. PMID:27581071
NASA Astrophysics Data System (ADS)
Hu, Zhongqiang; Wang, Xinjun; Nan, Tianxiang; Zhou, Ziyao; Ma, Beihai; Chen, Xiaoqin; Jones, John G.; Howe, Brandon M.; Brown, Gail J.; Gao, Yuan; Lin, Hwaider; Wang, Zhiguang; Guo, Rongdi; Chen, Shuiyuan; Shi, Xiaoling; Shi, Wei; Sun, Hongzhi; Budil, David; Liu, Ming; Sun, Nian X.
2016-09-01
Magnetoelectric effect, arising from the interfacial coupling between magnetic and electrical order parameters, has recently emerged as a robust means to electrically manipulate the magnetic properties in multiferroic heterostructures. Challenge remains as finding an energy efficient way to modify the distinct magnetic states in a reliable, reversible, and non-volatile manner. Here we report ferroelectric switching of ferromagnetic resonance in multiferroic bilayers consisting of ultrathin ferromagnetic NiFe and ferroelectric Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films, where the magnetic anisotropy of NiFe can be electrically modified by low voltages. Ferromagnetic resonance measurements confirm that the interfacial charge-mediated magnetoelectric effect is dominant in NiFe/PLZT heterostructures. Non-volatile modification of ferromagnetic resonance field is demonstrated by applying voltage pulses. The ferroelectric switching of magnetic anisotropy exhibits extensive applications in energy-efficient electronic devices such as magnetoelectric random access memories, magnetic field sensors, and tunable radio frequency (RF)/microwave devices.
Supramolecular core-shell nanoparticles for photoconductive device applications
NASA Astrophysics Data System (ADS)
Cheng, Chih-Chia; Chen, Jem-Kun; Shieh, Yeong-Tarng; Lee, Duu-Jong
2016-08-01
We report a breakthrough discovery involving supramolecular-based strategies to construct novel core-shell heterojunction nanoparticles with hydrophilic adenine-functionalized polythiophene (PAT) as the core and hydrophobic phenyl-C61-butyric acid methyl ester (PCBM) as the shell, which enables the conception of new functional supramolecular assemblies for constructing functional nanomaterials for applications in optoelectronic devices. The generated nanoparticles exhibit uniform spherical shape, well-controlled tuning of particle size with narrow size distributions, and excellent electrochemical stability in solution and the solid state owing to highly efficient energy transfer from PAT to PCBM. When the PAT/PCBM nanoparticles were fabricated into a photoconducting layer in an electronic device, the resulting device showed excellent electric conduction characteristics, including an electrically-tunable voltage-controlled switch, and high short-circuit current and open-circuit voltage. These observations demonstrate how the self-assembly of PAT/PCBM into specific nanostructures may help to promote efficient charge generation and transport processes, suggesting potential for a wide variety of applications as a promising candidate material for bulk heterojunction polymer devices.
Metal–insulator transition in a transition metal dichalcogenide: Dependence on metal contacts
NASA Astrophysics Data System (ADS)
Shimazu, Y.; Arai, K.; Iwabuchi, T.
2018-03-01
Transition metal dichalcogenides are promising layered materials for realizing novel nanoelectronic and nano-optoelectronic devices. Molybdenum disulfide (MoS2), a typical transition metal dichalcogenide, has been extensively investigated due to the presence of a sizable band gap, which enables the use of MoS2 as a channel material in field-effect transistors (FET). The gate-voltage-tunable metal–insulator transition and superconductivity using MoS2 have been demonstrated in previous studies. These interesting phenomena can be considered as quantum phase transitions in two-dimensional systems. In this study, we observed that the transport properties of thin MoS2 flakes in FET geometry significantly depend on metal contacts. On comparing Ti/Au with Al contacts, it was found that the threshold voltages for FET switching and metal–insulator transition were considerably lower for the device with Al contacts. This result indicated the significant influence of the Al contacts on the properties of MoS2 devices.
Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells
Sanehira, Erin M.; Marshall, Ashley R.; Christians, Jeffrey A.; Harvey, Steven P.; Ciesielski, Peter N.; Wheeler, Lance M.; Schulz, Philip; Lin, Lih Y.; Beard, Matthew C.; Luther, Joseph M.
2017-01-01
We developed lead halide perovskite quantum dot (QD) films with tuned surface chemistry based on A-site cation halide salt (AX) treatments. QD perovskites offer colloidal synthesis and processing using industrially friendly solvents, which decouples grain growth from film deposition, and at present produce larger open-circuit voltages (VOC’s) than thin-film perovskites. CsPbI3 QDs, with a tunable bandgap between 1.75 and 2.13 eV, are an ideal top cell candidate for all-perovskite multijunction solar cells because of their demonstrated small VOC deficit. We show that charge carrier mobility within perovskite QD films is dictated by the chemical conditions at the QD-QD junctions. The AX treatments provide a method for tuning the coupling between perovskite QDs, which is exploited for improved charge transport for fabricating high-quality QD films and devices. The AX treatments presented here double the film mobility, enabling increased photocurrent, and lead to a record certified QD solar cell efficiency of 13.43%. PMID:29098184
Kempa, Thomas J; Cahoon, James F; Kim, Sun-Kyung; Day, Robert W; Bell, David C; Park, Hong-Gyu; Lieber, Charles M
2012-01-31
Silicon nanowires (NWs) could enable low-cost and efficient photovoltaics, though their performance has been limited by nonideal electrical characteristics and an inability to tune absorption properties. We overcome these limitations through controlled synthesis of a series of polymorphic core/multishell NWs with highly crystalline, hexagonally-faceted shells, and well-defined coaxial (p/n) and p/intrinsic/n (p/i/n) diode junctions. Designed 200-300 nm diameter p/i/n NW diodes exhibit ultralow leakage currents of approximately 1 fA, and open-circuit voltages and fill-factors up to 0.5 V and 73%, respectively, under one-sun illumination. Single-NW wavelength-dependent photocurrent measurements reveal size-tunable optical resonances, external quantum efficiencies greater than unity, and current densities double those for silicon films of comparable thickness. In addition, finite-difference-time-domain simulations for the measured NW structures agree quantitatively with the photocurrent measurements, and demonstrate that the optical resonances are due to Fabry-Perot and whispering-gallery cavity modes supported in the high-quality faceted nanostructures. Synthetically optimized NW devices achieve current densities of 17 mA/cm(2) and power-conversion efficiencies of 6%. Horizontal integration of multiple NWs demonstrates linear scaling of the absolute photocurrent with number of NWs, as well as retention of the high open-circuit voltages and short-circuit current densities measured for single NW devices. Notably, assembly of 2 NW elements into vertical stacks yields short-circuit current densities of 25 mA/cm(2) with a backside reflector, and simulations further show that such stacking represents an attractive approach for further enhancing performance with projected efficiencies of > 15% for 1.2 μm thick 5 NW stacks.
Liquid Nitrogen as Fast High Voltage Switching Medium
NASA Astrophysics Data System (ADS)
Dickens, J.; Neuber, A.; Haustein, M.; Krile, J.; Krompholz, H.
2002-12-01
Compact pulsed power systems require new switching technologies. For high voltages, liquid nitrogen seems to be a suitable switching medium, with high hold-off voltage, low dielectric constant, and no need for pressurized systems as in high pressure gas switches. The discharge behavior in liquid nitrogen, such as breakdown voltages, formative times, current rise as function of voltage, recovery, etc. are virtually unknown, however. The phenomenology of breakdown in liquid nitrogen is investigated with high speed (temporal resolution < 1 ns) electrical and optical diagnostics, in a coaxial system with 50-Ohm impedance. Discharge current and voltage are determined with transmission line type current sensors and capacitive voltage dividers. The discharge luminosity is measured with photomultiplier tubes. Preliminary results of self-breakdown investigations (gap 1 mm, breakdown voltage 44 kV, non-boiling supercooled nitrogen) show a fast (2 ns) transition from an unknown current level to several mA, a long-duration (100 ns) phase with constant current superimposed by ns-spikes, and a final fast transition to the impedance limited current during several nanoseconds. The optical measurements will be expanded toward spectroscopy and high speed photography with the aim of clarifying the overall breakdown mechanisms, including electronic initiation, bubble formation, bubble dynamics, and their role in breakdown, for different electrode geometries (different macroscopic field enhancements).
Giga-seal formation alters properties of sodium channels of human myoballs.
Fahlke, C; Rüdel, R
1992-03-01
The influence of giga-seal formation on the properties of the Na+ channels within the covered membrane patch was investigated with a whole-cell pipette and a patch pipette applied to the same cell. Current kinetics, current/voltage relation and channel densities were determined in three combinations: (i) voltage-clamping and current recording with the whole-cell pipette, (ii) voltage-clamping with the whole-cell pipette and current recording with the patch pipette and, (iii) voltage-clamping and current recording with the patch pipette. The Hodgkin-Huxley (1952) parameters tau m and tau h were smaller for the patch currents than for the whole cell, and the h infinity curve was shifted in the negative direction. The channel density was of the order of 10 times smaller. All effects were independent of the extracellular Ca2+ concentration. The capacitive current generated in the patch by the whole-cell Na+ current and its effect on the transmembrane voltage of the patch were evaluated. The kinetic parameters of the Na+ channels in the patch did not depend on whether the voltage was clamped with the whole-cell pipette or the patch pipette. Thus, the results are not due to spurious voltage.
Photonic polymer-blend structures and method for making
Barnes, Michael D.
2004-06-29
The present invention comprises the formation of photonic polymer-blend structures having tunable optical and mechanical properties. The photonic polymer-blend structures comprise monomer units of spherical microparticles of a polymer-blend material wherein the spherical microparticles have surfaces partially merged with one another in a robust inter-particle bond having a tunable inter-particle separation or bond length sequentially attached in a desired and programmable architecture. The photonic polymer-blend structures of the present invention can be linked by several hundred individual particles sequentially linked to form complex three-dimensional structures or highly ordered two-dimensional arrays of 3D columns with 2D spacing.
Quantum many-body dynamics of strongly interacting atom arrays
NASA Astrophysics Data System (ADS)
Bernien, Hannes; Keesling, Alexander; Levine, Harry; Schwartz, Sylvain; Omran, Ahmed; Anschuetz, Eric; Endres, Manuel; Vuletic, Vladan; Greiner, Markus; Lukin, Mikhail
2017-04-01
The coherent interaction between large numbers of particles gives rise to fascinating quantum many-body effects and lies at the center of quantum simulations and quantum information processing. The development of systems consisting of many, well-controlled particles with tunable interactions is an outstanding challenge. Here we present a new platform based on large, reconfigurable arrays of individually trapped atoms. Strong interactions between these atoms are enabled by exciting them to Rydberg states. This flexible approach allows access to vastly different regimes with interactions tunable over several orders of magnitude. We study the coherent many-body dynamics in varying array geometries and observe the formation of Rydberg crystals.
Mukhopadhyay, Pranab K; Gupta, Pradeep K; Singh, Amarjeet; Sharma, Sunil K; Bindra, Kushvinder S; Oak, Shrikant M
2014-05-01
A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm-1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Pranab K.; Gupta, Pradeep K.; Singh, Amarjeet; Sharma, Sunil K.; Bindra, Kushvinder S.; Oak, Shrikant M.
2014-05-01
A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm-1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.
Custom 3D Printable Silicones with Tunable Stiffness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durban, Matthew M.; Lenhardt, Jeremy M.; Wu, Amanda S.
Silicone elastomers have broad versatility within a variety of potential advanced materials applications, such as soft robotics, biomedical devices, and metamaterials. Furthermore, a series of custom 3D printable silicone inks with tunable stiffness is developed, formulated, and characterized. The silicone inks exhibit excellent rheological behavior for 3D printing, as observed from the printing of porous structures with controlled architectures. Here, the capability to tune the stiffness of printable silicone materials via careful control over the chemistry, network formation, and crosslink density of the ink formulations in order to overcome the challenging interplay between ink development, post-processing, material properties, and performancemore » is demonstrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, Pranab K., E-mail: pkm@rrcat.gov.in; Gupta, Pradeep K.; Singh, Amarjeet
2014-05-15
A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm–1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.
Custom 3D Printable Silicones with Tunable Stiffness
Durban, Matthew M.; Lenhardt, Jeremy M.; Wu, Amanda S.; ...
2017-12-06
Silicone elastomers have broad versatility within a variety of potential advanced materials applications, such as soft robotics, biomedical devices, and metamaterials. Furthermore, a series of custom 3D printable silicone inks with tunable stiffness is developed, formulated, and characterized. The silicone inks exhibit excellent rheological behavior for 3D printing, as observed from the printing of porous structures with controlled architectures. Here, the capability to tune the stiffness of printable silicone materials via careful control over the chemistry, network formation, and crosslink density of the ink formulations in order to overcome the challenging interplay between ink development, post-processing, material properties, and performancemore » is demonstrated.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-08
... Collection; Comment Request; High-Voltage Continuous Mining Machines Standards for Underground Coal Mines... Act of 1995. This program helps to assure that requested data can be provided in the desired format... maintains the safe use of high-voltage continuous mining machines in underground coal mines by requiring...
Liu, Guanxiong; Debnath, Bishwajit; Pope, Timothy R; Salguero, Tina T; Lake, Roger K; Balandin, Alexander A
2016-10-01
The charge-density-wave (CDW) phase is a macroscopic quantum state consisting of a periodic modulation of the electronic charge density accompanied by a periodic distortion of the atomic lattice in quasi-1D or layered 2D metallic crystals. Several layered transition metal dichalcogenides, including 1T-TaSe 2 , 1T-TaS 2 and 1T-TiSe 2 exhibit unusually high transition temperatures to different CDW symmetry-reducing phases. These transitions can be affected by the environmental conditions, film thickness and applied electric bias. However, device applications of these intriguing systems at room temperature or their integration with other 2D materials have not been explored. Here, we demonstrate room-temperature current switching driven by a voltage-controlled phase transition between CDW states in films of 1T-TaS 2 less than 10 nm thick. We exploit the transition between the nearly commensurate and the incommensurate CDW phases, which has a transition temperature of 350 K and gives an abrupt change in current accompanied by hysteresis. An integrated graphene transistor provides a voltage-tunable, matched, low-resistance load enabling precise voltage control of the circuit. The 1T-TaS 2 film is capped with hexagonal boron nitride to provide protection from oxidation. The integration of these three disparate 2D materials in a way that exploits the unique properties of each yields a simple, miniaturized, voltage-controlled oscillator suitable for a variety of practical applications.
The application of the barrier-type anodic oxidation method to thickness testing of aluminum films
NASA Astrophysics Data System (ADS)
Chen, Jianwen; Yao, Manwen; Xiao, Ruihua; Yang, Pengfei; Hu, Baofu; Yao, Xi
2014-09-01
The thickness of the active metal oxide film formed from a barrier-type anodizing process is directly proportional to its formation voltage. The thickness of the consumed portion of the metal film is also corresponding to the formation voltage. This principle can be applied to the thickness test of the metal films. If the metal film is growing on a dielectric substrate, when the metal film is exhausted in an anodizing process, because of the high electrical resistance of the formed oxide film, a sudden increase of the recorded voltage during the anodizing process would occur. Then, the thickness of the metal film can be determined from this voltage. As an example, aluminum films are tested and discussed in this work. This method is quite simple and is easy to perform with high precision.
Van der Waals heterojunction diode composed of WS2 flake placed on p-type Si substrate
NASA Astrophysics Data System (ADS)
Aftab, Sikandar; Farooq Khan, M.; Min, Kyung-Ah; Nazir, Ghazanfar; Afzal, Amir Muhammad; Dastgeer, Ghulam; Akhtar, Imtisal; Seo, Yongho; Hong, Suklyun; Eom, Jonghwa
2018-01-01
P-N junctions represent the fundamental building blocks of most semiconductors for optoelectronic functions. This work demonstrates a technique for forming a WS2/Si van der Waals junction based on mechanical exfoliation. Multilayered WS2 nanoflakes were exfoliated on the surface of bulk p-type Si substrates using a polydimethylsiloxane stamp. We found that the fabricated WS2/Si p-n junctions exhibited rectifying characteristics. We studied the effect of annealing processes on the performance of the WS2/Si van der Waals p-n junction and demonstrated that annealing improved its electrical characteristics. However, devices with vacuum annealing have an enhanced forward-bias current compared to those annealed in a gaseous environment. We also studied the top-gate-tunable rectification characteristics across the p-n junction interface in experiments as well as density functional theory calculations. Under various temperatures, Zener breakdown occurred at low reverse-bias voltages, and its breakdown voltage exhibited a negative coefficient of temperature. Another breakdown voltage was observed, which increased with temperature, suggesting a positive coefficient of temperature. Therefore, such a breakdown can be assigned to avalanche breakdown. This work demonstrates a promising application of two-dimensional materials placed directly on conventional bulk Si substrates.
