Sample records for formation assay cell

  1. ELISPOT Assays in 384-Well Format: Up to 30 Data Points with One Million Cells

    PubMed Central

    Hanson, Jodi; Sundararaman, Srividya; Caspell, Richard; Karacsony, Edith; Karulin, Alexey Y.; Lehmann, Paul V.

    2015-01-01

    Comprehensive immune monitoring requires that frequencies of T cells, producing different cytokines, are measured to establish the magnitude of Th1, Th2, and Th17 components of cell-mediated immunity. Antigen titration provides additional information about the affinity of T cell response. In tumor immunity, it is also advisable to account for determinant spreading by testing multiple epitopes. Efforts for comprehensive immune monitoring would require substantial numbers of PBMC to run the above tests systematically, which in most test cases is limiting. Immune monitoring with ELISPOT assays have been performed, thus far, in a 96-well format. In this study we show that one can increase cell utilization by performing the assay in 384-well plates whose membrane surface area is one third that of 96-well plates. Systematic testing of PBMC for antigen-specific T cell response in the two formats demonstrated that the 384-well assay corresponds to a one-in-three miniaturization of the 96-well assay. The lowest number of cells that can be used in the 384-well format, while allowing for sufficient contact with APC, is 33,000 PBMC/well. Therefore, with one million PBMC typically obtained from 1 mL of blood, a 30 well T cell ELISPOT assay can be performed in a 384-well format. PMID:25643292

  2. [Effects of ezrin silencing on pancreatic cancer cell line Panc-1].

    PubMed

    Meng, Yun-xiao; Yu, Shuang-ni; Lu, Zhao-hui; Chen, Jie

    2012-12-01

    To explore the effects of ezrin silencing on pancreatic cancer cell line Panc-1. Pancreatic cancer cell line Panc-1 was transfected with ezrin silencing plasmid. The proliferation and the cell cycle status were determined by CCK-8 assay and flow cytometry analysis, respectively. Cellular membrane protrusions/microvilli formation were visualized by scanning election microscopy. Colony formation assay was used to determine the cell anchor-independent growth ability in vitro. Trans-filter migration and invasion assays were performed with 8 µm pore inserts in a 24-well BioCoat chamber with/without Matrigel. Ezrin silencing decreased cellular protrusions/microvilli formation, anchorage-independent growth, cell migration and invasion, but had no effects on cell proliferation in vitro and cell cycle, in pancreatic cancer cell line Panc-1. Ezrin expression affects the cellular protrusions/microvilli formation, anchorage-independent growth, cell migration and invasion in pancreatic cancer cell line Panc-1.

  3. Evaluating 3D bone tissue engineered constructs with different seeding densities using the alamarBlue assay and the effect on in vivo bone formation.

    PubMed

    Wilson, C E; Dhert, W J A; Van Blitterswijk, C A; Verbout, A J; De Bruijn, J D

    2002-12-01

    Bone tissue engineering using patient derived cells seeded onto porous scaffolds has gained much attention in recent years. Evaluating the viability of these 3D constructs is an essential step in optimizing the process. The alamarBlue (aB) assay was evaluated for its potential to follow in vitro cell proliferation on architecturally standardized hydroxyapatite scaffolds. The impact of the aB assayed and seeding density on subsequent in vivo bone formation was investigated. Twelve scaffolds were seeded with various densities from 250 to 2.5x10(6) cells/scaffold and assay by aB at 5 time points during the 7-day culture period. Twelve additional scaffolds were seeded with 2.5x10(5) cells/scaffold. Two control and 2 aB treated scaffolds were subcutaneously implanted into each of 6 nude mice for 6 weeks. Four observers ranked bone formation using a pair wise comparison of histological sections form each mouse. The aB assay successfully followed cell proliferation, however, the diffusion kinetics of the 3D constructs must be considered. The influence of in vitro aB treatment on subsequent in vivo bone formation cannot be ruled out but was not shown to be significant in the current study. The aB assay appears to be quite promising for evaluating a maximum or end-point viability of 3D tissue engineered constructs. Finally, higher seeding densities resulted in more observed bone formation.

  4. A High-Content Live-Cell Viability Assay and Its Validation on a Diverse 12K Compound Screen.

    PubMed

    Chiaravalli, Jeanne; Glickman, J Fraser

    2017-08-01

    We have developed a new high-content cytotoxicity assay using live cells, called "ImageTOX." We used a high-throughput fluorescence microscope system, image segmentation software, and the combination of Hoechst 33342 and SYTO 17 to simultaneously score the relative size and the intensity of the nuclei, the nuclear membrane permeability, and the cell number in a 384-well microplate format. We then performed a screen of 12,668 diverse compounds and compared the results to a standard cytotoxicity assay. The ImageTOX assay identified similar sets of compounds to the standard cytotoxicity assay, while identifying more compounds having adverse effects on cell structure, earlier in treatment time. The ImageTOX assay uses inexpensive commercially available reagents and facilitates the use of live cells in toxicity screens. Furthermore, we show that we can measure the kinetic profile of compound toxicity in a high-content, high-throughput format, following the same set of cells over an extended period of time.

  5. A Highly Sensitive Chemiluminometric Assay for Real-Time Detection of Biological Hydrogen Peroxide Formation.

    PubMed

    Zhu, Hong; Jia, Zhenquan; Trush, Michael A; Li, Y Robert

    2016-05-01

    Hydrogen peroxide (H 2 O 2 ) is a major reactive oxygen species (ROS) produced by various cellular sources, especially mitochondria. At high levels, H 2 O 2 causes oxidative stress, leading to cell injury, whereas at low concentrations, this ROS acts as an important second messenger to participate in cellular redox signaling. Detection and measurement of the levels or rates of production of cellular H 2 O 2 are instrumental in studying the biological effects of this major ROS. While a number of assays have been developed over the past decades for detecting and/or quantifying biological H 2 O 2 formation, none has been shown to be perfect. Perhaps there is no perfect assay for sensitively and accurately quantifying H 2 O 2 as well as other ROS in cells, wherein numerous potential reactants are present to interfere with the reliable measurement of the specific ROS. In this context, each assay has its own advantages and intrinsic limitations. This article describes a highly sensitive assay for real-time detection of H 2 O 2 formation in cultured cells and isolated mitochondria. This assay is based on the luminol/horseradish peroxidase-dependent chemiluminescence that is inhibitable by catalase. The article discusses the usefulness and shortcomings of this chemiluminometric assay in detecting biological H 2 O 2 formation induced by beta-lapachone redox cycling with both cells and isolated mitochondria.

  6. Development of Multiple Cell-Based Assays for the Detection of Histone H3 Lys27 Trimethylation (H3K27me3)

    PubMed Central

    Lu, Lihui; Wu, Jianghong

    2013-01-01

    Abstract Posttranslational modification of histone proteins in eukaryotes plays an important role in gene transcription and chromatin structure. Dysregulation of the enzymes involved in histone modification has been linked to many cancer forms, making this target class a potential new area for therapeutics. A reliable assay to monitor small-molecule inhibition of various epigenetic enzymes should play a critical role in drug discovery to fight cancer. However, it has been challenging to develop cell-based assays for high-throughput screening (HTS) and compound profiling. Recently, two homogeneous cell-based assay kits using the AlphaLISA® and LanthaScreen® technologies to detect trimethyl histone H3 Lysine 27 have become commercially available, and a heterogeneous cell assay with modified dissociation-enhanced lanthanide fluorescence immunoassay (DELFIA®) format has been reported. To compare their pros and cons, we evaluated, optimized, and validated these three assay formats in three different cell lines and compared their activities with traditional Western blot detection of histone methylation inhibition by using commercial and in-house small-molecule inhibitors. Our data indicate that, although all four formats produced acceptable results, the homogeneous AlphaLISA assay was best suited for HTS and compound profiling due to its wider window and ease of automation. The DELFIA and Western blot assays were useful as validation tools to confirm the cell activities and eliminate potential false-positive compounds. PMID:23992119

  7. An HTS-compatible 3D colony formation assay to identify tumor-specific chemotherapeutics.

    PubMed

    Horman, Shane R; To, Jeremy; Orth, Anthony P

    2013-12-01

    There has been increasing interest in the development of cellular behavior models that take advantage of three-dimensional (3D) cell culture. To enable assessment of differential perturbagen impacts on cell growth in 2D and 3D, we have miniaturized and adapted for high-throughput screening (HTS) the soft agar colony formation assay, employing a laser-scanning cytometer to image and quantify multiple cell types simultaneously. The assay is HTS compatible, providing high-quality, image-based, replicable data for multiple, co-cultured cell types. As proof of concept, we subjected colorectal carcinoma colonies in 3D soft agar to a mini screen of 1528 natural product compounds. Hit compounds from the primary screen were rescreened in an HTS 3D co-culture matrix containing colon stromal cells and cancer cells. By combining tumor cells and normal, nontransformed colon epithelial cells in one primary screening assay, we were able to obtain differential IC50 data, thereby distinguishing tumor-specific compounds from general cytotoxic compounds. Moreover, we were able to identify compounds that antagonized tumor colony formation in 3D only, highlighting the importance of this assay in identifying agents that interfere with 3D tumor structural growth. This screening platform provides a fast, simple, and robust method for identification of tumor-specific agents in a biologically relevant microenvironment.

  8. Anti-tumor activity of staurosporine in the tumor microenvironment of cervical cancer: An in vitro study.

    PubMed

    Yadav, Suresh Singh; Prasad, Chandra Bhushan; Prasad, Shyam Babu; Pandey, Lakshmi Kant; Singh, Sunita; Pradhan, Satyajit; Narayan, Gopeshwar

    2015-07-15

    The fundamental events for cancer progression and metastases include loss of cell adhesion, cell proliferation, anchorage-independent cell growth (evading anoikis), cell migration and cell invasion. All these events leading to cancer progression happen in a favorable nurturing tumor microenvironment. This study was designed to explore the anti-tumor activity of staurosporine (a nonspecific protein kinase inhibitor) in the tumor microenvironment of cervical cancer. The anti-tumor activity of staurosporine was investigated by cell adhesion assay, colony formation assay, apoptosis assay and quantitative real-time polymerase chain reaction (PCR) in cervical cancer cell lines. The cell adhesion assay showed that staurosporine induces adhesion of cervical cancer cells to the extracellular matrix (ECM) protein fibronectin. The soft agar colony formation assay showed that staurosporine inhibits both the number and size of colony formation in a dose dependent manner and also induces adherent tendency in the cancer cells. Staurosporine also induces prominent apoptosis in single cell suspensions compared to adherent cells. Stroma cell induced transcription of matrix metalloprotease 1 (MMP1) and matrix metalloprotease 2 (MMP2) in cervical cancer cells was inhibited by staurosporine. Our results indicate that staurosporine induces anti-tumor response in the cervical tumor microenvironment by inhibiting the fundamental events for cancer progression and metastases. The present study represents an attractive area for further research and opens up new avenues towards the understanding of cervical cancer therapeutics. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Accumulation of True Single Strand Breaks and AP sites in Base Excision Repair Deficient Cells

    PubMed Central

    Luke, April M.; Chastain, Paul D.; Pachkowski, Brian F.; Afonin, Valeriy; Takeda, Shunichi; Kaufman, David G.; Swenberg, James A.; Nakamura, Jun

    2010-01-01

    Single strand breaks (SSBs) are one of the most frequent DNA lesions caused by endogenous and exogenous agents. The most utilized alkaline-based assays for SSB detection frequently give false positive results due to the presence of alkali-labile sites that are converted to SSBs. Methoxyamine, an acidic O-hydroxylamine, has been utilized to measure DNA damage in cells. However, the neutralization of methoxyamine is required prior to usage. Here we developed a convenient, specific SSB assay using alkaline gel electrophoresis (AGE) coupled with a neutral O-hydroxylamine, O-(tetrahydro-2H-pyran-2-yl)hydroxylamine (OTX). OTX stabilizes abasic sites (AP sites) to prevent their alkaline incision while still allowing for strong alkaline DNA denaturation. DNA from DT40 and isogenic polymerase β null cells exposed to methyl methanesulfonate were applied to the OTX-coupled AGE (OTX-AGE) assay. Time-dependent increases in SSBs were detected in each cell line with more extensive SSB formation in the null cells. These findings were supported by an assay that indirectly detects SSBs through measuring NAD(P)H depletion. An ARP-slot blot assay demonstrated a significant time-dependent increase in AP sites in both cell lines by 1 mM MMS compared to control. Furthermore, the Pol β-null cells displayed greater AP site formation than the parental DT40 cells. OTX use represents a facile approach for assessing SSB formation, whose benefits can also be applied to other established SSB assays. PMID:20851134

  10. Human iPSC-Derived Endothelial Cell Sprouting Assay in Synthetic Hydrogel Arrays

    EPA Science Inventory

    Activation of vascular endothelial cells (ECs) by growth factors initiates a cascade of events in vivo consisting of EC tip cell selection, sprout formation, EC stalk cell proliferation, and ultimately vascular stabilization by support cells. Although EC functional assays can rec...

  11. Ultra-sensitive detection of tumorigenic cellular impurities in human cell-processed therapeutic products by digital analysis of soft agar colony formation.

    PubMed

    Kusakawa, Shinji; Yasuda, Satoshi; Kuroda, Takuya; Kawamata, Shin; Sato, Yoji

    2015-12-08

    Contamination with tumorigenic cellular impurities is one of the most pressing concerns for human cell-processed therapeutic products (hCTPs). The soft agar colony formation (SACF) assay, which is a well-known in vitro assay for the detection of malignant transformed cells, is applicable for the quality assessment of hCTPs. Here we established an image-based screening system for the SACF assay using a high-content cell analyzer termed the digital SACF assay. Dual fluorescence staining of formed colonies and the dissolution of soft agar led to accurate detection of transformed cells with the imaging cytometer. Partitioning a cell sample into multiple wells of culture plates enabled digital readout of the presence of colonies and elevated the sensitivity for their detection. In practice, the digital SACF assay detected impurity levels as low as 0.00001% of the hCTPs, i.e. only one HeLa cell contained in 10,000,000 human mesenchymal stem cells, within 30 days. The digital SACF assay saves time, is more sensitive than in vivo tumorigenicity tests, and would be useful for the quality control of hCTPs in the manufacturing process.

  12. Ultra-sensitive detection of tumorigenic cellular impurities in human cell-processed therapeutic products by digital analysis of soft agar colony formation

    PubMed Central

    Kusakawa, Shinji; Yasuda, Satoshi; Kuroda, Takuya; Kawamata, Shin; Sato, Yoji

    2015-01-01

    Contamination with tumorigenic cellular impurities is one of the most pressing concerns for human cell-processed therapeutic products (hCTPs). The soft agar colony formation (SACF) assay, which is a well-known in vitro assay for the detection of malignant transformed cells, is applicable for the quality assessment of hCTPs. Here we established an image-based screening system for the SACF assay using a high-content cell analyzer termed the digital SACF assay. Dual fluorescence staining of formed colonies and the dissolution of soft agar led to accurate detection of transformed cells with the imaging cytometer. Partitioning a cell sample into multiple wells of culture plates enabled digital readout of the presence of colonies and elevated the sensitivity for their detection. In practice, the digital SACF assay detected impurity levels as low as 0.00001% of the hCTPs, i.e. only one HeLa cell contained in 10,000,000 human mesenchymal stem cells, within 30 days. The digital SACF assay saves time, is more sensitive than in vivo tumorigenicity tests, and would be useful for the quality control of hCTPs in the manufacturing process. PMID:26644244

  13. Inhibitory effect of Disulfiram/copper complex on non-small cell lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Lincan; Shen, Hongmei; Zhao, Guangqiang

    2014-04-18

    Highlights: • Disulfiram and copper synergistically inhibit lung cancer cell proliferation. • Lung cancer cell colony formation ability is inhibited by Disulfiram/copper. • Disulfiram/copper increases the sensitivity of cisplatin to lung cancer cells. • Lung cancer stem cells are specifically targeted by Disulfiram/copper complex. - Abstract: Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in both men and women worldwide. Recently, Disulfiram has been reported to be able to inhibit glioblastoma, prostate, or breast cancer cell proliferation. In this study, the synergistic effect of Disulfiram and copper on NSCLC cell growth was investigated. Inhibition ofmore » cancer cell proliferation was detected by 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) assay and cell cycle analysis. Liquid colony formation and tumor spheroid formation assays were used to evaluate their effect on cancer cell clonogenicity. Real-time PCR was performed to test the mRNA level of cancer stem cell related genes. We found that Disulfiram or copper alone did not potently inhibit NSCLC cell proliferation in vitro. However, the presence of copper significantly enhanced inhibitory effect of Disulfiram on NSCLC cell growth, indicating a synergistic effect between Disulfiram and copper. Cell cycle analysis showed that Disulfiram/copper complex caused NSCLC cell cycle arrest in G2/M phase. Furthermore, Disulfiram/copper significantly increased the sensitivity of cisplatin in NSCLC cells tested by MTT assay. Liquid colony formation assay revealed that copper dramatically increased the inhibitory effect of Disulfiram on NSCLC cell colony forming ability. Disulfiram combined with copper significantly attenuated NSCLC cell spheroid formation and recuded the mRNA expression of lung cancer stem cell related genes. Our data suggest that Disulfiram/copper complex alone or combined with other chemotherapy is a potential therapeutic strategy for NSCLC patients.« less

  14. Knockdown of Long Noncoding RNA FTX Inhibits Proliferation, Migration, and Invasion in Renal Cell Carcinoma Cells.

    PubMed

    He, Xiangfei; Sun, Fuguang; Guo, Fengfu; Wang, Kai; Gao, Yisheng; Feng, Yanfei; Song, Bin; Li, Wenzhi; Li, Yang

    2017-01-26

    Renal cell carcinoma (RCC) is one of the most common kidney cancers worldwide. Although great progressions have been made in the past decades, its morbidity and lethality remain increasing. Long noncoding RNAs (lncRNAs) are demonstrated to play significant roles in the tumorigenesis. This study aimed to investigate the detailed roles of lncRNA FTX in RCC cell proliferation and metastasis. Our results showed that the transcript levels of FTX in both clinical RCC tissues and the cultured RCC cells were significantly upregulated and associated with multiple clinical parameters of RCC patients, including familial status, tumor sizes, lymphatic metastasis, and TNM stages. With cell proliferation assays, colony formation assays, and cell cycle assays, we testified that knockdown of FTX in A498 and ACHIN cells with specific shRNAs inhibited cell proliferation rate, colony formation ability, and arrested cell cycle in the G0/G1 phase. FTX depletion also suppressed cell migration and invasion with Transwell assays and wound-healing assays. These data indicated the pro-oncogenic potential of FTX in RCC, which makes it a latent therapeutic target of RCC diagnosis and treatment in the clinic.

  15. Differential nuclear staining assay for high-throughput screening to identify cytotoxic compounds.

    PubMed

    Lema, Carolina; Varela-Ramirez, Armando; Aguilera, Renato J

    As large quantities of novel synthetic molecules continue to be generated there is a challenge to identify therapeutic agents with cytotoxic activity. Here we introduce a Differential Nuclear Staining (DNS) assay adapted to live-cell imaging for high throughput screening (HTS) that utilizes two fluorescent DNA intercalators, Hoechst 33342 and Propidium iodide (PI). Since Hoechst can readily cross cell membranes to stain DNA of living and dead cells, it was used to label the total number of cells. In contrast, PI only enters cells with compromised plasma membranes, thus selectively labeling dead cells. The DNS assay was successfully validated by utilizing well known cytotoxic agents with fast or slow cytotoxic activities. The assay was found to be suitable for HTS with Z' factors ranging from 0.86 to 0.60 for 96 and 384-well formats, respectively. Furthermore, besides plate-to-plate reproducibility, assay quality performance was evaluated by determining ratios of signal-to-noise and signal-to-background, as well as coefficient of variation, which resulted in adequate values and validated the assay for HTS initiatives. As proof of concept, eighty structurally diverse compounds from a small molecule library were screened in a 96-well plate format using the DNS assay. Using this DNS assay, six hits with cytotoxic properties were identified and all of them were also successfully identified by using the commercially available MTS assay (CellTiter 96® Cell Proliferation Assay). In addition, the DNS and a flow cytometry assay were used to validate the activity of the cytotoxic compounds. The DNS assay was also used to generate dose-response curves and to obtain CC 50 values. The results indicate that the DNS assay is reliable and robust and suitable for primary and secondary screens of compounds with potential cytotoxic activity.

  16. Differential nuclear staining assay for high-throughput screening to identify cytotoxic compounds

    PubMed Central

    LEMA, Carolina; VARELA-RAMIREZ, Armando; AGUILERA, Renato J.

    2016-01-01

    As large quantities of novel synthetic molecules continue to be generated there is a challenge to identify therapeutic agents with cytotoxic activity. Here we introduce a Differential Nuclear Staining (DNS) assay adapted to live-cell imaging for high throughput screening (HTS) that utilizes two fluorescent DNA intercalators, Hoechst 33342 and Propidium iodide (PI). Since Hoechst can readily cross cell membranes to stain DNA of living and dead cells, it was used to label the total number of cells. In contrast, PI only enters cells with compromised plasma membranes, thus selectively labeling dead cells. The DNS assay was successfully validated by utilizing well known cytotoxic agents with fast or slow cytotoxic activities. The assay was found to be suitable for HTS with Z′ factors ranging from 0.86 to 0.60 for 96 and 384-well formats, respectively. Furthermore, besides plate-to-plate reproducibility, assay quality performance was evaluated by determining ratios of signal-to-noise and signal-to-background, as well as coefficient of variation, which resulted in adequate values and validated the assay for HTS initiatives. As proof of concept, eighty structurally diverse compounds from a small molecule library were screened in a 96-well plate format using the DNS assay. Using this DNS assay, six hits with cytotoxic properties were identified and all of them were also successfully identified by using the commercially available MTS assay (CellTiter 96® Cell Proliferation Assay). In addition, the DNS and a flow cytometry assay were used to validate the activity of the cytotoxic compounds. The DNS assay was also used to generate dose-response curves and to obtain CC50 values. The results indicate that the DNS assay is reliable and robust and suitable for primary and secondary screens of compounds with potential cytotoxic activity. PMID:27042697

  17. Nerve Growth Factor-Induced Angiogenesis: 1. Endothelial Cell Tube Formation Assay.

    PubMed

    Lazarovici, Philip; Lahiani, Adi; Gincberg, Galit; Haham, Dikla; Fluksman, Arnon; Benny, Ofra; Marcinkiewicz, Cezary; Lelkes, Peter I

    2018-01-01

    Nerve growth factor (NGF) is a neurotrophin promoting survival, proliferation, differentiation, and neuroprotection in the embryonal and adult nervous system. NGF also induces angiogenic effects in the cardiovascular system, which may be beneficial in engineering new blood vessels and for developing novel anti-angiogenesis therapies for cancer. Angiogenesis is a cellular process characterized by a number of events, including endothelial cell migration, invasion, and assembly into capillaries. In vitro endothelial tube formation assays are performed using primary human umbilical vein endothelial cells, human aortic endothelial cells, and other human or rodent primary endothelial cells isolated from the vasculature of both tumors and normal tissues. Immortalized endothelial cell lines are also used for these assays. When seeded onto Matrigel, these cells reorganize to create tubelike structure, which may be used as models for studying some aspects of in vitro angiogenesis. Image acquisition by light and fluorescence microscopy and/or quantification of fluorescently labeled cells can be carried out manually or digitally, using commercial software and automated image processing. Here we detail materials, procedure, assay conditions, and cell labeling for quantification of endothelial cell tube formation. This model can be applied to study cellular and molecular mechanisms by which NGF or other neurotrophins promote angiogenesis. This model may also be useful for the development of potential angiogenic and/or anti-angiogenic drugs targeting NGF receptors.

  18. [The Effect of TALENs-mediated Downregulation Expression of Nanog on Malignant Behavior of Cervical Cancer HeLa Cells].

    PubMed

    Yu, Ai-qing; Li, Cheng-lin; Yang, Yi; Yan, Shi-rong

    2016-01-01

    To study the effect of downregulation expression of Nanog on malignant behavior of cervical cancer HeLa cells. Gene editing tool TALENs was employed to induce downregulation expression of Nanog, and Nanog mutation was evaluated by sequencing. RT-PCR and Western blot was used to detect the mRNA and protein expression level, respectively. Colony-formation assay, Transwell invasion assay, and chemotherapy sensibility assay was carried out to assess the capacity of colony-formation, invasion, and chemoresistance, respectively. TALENs successfully induced Nanog mutation and downregulated Nanog expression. Nanog mRNA and protein expression of Nanog-mutated monoclonal HeLa cells downregulated 3 times compared to thoses of wild-type HeLa cells (P < 0.05). Additionally, significant weakened abilities of colony-formation, invasion, and chemoresistance in monoclonal HeLa cells were observed when compared to those of wild-type HeLa cells (P < 0.05). Nanog mutation attenuates the malignant behavior of HeLa cells. Importantly, downregulation or silencing of Nanog is promising to be a novel strategy for the treatment of cervical carcinoma.

  19. Endothelial cell differentiation into capillary-like structures in response to tumour cell conditioned medium: a modified chemotaxis chamber assay.

    PubMed

    Garrido, T; Riese, H H; Aracil, M; Pérez-Aranda, A

    1995-04-01

    We have developed a modified chemotaxis chamber assay in which bovine aortic endothelial (BAE) cells degrade Matrigel basement membrane and migrate and form capillary-like structures on type I collagen. This capillary formation occurs in the presence of conditioned media from highly metastatic tumour cell lines, such as B16F10 murine melanoma or MDA-MD-231 human breast adenocarcinoma, but not in the presence of conditioned medium (CM) from the less invasive B16F0 cell line. Replacement of tumour cell CM by 10 ng ml-1 basic fibroblast growth factor (bFGF) also results in capillary-like structure formation by BAE cells. An anti-bFGF antibody blocks this effect, showing that bFGF is one of the factors responsible for the angiogenic response induced by B16F10 CM in our assay. Addition of an anti-laminin antibody reduces significantly the formation of capillary-like structures, probably by blocking the attachment of BAE cells to laminin present in Matrigel. The anti-angiogenic compound suramin inhibits in a dose-dependent manner (complete inhibition with 100 microM suramin) the migration and differentiation of BAE cells on type I collagen in response to B16F10 CM. This assay represents a new model system to study tumour-induced angiogenesis in vitro.

  20. [Inhibition of HIV-1 mediated cell-cell fusion by saponin fraction from Psidium guajava leaf].

    PubMed

    Mao, Qin-Chao; Zhou, Ying-Chun; Li, Run-Ming; Hu, Yi-Ping; Liu, Shu-Wen; Li, Xiao-Juan

    2010-11-01

    To investigate the effects of the total saponin of Psidium guajava leaf (TSGL) on HIV-1 envelop proteins (env) mediated virus entry into target cells. The TSGL was purified and concentrated using SA-1 macropore resin. The effect of TSGL on HIV-1 entry into target cells was tested using a cell-cell fusion assay by mixing CHO-WT and MT-2 cells. The cytotoxicity of TSGL was measured by MTT assay. The activity of TSGL on blocking the HIV-1 gp41 six helical bundle (6-HB) formation was analyzed by ELISA and Native-PAGE (N-PAGE). The TSGL could inhibit HIV env mediated cell-cell fusion with an IC50 of (7.33 +/- 0.40) microg/mL, and displayed little cytotoxicity at that concentration. ELISA assay showed that the TSGL could prevent gp41 6-HB formation with inhibitory activity of 95.93% at 25 microg/mL. N-PAGE study confirmed the inhibitory effect of TSGL on gp41 6-HB formation. The TSGL can inhibit HIV entry target cells by interfering the envelop subunit gp41 form the critical 6-HB structure.

  1. Development of a surrogate angiogenic potency assay for clinical-grade stem cell production.

    PubMed

    Lehman, Nicholas; Cutrone, Rochelle; Raber, Amy; Perry, Robert; Van't Hof, Wouter; Deans, Robert; Ting, Anthony E; Woda, Juliana

    2012-09-01

    Clinical results from acute myocardial infarction (AMI) patients treated with MultiStem®, a large-scale expanded adherent multipotent progenitor cell population (MAPC), have demonstrated a strong safety and benefit profile for these cells. The mechanism of benefit with MAPC treatment is a result, in part, of its ability to induce neovascularization through trophic support. Production of clinical-grade stem cell products requires the development of lot-release criteria based on potency assays that directly reflect the fundamental mechanistic pathway underlying the therapeutic response to verify manufacturing process consistency and product potency. Using an in vitro endothelial tube formation assay, a potency assay has been developed that reflects MAPC pro-angiogenic activity. Serum-free conditioned media collected from MAPC culture induced endothelial tube formation. A proteomic survey of angiogenic factors produced by the cells in vitro revealed candidate factors linked to angiogenic potency. Three cytokines, chemokine (C-X-C motif) ligand 5 (CXCL5), interleukin 8 (IL-8) and vascular endothelial growth factor (VEGF), were required for this angiogenic activity. Depletion of any of these factors from the media prevented tube formation, while adding back increasing amounts of these cytokines into the depleted serum-free conditioned media established the lower limits of each of the cytokines required to induce angiogenesis. A necessary threshold of angiogenic factor expression was established using an in vitro angiogenesis assay. By correlating the levels of the cytokines required to induce tube formation in vitro with levels of the factors found in the spent media from manufacturing production runs, detection of these factors was identified as a surrogate potency assay with defined pass/fail criteria.

  2. Incarvine C suppresses proliferation and vasculogenic mimicry of hepatocellular carcinoma cells via targeting ROCK inhibition.

    PubMed

    Zhang, Ji-Gang; Zhang, Dan-Dan; Wu, Xin; Wang, Yu-Zhu; Gu, Sheng-Ying; Zhu, Guan-Hua; Li, Xiao-Yu; Li, Qin; Liu, Gao-Lin

    2015-10-28

    Studies have described vasculogenic mimicry (VM) as an alternative circulatory system to blood vessels in multiple malignant tumor types, including hepatocellular carcinoma (HCC). In the current study, we aimed to seek novel and more efficient treatment strategies by targeting VM and explore the underlying mechanisms in HCC cells. Cell counting kit-8 (CCK-8) assay and colony survival assay were performed to explore the inhibitory effect of incarvine C (IVC) on human cancer cell proliferation. Flow cytometry was performed to analyze the cell cycle distribution after DNA staining and cell apoptosis by the Annexin V-PE and 7-AAD assay. The effect of IVC on Rho-associated, coiled-coil-containing protein kinase (ROCK) was determined by western blotting and stress fiber formation assay. The inhibitory role of IVC on MHCC97H cell VM formation was determined by formation of tubular network structures on Matrigel in vitro, real time-qPCR, confocal microscopy and western blotting techniques. We explored an anti-metastatic HCC agent, IVC, derived from traditional Chinese medicinal herbs, and found that IVC dose-dependently inhibited the growth of MHCC97H cells. IVC induced MHCC97H cell cycle arrest at G1 transition, which was associated with cyclin-dependent kinase 2 (CDK-2)/cyclin-E1 degradation and p21/p53 up-regulation. In addition, IVC induced apoptotic death of MHCC97H cells. Furthermore, IVC strongly suppressed the phosphorylation of the ROCK substrate myosin phosphatase target subunit-1 (MYPT-1) and ROCK-mediated actin fiber formation. Finally, IVC inhibited cell-dominant tube formation in vitro, which was accompanied with the down-regulation of VM-key factors as detected by real time-qPCR and immunofluorescence. Taken together, the effective inhibitory effect of IVC on MHCC97H cell proliferation and neovascularization was associated with ROCK inhibition, suggesting that IVC may be a new potential drug candidate for the treatment of HCC.

  3. miR-335 negatively regulates osteosarcoma stem cell-like properties by targeting POU5F1.

    PubMed

    Guo, Xiaodong; Yu, Ling; Zhang, Zhengpei; Dai, Guo; Gao, Tian; Guo, Weichun

    2017-01-01

    Evidence is accumulating to link cancer stem cells to the pathogenesis and progression of osteosarcoma. The aim of this study is to investigate the role of miR-335 in osteosarcoma stem cells. Tumor spheroid culture and flow cytometry were applied to screen out osteosarcoma stem cells. Real-time quantitative PCR was used to detect the expression level of miR-335 in MG63, U2OS and 143B osteosarcoma stem cells. The relationship of miR-335 expression with osteosarcoma stem cells was then analyzed. Transwell assay and transplantation assay were performed to elucidate biological effects of miR-335 on cell invasion and vivo tumor formation. Western Blot and luciferase assays were executed to investigate the regulation of POU5F1 by miR-335. The expression of miR-335 in osteosarcoma stem cells was lower than their differentiated counterparts. Cells expressing miR-335 possessed decreased stem cell-like properties. Gain or loss of function assays were applied to find that miR-335 antagonist promoted stem cell-like properties as well as invasion. Luciferase report and transfection assay showed that POU5F1 was downregulated by miR-335. Pre-miR-335 resulted in tumor enhanced sensitivity to traditional chemotherapy, whereas anti-miR-335 promoted chemoresistance. Finally, the inhibitory effect of miR-335 on in vivo tumor formation showed that combination of pre-miR-335 with cisplatin further reduced the tumor size, and miR-335 brought down the sphere formation capacity induced by cisplatin. The current study demonstrates that miR-335 negatively regulates osteosarcoma stem cell-like properties by targeting POU5F1, and miR-335 could target CSCs to synergize with traditional chemotherapeutic agents to overcome osteosarcoma.

  4. Plant proteolytic enzyme papain abrogates angiogenic activation of human umbilical vein endothelial cells (HUVEC) in vitro

    PubMed Central

    2013-01-01

    Background Vascular endothelial growth factor (VEGF) is a key regulator of physiologic and pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. It is known that cysteine proteases from plants, like bromelain and papain are capable to suppress inflammatory activation. Recent studies have demonstrated that they may interfere with angiogenesis related pathways as well. The aim of this study was to investigate the anti-angiogenic effects of papain on human umbilical vein endothelial cells (HUVEC) in vitro. Methods Cell viability after prolonged treatment with papain was investigated by life cell staining and lactate dehydrogenase release assay. Angiogenic activation was assessed by ELISA against phosphorylated proteins AKT, MEK1/2, ERK1/2, SAPK/JNK and p38-MAPK. Growth inhibition was determined by means of an MTT-assay and cell migration by means of a scratch assay. Capability to form a capillary network was investigated using a tube formation assay. Results Papain did not induce proteolysis or cell detachment of HUVEC in a concentration range between 0 and 25 μg/mL. Four hours treatment with 10 μg/mL papain resulted in a reduced susceptibility of endothelial cells to activation by VEGF as determined by phosphorylation levels of Akt, MEK1/2, SAPK/JNK. Papain exerted a distinct inhibitory effect on cell growth, cell migration and tube formation with inhibition of tube formation detectable at concentrations as low as 1 μg/mL. Bromelain and ficin displayed similar effects with regard to cell growth and tube formation. Conclusion Papain showed a strong anti-angiogenic effect in VEGF activated HUVEC. This effect may be due to interference with AKT, MEK1/2 and SAPK/JNK phosphorylation. Two other plant derived cysteine proteases displayed similar inhibition of HUVEC cell growth and tube formation. These findings indicate that plant proteolytic enzymes may have potential as preventive and therapeutic agents against angiogenesis related human diseases. PMID:24053149

  5. Large-Scale Femtoliter Droplet Array for Single Cell Efflux Assay of Bacteria.

    PubMed

    Iino, Ryota; Sakakihara, Shouichi; Matsumoto, Yoshimi; Nishino, Kunihiko

    2018-01-01

    Large-scale femtoliter droplet array as a platform for single cell efflux assay of bacteria is described. Device microfabrication, femtoliter droplet array formation and concomitant enclosure of single bacterial cells, fluorescence-based detection of efflux activity at the single cell level, and collection of single cells from droplet and subsequent gene analysis are described in detail.

  6. Inhibitory Effects of the Four Main Theaflavin Derivatives Found in Black Tea on Ovarian Cancer Cells.

    PubMed

    Gao, Ying; Rankin, Gary O; Tu, Youying; Chen, Yi Charlie

    2016-02-01

    Some polyphenols induce apoptosis and inhibit angiogenesis. Consumption of black tea, rich in polyphenols, has been found to reduce ovarian cancer risk. Theaflavin (TF1), theaflavin-3-gallate (TF2a), theaflavin-3'-gallate (TF2b) and theaflavin-3, 3'-digallate (TF3) are four main theaflavin derivatives found in black tea. Cell proliferation assay, Hoechst 33342 staining assay, Caspase-Glo Assay, western blot, human umbilical vein endothelial cell tube formation assay and vascular endothelial growth factor (VEGF) enzyme-linked immunosorbent assay were performed. All four theaflavin derivatives reduced viability of ovarian cancer cells at lower concentrations than with normal ovarian cells. TF1 mainly mediated apoptosis via the intrinsic pathway, while the others via the intrinsic and extrinsic pathways. TF1 inhibited tube formation via reducing VEGF secretion in a hypoxia-inducible factor 1α-independent manner, while the others in a HIF1α-dependent way. All four theaflavin derivatives inhibited ovarian cancer cells. Some of the effects and mechanisms of TF1 are different from those of the other three theaflavin derivatives. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. In Vitro Analysis of Breast Cancer Cell Line Tumourspheres and Primary Human Breast Epithelia Mammospheres Demonstrates Inter- and Intrasphere Heterogeneity

    PubMed Central

    Vargas, Ana Cristina; Keith, Patricia; Reid, Lynne; Wockner, Leesa; Amiri, Marjan Askarian; Sarkar, Debina; Simpson, Peter T.; Clarke, Catherine; Schmidt, Chris W.; Reynolds, Brent A.

    2013-01-01

    Mammosphere and breast tumoursphere culture have gained popularity as in vitro assays for propagating and analysing normal and cancer stem cells. Whether the spheres derived from different sources or parent cultures themselves are indeed single entities enriched in stem/progenitor cells compared to other culture formats has not been fully determined. We surveyed sphere-forming capacity across 26 breast cell lines, immunophenotyped spheres from six luminal- and basal-like lines by immunohistochemistry and flow cytometry and compared clonogenicity between sphere, adherent and matrigel culture formats using in vitro functional assays. Analyses revealed morphological and molecular intra- and inter-sphere heterogeneity, consistent with adherent parental cell line phenotypes. Flow cytometry showed sphere culture does not universally enrich for markers previously associated with stem cell phenotypes, although we found some cell-line specific changes between sphere and adherent formats. Sphere-forming efficiency was significantly lower than adherent or matrigel clonogenicity and constant over serial passage. Surprisingly, self-renewal capacity of sphere-derived cells was similar/lower than other culture formats. We observed significant correlation between long-term-proliferating-cell symmetric division rates in sphere and adherent cultures, suggesting functional overlap between the compartments sustaining them. Experiments with normal primary human mammary epithelia, including sorted luminal (MUC1+) and basal/myoepithelial (CD10+) cells revealed distinct luminal-like, basal-like and mesenchymal entities amongst primary mammospheres. Morphological and colony-forming-cell assay data suggested mammosphere culture may enrich for a luminal progenitor phenotype, or induce reversion/relaxation of the basal/mesenchymal in vitro selection occurring with adherent culture. Overall, cell line tumourspheres and primary mammospheres are not homogenous entities enriched for stem cells, suggesting a more cautious approach to interpreting data from these assays and careful consideration of its limitations. Sphere culture may represent an alternative 3-dimensional culture system which rather than universally ‘enriching’ for stem cells, has utility as one of a suite of functional assays that provide a read-out of progenitor activity. PMID:23750209

  8. Screening of Small Molecule Interactor Library by Using In-Cell NMR Spectroscopy (SMILI-NMR)

    PubMed Central

    Xie, Jingjing; Thapa, Rajiv; Reverdatto, Sergey; Burz, David S.; Shekhtman, Alexander

    2011-01-01

    We developed an in-cell NMR assay for screening small molecule interactor libraries (SMILI-NMR) for compounds capable of disrupting or enhancing specific interactions between two or more components of a biomolecular complex. The method relies on the formation of a well-defined biocomplex and utilizes in-cell NMR spectroscopy to identify the molecular surfaces involved in the interaction at atomic scale resolution. Changes in the interaction surface caused by a small molecule interfering with complex formation are used as a read-out of the assay. The in-cell nature of the experimental protocol insures that the small molecule is capable of penetrating the cell membrane and specifically engaging the target molecule(s). Utility of the method was demonstrated by screening a small dipeptide library against the FKBP–FRB protein complex involved in cell cycle arrest. The dipeptide identified by SMILI-NMR showed biological activity in a functional assay in yeast. PMID:19422228

  9. Dimethyl sulfoxide inactivates the anticancer effect of cisplatin against human myelogenous leukemia cell lines in in vitro assays

    PubMed Central

    Raghavan, Rahul; Cheriyamundath, Sanith; Madassery, Joseph

    2015-01-01

    Objectives: To investigate the effect of DMSO on cisplatin induced cytotoxicity (invitro) against K562 (Human mylogenous leukemia) cell line and to study the cisplatin-DMSO adduct formation using UV-spectrophotometer. Materials and methods: Effect of DMSO on the cytotoxicity of cisplatin was studied in K562 (Chronic mylogenous leukemia) cell line by MTT assay. Cisplatin-DMSO adduct formation was studied by continuously monitoring the increase in absorption peaks for 30 minutes using UV-spectrophotometer. Results: 0.1-0.3% DMSO markedly reduced the cytotoxic activity of cisplatin in K562 cells. Cisplatin-DMSO adduct formation was detected using UV-spectrophotometer. Continuous increase in UV absorbance between 250nm-290nm was observed when cisplatin (0.5mg/ml) and DMSO (10%) were mixed. Conclusion: Present study revealed that DMSO inactivates the cytotoxicity of cisplatin. Cisplatin-DMSO mixture showed increased absorbance at 250-290nm. Therefore, using DMSO in invitro assays might result in misinterpretation of actual efficacy of drugs. PMID:26069372

  10. Dimethyl sulfoxide inactivates the anticancer effect of cisplatin against human myelogenous leukemia cell lines in in vitro assays.

    PubMed

    Raghavan, Rahul; Cheriyamundath, Sanith; Madassery, Joseph

    2015-01-01

    To investigate the effect of DMSO on cisplatin induced cytotoxicity (invitro) against K562 (Human mylogenous leukemia) cell line and to study the cisplatin-DMSO adduct formation using UV-spectrophotometer. Effect of DMSO on the cytotoxicity of cisplatin was studied in K562 (Chronic mylogenous leukemia) cell line by MTT assay. Cisplatin-DMSO adduct formation was studied by continuously monitoring the increase in absorption peaks for 30 minutes using UV-spectrophotometer. 0.1-0.3% DMSO markedly reduced the cytotoxic activity of cisplatin in K562 cells. Cisplatin-DMSO adduct formation was detected using UV-spectrophotometer. Continuous increase in UV absorbance between 250nm-290nm was observed when cisplatin (0.5mg/ml) and DMSO (10%) were mixed. Present study revealed that DMSO inactivates the cytotoxicity of cisplatin. Cisplatin-DMSO mixture showed increased absorbance at 250-290nm. Therefore, using DMSO in invitro assays might result in misinterpretation of actual efficacy of drugs.

  11. RAS - Screens & Assays - Drug Discovery

    Cancer.gov

    The RAS Drug Discovery group aims to develop assays that will reveal aspects of RAS biology upon which cancer cells depend. Successful assay formats are made available for high-throughput screening programs to yield potentially effective drug compounds.

  12. Development of a dual luciferase activity and fluorescamine protein assay adapted to a 384 micro-well plate format: Reducing variability in human luciferase transactivation cell lines aimed at endocrine active substances.

    PubMed

    Brennan, Jennifer C; Tillitt, Donald E

    2018-03-01

    There is a need to adapt cell bioassays to 384-well and 1536-well formats instead of the traditional 96-well format as high-throughput screening (HTS) demands increase. However, the sensitivity and performance of the bioassay must be re-verified in these higher micro-well plates, and verification of cell health must also be HT (high-throughput). We have adapted two commonly used human breast luciferase transactivation cell bioassays, the recently re-named estrogen agonist/antagonist screening VM7Luc4E2 cell bioassay (previously designated BG1Luc4E2) and the androgen/glucocorticoid screening MDA-kb2 cell bioassay, to 384-well formats for HTS of endocrine-active substances (EASs). This cost-saving adaptation includes a fast, accurate, and easy measurement of protein amount in each well via the fluorescamine assay with which to normalize luciferase activity of cell lysates without requiring any transfer of the cell lysates. Here we demonstrate that by accounting for protein amount in the cell lysates, antagonistic agents can easily be distinguished from cytotoxic agents in the MDA-kb2 and VM7Luc4E2 cell bioassays. Additionally, we demonstrate via the fluorescamine assay improved interpretation of luciferase activity in wells along the edge of the plate (the so-called "edge effect"), thereby increasing usable wells to the entire plate, not just interior wells. Published by Elsevier Ltd.

  13. Development of a dual luciferase activity and fluorescamine protein assay adapted to a 384 micro-well plate format: Reducing variability in human luciferase transactivation cell lines aimed at endocrine active substances

    USGS Publications Warehouse

    Brennan, Jennifer; Tillitt, Donald E.

    2018-01-01

    There is a need to adapt cell bioassays to 384-well and 1536-well formats instead of the traditional 96-well format as high-throughput screening (HTS) demands increase. However, the sensitivity and performance of the bioassay must be re-verified in these higher micro-well plates, and verification of cell health must also be HT (high-throughput). We have adapted two commonly used human breast luciferase transactivation cell bioassays, the recently re-named estrogen agonist/antagonist screening VM7Luc4E2 cell bioassay (previously designated BG1Luc4E2) and the androgen/glucocorticoid screening MDA-kb2 cell bioassay, to 384-well formats for HTS of endocrine-active substances (EASs). This cost-saving adaptation includes a fast, accurate, and easy measurement of protein amount in each well via the fluorescamine assay with which to normalize luciferase activity of cell lysates without requiring any transfer of the cell lysates. Here we demonstrate that by accounting for protein amount in the cell lysates, antagonistic agents can easily be distinguished from cytotoxic agents in the MDA-kb2 and VM7Luc4E2 cell bioassays. Additionally, we demonstrate via the fluorescamine assay improved interpretation of luciferase activity in wells along the edge of the plate (the so-called “edge effect”), thereby increasing usable wells to the entire plate, not just interior wells.

  14. Colony, hanging drop, and methylcellulose three dimensional hypoxic growth optimization of renal cell carcinoma cell lines.

    PubMed

    Matak, Damian; Brodaczewska, Klaudia K; Lipiec, Monika; Szymanski, Łukasz; Szczylik, Cezary; Czarnecka, Anna M

    2017-08-01

    Renal cell carcinoma (RCC) is the most lethal of the common urologic malignancies, comprising 3% of all human neoplasms, and the incidence of kidney cancer is rising annually. We need new approaches to target tumor cells that are resistant to current therapies and that give rise to recurrence and treatment failure. In this study, we focused on low oxygen tension and three-dimensional (3D) cell culture incorporation to develop a new RCC growth model. We used the hanging drop and colony formation methods, which are common in 3D culture, as well as a unique methylcellulose (MC) method. For the experiments, we used human primary RCC cell lines, metastatic RCC cell lines, human kidney cancer stem cells, and human healthy epithelial cells. In the hanging drop assay, we verified the potential of various cell lines to create solid aggregates in hypoxic and normoxic conditions. With the semi-soft agar method, we also determined the ability of various cell lines to create colonies under different oxygen conditions. Different cell behavior observed in the MC method versus the hanging drop and colony formation assays suggests that these three assays may be useful to test various cell properties. However, MC seems to be a particularly valuable alternative for 3D cell culture, as its higher efficiency of aggregate formation and serum independency are of interest in different areas of cancer biology.

  15. Quantum dot-based molecular imaging of cancer cell growth using a clone formation assay.

    PubMed

    Geng, Xia-Fei; Fang, Min; Liu, Shao-Ping; Li, Yan

    2016-10-01

    This aim of the present study was to investigate clonal growth behavior and analyze the proliferation characteristics of cancer cells. The MCF‑7 human breast cancer cell line, SW480 human colon cancer cell line and SGC7901 human gastric cancer cell line were selected to investigate the morphology of cell clones. Quantum dot‑based molecular targeted imaging techniques (which stained pan‑cytokeratin in the cytoplasm green and Ki67 in the cell nucleus yellow or red) were used to investigate the clone formation rate, cell morphology, discrete tendency, and Ki67 expression and distribution in clones. From the cell clone formation assay, the MCF‑7, SW480 and SGC7901 cells were observed to form clones on days 6, 8 and 12 of cell culture, respectively. These three types of cells had heterogeneous morphology, large nuclear:cytoplasmic ratios, and conspicuous pathological mitotic features. The cells at the clone periphery formed multiple pseudopodium. In certain clones, cancer cells at the borderline were separated from the central cell clusters or presented a discrete tendency. With quantum dot‑based molecular targeted imaging techniques, cells with strong Ki67 expression were predominantly shown to be distributed at the clone periphery, or concentrated on one side of the clones. In conclusion, cancer cell clones showed asymmetric growth behavior, and Ki67 was widely expressed in clones of these three cell lines, with strong expression around the clones, or aggregated at one side. Cell clone formation assay based on quantum dots molecular imaging offered a novel method to study the proliferative features of cancer cells, thus providing a further insight into tumor biology.

  16. Differences in quantification of DNA double-strand breaks assessed by 53BP1/γH2AX focus formation assays and the comet assay in mammalian cells treated with irradiation and N-acetyl-L-cysteine.

    PubMed

    Kurashige, Tomomi; Shimamura, Mika; Nagayama, Yuji

    2016-06-01

    The biological effect of ionizing radiation (IR) on genomic DNA is thought to be either direct or indirect; the latter is mediated by IR induction of free radicals and reactive oxygen species (ROS). This study was designed to evaluate the effect of N-acetyl-L-cysteine (NAC), a well-known ROS-scavenging antioxidant, on IR induction of genotoxicity, cytotoxicity and ROS production in mammalian cells, and aimed to clarify the conflicting data in previous publications. Although we clearly demonstrate the beneficial effect of NAC on IR-induced genotoxicity and cytotoxicity (determined using the micronucleus assay and cell viability/clonogenic assays), the data on NAC's effect on DNA double-strand break (DSB) formation were inconsistent in different assays. Specifically, mitigation of IR-induced DSBs by NAC was readily detected by the neutral comet assay, but not by the γH2AX or 53BP1 focus assays. NAC is a glutathione precursor and exerts its effect after conversion to glutathione, and presumably it has its own biological activity. Assuming that the focus assay reflects the biological responses to DSBs (detection and repair), while the comet assay reflects the physical status of genomic DNA, our results indicate that the comet assay could readily detect the antioxidant effect of NAC on DSB formation. However, NAC's biological effect might affect the detection of DSB repair by the focus assays. Our data illustrate that multiple parameters should be carefully used to analyze DNA damage when studying potential candidates for radioprotective compounds. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  17. Endochondral ossification is required for haematopoietic stem-cell niche formation.

    PubMed

    Chan, Charles K F; Chen, Ching-Cheng; Luppen, Cynthia A; Kim, Jae-Beom; DeBoer, Anthony T; Wei, Kevin; Helms, Jill A; Kuo, Calvin J; Kraft, Daniel L; Weissman, Irving L

    2009-01-22

    Little is known about the formation of niches, local micro-environments required for stem-cell maintenance. Here we develop an in vivo assay for adult haematopoietic stem-cell (HSC) niche formation. With this assay, we identified a population of progenitor cells with surface markers CD45(-)Tie2(-)alpha(V)(+)CD105(+)Thy1.1(-) (CD105(+)Thy1(-)) that, when sorted from 15.5 days post-coitum fetal bones and transplanted under the adult mouse kidney capsule, could recruit host-derived blood vessels, produce donor-derived ectopic bones through a cartilage intermediate and generate a marrow cavity populated by host-derived long-term reconstituting HSC (LT-HSC). In contrast, CD45(-)Tie2(-)alpha(V)(+)CD105(+)Thy1(+) (CD105(+)Thy1(+)) fetal bone progenitors form bone that does not contain a marrow cavity. Suppressing expression of factors involved in endochondral ossification, such as osterix and vascular endothelial growth factor (VEGF), inhibited niche generation. CD105(+)Thy1(-) progenitor populations derived from regions of the fetal mandible or calvaria that do not undergo endochondral ossification formed only bone without marrow in our assay. Collectively, our data implicate endochondral ossification, bone formation that proceeds through a cartilage intermediate, as a requirement for adult HSC niche formation.

  18. Development of a consensus protocol to quantify primate anti-non-Gal xenoreactive antibodies using pig aortic endothelial cells.

    PubMed

    Azimzadeh, Agnes M; Byrne, Guerard W; Ezzelarab, Mohamed; Welty, Emily; Braileanu, Gheorghe; Cheng, Xiangfei; Robson, Simon C; McGregor, Christopher G A; Cooper, David K C; Pierson, Richard N

    2014-01-01

    Scientists working in the field of xenotransplantation do not employ a uniform method to measure and report natural and induced antibody responses to non-Galα(1,3)Gal (non-Gal) epitopes. Such humoral responses are thought to be particularly pathogenic after transplantation of vascularized GalTKO pig organs and having a more uniform assay and reporting format would greatly facilitate comparisons between laboratories. Flow cytometry allows examination of antibody reactivity to intact antigens in their natural location and conformation on cell membranes. We have established a simple and reproducible flow cytometric assay to detect antibodies specific for non-Gal pig antigens using primary porcine aortic endothelial cells (pAECs) and cell culture-adapted pAEC cell lines generated from wild type and α1,3galactosyl transferase knockout (GalTKO) swine. The consensus protocol we propose here is based on procedures routinely used in four xenotransplantation centers and was independently evaluated at three sites using shared cells and serum samples. Our observation support use of the cell culture-adapted GalTKO pAEC KO:15502 cells as a routine method to determine the reactivity of anti-non-Gal antibodies in human and baboon serum. We have developed an assay that allows the detection of natural and induced non-Gal xenoreactive antibodies present in human or baboon serum in a reliable and consistent manner. This consensus assay and format for reporting the data should be accessible to laboratories and will be useful for assessing experimental results between multiple research centers. Adopting this assay and format for reporting the data should facilitate the detection, monitoring, and detailed characterization of non-Gal antibody responses. © 2014 John Wiley & Sons A/S Published by John Wiley & Sons Ltd.

  19. Zinc oxide nanoflowers make new blood vessels

    NASA Astrophysics Data System (ADS)

    Barui, Ayan Kumar; Veeriah, Vimal; Mukherjee, Sudip; Manna, Joydeb; Patel, Ajay Kumar; Patra, Sujata; Pal, Krishnendu; Murali, Shruthi; Rana, Rohit K.; Chatterjee, Suvro; Patra, Chitta Ranjan

    2012-11-01

    It is well established that angiogenesis is the process of formation of new capillaries from pre-existing blood vessels. It is a complex process, involving both pro- and anti-angiogenic factors, and plays a significant role in physiological and pathophysiological processes such as embryonic development, atherosclerosis, post-ischemic vascularization of the myocardium, tumor growth and metastasis, rheumatoid arthritis etc. This is the first report of zinc oxide (ZnO) nanoflowers that show significant pro-angiogenic properties (formation of new capillaries from pre-existing blood vessels), observed by in vitro and in vivo angiogenesis assays. The egg yolk angiogenesis assay using ZnO nanoflowers indicates the presence of matured blood vessels formation. Additionally, it helps to promote endothelial cell (EA.hy926 cells) migration in wound healing assays. Formation of reactive oxygen species (ROS), especially hydrogen peroxide (H2O2)--a redox signaling molecule, might be the plausible mechanism for nanoflower-based angiogenesis. Angiogenesis by nanoflowers may provide the basis for the future development of new alternative therapeutic treatment strategies for cardiovascular and ischemic diseases, where angiogenesis plays a significant role.It is well established that angiogenesis is the process of formation of new capillaries from pre-existing blood vessels. It is a complex process, involving both pro- and anti-angiogenic factors, and plays a significant role in physiological and pathophysiological processes such as embryonic development, atherosclerosis, post-ischemic vascularization of the myocardium, tumor growth and metastasis, rheumatoid arthritis etc. This is the first report of zinc oxide (ZnO) nanoflowers that show significant pro-angiogenic properties (formation of new capillaries from pre-existing blood vessels), observed by in vitro and in vivo angiogenesis assays. The egg yolk angiogenesis assay using ZnO nanoflowers indicates the presence of matured blood vessels formation. Additionally, it helps to promote endothelial cell (EA.hy926 cells) migration in wound healing assays. Formation of reactive oxygen species (ROS), especially hydrogen peroxide (H2O2)--a redox signaling molecule, might be the plausible mechanism for nanoflower-based angiogenesis. Angiogenesis by nanoflowers may provide the basis for the future development of new alternative therapeutic treatment strategies for cardiovascular and ischemic diseases, where angiogenesis plays a significant role. Electronic supplementary information (ESI) available: See DOI: 10.1039/c2nr32369a

  20. MiR-155 promotes cell proliferation and inhibits apoptosis by PTEN signaling pathway in the psoriasis.

    PubMed

    Xu, Longjiang; Leng, Hong; Shi, Xin; Ji, Jiang; Fu, Jinxiang; Leng, Hong

    2017-06-01

    MicroRNAs (miRNAs) have been demonstrated to contribute to malignant progression in psoriasis development. The purposes of the study was to evaluated the effects of miRNA-155 on cell proliferation, migration and apoptosis in psoriasis development via PTEN singaling pathway and identify its direct target protein. Quantitative real-time RT-PCR (qRT-PCR) was performed to examine the level of miR-155 in psoriasis cells, miR-155 was downregulated in a psoriasis cell line Hacat by transfected with small interfering RNA (siRNA), respectively. Cell survival was detected by the MTT assay and colony formation assay. Cell migration and invasion were measured via wound-healing assayand transwell assay. In addition, cell cycle and apoptosis about psoriasis cells was measured by flow cytometry. In this study, qRT-PCR assay showed that the expressions of miR-155 mRNA in psoriasis tissues were significantly higher than that in normal tissues. The assays about cell growth and proliferation showed that miR-155 knockdown led to a significant decrease in cell proliferation which was determined by MTT assay and colony formation assay compared to those of Lv-NC cells. Flow cytometry analysis showed that depletion of miR-155 could cause cell cycle change and the number of apoptotic cells was significantly increased in Lv-miR155 cells compared with control cells. In addition, the expression of several apoptosis-related factors were dramatically changed, such as PTEN, PIP 3 , AKT, p-AKT, Bax and Bcl-2. Our findings indicate that down-regulation of miR-155 significantly inhibits proliferation, migration, invasion and promotes apoptosis through PTEN singaling pathway in psoriasis cells. miR-155 might function as an oncogene miRNA in the progress of psoriasis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Analyses of cell surface molecules on hepatic stem/progenitor cells in mouse fetal liver.

    PubMed

    Kakinuma, Sei; Ohta, Haruhiko; Kamiya, Akihide; Yamazaki, Yuji; Oikawa, Tsunekazu; Okada, Ken; Nakauchi, Hiromitsu

    2009-07-01

    Hepatic stem/progenitor cells possess active proliferative ability and the capacity for differentiation into hepatic and cholangiocytic lineages. Our group and others have shown that a prospectively defined population in mid-gestational fetal liver contains hepatic stem/progenitor cells. However, the phenotypes of such cells are incompletely elucidated. We analyzed the profile of cell-surface molecules on primary hepatic stem/progenitor cells. Expression of cell surface molecules on primary hepatic stem/progenitor cells in mouse mid-gestational fetal liver was analyzed using flow cytometric multicolor analyses and colony-formation assays. The potential of the cells for liver repopulation was examined by transplantation assay. We found that CD13 (aminopeptidase N) was detected on the cells of the previously reported (Dlk/Pref-1(+)) hepatic stem/progenitor fraction. Colony-formation assays revealed that the CD13(+) fraction, compared with the Dlk(+) fraction, of non-hematopoietic cells in fetal liver was enriched in hepatic stem/progenitor cells. Transplantation assay showed the former fraction exhibited repopulating potential in regenerating liver. Moreover, flow cytometric analysis for over 90 antigens demonstrated enrichment of hepatic stem/progenitor cells using several positive selection markers, including (hitherto unknown) CD13, CD73, CD106, and CD133. Our data indicated that CD13 is a positive selection marker for hepatic stem/progenitor cells in mid-gestational fetal liver.

  2. Luteolin suppresses angiogenesis and vasculogenic mimicry formation through inhibiting Notch1-VEGF signaling in gastric cancer.

    PubMed

    Zang, Mingde; Hu, Lei; Zhang, Baogui; Zhu, Zhenglun; Li, Jianfang; Zhu, Zhenggang; Yan, Min; Liu, Bingya

    2017-08-26

    Gastric cancer is a great threat to the health of the people worldwide and lacks effective therapeutic regimens. Luteolin is one of Chinese herbs and presents in many fruits and green plants. In our previous study, we observed that luteolin inhibited cell migration and promoted cell apoptosis in gastric cancer. In the present study, luteolin significantly inhibited tube formation of human umbilical vein endothelial cells (HUVECs) through decreasing cell migration and proliferation of HUVECs in a dose-dependent manner. Vasculogenic mimicry (VM) tubes formed by gastric cancer cells were also inhibited with luteolin treatment. To explore how luteolin inhibited tubes formation, ELISA assay for VEGF was performed. Both of the VEGF secretion from Hs-746T cells and HUVECs were significantly decreased subsequent to luteolin treatment. In addition, cell migration was increased with the interaction between gastric cancer cells and HUVECs in co-culture assays. However, the promoting effects were abolished subsequent to luteolin treatment. Furthermore, luteolin inhibited VEGF secretion through suppressing Notch1 expression in gastric cancer. Overexpression of Notch1 in gastric cancer cells partially rescued the effects on cell migration, proliferation, HUVECs tube formation, and VM formation induced by luteolin treatment. In conclusion, luteolin inhibits angiogenesis and VM formation in gastric cancer through suppressing VEGF secretion dependent on Notch1 expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Overexpression of SDF-1 activates the NF-κB pathway to induce epithelial to mesenchymal transition and cancer stem cell-like phenotypes of breast cancer cells.

    PubMed

    Kong, Lingxin; Guo, Sufen; Liu, Chunfeng; Zhao, Yiling; Feng, Chong; Liu, Yunshuang; Wang, Tao; Li, Caijuan

    2016-03-01

    The formation of EMT and EMT-induced CSC-like phenotype is crucial for the metastasis of tumor cells. The stromal cell-derived factor-1 (SDF-1) is upregulated in various human carcinomas, which is closely associated with proliferation, migration, invasion and prognosis of malignancies. However, limited attention has been directed towards the effect of SDF-1 on epithelial to mesenchymal transition (EMT) or cancer stem cell (CSC)-like phenotype formation in breast cancer cells and the related mechanism. In the present study, we screened MCF-7 cells with low SDF-1 expression level for the purpose of evaluating whether SDF-1 is involved in EMT and CSC-like phenotype formation in MCF-7 cells. The pEGFP-N1-SDF-1 plasmid was transfected into MCF-7 cells, and the stably overexpressed SDF-1 in MCF-7 cells was confirmed by real-time PCR and western blot analysis. Colony formation assay, MTT, wound healing assay and Transwell invasion assay demonstrated that overexpression of SDF-1 significantly boosted the proliferation, migration and invasion of MCF-7 cells compared with parental (P<0.05). Flow cytometry analysis revealed a notable increase of CD44+/CD24- subpopulation in SDF-1 overexpressing MCF-7 cells (P<0.001), accompanied by the apparently elevated ALDH activity and the upregulation of the stem cell markers OCT-4, Nanog, and SOX2 compared with parental (P<0.01). Besides, western blot analysis and immunofluorescence assay observed the significant decreased expression of E-cadherin and enhanced expression of slug, fibronectin and vimentin in SDF-1 overexpressed MCF-7 cells in comparison with parental (P<0.01). Further study found that overexpression of SDF-1 induced the activation of NF-κB pathway in MCF-7 cells. Conversely, suppressing or silencing p65 expression by antagonist or RNA interference could remarkably increase the expression of E-cadherin in SDF-1 overexpressed MCF-7 cells (P<0.001). Overall, the above results indicated that overexpression of SDF-1 enhanced EMT by activating the NF-κB pathway of MCF-7 cells and further induced the formation of CSC-like phenotypes, ultimately promoting the proliferation and metastasis of MCF-7 cells. Therefore, SDF-1 may further be assessed as a potential target for gene therapy of breast cancer.

  4. Micronucleus formation induced by dielectric barrier discharge plasma exposure in brain cancer cells

    NASA Astrophysics Data System (ADS)

    Kaushik, Nagendra K.; Uhm, Hansup; Ha Choi, Eun

    2012-02-01

    Induction of micronucleus formation (cytogenetic damage) in brain cancer cells upon exposure of dielectric barrier discharge plasma has been investigated. We have investigated the influence of exposure and incubation times on T98G brain cancer cells by using growth kinetic, clonogenic, and micronucleus formation assay. We found that micronucleus formation rate directly depends on the plasma exposure time. It is also shown that colony formation capacity of cells has been inhibited by the treatment of plasma at all doses. Cell death and micronucleus formation are shown to be significantly elevated by 120 and 240 s exposure of dielectric barrier discharge plasma.

  5. A High-Throughput Genetic Complementation Assay in Yeast Cells Identified Selective Inhibitors of Sphingosine Kinase 1 Not Found Using a Cell-Free Enzyme Assay.

    PubMed

    Kashem, Mohammed A; Kennedy, Charles A; Fogarty, Kylie E; Dimock, Janice R; Zhang, Yunlong; Sanville-Ross, Mary L; Skow, Donna J; Brunette, Steven R; Swantek, Jennifer L; Hummel, Heidi S; Swindle, John; Nelson, Richard M

    2016-01-01

    Sphingosine kinase 1 (SphK1) is a lipid kinase that phosphorylates sphingosine to produce the bioactive sphingolipid, sphingosine-1-phosphate (S1P), and therefore represents a potential drug target for a variety of pathological processes such as fibrosis, inflammation, and cancer. We developed two assays compatible with high-throughput screening to identify small-molecule inhibitors of SphK1: a purified component enzyme assay and a genetic complementation assay in yeast cells. The biochemical enzyme assay measures the phosphorylation of sphingosine-fluorescein to S1P-fluorescein by recombinant human full-length SphK1 using an immobilized metal affinity for phosphochemicals (IMAP) time-resolved fluorescence resonance energy transfer format. The yeast assay employs an engineered strain of Saccharomyces cerevisiae, in which the human gene encoding SphK1 replaced the yeast ortholog and quantitates cell viability by measuring intracellular adenosine 5'-triphosphate (ATP) using a luciferase-based luminescent readout. In this assay, expression of human SphK1 was toxic, and the resulting yeast cell death was prevented by SphK1 inhibitors. We optimized both assays in a 384-well format and screened ∼10(6) compounds selected from the Boehringer Ingelheim library. The biochemical IMAP high-throughput screen identified 5,561 concentration-responsive hits, most of which were ATP competitive and not selective over sphingosine kinase 2 (SphK2). The yeast screen identified 205 concentration-responsive hits, including several distinct compound series that were selective against SphK2 and were not ATP competitive.

  6. 2D and 3D Matrices to Study Linear Invadosome Formation and Activity.

    PubMed

    Di Martino, Julie; Henriet, Elodie; Ezzoukhry, Zakaria; Mondal, Chandrani; Bravo-Cordero, Jose Javier; Moreau, Violaine; Saltel, Frederic

    2017-06-02

    Cell adhesion, migration, and invasion are involved in many physiological and pathological processes. For example, during metastasis formation, tumor cells have to cross anatomical barriers to invade and migrate through the surrounding tissue in order to reach blood or lymphatic vessels. This requires the interaction between cells and the extracellular matrix (ECM). At the cellular level, many cells, including the majority of cancer cells, are able to form invadosomes, which are F-actin-based structures capable of degrading ECM. Invadosomes are protrusive actin structures that recruit and activate matrix metalloproteinases (MMPs). The molecular composition, density, organization, and stiffness of the ECM are crucial in regulating invadosome formation and activation. In vitro, a gelatin assay is the standard assay used to observe and quantify invadosome degradation activity. However, gelatin, which is denatured collagen I, is not a physiological matrix element. A novel assay using type I collagen fibrils was developed and used to demonstrate that this physiological matrix is a potent inducer of invadosomes. Invadosomes that form along the collagen fibrils are known as linear invadosomes due to their linear organization on the fibers. Moreover, molecular analysis of linear invadosomes showed that the discoidin domain receptor 1 (DDR1) is the receptor involved in their formation. These data clearly demonstrate the importance of using a physiologically relevant matrix in order to understand the complex interactions between cells and the ECM.

  7. A CD13-targeting peptide integrated protein inhibits human liver cancer growth by killing cancer stem cells and suppressing angiogenesis.

    PubMed

    Zheng, Yan-Bo; Gong, Jian-Hua; Liu, Xiu-Jun; Li, Yi; Zhen, Yong-Su

    2017-05-01

    CD13 is a marker of angiogenic endothelial cells, and recently it is proved to be a biomarker of human liver cancer stem cells (CSCs). Herein, the therapeutic effects of NGR-LDP-AE, a fusion protein composed of CD13-targeting peptide NGR and antitumor antibiotic lidamycin, on human liver cancer and its mechanism were studied. Western blot and immunofluorescence assay demonstrated that CD13 (WM15 epitope) was expressed in both human liver cancer cell lines and vascular endothelial cells, while absent in normal liver cells. MTT assay showed that NGR-LDP-AE displayed potent cytotoxicity to cultured tumor cell lines with IC 50 values at low nanomolar level. NGR-LDP-AE inhibited tumorsphere formation of liver cancer cells, and the IC 50 values were much lower than that in MTT assay, indicating selectively killing of CSCs. In endothelial tube formation assay, NGR-LDP-AE at low cytotoxic dose significantly inhibited the formation of intact tube networks. Animal experiment demonstrated that NGR-LDP-AE inhibited the growth of human liver cancer xenograft. Immunohistochemical analysis showed that NGR-LDP-AE induced the down-regulation of CD13. In vitro experiment using cultured tumor cells also confirmed this result. NGR-LDP-AE activated both apoptotic and autophagic pathways in cultured tumor cells, while the induced autophagy protected cells from death. Conclusively, NGR-LDP-AE exerts its antitumor activity via killing liver CSCs and inhibiting angiogenesis. With one targeting motif, NGR-LDP-AE acts on both liver CSCs and angiogenic endothelial cells. It is a promising dual targeting fusion protein for liver cancer therapy, especially for advanced or relapsed cancers. © 2017 Wiley Periodicals, Inc.

  8. Evaluation of differential representative values between Chinese hamster cells and human lymphocytes in mitomycin C-induced cytogenetic assays and caspase-3 activity.

    PubMed

    Liao, Pei-Hu; Lin, Ruey-Hseng; Yang, Ming-Ling; Li, Yi-Ching; Kuan, Yu-Hsiang

    2012-03-01

    Chinese hamster ovary (CHO) cells, its lung fibroblasts (V79), and human lymphocytes are routinely used in in vitro cytogenetic assays, which include micronuclei (MN), sister chromatid exchange (SCE), and chromosome aberration (CA) assays. Mitomycin C (MMC), a DNA cross-link alkylating agent, is both an anticancer medicine and a carcinogen. To study the differential representative values of cell types in MMC-treated cytogenetic assays and its upstream factor, cysteine aspartic acid-specific protease (caspase)-3. Among the chosen cell types, lymphocytes expressed the highest sensitivity in all three MMC-induced assays, whereas CHO and V79 showed varied sensitivity in different assays. In MN assay, the sensitivity of CHO is higher than or equal to V79; in SCE assay, the sensitivity of CHO is the same as V79; and in CA assay, the sensitivity of CHO is higher than V79. In-depth analysis of CA revealed that in chromatid breaks and dicentrics formation, lymphocyte was the most sensitive of all and CHO was more sensitive than V79; and in acentrics and interchanges formation, lymphocyte was much more sensitive than the others. Furthermore, we found caspase-3 activity plays an important role in MMC-induced cytogenetic assays, with MMC-induced caspase-3 activity resulting in more sensitivity in lymphocytes than in CHO and V79. Based on these findings, lymphocyte will make a suitable predictive or representative control reference in cytogenetic assays and caspase-3 activity with its high specificity, positive predictive value, and sensitivity.

  9. Cadmium exposure inhibits branching morphogenesis and causes alterations consistent with HIF-1α inhibition in human primary breast organoids.

    PubMed

    Rocco, Sabrina A; Koneva, Lada; Middleton, Lauren Y M; Thong, Tasha; Solanki, Sumeet; Karram, Sarah; Nambunmee, Kowit; Harris, Craig; Rozek, Laura S; Sartor, Maureen A; Shah, Yatrik M; Colacino, Justin A

    2018-05-07

    Developmental cadmium exposure in vivo disrupts mammary gland differentiation, while exposure of breast cell lines to cadmium causes invasion consistent with the epithelial-mesenchymal transition (EMT). The effects of cadmium on normal human breast stem cells have not been measured. Here, we quantified the effects of cadmium exposure on reduction mammoplasty patient-derived breast stem cell proliferation and differentiation. Using the mammosphere assay and organoid formation in 3D hydrogels, we tested two physiologically relevant doses of cadmium, 0.25μM and 2.5μM, and tested for molecular alterations using RNA-seq. We functionally validated our RNA-seq findings with a HIF-1α activity reporter line and pharmaceutical inhibition of HIF-1α in organoid formation assays. 2.5μM cadmium reduced primary mammosphere formation and branching structure organoid formation rates by 33% and 87%, respectively. Despite no changes in mammosphere formation, 0.25μM cadmium inhibited branching organoid formation in hydrogels by 73%. RNA-seq revealed cadmium downregulated genes associated with extracellular matrix formation and EMT, while upregulating genes associated with metal response including metallothioneins and zinc transporters. In the RNA-seq data, cadmium downregulated HIF-1α target genes including LOXL2, ZEB1, and VIM. Cadmium significantly inhibited HIF-1α activity in a luciferase assay, and the HIF-1α inhibitor acriflavine ablated mammosphere and organoid formation. These findings show that cadmium, at doses relevant to human exposure, inhibited human mammary stem cell proliferation and differentiation, potentially through disruption of HIF-1α activity.

  10. The fusarin analogue NG-391 impairs nucleic acid formation in K-562 leukemia cells

    USDA-ARS?s Scientific Manuscript database

    The clavicipitaceous fungus Metarhizium robertsii produces the fusarin-like mycotoxin NG-391. We report on the biological effects of NG-391 on K-562 human cancer cells, obtained with radionuclide incorporation assays, along with nucleosome release and caspase assays, respectively. Our data suggests ...

  11. The Anticancer Effects of Radachlorin-mediated Photodynamic Therapy in the Human Endometrial Adenocarcinoma Cell Line HEC-1-A.

    PubMed

    Kim, Su-Mi; Rhee, Yun-Hee; Kim, Jong-Soo

    2017-11-01

    We investigated the effect of photodynamic therapy (PDT) using radachlorin on invasion, vascular formation and apoptosis by targeting epidermal growth factor receptor (EGFR)/vascular endothelial growth factor receptor 2 (VEGFR2) signaling pathways in the HEC-1-A endometrial adenocarcinoma cell line. To investigate the apoptotic pathway, we performed the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, and western blot analysis. We also evaluated the effects of PDT on tubular capillary formation in and invasion by HEC-1-A cells with a tube formation assay, invasion assay, prostaglandin E2 (PGE2) assay, and western blot analysis. PDT had anticancer effects on HEC-1-A through activation of the intrinsic pathway of apoptosis via caspase-9 and poly-(ADP-ribose) polymerase (PARP). PDT also inhibited tubular capillary formation in and invasion by HEC-1-A under VEGF pretreatment, that resulted from down-regulation of VEGFR2, EGFR, Ras homolog gene family/ member A (RhoA) and PGE2. These results are indicative of the specificity of radachlorin-mediated PDT to VEGF. The major advantage of radachlorin-mediated PDT is its selectivity for cancer tissue while maintaining adjacent normal endometrial tissue. Therefore, radachlorin-mediated PDT might offer high anticancer efficacy for endometrial adenocarcinoma and an especially useful modality for preserving fertility. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. A C-terminal fragment of fibulin-7 interacts with endothelial cells and inhibits their tube formation in culture.

    PubMed

    de Vega, Susana; Suzuki, Nobuharu; Nonaka, Risa; Sasaki, Takako; Forcinito, Patricia; Arikawa-Hirasawa, Eri; Yamada, Yoshihiko

    2014-03-01

    We have previously demonstrated that fibulin-7 (Fbln7) is expressed in teeth by pre-odontoblast and odontoblast cells, localized in the basement membrane and dentin matrices, and is an adhesion molecule for dental mesenchyme cells and odontoblasts. Fbln7 is also expressed in blood vessels by endothelial cells. In this report, we show that a recombinant C-terminal Fbln7 fragment (Fbln7-C) bound to Human Umbilical Vein Endothelial Cells (HUVECs) but did not promote cell spreading and actin stress fiber formation. Fbln7-C binding to HUVECs induced integrin clustering at cell adhesion sites with other focal adhesion molecules, and sustained activation of FAK, p130Cas, and Rac1. In addition, RhoA activation was inhibited, thereby preventing HUVEC spreading. As endothelial cell spreading is an important step for angiogenesis, we examined the effect of Fbln7-C on angiogenesis using in vitro assays for endothelial cell tube formation and vessel sprouting from aortic rings. We found that Fbln7-C inhibited the HUVEC tube formation and the vessel sprouting in aortic ring assays. Our findings suggest potential anti-angiogenic activity of the Fbln7 C-terminal region. Published by Elsevier Inc.

  13. Assessment of anti-angiogenic and anti-tumoral potentials of Origanum onites L. essential oil.

    PubMed

    Bostancıoğlu, Rakibe Beklem; Kürkçüoğlu, Mine; Başer, Kemal Hüsnü Can; Koparal, Ayşe Tansu

    2012-06-01

    Medicinal plants and culinary herbs with anti-angiogenic and little toxicity properties have gained importance. Non-toxic anti-angiogenic phytochemicals are useful in combating cancer by preventing the formation of new blood vessels to support the tumor growth. We have investigated the essential oil of Origanum onites L. (OOEO), for a possible anti-angiogenic activity. OOEO was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). The anti-proliferative activities (by MTT assay, 3-(4,5-dimethyl-2-thiazol)-2,5-diphenyl-2H-tetrazolium bromide), anti-angiogenic activities (by tube formation assay), cell migration inhibiting capability (migration assay) and apoptotic potential (DAPI staining) of OOEO were evaluated on rat adipose tissue endothelial cells (RATECs) and 5RP7 (c-H-ras transformed rat embryonic fibroblasts) cells. Our results revealed that OOEO could markedly inhibit cell viability and induced apoptosis of 5RP7 cells and also could block in vitro tube formation and migration of RATEC. These results imply that OOEO having anti-angiogenic activity might be useful in preventing angiogenesis-related diseases and in combating cancer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Evaluation of Impermeant, DNA-Binding Dye Fluorescence as a Real-Time Readout of Eukaryotic Cell Toxicity in a High Throughput Screening Format

    PubMed Central

    Chiaraviglio, Lucius

    2014-01-01

    Abstract Interpretation of high throughput screening (HTS) data in cell-based assays may be confounded by cytotoxic properties of screening compounds. Therefore, assessing cell toxicity in real time during the HTS process itself would be highly advantageous. Here, we investigate the potential of putatively impermeant, fluorescent, DNA-binding dyes to give cell toxicity readout during HTS. Amongst 19 DNA-binding dyes examined, three classes were identified that were (1) permeant, (2) cytotoxic, or (3) neither permeant nor cytotoxic during 3-day incubation with a macrophage cell line. In the last class, four dyes (SYTOX Green, CellTox Green, GelGreen, and EvaGreen) gave highly robust cytotoxicity data in 384-well screening plates. As proof of principle, successful combination with a luminescence-based assay in HTS format was demonstrated. Here, both intracellular growth of Legionella pneumophila (luminescence) and host cell viability (SYTOX Green exclusion) were assayed in the same screening well. Incorporation of membrane-impermeant, DNA-binding, fluorescent dyes in HTS assays should prove useful by allowing evaluation of cytotoxicity in real time, eliminating reagent addition steps and effort associated with endpoint cell viability analysis, and reducing the need for follow-up cytotoxicity screening. PMID:24831788

  15. Inhibitory effect of saponins and polysaccharides from Radix ranunculi ternati on human gastric cancer BGC823 cells.

    PubMed

    Niu, Lidan; Zhou, Yingfeng; Sun, Bing; Hu, Junling; Kong, Lingyu; Duan, Sufang

    2013-01-01

    The effects of different Radix ranunculi ternati extracts on human gastric cancer BGC823 cells were investigated, different methods were used to extract the saponins and polysaccharides from Radix ranunculi ternati, and MTT assay and colony formation assay were used to observe the effects of saponins and polysaccharides from Radix ranunculi ternati on in-vitro cultured human gastric cancer BGC823 cells. The results found that the saponins and polysaccharides from Radix Ranunculi Ternati had certain effects on both the growth and colony formation of human gastric cancer BGC823 cells, while improving the immune function of normal mice, of which saponins had more significant effects than polysaccharides.

  16. High-Throughput Method for Automated Colony and Cell Counting by Digital Image Analysis Based on Edge Detection

    PubMed Central

    Choudhry, Priya

    2016-01-01

    Counting cells and colonies is an integral part of high-throughput screens and quantitative cellular assays. Due to its subjective and time-intensive nature, manual counting has hindered the adoption of cellular assays such as tumor spheroid formation in high-throughput screens. The objective of this study was to develop an automated method for quick and reliable counting of cells and colonies from digital images. For this purpose, I developed an ImageJ macro Cell Colony Edge and a CellProfiler Pipeline Cell Colony Counting, and compared them to other open-source digital methods and manual counts. The ImageJ macro Cell Colony Edge is valuable in counting cells and colonies, and measuring their area, volume, morphology, and intensity. In this study, I demonstrate that Cell Colony Edge is superior to other open-source methods, in speed, accuracy and applicability to diverse cellular assays. It can fulfill the need to automate colony/cell counting in high-throughput screens, colony forming assays, and cellular assays. PMID:26848849

  17. Circular RNA hsa_circ_0008344 regulates glioblastoma cell proliferation, migration, invasion, and apoptosis.

    PubMed

    Zhou, Jinxu; Wang, Hongxiang; Chu, Junsheng; Huang, Qilin; Li, Guangxu; Yan, Yong; Xu, Tao; Chen, Juxiang; Wang, Yuhai

    2018-04-24

    Recent studies have found circular RNAs (circRNAs) involved in the biological process of cancers. However, little is known about their functional roles in glioblastoma. Human circRNA microarray analysis was performed to screen the expression profile of circRNAs in IDH1 wild-type glioblastoma tissue. The expression of hsa_circ_0008344 in glioblastoma and normal brain samples was quantified by qRT-PCR. Functional experiments were performed to investigate the biological functions of hsa_circ_0008344, including MTT assay, colony formation assay, transwell assay, and cell apoptosis assay. CircRNA microarray revealed a total of 417 abnormally expressed circRNAs (>1.5-fold, P < .05) in glioblastoma tissue compared with the adjacent normal brain. Hsa_circ_0008344, among the top differentially expressed circRNAs, was significantly upregulated in IDH1 wild-type glioblastoma. Further in vitro studies showed that knockdown of hsa_circ_0008344 suppressed glioblastoma cell proliferation, colony formation, migration, and invasion, but increased cell apoptotic rate. Hsa_circ_0008344 is upregulated in glioblastoma and may contribute to the progression of this malignancy. © 2018 Wiley Periodicals, Inc.

  18. In vitro stemness characterization of radio-resistant clones isolated from a medulloblastoma cell line ONS-76

    PubMed Central

    Sun, Lue; Moritake, Takashi; Zheng, Yun-Wen; Suzuki, Kenshi; Gerelchuluun, Ariungerel; Hong, Zhengshan; Zenkoh, Junko; Taniguchi, Hideki; Tsuboi, Koji

    2013-01-01

    One-third of patients with medulloblastoma die due to recurrence after various treatments including radiotherapy. Although it has been postulated that cancer stem-like cells are radio-resistant and play an important role in tumor recurrence, the “stemness” of medulloblastoma cells surviving irradiation has not yet been elucidated. Using a medulloblastoma cell line ONS-76, cells that survived gamma irradiation were investigated on their “stemness” in vitro. From 10 500 cells, 20 radio-resistant clones were selected after gamma ray irradiation (5 Gy × two fractions) using the replica micro-well technique. These 20 resistant clones were screened for CD133 positivity by flow cytometry followed by side population assay, tumor sphere formation assay and clonogenic survival assay. Results revealed CD133 fractions were significantly elevated in three clones, which also exhibited significantly increased levels of tumor sphere formation ability and side population fraction. Clonogenic survival assay demonstrated that their radio-resistance was significantly higher than the parental ONS-76. This may support the hypothesis that a small number of cancer stem-like cells (CSCs) are the main culprits in local recurrence after radiotherapy, and disruption of the resistance mechanism of these CSCs is a critical future issue in improving the outcome of patients with medulloblastoma. PMID:22951319

  19. The effects of small interfering RNA–targeting tissue factor on an in vitro model of neovascularization

    PubMed Central

    Peng, Wenyan; Yu, Ying; Li, Tiejun; Zhu, Yuanyuan

    2013-01-01

    Purpose Tissue factor (TF) plays an important role in neovascularization (NV). This study aimed to determine whether small interfering RNA–targeting TF (TF-siRNA) could knock down TF expression and inhibit cell proliferation, cell migration, and tube formation in an in vitro model of NV. Methods Lipopolysaccharide (LPS) was used to stimulate human umbilical vein endothelial cell (HUVEC) lines to express TF and mimic certain phenotypes of NV in vitro. HUVECs were transfected with TF-siRNAs and control siRNAs using LipofectamineTM 2000. The inhibitory effect of the siRNAs on the expression of TF mRNA and protein was evaluated by quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) and western blot analysis. The effects on the cell viability, migration, and tube formation of siRNA-treated cells were examined by MTT assay, wound-healing assay, and Matrigel-induced capillary tube formation. Results Lipopolysaccharide treatment increased the expression of TF. TF-siRNAs effectively knocked down TF expression, with the most efficient TF-siRNA reducing 78.9% of TF expression. TF protein was also notably curtailed by TF-siRNA. The MTT and wound-healing assays showed that the TF-siRNA substantially inhibited the proliferation and migration of HUVECs. Tube formation was decreased by 47.4% and 59.4% in cells treated with the TF-siRNA and vascular endothelial growth factor–siRNA, respectively, compared with the blank control. Conclusions TF-siRNA can knockdown TF expression and inhibit cell proliferation, migration, and tube formation in vitro. TF-siRNA may provide a novel therapeutic candidate for NV-related diseases. PMID:23805036

  20. Impedimetric quantification of the formation process and the chemosensitivity of cancer cell colonies suspended in 3D environment.