Zhu, Yanbo; Yang, Bin; Liu, Jingquan; Wang, Xingzhao; Wang, Luxian; Chen, Xiang; Yang, Chunsheng
2016-01-01
Recently, triboelectric energy nanogenerators (TENGs) have been paid the most attention by many researchers to convert mechanical energy into electrical energy. TENGs usually have a simple structure and a high output voltage. However, their high internal resistance results in low output power. In this work, we propose a flexible triboelectric energy nanogenerator with the double-side tribological layers of polydimethlysiloxane (PDMS) and PDMS/multiwall carbon nanotube (MWCNT). MWCNTs with different concentrations have been doped into PDMS to tune the internal resistance of triboelectric nanogenerator and optimize its output power. The dimension of the fabricated prototype is ~3.6 cm3. Three-axial force sensor is used to monitor the applied vertical forces on the device under vertical contact-separation working mode. The Prototype with 10 wt% MWCNT (Prototype I) produces higher output voltage than one with 2 wt% MWCNT (Prototype II) due to its higher dielectric parameter measured by LRC impedance analyzer. The triboelectric output voltages of Prototype I and Prototype II are 30 V and 25 V under the vertical force of 3.0 N, respectively. Their maximum triboelectric output powers are ~130 μW at 6 MΩ and ~120 μW at 8.6 MΩ under vertical forces, respectively. PMID:26916819
Aberration control in adaptive optics: a numerical study of arbitrarily deformable liquid lenses.
Lima, N C; Mishra, K; Mugele, F
2017-03-20
By means of numerical simulations, using a computational fluid dynamics software together with an optical ray tracing analysis platform, we show that we can tune various optical aberrations by electrically manipulating the shape of liquid lenses using one hundred individually addressable electrodes. To demonstrate the flexibility of our design, we define electrode patterns based on specific Zernike modes and show that aspherical, cylindrical and decentered shapes of liquid lenses can be produced. Using different voltages, we evaluate the tuning range of spherical aberration (Z11), astigmatism (Z5 and Z6) and coma (Z7), while a hydrostatic pressure is applied to control the average curvature of a microlens with a diameter of 1mm. Upon activating all electrodes simultaneously spherical aberrations of 0.15 waves at a pressure of 30Pa can be suppressed almost completely for the highest voltages applied. For astigmatic and comatic patterns, the values of Z5, Z6 and Z7 increase monotonically with the voltage reaching values up to 0.06, 0.06 and 0.2 waves, respectively. Spot diagrams, wavefront maps and modulation transfer function are reported to quantify the optical performance of each lens. Crosstalk and independence of tunability are discussed in the context of possible applications of the approach for general wavefront shaping.
Epitaxial Hexagonal Ferrites for Millimeter Wave Tunable Filters.
1982-12-13
form of thin films or slabs, the LPE format should be particularly suitable. Another potential advantage of the LPE format is that the insulating...flux (solvent). In effect, this emulates the successful LPE garnet (YIG) technology which employs this flux. In contrast to garnets , Pb atoms can be...member for a workshop entitled "Application of Garnet and Ferrite Thin Films to Microwave Devices." The principal investigator also attended the 6th
High spatial precision nano-imaging of polarization-sensitive plasmonic particles
NASA Astrophysics Data System (ADS)
Liu, Yunbo; Wang, Yipei; Lee, Somin Eunice
2018-02-01
Precise polarimetric imaging of polarization-sensitive nanoparticles is essential for resolving their accurate spatial positions beyond the diffraction limit. However, conventional technologies currently suffer from beam deviation errors which cannot be corrected beyond the diffraction limit. To overcome this issue, we experimentally demonstrate a spatially stable nano-imaging system for polarization-sensitive nanoparticles. In this study, we show that by integrating a voltage-tunable imaging variable polarizer with optical microscopy, we are able to suppress beam deviation errors. We expect that this nano-imaging system should allow for acquisition of accurate positional and polarization information from individual nanoparticles in applications where real-time, high precision spatial information is required.
Field-controllable second harmonic generation at a graphene oxide heterointerface
NASA Astrophysics Data System (ADS)
Fernandes, Gustavo E.; Kim, Jin Ho; Osgood, Richard, III; Xu, Jimmy
2018-03-01
We report on the voltage-dependent SHG signal obtained in a reduced-graphene oxide (rGO)/p-type Si heterointerface. A simple qualitative model considering the interaction between the heterointerface depletion region potential and the naturally occurring surface dipole layer on the rGO is introduced to account for the characteristics of the SHG signal, specifically, a minimum point at ≈ -3 V bias on the rGO side of the interface. This feature-rich system has the potential to provide field-controllable surface-dipole moments and second-order nonlinearities, which may find applications in tunable nonlinear photonic devices for realizing second-harmonic generation and optical-rectification.
Electrical control of exchange bias via oxygen migration across CoO-ZnO nanocomposite barrier
NASA Astrophysics Data System (ADS)
Li, Q.; Yan, S. S.; Xu, J.; Li, S. D.; Zhao, G. X.; Long, Y. Z.; Shen, T. T.; Zhang, K.; Zhang, J.
2016-12-01
We proposed a nanocomposite barrier CoO-ZnO for magnetism manipulation in Co/CoO-ZnO/Ag heterojunctions. Both electrical control of magnetism and resistive switching were realized in this junction. An electrical tunable exchange bias of CoO1-v (v denotes O vacancies) on Co films was realized using voltages below 1 volt. The magnetism modulation associated with resistive switching can be attributed to the oxygen ions migration between the insulating CoO1-v layer and the semiconductive ZnO1-v layer, which can cause both ferromagnetic phase and resistance switching of CoO1-v layer.
Tunable Multiple Plasmon-Induced Transparencies Based on Asymmetrical Graphene Nanoribbon Structures
Lu, Chunyu; Wang, Jicheng; Yan, Shubin; Hu, Zheng-Da; Zheng, Gaige; Yang, Liu
2017-01-01
We present plasmonic devices, consisting of periodic arrays of graphene nanoribbons (GNRs) and a graphene sheet waveguide, to achieve controllable plasmon-induced transparency (PIT) by numerical simulation. We analyze the bright and dark elements of the GNRs and graphene-sheet waveguide structure. Results show that applying the gate voltage can electrically tune the PIT spectrum. Adjusting the coupling distance and widths of GNRs directly results in a shift of transmission dips. In addition, increased angle of incidence causes the transmission to split into multiple PIT peaks. We also demonstrate that PIT devices based on graphene plasmonics may have promising applications as plasmonic sensors in nanophotonics. PMID:28773062
Widely tunable chiral nematic liquid crystal optical filter with microsecond switching time.
Mohammadimasoudi, Mohammad; Beeckman, Jeroen; Shin, Jungsoon; Lee, Keechang; Neyts, Kristiaan
2014-08-11
A wavelength shift of the photonic band gap of 141 nm is obtained by electric switching of a partly polymerized chiral liquid crystal. The devices feature high reflectivity in the photonic band gap without any noticeable degradation or disruption and have response times of 50 µs and 20 µs for switching on and off. The device consists of a mixture of photo-polymerizable liquid crystal, non-reactive nematic liquid crystal and a chiral dopant that has been polymerized with UV light. We investigate the influence of the amplitude of the applied voltage on the width and the depth of the reflection band.
Light sensitive memristor with bi-directional and wavelength-dependent conductance control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maier, P.; Hartmann, F., E-mail: fabian.hartmann@physik.uni-wuerzburg.de; Emmerling, M.
2016-07-11
We report the optical control of localized charge on positioned quantum dots in an electro-photo-sensitive memristor. Interband absorption processes in the quantum dot barrier matrix lead to photo-generated electron-hole-pairs that, depending on the applied bias voltage, charge or discharge the quantum dots and hence decrease or increase the conductance. Wavelength-dependent conductance control is observed by illumination with red and infrared light, which leads to charging via interband and discharging via intraband absorption. The presented memristor enables optical conductance control and may thus be considered for sensory applications in artificial neural networks as light-sensitive synapses or optically tunable memories.
The narrow pass band filter of tunable 1D phononic crystals with a dielectric elastomer layer
NASA Astrophysics Data System (ADS)
Wu, Liang-Yu; Wu, Mei-Ling; Chen, Lien-Wen
2009-01-01
In this paper, we study the defect bands of a 1D phononic crystal consisting of aluminum (Al) and polymethyl methacrylate (PMMA) layers with a dielectric elastomer (DE) defect layer. The plane wave expansion (PWE) method and supercell calculation are used to calculate the band structure and the defect bands. The transmission spectra are obtained using the finite element method (FEM). Since the thickness of the dielectric elastomer defect layer is controlled by applying an electric voltage, the frequencies of the defect bands can be tuned. A narrow pass band filter can be developed and designed by using the dielectric elastomer.
Gate tunable parallel double quantum dots in InAs double-nanowire devices
NASA Astrophysics Data System (ADS)
Baba, S.; Matsuo, S.; Kamata, H.; Deacon, R. S.; Oiwa, A.; Li, K.; Jeppesen, S.; Samuelson, L.; Xu, H. Q.; Tarucha, S.
2017-12-01
We report fabrication and characterization of InAs nanowire devices with two closely placed parallel nanowires. The fabrication process we develop includes selective deposition of the nanowires with micron scale alignment onto predefined finger bottom gates using a polymer transfer technique. By tuning the double nanowire with the finger bottom gates, we observed the formation of parallel double quantum dots with one quantum dot in each nanowire bound by the normal metal contact edges. We report the gate tunability of the charge states in individual dots as well as the inter-dot electrostatic coupling. In addition, we fabricate a device with separate normal metal contacts and a common superconducting contact to the two parallel wires and confirm the dot formation in each wire from comparison of the transport properties and a superconducting proximity gap feature for the respective wires. With the fabrication techniques established in this study, devices can be realized for more advanced experiments on Cooper-pair splitting, generation of Parafermions, and so on.
NASA Astrophysics Data System (ADS)
Cho, Kwang-Hwan; Lee, Chil-Hyoung; Kang, Chong-Yun; Yoon, Seok-Jin; Lee, Young-Pak
2007-04-01
The effect of heat treatment in electric field on the structure and dielectric properties at microwave range of rf magnetron sputtering derived (Ba0.5Sr0.5)TiO3 thin films have been studied. It has been demonstrated that postannealing in the proper electric field can increase the dielectric constant and the tunability. The increased out-of-plane lattice constant in the electric-annealed films indicated the formation of small polar regions with tetragonal structure, which are responsible for the increased dielectric constant and tunability. It was proposed that the segregation of Ti3+ ions caused by electric annealing could induce the formation of BaTiO3-like regions, which are ferroelectric at room temperature. And in dielectric loss, as the Ti-O bonding lengths increase, the energy scattering on the ferroelectric mode also increases. So, the value of dielectric loss is slightly increased.
Chakrabarti, Somsubhra; Ginnaram, Sreekanth; Jana, Surajit; Wu, Zong-Yi; Singh, Kanishk; Roy, Anisha; Kumar, Pankaj; Maikap, Siddheswar; Qiu, Jian-Tai; Cheng, Hsin-Ming; Tsai, Ling-Na; Chang, Ya-Ling; Mahapatra, Rajat; Yang, Jer-Ren
2017-07-05
Negative voltage modulated multi-level resistive switching with quantum conductance during staircase-type RESET and its transport characteristics in Cr/BaTiO x /TiN structure have been investigated for the first time. The as-deposited amorphous BaTiO x film has been confirmed by high-resolution transmission electron microscopy. X-ray photo-electron spectroscopy shows different oxidation states of Ba in the switching material, which is responsible for tunable more than 10 resistance states by varying negative stop voltage owing to slow decay value of RESET slope (217.39 mV/decade). Quantum conductance phenomenon has been observed in staircase RESET cycle of the memory devices. By inspecting the oxidation states of Ba + and Ba 2+ through measuring H 2 O 2 with a low concentration of 1 nM in electrolyte/BaTiO x /SiO 2 /p-Si structure, the switching mechanism of each HRS level as well as the multi-level phenomenon has been explained by gradual dissolution of oxygen vacancy filament. Along with negative stop voltage modulated multi-level, current compliance dependent multi-level has also been demonstrated and resistance ratio up to 2000 has been achieved even for a thin (<5 nm) switching material. By considering oxidation-reduction of the conducting filaments, the current-voltage switching curve has been simulated as well. Hence, multi-level resistive switching of Cr/BaTiO x /TiN structure implies the promising applications in high dense, multistate non-volatile memories in near future.
Byers, Chad P.; Zhang, Hui; Swearer, Dayne F.; Yorulmaz, Mustafa; Hoener, Benjamin S.; Huang, Da; Hoggard, Anneli; Chang, Wei-Shun; Mulvaney, Paul; Ringe, Emilie; Halas, Naomi J.; Nordlander, Peter; Link, Stephan; Landes, Christy F.
2015-01-01
The optical properties of metallic nanoparticles are highly sensitive to interparticle distance, giving rise to dramatic but frequently irreversible color changes. By electrochemical modification of individual nanoparticles and nanoparticle pairs, we induced equally dramatic, yet reversible, changes in their optical properties. We achieved plasmon tuning by oxidation-reduction chemistry of Ag-AgCl shells on the surfaces of both individual and strongly coupled Au nanoparticle pairs, resulting in extreme but reversible changes in scattering line shape. We demonstrated reversible formation of the charge transfer plasmon mode by switching between capacitive and conductive electronic coupling mechanisms. Dynamic single-particle spectroelectrochemistry also gave an insight into the reaction kinetics and evolution of the charge transfer plasmon mode in an electrochemically tunable structure. Our study represents a highly useful approach to the precise tuning of the morphology of narrow interparticle gaps and will be of value for controlling and activating a range of properties such as extreme plasmon modulation, nanoscopic plasmon switching, and subnanometer tunable gap applications. PMID:26665175
Zimmermann, Katrin; Jordan, Anna; Gay, Frédéric; Watanabe, Kenji; Taniguchi, Takashi; Han, Zheng; Bouchiat, Vincent; Sellier, Hermann; Sacépé, Benjamin
2017-04-13
Charge carriers in the quantum Hall regime propagate via one-dimensional conducting channels that form along the edges of a two-dimensional electron gas. Controlling their transmission through a gate-tunable constriction, also called quantum point contact, is fundamental for many coherent transport experiments. However, in graphene, tailoring a constriction with electrostatic gates remains challenging due to the formation of p-n junctions below gate electrodes along which electron and hole edge channels co-propagate and mix, short circuiting the constriction. Here we show that this electron-hole mixing is drastically reduced in high-mobility graphene van der Waals heterostructures thanks to the full degeneracy lifting of the Landau levels, enabling quantum point contact operation with full channel pinch-off. We demonstrate gate-tunable selective transmission of integer and fractional quantum Hall edge channels through the quantum point contact. This gate control of edge channels opens the door to quantum Hall interferometry and electron quantum optics experiments in the integer and fractional quantum Hall regimes of graphene.
NASA Astrophysics Data System (ADS)
Jung, Yong Chan; Seong, Sejong; Lee, Taehoon; Kim, Seon Yong; Park, In-Sung; Ahn, Jinho
2018-03-01
The anode interface effects on the resistive switching characteristics of Pt/HfO2/Pt resistors are investigated by changing the forming and switching polarity. Resistive switching properties are evaluated and compared with the polarity operation procedures, such as the reset voltage (Vr), set voltage (Vs), and current levels at low and high resistance states. When the same forming and switching voltage polarity are applied to the resistor, their switching parameters are widely distributed. However, the opposite forming and switching voltage polarity procedures enhance the uniformity of the switching parameters. In particular, the Vs distribution is strongly affected by the voltage polarity variation. A model is proposed based on cone-shaped filament formation through the insulator and the cone diameter at the anode interface to explain the improved resistive switching characteristics under opposite polarity operation. The filament cone is thinner near the anode interface during the forming process; hence, the anode is altered by the application of a switching voltage with opposite polarity to the forming voltage polarity and the converted anode interface becomes the thicker part of the cone. The more uniform and stable switching behavior is attributed to control over the formation and rupture of the cone-shaped filaments at their thicker parts.
Custom 3D Printable Silicones with Tunable Stiffness.
Durban, Matthew M; Lenhardt, Jeremy M; Wu, Amanda S; Small, Ward; Bryson, Taylor M; Perez-Perez, Lemuel; Nguyen, Du T; Gammon, Stuart; Smay, James E; Duoss, Eric B; Lewicki, James P; Wilson, Thomas S
2018-02-01
Silicone elastomers have broad versatility within a variety of potential advanced materials applications, such as soft robotics, biomedical devices, and metamaterials. A series of custom 3D printable silicone inks with tunable stiffness is developed, formulated, and characterized. The silicone inks exhibit excellent rheological behavior for 3D printing, as observed from the printing of porous structures with controlled architectures. Herein, the capability to tune the stiffness of printable silicone materials via careful control over the chemistry, network formation, and crosslink density of the ink formulations in order to overcome the challenging interplay between ink development, post-processing, material properties, and performance is demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Jingsong; Xiao, Lifen; He, Wei; Fan, Jiangwei; Chen, Zhongxue; Ai, Xinping; Yang, Hanxi; Cao, Yuliang
2016-07-27
The effect of the cutoff voltages on the working voltage decay and cyclability of the lithium-rich manganese-based layered cathode (LRMO) was investigated by electrochemical measurements, electrochemical impedance spectroscopy, ex situ X-ray diffraction, transmission electron microscopy, and energy dispersive spectroscopy line scan technologies. It was found that both lower (2.0 V) and upper (4.8 V) cutoff voltages cause severe voltage decay with cycling due to formation of the spinel phase and migration of the transition metals inside the particles. Appropriate cutoff voltage between 2.8 and 4.4 V can effectively inhibit structural variation as the electrode demonstrates 92% capacity retention and indiscernible working voltage decay over 430 cycles. The results also show that phase transformation not only on high charge voltage but also on low discharge voltage should be addressed to obtain highly stable LRMO materials.
Block Copolymers and Ionic Liquids: A New Class of Functional Nanocomposites
NASA Astrophysics Data System (ADS)
Lodge, Timothy
2009-03-01
Block copolymers provide a remarkably versatile platform for achieving desired nanostructures by self-assembly, with lengthscales varying from a few nanometers up to several hundred nanometers. Ionic liquids are an emerging class of solvents, with an appealing set of physical attributes. These include negligible vapor pressure, high chemical and thermal stability, tunable solvation properties, high ionic conductivity, and wide electrochemical windows. For various applications it will be necessary to solidify the ionic liquid into particular spatial arrangements, such as membranes or gels, or to partition the ionic liquid in coexisting phases, such as microemulsions and micelles. One example includes formation of spherical, cylindrical, and vesicular micelles by poly(butadiene-b-ethylene oxide) and poly(styrene-b-methylmethacrylate) in the common hydrophobic ionic liquids [BMI][PF6] and [EMI][TFSI]. This work has been extended to the formation of reversible micelle shuttles between ionic liquids and water, whereby entire micelles transfer from one phase to the other, reversibly, depending on temperature and solvent quality. Formation of ion gels has been achieved by self-assembly of poly(styrene-b-ethylene oxide-b-styrene) triblocks in ionic liquids, and by the thermoreversible system poly(N-isopropylacrylamide-b-ethylene oxide-b-N-isopropylacrylamide), using as little as 4% copolymer. Further, these gels have been shown to be remarkably effective as gate dielectrics in organic thin film transistors. The remarkably high capacitance of the ion gels (> 10 μF/cm^2) supports a very high carrier density in an organic semiconductor such as poly(3-hexylthiophene), leading to milliamp currents for low applied voltages. Furthermore, the rapid mobility of the ions enables switching speeds approaching 10 kHz, orders of magnitude higher than achievable with other polymer-based dielectrics such as PEO/LiClO4. Finally, we have shown that ordered nanostructures of block copolymers plus ionic liquids show the characteristic self-assembly properties of strongly-segregated systems. Prospects for anisotropic ionic conductivity are also being explored.
Terahertz beam switching by electrical control of graphene-enabled tunable metasurface.
Zhang, Yin; Feng, Yijun; Zhao, Junming; Jiang, Tian; Zhu, Bo
2017-10-26
Controlling the terahertz wave, especially the dynamical and full control of terahertz wavefront, is highly demanded due to the increasing development of practical devices and application systems. Recently considerable efforts have been made to fill the 'terahertz gap' with the help of artificial metamaterial or metasurface incorporated with graphene material. Here, we propose a scheme to design tunable metasurface consisting of metallic patch array on a grounded polymer substrate embedded with graphene layers to electrically control the electromagnetic beam reflection at terahertz frequency. By adjusting geometric dimension of the patch elements, 360 degree reflection phase range may be achieved, thus abrupt phase shifts can be introduced along the metasurface for tailoring the reflected wavefront. Moreover, the reflective phase gradient over the metasurface can be switched between 90 and 360 degree by controlling the Fermi energy of the embedded graphene through voltage biasing, hence dynamically switching the reflective beam directions. Numerical simulations demonstrate that either single beam or dual beam dynamically switching between normal and oblique reflection angles can be well attained at working frequency. The proposed approach will bring much freedom in the design of beam manipulation devices and may be applied to terahertz radiation control.
Current–phase relations of few-mode InAs nanowire Josephson junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spanton, Eric M.; Deng, Mingtang; Vaitiekėnas, Saulius
Gate-tunable semiconductor nanowires with superconducting leads have great potential for quantum computation and as model systems for mesoscopic Josephson junctions. The supercurrent, I, versus the phase, Φ, across the junction is called the current–phase relation (CPR). It can reveal not only the amplitude of the critical current, but also the number of modes and their transmission. Here, we measured the CPR of many individual InAs nanowire Josephson junctions, one junction at a time. Both the amplitude and shape of the CPR varied between junctions, with small critical currents and skewed CPRs indicating few-mode junctions with high transmissions. In a gate-tunablemore » junction, we found that the CPR varied with gate voltage: near the onset of supercurrent, we observed behaviour consistent with resonant tunnelling through a single, highly transmitting mode. The gate dependence is consistent with modelled subband structure that includes an effective tunnelling barrier due to an abrupt change in the Fermi level at the boundary of the gate-tuned region. These measurements of skewed, tunable, few-mode CPRs are promising both for applications that require anharmonic junctions and for Majorana readout proposals.« less
NASA Astrophysics Data System (ADS)
Park, Cheolmin
2016-09-01
1D photonic crystals based on the periodic stacking of two different dielectric layers have been widely studied due to their potential use in low-power reflective mode displays, e-books and sensors, but the fabrication of mechanically flexible polymer structural color (SC) films, with electro-active color switching, remains challenging. Here, we demonstrate free-standing electric field tunable ionic liquid swollen block copolymer films. Placement of a polymer/ionic liquid (IL) film-reservoir adjacent to a self-assembled poly(styrene-block-quaternized 2vinyl pyridine) (PS-b-QP2VP) copolymer SC film allowed the development of R, G and B full-color SC block copolymer films by swelling of the QP2VP domains by the ionic liquid associated with water molecules. The IL-polymer/BCP SC film is mechanically flexible with excellent color stability over several days at ambient conditions. The selective swelling of the QP2VP domains could be controlled by both the ratio of the IL to a polymer in the gel-like IL reservoir layer and by an applied voltage in the range of -3V to +6V using a metal/IL reservoir/SC film/IL reservoir/metal capacitor type device.
Numerical simulation for meniscus shape and optical performance of a MEMS-based liquid micro-lens.
Lee, Shong-Leih; Yang, Chao-Fu
2008-11-24
It is very difficult to fabricate tunable optical systems having an aperture below 1000 micrometers with the conventional means on macroscopic scale. Krogmann et al. (J. Opt. A 8, S330-S336, 2006) presented a MEMS-based tunable liquid micro-lens system with an aperture of 300 micrometers. The system exhibited a tuning range of back focal length between 2.3mm and infinity by using the electrowetting effect to change the contact angle of the meniscus shape on silicon with a voltage of 0-45 V. However, spherical aberration was found in their lens system. In the present study, a numerical simulation is performed for this same physical configuration by solving the Young-Laplace equation on the interface of the lens liquid and the surrounding liquid. The resulting meniscus shape produces a back focal length that agrees with the experimental observation excellently. To eliminate the spherical aberration, an electric field is applied on the lens. The electric field alters the Young-Laplace equation and thus changes the meniscus shape and the lens quality. The numerical result shows that the spherical aberration of the lens can be essentially eliminated when a proper electric field is applied.
Varifocal liquid lens based on microelectrofluidic technology.
Chang, Jong-hyeon; Jung, Kyu-Dong; Lee, Eunsung; Choi, Minseog; Lee, Seungwan; Kim, Woonbae
2012-11-01
This Letter presents a tunable liquid lens based on microelectrofluidic technology. In the microelectrofluidic lens (MEFL), electrowetting in the hydrophobic surface channel induces the Laplace pressure difference between two fluidic interfaces on the lens aperture and the surface channel. Then, the pressure difference makes the lens curvature tunable. In spite of the contact angle saturation, the narrow surface channel increases the Laplace pressure to have a wide range of optical power variation in the MEFL. The magnitude of the applied voltage determines the lens curvature in the analog mode MEFL. Digital operation is also possible when the control electrodes of the MEFL are patterned to have an array. The lens aperture and maximum surface channel diameter were designed to 3.2 mm and 6.4 mm, respectively, with a channel height of 0.2 mm for an optical power range between +210 and -30 D. By switching the control electrodes, the averaged transit time in steps and turnaround time were as low as 2.4 ms and 16.5 ms, respectively, in good agreement with the simulation results. It is expected that the proposed MEFL may be widely used with advantages of wide variation of the optical power with fast and precise controllability in a digital manner.
Phase-tunable temperature amplifier
NASA Astrophysics Data System (ADS)
Paolucci, F.; Marchegiani, G.; Strambini, E.; Giazotto, F.
2017-06-01
Coherent caloritronics, the thermal counterpart of coherent electronics, has drawn growing attention since the discovery of heat interference in 2012. Thermal interferometers, diodes, transistors and nano-valves have been theoretically proposed and experimentally demonstrated by exploiting the quantum phase difference between two superconductors coupled through a Josephson junction. So far, the quantum-phase modulator has been realized in the form of a superconducting quantum interference device (SQUID) or a superconducting quantum interference proximity transistor (SQUIPT). Thence, an external magnetic field is necessary in order to manipulate the heat transport. Here, we theoretically propose the first on-chip fully thermal caloritronic device: the phase-tunable temperature amplifier (PTA). Taking advantage of a recently discovered thermoelectric effect in spin-split superconductors coupled to a spin-polarized system, we generate the magnetic flux controlling the transport through a temperature-biased SQUIPT by applying a temperature gradient. We simulate the behavior of the device and define a number of figures of merit in full analogy with voltage amplifiers. Notably, our architecture ensures almost infinite input thermal impedance, maximum gain of about 11 and efficiency reaching the 95%. This concept paves the way for applications in radiation sensing, thermal logics and quantum information.
Current–phase relations of few-mode InAs nanowire Josephson junctions
Spanton, Eric M.; Deng, Mingtang; Vaitiekėnas, Saulius; ...
2017-08-14
Gate-tunable semiconductor nanowires with superconducting leads have great potential for quantum computation and as model systems for mesoscopic Josephson junctions. The supercurrent, I, versus the phase, Φ, across the junction is called the current–phase relation (CPR). It can reveal not only the amplitude of the critical current, but also the number of modes and their transmission. Here, we measured the CPR of many individual InAs nanowire Josephson junctions, one junction at a time. Both the amplitude and shape of the CPR varied between junctions, with small critical currents and skewed CPRs indicating few-mode junctions with high transmissions. In a gate-tunablemore » junction, we found that the CPR varied with gate voltage: near the onset of supercurrent, we observed behaviour consistent with resonant tunnelling through a single, highly transmitting mode. The gate dependence is consistent with modelled subband structure that includes an effective tunnelling barrier due to an abrupt change in the Fermi level at the boundary of the gate-tuned region. These measurements of skewed, tunable, few-mode CPRs are promising both for applications that require anharmonic junctions and for Majorana readout proposals.« less
Wang, Lingfei; Ma, He; Chang, Lei; Ma, Chun; Yuan, Guoliang; Wang, Junling; Wu, Tom
2017-01-01
As potential photovoltaic materials, transition-metal oxides such as BiFeO 3 (BFO) are capable of absorbing a substantial portion of solar light and incorporating ferroic orders into solar cells with enhanced performance. But the photovoltaic application of BFO has been hindered by low energy-conversion efficiency due to poor carrier transport and collection. In this work, a new approach of utilizing BFO as a light-absorbing sensitizer is developed to interface with charge-transporting TiO 2 nanoparticles. This mesoporous all-oxide architecture, similar to that of dye-sensitized solar cells, can effectively facilitate the extraction of photocarriers. Under the standard AM1.5 (100 mW cm -2 ) irradiation, the optimized cell shows an open-circuit voltage of 0.67 V, which can be enhanced to 1.0 V by tailoring the bias history. A fill factor of 55% is achieved, which is much higher than those in previous reports on BFO-based photovoltaic devices. The results provide here a new viable approach toward developing highly tunable and stable photovoltaic devices based on ferroelectric transition-metal oxides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Hua-Pin
2014-01-01
This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs), two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design.
2014-01-01
This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs), two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design. PMID:24982963
High-Performance Organic Vertical Thin Film Transistor Using Graphene as a Tunable Contact.
Liu, Yuan; Zhou, Hailong; Weiss, Nathan O; Huang, Yu; Duan, Xiangfeng
2015-11-24
Here we present a general strategy for the fabrication of high-performance organic vertical thin film transistors (OVTFTs) based on the heterostructure of graphene and different organic semiconductor thin films. Utilizing the unique tunable work function of graphene, we show that the vertical carrier transport across the graphene-organic semiconductor junction can be effectively modulated to achieve an ON/OFF ratio greater than 10(3). Importantly, with the OVTFT design, the channel length is determined by the organic thin film thickness rather than by lithographic resolution. It can thus readily enable transistors with ultrashort channel lengths (<200 nm) to afford a delivering current greatly exceeding that of conventional planar TFTs, thus enabling a respectable operation frequency (up to 0.4 MHz) while using low-mobility organic semiconductors and low-resolution lithography. With this vertical device architecture, the entire organic channel is sandwiched and naturally protected between the source and drain electrodes, which function as the self-passivation layer to ensure stable operation of both p- and n-type OVTFTs in ambient conditions and enable complementary circuits with voltage gain. The creation of high-performance and highly robust OVTFTs can open up exciting opportunities in large-area organic macroelectronics.
Tunable Schottky barrier and high responsivity in graphene/Si-nanotip optoelectronic device
NASA Astrophysics Data System (ADS)
Di Bartolomeo, Antonio; Giubileo, Filippo; Luongo, Giuseppe; Iemmo, Laura; Martucciello, Nadia; Niu, Gang; Fraschke, Mirko; Skibitzki, Oliver; Schroeder, Thomas; Lupina, Grzegorz
2017-03-01
We demonstrate tunable Schottky barrier height and record photo-responsivity in a new-concept device made of a single-layer CVD graphene transferred onto a matrix of nanotips patterned on n-type Si wafer. The original layout, where nano-sized graphene/Si heterojunctions alternate to graphene areas exposed to the electric field of the Si substrate, which acts both as diode cathode and transistor gate, results in a two-terminal barristor with single-bias control of the Schottky barrier. The nanotip patterning favors light absorption, and the enhancement of the electric field at the tip apex improves photo-charge separation and enables internal gain by impact ionization. These features render the device a photodetector with responsivity (3 {{A}} {{{W}}}-1 for white LED light at 3 {{mW}} {{{cm}}}-2 intensity) almost an order of magnitude higher than commercial photodiodes. We extensively characterize the voltage and the temperature dependence of the device parameters, and prove that the multi-junction approach does not add extra-inhomogeneity to the Schottky barrier height distribution. We also introduce a new phenomenological graphene/semiconductor diode equation, which well describes the experimental I-V characteristics both in forward and reverse bias.
Mechanically tunable terahertz graphene plasmonics using soft metasurface
NASA Astrophysics Data System (ADS)
Wang, Li; Liu, Xin; Zang, Jianfeng
2016-12-01
This letter presents a new approach to continuously tune the resonances of graphene plasmons in terahertz soft metasurface. The continuous tunability of plasmon resonance is either unachievable in conventional plasmonic materials like noble metals or requires gate voltage regulation in graphene. Here we investigate a simplest form of terahertz metasurface, graphene nanoribbon arrays (GNRAs), and demonstrate the graphene plasmon resonance modes can be tailored by mechanical deformation of the elastomeric substrate using finite element method (FEM). By integrating the electric doping with substrate deformation, we have managed to tune the resonance wavelength from 13.7 to 50.6 μm. The 36.9 μm tuning range is nearly doubled compared with that by electric doping regulation only. Moreover, we observe the plasmon coupling effect in GNRAs on waved substrate and its evolution with substrate curvature. A new decoupling mechanism enabled by the out-of-plane separation of the adjacent ribbons is revealed. The out-of-plane setup of plasmonic components extends the fabrication of plasmonic devices into three-dimensional space, which simultaneously increases the nanoribbon density and decreases the coupling strength. Our findings provide an additional degree of freedom to design reconfigurable metasurfaces and metadevices.
Limits to Sensitivity in Laser Enhanced Ionization.
ERIC Educational Resources Information Center
Travis, J. C.
1982-01-01
Laser enhanced ionization (LEI) occurs when a tunable dye laser is used to excite a specific atomic population in a flame. Explores the origin of LEI's high sensitivity and identifies possible avenues to higher sensitivity by describing instrument used and experimental procedures and discussing ion formation/detection. (Author/JN)
Schmidt, Elliot; Shi, Sha; Ruden, P Paul; Frisbie, C Daniel
2016-06-15
Although ionic liquids (ILs) have been used extensively in recent years as a high-capacitance "dielectric" in electric double layer transistors, the dynamics of the double layer formation have remained relatively unexplored. Better understanding of the dynamics and relaxation processes involved in electric double layer formation will guide device optimization, particularly with regard to switching speed. In this paper, we explore the dynamical characteristics of an IL in a metal/ionic liquid/metal (M/IL/M) capacitor. In particular, we examine a Au/IL/Au structure where the IL is 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate. The experiments consist of frequency-dependent impedance measurements and time-dependent current vs voltage measurements for applied linear voltage ramps and abrupt voltage steps. The parameters of an equivalent circuit model are determined by fits to the impedance vs frequency data and subsequently verified by calculating the current vs voltage characteristics for the applied potential profiles. The data analysis indicates that the dynamics of the structure are characterized by a wide distribution of relaxation times spanning the range of less than microseconds to longer than seconds. Possible causes for these time scales are discussed.
NASA Technical Reports Server (NTRS)
Taminger, Karen M.; Hafley, Robert A.; Domack, Marcia S.
2006-01-01
The layer-additive nature of the electron beam freeform fabrication (EBF3) process results in a tortuous thermal path producing complex microstructures including: small homogeneous equiaxed grains; dendritic growth contained within larger grains; and/or pervasive dendritic formation in the interpass regions of the deposits. Several process control variables contribute to the formation of these different microstructures, including translation speed, wire feed rate, beam current and accelerating voltage. In electron beam processing, higher accelerating voltages embed the energy deeper below the surface of the substrate. Two EBF3 systems have been established at NASA Langley, one with a low-voltage (10-30kV) and the other a high-voltage (30-60 kV) electron beam gun. Aluminum alloy 2219 was processed over a range of different variables to explore the design space and correlate the resultant microstructures with the processing parameters. This report is specifically exploring the impact of accelerating voltage. Of particular interest is correlating energy to the resultant material characteristics to determine the potential of achieving microstructural control through precise management of the heat flux and cooling rates during deposition.