    PubMed

    Lei, Kin Fong; Wu, Zong-Ming; Huang, Chia-Hao

    2015-12-15

    In cancer research, colony formation assay is a gold standard for the investigation of the development of early tumors and the effects of cytotoxic agents on tumors in vitro. Quantification of cancer cell colonies suspended in hydrogel is currently achieved by manual counting under microscope. It is challenging to microscopically quantify the colony number and size without subjective bias. In this work, impedimetric quantification of cancer cell colonies suspended in hydrogel was successfully developed and provides a quantitative and objective method to describe the colony formation process and the development of colony size during the culture course. A biosensor embedded with a pair of parallel plate electrodes was fabricated for the impedimetric quantification. Cancer cell (cell line: Huh-7) were encapsulated in methyl cellulose hydrogel and cultured to gradually form cancer cell colonies suspended in 3D environment. At pre-set schedule during the culture course, small volume (50 μL) of colonies/MC hydrogel was collected, mixed with measurement hydrogel, and loaded to the biosensor for measurement. Hence, the colony formation process could be quantitatively represented by a colony index and a colony size index calculated from electrical impedance. Based on these developments, chemosensitivity of cancer cell colonies under different concentrations of anti-cancer drug, i.e., doxorubicin, was quantitatively investigated to study the efficacy of anti-cancer drug. Also, dose-response curve was constructed to calculate the IC50 value, which is an important indicator for chemosensitivity assay. These results showed the impedimetric quantification is a promising technique for the colony formation assay. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Synthetic Lethal Therapeutic Approaches for ARID1A-Mutated Ovarian Cancer

    DTIC Science & Technology

    2017-10-01

    formation by the indicated cells (c). (d-f) ARID1A protein expression in parental and ARID1A CRISPR OVCA429 cells (d). Colony formation assay using...ovarian tumor cultures with (VOA4841) and without (XVOA295) ARID1A expression. n=3 independent experiments. (f) Control and ARID1A CRISPR OVCA429 cells

  2. Development of resazurin-based assay in 384-well format for high throughput whole cell screening of Trypanosoma brucei rhodesiense strain STIB 900 for the identification of potential anti-trypanosomal agents.

    PubMed

    Lim, Kah Tee; Zahari, Zuriati; Amanah, Azimah; Zainuddin, Zafarina; Adenan, Mohd Ilham

    2016-03-01

    To accelerate the discovery of novel leads for the treatment of Human African Trypanosomiasis (HAT), it is necessary to have a simple, robust and cost-effective assay to identify positive hits by high throughput whole cell screening. Most of the fluorescence assay was made in black plate however in this study the HTS assay developed in 384-well format using clear plate and black plate, for comparison. The HTS assay developed is simple, sensitive, reliable and reproducible in both types of plates. Assay robustness and reproducibility were determined under the optimized conditions in 384-well plate was well tolerated in the HTS assay, including percentage of coefficient of variation (% CV) of 4.68% and 4.74% in clear and black 384-well plate, signal-to-background ratio (S/B) of 12.75 in clear 384-well plate and 12.07 in black 384-well plate, Z' factor of 0.79 and 0.82 in clear 384-well plate and black 384-well plate, respectively and final concentration of 0.30% dimethylsulfoxide (DMSO) in both types of plate. Drug sensitivity was found to be comparable to the reported anti-trypanosomal assay in 96-well format. The reproducibility and sensitivity of this assay make it compliant to automated liquid handler use in HTS applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Heat shock transcription factor 1 promotes the proliferation, migration and invasion of osteosarcoma cells.

    PubMed

    Zhou, Zhenhua; Li, Yan; Jia, Qi; Wang, Zhiwei; Wang, Xudong; Hu, Jingjing; Xiao, Jianru

    2017-08-01

    Osteosarcoma is the most commonly diagnosed primary malignancy of bone and its overall survival rate is still very low. The molecular mechanisms underlying the progression of osteosarcoma have not been clearly illuminated. Heat shock transcription factor 1 (HSF1) is a key regulator of the heat shock response and also plays important roles in many cancers, but its function in osteosarcoma remains unexplored. In this study, the proliferation of osteosarcoma cells was determined by Cell Counting Kit-8 assays and colony formation assays. Transwell assays were used to demonstrate the migration and invasion abilities of osteosarcoma cells. A tumour formation assay in a nude mouse model was performed to assess the effect of HSF1 on osteosarcoma cell growth in vivo. The protein levels of HSF1 were analysed with immunohistochemical staining in samples from osteosarcoma patients. We demonstrated that knockdown of HSF1 reduced the proliferation, migration and invasion of osteosarcoma cells, while overexpression of HSF1 promoted the proliferation, migration and invasion of osteosarcoma cells. Furthermore, HSF1 promoted the proliferation of osteosarcoma cells in vivo. In addition, high levels of HSF1 were associated with a poor prognosis in osteosarcoma. These data highlight an important role of HSF1 in proliferation, migration and invasion of osteosarcoma cells. Moreover, the expression of HSF1 was associated with prognosis in osteosarcoma. © 2017 John Wiley & Sons Ltd.

  4. RhoA regulates Activin B-induced stress fiber formation and migration of bone marrow-derived mesenchymal stromal cell through distinct signaling.

    PubMed

    Wang, Xueer; Tang, Pei; Guo, Fukun; Zhang, Min; Chen, Yinghua; Yan, Yuan; Tian, Zhihui; Xu, Pengcheng; Zhang, Lei; Zhang, Lu; Zhang, Lin

    2017-01-01

    In our previous study, Activin B induced actin stress fiber formation and cell migration in Bone marrow-derived mesenchymal stem cells (BMSCs) in vitro. However, the underlying molecular mechanisms are not well studied. RhoA is recognized to play a critical role in the regulation of actomyosin cytoskeletal organization and cell migration. Pull-down assay was performed to investigate the activity of RhoA. The dominant-negative mutants of RhoA (RhoA(N19)) was used to determine whether RhoA has a role in Activin B-induced cytoskeleton organization and cell migration in BMSCs. Cytoskeleton organization was examined by fluorescence Rhodamine-phalloidin staining, and cell migration by transwell and cell scratching assay. Western blot was carried out to investigate downstream signaling cascade of RhoA. Inhibitor and siRNAs were used to detect the role of downstream signaling in stress fiber formation and/or cell migration. RhoA was activated by Activin B in BMSCs. RhoA(N19) blocked Activin B-induced stress fiber formation and cell migration. ROCK inhibitor blocked Activin B-induced stress fiber formation but enhanced BMSCs migration. Activin B induced phosphorylation of LIMK2 and Cofilin, which was abolished by ROCK inhibition. Both of siRNA LIMK2 and siRNA Cofilin inhibited Activin B-induced stress fiber formation. RhoA regulates Activin B-induced stress fiber formation and migration of BMSCs. A RhoA-ROCK-LIMK2-Cofilin signaling node exists and regulates actin stress fiber formation. RhoA regulates Activin B-induced cell migration independent of ROCK. Better understanding of the molecular mechanisms of BMSCs migration will help optimize therapeutic strategy to target BMSCs at injured tissues. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. High-Throughput Screening to Identify Compounds That Increase Fragile X Mental Retardation Protein Expression in Neural Stem Cells Differentiated From Fragile X Syndrome Patient-Derived Induced Pluripotent Stem Cells.

    PubMed

    Kumari, Daman; Swaroop, Manju; Southall, Noel; Huang, Wenwei; Zheng, Wei; Usdin, Karen

    2015-07-01

    : Fragile X syndrome (FXS), the most common form of inherited cognitive disability, is caused by a deficiency of the fragile X mental retardation protein (FMRP). In most patients, the absence of FMRP is due to an aberrant transcriptional silencing of the fragile X mental retardation 1 (FMR1) gene. FXS has no cure, and the available treatments only provide symptomatic relief. Given that FMR1 gene silencing in FXS patient cells can be partially reversed by treatment with compounds that target repressive epigenetic marks, restoring FMRP expression could be one approach for the treatment of FXS. We describe a homogeneous and highly sensitive time-resolved fluorescence resonance energy transfer assay for FMRP detection in a 1,536-well plate format. Using neural stem cells differentiated from an FXS patient-derived induced pluripotent stem cell (iPSC) line that does not express any FMRP, we screened a collection of approximately 5,000 known tool compounds and approved drugs using this FMRP assay and identified 6 compounds that modestly increase FMR1 gene expression in FXS patient cells. Although none of these compounds resulted in clinically relevant levels of FMR1 mRNA, our data provide proof of principle that this assay combined with FXS patient-derived neural stem cells can be used in a high-throughput format to identify better lead compounds for FXS drug development. In this study, a specific and sensitive fluorescence resonance energy transfer-based assay for fragile X mental retardation protein detection was developed and optimized for high-throughput screening (HTS) of compound libraries using fragile X syndrome (FXS) patient-derived neural stem cells. The data suggest that this HTS format will be useful for the identification of better lead compounds for developing new therapeutics for FXS. This assay can also be adapted for FMRP detection in clinical and research settings. ©AlphaMed Press.

  6. Cell-based Assays for Assessing Toxicity: A Basic Guide.

    PubMed

    Parboosing, Raveen; Mzobe, Gugulethu; Chonco, Louis; Moodley, Indres

    2016-01-01

    Assessment of toxicity is an important component of the drug discovery process. Cellbased assays are a popular choice for assessing cytotoxicity. However, these assays are complex because of the wide variety of formats and methods that are available, lack of standardization, confusing terminology and the inherent variability of biological systems and measurement. This review is intended as a guide on how to take these factors into account when planning, conducting and/or interpreting cell based toxicity assays. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. High-throughput screening of small molecules in miniaturized mammalian cell-based assays involving post-translational modifications.

    PubMed

    Stockwell, B R; Haggarty, S J; Schreiber, S L

    1999-02-01

    Fully adapting a forward genetic approach to mammalian systems requires efficient methods to alter systematically gene products without prior knowledge of gene sequences, while allowing for the subsequent characterization of these alterations. Ideally, these methods would also allow function to be altered in a temporally controlled manner. We report the development of a miniaturized cell-based assay format that enables a genetic-like approach to understanding cellular pathways in mammalian systems using small molecules, rather than mutations, as the source of gene-product alterations. This whole-cell immunodetection assay can sensitively detect changes in specific cellular macromolecules in high-density arrays of mammalian cells. Furthermore, it is compatible with screening large numbers of small molecules in nanoliter to microliter culture volumes. We refer to this assay format as a 'cytoblot', and demonstrate the use of cytoblotting to monitor biosynthetic processes such as DNA synthesis, and post-translational processes such as acetylation and phosphorylation. Finally, we demonstrate the applicability of these assays to natural-product screening through the identification of marine sponge extracts exhibiting genotype-specific inhibition of 5-bromodeoxyuridine incorporation and suppression of the anti-proliferative effect of rapamycin. We show that cytoblots can be used for high-throughput screening of small molecules in cell-based assays. Together with small-molecule libraries, the cytoblot assay can be used to perform chemical genetic screens analogous to those used in classical genetics and thus should be applicable to understanding a wide variety of cellular processes, especially those involving post-transitional modifications.

  8. Evaluation of metallothionein formation as a proxy for zinc absorption in an in vitro digestion/caco-2 cell culture model

    USDA-ARS?s Scientific Manuscript database

    Caco-2 cell metallothionein (MT) formation was studied to determine if MT could be used as a proxy for zinc (Zn) absorption in a cell culture model. MT intracellular concentration was determined by using a cadmium/hemoglobin affinity assay. Cellular Zn uptake was determined in acid digests (5% HNO3)...

  9. Activation of Sonic Hedgehog Signaling Is Associated with Human Osteosarcoma Cells Radioresistance Characterized by Increased Proliferation, Migration, and Invasion.

    PubMed

    Qu, Wei; Li, Dichen; Wang, Yufei; Wu, Qining; Hao, Dingjun

    2018-06-04

    BACKGROUND Radioresistance restricts the application of radiotherapy in human osteosarcoma (OS). This study investigated the molecular mechanism of radioresistance in OS, which may provide clues to finding ideal targets for genetic therapy. MATERIAL AND METHODS The human OS cell line MG63 was employed as parent cells. After repeat low-dose X-ray irradiation of MG63, the radioresistant OS cell line MG63R was produced. Colony formation assay was used to assess the radioresistance. Cell viability was evaluated by CCK-8 assay. Flow cytometry was used to detect cell apoptosis, and wound healing assay was used to evaluate invasive capacity. The nuclear translocation was evaluated by fluorescent immunohistochemistry. Protein expression levels were assessed by Western blotting. Specific siRNA against Shh was used to silence Shh. RESULTS More survival colony formation, elevated cell viability, less cell apoptosis, and increased wound closure were found in MG63R than in MG63 cells exposed to irradiation. The nuclear translocation of Gli, expression levels of Shh, Smo, Ptch1, Bcl2, active MMP2, and active MMP9 were increased in MG63R cells compared with MG63 cells. Transfection of Shh-siRNA suppressed expression levels of Shh, Smo, Ptch1, Bcl2, active MMP2, and active MMP9, as well as the nuclear translocation of Gli in MG63R cells. The cell viability, survival colony formation, and wound closure were impaired, whereas cell apoptosis was increased, in siRNA-transfected MG63R cells than in control MG63R cells exposed to irradiation. CONCLUSIONS Activation of Shh signaling was involved in radioresistance of OS cells. Blocking this signaling can impair the radioresistance capacity of OS cells.

  10. Sodium phenylbutyrate antagonizes prostate cancer through the induction of apoptosis and attenuation of cell viability and migration.

    PubMed

    Xu, Yawen; Zheng, Shaobo; Chen, Binshen; Wen, Yong; Zhu, Shanwen

    2016-01-01

    Prostate cancer (PCa) is a leading cause of cancer-related death in men. Sodium phenylbutyrate (SPB) has shown its potential as an anticancer therapy in numerous cancer types. In the present study, we attempted to assess the effect of SPB against PCa and whether this treatment was associated with the regulation of survivin. Two human PCa cancer cell lines, DU145 and PC3, were used in the present study. Cell Counting Kit-8 (CCK-8) assay was conducted to measure the proliferation of PCa cells incubated with SPB. The effect of SPB on the cell apoptosis, cell colony formation ability, and cell morphological change was also assessed. Transwell experiment and Western blotting assay were performed to determine the effect of SPB on the migration and invasion ability of both cell types. Moreover, the expression pattern of survivin and MAPK members in both cell types after the treatment of SPB was also detected. Additionally, an in vivo tumor formation assay was performed to evaluate the treatment potential of SPB against PCa. We found that the viability of PCa cells was significantly inhibited by SPB treatment. As illustrated by flow cytometry, for DU145 cell line the average apoptotic rate of SPB-treated cells was significantly lower than that of the control group (P<0.05); similar results were also seen for PC3 (P<0.05). SPB administration also attenuated the colony formation and migration abilities in both cell lines. The expression level of survivin in SPB-treated cells was significantly downregulated, while the phosphorylation of p-38 and ERK was enhanced. Furthermore, in vivo tumor formation of both cell lines was suppressed by SPB as well. The above results confirmed the potential of SPB as an effective therapeutic agent for the prevention or treatment of PCa. This amelioration might be due to the blockade of the survivin pathway.

  11. Rapid assessment of antibody-induced ricin neutralization by employing a novel functional cell-based assay.

    PubMed

    Gal, Yoav; Alcalay, Ron; Sabo, Tamar; Noy-Porat, Tal; Epstein, Eyal; Kronman, Chanoch; Mazor, Ohad

    2015-09-01

    Ricin is one of the most potent and lethal toxins known against which there is no available antidote. Currently, the most promising countermeasures against the toxin are based on neutralizing antibodies elicited by active vaccination or administered passively. A cell-based assay is widely applied for the primary screening and evaluation of anti-ricin antibodies, yet such assays are usually time-consuming (18-72 h). Here, we report of a novel assay to monitor ricin activity, based on HeLa cells that stably express the rapidly-degraded ubiquitin-luciferase (Ub-FL, half-life of 2 min). Ricin-induced arrest of protein synthesis could be quantified within 3 to 6h post intoxication (IC90 of 300 and 100 ng/ml, respectively). Furthermore, by stabilizing the intracellular levels of Ub-FL in the last hour of the assay, a 3-fold increase in the assay sensitivity was attained. We applied this assay to monitor the efficacy of a ricin holotoxin-based vaccine by measuring the formation of neutralizing antibodies throughout the immunization course. The potency of anti-ricin monoclonal antibodies (directed to either subunit of the toxin) could also be easily and accurately measured in this assay format. Owing to its simplicity, this assay may be implemented for high-throughput screening of ricin-neutralizing antibodies and for identification of small-molecule inhibitors of the toxin, as well as other ribosome-inactivating toxins. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Performance of a Limiting-Antigen Avidity Enzyme Immunoassay for Cross-Sectional Estimation of HIV Incidence in the United States

    PubMed Central

    Konikoff, Jacob; Brookmeyer, Ron; Longosz, Andrew F.; Cousins, Matthew M.; Celum, Connie; Buchbinder, Susan P.; Seage, George R.; Kirk, Gregory D.; Moore, Richard D.; Mehta, Shruti H.; Margolick, Joseph B.; Brown, Joelle; Mayer, Kenneth H.; Koblin, Beryl A.; Justman, Jessica E.; Hodder, Sally L.; Quinn, Thomas C.; Eshleman, Susan H.; Laeyendecker, Oliver

    2013-01-01

    Background A limiting antigen avidity enzyme immunoassay (HIV-1 LAg-Avidity assay) was recently developed for cross-sectional HIV incidence estimation. We evaluated the performance of the LAg-Avidity assay alone and in multi-assay algorithms (MAAs) that included other biomarkers. Methods and Findings Performance of testing algorithms was evaluated using 2,282 samples from individuals in the United States collected 1 month to >8 years after HIV seroconversion. The capacity of selected testing algorithms to accurately estimate incidence was evaluated in three longitudinal cohorts. When used in a single-assay format, the LAg-Avidity assay classified some individuals infected >5 years as assay positive and failed to provide reliable incidence estimates in cohorts that included individuals with long-term infections. We evaluated >500,000 testing algorithms, that included the LAg-Avidity assay alone and MAAs with other biomarkers (BED capture immunoassay [BED-CEIA], BioRad-Avidity assay, HIV viral load, CD4 cell count), varying the assays and assay cutoffs. We identified an optimized 2-assay MAA that included the LAg-Avidity and BioRad-Avidity assays, and an optimized 4-assay MAA that included those assays, as well as HIV viral load and CD4 cell count. The two optimized MAAs classified all 845 samples from individuals infected >5 years as MAA negative and estimated incidence within a year of sample collection. These two MAAs produced incidence estimates that were consistent with those from longitudinal follow-up of cohorts. A comparison of the laboratory assay costs of the MAAs was also performed, and we found that the costs associated with the optimal two assay MAA were substantially less than with the four assay MAA. Conclusions The LAg-Avidity assay did not perform well in a single-assay format, regardless of the assay cutoff. MAAs that include the LAg-Avidity and BioRad-Avidity assays, with or without viral load and CD4 cell count, provide accurate incidence estimates. PMID:24386116

  13. In vitro effects of doxorubicin and tetrathiomolybdate on canine hemangiosarcoma cells.

    PubMed

    Sloan, Caroline Q; Rodriguez, Carlos O

    2018-02-01

    OBJECTIVE To assess the in vitro effects of doxorubicin and tetrathiomolybdate (TM) on cells from a canine hemangiosarcoma cell line. SAMPLE Cultured cells from the canine hemangiosarcoma-derived cell line DEN-HSA. PROCEDURES Cells were treated with TM (0 to 1.5μM), doxorubicin (0 to 5μM), or both with or without 24 hours of pretreatment with ascorbic acid (750μM). Degree of cellular cytotoxicity was measured with a colorimetric assay. Long-term growth inhibition was assessed with a 10-day colony-formation assay. Induction of apoptosis was quantitated by fluorometric assessment of caspase-3 and -7 activation. Formation of reactive oxygen species (ROS) was also detected fluorometrically. RESULTS Exposure of cells to the combination of TM and doxorubicin resulted in a greater decrease in proliferation and clonogenic survival rates than exposure to each drug alone. This treatment combination increased ROS formation and apoptosis to a greater extent than did doxorubicin or TM alone. Ascorbic acid inhibited both TM-induced ROS formation and apoptosis. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that the enhancement in cytotoxic effects observed with DEN-HSA cell exposure to the combination of doxorubicin and TM was achieved through an increase in ROS production. These findings provide a rationale for a clinical trial of this treatment combination in dogs with hemangiosarcoma.

  14. Detachment-induced E-cadherin expression promotes 3D tumor spheroid formation but inhibits tumor formation and metastasis of lung cancer cells.

    PubMed

    Powan, Phattrakorn; Luanpitpong, Sudjit; He, Xiaoqing; Rojanasakul, Yon; Chanvorachote, Pithi

    2017-11-01

    The epithelial-to-mesenchymal transition is proposed to be a key mechanism responsible for metastasis-related deaths. Similarly, cancer stem cells (CSCs) have been proposed to be a key driver of tumor metastasis. However, the link between the two events and their control mechanisms is unclear. We used a three-dimensional (3D) tumor spheroid assay and other CSC-indicating assays to investigate the role of E-cadherin in CSC regulation and its association to epithelial-to-mesenchymal transition in lung cancer cells. Ectopic overexpression and knockdown of E-cadherin were found to promote and retard, respectively, the formation of tumor spheroids in vitro but had opposite effects on tumor formation and metastasis in vivo in a xenograft mouse model. We explored the discrepancy between the in vitro and in vivo results and demonstrated, for the first time, that E-cadherin is required as a component of a major survival pathway under detachment conditions. Downregulation of E-cadherin increased the stemness of lung cancer cells but had an adverse effect on their survival, particularly on non-CSCs. Such downregulation also promoted anoikis resistance and invasiveness of lung cancer cells. These results suggest that anoikis assay could be used as an alternative method for in vitro assessment of CSCs that involves dysregulated adhesion proteins. Our data also suggest that agents that restore E-cadherin expression may be used as therapeutic agents for metastatic cancers. Copyright © 2017 the American Physiological Society.

  15. Recombinant Escherichia coli Trx-JZTX-III represses the proliferation of mouse hepatocellular carcinoma cells through induction of cell cycle arrest.

    PubMed

    Sun, Mei-Na; Zhao, Xue-Jiao; Zhao, Han-Dong; Zhang, Wei-Guang; Li, Feng-Lan; Chen, Ming-Zi; Li, Hui; Li, Guangchao

    2013-06-01

    The aim of the present study was to investigate the effects of recombinant Escherichia coli (E. coli) Trx-jingzhaotoxin (JZTX)-III on cell growth in the mouse hepatocellular carcinoma (HCC) cell line Hepa1-6. The JZTX-III gene sequence was synthesized and cloned into the pET-32a(+) vector to construct the recombinant fusion protein Trx-JZTX-III, which was subsequently purified. Hepa1-6 cells were treated with 0 to 1,000-µg/ml concentrations of Trx-JZTX-III; this was demonstrated to affect cell viability, as determined by the 3-(4,5-dimethylthiazol‑2-yl)-2,5-diphenyltetra-zolium bromide (MTT) assay. The expression of the proliferating cell nuclear antigen (PCNA) protein was investigated using western blot analysis. A colony formation assay was used to determine Hepa1-6 cell proliferation, and the migration ability of cells was determined using a wound‑healing assay. Additionally, flow cytometry was employed to observe changes in the cell cycle. The MTT assay and quantification of PCNA expression indicated that recombinant E. coli Trx-JZTX-III significantly repressed the proliferation of Hepa1-6 cells. Colony formation and the migration of malignant cells was inhibited following treatment with recombinant E. coli Trx-JZTX-III. Flow cytometry showed that recombinant E. coli Trx-JZTX-III induced G0/G1 cell cycle arrest. In conclusion, recombinant E. coli Trx-JZTX-III functions as a tumor suppressor drug in mouse HCC and its underlying mechanism may involve the induction of G0/G1 cell cycle arrest.

  16. Novel Surface-Enhanced Raman Scattering-based Assays for Ultra-sensitive Detection of Human Pluripotent Stem Cells

    PubMed Central

    Han, Jingjia; Qian, Ximei; Wu, Qingling; Jha, Rajneesh; Duan, Jinshuai; Yang, Zhou; Maher, Kevin O.; Nie, Shuming; Xu, Chunhui

    2017-01-01

    Human pluripotent stem cells (hPSCs) are a promising cell source for regenerative medicine, but their derivatives need to be rigorously evaluated for residual stem cells to prevent teratoma formation. Here, we report the development of novel surface-enhanced Raman scattering (SERS)-based assays that can detect trace numbers of undifferentiated hPSCs in mixed cell populations in a highly specific, ultra-sensitive, and time-efficient manner. By targeting stem cell surface markers SSEA-5 and TRA-1-60 individually or simultaneously, these SERS assays were able to identify as few as 1 stem cell in 106 cells, a sensitivity (0.0001%) which was ~2,000 to 15,000-fold higher than that of flow cytometry assays. Using the SERS assay, we demonstrate that the aggregation of hPSC-based cardiomyocyte differentiation cultures into 3D spheres significantly reduced SSEA-5+ and TRA-1-60+ cells compared with parallel 2D cultures. Thus, SERS may provide a powerful new technology for quality control of hPSC-derived products for preclinical and clinical applications. PMID:27509304

  17. Adhesion, biofilm formation, cell surface hydrophobicity, and antifungal planktonic susceptibility: relationship among Candida spp.

    PubMed

    Silva-Dias, Ana; Miranda, Isabel M; Branco, Joana; Monteiro-Soares, Matilde; Pina-Vaz, Cidália; Rodrigues, Acácio G

    2015-01-01

    We have performed the characterization of the adhesion profile, biofilm formation, cell surface hydrophobicity (CSH) and antifungal susceptibility of 184 Candida clinical isolates obtained from different human reservoirs. Adhesion was quantified using a flow cytometric assay and biofilm formation was evaluated using two methodologies: XTT and crystal violet assay. CSH was quantified with the microbial adhesion to hydrocarbons test while planktonic susceptibility was assessed accordingly the CLSI protocol for yeast M27-A3 S4. Yeast cells of non-albicans species exhibit increased ability to adhere and form biofilm. However, the correlation between adhesion and biofilm formation varied according to species and also with the methodology used for biofilm assessment. No association was found between strain's site of isolation or planktonic antifungal susceptibility and adhesion or biofilm formation. Finally CSH seemed to be a good predictor for biofilm formation but not for adhesion. Despite the marked variability registered intra and inter species, C. tropicalis and C. parapsilosis were the species exhibiting high adhesion profile. C. tropicalis, C. guilliermondii, and C. krusei revealed higher biofilm formation values in terms of biomass. C. parapsilosis was the species with lower biofilm metabolic activity.

  18. Adhesion, biofilm formation, cell surface hydrophobicity, and antifungal planktonic susceptibility: relationship among Candida spp.

    PubMed Central

    Silva-Dias, Ana; Miranda, Isabel M.; Branco, Joana; Monteiro-Soares, Matilde; Pina-Vaz, Cidália; Rodrigues, Acácio G.

    2015-01-01

    We have performed the characterization of the adhesion profile, biofilm formation, cell surface hydrophobicity (CSH) and antifungal susceptibility of 184 Candida clinical isolates obtained from different human reservoirs. Adhesion was quantified using a flow cytometric assay and biofilm formation was evaluated using two methodologies: XTT and crystal violet assay. CSH was quantified with the microbial adhesion to hydrocarbons test while planktonic susceptibility was assessed accordingly the CLSI protocol for yeast M27-A3 S4. Yeast cells of non-albicans species exhibit increased ability to adhere and form biofilm. However, the correlation between adhesion and biofilm formation varied according to species and also with the methodology used for biofilm assessment. No association was found between strain's site of isolation or planktonic antifungal susceptibility and adhesion or biofilm formation. Finally CSH seemed to be a good predictor for biofilm formation but not for adhesion. Despite the marked variability registered intra and inter species, C. tropicalis and C. parapsilosis were the species exhibiting high adhesion profile. C. tropicalis, C. guilliermondii, and C. krusei revealed higher biofilm formation values in terms of biomass. C. parapsilosis was the species with lower biofilm metabolic activity. PMID:25814989

  19. Mammalian cell-transforming potential of traffic-linked ultrafine particulate matter PM0.056 in urban roadside atmosphere.

    PubMed

    Verma, Mukesh K; Poojan, Shiv; Sultana, Sarwat; Kumar, Sushil

    2014-09-01

    We examined the clastogenic and cell-transforming potential of ultrafine particulate matter fraction PM0.056 of urban ambient aerosol using mammalian cells. PM1.0, PM0.56 and PM0.056 fractions were sampled from roadside atmosphere of an urban area using the cascade impactor MOUDI-NR-110. The potential to induce cytotoxicity, DNA damage and micronuclei formation was examined at the test concentrations of 3, 6, 12.5, 25, 50 and 100 μg/ml using the 3-4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, the plasmid relaxation assay and the C3H10T1/2 (10T1/2) cells. The cell-transforming potential was investigated in vitro using 10T1/2 cell transformation assay and the soft agar assay. PM1, PM0.56 and PM0.056 fractions were found to be toxic in dose-dependent manner. These induced cytotoxicity at five test concentrations, the ultrafine particle fraction PM0.056 showed greater cytotoxic potential. PM0.056 induced micronucleus formation in 10T1/2 cells. The effect was statistically significant. The DNA-damaging potential was measured in a plasmid relaxation assay. Both fine and ultrafine particle fraction PM0.56 and PM0.056 displayed greater effect as compared to larger PM1 fraction. DNA damage was found to be dependent on particulate matter intrinsic pro-oxidant chemicals. The ability of the ultrafine particle fraction PM0.056 to induce morphological cell transformation was demonstrated by significant and dose-dependent increases in type III focus formation by morphologically transformed cells in culture flasks and their clonal expansion in soft agar. It is concluded that the traffic-linked ultrafine particle fraction PM0.056 in the atmosphere by the roadside of an urban area is clastogenic and able to induce morphological transformation of mammalian cells. © The Author 2014. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Role of Stat3 and ErbB2 in Breast Cancer

    DTIC Science & Technology

    2013-12-01

    required for cell motility, through the formation of lamellipodia at the leading edge of cells in a wound healing assay29. Since cadherin-11 leads...cells in medium lacking the inhibitor. 2.2. Wound healing assay Cells were plated in 3 cm tissue culture petri dishes in DMEM/10% fetal calf serum...solve this apparent paradox,we examined the ability of IL6 it- self , whose synthesis is induced upon cadherin engagement and is the trigger of Stat3

  1. Translation elongation factor EF-Tu modulates filament formation of actin-like MreB protein in vitro.

    PubMed

    Defeu Soufo, Hervé Joël; Reimold, Christian; Breddermann, Hannes; Mannherz, Hans G; Graumann, Peter L

    2015-04-24

    EF-Tu has been shown to interact with actin-like protein MreB and to affect its localization in Escherichia coli and in Bacillus subtilis cells. We have purified YFP-MreB in an active form, which forms filaments on glass slides in vitro and was active in dynamic light-scattering assays, polymerizing in milliseconds after addition of magnesium. Purified EF-Tu enhanced the amount of MreB filaments, as seen by sedimentation assays, the speed of filament formation and the length of MreB filaments in vitro. EF-Tu had the strongest impact on MreB filaments in a 1:1 ratio, and EF-Tu co-sedimented with MreB filaments, revealing a stoichiometric interaction between both proteins. This was supported by cross-linking assays where 1:1 species were well detectable. When expressed in E. coli cells, B. subtilis MreB formed filaments and induced the formation of co-localizing B. subtilis EF-Tu structures, indicating that MreB can direct the positioning of EF-Tu structures in a heterologous cell system. Fluorescence recovery after photobleaching analysis showed that MreB filaments have a higher turnover in B. subtilis cells than in E. coli cells, indicating different filament kinetics in homologous or heterologous cell systems. The data show that MreB can direct the localization of EF-Tu in vivo, which in turn positively affects the formation and dynamics of MreB filaments. Thus, EF-Tu is a modulator of the activity of a bacterial actin-like protein. Copyright © 2015. Published by Elsevier Ltd.

  2. New Natural Pigment Fraction Isolated from Saw Palmetto: Potential for Adjuvant Therapy of Hepatocellular Carcinoma.

    PubMed

    Tan, Hor-Yue; Wang, Ning; Takahashi, Masao; Feng, Yigang; Li, Hongyun; Feng, Yibin

    2016-08-05

    For the first time, we discovered a small proportion of aqueous fraction from Saw Palmetto apart from the fatty acid-rich fraction exhibited pharmacological activity. Therefore, this study aims to explore the anti-tumor potential of red pigmented aqueous fraction of Saw Palmetto, NYG on human hepatocellular carcinoma and its possible targets. Subcutaneous xenograft and orthotopic implantation models of HCC were used to evaluate the tumor inhibitory effect of NYG. Human hepatocellular carcinoma (HCC) cell lines and human umbilical vein endothelial cells (HUVEC) were used as in vitro model. The mRNA expression was conducted by qPCR. Protein expression was monitored by immunoblotting and immunohistochemistry. Cell migration and blood vessel formation were determined by chamber assay and tube formation assay, respectively. Significant tumor inhibition of NYG in dose-dependent manner was observed on subcutaneous xenograft and orthotopic HCC model. NYG has no direct action on cell viability or VEGF secretion of HCC cells. However, NYG reduced in vitro migration and vessel formation activities of HUVEC cells, as well as in vivo intratumoral neovascularization. NYG attenuated extracellular signal-regulated kinases (ERK) activation in endothelial cells, which may be associated with the suppression of migration and tube formation of HUVEC. NYG suppressed tumor expansion of HCC via inhibiting neovascularization, and may be potential adjuvant treatment for HCC.

  3. Rapamycin enhances the anti-angiogenesis and anti-proliferation ability of YM155 in oral squamous cell carcinoma.

    PubMed

    Li, Kong-Liang; Wang, Yu-Fan; Qin, Jia-Ruo; Wang, Feng; Yang, Yong-Tao; Zheng, Li-Wu; Li, Ming-Hua; Kong, Jie; Zhang, Wei; Yang, Hong-Yu

    2017-06-01

    YM155, a small molecule inhibitor of survivin, has been studied in many tumors. It has been shown that YM155 inhibited oral squamous cell carcinoma through promoting apoptosis and autophagy and inhibiting proliferation. It was found that YM155 also inhibited the oral squamous cell carcinoma-mediated angiogenesis through the inactivation of the mammalian target of rapamycin pathway. Rapamycin, a mammalian target of rapamycin inhibitor, played an important role in the proliferation and angiogenesis of oral squamous cell carcinoma cell lines. In our study, cell proliferation assay, transwell assay, tube formation assay, and western blot assay were used to investigate the synergistic effect of rapamycin on YM155 in oral squamous cell carcinoma. Either in vitro or in vivo, rapamycin and YM155 exerted a synergistic effect on the inhibition of survivin and vascular endothelial growth factor through mammalian target of rapamycin pathway. Overall, our results revealed that low-dose rapamycin strongly promoted the sensitivity of oral squamous cell carcinoma cell lines to YM155.

  4. Two High Throughput Screen Assays for Measurement of TNF-α in THP-1 Cells

    PubMed Central

    Leister, Kristin P; Huang, Ruili; Goodwin, Bonnie L; Chen, Andrew; Austin, Christopher P; Xia, Menghang

    2011-01-01

    Tumor Necrosis Factor-α (TNF-α), a secreted cytokine, plays an important role in inflammatory diseases and immune disorders, and is a potential target for drug development. The traditional assays for detecting TNF-α, enzyme linked immunosorbent assay (ELISA) and radioimmunoassay, are not suitable for the large size compound screens. Both assays suffer from a complicated protocol, multiple plate wash steps and/or excessive radioactive waste. A simple and quick measurement of TNF-α production in a cell based assay is needed for high throughput screening to identify the lead compounds from the compound library. We have developed and optimized two homogeneous TNF-α assays using the HTRF (homogeneous time resolved fluorescence) and AlphaLISA assay formats. We have validated the HTRF based TNF-α assay in a 1536-well plate format by screening a library of 1280 pharmacologically active compounds. The active compounds identified from the screen were confirmed in the AlphaLISA TNF-α assay using a bead-based technology. These compounds were also confirmed in a traditional ELISA assay. From this study, several beta adrenergic agonists have been identified as TNF-α inhibitors. We also identified several novel inhibitors of TNF-α, such as BTO-1, CCG-2046, ellipticine, and PD 169316. The results demonstrated that both homogeneous TNF-α assays are robust and suitable for high throughput screening. PMID:21643507

  5. Propofol inhibits gap junctions by attenuating sevoflurane-induced cytotoxicity against rat liver cells in vitro.

    PubMed

    Huang, Fei; Li, Shangrong; Gan, Xiaoliang; Wang, Ren; Chen, Zhonggang

    2014-04-01

    Liver abnormalities are seen in a small proportion of patients following anaesthesia with sevoflurane. To investigate whether the cytotoxicity of sevoflurane against rat liver cells was mediated by gap junction intercellular communications, and the effect of propofol on sevoflurane-induced cytotoxicity. Experimental study. The study was carried out in the central laboratory of The Third Affiliated Hospital, Sun Yat-sen University. BRL-3A rat liver cells. Immortal rat liver cells BRL-3A were grown at low and high density. Colony-forming assays were performed to determine clonogenic growth of these cells. To investigate the effect of oleamide and propofol on gap junction function, we measured fluorescence transmission between cells using parachute dye-coupling assays. Immunoblotting assays were performed to determine connexin32 and connexin43 expression. Our colony formation assays revealed that, in low-density culture, sevoflurane caused no apparent inhibition of clonogenic growth of BRL-3A cells. In high-density culture, 2.2 to 4.4% sevoflurane markedly inhibited clonogenic growth of BRL-3A cells with 67.6 (0.34)% and 61.2 (0.17)% of the cells being viable, respectively (P = 0.003 vs. low-density culture), suggesting cell density dependency of sevoflurane-induced cytotoxicity. Our colony formation assays revealed that propofol markedly attenuated the suppression by sevoflurane of the clonogenic growth of BRL-3A cells (viability: propofol and sevoflurane, 91.5 (0.014)% vs. sevoflurane, 56.6 (0.019)%; P <0.01). Blocking gap junctions with 10 μmol l oleamide significantly attenuated 4.4% sevoflurane-induced suppression with a viability of 83.6 ± 0.138% (oleamide and sevoflurane vs. sevoflurane, P < 0.01). Immunoblotting assays further showed that propofol (3.2 μg ml) markedly reduced CX32 levels and significantly inhibited gap junctional intercellular communications as revealed by parachute dye-coupling assays. Values are mean (SD). This study provides the first direct evidence that sevoflurane-induced cytotoxicity, which is mediated through gap junctions, is attenuated by propofol, possibly by its action on Cx32 homomeric or heteromeric complexes.

  6. A Multiplexed High-Content Screening Approach Using the Chromobody Technology to Identify Cell Cycle Modulators in Living Cells.

    PubMed

    Schorpp, Kenji; Rothenaigner, Ina; Maier, Julia; Traenkle, Bjoern; Rothbauer, Ulrich; Hadian, Kamyar

    2016-10-01

    Many screening hits show relatively poor quality regarding later efficacy and safety. Therefore, small-molecule screening efforts shift toward high-content analysis providing more detailed information. Here, we describe a novel screening approach to identify cell cycle modulators with low toxicity by combining the Cell Cycle Chromobody (CCC) technology with the CytoTox-Glo (CTG) cytotoxicity assay. The CCC technology employs intracellularly functional single-domain antibodies coupled to a fluorescent protein (chromobodies) to visualize the cell cycle-dependent redistribution of the proliferating cell nuclear antigen (PCNA) in living cells. This image-based cell cycle analysis was combined with determination of dead-cell protease activity in cell culture supernatants by the CTG assay. We adopted this multiplex approach to high-throughput format and screened 960 Food and Drug Administration (FDA)-approved drugs. By this, we identified nontoxic compounds, which modulate different cell cycle stages, and validated selected hits in diverse cell lines stably expressing CCC. Additionally, we independently validated these hits by flow cytometry as the current state-of-the-art format for cell cycle analysis. This study demonstrates that CCC imaging is a versatile high-content screening approach to identify cell cycle modulators, which can be multiplexed with cytotoxicity assays for early elimination of toxic compounds during screening. © 2016 Society for Laboratory Automation and Screening.

  7. Apatinib resensitizes cisplatin-resistant non-small cell lung carcinoma A549 cell through reversing multidrug resistance and suppressing ERK signaling pathway.

    PubMed

    Liu, Z-L; Jin, B-J; Cheng, C-G; Zhang, F-X; Wang, S-W; Wang, Y; Wu, B

    2017-12-01

    To observe the reversal effect of apatinib on the resistance to cisplatin (DDP) of A549/cisplatin (A549/DDP) cells and its relevant mechanism. A549/DDP cells were treated with the control method, apatinib alone, DDP alone and DDP combined with apatinib. The cell proliferation was detected by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the cell clone formation assay. The cell apoptosis was detected by Hoechst 33258 staining and annexin V and propidium iodide (PI) double labeling. The changes in apoptotic proteins, multidrug resistance protein 1 (MDR1) and extracellular signal-regulated kinase (ERK) signaling pathway proteins in each group after treatment were detected by Western blotting. MTT assay results showed that compared with A549 cells, A549/DDP cells had obvious resistance to DDP. MTT assay and cell clone formation assay revealed that the tumor inhibition rate of the sub-lethal dose of apatinib (10 μM) combined with DDP was higher than that of DDP alone. The apoptosis detection results indicated that the proportion of apoptotic cells in the apatinib (10 μM) combined with DDP group was significantly increased. Western blotting results revealed that compared with that in parental A549 cells, the expression level of MDR1 in A549/DDP cells was significantly increased, and the ERK signaling pathway was activated. In the apatinib combined with DDP group, the levels of cleaved caspase-3, cleaved caspase-9 and B-cell lymphoma-2 (Bcl-2)-associated X (BAX) proteins were significantly upregulated, while the level of Bcl-2 proteins was downregulated. Apatinib could inhibit the expression of MDR1 and the activity of the ERK signaling pathway in a dose-dependent manner. Apatinib can restore the sensitivity of A549/DDP cells to DDP by down-regulating the expression level of MDR1 and inhibiting the activity of the ERK signaling pathway.

  8. Magnolol Inhibits the Growth of Non-Small Cell Lung Cancer via Inhibiting Microtubule Polymerization.

    PubMed

    Shen, Jia; Ma, Hailin; Zhang, Tiancheng; Liu, Hui; Yu, Linghua; Li, Guosheng; Li, Huishuang; Hu, Meichun

    2017-01-01

    The tubulin/microtubule system, which is an integral component of the cytoskeleton, plays an essential role in mitosis. Targeting mitotic progression by disturbing microtubule dynamics is a rational strategy for cancer treatment. Microtubule polymerization assay was performed to examine the effect of Magnolol (a novel natural phenolic compound isolated from Magnolia obovata) on cellular microtubule polymerization in human non-small cell lung cancer (NSCLC) cells. Cell cycle analysis, mitotic index assay, cell proliferation assay, colony formation assay, western blotting analysis of cell cycle regulators, Annexin V-FITC/PI staining, and live/dead viability staining were carried out to investigate the Magnolol's inhibitory effect on proliferation and viability of NSCLS cells in vitro. Xenograft model of human A549 NSCLC tumor was used to determine the Magnolol's efficacy in vivo. Magnolol treatment effectively inhibited cell proliferation and colony formation of NSCLC cells. Further study proved that Magnolol induced the mitotic phase arrest and inhibited G2/M progression in a dose-dependent manner, which were mechanistically associated with expression alteration of a series of cell cycle regulators. Furthermore, Magnolol treatment disrupted the cellular microtubule organization via inhibiting the polymerization of microtubule. We also found treatment with NSCLC cells with Magnolol resulted in apoptosis activation through a p53-independent pathway, and autophgy induction via down-regulation of the Akt/mTOR pathway. Finally, Magnolol treatment significantly suppressed the NSCLC tumor growth in mouse xenograft model in vivo. These findings identify Magnolol as a promising candidate with anti-microtubule polymerization activity for NSCLC treatment. © 2017 The Author(s). Published by S. Karger AG, Basel.

  9. Advantages and application of label-free detection assays in drug screening.

    PubMed

    Cunningham, Brian T; Laing, Lance G

    2008-08-01

    Adoption is accelerating for a new family of label-free optical biosensors incorporated into standard format microplates owing to their ability to enable highly sensitive detection of small molecules, proteins and cells for high-throughput drug discovery applications. Label-free approaches are displacing other detection technologies owing to their ability to provide simple assay procedures for hit finding/validation, accessing difficult target classes, screening the interaction of cells with drugs and analyzing the affinity of small molecule inhibitors to target proteins. This review describes several new drug discovery applications that are under development for microplate-based photonic crystal optical biosensors and the key issues that will drive adoption of the technology. Microplate-based optical biosensors are enabling a variety of cell-based assays, inhibition assays, protein-protein binding assays and protein-small molecule binding assays to be performed with high-throughput and high sensitivity.

  10. Induction of micronuclei by HTLV-I Tax: a cellular assay for function.

    PubMed

    Majone, F; Semmes, O J; Jeang, K T

    1993-03-01

    Cellular chromosomal damage is ubiquitously seen in HTLV-I-transformed lymphocytes. It is also characteristic of cells that have been exposed to mutagens. A sensitive measurement for mutagen-induced DNA damage is the formation of micronuclei in treated cells. Because current evidence suggests that HTLV-I Tax is etiologically linked to transformation, we tested for its activity in inducing micronuclei. We show here that transfection into cells of a Tax-producing plasmid rapidly induced the formation of micronuclei. This effect cooperated with that of a mutagen (mitomycin C) and was correlated with the inherent trans-activation capacity of Tax. These findings suggest that a commonly used mutagen assay could be a quick biological test for putatively oncogenic proteins.

  11. Reciprocal activation between STAT3 and miR-181b regulates the proliferation of esophageal cancer stem-like cells via the CYLD pathway.

    PubMed

    Xu, Dan-Dan; Zhou, Peng-Jun; Wang, Ying; Zhang, Li; Fu, Wu-Yu; Ruan, Bi-Bo; Xu, Hai-Peng; Hu, Chao-Zhi; Tian, Lu; Qin, Jin-Hong; Wang, Sheng; Wang, Xiao; Li, Yi-Cheng; Liu, Qiu-Ying; Ren, Zhe; Zhang, Rong; Wang, Yi-Fei

    2016-05-17

    Recent studies have suggested that cancer cells contain subpopulations that can initiate tumor growth, self-renew, and maintain tumor cell growth. However, for esophageal cancer cells, the relationship between STAT3, microRNAs and cancer stem cells remains unclear. Serum-free culture was used to enrich esophageal cancer stem-like cells (ECSLC). Flow cytometry determined the proportion of ECSLC. qPCR were performed to examine expression level of stemness factors, mesenchymal markers, ATP-binding cassette (ABC) transporters, STAT3, miR-181b, CYLD. Western blot were performed to analyze the expression of STAT3, p-STAT3 and CYLD (cylindromatosis). BALB/c mice xenograft studies were conducted to evaluate the tumorigenicity of enriched ECSLC. Sphere formation assay and colony formation assays were employed to analyze the relationship between STAT3 and miR-181b. Luciferase assays were used to evaluate activity which CYLD is a target of miR-181b. Sphere formation cells (SFCs) with properties of ECSLC were enriched. Enriched SFCs in serum-free suspension culture exhibited cancer stem-like cell properties and increased single-positive CD44 + CD24-, stemness factor, mesenchymal marker expression ABC transporters and tumorigenicity in vivo compared with the parental cells. Additionally, we found that reciprocal activation between STAT3 and miR-181b regulated SFCs proliferation. Moreover, STAT3 directly activated miR-181b transcription in SFCs and miR-181b then potentiated p-STAT3 activity. Luciferase assays indicated that CYLD was a direct and functional target of miR-181b. The mutual regulation between STAT3 and miR-181b in SFCs was required for proliferation and apoptosis resistance. STAT3 and miR-181b control each other's expression in a positive feedback loop that regulates SFCs via CYLD pathway. These findings maybe is helpful for targeting ECSLC and providing approach for esophageal cancer treatments.

  12. Effects of single- and multi-strain probiotics on biofilm formation and in vitro adhesion to bladder cells by urinary tract pathogens.

    PubMed

    Chapman, C M C; Gibson, G R; Rowland, I

    2014-06-01

    There is increasing evidence that probiotic bacteria can inhibit and/or prevent urinary tract infections. Possible mechanisms include prevention of adhesion of pathogens to the bladder epithelium and inhibition of biofilm formation. Currently there is interest in the comparative efficacy of single probiotics vs. strain mixtures. We have therefore tested the inhibitory activity of four single probiotics and four probiotic mixtures towards the urinary tract pathogens Escherichia coli NCTC 9001 and Enterococcus faecalis NCTC 00775. Inhibition of biofilm formation by cell-free supernatants was tested using the Crystal Violet assay, while prevention of pathogen adhesion to host cells was tested by using bladder cancer cells as a model for the human urinary tract. Under pH-controlled conditions, there was no significant inhibition of biofilm formation by any treatment. Without pH control, 5/8 treatments significantly inhibited biofilm production by E. coli, while 5/8 treatments inhibited production by E. faecalis. Using data from all Crystal Violet assays, there was no significant difference in the ability of single- and multi-strain probiotics to inhibit biofilm formation. In the cell culture assays, all treatments were able to significantly reduce numbers of pathogenic cells adhering to host cells by 2.5-3.5 logs. No significant difference was observed between the displacement caused by single strains and mixtures for either pathogen. Inhibition of biofilm seems to be a major mechanism of urinary tract pathogen exclusion, related to, and possibly dependent upon, the probiotic ability to reduce environmental pH. Exclusion via competition of binding sites is a possible in vivo mechanism for these probiotics. If an additive or synergistic effect exists between strains within a mixture, it does not manifest itself in a greater effect through these two inhibitory mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Assay of 6-thioinosinic acid and 6-thioguanine nucleotides, active metabolites of 6-mercaptopurine, in human red blood cells.

    PubMed

    Lennard, L

    1987-12-25

    A highly sensitive reversed-phase high-performance liquid chromatographic assay, with ultraviolet detection, for 6-thioinosinic acid and the 6-thioguanine nucleotides (6TGNs) was developed. The 6TGNs are major red blood cell metabolites of the immunosuppressive agent azathioprine and the cytotoxic drugs 6-thioguanine and 6-mercaptopurine. The assay is based on the specific extraction, via phenyl mercury adduct formation, of the thiopurine released on acid hydrolysis of the thionucleotide metabolite. Red blood cell 6TGN concentrations in eighteen leukaemic children receiving chronic 6-mercaptopurine chemotherapy were measured and compared to a previously published spectrophotofluorometric assay. Linear regression analysis gave r = 0.991; P less than 0.001; y = 40 + 0.94x.

  14. Methods for efficient high-throughput screening of protein expression in recombinant Pichia pastoris strains.

    PubMed

    Camattari, Andrea; Weinhandl, Katrin; Gudiminchi, Rama K

    2014-01-01

    The methylotrophic yeast Pichia pastoris is becoming one of the favorite industrial workhorses for protein expression. Due to the widespread use of integration vectors, which generates significant clonal variability, screening methods allowing assaying hundreds of individual clones are of particular importance. Here we describe methods to detect and analyze protein expression, developed in a 96-well format for high-throughput screening of recombinant P. pastoris strains. The chapter covers essentially three common scenarios: (1) an enzymatic assay for proteins expressed in the cell cytoplasm, requiring cell lysis; (2) a whole-cell assay for a fungal cytochrome P450; and (3) a nonenzymatic assay for detection and quantification of tagged protein secreted into the supernatant.

  15. Antitumorigenic effect of atmospheric-pressure dielectric barrier discharge on human colorectal cancer cells via regulation of Sp1 transcription factor

    NASA Astrophysics Data System (ADS)

    Han, Duksun; Cho, Jin Hyoung; Lee, Ra Ham; Bang, Woong; Park, Kyungho; Kim, Minseok S.; Shim, Jung-Hyun; Chae, Jung-Il; Moon, Se Youn

    2017-02-01

    Human colorectal cancer cell lines (HT29 and HCT116) were exposed to dielectric barrier discharge (DBD) plasma at atmospheric pressure to investigate the anticancer capacity of the plasma. The dose- and time-dependent effects of DBDP on cell viability, regulation of transcription factor Sp1, cell-cycle analysis, and colony formation were investigated by means of MTS assay, DAPI staining, propidium iodide staining, annexin V-FITC staining, Western blot analysis, RT-PCR analysis, fluorescence microscopy, and anchorage-independent cell transformation assay. By increasing the duration of plasma dose times, significant reductions in the levels of both Sp1 protein and Sp1 mRNA were observed in both cell lines. Also, expression of negative regulators related to the cell cycle (such as p53, p21, and p27) was increased and of the positive regulator cyclin D1 was decreased, indicating that the plasma treatment led to apoptosis and cell-cycle arrest. In addition, the sizes and quantities of colony formation were significantly suppressed even though two cancer promoters, such as TPA and epidermal growth factor, accompanied the plasma treatment. Thus, plasma treatment inhibited cell viability and colony formation by suppressing Sp1, which induced apoptosis and cell-cycle arrest in these two human colorectal cancer cell lines.

  16. Comprehensive Profiling of Radiosensitive Human Cell Lines with DNA Damage Response Assays Identifies the Neutral Comet Assay as a Potential Surrogate for Clonogenic Survival

    PubMed Central

    Nahas, Shareef A.; Davies, Robert; Fike, Francesca; Nakamura, Kotoka; Du, Liutao; Kayali, Refik; Martin, Nathan T.; Concannon, Patrick; Gatti, Richard A.

    2015-01-01

    In an effort to explore the possible causes of human radiosensitivity and identify more rapid assays for cellular radiosensitivity, we interrogated a set of assays that evaluate cellular functions involved in recognition and repair of DNA double-strand breaks: (1) neutral comet assay, (2) radiation-induced γ-H2AX focus formation, (3) the temporal kinetics of structural maintenance of chromosomes 1 phosphorylation, (4) intra-S-phase checkpoint integrity, and (5) mitochondrial respiration. We characterized a unique panel of 19 “radiosensitive” human lymphoblastoid cell lines from individuals with undiagnosed diseases suggestive of a DNA repair disorder. Radiosensitivity was defined by reduced cellular survival using a clonogenic survival assay. Each assay identified cell lines with defects in DNA damage response functions. The highest concordance rate observed, 89% (17/19), was between an abnormal neutral comet assay and reduced survival by the colony survival assay. Our data also suggested that the neutral comet assay would be a more rapid surrogate for analyzing DNA repair/processing disorders. PMID:21962002

  17. Comparison of the Sanofi Diagnostics Pasteur Chlamydia Microplate EIA shortened assay with the original standard assay and cell culture.

    PubMed

    Chan, E L; Brandt, K; Stoneham, H; Horsman, G

    1997-08-01

    The new Sanofi Diagnostics Pasteur Chlamydia Microplate EIA shortened assay was evaluated by comparison with the original standard assay and cell culture. A total of 853 paired male and female genital tract specimens was tested with both Sanofi Chlamydia Microplate EIA shortened and standard assays and the results were compared with those of cell culture. For confirmation, a blocking assay run in the shortened format was used. Discrepancies between the three methods were resolved by a direct fluorescent antibody (DFA) test on the EIA samples or the culture retentate, or both. After resolution of discrepant results, the standard assay had a sensitivity, specificity, positive predictive value and negative predictive value of 98.5%, 100%, 100% and 99.9%, respectively. The shortened assay results were 100%, 100%, 100% and 100%, respectively. The shortened assay takes approximately 1.5 h less time than the standard assay and this study demonstrated that they have equivalent sensitivity and specificity. The improvement in turnaround time enables results to be reported on the same day.

  18. The antiangiogenic activity of Kushecarpin D, a novel flavonoid isolated from Sophora flavescens Ait.

    PubMed

    Pu, Li-Ping; Chen, He-Ping; Cao, Mei-Ai; Zhang, Xiu-Li; Gao, Qing-Xiang; Yuan, Cheng-Shan; Wang, Chun-Ming

    2013-11-13

    Kushecarpin D (KD) is a novel flavonoid isolated from the traditional Chinese herbal medicine Kushen (the dried root of Sophora flavescens Ait). As part of our continuous effort to explore Chinese traditional medicinal herbs and to identify novel natural anticancer products, the antiangiogenic properties of KD were examined in vitro using a human umbilical vein endothelial cell line (ECV304). The SRB and Trypan Blue exclusion assays were used to evaluate the effect of KD on cell proliferation. The antiangiogenic activities of KD were evaluated through studies of cell migration, cell adhesion, and tube formation. DCFH-DA and DHE fluorescent assays were used to detect the reactive oxygen species (ROS) levels. Catalase activity was detected using the colorimetric ammonium molybdate method. Cell cycle and apoptosis were measured using flow cytometry and the Hoechst 33258 staining assay. The results indicated that KD showed antiangiogenic activity via inhibitory effects on cell proliferation, cell migration, cell adhesion, and tube formation. ROS levels were down-regulated and catalase activity was up-regulated after treatment with KD. The cell cycle was arrested at the G2/M phase, while no apoptosis was observed using the Hoechst 33258 staining assay or following the flow cytometric analysis of the sub-G1 proportion. The antiangiogenic properties of KD, in combination with its anti-proliferative effect and ability to induce cell cycle arrest without inducing apoptosis, make it a good candidate for development as antitumor agent. However, further studies are essential to elucidate its mechanism of action. © 2013.

  19. The organophosphate insecticide chlorpyrifos confers its genotoxic effects by inducing DNA damage and cell apoptosis.

    PubMed

    Li, Diqiu; Huang, Qingchun; Lu, Miaoqing; Zhang, Lei; Yang, Zhichuan; Zong, Mimi; Tao, Liming

    2015-09-01

    The organophosphate insecticide chlorpyrifos (CPF) is known to induce neurological effects, malformation and micronucleus formation, persistent developmental disorders, and maternal toxicity in rats and mice. The binding of chlorpyrifos with DNA to produce DNA adducts leads to an increasing social concern about the genotoxic risk of CPF in human, but CPF-induced cytotoxicity through DNA damage and cell apoptosis is not well understood. Here, we quantified the cytotoxicity and potential genotoxicity of CPF using the alkaline comet assay, γH2AX foci formation, and the DNA laddering assay in order to detect DNA damage and apoptosis in human HeLa and HEK293 cells in vitro. Drosophila S2 cells were used as a positive control. The alkaline comet assay showed that sublethal concentrations of CPF induced significant concentration-dependent increases in single-strand DNA breaks in the treated cells compared with the control. The percentage of γH2AX-positive HeLa cells revealed that CPF also causes DNA double-strand breaks in a time-dependent manner. Moreover, DNA fragmentation analysis demonstrated that exposure to CPF induced a significant concentration- and time-dependent increase in cell apoptosis. We conclude that CPF is a strongly genotoxic agent that induces DNA damage and cell apoptosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. 1,4-Naphthoquinone derivatives potently suppress Candida albicans growth, inhibit formation of hyphae and show no toxicity toward zebrafish embryos.

    PubMed

    Janeczko, Monika; Kubiński, Konrad; Martyna, Aleksandra; Muzyczka, Angelika; Boguszewska-Czubara, Anna; Czernik, Sławomir; Tokarska-Rodak, Małgorzata; Chwedczuk, Marta; Demchuk, Oleg M; Golczyk, Hieronim; Masłyk, Maciej

    2018-04-01

    In this study, we applied various assays to find new activities of 1,4-naphthoquinone derivatives for potential anti-Candida albicans applications. These assays determined (a) the antimicrobial effect on growth/cell multiplication in fungal cultures, (b) the effect on formation of hyphae and biofilm, (c) the influence on cell membrane integrity, (d) the effect on cell morphology using atomic force microscopy, and (e) toxicity against zebrafish embryos. We have demonstrated the activity of these compounds against different Candida species and clinical isolates of C. albicans. 1,4-Naphthoquinones significantly affected fungal strains at 8-250 mg l -1 of MIC. Interestingly, at concentrations below MICs, the chemicals showed effectiveness in inhibition of hyphal formation and cell aggregation in Candida. Of note, atomic force microscopy (AFM) analysis revealed an influence of the compounds on cell morphological properties. However, at low concentrations (0.8-31.2 mg l -1 ), it did not exert any evident toxic effects on zebrafish embryos. Our research has evidenced the effectiveness of 1,4-naphthoquinones as potential anti-Candida agents.

  1. Autophagic Cell Death, Polyploidy and Senescence Induced in Breast Tumor Cells by the Substituted Pyrrole JG-03-14, a Novel Microtubule Poison

    PubMed Central

    Arthur, Christopher R.; Gupton, John T.; Kellogg, Glen E.; Yeudall, W. Andrew; Cabot, Myles C.; Newsham, Irene; Gewirtz, David A.

    2007-01-01

    JG-03-14, a substituted pyrrole that inhibits microtubule polymerization, was screened against MCF-7 (p53 wild type), MDA-MB 231 (p53 mutant), MCF-7/caspase 3 and MCF-7/ADR (multidrug resistant) breast tumor cell lines. Cell viability and growth inhibition were assessed by the crystal violet dye assay. Apoptosis was evaluated by the TUNEL assay, cell cycle distribution by flow cytometry, autophagy by acridine orange staining of vesicle formation, and senescence based on β-galactosidase staining and cell morphology. Our studies indicate that exposure to JG-03-14, at a concentration of 500 nM, induces time dependent cell death in the MCF-7 and MDA-MB 231 cell lines. In MCF-7 cells, a residual surviving cell population was found to be senescent; in contrast, there was no surviving senescent population in treated MDA-MB 231 cells. No proliferative recovery was detected over a period of 15 days post-treatment in either cell line. Both the TUNEL assay and FLOW cytometry indicated a relatively limited degree of apoptosis (< 10%) in response to drug treatment in MCF-7 cells with more extensive apoptosis (but < 20%) in MDA-MB231 cells; acidic vacuole formation indicative of autophagic cell death was relatively extensive in both MCF-7 and MDA-MB231 cells. In addition, JG-03-14 induced the formation of a large hyperdiploid cell population in MDA-MB231 cells. JG-03-14 also demonstrated pronounced anti-proliferative activity in MCF-7/caspase 3 cells and in the MCF-7/ADR cell line. The observation that JG-03-14 promotes autophagic cell death and also retains activity in tumor cells expressing the multidrug resistance pump indicates that novel microtubule poisons of the substituted pyrroles class may hold promise in the treatment of breast cancer. PMID:17692290

  2. C-Cbl reverses HER2-mediated tamoxifen resistance in human breast cancer cells.

    PubMed

    Li, Wei; Xu, Ling; Che, Xiaofang; Li, Haizhou; Zhang, Ye; Song, Na; Wen, Ti; Hou, Kezuo; Yang, Yi; Zhou, Lu; Xin, Xing; Xu, Lu; Zeng, Xue; Shi, Sha; Liu, Yunpeng; Qu, Xiujuan; Teng, Yuee

    2018-05-02

    Tamoxifen is a frontline therapy for estrogen receptor (ER)-positive breast cancer in premenopausal women. However, many patients develop resistance to tamoxifen, and the mechanism underlying tamoxifen resistance is not well understood. Here we examined whether ER-c-Src-HER2 complex formation is involved in tamoxifen resistance. MTT and colony formation assays were used to measure cell viability and proliferation. Western blot was used to detect protein expression and protein complex formations were detected by immunoprecipitation and immunofluorescence. SiRNA was used to examine the function of HER2 in of BT474 cells. An in vivo xenograft animal model was established to examine the role of c-Cbl in tumor growth. MTT and colony formation assay showed that BT474 cells are resistant to tamoxifen and T47D cells are sensitive to tamoxifen. Immunoprecipitation experiments revealed ER-c-Src-HER2 complex formation in BT474 cells but not in T47D cells. However, ER-c-Src-HER2 complex formation was detected after overexpressing HER2 in T47D cells and these cells were more resistant to tamoxifen. HER2 knockdown by siRNA in BT474 cells reduced ER-c-Src-HER2 complex formation and reversed tamoxifen resistance. ER-c-Src-HER2 complex formation was also disrupted and tamoxifen resistance was reversed in BT474 cells by the c-Src inhibitor PP2 and HER2 antibody trastuzumab. Nystatin, a lipid raft inhibitor, reduced ER-c-Src-HER2 complex formation and partially reversed tamoxifen resistance. ER-c-Src-HER2 complex formation was disrupted by overexpression of c-Cbl but not by the c-Cbl ubiquitin ligase mutant. In addition, c-Cbl could reverse tamoxifen resistance in BT474 cells, but the ubiquitin ligase mutant had no effect. The effect of c-Cbl was validated in BT474 tumor-bearing nude mice in vivo. Immunofluorescence also revealed ER-c-Src-HER2 complex formation was reduced in tumor tissues of nude mice with c-Cbl overexpression. Our results suggested that c-Cbl can reverse tamoxifen resistance in HER2-overexpressing breast cancer cells by inhibiting the formation of the ER-c-Src-HER2 complex.

  3. Epidermal Growth Factor Receptor Transactivation by the Cannabinoid Receptor (CB1) and Transient Receptor Potential Vanilloid 1 (TRPV1) Induces Differential Responses in Corneal Epithelial Cells

    DTIC Science & Technology

    2010-01-01

    induced Ca2þ signaling as well as phospholipase D (PLD)-mediated phosphatidic acid formation (Islam and Akhtar, 2000; Kang et al., 2000, 2001; Mazie et...Epithelial cell motility is triggered by activation of the EGF receptor through phosphatidic acid signaling. J. Cell Sci. 119, 1645e1654. McIntosh, B.T...buffer. Cell lysates were centrifuged and supernatants were collected for measuring proteins with a bichinchoninic acid assay (BCA) protein assay kit

  4. Novel surface-enhanced Raman scattering-based assays for ultra-sensitive detection of human pluripotent stem cells.

    PubMed

    Han, Jingjia; Qian, Ximei; Wu, Qingling; Jha, Rajneesh; Duan, Jinshuai; Yang, Zhou; Maher, Kevin O; Nie, Shuming; Xu, Chunhui

    2016-10-01

    Human pluripotent stem cells (hPSCs) are a promising cell source for regenerative medicine, but their derivatives need to be rigorously evaluated for residual stem cells to prevent teratoma formation. Here, we report the development of novel surface-enhanced Raman scattering (SERS)-based assays that can detect trace numbers of undifferentiated hPSCs in mixed cell populations in a highly specific, ultra-sensitive, and time-efficient manner. By targeting stem cell surface markers SSEA-5 and TRA-1-60 individually or simultaneously, these SERS assays were able to identify as few as 1 stem cell in 10(6) cells, a sensitivity (0.0001%) which was ∼2000 to 15,000-fold higher than that of flow cytometry assays. Using the SERS assay, we demonstrate that the aggregation of hPSC-based cardiomyocyte differentiation cultures into 3D spheres significantly reduced SSEA-5(+) and TRA-1-60(+) cells compared with parallel 2D cultures. Thus, SERS may provide a powerful new technology for quality control of hPSC-derived products for preclinical and clinical applications. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Teratoma formation of human embryonic stem cells in three-dimensional perfusion culture bioreactors.

    PubMed

    Stachelscheid, H; Wulf-Goldenberg, A; Eckert, K; Jensen, J; Edsbagge, J; Björquist, P; Rivero, M; Strehl, R; Jozefczuk, J; Prigione, A; Adjaye, J; Urbaniak, T; Bussmann, P; Zeilinger, K; Gerlach, J C

    2013-09-01

    Teratoma formation in mice is today the most stringent test for pluripotency that is available for human pluripotent cells, as chimera formation and tetraploid complementation cannot be performed with human cells. The teratoma assay could also be applied for assessing the safety of human pluripotent cell-derived cell populations intended for therapeutic applications. In our study we examined the spontaneous differentiation behaviour of human embryonic stem cells (hESCs) in a perfused 3D multi-compartment bioreactor system and compared it with differentiation of hESCs and human induced pluripotent cells (hiPSCs) cultured in vitro as embryoid bodies and in vivo in an experimental mouse model of teratoma formation. Results from biochemical, histological/immunohistological and ultrastuctural analyses revealed that hESCs cultured in bioreactors formed tissue-like structures containing derivatives of all three germ layers. Comparison with embryoid bodies and the teratomas revealed a high degree of similarity of the tissues formed in the bioreactor to these in the teratomas at the histological as well as transcriptional level, as detected by comparative whole-genome RNA expression profiling. The 3D culture system represents a novel in vitro model that permits stable long-term cultivation, spontaneous multi-lineage differentiation and tissue formation of pluripotent cells that is comparable to in vivo differentiation. Such a model is of interest, e.g. for the development of novel cell differentiation strategies. In addition, the 3D in vitro model could be used for teratoma studies and pluripotency assays in a fully defined, controlled environment, alternatively to in vivo mouse models. Copyright © 2012 John Wiley & Sons, Ltd.

  6. A lateral electrophoretic flow diagnostic assay

    PubMed Central

    Lin, Robert; Skandarajah, Arunan; Gerver, Rachel E.; Neira, Hector D.; Fletcher, Daniel A.

    2015-01-01

    Immunochromatographic assays are a cornerstone tool in disease screening. To complement existing lateral flow assays (based on wicking flow) we introduce a lateral flow format that employs directed electrophoretic transport. The format is termed a “lateral e-flow assay” and is designed to support multiplexed detection using immobilized reaction volumes of capture antigen. To fabricate the lateral e-flow device, we employ mask-based UV photopatterning to selectively immobilize unmodified capture antigen along the microchannel in a barcode-like pattern. The channel-filling polyacrylamide hydrogel incorporates a photoactive moiety (benzophenone) to immobilize capture antigen to the hydrogel without a priori antigen modification. We report a heterogeneous sandwich assay using low-power electrophoresis to drive biospecimen through the capture antigen barcode. Fluorescence barcode readout is collected via a low-resource appropriate imaging system (CellScope). We characterize lateral e-flow assay performance and demonstrate a serum assay for antibodies to the hepatitis C virus (HCV). In a pilot study, the lateral e-flow assay positively identifies HCV+ human sera in 60 min. The lateral e-flow assay provides a flexible format for conducting multiplexed immunoassays relevant to confirmatory diagnosis in near-patient settings. PMID:25608872

  7. Proteolysis-a characteristic of tumor-initiating cells in murine metastatic breast cancer

    PubMed Central

    Hillebrand, Larissa E.; Bengsch, Fee; Hochrein, Jochen; Hülsdünker, Jan; Bender, Julia; Follo, Marie; Busch, Hauke; Boerries, Melanie; Reinheckel, Thomas

    2016-01-01

    Tumor initiating cells (TICs) have been identified and functionally characterized in hematological malignancies as well as in solid tumors such as breast cancer. In addition to their high tumor-initiating potential, TICs are founder cells for metastasis formation and are involved in chemotherapy resistance. In this study we explored molecular pathways which enable this tumor initiating potential for a cancer cell subset of the transgenic MMTV-PyMT mouse model for metastasizing breast cancer. The cell population, characterized by the marker profile CD24+CD90+CD45−, showed a high tumorigenicity compared to non-CD24+CD90+CD45− cancer cells in colony formation assays, as well as upon orthotopic transplantation into the mammary fat pad of mice. In addition, these orthotopically grown CD24+CD90+CD45− TICs metastasized to the lungs. The transcriptome of TICs freshly isolated from primary tumors by cell sorting was compared with that of sorted non-CD24+CD90+CD45− cancer cells by RNA-seq. In addition to more established TIC signatures, such as epithelial-to-mesenchymal transition or mitogen signaling, an upregulated gene set comprising several classes of proteolytic enzymes was uncovered in the TICs. Accordingly, TICs showed high intra- and extracellular proteolytic activity. Application of a broad range of protease inhibitors to TICs in a colony formation assay reduced anchorage independent growth and had an impact on colony morphology in 3D cell culture assays. We conclude that CD24+CD90+CD45− cells of the MMTV- PyMT mouse model possess an upregulated proteolytic signature which could very well represent a functional hallmark of metastatic TICs from mammary carcinomas. PMID:27542270

  8. [Inhibitory effect of Mig-7 silencing by retrovirus-mediated shRNA on vasculogenic mimicry, invasion and metastasis of human hepatocellular carcinoma cells in vitro].

    PubMed

    Qu, Bo; Sheng, Guan-Nan; Yu, Fei; Chen, Guan-Nan; Lv, Qi; Mao, Zhong-Peng; Guo, Long; Lv, Yi

    2016-11-20

    To explore the inhibitory effect of migration-inducing gene 7 (Mig-7) gene silencing induced by retroviral-mediated small hairpin RNA (shRNA) on vasculogenic mimicry (VM), invasion and metastasis of human hepatocellular carcinoma (HCC) cells in vitro. Two target sequences (Mig-7 shRNA-1 and Mig-7 shRNA-2) and one negative control sequence (Mig-7 shRNA-N) were synthesized. The recombinant retroviral vectors carrying Mig-7 shRNA were constructed, and HCC cell line MHCC-97H were transfected with Mig-7 shRNA-1, Mig-7 shRNA-2, Mig-7 shRNA-N, or the empty vector, or treated with 125 µg/mL recombinant human endostatin (ES). Mig-7 expression in the treated cells was detected using semi-quantitative PCR and Western blotting. The inhibitory effect of Mig-7 silencing on VM formation was investigated in a 3-dimensional cell culture system; the changes in cell adhesion, invasion and migration were assessed with intercellular adhesion assay, Transwell invasion assay and Transwell migration assay, respectively. The expression of Mig-7 at both mRNA and protein levels decreased significantly, VM formation, invasion and metastasis were suppressed, while intercellular adhesion increased significantly in MHCC-97H cells in Mig-7 shRNA-1 and Mig-7 shRNA-2 groups (P<0.05); such changes were not observed in cells transfected with Mig-7 shRNA-N or the empty vector, nor in cells treated with ES. Mig-7 silencing by retroviral-mediated shRNA significantly inhibits VM formation, invasion and metastasis and increases the intercellular adhesion of the HCC cells, while ES does not have such inhibitory effects.

  9. Activation of Rho GTPase Cdc42 promotes adhesion and invasion in colorectal cancer cells.

    PubMed

    Gao, Lei; Bai, Lan; Nan, Qing zhen

    2013-07-25

    The purpose of this study was to investigate the role of activated Rho GTPase cell division control protein 42 homolog (Cdc42) in colorectal cancer cell adhesion, migration, and invasion. The constitutively active form of Cdc42 (GFP-Cdc42L61) or control vector was overexpressed in the colorectal cancer cell line SW480. The localization of active Cdc42 was monitored by immunofluorescence staining, and the effects of active Cdc42 on cell migration and invasion were examined using an attachment assay, a wound healing assay, and a Matrigel migration assay in vitro. Immunofluorescence staining revealed that constitutively active Cdc42 predominately localized to the plasma membrane. Compared to SW480 cells transfected with the control vector, overexpression of constitutively active Cdc42 in SW480 cells promoted filopodia formation and cell stretch and dramatically enhanced cell adhesion to the coated plates. The wound healing assay revealed a significant increase of migration capability in SW480 cells expressing active Cdc42 compared to the control cells. Additionally, the Matrigel invasion assay demonstrated that active Cdc42 significantly promoted SW480 cell migration through the chamber. Our results suggest that active Rho GTPase Cdc42 can greatly enhance colorectal cancer cell SW480 to spread, migrate, and invade, which may contribute to colorectal cancer metastasis.

  10. Slight changes in the mechanical stimulation affects osteoblast- and osteoclast-like cells in co-culture.

    PubMed

    Kadow-Romacker, Anke; Duda, Georg N; Bormann, Nicole; Schmidmaier, Gerhard; Wildemann, Britt

    2013-12-01

    Osteoblast- and osteoclast-like cells are responsible for coordinated bone maintenance, illustrated by a balanced formation and resorption. Both parameters appear to be influenced by mechanical constrains acting on each of these cell types individually. We hypothesized that the interactions between both cell types are also influenced by mechanical stimulation. Co-cultures of osteoblast- and osteoclast-like cells were stimulated with 1,100 µstrain, 0.1 or 0.3 Hz for 1-5 min/day over 5 days. Two different setups depending on the differentiation of the osteoclast-like cells were used: i) differentiation assay for the fusion of pre-osteoclasts to osteoclasts, ii) resorption assay to determine the activity level of osteoclast-like cells. In the differentiation assay (co-culture of osteoblasts with unfused osteoclast precursor cells) the mechanical stimulation resulted in a significant decrease of collagen-1 and osteocalcin produced by osteoblast-like cells. Significantly more TRAP-iso5b was measured after stimulation for 3 min with 0.1 Hz, indicating enhanced osteoclastogenesis. In the resorption assay (co-culture of osteoblasts with fused osteoclasts) the stimulation for 3 min with 0.3 Hz significantly increased the resorption activity of osteoclasts measured by the pit formation and the collagen resorption. The same mechanical stimulation resulted in an increased collagen-1 production by the osteoblast-like cells. The ratio of RANKL/OPG was not different between the groups. These findings demonstrate that already small changes in duration or frequency of mechanical stimulation had significant consequences for the behavior of osteoblast- and osteoclast-like cells in co-culture, which partially depend on the differentiation status of the osteoclast-like cells.

  11. Miniaturized and High-Throughput Assays for Analysis of T-Cell Immunity Specific for Opportunistic Pathogens and HIV

    PubMed Central

    Ivaldi, Federico; Starc, Nadia; Landi, Fabiola; Locatelli, Franco; Rutella, Sergio; Tripodi, Gino; Manca, Fabrizio

    2014-01-01

    Monitoring of antigen-specific T-cell responses is valuable in numerous conditions that include infectious diseases, vaccinations, and opportunistic infections associated with acquired or congenital immune defects. A variety of assays that make use of peripheral lymphocytes to test activation markers, T-cell receptor expression, or functional responses are currently available. The last group of assays calls for large numbers of functional lymphocytes. The number of cells increases with the number of antigens to be tested. Consequently, cells may be the limiting factor, particularly in lymphopenic subjects and in children, the groups that more often require immune monitoring. We have developed immunochemical assays that measure secreted cytokines in the same wells in which peripheral blood mononuclear cells (PBMC) are cultured. This procedure lent itself to miniaturization and automation. Lymphoproliferation and the enzyme-linked immunosorbent spot (ELISPOT) assay have been adapted to a miniaturized format. Here we provide examples of immune profiles and describe a comparison between miniaturized assays based on cytokine secretion or proliferation. We also demonstrate that these assays are convenient for use in testing antigen specificity in established T-cell lines, in addition to analysis of PBMC. In summary, the applicabilities of miniaturization to save cells and reagents and of automation to save time and increase accuracy were demonstrated in this study using different methodological approaches valuable in the clinical immunology laboratory. PMID:24477854

  12. Multiplexing a high-throughput liability assay to leverage efficiencies.

    PubMed

    Herbst, John; Anthony, Monique; Stewart, Jeremy; Connors, David; Chen, Taosheng; Banks, Martyn; Petrillo, Edward W; Agler, Michele

    2009-06-01

    In order to identify potential cytochrome P-450 3A4 (drug-metabolizing enzyme) inducers at an early stage of the drug discovery process, a cell-based transactivation high-throughput luciferase reporter assay for the human pregnane X receptor (PXR) in HepG2 cells has been implemented and multiplexed with a viability end point for data interpretation, as part of a Lead Profiling portfolio of assays. As a routine part of Lead Profiling operations, assays are periodically evaluated for utility as well as for potential improvements in technology or process. We used a recent evaluation of our PXR-transactivation assay as a model for the application of Lean Thinking-based process analysis to lab-bench assay optimization and automation. This resulted in the development of a 384-well multiplexed homogeneous assay simultaneously detecting PXR transactivation and HepG2 cell cytotoxicity. In order to multiplex fluorescent and luminescent read-outs, modifications to each assay were necessary, which included optimization of multiple assay parameters such as cell density, plate type, and reagent concentrations. Subsequently, a set of compounds including known cytotoxic compounds and PXR inducers were used to validate the multiplexed assay. Results from the multiplexed assay correlate well with those from the singleplexed assay formats measuring PXR transactivation and viability separately. Implementation of the multiplexed assay for routine compound profiling provides improved data quality, sample conservation, cost savings, and resource efficiencies.

  13. New Natural Pigment Fraction Isolated from Saw Palmetto: Potential for Adjuvant Therapy of Hepatocellular Carcinoma

    PubMed Central

    Tan, Hor-Yue; Wang, Ning; Takahashi, Masao; Feng, Yigang; Li, Hongyun; Feng, Yibin

    2016-01-01

    For the first time, we discovered a small proportion of aqueous fraction from Saw Palmetto apart from the fatty acid-rich fraction exhibited pharmacological activity. Therefore, this study aims to explore the anti-tumor potential of red pigmented aqueous fraction of Saw Palmetto, NYG on human hepatocellular carcinoma and its possible targets. Subcutaneous xenograft and orthotopic implantation models of HCC were used to evaluate the tumor inhibitory effect of NYG. Human hepatocellular carcinoma (HCC) cell lines and human umbilical vein endothelial cells (HUVEC) were used as in vitro model. The mRNA expression was conducted by qPCR. Protein expression was monitored by immunoblotting and immunohistochemistry. Cell migration and blood vessel formation were determined by chamber assay and tube formation assay, respectively. Significant tumor inhibition of NYG in dose-dependent manner was observed on subcutaneous xenograft and orthotopic HCC model. NYG has no direct action on cell viability or VEGF secretion of HCC cells. However, NYG reduced in vitro migration and vessel formation activities of HUVEC cells, as well as in vivo intratumoral neovascularization. NYG attenuated extracellular signal-regulated kinases (ERK) activation in endothelial cells, which may be associated with the suppression of migration and tube formation of HUVEC. NYG suppressed tumor expansion of HCC via inhibiting neovascularization, and may be potential adjuvant treatment for HCC. PMID:27527161

  14. Evaluation of the in vitro and in vivo angiogenic effects of exendin-4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Hye-Min; Kang, Yujung; Chun, Hyung J.

    2013-04-26

    Highlights: •We investigated the effects of exendin-4 on the angiogenic process. •Exendin-4 increased migration, sprouting, and tube formation by HUVECs in in vitro. •Exendin-4 increased sprouts in aortic rings and induced new vessels in Matrigel in in vivo. •Exendin-4 may be of potential use for the treatment of vascular complications of diabetes. -- Abstract: Exendin-4, an analog of glucagon-like peptide (GLP)-1, has beneficial effects on cardiovascular disease induced by diabetes mellitus (DM). Recently, exendin-4 was reported to induce the proliferation of endothelial cells. However, its angiogenic effect on endothelial cells has not been clearly evaluated. Therefore, we investigated the effectsmore » of exendin-4 on the angiogenic process with respect to migration, sprouting, and neovascularization using in vitro and in vivo assays. Treatment with exendin-4 increased the migration of human umbilical vein endothelial cells (HUVECs) in in vitro scratch wound assays, as well as the number of lumenized vessels sprouting from HUVECs in in vitro 3D bead assays. These responses were abolished by co-treatment with exendin (9–39), a GLP-1 receptor antagonist, which suggests that exendin-4 regulates endothelial cell migration and tube formation in a GLP-1 receptor-dependent manner. In an ex vivo assay, treatment of aortic rings with exendin-4 increased the sprouting of endothelial cells. Exendin-4 also significantly increased the number of new vessels and induced blood flow in Matrigel plugs in in vivo assays. Our results provide clear evidence for the angiogenic effect of exendin-4 in in vitro and in vivo assays and provide a mechanism underlying the cardioprotective effects of exendin-4.« less

  15. Coordinate Stimulation of Macrophages by Microparticles and TLR Ligands Induces Foam Cell Formation1

    PubMed Central

    Keyel, Peter A; Tkacheva, Olga A.; Larregina, Adriana T.; Salter, Russell D

    2012-01-01

    Aberrant activation of macrophages in arterial walls by oxidized lipoproteins can lead to atherosclerosis. Oxidized lipoproteins convert macrophages to foam cells through lipid uptake and TLR signaling. To investigate the relative contributions of lipid uptake and TLR signaling in foam cell formation, we established an in vitro assay utilizing liposomes of defined lipid compositions. We found that TLRs signaling through Trif promoted foam cell formation by inducing both NF-KB signaling and Type I IFN production, whereas TLRs that do not induce IFN, like TLR2, did not enhance foam cell formation. Addition of IFNα to TLR2 activator promoted robust foam cell formation. TLR signaling further required PPARα, as inhibition of PPARα blocked foam cell formation. We then investigated the ability of endogenous microparticles (MP) to contribute to foam cell formation. We found that lipid containing MP promoted foam cell formation, which was enhanced by TLR stimulation or IFNα. These MP also stimulated foam cell formation in a human skin model. However, these MP suppressed TNFα production and T cell activation, showing that foam cell formation can occur by immunosuppressive microparticles. Taken together, the data reveal novel signaling requirements for foam cell formation and suggest that uptake of distinct types of MP in the context of activation of multiple distinct TLR can induce foam cell formation. PMID:23018455

  16. Effect of the anti-neoplastic drug doxorubicin on XPD-mutated DNA repair-deficient human cells.

    PubMed

    Saffi, Jenifer; Agnoletto, Mateus H; Guecheva, Temenouga N; Batista, Luís F Z; Carvalho, Helotonio; Henriques, João A P; Stary, Anne; Menck, Carlos F M; Sarasin, Alain

    2010-01-02

    Doxorubicin (DOX), a member of the anthracycline group, is a widely used drug in cancer therapy. The mechanisms of DOX action include topoisomerase II-poisoning, free radical release, DNA adducts and interstrand cross-link (ICL) formation. Nucleotide excision repair (NER) is involved in the removal of helix-distorting lesions and chemical adducts, however, little is known about the response of NER-deficient cell lines to anti-tumoral drugs like DOX. Wild type and XPD-mutated cells, harbouring mutations in different regions of this gene and leading to XP-D, XP/CS or TTD diseases, were treated with this drug and analyzed for cell cycle arrest and DNA damage by comet assay. The formation of DSBs was also investigated by determination of gammaH2AX foci. Our results indicate that all three NER-deficient cell lines tested are more sensitive to DOX treatment, when compared to wild type cells or XP cells complemented by the wild type XPD cDNA, suggesting that NER is involved in the removal of DOX-induced lesions. The cell cycle analysis showed the characteristic G2 arrest in repair-proficient MRC5 cell line after DOX treatment, whereas the repair-deficient cell lines presented significant increase in sub-G1 fraction. The NER-deficient cell lines do not show different patterns of DNA damage formation as assayed by comet assay and phosphorylated H2AX foci formation. Knock-down of topoisomerase IIalpha with siRNA leads to increased survival in both MRC5 and XP cells, however, XP cell line still remained significantly more sensitive to the treatment by DOX. Our study suggests that the enhanced sensitivity is due to DOX-induced DNA damage that is subject to NER, as we observed decreased unscheduled DNA synthesis in XP-deficient cells upon DOX treatment. Furthermore, the complementation of the XPD-function abolished the observed sensitivity at lower DOX concentrations, suggesting that the XPD helicase activity is involved in the repair of DOX-induced lesions. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  17. Small Molecule Inhibitors Target the Tissue Transglutaminase and Fibronectin Interaction

    PubMed Central

    Yakubov, Bakhtiyor; Chen, Lan; Belkin, Alexey M.; Zhang, Sheng; Chelladurai, Bhadrani; Zhang, Zhong-Yin; Matei, Daniela

    2014-01-01

    Tissue transglutaminase (TG2) mediates protein crosslinking through generation of ε−(γ-glutamyl) lysine isopeptide bonds and promotes cell adhesion through interaction with fibronectin (FN) and integrins. Cell adhesion to the peritoneal matrix regulated by TG2 facilitates ovarian cancer dissemination. Therefore, disruption of the TG2-FN complex by small molecules may inhibit cell adhesion and metastasis. A novel high throughput screening (HTS) assay based on AlphaLISA™ technology was developed to measure the formation of a complex between His-TG2 and the biotinylated FN fragment that binds TG2 and to discover small molecules that inhibit this protein-protein interaction. Several hits were identified from 10,000 compounds screened. The top candidates selected based on >70% inhibition of the TG2/FN complex formation were confirmed by using ELISA and bioassays measuring cell adhesion, migration, invasion, and proliferation. In conclusion, the AlphaLISA bead format assay measuring the TG2-FN interaction is robust and suitable for HTS of small molecules. One compound identified from the screen (TG53) potently inhibited ovarian cancer cell adhesion to FN, cell migration, and invasion and could be further developed as a potential inhibitor for ovarian cancer dissemination. PMID:24586660

  18. Evidence for inter- and intraspecies biofilm formation variability among a small group of coagulase-negative staphylococci.

    PubMed

    Oliveira, Fernando; Lima, Cláudia Afonso; Brás, Susana; França, Ângela; Cerca, Nuno

    2015-10-01

    Coagulase-negative staphylococci (CoNS) are common bacterial colonizers of the human skin. They are often involved in nosocomial infections due to biofilm formation in indwelling medical devices. While biofilm formation has been extensively studied in Staphylococcus epidermidis, little is known regarding other CoNS species. Here, biofilms from six different CoNS species were characterized in terms of biofilm composition and architecture. Interestingly, the ability to form a thick biofilm was not associated with any particular species, and high variability on biofilm accumulation was found within the same species. Cell viability assays also revealed different proportions of live and dead cells within biofilms formed by different species, although this parameter was particularly similar at the intraspecies level. On the other hand, biofilm disruption assays demonstrated important inter- and intraspecies differences regarding extracellular matrix composition. Lastly, confocal laser scanning microscopy experiments confirmed this variability, highlighting important differences and common features of CoNS biofilms. We hypothesized that the biofilm formation heterogeneity observed was rather associated with biofilm matrix composition than with cells themselves. Additionally, our results indicate that polysaccharides, DNA and proteins are fundamental pieces in the process of CoNS biofilm formation. © FEMS 2015. All rights reserved.

  19. Droplet Array-Based 3D Coculture System for High-Throughput Tumor Angiogenesis Assay.

    PubMed

    Du, Xiaohui; Li, Wanming; Du, Guansheng; Cho, Hansang; Yu, Min; Fang, Qun; Lee, Luke P; Fang, Jin

    2018-03-06

    Angiogenesis is critical for tumor progression and metastasis, and it progresses through orchestral multicellular interactions. Thus, there is urgent demand for high-throughput tumor angiogenesis assays for concurrent examination of multiple factors. For investigating tumor angiogenesis, we developed a microfluidic droplet array-based cell-coculture system comprising a two-layer polydimethylsiloxane chip featuring 6 × 9 paired-well arrays and an automated droplet-manipulation device. In each droplet-pair unit, tumor cells were cultured in 3D in one droplet by mixing cell suspensions with Matrigel, and in the other droplet, human umbilical vein endothelial cells (HUVECs) were cultured in 2D. Droplets were fused by a newly developed fusion method, and tumor angiogenesis was assayed by coculturing tumor cells and HUVECs in the fused droplet units. The 3D-cultured tumor cells formed aggregates harboring a hypoxic center-as observed in vivo-and secreted more vascular endothelial growth factor (VEGF) and more strongly induced HUVEC tubule formation than did 2D-cultured tumor cells. Our single array supported 54 assays in parallel. The angiogenic potentials of distinct tumor cells and their differential responses to antiangiogenesis agent, Fingolimod, could be investigated without mutual interference in a single array. Our droplet-based assay is convenient to evaluate multicellular interaction in high throughput in the context of tumor sprouting angiogenesis, and we envision that the assay can be extensively implementable for studying other cell-cell interactions.

  20. Interspecific in vitro assay for the chimera-forming ability of human pluripotent stem cells.

    PubMed

    Masaki, Hideki; Kato-Itoh, Megumi; Umino, Ayumi; Sato, Hideyuki; Hamanaka, Sanae; Kobayashi, Toshihiro; Yamaguchi, Tomoyuki; Nishimura, Ken; Ohtaka, Manami; Nakanishi, Mahito; Nakauchi, Hiromitsu

    2015-09-15

    Functional assay limitations are an emerging issue in characterizing human pluripotent stem cells (PSCs). With rodent PSCs, chimera formation using pre-implantation embryos is the gold-standard assay of pluripotency (competence of progeny to differentiate into all three germ layers). In human PSCs (hPSCs), however, this can only be monitored via teratoma formation or in vitro differentiation, as ethical concerns preclude generation of human-human or human-animal chimeras. To circumvent this issue, we developed a functional assay utilizing interspecific blastocyst injection and in vitro culture (interspecies in vitro chimera assay) that enables the development and observation of embryos up to headfold stage. The assay uses mouse pre-implantation embryos and rat, monkey and human PSCs to create interspecies chimeras cultured in vitro to the early egg-cylinder stage. Intra- and interspecific chimera assays with rodent PSC lines were performed to confirm the consistency of results in vitro and in vivo. The behavior of chimeras developed in vitro appeared to recapitulate that of chimeras developed in vivo; that is, PSC-derived cells survived and were integrated into the epiblast of egg-cylinder-stage embryos. This indicates that the interspecific in vitro chimera assay is useful in evaluating the chimera-forming ability of rodent PSCs. However, when human induced PSCs (both conventional and naïve-like types) were injected into mouse embryos and cultured, some human cells survived but were segregated; unlike epiblast-stage rodent PSCs, they never integrated into the epiblast of egg-cylinder-stage embryos. These data suggest that the mouse-human interspecies in vitro chimera assay does not accurately reflect the early developmental potential/process of hPSCs. The use of evolutionarily more closely related species as host embryos might be necessary to evaluate the developmental potency of hPSCs. © 2015. Published by The Company of Biologists Ltd.

  1. From in vitro to in vivo: Integration of the virtual cell based assay with physiologically based kinetic modelling.

    PubMed

    Paini, Alicia; Sala Benito, Jose Vicente; Bessems, Jos; Worth, Andrew P

    2017-12-01

    Physiologically based kinetic (PBK) models and the virtual cell based assay can be linked to form so called physiologically based dynamic (PBD) models. This study illustrates the development and application of a PBK model for prediction of estragole-induced DNA adduct formation and hepatotoxicity in humans. To address the hepatotoxicity, HepaRG cells were used as a surrogate for liver cells, with cell viability being used as the in vitro toxicological endpoint. Information on DNA adduct formation was taken from the literature. Since estragole induced cell damage is not directly caused by the parent compound, but by a reactive metabolite, information on the metabolic pathway was incorporated into the model. In addition, a user-friendly tool was developed by implementing the PBK/D model into a KNIME workflow. This workflow can be used to perform in vitro to in vivo extrapolation and forward as backward dosimetry in support of chemical risk assessment. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Resveratrol Suppresses Growth and Migration of Myelodysplastic Cells by Inhibiting the Expression of Elevated Cyclin D1 (CCND1).

    PubMed

    Zhou, Wei; Xu, Shilin; Ying, Yi; Zhou, Ruiqing; Chen, Xiaowei

    2017-11-01

    Myelodysplastic syndromes (MDS) are a group of heterogeneous diseases characterized by poorly formed blood cells. We wanted to elucidate the underlying molecular mechanism to better determine pathogenesis, prognosis, diagnosis, and treatment for patients with MDS. We compared gene expression levels between normal and MDS tissue samples by immunohistochemical analysis. We studied the proliferation, survival, and migration of MDS cells using the EDU assay, colony formation, and transwell assays. We assessed the apoptotic rate and cell cycle status using flow cytometry and Hoechst staining. Finally, we evaluated RNA and protein expressions using polymerase chain reaction and Western blots, respectively. We found that resveratrol suppressed SKM-1 (an advanced MDS cell line) proliferation in a dose-dependent manner. Consistent with this finding, the EDU and colony formation assays also showed that resveratrol inhibited SKM-1 growth. Moreover, flow cytometry and Hoechst 33258 staining demonstrated that resveratrol induced apoptosis and a change in cell cycle status in SKM-1 cells, while the transwell assay showed that resveratrol reduced the migratory ability of SKM-1 cells. Resveratrol also decreased the expression of CCND1 (a gene that encodes the cyclin D1 protein) and increased expressions of KMT2A [lysine (K)-specific methyltransferase 2A] and caspase-3, suggesting that resveratrol exerts its effect by regulating CCND1 in SKM-1 cells. In addition, a combination of resveratrol and the PI3K/AKT inhibitor LY294002 exhibited a stronger inhibitory effect on the SKM-1 cells, compared with resveratrol alone. Our study proved that resveratrol suppresses SKM-1 growth and migration by inhibiting CCND1 expression. This finding provides novel insights into the pathogenesis of MDS and might help develop new diagnosis and treatment for patients with MDS.

  3. Structural basis of host recognition and biofilm formation by Salmonella Saf pili

    PubMed Central

    2017-01-01

    Pili are critical in host recognition, colonization and biofilm formation during bacterial infection. Here, we report the crystal structures of SafD-dsc and SafD-SafA-SafA (SafDAA-dsc) in Saf pili. Cell adherence assays show that SafD and SafA are both required for host recognition, suggesting a poly-adhesive mechanism for Saf pili. Moreover, the SafDAA-dsc structure, as well as SAXS characterization, reveals an unexpected inter-molecular oligomerization, prompting the investigation of Saf-driven self-association in biofilm formation. The bead/cell aggregation and biofilm formation assays are used to demonstrate the novel function of Saf pili. Structure-based mutants targeting the inter-molecular hydrogen bonds and complementary architecture/surfaces in SafDAA-dsc dimers significantly impaired the Saf self-association activity and biofilm formation. In summary, our results identify two novel functions of Saf pili: the poly-adhesive and self-associating activities. More importantly, Saf-Saf structures and functional characterizations help to define a pili-mediated inter-cellular oligomerizaiton mechanism for bacterial aggregation, colonization and ultimate biofilm formation. PMID:29125121

  4. Single cell dual adherent-suspension co-culture micro-environment for studying tumor-stromal interactions with functionally selected cancer stem-like cells.

    PubMed

    Chen, Yu-Chih; Zhang, Zhixiong; Fouladdel, Shamileh; Deol, Yadwinder; Ingram, Patrick N; McDermott, Sean P; Azizi, Ebrahim; Wicha, Max S; Yoon, Euisik

    2016-08-07

    Considerable evidence suggests that cancer stem-like cells (CSCs) are critical in tumor pathogenesis, but their rarity and transience has led to much controversy about their exact nature. Although CSCs can be functionally identified using dish-based tumorsphere assays, it is difficult to handle and monitor single cells in dish-based approaches; single cell-based microfluidic approaches offer better control and reliable single cell derived sphere formation. However, like normal stem cells, CSCs are heavily regulated by their microenvironment, requiring tumor-stromal interactions for tumorigenic and proliferative behaviors. To enable single cell derived tumorsphere formation within a stromal microenvironment, we present a dual adherent/suspension co-culture device, which combines a suspension environment for single-cell tumorsphere assays and an adherent environment for co-culturing stromal cells in close proximity by selectively patterning polyHEMA in indented microwells. By minimizing dead volume and improving cell capture efficiency, the presented platform allows for the use of small numbers of cells (<100 cells). As a proof of concept, we co-cultured single T47D (breast cancer) cells and primary cancer associated fibroblasts (CAF) on-chip for 14 days to monitor sphere formation and growth. Compared to mono-culture, co-cultured T47D have higher tumorigenic potential (sphere formation rate) and proliferation rates (larger sphere size). Furthermore, 96-multiplexed single-cell transcriptome analyses were performed to compare the gene expression of co-cultured and mono-cultured T47D cells. Phenotypic changes observed in co-culture correlated with expression changes in genes associated with proliferation, apoptotic suppression, tumorigenicity and even epithelial-to-mesechymal transition. Combining the presented platform with single cell transcriptome analysis, we successfully identified functional CSCs and investigated the phenotypic and transcriptome effects induced by tumor-stromal interactions.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goven, A.J.; Fitzpatrick, L.C.; Eyambe, G.S.

    Acute toxicity in earthworms (Lumbricus terrestris) was assayed immediately after 5-d filter paper exposure to the polychlorinated biphenyl (PCB) Aroclor 1254, using coelomocyte viability, total extruded cell counts (ECC), differential cell counts (DCC), and formation of erythrocyte (ER) and secretory rosettes (SR) with, and phagocytosis of, antigenic rabbit red blood cells (RRBC). Chronic toxicity was assayed using rates by which earthworms replaced viable immunoactive coelomocytes, removed noninvasively immediately after exposure, over an 18-week depuration period. All cytological parameters, except ECC, were acutely affected immediately after exposure, when tissue concentrations were ([anti X] [plus minus] SE) 91.2 [plus minus] 8.19 [mu]gmore » PCB per gram dry mass. Replacement of viable immunoactive coelomocytes occurred within six weeks in unexposed control earthworms. Exposed earthworms showed significant alteration in viability, ECC, DCC, ER, and SR formation, and phagocytosis at 6 and 12 weeks when PCB tissue concentrations were 41 [plus minus] 0.31 and 30.2 [plus minus] 0.88 [mu]g/g dry mass, respectively. Replacement of extruded coelomocytes with normal DCC of viable immunocompetent cells was not observed until week 18, when PCB had decreased to 15.7 [plus minus] 0.83 [mu]g/g dry mass. Low inherent natural variability in coelomocyte viability, ECC, DCC, rosette formation, and phagocytosis, and their sensitivity to sublethal PCB body burdens, indicated that earthworm coelomocytes have potential as nonmammalian biomarkers for assaying acute and chronic sublethal toxicity of xenobiotics.« less

  6. Colony formation by normal and malignant human B-lymphocytes.

    PubMed Central

    Izaguirre, C. A.; Minden, M. D.; Howatson, A. F.; McCulloch, E. A.

    1980-01-01

    A method is described that permits colony formation in culture by B lymphocytes from normal blood and from blood, marrow or lymph nodes of patients with myeloma or lymphoma. The method depends on: (1) exhaustively depleting cell suspensions of T lymphocytes, (2) a medium conditioned by T lymphocytes in the presence of phytohaemagglutinin (PHA-TCM), and (3) irradiated autologous or homologous T lymphocytes. Under these conditions the assay is linear. Cellular development of B lymphocytes can be followed; differentiation to plasma cells is seen in cultures of cells from normal individuals and myeloma patients, but not lymphoma patients. Malignant B lymphocytes in culture produced immunoglobulin of the class identified in the patient's blood, or in freshly obtained cells. We conclude that the assay is suitable for studying the growth, differentiation and regulation of normal and malignant B lymphocytes in culture. Images Fig. 1 Fig. 2 PMID:6968572

  7. A novel multiparametric flow cytometry-based cytotoxicity assay simultaneously immunophenotypes effector cells: Comparisons to a 4 h 51Cr-release assay

    PubMed Central

    Kim, GG; Donnenberg, VS; Donnenberg, AD; Gooding, W; Whiteside, TL

    2007-01-01

    Natural killer (NK) cell- or T cell-mediated cytotoxicity traditionally is measured in 4-16h 51Cr-release assays (CRA). A new four-color flow cytometry-based cytotoxicity assay (FCC) was developed to simultaneously measure NK cell cytotoxicity and NK cell phenotype (CD3−CD16+CD56+). Target cells, K562 or Daudi, were labeled with Cell Tracker Orange (CTO) prior to the addition of effector cells. Following co-incubation, 7 amino-actinomycin D (7-AAD) was added to measure death of target cells. The phenotype of effectors, viability of targets, the formation of tumor-effector cell conjugates and absolute numbers of all cells were measured based on light scatter (FSC/SSC), double discrimination of the fluorescence peak integral and height, and fluorescence intensity. Kinetic studies (0.5 and 1 to 4h) at different effector to target (E:T) cell ratios (50, 25, 12, and 6) confirmed that the 3h incubation was optimal. The FCC assay is more sensitive than the CRA, has a coefficient of variation (CV) 8–13% and reliably measures NK cell- or lymphokine-activated killer (LAK) cell-mediated killing of target cells in normal controls and subjects with cancer. The FCC assay can be used to study a range of phenotypic attributes, in addition to lytic activity of various subsets of effector cells, without radioactive tracers and thus, it is relatively inexpensive. The FCC assay has a potential for providing information about molecular interactions underlying target cell lysis and thus becoming a major tool for studies of disease pathogenesis as well as development of novel immune therapies. PMID:17617419

  8. A novel multiparametric flow cytometry-based cytotoxicity assay simultaneously immunophenotypes effector cells: comparisons to a 4 h 51Cr-release assay.

    PubMed

    Kim, G G; Donnenberg, V S; Donnenberg, A D; Gooding, W; Whiteside, T L

    2007-08-31

    Natural killer (NK) cell-or T cell-mediated cytotoxicity traditionally is measured in 4-16 h (51)Cr-release assays (CRA). A new four-color flow cytometry-based cytotoxicity assay (FCC) was developed to simultaneously measure NK cell cytotoxicity and NK cell phenotype (CD3(-)CD16(+)CD56(+)). Target cells, K562 or Daudi, were labeled with Cell Tracker Orange (CTO) prior to the addition of effector cells. Following co-incubation, 7 amino-actinomycin D (7-AAD) was added to measure death of target cells. The phenotype of effectors, viability of targets, the formation of tumor-effector cell conjugates and absolute numbers of all cells were measured based on light scatter (FSC/SSC), double discrimination of the fluorescence peak integral and height, and fluorescence intensity. Kinetic studies (0.5 and 1 to 4 h) at different effector to target (E:T) cell ratios (50, 25, 12, and 6) confirmed that the 3 h incubation was optimal. The FCC assay is more sensitive than the CRA, has a coefficient of variation (CV) 8-13% and reliably measures NK cell-or lymphokine-activated killer (LAK) cell-mediated killing of target cells in normal controls and subjects with cancer. The FCC assay can be used to study a range of phenotypic attributes, in addition to lytic activity of various subsets of effector cells, without radioactive tracers and thus, it is relatively inexpensive. The FCC assay has a potential for providing information about molecular interactions underlying target cell lysis and thus becoming a major tool for studies of disease pathogenesis as well as development of novel immune therapies.

  9. Efficacy of surface-generated nitric oxide against Candida albicans adhesion and biofilm formation.

    PubMed

    Privett, Benjamin J; Nutz, Steven T; Schoenfisch, Mark H

    2010-11-01

    This report details the efficacy of nitric oxide (NO)-releasing xerogel surfaces composed of N-(6-aminohexyl)aminopropyl trimethoxysilane (AHAP3) and isobutyltrimethoxysilane (BTMOS) against Candida albicans adhesion, viability, and biofilm formation. A parallel plate flow cell assay was used to examine the effect of NO on planktonic fungal cells. Nitric oxide fluxes as low as 14 pmol cm(-2) s(-1) were sufficient to reduce fungal adhesion by ∼49% over the controls after 90 min. By utilizing a fluorescence live/dead assay and replicate plating, NO flux was determined to reduce fungal viability in a dose-dependent manner. The formation of C. albicans biofilms on NO-releasing xerogel-coated silicon rubber (SiR) coupons was impeded when compared to control (non-NO-releasing) and bare SiR surfaces. The synergistic efficacy of NO and silver sulfadiazine against adhered fungal cells and biofilms is reported with increased killing and biofilm inhibition over NO alone.

  10. Development of a bead-based Luminex assay using lipopolysaccharide specific monoclonal antibodies to detect biological threats from Brucella species.

    PubMed

    Silbereisen, Angelika; Tamborrini, Marco; Wittwer, Matthias; Schürch, Nadia; Pluschke, Gerd

    2015-10-05

    Brucella, a Gram-negative bacterium, is classified as a potential bioterrorism agent mainly due to the low dose needed to cause infection and the ability to transmit the bacteria via aerosols. Goats/sheep, cattle, pigs, dogs, sheep and rodents are infected by B. melitensis, B. abortus, B. suis, B. canis, B. ovis and B. neotomae, respectively, the six classical Brucella species. Most human cases are caused by B. melitensis and B. abortus. Our aim was to specifically detect Brucellae with 'smooth' lipopolysaccharide (LPS) using a highly sensitive monoclonal antibody (mAb) based immunological assay. To complement molecular detection systems for potential bioterror agents, as required by international biodefense regulations, sets of mAbs were generated by B cell hybridoma technology and used to develop immunological assays. The combination of mAbs most suitable for an antigen capture assay format was identified and an immunoassay using the Luminex xMAP technology was developed. MAbs specific for the LPS O-antigen of Brucella spp. were generated by immunising mice with inactivated B. melitensis or B. abortus cells. Most mAbs recognised both B. melitensis and B. abortus and antigen binding was not impeded by inactivation of the bacterial cells by γ irradiation, formalin or heat treatment, a step required to analyse the samples immunologically under biosafety level two conditions. The Luminex assay recognised all tested Brucella species with 'smooth' LPS with detection limits of 2×10(2) to 8×10(4) cells per mL, depending on the species tested. Milk samples spiked with Brucella spp. cells were identified successfully using the Luminex assay. In addition, the bead-based immunoassay was integrated into a multiplex format, allowing for simultaneous, rapid and specific detection of Brucella spp., Bacillus anthracis, Francisella tularensis and Yersinia pestis within a single sample. Overall, the robust Luminex assay should allow detection of Brucella spp. in both natural outbreak and bio-threat situations.

  11. Knockdown of Tripartite-59 (TRIM59) Inhibits Cellular Proliferation and Migration in Human Cervical Cancer Cells.

    PubMed

    Aierken, Gulijiahan; Seyiti, Ayinuer; Alifu, Mayinuer; Kuerban, Gulina

    2017-03-13

    The tripartite motif (TRIM) family of proteins is a class of highly conservative proteins that have been implicated in multiple processes. TRIM59, one member of the TRIM family, has now received recognition as a key regulator in the development and progression of human diseases. However, its role in human tumorigenesis has remained largely unknown. In this study, the effects of TRIM59 expression on cell proliferation and migration were investigated in human cervical cancer cells. The expression of TRIM59 in clinical cervical cancer tissues and cervical cancer cells was initially determined by RT-PCR and Western blot. Specific shRNA against TRIM59 was then employed to knock down the expression of TRIM59 in cervical cancer lines HeLa and SiHa. The effects of TRIM59 knockdown on cell proliferation was assessed by MTT assay and colony formation assay. Transwell assay was conducted to reveal cell migration and invasion abilities before and after TRIM59 knockdown. Our results showed that the expression of TRIM59 was significantly elevated in cervical cancers. Knockdown of TRIM59 significantly inhibited cell proliferation and colony formation as well as cell migration and invasion abilities in cervical cancer HeLa and SiHa cells. Cell cycle progression analysis showed that TRIM59-depleted cells preferred to accumulate in the S phase. These data suggest that TRIM59 is a potential target that promotes the progression of cervical cancer.

  12. NF-κB Participates in the Stem Cell Phenotype of Ovarian Cancer Cells.

    PubMed

    Gonzalez-Torres, Carolina; Gaytan-Cervantes, Javier; Vazquez-Santillan, Karla; Mandujano-Tinoco, Edna Ayerim; Ceballos-Cancino, Gisela; Garcia-Venzor, Alfredo; Zampedri, Cecilia; Sanchez-Maldonado, Paulina; Mojica-Espinosa, Raul; Jimenez-Hernandez, Luis Enrique; Maldonado, Vilma

    2017-05-01

    NF-κB is a transcription factor involved in cancer stem cells maintenance of many tumors. Little is known about the specific stem-associated upstream regulators of this pathway in ovarian cancer. The Aim of the study was to analyze the role of the canonical and non-canonical NF-κB pathways in stem cells of ovarian cancer cell lines. Stem cells were isolated using sorting cytometry. Western blot and RT-PCR were used to quantify protein and messenger RNA levels. Loss and gain of function assays were performed using siRNAs and dominant-negative proteins, respectively. NF-κB binding activity was measured with a reporter gene assay. The stem phenotype was estimated with clonogenic assays using soft agar, colony formation, ovospheres formation and in vivo tumorigenicity assays. The CD44+ subpopulation of SKOV3 ovarian cancer cell line presented higher mRNA levels of key stemness genes, an increased tumorigenic capacity and higher expression of the RelA, RelB and IKKα. When the canonical pathway was inhibited by means of a dominant-negative version of IkBα, the stem cell population was reduced, as shown by a reduced CD44+ subpopulation, a decrease in the expression of the stemness genes and a reduction of the stem phenotype. In addition, IKKα, the main upstream non-canonical kinase, was highly expressed in the CSC population. Accordingly, when IKKα was inhibited using shRNAs, the expression of the stemness genes was reduced. This report is the first to show the importance of several elements of both NF-κB pathway in maintaining the ovarian cancer stem cell population. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.

  13. Monolayer formation of human osteoblastic cells on vertically aligned multiwalled carbon nanotube scaffolds.

    PubMed

    Lobo, Anderson O; Antunes, Erica F; Palma, Mariana Bs; Pacheco-Soares, Cristina; Trava-Airoldi, Vladimir J; Corat, Evaldo J

    2010-03-12

    Monolayer formation of SaOS-2 (human osteoblast-like cells) was observed on VACNT (vertically aligned multiwalled carbon nanotubes) scaffolds without purification or functionalization. The VACNT were produced by a microwave plasma chemical vapour deposition on titanium surfaces with nickel or iron as catalyst. Cell viability and morphology studies were evaluated by LDH (lactate dehydrogenase) release assay and SEM (scanning electron microscopy), respectively. The non-toxicity and the flat spreading with monolayer formation of the SaOs-2 on VACNT scaffolds surface indicate that they can be used for biomedical applications.

  14. Therapeutic potential of pro-angiogenic BPC157 is associated with VEGFR2 activation and up-regulation.

    PubMed

    Hsieh, Ming-Jer; Liu, Hsien-Ta; Wang, Chao-Nin; Huang, Hsiu-Yun; Lin, Yuling; Ko, Yu-Shien; Wang, Jong-Shyan; Chang, Vincent Hung-Shu; Pang, Jong-Hwei S

    2017-03-01

    BPC 157, a pentadecapeptide with extensive healing effects, has recently been suggested to contribute to angiogenesis. However, the underlying mechanism is not yet clear. The present study aimed to explore the potential therapeutic effect and pro-angiogenic mechanism of BPC 157. As demonstrated by the chick chorioallantoic membrane (CAM) assay and endothelial tube formation assay, BPC 157 could increase the vessel density both in vivo and in vitro, respectively. BPC 157 could also accelerate the recovery of blood flow in the ischemic muscle of the rat hind limb as detected by laser Doppler scanning, indicating the promotion of angiogenesis. Histological analysis of the hind limb muscle confirmed the increased number of vessels and the enhanced vascular expression of vascular endothelial growth factor receptor 2 (VEGFR2) in rat with BPC 157 treatment. In vitro study using human vascular endothelial cells further confirmed the increased mRNA and protein expressions of VEGFR2 but not VEGF-A by BPC 157. In addition, BPC 157 could promote VEGFR2 internalization in vascular endothelial cells which was blocked in the presence of dynasore, an inhibitor of endocytosis. BPC 157 time dependently activated the VEGFR2-Akt-eNOS signaling pathway which could also be suppressed by dynasore. The increase of endothelial tube formation induced by BPC 157 was also inhibited by dynasore. This study demonstrates the pro-angiogenic effects of BPC 157 that is associated with the increased expression, internalization of VEGFR2, and the activation of VEGFR2-Akt-eNOS signaling pathway. BPC 157 promotes angiogenesis in CAM assay and tube formation assay. BPC 157 accelerates the blood flow recovery and vessel number in rats with hind limb ischemia. BPC 157 up-regulates VEGFR2 expression in rats with hind limb ischemia and endothelial cell culture. BPC 157 promotes VEGFR2 internalization in association with VEGFR2-Akt-eNOS activation. BPC 157 promotes angiogenesis in CAM assay and tube formation assay. BPC 157 accelerates the blood flow recovery and vessel number in rats with hind limb ischemia. BPC 157 up-regulates VEGFR2 expression in rats with hind limb ischemia and endothelial cell culture. BPC 157 promotes VEGFR2 internalization in association with VEGFR2-Akt-eNOS activation.

  15. Wnt/β-catenin signaling pathway inhibits the proliferation and apoptosis of U87 glioma cells via different mechanisms

    PubMed Central

    Gao, Liyang; Chen, Bing; Li, Jinhong; Yang, Fan; Cen, Xuecheng; Liao, Zhuangbing; Long, Xiao’ao

    2017-01-01

    The Wnt signaling pathway is necessary for the development of the central nervous system and is associated with tumorigenesis in various cancers. However, the mechanism of the Wnt signaling pathway in glioma cells has yet to be elucidated. Small-molecule Wnt modulators such as ICG-001 and AZD2858 were used to inhibit and stimulate the Wnt/β-catenin signaling pathway. Techniques including cell proliferation assay, colony formation assay, Matrigel cell invasion assay, cell cycle assay and Genechip microarray were used. Gene Ontology Enrichment Analysis and Gene Set Enrichment Analysis have enriched many biological processes and signaling pathways. Both the inhibiting and stimulating Wnt/β-catenin signaling pathways could influence the cell cycle, moreover, reduce the proliferation and survival of U87 glioma cells. However, Affymetrix expression microarray indicated that biological processes and networks of signaling pathways between stimulating and inhibiting the Wnt/β-catenin signaling pathway largely differ. We propose that Wnt/β-catenin signaling pathway might prove to be a valuable therapeutic target for glioma. PMID:28837560

  16. Highly efficient gene inactivation by adenoviral CRISPR/Cas9 in human primary cells

    PubMed Central

    Tielen, Frans; Elstak, Edo; Benschop, Julian; Grimbergen, Max; Stallen, Jan; Janssen, Richard; van Marle, Andre; Essrich, Christian

    2017-01-01

    Phenotypic assays using human primary cells are highly valuable tools for target discovery and validation in drug discovery. Expression knockdown (KD) of such targets in these assays allows the investigation of their role in models of disease processes. Therefore, efficient and fast modes of protein KD in phenotypic assays are required. The CRISPR/Cas9 system has been shown to be a versatile and efficient means of gene inactivation in immortalized cell lines. Here we describe the use of adenoviral (AdV) CRISPR/Cas9 vectors for efficient gene inactivation in two human primary cell types, normal human lung fibroblasts and human bronchial epithelial cells. The effects of gene inactivation were studied in the TGF-β-induced fibroblast to myofibroblast transition assay (FMT) and the epithelial to mesenchymal transition assay (EMT), which are SMAD3 dependent and reflect pathogenic mechanisms observed in fibrosis. Co-transduction (co-TD) of AdV Cas9 with SMAD3-targeting guide RNAs (gRNAs) resulted in fast and efficient genome editing judged by insertion/deletion (indel) formation, as well as significant reduction of SMAD3 protein expression and nuclear translocation. This led to phenotypic changes downstream of SMAD3 inhibition, including substantially decreased alpha smooth muscle actin and fibronectin 1 expression, which are markers for FMT and EMT, respectively. A direct comparison between co-TD of separate Cas9 and gRNA AdV, versus TD with a single “all-in-one” Cas9/gRNA AdV, revealed that both methods achieve similar levels of indel formation. These data demonstrate that AdV CRISPR/Cas9 is a useful and efficient tool for protein KD in human primary cell phenotypic assays. The use of AdV CRISPR/Cas9 may offer significant advantages over the current existing tools and should enhance target discovery and validation opportunities. PMID:28800587

  17. Actual and Simulated Weightlessness Inhibit Osteogenesis in Long Bone Metaphysis by Different Mechanisms

    NASA Technical Reports Server (NTRS)

    Roberts, W. E.

    1985-01-01

    Weightlessness and simulated weightlessness inhibit the rate of periosteal bone formation in long bones. Formation of preosteoblasts is suppressed in periodontal ligament (PDL) of maxillary molars, which suggests a generalized block in osteoblast histogenesis. Growth in length of long bones is decreased by simulated weightlessness, but there are no reliable data on the influence of actual weightlessness on metaphyseal growth. The nuclear size assay for assessing relative numbers of osteoblast precursor cells was utilized in the primary spongiosa of growing long bones subjected to actual and simulated weightlessness. It is found that: (1) Actual weightlessness decreases total number of osteogenic cells and inhibits differentiation of osteoblast precursor cells, (2) Simulated weightlessness suppresses only osteoblast differentation; and (3) The nuclear morphometric assay is an effective means of assessing osteogenic activity in the growing metaphysis or long bones.

  18. Identification and characterization of an autolysin gene, atlg, from Streptococcus sobrinus.

    PubMed

    Yamada, Arisa; Tamura, Haruki; Kato, Hirohisa

    2009-02-01

    AtlA is a major cell-lytic enzyme called autolysin in Streptococcus mutans. In this study, we identified the atlg gene-encoding autolysin (Atlg), consisting of 863 residues from Streptococcus sobrinus 6715DP, and confirmed lytic activity of recombinant Atlg by zymography of S. sobrinus cells. An atlA-inactivated mutant was constructed in S. mutans Xc, and the atlg gene product was characterized by plasmid complementation. Microscopic analysis, saliva-induced aggregation assay and autolysis assay of static cultures in air revealed that the atlg gene product partially complemented the role of AtlA. Furthermore, the capability of biofilm formation of the atlA-deficient mutant cultivated in air was restored by plasmid comprising the atlg gene. These findings suggest that Atlg may be involved in cell separation and biofilm formation in S. sobrinus.

  19. 8-C-(E-phenylethenyl)quercetin from onion/beef soup induces autophagic cell death in colon cancer cells through ERK activation.

    PubMed

    Zhao, Yueliang; Fan, Daming; Zheng, Zong-Ping; Li, Edmund T S; Chen, Feng; Cheng, Ka-Wing; Wang, Mingfu

    2017-02-01

    Quercetin, a flavonoid, widely distributed in edible fruits and vegetables, was reported to effectively inhibit 2-amino-1-methyl-6-phenylimidazo[4, 5-b]pyridine (PhIP) formation in a food model (roast beef patties) with itself being converted into a novel compound 8-C-(E-phenylethenyl)quercetin (8-CEPQ). Here we investigated whether 8-CEPQ could be formed in a real food system, and tested its anticancer activity in human colon cancer cell lines. LC-MS was applied for the determination of 8-CEPQ formation in onion/beef soup. Anticancer activity of 8-CEPQ was evaluated by using cell viability assay and flow cytometry. Results showed that 8-CEPQ suppressed proliferation and caused G 2 phase arrest in colon cancer cells. Based on immunofluorescent staining assay, western blot assay, and RNA knockdown data, we found that 8-CEPQ did not cause apoptotic cell death. Instead, it induced autophagic cell death. Moreover, treatment with 8-CEPQ induced phosphorylation of extracellular signal-regulated kinase (ERK). Inhibition of ERK phosphorylation by the mitogen-activated protein kinase kinase (MEK)/ERK inhibitor U0126 attenuated 8-CEPQ-induced autophagy and reversed 8-CEPQ-mediated cell growth inhibition. Our results demonstrate that 8-CEPQ, a novel quercetin derivative, could be formed in onion/beef soup. 8-CEPQ inhibited colon cancer cell growth by inducing autophagic cell death through ERK activation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A comparison of methods for quantifying angiogenesis in the Matrigel assay in vitro.

    PubMed

    Khoo, Cheen Peen; Micklem, Kingsley; Watt, Suzanne M

    2011-09-01

    Angiogenesis is of major interest because of its involvement in numerous pathologies or for promoting tissue repair. It is often assessed by the ability of endothelial cells to sprout, migrate, and form vascular tubules in Matrigel in vitro. Matrigel contains a mixture of basement membrane components, which stimulate endothelial cells to form capillary-like hexagonal structures, and is often preferred over other in vitro assays because of its ease of use, rapidity and the ability to measure key steps in angiogenesis, including migration, protease activity, and tubule formation. Various methods have been used to quantitate tubule formation, yet no consensus has been reached regarding the best quantification method for evaluating the efficacy of angiogenic stimulants or inhibitors in this Matrigel assay. Here, we have measured the ability of umbilical cord blood endothelial colony-forming cell-derived cells to form tubules in growth factor reduced Matrigel in the presence or absence of two angiogenic inhibitors, suramin and SU6668, to compare the benefits and limitations of two quantification methods-Angiosys and Wimasis. These comparative analyses revealed that both Angiosys and Wimasis are easy to use, accurately quantify angiogenesis, and will suit the needs of different types of users. © Mary Ann Liebert, Inc.

  1. [RITA combined with temozolomide inhibits the proliferation of human glioblastoma U87 cells].

    PubMed

    He, Xiao-Yan; Feng, Xiao-Li; Song, Xin-Pei; Zeng, Huan-Chao; Cao, Zhong-Xu; Xiao, Wei-Wei; Zhang, Bao; Wu, Qing-Hua

    2016-10-20

    To observe the effect of RITA, a small molecule that targets p53, combined with temozolomide (TMZ) on proliferation, colony formation and apoptosis of human glioblastoma U87 cells and explore the underlying mechanism. Cultured U87 cells were treated with RITA (1, 5, 10, 20 µmol/L), TMZ, or RITA+TMZ (half dose) for 24, 48 or 72 h. MTS assay were used to detect the cell proliferation, and the cell proliferation rate and inhibitory rate were calculated. The effect of combined treatments was evaluated by the q value. The expressions of p53, p21 and other apoptosis-associated genes were detected by qRT-PCR and Western blotting; cell apoptosis was assayed using flow cytometry with Annexin V/PI double staining; colony formation of the cells was detected with crystal violet staining. MTS assay showed that RITA at the 4 doses more potently inhibited U87 cell viability than TMZ at 72 h (P=0.000) with inhibitory rates of 25.94%-41.38% and 3.84%-8.20%, respectively. RITA combined with TMZ caused a more significant inhibition of U87 cells (29.21%-52.11%) than RITA (P<0.01) and TMZ (P=0.000) alone. At the doses above 5 µmol/L, the combined treatments with RITA+TMZ for 48 h resulted in q values exceeding 1.2 and showed an obvious synergistic effect of the drugs. Both RITA and TMZ, especially the latter, significantly increased the expressions of p53, p21, puma, and other apoptosis-associated genes to accelerate apoptosis and inhibit the growth and colony formation of U87 cells, and the effect was more obvious with a combined treatment. RITA inhibits the growth of human glioblastoma cells and enhance their sensitivity to TMZ by up-regulating p53 expression, and when combined, RITA and TMZ show a synergistic effect to cause a stronger cell inhibition.

  2. Genes involved in Listeria monocytogenes biofilm formation at a simulated food processing plant temperature of 15 °C.

    PubMed

    Piercey, Marta J; Hingston, Patricia A; Truelstrup Hansen, Lisbeth

    2016-04-16

    Listeria monocytogenes is a pathogenic foodborne bacterium whose persistence in food processing environments is in part attributed to its biofilm formation. Most biofilm studies have been carried out at 30-37 °C rather than at temperatures found in the food processing plants (i.e., 10-20 °C). The objective of the present study was to mine for novel genes that contribute to L. monocytogenes biofilm formation at 15 °C using the random insertional mutagenesis approach. A library of 11,024 L. monocytogenes 568 (serotype 1/2a) Himar1 insertional mutants was created. Mutants with reduced or enhanced biofilm formation at 15 °C were detected in microtiter plate assays with crystal violet and safranin staining. Fourteen mutants expressed enhanced biofilm phenotypes, and harbored transposon insertions in genes encoding cell wall biosynthesis, motility, metabolism, stress response, and cell surface associated proteins. Deficient mutants (n=5) contained interruptions in genes related to peptidoglycan, teichoic acid, or lipoproteins. Enhanced mutants produced significantly (p<0.05) higher cell densities in biofilm formed on stainless steel (SS) coupons at 15 °C (48 h) than deficient mutants, which were also more sensitive to benzalkonium chloride. All biofilm deficient mutants and four enhanced mutants in the microtiter plate assay (flaA, cheR, lmo2563 and lmo2488) formed no biofilm in a peg lid assay (Calgary biofilm device) while insertions in lmo1224 and lmo0543 led to excess biofilm in all assays. Two enhanced biofilm formers were more resistant to enzymatic removal with DNase, proteinase K or pectinase than the parent strain. Scanning electron microscopy of individual biofilms made by five mutants and the parent on SS surfaces showed formation of heterogeneous biofilm with dense zones by immotile mutants, while deficient mutants exhibited sparse growth. In conclusion, interruptions of 9 genes not previously linked to biofilm formation in L. monocytogenes (lmo2572, lmo2488 (uvrA), lmo1224, lmo0434 (inlB), lmo0263 (inlH), lmo0543, lmo0057 (EsaA), lmo2563, lmo0453), caused enhanced biofilm formation in the bacterium at 15 °C. The remaining mutants harbored interruptions in 10 genetic loci previously associated with biofilm formation at higher temperatures, indicating some temperature driven differences in the formation of biofilm by L. monocytogenes. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Anti-glycation and anti-oxidative effects of a phenolic-enriched maple syrup extract and its protective effects on normal human colon cells.

    PubMed

    Liu, Weixi; Wei, Zhengxi; Ma, Hang; Cai, Ang; Liu, Yongqiang; Sun, Jiadong; DaSilva, Nicholas A; Johnson, Shelby L; Kirschenbaum, Louis J; Cho, Bongsup P; Dain, Joel A; Rowley, David C; Shaikh, Zahir A; Seeram, Navindra P

    2017-02-22

    Oxidative stress and free radical generation accelerate the formation of advanced glycation endproducts (AGEs) which are linked to several chronic diseases. Published data suggest that phenolic-rich plant foods, show promise as natural anti-AGEs agents due to their anti-oxidation capacities. A phenolic-enriched maple syrup extract (MSX) has previously been reported to show anti-inflammatory and neuroprotective effects but its anti-AGE effects remain unknown. Therefore, herein, we investigated the anti-glycation and anti-oxidation effects of MSX using biochemical and biophysical methods. MSX (500 μg mL -1 ) reduced the formation of AGEs by 40% in the bovine serum albumin (BSA)-fructose assay and by 30% in the BSA-methylglyoxal (MGO) assay. MSX also inhibited the formation of crosslinks typically seen in the late stage of glycation. Circular dichroism and differential scanning calorimeter analyses demonstrated that MSX maintained the structure of BSA during glycation. In the anti-oxidant assays, MSX (61.7 μg mL -1 ) scavenged 50% of free radicals (DPPH assay) and reduced free radical generation by 20% during the glycation process (electron paramagnetic resonance time scan). In addition, the intracellular levels of hydrogen peroxide induced reactive oxygen species were reduced by 27-58% with MSX (50-200 μg mL -1 ) in normal/non-tumorigenic human colon CCD-18Co cells. Moreover, in AGEs and MGO challenged CCD-18Co cells, higher cellular viabilities and rapid extracellular signal-regulated kinase (ERK) phosphorylation were observed in MSX treated cells, indicating its protective effects against AGEs-induced cytotoxicity. Overall, this study supports the biological effects of MSX, and warrants further investigation of its potential as a dietary agent against diseases mediated by oxidative stress and inflammation.

  4. The roles of RUNX3 in cervical cancer cells in vitro.

    PubMed

    Li, Zhen; Fan, Pan; Deng, Min; Zeng, Chao

    2018-06-01

    RUNX3 serves an important role in development of various types of human cancer. The purpose of the present study was to investigate the potential biological function of RUNX3 in cervical cancer cells. In the present study, a RUNX3 overexpressed model was constructed in Hec1 cells by PCDNA3.1-RUNX3 transfection. Western blot analysis was used to measure RUNX3 expression in cervical cancer cells. Immunofluorescence analysis was performed to examine subcellular localization of RUNX3 in cervical cancer cells. Effects of RUNX3 expression on proliferation, migration and invasion of cervical cancer cells were detected by colony formation assay, wound healing assay and Transwell assay, respectively. Immunofluorescence confirmed the nuclear location of RUNX3 in cervical cancer cell. Result sindicated that upregulation of RUNX3 expression inhibited proliferation, migration and invasion of cervical cancer cells. However, knockdown of RUNX3 expression promoted the proliferation, migration and invasion of cervical cancer cells. Hence, RUNX3 may serve as a tumor suppressor gene in cervical cancer.

  5. Gc protein-derived macrophage-activating factor (GcMAF) stimulates cAMP formation in human mononuclear cells and inhibits angiogenesis in chick embryo chorionallantoic membrane assay.

    PubMed

    Pacini, Stefania; Morucci, Gabriele; Punzi, Tiziana; Gulisano, Massimo; Ruggiero, Marco

    2011-04-01

    The effects of Gc protein-derived macrophage-activating factor (GcMAF) have been studied in cancer and other conditions where angiogenesis is deregulated. In this study, we demonstrate for the first time that the mitogenic response of human peripheral blood mononuclear cells (PBMCs) to GcMAF was associated with 3'-5'-cyclic adenosine monophosphate (cAMP) formation. The effect was dose dependent, and maximal stimulation was achieved using 0.1 ng/ml. Heparin inhibited the stimulatory effect of GcMAF on PBMCs. In addition, we demonstrate that GcMAF (1 ng/ml) inhibited prostaglandin E(1)- and human breast cancer cell-stimulated angiogenesis in chick embryo chorionallantoic membrane (CAM) assay. Finally, we tested different GcMAF preparations on CAM, and the assay proved to be a reliable, reproducible and inexpensive method to determine the relative potencies of different preparations and their stability; we observed that storage at room temperature for 15 days decreased GcMAF potency by about 50%. These data could prove useful for upcoming clinical trials on GcMAF.

  6. N-WASP and WAVE2 acting downstream of phosphatidylinositol 3-kinase are required for myogenic cell migration induced by hepatocyte growth factor.

    PubMed

    Kawamura, Kazuhiro; Takano, Kazunori; Suetsugu, Shiro; Kurisu, Shusaku; Yamazaki, Daisuke; Miki, Hiroaki; Takenawa, Tadaomi; Endo, Takeshi

    2004-12-24

    During skeletal muscle regeneration caused by injury, muscle satellite cells proliferate and migrate toward the site of muscle injury. This migration is mainly induced by hepatocyte growth factor (HGF) secreted by intact myofibers and also released from injured muscle. However, the intracellular machinery for the satellite cell migration has not been elucidated. To examine the mechanisms of satellite cell migration, we utilized satellite cell-derived mouse C2C12 skeletal muscle cells. HGF induced reorganization of actin cytoskeleton to form lamellipodia in C2C12 myoblasts. HGF treatment facilitated both nondirectional migration of the myoblasts in phagokinetic track assay and directional chemotactic migration toward HGF in a three-dimensional migration chamber assay. Endogenous N-WASP and WAVE2 were concentrated in the lamellipodia at the leading edge of the migrating cells. Moreover, exogenous expression of wild-type N-WASP or WAVE2 promoted lamellipodial formation and migration. By contrast, expression of the dominant-negative mutant of N-WASP or WAVE2 and knockdown of N-WASP or WAVE2 expression by the RNA interference prevented the HGF-induced lamellipodial formation and migration. When the cells were treated with LY294002, an inhibitor of phosphatidylinositol 3-kinase, the HGF-induced lamellipodial formation and migration were abrogated. These results imply that both N-WASP and WAVE2, which are activated downstream of phosphati-dylinositol 3-kinase, are required for the migration through the lamellipodial formation of C2C12 cells induced by HGF.

  7. High-Throughput Screening of Australian Marine Organism Extracts for Bioactive Molecules Affecting the Cellular Storage of Neutral Lipids

    PubMed Central

    Rae, James; Fontaine, Frank; Salim, Angela A.; Lo, Harriet P.; Capon, Robert J.; Parton, Robert G.; Martin, Sally

    2011-01-01

    Mammalian cells store excess fatty acids as neutral lipids in specialised organelles called lipid droplets (LDs). Using a simple cell-based assay and open-source software we established a high throughput screen for LD formation in A431 cells in order to identify small bioactive molecules affecting lipid storage. Screening an n-butanol extract library from Australian marine organisms we identified 114 extracts that produced either an increase or a decrease in LD formation in fatty acid-treated A431 cells with varying degrees of cytotoxicity. We selected for further analysis a non-cytotoxic extract derived from the genus Spongia (Heterofibria). Solvent partitioning, HPLC fractionation and spectroscopic analysis (NMR, MS) identified a family of related molecules within this extract with unique structural features, a subset of which reduced LD formation. We selected one of these molecules, heterofibrin A1, for more detailed cellular analysis. Inhibition of LD biogenesis by heterofibrin A1 was observed in both A431 cells and AML12 hepatocytes. The activity of heterofibrin A1 was dose dependent with 20 µM inhibiting LD formation and triglyceride accumulation by ∼50% in the presence of 50 µM oleic acid. Using a fluorescent fatty acid analogue we found that heterofibrin A1 significantly reduces the intracellular accumulation of fatty acids and results in the formation of distinct fatty acid metabolites in both cultured cells and in embryos of the zebrafish Danio rerio. In summary we have shown using readily accessible software and a relatively simple assay system that we can identify and isolate bioactive molecules from marine extracts, which affect the formation of LDs and the metabolism of fatty acids both in vitro and in vivo. PMID:21857959

  8. Study on invadopodia formation for lung carcinoma invasion with a microfluidic 3D culture device.

    PubMed

    Wang, Shanshan; Li, Encheng; Gao, Yanghui; Wang, Yan; Guo, Zhe; He, Jiarui; Zhang, Jianing; Gao, Zhancheng; Wang, Qi

    2013-01-01

    Invadopodia or invasive feet, which are actin-rich membrane protrusions with matrix degradation activity formed by invasive cancer cells, are a key determinant in the malignant invasive progression of tumors and represent an important target for cancer therapies. In this work, we presented a microfluidic 3D culture device with continuous supplement of fresh media via a syringe pump. The device mimicked tumor microenvironment in vivo and could be used to assay invadopodia formation and to study the mechanism of human lung cancer invasion. With this device, we investigated the effects of epidermal growth factor (EGF) and matrix metalloproteinase (MMP) inhibitor, GM6001 on invadopodia formation by human non-small cell lung cancer cell line A549 in 3D matrix model. This device was composed of three units that were capable of achieving the assays on one control group and two experimental groups' cells, which were simultaneously pretreated with EGF or GM6001 in parallel. Immunofluorescence analysis of invadopodia formation and extracellular matrix degradation was conducted using confocal imaging system. We observed that EGF promoted invadopodia formation by A549 cells in 3D matrix and that GM6001 inhibited the process. These results demonstrated that epidermal growth factor receptor (EGFR) signaling played a significant role in invadopodia formation and related ECM degradation activity. Meanwhile, it was suggested that MMP inhibitor (GM6001) might be a powerful therapeutic agent targeting invadopodia formation in tumor invasion. This work clearly demonstrated that the microfluidic-based 3D culture device provided an applicable platform for elucidating the mechanism of cancer invasion and could be used in testing other anti-invasion agents.

  9. [Lentivirus-mediated RNA interference of CD133 inhibits the proliferation of CD133(+) liver cancer stem cells and increases their cisplatin chemosensitivity].

    PubMed

    Lan, Xi; Wang, Yong; Cao, Shu; Zou, Dongling; Li, Fang; Li, Shaolin

    2012-12-01

    To study the effects of CD133 suppression by lentivirus-mediated RNA interference (RNAi) on the proliferation and chemosensitivity of CD133(+) cancer stem cells (CSCs) sorted from HepG2 cell line. CD133(+) and CD133- cells were sorted from HepG2 cell line by flow cytometry, and the expression of CD133 before and after cell sorting were detected. The stem cell property of sorted CD133(+) cells were validated by sphere-forming assay in vitro and xenograft experiments in vivo. Lentivirus-mediated short hairpin RNA (shRNA) targeting CD133 were transfected into CD133(+) cells, and CD133 mRNA and protein expressions of the transfected cells were detected by RT-PCR and Western blotting, respectively. Before and after the transfection, the proliferative ability of CD133(+) cells was evaluated by colony formation assay, and the cell growth inhibition rate and apoptosis following cisplatin exposure were detected using CCK-8 assay and flow cytometry. The sorted CD133(+) cells showed a high purity of (88.74∓3.19)%, as compared with the purity of (3.36∓1.80)% before cell sorting. CD133(+) cells showed a high tumor sphere formation ability and tumorigenesis capacity compared with CD133- cells. CD133 shRNA transfection significantly inhibited CD133 mRNA and protein expressions in CD133(+) cells (P<0.01), resulting also in a significantly lowered cell proliferative ability (P<0.01) and an increased growth inhibition rate (P<0.01) and obviously increased cell apoptosis (P<0.05) after cisplatin exposure. Lentivirus-mediated RNAi for CD133 suppression inhibits the proliferation of CD133(+) liver cancer stem cells and increases their chemosensitivity to cisplatin.

  10. Towards non-invasive 3D hepatotoxicity assays with optical coherence phase microscopy

    NASA Astrophysics Data System (ADS)

    Nelson, Leonard J.; Koulovasilopoulos, Andreas; Treskes, Philipp; Hayes, Peter C.; Plevris, John N.; Bagnaninchi, Pierre O.

    2015-03-01

    Three-dimensional tissue-engineered models are increasingly recognised as more physiologically-relevant than standard 2D cell culture for pre-clinical drug toxicity testing. However, many types of conventional toxicity assays are incompatible with dense 3D tissues. This study investigated the use of optical coherence phase microscopy (OCPM) as a novel approach to assess cell death in 3D tissue culture. For 3D micro-spheroid formation Human hepatic C3A cells were encapsulated in hyaluronic acid gels and cultured in 100μl MEME/10%FBS in 96-well plates. After spheroid formation the 3D liver constructs were exposed to acetaminophen on culture day 8. Acetaminophen hepatotoxicity in 3D cultures was evaluated using standard biochemical assays. An inverted OCPM in common path configuration was developed with a Callisto OCT engine (Thorlabs), centred at 930nm and a custom scanning head. Intensity data were used to perform in-depth microstructural imaging. In addition, phase fluctuations were measured by collecting several successive B scans at the same location, and statistics on the first time derivative of the phase, i.e. time fluctuations, were analysed over the acquisition time interval to retrieve overall cell viability. OCPM intensity (cell cluster size) and phase fluctuation statistics were directly compared with biochemical assays. In this study, we investigated optical coherence phase tomography to assess cell death in a 3d liver model after exposure to a prototypical hepatotoxin, acetaminophen. We showed that OCPM has the potential to assess noninvasively and label-free drug toxicity in 3D tissue models.

  11. Development of cultures of the marine sponge Hymeniacidon perleve for genotoxicity assessment using the alkaline comet assay.

    PubMed

    Akpiri, Rachael U; Konya, Roseline S; Hodges, Nikolas J

    2017-12-01

    Sponges are a potential alternative model species to bivalves in pollution biomonitoring and environmental risk assessment in the aquatic ecosystem. In the present study, a novel in vivo exposure sponge culture model was developed from field-collected and cryopreserved sponge (Hymeniacidon perleve) cells to investigate the genotoxic effects of environmentally relevant metals in the laboratory. Sponge cell aggregates were cultured and exposed to noncytotoxic concentrations (0-0.4 mg/L) of cadmium chloride, nickel chloride, and sodium dichromate as quantified by the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and DNA-strand breaks assessed by the comet assay. Reactive oxygen species (ROS) formation was quantified by oxidation of 2',7'-dichlorofluorescin diacetate in sponge cell aggregates exposed to the same concentrations of Cd, Cr, and Ni. There was a statistically significant (p < 0.05) concentration-dependent increase in the level of DNA-strand breaks and ROS formation in all of the metals investigated. To the best of our knowledge, we have utilized for the first time the alkaline comet assay to detect DNA-strand breaks in marine sponge cells and demonstrated that exposure to noncytotoxic concentrations of Cd, Cr, and Ni for 12 h results in a concentration-dependent increase in DNA damage and levels of ROS production. In conclusion, we have developed a novel in vivo model based on culture of cryopreserved sponge cells that is compatible with the alkaline comet assay. Genotoxicity in marine sponges measured by the comet assay technique may be a useful tool for biomonitoring research and risk assessment in aquatic ecosystems. Environ Toxicol Chem 2017;36:3314-3323. © 2017 SETAC. © 2017 SETAC.

  12. Studying Mucin Secretion from Human Bronchial Epithelial Cell Primary Cultures

    PubMed Central

    Abdullah, Lubna H.; Wolber, Cédric; Kesimer, Mehmet; Sheehan, John K.; Davis, C. William

    2016-01-01

    Mucin secretion is regulated by extracellular signaling molecules emanating from local, neuronal, or endocrine sources. Quantifying the rate of this secretion is important to understanding how the exocytic process is regulated, and also how goblet/mucous cells synthesize and release mucins under control and pathological conditions. Consequently, measuring mucins in a quantitatively accurate manner is the key to many experiments addressing these issues. This paper describes procedures used to determine agonist-induced mucin secretion from goblet cells in human bronchial epithelial (HBE) cell cultures. It begins with primary epithelial cell culture, offers methods for purifying MUC5AC and MUC5B mucins for standards, and describes five different microtiter plate binding assays which use various probes for mucins. A polymeric mucin-specific antibody is used in standard and sandwich ELISA formats for two assays while the others target the extensive glycosylated domains of mucins with lectin, periodate oxidation, and antibody-based probes. Comparing the data derived from the different assays applied to the same set of samples of HBE cell cultures indicates a qualitative agreement between baseline and agonist stimulated mucin release; however, the polymeric mucin-specific assays yield substantially lower values than the assays using nonspecific molecular reporters. These results indicate that the more non-specific assays are suitable to assess overall secretory responses by goblet cells, but are likely unsuited for specific measurements of polymeric mucins, per se. PMID:22259142

  13. Eckol suppresses maintenance of stemness and malignancies in glioma stem-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyun, Kyung-Hwan; Yoon, Chang-Hwan; Kim, Rae-Kwon

    A subpopulation of cancer cells with stem cell properties is responsible for tumor maintenance and progression, and may contribute to resistance to anticancer treatments. Thus, compounds that target cancer stem-like cells could be usefully applied to destroy cancer. In this study, we investigated the effect of Eckol, a phlorotannin compound, on stemness and malignancies in glioma stem-like cells. To determine whether Eckol targets glioma stem-like cells, we examined whether Eckol treatment could change the expression levels of glioma stem-like cell markers and self-renewal-related proteins as well as the sphere forming ability, and the sensitivity to anticancer treatments. Alterations in themore » malignant properties of sphere-derived cells by Eckol were also investigated by soft-agar colony forming assay, by xenograft assay in nude mice, and by cell invasion assay. Treatment of sphere-forming glioma cells with Eckol effectively decreased the sphere formation as well as the CD133{sup +} cell population. Eckol treatment suppressed expression of the glioma stem-like cell markers and the self-renewal-related proteins without cell death. Moreover, treatment of glioma stem-like cells with Eckol significantly attenuated anchorage-independent growth on soft agar and tumor formation in xenograft mice. Importantly, Eckol treatment effectively reduced the resistance of glioma stem-like cells to ionizing radiation and temozolomide. Treatment of glioma stem-like cells with Eckol markedly blocked both phosphoinositide 3-kinase-Akt and Ras-Raf-1-Erk signaling pathways. These results indicate that the natural phlorotannin Eckol suppresses stemness and malignancies in glioma stem-like cells, and thereby makes glioma stem-like cells more sensitive to anticancer treatments, providing novel therapeutic strategies targeting specifically cancer stem-like cells.« less

  14. Microbial Adhesion and Biofilm Formation on Microfiltration Membranes: A Detailed Characterization Using Model Organisms with Increasing Complexity

    PubMed Central

    Vanysacker, L.; Denis, C.; Declerck, P.; Piasecka, A.; Vankelecom, I. F. J.

    2013-01-01

    Since many years, membrane biofouling has been described as the Achilles heel of membrane fouling. In the present study, an ecological assay was performed using model systems with increasing complexity: a monospecies assay using Pseudomonas aeruginosa or Escherichia coli separately, a duospecies assay using both microorganisms, and a multispecies assay using activated sludge with or without spiked P. aeruginosa. The microbial adhesion and biofilm formation were evaluated in terms of bacterial cell densities, species richness, and bacterial community composition on polyvinyldifluoride, polyethylene, and polysulfone membranes. The data show that biofouling formation was strongly influenced by the kind of microorganism, the interactions between the organisms, and the changes in environmental conditions whereas the membrane effect was less important. The findings obtained in this study suggest that more knowledge in species composition and microbial interactions is needed in order to understand the complex biofouling process. This is the first report describing the microbial interactions with a membrane during the biofouling development. PMID:23986906

  15. Micropatterned comet assay enables high throughput and sensitive DNA damage quantification

    PubMed Central

    Ge, Jing; Chow, Danielle N.; Fessler, Jessica L.; Weingeist, David M.; Wood, David K.; Engelward, Bevin P.

    2015-01-01

    The single cell gel electrophoresis assay, also known as the comet assay, is a versatile method for measuring many classes of DNA damage, including base damage, abasic sites, single strand breaks and double strand breaks. However, limited throughput and difficulties with reproducibility have limited its utility, particularly for clinical and epidemiological studies. To address these limitations, we created a microarray comet assay. The use of a micrometer scale array of cells increases the number of analysable comets per square centimetre and enables automated imaging and analysis. In addition, the platform is compatible with standard 24- and 96-well plate formats. Here, we have assessed the consistency and sensitivity of the microarray comet assay. We showed that the linear detection range for H2O2-induced DNA damage in human lymphoblastoid cells is between 30 and 100 μM, and that within this range, inter-sample coefficient of variance was between 5 and 10%. Importantly, only 20 comets were required to detect a statistically significant induction of DNA damage for doses within the linear range. We also evaluated sample-to-sample and experiment-to-experiment variation and found that for both conditions, the coefficient of variation was lower than what has been reported for the traditional comet assay. Finally, we also show that the assay can be performed using a 4× objective (rather than the standard 10× objective for the traditional assay). This adjustment combined with the microarray format makes it possible to capture more than 50 analysable comets in a single image, which can then be automatically analysed using in-house software. Overall, throughput is increased more than 100-fold compared to the traditional assay. Together, the results presented here demonstrate key advances in comet assay technology that improve the throughput, sensitivity, and robustness, thus enabling larger scale clinical and epidemiological studies. PMID:25527723

  16. Micropatterned comet assay enables high throughput and sensitive DNA damage quantification.

    PubMed

    Ge, Jing; Chow, Danielle N; Fessler, Jessica L; Weingeist, David M; Wood, David K; Engelward, Bevin P

    2015-01-01

    The single cell gel electrophoresis assay, also known as the comet assay, is a versatile method for measuring many classes of DNA damage, including base damage, abasic sites, single strand breaks and double strand breaks. However, limited throughput and difficulties with reproducibility have limited its utility, particularly for clinical and epidemiological studies. To address these limitations, we created a microarray comet assay. The use of a micrometer scale array of cells increases the number of analysable comets per square centimetre and enables automated imaging and analysis. In addition, the platform is compatible with standard 24- and 96-well plate formats. Here, we have assessed the consistency and sensitivity of the microarray comet assay. We showed that the linear detection range for H2O2-induced DNA damage in human lymphoblastoid cells is between 30 and 100 μM, and that within this range, inter-sample coefficient of variance was between 5 and 10%. Importantly, only 20 comets were required to detect a statistically significant induction of DNA damage for doses within the linear range. We also evaluated sample-to-sample and experiment-to-experiment variation and found that for both conditions, the coefficient of variation was lower than what has been reported for the traditional comet assay. Finally, we also show that the assay can be performed using a 4× objective (rather than the standard 10× objective for the traditional assay). This adjustment combined with the microarray format makes it possible to capture more than 50 analysable comets in a single image, which can then be automatically analysed using in-house software. Overall, throughput is increased more than 100-fold compared to the traditional assay. Together, the results presented here demonstrate key advances in comet assay technology that improve the throughput, sensitivity, and robustness, thus enabling larger scale clinical and epidemiological studies. © The Author 2014. Published by Oxford University Press on behalf of the Mutagenesis Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Involvement of signal peptidase I in Streptococcus sanguinis biofilm formation

    PubMed Central

    Ge, Xiuchun; Stone, Victoria; Zhu, Bin; Kitten, Todd

    2017-01-01

    Biofilm accounts for 65–80 % of microbial infections in humans. Considerable evidence links biofilm formation by oral microbiota to oral disease and consequently systemic infections. Streptococcus sanguinis, a Gram-positive bacterium, is one of the most abundant species of the oral microbiota and it contributes to biofilm development in the oral cavity. Due to its altered biofilm formation, we investigated a biofilm mutant, ΔSSA_0351, that is deficient in type I signal peptidase (SPase) in this study. Although the growth curve of the ΔSSA_0351 mutant showed no significant difference from that of the wild-type strain SK36, biofilm assays using both microtitre plate assay and confocal laser scanning microscopy (CLSM) confirmed a sharp reduction in biofilm formation in the mutant compared to the wild-type strain and the paralogous mutant ΔSSA_0849. Scanning electron microscopy (SEM) revealed remarkable differences in the cell surface morphologies and chain length of the ΔSSA_0351 mutant compared with those of the wild-type strain. Transcriptomic and proteomic assays using RNA sequencing and mass spectrometry, respectively, were conducted on the ΔSSA_0351 mutant to evaluate the functional impact of SPase on biofilm formation. Subsequently, bioinformatics analysis revealed a number of proteins that were differentially regulated in the ΔSSA_0351 mutant, narrowing down the list of SPase substrates involved in biofilm formation to lactate dehydrogenase (SSA_1221) and a short-chain dehydrogenase (SSA_0291). With further experimentation, this list defined the link between SSA_0351-encoded SPase, cell wall biosynthesis and biofilm formation. PMID:28869408

  18. A1E reduces stemness and self-renewal in HPV 16-positive cervical cancer stem cells.

    PubMed

    Kwon, Taeho; Bak, Yesol; Ham, Sun-Young; Yu, Dae-Yeul; Yoon, Do-Young

    2016-02-02

    Cervical cancer is the second most common cancer in females. Recent reports have revealed the critical role of cervical cancer stem cells (CSCs) in tumorigenicity and metastasis. Previously we demonstrated that A1E exerts an anti-proliferative action, which inhibits the growth of cervical cancer cells. A1E is composed of 11 oriental medicinal herbs. Cervical cancer cell culture, wund healing and invasion assay, flow cytometry, sheroid formation assay, and wstern blot assays were performed in HPV 16-positive SiHa cell and HPV 16-negative C33A cells. A1E targets the E6 and E7 oncogenes; thus, A1E significantly inhibited proliferation of human papilloma virus (HPV) 16-positive SiHa cells, it did not inhibit the proliferation of HPV-negative C33A cells. Accordingly, we investigated whether A1E can regulate epithelial-to-mesenchymal transition (EMT), CSC self-renewal, and stemness-related gene expression in cervical cancer cells. Down rgulation of cell migration, cell invasion, and EMT was observed in A1E-treated SiHa cells. Specifically, A1E-treated SiHa cells showed significant decreases in OCT-3/4 and Sox2 expression levels and in sphere formation. Moreover, CSCs makers ALDH+ and ALDH, CD133 double positive cell were significantly decreased in A1E-treated SiHa cells. However, A1E treatment did not down regulate ALDH+ expression and the number of ALDH/CD133 double positive cells in C33A cells. Taken together, A1E can inhibit CSCs and reduce the expression of stemness markers. Treating CSCs with A1E may be a potential therapy for cervical cancer.

  19. Methanolic extract of Boswellia serrata exhibits anti-cancer activities by targeting microsomal prostaglandin E synthase-1 in human colon cancer cells.

    PubMed

    Ranjbarnejad, Tayebeh; Saidijam, Massoud; Moradkhani, Shirin; Najafi, Rezvan

    2017-07-01

    Colorectal cancer (CRC) is the most common cancer. A proper method to reduce mortality of CRC is chemoprevention to prevent initiation and promotion of intestinal tumorgenesis. One of the promising and developing chemopreventive agents is natural compounds found in plants. Frankincense, the resin extract from the Boswellia specious, has been used in traditional and modern medicine for treating various diseases with very minimal side effects. In the current study, we investigated the anti-cancer activity of methanolic extract of Boswellia serrata (B. serrata) on HT-29 human colon cancer cells. HT-29 cells were treated with different concentrations of B. serrata and cell viability was assessed by MTT assay. mRNA expression of microsomal prostaglandin E synthase-1 (mPGES-1), vascular endothelial growth factor (VEGF), C-X-C chemokine receptor type 4 (CXCR4), matrix metalloproteinase-2 (MMP-2), MMP-9 and hypoxia-inducible factor-1 (HIF-1) were examined by quantitative real-time PCR. Apoptosis was evaluated by the proportion of sub-G1 cells. Prostaglandin E2 (PGE2) level and caspase 3 activity were determined by ELISA assay. Tube formation potential and HT-29 cells migration were assessed using three-dimensional vessel formation assay and scratch test. B. serrata extract considerably decreased the expression of mPGES-1, VEGF, CXCR4, MMP-2, MMP-9 and HIF-1. The caspase 3 activity and percent of cells in sub-G1 phase were increased by B. serrata extract. Cell viability, PGE2 generation, in vitro tube formation and cell migration were decreased significantly in B. serrata-treated HT-29 compared to the control group. Our findings suggest that B. serrata extract inhibits proliferation, angiogenesis and migration and induces apoptosis in HT-29 cells by inhibiting of mPGES-1 and decreasing the PGE2 level and its downstream targets. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Connective Tissue Growth Factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells

    PubMed Central

    MARKIEWICZ, MAGARET; NAKERAKANTI, SASHIDHAR S.; KAPANADZE, BAGRAT; GHATNEKAR, ANGELA; TROJANOWSKA, MARIA

    2010-01-01

    Objective The primary objective of this study was to examine the potential interaction between sphingosine-1-phosphate (S1P), a pleiotropic lipid mediator, and CTGF/CCN2 a secreted multimodular protein, in the process of endothelial cell migration. The second objective was to determine whether C- and N-terminal domains of CTGF/CCN2 have specific function in cell migration. Materials and Methods Migration of human dermal microvascular endothelial cells (HDMECs) was examined in monolayer wound healing “scratch” assay, while capillary-like tube formation was examined in 3 dimensional collagen co-culture assays. Results We observed that S1P stimulates HDMECs migration concomitant with upregulation of CTGF/CCN2 expression. Furthermore, the blockade of endogenous CTGF/CCN2 via siRNA abrogated S1P induced HDMECs migration and capillary-like tube formation. Full length CTGF induced cell migration and capillary-like tube formation with potency similar to that of S1P, while C-terminal domain of CTGF was slightly less effective. However; N-terminal domain had only a residual activity in inducing capillary-like tube formation. Conclusions This study revealed that CTGF/CCN2 is required for the S1P induced endothelial cell migration, which suggests that CTGF/CCN2 may be an important mediator of S1P induced physiological and pathological angiogenesis. Moreover, this study shows that the pro-migratory activity of CTGF/CCN2 is located in the C-terminal domain. PMID:21166920

  1. Cyclin-dependent kinase inhibitor, P276-00, inhibits HIF-1α and induces G2/M arrest under hypoxia in prostate cancer cells.

    PubMed

    Manohar, S M; Padgaonkar, A A; Jalota-Badhwar, A; Rao, S V; Joshi, K S

    2012-03-01

    Hypoxia-inducible factor-1 (HIF-1) is a master regulator of the transcriptional response to oxygen deprivation and controls genes involved in glycolysis, angiogenesis, migration and invasion. Overexpression of HIF-1α has been demonstrated in many common human cancers. Luciferase reporter gene assay under hypoxia and normoxia was used to demonstrate transcriptional inhibition of HIF-1 by P276-00. Detailed studies such as western blotting, reverse-transcriptase-PCR and immunofluorescence were carried out to elucidate its mechanism of action. Cytotoxic potential of P276-00 under normoxia and hypoxia was determined on prostate cancer cells using CCK-8 assay, and cell-cycle analysis was carried out using flow cytometry. Antiangiogenic activity of P276-00 was demonstrated by migration assay and tube-formation assay. Efficacy study of P276-00 was performed in a PC-3 xenograft model. P276-00 inhibits transcriptional activation of HIF-1 under hypoxia. It suppressed hypoxia-mediated nuclear HIF-1α expression, as well as phosphorylation of Akt and 4E-BP1 and abrogated expression of HIF-1-inducible gene viz. vascular endothelial growth factor. Under hypoxia, P276-00 did not exhibit enhanced cytotoxic activity in prostate cancer cells but arrested them in the G2/M phase of the cell cycle. The tubular formation of human umbilical vein endothelial cells and migration of prostate cancer cells were also inhibited by P276-00 in vitro. In addition, it demonstrated significant in vivo efficacy in the PC-3 xenograft model. Given its low toxicity profile, its demonstrated antitumor activity and its potential to inhibit the HIF-1 pathway, P276-00 should be considered as antiangiogenic chemotherapy for prostate cancer.

  2. Establishment and Biological Characterization of a Panel of Glioblastoma Multiforme (GBM) and GBM Variant Oncosphere Cell Lines.

    PubMed

    Binder, Zev A; Wilson, Kelli M; Salmasi, Vafi; Orr, Brent A; Eberhart, Charles G; Siu, I-Mei; Lim, Michael; Weingart, Jon D; Quinones-Hinojosa, Alfredo; Bettegowda, Chetan; Kassam, Amin B; Olivi, Alessandro; Brem, Henry; Riggins, Gregory J; Gallia, Gary L

    2016-01-01

    Human tumor cell lines form the basis of the majority of present day laboratory cancer research. These models are vital to studying the molecular biology of tumors and preclinical testing of new therapies. When compared to traditional adherent cell lines, suspension cell lines recapitulate the genetic profiles and histologic features of glioblastoma multiforme (GBM) with higher fidelity. Using a modified neural stem cell culture technique, here we report the characterization of GBM cell lines including GBM variants. Tumor tissue samples were obtained intra-operatively and cultured in neural stem cell conditions containing growth factors. Tumor lines were characterized in vitro using differentiation assays followed by immunostaining for lineage-specific markers. In vivo tumor formation was assayed by orthotopic injection in nude mice. Genetic uniqueness was confirmed via short tandem repeat (STR) DNA profiling. Thirteen oncosphere lines derived from GBM and GBM variants, including a GBM with PNET features and a GBM with oligodendroglioma component, were established. All unique lines showed distinct genetic profiles by STR profiling. The lines assayed demonstrated a range of in vitro growth rates. Multipotency was confirmed using in vitro differentiation. Tumor formation demonstrated histologic features consistent with high grade gliomas, including invasion, necrosis, abnormal vascularization, and high mitotic rate. Xenografts derived from the GBM variants maintained histopathological features of the primary tumors. We have generated and characterized GBM suspension lines derived from patients with GBMs and GBM variants. These oncosphere cell lines will expand the resources available for preclinical study.

  3. Anti-angiogenic and cytotoxicity studies of some medicinal plants.

    PubMed

    Ng, Kwok-Wen; Salhimi, Salizawati Muhamad; Majid, Amin Malik; Chan, Kit-Lam

    2010-06-01

    Angiogenesis plays an important role in tumor formation and proliferation. The development of anti-angiogenic agents to block new blood vessel growth will inhibit metastasis and induce apoptosis of the cancer cells. Nine medicinal plants, Strobilanthes crispus, Phyllanthus niruri, Phyllanthus pulcher, Phyllanthus urinaria, Ailanthus malabarica, Irvingia malayana, Smilax myosotiflora, Tinospora crispa and blumea balsamifera were screened for anti-angiogenic properties using the rat aortic ring assay. Of these, the methanol extracts of Phyllanthus species and Irvingia malayana exhibited the highest activity. At 100 microg/mL, P. pulcher, P. niruri, P. urinaria and I. malayana recorded an inhibition of 78.8 %, 59.5 %, 56.7 % and 46.4 %, respectively, against rat aortic vascular growth. Their activities were further investigated by the tube formation assay involving human umbilical vein endothelial cells (HUVEC) on Matrigel. I. malayana, P. niruri and P. urinaria showed a significant decrease of 45.5, 37.9 and 35.6 %, respectively, whilst P. pulcher showed a much lower decrease of 15.5 % when compared with that of the rat aortic ring assay. All the plant extracts were evaluated for cytotoxicity on a panel of human cancer cell lines using the MTT assay. None of them displayed acute cytotoxicity. The HPLC of P. niruri, P. urinaria and P. pulcher indicated the extracts contained some identical chromatographic peaks of lignans. Further fractionation of I. malayana yielded betulinic acid reported in this plant for the first time and at 100 microg/mL it exhibited a 67.3 % inhibition of vessel outgrowth and 46.5 % inhibition of tube formation. Georg Thieme Verlag KG Stuttgart-New York.

  4. Development and characterization of a Rift Valley fever virus cell-cell fusion assay using alphavirus replicon vectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filone, Claire Marie; Heise, Mark; Doms, Robert W.

    2006-12-20

    Rift Valley fever virus (RVFV), a member of the Phlebovirus genus in the Bunyaviridae family, is transmitted by mosquitoes and infects both humans and domestic animals, particularly cattle and sheep. Since primary RVFV strains must be handled in BSL-3+ or BSL-4 facilities, a RVFV cell-cell fusion assay will facilitate the investigation of RVFV glycoprotein function under BSL-2 conditions. As for other members of the Bunyaviridae family, RVFV glycoproteins are targeted to the Golgi, where the virus buds, and are not efficiently delivered to the cell surface. However, overexpression of RVFV glycoproteins using an alphavirus replicon vector resulted in the expressionmore » of the glycoproteins on the surface of multiple cell types. Brief treatment of RVFV glycoprotein expressing cells with mildly acidic media (pH 6.2 and below) resulted in rapid and efficient syncytia formation, which we quantified by {beta}-galactosidase {alpha}-complementation. Fusion was observed with several cell types, suggesting that the receptor(s) for RVFV is widely expressed or that this acid-dependent virus does not require a specific receptor to mediate cell-cell fusion. Fusion occurred over a broad temperature range, as expected for a virus with both mosquito and mammalian hosts. In contrast to cell fusion mediated by the VSV-G glycoprotein, RVFV glycoprotein-dependent cell fusion could be prevented by treating target cells with trypsin, indicating that one or more proteins (or protein-associated carbohydrate) on the host cell surface are needed to support membrane fusion. The cell-cell fusion assay reported here will make it possible to study the membrane fusion activity of RVFV glycoproteins in a high-throughput format and to screen small molecule inhibitors for the ability to block virus-specific membrane fusion.« less

  5. The Antiangiogenesis Effect of Pirfenidone in Wound Healing In Vitro.

    PubMed

    Liu, Xiao'an; Yang, Yangfan; Guo, Xiujuan; Liu, Liling; Wu, Kaili; Yu, Minbin

    2017-11-01

    Abstracts Purpose: Pirfenidone is mostly used in antifibrotic and anti-inflammatory therapies. We have previously demonstrated that pirfenidone had antifibrotic and anti-inflammatory effects on the wound healing process after glaucoma filtration surgery in vitro and in vivo. Since the wound healing and reactive scarring process simultaneously involves inflammation, fibrosis, and angiogenesis, and angiogenesis plays a more important role in chronic or prolonged wound healing, we tried to explore the antiangiogenesis effect in pirfenidone and its potential multitarget function in regulating excessive scarring. The aim of the present study was to investigate the antiangiogenesis effect of pirfenidone. The proliferation of human umbilical vein endothelial cells (HUVECs) and human Tenon's fibroblasts (HTFs) were detected by WST-1 assay. The cell viability of HUVECs was measured by Trypan Blue together with lactate dehydrogenase, Annexin 5 experiment, and Ki-67 immunofluorescence assay. The functions of HUVECs and HTFs were demonstrated using cell migration assay, transwell invasion assay, and tube formation assay. The expression levels of vascular endothelial growth factor-A (VEGF-A), VEGF receptor-2 (VEGFR-2), neuropilin-1(NRP-1), and their downstream signaling proteins p-PI3K, PI3K, p-AKT, AKT, p-mTOR, and mechanistic target of rapamycin (mTOR) were indicated by western blot assay. The secretion of VEGF-A was detected by enzyme-linked immunosorbent assay. Pirfenidone inhibited proliferation, migration, invasion, and tube formation of HUVECs in vitro, and had an equivalent antiangiogenesis effect when compared with Ranibizumab in HUVECs and HTFs. Pirfenidone downregulated VEGF-A/VEGFR-2, VEGF-A/NRP-1, and its downstream signaling pathway protein expression. Pirfenidone has an antiangiogenesis effect in the wound healing process and may become an ideal multitarget antiscarring agent after glaucoma filtration surgery.

  6. Optimization of cell-based assays to quantify the anti-inflammatory/allergic potential of test substances in 96-well format.

    PubMed

    Chandrasekaran, C V; Edwin Jothie, R; Kapoor, Preeti; Gupta, Anumita; Agarwal, Amit

    2011-06-01

    There is an insistent need for robust, reliable, and optimized assays for screening novel drugs targeting the inflammatory/allergic markers. The present study describes about the optimization of eight cell-based assays utilizing mammalian cell lines in 96-well format for quantifying anti-inflammatory/allergic drug candidates. We estimated the inhibitory response of reference compounds: 1400 W dihydrochloride on LPS-induced NO release, celecoxib on LPS-induced PGE(2) production and dexamethasone on LPS-induced pro-inflammatory cytokines IL-1 beta, IL-6, and TNF-alpha production by J774A.1 murine macrophages. Response of acetylsalicylic acid and celecoxib was studied on A23187-induced TXB(2) production; captopril on A23187-stimulated LTB(4) production by HL-60 cells. Effect of ketotifen fumarate was evaluated on A23187-elicited histamine release by RBL-2H3 cells. Each experiment was repeated twice to assess the reproducibility and suitability of the assays by determining appropriate statistical tools viz. %CV, S/B and Z' factor. 1400 W dihydrochloride was capable of inhibiting LPS-induced NO levels (IC(50) = 10.7 μM). Dexamethasone attenuated LPS-induced IL-1 beta (IC(50) = 70 nM), IL-6 (IC(50) = 58 nM) and TNF-alpha (IC(50) = 44 nM) release, whereas celecoxib, a specific COX-2 inhibitor showed marked reduction in LPS-induced PGE(2) (IC(50) = 23 nM) production. Captopril (IC(50) = 48 μM) and ketotifen fumarate (IC(50) = 36.4 μM) demonstrated potent inhibitory effect against A23187-stimulated LTB(4) and histamine levels, respectively. Both acetylsalicylic acid (IC(50) = 5.5 μM) and celecoxib (IC(50) = 7.9 nM) exhibited concentration-dependent decrease in TXB(2) production. Results for all the cell assays from two experiments showed a Z' factor varying from 0.30 to 0.99; the S/B ratio ranged from 2.39 to 24.92; %CV ranged between 1.52 and 20.14. The results proclaim that these cell-based assays can act as ideal tools for screening new anti-inflammatory/anti-allergic compounds.

  7. Evidence of progenitor cells in the adult human cochlea: sphere formation and identification of ABCG2.

    PubMed

    Massucci-Bissoli, Milene; Lezirovitz, Karina; Oiticica, Jeanne; Bento, Ricardo Ferreira

    2017-11-01

    The aim of this study was to search for evidence of stem or progenitor cells in the adult human cochlea by testing for sphere formation capacity and the presence of the stem cell marker ABCG2. Cochleas removed from patients undergoing vestibular schwannoma resection (n=2) and from brain-dead organ donors (n=4) were dissociated for either flow cytometry analysis for the stem cell marker ABCG2 or a sphere formation assay that is widely used to test the sphere-forming capacity of cells from mouse inner ear tissue. Spheres were identified after 2-5 days in vitro, and the stem cell marker ABCG2 was detected using flow cytometric analysis after cochlear dissociation. Evidence suggests that there may be progenitor cells in the adult human cochlea, although further studies are required.

  8. 384 hanging drop arrays give excellent Z-factors and allow versatile formation of co-culture spheroids.

    PubMed

    Hsiao, Amy Y; Tung, Yi-Chung; Qu, Xianggui; Patel, Lalit R; Pienta, Kenneth J; Takayama, Shuichi

    2012-05-01

    We previously reported the development of a simple, user-friendly, and versatile 384 hanging drop array plate for 3D spheroid culture and the importance of utilizing 3D cellular models in anti-cancer drug sensitivity testing. The 384 hanging drop array plate allows for high-throughput capabilities and offers significant improvements over existing 3D spheroid culture methods. To allow for practical 3D cell-based high-throughput screening and enable broader use of the plate, we characterize the robustness of the 384 hanging drop array plate in terms of assay performance and demonstrate the versatility of the plate. We find that the 384 hanging drop array plate performance is robust in fluorescence- and colorimetric-based assays through Z-factor calculations. Finally, we demonstrate different plate capabilities and applications, including: spheroid transfer and retrieval for Janus spheroid formation, sequential addition of cells for concentric layer patterning of different cell types, and culture of a wide variety of cell types. Copyright © 2011 Wiley Periodicals, Inc.