Investigations of 2.9-GHz Resonant Microwave-Sensitive Ag/MgO/Ge/Ag Tunneling Diodes
NASA Astrophysics Data System (ADS)
Qasrawi, A. F.; Khanfar, H. K.
2013-12-01
In this work, a resonant microwave-sensitive tunneling diode has been designed and investigated. The device, which is composed of a magnesium oxide (MgO) layer on an amorphous germanium (Ge) thin film, was characterized by means of temperature-dependent current ( I)-voltage ( V), room-temperature differential resistance ( R)-voltage, and capacitance ( C)-voltage characteristics. The device resonating signal was also tested and evaluated at 2.9 GHz. The I- V curves reflected weak temperature dependence and a wide tunneling region with peak-to-valley current ratio of ˜1.1. The negative differential resistance region shifts toward lower biasing voltages as temperature increases. The true operational limit of the device was determined as 350 K. A novel response of the measured R- V and C- V to the incident alternating-current (ac) signal was observed at 300 K. Particularly, the response to a 100-MHz signal power ranging from the standard Bluetooth limit to the maximum output power of third-generation mobile phones reflects a wide range of tunability with discrete switching property at particular power limits. In addition, when the tunnel device was implanted as an amplifier for a 2.90-GHz resonating signal of the power of wireless local-area network (LAN) levels, signal gain of 80% with signal quality factor of 4.6 × 104 was registered. These remarkable properties make devices based on MgO-Ge interfaces suitable as electronic circuit elements for microwave applications, bias- and time-dependent electronic switches, and central processing unit (CPU) clocks.
NASA Astrophysics Data System (ADS)
Shrestha, Niraj M.; Li, Yiming; Chang, E. Y.
2016-07-01
Normally-off AlGaN/GaN high electron mobility transistors (HEMTs) are indispensable devices for power electronics as they can greatly simplify circuit designs in a cost-effective way. In this work, the electrical characteristics of p-type InAlN gate normally-off AlGaN/GaN HEMTs with a step buffer layer of Al0.25Ga0.75N/Al0.1Ga0.9N is studied numerically. Our device simulation shows that a p-InAlN gate with a step buffer layer allows the transistor to possess normally-off behavior with high drain current and high breakdown voltage simultaneously. The gate modulation by the p-InAlN gate and the induced holes appearing beneath the gate at the GaN/Al0.25Ga0.75N interface is because a hole appearing in the p-InAlN layer can effectively vary the threshold voltage positively. The estimated threshold voltage of the normally-off HEMTs explored is 2.5 V at a drain bias of 25 V, which is 220% higher than the conventional p-AlGaN normally-off AlGaN/GaN gate injection transistor (GIT). Concurrently, the maximum current density of the explored HEMT at a drain bias of 10 V slightly decreases by about 7% (from 240 to 223 mA mm-1). At a drain bias of 15 V, the current density reached 263 mA mm-1. The explored structure is promising owing to tunable positive threshold voltage and the maintenance of similar current density; notably, its breakdown voltage significantly increases by 36% (from 800 V, GIT, to 1086 V). The engineering findings of this study indicate that novel p-InAlN for both the gate and the step buffer layer can feature a high threshold voltage, large current density and high operating voltage for advanced AlGaN/GaN HEMT devices.
NASA Astrophysics Data System (ADS)
Wang, Lin; Chen, Xiaoshuang; Hu, Yibin; Wang, Shao-Wei; Lu, Wei
2015-04-01
Plasma waves in graphene field-effect transistors (FETs) and nano-patterned graphene sheets have emerged as very promising candidates for potential terahertz and infrared applications in myriad areas including remote sensing, biomedical science, military, and many other fields with their electrical tunability and strong interaction with light. In this work, we study the excitations and propagation properties of plasma waves in nanometric graphene FETs down to the scaling limit. Due to the quantum-capacitance effect, the plasma wave exhibits strong correlation with the distribution of density of states (DOS). It is indicated that the electrically tunable plasma resonance has a power-dependent V0.8TG relation on the gate voltage, which originates from the linear dependence of density of states (DOS) on the energy in pristine graphene, in striking difference to those dominated by classical capacitance with only V0.5TG dependence. The results of different transistor sizes indicate the potential application of nanometric graphene FETs in highly-efficient electro-optic modulation or detection of terahertz or infrared radiation. In addition, we highlight the perspectives of plasma resonance excitation in probing the many-body interaction and quantum matter state in strong correlation electron systems. This study reveals the key feature of plasma waves in decorated/nanometric graphene FETs, and paves the way to tailor plasma band-engineering and expand its application in both terahertz and mid-infrared regions.Plasma waves in graphene field-effect transistors (FETs) and nano-patterned graphene sheets have emerged as very promising candidates for potential terahertz and infrared applications in myriad areas including remote sensing, biomedical science, military, and many other fields with their electrical tunability and strong interaction with light. In this work, we study the excitations and propagation properties of plasma waves in nanometric graphene FETs down to the scaling limit. Due to the quantum-capacitance effect, the plasma wave exhibits strong correlation with the distribution of density of states (DOS). It is indicated that the electrically tunable plasma resonance has a power-dependent V0.8TG relation on the gate voltage, which originates from the linear dependence of density of states (DOS) on the energy in pristine graphene, in striking difference to those dominated by classical capacitance with only V0.5TG dependence. The results of different transistor sizes indicate the potential application of nanometric graphene FETs in highly-efficient electro-optic modulation or detection of terahertz or infrared radiation. In addition, we highlight the perspectives of plasma resonance excitation in probing the many-body interaction and quantum matter state in strong correlation electron systems. This study reveals the key feature of plasma waves in decorated/nanometric graphene FETs, and paves the way to tailor plasma band-engineering and expand its application in both terahertz and mid-infrared regions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07689c
In situ conversion process systems utilizing wellbores in at least two regions of a formation
Vinegar, Harold J [Bellaire, TX; Hsu, Chia-Fu [Granada Hills, CA
2011-09-27
A system for heating a subsurface formation is described. The system includes a plurality of elongated heaters located in a plurality of openings in the formation. At least two of the heaters are substantially parallel to each other for at least a portion of the lengths of the heaters. At least two of the heaters have first end portions in a first region of the formation and second end portions in a second region of the formation. A source of time-varying current is configured to apply time-varying current to at least two of the heaters. The first end portions of at least two heaters are configured to have substantially the same voltage applied to them. The second portions of at least two heaters are configured to have substantially the same voltage applied to them.
Rodrigues, Roberta R; Cheema, Hammad; Delcamp, Jared H
2018-05-04
The development of high voltage solar cells is an attractive way to use sunlight for solar-to-fuel devices, multijunction solar-to-electric systems, and to power limited-area consumer electronics. By designing a low-oxidation-potential organic dye (RR9)/redox shuttle (Fe(bpy) 3 3+/2+ ) pair for dye-sensitized solar-cell (DSSC) devices, the highest single device photovoltage (1.42 V) has been realized for a DSSC not relying on doped TiO 2 . Additionally, Fe(bpy) 3 3+/2+ offers a robust, readily tunable ligand platform for redox potential tuning. RR9 can be regenerated with a low driving force (190 mV), and by utilizing the RR9/Fe(bpy) 3 3+/2+ redox shuttle pair in a subcell for a sequential series multijunction (SSM)-DSSC system, one of the highest known three subcell photovoltage was attained for any solar-cell technology (3.34 V, >1.0 V per subcell). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A SPAD-based 3D imager with in-pixel TDC for 145ps-accuracy ToF measurement
NASA Astrophysics Data System (ADS)
Vornicu, I.; Carmona-Galán, R.; Rodríguez-Vázquez, Á.
2015-03-01
The design and measurements of a CMOS 64 × 64 Single-Photon Avalanche-Diode (SPAD) array with in-pixel Time-to-Digital Converter (TDC) are presented. This paper thoroughly describes the imager at architectural and circuit level with particular emphasis on the characterization of the SPAD-detector ensemble. It is aimed to 2D imaging and 3D image reconstruction in low light environments. It has been fabricated in a standard 0.18μm CMOS process, i. e. without high voltage or low noise features. In these circumstances, we are facing a high number of dark counts and low photon detection efficiency. Several techniques have been applied to ensure proper functionality, namely: i) time-gated SPAD front-end with fast active-quenching/recharge circuit featuring tunable dead-time, ii) reverse start-stop scheme, iii) programmable time resolution of the TDC based on a novel pseudo-differential voltage controlled ring oscillator with fast start-up, iv) a global calibration scheme against temperature and process variation. Measurements results of individual SPAD-TDC ensemble jitter, array uniformity and time resolution programmability are also provided.
NASA Astrophysics Data System (ADS)
Lin, Yi-Hsin; Chen, Ming-Syuan; Lin, Wei-Chih; Tsou, Yu-Shih
2012-07-01
A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90° twisted cell (T-PNLC) is demonstrated. T-PNLC consists of three layers. Liquid crystal (LC) directors in the two layers near glass substrates are orthogonal to each other and those two layers modulate two eigen-polarizations of an incident light. As a result, two eigen-polarizations of an incident light experience the same phase shift. In the middle layer, LC directors are perpendicular to the glass substrate and contribute no phase shift. The phase shift of T-PNLC is electrically tunable and polarization-independent. T-PNLC does not require any bias voltage for operation. The phase shift is 0.28 π rad for the voltage of 30 Vrms. By measuring and analyzing the optical phase shift of T-PNLC at the oblique incidence of transverse magnetic wave, the pretilt angle of LC directors and the effective thickness of three layers are obtained and discussed. The potential applications are spatial light modulators, laser beam steering, and micro-lens arrays.
Bio-inspired voltage-dependent calcium channel blockers.
Yang, Tingting; He, Lin-Ling; Chen, Ming; Fang, Kun; Colecraft, Henry M
2013-01-01
Ca(2+) influx via voltage-dependent CaV1/CaV2 channels couples electrical signals to biological responses in excitable cells. CaV1/CaV2 channel blockers have broad biotechnological and therapeutic applications. Here we report a general method for developing novel genetically encoded calcium channel blockers inspired by Rem, a small G-protein that constitutively inhibits CaV1/CaV2 channels. We show that diverse cytosolic proteins (CaVβ, 14-3-3, calmodulin and CaMKII) that bind pore-forming α1-subunits can be converted into calcium channel blockers with tunable selectivity, kinetics and potency, simply by anchoring them to the plasma membrane. We term this method 'channel inactivation induced by membrane-tethering of an associated protein' (ChIMP). ChIMP is potentially extendable to small-molecule drug discovery, as engineering FK506-binding protein into intracellular sites within CaV1.2-α1C permits heterodimerization-initiated channel inhibition with rapamycin. The results reveal a universal method for developing novel calcium channel blockers that may be extended to develop probes for a broad cohort of unrelated ion channels.
Enhanced mobility CsPbI 3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanehira, Erin M.; Marshall, Ashley R.; Christians, Jeffrey A.
Here, we developed lead halide perovskite quantum dot (QD) films with tuned surface chemistry based on A-site cation halide salt (AX) treatments. QD perovskites offer colloidal synthesis and processing using industrially friendly solvents, which decouples grain growth from film deposition, and at present produce larger open-circuit voltages (V OC's) than thin-film perovskites. CsPbI 3 QDs, with a tunable bandgap between 1.75 and 2.13 eV, are an ideal top cell candidate for all-perovskite multijunction solar cells because of their demonstrated small V OC deficit. We show that charge carrier mobility within perovskite QD films is dictated by the chemical conditions atmore » the QD-QD junctions. The AX treatments provide a method for tuning the coupling between perovskite QDs, which is exploited for improved charge transport for fabricating high-quality QD films and devices. The AX treatments presented here double the film mobility, enabling increased photocurrent, and lead to a record certified QD solar cell efficiency of 13.43%.« less
Laser-initiated explosive electron emission from flat germanium crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porshyn, V., E-mail: porshyn@uni-wuppertal.de; Mingels, S.; Lützenkirchen-Hecht, D.
2016-07-28
Flat Sb-doped germanium (100) crystals were investigated in the triode configuration under pulsed tunable laser illumination (pulse duration t{sub laser} = 3.5 ns and photon energy hν = 0.54–5.90 eV) and under DC voltages <10{sup 4} V. Large bunch charges up to ∼1 μC were extracted from the cathodes for laser pulses >1 MW/cm{sup 2} corresponding to a high quantum efficiency up to 3.3% and cathode currents up to 417 A. This laser-induced explosive electron emission (EEE) from Ge was characterized by its voltage-, laser power- and hν-sensitivity. The analysis of the macroscopic surface damage caused by the EEE is included as well. Moreover, we have carried out firstmore » direct measurements of electron energy distributions produced during the EEE from the Ge samples. The measured electron spectra hint for electron excitations to the vacuum level of the bulk and emission from the plasma plume with an average kinetic energy of ∼0.8 eV.« less
Enhanced mobility CsPbI 3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells
Sanehira, Erin M.; Marshall, Ashley R.; Christians, Jeffrey A.; ...
2017-10-27
Here, we developed lead halide perovskite quantum dot (QD) films with tuned surface chemistry based on A-site cation halide salt (AX) treatments. QD perovskites offer colloidal synthesis and processing using industrially friendly solvents, which decouples grain growth from film deposition, and at present produce larger open-circuit voltages (V OC's) than thin-film perovskites. CsPbI 3 QDs, with a tunable bandgap between 1.75 and 2.13 eV, are an ideal top cell candidate for all-perovskite multijunction solar cells because of their demonstrated small V OC deficit. We show that charge carrier mobility within perovskite QD films is dictated by the chemical conditions atmore » the QD-QD junctions. The AX treatments provide a method for tuning the coupling between perovskite QDs, which is exploited for improved charge transport for fabricating high-quality QD films and devices. The AX treatments presented here double the film mobility, enabling increased photocurrent, and lead to a record certified QD solar cell efficiency of 13.43%.« less
Curved Piezoelectric Actuators for Stretching Optical Fibers
NASA Technical Reports Server (NTRS)
Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.
2008-01-01
Assemblies containing curved piezoceramic fiber composite actuators have been invented as means of stretching optical fibers by amounts that depend on applied drive voltages. Piezoceramic fiber composite actuators are conventionally manufactured as sheets or ribbons that are flat and flexible, but can be made curved to obtain load-carrying ability and displacement greater than those obtainable from the flat versions. In the primary embodiment of this invention, piezoceramic fibers are oriented parallel to the direction of longitudinal displacement of the actuators so that application of drive voltage causes the actuator to flatten, producing maximum motion. Actuator motion can be transmitted to the optical fiber by use of hinges and clamp blocks. In the original application of this invention, the optical fiber contains a Bragg grating and the purpose of the controlled stretching of the fiber is to tune the grating as part of a small, lightweight, mode-hop-free, rapidly tunable laser for demodulating strain in Bragg-grating strain-measurement optical fibers attached to structures. The invention could also be used to apply controllable tensile force or displacement to an object other than an optical fiber.
Area-tunable micromirror based on electrowetting actuation of liquid-metal droplets
NASA Astrophysics Data System (ADS)
Wan, Zhiliang; Zeng, Hongjun; Feinerman, Alan
2006-11-01
The authors report a micromirror device actuated by electrowetting effect. The micromirror surface is formed by a liquid-metal droplet jetted on a substrate and then topped with a parylene/Teflon coated indium tin oxide glass slide. The droplet is deformed by a voltage applied across the parylene/Teflon film. The radius of micromirror is tuned from 13μm (0V) to 88μm (90V), and the normalized area increases from 0.2 to 0.94 accordingly. The switching time ranges from 1ms for a 350μm diameter droplet to 0.2ms for a 50μm one. A 4×1 micromirror array is demonstrated and switched simultaneously.
Couderc, Vincent; Crunteanu, Aurelian; Fabert, Marc; Doutre, Florent; El Bassri, Farid; Pagnoux, Dominique; Jalocha, Alain
2012-02-27
We present a novel Q-switched laser source using a micro-optical-electromechanical mirror (MOEM) designed for short pulse emission. It is based on a hybrid configuration including a passively Q-switched microchip laser coupled to a fiber cavity closed by a cantilever type MOEM acting as an active modulator. This specially designed mirror with a single reflecting gold membrane is switched by low bias voltage ~50 V (peak to peak). This device emits pulses at tunable repetition rates up to 1.6 kHz, with ~564 ps duration and 3.4 kW peak power, which constitutes the shortest pulse duration ever reported with MOEMs based pulsed lasers.
NASA Astrophysics Data System (ADS)
Mizuno, M.; Hirata, A.; Kawase, K.; Otani, C.; Nagatsuma, T.
2004-08-01
Non-thermal effects of millimeter wave (MMW) on Pheochromocytoma (PC12) were studied by potential measurement with a voltage sensitive dye (DiBAC4(3)). Cells were irradiated at fixed frequencies of 30, 40, 60, 76GHz as well as sweeping frequency between 10 and 100 GHz by an MMW generator based on a uni-traveling-carrier photodiode (UTC-PD), the most widely tunable MMW source. However there were no significant changes in membrane potential between MMW-irradiated and control cells. The results suggest that MMW irradiation in the range from 10 to 100GHz appears to be safe for ordinary PC12 cells under non-thermal conditions.