  9. 384 Hanging Drop Arrays Give Excellent Z-factors and Allow Versatile Formation of Co-culture Spheroids

    PubMed Central

    Hsiao, Amy Y.; Tung, Yi-Chung; Qu, Xianggui; Patel, Lalit R.; Pienta, Kenneth J.; Takayama, Shuichi

    2012-01-01

    We previously reported the development of a simple, user-friendly, and versatile 384 hanging drop array plate for 3D spheroid culture and the importance of utilizing 3D cellular models in anti-cancer drug sensitivity testing. The 384 hanging drop array plate allows for high-throughput capabilities and offers significant improvements over existing 3D spheroid culture methods. To allow for practical 3D cell-based high-throughput screening and enable broader use of the plate, we characterize the robustness of the 384 hanging drop array plate in terms of assay performance and demonstrate the versatility of the plate. We find that the 384 hanging drop array plate performance is robust in fluorescence- and colorimetric-based assays through z-factor calculations. Finally, we demonstrate different plate capabilities and applications, including: spheroid transfer and retrieval for Janus spheroid formation, sequential addition of cells for concentric layer patterning of different cell types, and culture of a wide variety of cell types. PMID:22161651

  10. A novel taspine analog, HMQ1611, inhibits growth of non-small cell lung cancer by inhibiting angiogenesis

    PubMed Central

    LU, WEN; DAI, BINGLING; MA, WEINA; ZHANG, YANMIN

    2012-01-01

    In the present study, we investigated the antitumor activity of HMQ1611, a novel synthetic taspine derivative, in vivo and evaluated associated potential antiangiogenesis mechanisms. The proliferation of A549 cells was examined by WST-1 assay in vitro. Tube formation and lung tissue vessel models were used to observe the antiangiogenic activity of HMQ1611. In addition, vascular enodthelial growth factor (VEGF) secretion and KDR kinase activities were measured by ELISA and the HTRF®KinEASE™-TK assay. In vivo, the antitumor activity was assessed by implantation of A549 cells in athymic mice. The results showed that HMQ1611 inhibited A549 cell proliferation and VEGF secretion, while it significantly inhibited tube formation and tissue vascularization. Furthermore, HMQ1611 inhibited A549 xenograft tumor growth. In conclusion, the results of our study suggest that HMQ1611 has latent properties for the inhibition of angiogenesis which are involved in its antitumor activity. PMID:23162661

  11. A novel taspine analog, HMQ1611, inhibits growth of non-small cell lung cancer by inhibiting angiogenesis.

    PubMed

    Lu, Wen; Dai, Bingling; Ma, Weina; Zhang, Yanmin

    2012-11-01

    In the present study, we investigated the antitumor activity of HMQ1611, a novel synthetic taspine derivative, in vivo and evaluated associated potential antiangiogenesis mechanisms. The proliferation of A549 cells was examined by WST-1 assay in vitro. Tube formation and lung tissue vessel models were used to observe the antiangiogenic activity of HMQ1611. In addition, vascular enodthelial growth factor (VEGF) secretion and KDR kinase activities were measured by ELISA and the HTRF(®)KinEASE(™)-TK assay. In vivo, the antitumor activity was assessed by implantation of A549 cells in athymic mice. The results showed that HMQ1611 inhibited A549 cell proliferation and VEGF secretion, while it significantly inhibited tube formation and tissue vascularization. Furthermore, HMQ1611 inhibited A549 xenograft tumor growth. In conclusion, the results of our study suggest that HMQ1611 has latent properties for the inhibition of angiogenesis which are involved in its antitumor activity.

  12. Assay development and case history of a 32K-biased library high-content MK2-EGFP translocation screen to identify p38 mitogen-activated protein kinase inhibitors on the ArrayScan 3.1 imaging platform.

    PubMed

    Trask, Oscar J; Baker, Audrey; Williams, Rhonda Gates; Nickischer, Debra; Kandasamy, Ramani; Laethem, Carmen; Johnston, Patricia A; Johnston, Paul A

    2006-01-01

    This chapter describes the conversion and assay development of a 96-well MK2-EGFP translocation assay into a higher density 384-well format high-content assay to be screened on the ArrayScan 3.1 imaging platform. The assay takes advantage of the well-substantiated hypothesis that mitogen-activated protein kinase-activating protein kinase-2 (MK2) is a substrate of p38 MAPK kinase and that p38-induced phosphorylation of MK-2 induces a nucleus-to-cytoplasm translocation. This chapter also presents a case history of the performance of the MK2-EGFP translocation assay, run as a "high-content" screen of a 32K kinase-biased library to identify p38 inhibitors. The assay performed very well and a number of putative p38 inhibitor hits were identified. Through the use of multiparameter data provided by the nuclear translocation algorithm and by checking images, a number of compounds were identified that were potential artifacts due to interference with the imaging format. These included fluorescent compounds, or compounds that dramatically reduced cell numbers due to cytotoxicity or by disrupting cell adherence. A total of 145 compounds produced IC(50) values <50.0 muM in the MK2-EGFP translocation assay, and a cross target query of the Lilly-RTP HTS database confirmed their inhibitory activity against in vitro kinase targets, including p38a. Compounds were confirmed structurally by LCMS analysis and profiled in cell-based imaging assays for MAPK signaling pathway selectivity. Three of the hit scaffolds identified in the MK2-EGFP translocation HCS run on the ArrayScan were selected for a p38a inhibitor hit-to-lead structure activity relationship (SAR) chemistry effort.

  13. Tectonic-1 contributes to the growth and migration of prostate cancer cells in vitro

    PubMed Central

    WANG, ZHIJUN; GAO, YI; LIU, YUSHAN; CHEN, JIE; WANG, JUNKAI; GAN, SISHUN; XU, DANFENG; CUI, XINGANG

    2015-01-01

    Tectonic-1 (TCTN1) is an upstream gene involved in embryonic development. The aim of the present study was to investigate the effect of the TCTN1 gene on the viability and migration of prostate cancer cells. Lentivirus-mediated short hairpin RNA (shRNA) was constructed to silence the expression of TCTN1 in PC-3 and DU145 prostate cancer cells. Cell viability and proliferation were measured using MTT and colony formation assays, and the distribution of cells in phases of the cell cycle was determined using flow cytometry. Cell migration was detected using a Transwell assay. The results demonstrated that TCTN1 was widely expressed in several human prostate cancer cell lines. Knockdown of the TCTN1 gene by RNA interference markedly suppressed cell viability and colony formation in the PC-3 and DU145 cell lines. Cell cycle progression was also arrested by TCTN1 silencing. In addition, knockdown of the TCTN1 gene led to the inhibition of cell migration in the two cell lines. These findings confirmed the direct association between the TCTN1 gene and prostate cancer growth in vitro. With further understanding and clinical investigation, this indicates the potential for future development of a novel marker for early detection and gene therapy for prostate cancer. PMID:26310786

  14. [Overexpression of Keap1 inhibits the cell proliferation and metastasis and overcomes the drug resistance in human lung cancer A549 cells].

    PubMed

    Weng, X; Yan, Y Y; Tong, Y H; Fan, Y; Zeng, J M; Wang, L L; Lin, N M

    2016-06-23

    To investigate the effect of Keap1-Nrf2 pathway on cell proliferation, metastasis and drug resistance of human lung cancer A549 cell line. A549-Keap1 cell line, constantly expressing wild type Keap1, was established by lentiviral transfection. Real-time RT-PCR and western blot were used to determine the expression of Nrf2 and its target gene in A549 cells. Sulforhodamine B (SRB) assay, flow cytometry, colony formation assay, transwell assay, and cell wound-healing assay were performed to explore the effect of wild type Keap1 expression on the proliferation, invasion, migration and drug resistance of A549 cells. Over-expressed Keap1 decreased the expression of Nrf2 protein and the mRNA level of its downstream target genes and inhibited the ability of cell proliferation and clone formation of A549 cells. Keap1 overexpression induced G0/G1 phase arrest. The percentage of A549-Keap1 cells in G0/G1 phase was significantly higher than that of A549-GFP cells (80.2±5.9)% vs. (67.1±0.9%)(P<0.05). Compared with the invasive A549-Keap1 cells (156.33±17.37), the number of invasive A549-GFP cells was significantly higher (306.67±22.19) in a high power field. Keap1 overexpression significantly enhanced the sensitivity of A549 cells to carboplatin and gemcitabine (P<0.01). The IC50s of carboplatin in A549-Keap1 and A549-GFP cells were (52.1±3.3) μmol/L and (107.8±12.9) μmol/L, respectively. The IC50s of gemcitabine in A549-Keap1 and A549-GFP cells were (6.8±1.2) μmol/L and (9.9±0.5) μmol/L, respectively. Keap1 overexpression significantly inhibits the expression of Nrf2 and its downstream target genes, suppresses tumor cell proliferation and metastasis, and enhances the sensitivity of A549 cells to anticancer drugs.

  15. [Exploration of relationship between the expression level of DNA polymerase beta and 60Co gamma-ray radiosensitivity].

    PubMed

    Cui, Jie; Xu, Xin; Yang, Mo; Chen, Chen; Zhao, Wei; Wu, Mei; Zhang, Zun-zhen

    2011-11-01

    To explore the relationship between the expression level of DNA polymerase beta (pol beta) and 60Co gamma-ray radiosensitivity and provide a basis on improving the efficiency of radiotherapy theoretically. pol beta wild-type cells (pol beta +/+), pol beta null cells (pol beta -/-) and pol beta overexpressed cells (polp beta oe) were applied as a model system. The radiosensitivity of 60Co gamma-ray on the cell was detected by MTT assay and clone formation assay. The DCFH-DA fluorescent probe was used to examine the cellular ROS after 60Co gamma-rays radiation. MTT assay showed that after radiation by 60Co gamma-rays followed with 72 h incubation, the cell viabilities in the three kinds of cells decreased significantly with a dose-response relationship (r-/+ = -0.976, r-/- = -0.977, r(oe) = -0.982, P<0.05). In addition, the viability of pol beta -/- cell was lower than those of other two kinds of cells at the same dose (P<0.05). Likewise, the colony number and colony formation rate in all tested cells also decreased after exposure to 60Co gamma-rays. The ROS level in the three kinds of cells was enhanced after treatment with 60Co gamma-ray, and the ROS level in pol beta -/- cells was much higher than that in the other two kinds of cells (P<0.05). Cell death caused by 60Co gamma-ray may associated with the DNA oxidative damage mediated by ROS; Overexpression of pol beta could protect against oxidative DNA damage, thus the cell apoptosis/death, thereby leading to reducing the radiosensitivity of 60Co gamma-rays, while null of DNA pol beta could increase radiosensitivity of 60Co gamma-rays by compromising the DNA repair.

  16. Multiwell cell culture plate format with integrated microfluidic perfusion system

    NASA Astrophysics Data System (ADS)

    Domansky, Karel; Inman, Walker; Serdy, Jim; Griffith, Linda G.

    2006-01-01

    A new cell culture analog has been developed. It is based on the standard multiwell cell culture plate format but it provides perfused three-dimensional cell culture capability. The new capability is achieved by integrating microfluidic valves and pumps into the plate. The system provides a means to conduct high throughput assays for target validation and predictive toxicology in the drug discovery and development process. It can be also used for evaluation of long-term exposure to drugs or environmental agents or as a model to study viral hepatitis, cancer metastasis, and other diseases and pathological conditions.

  17. A novel comprehensive evaluation platform to assess nanoparticle toxicity in vitro

    NASA Astrophysics Data System (ADS)

    Hirsch, C.; Kaiser, J.-P.; Wessling, F.; Fischer, K.; Roesslein, M.; Wick, P.; Krug, H. F.

    2011-07-01

    The amount of engineered nanomaterials (ENM) is constantly increasing. Their unique properties, compared to their bulk counterparts, render them suitable for various applications in many areas of life. Hence, nanomaterials appear in a variety of different consumer products leading to the exposure of human beings and the environment during their lifecycle. Even though results on biological effects of ENM are available, harmonized and validated test systems are still missing. One major problem concerning the reliable and robust toxicity testing arises from interactions of ENM with different assay systems. Modifications or damage to DNA can have fatal consequences, such as the formation of tumor cells and hence carcinogenesis. Therefore we focused on the re-evaluation of two genotoxicity assays concerning their nanomaterial compatibility; namely the cytokinesis-block micronucleus cytome assay (MN-assay) and the alkaline single cell gel electorphoresis assay (comet assay). We demonstrate the interference of ENM agglomerates with the read-out of both assays and discuss possibilities how to acquire relevant genotoxicity data.

  18. Digital microfluidics for automated hanging drop cell spheroid culture.

    PubMed

    Aijian, Andrew P; Garrell, Robin L

    2015-06-01

    Cell spheroids are multicellular aggregates, grown in vitro, that mimic the three-dimensional morphology of physiological tissues. Although there are numerous benefits to using spheroids in cell-based assays, the adoption of spheroids in routine biomedical research has been limited, in part, by the tedious workflow associated with spheroid formation and analysis. Here we describe a digital microfluidic platform that has been developed to automate liquid-handling protocols for the formation, maintenance, and analysis of multicellular spheroids in hanging drop culture. We show that droplets of liquid can be added to and extracted from through-holes, or "wells," and fabricated in the bottom plate of a digital microfluidic device, enabling the formation and assaying of hanging drops. Using this digital microfluidic platform, spheroids of mouse mesenchymal stem cells were formed and maintained in situ for 72 h, exhibiting good viability (>90%) and size uniformity (% coefficient of variation <10% intraexperiment, <20% interexperiment). A proof-of-principle drug screen was performed on human colorectal adenocarcinoma spheroids to demonstrate the ability to recapitulate physiologically relevant phenomena such as insulin-induced drug resistance. With automatable and flexible liquid handling, and a wide range of in situ sample preparation and analysis capabilities, the digital microfluidic platform provides a viable tool for automating cell spheroid culture and analysis. © 2014 Society for Laboratory Automation and Screening.

  19. Overexpression of SKP2 Inhibits the Radiation-Induced Bystander Effects of Esophageal Carcinoma.

    PubMed

    Wang, Xiao-Chun; Zhang, Tie-Jun; Guo, Zi-Jian; Xiao, Chang-Yan; Ding, Xiao-Wen; Fang, Fang; Sheng, Wen-Tao; Shu, Xu; Li, Jue

    2017-02-06

    To investigate the effects of S-phase kinase protein 2 (SKP2) expression on the radiation induced bystander effect (RIBE) in esophageal cancer (EC) cells. Western blot was used to detect the levels of SKP2, Rad51, and Ku70 in EC cells. Positive transfection, RNAi, micronucleus (MN), and γ-H2AX focus formation assay were used to investigate the effects of SKP2 on RIBE induced by irradiated cells. We found a significant negative correlation between SKP2 expression and MN frequency ( p < 0.05) induced by RIBE. The results were further confirmed by positive transfection, RNAi, and rescue experiments.γ-H2AX focus formation assay results indicated that overexpression of SKP2 in the irradiated cells inhibited the DNA damage of RIBE cells. However, when SKP2 expression decreased in irradiated cells, the DNA damage of RIBE cells increased. Increased or decreased expression levels of SKP2 had effects on Rad51 expression under the conditions of RIBE. These results showed, for the first time, that SKP2 expression can inhibit RIBE of EC cells. The mechanism may function, at least partly, through the regulation of Rad51 in the ability to repair DNA damage.

  20. CRKL overexpression suppresses in vitro proliferation, invasion and migration of murine hepatocarcinoma Hca-P cells.

    PubMed

    Lin, Qiuyue; Sun, Ming-Zhong; Guo, Chunmei; Shi, Ji; Chen, Xin; Liu, Shuqing

    2015-02-01

    The signal adaptor CRK family protein play important roles in cancer cell progression, proliferation, migration and invasion. Previously, we showed that CRK was involved in lymphatic metastatic potential of murine hepatocarcinoma cells. In current work, as a member of CRK family, chicken tumour virus number 10 regulator of kinase-like protein (CRKL) was revealed to be associated with malignant behaviors of Hca-P, a murine HCC cell with lymph node metastatic (LNM) rate of ∼25%. CRKL overexpression in Hca-P by a constructed eukaryotic expression vector of pcDNA3.1/V5-HisB-CRKL significantly ameliorated its malignant biological properties. CCK-8 and soft agar colony formation assays indicated CRKL overexpression significantly inhibits the cell proliferation and colony formation abilities of Hca-P. Additionally, transwell assays indicated that the Hca-P cell migration and invasion capacities were apparently reduced following CRKL overexpression. As Hca-P is an ideal hepatocarcinoma cell model with low (initial) LNM potential, CRKL is shown to act as a potential suppressor and to provide new insight for both the malignant behaviors of hepatocarcinoma cells and lymphatic metastasis mechanism of hepatocarcinoma. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Edaravone inhibits hypoxia-induced trophoblast-soluble Fms-like tyrosine kinase 1 expression: a possible therapeutic approach to preeclampsia.

    PubMed

    Zhao, Y; Zheng, Y F; Luo, Q Q; Yan, T; Liu, X X; Han, L; Zou, L

    2014-07-01

    To investigate the effects of edaravone, a potent free radical scavenger used clinically, on hypoxia-induced trophoblast-soluble Fms-like tyrosine kinase 1 (sFlt-1) expression. A trophoblast cell line (HRT-8/SVneo) impaired by cobalt chloride (CoCl2) was used as the cell model under hypoxic conditions. 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide (MTT) was used to measure the viability of cells exposed to CoCl2 and edaravone. The levels of intracellular reactive oxygen species (ROS) were analyzed by flow cytometry. mRNA expression of sFlt-1, vascular endothelial growth factor (VEGF), and placental growth factor (PlGF) in trophoblasts was measured by real-time polymerase chain reaction, and the secretion of sFlt-1, VEGF, and PlGF proteins was analyzed by enzyme-linked immunosorbent assays (ELISAs). A human umbilical vein endothelial cell (HUVEC) tube-formation assay was performed to identify the effects of CoCl2 and edaravone on vascular development. CoCl2 treatment caused the loss of trophoblast viability, the formation of ROS, and sFlt-1 mRNA and protein expression in a dose-dependent manner. Pretreatment with edaravone significantly inhibited hypoxia-induced oxidative stress formation and sFlt-1 expression in trophoblasts. Neither PlGF nor VEGF mRNA or protein expression was increased by CoCl2. In the in vitro tube formation assay, edaravone showed a protective role in vascular development under hypoxic conditions. This study demonstrated that hypoxia leading to increased sFlt-1 release in trophoblasts may contribute to the placental vascular formation abnormalities observed in preeclampsia and suggested that the free radical scavenger edaravone could be a candidate for the effective treatment of preeclampsia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Magnolol attenuates neointima formation by inducing cell cycle arrest via inhibition of ERK1/2 and NF-kappaB activation in vascular smooth muscle cells.

    PubMed

    Karki, Rajendra; Ho, Oak-Min; Kim, Dong-Wook

    2013-03-01

    Endovascular injury induces switching of contractile phenotype of vascular smooth muscle cells (VSMCs) to synthetic phenotype, thereby causing proliferation of VSMCs leading to intimal thickening. The purpose of this study was to assess the effect of magnolol on the proliferation of VSMCs in vitro and neointima formation in vivo, as well as the related cell signaling mechanisms. Tumor necrosis factor alpha (TNF-alpha) induced proliferation ofVSMCs was assessed using colorimetric assay. Cell cycle progression and mRNA expression of cell cycle associated molecules were determined by flow cytometry and reverse transcription polymerase chain reaction (RT-PCR) respectively. The signaling molecules such as ERK1/2,JNK, P38 and NF-kappaB were determined by Western blot analysis. In addition, rat carotid artery balloon injury model was performed to assess the effect of magnolol on neointima formation in vivo. Oral administration of magnolol significantly inhibited intimal area and intimal/medial ratio (I/M). Our in vitro assays revealed magnolol dose dependently induced cell cycle arrest at G0/G1. Also, magnolol inhibited mRNA and protein expression of cyclin D1, cyclin E, CDK4 and CDK2 in vitro and in vivo. The cell cycle arrest was associated with inhibition of ERK1/2 phosphorylation and NF-kappaB translocation. Magnolol suppressed proliferation of VSMCs in vitro and attenuated neointima formation in vivo by inducing cell cycle arrest at G0/G1 through modulation of cyclin D1, cyclin E, CDK4 and CDK2 expression. Thus, the results suggest that magnolol could be a potential therapeutic candidate for the prevention of restenosis and atherosclerosis.

  3. Novel LC/MS/MS and High-Throughput Mass Spectrometric Assays for Monoacylglycerol Acyltransferase Inhibitors.

    PubMed

    Qi, Jenson; Masucci, John A; Lang, Wensheng; Connelly, Margery A; Caldwell, Gary W; Petrounia, Ioanna; Kirkpatrick, Jennifer; Barnakov, Alexander N; Struble, Geoffrey; Miller, Robyn; Dzordzorine, Keli; Kuo, Gee-Hong; Gaul, Michael; Pocai, Alessandro; Lee, Seunghun

    2017-04-01

    Monoacylglycerol acyltransferase enzymes (MGAT1, MGAT2, and MGAT3) convert monoacylglycerol to diacylglycerol (DAG). MGAT1 and MGAT2 are both implicated in obesity-related metabolic diseases. Conventional MGAT enzyme assays use radioactive substrates, wherein the product of the MGAT-catalyzed reaction is usually resolved by time-consuming thin layer chromatography (TLC) analysis. Furthermore, microsomal membrane preparations typically contain endogenous diacylglycerol acyltransferase (DGAT) from the host cells, and these DGAT activities can further acylate DAG to form triglyceride (TG). Our mass spectrometry (liquid chromatography-tandem mass spectrometry, or LC/MS/MS) MGAT2 assay measures human recombinant MGAT2-catalyzed formation of didecanoyl-glycerol from 1-decanoyl-rac-glycerol and decanoyl-CoA, to produce predominantly 1,3-didecanoyl-glycerol. Unlike 1,2-DAG, 1,3-didecanoyl-glycerol is proved to be not susceptible to further acylation to TG. 1,3-Didecanoyl-glycerol product can be readily solubilized and directly subjected to high-throughput mass spectrometry (HTMS) without further extraction in a 384-well format. We also have established the LC/MS/MS MGAT activity assay in the intestinal microsomes from various species. Our assay is proved to be highly sensitive, and thus it allows measurement of endogenous MGAT activity in cell lysates and tissue preparations. The implementation of the HTMS MGAT activity assay has facilitated the robust screening and evaluation of MGAT inhibitors for the treatment of metabolic diseases.

  4. A Versatile Cell Death Screening Assay Using Dye-Stained Cells and Multivariate Image Analysis.

    PubMed

    Collins, Tony J; Ylanko, Jarkko; Geng, Fei; Andrews, David W

    2015-11-01

    A novel dye-based method for measuring cell death in image-based screens is presented. Unlike conventional high- and medium-throughput cell death assays that measure only one form of cell death accurately, using multivariate analysis of micrographs of cells stained with the inexpensive mix, red dye nonyl acridine orange, and a nuclear stain, it was possible to quantify cell death induced by a variety of different agonists even without a positive control. Surprisingly, using a single known cytotoxic agent as a positive control for training a multivariate classifier allowed accurate quantification of cytotoxicity for mechanistically unrelated compounds enabling generation of dose-response curves. Comparison with low throughput biochemical methods suggested that cell death was accurately distinguished from cell stress induced by low concentrations of the bioactive compounds Tunicamycin and Brefeldin A. High-throughput image-based format analyses of more than 300 kinase inhibitors correctly identified 11 as cytotoxic with only 1 false positive. The simplicity and robustness of this dye-based assay makes it particularly suited to live cell screening for toxic compounds.

  5. A Versatile Cell Death Screening Assay Using Dye-Stained Cells and Multivariate Image Analysis

    PubMed Central

    Collins, Tony J.; Ylanko, Jarkko; Geng, Fei

    2015-01-01

    Abstract A novel dye-based method for measuring cell death in image-based screens is presented. Unlike conventional high- and medium-throughput cell death assays that measure only one form of cell death accurately, using multivariate analysis of micrographs of cells stained with the inexpensive mix, red dye nonyl acridine orange, and a nuclear stain, it was possible to quantify cell death induced by a variety of different agonists even without a positive control. Surprisingly, using a single known cytotoxic agent as a positive control for training a multivariate classifier allowed accurate quantification of cytotoxicity for mechanistically unrelated compounds enabling generation of dose–response curves. Comparison with low throughput biochemical methods suggested that cell death was accurately distinguished from cell stress induced by low concentrations of the bioactive compounds Tunicamycin and Brefeldin A. High-throughput image-based format analyses of more than 300 kinase inhibitors correctly identified 11 as cytotoxic with only 1 false positive. The simplicity and robustness of this dye-based assay makes it particularly suited to live cell screening for toxic compounds. PMID:26422066

  6. Gedunin inhibits pancreatic cancer by altering sonic hedgehog signaling pathway

    PubMed Central

    Subramani, Ramadevi; Gonzalez, Elizabeth; Nandy, Sushmita Bose; Arumugam, Arunkumar; Camacho, Fernando; Medel, Joshua; Alabi, Damilola; Lakshmanaswamy, Rajkumar

    2017-01-01

    INTRODUCTION The lack of efficient treatment options for pancreatic cancer highlights the critical need for the development of novel and effective chemotherapeutic agents. The medicinal properties found in plants have been used to treat many different illnesses including cancers. This study focuses on the anticancer effects of gedunin, a natural compound isolated from Azadirachta indica. METHODS Anti–proliferative effect of gedunin on pancreatic cancer cells was assessed using MTS assay. We used matrigel invasion assay, scratch assay, and soft agar colony formation assay to measure the anti–metastatic potential of gedunin. Immunoblotting was performed to analyze the effect of gedunin on the expression of key proteins involved in pancreatic cancer growth and metastasis. Gedunin induced apoptosis was measured using flow cytometric analysis. To further validate, xenograft studies with HPAC cells were performed. RESULTS Gedunin treatment is highly effective in inducing death of pancreatic cancer cells via intrinsic and extrinsic mediated apoptosis. Our data further indicates that gedunin inhibited metastasis of pancreatic cancer cells by decreasing their EMT, invasive, migratory and colony formation capabilities. Gedunin treatment also inhibited sonic hedgehog signaling pathways. Further, experiments with recombinant sonic hedgehog protein and Gli inhibitor (Gant-61) demonstrated that gedunin induces its anti–metastatic effect through inhibition of sonic hedgehog signaling. The anti–cancer effect of gedunin was further validated using xenograft mouse model. CONCLUSION Overall, our data suggests that gedunin could serve as a potent anticancer agent against pancreatic cancers. PMID:26988754

  7. Cytotoxicity Test Based on Human Cells Labeled with Fluorescent Proteins: Fluorimetry, Photography, and Scanning for High-Throughput Assay.

    PubMed

    Kalinina, Marina A; Skvortsov, Dmitry A; Rubtsova, Maria P; Komarova, Ekaterina S; Dontsova, Olga A

    2018-06-01

    High- and medium-throughput assays are now routine methods for drug screening and toxicology investigations on mammalian cells. However, a simple and cost-effective analysis of cytotoxicity that can be carried out with commonly used laboratory equipment is still required. The developed cytotoxicity assays are based on human cell lines stably expressing eGFP, tdTomato, mCherry, or Katushka2S fluorescent proteins. Red fluorescent proteins exhibit a higher signal-to-noise ratio, due to less interference by medium autofluorescence, in comparison to green fluorescent protein. Measurements have been performed on a fluorescence scanner, a plate fluorimeter, and a camera photodocumentation system. For a 96-well plate assay, the sensitivity per well and the measurement duration were 250 cells and 15 min for the scanner, 500 cells and 2 min for the plate fluorimeter, and 1000 cells and less than 1 min for the camera detection. These sensitivities are similar to commonly used MTT (tetrazolium dye) assays. The used scanner and the camera had not been previously applied for cytotoxicity evaluation. An image processing scheme for the high-resolution scanner is proposed that significantly diminishes the number of control wells, even for a library containing fluorescent substances. The suggested cytotoxicity assay has been verified by measurements of the cytotoxicity of several well-known cytotoxic drugs and further applied to test a set of novel bacteriotoxic compounds in a medium-throughput format. The fluorescent signal of living cells is detected without disturbing them and adding any reagents, thus allowing to investigate time-dependent cytotoxicity effects on the same sample of cells. A fast, simple and cost-effective assay is suggested for cytotoxicity evaluation based on mammalian cells expressing fluorescent proteins and commonly used laboratory equipment.

  8. Enamel matrix derivative enhances tissue formation around scaffolds used for tissue engineering of ligaments.

    PubMed

    Messenger, Michael P; Raïf, El M; Seedhom, Bahaa B; Brookes, Steven J

    2010-02-01

    The following in vitro translational study investigated whether enamel matrix derivative (EMD), an approved biomimetic treatment for periodontal disease (Emdogain) and hard-to-heal wounds (Xelma), enhanced synovial cell colonization and protein synthesis around a scaffold used clinically for in situ tissue engineering of the torn anterior cruciate ligament (ACL). Synovial cells were enzymatically extracted from bovine synovium and dynamically seeded onto polyethylene terephthalate (PET) scaffolds. The cells were cultured in low-serum medium (0.5% FBS) for 4 weeks with either a single administration of EMD at the start of the 4 week period or multiple administrations of EMD at regular intervals throughout the 4 weeks. Samples were harvested and evaluated using the Hoechst DNA assay, BCA protein assay, cresolphthalein complexone calcium assay, SDS-PAGE, ELISA and electron microscopy. A significant increase in cell number (DNA) (p < 0.01), protein content (p < 0.01) and TGFbeta1 synthesis (p < 0.01) was observed with multiple administrations of EMD. Additionally, SDS-PAGE showed an increase in high molecular weight proteins, characteristic of the fibril-forming collagens. Electron microscopy supported these findings, showing that scaffolds treated with multiple administrations of EMD were heavily coated with cells and extracellular matrix (ECM) that enveloped the fibres. Multiple administrations of EMD to synovial cell-seeded scaffolds enhanced the formation of tissue in vitro. Additionally, it was shown that EMD enhanced TGFbeta1 synthesis of synovial cells, suggesting a potential mode of action for EMD's capacity to stimulate tissue regeneration.

  9. miR-21 inhibitor suppresses cell proliferation and colony formation through regulating the PTEN/AKT pathway and improves paclitaxel sensitivity in cervical cancer cells.

    PubMed

    Du, Guohui; Cao, Dongmei; Meng, Lingzheng

    2017-05-01

    The present study aimed to investigate the role and the molecular mechanisms underlying the effects of microRNA-21 (miR-21) on the proliferation, apoptosis and colony formation of cervical cancer cells, and to examine the role of miR-21 in mediating the sensitivity of cervical cancer cells to paclitaxel (PTX). Reverse transcription‑quantitative polymerase chain reaction was employed to determine the level of miR‑21 in various cervical cancer and normal cervical cells. The results revealed that the expression levels of miR-21 in cervical cancer cells were markedly higher when compared with normal cervical cells. Subsequently, a miR‑21 inhibitor or negative control (NC) was transfected into cervical cancer cells. Cell viability, colony formation and apoptosis were then analyzed using an MTT assay, crystal violet and Annexin V-fluorescein isothiocyanate/propidium iodide staining, respectively. The protein expression level of B-cell lymphoma‑2 (Bcl‑2), Bcl‑2‑associated X (Bax), programmed cell death 4 (PDCD4), survivin, c‑myc, phosphatase and tensin homolog (PTEN) and phosphorylated (p)‑AKT were determined by western blot analysis. The sensitivity of cervical cancer cells to PTX (25, 50 and 100 µg/ml) was characterized using an MTT assay. The results demonstrated that the miR-21 inhibitor promoted apoptosis of cervical cancer cells and suppressed their proliferation and colony formation when compared with the NC. In addition, the expression levels of Bcl‑2, survivin, c‑myc and p‑AKT were significantly downregulated in cells transfected with the miR‑21 inhibitor, whilst the expression levels of Bax, PDCD4 and PTEN were significantly upregulated. Furthermore, the miR‑21 inhibitor significantly enhanced the inhibition efficacy of PTX at a range of concentrations in cervical cancer cells. It was concluded that inhibition of miR‑21 suppressed cell proliferation and colony formation through regulating the PTEN/AKT pathway, and improved PTX sensitivity in cervical cancer cells. The results of the present study may contribute to the development of miRNA‑based cervical cancer therapy in the future.

  10. Calcium Increases Xylella fastidiosa Surface Attachment, Biofilm Formation, and Twitching Motility

    PubMed Central

    Cruz, Luisa F.; Cobine, Paul A.

    2012-01-01

    Xylella fastidiosa is a plant-pathogenic bacterium that forms biofilms inside xylem vessels, a process thought to be influenced by the chemical composition of xylem sap. In this work, the effect of calcium on the production of X. fastidiosa biofilm and movement was analyzed under in vitro conditions. After a dose-response study with 96-well plates using eight metals, the strongest increase of biofilm formation was observed when medium was supplemented with at least 1.0 mM CaCl2. The removal of Ca by extracellular (EGTA, 1.5 mM) and intracellular [1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA/AM), 75 μM] chelators reduced biofilm formation without compromising planktonic growth. The concentration of Ca influenced the force of adhesion to the substrate, biofilm thickness, cell-to-cell aggregation, and twitching motility, as shown by assays with microfluidic chambers and other assays. The effect of Ca on attachment was lost when cells were treated with tetracycline, suggesting that Ca has a metabolic or regulatory role in cell adhesion. A double mutant (fimA pilO) lacking type I and type IV pili did not improve biofilm formation or attachment when Ca was added to the medium, while single mutants of type I (fimA) or type IV (pilB) pili formed more biofilm under conditions of higher Ca concentrations. The concentration of Ca in the medium did not significantly influence the levels of exopolysaccharide produced. Our findings indicate that the role of Ca in biofilm formation may be related to the initial surface and cell-to-cell attachment and colonization stages of biofilm establishment, which rely on critical functions by fimbrial structures. PMID:22194297

  11. Calcium increases Xylella fastidiosa surface attachment, biofilm formation, and twitching motility.

    PubMed

    Cruz, Luisa F; Cobine, Paul A; De La Fuente, Leonardo

    2012-03-01

    Xylella fastidiosa is a plant-pathogenic bacterium that forms biofilms inside xylem vessels, a process thought to be influenced by the chemical composition of xylem sap. In this work, the effect of calcium on the production of X. fastidiosa biofilm and movement was analyzed under in vitro conditions. After a dose-response study with 96-well plates using eight metals, the strongest increase of biofilm formation was observed when medium was supplemented with at least 1.0 mM CaCl(2). The removal of Ca by extracellular (EGTA, 1.5 mM) and intracellular [1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA/AM), 75 μM] chelators reduced biofilm formation without compromising planktonic growth. The concentration of Ca influenced the force of adhesion to the substrate, biofilm thickness, cell-to-cell aggregation, and twitching motility, as shown by assays with microfluidic chambers and other assays. The effect of Ca on attachment was lost when cells were treated with tetracycline, suggesting that Ca has a metabolic or regulatory role in cell adhesion. A double mutant (fimA pilO) lacking type I and type IV pili did not improve biofilm formation or attachment when Ca was added to the medium, while single mutants of type I (fimA) or type IV (pilB) pili formed more biofilm under conditions of higher Ca concentrations. The concentration of Ca in the medium did not significantly influence the levels of exopolysaccharide produced. Our findings indicate that the role of Ca in biofilm formation may be related to the initial surface and cell-to-cell attachment and colonization stages of biofilm establishment, which rely on critical functions by fimbrial structures.

  12. Effects of sulforaphane on neural stem cell proliferation and differentiation.

    PubMed

    Han, Zhenxian; Xu, Qian; Li, Changfu; Zhao, Hong

    2017-03-01

    Sulforaphane (SFN) is a natural organosulfur compound with anti-oxidant and anti-inflammation properties. The objective of this study is to investigate the effect of SFN on the proliferation and differentiation of neural stem cells (NSC). NSCs were exposed to SFN at the concentrations ranging from 0.25 to 10 µM. Cell viability was evaluated with MTT assay and lactate dehydogenase (LDH) release assay. The proliferation of NSCs was evaluated with neurosphere formation assay and Ki-67 staining. The level of Tuj-1 was evaluated with immunostaining and Western blot to assess NSC neuronal differentiation. The expression of key proteins in the Wnt signaling pathway, including β-catenin and cyclin D1, in response to SFN treatment or the Wnt inhibitor, DKK-1, was determined by Western blotting. No significant cytotoxicity was seen for SFN on NSCs with SFN at concentrations of less than 10 µM. On the contrary, SFN of low concentrations stimulated cell proliferation and prominently increased neurosphere formation and NSC differentiation to neurons. SFN treatment upregulated Wnt signaling in the NSCs, whereas DKK-1 attenuated the effects of SFN. SFN is a drug to promote NSC proliferation and neuronal differentiation when used at low concentrations. These protective effects are mediated by Wnt signaling pathway. © 2017 Wiley Periodicals, Inc.

  13. Tretinoin-loaded lipid-core nanocapsules overcome the triple-negative breast cancer cell resistance to tretinoin and show synergistic effect on cytotoxicity induced by doxorubicin and 5-fluororacil.

    PubMed

    Schultze, Eduarda; Buss, Julieti; Coradini, Karine; Begnini, Karine Rech; Guterres, Silvia S; Collares, Tiago; Beck, Ruy Carlos Ruver; Pohlmann, Adriana R; Seixas, Fabiana Kömmling

    2017-12-01

    Nanostructured drug delivery systems have been extensively studied, mainly for applications in cancer therapy. The advantages of these materials include protection against drug degradation and improvement in both the relative solubility of poorly water soluble drugs as in targeting of therapy, due to the enhanced permeability and retention effect on tumor sites. In this work, we evaluate the antitumor activity of tretinoin-loaded lipid core nanocapsules (TT-LNC) in a tretinoin-resistant breast cancer cell-line, MDA-MB- 231, as well as the synergistic effect of combination of this treatment with 5-FU or DOXO. The inhibition of cell growth was assayed by MTT reduction. Live/Dead assay and DAPI staining evaluated cytotoxicity. Apoptosis was evaluated by Annexin V-PE/7AAD and the effect of chronic exposure was evaluated by colony formation assay. TT-LNC reduced the cell viability even at lower concentrations (1μM) and displayed synergistic effect with 5-FU or DOXO on cytotoxicity and colony formation inhibition. Our work shows a possibility of using nanocapsules to improve the antitumoral activity of TT for its use either alone or in combination with other chemotherapeutic drugs, especially considering the chronic effect. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Beneficial effects of a medicinal herb, Cirsium japonicum var. maackii, extract and its major component, cirsimaritin on breast cancer metastasis in MDA-MB-231 breast cancer cells.

    PubMed

    Yeon Park, Jun; Young Kim, Hyun; Shibamoto, Takayuki; Su Jang, Tae; Cheon Lee, Sang; Suk Shim, Jae; Hahm, Dae-Hyun; Lee, Hae-Jeung; Lee, Sanghyun; Sung Kang, Ki

    2017-09-01

    The biological activities of the ethanol extract from Cirsium japonicum var. maackii (ICF-1) and its major component, polyphenol cirsimaritin, were investigated as part of the search for possible alternative drugs for breast cancer. Three in vitro cell-based assays were used: the cell proliferation assay, tube-formation assay, and Western blot analysis. Both the ICF-1 extract and cirsimaritin inhibited the viability of HUVECs in a dose-dependent manner. The inhibition achieved was 36.89% at a level of 200μg/ml by the ICF-1 extract and 62.04% at a level of 100μM by cirsimaritin. The ICF-1 extract and cirsimaritin reduced tube formation by 12.69% at level of 25μg/ml and 32.18% at the levels of 6.25μM, respectively. Cirsimaritin inhibited angiogenesis by downregulation of VEGF, p-Akt and p-ERK in MDA-MB-231 cells, suggesting that cirsimaritin is potentially useful as an anti-metastatic agent. The present study demonstrated that Cirsium japonicum extract and its active component cirsimaritin is an excellent candidate as an alternative anti-breast cancer drug. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The expression and function of epithelial membrane protein 1 in laryngeal carcinoma.

    PubMed

    Li, Hong; Zhang, Xiaowen; Jiang, Xuejun; Ji, Xu

    2017-01-01

    In this study, we compared the expression of epithelial membrane protein 1 (EMP1) on the steady-state mRNA level (by quantitative real-time PCR) and on the protein level (by western immunoblot and immunohistochemistry) in 51 pairs of laryngeal carcinoma tissues and matched cancer-free peritumor tissues, and we analyzed the correlation between EMP1 expression and different clinicopathological factors. Furthermore, we ectopically expressed EMP1 in human laryngeal carcinoma Hep-2 cells and examined the effects on cell viability, apoptosis, colonogenicity, and motility, by MTT assay, flow cytometry, colony formation assay and Transwell migration assay, respectively. EMP1 expression (on both the mRNA and protein levels) was significantly lower in the cancer tissues than in matched peritumor tissues (P<0.05). In laryngeal cancers, the level of EMP1 protein was correlated with histological grade (P<0.05), but not with age, gender, clinical stage, cancer subtype or lymph node metastasis (P>0.05). Functionally, ectopic expression of EMP1 in Hep-2 cells significantly reduced cell viability, colony formation, and migration, but enhanced apoptosis. Therefore, EMP1 is a tumor suppressor in laryngeal carcinoma. Boosting EMP1 expression in laryngeal carcinoma initiates multiple anticancer phenotypes and thus presents a promising therapeutic strategy for laryngeal cancer.

  16. ASSESSMENT OF SYNAPSE FORMATION IN RAT PRIMARY NEURAL CELL CULTURE USING HIGH CONTENT MICROSCOPY.

    EPA Science Inventory

    Cell-based assays can model neurodevelopmental processes including neurite growth and synaptogenesis, and may be useful for screening and evaluation of large numbers of chemicals for developmental neurotoxicity. This work describes the use of high content screening (HCS) to dete...

  17. Suppression of bacterial cell-cell signalling, biofilm formation and type III secretion system by citrus flavonoids.

    PubMed

    Vikram, A; Jayaprakasha, G K; Jesudhasan, P R; Pillai, S D; Patil, B S

    2010-08-01

    This study investigated the quorum sensing, biofilm and type three secretion system (TTSS) inhibitory properties of citrus flavonoids. Flavonoids were tested for their ability to inhibit quorum sensing using Vibrio harveyi reporter assay. Biofilm assays were carried out in 96-well plates. Inhibition of biofilm formation in Escherichia coli O157:H7 and V. harveyi by citrus flavonoids was measured. Furthermore, effect of naringenin on expression of V. harveyi TTSS was investigated by semi-quantitative PCR. Differential responses for different flavonoids were observed for different cell-cell signalling systems. Among the tested flavonoids, naringenin, kaempferol, quercetin and apigenin were effective antagonists of cell-cell signalling. Furthermore, these flavonoids suppressed the biofilm formation in V. harveyi and E. coli O157:H7. In addition, naringenin altered the expression of genes encoding TTSS in V. harveyi. The results of the study indicate a potential modulation of bacterial cell-cell communication, E. coli O157:H7 biofilm and V. harveyi virulence, by flavonoids especially naringenin, quercetin, sinensetin and apigenin. Among the tested flavonoids, naringenin emerged as potent and possibly a nonspecific inhibitor of autoinducer-mediated cell-cell signalling. Naringenin and other flavonoids are prominent secondary metabolites present in citrus species. Therefore, citrus, being a major source of some of these flavonoids and by virtue of widely consumed fruit, may modulate the intestinal microflora. Currently, a limited number of naturally occurring compounds have demonstrated their potential in inhibition of cell-cell communications; therefore, citrus flavonoids may be useful as lead compounds for the development of antipathogenic agents.

  18. Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.

    PubMed

    Markiewicz, Margaret; Nakerakanti, Sashidhar S; Kapanadze, Bagrat; Ghatnekar, Angela; Trojanowska, Maria

    2011-01-01

    The primary objective of this study was to examine the potential interaction between S1P, a pleiotropic lipid mediator, and CTGF/CCN2, a secreted multimodular protein, in the process of endothelial cell migration. The secondary objective was to determine whether C- and N-terminal domains of CTGF/CCN2 have a specific function in cell migration. Migration of HDMECs was examined in monolayer wound healing "scratch" assay, whereas capillary-like tube formation was examined in three-dimensional collagen co-culture assays. We observed that S1P stimulates migration of HDMECs concomitant with upregulation of CTGF/CCN2 expression. Furthermore, the blockade of endogenous CTGF/CCN2 via siRNA abrogated S1P-induced HDMEC migration and capillary-like tube formation. Full-length CTGF induced cell migration and capillary-like tube formation with a potency similar to that of S1P, while C-terminal domain of CTGF was slightly less effective. However, N-terminal domain had only a residual activity in inducing capillary-like tube formation. This study revealed that CTGF/CCN2 is required for the S1P-induced endothelial cell migration, which suggests that CTGF/CCN2 may be an important mediator of S1P-induced physiological and pathological angiogenesis. Moreover, this study shows that the pro-migratory activity of CTGF/CCN2 is located in the C-terminal domain. © 2010 John Wiley & Sons Ltd.

  19. A bioluminescent caspase-1 activity assay rapidly monitors inflammasome activation in cells.

    PubMed

    O'Brien, Martha; Moehring, Danielle; Muñoz-Planillo, Raúl; Núñez, Gabriel; Callaway, Justin; Ting, Jenny; Scurria, Mike; Ugo, Tim; Bernad, Laurent; Cali, James; Lazar, Dan

    2017-08-01

    Inflammasomes are protein complexes induced by diverse inflammatory stimuli that activate caspase-1, resulting in the processing and release of cytokines, IL-1β and IL-18, and pyroptosis, an immunogenic form of cell death. To provide a homogeneous method for detecting caspase-1 activity, we developed a bioluminescent, plate-based assay that combines a substrate, Z-WEHD-aminoluciferin, with a thermostable luciferase in an optimized lytic reagent added directly to cultured cells. Assay specificity for caspase-1 is conferred by inclusion of a proteasome inhibitor in the lytic reagent and by use of a caspase-1 inhibitor to confirm activity. This approach enables a specific and rapid determination of caspase-1 activation. Caspase-1 activity is stable in the reagent thereby providing assay convenience and flexibility. Using this assay system, caspase-1 activation has been determined in THP-1 cells following treatment with α-hemolysin, LPS, nigericin, gramicidin, MSU, R848, Pam3CSK4, and flagellin. Caspase-1 activation has also been demonstrated in treated J774A.1 mouse macrophages, bone marrow-derived macrophages (BMDMs) from mice, as well as in human primary monocytes. Caspase-1 activity was not detected in treated BMDMs derived from Casp1 -/- mice, further confirming the specificity of the assay. Caspase-1 activity can be measured directly in cultured cells using the lytic reagent, or caspase-1 activity released into medium can be monitored by assay of transferred supernatant. The caspase-1 assay can be multiplexed with other assays to monitor additional parameters from the same cells, such as IL-1β release or cell death. The caspase-1 assay in combination with a sensitive real-time monitor of cell death allows one to accurately establish pyroptosis. This assay system provides a rapid, convenient, and flexible method to specifically and quantitatively monitor caspase-1 activation in cells in a plate-based format. This will allow a more efficient and effective assessment of inflammasome activation as well as enable high-throughput screening for inflammasome modulators. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Small interfering RNA-mediated silencing of G-protein-coupled receptor 137 inhibits growth of osteosarcoma cells.

    PubMed

    Li, Hao; Fu, Xiaodong; Gao, Yingjian; Li, Xiaomiao; Shen, Yi; Wang, Weili

    2018-06-01

    Osteosarcoma is the most widespread primary carcinoma in bones. Osteosarcoma cells are highly metastatic and frequently develop resistance to chemotherapy making this disease harder to treat. This identifies an urgent need of novel therapeutic strategies for osteosarcoma. G-Protein-coupled receptor 137 (GPR137) is involved in several human cancers and may be a novel therapeutic target. The expression of GPR137 was assessed in one osteoblast and three human osteosarcoma cell lines via the quantitative real-time polymerase chain reaction and western blot assays. Stable GPR137 knockdown cell lines were established using an RNA interference lentivirus system. Viability, colony formation, and flow cytometry assays were performed to measure the effects of GPR137 depletion on cell growth. The underlying molecular mechanism was determined using signaling array analysis and western blot assays. GPR137 expression was higher in the three human osteosarcoma cell lines, Saos-2, U2OS, and SW1353, than in osteoblast hFOB 1.19 cells. Lentivirus-mediated small interfering RNA targeting GPR137 successfully knocked down GPR137 mRNA and protein expression in both Saos-2 and U2OS cells. In the absence of GPR137, cell viability and colony formation ability were seriously impaired. The extent of apoptosis was also increased in both cell lines. Moreover, AMP-activated protein kinase α, proline-rich AKT substrate of 40 kDa, AKT, and extracellular signal-regulated kinase phosphorylation levels were down-regulated in GPR137 knockdown cells. The results of this study highlight the crucial role of GPR137 in promoting osteosarcoma cell growth in vitro . GPR137 could serve as a potential therapeutic target against osteosarcoma.

  1. Swelling-induced chloride current in glioblastoma proliferation, migration, and invasion.

    PubMed

    Wong, Raymond; Chen, Wenliang; Zhong, Xiao; Rutka, James T; Feng, Zhong-Ping; Sun, Hong-Shuo

    2018-01-01

    Glioblastoma (GBM) remains as the most common and aggressive brain tumor. The survival of GBM has been linked to the aberrant activation of swelling-induced chloride current I Cl,swell . In this study, we investigated the effects of I Cl,swell on cell viability, proliferation, and migration in the human GBM cell lines, U251 and U87, using a combination of patch clamp electrophysiology, MTT, colony formation, wound healing assays and Western immunoblotting. First, we showed that the specific inhibitor of I Cl,swell , DCPIB, potently reduced the I Cl,swell in U87 cells. Next, in both U87 and U251 cells, we found that DCPIB reduced GBM viability, proliferation, colony formation, migration, and invasion. In addition, our Western immunoblot assay showed that DCPIB-treated U251 cells had a reduction in JAK2, STAT3, and Akt phosphorylation, thus, suggesting that DCPIB potentially suppresses GBM functions through inhibition of the JAK2/STAT3 and PI3K/Akt signaling pathways. Therefore, the I Cl,swell may be a potential drug target for GBM. © 2017 Wiley Periodicals, Inc.

  2. Differential diagnosis of variola viruses by microfocus assay

    PubMed Central

    Kitamura, T.; Tanaka, Y.

    1973-01-01

    Variola virus was identified by means of a method involving the formation of microfoci on microplate cultures of HeLa cells. It was possible to distinguish between variola major and variola minor viruses within 48 h of receipt of the specimens by determining the temperature sensitivity of focus formation. ImagesFig. 1 PMID:4357977

  3. Role of epimorphin in bile duct formation of rat liver epithelial stem-like cells: involvement of small G protein RhoA and C/EBPβ.

    PubMed

    Jia, Yali; Yao, Hailei; Zhou, Junnian; Chen, Lin; Zeng, Quan; Yuan, Hongfeng; Shi, Lei; Nan, Xue; Wang, Yunfang; Yue, Wen; Pei, Xuetao

    2011-11-01

    Epimorphin/syntaxin 2 is a high conserved and very abundant protein involved in epithelial morphogenesis in various organs. We have shown recently that epimorphin (EPM), a protein exclusively expressed on the surface of hepatic stellate cells and myofibroblasts of the liver, induces bile duct formation of hepatic stem-like cells (WB-F344 cells) in a putative biophysical way. Therefore, the aim of this study was to present some of the molecular mechanisms by which EPM mediates bile duct formation. We established a biliary differentiation model by co-culture of EPM-overexpressed mesenchymal cells (PT67(EPM)) with WB-F344 cells. Here, we showed that EPM could promote WB-F344 cells differentiation into bile duct-like structures. Biliary differentiation markers were also elevated by EPM including Yp, Cx43, aquaporin-1, CK19, and gamma glutamyl transpeptidase (GGT). Moreover, the signaling pathway of EPM was analyzed by focal adhesion kinase (FAK), extracellular regulated kinase 1/2 (ERK1/2), and RhoA Western blot. Also, a dominant negative (DN) RhoA-WB-F344 cell line (WB(RhoA-DN)) was constructed. We found that the levels of phosphorylation (p) of FAK and ERK1/2 were up-regulated by EPM. Most importantly, we also showed that RhoA is necessary for EPM-induced activation of FAK and ERK1/2 and bile duct formation. In addition, a dual luciferase-reporter assay and CHIP assay was performed to reveal that EPM regulates GGT IV and GGT V expression differentially, possibly mediated by C/EBPβ. Taken together, these data demonstrated that EPM regulates bile duct formation of WB-F344 cells through effects on RhoA and C/EBPβ, implicating a dual aspect of this morphoregulator in bile duct epithelial morphogenesis. Copyright © 2011 Wiley-Liss, Inc.

  4. Pro-angiogenic properties of orosomucoid (ORM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irmak, Ster; Oliveira-Ferrer, Leticia; Singer, Bernhard B.

    2009-11-01

    The acute phase protein orosomucoid (ORM), also known as alpha1-acid glycoprotein (AGP), is found to be increased in infection, inflammation and cancer. Recently, we demonstrated that ORM is produced by endothelial cells and detectable in urine samples of patients with bladder cancer. However, it was not clarified yet whether ORM plays a role in new vessel formation. To this aim we performed overexpression and gene silencing for ORM in human microvascular endothelial cells (HDMECs). ORM purified from human plasma was used individually or in combination with VEGF-A in endothelial tube formation, migration and proliferation assay. The in vivo effect ofmore » ORM in angiogenesis was studied using the chicken chorionallantois membrane (CAM) with subsequent counting of blood vessels on histological sections from the stimulated areas of CAM tissue. Our data show that ORM alone enhances migration but not proliferation of HDMECs. ORM alone does not induce endothelial tubes in vitro but simultaneous application of ORM with VEGF-A increases the number and the network of VEGF-A-induced endothelial tubes. Remarkably, ORM alone induces new vessel formation in vivo using CAM assay and supports the VEGF-A-induced new vessel formation in this assay. Taken together, our results let assume that ORM has pro-angiogenic properties and supports the angiogenic effect of VEGF-A. Thus, ORM seems to be involved in the regulation of angiogenesis.« less

  5. Suppressive activities and mechanisms of ugonin J on vascular smooth muscle cells and balloon angioplasty-induced neointimal hyperplasia.

    PubMed

    Pan, Chun-Hsu; Li, Pei-Chuan; Chien, Yi-Chung; Yeh, Wan-Ting; Liaw, Chih-Chuang; Sheu, Ming-Jyh; Wu, Chieh-Hsi

    2018-02-01

    Neointimal hyperplasia (or restenosis) is primarily attributed to excessive proliferation and migration of vascular smooth muscle cells (VSMCs). In this study, we investigated the inhibitory effects and mechanisms of ugonin J on VSMC proliferation and migration as well as neointimal formation. Cell viability and the cell-cycle distribution were, respectively, analyzed using an MTT assay and flow cytometry. Cell migration was examined using a wound-healing analysis and a transwell assay. Protein expressions and gelatinase activities were, respectively, measured using Western blot and gelatin zymography. Balloon angioplasty-induced neointimal formation was induced in a rat carotid artery model and then examined using immunohistochemical staining. Ugonin J induced cell-cycle arrest at the G 0 /G 1 phase and apoptosis to inhibit VSMC growth. Ugonin J also exhibited marked suppressive activity on VSMC migration. Ugonin J significantly reduced activations of focal adhesion kinase, phosphoinositide 3-kinase, v-akt murine thymoma viral oncogene homolog 1, and extracellular signal-regulated kinase 1/2 proteins. Moreover, ugonin J obviously reduced expressions and activity levels of matrix metalloproteinase-2 and matrix metalloproteinase-9. In vivo data indicated that ugonin J prevented balloon angioplasty-induced neointimal hyperplasia. Our study suggested that ugonin J has the potential for application in the prevention of balloon injury-induced neointimal formation. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Rapid diagnosis of sensitivity to ultraviolet light in fibroblasts from dermatologic disorders, with particular reference to xeroderma pigmentosum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleaver, J.E.; Thomas, G.H.

    1988-04-01

    A rapid and simple method for determining the sensitivity of human fibroblasts to ultraviolet light is described. As an alternative to the colony formation assay, this method can be used for the rapid diagnosis of ultraviolet light sensitivity in fibroblasts from photosensitive disorders. The method is based on growth of small numbers of cells in 1-cm wells of culture trays for 4 or more days after irradiation and determination of cell survival by the incorporation of (/sup 3/H)hypoxanthine. D37 values (the dose at which 37% of the control level of incorporation remains) obtained from this procedure showed the same relativemore » sensitivity of normal and xeroderma pigmentosum fibroblasts as was obtained by colony formation. Untransformed and SV40-transformed fibroblasts, which have different growth rates and different responses to high cell densities, gave different D37 values by this assay in culture trays as compared with colony formation. Comparison of relative sensitivities to irradiation should therefore be made only between cell types with similar growth characteristics. The similar sensitivity of normal and xeroderma pigmentosum cells to mitomycin C was also determined by this culture tray method. By increasing cell density at the beginning of the experiments, a greater capacity of group C compared with group D fibroblasts for recovery from potentially lethal damage was also detected.« less

  7. CDK4 inhibition and doxorubicin mediate breast cancer cell apoptosis through Smad3 and survivin

    PubMed Central

    Tarasewicz, Elizabeth; Hamdan, Randala; Straehla, Joelle; Hardy, Ashley; Nunez, Omar; Zelivianski, Stanislav; Dokic, Danijela; Jeruss, Jacqueline S

    2014-01-01

    Cyclin D1/CDK4 activity is upregulated in up to 50% of breast cancers and CDK4-mediated phosphorylation negatively regulates the TGFβ superfamily member Smad3. We sought to determine if CDK4 inhibition and doxorubicin chemotherapy could impact Smad3-mediated cell/colony growth and apoptosis in breast cancer cells. Parental and cyclin D1-overexpressing MCF7 cells were treated with CDK4 inhibitor, doxorubicin, or combination therapy and cell proliferation, apoptosis, colony formation, and expression of apoptotic proteins were evaluated using an MTS assay, TUNEL staining, 3D Matrigel assay, and apoptosis array/immunoblotting. Study cells were also transduced with WT Smad3 or a Smad3 construct resistant to CDK4 phosphorylation (5M) and colony formation and expression of apoptotic proteins were assessed. Treatment with CDK4 inhibitor/doxorubicin combination therapy, or transduction with 5M Smad3, resulted in a similar decrease in colony formation. Treating cyclin D overexpressing breast cancer cells with combination therapy also resulted in the greatest increase in apoptosis, resulted in decreased expression of anti-apoptotic proteins survivin and XIAP, and impacted subcellular localization of pro-apoptotic Smac/DIABLO. Additionally, transduction of 5M Smad3 and doxorubicin treatment resulted in the greatest change in apoptotic protein expression. Collectively, this work showed the impact of CDK4 inhibitor-mediated, Smad3-regulated tumor suppression, which was augmented in doxorubicin-treated cyclin D-overexpressing study cells. PMID:25006666

  8. Absence of micronucleus formation in CHO-K1 cells cultivated in platelet lysate enriched medium.

    PubMed

    Bernardi, Martina; Adami, Valentina; Albiero, Elena; Madeo, Domenico; Rodeghiero, Francesco; Astori, Giuseppe

    2014-03-01

    Human platelet lysate (PL) represents an effective substitute of fetal bovine serum (FBS) for mesenchymal stromal cell (MSC) cultivation. Compared to FBS, PL favors MSC proliferation significantly shortening the population doubling time and avoiding the risks related to the use of animal derivatives. Growth factors contained in the platelets are released upon platelet disruption following freezing/thawing cycles or as we have recently described by using ultrasound. We have investigated whether the increased cell proliferation achieved by using PL could induce mitotic stress and whether the potential formation of free radicals during PL production by ultrasound could cause chromosomal instability in mammalian cells. We have applied an image analysis assisted high content screening (HCS) in vitro micronucleus assay in the Chinese Hamster Ovarian K1 (CHO-K1) rodent mammalian cell line. PL was produced by sonication; for the micronucleus assay, CHO-K1 cells were exposed to increasing concentrations of PL. Cytokinesis was blocked by cytochalasin B, nuclei were stained with bisbenzimide and images were acquired and analyzed automatically using an HCS system, both with a 20× and a 10× objective. Our results suggest that growth stimulus induced by the use of PL did not significantly increase micronucleus formation in CHO-K1 cells compared to negative control. Micronucleus testing in conjunction with HCS could represent a valid tool to evaluate the safety of ancillary materials used in the production of cell-based medicinal products. Copyright © 2013 Elsevier GmbH. All rights reserved.

  9. Enhancing the reliability and throughput of neurosphere culture on hydrogel microwell arrays.

    PubMed

    Cordey, Myriam; Limacher, Monika; Kobel, Stefan; Taylor, Verdon; Lutolf, Matthias P

    2008-10-01

    The neurosphere assay is the standard retrospective assay to test the self-renewal capability and multipotency of neural stem cells (NSCs) in vitro. However, it has recently become clear that not all neurospheres are derived from a NSC and that on conventional cell culture substrates, neurosphere motility may cause frequent neurosphere "merging" [Nat Methods 2006;3:801-806; Stem Cells 2007;25:871-874]. Combining biomimetic hydrogel matrix technology with microengineering, we developed a microwell array platform on which NSC fate and neurosphere formation can be unequivocally attributed to a single founding cell. Using time-lapse microscopy and retrospective immunostaining, the fate of several hundred single NSCs was quantified. Compared with conventional neurosphere culture methods on plastic dishes, we detected a more than 100% increase in single NSC viability on soft hydrogels. Effective confinement of single proliferating cells to microwells led to neurosphere formation of vastly different sizes, a high percentage of which showed stem cell phenotypes after one week in culture. The reliability and increased throughput of this platform should help to better elucidate the function of sphere-forming stem/progenitor cells independent of their proliferation dynamics. Disclosure of potential conflicts of interest is found at the end of this article.

  10. Biomimetic macroporous hydrogel scaffolds in a high-throughput screening format for cell-based assays.

    PubMed

    Dainiak, Maria B; Savina, Irina N; Musolino, Isabella; Kumar, Ashok; Mattiasson, Bo; Galaev, Igor Yu

    2008-01-01

    Macroporous hydrogels (MHs) hold great promise as scaffolds in tissue engineering and cell-based assays. In this study, the possibility of combination of three-dimensional (3D) cell culture with a miniaturized screening format was demonstrated on human colon cancer HCT116, human acute myeloid leukemia KG-1 cells, and embryonic fibroblasts cultured on MHs (12.5 mm x 7.1 mm I.D.) in a 96-minicolumn plate format. MHs were prepared by cryogelation technique and functionalized by coating with type I collagen and by copolymerization with agmatine-based mimetic of cell adhesive peptide RGD (abRGDm). Cancer cells formed multicellular aggregates while fibroblasts formed adhesions on abRGDm-containing and collagen-MHs but not on plain MHs, as was demonstrated by scanning electron microscopy. HCT116 and KG-1 cells grown as aggregates were more resistant to the treatment with cis-diaminedichloroplatinum (II) (cisplatin) and cytosine 1-beta-D-arabinofuranoside (Ara-C), respectively, during the first 18-24 h of incubation, than single cells grown on unmodified MH. HCT116 cells grown as 2D cultures in conventional 96-well tissue culture plates were 1.5- to 3.5-fold more sensitive to the treatment with 70 microM cisplatin than cells in 3D cultures in functionalized MHs. Further development of the described experimental system including matching of a specific cell type with appropriate extracellular matrix (ECM) components and 3D cocultures on ECM-modified MHs may provide a realistic in vitro experimental model for high-throughput toxicity tests.

  11. High Throughput, Real-time, Dual-readout Testing of Intracellular Antimicrobial Activity and Eukaryotic Cell Cytotoxicity

    PubMed Central

    Chiaraviglio, Lucius; Kang, Yoon-Suk; Kirby, James E.

    2016-01-01

    Traditional measures of intracellular antimicrobial activity and eukaryotic cell cytotoxicity rely on endpoint assays. Such endpoint assays require several additional experimental steps prior to readout, such as cell lysis, colony forming unit determination, or reagent addition. When performing thousands of assays, for example, during high-throughput screening, the downstream effort required for these types of assays is considerable. Therefore, to facilitate high-throughput antimicrobial discovery, we developed a real-time assay to simultaneously identify inhibitors of intracellular bacterial growth and assess eukaryotic cell cytotoxicity. Specifically, real-time intracellular bacterial growth detection was enabled by marking bacterial screening strains with either a bacterial lux operon (1st generation assay) or fluorescent protein reporters (2nd generation, orthogonal assay). A non-toxic, cell membrane-impermeant, nucleic acid-binding dye was also added during initial infection of macrophages. These dyes are excluded from viable cells. However, non-viable host cells lose membrane integrity permitting entry and fluorescent labeling of nuclear DNA (deoxyribonucleic acid). Notably, DNA binding is associated with a large increase in fluorescent quantum yield that provides a solution-based readout of host cell death. We have used this combined assay to perform a high-throughput screen in microplate format, and to assess intracellular growth and cytotoxicity by microscopy. Notably, antimicrobials may demonstrate synergy in which the combined effect of two or more antimicrobials when applied together is greater than when applied separately. Testing for in vitro synergy against intracellular pathogens is normally a prodigious task as combinatorial permutations of antibiotics at different concentrations must be assessed. However, we found that our real-time assay combined with automated, digital dispensing technology permitted facile synergy testing. Using these approaches, we were able to systematically survey action of a large number of antimicrobials alone and in combination against the intracellular pathogen, Legionella pneumophila. PMID:27911388

  12. Zoledronic acid induces micronuclei formation, mitochondrial-mediated apoptosis and cytostasis in kidney cells.

    PubMed

    Singireesu, Soma Shiva Nageswara Rao; Mondal, Sujan Kumar; Yerramsetty, Suresh; Misra, Sunil

    2018-06-15

    Zoledronic acid (ZA), a FDA approved drug has used widely in the treatment of bone metastasis complications, has been linked to renal toxicity with unclear mechanism. The present study is aimed at investigating the genotoxic and cytotoxic effects of ZA in renal epithelial cells. The genotoxic effect of ZA in Vero and MDCK cells determined by cytokinesis block micronucleus (CBMN) assay. The cytotoxic effect assessed by analysing cell cycle profile, cell death and mitochondrial membrane potential by flow cytometry using propidium iodide, AnnexinV-FITC/PI and JC1 dye staining, respectively, BAX and Bcl-2 expression by Western blotting and caspase activity by spectrofluorimetry. The cytotoxic effect of ZA based on MTT assay revealed variable sensitivities of Vero and MDCK cells, with IC 50 values of 7.41 and 109.58 μM, respectively. The CBMN assay has shown prominent dose-dependent (IC 10-50 ) induction of micronuclei formation in both cells, indicating ZA's clastogenic and aneugenic potential. Further, the ZA treatment led the cells to apoptosis, evident from dose-dependent increase in the percentage of cells in subG1 phase and display of membranous phosphatidylserine translocation. Studies also confirmed apoptosis through mitochondria, evident from the prominent increase in BAX/Bcl-2 ratio, mitochondrial membrane depolarization and caspase-3/7 activity. In addition, ZA reduces cytokinetic activity of renal cells, evident from dose-wise lowered replicative indices. The study depict ZA's potential genotoxic effect along with cytotoxic effect in renal epithelial cells, could be key factors for the development of renal complications associated with it, which prompts renal safety measures in lieu with ZA usage. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. SGI-1776, an imidazo pyridazine compound, inhibits the proliferation of ovarian cancer cells by inactivating Pim-1.

    PubMed

    Xie, Jing; Bai, Jun

    2014-07-01

    To investigate the antitumor effect of SGI-1776 on human ovarian cancer HO-8910 cells and its molecular mechanism. HO-8910 cells were cultured in vitro, and the proliferation inhibitory effects of SGI- 1776 were determined by MTT assay and colony formation assay. The effect of SGI-1776 on the distribution of cell cycle phase was observed by flow cytometry with propidium iodide (PI) staining. The inhibition rate of migration and invasion were valued by transwell cell assay. Multiple molecular techniques, such as ELISA, Western blot, siRNA and cDNA transfection were used to explore the molecular mechanism. SGI-1776 presented dramatic anti-tumor activity against HO-8910 cells in vitro, inhibited the cells proliferation and colony formation, and attenuated the migration and invasion in a dosedependent manner, accompanied by cell cycle arrest in G1 phase. SGI-1776 caused the proliferation inhibition with concomitant decrease in Pim-1 kinase activity, down-regulated the expression of Pim-1 protein and and its downstream genes, such as CDK6, pCDK6, CDK4, pCDK4, CDK2 and pCDK2, and increased the expression of P21 and P27. Down-regulation expression of Pim-1 by siRNA followed SGI-1776 treatment resulted in enhanced cell proliferation inhibition rate and attenuated migration/invasion. Up-regulation of Pim-1 by cDNA transfection attenuated SGI- 1776-induced cell proliferation inhibition and its migration/invasion. Pim-1 mediates the biological effect of SGI-1776 in human ovarian cancer HO-8910 cells, suggesting Pim-1 might be a novel target for human ovarian cancer.

  14. Expedited quantification of mutant ribosomal RNA by binary deoxyribozyme (BiDz) sensors.

    PubMed

    Gerasimova, Yulia V; Yakovchuk, Petro; Dedkova, Larisa M; Hecht, Sidney M; Kolpashchikov, Dmitry M

    2015-10-01

    Mutations in ribosomal RNA (rRNA) have traditionally been detected by the primer extension assay, which is a tedious and multistage procedure. Here, we describe a simple and straightforward fluorescence assay based on binary deoxyribozyme (BiDz) sensors. The assay uses two short DNA oligonucleotides that hybridize specifically to adjacent fragments of rRNA, one of which contains a mutation site. This hybridization results in the formation of a deoxyribozyme catalytic core that produces the fluorescent signal and amplifies it due to multiple rounds of catalytic action. This assay enables us to expedite semi-quantification of mutant rRNA content in cell cultures starting from whole cells, which provides information useful for optimization of culture preparation prior to ribosome isolation. The method requires less than a microliter of a standard Escherichia coli cell culture and decreases analysis time from several days (for primer extension assay) to 1.5 h with hands-on time of ∼10 min. It is sensitive to single-nucleotide mutations. The new assay simplifies the preliminary analysis of RNA samples and cells in molecular biology and cloning experiments and is promising in other applications where fast detection/quantification of specific RNA is required. © 2015 Gerasimova et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  15. Microarray profiles reveal that circular RNA hsa_circ_0007385 functions as an oncogene in non-small cell lung cancer tumorigenesis.

    PubMed

    Jiang, Ming-Ming; Mai, Zhi-Tao; Wan, Shan-Zhi; Chi, Yu-Min; Zhang, Xin; Sun, Bao-Hua; Di, Qing-Guo

    2018-04-01

    Circular RNAs (circRNAs) are a novel class of non-protein-coding RNA. Emerging evidence indicates that circRNAs participate in the regulation of many pathophysiological processes. This study aims to explore the expression profiles and pathological effects of circRNAs in non-small cell lung cancer (NSCLC). Human circRNAs microarray analysis was performed to screen the expression profile of circRNAs in NSCLC tissue. Expressions of circRNA and miRNA in NSCLC tissues and cells were quantified by qRTPCR. Functional experiments were performed to investigate the biological functions of circRNA, including CCK-8 assay, colony formation assay, transwell assay and xenograft in vivo assay. Human circRNAs microarray revealed a total 957 abnormally expressed circRNAs (> twofold, P < 0.05) in NSCLC tissue compared with adjacent normal tissue. In further studies, hsa_circ_0007385 was significantly up regulated in NSCLC tissue and cells. In vitro experiments with hsa_circ_0007385 knockdown resulted in significant suppression of the proliferation, migration and invasion of NSCLC cells. In vivo xenograft assay using hsa_circ_0007385 knockdown, significantly reduced tumor growth. Bioinformatics analysis and luciferase reporter assay verified the potential target miR-181, suggesting a possible regulatory pathway for hsa_circ_0007385. In summary, results suggest hsa_circ_0007385 plays a role in NSCLC tumorigenesis, providing a potential therapeutic target for NSCLC.

  16. Organotypic three-dimensional assays based on human leiomyoma–derived matrices

    PubMed Central

    Dourado, Mauricio Rocha; Sundquist, Elias; Apu, Ehsanul Hoque; Alahuhta, Ilkka; Tuomainen, Katja; Vasara, Jenni; Al-Samadi, Ahmed

    2018-01-01

    Alongside cancer cells, tumours exhibit a complex stroma containing a repertoire of cells, matrix molecules and soluble factors that actively crosstalk between each other. Recognition of this multifaceted concept of the tumour microenvironment (TME) calls for authentic TME mimetics to study cancer in vitro. Traditionally, tumourigenesis has been investigated in non-human, three-dimensional rat type I collagen containing organotypic discs or by means of mouse sarcoma-derived gel, such as Matrigel®. However, the molecular compositions of these simplified assays do not properly simulate human TME. Here, we review the main properties and benefits of using human leiomyoma discs and their matrix Myogel for in vitro assays. Myoma discs are practical for investigating the invasion of cancer cells, as are cocultures of cancer and stromal cells in a stiff, hypoxic TME mimetic. Myoma discs contain soluble factors and matrix molecules commonly present in neoplastic stroma. In Transwell, IncuCyte, spheroid and sandwich assays, cancer cells move faster and form larger colonies in Myogel than in Matrigel®. Additionally, Myogel can replace Matrigel® in hanging-drop and tube-formation assays. Myogel also suits three-dimensional drug testing and extracellular vesicle interactions. To conclude, we describe the application of our myoma-derived matrices in 3D in vitro cancer assays. This article is part of the discussion meeting issue ‘Extracellular vesicles and the tumour microenvironment’. PMID:29158312

  17. Organotypic three-dimensional assays based on human leiomyoma-derived matrices.

    PubMed

    Salo, Tuula; Dourado, Mauricio Rocha; Sundquist, Elias; Apu, Ehsanul Hoque; Alahuhta, Ilkka; Tuomainen, Katja; Vasara, Jenni; Al-Samadi, Ahmed

    2018-01-05

    Alongside cancer cells, tumours exhibit a complex stroma containing a repertoire of cells, matrix molecules and soluble factors that actively crosstalk between each other. Recognition of this multifaceted concept of the tumour microenvironment (TME) calls for authentic TME mimetics to study cancer in vitro Traditionally, tumourigenesis has been investigated in non-human, three-dimensional rat type I collagen containing organotypic discs or by means of mouse sarcoma-derived gel, such as Matrigel ® However, the molecular compositions of these simplified assays do not properly simulate human TME. Here, we review the main properties and benefits of using human leiomyoma discs and their matrix Myogel for in vitro assays. Myoma discs are practical for investigating the invasion of cancer cells, as are cocultures of cancer and stromal cells in a stiff, hypoxic TME mimetic. Myoma discs contain soluble factors and matrix molecules commonly present in neoplastic stroma. In Transwell, IncuCyte, spheroid and sandwich assays, cancer cells move faster and form larger colonies in Myogel than in Matrigel ® Additionally, Myogel can replace Matrigel ® in hanging-drop and tube-formation assays. Myogel also suits three-dimensional drug testing and extracellular vesicle interactions. To conclude, we describe the application of our myoma-derived matrices in 3D in vitro cancer assays.This article is part of the discussion meeting issue 'Extracellular vesicles and the tumour microenvironment'. © 2017 The Authors.

  18. Inhibition of connective tissue growth factor overexpression decreases growth of hepatocellular carcinoma cells in vitro and in vivo.

    PubMed

    Jia, Xiao-Qin; Cheng, Hai-Qing; Li, Hong; Zhu, Yan; Li, Yu-Hua; Feng, Zhen-Qing; Zhang, Jian-Ping

    2011-11-01

    We have previously found that connective tissue growth factor (CTGF) is highly expressed in a rat model of liver cancer. Here, we examined expression of CTGF in human hepatocellular carcinoma (HCC) cells and its effect on cell growth. Real-time PCR was used to observe expression of CTGF in human HCC cell lines HepG2, SMMC-7721, MHCC-97H and LO2. siRNA for the CTGF gene was designed, synthesized and cloned into a Plk0.1-GFP-SP6 vector to construct a lentivirus-mediated shRNA/CTGF. CTGF mRNA and protein expression in HepG2 cells treated by CTGF-specific shRNA was evaluated by real-time PCR and Western blotting. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was utilized to evaluate the growth effect, and a colony formation assay was used for observing clonogenic growth. In vivo, tumor cell proliferation was evaluated in a nude mouse model of xenotransplantation. Statistical significance was determined by t test for comparison between two groups, or analysis of variance (ANOVA) for multiple groups. Immunohistochemical staining of CTGF was seen in 35 of 40 HCC samples (87.5%). CTGF was overexpressed 5-fold in 20 HCC tissues, compared with surrounding non-tumor liver tissue. CTGF mRNA level was 5 - 8-fold higher in HepG2, SMMC-7721 and MHCC-97H than in LO2 cells. This indicated that the inhibition rate of cell growth was 43% after knockdown of CTGF expression (P < 0.05). Soft agar colony formation assay showed that siRNA mediated knockdown of CTGF inhibited colony formation in soft agar of HepG2 cells (P < 0.05). The volume of tumors from CTGF-shRNA-expressing cells only accounted for 35% of the tumors from the scrambled control-infected HepG2 cells (P < 0.05). CTGF was overexpressed in human HCC cells and downregulation of CTGF inhibited HCC growth in vitro and in vivo. Knockdown of CTGF may be a potential therapeutic strategy for treatment of HCC.

  19. Cancer-associated fibroblast promote transmigration through endothelial brain cells in three-dimensional in vitro models.

    PubMed

    Choi, Yoon Pyo; Lee, Joo Hyun; Gao, Ming-Qing; Kim, Baek Gil; Kang, Suki; Kim, Se Hoon; Cho, Nam Hoon

    2014-11-01

    Brain metastases are associated with high morbidity as well as with poor prognosis and survival in breast cancer patients. Despite its clinical importance, metastasis of breast cancer cells through the blood-brain barrier (BBB) is poorly understood. The objective of our study was to investigate whether cancer-associated fibroblasts (CAFs) play crucial roles in breast cancer brain metastasis. Using a cell adhesion assays, in vitro BBB permeability and transmigration assays and soft agar colony formation assays, we investigated the physical roles of CAFs in breast cancer brain metastasis. We also performed immunofluorescence, flow cytometric analysis, Droplet Digital PCR and Simon™ Simple Western System to confirm changes in expression levels. We established two novel three-dimensional (3D) culture systems using a perpendicular slide chamber and applying 3D embedded culture method to reflect brain metastasis conditions. With a newly developed device, CAFs was proven to promote cell adhesion to human brain microvascular endothelial cells, in vitro BBB permeability and transmigration and colony formation of breast cancer cells. Furthermore, CAFs enhanced the invasive migration of breast cancer cells in two kinds of 3D cultures. These 3D models also reliably recapitulate the initial steps of BBB transmigration, micro-metastasis and colonization. Expression of integrin α5β1 and αvβ3, c-MET and α2,6-siayltransferase was increased in breast cancer cells that migrated through the BBB. In conclusion, based on our in vitro BBB and co-culture models, our data suggest that CAFs may play a role in breast cancer brain metastasis. © 2014 UICC.

  20. Use of early passage fetal intestinal epithelial cells in semi-high-throughput screening assays: an approach to identify new innate immune system adjuvants.

    PubMed

    Buckner, Diana; Wilson, Suzanne; Kurk, Sandra; Hardy, Michele; Miessner, Nicole; Jutila, Mark A

    2006-09-01

    Innate immune system stimulants (innate adjuvants) offer complementary approaches to vaccines and antimicrobial compounds to increase host resistance to infection. The authors established fetal bovine intestinal epithelial cell (BIEC) cultures to screen natural product and synthetic compound libraries for novel mucosal adjuvants. They showed that BIECs from fetal intestine maintained an in vivo phenotype as reflected in cytokeratin expression, expression of antigens restricted to intestinal enterocytes, and induced interleukin-8 (IL-8) production. BIECs could be infected by and support replication of bovine rotavirus. A semi-high-throughput enzyme-linked immunosorbent assay-based assay that measured IL-8 production by BIECs was established and used to screen commercially available natural compounds for novel adjuvant activity. Five novel hits were identified, demonstrating the utility of the assay for selecting and screening new epithelial cell adjuvants. Although the identified compounds had not previously been shown to induce IL-8 production in epithelial cells, other known functions for 3 of the 5 were consistent with this activity. Statistical analysis of the throughput data demonstrated that the assay is adaptable to a high-throughput format for screening both synthetic and natural product derived compound libraries.

  1. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements.

    PubMed

    Wolfe, Kelly L; Liu, Rui Hai

    2007-10-31

    A cellular antioxidant activity (CAA) assay for quantifying the antioxidant activity of phytochemicals, food extracts, and dietary supplements has been developed. Dichlorofluorescin is a probe that is trapped within cells and is easily oxidized to fluorescent dichlorofluorescein (DCF). The method measures the ability of compounds to prevent the formation of DCF by 2,2'-azobis(2-amidinopropane) dihydrochloride (ABAP)-generated peroxyl radicals in human hepatocarcinoma HepG2 cells. The decrease in cellular fluorescence when compared to the control cells indicates the antioxidant capacity of the compounds. The antioxidant activities of selected phytochemicals and fruit extracts were evaluated using the CAA assay, and the results were expressed in micromoles of quercetin equivalents per 100 micromol of phytochemical or micromoles of quercetin equivalents per 100 g of fresh fruit. Quercetin had the highest CAA value, followed by kaempferol, epigallocatechin gallate (EGCG), myricetin, and luteolin among the pure compounds tested. Among the selected fruits tested, blueberry had the highest CAA value, followed by cranberry > apple = red grape > green grape. The CAA assay is a more biologically relevant method than the popular chemistry antioxidant activity assays because it accounts for some aspects of uptake, metabolism, and location of antioxidant compounds within cells.

  2. Fabrication of polycaprolactone-silanated β-tricalcium phosphate-heparan sulfate scaffolds for spinal fusion applications.

    PubMed

    Bhakta, Gajadhar; Ekaputra, Andrew K; Rai, Bina; Abbah, Sunny A; Tan, Tuan Chun; Le, Bach Quang; Chatterjea, Anindita; Hu, Tao; Lin, Tingxuan; Arafat, M Tarik; van Wijnen, Andre J; Goh, James; Nurcombe, Victor; Bhakoo, Kishore; Birch, William; Xu, Li; Gibson, Ian; Wong, Hee-Kit; Cool, Simon M

    2018-05-01

    Interbody spinal fusion relies on the use of external fixation and the placement of a fusion cage filled with graft materials (scaffolds) without regard for their mechanical performance. Stability at the fusion site is instead reliant on fixation hardware combined with a selected cage. Ideally, scaffolds placed into the cage should both support the formation of new bone and contribute to the mechanical stability at the fusion site. We recently developed a scaffold consisting of silane-modified PCL-TCP (PCL-siTCP) with mechanical properties that can withstand the higher loads generated in the spine. To ensure the scaffold more closely mimicked the bone matrix, we incorporated collagen (Col) and a heparan sulfate glycosaminoglycan sugar (HS3) with increased affinity for heparin-binding proteins such as bone morphogenetic protein-2 (BMP-2). The osteostimulatory characteristic of this novel device delivering exogenous BMP2 was assessed in vitro and in vivo as a prelude to future spinal fusion studies with this device. A combination of cell-free assays (BMP2 release), progenitor cell-based assays (BMP2 bioactivity, cell proliferation and differentiation), and rodent ectopic bone formation assays was used to assess the osteostimulatory characteristics of the PCL-siTCP-based scaffolds. Freshly prepared rat mesenchymal stem cells were used to determine reparative cell proliferation and differentiation on the PCL-siTCP-based scaffolds over a 28-day period in vitro. The bioactivity of BMP2 released from the scaffolds was assessed on progenitor cells over a 28-day period using ALP activity assays and release kinetics as determined by enzyme-linked immunosorbent assay. For ectopic bone formation, intramuscular placement of scaffolds into Sprague Dawley rats (female, 4 weeks old, 120-150 g) was achieved in five animals, each receiving four treatments randomized for location along the limb. The four groups tested were (1) PCL-siTCP/Col (5-mm diameter×1-mm thickness), PCL-siTCP/Col/BMP2 (5 µg), (3) PCL-siTCP/Col/HS3 (25 µg), and (4) PCL-siTCP/Col/HS3/BMP2 (25 and 5 µg, respectively). Bone formation was evaluated at 8 weeks post implantation by microcomputed tomography (µCT) and histology. Progenitor cell-based assays (proliferation, mRNA transcripts, and ALP activity) confirmed that BMP2 released from PCL-siTCP/Col/HS3 scaffolds increased ALP expression and mRNA levels of the osteogenic biomarkers Runx2, Col1a2, ALP, and bone gla protein-osteocalcin compared with devices without HS3. When the PCL-siTCP/Col/HS3/BMP2 scaffolds were implanted into rat hamstring muscle, increased bone formation (as determined by two-dimensional and three-dimensional µCTs and histologic analyses) was observed compared with scaffolds lacking BMP2. More consistent increases in the amount of ectopic bone were observed for the PCL-siTCP/Col/HS3/BMP2 implants compared with PCL-siTCP/Col/BMP2. Also, increased mineralizing tissue within the pores of the scaffold was seen with modified-tetrachrome histology, a result confirmed by µCT, and a modest but detectable increase in both the number and the thickness of ectopic bone structures were observed with the PCL-siTCP/Col/HS3/BMP2 implants. The combination of PCL-siTCP/Col/HS3/BMP2 thus represents a promising avenue for further development as a bone graft alternative for spinal fusion surgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. In vitro and ex vivo angiogenic effects of roxarsone on rat endothelial cells.

    PubMed

    Zhu, Jiaqiao; Cui, Weibo; Liu, Xue; Ying, Jun; Hu, Chengyun; Zhang, Yumei

    2013-11-25

    Roxarsone, a feed additive, is being used worldwide to promote animal growth. However, the potential effect of roxarsone on angiogenesis has not been extensively characterized. We examined the ability of roxarsone to promote angiogenesis of rat endothelial cells in vitro and from rat aorta rings ex vivo. Endothelial cells from rats were exposed to 0.01-10.00μM roxarsone, 5ng/mL vascular endothelial growth factor (VEGF) as a positive control or phosphate buffer saline (PBS) as a negative control. Cell proliferation was measured by MTT assay, and the content of VEGF in supernatants was measured by enzyme-linked immunosorbent assay and Western blotting. A Matrigel-induced tube formation assay was used to evaluate the effects of roxarsone on endothelial cells. Additionally, the total number and length of microvessels sprouted from rat aortic rings were measured for ex vivo investigation of angiogenesis. Results showed that the cell viability and total number and length of capillary-like tube formations after roxarsone treatment was significantly higher than that of negative (P<0.05), with a maximum effect at 1.00μM exposure. Furthermore, the number of microvessels sprouted from aortic rings treated for 4h with 0.1-10.0μM roxarsone was significantly higher than that of PBS treatment, with a peak value of 1.0μM. These results further demonstrate the potential of roxarsone to promote angiogenesis in vitro and ex vivo. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Homogeneous time-resolved G protein-coupled receptor-ligand binding assay based on fluorescence cross-correlation spectroscopy.