Temperature and current coefficients of lasing wavelength in tunable diode laser spectroscopy.
Fukuda, M; Mishima, T; Nakayama, N; Masuda, T
2010-08-01
The factors determining temperature and current coefficients of lasing wavelength are investigated and discussed under monitoring CO(2)-gas absorption spectra. The diffusion rate of Joule heating at the active layer to the surrounding region is observed by monitoring the change in the junction voltage, which is a function of temperature and the wavelength (frequency) deviation under sinusoidal current modulation. Based on the experimental results, the time interval of monitoring the wavelength after changing the ambient temperature or injected current (scanning rate) has to be constant at least to eliminate the monitoring error induced by the deviation of lasing wavelength, though the temperature and current coefficients of lasing wavelength differ with the rate.
SNR characteristics of 850-nm OEIC receiver with a silicon avalanche photodetector.
Youn, Jin-Sung; Lee, Myung-Jae; Park, Kang-Yeob; Rücker, Holger; Choi, Woo-Young
2014-01-13
We investigate signal-to-noise ratio (SNR) characteristics of an 850-nm optoelectronic integrated circuit (OEIC) receiver fabricated with standard 0.25-µm SiGe bipolar complementary metal-oxide-semiconductor (BiCMOS) technology. The OEIC receiver is composed of a Si avalanche photodetector (APD) and BiCMOS analog circuits including a transimpedance amplifier with DC-balanced buffer, a tunable equalizer, a limiting amplifier, and an output buffer with 50-Ω loads. We measure APD SNR characteristics dependence on the reverse bias voltage as well as BiCMOS circuit noise characteristics. From these, we determine the SNR characteristics of the entire OEIC receiver, and finally, the results are verified with bit-error rate measurement.
An optimized strain demodulation method for PZT driven fiber Fabry-Perot tunable filter
NASA Astrophysics Data System (ADS)
Sheng, Wenjuan; Peng, G. D.; Liu, Yang; Yang, Ning
2015-08-01
An optimized strain-demodulation-method based on piezo-electrical transducer (PZT) driven fiber Fabry-Perot (FFP) filter is proposed and experimentally demonstrated. Using a parallel processing mode to drive the PZT continuously, the hysteresis effect is eliminated, and the system demodulation rate is increased. Furthermore, an AC-DC compensation method is developed to address the intrinsic nonlinear relationship between the displacement and voltage of PZT. The experimental results show that the actual demodulation rate is improved from 15 Hz to 30 Hz, the random error of the strain measurement is decreased by 95%, and the deviation between the test values after compensation and the theoretical values is less than 1 pm/με.
Two-color detection with charge sensitive infrared phototransistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sunmi, E-mail: kimsunmi@iis.u-tokyo.ac.jp; Kajihara, Yusuke; Komiyama, Susumu
2015-11-02
Highly sensitive two-color detection is demonstrated at wavelengths of 9 μm and 14.5 μm by using a charge sensitive infrared phototransistor fabricated in a triple GaAs/AlGaAs quantum well (QW) crystal. Two differently thick QWs (7 nm- and 9 nm-thicknesses) serve as photosensitive floating gates for the respective wavelengths via intersubband excitation: The excitation in the QWs is sensed by a third QW, which works as a conducting source-drain channel in the photosensitive transistor. The two spectral bands of detection are shown to be controlled by front-gate biasing, providing a hint for implementing voltage tunable ultra-highly sensitive detectors.
Demonstration of a Nano-Enabled Space Power System
NASA Technical Reports Server (NTRS)
Raffaelle, Ryne; Hunter, Roger C.; Baker, Christopher
2017-01-01
The Nano-Enabled Space Power System will demonstrate power systems with nanomaterial-enhanced components as are placement for CubeSat power generation, transmission, and storage. Successful flights of these nano-power systems will accelerate the use of this revolutionary technology in the aerospace industry. The use of nano materials in solar cells, wire harnesses,and lithium ion batteries can increase the device performance without significantly altering the devices physical dimensions or the devices operating range (temperature,voltage, current). In many cases, the use of nanomaterials widens the viable range of operating conditions, such as increased depth of discharge of lithium ion batteries, tunable bandgaps in solar cells, and increased flexure tolerance of wire harnesses.
Near-field radiative heat transfer between graphene-covered hyperbolic metamaterials
NASA Astrophysics Data System (ADS)
Hong, Xiao-Juan; Li, Jian-Wen; Wang, Tong-Biao; Zhang, De-Jian; Liu, Wen-Xing; Liao, Qing-Hua; Yu, Tian-Bao; Liu, Nian-Hua
2018-04-01
We propose the use of graphene-covered silicon carbide (SiC) nanowire arrays (NWAs) for theoretical studies of near-field radiative heat transfer. The SiC NWAs exhibit a hyperbolic characteristic at an appropriately selected filling-volume fraction. The surface plasmon supported by graphene and the hyperbolic modes supported by SiC NWAs significantly affect radiative heat transfer. The heat-transfer coefficient (HTC) between the proposed structures is larger than that between SiC NWAs. We also find that the chemical potential of graphene plays an important role in modulating the HTC. The tunability of chemical potential through gate voltage enables flexible control of heat transfer using the graphene-covered SiC NWAs.
NASA Astrophysics Data System (ADS)
Laughlin, Brian James
Ferroelectric thin film dielectrics have a non-linear DC bias dependent permittivity and can be used as the dielectric between metal electrodes to make tunable Metal-Insulator-Metal (MIM) capacitors. Varactors can be used to change the resonance frequency of a circuit allowing high speed frequency switching intra- and inter-band. 2-D geometric arrays of circuitry, where resonant frequency is independently controlled by tunable elements in each section of the array, allow electromagnetic radiation to be focused and the wave front spatial trajectory controlled. BST thin films varactors allow large DC fields to be applied with modest voltages providing large tunabilities. If ferroelectric thin film based devices are to complement or supplant semiconductor varactors as tunable elements then devices must be synthesized using a low cost processing techniques. The Film on Foil process methodology for depositing BST thin films on copper foil substrates was used to create BST/Cu specimens. Sputtering conditions were determined via BST deposition on platinized silicon. Sputtered BST thin films were synthesized on Cu foil substrates and densified using high T, controlled pO2 anneals. XRD showed the absence of Cu2O in as-deposited, post crystallization annealed, and post "re-ox" annealed state. Data showed a polycrystalline BST microstructure with a 55--80 nm grain size and no copper oxidation. HRTEM imaging qualitatively showed evidence of an abrupt BST/Cu interface free from oxide formation. Dielectric properties of Cu/BST/Pt MIM devices were measured as a function of DC bias, frequency, and temperature. A permittivity of 725 was observed with tunability >3:1 while zero bias tan delta of 0.02 saturating to tan delta < 0.003 at high DC bias. No significant frequency dispersion was observed over five decades of frequency. Temperature dependent measurements revealed a broad ferroelectric transition with a maximum at -32°C which sustains a large tunability over -150°C to 150°C. Sputtered BST thin films on copper foils show comparable dielectric properties to CVD deposited films on platinized silicon substrates proving sputtered BST/Cu specimens can reproduce excellent properties using a more cost-effective processing approach. A concept for reducing the temperature dependence was explored. Stacks of multiple compositions of BST thin films were considered as an extension of core-shell structures to a thin film format. Temperature profiles of BST/Cu films were modeled and mathematically combined in simulations of multi-composition film stacks. Simulations showed singular composition BST thin films could meet X7R specifications if a film has a 292 K < TC < 330 K. Simulations of series connected film stacks show only modest temperature profile broadening. Parallel connected dual composition film stacks showed a 75°C temperature range with essentially flat capacitance by simulating compositions that create a DeltaTC = 283°C. Maximum permittivity and temperature profile shape independent of film thickness or composition were assumed for simulations. BST/Cu thickness and compositions series were fabricated and dielectric properties characterized. These studies showed films could be grown from 300 nm and approaching 1 mum without changing the dielectric temperature response. In studying BST composition, an increasing TC shift was observed when increasing Ba mole fraction in BST thin films while tunability >3:1 was maintained. These results provide a route for creating temperature stable capacitors using a BST/Cu embodiment. An effort to reduce surface roughness of copper foil substrates adversely impacted BST film integrity by impairing adhesion. XPS analysis of high surface roughness commercially obtained Cu foils revealed a surface treatment of Zn-Cu-O that was not present on smooth Cu, thus an investigation of surface chemistry was conducted. Sessile drop experiments were performed to characterize Cu-BST adhesion and the effects of metallic Zn and ZnO in this system. The study revealed the work of adhesion of Cu-BST, WCu-BSTa ≈ 0.60 J m-2, an intermediate value relative to noble metals commonly used as electrodes and substrates for electroceramics. Examination of metallic Zn-BST adhesion revealed a dramatic decrease of WZn-BSTa ≈ 0.13 J m-2, while increasing the content of Zn in metallic (Cux,Zn1-x) alloys monotonically reduced WCux,Zn1-x -BSTa . Conversely, a Cu-ZnO interface showed a large work of adhesion, WCu-ZnOa = 2.0 J m-2. These results indicate that a ZnO interlayer between the substrate Cu and the BST thin film provides adequate adhesion for robust films on flexible copper foil substrates. Additionally, this study provided characterization of adhesion for Zn-Al2O3 and Zn-BST; data that does not exist in the open literature. A process has been developed for preparing ultra-smooth copper foils by evaporation and subsequent peel-off of copper metal layers from glass slides. These 15 mum thick substrates exhibited roughness values between 1 and 2 nm RMS and 9 nm RMS over 25 mum2 and 100 mum2 analysis areas, respectively. The deposition and crystallization of BST layers on these ultra-smooth foils is demonstrated. The fully processed dielectric layers exhibited field tunability >5:1, and could withstand fields >750 kV cm-1. High field loss tangents below 0.007 were observed, making these materials excellent candidates for microwave devices. Finally, a process of lamination and contact lithography was used to demonstrate patterning of micron-scale features suitable for microwave circuit element designs.
Photoresponse of polyaniline-functionalized graphene quantum dots
NASA Astrophysics Data System (ADS)
Lai, Sin Ki; Luk, Chi Man; Tang, Libin; Teng, Kar Seng; Lau, Shu Ping
2015-03-01
Polyaniline-functionalized graphene quantum dots (PANI-GQD) and pristine graphene quantum dots (GQDs) were utilized for optoelectronic devices. The PANI-GQD based photodetector exhibited higher responsivity which is about an order of magnitude at 405 nm and 7 folds at 532 nm as compared to GQD-based photodetectors. The improved photoresponse is attributed to the enhanced interconnection of GQD by island-like polymer matrices, which facilitate carrier transport within the polymer matrices. The optically tunable current-voltage (I-V) hysteresis of PANI-GQD was also demonstrated. The hysteresis magnifies progressively with light intensity at a scan range of +/-1 V. Both GQD and PANI-GQD devices change from positive to negative photocurrent when the bias reaches 4 V. Photogenerated carriers are excited to the trapping states in GQDs with increased bias. The trapped charges interact with charges injected from the electrodes which results in a net decrease of free charge carriers and a negative photocurrent. The photocurrent switching phenomenon in GQD and PANI-GQD devices may open up novel applications in optoelectronics.Polyaniline-functionalized graphene quantum dots (PANI-GQD) and pristine graphene quantum dots (GQDs) were utilized for optoelectronic devices. The PANI-GQD based photodetector exhibited higher responsivity which is about an order of magnitude at 405 nm and 7 folds at 532 nm as compared to GQD-based photodetectors. The improved photoresponse is attributed to the enhanced interconnection of GQD by island-like polymer matrices, which facilitate carrier transport within the polymer matrices. The optically tunable current-voltage (I-V) hysteresis of PANI-GQD was also demonstrated. The hysteresis magnifies progressively with light intensity at a scan range of +/-1 V. Both GQD and PANI-GQD devices change from positive to negative photocurrent when the bias reaches 4 V. Photogenerated carriers are excited to the trapping states in GQDs with increased bias. The trapped charges interact with charges injected from the electrodes which results in a net decrease of free charge carriers and a negative photocurrent. The photocurrent switching phenomenon in GQD and PANI-GQD devices may open up novel applications in optoelectronics. Electronic supplementary information (ESI) available: Raman spectrum of PANI-GQD, TGA, Red-shift of PL peak with the amounts of aniline, excitation dependent PL of PANI-GQD, area of hysteretic loop for different voltage scan ranges, photocurrent at 1 V under prolonged illumination. See DOI: 10.1039/c4nr07565j
NASA Astrophysics Data System (ADS)
Asimakoulas, L.; Karim, M. L.; Dostal, L.; Krcma, F.; Graham, W. G.; Field, T. A.
2016-09-01
Plasmas formed by 1 ms pulses of between 180 and 300 V applied to sharp pin-like electrodes immersed in saline solution have been imaged with a Photron SA-X2 fast framing camera and an Andor iStar 510 ICCD camera. Stainless steel, Tungsten and Gold electrodes were investigated with tip diameters of 30 μm, 1 μm and < 1 μ m respectively. As previously observed, a vapour layer forms around the electrode prior to plasma ignition. For gold and stainless steel lower voltages were required to minimize electrode damage. Preliminary anlaysis indicates at lower voltages for all tips the fast framing results show that light emission is normally centred on a single small volume, which appears to move about, but remains close to the tip. In the case of Tungsten with higher voltages or longer pulses the tip of the needle can heat up to incandescent temperatures. At higher voltages shock wave fronts appear to be observed as the vapour layer collapses at the end of the voltage pulse. Backlighting and no lighting to observe bubble/vapour layer formation and emission due to plasma formation were employed. Sometimes at higher voltages a thicker vapour layer engulfs the tip and no plasma emission/current is observed.
Gate Tuning of Förster Resonance Energy Transfer in a Graphene - Quantum Dot FET Photo-Detector.
Li, Ruifeng; Schneider, Lorenz Maximilian; Heimbrodt, Wolfram; Wu, Huizhen; Koch, Martin; Rahimi-Iman, Arash
2016-06-20
Graphene photo-detectors functionalized by colloidal quantum dots (cQDs) have been demonstrated to show effective photo-detection. Although the transfer of charge carriers or energy from the cQDs to graphene is not sufficiently understood, it is clear that the mechanism and efficiency of the transfer depends on the morphology of the interface between cQDs and graphene, which is determined by the shell of the cQDs in combination with its ligands. Here, we present a study of a graphene field-effect transistor (FET), which is functionalized by long-ligand CdSe/ZnS core/shell cQDs. Time-resolved photo-luminescence from the cQDs as a function of the applied gate voltage has been investigated in order to probe transfer dynamics in this system. Thereby, a clear modification of the photo-luminescence lifetime has been observed, indicating a change of the decay channels. Furthermore, we provide responsivities under a Förster-like energy transfer model as a function of the gate voltage in support of our findings. The model shows that by applying a back-gate voltage to the photo-detector, the absorption can be tuned with respect to the photo-luminescence of the cQDs. This leads to a tunable energy transfer rate across the interface of the photo-detector, which offers an opportunity to optimize the photo-detection.
Realization of integral 3-dimensional image using fabricated tunable liquid lens array
NASA Astrophysics Data System (ADS)
Lee, Muyoung; Kim, Junoh; Kim, Cheol Joong; Lee, Jin Su; Won, Yong Hyub
2015-03-01
Electrowetting has been widely studied for various optical applications such as optical switch, sensor, prism, and display. In this study, vari-focal liquid lens array is developed using electrowetting principle to construct integral 3-dimensional imaging. The electrowetting principle that changes the surface tension by applying voltage has several advantages to realize active optical device such as fast response time, low electrical consumption, and no mechanical moving parts. Two immiscible liquids that are water and oil are used for forming lens. By applying a voltage to the water, the focal length of the lens could be tuned as changing contact angle of water. The fabricated electrowetting vari-focal liquid lens array has 1mm diameter spherical lens shape that has 1.6mm distance between each lens. The number of lenses on the panel is 23x23 and the focal length of the lens array is simultaneously tuned from -125 to 110 diopters depending on the applied voltage. The fabricated lens array is implemented to integral 3-dimensional imaging. A 3D object is reconstructed by fabricated liquid lens array with 23x23 elemental images that are generated by 3D max tools. When liquid lens array is tuned as convex state. From vari-focal liquid lens array implemented integral imaging system, we expect that depth enhanced integral imaging can be realized in the near future.
Dynamic Response in Nanoelectrowetting on a Dielectric.
Choudhuri, Jyoti Roy; Vanzo, Davide; Madden, Paul Anthony; Salanne, Mathieu; Bratko, Dusan; Luzar, Alenka
2016-09-27
Droplet spreading at an applied voltage underlies the function of tunable optical devices including adjustable lenses and matrix display elements. Faster response and the enhanced resolution motivate research toward miniaturization of these devices to nanoscale dimensions. The response of an aqueous nanodroplet to an applied field can differ significantly from macroscopic predictions. Understanding these differences requires characterization at the molecular level. We describe the equilibrium and nonequilibrium molecular dynamics simulations of nanosized aqueous droplets on a hydrophobic surface with the embedded concentric electrodes. Constant electrode potential is enforced by a rigorous account of the metal polarization. We demonstrate that the reduction of the equilibrium contact angle is commensurate to, and adjusts reversibly with, the voltage change. For a droplet with O(10) nm diameter, a typical response time to the imposition of the field is of O(10(2)) ps. Drop relaxation is about twice as fast when the field is switched off. The friction coefficient obtained from the rate of the drop relaxation on the nonuniform surface, decreases when the droplet approaches equilibrium from either direction, that is, by spreading or receding. The strong dependence of the friction on the surface hydrophilicity points to the dominance of the liquid-surface friction at the drop's perimeter as described in the molecular kinetic theory. This approach enables correct predictions of trends in dynamic responses associated with varied voltage or substrate material.