    PubMed

    Antoine, Thomas; Ott, David; Ebell, Katharina; Hansen, Kerrin; Henry, Luc; Becker, Frank; Hannus, Stefan

    2016-06-01

    G protein-coupled receptors (GPCRs) mediate many important physiological functions and are considered as one of the most successful therapeutic target classes for a wide spectrum of diseases. Drug discovery projects generally benefit from a broad range of experimental approaches for screening compound libraries and for the characterization of binding modes of drug candidates. Owing to the difficulties in solubilizing and purifying GPCRs, assay formats have been so far mainly limited to cell-based functional assays and radioligand binding assays. In this study, we used fluorescence cross-correlation spectroscopy (FCCS) to analyze the interaction of detergent-solubilized receptors to various types of GPCR ligands: endogenous peptides, small molecules, and a large surrogate antagonist represented by a blocking monoclonal antibody. Our work demonstrates the suitability of the homogeneous and time-resolved FCCS assay format for a robust, high-throughput determination of receptor-ligand binding affinities and kinetic rate constants for various therapeutically relevant GPCRs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. A novel cell-based assay to measure activity of Venezuelan equine encephalitis virus nsP2 protease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campos-Gomez, Javier; Ahmad, Fahim; Rodriguez, Efrain

    2016-09-15

    The encephalitic alphaviruses encode nsP2 protease (nsP2pro), which because of its vital role in virus replication, represents an attractive target for therapeutic intervention. To facilitate the discovery of nsP2 inhibitors we have developed a novel assay for quantitative measurement of nsP2pro activity in a cell-based format. The assay is based on a substrate fusion protein consisting of eGFP and Gaussia luciferase (Gluc) linked together by a small peptide containing a VEEV nsp2pro cleavage sequence. The expression of the substrate protein in cells along with recombinant nsP2pro results in cleavage of the substrate protein resulting in extracellular release of free Gluc.more » The Gluc activity in supernatants corresponds to intracellular nsP2pro-mediated substrate cleavage; thus, providing a simple and convenient way to quantify nsP2pro activity. Here, we demonstrate potential utility of the assay in identification of nsP2pro inhibitors, as well as in investigations related to molecular characterization of nsP2pro. - Highlights: • A novel cell-based assay to measure VEEV nsP2 protease activity was developed. • Assay utility was demonstrated for antiviral screening. • .The assay also proved to be useful in basic mechanistic studies of nsP2 protease.« less

  6. Knockdown of Immature Colon Carcinoma Transcript 1 Inhibits Proliferation and Promotes Apoptosis of Non–Small Cell Lung Cancer Cells

    PubMed Central

    He, Jiantao; Zhang, Shenghui; Yang, Qingbo; Wang, Bo; Liu, Zhiyu; Wu, Xintian

    2016-01-01

    Non–small cell lung cancer, as the most frequent type lung cancer, has lower survival rate of 5 years, despite improvements in surgery and chemotherapy. Previous studies showed immature colon carcinoma transcript 1 is closely related to tumorigenesis of human cancer cells. In the present study, we found immature colon carcinoma transcript 1 was overexpressed in lung cancer tissues using Oncomine database mining, and the biological effect of immature colon carcinoma transcript 1 was investigated in non–small cell lung cancer cell lines 95D and A549. Lentivirus-mediated RNA interference was used to knock down immature colon carcinoma transcript 1 expression in 95D and A549 cells in vitro, and the knockdown efficiency was determined using quantitative real-time polymerase chain reaction and Western blot assay. Knockdown of immature colon carcinoma transcript 1 significantly suppressed non–small cell lung cancer cell proliferation and colony formation ability confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and colony formation assay. Flow cytometry was applied to measure cell cycle arrest, and the result showed the cell cycle arrested in G2/M phase in 95D cells and arrested in G0/G1 phase in A549 cells. Furthermore, we measured the levels of cell cycle–associated proteins by Western blot analysis and found immature colon carcinoma transcript 1–mediated cell proliferation inhibition appeared due to downregulation of cell cycle activator cyclin D1 and upregulation of cell cycle inhibitor p21. In addition, immature colon carcinoma transcript 1 silencing significantly induced non–small cell lung cancer cell apoptosis by annexin V/7-amino-actinomycin D double-staining assay. All our data suggest that immature colon carcinoma transcript 1 may play an important role for non–small cell lung cancer cell proliferation and could be a potential molecular target for diagnosing and treating human non–small cell lung cancer. PMID:27413166

  7. Knockdown of DIXDC1 Inhibits the Proliferation and Migration of Human Glioma Cells.

    PubMed

    Chen, Jianguo; Shen, Chaoyan; Shi, Jinlong; Shen, Jianhong; Chen, Wenjuan; Sun, Jie; Fan, Shaocheng; Bei, Yuanqi; Xu, Peng; Chang, Hao; Jiang, Rui; Hua, Lu; Ji, Bin; Huang, Qingfeng

    2017-08-01

    DIX domain containing 1 (DIXDC1), the human homolog of coiled-coil-DIX1 (Ccd1), is a positive regulator of Wnt signaling pathway. Recently, it was found to act as a candidate oncogene in colon cancer, non-small-cell lung cancer, and gastric cancer. In this study, we aimed to investigate the clinical significance of DIXDC1 expression in human glioma and its biological function in glioma cells. Western blot and immunohistochemistry analysis showed that DIXDC1 was overexpressed in glioma tissues and glioma cell lines. The expression level of DIXDC1 was evidently linked to glioma pathological grade and Ki-67 expression. Kaplan-Meier curve showed that high expression of DIXDC1 may lead to poor outcome of glioma patients. Serum starvation and refeeding assay indicated that the expression of DIXDC1 was associated with cell cycle. To determine whether DIXDC1 could regulate the proliferation and migration of glioma cells, we transfected glioma cells with interfering RNA-targeting DIXDC1; investigated cell proliferation with Cell Counting Kit (CCK)-8, flow cytometry assays, and colony formation analyses; and investigated cell migration with wound healing assays and transwell assays. According to our data, knockdown of DIXDC1 significantly inhibited proliferation and migration of glioma cells. These data implied that DIXDC1 might participate in the development of glioma, suggesting that DIXDC1 can become a potential therapeutic strategy for glioma.

  8. Downregulation of B-myb promotes senescence via the ROS-mediated p53/p21 pathway, in vascular endothelial cells.

    PubMed

    Zhou, Zhihui; Yin, Yanlin; Chang, Qun; Sun, Guanqun; Lin, Jiahui; Dai, Yalei

    2017-04-01

    To reveal whether B-myb is involved in preventing senescence of vascular endothelial cells, and if so, to identify possible mechanisms for it. C57/BL6 male mice and primary human aortic endothelial cells (HAECs) were used. Bleomycin was applied to induce stress-related premature senescence. B-myb knockdown was achieved using an siRNA technique and cell senescence was assessed using the senescence-associated β-galactosidase (SA-β-gal) assay. Intracellular reactive oxygen species (ROS) production was analysed using an ROS assay kit and cell proliferation was evaluated using KFluor488 EdU kit. Capillary tube network formation was determined by Matrigel assay. Expressions of mRNA and protein levels were detected by real-time PCR and western blotting. B-myb expression significantly decreased, while p53 and p21 expressions increased in the aortas of aged mice. This expression pattern was also found in replicative senescent HAECs and senescent HAECs induced by bleomycin. B-myb knockdown resulted in upregulation of p22 phox , ROS accumulation and cell senescence of HAECs. Downregulation of B-myb significantly inhibited cell proliferation and capillary tube network formation and activated the p53/p21 signalling pathway. Blocking ROS production or inhibiting p53 activation remarkably attenuated SA-β-gal activity and delayed cell senescence induced by B-myb-silencing. Downregulation of B-myb induced senescence by upregulation of p22 phox and activation of the ROS/p53/p21 pathway, in our vascular endothelial cells, suggesting that B-myb may be a novel candidate for regulating cell senescence to protect against endothelial senescence-related cardiovascular diseases. © 2016 John Wiley & Sons Ltd.

  9. Exposure to 3G mobile phone signals does not affect the biological features of brain tumor cells.

    PubMed

    Liu, Yu-xiao; Li, Guo-qing; Fu, Xiang-ping; Xue, Jing-hui; Ji, Shou-ping; Zhang, Zhi-wen; Zhang, Yi; Li, An-ming

    2015-08-08

    The increase in mobile phone use has generated concerns about possible risks to human health, especially the development of brain tumors. Whether tumor patients should continue to use mobile telephones has remained unclear because of a paucity of information. Herein, we investigated whether electromagnetic fields from mobile phones could alter the biological features of human tumor cells and act as a tumor-promoting agent. Human glioblastoma cell lines, U251-MG and U87-MG, were exposed to 1950-MHz time division-synchronous code division multiple access (TD-SCDMA) at a specific absorption rate (maximum SAR = 5.0 W/kg) for 12, 24, and 48 h. Cell morphologies and ultra-structures were observed by microscopy and the rates of apoptosis and cell cycle progression were monitored by flow cytometry. Additionally, cell growth was determined using the CKK-8 assay, and the expression levels of tumor and apoptosis-related genes and proteins were analyzed by real-time PCR and western blotting, respectively. Tumor formation and invasiveness were measured using a tumorigenicity assay in vivo and migration assays in vitro. No significant differences in either biological features or tumor formation ability were observed between unexposed and exposed glioblastoma cells. Our data showed that exposure to 1950-MHz TD-SCDMA electromagnetic fields for up to 48 h did not act as a cytotoxic or tumor-promoting agent to affect the proliferation or gene expression profile of glioblastoma cells. Our findings implied that exposing brain tumor cells in vitro for up to 48 h to 1950-MHz continuous TD-SCDMA electromagnetic fields did not elicit a general cell stress response.

  10. Contributions of EspA Filaments and Curli Fimbriae in Cellular Adherence and Biofilm Formation of Enterohemorrhagic Escherichia coli O157:H7

    PubMed Central

    Sharma, Vijay K.; Kudva, Indira T.; Bearson, Bradley L.; Stasko, Judith A.

    2016-01-01

    In Escherichia coli O157:H7 (O157), the filamentous structure of the type III secretion system is produced from the polymerization of the EspA protein. EspA filaments are essential for O157 adherence to epithelial cells. In previous studies, we demonstrated that O157 hha deletion mutants showed increased adherence to HEp-2 cells and produced abundant biofilms. Transcriptional analysis revealed increased expression of espA as well as the csgA gene, which encodes curli fimbriae that are essential for biofilm formation. In the present study, we constructed hha espA, hha csgA, and hha csgA espA deletion mutants to determine the relative importance of EspA and CsgA in O157 adherence to HEp-2 cells and biofilm formation. In vitro adherence assays, conducted at 37°C in a tissue culture medium containing 0.1% glucose, showed that HEp-2 cell adherence required EspA because hha espA and hha csgA espA mutants adhered to HEp-2 cells at higher levels only when complemented with an espA-expressing plasmid. Biofilm assays performed at 28°C in a medium lacking glucose showed dependency of biofilm formation on CsgA; however EspA was not produced under these conditions. Despite production of detectable levels of EspA at 37°C in media supplemented with 0.1% glucose, the biofilm formation occurred independent of EspA. These results indicate dependency of O157 adherence to epithelial cells on EspA filaments, while CsgA promoted biofilm formation under conditions mimicking those found in the environment (low temperature with nutrient limitations) and in the digestive tract of an host animal (higher temperature and low levels of glucose). PMID:26900701

  11. Vasculogenic mimicry in bladder cancer and its association with the aberrant expression of ZEB1

    PubMed Central

    Li, Baimou; Mao, Xiaopeng; Wang, Hua; Su, Guanyu; Mo, Chengqiang; Cao, Kaiyuan; Qiu, Shaopeng

    2018-01-01

    The aim of the present study was to investigate the associations between vasculogenic mimicry (VM) and zinc finger E-box binding homeobox 1 (ZEB1) in bladder cancer. VM structure and ZEB1 expression were analyzed by cluster of differentiation 34/periodic acid Schiff (PAS) double staining and immunohistochemical staining in 135 specimens from patients with bladder cancer, and a further 12 specimens from normal bladder tissues. Three-dimensional (3-D) culture was used to detect VM formation in the bladder transitional cancer cell lines UM-UC-3 and J82, and the immortalized human bladder epithelium cell line SV-HUC-1 in vitro. ZEB1 expression in these cell lines was compared by reverse transcription-quantitative polymerase chain reaction and western blot assays. In addition, small interfering RNA was used to inhibit ZEB1 in UM-UC-3 and J82 cells, followed by 3-D culturing of treated cell lines. As a result, VM was observed in 31.1% of specimens from bladder cancer tissues, and cases with high ZEB1 expression accounted for 60.0% of patients with bladder cancer. In addition, ZEB1 expression was closely associated with VM (r=0.189; P<0.05), and also increased as the grade and stage of the tumor developed. In an in vitro assay, UM-UC-3 and J82 cells exhibited VM formation, however, SV-HUC-1 did not. Furthermore, VM-forming cancer cell lines UM-UC-3 and J82 exhibited higher ZEB1 expression. Notably, VM formation was inhibited following knockdown of ZEB1. In conclusion, ZEB1 may be associated with VM in bladder cancer and serve an important role in the process of VM formation. However, its detailed mechanism requires further study. PMID:29552157

  12. Wnt and Notch Pathways Have Interrelated Opposing Roles on Prostate Progenitor Cell Proliferation and Differentiation

    PubMed Central

    Shahi, Payam; Seethammagari, Mamatha R.; Valdez, Joseph M.; Xin, Li; Spencer, David M.

    2011-01-01

    Tissue stem cells are capable of both self-renewal and differentiation to maintain a constant stem cell population and give rise to the plurality of cells within a tissue. Wnt signaling has been previously identified as a key mediator for the maintenance of tissue stem cells; however, possible cross-regulation with other developmentally critical signaling pathways involved in adult tissue homeostasis, such as Notch, is not well understood. By using an in vitro prostate stem cell colony (“prostasphere”) formation assay and in vivo prostate reconstitution experiments, we demonstrate that Wnt pathway induction on Sca-1+ CD49f+ basal/stem cells (B/SCs) promotes expansion of the basal epithelial compartment with noticeable increases in “triple positive” (cytokeratin [CK] 5+, CK8+, p63+) prostate progenitor cells, concomitant with upregulation of known Wnt target genes involved in cell-cycle induction. Moreover, Wnt induction affects expression of epithelial-to-mesenchymal transition signature genes, suggesting a possible mechanism for priming B/SC to act as potential tumor-initiating cells. Interestingly, induction of Wnt signaling in B/SCs results in downregulation of Notch1 transcripts, consistent with its postulated antiproliferative role in prostate cells. In contrast, induction of Notch signaling in prostate progenitors inhibits their proliferation and disrupts prostasphere formation. In vivo prostate reconstitution assays further demonstrate that induction of Notch in B/SCs disrupts proper acini formation in cells expressing the activated Notch1 allele, Notch-1 intracellular domain. These data emphasize the importance of Wnt/Notch cross-regulation in adult stem cell biology and suggest that Wnt signaling controls the proliferation and/or maintenance of epithelial progenitors via modulation of Notch signaling. PMID:21308863

  13. Whole-Transcriptome Analysis of CD133+CD144+ Cancer Stem Cells Derived from Human Laryngeal Squamous Cell Carcinoma Cells.

    PubMed

    Wu, Yongyan; Zhang, Yuliang; Niu, Min; Shi, Yong; Liu, Hongliang; Yang, Dongli; Li, Fei; Lu, Yan; Bo, Yunfeng; Zhang, Ruiping; Li, Zhenyu; Luo, Hongjie; Cui, Jiajia; Sang, Jiangwei; Xiang, Caixia; Gao, Wei; Wen, Shuxin

    2018-06-27

    CD133+CD44+ cancer stem cells previously isolated from laryngeal squamous cell carcinoma (LSCC) cell lines showed strong malignancy and tumorigenicity. However, the molecular mechanism underlying the enhanced malignancy remained unclear. Cell proliferation assay, spheroid-formation experiment, RNA sequencing (RNA-seq), miRNA-seq, bioinformatic analysis, quantitative real-time PCR, migration assay, invasion assay, and luciferase reporter assay were used to identify differentially expressed mRNAs, lncRNAs, circRNAs and miRNAs, construct transcription regulatory network, and investigate functional roles and mechanism of circRNA in CD133+CD44+ laryngeal cancer stem cells. Differentially expressed genes in TDP cells were mainly enriched in the biological processes of cell differentiation, regulation of autophagy, negative regulation of cell death, regulation of cell growth, response to hypoxia, telomere maintenance, cellular response to gamma radiation, and regulation of apoptotic signaling, which are closely related to the malignant features of tumor cells. We constructed the regulatory network of differentially expressed circRNAs, miRNAs and mRNAs. qPCR findings for the expression of key genes in the network were consistent with the sequencing data. Moreover, our data revealed that circRNA hg19_circ_0005033 promotes proliferation, migration, invasion, and chemotherapy resistance of laryngeal cancer stem cells. This study provides potential biomarkers and targets for LSCC diagnosis and therapy, and provide important evidences for the heterogeneity of LSCC cells at the transcription level. © 2018 The Author(s). Published by S. Karger AG, Basel.

  14. [Antiapoptotic Effect of the Leukemia Associated Gene MLAA-34 in HeLa Cells].

    PubMed

    Zhang, Peng-Yu; Zhao, Xuan; Zhang, Wen-Juan; Zhang, Wang-Gang; Chen, Yin-Xia

    2016-04-01

    To study the antiapoptotic effect of leukemia-associated gene MLAA-34 in HeLa cells. The MLAA-34 recombinant lentiviral expression vector was constructed, and the stably transfected HeLa cell line with high expression of MLAA-34 was set up; As(2)O(3) was used to induce apoptosis; the MTT assay, colony formation test and flow cytometry were used to detect the ability of cell proliferation, colong formation, apoptosis and cell cycle changes respectively. After treatment with As(2)O(3), the survival rate of HeLa cells with MLAA-34 overexpression was significantly higher than that of the control cells, and the colony formation ability of MLAA-34 significantly increased, and the high expression of MLAA-34 gene significantly decreased the apoptosis rate of HeLa cells, and decreased the proportion of G(2)/M phase cells. The leukemia-associated gene MLAA-34 has been comfirmed to show antiapoptotic effect in HeLa cells which are induced by As(2)O(3).

  15. Overexpression of PHRF1 attenuates the proliferation and tumorigenicity of non-small cell lung cancer cells.

    PubMed

    Wang, Yadong; Wang, Haiyu; Pan, Teng; Li, Li; Li, Jiangmin; Yang, Haiyan

    2016-09-27

    The aim of this study was to investigate the potential role of PHRF1 in lung tumorigenesis. Western blot analysis was used to detect the expression of proteins. Quantitative reverse transcriptase polymerase chain reaction, immunohistochemistry, soft agar assay and tumor formation assay in nude mice were applied. Cell cycle distribution was analyzed by flow cytometry. The lower level of PHRF1 mRNA was observed in human lung cancer tissues than that in paracancerous tissues. The decreased expression of PHRF1 protein was observed in H1299 and H1650 cell lines than that in 16HBE and BEAS-2B cell lines. The decreased expression of PHRF1 protein was observed in malignant 16HBE cells compared to control cells. The reduced expression of PHRF1 protein was observed in mice lung tissues treated with BaP than that in control group. Overexpression of PHRF1 inhibited H1299 cell proliferation, colony formation in vitro and growth of tumor xenograft in vivo, and arrested cell cycle in G1 phase. The decreased expression of TGIF and c-Myc proteins and the increased expression of p21 protein were observed in H1299-PHRF1 cells compared with H1299-pvoid cells. In conclusion, our findings suggest that overexpression of PHRF1 attenuated the proliferation and tumorigenicity of non-small cell lung cancer cell line of H1299.

  16. The selective PI3Kα inhibitor BYL719 as a novel therapeutic option for neuroendocrine tumors: Results from multiple cell line models

    PubMed Central

    Rentsch, Jakob; Freitag, Helma; Detjen, Katharina; Briest, Franziska; Möbs, Markus; Weissmann, Victoria; Siegmund, Britta; Auernhammer, Christoph J.; Aristizabal Prada, Elke Tatjana; Lauseker, Michael; Grossman, Ashley; Exner, Samantha; Fischer, Christian; Grötzinger, Carsten

    2017-01-01

    Background/Aims The therapeutic options for metastatic neuroendocrine tumors (NETs) are limited. As PI3K signaling is often activated in NETs, we have assessed the effects of selective PI3Kp110α inhibition by the novel agent BYL719 on cell viability, colony formation, apoptosis, cell cycle, signaling pathways, differentiation and secretion in pancreatic (BON-1, QGP-1) and pulmonary (H727) NET cell lines. Methods Cell viability was investigated by WST-1 assay, colony formation by clonogenic assay, apoptosis by caspase3/7 assay, the cell cycle by FACS, cell signaling by Western blot analysis, expression of chromogranin A and somatostatin receptors 1/2/5 by RT-qPCR, and chromogranin A secretion by ELISA. Results BYL719 dose-dependently decreased cell viability and colony formation with the highest sensitivity in BON-1, followed by H727, and lowest sensitivity in QGP-1 cells. BYL719 induced apoptosis and G0/G1 cell cycle arrest associated with increased p27 expression. Western blots showed inhibition of PI3K downstream targets to a varying degree in the different cell lines, but IGF1R activation. The most sensitive BON-1 cells displayed a significant, and H727 cells a non-significant, GSK3 inhibition after BYL719 treatment, but these effects do not appear to be mediated through the IGF1R. In contrast, the most resistant QGP-1 cells showed no GSK3 inhibition, but a modest activation, which would partially counteract the other anti-proliferative effects. Accordingly, BYL719 enhanced neuroendocrine differentiation with the strongest effect in BON-1, followed by H727 cells indicated by induction of chromogranin A and somatostatin receptor 1/2 mRNA-synthesis, but not in QGP-1 cells. In BON-1 and QGP-1 cells, the BYL719/everolimus combination was synergistic through simultaneous AKT/mTORC1 inhibition, and significantly increased somatostatin receptor 2 transcription compared to each drug separately. Conclusion Our results suggest that the agent BYL719 could be a novel therapeutic approach to the treatment of NETs that may sensitize NET cells to somatostatin analogs, and that if there is resistance to its action this may be overcome by combination with everolimus. PMID:28800359

  17. The selective PI3Kα inhibitor BYL719 as a novel therapeutic option for neuroendocrine tumors: Results from multiple cell line models.

    PubMed

    Nölting, Svenja; Rentsch, Jakob; Freitag, Helma; Detjen, Katharina; Briest, Franziska; Möbs, Markus; Weissmann, Victoria; Siegmund, Britta; Auernhammer, Christoph J; Aristizabal Prada, Elke Tatjana; Lauseker, Michael; Grossman, Ashley; Exner, Samantha; Fischer, Christian; Grötzinger, Carsten; Schrader, Jörg; Grabowski, Patricia

    2017-01-01

    The therapeutic options for metastatic neuroendocrine tumors (NETs) are limited. As PI3K signaling is often activated in NETs, we have assessed the effects of selective PI3Kp110α inhibition by the novel agent BYL719 on cell viability, colony formation, apoptosis, cell cycle, signaling pathways, differentiation and secretion in pancreatic (BON-1, QGP-1) and pulmonary (H727) NET cell lines. Cell viability was investigated by WST-1 assay, colony formation by clonogenic assay, apoptosis by caspase3/7 assay, the cell cycle by FACS, cell signaling by Western blot analysis, expression of chromogranin A and somatostatin receptors 1/2/5 by RT-qPCR, and chromogranin A secretion by ELISA. BYL719 dose-dependently decreased cell viability and colony formation with the highest sensitivity in BON-1, followed by H727, and lowest sensitivity in QGP-1 cells. BYL719 induced apoptosis and G0/G1 cell cycle arrest associated with increased p27 expression. Western blots showed inhibition of PI3K downstream targets to a varying degree in the different cell lines, but IGF1R activation. The most sensitive BON-1 cells displayed a significant, and H727 cells a non-significant, GSK3 inhibition after BYL719 treatment, but these effects do not appear to be mediated through the IGF1R. In contrast, the most resistant QGP-1 cells showed no GSK3 inhibition, but a modest activation, which would partially counteract the other anti-proliferative effects. Accordingly, BYL719 enhanced neuroendocrine differentiation with the strongest effect in BON-1, followed by H727 cells indicated by induction of chromogranin A and somatostatin receptor 1/2 mRNA-synthesis, but not in QGP-1 cells. In BON-1 and QGP-1 cells, the BYL719/everolimus combination was synergistic through simultaneous AKT/mTORC1 inhibition, and significantly increased somatostatin receptor 2 transcription compared to each drug separately. Our results suggest that the agent BYL719 could be a novel therapeutic approach to the treatment of NETs that may sensitize NET cells to somatostatin analogs, and that if there is resistance to its action this may be overcome by combination with everolimus.

  18. Cordycepin Prevents Bone Loss through Inhibiting Osteoclastogenesis by Scavenging ROS Generation

    PubMed Central

    Dou, Ce; Cao, Zhen; Ding, Ning; Hou, Tianyong; Luo, Fei; Kang, Fei; Yang, Xiaochao; Jiang, Hong; Xie, Zhao; Hu, Min; Xu, Jianzhong; Dong, Shiwu

    2016-01-01

    Cordycepin was previously reported to have anti-tumor, anti-inflammatory and anti-oxidant activity. However, the potential role of cordycepin in bone metabolism and cell biology of osteoclasts remains unclear. In our study, we focused on the in vitro effects of cordycepin on osteoclastogenesis and its in vivo effects in ovariectomized (OVX) mice. Osteoclast differentiation, formation and fusion were evaluated by Tartrate-resistant acid phosphatase (TRAP) stain, focal adhesion stain and fusion assay, respectively. Osteoclastic bone resorption was evaluated by pit formation assay. Reactive oxygen species (ROS) generation and removal were detected by the ROS assay. OVX mice were orally administered with 10 mg/kg of cordycepin daily for four weeks. In vitro results revealed that cordycepin inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation, formation, fusion and bone resorption activity. We further proved that cordycepin treatments scavenged the generation of ROS, upregulated interferon regulatory factor 8 (IRF-8) and suppressed the activity of nuclear factor of activated T cells c1 (NFATc1) during osteoclastogenesis. In vivo results indicated cordycepin prevents bone loss, rescues bone microarchitecture, and restores bone mineralization in OVX mice. Our observations strongly suggested that cordycepin is an efficient osteoclast inhibitor and hold potential therapeutic value in preventing bone loss among postmenopausal osteoporosis patients. PMID:27104563

  19. Cordycepin Prevents Bone Loss through Inhibiting Osteoclastogenesis by Scavenging ROS Generation.

    PubMed

    Dou, Ce; Cao, Zhen; Ding, Ning; Hou, Tianyong; Luo, Fei; Kang, Fei; Yang, Xiaochao; Jiang, Hong; Xie, Zhao; Hu, Min; Xu, Jianzhong; Dong, Shiwu

    2016-04-20

    Cordycepin was previously reported to have anti-tumor, anti-inflammatory and anti-oxidant activity. However, the potential role of cordycepin in bone metabolism and cell biology of osteoclasts remains unclear. In our study, we focused on the in vitro effects of cordycepin on osteoclastogenesis and its in vivo effects in ovariectomized (OVX) mice. Osteoclast differentiation, formation and fusion were evaluated by Tartrate-resistant acid phosphatase (TRAP) stain, focal adhesion stain and fusion assay, respectively. Osteoclastic bone resorption was evaluated by pit formation assay. Reactive oxygen species (ROS) generation and removal were detected by the ROS assay. OVX mice were orally administered with 10 mg/kg of cordycepin daily for four weeks. In vitro results revealed that cordycepin inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation, formation, fusion and bone resorption activity. We further proved that cordycepin treatments scavenged the generation of ROS, upregulated interferon regulatory factor 8 (IRF-8) and suppressed the activity of nuclear factor of activated T cells c1 (NFATc1) during osteoclastogenesis. In vivo results indicated cordycepin prevents bone loss, rescues bone microarchitecture, and restores bone mineralization in OVX mice. Our observations strongly suggested that cordycepin is an efficient osteoclast inhibitor and hold potential therapeutic value in preventing bone loss among postmenopausal osteoporosis patients.

  20. Quantitative telomerase enzyme activity determination using droplet digital PCR with single cell resolution

    PubMed Central

    Ludlow, Andrew T.; Robin, Jerome D.; Sayed, Mohammed; Litterst, Claudia M.; Shelton, Dawne N.; Shay, Jerry W.; Wright, Woodring E.

    2014-01-01

    The telomere repeat amplification protocol (TRAP) for the human reverse transcriptase, telomerase, is a PCR-based assay developed two decades ago and is still used for routine determination of telomerase activity. The TRAP assay can only reproducibly detect ∼2-fold differences and is only quantitative when compared to internal standards and reference cell lines. The method generally involves laborious radioactive gel electrophoresis and is not conducive to high-throughput analyzes. Recently droplet digital PCR (ddPCR) technologies have become available that allow for absolute quantification of input deoxyribonucleic acid molecules following PCR. We describe the reproducibility and provide several examples of a droplet digital TRAP (ddTRAP) assay for telomerase activity, including quantitation of telomerase activity in single cells, telomerase activity across several common telomerase positive cancer cells lines and in human primary peripheral blood mononuclear cells following mitogen stimulation. Adaptation of the TRAP assay to digital format allows accurate and reproducible quantification of the number of telomerase-extended products (i.e. telomerase activity; 57.8 ± 7.5) in a single HeLa cell. The tools developed in this study allow changes in telomerase enzyme activity to be monitored on a single cell basis and may have utility in designing novel therapeutic approaches that target telomerase. PMID:24861623

  1. A dual reporter cell assay for identifying serotype and drug susceptibility of herpes simplex virus.

    PubMed

    Lu, Wen-Wen; Sun, Jun-Ren; Wu, Szu-Sian; Lin, Wan-Hsuan; Kung, Szu-Hao

    2011-08-15

    A dual reporter cell assay (DRCA) that allows real-time detection of herpes simplex virus (HSV) infection was developed. This was achieved by stable transfection of cells with an expression cassette that contains the dual reporter genes, secreted alkaline phosphatase (SEAP) and enhanced green fluorescent protein (EGFP), under the control of an HSV early gene promoter. Baby hamster kidney (BHK) and Chinese hamster ovary (CHO) cell lines were used as parental cell lines because the former is permissive for both HSV serotypes, HSV-1 and HSV-2, whereas the latter is susceptible to infection only by HSV-2. The DRCA permitted differential detection of HSV-1 and HSV-2 by observation of EGFP-positive cells, as substantiated by screening a total of 35 samples. The BHK-based cell line is sensitive to a viral titer as low as a single plaque-forming unit with a robust assay window as measured by a chemiluminescent assay. Evaluations of the DRCA with representative acyclovir-sensitive and acyclovir-resistant HSV strains demonstrated that their drug susceptibilities were accurately determined by a 48-h format. In summary, this novel DRCA is a useful means for serotyping of HSV in real time as well as a rapid screening method for determining anti-HSV susceptibilities. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Inhibitory effect of phloretin and biochanin A on IgE-mediated allergic responses in rat basophilic leukemia RBL-2H3 cells.

    PubMed

    Chung, Mi Ja; Sohng, Jae Kyung; Choi, Doo Jin; Park, Yong Il

    2013-09-17

    Anti-allergic effects and action mechanism of phloretin (Phl) and biochanin A (BioA) on the IgE-antigen complex-mediated allergic responses in rat basophilic leukemia RBL-2H3 cells were investigated. Cell viability, formation of reactive oxygen species (ROS), DPPH radical-scavenging activity, β-hexosaminidase release, production of interleukin (IL)-4, IL-13, and tumor necrosis factor-alpha (TNF-α) and phosphorylation of Akt and mitogen-activated protein kinase (MAPK) were determined by MTT assay, 2,7-dichlorofluorescein diacetate (DCF-DA) assay, DPPH radical-scavenging assay, reverse transcriptase polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and western blot analysis, respectively. Ph1 and BioA dose-dependently inhibited the formation of ROS and the release of β-hexosaminidase from the RBL-2H3 cells and also showed DPPH radical-scavenging activity. Ph1 and BioA suppressed the antigen-induced phosphorylation of the downstream signaling intermediates, including MAPK and Akt, which are critical for the production of pro-inflammatory cytokines, and also significantly attenuated the production of IgE-mediated pro-inflammatory cytokines, such as IL-4, IL-13, and TNF-α. Phloretin and biochanin A attenuate the degranulation and allergic cytokine production through inhibition of intracellular ROS production and the phosphorylation of Akt and the MAPKs, such as ERK1/2, p38, and JNK. The results of this study suggested that these two plant flavonoids may have potent anti-allergic activity in vitro. © 2013.

  3. Overexpression of miR-133 decrease primary endothelial cells proliferation and migration via FGFR1 targeting.

    PubMed

    Zomorrod, Mina Soufi; Kouhkan, Fatemeh; Soleimani, Masoud; Aliyan, Amir; Tasharrofi, Nooshin

    2018-03-30

    Angiogenesis is one of the essential hallmarks of cancer that is controlled by the balance between positive and negative regulators. FGFR1 signaling is crucial for the execution of bFGF-induced proliferation, migration, and tube formation of endothelial cells (ECs) and onset of angiogenesis on tumors. The purpose of this study is to identify whether or not miR-133 regulates FGFR1 expression and accordingly hypothesize if it plays a crucial role in modulating bFGF/FGFR1 activity in ECs and blocking tumor angiogenesis through targeting FGFR1. The influences of miR-133 overexpression on bFGF stimulated endothelial cells were assessed by cell growth curve, MTT assaying, tube formation, and migration assays. Forced expression of miR-133 caused significant reductions in bFGF-induced proliferation and migratory ability of ECs. MiR-133 Expression was negatively correlated with both mRNA and protein levels of FGFR1 in the transfected ECs isolated from peripheral blood. Moreover, overexpression of miR-133 drastically reduced the rate of cell division and disturbed capillary network formation of transfected ECs. These findings suggest that miR-133 plays an important function in bFGF-induced angiogenesis processes in ECs and provides a rationale for new therapeutic approaches to suppress tumor angiogenesis and cancer. Copyright © 2018. Published by Elsevier Inc.

  4. Dynamic monitoring of membrane nanotubes formation induced by vaccinia virus on a high throughput microfluidic chip

    NASA Astrophysics Data System (ADS)

    Xiao, Min; Xu, Na; Wang, Cheng; Pang, Dai-Wen; Zhang, Zhi-Ling

    2017-03-01

    Membrane nanotubes (MNTs) are physical connections for intercellular communication and induced by various viruses. However, the formation of vaccinia virus (VACV)-induced MNTs has never been studied. In this report, VACV-induced MNTs formation process was monitored on a microfluidic chip equipped with a series of side chambers, which protected MNTs from fluidic shear stress. MNTs were formed between susceptible cells and be facilitated by VACV infection through three patterns. The formed MNTs varied with cell migration and virus concentration. The length of MNTs was positively correlated with the distance of cell migration. With increasing virus titer, the peak value of the ratio of MNT-carried cell appeared earlier. The immunofluorescence assay indicated that the rearrangement of actin fibers induced by VACV infection may lead to the formation of MNTs. This study presents evidence for the formation of MNTs induced by virus and helps us to understand the relationship between pathogens and MNTs.

  5. A solid-phase glycosyltransferase assay for high-throughput screening in drug discovery research.

    PubMed

    Donovan, R S; Datti, A; Baek, M G; Wu, Q; Sas, I J; Korczak, B; Berger, E G; Roy, R; Dennis, J W

    1999-10-01

    Glycosyltransferases mediate changes in glycosylation patterns which, in turn, may affect the function of glycoproteins and/or glycolipids and, further downstream, processes of development, differentiation, transformation and cell-cell recognition. Such enzymes, therefore, represent valid targets for drug discovery. We have developed a solid-phase glycosyltransferase assay for use in a robotic high-throughput format. Carbohydrate acceptors coupled covalently to polyacrylamide are coated onto 96-well plastic plates. The glycosyltransferase reaction is performed with recombinant enzymes and radiolabeled sugar-nucleotide donor at 37 degrees C, followed by washing, addition of scintillation counting fluid, and measurement of radioactivity using a 96-well beta-counter. Glycopolymer construction and coating of the plastic plates, enzyme and substrate concentrations, and linearity with time were optimized using recombinant Core 2 beta1-6-N-acetylglucosaminyltransferase (Core 2 GlcNAc-T). This enzyme catalyzes a rate-limiting reaction for expression of polylactosamine and the selectin ligand sialyl-Lewis(x) in O-glycans. A glycopolymer acceptor for beta1-6-N-acetylglucosaminyltransferase V was also designed and shown to be effective in the solid-phase assay. In a high-throughput screen of a microbial extract library, the coefficient of variance for positive controls was 9.4%, and high concordance for hit validation was observed between the Core 2 GlcNAc-T solid-phase assay and a standard solution-phase assay. The solid-phase assay format, which can be adapted for a variety of glycosyltransferase enzymes, allowed a 5-6 fold increase in throughput compared to the corresponding solution-phase assay.

  6. Proliferating cell nuclear antigen promotes cell proliferation and tumorigenesis by up-regulating STAT3 in non-small cell lung cancer.

    PubMed

    Wang, Liuxin; Kong, Weixiang; Liu, Bing; Zhang, Xueqing

    2018-08-01

    Proliferating cell nuclear antigen (PCNA) functions as a bridging molecule, which targets proteins that have distinct roles in cell growth. The expression of PCNA is dysregulated in some tumors and takes part in the progression of oncogenesis. However, the roles of PCNA in the progression of non-small cell lung cancer (NSCLC) remain unknown. The present study aimed to investigate the function of PCNA in the occurrence and development of NSCLC and its underlying molecular mechanisms. Western blotting, RT-PCR, and immunohistochemistry assays were used to detect the expression pattern of PCNA in NSCLC tissues and cells. A log rank test was performed to compare the overall survival (OS) of patients with high/low expression of PCNA. Besides, the relationship between PCNA and signal transducer and activator of transcription-3 (STAT3) proteins were evaluated. Then, MTT, flow cytometry, clonal formation, and in vivo xenograft assays were conducted to investigate the effects of PCNA/STAT3 on cell growth, clonal formation, apoptosis, and tumorigenesis. Results showed that PCNA expression was elevated in NSCLC tissues and cells and it could combine with STAT3 and increased its expression and phosphorylation. Moreover, the expression of PCNA showed a positive correlation with the TNM grade and occurrence rate of the lymphatic metastasis and poor prognosis of NSCLC patients. Overexpression of PCNA promoted cell proliferation, clonal formation, and tumorigenesis in lung cancer cells and inhibited cell apoptosis. In contrast, these effects were inhibited when knockdown of STAT3. In conclusion, this study demonstrates that PCNA functions as an oncogene in the progression of NSCLC through up-regulation of STAT3. These findings point to a potentially new therapeutic strategy for NSCLC. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. ApoE gene deficiency enhances the reduction of bone formation induced by a high-fat diet through the stimulation of p53-mediated apoptosis in osteoblastic cells.

    PubMed

    Hirasawa, Hideyuki; Tanaka, Shinya; Sakai, Akinori; Tsutsui, Masato; Shimokawa, Hiroaki; Miyata, Hironori; Moriwaki, Sawako; Niida, Shumpei; Ito, Masako; Nakamura, Toshitaka

    2007-07-01

    Osteoblast apoptosis increased in the tibias of apoE(-/-) mice fed with a high-fat diet, decreasing bone formation. The expression of p53 mRNA in marrow adherent cells increased. LDL or oxidized LDL increased apoptosis in the calvarial cells of apoE(-/-) mice. The increase in p53-mediated apoptosis is apparently related to a high-fat diet-induced osteopenia in apoE(-/-) mice. The effects of high-fat loading and the apolipoprotein E (apoE) gene on bones have not been elucidated. We hypothesized that apoE gene deficiency (apoE(-/-)) modulates the effects of high-fat loading on bones. We assessed this hypothesis using wildtype (WT) and apoE(-/-) mice fed a standard (WTS and ApoES groups) or a high-fat diet (WTHf and ApoEHf groups). The concentration of serum lipid levels and bone chemical markers were measured. Histomorphometry of the femurs was performed using microCT and a microscope. Bone marrow adherent cells from the femurs were used for colony-forming unit (CFU)-fibroblastic (CFU-f) assay and mRNA expressions analysis. The apoptotic cells in the tibias were counted. TUNEL fluorescein assay and Western analysis were performed in cultures of calvarial cells by the addition of low-density lipoprotein (LDL) or oxidized LDL. In the ApoEHf group, the values of cortical bone volume and trabecular and endocortical bone formation of the femurs decreased, and urinary deoxypyridinoline increased. Subsequent analysis revealed that the number of apoptotic cells in the tibias of the ApoES group increased, and more so in the ApoEHf group. The ratio of alkaline phosphatase-positive CFU-f to total CFU-f was decreased in the ApoEHf group. p53 mRNA expression in adherent cells of the apoE(-/-) mice increased and had a significantly strong positive correlation with serum LDL. TUNEL fluorescein assay of osteoblastic cells revealed an increase of apoptotic cells in the apoE(-/-) mice. The number of apoptotic cells in the apoE(-/-) mice increased with the addition of 100 microg/ml LDL or oxidized LDL. The p53 protein expression in apoE(-/-) cells exposed to 100 microg/ml LDL or oxidized LDL increased. We concluded that apoE gene deficiency enhances the reduction of bone formation induced by a high-fat diet through the stimulation of p53-mediated apoptosis in osteoblastic cells.

  8. Combined Effects of Nonylphenol and Bisphenol A on the Human Prostate Epithelial Cell Line RWPE-1

    PubMed Central

    Gan, Weidong; Zhou, Ming; Xiang, Zou; Han, Xiaodong; Li, Dongmei

    2015-01-01

    The xenoestrogens nonylphenol (NP) and bisphenol A (BPA) are regarded as endocrine disrupting chemicals (EDCs) which have widespread occurrence in our daily life. In the present study, the purpose was to analyze the combined effects of NP and BPA on the human prostate epithelial cell line RWPE-1 using two mathematical models based on the Loewe additivity (LA) theory and the Bliss independence (BI) theory. RWPE-1 cells were treated with NP (0.01–100 µM) and BPA (1–5000 µM) in either a single or a combined format. A cell viability assay and lactate dehydrogenase (LDH) leakage rate assay were employed as endpoints. As predicted by the two models and based on the cell viability assay, significant synergism between NP and BPA were observed. However, based on the LDH assay, the trends were reversed. Given that environmental contaminants are frequently encountered simultaneously, these data indicated that there were potential interactions between NP and BPA, and the combined effects of the chemical mixture might be stronger than the additive values of individual chemicals combined, which should be taken into consideration for the risk assessment of EDCs. PMID:25874684

  9. Ibrutinib, a Bruton's tyrosine kinase inhibitor, exhibits antitumoral activity and induces autophagy in glioblastoma.

    PubMed

    Wang, Jin; Liu, Xiaoyang; Hong, Yongzhi; Wang, Songtao; Chen, Pin; Gu, Aihua; Guo, Xiaoyuan; Zhao, Peng

    2017-07-17

    Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults. Ibrutinib, a Bruton's tyrosine kinase (BTK) inhibitor, is a novel anticancer drug used for treating several types of cancers. In this study, we aimed to determine the role of ibrutinib on GBM. Cell proliferation was determined by using cell viability, colony formation, and 5-ethynyl-2'-deoxyuridine (EdU) assays. Cell cycle and cell apoptosis were analyzed by flow cytometry. Cell migratory ability was evaluated by wound healing assays and trans-well migration assays. ATG7 expression was knocked-down by transfection with Atg7-specific small interfering RNA. Overexpression of active Akt protein was achieved by transfecting the cells with a plasmid expressing constitutively active Akt (CA-Akt). Transmission electron microscopy was performed to examine the formation of autophagosomes in cells. Immunofluorescence and western blot analyses were used to analyze protein expression. Tumor xenografts in nude mice and immunohistochemistry were performed to evaluate the effect of ibrutinib on tumor growth in vivo. Ibrutinib inhibited cellular proliferation and migration, and induced apoptosis and autophagy in LN229 and U87 cells. Overexpression of the active Akt protein decreased ibrutinib-induced autophagy, while inhibiting Akt by LY294002 treatment enhanced ibrutinib-induced autophagy. Specific inhibition of autophagy by 3-methyladenine (3MA) or Atg7 targeting with small interfering RNA (si-Atg7) enhanced the anti-GBM effect of ibrutinib in vitro and in vivo. Our results indicate that ibrutinib exerts a profound antitumor effect and induces autophagy through Akt/mTOR signaling pathway in GBM cells. Autophagy inhibition promotes the antitumor activity of ibrutinib in GBM. Our findings provide important insights into the action of an anticancer agent combining with autophagy inhibitor for malignant glioma.

  10. Indigo naturalis and its component tryptanthrin exert anti-angiogenic effect by arresting cell cycle and inhibiting Akt and FAK signaling in human vascular endothelial cells.

    PubMed

    Chang, Hsin-Ning; Huang, Sheng-Teng; Yeh, Yuan-Chieh; Wang, Hsin-Shih; Wang, Tzu-Hao; Wu, Yi-Hong; Pang, Jong-Hwei S

    2015-11-04

    Indigo naturalis has been used to treat inflammatory diseases and dermatosis, including psoriasis, since thousands of years in China. It has been proven effective in our previous clinical studies on treating psoriasis, but the active component and the mechanism of how indigo naturalis working still needs to be clarified. Since the dysregulated angiogenesis is known to play an important role in the pathogenesis of psoriasis, the anti-angiogenic effect of indigo naturalis and tryptanthrin, a pure component of indigo naturalis, was investigated. The in vivo angiogenesis was studied by chick chorioallantoic membrane assay. The in vitro studies were performed using human vascular endothelial cells. Cell viability was determined by MTT assay. Cell cycle distribution was revealed by flow cytometry. The cellular messenger (m)RNA or protein expression level was analyzed by real-time RT-PCR or Western blot, respectively. Transwell filter migration assay and matrix gel-induced tube formation method were applied to examine the angiogenic potential. Indigo naturalis significantly inhibited the in vivo vascular endothelial growth factor (VEGF)-induced angiogenesis, as well as tryptanthrin. In vitro studies confirmed that indigo naturalis and tryptanthrin reduced the number of viable vascular endothelial cells. Tryptanthrin resulted in a cell cycle arrest and dose-dependently decreased the expressions of cyclin A, cyclin B, cyclin dependent kinase(CDK) 1 and 2, but not cyclin D and cyclin E, at both the mRNA and protein levels. The migration and tube formation of vascular endothelial cells were significantly inhibited by tryptanthrin in a dose-dependent manner. Result also showed that tryptanthrin could reduce the phosphorylated levels of both protein kinase B (PKB or Akt) and focal adhesion kinase (FAK). All together, these results demonstrated the anti-angiogenic effect of tryptanthrin, the acting component of indigo naturalis and revealed the underlying mechanism by inhibiting the cell cycle progression, cell migration and tube formation, likely mediated through blocking the Akt and FAK pathways. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  11. A High-Throughput Assay for Rho Guanine Nucleotide Exchange Factors Based on the Transcreener GDP Assay.

    PubMed

    Reichman, Melvin; Schabdach, Amanda; Kumar, Meera; Zielinski, Tom; Donover, Preston S; Laury-Kleintop, Lisa D; Lowery, Robert G

    2015-12-01

    Ras homologous (Rho) family GTPases act as molecular switches controlling cell growth, movement, and gene expression by cycling between inactive guanosine diphosphate (GDP)- and active guanosine triphosphate (GTP)-bound conformations. Guanine nucleotide exchange factors (GEFs) positively regulate Rho GTPases by accelerating GDP dissociation to allow formation of the active, GTP-bound complex. Rho proteins are directly involved in cancer pathways, especially cell migration and invasion, and inhibiting GEFs holds potential as a therapeutic strategy to diminish Rho-dependent oncogenesis. Methods for measuring GEF activity suitable for high-throughput screening (HTS) are limited. We developed a simple, generic biochemical assay method for measuring GEF activity based on the fact that GDP dissociation is generally the rate-limiting step in the Rho GTPase catalytic cycle, and thus addition of a GEF causes an increase in steady-state GTPase activity. We used the Transcreener GDP Assay, which relies on selective immunodetection of GDP, to measure the GEF-dependent stimulation of steady-state GTP hydrolysis by small GTPases using Dbs (Dbl's big sister) as a GEF for Cdc42, RhoA, and RhoB. The assay is well suited for HTS, with a homogenous format and far red fluorescence polarization (FP) readout, and it should be broadly applicable to diverse Rho GEF/GTPase pairs. © 2015 Society for Laboratory Automation and Screening.

  12. Quantitative analysis of chromosome condensation in fission yeast.

    PubMed

    Petrova, Boryana; Dehler, Sascha; Kruitwagen, Tom; Hériché, Jean-Karim; Miura, Kota; Haering, Christian H

    2013-03-01

    Chromosomes undergo extensive conformational rearrangements in preparation for their segregation during cell divisions. Insights into the molecular mechanisms behind this still poorly understood condensation process require the development of new approaches to quantitatively assess chromosome formation in vivo. In this study, we present a live-cell microscopy-based chromosome condensation assay in the fission yeast Schizosaccharomyces pombe. By automatically tracking the three-dimensional distance changes between fluorescently marked chromosome loci at high temporal and spatial resolution, we analyze chromosome condensation during mitosis and meiosis and deduct defined parameters to describe condensation dynamics. We demonstrate that this method can determine the contributions of condensin, topoisomerase II, and Aurora kinase to mitotic chromosome condensation. We furthermore show that the assay can identify proteins required for mitotic chromosome formation de novo by isolating mutants in condensin, DNA polymerase ε, and F-box DNA helicase I that are specifically defective in pro-/metaphase condensation. Thus, the chromosome condensation assay provides a direct and sensitive system for the discovery and characterization of components of the chromosome condensation machinery in a genetically tractable eukaryote.

  13. Quantitative Analysis of Chromosome Condensation in Fission Yeast

    PubMed Central

    Petrova, Boryana; Dehler, Sascha; Kruitwagen, Tom; Hériché, Jean-Karim; Miura, Kota

    2013-01-01

    Chromosomes undergo extensive conformational rearrangements in preparation for their segregation during cell divisions. Insights into the molecular mechanisms behind this still poorly understood condensation process require the development of new approaches to quantitatively assess chromosome formation in vivo. In this study, we present a live-cell microscopy-based chromosome condensation assay in the fission yeast Schizosaccharomyces pombe. By automatically tracking the three-dimensional distance changes between fluorescently marked chromosome loci at high temporal and spatial resolution, we analyze chromosome condensation during mitosis and meiosis and deduct defined parameters to describe condensation dynamics. We demonstrate that this method can determine the contributions of condensin, topoisomerase II, and Aurora kinase to mitotic chromosome condensation. We furthermore show that the assay can identify proteins required for mitotic chromosome formation de novo by isolating mutants in condensin, DNA polymerase ε, and F-box DNA helicase I that are specifically defective in pro-/metaphase condensation. Thus, the chromosome condensation assay provides a direct and sensitive system for the discovery and characterization of components of the chromosome condensation machinery in a genetically tractable eukaryote. PMID:23263988

  14. GaAlAs laser irradiation induces active tertiary dentin formation after pulpal apoptosis and cell proliferation in rat molars.

    PubMed

    Shigetani, Yoshimi; Sasa, Natsuki; Suzuki, Hironobu; Okiji, Takashi; Ohshima, Hayato

    2011-08-01

    This study aimed to clarify pulpal responses to gallium-aluminum-arsenide (GaAlAs) laser irradiation. Maxillary first molars of 8-week-old rats were irradiated at an output power of 0.5 or 1.5 W for 180 seconds, and the samples were collected at intervals of 0 to 14 days. The demineralized paraffin sections were processed for immunohistochemistry for heat-shock protein (HSP)-25 and nestin in addition to cell proliferation assay using bromodeoxyuridine (BrdU) labeling and apoptosis assay using deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling (TUNEL). Intense HSP-25 and nestin immunoreactivities in the odontoblast layer were weakened immediately after 0.5-W irradiation and recovered on day 1, resulting in slight tertiary dentin formation by day 14. On the contrary, 1.5-W irradiation immediately induced the loss of HSP-25 and nestin-immunoreactivities in the odontoblast layer. On day 1, numerous TUNEL-positive cells appeared in a degenerative zone that was surrounded by intense HSP-25 immunoreactivity. BrdU-positive cells occurred within the intensely HSP-25-immunopositive areas during days 2 through 5, whereas TUNEL-positive cells gradually decreased in number by day 5. HSP-25- and nestin-positive odontoblast-like cells were arranged along the pulp-dentin border by day 7, resulting in remarkable tertiary dentin formation on day 14. The output energy determined pulpal healing patterns after GaAlAs laser irradiation; the higher energy induced the apoptosis in the affected dental pulp including odontoblasts followed by active cell proliferation in the intense HSP-25-immunoreactive areas surrounding the degenerative tissue, resulting in abundant tertiary dentin formation. Thus, the optimal GaAlAs laser irradiation elicited intentional tertiary dentin formation in the dental pulp. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. The ancillary protein 1 of Streptococcus pyogenes FCT-1 pili mediates cell adhesion and biofilm formation through heterophilic as well as homophilic interactions

    PubMed Central

    Becherelli, Marco; Manetti, Andrea G O; Buccato, Scilla; Viciani, Elisa; Ciucchi, Laura; Mollica, Giulia; Grandi, Guido; Margarit, Imma

    2012-01-01

    Summary Gram-positive pili are known to play a role in bacterial adhesion to epithelial cells and in the formation of biofilm microbial communities. In the present study we undertook the functional characterization of the pilus ancillary protein 1 (AP1_M6) from Streptococcus pyogenes isolates expressing the FCT-1 pilus variant, known to be strong biofilm formers. Cell binding and biofilm formation assays using S. pyogenes in-frame deletion mutants, Lactococcus expressing heterologous FCT-1 pili and purified recombinant AP1_M6, indicated that this pilin is a strong cell adhesin that is also involved in bacterial biofilm formation. Moreover, we show that AP1_M6 establishes homophilic interactions that mediate inter-bacterial contact, possibly promoting bacterial colonization of target epithelial cells in the form of three-dimensional microcolonies. Finally, AP1_M6 knockout mutants were less virulent in mice, indicating that this protein is also implicated in GAS systemic infection. PMID:22320452

  16. A novel assay for monoacylglycerol hydrolysis suitable for high-throughput screening.

    PubMed

    Brengdahl, Johan; Fowler, Christopher J

    2006-12-01

    A simple assay for monoacylglycerol hydrolysis suitable for high-throughput screening is described. The assay uses [(3)H]2-oleoylglycerol as substrate, with the tritium label in the glycerol part of the molecule and the use of phenyl sepharose gel to separate the hydrolyzed product ([(3)H]glycerol) from substrate. Using cytosolic fractions derived from rat cerebella as a source of hydrolytic activity, the assay gives the appropriate pH profile and sensitivity to inhibition with compounds known to inhibit hydrolysis of this substrate. The assay could also be adapted to a 96-well plate format, using C6 cells as the source of hydrolytic activity. Thus the assay is simple and appropriate for high-throughput screening of inhibitors of monoacylglycerol hydrolysis.

  17. Losartan Attenuates Scar Formation in Filtering Bleb After Trabeculectomy.

    PubMed

    Shi, Huimin; Wang, Huiying; Fu, Shuhao; Xu, Kang; Zhang, Xiaoyan; Xiao, Yiqin; Ye, Wen

    2017-03-01

    To examine the effects of losartan on scar formation after trabeculectomy and on fibrotic changes of human Tenon's fibroblasts (HTFs). Trabeculectomy was performed on New Zealand rabbits. They were randomized to receive one of the following treatments: 0.9% normal saline, mitomycin-C, or one of the three doses of losartan. Bleb morphology, IOP, and histopathology examination were performed. Primary cultured HTFs were treated with losartan or vehicle, with or without angiotensin II (Ang II). Cell proliferation was assessed by Cell Counting Kit-8 assay, and cell migration was detected by scratch wound and transwell assay. Transdifferentiation was evaluated through the expression of α-smooth muscle actin (α-SMA) by immunofluorescence, real-time PCR, and Western blot. The expression of fibronectin (FN) was evaluated by real-time PCR and Western blot. An amount of 5 mg/mL of losartan subconjunctival injection significantly decreased IOP postoperatively and attenuated wound healing of the filtering bleb in the rabbit model. Immunostaining results showed less myofibroblast and collagen deposition around the bleb area in the losartan-treated eyes. Losartan (10-5 M) in vitro significantly attenuated Ang II's stimulatory effects on proliferation and migration of HTFs. Expressions of α-SMA and FN in these cells were also decreased by losartan pretreatment. Losartan attenuates scar formation of filtering bleb after trabeculectomy likely via decreasing proliferation, migration, transdifferentiation, and extracellular matrix deposition of Tenon's fibroblasts. These results indicate that losartan may be an effective therapeutic agent in preventing bleb scar formation and in improving surgical outcome after trabeculectomy.

  18. Total extract of Korean red ginseng facilitates human bone marrow hematopoietic colony formation in vitro

    PubMed Central

    Kim, Sang-Gyung; Bae, Sung Hwa; Kim, Seong-Mo; Lee, Ji-Hye; Kim, Min Ji; Jang, Hae-Bong

    2014-01-01

    Background The number of CD34+ cells in a peripheral blood stem cell collection is the key factor in predicting successful treatment of hematologic malignancies. Korean Red Ginseng (KRG) (Panax ginseng C.A. Meyer) is the most popular medicinal herb in Korea. The objective of this study was to determine the effect of KRG on hematopoietic colony formation. Methods Bone marrow (BM) samples were obtained from 8 human donors after acquiring informed consent. BM mononuclear cells (MNCs) were isolated, and CD34+ cells were sorted using magnetic beads. The sorted CD34+ cells were incubated with or without total extract of KRG (50 µg/mL, 100 µg/mL) or Ginsenoside Rg1 (100 µg/mL), and the hematopoietic colony assay was performed using methylcellulose semisolid medium. The CD34+ cell counts were measured by a single platform assay using flow cytometry. Results The numbers of human BM-MNCs and CD34+ cells obtained after purification were variable among donors (5.6×107 and 1.3-48×107 and 8.9×104 and 1.8-80×104, respectively). The cells expanded 1,944 times after incubation for 12 d. Total extract of KRG added to the hematopoietic stem cell (HSC)-specific medium increased CD34+ cell counts 3.6 times compared to 2.6 times when using HSC medium alone. Total numbers of hematopoietic colonies in KRG medium were more than those observed in conventional medium, especially that of erythroid colonies such as burst forming unit-erythroid. Conclusion Total extract of KRG facilitated CD34+ cell expansion and hematopoietic colony formation, especially of the erythroid lineage. PMID:25325037

  19. HOXC6 promotes gastric cancer cell invasion by upregulating the expression of MMP9.

    PubMed

    Chen, Shi-Wei; Zhang, Qing; Xu, Zhi-Feng; Wang, Hai-Ping; Shi, Yi; Xu, Feng; Zhang, Wen-Jian; Wang, Ping; Li, Yong

    2016-10-01

    Previous studies have demonstrated that the homoebox C6 (HOXC6) gene is highly expressed in gastric cancer tissues and is associated with the depth of tumor invasion, and is associated with poor prognosis of gastric cancer patients expressing HOXC6. The present study investigated the effect and underlying mechanism of HOXC6 on the proliferation and metastasis of gastric cancer cells in vitro. Reverse transcription‑quantitative polymerase chain (PCR) reaction was used to investigate the expression levels of HOXC6 in different gastric cancer cell lines and the effect of different levels of expression on the proliferation of gastric cancer cells was determined by cell growth curve and plate colony formation. The effect of HOXC6 on the anchorage‑independent proliferation of gastric cancer cells was determined by soft agar colony formation assay while the Transwell invasion assay was used to investigate the effect of different levels of HOXC6 expression on the invasive and metastatic abilities of gastric cancer cells. Semi‑quantitative PCR was used to detect the effect of different levels of HOXC6 expression on the expression of matrix metalloproteinase (MMP)2 and MMP9 in gastric cancer cells. Immunoblotting was used to assess MMP9 signaling in the gastric cancer cells. The HOXC6 gene is highly expressed in the majority of the gastric cancer cell lines. Overexpression of HOXC6 promoted gastric cancer cell proliferation and colony formation ability while HOXC6 downregulation inhibited cell proliferation and clone forming ability. HOXC6 overexpression also enhanced the soft agar colony formation ability of gastric cancer cells while HOXC6 downregulation decreased the colony formation ability. Upregulated HOXC6 increased the migration and invasion abilities of gastric cancer cells while interfering with HOXC6 expression inhibited the migration and invasion of the gastric cancer cells. The expression of MMP9 was enhanced with an upregulation of HOXC6 expression while HOXC6 downregulation lowered MMP9 gene expression levels. Increased expression of HOXC6 in gastric cancer cell lines significantly activated extracellular signal‑regulated kinase signaling and upregulated MMP9. The HOXC6 gene promotes the proliferation of gastric cancer cells while upregulation of MMP9 promotes migration and invasion of gastric cancer cells.

  20. Sensitive and quantitative measurement of gene expression directly from a small amount of whole blood.

    PubMed

    Zheng, Zhi; Luo, Yuling; McMaster, Gary K

    2006-07-01

    Accurate and precise quantification of mRNA in whole blood is made difficult by gene expression changes during blood processing, and by variations and biases introduced by sample preparations. We sought to develop a quantitative whole-blood mRNA assay that eliminates blood purification, RNA isolation, reverse transcription, and target amplification while providing high-quality data in an easy assay format. We performed single- and multiplex gene expression analysis with multiple hybridization probes to capture mRNA directly from blood lysate and used branched DNA to amplify the signal. The 96-well plate singleplex assay uses chemiluminescence detection, and the multiplex assay combines Luminex-encoded beads with fluorescent detection. The single- and multiplex assays could quantitatively measure as few as 6000 and 24,000 mRNA target molecules (0.01 and 0.04 amoles), respectively, in up to 25 microL of whole blood. Both formats had CVs < 10% and dynamic ranges of 3-4 logs. Assay sensitivities allowed quantitative measurement of gene expression in the minority of cells in whole blood. The signals from whole-blood lysate correlated well with signals from purified RNA of the same sample, and absolute mRNA quantification results from the assay were similar to those obtained by quantitative reverse transcription-PCR. Both single- and multiplex assay formats were compatible with common anticoagulants and PAXgene-treated samples; however, PAXgene preparations induced expression of known antiapoptotic genes in whole blood. Both the singleplex and the multiplex branched DNA assays can quantitatively measure mRNA expression directly from small volumes of whole blood. The assay offers an alternative to current technologies that depend on RNA isolation and is amenable to high-throughput gene expression analysis of whole blood.

  1. Antiangiogenic effects and mechanisms of trans-ethyl p-methoxycinnamate from Kaempferia galanga L.

    PubMed

    He, Zhi-Heng; Yue, Grace Gar-Lee; Lau, Clara Bik-San; Ge, Wei; But, Paul Pui-Hay

    2012-11-14

    Kaempferia galanga L. (Zingiberaceae) is an aromatic herb and a popular spice used as a condiment in Asian cuisine. The ethanol extract of the dried plant and its successive four subfractions were investigated on zebrafish model by quantitative endogenous alkaline phosphatase assay. Both n-hexane and ethyl acetate fractions had antiangiogenic activity, and two major active components (trans-ethyl p-methoxycinnamate and kaempferol) showed potent antiangiogenic effects on wild-type zebrafish. Because of its much stronger effect and no antiangiogenic activity reported, trans-ethyl p-methoxycinnamate was further investigated for its action mechanism. It dose dependently inhibited vessel formation on both wild- and Tg(fli1a:EGFP)y1-type zebrafish embryos. The semiquantitative reverse transcription polymerase chain reaction assay suggested that trans-ethyl p-methoxycinnamate affects multiple molecular targets related to angiogenesis. In vitro, it specifically inhibited the migration and tube formation of human umbilical vein endothelial cells. In vivo, it could block bFGF-induced vessel formation on Matrigel plug assay.

  2. Oxyfadichalcone C inhibits melanoma A375 cell proliferation and metastasis via suppressing PI3K/Akt and MAPK/ERK pathways.

    PubMed

    Peng, Xiaolin; Wang, Zhengming; Liu, Yang; Peng, Xin; Liu, Yao; Zhu, Shan; Zhang, Zhe; Qiu, Yuling; Jin, Meihua; Wang, Ran; Zhang, Qingying; Kong, Dexin

    2018-08-01

    Melanoma remains to be one of the most incurable cancers. Discovery of novel antitumor agent for melanoma therapy is expected. We recently isolated Oxyfadichalcone C from Oxytropis falcate and investigated the anti-proliferative and anti-metastatic activity on human melanoma A375 cells in vitro. Cell viability was determined using MTT assay and soft agar cloning formation assay. The effect of Oxyfadichalcone C on cell cycle distribution and apoptosis were analyzed by flow cytometry. Cell metastasis was determined by wound healing assay, Transwell assay and Gelatin zymography assay. The effect of Oxyfadichalcone C on signal proteins of PI3K/Akt and MAPK/ERK pathways was examined by western blot analysis. Synergism assay was employed to determine whether combination of Oxyfadichalcone C with Vemurafenib would enhance the anti-proliferative effect. Oxyfadichalcone C potently inhibited proliferation, induced G1 phase arrest and weak apoptosis in A375 cells. Anti-migration and anti-invasion activities were also indicated. Such effects were associated with upregulation of p27, reduction of cyclin D1, p-pRb, p-Integrin β1, as well as the proteolytic activity of metalloproteinase (MMP)-2/9. Meanwhile, key molecules of PI3K/Akt and MAPK/ERK pathways were downregulated, which might be involved in the inhibition against proliferation and metastasis of A375 cells by Oxyfadichalcone C. In addition, combination of Oxyfadichalcone C with Vemurafenib at a ratio of IC50 Oxyfadichalcone C : 5 × IC 50 Vemurafenib exhibited synergistic anti-proliferative effect on A375 cells. Our findings suggest that Oxyfadichalcone C has the potential to be developed as a promising drug candidate for the treatment of melanoma. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Use of the NP-40 detergent-mediated assay in discovery of inhibitors of beta-hematin crystallization.

    PubMed

    Sandlin, Rebecca D; Carter, Melissa D; Lee, Patricia J; Auschwitz, Jennifer M; Leed, Susan E; Johnson, Jacob D; Wright, David W

    2011-07-01

    The protozoan parasite responsible for malaria affects over 500 million people each year. Current antimalarials have experienced decreased efficacy due to the development of drug-resistant strains of Plasmodium spp., resulting in a critical need for the discovery of new antimalarials. Hemozoin, a crystalline by-product of heme detoxification that is necessary for parasite survival, serves as an important drug target. The quinoline antimalarials, including amodiaquine and chloroquine, act by inhibiting the formation of hemozoin. The formation of this crystal does not occur spontaneously, and recent evidence suggests crystallization occurs in the presence of neutral lipid particles located in the acidic digestive vacuole of the parasite. To mimic these conditions, the lipophilic detergent NP-40 has previously been shown to successfully mediate the formation of β-hematin, synthetic hemozoin. Here, an NP-40 detergent-based assay was successfully adapted for use as a high-throughput screen to identify inhibitors of β-hematin formation. The resulting assay exhibited a favorable Z' of 0.82 and maximal drift of less than 4%. The assay was used in a pilot screen of 38,400 diverse compounds at a screening concentration of 19.3 μM, resulting in the identification of 161 previously unreported β-hematin inhibitors. Of these, 48 also exhibited ≥ 90% inhibition of parasitemia in a Plasmodium falciparum whole-cell assay at a screening concentration of 23 μM. Eight of these compounds were identified to have nanomolar 50% inhibitory concentration values near that of chloroquine in this assay.

  4. A cell-based assay for aggregation inhibitors as therapeutics of polyglutamine-repeat disease and validation in Drosophila

    NASA Astrophysics Data System (ADS)

    Apostol, Barbara L.; Kazantsev, Alexsey; Raffioni, Simona; Illes, Katalin; Pallos, Judit; Bodai, Laszlo; Slepko, Natalia; Bear, James E.; Gertler, Frank B.; Hersch, Steven; Housman, David E.; Marsh, J. Lawrence; Michels Thompson, Leslie

    2003-05-01

    The formation of polyglutamine-containing aggregates and inclusions are hallmarks of pathogenesis in Huntington's disease that can be recapitulated in model systems. Although the contribution of inclusions to pathogenesis is unclear, cell-based assays can be used to screen for chemical compounds that affect aggregation and may provide therapeutic benefit. We have developed inducible PC12 cell-culture models to screen for loss of visible aggregates. To test the validity of this approach, compounds that inhibit aggregation in the PC12 cell-based screen were tested in a Drosophila model of polyglutamine-repeat disease. The disruption of aggregation in PC12 cells strongly correlates with suppression of neuronal degeneration in Drosophila. Thus, the engineered PC12 cells coupled with the Drosophila model provide a rapid and effective method to screen and validate compounds.

  5. LncRNA AWPPH inhibits SMAD4 via EZH2 to regulate bladder cancer progression.

    PubMed

    Zhu, Feng; Zhang, Xinjun; Yu, Qinnan; Han, Guangye; Diao, Fengxia; Wu, Chunlei; Zhang, Yan

    2018-06-01

    This study aimed to investigate the effect and underlying mechanism of lncRNA AWPPH in bladder cancer (BC). A total of 20 Ta-T1 stage BC tissues, 20 T2-T4 stage BC tissues, and 20 normal bladder tissues, as well as human bladder epithelial cell line SV-HUC-1, human BC cell lines RT4, and T24 were obtained to detect the levels of AWPPH, enhancer of zeste homolog 2 (EZH2) and SMAD4 using RT-qPCR or Western blotting. RT4 cells were transfected with pc-AWPPH, pc-EZH2, or pc-control and T24 cells were transfected with si-AWPPH, si-EZH2, si-control, or pc-AWPPH + pc-SMAD4, respectively. Then, cell proliferation, apoptosis, autophagy, and migration, were detected using MTT assay, colony formation assay, Annexin V-FITC/PI method, Western blotting, and Transwell analysis, respectively. The relationship of AWPPH and EZH2 or SMAD4 was evaluated by RNA immunoprecipitation (RIP) assay or Chromatin immunoprecipitation (ChIP) assay. Compared with normal bladder tissues or cells, the levels of AWPPH and EZH2 were overexpressed, while SMAD4 was down-regulated in BC tissues or cells (all P < 0.01). Cell viability, colony number, and migration were significantly increased, while cell apoptosis ratio was reduced in cells with pc-AWPPH compared with cells with pc-control (all P < 0.05), meanwhile, these effects were reversed by the treatment of pc-SMAD4. Then, RIP assay revealed that AWPPH could bind to EZH2 and ChIP assay showed SMAD4 was regulated by EZH2. LncRNA AWPPH can promote cell proliferation, autophagy, and migration, as well as inhibit cell apoptosis in BC by inhibiting SMAD4 via EZH2. © 2017 Wiley Periodicals, Inc.

  6. Coatomer subunit beta 2 (COPB2), identified by label-free quantitative proteomics, regulates cell proliferation and apoptosis in human prostate carcinoma cells.

    PubMed

    Mi, Yuanyuan; Sun, Chuanyu; Wei, Bingbing; Sun, Feiyu; Guo, Yijun; Hu, Qingfeng; Ding, Weihong; Zhu, Lijie; Xia, Guowei

    2018-01-01

    Label-free quantitative proteomics has broad applications in the identification of differentially expressed proteins. Here, we applied this method to identify differentially expressed proteins (such as coatomer subunit beta 2 [COPB2]) and evaluated the functions and molecular mechanisms of these proteins in prostate cancer (PCA) cell proliferation. Proteins extracted from surgically resected PCA tissues and adjacent tissues of 3 patients were analyzed by label-free quantitative proteomics. The target protein was confirmed by bioinformatics and GEO dataset analyses. To investigate the role of the target protein in PCA, we used lentivirus-mediated small-interfering RNA (siRNA) to knockdown protein expression in the prostate carcinoma cell line, CWR22RV1 cells and assessed gene and protein expression by reverse transcription quantitative polymerase chain reaction and western blotting. CCK8 and colony formation assays were conducted to evaluate cell proliferation. Cell cycle distributions and apoptosis were assayed by flow cytometry. We selected the differentiation-related protein COPB2 as our target protein based on the results of label-free quantitative proteomics. High expression of COPB2 was found in PCA tissue and was related to poor overall survival based on a public dataset. Cell proliferation was significantly inhibited in COPB2-knockdown CWR22RV1 cells, as demonstrated by CCK8 and colony formation assays. Additionally, the apoptosis rate and percentage of cells in the G 1 phase were increased in COPB2-knockdown cells compared with those in control cells. CDK2, CDK4, and cyclin D1 were downregulated, whereas p21 Waf1/Cip1 and p27 Kip1 were upregulated, affecting the cell cycle signaling pathway. COPB2 significantly promoted CWR22RV1 cell proliferation through the cell cycle signaling pathway. Thus, silencing of COPB2 may have therapeutic applications in PCA. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. PSMA-targeted bispecific Fab conjugates that engage T cells.

    PubMed

    Patterson, James T; Isaacson, Jason; Kerwin, Lisa; Atassi, Ghazi; Duggal, Rohit; Bresson, Damien; Zhu, Tong; Zhou, Heyue; Fu, Yanwen; Kaufmann, Gunnar F

    2017-12-15

    Bioconjugate formats provide alternative strategies for antigen targeting with bispecific antibodies. Here, PSMA-targeted Fab conjugates were generated using different bispecific formats. Interchain disulfide bridging of an αCD3 Fab enabled installation of either the PSMA-targeting small molecule DUPA (SynFab) or the attachment of an αPSMA Fab (BisFab) by covalent linkage. Optimization of the reducing conditions was critical for selective interchain disulfide reduction and good bioconjugate yield. Activity of αPSMA/CD3 Fab conjugates was tested by in vitro cytotoxicity assays using prostate cancer cell lines. Both bispecific formats demonstrated excellent potency and antigen selectivity. Copyright © 2017. Published by Elsevier Ltd.

  8. A homogeneous cellular histone deacetylase assay suitable for compound profiling and robotic screening.

    PubMed

    Ciossek, Thomas; Julius, Heiko; Wieland, Heike; Maier, Thomas; Beckers, Thomas

    2008-01-01

    Most cellular assays that quantify the efficacy of histone deacetylase (HDAC) inhibitors measure hyperacetylation of core histone proteins H3 and H4. Here we describe a new approach, directly measuring cellular HDAC enzymatic activity using the substrate Boc-K(Ac)-7-amino-4-methylcoumarin (AMC). After penetration into HeLa cervical carcinoma or K562 chronic myeloid leukemia cells, the deacetylated product Boc-K-AMC is formed which, after cell lysis, is cleaved by trypsin, finally releasing the fluorophor AMC. The cellular potency of suberoylanilide hydroxamic acid, LBH589, trichostatin A, and MS275 as well-known HDAC inhibitors was determined using this assay. IC(50) values derived from concentration-effect curves correlated well with EC(50) values derived from a cellomics array scan histone H3 hyperacetylation assay. The cellular HDAC activity assay was adapted to a homogeneous format, fully compatible with robotic screening. Concentration-effect curves generated on a Tecan Genesis Freedom workstation were highly reproducible with a signal-to-noise ratio of 5.7 and a Z' factor of 0.88, indicating a very robust assay. Finally, a HDAC-inhibitor focused library was profiled in a medium-throughput screening campaign. Inhibition of cellular HDAC activity correlated well with cytotoxicity and histone H3 hyperacetylation in HeLa cells and with inhibition of human recombinant HDAC1 in a biochemical assay. Thus, by using Boc-K(Ac)-AMC as a cell-permeable HDAC substrate, the activity of various protein lysine-specific deacetylases including HDAC1-containing complexes is measurable in intact cells in a simple and homogeneous manner.

  9. Prediction of BRCA1 and BRCA2 mutation status using post-irradiation assays of lymphoblastoid cell lines is compromised by inter-cell-line phenotypic variability.

    PubMed

    Lovelock, Paul K; Wong, Ee Ming; Sprung, Carl N; Marsh, Anna; Hobson, Karen; French, Juliet D; Southey, Melissa; Sculley, Tom; Pandeya, Nirmala; Brown, Melissa A; Chenevix-Trench, Georgia; Spurdle, Amanda B; McKay, Michael J

    2007-09-01

    Assays to determine the pathogenicity of unclassified sequence variants in disease-associated genes include the analysis of lymphoblastoid cell lines (LCLs). We assessed the ability of several assays of LCLs to distinguish carriers of germline BRCA1 and BRCA2 gene mutations from mutation-negative controls to determine their utility for use in a diagnostic setting. Post-ionising radiation cell viability and micronucleus formation, and telomere length were assayed in LCLs carrying BRCA1 or BRCA2 mutations, and in unaffected mutation-negative controls. Post-irradiation cell viability and micronucleus induction assays of LCLs from individuals carrying pathogenic BRCA1 mutations, unclassified BRCA1 sequence variants or wildtype BRCA1 sequence showed significant phenotypic heterogeneity within each group. Responses were not consistent with predicted functional consequences of known pathogenic or normal sequences. Telomere length was also highly heterogeneous within groups of LCLs carrying pathogenic BRCA1 or BRCA2 mutations, and normal BRCA1 sequences, and was not predictive of mutation status. Given the significant degree of phenotypic heterogeneity of LCLs after gamma-irradiation, and the lack of association with BRCA1 or BRCA2 mutation status, we conclude that the assays evaluated in this study should not be used as a means of differentiating pathogenic and non-pathogenic sequence variants for clinical application. We suggest that a range of normal controls must be included in any functional assays of LCLs to ensure that any observed differences between samples reflect the genotype under investigation rather than generic inter-individual variation.

  10. Inhibitory effects of polysaccharide extract from Spirulina platensis on corneal neovascularization

    PubMed Central

    Yang, Lingling; Wang, Yao; Zhou, Qingjun; Chen, Peng; Wang, Yiqiang; Wang, Ye; Liu, Ting

    2009-01-01

    Purpose To assess the effects of polysaccharide extract from Spirulina platensis (PSP) on corneal neovascularization (CNV) in vivo and in vitro. Methods PSP was extracted from dry powder of Spirulina platensis. Its anti-angiogenic activity was evaluated in the mouse corneal alkali burn model after topical administration of PSP four times daily for up to seven days. Corneal samples were processed for histochemical, immunohistochemical, and gene expression analyses. The effects of PSP on proliferation, migration, tube formation, and serine threonine kinase (AKT) and extracellular regulated kinase1/2 (ERK1/2) signaling levels in vascular endothelial cells were determined using 3-(4,5)-dimethylthiahiazo (-z-y1)-3, 5-di-phenytetrazoliumromide (MTT) and carboxyfluorescein succinimidyl ester (CFSE) labeling assays, wound healing assay, Matrigel tube formation assay, and western blot. Results Topical application of PSP significantly inhibited CNV caused by alkali burn. Corneas treated with PSP showed reduced levels of platelet endothelial cell adhesion molecule (CD31) and stromal cell-derived factor 1 (SDF1) proteins, reduced levels of vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP2), matrix metalloproteinase-9 (MMP9), SDF1, and tumor necrosis factor-alpha (TNF-α) mRNAs, and an increased level of pigment epithelium-derived factor (PEDF) mRNA. These are parameters that have all been related to CNV and/or inflammation. In human vascular endothelial cells, PSP significantly inhibited proliferation, migration, and tube formation in a dose-dependent manner. Furthermore, PSP also decreased the levels of activated AKT and ERK 1/2. Conclusions These data suggest that polysaccharide extract from Spirulina platensis is a potent inhibitor of CNV and that it may be of benefit in the therapy of corneal diseases involving neovascularization and inflammation. PMID:19784394

  11. Genomic Disruption of VEGF-A Expression in Human Retinal Pigment Epithelial Cells Using CRISPR-Cas9 Endonuclease.

    PubMed

    Yiu, Glenn; Tieu, Eric; Nguyen, Anthony T; Wong, Brittany; Smit-McBride, Zeljka

    2016-10-01

    To employ type II clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 endonuclease to suppress ocular angiogenesis by genomic disruption of VEGF-A in human RPE cells. CRISPR sequences targeting exon 1 of human VEGF-A were computationally identified based on predicted Cas9 on- and off-target probabilities. Single guide RNA (gRNA) cassettes with these target sequences were cloned into lentiviral vectors encoding the Streptococcuspyogenes Cas9 endonuclease (SpCas9) gene. The lentiviral vectors were used to infect ARPE-19 cells, a human RPE cell line. Frequency of insertion or deletion (indel) mutations was assessed by T7 endonuclease 1 mismatch detection assay; mRNA levels were assessed with quantitative real-time PCR; and VEGF-A protein levels were determined by ELISA. In vitro angiogenesis was measured using an endothelial cell tube formation assay. Five gRNAs targeting VEGF-A were selected based on the highest predicted on-target probabilities, lowest off-target probabilities, or combined average of both scores. Lentiviral delivery of the top-scoring gRNAs with SpCas9 resulted in indel formation in the VEGF-A gene at frequencies up to 37.0% ± 4.0% with corresponding decreases in secreted VEGF-A protein up to 41.2% ± 7.4% (P < 0.001), and reduction of endothelial tube formation up to 39.4% ± 9.8% (P = 0.02). No significant indel formation in the top three putative off-target sites tested was detected. The CRISPR-Cas9 endonuclease system may reduce VEGF-A secretion from human RPE cells and suppress angiogenesis, supporting the possibility of employing gene editing for antiangiogenesis therapy in ocular diseases.

  12. Advanced glycation end products of bovine serum albumin-induced endothelial-to-mesenchymal transition in cultured human and monkey endothelial cells via protein kinase B signaling cascades.

    PubMed

    Ma, Jianli; Liu, Ting; Dong, Xiaoguang

    2010-12-09

    Advanced glycation end products of BSA (AGE-BSA) participate in the pathogenesis of diabetic vascular disease. However, the role of AGE-BSA in diabetic retinopathy, especially in retinal neovascularization, remains incomplete. This study aimed to determine the contributions of AGE-BSA in the endothelial-to-mesenchymal transition (EnMT) of cultured human and monkey endothelial cell lines and the mechanism that may be related with the transition. Monkey choroid-retinal endothelial cells (RF/6A) and human umbilical vein endothelial cells (HUVEC) were cultured in Dulbecco's modified Eagle's Medium (DMEM) and Ham's F12 medium containing 200 mg/l AGE-BSA. The expression of VE-cadherin, β-catenin, vimentin, N-cadherin, and protein kinase B (AKT2) was observed by immunocytochemistry and flow cytometry. Cell motility was determined by migration assays; the endothelial function of the formatting tube was measured by tube formation assays, while the change in the polarity was measured using resistance instruments. The characteristics of EnMT included loss of endothelial markers of VE-cadherin and β-catenin, which were replaced by mesenchymal markers of vimentin and N-cadherin, enhanced migration and tube formation, and diminished polarity. AGE-BSA contributed to upregulation of the protein expression of VE-cadherin and β-catenin and downregulation of protein expression of vimentin and N-cadherin, leading to enhanced migration and tube formation and diminished polarity. During this process, expression of AKT2 was upregulated. AGE-BSA can induce EnMT of cultured human and monkey endothelial cells. The signal pathway involving AKT2 may play a role in this process.

  13. Anandamide and Δ9-Tetrahydrocannabinol Directly Inhibit Cells of the Immune System via CB2 Receptors

    PubMed Central

    Eisenstein, Toby K.; Meissler, Joseph J.; Wilson, Qiana; Gaughan, John P.; Adler, Martin W.

    2007-01-01

    This study shows that two cannabinoids, Δ9-tetrahydrocannabinol (THC) and anandamide, induce dose related immunosuppression in both the primary and secondary in vitro plaque-forming cell assays of antibody formation. The immunosuppression induced by both compounds could be blocked by SR144528, an antagonist specific for the CB2 receptor, but not by SR141716, a CB1 antagonist. These studies are novel in that they show that both anadamide and THC are active in the nanomolar to picomolar (for anandamide) range in these assays of immune function, and that both mediate their effects directly on cells of the immune system through the CB2 receptor. PMID:17640739

  14. Lysophosphatidic acid directly induces macrophage-derived foam cell formation by blocking the expression of SRBI.

    PubMed

    Chen, Linmu; Zhang, Jun; Deng, Xiao; Liu, Yan; Yang, Xi; Wu, Qiong; Yu, Chao

    2017-09-23

    The leading cause of morbidity and mortality is the result of cardiovascular disease, mainly atherosclerosis. The formation of macrophage foam cells by ingesting ox-LDL and focal retention in the subendothelial space are the hallmarks of the early atherosclerotic lesion. Lysophosphatidic acid (LPA), which is a low-molecular weight lysophospholipid enriched in oxidized LDL, exerts a range of effects on the cardiovascular system. Previous reports show that LPA increases the uptake of ox-LDL to promote the formation of foam cells. However, as the most active component of ox-LDL, there is no report showing whether LPA directly affects foam cell formation. The aim of this study was to investigate the effects of LPA on foam cell formation, as well as to elucidate the underlying mechanism. Oil red O staining and a Cholesterol/cholesteryl ester quantitation assay were used to evaluate foam cell formation in Raw264.7 macrophage cells. We utilized a Western blot and RT-PCR to investigate the relationship between LPA receptors and lipid transport related proteins. We found that LPA promoted foam cell formation, using 200 μM for 24 h. Meanwhile, the expression of the Scavenger receptor BI (SRBI), which promotes the efflux of free cholesterol, was decreased. Furthermore, the LPA 1/3 receptor antagonist Ki16425 significantly abolished the LPA effects, indicating that LPA 1/3 was involved in the foam cell formation and SRBI expression induced by LPA. Additionally, the LPA-induced foam cell formation was blocked with an AKT inhibitor. Our results suggest that LPA-enhanced foam cell formation is mediated by LPA 1/3 -AKT activation and subsequent SRBI expression. Copyright © 2017. Published by Elsevier Inc.

  15. Impedance-based cellular assays for regenerative medicine.

    PubMed

    Gamal, W; Wu, H; Underwood, I; Jia, J; Smith, S; Bagnaninchi, P O

    2018-07-05

    Therapies based on regenerative techniques have the potential to radically improve healthcare in the coming years. As a result, there is an emerging need for non-destructive and label-free technologies to assess the quality of engineered tissues and cell-based products prior to their use in the clinic. In parallel, the emerging regenerative medicine industry that aims to produce stem cells and their progeny on a large scale will benefit from moving away from existing destructive biochemical assays towards data-driven automation and control at the industrial scale. Impedance-based cellular assays (IBCA) have emerged as an alternative approach to study stem-cell properties and cumulative studies, reviewed here, have shown their potential to monitor stem-cell renewal, differentiation and maturation. They offer a novel method to non-destructively assess and quality-control stem-cell cultures. In addition, when combined with in vitro disease models they provide complementary insights as label-free phenotypic assays. IBCA provide quantitative and very sensitive results that can easily be automated and up-scaled in multi-well format. When facing the emerging challenge of real-time monitoring of three-dimensional cell culture dielectric spectroscopy and electrical impedance tomography represent viable alternatives to two-dimensional impedance sensing.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'. © 2018 The Author(s).