NASA Astrophysics Data System (ADS)
Xie, Xingwang; Han, Xinjie; Long, Huabao; Dai, Wanwan; Xin, Zhaowei; Wei, Dong; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng
2018-02-01
In this paper, a new liquid-crystal microlens array (LCMLA) with patterned ring-electrode arrays (PREAs) is investigated, which has an ability to acquire multiple-mode two-dimensional images with better electrically tunable efficiency than common liquid-crystal devices. The new type of LCMLA can be used to overcome several remarkable disadvantage of conventional liquid-crystal microlens arrays switched and adjusted electrically by relatively complex mechanism. There are two layer electrodes in the LCMLA developed by us. The top electrode layer consists of PREAs with different featured diameter but the same center for each single cell, and the bottom is a plate electrode. When both electrode structures are driven independently by variable AC voltage signal, a gradient electric field distribution could be obtained, which can drive liquid-crystal molecules to reorient themselves along the gradient electric field shaped, so as to demonstrate a satisfactory refractive index distribution. The common experiments are carried out to validate the performances needed. As shown, the focal length of the LCMLA can be adjusted continuously according to the variable voltage signal applied. According to designing, the LCMLA will be integrated continuously with an image sensors to set up a camera with desired performances. The test results indicate that our camera based on the LCMLA can obtain distinct multiple-mode two-dimensional images under the condition of using relatively low driving signal voltage.
Rathi, Servin; Lee, Inyeal; Lim, Dongsuk; Wang, Jianwei; Ochiai, Yuichi; Aoki, Nobuyuki; Watanabe, Kenji; Taniguchi, Takashi; Lee, Gwan-Hyoung; Yu, Young-Jun; Kim, Philip; Kim, Gil-Ho
2015-08-12
Lateral and vertical two-dimensional heterostructure devices, in particular graphene-MoS2, have attracted profound interest as they offer additional functionalities over normal two-dimensional devices. Here, we have carried out electrical and optical characterization of graphene-MoS2 heterostructure. The few-layer MoS2 devices with metal electrode at one end and monolayer graphene electrode at the other end show nonlinearity in drain current with drain voltage sweep due to asymmetrical Schottky barrier height at the contacts and can be modulated with an external gate field. The doping effect of MoS2 on graphene was observed as double Dirac points in the transfer characteristics of the graphene field-effect transistor (FET) with a few-layer MoS2 overlapping the middle part of the channel, whereas the underlapping of graphene have negligible effect on MoS2 FET characteristics, which showed typical n-type behavior. The heterostructure also exhibits a strongest optical response for 520 nm wavelength, which decreases with higher wavelengths. Another distinct feature observed in the heterostructure is the peak in the photocurrent around zero gate voltage. This peak is distinguished from conventional MoS2 FETs, which show a continuous increase in photocurrent with back-gate voltage. These results offer significant insight and further enhance the understanding of the graphene-MoS2 heterostructure.
Tunable emergent heterostructures in a prototypical correlated metal
NASA Astrophysics Data System (ADS)
Fobes, D. M.; Zhang, S.; Lin, S.-Z.; Das, Pinaki; Ghimire, N. J.; Bauer, E. D.; Thompson, J. D.; Harriger, L. W.; Ehlers, G.; Podlesnyak, A.; Bewley, R. I.; Sazonov, A.; Hutanu, V.; Ronning, F.; Batista, C. D.; Janoschek, M.
2018-05-01
At the interface between two distinct materials, desirable properties, such as superconductivity, can be greatly enhanced1, or entirely new functionalities may emerge2. Similar to in artificially engineered heterostructures, clean functional interfaces alternatively exist in electronically textured bulk materials. Electronic textures emerge spontaneously due to competing atomic-scale interactions3, the control of which would enable a top-down approach for designing tunable intrinsic heterostructures. This is particularly attractive for correlated electron materials, where spontaneous heterostructures strongly affect the interplay between charge and spin degrees of freedom4. Here we report high-resolution neutron spectroscopy on the prototypical strongly correlated metal CeRhIn5, revealing competition between magnetic frustration and easy-axis anisotropy—a well-established mechanism for generating spontaneous superstructures5. Because the observed easy-axis anisotropy is field-induced and anomalously large, it can be controlled efficiently with small magnetic fields. The resulting field-controlled magnetic superstructure is closely tied to the formation of superconducting6 and electronic nematic textures7 in CeRhIn5, suggesting that in situ tunable heterostructures can be realized in correlated electron materials.
NASA Astrophysics Data System (ADS)
Zhang, Yijun; Liu, Ming; Peng, Bin; Zhou, Ziyao; Chen, Xing; Yang, Shu-Ming; Jiang, Zhuang-De; Zhang, Jie; Ren, Wei; Ye, Zuo-Guang
2016-01-01
Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe2O3 and superparamagnetic Fe3O4 with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe2O3 in a reducing atmosphere leads to the formation of the spinel Fe3O4 phase which displays a distinct ferrimagnetic anisotropy and the Verwey metal-insulator transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. The ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications.
Tunable emergent heterostructures in a prototypical correlated metal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fobes, D. M.; Zhang, S.; Lin, S. -Z.
We report at the interface between two distinct materials, desirable properties, such as superconductivity, can be greatly enhanced1, or entirely new functionalities may emerge. Similar to in artificially engineered heterostructures, clean functional interfaces alternatively exist in electronically textured bulk materials. Electronic textures emerge spontaneously due to competing atomic-scale interactions, the control of which would enable a top-down approach for designing tunable intrinsic heterostructures. This is particularly attractive for correlated electron materials, where spontaneous heterostructures strongly affect the interplay between charge and spin degrees of freedom. Here we report high-resolution neutron spectroscopy on the prototypical strongly correlated metal CeRhIn 5, revealingmore » competition between magnetic frustration and easy-axis anisotropy—a well-established mechanism for generating spontaneous superstructures. Because the observed easy-axis anisotropy is field-induced and anomalously large, it can be controlled efficiently with small magnetic fields. Finally, the resulting field-controlled magnetic superstructure is closely tied to the formation of superconducting and electronic nematic textures in CeRhIn 5, suggesting that in situ tunable heterostructures can be realized in correlated electron materials.« less
Manipulating waves by distilling frequencies: a tunable shunt-enabled rainbow trap
NASA Astrophysics Data System (ADS)
Cardella, Davide; Celli, Paolo; Gonella, Stefano
2016-08-01
In this work, we propose and test a strategy for tunable, broadband wave attenuation in electromechanical waveguides with shunted piezoelectric inclusions. Our strategy is built upon the vast pre-existing literature on vibration attenuation and bandgap generation in structures featuring periodic arrays of piezo patches, but distinguishes itself for several key features. First, we demystify the idea that periodicity is a requirement for wave attenuation and bandgap formation. We further embrace the idea of ‘organized disorder’ by tuning the circuits as to resonate at distinct neighboring frequencies. In doing so, we create a tunable ‘rainbow trap’ (Tsakmakidis et al 2007 Nature 450 397-401) capable of attenuating waves with broadband characteristics, by distilling (sequentially) seven frequencies from a traveling wavepacket. Finally, we devote considerable attention to the implications in terms of packet distortion of the spectral manipulation introduced by shunting. This work is also meant to serve as a didactic tool for those approaching the field of shunted piezoelectrics, and attempts to provide a different perspective, with abundant details, on how to successfully design an experimental setup involving resistive-inductive shunts.
Fully Tunable Silicon Nanowire Arrays Fabricated by Soft Nanoparticle Templating.
Rey, By Marcel; Elnathan, Roey; Ditcovski, Ran; Geisel, Karen; Zanini, Michele; Fernandez-Rodriguez, Miguel-Angel; Naik, Vikrant V; Frutiger, Andreas; Richtering, Walter; Ellenbogen, Tal; Voelcker, Nicolas H; Isa, Lucio
2016-01-13
We demonstrate a fabrication breakthrough to produce large-area arrays of vertically aligned silicon nanowires (VA-SiNWs) with full tunability of the geometry of the single nanowires and of the whole array, paving the way toward advanced programmable designs of nanowire platforms. At the core of our fabrication route, termed "Soft Nanoparticle Templating", is the conversion of gradually compressed self-assembled monolayers of soft nanoparticles (microgels) at a water-oil interface into customized lithographical masks to create VA-SiNW arrays by means of metal-assisted chemical etching (MACE). This combination of bottom-up and top-down techniques affords excellent control of nanowire etching site locations, enabling independent control of nanowire spacing, diameter and height in a single fabrication route. We demonstrate the fabrication of centimeter-scale two-dimensional gradient photonic crystals exhibiting continuously varying structural colors across the entire visible spectrum on a single silicon substrate, and the formation of tunable optical cavities supported by the VA-SiNWs, as unambiguously demonstrated through numerical simulations. Finally, Soft Nanoparticle Templating is combined with optical lithography to create hierarchical and programmable VA-SiNW patterns.
Tunable emergent heterostructures in a prototypical correlated metal
Fobes, D. M.; Zhang, S.; Lin, S. -Z.; ...
2018-03-26
We report at the interface between two distinct materials, desirable properties, such as superconductivity, can be greatly enhanced1, or entirely new functionalities may emerge. Similar to in artificially engineered heterostructures, clean functional interfaces alternatively exist in electronically textured bulk materials. Electronic textures emerge spontaneously due to competing atomic-scale interactions, the control of which would enable a top-down approach for designing tunable intrinsic heterostructures. This is particularly attractive for correlated electron materials, where spontaneous heterostructures strongly affect the interplay between charge and spin degrees of freedom. Here we report high-resolution neutron spectroscopy on the prototypical strongly correlated metal CeRhIn 5, revealingmore » competition between magnetic frustration and easy-axis anisotropy—a well-established mechanism for generating spontaneous superstructures. Because the observed easy-axis anisotropy is field-induced and anomalously large, it can be controlled efficiently with small magnetic fields. Finally, the resulting field-controlled magnetic superstructure is closely tied to the formation of superconducting and electronic nematic textures in CeRhIn 5, suggesting that in situ tunable heterostructures can be realized in correlated electron materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Bo; Li, Haiyang; East China Univ. of Science and Technology, Shanghai
We designed and synthesized the cyclodextrin (CD)-based hyper-crosslinked porous polymers (HCPPs) for selective CO 2 adsorption and storage. We also explored the effect of monomer size on micropore formation, and determined a feasible way to tailor the porosity of the materials during the hyper-crosslinking process.
Meng, Bo; Li, Haiyang; East China Univ. of Science and Technology, Shanghai; ...
2016-11-11
We designed and synthesized the cyclodextrin (CD)-based hyper-crosslinked porous polymers (HCPPs) for selective CO 2 adsorption and storage. We also explored the effect of monomer size on micropore formation, and determined a feasible way to tailor the porosity of the materials during the hyper-crosslinking process.
van Vugt, Lambert K; Piccione, Brian; Cho, Chang-Hee; Nukala, Pavan; Agarwal, Ritesh
2011-06-21
Strong coupling of light with excitons in direct bandgap semiconductors leads to the formation of composite photonic-electronic quasi-particles (polaritons), in which energy oscillates coherently between the photonic and excitonic states with the vacuum Rabi frequency. The light-matter coherence is maintained until the oscillator dephases or the photon escapes. Exciton-polariton formation has enabled the observation of Bose-Einstein condensation in the solid-state, low-threshold polariton lasing and is also useful for terahertz and slow-light applications. However, maintaining coherence for higher carrier concentration and temperature applications still requires increased coupling strengths. Here, we report on size-tunable, exceptionally high exciton-polariton coupling strengths characterized by a vacuum Rabi splitting of up to 200 meV as well as a reduction in group velocity, in surface-passivated, self-assembled semiconductor nanowire cavities. These experiments represent systematic investigations on light-matter coupling in one-dimensional optical nanocavities, demonstrating the ability to engineer light-matter coupling strengths at the nanoscale, even in non-quantum-confined systems, to values much higher than in bulk.
van Vugt, Lambert K.; Piccione, Brian; Cho, Chang-Hee; Nukala, Pavan; Agarwal, Ritesh
2011-01-01
Strong coupling of light with excitons in direct bandgap semiconductors leads to the formation of composite photonic-electronic quasi-particles (polaritons), in which energy oscillates coherently between the photonic and excitonic states with the vacuum Rabi frequency. The light-matter coherence is maintained until the oscillator dephases or the photon escapes. Exciton-polariton formation has enabled the observation of Bose-Einstein condensation in the solid-state, low-threshold polariton lasing and is also useful for terahertz and slow-light applications. However, maintaining coherence for higher carrier concentration and temperature applications still requires increased coupling strengths. Here, we report on size-tunable, exceptionally high exciton-polariton coupling strengths characterized by a vacuum Rabi splitting of up to 200 meV as well as a reduction in group velocity, in surface-passivated, self-assembled semiconductor nanowire cavities. These experiments represent systematic investigations on light-matter coupling in one-dimensional optical nanocavities, demonstrating the ability to engineer light-matter coupling strengths at the nanoscale, even in non-quantum-confined systems, to values much higher than in bulk. PMID:21628582
Silk scaffolds with tunable mechanical capability for cell differentiation
Bai, Shumeng; Han, Hongyan; Huang, Xiaowei; Xu, Weian; Kaplan, David L.; Zhu, Hesun; Lu, Qiang
2015-01-01
Bombyx mori silk fibroin is a promising biomaterial for tissue regeneration and is usually considered an “inert” material with respect to actively regulating cell differentiation due to few specific cell signaling peptide domains in the primary sequence and the generally stiffer mechanical properties due to crystalline content formed in processing. In the present study, silk fibroin porous 3D scaffolds with nanostructures and tunable stiffness were generated via a silk fibroin nanofiber-assisted lyophilization process. The silk fibroin nanofibers with high β-sheet content were added into the silk fibroin solutions to modulate the self-assembly, and to directly induce water-insoluble scaffold formation after lyophilization. Unlike previously reported silk fibroin scaffold formation processes, these new scaffolds had lower overall β-sheet content and softer mechanical properties for improved cell compatibility. The scaffold stiffness could be further tuned to match soft tissue mechanical properties, which resulted in different differentiation outcomes with rat bone marrow-derived mesenchymal stem cells towards myogenic and endothelial cells, respectively. Therefore, these silk fibroin scaffolds regulate cell differentiation outcomes due to their mechanical features. PMID:25858557
Brueckner, David; Roesti, David; Zuber, Ulrich; Sacher, Meik; Duncan, Derek; Krähenbühl, Stephan; Braissant, Olivier
2017-05-15
Tunable diode laser absorption spectroscopy (TDLAS) was evaluated on its potential to detect bacterial growth of contaminated media fill vials. The target was a replacement/ automation of the traditional visual media fill inspection. TDLAS was used to determine non-invasively O 2 and/or CO 2 changes in headspaces of such vials being induced by metabolically active microorganisms. Four different vial formats, 34 microorganisms (inoculation volume<10 cells) and two different media (TSB/FTM) were tested. Applying parallel CO 2 and O 2 headspace measurements all format-organism combinations were detected within <11 days reliably with reproducible results. False negatives were exclusively observed for samples that were intentionally breached with syringes of 0.3mm in diameter. Overall it was shown that TDLAS functionality for a replacement of the visual media fill inspection is given and that investing in further validation and implementation studies is valuable. Nevertheless, some small but vincible challenges remain to have this technology in practical use. Copyright © 2017 Elsevier B.V. All rights reserved.
Glass microfluidic devices with thin membrane voltage junctions for electrospray mass spectrometry.
Yue, Guihua Eileen; Roper, Michael G; Jeffery, Erin D; Easley, Christopher J; Balchunas, Catherine; Landers, James P; Ferrance, Jerome P
2005-06-01
In this study a novel glass membrane was prepared for conducting high voltage (HV) to solution in the channel of a microfabricated device for generation of liquid electrospray. Taylor cone formation and mass spectra obtained from this microdevice confirmed the utility of the glass membrane, but voltage conduction through the membrane could not be successfully explained based solely on the conductivity of the glass itself. This novel method for developing a high-voltage interface for microdevices avoids direct metal/liquid contact eliminating bubble formation in the channel due to water hydrolysis on the surface of the metal. Further, this arrangement produces no dead volume as is often found with traditional liquid junctions. At the same time, preliminary investigations into the outlet design of glass microdevices for interfacing with electrospray mass spectrometry, was explored. Both the exit shape and the use of hydrophobic coatings at the channel exit of the microdevice electrospray interface were evaluated using standard proteins with results indicating the utility of this type of design after further optimization.
NASA Astrophysics Data System (ADS)
Ohta, Akio; Kato, Yusuke; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi
2018-06-01
We have studied the resistive switching behaviors of electron beam (EB) evaporated Si-rich oxide (SiO x ) sandwiched between Ni electrodes by applying a constant voltage and current. Additionally, the impact of Ti nanodots (NDs) embedded into SiO x on resistive switching behaviors was investigated because it is expected that NDs can trigger the formation of a conductive filament path in SiO x . The resistive switching behaviors of SiO x show that the response time during resistance switching was decreased by increasing the applied constant current or constant voltage. It was found that Ti-NDs in SiO x enhance the conductive filament path formation owing to electric field concentration by Ti-NDs.
Synthesis of Large-Size 1T' ReS2x Se2(1-x) Alloy Monolayer with Tunable Bandgap and Carrier Type.