  16. Comparison of cytotoxicity and genotoxicity induced by the extracts of methanol and gasoline engine exhausts.

    PubMed

    Zhang, Zunzhen; Che, Wangjun; Liang, Ying; Wu, Mei; Li, Na; Shu, Ya; Liu, Fang; Wu, Desheng

    2007-09-01

    Gasoline engine exhaust has been considered a major source of air pollution in China, and methanol is considered as a potential substitute for gasoline fuel. In this study, the genotoxicity and cytotoxicity of organic extracts of condensate, particulate matters (PM) and semivolatile organic compounds (SVOC) of gasoline and absolute methanol engine exhaust were examined by using MTT assay, micronucleus assay, comet assay and Ames test. The results have showed that gasoline engine exhaust exhibited stronger cytotoxicity to human lung carcinoma cell lines (A549 cell) than methanol engine exhaust. Furthermore, gasoline engine exhaust increased micronucleus formation, induced DNA damage in A549 cells and increased TA98 revertants in the presence of metabolic activating enzymes in a concentration-dependent manner. In contrast, methanol engine exhaust failed to exhibit these adverse effects. The results suggest methanol may be used as a cleaner fuel for automobile.

  17. Secreted dual reporter assay with Gaussia luciferase and the red fluorescent protein mCherry

    PubMed Central

    Wider, Diana

    2017-01-01

    The availability of a wide range of reporter proteins, which can easily be quantitated, has had a major impact on many fields of biomedical research. In some experiments with tissue culture cells, it is necessary to control for differences in transfection efficiency and in other expression parameters. This requirement has been very conveniently met with the popular dual luciferase assay. Its disadvantages are the requirement for cell lysis, the inability to analyze the same cells repeatedly, and the cost, at least in its most commonly used commercial format. Here we describe a novel dual reporter assay with the naturally secreted luciferase from Gaussia princeps as the main reporter protein and a secreted version of the red fluorescent protein mCherry as internal standard. After first measuring mCherry fluorescence in the medium, an enzyme buffer with coelenterazine as substrate is added to the same sample to trigger a glow-type luminescence of the luciferase. The simple and cheap assay can easily be adapted to a variety of experimental situations. As a case in point, we have developed a panel of Gaussia luciferase reporter genes for transcriptional activation assays with estrogen and glucocorticoid response elements, and with response elements for fusion proteins with the Gal4 DNA binding domain for use in mammalian cells. Our secreted dual reporter assay should be an attractive alternative to the currently available commercial kits. PMID:29220385

  18. Secreted dual reporter assay with Gaussia luciferase and the red fluorescent protein mCherry.

    PubMed

    Wider, Diana; Picard, Didier

    2017-01-01

    The availability of a wide range of reporter proteins, which can easily be quantitated, has had a major impact on many fields of biomedical research. In some experiments with tissue culture cells, it is necessary to control for differences in transfection efficiency and in other expression parameters. This requirement has been very conveniently met with the popular dual luciferase assay. Its disadvantages are the requirement for cell lysis, the inability to analyze the same cells repeatedly, and the cost, at least in its most commonly used commercial format. Here we describe a novel dual reporter assay with the naturally secreted luciferase from Gaussia princeps as the main reporter protein and a secreted version of the red fluorescent protein mCherry as internal standard. After first measuring mCherry fluorescence in the medium, an enzyme buffer with coelenterazine as substrate is added to the same sample to trigger a glow-type luminescence of the luciferase. The simple and cheap assay can easily be adapted to a variety of experimental situations. As a case in point, we have developed a panel of Gaussia luciferase reporter genes for transcriptional activation assays with estrogen and glucocorticoid response elements, and with response elements for fusion proteins with the Gal4 DNA binding domain for use in mammalian cells. Our secreted dual reporter assay should be an attractive alternative to the currently available commercial kits.

  19. Intermediate frequency magnetic field generated by a wireless power transmission device does not cause genotoxicity in vitro.

    PubMed

    Shi, Dejing; Zhu, Chunbo; Lu, Rengui; Mao, Shitong; Qi, Yanhua

    2014-10-01

    The aim of this study was to evaluate effects of intermediate frequency magnetic fields (IFMF) generated by a wireless power transmission (WPT) based on magnetic resonance from the perspective of cellular genotoxicity on cultured human lens epithelial cells (HLECs). We evaluated the effects of exposure to 90 kHz magnetic fields at 93.36 µT on cellular genotoxicity in vitro for 2 and 4 h. The magnetic flux density is approximately 3.5 times higher than the reference level recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. For assessment of genotoxicity, we studied cellular proliferation, apoptosis and DNA damage by Cell Counting Kit-8 (CCK-8) assay, flow cytometry analysis, alkaline comet assay and phosphorylated histone H2AX (γH2AX) foci formation test. We did not detect any effect of a 90 kHz IFMF generated by WPT based on magnetic resonance on cell proliferation, apoptosis, comet assay, and γH2AX foci formation test. Our results indicated that exposure to 90 kHz IFMF generated by WPT based on magnetic resonance at 93.36 µT for 2 and 4 h does not cause detectable cellular genotoxicity. © 2014 Wiley Periodicals, Inc.

  20. International network for comparison of HIV neutralization assays: the NeutNet report.

    PubMed

    Fenyö, Eva Maria; Heath, Alan; Dispinseri, Stefania; Holmes, Harvey; Lusso, Paolo; Zolla-Pazner, Susan; Donners, Helen; Heyndrickx, Leo; Alcami, Jose; Bongertz, Vera; Jassoy, Christian; Malnati, Mauro; Montefiori, David; Moog, Christiane; Morris, Lynn; Osmanov, Saladin; Polonis, Victoria; Sattentau, Quentin; Schuitemaker, Hanneke; Sutthent, Ruengpung; Wrin, Terri; Scarlatti, Gabriella

    2009-01-01

    Neutralizing antibody assessments play a central role in human immunodeficiency virus type-1 (HIV-1) vaccine development but it is unclear which assay, or combination of assays, will provide reliable measures of correlates of protection. To address this, an international collaboration (NeutNet) involving 18 independent participants was organized to compare different assays. Each laboratory evaluated four neutralizing reagents (TriMab, 447-52D, 4E10, sCD4) at a given range of concentrations against a panel of 11 viruses representing a wide range of genetic subtypes and phenotypes. A total of 16 different assays were compared. The assays utilized either uncloned virus produced in peripheral blood mononuclear cells (PBMCs) (virus infectivity assays, VI assays), or their Env-pseudotyped (gp160) derivatives produced in 293T cells (PSV assays) from molecular clones or uncloned virus. Target cells included PBMC and genetically-engineered cell lines in either a single- or multiple-cycle infection format. Infection was quantified by using a range of assay read-outs that included extracellular or intracellular p24 antigen detection, RNA quantification and luciferase and beta-galactosidase reporter gene expression. PSV assays were generally more sensitive than VI assays, but there were important differences according to the virus and inhibitor used. For example, for TriMab, the mean IC50 was always lower in PSV than in VI assays. However, with 4E10 or sCD4 some viruses were neutralized with a lower IC50 in VI assays than in the PSV assays. Inter-laboratory concordance was slightly better for PSV than for VI assays with some viruses, but for other viruses agreement between laboratories was limited and depended on both the virus and the neutralizing reagent. The NeutNet project demonstrated clear differences in assay sensitivity that were dependent on both the neutralizing reagent and the virus. No single assay was capable of detecting the entire spectrum of neutralizing activities. Since it is not known which in vitro assay correlates with in vivo protection, a range of neutralization assays is recommended for vaccine evaluation.

  1. International Network for Comparison of HIV Neutralization Assays: The NeutNet Report

    PubMed Central

    Fenyö, Eva Maria; Heath, Alan; Dispinseri, Stefania; Holmes, Harvey; Lusso, Paolo; Zolla-Pazner, Susan; Donners, Helen; Heyndrickx, Leo; Alcami, Jose; Bongertz, Vera; Jassoy, Christian; Malnati, Mauro; Montefiori, David; Moog, Christiane; Morris, Lynn; Osmanov, Saladin; Polonis, Victoria; Sattentau, Quentin; Schuitemaker, Hanneke; Sutthent, Ruengpung; Wrin, Terri; Scarlatti, Gabriella

    2009-01-01

    Background Neutralizing antibody assessments play a central role in human immunodeficiency virus type-1 (HIV-1) vaccine development but it is unclear which assay, or combination of assays, will provide reliable measures of correlates of protection. To address this, an international collaboration (NeutNet) involving 18 independent participants was organized to compare different assays. Methods Each laboratory evaluated four neutralizing reagents (TriMab, 447-52D, 4E10, sCD4) at a given range of concentrations against a panel of 11 viruses representing a wide range of genetic subtypes and phenotypes. A total of 16 different assays were compared. The assays utilized either uncloned virus produced in peripheral blood mononuclear cells (PBMCs) (virus infectivity assays, VI assays), or their Env-pseudotyped (gp160) derivatives produced in 293T cells (PSV assays) from molecular clones or uncloned virus. Target cells included PBMC and genetically-engineered cell lines in either a single- or multiple-cycle infection format. Infection was quantified by using a range of assay read-outs that included extracellular or intracellular p24 antigen detection, RNA quantification and luciferase and beta-galactosidase reporter gene expression. Findings PSV assays were generally more sensitive than VI assays, but there were important differences according to the virus and inhibitor used. For example, for TriMab, the mean IC50 was always lower in PSV than in VI assays. However, with 4E10 or sCD4 some viruses were neutralized with a lower IC50 in VI assays than in the PSV assays. Inter-laboratory concordance was slightly better for PSV than for VI assays with some viruses, but for other viruses agreement between laboratories was limited and depended on both the virus and the neutralizing reagent. Conclusions The NeutNet project demonstrated clear differences in assay sensitivity that were dependent on both the neutralizing reagent and the virus. No single assay was capable of detecting the entire spectrum of neutralizing activities. Since it is not known which in vitro assay correlates with in vivo protection, a range of neutralization assays is recommended for vaccine evaluation. PMID:19229336

  2. Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans.

    PubMed

    Sun, Lingmei; Liao, Kai; Wang, Dayong

    2015-01-01

    The first step in infection by Candida albicans is adhesion to host cells or implanted medical devices and this followed by hyphal growth and biofilm formation. Yeast-to-hyphal transition has long been identified as a key factor in fungal virulence. Following biofilm formation, C. albicans is usually less sensitive or insensitive to antifungals. Therefore, development of new antifungals with inhibitory action on adhesion, yeast-hyphal transition and biofilm formation by C. albicans is very necessary. The effects of magnolol and honokiol on hypha growth were investigated using different induction media. Their inhibitory effects were determined using the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5- carboxanilide assay, and biofilm thickness and viability were observed by a confocal scanning laser microscope. Mammalian cells were used in adhesion assays. Genes related to hyphae development and cell adhesions were analyzed by real-time reverse transcription-polymerase chain reaction. The exogenous cyclic adenosine monophosphate was used to determine the mechanisms of action of magnolol and honokiol. Caenorhabditis elegans was used as an in vivo model to estimate the antifungal activities of magnolol and honokiol. Magnolol and honokiol inhibited adhesion, the transition from yeast to hypha, and biofilm formation by C. albicans through the Ras1-cAMP-Efg1 pathway. Moreover, magnolol and honokiol prolonged the survival of nematodes infected by C. albicans. Magnolol and honokiol have potential inhibitory effects against biofilm formation by C. albicans. This study provides useful information towards the development of new strategies to reduce the incidence of C. albicans biofilm-associated infection.

  3. Propofol enhances the cisplatin-induced apoptosis on cervical cancer cells via EGFR/JAK2/STAT3 pathway.

    PubMed

    Li, Haoran; Lu, Yan; Pang, Yangyang; Li, Mengjiao; Cheng, Xi; Chen, Jiawei

    2017-02-01

    The main purpose of this study was to evaluate propofol and its combined effect with cisplatin on apoptosis of cervical cancer cells and molecular mechanisms of this phenomenon. The effects of propofol and cisplatin on cell viability and apoptosis were detected by cell counting kit-8 (CCK-8) assay, colony formation assay and flow cytometry assay. Besides, protein expression of EGFR/JAK2/STAT3 pathway was determined by western blot. STAT3 was over-expressed in cervical cancer cells by STAT3 cDNA. Expression of EGFR and STAT3 protein of human tissues was evaluated by immunohistochemistry (IHC) assay. In this study, we found that not only propofol alone could inhibit cervical cancer cells viability but also could increase the inhibitory effect of cisplatin on cervical cancer cells growth. Meanwhile, propofol sensitized cervical cancer cells to cisplatin-induced apoptosis but not affected normal cervical cells. In genetic level, propofol could enhance the anti-tumor effect of cisplatin through EGFR/JAK2/STAT3 pathway. Further studies indicated that overexpression of EGFR and STAT3 is related to poor prognoses in cervical cancer patients, which contributed to confirm the clinical role of combined application of propofol and cisplatin. Propofol enhances the cisplatin-induced cell apoptosis cervical cancer cells via EGFR/JAK2/STAT3 pathway and may be developed as a potential therapeutic agent to treat cervical cancer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. High-Throughput Screening of a Luciferase Reporter of Gene Silencing on the Inactive X Chromosome.

    PubMed

    Keegan, Alissa; Plath, Kathrin; Damoiseaux, Robert

    2018-01-01

    Assays of luciferase gene activity are a sensitive and quantitative reporter system suited to high-throughput screening. We adapted a luciferase assay to a screening strategy for identifying factors that reactivate epigenetically silenced genes. This epigenetic luciferase reporter is subject to endogenous gene silencing mechanisms on the inactive X chromosome (Xi) in primary mouse cells and thus captures the multilayered nature of chromatin silencing in development. Here, we describe the optimization of an Xi-linked luciferase reactivation assay in 384-well format and adaptation of the assay for high-throughput siRNA and chemical screening. Xi-luciferase reactivation screening has applications in stem cell biology and cancer therapy. We have used the approach described here to identify chromatin-modifying proteins and to identify drug combinations that enhance the gene reactivation activity of the DNA demethylating drug 5-aza-2'-deoxycytidine.

  5. Recent advances in the characterization of HIV-1 neutralization assays for standardized evaluation of the antibody response to infection and vaccination.

    PubMed

    Polonis, Victoria R; Brown, Bruce K; Rosa Borges, Andrew; Zolla-Pazner, Susan; Dimitrov, Dimiter S; Zhang, Mei-Yun; Barnett, Susan W; Ruprecht, Ruth M; Scarlatti, Gabriella; Fenyö, Eva-Maria; Montefiori, David C; McCutchan, Francine E; Michael, Nelson L

    2008-06-05

    In AIDS vaccine development the pendulum has swung towards a renewed emphasis on the potential role for neutralizing antibodies in a successful global vaccine. It is recognized that vaccine-induced antibody performance, as assessed in the available neutralization assays, may well serve as a "gatekeeper" for HIV-1 subunit vaccine prioritization and advancement. As a result, development of a standardized platform for reproducible measurement of neutralizing antibodies has received considerable attention. Here we review current advancements in our knowledge of the performance of different types of antibodies in a traditional primary cell neutralization assay and the newer, more standardized TZM-bl reporter cell line assay. In light of recently revealed differences (see accompanying article) in the results obtained in these two neutralization formats, parallel evaluation with both platforms should be contemplated as an interim solution until a better understanding of immune correlates of protection is achieved.

  6. Identification of tumor-initiating cells derived from two canine rhabdomyosarcoma cell lines

    PubMed Central

    KISHIMOTO, Takuya Evan; YASHIMA, Shoko; NAKAHIRA, Rei; ONOZAWA, Eri; AZAKAMI, Daigo; UJIKE, Makoto; OCHIAI, Kazuhiko; ISHIWATA, Toshiyuki; TAKAHASHI, Kimimasa; MICHISHITA, Masaki

    2017-01-01

    Cancer stem cells or tumor-initiating cells (TICs) are a small subpopulation of cells that have the capacity to self-renew, differentiate and initiate tumors. These cells may function in tumor initiation, aggression and recurrence. Whether spheres derived from canine rhabdomyosarcoma cells have stem cell-like properties is unclear. We induced sphere formation in the canine rhabdomyosarcoma cell lines, CMS-C and CMS-J, and characterized the spheres in vitro and in vivo. Sphere-forming cells were more resistant to vincristine, mitoxantrone and doxorubicin than adherent cells. Xenograft transplantation demonstrated that 1 × 103 sphere-forming cells derived from CMS-C were sufficient for tumor formation. The sphere assay showed that the sphere-forming cells were present in these tumors. These results suggest that the spheres derived from canine rhabdomyosarcoma cells may possess characteristics of TICs. This study provides the foundation for elucidating the contribution of TICs to rhabdomyosarcoma tumorigenesis. PMID:28529244

  7. Identification of tumor-initiating cells derived from two canine rhabdomyosarcoma cell lines.

    PubMed

    Kishimoto, Takuya Evan; Yashima, Shoko; Nakahira, Rei; Onozawa, Eri; Azakami, Daigo; Ujike, Makoto; Ochiai, Kazuhiko; Ishiwata, Toshiyuki; Takahashi, Kimimasa; Michishita, Masaki

    2017-07-07

    Cancer stem cells or tumor-initiating cells (TICs) are a small subpopulation of cells that have the capacity to self-renew, differentiate and initiate tumors. These cells may function in tumor initiation, aggression and recurrence. Whether spheres derived from canine rhabdomyosarcoma cells have stem cell-like properties is unclear. We induced sphere formation in the canine rhabdomyosarcoma cell lines, CMS-C and CMS-J, and characterized the spheres in vitro and in vivo. Sphere-forming cells were more resistant to vincristine, mitoxantrone and doxorubicin than adherent cells. Xenograft transplantation demonstrated that 1 × 10 3 sphere-forming cells derived from CMS-C were sufficient for tumor formation. The sphere assay showed that the sphere-forming cells were present in these tumors. These results suggest that the spheres derived from canine rhabdomyosarcoma cells may possess characteristics of TICs. This study provides the foundation for elucidating the contribution of TICs to rhabdomyosarcoma tumorigenesis.

  8. Eliminating Size-Associated Diffusion Constraints for Rapid On-Surface Bioassays with Nanoparticle Probes.

    PubMed

    Li, Junwei; Zrazhevskiy, Pavel; Gao, Xiaohu

    2016-02-24

    Nanoparticle probes enable implementation of advanced on-surface assay formats, but impose often underappreciated size-associated constraints, in particular on assay kinetics and sensitivity. The present study highlights substantially slower diffusion-limited assay kinetics due to the rapid development of a nanoprobe depletion layer next to the surface, which static incubation and mixing of bulk solution employed in conventional assay setups often fail to disrupt. In contrast, cyclic solution draining and replenishing yields reaction-limited assay kinetics irrespective of the probe size. Using common surface bioassays, enzyme-linked immunosorbent assays and immunofluorescence, this study shows that this conceptually distinct approach effectively "erases" size-dependent diffusion constraints, providing a straightforward route to rapid on-surface bioassays employing bulky probes and procedures involving multiple labeling cycles, such as multicycle single-cell molecular profiling. For proof-of-concept, the study demonstrates that the assay time can be shortened from hours to minutes with the same probe concentration and, at a typical incubation time, comparable target labeling can be achieved with up to eight times lower nanoprobe concentration. The findings are expected to enable realization of novel assay formats and stimulate development of rapid on-surface bioassays with nanoparticle probes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. High-throughput bioluminescence screening of ubiquitin-proteasome pathway inhibitors from chemical and natural sources.

    PubMed

    Ausseil, Frederic; Samson, Arnaud; Aussagues, Yannick; Vandenberghe, Isabelle; Creancier, Laurent; Pouny, Isabelle; Kruczynski, Anna; Massiot, Georges; Bailly, Christian

    2007-02-01

    To discover original inhibitors of the ubiquitin-proteasome pathway, the authors have developed a cell-based bioluminescent assay and used it to screen collections of plant extracts and chemical compounds. They first established a DLD-1 human colon cancer cell line that stably expresses a 4Ubiquitin-Luciferase (4Ub-Luc) reporter protein, efficiently targeted to the ubiquitin-proteasome degradation pathway. The assay was then adapted to 96- and 384-well plate formats and calibrated with reference proteasome inhibitors. Assay robustness was carefully assessed, particularly cell toxicity, and the statistical Z factor value was calculated to 0.83, demonstrating a good performance level of the assay. A total of 18,239 molecules and 15,744 plant extracts and fractions thereof were screened for their capacity to increase the luciferase activity in DLD-1 4Ub-Luc cells, and 21 molecules and 66 extracts inhibiting the ubiquitin-proteasome pathway were identified. The fractionation of an active methanol extract of Physalis angulata L. aerial parts was performed to isolate 2 secosteroids known as physalin B and C. In a cell-based Western blot assay, the ubiquitinated protein accumulation was confirmed after a physalin treatment confirming the accuracy of the screening process. The method reported here thus provides a robust approach to identify novel ubiquitin-proteasome pathway inhibitors in large collections of chemical compounds and natural products.

  10. Angiogenesis assays.

    PubMed

    Mydlo, J H

    2001-01-01

    Angiogenesis-the formation of a vascular network-is essential for the support of a developing tumor when simple diffusion of nutrients is impossible. The ability of a solid tumor to achieve metabolic needs beyond simple diffusion is dependent on the development of this neovascular network. The process of angiogenesis lets the tumor become self-sufficient to grow, and also gives it the ability to metastasize. Growth factors added to human-vein endothelial cells in culture may demonstrate tubularization of cells, but this does not necessarily imply angiogenesis. True in vivo angiogenesis means not only the mobilization of endothelial cells, but the degradation of the matrix and the formation of vessel sprouts in a network that can transport red blood cells (RBCs).

  11. Histochemical studies on protease formation in the cotyledons of germinating bean seeds.

    PubMed

    Yomo, H; Taylor, M P

    1973-03-01

    Protease formation in Phaseolus vulgaris L. cotyledons during seed germination was studied histochemically using a gelatin-film-substrate method. Protease activity can be detected by this method on the 5th day of germination, at approximately the same time that a rapid increase of activity was observed by a test-tube assay with casein as a substrate. At the early stage of germination, protease activity was observed throughout the cotyledon except in two or three cell layers below the cotyledon surface and in several cell layers around the vascular bundles. A highly active cell layer surrounding the protease-inactive cells near the vascular bundles is suggested to be a source of the protease.

  12. Methanolic extracts of Uncaria rhynchophylla induce cytotoxicity and apoptosis in HT-29 human colon carcinoma cells.

    PubMed

    Jo, Kyung-Jin; Cha, Mi-Ran; Lee, Mi-Ra; Yoon, Mi-Young; Park, Hae-Ryong

    2008-06-01

    In this paper, we report the anticancer activities of Uncaria rhynchophylla extracts, a Rubiaceae plant native to China. Traditionally, Uncaria rhynchophylla has been used in the prevention and treatment of neurotoxicity. However, the cytotoxic activity of Uncaria rhynchophylla against human colon carcinoma cells has not, until now, been elucidated. We found that the methanolic extract of Uncaria rhynchophylla (URE) have cytotoxic effects on HT-29 cells. The URE showed highly cytotoxic effects via the MTT reduction assay, LDH release assay, and colony formation assay. As expected, URE inhibited the growth of HT-29 cells in a dose-dependent manner. In particular, the methanolic URE of the 500 microg/ml showed 15.8% inhibition against growth of HT-29 cells. It induced characteristic apoptotic effects in HT-29 cells, including chromatin condensation and sharking occurring 24 h when the cells were treated at a concentration of the 500 microg/ml. The activation of caspase-3 and the specific proteolytic cleavage of poly (ADP-ribose) polymerase were detected over the course of apoptosis induction. These results indicate that URE contains bioactive materials with strong activity, and is a potential chemotherapeutic agent candidate against HT-29 human colon carcinoma cells.

  13. Chemical screening identifies filastatin, a small molecule inhibitor of Candida albicans adhesion, morphogenesis, and pathogenesis.

    PubMed

    Fazly, Ahmed; Jain, Charu; Dehner, Amie C; Issi, Luca; Lilly, Elizabeth A; Ali, Akbar; Cao, Hong; Fidel, Paul L; Rao, Reeta P; Kaufman, Paul D

    2013-08-13

    Infection by pathogenic fungi, such as Candida albicans, begins with adhesion to host cells or implanted medical devices followed by biofilm formation. By high-throughput phenotypic screening of small molecules, we identified compounds that inhibit adhesion of C. albicans to polystyrene. Our lead candidate compound also inhibits binding of C. albicans to cultured human epithelial cells, the yeast-to-hyphal morphological transition, induction of the hyphal-specific HWP1 promoter, biofilm formation on silicone elastomers, and pathogenesis in a nematode infection model as well as alters fungal morphology in a mouse mucosal infection assay. We term this compound filastatin based on its strong inhibition of filamentation, and we use chemical genetic experiments to show that it acts downstream of multiple signaling pathways. These studies show that high-throughput functional assays targeting fungal adhesion can provide chemical probes for study of multiple aspects of fungal pathogenesis.

  14. Chemical screening identifies filastatin, a small molecule inhibitor of Candida albicans adhesion, morphogenesis, and pathogenesis

    PubMed Central

    Fazly, Ahmed; Jain, Charu; Dehner, Amie C.; Issi, Luca; Lilly, Elizabeth A.; Ali, Akbar; Cao, Hong; Fidel, Paul L.; P. Rao, Reeta; Kaufman, Paul D.

    2013-01-01

    Infection by pathogenic fungi, such as Candida albicans, begins with adhesion to host cells or implanted medical devices followed by biofilm formation. By high-throughput phenotypic screening of small molecules, we identified compounds that inhibit adhesion of C. albicans to polystyrene. Our lead candidate compound also inhibits binding of C. albicans to cultured human epithelial cells, the yeast-to-hyphal morphological transition, induction of the hyphal-specific HWP1 promoter, biofilm formation on silicone elastomers, and pathogenesis in a nematode infection model as well as alters fungal morphology in a mouse mucosal infection assay. We term this compound filastatin based on its strong inhibition of filamentation, and we use chemical genetic experiments to show that it acts downstream of multiple signaling pathways. These studies show that high-throughput functional assays targeting fungal adhesion can provide chemical probes for study of multiple aspects of fungal pathogenesis. PMID:23904484

  15. Inversin modulates the cortical actin network during mitosis

    PubMed Central

    Werner, Michael E.; Ward, Heather H.; Phillips, Carrie L.; Miller, Caroline; Gattone, Vincent H.

    2013-01-01

    Mutations in inversin cause nephronophthisis type II, an autosomal recessive form of polycystic kidney disease associated with situs inversus, dilatation, and kidney cyst formation. Since cyst formation may represent a planar polarity defect, we investigated whether inversin plays a role in cell division. In developing nephrons from inv−/− mouse embryos we observed heterogeneity of nuclear size, increased cell membrane perimeters, cells with double cilia, and increased frequency of binuclear cells. Depletion of inversin by siRNA in cultured mammalian cells leads to an increase in bi- or multinucleated cells. While spindle assembly, contractile ring formation, or furrow ingression appears normal in the absence of inversin, mitotic cell rounding and the underlying rearrangement of the cortical actin cytoskeleton are perturbed. We find that inversin loss causes extensive filopodia formation in both interphase and mitotic cells. These cells also fail to round up in metaphase. The resultant spindle positioning defects lead to asymmetric division plane formation and cell division. In a cell motility assay, fibroblasts isolated from inv−/− mouse embryos migrate at half the speed of wild-type fibroblasts. Together these data suggest that inversin is a regulator of cortical actin required for cell rounding and spindle positioning during mitosis. Furthermore, cell division defects resulting from improper spindle position and perturbed actin organization contribute to altered nephron morphogenesis in the absence of inversin. PMID:23515530

  16. Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells.

    PubMed

    Li, Yanyan; Zhang, Tao; Korkaya, Hasan; Liu, Suling; Lee, Hsiu-Fang; Newman, Bryan; Yu, Yanke; Clouthier, Shawn G; Schwartz, Steven J; Wicha, Max S; Sun, Duxin

    2010-05-01

    The existence of cancer stem cells (CSCs) in breast cancer has profound implications for cancer prevention. In this study, we evaluated sulforaphane, a natural compound derived from broccoli/broccoli sprouts, for its efficacy to inhibit breast CSCs and its potential mechanism. Aldefluor assay and mammosphere formation assay were used to evaluate the effect of sulforaphane on breast CSCs in vitro. A nonobese diabetic/severe combined immunodeficient xenograft model was used to determine whether sulforaphane could target breast CSCs in vivo, as assessed by Aldefluor assay, and tumor growth upon cell reimplantation in secondary mice. The potential mechanism was investigated using Western blotting analysis and beta-catenin reporter assay. Sulforaphane (1-5 micromol/L) decreased aldehyde dehydrogenase-positive cell population by 65% to 80% in human breast cancer cells (P < 0.01) and reduced the size and number of primary mammospheres by 8- to 125-fold and 45% to 75% (P < 0.01), respectively. Daily injection with 50 mg/kg sulforaphane for 2 weeks reduced aldehyde dehydrogenase-positive cells by >50% in nonobese diabetic/severe combined immunodeficient xenograft tumors (P = 0.003). Sulforaphane eliminated breast CSCs in vivo, thereby abrogating tumor growth after the reimplantation of primary tumor cells into the secondary mice (P < 0.01). Western blotting analysis and beta-catenin reporter assay showed that sulforaphane downregulated the Wnt/beta-catenin self-renewal pathway. Sulforaphane inhibits breast CSCs and downregulates the Wnt/beta-catenin self-renewal pathway. These findings support the use of sulforaphane for the chemoprevention of breast cancer stem cells and warrant further clinical evaluation. Copyright 2010 AACR.

  17. Titanium dioxide food additive (E171) induces ROS formation and genotoxicity: contribution of micro and nano-sized fractions.

    PubMed

    Proquin, Héloïse; Rodríguez-Ibarra, Carolina; Moonen, Carolyn G J; Urrutia Ortega, Ismael M; Briedé, Jacob J; de Kok, Theo M; van Loveren, Henk; Chirino, Yolanda I

    2017-01-01

    Since 1969, the European Union approves food-grade titanium dioxide (TiO 2 ), also known as E171 colouring food additive. E171 is a mixture of micro-sized particles (MPs) and nano-sized particles (NPs). Previous studies have indicated adverse effects of oral exposure to E171, i.e. facilitation of colon tumour growth. This could potentially be partially mediated by the capacity to induce reactive oxygen species (ROS). The aim of the present study is to determine whether E171 exposure induces ROS formation and DNA damage in an in vitro model using human Caco-2 and HCT116 cells and to investigate the contribution of the separate MPs and NPs TiO 2 fractions to these effects. After suspension of the particles in Hanks' balanced salt solution buffer and cell culture medium with either bovine serum albumin (BSA) or foetal bovine serum, characterization of the particles was performed by dynamic light scattering, ROS formation was determined by electron spin/paramagnetic resonance spectroscopy and DNA damage was determined by the comet and micronucleus assays. The results showed that E171, MPs and NPs are stable in cell culture medium with 0.05% BSA. The capacity for ROS generation in a cell-free environment was highest for E171, followed by NPs and MPs. Only MPs were capable to induce ROS formation in exposed Caco-2 cells. E171, MPs and NPs all induced single-strand DNA breaks. Chromosome damage was shown to be induced by E171, as tested with the micronucleus assay in HCT116 cells. In conclusion, E171 has the capability to induce ROS formation in a cell-free environment and E171, MPs and NPs have genotoxic potential. The capacity of E171 to induce ROS formation and DNA damage raises concerns about potential adverse effects associated with E171 (TiO 2 ) in food. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Structure-function analysis of soluble forms of herpes simplex virus glycoprotein D.

    PubMed Central

    Nicola, A V; Willis, S H; Naidoo, N N; Eisenberg, R J; Cohen, G H

    1996-01-01

    Glycoprotein D (gD) of herpes simplex virus (HSV) is essential for virus entry. Truncated forms of gD lacking the transmembrane and cytoplasmic tail regions have been shown to bind to cells and block plaque formation. Using complementation analysis and a panel of gD mutants, we previously identified four regions of gD (regions I to IV) which are important for virus entry. Here, we used baculovirus vectors to overexpress truncated forms of wild-type gD from HSV type 1 (HSV-1) [gD-1(306t)] and HSV-2 [gD-2(306t)] and four mutants, gD-1(inverted delta 34t), gD-1(inverted delta 126t), gD-1(inverted delta 243t), and gD-1(delta 290-299t), each having a mutation in one of the four functional regions. We used an enzyme-linked immunosorbent assay and circular dichroism to analyze the structure of these proteins, and we used functional assays to study the role of gD in binding, penetration, and cell-to-cell spread. gD-1 and gD-2 are similar in antigenic structure and thermal stability but vary in secondary structure. Mutant proteins with insertions in region I or II were most altered in structure and stability, while mutants with insertions in region III or IV were less altered. gD-1(306t) and gD-2(306t) inhibited both plaque formation and cell-to-cell transmission of HSV-1. In spite of obvious structural differences, all of the mutant proteins bound to cells, confirming that binding is not the only function of gD. The region I mutant did not inhibit HSV plaque formation or cell-to-cell spread, suggesting that this region is necessary for the function of gD in these processes. Surprisingly, the other three mutant proteins functioned in all of the in vitro assays, indicating that the ability of gD to bind to cells and inhibit infection does not correlate with its ability to initiate infection as measured by the complementation assay. The region IV mutant, gD-1(delta 290-299t), had an unexpected enhanced inhibitory effect on HSV infection. Taken together, the results argue against a single functional domain in gD. It is likely that different gD structural elements are involved in successive steps of infection. PMID:8648717

  19. Centchroman regulates breast cancer angiogenesis via inhibition of HIF-1α/VEGFR2 signalling axis.

    PubMed

    Dewangan, Jayant; Kaushik, Shweta; Rath, Srikanta Kumar; Balapure, Anil K

    2018-01-15

    Angiogenesis is a recognized hallmark of cancer which promotes cancer cell progression and metastasis. Inhibition of angiogenesis to attenuate cancer growth is becoming desirable strategy for breast cancer management. The present study is aimed to investigate the antiangiogenic efficacy of a novel selective estrogen receptor modulator Centchroman (CC) on human breast cancer cells. Effect of CC on cell viability was evaluated using Sulforhodamine B assay. Endothelial cell proliferation, wound healing, Boyden chamber cell invasion, tube formation and chorioallantoic membrane (CAM) assays were performed to assess the effect of CC on migration, invasion and angiogenesis. Apoptosis, reactive oxygen species generation, caspase-3/7 and intracellular calcium ion level were measured through flow cytometry. Expression levels of HIF-1α, VEGF, VEGFR2, AKT and ERK were assessed by western blot analysis. CC selectively induces apoptosis in human breast cancer cells without affecting non-tumorigenic breast epithelial cells MCF-10A. Moreover, it inhibits migratory, invasive and mammosphere forming potential of breast cancer. Furthermore, CC also inhibited VEGF-induced migration, invasion and tube formation of HUVECs in vitro. CC effectively inhibited neovasculature formation in chicken CAM. Western blot analysis demonstrated that CC inhibited expression of HIF-1α and its downstream target VEGF. Interestingly, CC also suppressed VEGFR2 phosphorylation and consequently attenuated AKT and ERK phosphorylation. Our findings suggest that CC downregulates VEGF-induced angiogenesis by modulating HIF-1α/VEGFR2 pathway and recommend it (CC) as a potential therapeutic drug for breast cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Supplementation of conventional freezing medium with a combination of catalase and trehalose results in better protection of surface molecules and functionality of hematopoietic cells.

    PubMed

    Sasnoor, Lalita M; Kale, Vaijayanti P; Limaye, Lalita S

    2003-10-01

    Our previous studies had shown that a combination of the bio-antioxidant catalase and the membrane stabilizer trehalose in the conventional freezing mixture affords better cryoprotection to hematopoietic cells as judged by clonogenic assays. In the present investigation, we extended these studies using several parameters like responsiveness to growth factors, expression of growth factor receptors, adhesion assays, adhesion molecule expression, and long-term culture-forming ability. Cells were frozen with (test cells) or without additives (control cells) in the conventional medium containing 10% dimethylsulfoxide (DMSO). Experiments were done on mononuclear cells (MNC) from cord blood/fetal liver hematopoietic cells (CB/FL) and CD34(+) cells isolated from frozen MNC. Our results showed that the responsiveness of test cells to the two early-acting cytokines, viz. interleukin-3 (IL-3) and stem cell factor (SCF) in CFU assays was better than control cells as seen by higher colony formation at limiting concentrations of these cytokines. We, therefore, analyzed the expression of these two growth factor receptors by flow cytometry. We found that in cryopreserved test MNC, as well as CD34(+) cells isolated from them, the expression of both cytokine receptors was two- to three-fold higher than control MNC and CD34(+) cells isolated from them. Adhesion assays carried out with CB/FL-derived CD34(+) cells and KG1a cells showed significantly higher adherence of test cells to M210B4 than respective control cells. Cryopreserved test MNC as well as CD34(+) cells isolated from them showed increased expression of adhesion molecules like CD43, CD44, CD49d, and CD49e. On isolated CD34(+) cells and KG1a cells, there was a two- to three-fold increase in a double-positive population expressing CD34/L-selectin in test cells as compared to control cells. Long-term cultures (LTC) were set up with frozen MNC as well as with CD34(+) cells. Clonogenic cells from LTC were enumerated at the end of the fifth week. There was a significantly increased formation of CFU from test cells than from control cells, indicating better preservation of early progenitors in test cells. Our results suggest that use of a combination of catalase and trehalose as a supplement in the conventional freezing medium results in better protection of growth factor receptors, adhesion molecules, and functionality of hematopoietic cells, yielding a better graft quality.

  1. Standardized Polyalthia longifolia leaf extract (PLME) inhibits cell proliferation and promotes apoptosis: The anti-cancer study with various microscopy methods.

    PubMed

    Vijayarathna, Soundararajan; Chen, Yeng; Kanwar, Jagat R; Sasidharan, Sreenivasan

    2017-07-01

    Over the years a number of microscopy methods have been developed to assess the changes in cells. Some non-invasive techniques such as holographic digital microscopy (HDM), which although does not destroy the cells, but helps to monitor the events that leads to initiation of apoptotic cell death. In this study, the apoptogenic property and the cytotoxic effect of P. longifolia leaf methanolic extract (PLME) against the human cervical carcinoma cells (HeLa) was studied using light microscope (LM), holographic digital microscopy (HDM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The average IC 50 value of PLME against HeLa cells obtained by MTT and CyQuant assay was 22.00μg/mL at 24h. However, noncancerous Vero cells tested with PLME exhibited no cytotoxicity with the IC 50 value of 51.07μg/mL at 24h by using MTT assay. Cytological observations showed nuclear condensation, cell shrinkage, multinucleation, abnormalities of mitochondrial cristae, membrane blebbing, disappearance of microvilli and filopodia, narrowing of lamellipodia, holes, formation of numerous smaller vacuoles, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by HDM, LM, SEM and TEM. In conclusion, PLME was able to produce distinctive morphological features of HeLa cell death that corresponds to apoptosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. In Vitro Screening of Synthetic Fluorogenic Substrates for Detection of Cancer Procoagulant Activity.

    PubMed

    Krause, Jason; Frost, Carminita L

    2018-04-01

    Cancer procoagulant (CP), a direct activator of coagulation factor X, is among one of the tumour cell products or activities which may promote fibrin formation and has been suggested to be selectively associated with the malignant phenotype. At present, the most reliable assay for the quantification of CP activity is the three-stage chromogenic assay which utilises the ability of CP to activate factor X. In this assay, the activation of factor X leads to the formation of activated thrombin from prothrombin and the eventual hydrolyses of a thrombin chromogenic substrate which contains a p-nitroaniline leaving group. The complexity of the three-stage chromogenic assay suggests a need for a direct method of assaying CP activity. This study focuses on the design of a fluorogenic substrate that would enable the direct quantification of CP activity. The results of the study show two promising substrates for the determination of CP activity: Boc-PQVR-AMC and PQVR-AMC. Further analysis showed that Boc-PQVR-AMC could be excluded as a potential substrate for CP since it was also cleaved by collagenase.

  3. Assay for adhesion and agar invasion in S. cerevisiae.

    PubMed

    Guldal, Cemile G; Broach, James

    2006-11-08

    Yeasts are found in natural biofilms, where many microorganisms colonize surfaces. In artificial environments, such as surfaces of man-made objects, biofilms can reduce industrial productivity, destroy structures, and threaten human life. 1-3 On the other hand, harnessing the power of biofilms can help clean the environment and generate sustainable energy. 4-8 The ability of S. cerevisiae to colonize surfaces and participate in complex biofilms was mostly ignored until the rediscovery of the differentiation programs triggered by various signaling pathways and environmental cues in this organism. 9, 10 The continuing interest in using S. cerevisiae as a model organism to understand the interaction and convergence of signaling pathways, such as the Ras-PKA, Kss1 MAPK, and Hog1 osmolarity pathways, quickly placed S. cerevisiae in the junction of biofilm biology and signal transduction research. 11-20 To this end, differentiation of yeast cells into long, adhesive, pseudohyphal filaments became a convenient readout for the activation of signal transduction pathways upon various environmental changes. However, filamentation is a complex collection of phenotypes, which makes assaying for it as if it were a simple phenotype misleading. In the past decade, several assays were successfully adopted from bacterial biofilm studies to yeast research, such as MAT formation assays to measure colony spread on soft agar and crystal violet staining to quantitatively measure cell-surface adherence. 12, 21 However, there has been some confusion in assays developed to qualitatively assess the adhesive and invasive phenotypes of yeast in agar. Here, we present a simple and reliable method for assessing the adhesive and invasive quality of yeast strains with easy-to-understand steps to isolate the adhesion assessment from invasion assessment. Our method, adopted from previous studies, 10, 16 involves growing cells in liquid media and plating on differential nutrient conditions for growth of large spots, which we then wash with water to assess adhesion and rub cells completely off the agar surface to assess invasion into the agar. We eliminate the need for streaking cells onto agar, which affects the invasion of cells into the agar. In general, we observed that haploid strains that invade agar are always adhesive, yet not all adhesive strains can invade agar medium. Our approach can be used in conjunction with other assays to carefully dissect the differentiation steps and requirements of yeast signal transduction, differentiation, quorum sensing, and biofilm formation.

  4. Assay for Adhesion and Agar Invasion in S. cerevisiae

    PubMed Central

    Guldal, Cemile G; Broach, James

    2006-01-01

    Yeasts are found in natural biofilms, where many microorganisms colonize surfaces. In artificial environments, such as surfaces of man-made objects, biofilms can reduce industrial productivity, destroy structures, and threaten human life. 1-3 On the other hand, harnessing the power of biofilms can help clean the environment and generate sustainable energy. 4-8 The ability of S. cerevisiae to colonize surfaces and participate in complex biofilms was mostly ignored until the rediscovery of the differentiation programs triggered by various signaling pathways and environmental cues in this organism. 9, 10 The continuing interest in using S. cerevisiae as a model organism to understand the interaction and convergence of signaling pathways, such as the Ras-PKA, Kss1 MAPK, and Hog1 osmolarity pathways, quickly placed S. cerevisiae in the junction of biofilm biology and signal transduction research. 11-20 To this end, differentiation of yeast cells into long, adhesive, pseudohyphal filaments became a convenient readout for the activation of signal transduction pathways upon various environmental changes. However, filamentation is a complex collection of phenotypes, which makes assaying for it as if it were a simple phenotype misleading. In the past decade, several assays were successfully adopted from bacterial biofilm studies to yeast research, such as MAT formation assays to measure colony spread on soft agar and crystal violet staining to quantitatively measure cell-surface adherence. 12, 21 However, there has been some confusion in assays developed to qualitatively assess the adhesive and invasive phenotypes of yeast in agar. Here, we present a simple and reliable method for assessing the adhesive and invasive quality of yeast strains with easy-to-understand steps to isolate the adhesion assessment from invasion assessment. Our method, adopted from previous studies, 10, 16 involves growing cells in liquid media and plating on differential nutrient conditions for growth of large spots, which we then wash with water to assess adhesion and rub cells completely off the agar surface to assess invasion into the agar. We eliminate the need for streaking cells onto agar, which affects the invasion of cells into the agar. In general, we observed that haploid strains that invade agar are always adhesive, yet not all adhesive strains can invade agar medium. Our approach can be used in conjunction with other assays to carefully dissect the differentiation steps and requirements of yeast signal transduction, differentiation, quorum sensing, and biofilm formation. PMID:18704175

  5. miR-139 is up-regulated in osteoarthritis and inhibits chondrocyte proliferation and migration possibly via suppressing EIF4G2 and IGF1R

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Weihua; Zhang, Weikai; Li, Feng

    Osteoarthritis (OA) is one of the most progressive articular cartilage erosions. microRNAs (miRNAs) play pivotal roles in OA modulation, but the role of miR-139 in OA remains elusive. This study aims to reveal the effects and possible mechanism of miR-139 in OA and chondrocytes. The levels of miR-139 and its possible targets eukaryotic translation initiation factor 4 gamma 2 (EIF4G2) and insulin-like growth factor 1 receptor (IGF1R) were detected by qRT-PCR in the articular cartilages of 20 OA patients and 20 non-OA patients. Human chondrocyte CHON-001 cells were transfected with miR-139 mimic or inhibitor, as well as the siRNAs of EIF4G2more » and IGF1R. Cell viability by MTT assay, proliferation by colony formation assay and migration by Transwell assay were performed. Results showed that miR-139 was up-regulated, while EIF4G2 and IGF1R mRNAs down-regulated in OA cartilages (P < 0.001), and negative correlations existed between the level of miR-139 and EIF4G2 or IGF1R. Overexpression of miR-139 in CHON-001 cells suppressed both mRNA and protein levels of EIF4G2 and IGF1R, and inhibited cell viability, colony formation number and cell migration, while miR-139 inhibitor induced the opposite effects. Knockdown of EIF4G2 or IGF1R in CHON-001 cells reversed the effects of miR-139 inhibitor on cell viability, colony formation and cell migration. These results indicate that miR-139 is capable of inhibiting chondrocyte proliferation and migration, thus being a possible therapeutic target for OA. The mechanism of miR-139 in chondrocytes may be related to its regulation on EIF4G2 and IGF1R.« less

  6. Live Cell Visualization of Multiple Protein-Protein Interactions with BiFC Rainbow.

    PubMed

    Wang, Sheng; Ding, Miao; Xue, Boxin; Hou, Yingping; Sun, Yujie

    2018-05-18

    As one of the most powerful tools to visualize PPIs in living cells, bimolecular fluorescence complementation (BiFC) has gained great advancement during recent years, including deep tissue imaging with far-red or near-infrared fluorescent proteins or super-resolution imaging with photochromic fluorescent proteins. However, little progress has been made toward simultaneous detection and visualization of multiple PPIs in the same cell, mainly due to the spectral crosstalk. In this report, we developed novel BiFC assays based on large-Stokes-shift fluorescent proteins (LSS-FPs) to detect and visualize multiple PPIs in living cells. With the large excitation/emission spectral separation, LSS-FPs can be imaged together with normal Stokes shift fluorescent proteins to realize multicolor BiFC imaging using a simple illumination scheme. We also further demonstrated BiFC rainbow combining newly developed BiFC assays with previously established mCerulean/mVenus-based BiFC assays to achieve detection and visualization of four PPI pairs in the same cell. Additionally, we prove that with the complete spectral separation of mT-Sapphire and CyOFP1, LSS-FP-based BiFC assays can be readily combined with intensity-based FRET measurement to detect ternary protein complex formation with minimal spectral crosstalk. Thus, our newly developed LSS-FP-based BiFC assays not only expand the fluorescent protein toolbox available for BiFC but also facilitate the detection and visualization of multiple protein complex interactions in living cells.

  7. The in vitro MN assay in 2011: origin and fate, biological significance, protocols, high throughput methodologies and toxicological relevance.

    PubMed

    Kirsch-Volders, Micheline; Plas, Gina; Elhajouji, Azeddine; Lukamowicz, Magdalena; Gonzalez, Laetitia; Vande Loock, Kim; Decordier, Ilse

    2011-08-01

    Micronuclei (MN) are small, extranuclear bodies that arise in dividing cells from acentric chromosome/chromatid fragments or whole chromosomes/chromatids lagging behind in anaphase and are not included in the daughter nuclei at telophase. The mechanisms of MN formation are well understood; their possible postmitotic fate is less evident. The MN assay allows detection of both aneugens and clastogens, shows simplicity of scoring, is widely applicable in different cell types, is internationally validated, has potential for automation and is predictive for cancer. The cytokinesis-block micronucleus assay (CBMN) allows assessment of nucleoplasmic bridges, nuclear buds, cell division inhibition, necrosis and apoptosis and in combination with FISH using centromeric probes, the mechanistic origin of the MN. Therefore, the CBMN test can be considered as a "cytome" assay covering chromosome instability, mitotic dysfunction, cell proliferation and cell death. The toxicological relevance of the MN test is strong: it covers several endpoints, its sensitivity is high, its predictivity for in vivo genotoxicity requires adequate selection of cell lines, its statistical power is increased by the recently available high throughput methodologies, it might become a possible candidate for replacing in vivo testing, it allows good extrapolation for potential limits of exposure or thresholds and it is traceable in experimental in vitro and in vivo systems. Implementation of in vitro MN assays in the test battery for hazard and risk assessment of potential mutagens/carcinogens is therefore fully justified.

  8. The application of the comet assay to assess the genotoxicity of environmental pollutants in the nematode Caenorhabditis elegans.

    PubMed

    Imanikia, Soudabeh; Galea, Francesca; Nagy, Eszter; Phillips, David H; Stürzenbaum, Stephen R; Arlt, Volker M

    2016-07-01

    This study aimed to establish a protocol for cell dissociation from the nematode Caenorhabditis elegans (C. elegans) to assess the genotoxicity of the environmental pollutant benzo[a]pyrene (BaP) using the alkaline version of the single cell electrophoresis assay (comet assay). BaP genotoxicity was assessed in C. elegans (wild-type [WT]; N2, Bristol) after 48h exposure (0-40μM). Induction of comets by BaP was concentration-dependent up to 20μM; comet% tail DNA was ∼30% at 20μM BaP and ∼10% in controls. Similarly, BaP-induced DNA damage was evaluated in C. elegans mutant strains deficient in DNA repair. In xpa-1 and apn-1 mutants BaP-induced comet formation was diminished to WT background levels suggesting that the damage formed by BaP that is detected in the comet assay is not recognised in cells deficient in nucleotide and base excision repair, respectively. In summary, our study provides a protocol to evaluate DNA damage of environmental pollutants in whole nematodes using the comet assay. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  9. DLK1 as a potential target against cancer stem/progenitor cells of hepatocellular carcinoma.

    PubMed

    Xu, Xiao; Liu, Rui-Fang; Zhang, Xin; Huang, Li-Yu; Chen, Fei; Fei, Qian-Lan; Han, Ze-Guang

    2012-03-01

    Delta-like 1 homolog (DLK1; Drosophila) is a hepatic stem/progenitor cell marker in fetal livers that plays a vital role in oncogenesis of hepatocellular carcinoma (HCC). The aim of this study is to investigate whether DLK1 could serve as a potential therapeutic target against cancer stem/progenitor cells of HCC. DLK1(+) and DLK1(-) cells were sorted by fluorescence-activated cell sorting and magnetic-activated cell sorting, respectively, and then were evaluated by flow cytometry. The biological behaviors of these isolated cells and those with DLK1 knockdown were assessed by growth curve, colony formation assay, spheroid colony formation, chemoresistance, and in vivo tumorigenicity. Adenovirus-mediated RNA interference was used to knockdown the endogenous DLK1. We found that DLK1(+) population was less than 10% in almost all 17 HCC cell lines examined. DLK1(+) HCC cells showed stronger ability of chemoresistance, colony formation, spheroid colony formation, and in vivo tumorigenicity compared with DLK1(-) cells. The DLK1(+) HCC cells could generate the progeny without DLK1 expression. Furthermore, DLK1 knockdown could suppress the ability of proliferation, colony formation, spheroid colony formation, and in vivo tumorigenicity of Hep3B and Huh-7 HCC cells. Our data suggested that DLK1(+) HCC cells have characteristics similar to those of cancer stem/progenitor cells. RNA interference against DLK1 can suppress the malignant behaviors of HCC cells, possibly through directly disrupting cancer stem/progenitor cells, which suggested that DLK1 could be a potential therapeutic target against the HCC stem/progenitor cells.

  10. Alkbh4 and Atrn Act Maternally to Regulate Zebrafish Epiboly

    PubMed Central

    Sun, Qingrui; Liu, Xingfeng; Gong, Bo; Wu, Di; Meng, Anming; Jia, Shunji

    2017-01-01

    During embryonic gastrulation, coordinated cell movements occur to bring cells to their correct position. Among them, epiboly produces the first distinct morphological changes, which is essential for the early development of zebrafish. Despite its fundamental importance, little is known to understand the underlying molecular mechanisms. By generating maternal mutant lines with CRISPR/Cas9 technology and using morpholino knockdown strategy, we showed that maternal Alkbh4 depletion leads to severe epiboly defects in zebrafish. Immunofluorescence assays revealed that Alkbh4 promotes zebrafish embryonic epiboly through regulating actomyosin contractile ring formation, which is composed of Actin and non-muscular myosin II (NMII). To further investigate this process, yeast two hybridization assay was performed and Atrn was identified as a binding partner of Alkbh4. Combining with the functional results of Alkbh4, we found that maternal Atrn plays a similar role in zebrafish embryonic morphogenesis by regulating actomyosin formation. On the molecular level, our data revealed that Atrn prefers to interact with the active form of Alkbh4 and functions together with it to regulate the demethylation of Actin, the actomyosin formation, and subsequently the embryonic epiboly. PMID:28924386

  11. Long non-coding RNA MALAT1 modulates radiosensitivity of HR-HPV+ cervical cancer via sponging miR-145.

    PubMed

    Lu, Hongzhi; He, Yu; Lin, Lin; Qi, Zhengqin; Ma, Li; Li, Li; Su, Ying

    2016-02-01

    Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a lncRNA playing oncogenic role in several cancers, including cervical cancer. However, its role in radiosensitivity of cervical cancer is not yet well understood. This study explored the role of MALAT1 in radiosensitivity of high-risk human papillomavirus (HR-HPV)-positive cervical cancer and whether there is a ceRNA mechanism which participated in its regulation over radiosensitivity. Based on tissue samples from 50 cervical cancer cases and 25 healthy controls, we found MALAT1 expression was significantly higher in radioresistant than in radiosensitive cancer cases. In addition, MALAT1 and miR-145 expression inversely changed in response to irradiation in HR-HPV+ cervical cancer cells. By using clonogenic assay and flow cytometry analysis of cell cycle distribution and apoptosis, we found CaSki and Hela cells with knockdown of MALAT1 had significantly lower colony formation, higher ratio of G2/M phase block and higher ratio of cell apoptosis. By performing RNA-binding protein immunoprecipitation (RIP) assay and RNA pull-down assay, we confirmed that miR-145 and MALAT1 were in the same Ago2 complex and there was a reciprocal repression between them. Then, we explored the function of MALAT1-miR-145 in radiosensitivity of cervical cancers cells and demonstrated that si-MALAT1 and miR-145 had some level of synergic effect in reducing cancer cell colony formation, cell cycle regulation, and inducing apoptosis. These findings provide an important clue about microRNA-lncRNA interaction in the mechanism of radioresistance of cervical cancer.

  12. Combination of hTERT knockdown and interferon-γ treatment inhibited angiogenesis and tumor progression in glioblastoma

    PubMed Central

    George, Joseph; Banik, Naren L.; Ray, Swapan K.

    2009-01-01

    Purpose The limitless invasive and proliferative capacities of tumor cells are associated with telomerase and expression of its catalytic component, human telomerase reverse transcriptase (hTERT). Interferon-γ (IFN-γ) modulates several cellular activities including signaling pathways and cell cycle through transcriptional regulation. Experimental Design Using a recombinant plasmid with hTERT siRNA cDNA, we down regulated hTERT during IFN-γ treatment in human glioblastoma SNB-19 and LN-18 cell lines and examined whether such a combination could inhibit angiogenesis and tumor growth in nude mice. In vitro angiogenesis assay was performed using co-culture of tumor cells with human microvascular endothelial cells. In vivo angiogenesis assay was performed using diffusion chambers under the dorsal skin of nude mice. In vivo imaging of intracerebral tumorigenesis and longitudinal solid tumor development studies were conducted in nude mice. Results In vitro and in vivo angiogenesis assays demonstrated inhibition of capillary-like network formation of microvascular endothelial cells and neovascularization under dorsal skin of nude mice, respectively. We observed inhibition of intracerebral tumorigenesis and subcutaneous solid tumor formation in nude mice after treatment with combination of hTERT siRNA and IFN-γ. Western blotting of solid tumor samples demonstrated significant down regulation of the molecules that regulate cell invasion, angiogenesis, and tumor progression. Conclusions Our study demonstrated that combination of hTERT siRNA and IFN-γ effectively inhibited angiogenesis and tumor progression through down regulation of molecules involved in these processes. Therefore, combination of hTERT siRNA and IFN-γ is a promising therapeutic strategy for controlling growth of human glioblastoma. PMID:19934306

  13. Single Cell Proteolytic Assays to Investigate Cancer Clonal Heterogeneity and Cell Dynamics Using an Efficient Cell Loading Scheme

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Chih; Cheng, Yu-Heng; Ingram, Patrick; Yoon, Euisik

    2016-06-01

    Proteolytic degradation of the extracellular matrix (ECM) is critical in cancer invasion, and recent work suggests that heterogeneous cancer populations cooperate in this process. Despite the importance of cell heterogeneity, conventional proteolytic assays measure average activity, requiring thousands of cells and providing limited information about heterogeneity and dynamics. Here, we developed a microfluidic platform that provides high-efficiency cell loading and simple valveless isolation, so the proteolytic activity of a small sample (10-100 cells) can be easily characterized. Combined with a single cell derived (clonal) sphere formation platform, we have successfully demonstrated the importance of microenvironmental cues for proteolytic activity and also investigated the difference between clones. Furthermore, the platform allows monitoring single cells at multiple time points, unveiling different cancer cell line dynamics in proteolytic activity. The presented tool facilitates single cell proteolytic analysis using small samples, and our findings illuminate the heterogeneous and dynamic nature of proteolytic activity.

  14. Analysis of the Cytotoxic Potential of Anisomelic Acid Isolated from Anisomeles malabarica

    PubMed Central

    Preethy, Christo Paul; Alshatwi, Ali Abdullah; Gunasekaran, Muthukumaran; Akbarsha, Mohammad Abdulkadher

    2013-01-01

    Anisomelic acid (AA), one of the major compounds in Anisomeles malabarica, was tested for its cytotoxicity and apoptosis-inducing potential in breast and cervical cancer cells. The MTT assay for cell viability indicated that AA is cytotoxic to all of the four cell lines tested in a dose- and duration-dependent manner. Acridine Orange & Ethidium Bromide (AO & EB) and Hoechst 33258 staining of AA-treated cells revealed typical apoptotic morphology such as condensed chromatin and formation of apoptotic bodies. The comet assay revealed DNA strand break(s), indicating that AA induces DNA damage which culminates in apoptosis. Thus, the study revealed the anti-proliferative and apoptosis-inducing properties of AA in both breast and cervical cancer cells. Therefore, anisomelic acid offers potential for application in breast and cervical cancer therapy. PMID:23833721

  15. Quantitative telomerase enzyme activity determination using droplet digital PCR with single cell resolution.

    PubMed

    Ludlow, Andrew T; Robin, Jerome D; Sayed, Mohammed; Litterst, Claudia M; Shelton, Dawne N; Shay, Jerry W; Wright, Woodring E

    2014-07-01

    The telomere repeat amplification protocol (TRAP) for the human reverse transcriptase, telomerase, is a PCR-based assay developed two decades ago and is still used for routine determination of telomerase activity. The TRAP assay can only reproducibly detect ∼ 2-fold differences and is only quantitative when compared to internal standards and reference cell lines. The method generally involves laborious radioactive gel electrophoresis and is not conducive to high-throughput analyzes. Recently droplet digital PCR (ddPCR) technologies have become available that allow for absolute quantification of input deoxyribonucleic acid molecules following PCR. We describe the reproducibility and provide several examples of a droplet digital TRAP (ddTRAP) assay for telomerase activity, including quantitation of telomerase activity in single cells, telomerase activity across several common telomerase positive cancer cells lines and in human primary peripheral blood mononuclear cells following mitogen stimulation. Adaptation of the TRAP assay to digital format allows accurate and reproducible quantification of the number of telomerase-extended products (i.e. telomerase activity; 57.8 ± 7.5) in a single HeLa cell. The tools developed in this study allow changes in telomerase enzyme activity to be monitored on a single cell basis and may have utility in designing novel therapeutic approaches that target telomerase. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Angiogenesis and inflammation signaling are targets of beer polyphenols on vascular cells.

    PubMed

    Negrão, Rita; Costa, Raquel; Duarte, Delfim; Taveira Gomes, Tiago; Mendanha, Mário; Moura, Liane; Vasques, Luísa; Azevedo, Isabel; Soares, Raquel

    2010-12-01

    Emerging evidence indicates that chronic inflammation and oxidative stress cluster together with angiogenic imbalance in a wide range of pathologies. In general, natural polyphenols present health-protective properties, which are likely attributed to their effect on oxidative stress and inflammation. Hops used in beer production are a source of polyphenols such as xanthohumol (XN), and its metabolites isoxanthohumol (IXN) and phytoestrogen 8-prenylnaringenin (8PN). Our study aimed to evaluate XN, IXN, and 8PN effects on angiogenesis and inflammation processes. Opposite in vitro effects were observed between 8PN, stimulating endothelial and smooth muscle cell (SMC) growth, motility, invasion and capillary-like structures formation, and XN and IXN, which inhibited them. Mouse matrigel plug and rat skin wound-healing assays confirmed that XN and IXN treatments reduced vessel number as well as serum macrophage enzymatic activity, whereas 8PN increased blood vessels formation in both assays and enzyme activity in the wound-healing assay. A similar profile was found for serum inflammatory interleukin-1β quantification, in the wound-healing assay. Our data indicate that whereas 8PN stimulates angiogenesis, XN and IXN manifested anti-angiogenic and anti-inflammatory effects in identical conditions. These findings suggest that the effects observed for individual compounds on vascular wall cells must be carefully taken into account, as these polyphenols are metabolized after in vivo administration. The modulation of SMC proliferation and migration is also of special relevance, given the role of these cells in many pathological conditions. Furthermore, these results may provide clues for developing useful therapeutic agents against inflammation- and angiogenesis-associated pathologies. Copyright © 2010 Wiley-Liss, Inc.

  17. A High Content Screening (HCS) Assay for the Identification of Chemical Inducers of PML Oncogenic Domains (PODs)

    PubMed Central

    Yip, Kenneth W.; Cuddy, Michael; Pinilla, Clemencia; Giulanotti, Marc; Heynen-Genel, Susanne; Matsuzawa, Shu-ichi; Reed, John C.

    2014-01-01

    PML is a tumor suppressor that promotes apoptosis through both p53-dependent and - independent mechanisms, participates in Rb-mediated cell cycle arrest, inhibits neoangiogenesis, and contributes to maintenance of genomic stability. PML also plays a role in host defense against viruses, conferring antiviral activity. When active, PML localizes to subnuclear structures named PML oncogenic domains (PODs) or PML nuclear bodies (PML-NBs), whereas inactive PML is located diffusely throughout the nucleus of cells, thus providing a morphological indicator. Known activators of PML include arsenicals and interferons, however, these agents induce a plethora of toxic effects, limiting their effectiveness. The objective of the current study was to develop a high content screening (HCS) assay for the identification of chemical activators of PML. We describe methods for automated analysis of POD formation using high throughput microscopy (HTM) to localize PML immunofluorescence in conjunction with image analysis software for POD quantification. Using this HCS assay in 384 well format, we performed pilot screens of a small synthetic chemical library and mixture-based combinatorial libraries, demonstrating the robust performance of the assay. HCS counter-screening assays were also developed for hit characterization, based on immunofluorescence analyses of the subcellular location of phosphorylated H2AX or phosphorylated CHK1, which increase in a punctate nuclear pattern in response to DNA damage. Thus, the HCS assay devised here represents a high throughput screen that can be utilized to discover POD-inducing compounds that may restore the tumor suppressor activity of PML in cancers or possibly promote anti-viral states. PMID:21233309

  18. Angiogenic effects of apigenin on endothelial cells after hypoxia-reoxygenation via the caveolin-1 pathway

    PubMed Central

    Tu, Fengxia; Pang, Qiongyi; Chen, Xiang; Huang, Tingting; Liu, Meixia; Zhai, Qiongxiang

    2017-01-01

    In the present study, we aimed to elucidate whether apigenin contributes to the induction of angiogenesis and the related mechanisms in cell hypoxia-reoxygenation injury. The role of apigenin was examined in human umbilical vein endothelial cell (HUVEC) viability, migration and tube formation in vitro. To investigate the related mechanisms, we used caveolin-1 short interfering RNA. The viability of HUVECs was measured using Cell Counting Kit-8 assays, HUVEC migration was analyzed by crystal violet staining, and a tube formation assay was performed using the branch point method. Expression of caveolin-1, vascular endothelial growth factor (VEGF), and endothelial nitric oxide synthase (eNOS) in HUVECs was examined by polymerase chain reaction and western blotting. Our data revealed that apigenin induced angiogenesis in vitro by increasing the tube formation ability of HUVECs, which was counteracted by caveolin-1 silencing. Compared to the NC group, Caveolin-1 and eNOS expression was upregulated by apigenin, whereas compared to the NC group, eNOS expression was increased upon caveolin-1 silencing. The expression of VEGF was increased by treatment with apigenin; however, compared to the NC group, caveolin-1 silencing did not affect VEGF expression, and apigenin did not increase VEGF expression in HUVECs after caveolin-1 silencing. These data suggest that apigenin may be a candidate therapeutic target for stroke recovery by promoting angiogenesis via the caveolin-1 signaling pathway. PMID:29039442

  19. Evaluation of Preclinical Assays to Investigate an Anthroposophic Pharmaceutical Process Applied to Mistletoe (Viscum album L.) Extracts

    PubMed Central

    Flückiger, Heidi

    2014-01-01

    Extracts from European mistletoe (Viscum album L.) developed in anthroposophic medicine are based on specific pharmaceutical procedures to enhance remedy efficacy. One such anthroposophic pharmaceutical process was evaluated regarding effects on cancer cell toxicity in vitro and on colchicine tumor formation in Lepidium sativum. Anthroposophically processed Viscum album extract (APVAE) was produced by mixing winter and summer mistletoe extracts in the edge of a high-speed rotating disk and was compared with manually mixed Viscum album extract (VAE). The antiproliferative effect of VAE/APVAE was determined in five cell lines (NCI-H460, DU-145, HCC1143, MV3, and PA-TU-8902) by WST-1 assay in vitro; no difference was found between VAE and APVAE in any cell line tested (P > 0.14). Incidence of colchicine tumor formation was assessed by measurement of the root/shoot-ratio of seedlings of Lepidium sativum treated with colchicine as well as VAE, APVAE, or water. Colchicine tumor formation decreased after application of VAE (−5.4% compared to water, P < 0.001) and was even stronger by APVAE (−8.8% compared to water, P < 0.001). The high-speed mistletoe extract mixing process investigated thus did not influence toxicity against cancer cells but seemed to sustain morphostasis and to enhance resistance against external noxious influences leading to phenomenological malformations. PMID:24876872

  20. Overexpression of Klotho suppresses liver cancer progression and induces cell apoptosis by negatively regulating wnt/β-catenin signaling pathway.

    PubMed

    Sun, Huidong; Gao, Yanchao; Lu, Kemei; Zhao, Guimei; Li, Xuehua; Li, Zhu; Chang, Hong

    2015-10-24

    Klotho is a discovered aging suppressor gene, and its overexpression in mice extends the life span of the animal. Recently, Klotho is also identified as a tumor suppressor gene in variety of tumors; however, the potential role and the antitumor mechanism remain unclarified in liver cancers. RT-PCR and western blotting analysis were used to detect the expression of Klotho, β-catenin, C-myc, and Cyclin D1. MTT assay was used to detect the survival rates of HepG2 and SMMC-7721 cells. Colony formation assay was used to test the proliferation ability in Klotho transfected cells. FACS was used to detect the cell apoptosis rate in different groups. The results showed that lower expression of Klotho were found in liver cancer cell lines than the immortalized liver cell L02. Also, MTT assay results found that overexpression or recombinant Klotho administration suppressed the proliferation of liver cancer cells HepG2 and SMMC-7721. Moreover, the colony formation assay results showed that the number of colonies was significantly lower in the cells with transfection with pCMV-Klotho than the controls. Thus, functional analysis demonstrated that Klotho expression inhibited the proliferation of liver cancer cells and Klotho worked as an important antitumor gene in tumor progression. Next, the mechanism was partly clarified that Klotho expression induced cell apoptosis in HepG2 and SMMC-7721 cells, and this phenomenon was mainly involved in the Wnt/β-catenin signaling pathway. The western blotting analysis revealed that overexpression or recombinant administration of Klotho obviously decreased the expression levels of β-catenin, C-myc, and Cyclin D1 in HepG2 cells. Most importantly, the antitumor mechanism for Klotho due to that overexpression of Klotho not only decreased the endogenous β-catenin levels but also inhibited the nuclear translocation of β-catenin to delay the cell cycle progression. Klotho was a tumor suppressor gene, and overexpression of Klotho suppressed the proliferation of liver cancer cells partly due to negative regulation of Wnt/β-catenin signaling pathway. So, Klotho might be used as a potential target, and the study will contribute to treatment for therapy of liver cancer patients.

  1. GSK3 Inhibitor-BIO Regulates Proliferation of Immortalized Pancreatic Mesenchymal Stem Cells (iPMSCs)

    PubMed Central

    Cao, Hui; Chu, Yuankui; Lv, Xiao; Qiu, Pubin; Liu, Chao; Zhang, Huiru; Li, Dan; Peng, Sha; Dou, Zhongying; Hua, Jinlian

    2012-01-01

    Background The small molecule 6-bromoindirubin-30-oxime (BIO), a glycogen synthase kinase 3 (GSK3) inhibitor, is a pharmacological agent known to maintain self-renewal in human and mouse embryonic stem cells (ESCs). However, the precise role of GSK3 in immortalized pancreatic mesenchymal stem cells (iPMSCs) growth and survival is not completely understood at present. Results To determine whether this molecule is involved in controlling the proliferation of iPMSCs, we examined the effect of BIO on iPMSCs. We found that the inactivation of GSK3 by BIO can robustly stimulate iPMSCs proliferation and mass formation as shown by QRT-PCR, western blotting, 5-Bromo-2-deoxyuridine (BrdU) immunostaining assay and tunel assay. However, we did not find the related roles of BIO on β cell differentiation by immunostaining, QRT-PCR assay, glucose-stimulated insulin release and C-peptide content analysis. Conclusions These results suggest that BIO plays a key role in the regulation of cell mass proliferation and maintenance of the undifferentiated state of iPMSCs. PMID:22384031

  2. Long noncoding RNA CCAT1 promotes cell proliferation and metastasis in human medulloblastoma via MAPK pathway.

    PubMed

    Gao, Ran; Zhang, Rui; Zhang, Cuicui; Zhao, Li; Zhang, Yue

    2018-01-01

    Medulloblastoma is the most common posterior fossa tumor in children and one that easily metastasizes. The mechanisms of how the medulloblastoma develops and progresses remain to be elucidated. The present study aimed to assess the role of long noncoding colon cancer-associated transcript-1 (lncRNA CCAT1) in cell proliferation and metastasis in human medulloblastoma. Levels of CCAT1 were measured in samples and cell lines of medulloblastoma. Cell cycle progression, cell viability assay, colony formation assay, wound-healing and Transwell assays Corning, Cambridge, MA, USA were used to investigate the viability and motility of cells. Western blot assay was used to investigate the levels of CCAT1 and other proteins. The initial findings indicated that CCAT1 was significantly up-regulated in clinical cancerous tissues and expressed differently in a series of medulloblastoma cell lines. CCAT1 knockdown significantly slowed cell proliferation rates and inhibited cell clonogenic potential in Daoy cells and D283 cells. Cell cycle progression was disrupted with cell proportions in the G0/G1 phase decreased and the proportion in the S phase and G2/M phases increased, in Daoy cells and D283 cells. Concordantly, medulloblastoma tumor cell growth rates were found to be impaired in xenotransplanted mice. After CCAT1 knockdown, cell wound recovery ability was significantly inhibited. Furthermore, the phosphorylated levels of MAPK, ERK and MEK, but not their total levels decreased after the down-regulation of CCAT1 in Daoy and D283 cells. Our results suggested that the lncRNA CCAT1 promotes cell proliferation and metastasis in human medulloblastoma by possibly regulating the MAPK pathway.

  3. Essential oil of Tridax procumbens L induces apoptosis and suppresses angiogenesis and lung metastasis of the B16F-10 cell line in C57BL/6 mice.

    PubMed

    Manjamalai, A; Kumar, M J Mahesh; Grace, V M Berlin

    2012-01-01

    To determine the effect of essential oil obtained from a traditionally used medicinal plant Tridax procumbens L, on lung metastasis developed by B16F-10 melanoma cells in C57BL/6 mice. Parameters studied were toxicity, lung tumor nodule count, histopathological features, tumor directed capillary vessel formation, apoptosis and expression levels of P53 and caspase-3 proteins. In vitro the MTT assay showed cytotoxicity was found to be high as 70.2% of cancer cell death within 24 hrs for 50 μg. In vivo oil treatment significantly inhibited tumor nodule formation by 71.7% when compared with untreated mice. Formation of tumor directed new blood vessels was also found to be inhibited to about 39.5%. TUNEL assays also demonstrated a significant increase in the number of apoptotic positive cells after the treatment. P53 and caspase-3 expression was also found to be greater in the essential oil treated group than the normal and cancer group. The present investigation showed significant effects of the essential oil of Tridax procumbens L in preventing lung metastasis by B16F-10 cell line in C57BL/6 mice. Its specific preventive effect on tumor directed angiogenesis and inducing effect on apoptosis warrant further studies at the molecular level to validate the significance of Tridax procumbens L for anticancer therapy.

  4. Photosensitized 2-amino-3-hydroxypyridine-induced mitochondrial apoptosis via Smac/DIABLO in human skin cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyal, Shruti; Amar, Saroj Kumar; Academy of Scientific and Innovative Research

    The popularity of hair dyes use has been increasing regularly throughout the world as per the demand of hair coloring fashion trends and other cosmetic products. 2-Amino-3-hydroxypyridine (A132) is widely used as a hair dye ingredient around the world. We are reporting first time the phototoxicity mechanism of A132 under ambient environmental UV-B radiation. It showed maximum absorption in UV-B region (317 nm) and forms a photoproduct within an hour exposure of UV-B irradiation. Photocytotoxicity of A132 in human keratinocytes (HaCaT) was measured by mitochondrial (MTT), lysosomal (NRU) and LDH assays which illustrated the significant reduction in cell viability. Themore » role of reactive oxygen species (ROS) generation for A132 phototoxicity was established photo- chemically as well as intracellularly. Noteworthy, formation of tail DNA (comet assay), micronuclei and cyclobutane pyrimidine dimers (CPDs) (immunocytochemistry) formation confirmed the photogenotoxic potential of dye. Cell cycle study (sub-G1peak) and staining with EB/AO revealed the cell cycle arrest and apoptosis. Further, mitochondrial mediated apoptosis was corroborated by reduced MMP, release of cytochrome c and upregulation of caspase-3. Release of mitochondrial Smac/DIABLO in cytoplasm demonstrated the caspase dependent apoptotic cell death by photolabile A132 dye. In-addition increased Bax/Bcl2 ratio again proved the apoptosis. Thus, study suggests that A132 induces photogenotoxicity, phototoxicity and apoptotic cell death through the involvement of Smac/DIABLO in mitochondrial apoptosis via caspase dependent manner. Therefore, the long term use of A132 dye and sunlight exposure jointly increased the oxidative stress in skin which causes premature hair loss, damage to progenitor cells of hair follicles. - Highlights: • Photodegradation of A132 and formation of novel photoproduct • Involvement of ROS in A132 phototoxicity • Role of ROS in DNA damage, CPD and micronuclei formation • Release of Smac/DIABLO from mitochondria during apoptosis • Caspase 3 dependent apoptotic cell death.« less

  5. A novel high-throughput screening format to identify inhibitors of secreted acid sphingomyelinase.

    PubMed

    Mintzer, Robert J; Appell, Kenneth C; Cole, Andrew; Johns, Anthony; Pagila, Rene; Polokoff, Mark A; Tabas, Ira; Snider, R Michael; Meurer-Ogden, Janet A

    2005-04-01

    Secreted extracellular acid sphingomyelinase (sASM) activity has been suggested to promote atherosclerosis by enhancing subendothelial aggregation and retention of low-density lipoprotein (LDL) with resultant foam cell formation. Compounds that inhibit sASM activity, at neutral pH, may prevent lipid retention and thus would be expected to be anti-atherosclerotic. With the goal of identifying novel compounds that inhibit sASM at pH 7.4, a high-throughput screen was performed. Initial screening was run using a modification of a proven system that measures the hydrolysis of radiolabeled sphingomyelin presented in detergent micelles in a 96-well format. Separation of the radiolabeled aqueous phosphorylcholine reaction product from uncleaved sphingomyelin lipid substrate was achieved by chloroform/methanol extraction. During the screening campaign, a novel extraction procedure was developed to eliminate the use of the hazardous organic reagents. This new procedure exploited the ability of uncleaved, radiolabeled lipid substrate to interact with hydrophobic phenyl-sepharose beads. A comparison of the organic-based and the bead-based extraction sASM screening assays revealed Z' factor values ranging from 0.7 to 0.95 for both formats. In addition, both assay formats led to the identification of sub- to low micromolar inhibitors of sASM at pH 7.4 with similar IC(50) values. Subsequent studies demonstrated that both methods were also adaptable to run in a 384-well format. In contrast to the results observed at neutral pH, however, only the organic extraction assay was capable of accurately measuring sASM activity at its pH optimum of 5.0. The advantages and disadvantages of both sASM assay formats are discussed.

  6. Artemisinin reduces cell proliferation and induces apoptosis in neuroblastoma.

    PubMed

    Zhu, Shunqin; Liu, Wanhong; Ke, Xiaoxue; Li, Jifu; Hu, Renjian; Cui, Hongjuan; Song, Guanbin

    2014-09-01

    Artemisinin, a natural product from the Chinese medicinal plant, Artemisia annua L., is commonly used in the treatment of malaria, and has recently been reported to have potent anticancer activity in various types of human tumors. Yet, the effect of artemisinin on neuroblastoma is still unclear. In the present study, we aimed to investigate the effects of artemisinin on neuroblastoma cells. We observed that artemisinin significantly inhibited cell growth and proliferation, and caused cell cycle arrest in the G1 phase in neuroblastoma cell lines. Annexin V-FITC/PI staining assay revealed that artemisinin markedly induced apoptosis. Soft agar assays revealed that artemisinin suppressed the ability of clonogenic formation of neuroblastoma cells and a xenograft study in NOD/SCID mice showed that artemisinin inhibited tumor growth and development in vivo. Therefore, our results suggest that the Chinese medicine artemisinin could serve as a novel potential therapeutic agent in the treatment of neuroblastoma.

  7. Evaluating the potential bioactivity of a novel compound ER1626.

    PubMed

    Wang, Lijun; Zeng, Yanyan; Wang, Tianling; Liu, Hongyi; Xiao, Hong; Xiang, Hua

    2014-01-01

    ER1626, a novel compound, is a derivate of indeno-isoquinoline ketone. This study was designed to evaluate the biological activity and potential anti-tumor mechanism of ER1626. MTT assay, scratch assay and flow cytometry were used to determine cell proliferation, cell migration and cell cycle distribution as well as cell apoptosis on human breast cancer MCF-7 cells and endometrial cancer Ishikawa cells. We also explored the antiangiogenic effect of ER1626 on HUVEC cells and chicken embryos. The expression of estrogen receptor protein was investigated with western-blot analysis. ER1626 down-regulated the expression of estrogen receptor α protein and up-regulated β protein in MCF-7 and Ishikawa cells. The value of IC50 of ER1626 on MCF-7 and Ishikawa cells were respectively 8.52 and 3.08 µmol/L. Meanwhile, ER1626 decreased VEGF secretion of MCF-7 and Ishikawa cells, disturbed the formation of VEGF-stimulated tubular structure in HUVEC cells, and inhibited the angiogenesis on the chicken chorioallantoic membrane. Scratch assay revealed that ER1626 suppressed the migration of MCF-7, Ishikawa and HUVEC cells. In addition to induction tumor cell apoptosis, ER1626 arrested cell cycle in G1/G0 phase in MCF-7 cells and G2/M phase in Ishikawa cells. In conclusion, our results demonstrated that ER1626 has favorable bioactivities to be a potential candidate against breast cancer and angiogenesis.

  8. [miR-182 promotes cell proliferation of cervical cancer cells by targeting adenomatous polyposis coli (APC) gene].

    PubMed

    Li, Pei; Hu, Jing; Zhang, Ying; Li, Jianping; Dang, Yunzhi; Zhang, Rui; Wei, Lichun; Shi, Mei

    2018-02-01

    Objective To investigate the role and mechanism of microRNA-182 (miR-182) in the proliferation of cervical cancer cells. Methods With liposome-mediated transient transfection method, the level of miR-182 in HeLa and SiHa cells was increased or decreased. CCK-8 assay and colony formation assay were used to observe the effect of miR-182 on the proliferation of cervical cancer cells. Using bioinformatics predictions, real-time quantitative PCR, and dual luciferase reporter assay, we clarified the role of miR-182 in posttranscriptional regulation of adenomatous polyposis coli (APC) gene and its effect on the downstream molecules (c-Myc and cyclin D1) of Wnt singling pathway. Results Up-regulation of miR-182 significantly promoted the proliferation of cervical cancer cells, while down-regulation of miR-182 significantly inhibited the proliferation of cervical cancer cells. Over-expression of miR-182 inhibited the expression of APC gene in cervical cancer cells and the regulation of miR-182 affected the expression of canonical Wnt signaling pathway downstream molecules in cervical cancer cells. Conclusion The miR-182 stimulates canonical Wnt signaling pathway by targeting APC gene and enhances the proliferation of cervical cancer cells.

  9. A biosensor assay for the detection of Mycobacterium avium subsp. paratuberculosis in fecal samples

    PubMed Central

    Kumanan, Vijayarani; Nugen, Sam R.; Baeumner, Antje J.

    2009-01-01

    A simple, membrane-strip-based lateral-flow (LF) biosensor assay and a high-throughput microtiter plate assay have been combined with a reverse transcriptase polymerase chain reaction (RT-PCR) for the detection of a small number (ten) of viable Mycobacterium (M.) avium subsp. paratuberculosis (MAP) cells in fecal samples. The assays are based on the identification of the RNA of the IS900 element of MAP. For the assay, RNA was extracted from fecal samples spiked with a known quantity of (101 to 106) MAP cells and amplified using RT-PCR and identified by the LF biosensor and the microtiter plate assay. While the LF biosensor assay requires only 30 min of assay time, the overall process took 10 h for the detection of 10 viable cells. The assays are based on an oligonucleotide sandwich hybridization assay format and use either a membrane flow through system with an immobilized DNA probe that hybridizes with the target sequence or a microtiter plate well. Signal amplification is provided when the target sequence hybridizes to a second DNA probe that has been coupled to liposomes encapsulating the dye, sulforhodamine B. The dye in the liposomes provides a signal that can be read visually, quantified with a hand-held reflectometer, or with a fluorescence reader. Specificity analysis of the assays revealed no cross reactivity with other mycobacteria, such as M. avium complex, M. ulcerans, M. marium, M. kansasii, M. abscessus, M. asiaticum, M. phlei, M. fortuitum, M. scrofulaceum, M. intracellulare, M. smegmatis, and M. bovis. The overall assay for the detection of live MAP organisms is comparatively less expensive and quick, especially in comparison to standard MAP detection using a culture method requiring 6-8 weeks of incubation time, and is significantly less expensive than real-time PCR. PMID:19255522

  10. Optimization and high-throughput screening of antimicrobial peptides.

    PubMed

    Blondelle, Sylvie E; Lohner, Karl

    2010-01-01

    While a well-established process for lead compound discovery in for-profit companies, high-throughput screening is becoming more popular in basic and applied research settings in academia. The development of combinatorial libraries combined with easy and less expensive access to new technologies have greatly contributed to the implementation of high-throughput screening in academic laboratories. While such techniques were earlier applied to simple assays involving single targets or based on binding affinity, they have now been extended to more complex systems such as whole cell-based assays. In particular, the urgent need for new antimicrobial compounds that would overcome the rapid rise of drug-resistant microorganisms, where multiple target assays or cell-based assays are often required, has forced scientists to focus onto high-throughput technologies. Based on their existence in natural host defense systems and their different mode of action relative to commercial antibiotics, antimicrobial peptides represent a new hope in discovering novel antibiotics against multi-resistant bacteria. The ease of generating peptide libraries in different formats has allowed a rapid adaptation of high-throughput assays to the search for novel antimicrobial peptides. Similarly, the availability nowadays of high-quantity and high-quality antimicrobial peptide data has permitted the development of predictive algorithms to facilitate the optimization process. This review summarizes the various library formats that lead to de novo antimicrobial peptide sequences as well as the latest structural knowledge and optimization processes aimed at improving the peptides selectivity.

  11. Upregulation of miR-3607 promotes lung adenocarcinoma proliferation by suppressing APC expression.

    PubMed

    Lin, Yong; Gu, Qiangye; Sun, Zongwen; Sheng, Baowei; Qi, Congcong; Liu, Bing; Fu, Tian; Liu, Cun; Zhang, Yan

    2017-11-01

    Lung cancer is the leading cause of worldwide cancer-related deaths, although many drugs and new therapeutic approaches have been used, the 5-years survival rate is still low for lung cancer patients. microRNAs have been shown to regulate lung cancer initiation and development, here we studied the role of miR-3607 in lung cancer cell proliferation. We found miR-3607 was upregulated in lung cancer tissues and cells, miR-3607 overexpression promoted lung cancer cell A549 proliferation determined by MTT assay, colony formation assay, anchorage-independent growth ability assay and bromodeoxyuridine incorporation assay, while the opposite phenotypes were shown when miR-3607 was knocked down. Predicted analysis suggested a Wnt signaling pathway regulator adenomatous polyposis coli (APC) was the target of miR-3607, miR-3607 could directly bind to the 3'UTR of APC, and promoted Cyclin D1 and c-Myc expression which can be suppressed by APC. Double knockdown of miR-3607 and APC copied the phenotypes of miR-3607 overexpression, suggesting miR-3607 promoted lung cancer cell A549 proliferation by targeting APC. In conclusion, our study suggested miR-3607 contributes to lung cancer cell proliferation by inhibiting APC. Copyright © 2017. Published by Elsevier Masson SAS.