Cui, Fangfang; Feng, Qingliang; Hong, Jinhua; Wang, Renyan; Bai, Yu; Li, Xiaobo; Liu, Dongyan; Zhou, Yu; Liang, Xing; He, Xuexia; Zhang, Zhongyue; Liu, Shengzhong; Lei, Zhibin; Liu, Zonghuai; Zhai, Tianyou; Xu, Hua
2017-12-01
Chemical vapor deposition growth of 1T' ReS 2 x Se 2(1- x ) alloy monolayers is reported for the first time. The composition and the corresponding bandgap of the alloy can be continuously tuned from ReSe 2 (1.32 eV) to ReS 2 (1.62 eV) by precisely controlling the growth conditions. Atomic-resolution scanning transmission electron microscopy reveals an interesting local atomic distribution in ReS 2 x Se 2(1- x ) alloy, where S and Se atoms are selectively occupied at different X sites in each Re-X 6 octahedral unit cell with perfect matching between their atomic radius and space size of each X site. This structure is much attractive as it can induce the generation of highly desired localized electronic states in the 2D surface. The carrier type, threshold voltage, and carrier mobility of the alloy-based field effect transistors can be systematically modulated by tuning the alloy composition. Especially, for the first time the fully tunable conductivity of ReS 2 x Se 2(1- x ) alloys from n-type to bipolar and p-type is realized. Owing to the 1T' structure of ReS 2 x Se 2(1- x ) alloys, they exhibit strong anisotropic optical, electrical, and photoelectric properties. The controllable growth of monolayer ReS 2 x Se 2(1- x ) alloy with tunable bandgaps and electrical properties as well as superior anisotropic feature provides the feasibility for designing multifunctional 2D optoelectronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Venkata Saravanan, K.; Raju, K. C. James
2014-03-01
The surface chemical states of RF-magnetron sputtered Ba0.5Sr0.5TiO3 (BST5) thin films deposited at different oxygen mixing percentage (OMP) was examined by x-ray photoelectron spectroscopy. The O1s XPS spectra indicate the existence of three kinds of oxygen species (dissociated oxygen ion O2 -, adsorbed oxide ion O- and lattice oxide ion O2-) on the films’ surface, which strongly depends on OMP. The presence of oxygen species other than lattice oxygen ion makes the films’ surface highly reactivity to atmospheric gases, resulting in the formation of undesired surface layers. The XPS results confirm the formation of surface nitrates for the films deposited under oxygen deficient atmosphere (OMP ≦̸ 25%), whereas the films deposited in oxygen rich atmosphere (OMP ≧̸ 75%) show the presence of metal-hydroxide. The influence of a surface dead layer on the tunable dielectric properties of BST5 films have been studied in detail and are reported. Furthermore, our observations indicate that an optimum ratio of Ar:O2 is essential for achieving desired material and dielectric properties in BST5 thin films. The films deposited at 50% OMP have the highest dielectric tunability of ~65% (@280 kV cm-1), with good ɛ r-E curve symmetry of 98% and low tan δ of 0.018. The figure of merit for these films is about 35, which is promising for frequency agile device applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shou-Yi; Wang, Jian, E-mail: wangjian@nwnu.edu.cn; Wang, Gang
2015-08-15
Highlights: • The alumina multilayer structure with alternating high and low refractive index is fabricated. • This multilayer shows a strong photonic band gap (PBG) and vivid film colors. • The first PBG could be modulated easily by varying the duration time of constant high or low voltages. • Fabrication of the photonic crystal is obtained by directly electrochemical anodization. • The formation mechanism of multilayer is also discussed. - Abstract: The alumina nanolayer structure with alternating high and low porosities is conveniently fabricated by applying a modified pulse voltage waveform with constant high and low voltage. This structure showsmore » the well-defined layer in a long-range structural periodicity leads to a strong photonic band gap (PBG) from visible to near infrared and brilliant film colors. Compared with the previous reported tuning method, this method is more simple and flexible in tuning the PBG of photonic crystals (PCs). The effect of duration time of high, low and 0 V voltages on PBG is discussed. The first PBG could be modulated easily from the visible to near infrared region by varying the duration time of constant high or low voltages. It is also found that the 0 V lasting for appropriate time is helpful to improve the quality of the PCs. The formation mechanism of multilayer is also discussed.« less
Tunable and mode-locked laser action of Cr4+ in codoped forsterite Cr, Sc:Mg2SiO4
NASA Astrophysics Data System (ADS)
Sanina, V. V.; Mitrokhin, V. P.; Subbotin, K. A.; Lis, D. A.; Lis, O. N.; Ivanov, A. A.; Zharikov, E. V.
2018-01-01
The laser oscillation of tetravalent chromium and scandium codoped forsterite Cr4+,Sc:Mg2SiO4 single crystal has been demonstrated for the first time for continuous wave, tunable and mode-locked regimes. For comparison, the laser experiments have also been performed in the same configuration with the reference forsterite single crystal solely doped by chromium. The aim of scandium codoping is to inhibit the formation of parasitic trivalent chromium in the crystal. The crystal with scandium demonstrates a wider tuning range, lower lasing threshold and wider mode-locked lasing spectrum than those of the reference crystal, although the total lasing efficiency achieved by both crystals is nearly the same. The obtained results are discussed.
Surface-enhanced Raman scattering on periodic metal nanotips with tunable sharpness.
Linn, Nicholas C; Sun, Chih-Hung; Arya, Ajay; Jiang, Peng; Jiang, Bin
2009-06-03
This paper reports on a scalable bottom-up technology for producing periodic gold nanotips with tunable sharpness as surface-enhanced Raman scattering (SERS) substrates. Inverted silicon pyramidal pits, which are templated from non-close-packed colloidal crystals prepared by a spin-coating technology, are used as structural templates to replicate arrays of polymer nanopyramids with nanoscale sharp tips. The deposition of a thin layer of gold on the polymer nanopyramids leads to the formation of SERS-active substrates with a high enhancement factor (up to 10(8)). The thickness of the deposited metal determines the sharpness of the nanotips and the resulting Raman enhancement factor. Finite-element electromagnetic modeling shows that the nanotips can significantly enhance the local electromagnetic field and the sharpness of nanotips greatly affects the SERS enhancement.
NASA Astrophysics Data System (ADS)
Gyanan; Mondal, Sandip; Kumar, Arvind
2016-12-01
Post-deposition annealing (PDA) is an inherent part of a sol-gel fabrication process to achieve the optimum device performance, especially in CMOS applications. Annealing removes the oxygen vacancies and improves the structural order of the dielectric films. The process also reduces the interface related defects and improves the interfacial properties. Here, we applied a sol-gel spin-coating technique to prepare high-k TiO2 films on the p-Si substrate. These films were fired at 400 °C for the duration of 20, 40, 60 and 80 min to know the effects of annealing time on the device characteristics. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics of annealed TiO2 films were examined in Al/TiO2/p-Si device configuration at room temperature. The 60 min annealed film gives the optimum performance and contained 69.5% anatase and 39.5% rutile phase with refractive index 2.40 at 550 nm. The C-V and I-V characteristic showed a significant dependence on annealing time such as variation in dielectric constant and leakage current. This allows us to tune the various electrical properties of MOS systems. The accumulation capacitance (Cox), dielectric constant (κ) and the equivalent oxide thickness (EOT) of the film fired for 60 min were found to be 458 pF, 33, and 4.25 nm, respectively with a low leakage current density (3.13 × 10-7 A/cm2) fired for 80 min at -1 V. The current conduction mechanisms at high bias voltage were dominated by trap-charge limited current (TCLC), while at small voltages, space charge limited current (SCLC) was more prominent.
NASA Astrophysics Data System (ADS)
Oliva, Jorge; Papadimitratos, Alexios; Desirena, Haggeo; De la Rosa, Elder; Zakhidov, Anvar A.
2015-11-01
Parallel tandem organic light emitting devices (OLEDs) were fabricated with transparent multiwall carbon nanotube sheets (MWCNT) and thin metal films (Al, Ag) as interlayers. In parallel monolithic tandem architecture, the MWCNT (or metallic films) interlayers are an active electrode which injects similar charges into subunits. In the case of parallel tandems with common anode (C.A.) of this study, holes are injected into top and bottom subunits from the common interlayer electrode; whereas in the configuration of common cathode (C.C.), electrons are injected into the top and bottom subunits. Both subunits of the tandem can thus be monolithically connected functionally in an active structure in which each subunit can be electrically addressed separately. Our tandem OLEDs have a polymer as emitter in the bottom subunit and a small molecule emitter in the top subunit. We also compared the performance of the parallel tandem with that of in series and the additional advantages of the parallel architecture over the in-series were: tunable chromaticity, lower voltage operation, and higher brightness. Finally, we demonstrate that processing of the MWCNT sheets as a common anode in parallel tandems is an easy and low cost process, since their integration as electrodes in OLEDs is achieved by simple dry lamination process.
Color changing plasmonic surfaces utilizing liquid crystal (Conference Presentation)
NASA Astrophysics Data System (ADS)
Franklin, Daniel; Wu, Shin-Tson; Chanda, Debashis
2016-09-01
Plasmonic structural color has recently garnered significant interest as an alternative to the organic dyes standard in print media and liquid crystal displays. These nanostructured metallic systems can produce diffraction limited images, be made polarization dependent, and exhibit resistance to color bleaching. Perhaps even more advantageous, their optical characteristics can also be tuned, post-fabrication, by altering the surrounding media's refractive index parallel to the local plasmonic fields. A common material with which to achieve this is liquid crystal. By reorienting the liquid crystal molecules through external electric fields, the optical resonances of the plasmonic filters can be dynamically controlled. Demonstrations of this phenomenon, however, have been limited to modest shifts in plasmon resonance. Here, we report a liquid crystal-plasmonic system with an enhanced tuning range through the use of a shallow array of nano-wells and high birefringent liquid crystal. The continuous metallic nanostructure maximizes the overlap between plasmonic fields and liquid crystal while also allowing full reorientation of the liquid crystal upon an applied electric field. Sweeping over structural dimensions and voltages results in a color palette for these dynamic reflective pixels that can further be exploited to create color tunable images. These advances make plasmonic-liquid crystal systems more attractive candidates for filter, display, and other tunable optical technologies.
NASA Astrophysics Data System (ADS)
Prabaswara, Aditya; Min, Jung-Wook; Zhao, Chao; Janjua, Bilal; Zhang, Daliang; Albadri, Abdulrahman M.; Alyamani, Ahmed Y.; Ng, Tien Khee; Ooi, Boon S.
2018-02-01
Consumer electronics have increasingly relied on ultra-thin glass screen due to its transparency, scalability, and cost. In particular, display technology relies on integrating light-emitting diodes with display panel as a source for backlighting. In this study, we undertook the challenge of integrating light emitters onto amorphous quartz by demonstrating the direct growth and fabrication of a III-nitride nanowire-based light-emitting diode. The proof-of-concept device exhibits a low turn-on voltage of 2.6 V, on an amorphous quartz substrate. We achieved 40% transparency across the visible wavelength while maintaining electrical conductivity by employing a TiN/Ti interlayer on quartz as a translucent conducting layer. The nanowire-on-quartz LED emits a broad linewidth spectrum of light centered at true yellow color ( 590 nm), an important wavelength bridging the green-gap in solid-state lighting technology, with significantly less strain and dislocations compared to conventional planar quantum well nitride structures. Our endeavor highlighted the feasibility of fabricating III-nitride optoelectronic device on a scalable amorphous substrate through facile growth and fabrication steps. For practical demonstration, we demonstrated tunable correlated color temperature white light, leveraging on the broadly tunable nanowire spectral characteristics across red-amber-yellow color regime.
Prabaswara, Aditya; Min, Jung-Wook; Zhao, Chao; Janjua, Bilal; Zhang, Daliang; Albadri, Abdulrahman M; Alyamani, Ahmed Y; Ng, Tien Khee; Ooi, Boon S
2018-02-06
Consumer electronics have increasingly relied on ultra-thin glass screen due to its transparency, scalability, and cost. In particular, display technology relies on integrating light-emitting diodes with display panel as a source for backlighting. In this study, we undertook the challenge of integrating light emitters onto amorphous quartz by demonstrating the direct growth and fabrication of a III-nitride nanowire-based light-emitting diode. The proof-of-concept device exhibits a low turn-on voltage of 2.6 V, on an amorphous quartz substrate. We achieved ~ 40% transparency across the visible wavelength while maintaining electrical conductivity by employing a TiN/Ti interlayer on quartz as a translucent conducting layer. The nanowire-on-quartz LED emits a broad linewidth spectrum of light centered at true yellow color (~ 590 nm), an important wavelength bridging the green-gap in solid-state lighting technology, with significantly less strain and dislocations compared to conventional planar quantum well nitride structures. Our endeavor highlighted the feasibility of fabricating III-nitride optoelectronic device on a scalable amorphous substrate through facile growth and fabrication steps. For practical demonstration, we demonstrated tunable correlated color temperature white light, leveraging on the broadly tunable nanowire spectral characteristics across red-amber-yellow color regime.
Reconfigurable dual-band metamaterial antenna based on liquid crystals
NASA Astrophysics Data System (ADS)
Che, Bang-Jun; Meng, Fan-Yi; Lyu, Yue-Long; Wu, Qun
2018-05-01
In this paper, a novel reconfigurable dual-band metamaterial antenna with a continuous beam that is electrically steered in backward to forward directions is first proposed by employing a liquid crystal (LC)-loaded tunable extended composite right-/left-handed (E-CRLH) transmission line (TL). The frequency-dependent property of the E-CRLH TL is analyzed and a compact unit cell based on the nematic LC is proposed to realize the tunable dual band characteristics. The phase constant of the proposed unit cell can be dynamically continuously tuned from negative to positive values in two operating bands by changing the bias voltage of the loaded LC material. A resulting dual band fixed-frequency beam steering property has been predicted by numerical simulations and experimentally verified. The measured results show that the fabricated reconfigurable antenna features an electrically controlled continuous beam steering from backward ‑16° to forward +13° at 7.2 GHz and backward ‑9° to forward +17° at 9.4 GHz, respectively. This electrically controlled beam steering range turns out to be competitive with the previously reported single band reconfigurable antennas. Besides, the measured and simulated results of the proposed reconfigurable dual-band metamaterial antenna are in good agreement.
Reconfigurable metasurface aperture for security screening and microwave imaging
NASA Astrophysics Data System (ADS)
Sleasman, Timothy; Imani, Mohammadreza F.; Boyarsky, Michael; Pulido-Mancera, Laura; Reynolds, Matthew S.; Smith, David R.
2017-05-01
Microwave imaging systems have seen growing interest in recent decades for applications ranging from security screening to space/earth observation. However, hardware architectures commonly used for this purpose have not seen drastic changes. With the advent of metamaterials a wealth of opportunities have emerged for honing metasurface apertures for microwave imaging systems. Recent thrusts have introduced dynamic reconfigurability directly into the aperture layer, providing powerful capabilities from a physical layer with considerable simplicity. The waveforms generated from such dynamic metasurfaces make them suitable for application in synthetic aperture radar (SAR) and, more generally, computational imaging. In this paper, we investigate a dynamic metasurface aperture capable of performing microwave imaging in the K-band (17.5-26.5 GHz). The proposed aperture is planar and promises an inexpensive fabrication process via printed circuit board techniques. These traits are further augmented by the tunability of dynamic metasurfaces, which provides the dexterity necessary to generate field patterns ranging from a sequence of steered beams to a series of uncorrelated radiation patterns. Imaging is experimentally demonstrated with a voltage-tunable metasurface aperture. We also demonstrate the aperture's utility in real-time measurements and perform volumetric SAR imaging. The capabilities of a prototype are detailed and the future prospects of general dynamic metasurface apertures are discussed.
Tunable circuit for tunable capacitor devices
Rivkina, Tatiana; Ginley, David S.
2006-09-19
A tunable circuit (10) for a capacitively tunable capacitor device (12) is provided. The tunable circuit (10) comprises a tunable circuit element (14) and a non-tunable dielectric element (16) coupled to the tunable circuit element (16). A tunable capacitor device (12) and a method for increasing the figure of merit in a tunable capacitor device (12) are also provided.
NASA Astrophysics Data System (ADS)
Asgari, Somayyeh; Granpayeh, Nosrat
2017-06-01
Two parallel graphene sheet waveguides and a graphene cylindrical resonator between them is proposed, analyzed, and simulated numerically by using the finite-difference time-domain method. One end of each graphene waveguide is the input and output port. The resonance and the prominent mid-infrared band-pass filtering effect are achieved. The transmittance spectrum is tuned by varying the radius of the graphene cylindrical resonator, the dielectric inside it, and also the chemical potential of graphene utilizing gate voltage. Simulation results are in good agreement with theoretical calculations. As an application, a multi/demultiplexer is proposed and analyzed. Our studies demonstrate that graphene based ultra-compact, nano-scale devices can be designed for optical processing and photonic integrated devices.
Fine wavelength control in 1.3 μm Nd:YAG lasers by electro-optical crystal lens
NASA Astrophysics Data System (ADS)
Lü, Yanfei; Zhang, Jing; Liu, Huilong; Xia, Jing; Fu, Xihong; Zhang, Anfeng
2014-02-01
A diode-pumped tunable and multi-wavelength continuous-wave Nd:YAG laser based on the 4F3/2-4I13/2 transition has been demonstrated for the first time. The combination of the glass plane positioned at the Brewster angle and the electro-optical crystal KH2PO4 (KDP) lens formed a Lyot filter in the cavity and compressed the available gain bandwidth. With an adjustable voltage applied to the KDP crystal lens, the laser wavelength could be tuned from 1333.8 to 1338.2 nm. Moreover, we can also realize cw dual-wavelength and triple-wavelength lasers with smaller wavelength separation by adjusting the free spectral range of the Lyot filter.