  12. Angiogenic Potential and Secretome of Human Apical Papilla Mesenchymal Stem Cells in Various Stress Microenvironments.

    PubMed

    Bakopoulou, Athina; Kritis, Aristeidis; Andreadis, Dimitrios; Papachristou, Eleni; Leyhausen, Gabriele; Koidis, Petros; Geurtsen, Werner; Tsiftsoglou, Asterios

    2015-11-01

    Stem cells from the apical papilla (SCAP) of human adult teeth are considered an accessible source of cells with angiogenic properties. The aims of this study were to investigate the endothelial transdifferentiation of SCAP, the secretion of pro- and antiangiogenic factors from SCAP, and the paracrine effects of SCAP when exposed to environmental stress to stimulate tissue damage. SCAP were exposed to serum deprivation (SD), glucose deprivation (GD), and oxygen deprivation/hypoxia (OD) conditions, individually or in combination. Endothelial transdifferentiation was evaluated by in vitro capillary-like formation assays, real-time polymerase chain reaction, western blot, and flow cytometric analyses of angiogenesis-related markers; secretome by antibody arrays and enzyme-linked immunosorbent assays (ELISA); and paracrine impact on human umbilical vein endothelial cells (HUVECs) by in vitro transwell migration and capillary-like formation assays. The short-term exposure of SCAP to glucose/oxygen deprivation (GOD) in the presence, but mainly in deprivation, of serum (SGOD) elicited a proangiogenesis effect indicated by expression of angiogenesis-related genes involved in vascular endothelial growth factor (VEGF)/VEGFR and angiopoietins/Tie pathways. This effect was unachievable under SD in normoxia, suggesting that the critical microenvironmental condition inducing rapid endothelial shift of SCAP is the combination of SGOD. Interestingly, SCAP showed high adaptability to these adverse conditions, retaining cell viability and acquiring a capillary-forming phenotype. SCAP secreted higher numbers and amounts of pro- (angiogenin, IGFBP-3, VEGF) and lower amounts of antiangiogenic factors (serpin-E1, TIMP-1, TSP-1) under SGOD compared with SOD or SD alone. Finally, secretome obtained under SGOD was most effective in inducing migration and capillary-like formation by HUVECs. These data provide new evidence on the microenvironmental factors favoring endothelial transdifferentiation of SCAP, uncovering the molecular mechanisms regulating their fate. They also validate the angiogenic properties of their secretome giving insights into preconditioning strategies enhancing their therapeutic potential.

  13. Kinase inhibitors of the IGF-1R as a potential therapeutic agent for rheumatoid arthritis.

    PubMed

    Tsushima, Hiroshi; Morimoto, Shinji; Fujishiro, Maki; Yoshida, Yuko; Hayakawa, Kunihiro; Hirai, Takuya; Miyashita, Tomoko; Ikeda, Keigo; Yamaji, Ken; Takamori, Kenji; Takasaki, Yoshinari; Sekigawa, Iwao; Tamura, Naoto

    2017-08-01

    We have previously shown that the inhibition of connective tissue growth factor (CTGF) is a potential therapeutic strategy against rheumatoid arthritis (RA). CTGF consists of four distinct modules, including the insulin-like growth factor binding protein (IGFBP). In serum, insulin-like growth factors (IGFs) bind IGFBPs, interact with the IGF-1 receptor (IGF-1 R), and regulate anabolic effects and bone metabolism. We investigated the correlation between IGF-1 and the pathogenesis of RA, and the inhibitory effect on osteoclastogenesis and angiogenesis of the small molecular weight kinase inhibitor of the IGF-1 R, NVP-AEW541, against pathogenesis of RA in vitro. Cell proliferation was evaluated by cell count and immunoblotting. The expression of IGF-1 and IGF-1 R was evaluated by RT-PCR. Osteoclastogenesis was evaluated using tartrate-resistant acid phosphatase staining, a bone resorption assay, and osteoclast-specific enzyme production. Angiogenesis was evaluated by a tube formation assay using human umbilical vein endothelial cells (HUVECs). The proliferation of MH7A cells was found to be inhibited in the presence of NVP-AEW541, and the phosphorylation of extracellular signal-regulated kinase (ERK) and Akt was downregulated in MH7A cells. IGF-1 and IGF-1 R mRNA expression levels were upregulated during formation of M-colony stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL)-mediated osteoclast formation. Moreover, osteoclastogenesis was suppressed in the presence of NVP-AEW541. The formation of the tubular network was enhanced by IGF-1, and this effect was neutralized by NVP-ARE541. Our findings suggest that NVP-AEW541 may be utilized as a potential therapeutic agent in the treatment of RA.

  14. Extensin network formation in Vitis vinifera callus cells is an essential and causal event in rapid and H2O2-induced reduction in primary cell wall hydration

    PubMed Central

    2011-01-01

    Background Extensin deposition is considered important for the correct assembly and biophysical properties of primary cell walls, with consequences to plant resistance to pathogens, tissue morphology, cell adhesion and extension growth. However, evidence for a direct and causal role for the extensin network formation in changes to cell wall properties has been lacking. Results Hydrogen peroxide treatment of grapevine (Vitis vinifera cv. Touriga) callus cell walls was seen to induce a marked reduction in their hydration and thickness. An analysis of matrix proteins demonstrated this occurs with the insolubilisation of an abundant protein, GvP1, which displays a primary structure and post-translational modifications typical of dicotyledon extensins. The hydration of callus cell walls free from saline-soluble proteins did not change in response to H2O2, but fully regained this capacity after addition of extensin-rich saline extracts. To assay the specific contribution of GvP1 cross-linking and other wall matrix proteins to the reduction in hydration, GvP1 levels in cell walls were manipulated in vitro by binding selected fractions of extracellular proteins and their effect on wall hydration during H2O2 incubation assayed. Conclusions This approach allowed us to conclude that a peroxidase-mediated formation of a covalently linked network of GvP1 is essential and causal in the reduction of grapevine callus wall hydration in response to H2O2. Importantly, this approach also indicated that extensin network effects on hydration was only partially irreversible and remained sensitive to changes in matrix charge. We discuss this mechanism and the importance of these changes to primary wall properties in the light of extensin distribution in dicotyledons. PMID:21672244

  15. Free radicals impair the anti-oxidative stress activity of DJ-1 through the formation of SDS-resistant dimer.

    PubMed

    Yasuda, Tatsuki; Niki, Takeshi; Ariga, Hiroyoshi; Iguchi-Ariga, Sanae M M

    2017-04-01

    DJ-1 is a causative gene for familial Parkinson's disease (PD). Loss-of-function of DJ-1 protein is suggested to contribute to the onset of PD, but the causes of DJ-1 dysfunction remain insufficiently elucidated. In this study, we found that the SDS-resistant irreversible dimer of DJ-1 protein was formed in human dopaminergic neuroblastoma SH-SY5Y cells when the cells were exposed to massive superoxide inducers such as paraquat and diquat. The dimer was also formed in vitro by superoxide in PQ redox cycling system and hydroxyl radical produced in Fenton reaction. We, thus, found a novel phenomenon that free radicals directly affect DJ-1 to form SDS-resistant dimers. Moreover, the formation of the SDS-resistant dimer impaired anti-oxidative stress activity of DJ-1 both in cell viability assay and H 2 O 2 -elimination assay in vitro. Similar SDS-resistant dimers were steadily formed with several mutants of DJ-1 found in familial PD patients. These findings suggest that DJ-1 is impaired due to the formation of SDS-resistant dimer when the protein is directly attacked by free radicals yielded by external and internal stresses and that the DJ-1 impairment is one of the causes of sporadic PD.

  16. Human umbilical vein endothelial cells synergize osteo/odontogenic differentiation of periodontal ligament stem cells in 3D cell sheets.

    PubMed

    Pandula, P K C Prgeeth; Samaranayake, L P; Jin, L J; Zhang, C F

    2014-06-01

    To investigate the expression of osteo/odontogenic differentiation markers and vascular network formation in a 3D cell sheet with varying cell ratios of periodontal ligament stem cells (PDLSCs) and human umbilical vein endothelial cells (HUVECs). Human PDLSCs were isolated and characterized by flow cytometry, and co-cultured with HUVECs for the construction of cell sheets. Both types of cells were seeded on temperature-responsive culture dishes with PDLSCs alone, HUVECs alone and various ratios of the latter cells (1 : 1, 2 : 1, 5 : 1 and 1 : 5) to obtain confluent cell sheets. The expressions of osteo/odontogenic pathway markers, including alkaline phosphatase (ALP), bone sialoprotein (BSP) and runt-related transcription factor 2 (RUNX2), were analyzed at 3 and 7 d using RT-PCR. Further ALP protein quantification was performed at 7 and 14 d using ALP assay. The calcium nodule formation was assessed qualitatively and quantitatively by alizarin red assay. Histological evaluations of three cell sheet constructs treated with different combinations (PDLSC-PDLSC-PDLSC/PDLSC-HUVEC-PDLSC/co-culture-co-culture-co-culture) were performed with hematoxylin and eosin and immunofluorescence staining. Statistical analysis was performed using t-test (p < 0.05). Significantly higher ALP gene expression was observed at 3 d in 1 : 1 (PDLSC-HUVEC) (2.52 ± 0.67) and 5 : 1 (4.05 ± 1.07) co-culture groups compared with other groups (p < 0.05); this was consistent with ALP protein quantification. However, the expression of BSP and RUNX2 genes was higher at 7 d compared to 3 d. Significant calcium mineralization was detected as quantified by alizarin red assay at 14 d in 1 : 1 (1323.55 ± 6.54 μm) and 5 : 1 (994.67 ± 4.15 μm) co-cultures as compared with monoculture cell sheets (p < 0.05). Hematoxylin and eosin and CD31 immunostaining clearly exemplified the development of a layered cell sheet structure with endothelial cell islands within the constructed PDLSC-HUVEC-PDLSC and co-culture groups. Furthermore, HUVECs invaded the layered cell sheet, suggestive of rudimentary vascular network initiation. This study suggests that the PDLSC-HUVEC co-culture, cell sheet, model exhibits significantly high levels of osteo/odontogenic markers with signs of initial vascular formation. This novel 3D cell sheet-based approach may be potentially beneficial for periodontal regenerative therapy. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Bile canaliculi formation and biliary transport in 3D sandwich-cultured hepatocytes in dependence of the extracellular matrix composition.

    PubMed

    Deharde, Daniela; Schneider, Christin; Hiller, Thomas; Fischer, Nicolas; Kegel, Victoria; Lübberstedt, Marc; Freyer, Nora; Hengstler, Jan G; Andersson, Tommy B; Seehofer, Daniel; Pratschke, Johann; Zeilinger, Katrin; Damm, Georg

    2016-10-01

    Primary human hepatocytes (PHH) are still considered as gold standard for investigation of in vitro metabolism and hepatotoxicity in pharmaceutical research. It has been shown that the three-dimensional (3D) cultivation of PHH in a sandwich configuration between two layers of extracellular matrix (ECM) enables the hepatocytes to adhere three dimensionally leading to formation of in vivo like cell-cell contacts and cell-matrix interactions. The aim of the present study was to investigate the influence of different ECM compositions on morphology, cellular arrangement and bile canaliculi formation as well as bile excretion processes in PHH sandwich cultures systematically. Freshly isolated PHH were cultured for 6 days between two ECM layers made of collagen and/or Matrigel in four different combinations. The cultures were investigated by phase contrast microscopy and immunofluorescence analysis with respect to cell-cell connections, repolarization as well as bile canaliculi formation. The influence of the ECM composition on cell activity and viability was measured using the XTT assay and a fluorescent dead or alive assay. Finally, the bile canalicular transport was analyzed by live cell imaging to monitor the secretion and accumulation of the fluorescent substance CDF in bile canaliculi. Using collagen and Matrigel in different compositions in sandwich cultures of hepatocytes, we observed differences in morphology, cellular arrangement and cell activity of PHH in dependence of the ECM composition. Sandwich-cultured hepatocytes with an underlay of collagen seem to represent the best in vivo tissue architecture in terms of formation of trabecular cell arrangement. Cultures overlaid with collagen were characterized by the formation of abundant bile canaliculi, while the bile canaliculi network in hepatocytes cultured on a layer of Matrigel and overlaid with collagen showed the most branched and stable canalicular network. All cultures showed a time-dependent leakage of CDF from the bile canaliculi into the culture supernatant with variations in dependence on the used matrix combination. In conclusion, the results of this study show that the choice of ECM has an impact on the morphology, cell assembly and bile canaliculi formation in PHH sandwich cultures. The morphology and the multicellular arrangement were essentially influenced by the underlaying matrix, while bile excretion and leakage of sandwich-cultured hepatocytes were mainly influenced by the overlay matrix. Leaking and damaged bile canaliculi could be a limitation of the investigated sandwich culture models in long-term excretion studies.

  18. Effect of oxygen plasma etching on pore size-controlled 3D polycaprolactone scaffolds for enhancing the early new bone formation in rabbit calvaria.

    PubMed

    Kook, Min-Suk; Roh, Hee-Sang; Kim, Byung-Hoon

    2018-05-02

    This study was to investigate the effects of O 2 plasma-etching of the 3D polycaprolactone (PCL) scaffold surface on preosteoblast cell proliferation and differentiation, and early new bone formation. The PCL scaffolds were fabricated by 3D printing technique. After O 2 plasma treatment, surface characterizations were examined by scanning electron microscopy, atomic force microscopy, and contact angle. MTT assay was used to determine cell proliferation. To investigate the early new bone formation, rabbits were sacrificed at 2 weeks for histological analyses. As the O 2 plasma etching time is increased, roughness and hydrophilicity of the PCL scaffold surface increased. The cell proliferation and differentiation on plasma-etched samples was significantly increased than on untreated samples. At 2 weeks, early new bone formation in O 2 plasma-etched PCL scaffolds was the higher than that of untreated scaffolds. The O 2 plasma-etched PCL scaffolds showed increased preosteoblast differentiation as well as increased new bone formation.

  19. Thin coatings based on ZnO@C18-usnic acid nanoparticles prepared by MAPLE inhibit the development of Salmonella enterica early biofilm growth

    NASA Astrophysics Data System (ADS)

    Stan, Miruna Silvia; Constanda, Sabrina; Grumezescu, Valentina; Andronescu, Ecaterina; Ene, Ana Maria; Holban, Alina Maria; Vasile, Bogdan Stefan; Mogoantă, Laurenţiu; Bălşeanu, Tudor-Adrian; Mogoşanu, George Dan; Socol, Gabriel; Grumezescu, Alexandru Mihai; Dinischiotu, Anca; Lazar, Veronica; Chifiriuc, Mariana Carmen

    2016-06-01

    The aim of this study was to develop a nanostructured bioactive surface based on zinc oxide, sodium stearate (C18) and usnic acid (UA) exhibiting harmless effects with respect to the human cells, but with a significant antimicrobial effect, limiting the attachment and biofilm formation of food pathogens. ZnO nanoparticles were synthesized by sol-gel method and functionalized with C18 and UA. The coatings were fabricated by matrix assisted pulsed laser evaporation technique (MAPLE) and further characterized by TEM, SEM, SAED, XRD and IRM. The biological characterization of the prepared coatings consisted in cytotoxicity and antimicrobial assays. The cytotoxicity of ZnO@C18 and ZnO@C18-UA films was evaluated with respect to the human skin fibroblasts (CCD 1070SK cell line) by phase contrast microscopy, MTT assay and nitric oxide (NO) release. The covered surfaces exhibited a decreased cell attachment, effect which was more pronounced in the presence of UA as shown by purple formazan staining of adhered cells. The unattached fibroblasts remained viable after 24 h in the culture media as it was revealed by their morphology analysis and NO level which were similar to uncovered slides. The quantitative microbiological assays results have demonstrated that the bioactive coatings have significantly inhibited the adherence and biofilm formation of Salmonella enterica. The obtained results recommend these materials as efficient approaches in developing anti-adherent coatings for various industrial, medical and food processing applications.

  20. In vitro anti-proliferative and anti-angiogenic activities of thalidomide dithiocarbamate analogs.

    PubMed

    El-Aarag, Bishoy Y A; Kasai, Tomonari; Zahran, Magdy A H; Zakhary, Nadia I; Shigehiro, Tsukasa; Sekhar, Sreeja C; Agwa, Hussein S; Mizutani, Akifumi; Murakami, Hiroshi; Kakuta, Hiroki; Seno, Masaharu

    2014-08-01

    Inhibition of angiogenesis is currently perceived as a promising strategy in the treatment of cancer. The anti-angiogenicity of thalidomide has inspired a second wave of research on this teratogenic drug. The present study aimed to investigate the anti-proliferative and anti-angiogenic activities of two thalidomide dithiocarbamate analogs by studying their anti-proliferative effects on human umbilical vein endothelial cells (HUVECs) and MDA-MB-231 human breast cancer cell lines. Their action on the expression levels of IL-6, IL-8, TNF-α, VEGF165, and MMP-2 was also assessed. Furthermore, their effect on angiogenesis was evaluated through wound healing, migration, tube formation, and nitric oxide (NO) assays. Results illustrated that the proliferation of HUVECs and MDA-MB-231 cells was not significantly affected by thalidomide at 6.25-100μM. Thalidomide failed to block angiogenesis at similar concentrations. By contrast, thalidomide dithiocarbamate analogs exhibited significant anti-proliferative action on HUVECs and MDA-MB-231 cells without causing cytotoxicity and also showed powerful anti-angiogenicity in wound healing, migration, tube formation, and NO assays. Thalidomide analogs 1 and 2 demonstrated more potent activity to suppress expression levels of IL-6, IL-8, TNF-α, VEGF165, and MMP-2 than thalidomide. Analog 1 consistently, showed the highest potency and efficacy in all the assays. Taken together, our results support further development and evaluation of novel thalidomide analogs as anti-tumor and anti-angiogenic agents. Copyright © 2014. Published by Elsevier B.V.

  1. Vitamin D protects keratinocytes from deleterious effects of ionizing radiation.

    PubMed

    Langberg, M; Rotem, C; Fenig, E; Koren, R; Ravid, A

    2009-01-01

    Radiotherapy can induce severe skin responses that may limit the clinically acceptable radiation dose. The responses include erythema, dry and moist desquamation, erosions and dermal-epidermal blister formation. These effects reflect injury to, and reproductive failure of, epidermal cells and may also be due to dysregulation of the tissue remodelling process caused by excessive proteolytic activity. Calcitriol, the hormonally active vitamin D metabolite, protects keratinocytes from programmed cell death induced by various noxious stimuli. To examine whether calcitriol protects proliferating keratinocytes from the damage inflicted by ionizing radiation under conditions similar to those employed during radiotherapy. Autonomously proliferating HaCaT keratinocytes, used as a model for basal layer keratinocytes, were irradiated using a linear accelerator. Cell death was monitored by vital staining, executioner caspase activation, lactic dehydrogenase release and colony formation assay. Induction of matrix metalloproteinase-9 was assessed by gelatinase activity assay and mRNA determination. Levels of specific proteins were determined by immunoblotting. Treatment with calcitriol inhibited both caspase-dependent and -independent programmed cell death occurring within 48 h of irradiation and increased the colony formation capacity of irradiated cells. These effects may be attributable to inhibition of the c-Jun NH(2)-terminal kinase cascade and to upregulation of the truncated antiapoptotic isoform of p63. Treatment with the hormone also attenuated radiation-induced increase in matrix metalloproteinase-9 protein and mRNA levels. The results of this study suggest that active vitamin D derivatives may attenuate cell death and excessive proteolytic activity in the epidermis due to exposure to ionizing radiation in the course of radiotherapy.

  2. Characterisation of biofilm formation by a Streptococcus suis meningitis isolate.

    PubMed

    Grenier, Daniel; Grignon, Louis; Gottschalk, Marcelo

    2009-02-01

    Biofilm formation by a strain of Streptococcus suis serotype 2 isolated from a case of meningitis in pigs was characterised. Using a polystyrene microtitre plate assay, S. suis 95-8242 produced a dense biofilm when glucose, fructose or sucrose was used as the carbohydrate source, whereas no biofilm formed in the presence of lactose. Polysaccharide production by the biofilm-forming strain was demonstrated by the Congo red agar assay. Transmission electron microscopy revealed that bacterial cells were surrounded by a thick layer of polycationic ferritin-labelled material. S. suis 95-8242 was more resistant to both penicillin G and ampicillin in biofilms than in planktonic cultures on the basis of minimal inhibitory and minimal bactericidal concentrations.

  3. ASC Induces Apoptosis via Activation of Caspase-9 by Enhancing Gap Junction-Mediated Intercellular Communication

    PubMed Central

    Hida, Shigeaki; Fujii, Chifumi; Taniguchi, Shun’ichiro; Ito, Kensuke; Matsumura, Tomio; Okada, Nagisa; Sakaizawa, Takashi; Kobayashi, Akira; Takeoka, Michiko; Miyagawa, Shin-ichi

    2017-01-01

    ASC (apoptosis-associated speck-like protein containing a CARD) is a key adaptor molecule of inflammasomes that mediates inflammatory and apoptotic signals. Aberrant methylation-induced silencing of ASC has been observed in a variety of cancer cells, thus implicating ASC in tumor suppression, although this role remains incompletely defined especially in the context of closely neighboring cell proliferation. As ASC has been confirmed to be silenced by abnormal methylation in HT1080 fibrosarcoma cells as well, this cell line was investigated to characterize the precise role and mechanism of ASC in tumor progression. The effects of ASC were examined using in vitro cell cultures based on comparisons between low and high cell density conditions as well as in a xenograft murine model. ASC overexpression was established by insertion of the ASC gene into pcDNA3 and pMX-IRES-GFP vectors, the latter being packed into a retrovirus and subjected to reproducible competitive assays using parental cells as an internal control, for evaluation of cell viability. p21 and p53 were silenced using shRNA. Cell viability was suppressed in ASC-expressing transfectants as compared with control cells at high cell density conditions in in vitro culture and colony formation assays and in in vivo ectopic tumor formation trials. This suppression was not detected in low cell density conditions. Furthermore, remarkable progression of apoptosis was observed in ASC-introduced cells at a high cell density, but not at a low one. ASC-dependent apoptosis was mediated not by p21, p53, or caspase-1, but rather by cleavage of caspase-9 as well as by suppression of the NF-κB-related X-linked inhibitor-of-apoptosis protein. Caspase-9 cleavage was observed to be dependent on gap junction formation. The remarkable effect of ASC on the induction of apoptosis through caspase-9 and gap junctions revealed in this study may lead to promising new approaches in anticancer therapy. PMID:28056049

  4. Generation of reactive oxygen species from porous silicon microparticles in cell culture medium.

    PubMed

    Low, Suet Peng; Williams, Keryn A; Canham, Leigh T; Voelcker, Nicolas H

    2010-06-01

    Nanostructured (porous) silicon is a promising biodegradable biomaterial, which is being intensively researched as a tissue engineering scaffold and drug-delivery vehicle. Here, we tested the biocompatibility of non-treated and thermally-oxidized porous silicon particles using an indirect cell viability assay. Initial direct cell culture on porous silicon determined that human lens epithelial cells only poorly adhered to non-treated porous silicon. Using an indirect cell culture assay, we found that non-treated microparticles caused complete cell death, indicating that these particles generated a toxic product in cell culture medium. In contrast, thermally-oxidized microparticles did not reduce cell viability significantly. We found evidence for the generation of reactive oxygen species (ROS) by means of the fluorescent probe 2',7'-dichlorofluorescin. Our results suggest that non-treated porous silicon microparticles produced ROS, which interacted with the components of the cell culture medium, leading to the formation of cytotoxic species. Oxidation of porous silicon microparticles not only mitigated, but also abolished the toxic effects.

  5. Development of A Cell-Based Assay to Identify Small Molecule Inhibitors of FGF23 Signaling.

    PubMed

    Diener, Susanne; Schorpp, Kenji; Strom, Tim-Matthias; Hadian, Kamyar; Lorenz-Depiereux, Bettina

    2015-10-01

    Fibroblast growth factor 23 (FGF23) is a bone-derived endocrine key regulator of phosphate homeostasis. It inhibits renal tubular phosphate reabsorption by activating receptor complexes composed of FGF receptor 1c (FGFR1c) and the co-receptor Klotho. As a major signaling pathway mitogen-activated protein kinase (MAPK) pathway is employed. In this study, we established an FGF23-inducible cell model by stably expressing human Klotho in HEK293 cells (HEK293-KL cells) containing endogenous FGF receptors. To identify novel small molecule compounds that modulate FGF23/FGFR1c/Klotho signaling, we developed and optimized a cell-based assay that is suited for high-throughput screening. The assay monitors the phosphorylation of endogenous extracellular signal-regulated kinase 1 and 2 in cellular lysates of HEK293-KL cells after induction with FGF23. This cell-based assay was highly robust (Z' factor >0.5) and the induction of the system is strictly dependent on the presence of FGF23. The inhibitor response curves generated using two known MAPK pathway inhibitors correlate well with data obtained by another assay format. This assay was further used to identify small molecule modulators of the FGF23 signaling cascade by screening the 1,280 food and drug administration-approved small molecule library of Prestwick Chemical. The primary hit rate was 2% and false positives were efficiently identified by retesting the hits in primary and secondary validation screening assays and in western blot analysis. Intriguingly, by using a basic FGF (bFGF)/FGFR counterscreening approach, one validated hit compound retained specificity toward FGF23 signaling, while bFGF signaling was not affected. Since increased plasma concentrations of FGF23 are the main cause of many hypophosphatemic disorders, a modulation of its effect could be a potential novel strategy for therapeutic intervention. Moreover, this strategy may be valuable for other disorders affecting phosphate homeostasis.

  6. Downregulation of HuR Inhibits the Progression of Esophageal Cancer through Interleukin-18.

    PubMed

    Xu, Xiaohui; Song, Cheng; Chen, Zhihua; Yu, Chenxiao; Wang, Yi; Tang, Yiting; Luo, Judong

    2018-01-01

    The purpose of this study was to investigate the effect of human antigen R (HuR) downregulation and the potential target genes of HuR on the progression of esophageal squamous cell carcinoma (ESCC). In this study, a proteomics assay was used to detect the expression of proteins after HuR downregulation, and a luciferase assay was used to detect the potential presence of a HuR binding site on the 3'-untranslated region (3'-UTR) of interleukin 18 (IL-18). In addition, colony formation assay, MTT, EdU incorporation assay, Western blot, flow cytometry, immunohistochemistry, transwell invasion assay, and wound healing assay were used. In the present study, we found that the expression of both HuR protein and mRNA levels were higher in tumor tissues than in the adjacent tissues. HuR downregulation significantly suppressed cell proliferation. In addition, the metastasis of esophageal cancer cells was inhibited, while the expression of E-cadherin was increased and the expression of matrix metalloproteinase (MMP) 2, MMP9, and vimentin was decreased after HuR knockdown. Moreover, silencing of HuR disturbed the cell cycle of ESCC cells mainly by inducing G1 arrest. Furthermore, proteomics analysis showed that downregulation of HuR in TE-1 cells resulted in 100 upregulated and 122 downregulated proteins, including IL-18 as a significantly upregulated protein. The expression of IL-18 was inversely regulated by HuR. IL-18 expression was decreased in ESCC tissues, and exogenous IL-18 significantly inhibited the proliferation and metastasis of ESCC cells. The 3'-UTR of IL-18 harbored a HuR binding site, as shown by an in vitro luciferase assay. HuR plays an important role in the progression of esophageal carcinoma by targeting IL-18, which may be a potential therapeutic target for the treatment of ESCC.

  7. Differential Radiosensitizing Effect of Valproic Acid in Differentiation Versus Self-Renewal Promoting Culture Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debeb, Bisrat G.; Xu Wei; Mok, Henry

    2010-03-01

    Purpose: It has been shown that valproic acid (VA) enhances the proliferation and self-renewal of normal hematopoietic stem cells and that breast cancer stem/progenitor cells can be resistant to radiation. From these data, we hypothesized that VA would fail to radiosensitize breast cancer stem/progenitor cells grown to three-dimensional (3D) mammospheres. Methods and Materials: We used the MCF7 breast cancer cell line grown under stem cell-promoting culture conditions (3D mammosphere) and standard nonstem cell monolayer culture conditions (two-dimensional) to examine the effect of pretreatment with VA on radiation sensitivity in clonogenic survival assays and on the expression of embryonic stem cellmore » transcription factors. Results: 3D-cultured MCF-7 cells expressed higher levels of Oct4, Nanog, and Sox2. The 3D passage enriched self-renewal and increased radioresistance in the 3D mammosphere formation assays. VA radiosensitized adherent cells but radioprotected 3D cells in single-fraction clonogenic assays. Moreover, fractionated radiation sensitized VA-treated adherent MCF7 cells but did not have a significant effect on VA-treated single cells grown to mammospheres. Conclusion: We have concluded that VA might preferentially radiosensitize differentiated cells compared with those expressing stem cell surrogates and that stem cell-promoting culture is a useful tool for in vitro evaluation of novel cancer therapeutic agents and radiosensitizers.« less

  8. Co-Regulation of Cell Polarization and Migration by Caveolar Proteins PTRF/Cavin-1 and Caveolin-1

    PubMed Central

    Hill, Michelle M.; Daud, Noor Huda; Aung, Cho Sanda; Loo, Dorothy; Martin, Sally; Murphy, Samantha; Black, Debra M.; Barry, Rachael; Simpson, Fiona; Liu, Libin; Pilch, Paul F.; Hancock, John F.; Parat, Marie-Odile; Parton, Robert G.

    2012-01-01

    Caveolin-1 and caveolae are differentially polarized in migrating cells in various models, and caveolin-1 expression has been shown to quantitatively modulate cell migration. PTRF/cavin-1 is a cytoplasmic protein now established to be also necessary for caveola formation. Here we tested the effect of PTRF expression on cell migration. Using fluorescence imaging, quantitative proteomics, and cell migration assays we show that PTRF/cavin-1 modulates cellular polarization, and the subcellular localization of Rac1 and caveolin-1 in migrating cells as well as PKCα caveola recruitment. PTRF/cavin-1 quantitatively reduced cell migration, and induced mesenchymal epithelial reversion. Similar to caveolin-1, the polarization of PTRF/cavin-1 was dependent on the migration mode. By selectively manipulating PTRF/cavin-1 and caveolin-1 expression (and therefore caveola formation) in multiple cell systems, we unveil caveola-independent functions for both proteins in cell migration. PMID:22912783

  9. MicroRNA-139-5p acts as a tumor suppressor by targeting ELTD1 and regulating cell cycle in glioblastoma multiforme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Shouping; Wang, Xianjun; Li, Xiao

    MicroRNA-139-5p was identified to be significantly down-regulated in glioblastoma multiform (GBM) by miRNA array. In this report we aimed to clarify its biological function, molecular mechanisms and direct target gene in GBM. Twelve patients with GBM were analyzed for the expression of miR-139-5p by quantitative RT-PCR. miR-139-5p overexpression was established by transfecting miR-139-5p-mimic into U87MG and T98G cells, and its effects on cell proliferation were studied using MTT assay and colony formation assays. We concluded that ectopic expression of miR-139-5p in GBM cell lines significantly suppressed cell proliferation and inducing apoptosis. Bioinformatics coupled with luciferase and western blot assays alsomore » revealed that miR-139-5p suppresses glioma cell proliferation by targeting ELTD1 and regulating cell cycle. - Highlights: • miR-139-5p is downregulated in GBM. • miR-139-5p regulates cell proliferation through inducing apoptosis. • miR-139-5p regulates glioblastoma tumorigenesis by targeting 3′UTR of ELTD1. • miR-139-5p is involved in cell cycle regulation.« less

  10. Utilization of the Tango beta-arrestin recruitment technology for cell-based EDG receptor assay development and interrogation.

    PubMed

    Wetter, Justin A; Revankar, Chetana; Hanson, Bonnie J

    2009-10-01

    Cellular assay development for the endothelial differentiation gene (EDG) family of G-protein-coupled receptors (GPCRs) and related lysophospholipid (LP) receptors is complicated by endogenous receptor expression and divergent receptor signaling. Endogenously expressed LP receptors exist in most tissue culture cell lines. These LP receptors, along with other endogenously expressed GPCRs, contribute to off-target signaling that can complicate interpretation of second-messenger-based cellular assay results. These receptors also activate a diverse and divergent set of cellular signaling pathways, necessitating the use of a variety of assay formats with mismatched procedures and functional readouts. This complicates examination and comparison of these receptors across the entire family. The Tango technology uses the conserved beta-arrestin-dependent receptor deactivation process to allow interrogation of the EDG and related receptors with a single functional assay. This method also isolates the target receptor signal, allowing the use of tissue culture cell lines regardless of their endogenous receptor expression. The authors describe the use of this technique to build cell-based receptor-specific assays for all 8 members of the EDG receptor family as well as the related LPA receptors GPR23, GPR92, and GPR87. In addition, they demonstrate the value of this technology for identification and investigation of functionally selective receptor compounds as demonstrated by the immunosuppressive compound FtY720-P and its action at the EDG(1) and EDG(3) receptors.

  11. [NF-kappaB-induced gp96 up-regulation promotes hepatocyte growth, cell cycle progression and transition].

    PubMed

    Feng, Cong; Wu, Bo; Fan, Hongxia; Li, Changfei; Meng, Songdong

    2014-10-04

    To investigate the mechanism of gp96 raised during hepatitis B virus (HBV) infection and the pathological mechanism. The mechanism of NF-KB activating gp96 expression was determined by bioinformatics analysis, luciferase reporter assay, real-time PCR and Western blot. The effect of over-expression and knockdown gp96 expression by transfection or RNA interference on hepatocyte proliferation, apoptosis and cell cycle was examined by CCK-8 and flow cytometry. The role of gp96 for HCC development was determined by epithelial-mesenchymal transition (EMT) and colony formation assay. NF-kB significantly increased the gp96 expression by binding to the NF-kappaB binding site. Over-expression and knockdown studies both show that gp96 promoted hepatocyte proliferation, inhibited apoptosis, and induced G0/G1 to S phase cell cycle progression. Moreover, gp96 induced epithelial-mesenchymal transition and increased colony formation ability of hepatocytes. Our results therefore provide insights in chronic HBV infection-induced gp96 expression, and indicate that elevated gp96 may contribute to HCC development during chronic inflammation.

  12. Effects of Magnolol and Honokiol on Adhesion, Yeast-Hyphal Transition, and Formation of Biofilm by Candida albicans

    PubMed Central

    Sun, Lingmei; Liao, Kai; Wang, Dayong

    2015-01-01

    Background The first step in infection by Candida albicans is adhesion to host cells or implanted medical devices and this followed by hyphal growth and biofilm formation. Yeast-to-hyphal transition has long been identified as a key factor in fungal virulence. Following biofilm formation, C. albicans is usually less sensitive or insensitive to antifungals. Therefore, development of new antifungals with inhibitory action on adhesion, yeast-hyphal transition and biofilm formation by C. albicans is very necessary. Methods The effects of magnolol and honokiol on hypha growth were investigated using different induction media. Their inhibitory effects were determined using the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5- carboxanilide assay, and biofilm thickness and viability were observed by a confocal scanning laser microscope. Mammalian cells were used in adhesion assays. Genes related to hyphae development and cell adhesions were analyzed by real-time reverse transcription-polymerase chain reaction. The exogenous cyclic adenosine monophosphate was used to determine the mechanisms of action of magnolol and honokiol. Caenorhabditis elegans was used as an in vivo model to estimate the antifungal activities of magnolol and honokiol. Results and conclusions Magnolol and honokiol inhibited adhesion, the transition from yeast to hypha, and biofilm formation by C. albicans through the Ras1-cAMP-Efg1 pathway. Moreover, magnolol and honokiol prolonged the survival of nematodes infected by C. albicans. Magnolol and honokiol have potential inhibitory effects against biofilm formation by C. albicans. General Significance This study provides useful information towards the development of new strategies to reduce the incidence of C. albicans biofilm-associated infection. PMID:25710475

  13. Proanthocyanidins polymeric tannin from Stryphnodendron adstringens are active against Candida albicans biofilms.

    PubMed

    Luiz, Raul Leal Faria; Vila, Taissa Vieira Machado; de Mello, João Carlos Palazzo; Nakamura, Celso Vataru; Rozental, Sonia; Ishida, Kelly

    2015-03-19

    Biofilm formation is important in Candida albicans pathogenesis and constitutes a mechanism of antifungal resistance. Thus, we evaluated the effect of proanthocyanidins polymer-rich fractions from Stryphnodendron adstringens (fraction F2 and subfraction F2.4) against C. albicans biofilms. Firstly, the antifungal activity of F2 and F2.4 against planktonic cells of Candida albicans (ATCC 10231) was determined using broth microdilution method. Anti-biofilm effect of F2 and F2.4 was evaluated during biofilm formation or on mature biofilm of C. albicans and compared with standard antifungals amphotericin B and fluconazole. Metabolic activity of sessile and dispersion cells from biofilms after antifungal treatments were measured using a tetrazolium reduction assay and the biofilm total biomass was quantified by crystal violet-based assay. Morphological alterations after treatments were observed using scanning electron microscopy. The anti-biofilm effect of F2 and F2.4 were comparable to standard antifungals (amphotericin B and fluconazole). F2 and F2.4 treatments reduced biofilm metabolic activity (in sessile and in dispersion cells) during biofilm formation, and in mature biofilms, unlike fluconazole, which only prevents the biofilm formation. Treatments with F2, F2.4 or fluconazole reduced biofilm biomass during biofilm formation, but not in mature biofilm. Amphotericin B presented higher inhibitory effect on biofilm formation and on mature biofilm of C. albicans. F2 and F2.4 treatments led to the appearance of dumbbell-shaped blastoconidia and of blastoconidia clusters in biofilms. Proanthocyanidins polymer-rich fractions from S. adstringens successfully inhibited C. albicans planktonic growth and biofilm development, and they represent a potential new agent for the treatment of biofilm-associated candidiasis.

  14. Overexpression of p42.3 promotes cell growth and tumorigenicity in hepatocellular carcinoma

    PubMed Central

    Sun, Wei; Dong, Wei-Wei; Mao, Lin-Lin; Li, Wen-Mei; Cui, Jian-Tao; Xing, Rui; Lu, You-Yong

    2013-01-01

    AIM: To investigate the association of p42.3 expression with clinicopathological characteristics and the biological function of p42.3 in human hepatocellular carcinoma (HCC). METHODS: We used reverse transcription-polymerase chain reaction (RT-PCR), quantitative real-time RT-PCR and western blotting to detect p42.3 mRNA and protein expression in hepatic cell lines. We examined primary HCC samples and matched adjacent normal tissue by immunohistochemistry to investigate the correlation between p42.3 expression and clinicopathological features. HepG2 cells were transfected with a pIRES2-EGFP-p42.3 expression vector to examine the function of the p42.3 gene. Transfected cells were analyzed for their viability and malignant transformation abilities by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, colony formation assay, and tumorigenicity assay in nude mice. RESULTS: p42.3 is differentially expressed in primary HCC tumors and cell lines. Approximately 69.6% (96/138) of cells were p42.3-positive in hepatic tumor tissues, while 30.7% (35/114) were p42.3-positive in tumor-adjacent normal tissues. Clinicopathological characteristics of the HCC specimens revealed a significant correlation between p42.3 expression and tumor differentiation (P = 0.031). However, p42.3 positivity was not related to tumor tumor-node-metastasis classification, hepatitis B virus status, or hepatoma type. Regarding p42.3 overexpression in stably transfected HepG2 cells, we discovered significant enhancement of cancer cell growth and colony formation in vitro, and significantly enhanced tumorigenicity in nude mice. Western blot analysis of cell cycle proteins revealed that enhanced p42.3 levels promote upregulation of proliferating cell nuclear antigen, cyclin B1 and mitotic arrest deficient 2. CONCLUSION: p42.3 promotes tumorigenicity and tumor growth in HCC and may be a potential target for future clinical cancer therapeutics. PMID:23704824

  15. Cell-Free Reconstitution of Multivesicular Body Formation and Receptor Sorting

    PubMed Central

    Sun, Wei; Vida, Thomas A.; Sirisaengtaksin, Natalie; Merrill, Samuel A.; Hanson, Phyllis I.; Bean, Andrew J.

    2010-01-01

    The number of surface membrane proteins and their residence time on the plasma membrane are critical determinants of cellular responses to cues that can control plasticity, growth and differentiation. After internalization, the ultimate fate of many plasma membrane proteins is dependent on whether they are sorted for internalization into the lumenal vesicles of multivesicular bodies (MVBs), an obligate step prior to lysosomal degradation. To help to elucidate the mechanisms underlying MVB sorting, we have developed a novel cell-free assay that reconstitutes the sorting of a prototypical membrane protein, the epidermal growth factor receptor, with which we have probed some of its molecular requirements. The sorting event measured is dependent on cytosol, ATP, time, temperature and an intact proton gradient. Depletion of Hrs inhibited biochemical and morphological measures of sorting that were rescued by inclusion of recombinant Hrs in the assay. Moreover, depletion of signal-transducing adaptor molecule (STAM), or addition of mutated ATPase-deficient Vps4, also inhibited sorting. This assay reconstitutes the maturation of late endosomes, including the formation of internal vesicles and the sorting of a membrane protein, and allows biochemical investigation of this process. PMID:20214752

  16. In vitro assessment of oxidative stress and apoptotic mechanisms of garlic extract in the treatment of acute promyelocytic leukemia

    PubMed Central

    Yedjou, Clement G.; Tchounwou, Paul B.

    2012-01-01

    Introduction Garlic supplementation in diet has been shown to be beneficial to cancer patients. Recently, its pharmacological role in the prevention and treatment of cancer has received increasing attention. However, the mechanisms by which garlic extract (GE) induces cytotoxicity, oxidative stress, and apoptosis in cancer cells remain largely unknown. Objective The present study was designed to use HL-60 cells as a test model to evaluate whether or not GE-induced cytotoxicty and apoptosis in human leukemia (HL-60) cells is mediated through oxidative stress. Methods Human leukemia (HL-60) cells were treated with different concentrations of GE for 12 hr. Cell survival was determined by MTT assay. The extent of oxidative cell/tissue damage was determined by measuring malondialdehyde (lipid peroxidation biomarker) concentrations by spectrophotometry. Cell apoptosis was measured by flow cytometry assessment (Annexin-V and caspase-3 assays) and agarose gel electrophoresis (DNA laddering assay). Results Data obtained from the MTT assay indicated that GE significantly (p < 0.05) reduced the viability of HL-60 cells in a concentration-dependent manner. We detected a significant (p < 0.05) increase in malondialdehyde (MDA) concentrations in GE-treated HL-60 cells compared to the control. Flow cytometry data showed a strong concentration-response relationship between GE exposure and Annexin-V positive HL-60 cells. Similarly, a statistically significant and concentration-dependent increase (p <0.05) were recorded with regard to caspase-3 activity in HL-60 cells undergoing late apoptosis. These results were confirmed by data of DNA laddering assay showing a clear evidence of nucleosomal DNA fragmentation in GE-treated cells. Conclusion Our finding indicates that GE-induced cytotoxicity and apoptosis in HL-60 cells involve phosphatidylserine externalization, caspase-3 activation, and nucleosomal DNA fragmentation associated with the formation of MDA, a by-product of lipid peroxidation and biomarker of oxidative stress. At therapeutic concentrations, GE-induced cytotoxic and apoptotic effects in HL-60 cells is mediated by oxidative stress. PMID:23847719

  17. The neural stem cell fate determinant TLX promotes tumorigenesis and genesis of cells resembling glioma stem cells.

    PubMed

    Park, Hyo-Jung; Kim, Jun-Kyum; Jeon, Hye-Min; Oh, Se-Yeong; Kim, Sung-Hak; Nam, Do-Hyun; Kim, Hyunggee

    2010-11-01

    A growing body of evidence indicates that deregulation of stem cell fate determinants is a hallmark of many types of malignancies. The neural stem cell fate determinant TLX plays a pivotal role in neurogenesis in the adult brain by maintaining neural stem cells. Here, we report a tumorigenic role of TLX in brain tumor initiation and progression. Increased TLX expression was observed in a number of glioma cells and glioma stem cells, and correlated with poor survival of patients with gliomas. Ectopic expression of TLX in the U87MG glioma cell line and Ink4a/Arf-deficient mouse astrocytes (Ink4a/Arf(-/-) astrocytes) induced cell proliferation with a concomitant increase in cyclin D expression, and accelerated foci formation in soft agar and tumor formation in in vivo transplantation assays. Furthermore, overexpression of TLX in Ink4a/Arf(-/-) astrocytes inhibited cell migration and invasion and promoted neurosphere formation and Nestin expression, which are hallmark characteristics of glioma stem cells, under stem cell culture conditions. Our results indicate that TLX is involved in glioma stem cell genesis and represents a potential therapeutic target for this type of malignancy.

  18. Modulation of Sonic hedgehog-induced mouse embryonic stem cell behaviors through E-cadherin expression and Integrin β1-dependent F-actin formation.

    PubMed

    Oh, Ji Young; Suh, Han Na; Choi, Gee Euhn; Lee, Hyun Jik; Jung, Young Hyun; Ko, So Hee; Kim, Jun Sung; Chae, Chang Woo; Lee, Chang-Kyu; Han, Ho Jae

    2018-06-22

    Sonic hedgehog pathway (Shh) plays a central role in maintaining stem cell function and behavior in various processes related to self-renewal and tissue regeneration. However, the therapeutic effect of Shh on mouse embryonic stem cells (mESCs) has not yet been clearly described. Thus, we investigated the effect of Shh on the regulation of mESC behaviors as well as the effect of Shh-pretreated mESCs in skin wound healing. The present study investigated the underlying mechanisms of Shh signaling pathway in growth and motility of mESCs using western blot analysis, cell proliferation assay, and cell migration assay. In addition, the effect of Shh-pretreated mESCs in skin wound healing was determined using mouse excisional wound splinting model. Shh induced adherens junction disruption through proteolysis by activating matrix metallopeptidases. In addition, the release of β-catenin from adherens junctions mediated by Shh led to cell cycle-dependent mESC proliferation. Shh-mediated Gli1 expression led to integrin β1 upregulation, followed by FAK and Src phosphorylation. Furthermore, among the Rho-GTPases, Rac1 and Cdc42 were activated in a Shh-dependent manner while F-actin expression was suppressed by Rac1 and Cdc42 siRNA transfection. Consistent with the in vitro results, skin wound healing assay revealed that Shh-treated mESCs induced angiogenesis and skin wound repair compared to that in Shh-treated mESCs transfected with integrin β1 siRNA in vivo. Our results imply that Shh induces adherens junction disruption and integrin β1-dependent F-actin formation involving FAK/Src and Rac1/Cdc42 signaling pathways in mESCs. This article is protected by copyright. All rights reserved.

  19. Significance of CD133 positive cells in four novel HPV-16 positive cervical cancer-derived cell lines and biopsies of invasive cervical cancer.

    PubMed

    Javed, Shifa; Sharma, Bal Krishan; Sood, Swati; Sharma, Sanjeev; Bagga, Rashmi; Bhattacharyya, Shalmoli; Rayat, Charan Singh; Dhaliwal, Lakhbir; Srinivasan, Radhika

    2018-04-02

    Cervical cancer is a major cause of cancer-related mortality in women in the developing world. Cancer Stem cells (CSC) have been implicated in treatment resistance and metastases development; hence understanding their significance is important. Primary culture from tissue biopsies of invasive cervical cancer and serial passaging was performed for establishing cell lines. Variable Number Tandem Repeat (VNTR) assay was performed for comparison of cell lines with their parental tissue. Tumorsphere and Aldefluor assays enabled isolation of cancer stem cells (CSC); immunofluorescence and flow cytometry were performed for their surface phenotypic expression in cell lines and in 28 tissue samples. Quantitative real-time PCR for stemness and epithelial-mesenchymal transition (EMT) markers, MTT cytotoxicity assay, cell cycle analysis and cell kinetic studies were performed. Four low-passage novel cell lines designated RSBS-9, - 14 and - 23 from squamous cell carcinoma and RSBS-43 from adenocarcinoma of the uterine cervix were established. All were HPV16+. VNTR assay confirmed their uniqueness and derivation from respective parental tissue. CSC isolated from these cell lines showed CD133 + phenotype. In tissue samples of untreated invasive cervical cancer, CD133 + CSCs ranged from 1.3-23% of the total population which increased 2.8-fold in radiation-resistant cases. Comparison of CD133 + with CD133 - bulk population cells revealed increased tumorsphere formation and upregulation of stemness and epithelial-mesenchymal transition (EMT) markers with no significant difference in cisplatin sensitivity. Low-passage cell lines developed would serve as models for studying tumor biology. Cancer Stem Cells in cervical cancer display CD133 + phenotype and are increased in relapsed cases and hence should be targeted for achieving remission.

  20. Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santamaria-Martinez, Albert; Universitat de Barcelona, Barcelona; Barquinero, Jordi

    2009-10-15

    Cancer stem cells are a distinct cellular population that is believed to be responsible for tumor initiation and maintenance. Recent data suggest that solid tumors also contain another type of stem cells, the mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs), which contribute to the formation of tumor-associated stroma. The Hoechst 33342 efflux assay has proved useful to identify a rare cellular fraction, named Side Population (SP), enriched in cells with stem-like properties. Using this assay, we identified SP cells in a prostate cancer xenograft containing human prostate cancer cells and mouse stromal cells. The SP isolation, subculture andmore » sequential sorting allowed the generation of single-cell-derived clones of murine origin that were recognized as MSC by their morphology, plastic adherence, proliferative potential, adipogenic and osteogenic differentiation ability and immunophenotype (CD45{sup -}, CD81{sup +} and Sca-1{sup +}). We also demonstrated that SP clonal cells secrete transforming growth factor {beta}1 (TGF-{beta}1) and that their inhibition reduces proliferation and accelerates differentiation. These results reveal the existence of SP cells in the stroma of a cancer xenograft, and provide evidence supporting their MSC nature and the role of TGF-{beta}1 in maintaining their proliferation and undifferentiated status. Our data also reveal the usefulness of the SP assay to identify and isolate MSC cells from carcinomas.« less

  1. Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis.

    PubMed

    Santamaria-Martínez, Albert; Barquinero, Jordi; Barbosa-Desongles, Anna; Hurtado, Antoni; Pinós, Tomàs; Seoane, Joan; Poupon, Marie-France; Morote, Joan; Reventós, Jaume; Munell, Francina

    2009-10-15

    Cancer stem cells are a distinct cellular population that is believed to be responsible for tumor initiation and maintenance. Recent data suggest that solid tumors also contain another type of stem cells, the mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs), which contribute to the formation of tumor-associated stroma. The Hoechst 33342 efflux assay has proved useful to identify a rare cellular fraction, named Side Population (SP), enriched in cells with stem-like properties. Using this assay, we identified SP cells in a prostate cancer xenograft containing human prostate cancer cells and mouse stromal cells. The SP isolation, subculture and sequential sorting allowed the generation of single-cell-derived clones of murine origin that were recognized as MSC by their morphology, plastic adherence, proliferative potential, adipogenic and osteogenic differentiation ability and immunophenotype (CD45(-), CD81(+) and Sca-1(+)). We also demonstrated that SP clonal cells secrete transforming growth factor beta1 (TGF-beta1) and that their inhibition reduces proliferation and accelerates differentiation. These results reveal the existence of SP cells in the stroma of a cancer xenograft, and provide evidence supporting their MSC nature and the role of TGF-beta1 in maintaining their proliferation and undifferentiated status. Our data also reveal the usefulness of the SP assay to identify and isolate MSC cells from carcinomas.

  2. RNAi-mediated downregulation of oral cancer overexpressed 1 (ORAOV1) inhibits vascular endothelial cell proliferation, migration, invasion, and tube formation.

    PubMed

    Zhao, Xin; Liu, Dongjuan; Wang, Lili; Wu, Ruiqing; Zeng, Xin; Dan, Hongxia; Ji, Ning; Jiang, Lu; Zhou, Yu; Chen, Qianming

    2016-04-01

    Oral squamous cell carcinoma (OSCC) is one of the top ten tumors threatening human health. Oral cancer overexpressed 1 (ORAOV1) identified within chromosomal region 11q13, one of the most frequently amplified regions in OSCC, has been suggested as a novel candidate oncogene in OSCC, regulating cell cycle, apoptosis, and angiogenesis. In this study, we investigated the role of ORAOV1 in OSCC-induced angiogenesis in vitro. EA.hy926 human endothelial cells were co-cultured with OSCC cells (HSC-3 and SCC-25) transfected with ORAOV1-specific shRNA to downregulate ORAOV1 expression, and analyzed for proliferation, migration, invasion, and tube formation by specific assays. EA.hy926 endothelial cells co-cultured with ORAOV1-deficient OSCC cells exhibited significantly lower proliferation, migration, and invasion, as well as the activity in tube formation compared to that in the control cells. Our results show, for the first time, that ORAOV1 expressed by OSCC cells promotes tube formation by endothelial cells, indicating its involvement in OSCC angiogenesis. Considering the importance of neovascularization in tumor development and metastasis, these findings suggest that targeting ORAOV1 may be a potential therapeutic strategy against OSCC. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. A high content, high throughput cellular thermal stability assay for measuring drug-target engagement in living cells.

    PubMed

    Massey, Andrew J

    2018-01-01

    Determining and understanding drug target engagement is critical for drug discovery. This can be challenging within living cells as selective readouts are often unavailable. Here we describe a novel method for measuring target engagement in living cells based on the principle of altered protein thermal stabilization / destabilization in response to ligand binding. This assay (HCIF-CETSA) utilizes high content, high throughput single cell immunofluorescent detection to determine target protein levels following heating of adherent cells in a 96 well plate format. We have used target engagement of Chk1 by potent small molecule inhibitors to validate the assay. Target engagement measured by this method was subsequently compared to target engagement measured by two alternative methods (autophosphorylation and CETSA). The HCIF-CETSA method appeared robust and a good correlation in target engagement measured by this method and CETSA for the selective Chk1 inhibitor V158411 was observed. However, these EC50 values were 23- and 12-fold greater than the autophosphorylation IC50. The described method is therefore a valuable advance in the CETSA method allowing the high throughput determination of target engagement in adherent cells.

  4. Decoy receptor 3 suppresses RANKL-induced osteoclastogenesis via down-regulating NFATc1 and enhancing cell apoptosis.

    PubMed

    Cheng, Chia-Pi; Sheu, Ming-Jen; Sytwu, Huey-Kang; Chang, Deh-Ming

    2013-04-01

    Decoy receptor 3 (DCR3) has been known to modulate immune functions of monocyte or macrophage. In the present study, we investigated the mechanism and the effect of DCR3 on RANK ligand (RANKL)-induced osteoclastogenesis. We treated cells with DCR3 in RANKL-induced osteoclastogenesis to monitor osteoclast formation by tartrate-resistant acid phosphatase (TRAP) staining. Osteoclast activity was assessed by pit formation assay. The mechanism of inhibition was studied by biochemical analysis such as RT-PCR and immunoblotting. In addition, cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell apoptosis and apoptosis signalling were evaluated by immunoblotting and using flow cytometry. DCR3 inhibited RANKL-induced TRAP(+) multinucleated cells and inhibited RANKL-induced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) nuclear translocation in RAW264.7 cells. Also, DCR3 significantly inhibited the bone-resorbing activity of mature osteoclasts. Moreover, DCR3 enhanced RANKL-induced cell apoptosis and enhanced RANKL-induced Fas ligand expression. The mechanisms were mediated via the intrinsic cytochrome c and activated caspase 9 apoptosis pathway. We postulated that the inhibitory activity of DCR3 on osteoclastogenesis occurs via down-regulation of RANKL-induced NFATc1 expression and induction of cell apoptosis. Our results postulated DCR3 as a possible new remedy against inflammatory bone destruction.

  5. SKLB060 Reversibly Binds to Colchicine Site of Tubulin and Possesses Efficacy in Multidrug-Resistant Cell Lines.

    PubMed

    Yan, Wei; Yang, Tao; Yang, Jianhong; Wang, Taijin; Yu, Yamei; Wang, Yuxi; Chen, Qiang; Bai, Peng; Li, Dan; Ye, Haoyu; Qiu, Qiang; Zhou, Yongzhao; Hu, Yiguo; Yang, Shengyong; Wei, Yuquan; Li, Weimin; Chen, Lijuan

    2018-05-22

    Many tubulin inhibitors are in clinical use as anti-cancer drugs. In our previous study, a novel series of 4-substituted coumarins derivatives were identified as novel tubulin inhibitors. Here, we report the anti-cancer activity and underlying mechanism of one of the 4-substituted coumarins derivatives (SKLB060). The anti-cancer activity of SKLB060 was tested on 13 different cancer cell lines and four xenograft cancer models. Immunofluorescence staining, cell cycle analysis, and tubulin polymerization assay were employed to study the inhibition of tubulin. N, N '-Ethylenebis(iodoacetamide) assay was used to measure binding to the colchicine site. Wound-healing migration and tube formation assays were performed on human umbilical vascular endothelial cells to study anti-vascular activity (the ability to inhibit blood vessel growth). Mitotic block reversibility and structural biology assays were used to investigate the SKLB060-tubulin bound model. SKLB060 inhibited tubulin polymerization and subsequently induced G2/M cell cycle arrest and apoptosis in cancer cells. SKLB060 bound to the colchicine site of β-tubulin and showed antivascular activity in vitro. Moreover, SKLB060 induced reversible cell cycle arrest and reversible inhibition of tubulin polymerization. A mitotic block reversibility assay showed that the effects of SKLB060 have greater reversibility than those of colcemid (a reversible tubulin inhibitor), indicating that SKLB060 binds to tubulin in a totally reversible manner. The crystal structures of SKLB060-tubulin complexes confirmed that SKLB060 binds to the colchicine site, and the natural coumarin ring in SKLB060 enables reversible binding. These results reveal that SKLB060 is a powerful and reversible microtubule inhibitor that binds to the colchicine site and is effective in multidrug-resistant cell lines. © 2018 The Author(s). Published by S. Karger AG, Basel.

  6. Overexpression of angiopoietin 2 promotes the formation of oral squamous cell carcinoma by increasing epithelial-mesenchymal transition-induced angiogenesis.

    PubMed

    Li, C; Li, Q; Cai, Y; He, Y; Lan, X; Wang, W; Liu, J; Wang, S; Zhu, G; Fan, J; Zhou, Y; Sun, R

    2016-09-01

    Oral squamous cell carcinoma (OSCC) is the most common cancer of the head and neck and is associated with a high rate of lymph node metastasis. The initial step in the metastasis and transition of tumors is epithelial-mesenchymal transition (EMT)-induced angiogenesis, which can be mediated by angiopoietin 2 (ANG2), a key regulatory factor in angiogenesis. In the present study, immunohistochemistry and real-time quantitative reverse transcriptase (qRT-PCR) were used to measure the expression of ANG2 in OSCC tissues. Plasmids encoding ANG2 mRNA were used for increased ANG2 expression in the OSCC cell line TCA8113. The short interfering RNA (siRNA)-targeting ANG2 mRNA sequences were used to inhibit ANG2 expression in TCA8113 cells. Subsequently, transwell assays were performed to examine the effects of ANG2 on TCA8113 cell migration and invasion. Furthermore, in vivo assays were performed to assess the effect of ANG2 on tumor growth. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assays and immunohistochemistry were used to examine cell apoptosis and angiogenesis in tumor tissues, respectively. Finally, western blot analysis was performed to evaluate tumor formation-related proteins in OSCC tissues. We found that protein expression of ANG2 was remarkably upregulated in OSCC tissues. Overexpression of ANG2 increased the migration and invasion of TCA8113 cells by regulating EMT. Further investigations showed that overexpression of ANG2 increased tumor growth in nude mice, and angiogenesis of OSCC tissues increased in the presence of ANG2 overexpression. Overexpression of ANG2 also reduced cell apoptosis in tumor tissue cells. Finally, we found that overexpression of ANG2 resulted in changes in the expression of tumor formation-related proteins including vimentin, E-cadherin, Bim, PUMA, Bcl-2, Bax, Cyclin D1, PCNA and CD31. Our findings show that ANG2 has an important role in the migration and invasion of OSCC. More importantly, further investigations suggested that overexpression of ANG2 might increase OSCC metastasis by promoting angiogenesis in nude mice. This stimulatory effect could be achieved by inducing abnormal EMT and by reducing apoptosis and increasing proliferation of cells.

  7. A small molecule targeting ALK1 prevents Notch cooperativity and inhibits functional angiogenesis.

    PubMed

    Kerr, Georgina; Sheldon, Helen; Chaikuad, Apirat; Alfano, Ivan; von Delft, Frank; Bullock, Alex N; Harris, Adrian L

    2015-04-01

    Activin receptor-like kinase 1 (ALK1, encoded by the gene ACVRL1) is a type I BMP/TGF-β receptor that mediates signalling in endothelial cells via phosphorylation of SMAD1/5/8. During angiogenesis, sprouting endothelial cells specialise into tip cells and stalk cells. ALK1 synergises with Notch in stalk cells to induce expression of the Notch targets HEY1 and HEY2 and thereby represses tip cell formation and angiogenic sprouting. The ALK1-Fc soluble protein fusion has entered clinic trials as a therapeutic strategy to sequester the high-affinity extracellular ligand BMP9. Here, we determined the crystal structure of the ALK1 intracellular kinase domain and explored the effects of a small molecule kinase inhibitor K02288 on angiogenesis. K02288 inhibited BMP9-induced phosphorylation of SMAD1/5/8 in human umbilical vein endothelial cells to reduce both the SMAD and the Notch-dependent transcriptional responses. In endothelial sprouting assays, K02288 treatment induced a hypersprouting phenotype reminiscent of Notch inhibition. Furthermore, K02288 caused dysfunctional vessel formation in a chick chorioallantoic membrane assay of angiogenesis. Such activity may be advantageous for small molecule inhibitors currently in preclinical development for specific BMP gain of function conditions, including diffuse intrinsic pontine glioma and fibrodysplasia ossificans progressiva, as well as more generally for other applications in tumour biology.

  8. A model system for pathogen detection using a two-component bacteriophage/bioluminescent signal amplification assay

    NASA Astrophysics Data System (ADS)

    Bright, Nathan G.; Carroll, Richard J.; Applegate, Bruce M.

    2004-03-01

    Microbial contamination has become a mounting concern the last decade due to an increased emphasis of minimally processed food products specifically produce, and the recognition of foodborne pathogens such as Campylobacter jejuni, Escherichia coli O157:H7, and Listeria monocytogenes. This research investigates a detection approach utilizing bacteriophage pathogen specificity coupled with a bacterial bioluminescent bioreporter utilizing the quorum sensing molecule from Vibrio fischeri, N-(3-oxohexanoyl)-homoserine lactone (3-oxo-C6-HSL). The 3-oxo-C6-HSL molecules diffuse out of the target cell after infection and induce bioluminescence from a population of 3-oxo-C6-HSL bioreporters (ROLux). E. coli phage M13, a well-characterized bacteriophage, offers a model system testing the use of bacteriophage for pathogen detection through cell-to-cell communication via a LuxR/3-oxo-C6-HSL system. Simulated temperate phage assays tested functionality of the ROLux reporter and production of 3-oxo-C6-HSL by various test strains. These assays showed detection limits of 102cfu after 24 hours in a varietry of detection formats. Assays incorporating the bacteriophage M13-luxI with the ROLux reporter and a known population of target cells were subsequently developed and have shown consistent detection limits of 105cfu target organisms. Measurable light response from high concentrations of target cells was almost immediate, suggesting an enrichment step to further improve detection limits and reduce assay time.

  9. Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport.

    PubMed

    Hong, Seungpyo; Bielinska, Anna U; Mecke, Almut; Keszler, Balazs; Beals, James L; Shi, Xiangyang; Balogh, Lajos; Orr, Bradford G; Baker, James R; Banaszak Holl, Mark M

    2004-01-01

    We have investigated poly(amidoamine) (PAMAM) dendrimer interactions with supported 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayers and KB and Rat2 cell membranes using atomic force microscopy (AFM), enzyme assays, flow cell cytometry, and fluorescence microscopy. Amine-terminated generation 7 (G7) PAMAM dendrimers (10-100 nM) were observed to form holes of 15-40 nm in diameter in aqueous, supported lipid bilayers. G5 amine-terminated dendrimers did not initiate hole formation but expanded holes at existing defects. Acetamide-terminated G5 PAMAM dendrimers did not cause hole formation in this concentration range. The interactions between PAMAM dendrimers and cell membranes were studied in vitro using KB and Rat 2 cell lines. Neither G5 amine- nor acetamide-terminated PAMAM dendrimers were cytotoxic up to a 500 nM concentration. However, the dose dependent release of the cytoplasmic proteins lactate dehydrogenase (LDH) and luciferase (Luc) indicated that the presence of the amine-terminated G5 PAMAM dendrimer decreased the integrity of the cell membrane. In contrast, the presence of acetamide-terminated G5 PAMAM dendrimer had little effect on membrane integrity up to a 500 nM concentration. The induction of permeability caused by the amine-terminated dendrimers was not permanent, and leaking of cytosolic enzymes returned to normal levels upon removal of the dendrimers. The mechanism of how PAMAM dendrimers altered cells was investigated using fluorescence microscopy, LDH and Luc assays, and flow cytometry. This study revealed that (1) a hole formation mechanism is consistent with the observations of dendrimer internalization, (2) cytosolic proteins can diffuse out of the cell via these holes, and (3) dye molecules can be detected diffusing into the cell or out of the cell through the same membrane holes. Diffusion of dendrimers through holes is sufficient to explain the uptake of G5 amine-terminated PAMAM dendrimers into cells and is consistent with the lack of uptake of G5 acetamide-terminated PAMAM dendrimers.

  10. Anthraquinones inhibit tau aggregation and dissolve Alzheimer's paired helical filaments in vitro and in cells.

    PubMed

    Pickhardt, Marcus; Gazova, Zuzana; von Bergen, Martin; Khlistunova, Inna; Wang, Yipeng; Hascher, Antje; Mandelkow, Eva-Maria; Biernat, Jacek; Mandelkow, Eckhard

    2005-02-04

    The abnormal aggregation of tau protein into paired helical filaments (PHFs) is one of the hallmarks of Alzheimer's disease. Aggregation takes place in the cytoplasm and could therefore be cytotoxic for neurons. To find inhibitors of PHF aggregation we screened a library of 200,000 compounds. The hits found in the PHF inhibition assay were also tested for their ability to dissolve preformed PHFs. The results were obtained using a thioflavin S fluorescence assay for the detection and quantification of tau aggregation in solution, a tryptophan fluorescence assay using tryptophan-containing mutants of tau, and confirmed by a pelleting assay and electron microscopy of the products. Here we demonstrate the feasibility of the approach with several compounds from the family of anthraquinones, including emodin, daunorubicin, adriamycin, and others. They were able to inhibit PHF formation with IC50 values of 1-5 microm and to disassemble preformed PHFs at DC50 values of 2-4 microm. The compounds had a similar activity for PHFs made from different tau isoforms and constructs. The compounds did not interfere with the stabilization of microtubules by tau. Tau-inducible neuroblastoma cells showed the formation of tau aggregates and concomitant cytotoxicity, which could be prevented by inhibitors. Thus, small molecule inhibitors could provide a basis for the development of tools for the treatment of tau pathology in AD and other tauopathies.

  11. Long Non-Coding RNA HOXA-AS2 Regulates Malignant Glioma Behaviors and Vasculogenic Mimicry Formation via the MiR-373/EGFR Axis.

    PubMed

    Gao, Yana; Yu, Hai; Liu, Yunhui; Liu, Xiaobai; Zheng, Jian; Ma, Jun; Gong, Wei; Chen, Jiajia; Zhao, Lini; Tian, Yu; Xue, Yixue

    2018-01-01

    Vasculogenic mimicry (VM) has been reported to be a novel glioma neovascularization process. Anti-VM therapy provides new insight into glioma clinical management. In this study, we revealed the role of the long non-coding RNA HOXA cluster antisense RNA 2 (HOXA-AS2) in malignant glioma behaviors and VM formation. Quantitative real-time PCR was performed to determine the expression levels of HOXA-AS2 in glioma samples and glioblastoma cell lines. CD34-periodic acid-Schiff dual-staining was performed to assess VM in glioma samples. CCK-8, transwell, and Matrigel tube formation assays were performed to measure the effects of HOXA-AS2 knockdown on cell viability, migration, invasion, and VM tube formation, respectively. RNA immunoprecipitation, dual-luciferase reporter and Western blot assays were performed to explore the molecular mechanisms underlying the functions of HOXS-AS2 in glioblastoma cells. A nude mouse xenograft model was used to investigate the role of HOXA-AS2 in xenograft glioma growth and VM density. Student's t-tests, one-way ANOVAs followed by Bonferroni posthoc tests, and chi-square tests were used for the statistical analyses. HOXA-AS2 was upregulated in glioma samples and cell lines and was positively correlated with VM. HOXA-AS2 knockdown attenuated cell viability, migration, invasion, and VM formation in glioma cells and inhibited the expression of vascular endothelial-cadherin (VE-cadherin), as well as the expression and activity of matrix metalloproteinase matrix metalloproteinase (MMP)-2 and MMP-9. miR-373 was downregulated in glioma samples and cell lines and suppressed malignancy in glioblastoma cells. HOXA-AS2 bound to miR-373 and negatively regulated its expression. Epidermal growth factor receptor (EGFR), a target of miR-373, increased the expression levels of VE-cadherin, as well as the expression and activity levels of MMP-2 and MMP-9, via activating phosphatidylinositol 3-kinase/serine/threonine kinase pathways. HOXA-AS2 knockdown combined with miR-373 overexpression yielded optimal tumor suppressive effects and the lowest VM density in vivo. HOXA-AS2 knockdown inhibited malignant glioma behaviors and VM formation via the miR-373/EGFR axis. © 2018 The Author(s). Published by S. Karger AG, Basel.

  12. Phenformin inhibits cell proliferation and induces cell apoptosis and autophagy in cholangiocarcinoma.

    PubMed

    Hu, Shuyang; Ouyang, Qing; Cheng, Qingbao; Wang, Jinghan; Feng, Feiling; Qiao, Liang; Gan, Wei; Shi, Yang; Wu, Demin; Jiang, Xiaoqing

    2018-04-01

    Cholangiocarcinoma (CCA) is an aggressive malignant tumor and the prognosis of patients with advanced stage disease remains poor. Therefore, the identification of novel treatment agents for CCA is required. In the present study, the biological effects of the diabetes therapeutic agent, phenformin, in CCA cell lines was investigated. Cell Counting Kit‑8 cell viability, cellular clone formation and subcutaneous tumor formation assays were performed, which revealed that phenformin inhibited CCA cell proliferation and growth both in vitro and in vivo. In addition, phenformin induced CCA cell apoptosis and autophagy. Phenformin partly activated the liver kinase B1 (LKB1)/5' AMP‑activated protein kinase signaling pathway to exert its biological effects on CCA cell lines, as demonstrated by knockdown of LKB1, which reversed these effects. In conclusion, the present study demonstrated the biological effects of phenformin in CCA and suggested that phenformin may be a potential novel agent for CCA treatment.

  13. Quantification of regenerative potential in primary human mammary epithelial cells

    PubMed Central

    Linnemann, Jelena R.; Miura, Haruko; Meixner, Lisa K.; Irmler, Martin; Kloos, Uwe J.; Hirschi, Benjamin; Bartsch, Harald S.; Sass, Steffen; Beckers, Johannes; Theis, Fabian J.; Gabka, Christian; Sotlar, Karl; Scheel, Christina H.

    2015-01-01

    We present an organoid regeneration assay in which freshly isolated human mammary epithelial cells are cultured in adherent or floating collagen gels, corresponding to a rigid or compliant matrix environment. In both conditions, luminal progenitors form spheres, whereas basal cells generate branched ductal structures. In compliant but not rigid collagen gels, branching ducts form alveoli at their tips, express basal and luminal markers at correct positions, and display contractility, which is required for alveologenesis. Thereby, branched structures generated in compliant collagen gels resemble terminal ductal-lobular units (TDLUs), the functional units of the mammary gland. Using the membrane metallo-endopeptidase CD10 as a surface marker enriches for TDLU formation and reveals the presence of stromal cells within the CD49fhi/EpCAM− population. In summary, we describe a defined in vitro assay system to quantify cells with regenerative potential and systematically investigate their interaction with the physical environment at distinct steps of morphogenesis. PMID:26071498

  14. Lack of inhibitory effects of the anti-fibrotic drug imatinib on endothelial cell functions in vitro and in vivo.

    PubMed

    Venalis, Paulius; Maurer, Britta; Akhmetshina, Alfiya; Busch, Nicole; Dees, Clara; Stürzl, Michael; Zwerina, Jochen; Jüngel, Astrid; Gay, Steffen; Schett, Georg; Distler, Oliver; Distler, Jörg H W

    2009-10-01

    Systemic sclerosis (SSc) is a systemic autoimmune disease that is characterized by microangiopathy with progressive loss of capillaries and tissue fibrosis. Imatinib exerts potent anti-fibrotic effects and is currently evaluated in clinical trials. The aim of the present study was to exclude that the anti-fibrotic effects of imatinib are complicated by inhibitory effects on endothelial cell functions, which might augment vascular disease in SSc. Endothelial cells and mice were treated with pharmacologically relevant concentrations of imatinib. The expression of markers of vascular activation was assessed with real-time PCR. Proliferation was analysed with the cell counting experiments and the MTT assay. Apoptosis was quantified with caspase 3 assays, annexin V in vitro and with TUNEL staining in vivo. Migration was studied with scratch and transwell assays. Tube forming was investigated with the matrigel assay. Imatinib did not alter the expression of markers of vascular activation. Imatinib did not increase the percentage of annexin V positive cells or the activity of caspase 3. No reduction in proliferation or metabolic activity of endothelial cells was observed. Imatinib did not affect migration of endothelial cells and did not reduce the formation of capillary tubes. Consistent with the in vitro data, no difference in the number of apoptotic endothelial cells was observed in vivo in mice treated with imatinib. Imatinib does not inhibit activation, viability, proliferation, migration or tube forming of endothelial cells in vitro and in vivo. Thus, treatment with imatinib might not augment further endothelial cell damage in SSc.

  15. Lack of inhibitory effects of the anti-fibrotic drug imatinib on endothelial cell functions in vitro and in vivo

    PubMed Central

    Venalis, Paulius; Maurer, Britta; Akhmetshina, Alfiya; Busch, Nicole; Dees, Clara; Stürzl, Michael; Zwerina, Jochen; Jüngel, Astrid; Gay, Steffen; Schett, Georg; Distler, Oliver; Distler, Jörg HW

    2009-01-01

    Systemic sclerosis (SSc) is a systemic autoimmune disease that is characterized by microangiopathy with progressive loss of capillaries and tissue fibrosis. Imatinib exerts potent anti-fibrotic effects and is currently evaluated in clinical trials. The aim of the present study was to exclude that the anti-fibrotic effects of imatinib are complicated by inhibitory effects on endothelial cell functions, which might augment vascular disease in SSc. Endothelial cells and mice were treated with pharmacologically relevant concentrations of imatinib. The expression of markers of vascular activation was assessed with real-time PCR. Proliferation was analysed with the cell counting experiments and the MTT assay. Apoptosis was quantified with caspase 3 assays, annexin V in vitro and with TUNEL staining in vivo. Migration was studied with scratch and transwell assays. Tube forming was investigated with the matrigel assay. Imatinib did not alter the expression of markers of vascular activation. Imatinib did not increase the percentage of annexin V positive cells or the activity of caspase 3. No reduction in proliferation or metabolic activity of endothelial cells was observed. Imatinib did not affect migration of endothelial cells and did not reduce the formation of capillary tubes. Consistent with the in vitro data, no difference in the number of apoptotic endothelial cells was observed in vivo in mice treated with imatinib. Imatinib does not inhibit activation, viability, proliferation, migration or tube forming of endothelial cells in vitro and in vivo. Thus, treatment with imatinib might not augment further endothelial cell damage in SSc. PMID:18774958

  16. miR-342-3p suppresses hepatocellular carcinoma proliferation through inhibition of IGF-1R-mediated Warburg effect.

    PubMed

    Liu, Wenpeng; Kang, Lei; Han, Juqiang; Wang, Yadong; Shen, Chuan; Yan, Zhifeng; Tai, Yanhong; Zhao, Caiyan

    2018-01-01

    Insulin-like growth factor-1 receptor (IGF-1R) is a well-studied oncogenic factor that promotes cell proliferation and energy metabolism and is overexpressed in numerous cancers including hepatocellular carcinoma (HCC). Aerobic glycolysis is a hallmark of cancer, and drugs targeting its regulators, including IGF-1R, are being developed. However, the mechanisms of IGF-1R inhibition and the physiological significance of the IGF-1R inhibitors in cancer cells are unclear. Cell proliferation was evaluated by cell counting Kit-8 and colony formation assay. Western blot and real-time PCR were accordingly used to detect the relevant proteins, miRNA and gene expression. Luciferase reporter assays were used to illustrate the interaction between miR-342-3p and IGF-1R. The effect of miR-342-3p on glycolysis was determined by glucose uptake, ATP concentration, lactate generation, extracellular acidification rate and oxygen consumption rate assays. In vivo, subcutaneous tumor formation assay and PET were performed in nude mice. In this study, we demonstrate that by directly targeting the 3'-UTR (3'-untranslated regions) of IGF-1R, microRNA-342-3p (miR-342-3p) suppresses IGF-1R-mediated PI3K/AKT/GLUT1 signaling pathway both in vitro and in vivo. Through suppression of IGF-1R, miR-342-3p dampens glycolysis by decreasing glucose uptake, lactate generation, ATP production, and extracellular acidification rate (ECAR), and increasing oxygen consumption rate (OCR) in hepatoma cells. Importantly, glycolysis regulated by miR-342-3p is critical for its regulating HCC growth both in vitro and in vivo. Our findings provide clues regarding the role of miR-342-3p as a tumor suppressor in liver cancer mainly through the inhibition of IGF-1R. Targeting IGF-1R by miR-342-3p could be a potential therapeutic strategy in liver cancer.

  17. Coix lacryma-jobi var. ma-yuen Stapf sprout extract has anti-metastatic activity in colon cancer cells in vitro.

    PubMed

    Son, Eun Suk; Kim, Young Ock; Park, Chun Geon; Park, Kyung Hun; Jeong, Sung Hwan; Park, Jeong-Woong; Kim, Se-Hee

    2017-11-06

    Coix lacryma-jobi var. ma-yuen (Rom.Caill.) Stapf has been used in China as an herbal medicine. Many studies of this plant have reported anti-proliferative and apoptotic activities on human cancer cell lines. Therefore, this study of the anti-metastatic effect of Coix lacryma-jobi var. ma-yuen Stapf sprout extract (CLSE) in colorectal cancer cells may provide a scientific basis for exploring anti-cancer effects of edible crops. To evaluate the effect of CLSE on cell proliferation and signaling, we performed a Cell Counting Kit-8 (CCK-8) assay in HCT116 cells and used western blot analysis. Furthermore, scratch-wound healing, transwell migration, matrigel invasion, and adhesion assays were conducted to elucidate the anti-metastatic effects of CLSE under hypoxic conditions in colon cancer cells. First, CLSE decreased deferoxamine (DFO)-induced migration of colon cancer cells by 87%, and blocked colon cancer cell migration by 80% compared with hypoxia control cells. Second, CLSE treatment resulted in a 54% reduction in hypoxia-induced invasiveness of colon cancer cells, and 50% inhibition of adhesive potency through inactivation of the extracellular signal-regulated kinase (ERK) 1/2 and protein kinase b (AKT) pathways. Third, conditioned medium collected from CLSE-treated HCT116 cells suppressed tube formation of human umbilical vein endothelial cells (HUVECs) by 91%. CLSE inhibited migration, invasion, and adhesion of colon cancer cells and tube formation by HUVECs via repression of the ERK1/2 and AKT pathways under hypoxic conditions. Therefore, CLSE may be used to treat patients with colon cancer.

  18. Xenografts in zebrafish embryos as a rapid functional assay for breast cancer stem-like cell identification.

    PubMed

    Eguiara, Arrate; Holgado, Olaia; Beloqui, Izaskun; Abalde, Leire; Sanchez, Yolanda; Callol, Carles; Martin, Angel G

    2011-11-01

    The cancer stem cell is defined by its capacity to self-renew, the potential to differentiate into all cells of the tumor and the ability to proliferate and drive the expansion of the tumor. Thus, targeting these cells may provide novel anti-cancer treatment strategies. Breast cancer stem cells have been isolated according to surface marker expression, ability to efflux fluorescent dyes, increased activity of aldehyde dehydrogenase or the capacity to form spheres in non-adherent culture conditions. In order to test novel drugs directed towards modulating self-renewal of cancer stem cells, rapid, easy and inexpensive assays must be developed. Using 2 days-post-fertilization (dpf) zebrafish embryos as transplant recipients, we show that cells grown in mammospheres from breast carcinoma cell lines migrate to the tail of the embryo and form masses with a significantly higher frequency than parental monolayer populations. When stem-like self-renewal was targeted in the parental population by the use of the dietary supplement curcumin, cell migration and mass formation were reduced, indicating that these effects were associated with stem-like cell content. This is a proof of principle report that proposes a rapid and inexpensive assay to target in vivo cancer stem-like cells, which may be used to unravel basic cancer stem cell biology and for drug screening.

  19. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology.

    PubMed

    Tate, Courtney M; Mc Entire, Jacquelyn; Pallini, Roberto; Vakana, Eliza; Wyss, Lisa; Blosser, Wayne; Ricci-Vitiani, Lucia; D'Alessandris, Quintino Giorgio; Morgante, Liliana; Giannetti, Stefano; Larocca, Luigi Maria; Todaro, Matilde; Benfante, Antonina; Colorito, Maria Luisa; Stassi, Giorgio; De Maria, Ruggero; Rowlinson, Scott; Stancato, Louis

    2015-01-01

    Bone morphogenetic proteins (BMPs), members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v) in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating a direct effect on endothelial cell function. BMP7v activated the canonical SMAD signaling pathway in endothelial cells but targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angiogenic effect. In contrast to SMAD activation, BMP7v selectively decreased ERK and AKT activation, significantly decreased endothelial cell migration and down-regulated expression of critical RTKs involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1 respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of angiogenesis, BMP7v significantly decreased hemoglobin content indicating inhibition of neoangiogenesis. In addition, BMP7v significantly decreased angiogenesis in glioblastoma stem-like cell (GSLC) Matrigel plugs and significantly impaired in vivo growth of a GSLC xenograft with a concomitant reduction in microvessel density. These data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis.

  20. Detecting drug-target binding in cells using fluorescence-activated cell sorting coupled with mass spectrometry analysis.

    PubMed

    Wilson, Kris; Webster, Scott P; Iredale, John P; Zheng, Xiaozhong; Homer, Natalie Z; Pham, Nhan T; Auer, Manfred; Mole, Damian J

    2017-12-15

    The assessment of drug-target engagement for determining the efficacy of a compound inside cells remains challenging, particularly for difficult target proteins. Existing techniques are more suited to soluble protein targets. Difficult target proteins include those with challenging in vitro solubility, stability or purification properties that preclude target isolation. Here, we report a novel technique that measures intracellular compound-target complex formation, as well as cellular permeability, specificity and cytotoxicity-the toxicity-affinity-permeability-selectivity (TAPS) technique. The TAPS assay is exemplified here using human kynurenine 3-monooxygenase (KMO), a challenging intracellular membrane protein target of significant current interest. TAPS confirmed target binding of known KMO inhibitors inside cells. We conclude that the TAPS assay can be used to facilitate intracellular hit validation on most, if not all intracellular drug targets.

  1. Detecting drug-target binding in cells using fluorescence-activated cell sorting coupled with mass spectrometry analysis

    NASA Astrophysics Data System (ADS)

    Wilson, Kris; Webster, Scott P.; Iredale, John P.; Zheng, Xiaozhong; Homer, Natalie Z.; Pham, Nhan T.; Auer, Manfred; Mole, Damian J.

    2018-01-01

    The assessment of drug-target engagement for determining the efficacy of a compound inside cells remains challenging, particularly for difficult target proteins. Existing techniques are more suited to soluble protein targets. Difficult target proteins include those with challenging in vitro solubility, stability or purification properties that preclude target isolation. Here, we report a novel technique that measures intracellular compound-target complex formation, as well as cellular permeability, specificity and cytotoxicity-the toxicity-affinity-permeability-selectivity (TAPS) technique. The TAPS assay is exemplified here using human kynurenine 3-monooxygenase (KMO), a challenging intracellular membrane protein target of significant current interest. TAPS confirmed target binding of known KMO inhibitors inside cells. We conclude that the TAPS assay can be used to facilitate intracellular hit validation on most, if not all intracellular drug targets.

  2. The sonic hedgehog signaling pathway maintains the cancer stem cell self-renewal of anaplastic thyroid cancer by inducing snail expression.

    PubMed

    Heiden, Katherine B; Williamson, Ashley J; Doscas, Michelle E; Ye, Jin; Wang, Yimin; Liu, Dingxie; Xing, Mingzhao; Prinz, Richard A; Xu, Xiulong

    2014-11-01

    Cancer stem cells (CSCs) have been recently identified in thyroid neoplasm. Anaplastic thyroid cancer (ATC) contains a higher percentage of CSCs than well-differentiated thyroid cancer. The signaling pathways and the transcription factors that regulate thyroid CSC self-renewal remain poorly understood. The objective of this study is to use two ATC cell lines (KAT-18 and SW1736) as a model to study the role of the sonic hedgehog (Shh) pathway in maintaining thyroid CSC self-renewal and to understand its underlying molecular mechanisms. The expression and activity of aldehyde dehydrogenase (ALDH), a marker for thyroid CSCs, was analyzed by Western blot and ALDEFLUOR assay, respectively. The effect of three Shh pathway inhibitors (cyclopamine, HhAntag, GANT61), Shh, Gli1, Snail knockdown, and Gli1 overexpression on thyroid CSC self-renewal was analyzed by ALDEFLUOR assay and thyrosphere formation. The sensitivity of transfected KAT-18 cells to radiation was evaluated by a colony survival assay. Western blot analysis revealed that ALDH protein levels in five thyroid cancer cell lines (WRO82, a follicular thyroid cancer cell line; BCPAP and TPC1, two papillary thyroid cancer cell lines; KAT-18 and SW1736, two ATC cell lines) correlated with the percentage of the ALDH(High) cells as well as Gli1 and Snail expression. The Shh pathway inhibitors, Shh and Gli1 knockdown, in KAT-18 cells decreased thyroid CSC self-renewal and increased radiation sensitivity. In contrast, Gli1 overexpression led to increased thyrosphere formation, an increased percentage of ALDH(High) cells, and increased radiation resistance in KAT-18 cells. Inhibition of the Shh pathway by three specific inhibitors led to decreased Snail expression and a decreased number of ALDH(High) cells in KAT-18 and SW1736. Snail gene knockdown decreased the number of ALDH(High) cells in KAT-18 and SW1736 cells. The Shh pathway promotes the CSC self-renewal in ATC cell lines by Gli1-induced Snail expression.