Small, fast, and tough: Shrinking down integrated elastomer transducers
NASA Astrophysics Data System (ADS)
Rosset, Samuel; Shea, Herbert R.
2016-09-01
We review recent progress in miniaturized dielectric elastomer actuators (DEAs), sensors, and energy harvesters. We focus primarily on configurations where the large strain, high compliance, stretchability, and high level of integration offered by dielectric elastomer transducers provide significant advantages over other mm or μm-scale transduction technologies. We first present the most active application areas, including: tunable optics, soft robotics, haptics, micro fluidics, biomedical devices, and stretchable sensors. We then discuss the fabrication challenges related to miniaturization, such as thin membrane fabrication, precise patterning of compliant electrodes, and reliable batch fabrication of multilayer devices. We finally address the impact of miniaturization on strain, force, and driving voltage, as well as the important effect of boundary conditions on the performance of mm-scale DEAs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahle, Markus, E-mail: markus.wahle@uni-paderborn.de; Kitzerow, Heinz-Siegfried
2015-11-16
We present a liquid crystal (LC) infiltrated photonic crystal fiber, which enables the electrical tuning of the position of zero dispersion wavelengths (ZDWs). A dual frequency addressable liquid crystal is aligned perpendicular on the inclusion walls of a photonic crystal fiber, which results in an escaped radial director field. The orientation of the LC is controlled by applying an external electric field. Due to the high index of the liquid crystal the fiber guides light by the photonic band gap effect. Multiple ZDWs exist in the visible and near infrared. The positions of the ZDWs can be either blue ormore » red shifted depending on the frequency of the applied voltage.« less
Overflow of a dipolar exciton trap at high magnetic fields
NASA Astrophysics Data System (ADS)
Dietl, Sebastian; Kowalik-Seidl, Katarzyna; Hammer, Lukas; Schuh, Dieter; Wegscheider, Werner; Holleitner, Alexander; Wurstbauer, Ursula
We study the photoluminescence of trapped dipolar excitons (IX) in coupled double GaAs quantum wells at low temperatures and high magnetic fields. A voltage-tunable electrode geometry controls the strength of the quantum confined Stark effect and defines the lateral trapping potential. Furthermore, it enhances the IX lifetime, enabling them to cool down to lattice temperature. We show that a magnetic field in Faraday configuration effectively prevents the escape of unbound photogenerated charge carriers from the trap area, thus increasing the density of dipolar excitons. For large magnetic fields, we observe an overflow of the IX trap and an effectively suppressed quantum confined Stark effect. We acknowledge financial support by the German Excellence Initiative via the Nanosystems Initiative Munich (NIM).
Organic solar cells based on non-fullerene acceptors
NASA Astrophysics Data System (ADS)
Hou, Jianhui; Inganäs, Olle; Friend, Richard H.; Gao, Feng
2018-02-01
Organic solar cells (OSCs) have been dominated by donor:acceptor blends based on fullerene acceptors for over two decades. This situation has changed recently, with non-fullerene (NF) OSCs developing very quickly. The power conversion efficiencies of NF OSCs have now reached a value of over 13%, which is higher than the best fullerene-based OSCs. NF acceptors show great tunability in absorption spectra and electron energy levels, providing a wide range of new opportunities. The coexistence of low voltage losses and high current generation indicates that new regimes of device physics and photophysics are reached in these systems. This Review highlights these opportunities made possible by NF acceptors, and also discuss the challenges facing the development of NF OSCs for practical applications.
Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Xun-jun, E-mail: hexunjun@hrbust.edu.cn; Li, Teng-yue; Wang, Lei
2014-05-07
In this paper, we design and numerically demonstrate an electrically controllable light-matter interaction in a hybrid material/metamaterial system consisting of an artificially constructed cross cut-wire complementary metamaterial and an atomically thin graphene layer to realize terahertz (THz) wave modulator. By applying a bias voltage between the metamaterial and the graphene layer, this modulator can dynamically control the amplitude and phase of the transmitted wave near 1.43 THz. Moreover, the distributions of current density show that this large modulation depth can be attributed to the resonant electric field parallel to the graphene sheet. Therefore, the modulator performance indicates the enormous potentialmore » of graphene for developing sophisticated THz communication systems.« less
Chew, Xiongyeu; Zhou, Guangya; Yu, Hongbin; Chau, Fook Siong; Deng, Jie; Loke, Yee Chong; Tang, Xiaosong
2010-10-11
Control of photonic crystal resonances in conjunction with large spectral shifting is critical in achieving reconfigurable photonic crystal devices. We propose a simple approach to achieve nano-mechanical control of photonic crystal resonances within a compact integrated on-chip approach. Three different tip designs utilizing an in-plane nano-mechanical tuning approach are shown to achieve reversible and low-loss resonance control on a one-dimensional photonic crystal nanocavity. The proposed nano-mechanical approach driven by a sub-micron micro-electromechanical system integrated on low loss suspended feeding nanowire waveguide, achieved relatively large resonance spectral shifts of up to 18 nm at a driving voltage of 25 V. Such designs may potentially be used as tunable optical filters or switches.
Vacuum-induced quantum memory in an opto-electromechanical system
NASA Astrophysics Data System (ADS)
Qin, Li-Guo; Wang, Zhong-Yang; Wu, Shi-Chao; Gong, Shang-Qing; Ma, Hong-Yang; Jing, Jun
2018-03-01
We propose a scheme to implement electrically controlled quantum memory based on vacuum-induced transparency (VIT) in a high-Q tunable cavity, which is capacitively coupled to a mechanically variable capacitor by a charged mechanical cavity mirror as an interface. We analyze the changes of the cavity photons arising from vacuum-induced-Raman process and discuss VIT in an atomic ensemble trapped in the cavity. By slowly adjusting the voltage on the capacitor, the VIT can be adiabatically switched on or off, meanwhile, the transfer between the probe photon state and the atomic spin state can be electrically and adiabatically modulated. Therefore, we demonstrate a vacuum-induced quantum memory by electrically manipulating the mechanical mirror of the cavity based on electromagnetically induced transparency mechanism.
Constraining the Formation of Haumea using the Distribution of Haumea Family Members
NASA Astrophysics Data System (ADS)
Proudfoot, Benjamin; Ragozzine, Darin
2017-10-01
Collisions are a central component of the formation and evolution of the outer Solar System. The dwarf planet Haumea and its compact collisional family provide a unique empirical view into how collisions take place in the outer Solar System. Although there have been many publications dedicated to understanding Haumea, there have yet to be any fully self-consistent models for the formation of Haumea and its family. In particular, it is a challenge to explain why the relative velocities of family members ("Delta v") is several times smaller than would be expected. Using a much larger number of Haumea family members (see Maggard & Ragozzine, this meeting), we focus on finding the best empirical model for the three-dimensional "Delta v" distribution of Haumea family members. We consider an isotropic ejection from Haumea, a planar ejection resulting from a graze and merge type impact (e.g., Leinhardt et al. 2010), and an isotropic ejection from a satellite of Haumea (e.g., Schlichting & Sari 2009). These models create a large simulated family with tunable parameters that result in a unique distribution in a-e-i-Deltav-H space. Preliminary results indicated that the graze-and-merge impact is inconsistent with the observed distribution of family members (Ragozzine & Proudfoot, DDA 2017). We explore this more rigorously here by including tunable parameters, a Bayesian methodology, and the influence of background interlopers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ben; He, Feng; Ouyang, Jiting, E-mail: jtouyang@bit.edu.cn
2015-12-15
Simulation work is very important for understanding the formation of self-organized discharge patterns. Previous works have witnessed different models derived from other systems for simulation of discharge pattern, but most of these models are complicated and time-consuming. In this paper, we introduce a convenient phenomenological dynamic model based on the basic dynamic process of glow discharge and the voltage transfer curve (VTC) to study the dielectric barrier glow discharge (DBGD) pattern. VTC is an important characteristic of DBGD, which plots the change of wall voltage after a discharge as a function of the initial total gap voltage. In the modeling,more » the combined effect of the discharge conditions is included in VTC, and the activation-inhibition effect is expressed by a spatial interaction term. Besides, the model reduces the dimensionality of the system by just considering the integration effect of current flow. All these greatly facilitate the construction of this model. Numerical simulations turn out to be in good accordance with our previous fluid modeling and experimental result.« less
Application of Microsecond Voltage Pulses for Water Disinfection by Diaphragm Electric Discharge
NASA Astrophysics Data System (ADS)
Kakaurov, S. V.; Suvorov, I. F.; Yudin, A. S.; Solovyova, T. L.; Kuznetsova, N. S.
2015-11-01
The paper presents the dependence of copper and silver ions formation on the duration of voltage pulses of diaphragm electric discharge and on the pH of treated liquid medium. Knowing it allows one to create an automatic control system to control bactericidal agent's parameters obtained in diaphragm electric discharge reactor. The current-voltage characteristic of the reactor with a horizontal to the diaphragm membrane water flow powered from the author's custom pulse voltage source is also presented. The results of studies of the power consumption of diaphragm electric discharge depending on temperature of the treated liquid medium are given.
SrMoO4:Er3+-Yb3+ upconverting phosphor for photonic and forensic applications
NASA Astrophysics Data System (ADS)
Soni, Abhishek Kumar; Rai, Vineet Kumar
2016-08-01
The Er3+-Yb3+ codoped strontium molybdate (SrMoO4) phosphors have been synthesized via chemical co-precipitation method by adding ammonium hydroxide as a base reagent. The phase, crystal structure and formation of spindle-like particles present in the prepared phosphors have been recognized by using the X-ray powder diffraction (XRPD) and Field emission scanning electron microscopy (FE-SEM) techniques. The Fourier transform infrared (FTIR) spectroscopy of the developed phosphors has been analyzed to mark the different functional groups present in synthesized phosphors. The multicolour upconversion emissions observed upon excitation with 980 nm and 808 nm laser diode have been explained on the basis of dopants ions concentration, pump power dependence, energy level structure and decay curve analysis. The colour co-ordinate study confirmed that the codoped phosphor emits non-tunable green colour when excited with the 980 nm laser diode, whereas it shows the colour tunability from yellow to green region upon excitation with the 808 nm laser diode. The applicability of non-tunable green colour emission has been demonstrated in the security ink and latent finger print detection. This shows the utility of the developed phosphors in the photonic and forensic applications.
Zhang, Yijun; Liu, Ming; Peng, Bin; ...
2016-01-27
Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe 2O 3 and superparamagnetic Fe 2O 3with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe 2O 3 in a reducing atmosphere leads to the formation of the spinel Fe 3O 4 phase which displaysmore » a distinct ferrimagnetic anisotropy and the Verwey metal-insulator transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. Finally, the ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications.« less
NASA Astrophysics Data System (ADS)
Yan, Xiaodong; Tian, He; Xie, Yujun; Kostelec, Andrew; Zhao, Huan; Cha, Judy J.; Tice, Jesse; Wang, Han
Modulatory input-dependent plasticity is a well-known type of hetero-synaptic response where the release of neuromodulators can alter the efficacy of neurotransmission in a nearby chemical synapse. Solid-state devices that can mimic such phenomenon are desirable for enhancing the functionality and reconfigurability of neuromorphic electronics. In this work, we demonstrated a tunable artificial synaptic device concept based on the properties of graphene and tin oxide that can mimic the modulatory input-dependent plasticity. By using graphene as the contact electrode, a third electrode terminal can be used to modulate the conductive filament formation in the vertical tin oxide based resistive memory device. The resulting synaptic characteristics of this device, in terms of the profile of synaptic weight change and the spike-timing-dependent-plasticity, is tunable with the bias at the modulating terminal. Furthermore, the synaptic response can be reconfigured between excitatory and inhibitory modes by this modulating bias. The operation mechanism of the device is studied with combined experimental and theoretical analysis. The device is attractive for application in neuromorphic electronics. This work is supported by ARO and NG-ION2 at USC.
NASA Astrophysics Data System (ADS)
Sowa, Maciej; Woszczak, Maja; Kazek-Kęsik, Alicja; Dercz, Grzegorz; Korotin, Danila M.; Zhidkov, Ivan S.; Kurmaev, Ernst Z.; Cholakh, Seif O.; Basiaga, Marcin; Simka, Wojciech
2017-06-01
This work aims to quantify the effect of anodization voltage and electrolyte composition used during DC plasma electrolytic oxidation (PEO), operated as a 2-step process, on the surface properties of the resulting oxide coatings on tantalum. The first step consisted of galvanostatic anodization (150 mA cm-2) of the tantalum workpiece up to several limiting voltages (200, 300, 400 and 500 V). After attaining the limiting voltage, the process was switched to voltage control, which resulted in a gradual decrease of the anodic current density. The anodic treatment was realized in a 0.5 M Ca(H2PO2)2 solution, which was then modified by the addition of 1.15 M Ca(HCOO)2 as well as 1.15 M and 1.5 M Mg(CH3COO)2. The increasing voltage of anodization led to the formation of thicker coatings, with larger pores and enriched with electrolytes species to a higher extent. The solutions containing HCOO- and CH3COO- ions caused the formation of coatings which were slightly hydrophobic (high contact angle). In the case of the samples anodized up to 500 V, scattered crystalline deposits were observed. Bioactive phases, such as hydroxyapatite, were detected in the treated oxide coatings by XRD and XPS.
NASA Astrophysics Data System (ADS)
Bilici, Mihai A.; Haase, John R.; Boyle, Calvin R.; Go, David B.; Sankaran, R. Mohan
2016-06-01
We report on the existence of a smooth transition from field emission to a self-sustained plasma in microscale electrode geometries at atmospheric pressure. This behavior, which is not found at macroscopic scales or low pressures, arises from the unique combination of large electric fields that are created in microscale dimensions to produce field-emitted electrons and the high pressures that lead to collisional ionization of the gas. Using a tip-to-plane electrode geometry, currents less than 10 μA are measured at onset voltages of ˜200 V for gaps less than 5 μm, and analysis of the current-voltage (I-V) relationship is found to follow Fowler-Nordheim behavior, confirming field emission. As the applied voltage is increased, gas breakdown occurs smoothly, initially resulting in the formation of a weak, partial-like glow and then a self-sustained glow discharge. Remarkably, this transition is essentially reversible, as no significant hysteresis is observed during forward and reverse voltage sweeps. In contrast, at larger electrode gaps, no field emission current is measured and gas breakdown occurs abruptly at higher voltages of ˜400 V, absent of any smooth transition from the pre-breakdown condition and is characterized only by glow discharge formation.
Viscoelastic effects on frequency tuning of a dielectric elastomer membrane resonator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Jianyou; Jiang, Liying, E-mail: lyjiang@eng.uwo.ca; Khayat, Roger E.
2014-03-28
As a recent application of dielectric elastomers (DEs), DE resonators have become an alternative to conventional silicon-based resonators used in MEMS and have attracted much interest from the research community. However, most existing modeling works for the DE resonators ignore the intrinsic viscoelastic effect of the material that may strongly influence their dynamic performance. Based on the finite-deformation viscoelasticity theory for dielectrics, this paper theoretically examines the in-plane oscillation of a DE membrane resonator to demonstrate how the material viscoelasticity affects the actuation and frequency tuning processes of the resonator. From the simulation results, it is concluded that not onlymore » the applied voltage can change the natural frequency of the resonator, but also the inelastic deformation contributes to frequency tuning. Due to the viscoelasticity of the material, the electrical loading rate influences the actuation process of the DE resonator, while it has little effect on the final steady frequency tuned by the prescribed voltage within the safety range. With the consideration of the typical failure modes of the resonator and the evolution process of the material, the tunable frequency range and the safe range of the applied voltage of the DE membrane resonator with different dimension parameters are determined in this work, which are found to be dependent on the electrical loading rate. This work is expected to provide a better understanding on the frequency tuning of viscoelastic DE membrane resonators and a guideline for the design of DE devices.« less
NASA Astrophysics Data System (ADS)
Wang, Tao; Hu, Mingshan; Yang, Bin; Wang, Xiaolin; Liu, Jingquan
2018-03-01
Porous nC-Si/SiOx photoluminescent nanostructured layer is fabricated by direct, precursor-free microplasma irradiation on Si substrate in air. It is confirmed that the deposited layer has porous and cluster-like structures by scanning electron microscopy (SEM) and profile scanning. Fourier transform infrared transmission (FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectrum (XPS) results indicate the produced layer is actually composed of nanocrystalline silicon (nC-Si) embedded in SiOx matrix. Transmission electron microscopy (TEM) and Raman results show the mean particle size of nC-Si is mainly between 2 and 4 nm and the highest crystalline volume fraction reaches 86.9%. The photoluminescence (PL) measurement of nC-Si/SiOx layer exhibited a broad band centered at 1.7-1.9 eV, ranging from 1.2-2.4 eV, and could be tuned by varying the applied voltage. The synthetical mechanisms are discussed to explain the PL properties of the layers. We propose that the energetic ions bombing induced by high compressed electric field near the Si surface is the main reason for porous nC-Si/SiOx formation. Maskless deposition of the line pattern of nC-Si/SiOx layer was also successfully fabricated. This simple, maskless, vacuum-free and precursor-free technique could be used in various potential optoelectronics and biological applications in the future.