  3. Adenovirus-mediated suicide gene therapy under the control of Cox-2 promoter for colorectal cancer.

    PubMed

    Wang, Zhao-Xia; Bian, Hai-Bo; Yang, Jing-Song; De, Wei; Ji, Xiao-Hui

    2009-08-01

    Colorectal cancer is a most frequent type of gastrointestinal tract cancers. The prognosis of patients with colorectal cancer remains poor despite intensive interventions. Tumor specific promoter-directed gene therapy and adenoviral technology can be promising strategies for such advanced disease. This study was conducted to explore the possible therapeutic approach of Cox-2 promoter-directed suicide gene therapy with herpes simplex virus thymidine kinase (HSV-tk) in combination with adenoviral technology for advanced colorectal cancer. Firstly, the activity of Cox-2 promoter was assessed by dual luciferase and enhanced green fluorescent protein reporter gene assays in colorectal cancer cell lines and normal human intestinal epithelial cell line. Then, the expression of coxsackievirus and adenovirus receptor (CAR) was detected in colorectal cancer cell lines. The Cox-2 promoter-directed HSV-tk/ganciclovir (GCV) system mediated by adenovirus (Ad-Cp-TK) was developed (Ad-CMVp-TK, Ad-null and no Ad as controls). In vitro cytoxicity, colony formation and apoptosis assays were performed using Ad-Cp-TK. An animal study was carried out in which BALB/C nude mice bearing tumors were treated with Ad-Cp-TK and GCV treatments. Results showed that Cox-2 promoter possessed high transcriptional activity in a tumor-specific manner. All colorectal cancer cells were detected CAR-positive. In vitro cytotoxic and colony formation assays showed that colorectal cancer cells infected with Ad-Cp-TK became more sensitive to GCV but the sensitivity of normal cells infected with Ad-Cp-TK to GCV were not altered. Moreover, the Ad-Cp-TK system combined with GCV treatment could significantly induce apoptosis of colorectal cancer cells but not normal intestinal epithelial cells. Furthermore, this system also significantly inhibited the growth of subcutaneous tumors and prolonged survival of mice. Thus, adenovirus primary receptor was positive in colorectal cancer cells and adenovirus-mediated suicide gene therapy under the control of Cox-2 promoter could provide a promising treatment modality for advanced colorectal cancer with tumor specificity.

  4. Inhibition of human prostate cancer (PC-3) cells and targeting of PC-3-derived prostate cancer stem cells with koenimbin, a natural dietary compound from Murraya koenigii (L) Spreng.

    PubMed

    Kamalidehghan, Behnam; Ghafouri-Fard, Soudeh; Motevaseli, Elahe; Ahmadipour, Fatemeh

    2018-01-01

    Inhibition of prostate cancer stem cells (PCSCs) is an efficient curative maintenance protocol for the prevention of prostate cancer. The objectives of this study were to assess the efficiency of koenimbin, a major biologically active component of Murraya koenigii (L) Spreng, in the suppression of PC-3 cells and to target PC-3-derived cancer stem cells (CSCs) through apoptotic and CSC signaling pathways in vitro. The antiproliferative activity of koenimbin was examined using MTT, and the apoptotic detection was carried out by acridine orange/propidium iodide (AO/PI) double-staining and multiparametric high-content screening (HCS) assays. Caspase bioluminescence assay, reverse transcription polymerase chain reaction (RT-PCR), and immunoblotting were conducted to confirm the expression of apoptotic-associated proteins. Cell cycle analysis was investigated using flow cytometry. Involvement of nuclear factor-kappa B (NF-κB) was analyzed using HCS assay. Aldefluor™ and prostasphere formation examinations were used to evaluate the impact of koenimbin on PC-3 CSCs in vitro. Koenimbin remarkably inhibited cell proliferation in a dose-dependent manner. Koenimbin induced nuclear condensation, formation of apoptotic bodies, and G 0 /G 1 phase arrest of PC-3 cells. Koenimbin triggered the activation of caspase-3/7 and caspase-9 and the release of cytochrome c , decreased anti-apoptotic Bcl-2 and HSP70 proteins, increased pro-apoptotic Bax proteins, and inhibited NF-κB translocation from the cytoplasm to the nucleus, leading to the activation of the intrinsic apoptotic pathway. Koenimbin significantly ( P <0.05) reduced the aldehyde dehydrogenase-positive cell population of PC-3 CSCs and the size and number of PC-3 CSCs in primary, secondary, and tertiary prostaspheres in vitro. Koenimbin has chemotherapeutic potential that may be employed for future treatment through decreasing the recurrence of cancer, resulting in the improvement of cancer management strategies and patient survival.

  5. Monomeric C-reactive protein and Notch-3 co-operatively increase angiogenesis through PI3K signalling pathway.

    PubMed

    Boras, Emhamed; Slevin, Mark; Alexander, M Yvonne; Aljohi, Ali; Gilmore, William; Ashworth, Jason; Krupinski, Jerzy; Potempa, Lawrence A; Al Abdulkareem, Ibrahim; Elobeid, Adila; Matou-Nasri, Sabine

    2014-10-01

    C-reactive protein (CRP) is the most acute-phase reactant serum protein of inflammation and a strong predictor of cardiovascular disease. Its expression is associated with atherosclerotic plaque instability and the formation of immature micro-vessels. We have previously shown that CRP upregulates endothelial-derived Notch-3, a key receptor involved in vascular development, remodelling and maturation. In this study, we investigated the links between the bioactive monomeric CRP (mCRP) and Notch-3 signalling in angiogenesis. We used in vitro (cell counting, wound-healing and tubulogenesis assays) and in vivo (chorioallantoic membrane) angiogenic assays and Western blotting to study the angiogenic signalling pathways induced by mCRP and Notch-3 activator chimera protein (Notch-3/Fc). Our results showed an additive effect on angiogenesis of mCRP stimulatory effect combined with Notch-3/Fc promoting bovine aortic endothelial cell (BAEC) proliferation, migration, tube formation in Matrigel(TM) with up-regulation of phospho-Akt expression. The pharmacological blockade of PI3K/Akt survival pathway by LY294002 fully inhibited in vitro and in vivo angiogenesis induced by mCRP/Notch-3/Fc combination while blocking Notch signalling by gamma-secretase inhibitor (DAPT) partially inhibited mCRP/Notch-3/Fc-induced angiogenesis. Using a BAEC vascular smooth muscle cell co-culture sprouting angiogenesis assay and transmission electron microscopy, we showed that activation of both mCRP and Notch-3 signalling induced the formation of thicker sprouts which were shown later by Western blotting to be associated with an up-regulation of N-cadherin expression and a down-regulation of VE-cadherin expression. Thus, mCRP combined with Notch-3 activator promote angiogenesis through the PI3K/Akt pathway and their therapeutic combination has potential to promote and stabilize vessel formation whilst reducing the risk of haemorrhage from unstable plaques. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Loss of the tumor suppressor p15Ink4b enhances myeloid progenitor formation from common myeloid progenitors.

    PubMed

    Rosu-Myles, Michael; Taylor, Barbara J; Wolff, Linda

    2007-03-01

    The tumor suppressor p15Ink4b (Ink4b) is a cell-cycle inhibitor that is inactivated in a high percentage of acute myeloid leukemia and myeloid dysplasia syndrome cases. Despite this, the role of Ink4b in hematopoiesis remains unclear. Here we examined the role of Ink4b in blood cell formation using Ink4b-deficient (Ink4b(-/-)) mice. We compared the bone marrow (BM) of Ink4b(-/-) and wild-type mice using flow cytometric, colony-forming unit and competitive repopulating assays (CRA). The proliferation, differentiation, self-renewal, and apoptosis of progenitor cells were further compared by in vitro and in vivo methods. BM from Ink4b(-/-) mice contained increased numbers of granulocyte-monocyte progenitors and Gr-1(+) cells and showed a competitive advantage over wild-type cells in myeloid cell formation by CRA. Ink4b(-/-) progenitors did not demonstrate increased proliferation, self-renewing potential, or reduced apoptosis. Instead, Ink4b(-/-) common myeloid progenitors (CMPs) showed increased myeloid progenitor formation concomitant with reduced erythroid potential. This work establishes a role for Ink4b in regulating the differentiation of CMPs and indicates that loss of Ink4b enhances the formation of myeloid progenitors.

  7. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: An in vitro study of fibroblast and keratinocyte scratch assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, M.N.M.; School of Life and Health Science, Aston University, Aston Triangle, Birmingham, B4 7EJ; Wright, K.T.

    2010-04-15

    We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditionsmore » significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-{beta}1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix.« less

  8. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and keratinocyte scratch assays.

    PubMed

    Walter, M N M; Wright, K T; Fuller, H R; MacNeil, S; Johnson, W E B

    2010-04-15

    We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditions significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-beta1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Inflammatory Responses and Barrier Function of Endothelial Cells Derived from Human Induced Pluripotent Stem Cells.

    PubMed

    Halaidych, Oleh V; Freund, Christian; van den Hil, Francijna; Salvatori, Daniela C F; Riminucci, Mara; Mummery, Christine L; Orlova, Valeria V

    2018-05-08

    Several studies have reported endothelial cell (EC) derivation from human induced pluripotent stem cells (hiPSCs). However, few have explored their functional properties in depth with respect to line-to-line and batch-to-batch variability and how they relate to primary ECs. We therefore carried out accurate characterization of hiPSC-derived ECs (hiPSC-ECs) from multiple (non-integrating) hiPSC lines and compared them with primary ECs in various functional assays, which included barrier function using real-time impedance spectroscopy with an integrated assay of electric wound healing, endothelia-leukocyte interaction under physiological flow to mimic inflammation and angiogenic responses in in vitro and in vivo assays. Overall, we found many similarities but also some important differences between hiPSC-derived and primary ECs. Assessment of vasculogenic responses in vivo showed little difference between primary ECs and hiPSC-ECs with regard to functional blood vessel formation, which may be important in future regenerative medicine applications requiring vascularization. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Improving anticancer efficacy of (–)-epigallocatechin-3-gallate gold nanoparticles in murine B16F10 melanoma cells

    PubMed Central

    Chen, Cheng-Cheung; Hsieh, Dar-Shih; Huang, Kao-Jean; Chan, Yi-Lin; Hong, Po-Da; Yeh, Ming-Kung; Wu, Chang-Jer

    2014-01-01

    (–)-Epigallocatechin-3-gallate (EGCG), the major bioactive constituent in green tea, has been reported to effectively inhibit the formation and development of tumors. To maximize the effectiveness of EGCG, we attached it to nanogold particles (EGCG-pNG) in various ratios to examine in vitro cytotoxicity and in vivo anti-cancer activity. EGCG-pNG showed improved anti-cancer efficacy in B16F10 murine melanoma cells; the cytotoxic effect in the melanoma cells treated with EGCG-pNG was 4.91 times higher than those treated with EGCG. The enhancement is achieved through mitochondrial pathway-mediated apoptosis as determined by annexin V assay, JC-10 staining, and caspase-3, -8, -9 activity assay. Moreover, EGCG-pNG was 1.66 times more potent than EGCG for inhibition of tumor growth in a murine melanoma model. In the hemolysis assay, the pNG surface conjugated with EGCG is most likely the key factor that contributes to the decreased release of hemoglobin from human red blood cells. PMID:24855338

  11. Titan cells formation in Cryptococcus neoformans is finely tuned by environmental conditions and modulated by positive and negative genetic regulators

    PubMed Central

    Coelho, Carolina; Sturny-Leclère, Aude; Fraser, James A.; Nielsen, Kirsten

    2018-01-01

    The pathogenic fungus Cryptococcus neoformans exhibits morphological changes in cell size during lung infection, producing both typical size 5 to 7 μm cells and large titan cells (> 10 μm and up to 100 μm). We found and optimized in vitro conditions that produce titan cells in order to identify the ancestry of titan cells, the environmental determinants, and the key gene regulators of titan cell formation. Titan cells generated in vitro harbor the main characteristics of titan cells produced in vivo including their large cell size (>10 μm), polyploidy with a single nucleus, large vacuole, dense capsule, and thick cell wall. Here we show titan cells derived from the enlargement of progenitor cells in the population independent of yeast growth rate. Change in the incubation medium, hypoxia, nutrient starvation and low pH were the main factors that trigger titan cell formation, while quorum sensing factors like the initial inoculum concentration, pantothenic acid, and the quorum sensing peptide Qsp1p also impacted titan cell formation. Inhibition of ergosterol, protein and nucleic acid biosynthesis altered titan cell formation, as did serum, phospholipids and anti-capsular antibodies in our settings. We explored genetic factors important for titan cell formation using three approaches. Using H99-derivative strains with natural genetic differences, we showed that titan cell formation was dependent on LMP1 and SGF29 genes. By screening a gene deletion collection, we also confirmed that GPR4/5-RIM101, and CAC1 genes were required to generate titan cells and that the PKR1, TSP2, USV101 genes negatively regulated titan cell formation. Furthermore, analysis of spontaneous Pkr1 loss-of-function clinical isolates confirmed the important role of the Pkr1 protein as a negative regulator of titan cell formation. Through development of a standardized and robust in vitro assay, our results provide new insights into titan cell biogenesis with the identification of multiple important factors/pathways. PMID:29775480

  12. International Network for Comparison of HIV Neutralization Assays: The NeutNet Report II

    PubMed Central

    Heyndrickx, Leo; Heath, Alan; Sheik-Khalil, Enas; Alcami, Jose; Bongertz, Vera; Jansson, Marianne; Malnati, Mauro; Montefiori, David; Moog, Christiane; Morris, Lynn; Osmanov, Saladin; Polonis, Victoria; Ramaswamy, Meghna; Sattentau, Quentin; Tolazzi, Monica; Schuitemaker, Hanneke; Willems, Betty; Wrin, Terri; Fenyö, Eva Maria; Scarlatti, Gabriella

    2012-01-01

    Background Neutralizing antibodies provide markers for vaccine-induced protective immunity in many viral infections. By analogy, HIV-1 neutralizing antibodies induced by immunization may well predict vaccine effectiveness. Assessment of neutralizing antibodies is therefore of primary importance, but is hampered by the fact that we do not know which assay(s) can provide measures of protective immunity. An international collaboration (NeutNet) involving 18 different laboratories previously compared different assays using monoclonal antibodies (mAbs) and soluble CD4 (Phase I study). Methods In the present study (Phase II), polyclonal reagents were evaluated by 13 laboratories. Each laboratory evaluated nine plasmas against an 8 virus panel representing different genetic subtypes and phenotypes. TriMab, a mixture of three mAbs, was used as a positive control allowing comparison of the results with Phase I in a total of nine different assays. The assays used either uncloned virus produced in peripheral blood mononuclear cells (PBMCs) (Virus Infectivity Assays, VIA), or Env (gp160)-pseudotyped viruses (pseudoviruses, PSV) produced in HEK293T cells from molecular clones or from uncloned virus. Target cells included PBMC and genetically engineered cell lines in either single- or multiple-cycle infection format. Infection was quantified by using a range of assay read-outs including extra- or intra-cellular p24 antigen detection, luciferase, beta-galactosidase or green fluorescent protein (GFP) reporter gene expression. Findings Using TriMab, results of Phase I and Phase II were generally in agreement for six of the eight viruses tested and confirmed that the PSV assay is more sensitive than PBMC (p = 0.014). Comparisons with the polyclonal reagents showed that sensitivities were dependent on both virus and plasma. Conclusions Here we further demonstrate clear differences in assay sensitivities that were dependent on both the neutralizing reagent and the virus. Consistent with the Phase I study, we recommend parallel use of PSV and VIA for vaccine evaluation. PMID:22590544

  13. International network for comparison of HIV neutralization assays: the NeutNet report II.

    PubMed

    Heyndrickx, Leo; Heath, Alan; Sheik-Khalil, Enas; Alcami, Jose; Bongertz, Vera; Jansson, Marianne; Malnati, Mauro; Montefiori, David; Moog, Christiane; Morris, Lynn; Osmanov, Saladin; Polonis, Victoria; Ramaswamy, Meghna; Sattentau, Quentin; Tolazzi, Monica; Schuitemaker, Hanneke; Willems, Betty; Wrin, Terri; Fenyö, Eva Maria; Scarlatti, Gabriella

    2012-01-01

    Neutralizing antibodies provide markers for vaccine-induced protective immunity in many viral infections. By analogy, HIV-1 neutralizing antibodies induced by immunization may well predict vaccine effectiveness. Assessment of neutralizing antibodies is therefore of primary importance, but is hampered by the fact that we do not know which assay(s) can provide measures of protective immunity. An international collaboration (NeutNet) involving 18 different laboratories previously compared different assays using monoclonal antibodies (mAbs) and soluble CD4 (Phase I study). In the present study (Phase II), polyclonal reagents were evaluated by 13 laboratories. Each laboratory evaluated nine plasmas against an 8 virus panel representing different genetic subtypes and phenotypes. TriMab, a mixture of three mAbs, was used as a positive control allowing comparison of the results with Phase I in a total of nine different assays. The assays used either uncloned virus produced in peripheral blood mononuclear cells (PBMCs) (Virus Infectivity Assays, VIA), or Env (gp160)-pseudotyped viruses (pseudoviruses, PSV) produced in HEK293T cells from molecular clones or from uncloned virus. Target cells included PBMC and genetically engineered cell lines in either single- or multiple-cycle infection format. Infection was quantified by using a range of assay read-outs including extra- or intra-cellular p24 antigen detection, luciferase, beta-galactosidase or green fluorescent protein (GFP) reporter gene expression. Using TriMab, results of Phase I and Phase II were generally in agreement for six of the eight viruses tested and confirmed that the PSV assay is more sensitive than PBMC (p = 0.014). Comparisons with the polyclonal reagents showed that sensitivities were dependent on both virus and plasma. Here we further demonstrate clear differences in assay sensitivities that were dependent on both the neutralizing reagent and the virus. Consistent with the Phase I study, we recommend parallel use of PSV and VIA for vaccine evaluation.

  14. Sparstolonin B, a Novel Plant Derived Compound, Arrests Cell Cycle and Induces Apoptosis in N-Myc Amplified and N-Myc Nonamplified Neuroblastoma Cells

    PubMed Central

    Kumar, Ambrish; Fan, Daping; DiPette, Donald J.; Singh, Ugra S.

    2014-01-01

    Neuroblastoma is one of the most common solid tumors and accounts for ∼15% of all the cancer related deaths in the children. Despite the standard therapy for advanced disease including chemotherapy, surgery, and radiation, the mortality rate remains high for these patients. Hence, novel therapeutic agents are desperately needed. Here we examined the anticancer activity of a novel plant-derived compound, sparstolonin B (SsnB; 8,5′-dihydroxy-4-phenyl-5,2′-oxidoisocoumarin) using neuroblastoma cell lines of different genetics. SsnB was recently isolated from an aquatic Chinese herb, Sparganium stoloniferum, and tubers of this herb have been used in traditional Chinese medicine for the treatment of several inflammatory diseases and cancers. Our cell viability and morphological analysis indicated that SsnB at 10 µM concentration significantly inhibited the growth of both N-myc amplified (SK-N-BE(2), NGP, and IMR-32 cells) and N-myc nonamplified (SH-SY5Y and SKNF-1 cells) neuroblastoma cells. The flow cytometric analyses suggested that SsnB arrests the cell cycle progression at G2-M phase in all neuroblastoma cell lines tested. Exposure of SsnB inhibited the compact spheroid formation and reduced the tumorigenicity of SH-SY5Y cells and SK-N-BE(2) cells in in vitro 3-D cell culture assays (anchorage-independent colony formation assay and hanging drop assay). SsnB lowers the cellular level of glutathione (GSH), increases generation of reactive oxygen species and activates the cleavage of caspase-3 whereas co-incubation of a GSH precursor, N-acetylcysteine, along with SsnB attenuates the inhibitory effects of SsnB and increases the neuroblastoma cell viability. Our results for the first time demonstrate that SsnB possesses anticancer activity indicating that SsnB-induced reactive oxygen species generation promotes apoptotic cell death in neuroblastoma cells of different genetic background. Thus these data suggest that SsnB can be a promising drug candidate in neuroblastoma therapy. PMID:24788776

  15. Aptamer-aided target capturing with biocatalytic metal deposition: an electrochemical platform for sensitive detection of cancer cells.

    PubMed

    Yi, Zi; Li, Xiao-Yan; Gao, Qing; Tang, Li-Juan; Chu, Xia

    2013-04-07

    A novel aptamer biosensor for cancer cell assay has been reported on the basis of ultrasensitive electrochemical detection. Cancer cell capturing is first accomplished via aptamer-aided recognition, and the cell-aptamer binding events then mediate an alkaline phosphatase-catalyzed silver deposition reaction which can be probed by electrochemical detection. Following biocatalytic silver deposition, an efficient amplification approach for sensitive electrochemical measurements is demonstrated, for cell detection with high sensitivity. Ramos cell are used as a model case, a typical biomarker of the acute blood cell cancer, Burkitt's lymphoma. The results reveal that the developed technique displays desirable selectivity in Ramos cell discrimination, and linear response range from 10 to 10(6) cells with a detection limit as low as 10 cells. Due to the simple procedures, label-free and electrochemistry based detection format, this technique is simple and cost-effective, and exhibits excellent compatibility with miniaturization technologies. The electrochemical cell detection strategy may create an intrinsically specific and sensitive platform for cancer cell assay and associated studies.

  16. A novel, colorimetric neutralization assay for measuring antibodies to influenza viruses.

    PubMed

    Lehtoranta, Liisa; Villberg, Anja; Santanen, Riitta; Ziegler, Thedi

    2009-08-01

    A colorimetric cell proliferation assay for measuring neutralizing antibodies to influenza viruses in human sera is described. Following a 90-min incubation, the serum-virus mixture was transferred to Madin-Darby canine kidney cells cultured in 96-well plates. After further incubation for three days, a tetrazolium salt was added to the wells. Cellular mitochondrial dehydrogenases cleave the tetrazolium salt to formazan, and the resulting color change is read by a spectrophotometer. The absorbance values correlate directly to the number of viable cells in the assay well and thus also to the neutralizing activity of influenza-specific antibodies present in the serum. With the few hands-on manipulations required, this assay allows simultaneous testing of a considerable number of sera, offers opportunities for automation, and is suitable for use under biosafety level-3 conditions. The test was used to study the antibody response after the administration of seasonal, inactivated, trivalent influenza vaccine. Antibody titers determined by the neutralization test in pre- and post-vaccination serum pairs were compared with those obtained by the hemagglutination inhibition assay. The neutralization test yielded higher pre- and post-vaccination titers and a larger number of significant increases in post-vaccination antibody titer than the hemagglutination inhibition test. This new test format could serve as a valuable laboratory tool for influenza vaccine studies.

  17. Suitability of Macrolampis firefly and Pyrearinus click beetle luciferases for bacterial light off toxicity biosensor.

    PubMed

    Gabriel, Gabriele V M; Lopes, P S; Viviani, V R

    2014-01-15

    Bioluminescence is widely used in biosensors. For water toxicity analysis, the naturally bioluminescent bacteria Vibrio fischeri have been used extensively. We investigated the suitability of two new beetle luciferases for Escherichia coli light off biosensors: Macrolampis firefly and Pyrearinus termitilluminans click beetle luciferases. The bioluminescence detection assay using this system is very sensitive, being comparable or superior to V. fischeri. The luciferase of P. termitilluminans produces a strong and sustained bioluminescence that is useful for less sensitive and inexpensive assays that require integration of the emission, whereas Macrolampis luciferase displays a flash-like luminescence that is useful for fast and more sensitive assays. The effect of heavy metals and sanitizing agents was analyzed. Zinc, copper, 1-propanol, and iodide had inhibitory effects on bioluminescence and growth assays; however, in these cases the bioluminescence was not a very reliable indicator of cell growth and metabolic activity because these agents also inhibited the luciferase. On the other hand, mercury and silver strongly affected cell bioluminescence and growth but not the luciferase activity, indicating that bioluminescence was a reliable indicator of cell growth and metabolic activity in this case. Finally, bioluminescent E. coli immobilized in agarose matrix gave a more stable format for environmental assays. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Combinatorial cytotoxic effects of Curcuma longa and Zingiber officinale on the PC-3M prostate cancer cell line

    PubMed Central

    Kurapati, Kesava Rao V.; Samikkannu, Thangavel; Kadiyala, Dakshayani B.; Zainulabedin, Saiyed M.; Gandhi, Nimisha; Sathaye, Sadhana S.; Indap, Manohar A.; Boukli, Nawal; Rodriguez, Jose W.; Nair, Madhavan P.N.

    2015-01-01

    Background Many plant-derived products exhibit potent chemopreventive activity against animal tumor models as well as rodent and human cancer cell lines. They have low side effects and toxicity and presumably modulate the factors that are critical for cell proliferation, differentiation, senescence and apoptosis. The present study investigates the effects of some medicinal plant extracts from generally recognized as safe plants that may be useful in the prevention and treatment of cancer. Methods Clonogenic assays using logarithmically-growing cells were performed to test the effect. The cytotoxic effects of Curcuma longa and Zingiber officinale were studied using sulforhodamine B assay, tetrazolium dye assay, colony morphology and microscopic analysis. Results Out of the 13 lyophilized plant-derived extracts evaluated for growth-inhibitory effects on the PC-3M prostate cancer cell line, two extracts derived from C. longa and Z. officinale showed significant inhibitory effects on colony-forming ability. The individual and augmentative effects of these two extracts were tested for their narrow range effective lower concentration on PC-3M in clonogenic assays. At relatively lower concentrations, C. longa showed significant inhibition of colony formation in clonogenic assays; whereas at same concentrations Z. officinale showed only moderate inhibitory effects. However, when both the agents were tested together at the same concentrations, the combined effects were much more significant than their individual ones. On normal prostate epithelial cells both C. longa and Z. officinale had similar effects but at a lower magnitude. These observations were confirmed by several cytotoxicity assays involving the morphological appearance of the colonies, microscopic observations, per cent inhibition in comparison to control by sulforhodamine B and tetrazolium dye assay. Conclusions From these observations, it was concluded that the combined effects of C. longa and Z. officinale are much greater than their individual effects, suggesting the role of multiple components and their synergistic mode of actions to elicit stronger beneficial effects. PMID:23072849

  19. Micromachined nanocalorimetric sensor for ultra-low-volume cell-based assays.

    PubMed

    Johannessen, Erik A; Weaver, John M R; Bourova, Lenka; Svoboda, Petr; Cobbold, Peter H; Cooper, Jonathan M

    2002-05-01

    Current strategies for cell-based screening generally focus on the development of highly specific assays, which require an understanding of the nature of the signaling molecules and cellular pathways involved. In contrast, changes in temperature of cells provides a measure of altered cellular metabolism that is not stimulus specific and hence could have widespread applications in cell-based screening of receptor agonists and antagonists, as well as in the assessment of toxicity of new lead compounds. Consequently, we have developed a micromachined nanocalorimetric biological sensor using a small number of isolated living cells integrated within a subnanoliter format, which is capable of detecting 13 nW of generated power from the cells, upon exposure to a chemical or pharmaceutical stimulus. The sensor comprises a 10-junction gold and nickel thermopile, integrated on a silicon chip which was back-etched to span a 800-nm-thick membrane of silicon nitride. The thin-film membrane, which supported the sensing junctions of the thermoelectric transducer, gave the system a temperature resolution of 0.125 mK, a low heat capacity of 1.2 nJ mK(-1), and a rapid (unfiltered) response time of 12 ms. The application of the system in ultra-low-volume cell-based assays could provide a rapid endogenous screen. It offers important additional advantages over existing methods in that it is generic in nature, it does not require the use of recombinant cell lines or of detailed assay development, and finally, it can enable the use of primary cell lines or tissue biopsies.

  20. Nuclear translocation of phosphorylated STAT3 regulates VEGF-A-induced lymphatic endothelial cell migration and tube formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okazaki, Hideki; Tokumaru, Sho; Hanakawa, Yasushi

    2011-09-02

    Highlights: {yields} VEGF-A enhanced lymphatic endothelial cell migration and increased tube formation. {yields} VEGF-A treated lymphatic endothelial cell showed activation of STAT3. {yields} Dominant-negative STAT3 inhibited VEGF-A-induced lymphatic endothelial cell migration and tube formation. -- Abstract: Vascular endothelial growth factor (VEGF) is an endothelial cell-specific growth factor that regulates endothelial functions, and signal transducers and activators of transcription (STATs) are known to be important during VEGF receptor signaling. The aim of this study was to determine whether STAT3 regulates VEGF-induced lymphatic endothelial cell (LEC) migration and tube formation. VEGF-A (33 ng/ml) enhanced LEC migration by 2-fold and increased tube lengthmore » by 25% compared with the control, as analyzed using a Boyden chamber and Matrigel assay, respectively. Western blot analysis and immunostaining revealed that VEGF-A induced the nuclear translocation of phosphorylated STAT3 in LECs, and this translocation was blocked by the transfection of LECs with an adenovirus vector expressing a dominant-negative mutant of STAT3 (Ax-STAT3F). Transfection with Ax-STAT3F also almost completely inhibited VEGF-A-induced LEC migration and tube formation. These results indicate that STAT3 is essential for VEGF-A-induced LEC migration and tube formation and that STAT3 regulates LEC functions.« less

  1. Troglitazone induced apoptosis via PPARγ activated POX-induced ROS formation in HT29 cells.

    PubMed

    Wang, Jing; Lv, XiaoWen; Shi, JiePing; Hu, XiaoSong; DU, YuGuo

    2011-08-01

    In order to investigate the potential mechanisms in troglitazone-induced apoptosis in HT29 cells, the effects of PPARγ and POX-induced ROS were explored. [3- (4, 5)-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay, Annexin V and PI staining using FACS, plasmid transfection, ROS formation detected by DCFH staining, RNA interference, RT-PCR & RT-QPCR, and Western blotting analyses were employed to investigate the apoptotic effect of troglitazone and the potential role of PPARγ pathway and POX-induced ROS formation in HT29 cells. Troglitazone was found to inhibit the growth of HT29 cells by induction of apoptosis. During this process, mitochondria related pathways including ROS formation, POX expression and cytochrome c release increased, which were inhibited by pretreatment with GW9662, a specific antagonist of PPARγ. These results illustrated that POX upregulation and ROS formation in apoptosis induced by troglitazone was modulated in PPARγ-dependent pattern. Furthermore, the inhibition of ROS and apoptosis after POX siRNA used in troglitazone-treated HT29 cells indicated that POX be essential in the ROS formation and PPARγ-dependent apoptosis induced by troglitazone. The findings from this study showed that troglitazone-induced apoptosis was mediated by POX-induced ROS formation, at least partly, via PPARγ activation. Copyright © 2011 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.

  2. Identification of Prostate Cancer Prognostic Markers

    DTIC Science & Technology

    2015-10-01

    downregulation of GABARAPL2, a gene located in a chromosomal region deleted in PCa metastases, showed increase in autophagy in a PCa cell line and reduced...alteration, chromosome gain and deletion, fluorescence in situ hybridization (FISH), prognostic markers, biomarkers, tissue microarrays, autophagy 16...TMA), colony formation assay, cell growth, autophagy . 3. ACCOMPLISHMENTS: What were the major goals of the project? The hypothesis of the project is

  3. Induction and repair of DNA cross-links induced by sulfur mustard in the A-549 cell line followed by a comet assay.

    PubMed

    Jost, Petr; Svobodova, Hana; Stetina, Rudolf

    2015-07-25

    Sulfur mustard is a highly toxic chemical warfare agent with devastating impact on intoxicated tissues. DNA cross-links are probably the most toxic DNA lesions induced in the cell by sulfur mustard. The comet assay is a very sensitive method for measuring DNA damage. In the present study using the A-549 lung cell line, the comet assay protocol was optimized for indirect detection of DNA cross-links induced by sulfur mustard. The method is based on the additional treatment of the assayed cells containing cross-links with the chemical mutagen, styrene oxide. Alkali-labile adducts of styrene oxide cause DNA breaks leading to the formation of comets. A significant dose-dependent reduction of DNA migration of the comet's tail was found after exposing cells to sulfur mustard, indicative of the amount of sulfur mustard induced cross-links. The remarkable decrease of % tail DNA could be observed as early as 5min following exposure to sulfur mustard and the maximal effect was found after 30min, when DNA migration was reduced to the minimum. Sulfur mustard preincubated in culture medium without cells lost its ability to induce cross-links and had a half-life of about 15min. Pre-incubation longer than 30min does not lead to a significant increase in cross-links when applied to cells. However, the amount of cross-links is decreased during further incubation due to repair. The current modification of the comet assay provides a useful tool for detecting DNA cross-links induced by sulfur mustard and could be used for detection of other DNA cross-linking agents such as chemotherapeutic drugs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Evaluation of drug-induced hematotoxicity using novel in vitro monkey CFU-GM and BFU-E colony assays.

    PubMed

    Goto, Koichi; Goto, Mayumi; Ando-Imaoka, Masako; Kai, Kiyonori; Mori, Kazuhiko

    2017-01-01

    In order to evaluate drug-induced hematotoxicity in monkey cells in vitro, colony-forming unit-granulocyte, macrophage (CFU-GM), and burst-forming unit-erythroid (BFU-E) colony assays were established using mononuclear cells in the bone marrow collected from male cynomolgus monkeys. Furthermore, the effects of doxorubicin, chloramphenicol, and linezolid on CFU-GM and BFU-E colony formation were investigated using established monkey CFU-GM and BFU-E colony assays in comparison with those on human CFU-GM and BFU-E colonies acquired from human umbilical cord blood cells. Bone marrow mononuclear cells were collected from the ischial or iliac bone of male cynomolgus monkeys. The cells were subsequently processed by density gradient separation at 1.067, 1.070, or 1.077 g/mL for CFU-GM or 1.077 g/mL for BFU-E, and then cultured in methylcellulose medium for 9 or 13 days, respectively. A sufficient number of CFU-GM colonies were formed from mononuclear cells processed at a density of 1.070 g/mL. Moreover, the number of BFU-E colonies from the cells processed at a density of 1.077 g/mL was sufficient for the colony assay. The number of CFU-GM or BFU-E colonies decreased after treatment with the drugs of interest in a concentration-dependent manner. Compared with human CFU-GM, monkey CFU-GM were more sensitive to chloramphenicol and resistant to doxorubicin, whereas monkey BFU-E were more sensitive to all compounds in comparison to the sensitivity of human BFU-E. In conclusion, monkey CFU-GM and BFU-E colony assays were established and considered useful tools to evaluate the differences in drug-induced hematotoxicity between species.

  5. Immortalization of human prostate epithelial cells by HPV 16 E6/E7 open reading frames.

    PubMed

    Choo, C K; Ling, M T; Chan, K W; Tsao, S W; Zheng, Z; Zhang, D; Chan, L C; Wong, Y C

    1999-08-01

    The exact pathogenesis for prostate cancer is not known. Progress made in prostate cancer research has been slow, largely due to the lack of suitable in vitro models. Here, we report our work on the immortalization of a human prostate epithelial cell line and show that it can be used as a model to study prostate tumorigenesis. Replication-defective retrovirus harboring the human papillomavirus (HPV) type 16 E6 and E7 open reading frames was used to infect primary human prostate epithelial cells. Polymerase chain reaction, followed by Southern hybridization for the HPV 16 E6/E7, Western blot for prostatic acid phosphatase, telomeric repeat amplification protocol assay for telomerase activity, two-dimensional gels for cytokeratins, and cytogenetic analysis were undertaken to characterized the infected cells. The retrovirus-infected cell line, HPr-1, continued to grow in culture for more than 80 successive passages. Normal primary cells failed to proliferate after passage 6. HPr-1 cells bore close resemblance to normal primary prostate epithelial cells, both morphologically and biochemically. However, they possessed telomerase activity and proliferated indefinitely. Cytogenetic analysis of HPr-1 cells revealed a human male karyotype with clonal abnormalities and the appearance of multiple double minutes. The HPr-1 cells expressed prostatic acid phosphatase and cytokeratins K8 and K18, proving that they were prostate epithelial cells. They were benign in nude mice tumor formation and soft agar colony formation assay. The HPr-1 cell line is an in vitro representation of early prostate neoplastic progression. Copyright 1999 Wiley-Liss, Inc.

  6. HIV-Derived ssRNA Binds to TLR8 to Induce Inflammation-Driven Macrophage Foam Cell Formation

    PubMed Central

    Bernard, Mark A.; Han, Xinbing; Inderbitzin, Sonya; Agbim, Ifunanya; Zhao, Hui; Koziel, Henry; Tachado, Souvenir D.

    2014-01-01

    Even though combined anti-retroviral therapy (cART) dramatically improves patient survival, they remain at a higher risk of being afflicted with non-infectious complications such as cardiovascular disease (CVD). This increased risk is linked to persistent inflammation and chronic immune activation. In this study, we assessed whether this complication is related to HIV-derived ssRNAs inducing in macrophages increases in TNFα release through TLR8 activation leading to foam cell formation. HIV ssRNAs induced foam cell formation in monocyte-derived macrophages (MDMs) in a dose-dependent manner. This response was reduced when either endocytosis or endosomal acidification was inhibited by dynasore or chloroquine, respectively. Using a flow cytometry FRET assay, we demonstrated that ssRNAs bind to TLR8 in HEK cells. In MDMs, ssRNAs triggered a TLR8-mediated inflammatory response that ultimately lead to foam cell formation. Targeted silencing of the TLR8 and MYD88 genes reduced foam cell formation. Furthermore, foam cell formation induced by these ssRNAs was blocked by an anti-TNFα neutralizing antibody. Taken together in MDMs, HIV ssRNAs are internalized; bind TLR8 in the endosome followed by endosomal acidification. TLR8 signaling then triggers TNFα release and ultimately leads to foam cell formation. As this response was inhibited by a blocking anti-TNFα antibody, drug targeting HIV ssRNA-driven TLR8 activation may serve as a potential therapeutic target to reduce chronic immune activation and inflammation leading to CVD in HIV+ patients. PMID:25090652

  7. Angiogenic effects of apigenin on endothelial cells after hypoxia-reoxygenation via the caveolin-1 pathway.

    PubMed

    Tu, Fengxia; Pang, Qiongyi; Chen, Xiang; Huang, Tingting; Liu, Meixia; Zhai, Qiongxiang

    2017-12-01

    In the present study, we aimed to elucidate whether apigenin contributes to the induction of angiogenesis and the related mechanisms in cell hypoxia-reoxygenation injury. The role of apigenin was examined in human umbilical vein endothelial cell (HUVEC) viability, migration and tube formation in vitro. To investigate the related mechanisms, we used caveolin-1 short interfering RNA. The viability of HUVECs was measured using Cell Counting Kit-8 assays, HUVEC migration was analyzed by crystal violet staining, and a tube formation assay was performed using the branch point method. Expression of caveolin-1, vascular endothelial growth factor (VEGF), and endothelial nitric oxide synthase (eNOS) in HUVECs was examined by polymerase chain reaction and western blotting. Our data revealed that apigenin induced angiogenesis in vitro by increasing the tube formation ability of HUVECs, which was counteracted by caveolin-1 silencing. Compared to the NC group, Caveolin-1 and eNOS expression was upregulated by apigenin, whereas compared to the NC group, eNOS expression was increased upon caveolin-1 silencing. The expression of VEGF was increased by treatment with apigenin; however, compared to the NC group, caveolin-1 silencing did not affect VEGF expression, and apigenin did not increase VEGF expression in HUVECs after caveolin-1 silencing. These data suggest that apigenin may be a candidate therapeutic target for stroke recovery by promoting angiogenesis via the caveolin-1 signaling pathway.

  8. Long non-coding RNA HOXD-AS1 promotes tumor progression and predicts poor prognosis in colorectal cancer.

    PubMed

    Li, Xiang; Zhao, Xinhan; Yang, Binhui; Li, Yuqing; Liu, Tao; Pang, Linyuan; Fan, Zhigang; Ma, Wu; Liu, Zhongqiu; Li, Zeng

    2018-07-01

    Mounting evidence has indicated that long non‑coding RNAs (lncRNA) serve important roles in tumor development. Previous studies have demonstrated that the lncRNA HOXD cluster antisense RNA 1 (HOXD‑AS1) promotes tumor progression in numerous types of cancer; however, the role of HOXD‑AS1 in colorectal cancer (CRC) remains unclear. In the present study, the expression levels of HOXD‑AS1 were detected in CRC tissues and cell lines using quantitative polymerase chain reaction. In addition, the biological effects of HOXD‑AS1 on CRC were evaluated in vitro by cell counting kit‑8, colony formation and Transwell assays, and in vivo by tumorigenesis and metastasis assays. The results demonstrated that HOXD‑AS1 was upregulated in CRC tissues and cell lines, and that overexpression of HOXD‑AS1 was associated with poor prognosis in patients with CRC. Furthermore, knockdown of HOXD‑AS1 inhibited cell proliferation, cell invasion, epithelial‑mesenchymal transition and stem cell formation in vitro, as well as tumor growth and metastasis in vivo. Mechanistically, HOXD‑AS1 functioned as a competing endogenous RNA for miR‑217. In conclusion, the present study demonstrated that HOXD‑AS1 may promote CRC progression and metastasis by competing for miR‑217. In addition, HOXD‑AS1 may be considered an indicator of prognosis in patients with CRC.

  9. A genome-wide shRNA screen identifies GAS1 as a novel melanoma metastasis suppressor gene.

    PubMed

    Gobeil, Stephane; Zhu, Xiaochun; Doillon, Charles J; Green, Michael R

    2008-11-01

    Metastasis suppressor genes inhibit one or more steps required for metastasis without affecting primary tumor formation. Due to the complexity of the metastatic process, the development of experimental approaches for identifying genes involved in metastasis prevention has been challenging. Here we describe a genome-wide RNAi screening strategy to identify candidate metastasis suppressor genes. Following expression in weakly metastatic B16-F0 mouse melanoma cells, shRNAs were selected based upon enhanced satellite colony formation in a three-dimensional cell culture system and confirmed in a mouse experimental metastasis assay. Using this approach we discovered 22 genes whose knockdown increased metastasis without affecting primary tumor growth. We focused on one of these genes, Gas1 (Growth arrest-specific 1), because we found that it was substantially down-regulated in highly metastatic B16-F10 melanoma cells, which contributed to the high metastatic potential of this mouse cell line. We further demonstrated that Gas1 has all the expected properties of a melanoma tumor suppressor including: suppression of metastasis in a spontaneous metastasis assay, promotion of apoptosis following dissemination of cells to secondary sites, and frequent down-regulation in human melanoma metastasis-derived cell lines and metastatic tumor samples. Thus, we developed a genome-wide shRNA screening strategy that enables the discovery of new metastasis suppressor genes.

  10. The role of the thiol N-acetylcysteine in the prevention of tumor invasion and angiogenesis.

    PubMed

    Morini, M; Cai, T; Aluigi, M G; Noonan, D M; Masiello, L; De Flora, S; D'Agostini, F; Albini, A; Fassina, G

    1999-01-01

    We have extensively studied the effects of N-acetylcysteine (NAC), a cytoprotective drug that can prevent in vivo carcinogenesis. Here we review our findings NAC completely inhibits gelatinolytic activity of metalloproteases and chemotactic and invasive activities of tumor cells. In addition, NAC reduces the number of lung metastases when malignant murine melanoma cells are injected into nude mice. NAC treatment decreases the weight of primary tumors and produces a dose-related increase in tumor latency. Moreover, oral administration of NAC reduces the formation of spontaneous metastases. In experimental metastasis assays, we have found a synergistic reduction in the number of lung metastases after treatment with doxorubicin (DOX) and NAC in nude mice. In tumorigenicity and spontaneous metastasis assays, the combined administration of DOX and oral NAC again has shown synergistic effects on the frequency and weight of primary tumors and local recurrences and completely prevented the formation of lung metastases. The addition of NAC to endothelial cells strongly reduces their invasive activity in response to angiogenic stimuli. NAC inhibited the degradation and release of radiolabeled type IV collagen by activated endothelial cells, indicating that NAC blocks gelatinase activity. Oral administration of NAC reduces the angiogenic response induced by KS tumor cell products, confirming the ability of NAC to inhibit the invasive activity of endothelial cells in vivo and thereby blocking angiogenesis.

  11. Multicolor Bioluminescence Boosts Malaria Research: Quantitative Dual-Color Assay and Single-Cell Imaging in Plasmodium falciparum Parasites

    PubMed Central

    2015-01-01

    New reliable and cost-effective antimalarial drug screening assays are urgently needed to identify drugs acting on different stages of the parasite Plasmodium falciparum, and particularly those responsible for human-to-mosquito transmission, that is, the P. falciparum gametocytes. Low Z′ factors, narrow dynamic ranges, and/or extended assay times are commonly reported in current gametocyte assays measuring gametocyte-expressed fluorescent or luciferase reporters, endogenous ATP levels, activity of gametocyte enzymes, or redox-dependent dye fluorescence. We hereby report on a dual-luciferase gametocyte assay with immature and mature P. falciparum gametocyte stages expressing red and green-emitting luciferases from Pyrophorus plagiophthalamus under the control of the parasite sexual stage-specific pfs16 gene promoter. The assay was validated with reference antimalarial drugs and allowed to quantitatively and simultaneously measure stage-specific drug effects on parasites at different developmental stages. The optimized assay, requiring only 48 h incubation with drugs and using a cost-effective luminogenic substrate, significantly reduces assay cost and time in comparison to state-of-the-art analogous assays. The assay had a Z′ factor of 0.71 ± 0.03, and it is suitable for implementation in 96- and 384-well microplate formats. Moreover, the use of a nonlysing d-luciferin substrate significantly improved the reliability of the assay and allowed one to perform, for the first time, P. falciparum bioluminescence imaging at single-cell level. PMID:25102353

  12. The Fibrin slide assay for detecting urokinase activity in human fetal kidney cells

    NASA Technical Reports Server (NTRS)

    Sedor, K.

    1985-01-01

    The Fibrin Slide Technique of Hau C. Kwaan and Tage Astrup is discussed. This relatively simple assay involves two steps: the formation of an artificial clot and then the addition of an enzyme (UKOKINASE) to dissolve the clot. The actual dissolving away of the clot is detected by the appearance of holes (lysis zones) in the stained clot. The procedure of Kwaan and Astrup is repeated, along with modifications and suggestions for improvements based on experience with the technique.

  13. A novel impedance-based cellular assay for the detection of anti-calcium channel autoantibodies in type 1 diabetes.

    PubMed

    Jackson, Michael W; Gordon, Tom P

    2010-09-30

    We have recently postulated that functional autoantibodies (Abs) against L-type voltage-gated calcium channels (VGCCs) contribute to autonomic dysfunction in type 1 diabetes (T1D). Previous studies based on whole-organ assays have proven valuable in establishing the mechanism of anti-VGCC Ab activity, but are complex and unsuitable for screening large patient cohorts. In the current study, we used real-time dynamic monitoring of cell impedance to demonstrate that anti-VGCC Abs from patients with T1D inhibit the adherence of Rin A12 cells. The functional effect of the anti-VGCC Abs was mimicked by the dihydropyridine agonist, Bay K8644, and reversed by the antagonist, nicardipine, providing a pharmacological link to the whole-organ studies. IVIg neutralized the effect on cell adhesion of the anti-VGCC Abs, consistent with the presence of anti-idiotypic Abs in IVIg that may prevent the emergence of pathogenic Abs in healthy individuals. The cell impedance assay can be performed in a 96 well plate format, and represents a simple method for detecting the presence of anti-VGCC activity in patient immunoglobulin (IgG). The new cell assay should prove useful for further studies to determine the prevalence of the Ab and its association with symptoms of autonomic dysfunction in patients with T1D. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  14. Upregulation of human DNA binding protein A (dbpA) in gastric cancer cells.

    PubMed

    Wang, Guo-rong; Zheng, Yan; Che, Xiang-ming; Wang, Xin-yang; Zhao, Jia-hui; Wu, Kai-jie; Zeng, Jin; Pan, Chen-en; He, Da-lin

    2009-10-01

    To determine the effect of human DNA binding protein (dbpA) on the biology of gastric cancer cells. DbpA expression was analyzed by Western blot analysis and immunofluorescence staining in gastric cancer tissues and cell lines. A dbpA-specific small interference (si) RNA was designed and synthesized. Suppressive effect of siRNA on dbpA expression was assessed by real-time RT-PCR. Transwell migration and colony formation assays were used to assess the inhibitory effects of dbpA siRNA on cell invasion and tumorigenesis in vitro. Drug-sensitivity was evaluated using a conventional 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The expression of dbpA was upregulated in gastric cancer tissues and cell lines as compared to adjacent normal tissues or gastric epithelial cells. siRNA treatment successfully silenced dbpA expression. Silencing of dbpA increased expression of E-cadherin, decreased expression of adenomatous polyposis coli (APC), beta-catenin and cyclin D1, but had no effect on expression of NF-kappaB. Silencing of dbpA also suppressed cell invasion and colony formation of SGC7901 cells, and enhanced their chemosensitivity to 5-fluorouracil. DbpA plays an important role in the pathogenesis and development of gastric cancer, and the process involves E-cadherin, APC, beta-catenin and cyclin D1. Silencing of dbpA might be a novel therapeutic strategy for increasing chemosensitivity to 5-fluorouracil in gastric cancer.

  15. p-Hydroxylcinnamaldehyde induces the differentiation of oesophageal carcinoma cells via the cAMP-RhoA-MAPK signalling pathway

    PubMed Central

    Ma, Ming; Zhao, Lian-mei; Yang, Xing-xiao; Shan, Ya-nan; Cui, Wen-xuan; Chen, Liang; Shan, Bao-en

    2016-01-01

    p-Hydroxylcinnamaldehyde (CMSP) has been identified as an inhibitor of the growth of various cancer cells. However, its function in oesophageal squamous cell carcinoma (ESCC) and the underlying mechanism remain unclear. The aim of the present study was to characterize the differentiation effects of CMSP, as well as its mechanism in the differentiation of ESCC Kyse30 and TE-13 cells. The function of CMSP in the viability, colony formation, migration and invasion of Kyse30 and TE-13 cells was determined by MTS, colony-formation, wound healing and transwell assays. Western blotting and pull-down assays were used to investigate the effect of CMSP on the expression level of malignant markers of ESCC, as well as the activity of MAPKs, RhoA and GTP-RhoA in Kyse30 and TE-13 cells. We found that CMSP could inhibit proliferation and migration and induce Kyse30 and TE-13 cell differentiation, characterized by dendrite-like outgrowth, decreased expression of tumour-associated antigens, as well as the decreased expression of malignant markers. Furthermore, increased cAMP, p-P38 and decreased activities of ERK, JNK and GTP-RhoA, were detected after treatment with CMSP. These results indicated that CMSP induced the differentiation of Kyse30 and TE-13 cells through mediating the cAMP-RhoA-MAPK axis, which might provide new potential strategies for ESCC treatment. PMID:27501997

  16. Low expression of miR-30a-5p induced the proliferation and invasion of oral cancer via promoting the expression of FAP.

    PubMed

    Ruan, Peng; Tao, Zezhang; Tan, Aili

    2018-02-28

    The study aimed at investigating the effects of miR-30a-5p on the biological functions of oral cancer cells and figuring out the potential mechanism. We first verified the low expression of miR-30a-5p and high expression of FAP ( Homo sapiens fibroblast activation protein α) in oral cancerous tissues and their negative correlation. Then, the target relationship between miR-30a-5p and FAP was validated by dual luciferase reporter assay and biotin-coupled miRNA pulldown assay. After transfection in Tca-8113 cells and SCC-15 cells, MTT, colony formation, Transwell, and wound healing assays were performed to investigate how miR-30a-5p and FAP adjusted propagation, invasiveness, and migration, respectively. Mounting evidence supported that miR-30a-5p directly targetted FAP and suppressed its expression in oral cavity cancer cells (OSCCs). By suppressing FAP expression, miR-30a-5p significantly inhibited cell propagation, migration, and invasion. Therefore, miR-30a-5p might be a new therapeutic target for oral cancer treatment. © 2018 The Author(s).

  17. Low expression of miR-30a-5p induced the proliferation and invasion of oral cancer via promoting the expression of FAP

    PubMed Central

    Ruan, Peng; Tao, Zezhang

    2017-01-01

    The study aimed at investigating the effects of miR-30a-5p on the biological functions of oral cancer cells and figuring out the potential mechanism. We first verified the low expression of miR-30a-5p and high expression of FAP (Homo sapiens fibroblast activation protein α) in oral cancerous tissues and their negative correlation. Then, the target relationship between miR-30a-5p and FAP was validated by dual luciferase reporter assay and biotin-coupled miRNA pulldown assay. After transfection in Tca-8113 cells and SCC-15 cells, MTT, colony formation, Transwell, and wound healing assays were performed to investigate how miR-30a-5p and FAP adjusted propagation, invasiveness, and migration, respectively. Mounting evidence supported that miR-30a-5p directly targetted FAP and suppressed its expression in oral cavity cancer cells (OSCCs). By suppressing FAP expression, miR-30a-5p significantly inhibited cell propagation, migration, and invasion. Therefore, miR-30a-5p might be a new therapeutic target for oral cancer treatment. PMID:29026005

  18. Guarea kunthiana Bark Extract Enhances the Antimicrobial Activities of Human and Bovine Neutrophils.

    PubMed

    Jerjomiceva, Natalja; Seri, Hisham; Yaseen, Ragheda; de Buhr, Nicole; Setzer, William N; Naim, Hassan Y; von Köckritz-Blickwede, Maren

    2016-06-01

    Guarea kunthiana is used in folk remedies for the treatment of several diseases including microbial infections. The mechanism behind this phenomenon still needs to be elucidated. Here, we investigated the effect of G. kunthiana bark extract on antimicrobial functions of human and bovine neutrophils as the first line of defense against infections. For this aim, neutrophils were isolated from either human or bovine blood and treated with G. kunthiana bark extract. The antimicrobial activity of the neutrophils against Staphylococcus (S.) aureus and Escherichia (E.) coli was tested in a bacterial survival assay and a fluorescence-based phagocytosis assay. Furthermore, the formation of neutrophil extracellular traps (NETs) was visualized by immunofluorescence microscopy. We show that neutrophils treated with G. kunthiana extract distinctly increased phagocytosis of S. aureus or E. coli. Interestingly, we demonstrate that G. kunthiana bark extract induces the formation of NETs in both cell types. This effect was abolished when treating the cells with diphenyleniodonium chloride (DPI) pointing to a direct implication of the NADPH oxidase-dependent formation of reactive oxygen species in this process. In summary, our data strongly suggest that G. kunthiana bark extract boosts the antimicrobial activities of neutrophils as the first line of defense against invading pathogens.

  19. Aspartame induces angiogenesis in vitro and in vivo models.

    PubMed

    Yesildal, F; Aydin, F N; Deveci, S; Tekin, S; Aydin, I; Mammadov, R; Fermanli, O; Avcu, F; Acikel, C H; Ozgurtas, T

    2015-03-01

    Angiogenesis is the process of generating new blood vessels from preexisting vessels and is considered essential in many pathological conditions. The purpose of the present study is to evaluate the effect of aspartame on angiogenesis in vivo chick chorioallantoic membrane (CAM) and wound-healing models as well as in vitro 2,3-bis-2H-tetrazolium-5-carboxanilide (XTT) and tube formation assays. In CAM assay, aspartame increased angiogenesis in a concentration-dependent manner. Compared with the control group, aspartame has significantly increased vessel proliferation (p < 0.001). In addition, in vivo rat model of skin wound-healing study showed that aspartame group had better healing than control group, and this was statistically significant at p < 0.05. There was a slight proliferative effect of aspartame on human umbilical vein endothelial cells on XTT assay in vitro, but it was not statistically significant; and there was no antiangiogenic effect of aspartame on tube formation assay in vitro. These results provide evidence that aspartame induces angiogenesis in vitro and in vivo; so regular use may have undesirable effect on susceptible cases. © The Author(s) 2015.

  20. Bone mesenchymal stem cells co-expressing VEGF and BMP-6 genes to combat avascular necrosis of the femoral head

    PubMed Central

    Liao, Hongxing; Zhong, Zhixiong; Liu, Zhanliang; Li, Liangping; Ling, Zemin; Zou, Xuenong

    2018-01-01

    The aim of the present study was to investigate the potential of bone mesenchymal stem cells (BMSCs) treated with a combination of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-6 (BMP-6) genes for the treatment of avascular necrosis of the femoral head (ANFH). Rat BMSCs were isolated and purified using a density gradient centrifugation method. The purity and characteristics of the BMSCs were detected by cell surface antigens identification using flow cytometry. The experimental groups were administered with one of the following adeno-associated virus (AAV) vector constructs: AAV-green fluorescent protein (AAV-GFP), AAV-BMP-6, AAV-VEGF or AAV-VEGF-BMP-6. The expression of VEGF and BMP-6 was detected by reverse transcription-quantitative polymerase chain reaction, western blotting and ELISA assays. The effects of VEGF and BMP-6 on BMSCs were evaluated by angiogenic and osteogenic assays. The transfected BMSCs were combined with a biomimetic synthetic scaffold poly lactide-co-glycolide (PLAGA) and they were then subcutaneously implanted into nude mice. After four weeks, the implants were analyzed with histology and subsequent immunostaining to evaluate the effects of BMSCs on blood vessel and bone formation in vivo. In the AAV-VEGF-BMP-6 group, the expression levels of VEGF and BMP-6 were significantly increased and human umbilical vein endothelial cells tube formation was significantly enhanced compared with other groups. Capillaries and bone formation in the AAV-VEGF-BMP-6 group was significantly higher compared with the other groups. The results of the present study suggest that BMSCs expressing both VEGF and BMP-6 induce an increase in blood vessels and bone formation, which provides theoretical support for ANFH gene therapy. PMID:29399103

  1. Bone mesenchymal stem cells co-expressing VEGF and BMP-6 genes to combat avascular necrosis of the femoral head.

    PubMed

    Liao, Hongxing; Zhong, Zhixiong; Liu, Zhanliang; Li, Liangping; Ling, Zemin; Zou, Xuenong

    2018-01-01

    The aim of the present study was to investigate the potential of bone mesenchymal stem cells (BMSCs) treated with a combination of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-6 (BMP-6) genes for the treatment of avascular necrosis of the femoral head (ANFH). Rat BMSCs were isolated and purified using a density gradient centrifugation method. The purity and characteristics of the BMSCs were detected by cell surface antigens identification using flow cytometry. The experimental groups were administered with one of the following adeno-associated virus (AAV) vector constructs: AAV-green fluorescent protein (AAV-GFP), AAV-BMP-6, AAV-VEGF or AAV-VEGF-BMP-6. The expression of VEGF and BMP-6 was detected by reverse transcription-quantitative polymerase chain reaction, western blotting and ELISA assays. The effects of VEGF and BMP-6 on BMSCs were evaluated by angiogenic and osteogenic assays. The transfected BMSCs were combined with a biomimetic synthetic scaffold poly lactide-co-glycolide (PLAGA) and they were then subcutaneously implanted into nude mice. After four weeks, the implants were analyzed with histology and subsequent immunostaining to evaluate the effects of BMSCs on blood vessel and bone formation in vivo . In the AAV-VEGF-BMP-6 group, the expression levels of VEGF and BMP-6 were significantly increased and human umbilical vein endothelial cells tube formation was significantly enhanced compared with other groups. Capillaries and bone formation in the AAV-VEGF-BMP-6 group was significantly higher compared with the other groups. The results of the present study suggest that BMSCs expressing both VEGF and BMP-6 induce an increase in blood vessels and bone formation, which provides theoretical support for ANFH gene therapy.

  2. Enrichment of prostate cancer stem cells from primary prostate cancer cultures of biopsy samples

    PubMed Central

    Wang, Shunqi; Huang, Shengsong; Zhao, Xin; Zhang, Qimin; Wu, Min; Sun, Feng; Han, Gang; Wu, Denglong

    2014-01-01

    This study was to enrich prostate cancer stem cells (PrCSC) from primary prostate cancer cultures (PPrCC). Primary prostate cancer cells were amplified in keratinocyte serum-free medium with epidermal growth factor (EGF) and bovine pituitary extract (BPE), supplemented with leukemia inhibitory factor (LIF), stem cell factor (SCF) and cholera toxin. After amplification, cells were transferred into ultra-low attachment dishes with serum-free DMEM/F12 medium, supplemented with EGF, basic fibroblast growth factor (bFGF), bovine serum albumin (BSA), insulin, and N2 nutrition. Expression of cell-type-specific markers was determined by RT-qPCR and immunostaining. Tumorigenicity of enriched PrCSC was determined by soft agar assay and xenograft assay in NOD/SCID mice. Biopsy samples from 19 confirmed prostate cancer patients were used for establishing PPrCC, and 18 cases (95%) succeeded. Both basal marker (CK5) and luminal markers (androgen receptor and CK8) strongly co-expressed in most of PPrCC, indicating their basal epithelial origin. After amplification under adherent culture condition in vitro, transient amplifying cells were the dominant cells. Sphere formation efficiency (SFE) of passaged PPrCC was about 0.5%, which was 27 times lower than SFE of LNCaP (13.67%) in the same condition. Compared with adherent cells from PPrCC, prostasphere from PPrCC showed up regulated stem cell markers and increased tumorigenic potential in soft-agar assay. However, spheroid cells from PPrCC prostasphere failed to initiate tumor in xenograft assay in 6 months. Thus, PPrCC can be established and amplified from prostate cancer biopsy samples. Our modified sphere culture system can enrich PrCSC from PPrCC. PMID:24427338

  3. Apoptosis-inducing activity of HPLC fraction from Voacanga globosa (Blanco) Merr. on the human colon carcinoma cell.

    PubMed

    Acebedo, Alvin Resultay; Amor, Evangeline Cancio; Jacinto, Sonia Donaldo

    2014-01-01

    Voacanga globosa (Blanco), a plant endemic to the Philippines, is traditionally used especially by indigenous people of Bataan in the treatment of ulcers, wounds and tumorous growths. This study aimed to provide scientific evidence to therapeutic properties by determining cytotoxic and pro-apoptotic activity of HPLC fractions from leaves on HCT116 human colon carcinoma and A549 human lung carcinoma cell lines. Ethanolic extraction was performed on V globosa leaves followed by hexane and ethyl acetate partitioning. Silica gel column chromatography and high performance liquid chromatography (HPLC) produced MP1, MP2 and MP3 fractions. Cytotoxic activity of the fractions was determined through MTT assay against the cancer cell lines HCT116 and A549 and the non-cancer AA8 Chinese hamster ovarian cell line. Pro-apoptotic activities of the most active fractions were further assessed through DAPI staining, TUNEL assay and JC-1 mitochondrial membrane potential assay with HCT116 cells. While the MP1 fraction exerted no significant activity against all cell lines tested, MP2 and MP3 fractions demonstrated high toxicity against HCT116 and A549 cells. The MP3 fraction induced formation of apoptotic bodies, condensed DNA and other morphological changes consistent with apoptosis of HCT116 cells and TUNEL assay showed significant increase in DNA fragmentation over time. In these cells, the MP3 fraction also induced mitochondrial membrane destabilization, which is generally associated with the beginning of apoptosis. Phytochemical analysis demonstrated the presence only of saponins and terpenoids in the MP3 fraction. The results indicate that the MP3 fraction exerts cytotoxic activity on HCT116 cells via induction of apoptosis triggered by loss of mitochondrial membrane potential crucial for cell survival.

  4. The anti-angiogenic effect of dexamethasone in a murine hepatocellular carcinoma model by augmentation of gluconeogenesis pathway in malignant cells.

    PubMed

    Shang, Fei; Liu, Mingming; Li, Bingwei; Zhang, Xiaoyan; Sheng, Youming; Liu, Shuying; Han, Jianqun; Li, Hongwei; Xiu, Ruijuan

    2016-05-01

    Angiogenesis is a long-term complex process involving various protein factors in hepatocellular carcinoma (HCC). Dexamethasone (Dex), considered as a synthetic glucocorticoid drug in clinical therapy, has been reported to have the therapeutic efficacy against liver cancer by intervention of abnormal glycolysis. In this study, we investigated the anti-angiogenic effect of Dex in murine liver cancer and attempted to demonstrate the potential mechanism. The malignant cells H22 were treated with Dex. Western blotting was used to explore the expression of PEPCK and G6Pase which were the two key enzymes that regulated gluconeogenesis. The supernatants from cultured H22 treated by Dex were collected and co-cultured with HUVECs. In vitro, migration assay, transwell assay and tube formation assay were performed to assess for migration, proliferation and tube formation abilities of HUVECs, respectively. In situ murine hepatoma model with green fluorescent protein markers (HepG2-GFP) was constructed to determine angiogenesis after treatment by Dex. PEPCK and G6Pase were almost deficient in H22 compared with normal liver cells NCTC-1469 (P < 0.01). After treated by Dex, the gluconeogenesis could be restored significantly (P < 0.01) in H22 cells. The supernatant of H22 treated by Dex inhibited the migration, tube formation and endothelial permeability in HUVECs (P < 0.05). In mouse tissue, PEPCK and G6Pase were highly expressed in Dex group than control groups (P < 0.01). 11β-HSDs abnormally expressed in tumor also could be restored by Dex. Meanwhile, the density and total length of microvessels in Dex-treated group were less than those in HCC groups (P < 0.05). This study explored the therapeutic efficacy of Dex in murine HCC. Dex might inhibit tumor growth and angiogenesis by augmenting the gluconeogenesis pathway.

  5. Isolation and characterization of vascular endothelial cells derived from fetal tooth buds of miniature swine.

    PubMed

    Nasu, Masanori; Nakahara, Taka; Tominaga, Noriko; Tamaki, Yuichi; Ide, Yoshiaki; Tachibana, Toshiaki; Ishikawa, Hiroshi

    2013-03-01

    The aim of the present study was to isolate endothelial cells from tooth buds (unerupted deciduous teeth) of miniature swine. Mandibular molar tooth buds harvested from swine fetuses at fetal days 90-110 were cultured in growth medium supplemented with 15% fetal bovine serum in 100-mm culture dishes until the primary cells outgrown from the tooth buds reached confluence. A morphologically defined set of pavement-shaped primary cells were picked up manually with filter paper containing trypsin/ethylenediamine tetraacetic acid solution and transferred to a separate dish. A characterization of the cellular characteristics and a functional analysis of the cultured cells at passages 3 to 5 were performed using immunofluorescence, a reverse transcriptase polymerase chain reaction assay, a tube formation assay, and transmission electron microscopy. The isolated cells grew in a pavement arrangement and showed the characteristics of contact inhibition upon reaching confluence. The population doubling time was ~48 h at passage 3. As shown by immunocytostaining and western blotting with specific antibodies, the cells produced the endothelial marker proteins such as vascular endothelial cadherin, von Willebrand factor, and vascular endothelial growth factor receptor-2. Observation with time-lapse images showed that small groups of cells aggregated and adhered to each other to form tube-like structures. Moreover, as revealed through transmission electron microscopy, these adherent cells had formed junctional complexes. These endothelial cells from the tooth buds of miniature swine are available as cell lines for studies on tube formation and use in regenerative medical science.

  6. Long-term cultivation of human corneal endothelial cells by telomerase expression.

    PubMed

    Liu, Zhiping; Zhuang, Jing; Li, Chaoyang; Wan, Pengxia; Li, Naiyang; Zhou, Qiang; Zhou, Chenjing; Huang, Zheqian; Wang, Zhichong

    2012-07-01

    The objective of this study was to explore the potential role of human telomerase reverse transcriptase (TERT) in extending the proliferative lifespan of human corneal endothelial cells (HCECs) under long-term cultivation. A primary culture was initiated with a pure population of HCECs in DMEM/F12 media containing 10% fetal bovine serum and other various supplements. TERT gene was successfully transfected into normal HCECs. A stable HCECs cell line (TERT-HCECs) that expressed TERT was established. The cells could be subcultured for 36 passages. Within this line of cells, TERT not only extended proliferative lifespan and inhibited apoptosis but also enhanced the cell line remaining the normal characteristics similar to HCECs. There were no significantly differences in the expression of the pump function related proteins voltage dependent anion channel 3 (VDAC3), sodium bicarbonate cotransporter member 4 (SLC4A4), chloride channel protein 3 (CLCN3), Na(+)/K(+)-ATPase α1, and ZO-1 in the cell line TERT-HCECs and primary HCECs. TERT-HCECs formed a monolayer cell sheet, maintained similar cell junction formation and pump function with primary HCECs. Karyotype analysis exhibited normal chromosomal numbers. The soft agar colony assay and tumor formation in nude mice assay showed no malignant alterations in TERT-HCECs. Our findings indicated that we had established a cell line with its similar phenotype and properties to primary HCECs. Further study of the TERT-HCECs may be valuable in studying the function of the cells in vivo. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Cilostazol improves high glucose-induced impaired angiogenesis in human endothelial progenitor cells and vascular endothelial cells as well as enhances vasculoangiogenesis in hyperglycemic mice mediated by the adenosine monophosphate-activated protein kinase pathway.

    PubMed

    Tseng, Shih-Ya; Chao, Ting-Hsing; Li, Yi-Heng; Liu, Ping-Yen; Lee, Cheng-Han; Cho, Chung-Lung; Wu, Hua-Lin; Chen, Jyh-Hong

    2016-04-01

    Cilostazol is an antiplatelet agent with vasodilatory effects that works by increasing intracellular concentrations of cyclic adenosine monophosphate (cAMP). This study investigated the effects of cilostazol in preventing high glucose (HG)-induced impaired angiogenesis and examined the potential mechanisms involving activation of AMP-activated protein kinase (AMPK). Assays for colony formation, adhesion, proliferation, migration, and vascular tube formation were used to determine the effect of cilostazol in HG-treated endothelial progenitor cells (EPCs) or human umbilical vein endothelial cells (HUVECs). Animal-based assays were performed in hyperglycemic ICR mice undergoing hind limb ischemia. An immnunoblotting assay was used to identify the expression and activation of signaling molecules in vitro and in vivo. Cilostazol treatment significantly restored endothelial function in EPCs and HUVECs through activation of AMPK/acetyl-coenzyme A carboxylase (ACC)-dependent pathways and cAMP/protein kinase A (PKA)-dependent pathways. Recovery of blood flow in the ischemic hind limb and the population of circulating CD34(+) cells were significantly improved in cilostazol-treated mice, and these effects were abolished by local AMPK knockdown. Cilostazol increased the phosphorylation of AMPK/ACC and Akt/endothelial nitric oxide synthase signaling molecules in parallel with or downstream of the cAMP/PKA-dependent signaling pathway in vitro and in vivo. Cilostazol prevents HG-induced endothelial dysfunction in EPCs and HUVECs and enhances angiogenesis in hyperglycemic mice by interactions with a broad signaling network, including activation of AMPK/ACC and probably cAMP/PKA pathways. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  8. Anti-angiogenic and vascular disrupting effects of C9, a new microtubule-depolymerizing agent

    PubMed Central

    Ren, Xuan; Dai, Mei; Lin, Li-Ping; Li, Pui-Kai; Ding, Jian

    2009-01-01

    Background and purpose: The critical role of blood supply in the growth of solid tumours makes blood vessels an ideal target for anti-tumour drug discovery. The anti-angiogenic and vascular disrupting activities of C9, a newly synthesized microtubule-depolymerizing agent, were investigated with several in vitro and in vivo models. Possible mechanisms involved in its activity were also assessed. Experimental approach: Microtubule-depolymerizing actions were assessed by surface plasmon resonance binding, competitive inhibition and cytoskeleton immunofluorescence. Anti-angiogenic and vascular disrupting activities were tested on proliferation, migration, tube formation with human umbilical vein endothelial cells, and in rat aortic ring, chick chorioallantoic membrane and Matrigel plug assays. Western blots and Rho activation assays were employed to examine the role of Raf-MEK-ERK (mitogen-activated ERK kinase, extracellular signal-regulated kinase) and Rho/Rho kinase signalling. Key results: C9 inhibited proliferation, migration and tube formation of endothelial cells and inhibited angiogenesis in aortic ring and chick chorioallantoic membrane assays. C9 induced disassembly of microtubules in endothelial cells and down-regulated Raf-MEK-ERK signalling activated by pro-angiogenic factors. In addition, C9 disrupted capillary-like networks and newly formed vessels in vitro and rapidly decreased perfusion of neovasculature in vivo. Endothelial cell contraction and membrane blebbing induced by C9 in neovasculature was dependent on the Rho/Rho kinase pathway. Conclusions and implications: Anti-angiogenic and vascular disruption by C9 was associated with changes in morphology and function of endothelial cells, involving the Raf-MEK-ERK and Rho/Rho kinase signalling pathways. These findings strongly suggest that C9 is a new microtubule-binding agent that could effectively target tumour vasculature. PMID:19302593

  9. Tumor necrosis factor-α promotes the lymphangiogenesis of gallbladder carcinoma through nuclear factor-κB-mediated upregulation of vascular endothelial growth factor-C

    PubMed Central

    Du, Qiang; Jiang, Lei; Wang, Xiaoqian; Wang, Meiping; She, Feifei; Chen, Yanling

    2014-01-01

    Vascular endothelial growth factor (VEGF)-C is an important lymphangiogenic factor involved in the lymphangiogenesis of gallbladder carcinoma (GBC) and the lymph node metastasis of the tumor. Tumor necrosis factor (TNF)-α, a key inflammatory cytokine responding to chronic inflammation of GBC, has been reported to stimulate the expression of VEGF-C in some nonneoplastic cells. But whether TNF-α promotes the expression of VEGF-C in GBC has yet to be determined. Therefore, in the present study, the concentration of TNF-α and VEGF-C and the lymphatic vessel density (LVD) in the clinical GBC specimens were analyzed, and a linear correlation was found between the concentration of TNF-α and that of VEGF-C, the lymphatic vessel density (LVD); The transcription and protein level of VEGF-C in NOZ cell line were detected by real-time polymerase chain reaction (PCR) and enzyme linked immunosorbent assay (ELISA), and TNF-α enhanced the expression of VEGF-C in NOZ cell lines in a dose and time-dependent manner. Lymphatic tube formation in vitro was observed in a three-dimensional coculture system consisting of HDLECs and NOZ cell lines, and lymphatic vessels of GBC in nude mice model was detected by immunohistochemistry. TNF-α promoted the tube formation of lymphatic endothelial cells in vitro and the lymphangiogenesis of GBC in nude mice; The nuclear factor (NF)-κB binding site on the VEGF-C promoter was identified using Site-directed mutagenesis, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP). Taken together, TNF-α can upregulate the expression of VEGF-C and promote the lymphangiogenesis of GBC via NF-κB combining with the promoter of VEGF-C. PMID:25154789

  10. The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Leptadenia reticulata leaf extract

    NASA Astrophysics Data System (ADS)

    Kumara Swamy, M.; Sudipta, K. M.; Jayanta, K.; Balasubramanya, S.

    2015-01-01

    Biosynthesis of silver nanoparticles (Ag Nps) was carried out using methanol leaves extract of L. reticulata. Ag Nps were characterized based on the observations of UV-visible spectroscopy, transmission electron microscopy, and X-ray diffraction (XRD) analysis. These Ag Nps were tested for antimicrobial activity by agar well diffusion method against different pathogenic microorganisms and antioxidant activity was performed using DPPH assay. Further, the in vitro cytotoxic effects of Ag Nps were screened against HCT15 cancer cell line and viability of tumor cells was confirmed using MTT ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a yellow tetrazole)) assay. The nuclear condensation was studied using the propidium iodide-staining method. The color change from green to dark brown and the absorbance peak at about 420 nm indicated the formation of nanoparticles. XRD pattern showed characteristic peaks indexed to the crystalline planes (111), (200) and (220) of face-centered cubic silver. The nanoparticles were of spherical shape with varying sizes ranging from 50 to 70 nm. Biosynthesized Ag Nps showed potent antibacterial activity and effective radical scavenging activity. MTT assay revealed a dose-dependent decrease in cell viability. Microscopic observations showed distinct cellular morphological changes indicating unhealthy cells, whereas the control appeared normal. Increase in the number of propidium iodide positive cells were observed in maximum concentration. Methanolic leaf extract of L. reticulata acts as an excellent capping agent for the formation of silver nanoparticles and demonstrates immense biological activities. Hence, these Ag NPs can be used as antibacterial, antioxidant as well as cytotoxic agent in treating many medical complications.

  11. Sigma Receptor Ligand, (+)-Pentazocine, Suppresses Inflammatory Responses of Retinal Microglia

    PubMed Central

    Zhao, Jing; Ha, Yonju; Liou, Gregory I.; Gonsalvez, Graydon B.; Smith, Sylvia B.; Bollinger, Kathryn E.

    2014-01-01

    Purpose. To evaluate the effects of the σ 1 receptor (σR1) agonist, (+)-pentazocine, on lipopolysaccharide (LPS)–induced inflammatory changes in retinal microglia cells. Methods. Retinal microglia cells were isolated from Sprague-Dawley rat pups. Cells were treated with LPS with or without (+)-pentazocine and with or without the σR1 antagonist BD1063. Morphologic changes were assayed. Cell viability was assessed by using MTT assay. Supernatant levels of tumor necrosis factor α (TNF-α), interleukin 10, (IL-10), monocyte chemoattractant protein-1 (MCP-1), and nitric oxide (NO) were determined. Reactive oxygen species (ROS) formation was assayed, and levels of mitogen-activated protein kinases (MAPKs) were analyzed by using Western blot. Results. The σR1 protein was expressed in retinal microglia. Incubation with LPS and/or (+)-pentazocine did not alter cell viability or σR1 protein levels. Incubation with LPS for 24 hours induced a marked change in microglial morphology and a significant increase in secreted levels of TNF-α, IL-10, MCP-1, and NO. Pretreatment with (+)-pentazocine inhibited the LPS-induced morphologic changes. Release of TNF-α, IL-10, MCP-1, and NO was reduced with (+)-pentazocine. Intracellular ROS formation was suppressed with (+)-pentazocine. Phosphorylation of extracellular signal–regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) was reduced in the presence of (+)-pentazocine. The σR1 antagonist BD1063 blocked the (+)-pentazocine–mediated inhibition of LPS-induced morphologic changes. In addition, BD1063 treatment blocked (+)-pentazocine–mediated suppression of LPS-induced TNF-α, IL-10, MCP-1, NO, and intracellular ROS release. Conclusions. Treatment with (+)-pentazocine suppressed inflammatory responses of retinal microglia and inhibited LPS-induced activation of ERK/JNK MAPK. In neurodegenerative disease, (+)-pentazocine may exert neuroprotective effects through manipulation of microglia. PMID:24812552

  12. The virulence factor ychO has a pleiotropic action in an Avian Pathogenic Escherichia coli (APEC) strain.

    PubMed

    Pilatti, Livia; Boldrin de Paiva, Jacqueline; Rojas, Thaís Cabrera Galvão; Leite, Janaína Luisa; Conceição, Rogério Arcuri; Nakazato, Gerson; Dias da Silveira, Wanderley

    2016-03-10

    Avian pathogenic Escherichia coli strains cause extraintestinal diseases in birds, leading to substantial economic losses to the poultry industry worldwide. Bacteria that invade cells can overcome the host humoral immune response, resulting in a higher pathogenicity potential. Invasins are members of a large family of outer membrane proteins that allow pathogen invasion into host cells by interacting with specific receptors on the cell surface. An in silico analysis of the genome of a septicemic APEC strain (SEPT362) demonstrated the presence of a putative invasin homologous to the ychO gene from E. coli str. K-12 substr. MG1655. In vitro and in vivo assays comparing a mutant strain carrying a null mutation of this gene, a complemented strain, and its counterpart wild-type strain showed that ychO plays a role in the pathogenicity of APEC strain SEPT362. In vitro assays demonstrated that the mutant strain exhibited significant decreases in bacterial adhesiveness and invasiveness in chicken cells and biofilm formation. In vivo assay indicated a decrease in pathogenicity of the mutant strain. Moreover, transcriptome analysis demonstrated that the ychO deletion affected the expression of 426 genes. Among the altered genes, 93.66% were downregulated in the mutant, including membrane proteins and metabolism genes. The results led us to propose that gene ychO contributes to the pathogenicity of APEC strain SEPT362 influencing, in a pleiotropic manner, many biological characteristics, such as adhesion and invasion of in vitro cultured cells, biofilm formation and motility, which could be due to the possible membrane location of this protein. All of these results suggest that the absence of gene ychO would influence the virulence of the APEC strain herein studied.

  13. Interaction between mDia1 and ROCK in Rho-induced migration and adhesion of human dental pulp cells.

    PubMed

    Cheng, L; Xu, J; Qian, Y Y; Pan, H Y; Yang, H; Shao, M Y; Cheng, R; Hu, T

    2017-01-01

    To investigate the effects of mammalian homologue of Drosophila diaphanous-1(mDia1) and Rho-associated coiled-coil-containing protein kinase (ROCK) on the migration and adhesion of dental pulp cells (DPCs). Lysophosphatidic acid (LPA) was used to activate Rho signalling. mDia1 and ROCK were inhibited by short interfering RNA and the specific inhibitor, Y-27632, respectively. The migration of DPCs was assessed using the transwell migration assay and scratch test. Formation of cytoskeleton and focal adhesions(FAs) was observed by confocal laser scanning microscopy. Cell adhesion and spreading assays were performed. Phosphorylation of focal adhesion kinase (FAK) and paxillin was detected by Western blotting, and the bands were analysed using Adobe Photoshop CS5 software. All experiments were performed at least three times, and data were analysed with one-way anova and a post hoc test. LPA-triggered activation of Rho and inhibition of ROCK significantly increased the cell migration rate. Cell migration was inhibited by silencing mDia1. mDia1 silencing and ROCK inhibition suppressed the LPA-induced formation of the cytoskeleton, FA and phosphorylation of FAK and paxillin. Inhibition of ROCK or mDia1 facilitated early cell adhesion and spreading; by contrast, the combined inhibition of ROCK and mDia1 neutralized these effects. mDia1 promoted RhoA-induced migration of DPCs, but ROCK had an opposite effect. Both mDia1 and ROCK participated in cytoskeleton formation and adhesion of DPCs. The interactions between mDia1 and ROCK might influence dental pulp repair by determining the migration and adhesion of DPCs. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  14. Collagen type IV alpha 1 (COL4A1) and collagen type XIII alpha 1 (COL13A1) produced in cancer cells promote tumor budding at the invasion front in human urothelial carcinoma of the bladder

    PubMed Central

    Miyake, Makito; Hori, Shunta; Morizawa, Yosuke; Tatsumi, Yoshihiro; Toritsuka, Michihiro; Ohnishi, Sayuri; Shimada, Keiji; Furuya, Hideki; Khadka, Vedbar S.; Deng, Youping; Ohnishi, Kenta; Iida, Kota; Gotoh, Daisuke; Nakai, Yasushi; Inoue, Takeshi; Anai, Satoshi; Torimoto, Kazumasa; Aoki, Katsuya; Tanaka, Nobumichi; Konishi, Noboru; Fujimoto, Kiyohide

    2017-01-01

    Current knowledge of the molecular mechanism driving tumor budding is limited. Here, we focused on elucidating the detailed mechanism underlying tumor budding in urothelial cancer of the bladder. Invasive urothelial cancer was pathologically classified into three groups as follows: nodular, trabecular, and infiltrative (tumor budding). Pathohistological analysis of the orthotopic tumor model revealed that human urothelial cancer cell lines MGH-U3, UM-UC-14, and UM-UC-3 displayed typical nodular, trabecular, and infiltrative patterns, respectively. Based on the results of comprehensive gene expression analysis using microarray (25 K Human Oligo chip), we identified two collagens, COL4A1 and COL13A1, which may contribute to the formation of the infiltrative pattern. Visualization of protein interaction networks revealed that proteins associated with connective tissue disorders, epithelial-mesenchymal transition, growth hormone, and estrogen were pivotal factors in tumor cells. To evaluate the invasion pattern of tumor cells in vitro, 3-D collective cell invasion assay using Matrigel was performed. Invadopodial formation was evaluated using Gelatin Invadopodia Assay. Knockdown of collagens with siRNA led to dramatic changes in invasion patterns and a decrease in invasion capability through decreased invadopodia. The in vivo orthotopic experimental model of bladder tumors showed that intravesical treatment with siRNA targeting COL4A1 and COL13A1 inhibited the formation of the infiltrative pattern. COL4A1 and COL13A1 production by cancer cells plays a pivotal role in tumor invasion through the induction of tumor budding. Blocking of these collagens may be an attractive therapeutic approach for treatment of human urothelial cancer of the bladder. PMID:28415608

  15. MLF1 interacting protein: a potential gene therapy target for human prostate cancer?

    PubMed

    Zhang, Lei; Ji, Guoqing; Shao, Yuzhang; Qiao, Shaoyi; Jing, Yuming; Qin, Rongliang; Sun, Huiming; Shao, Chen

    2015-02-01

    Here, we investigated the role of one gene that has been previously associated with human prostate carcinoma cells-myelodysplasia/myeloid leukemia factor 1 interacting protein (MLF1IP)-in order to better ascertain its role in human prostate carcinogenesis. The prostate cancer cell line PC-3 was lentivirally transfected to silence endogenous MLF1IP gene expression, which was confirmed by real-time quantitative PCR (RT-qPCR). Cellomics ArrayScan VTI imaging and MTT assays were conducted to assess cell proliferation. Cell cycle phase arrest and apoptosis were assayed by flow cytometry. Colony formation was assessed by fluorescence microscopy. MLF1IP gene expression was also analyzed by RT-qPCR in sixteen prostate cancer tissue samples and six healthy control prostate tissue samples from human patients. Cell proliferation was significantly inhibited in MLF1IP-silenced cells relative to control cells. G1 phase, S and G2/M phase cell counts were not significantly changed in MLF1IP-silenced cells relative to control cells. Apoptosis was significantly increased in MLF1IP-silenced cells, while MLF1IP-silenced cells displayed a significantly reduced number of cell colonies, compared to control cells. The 16 human prostate cancer tissue samples revealed no clear upregulation or downregulation in MLF1IP gene expression. MLF1IP significantly promotes prostate cancer cell proliferation and colony formation and significantly inhibits apoptosis without affecting cell cycle phase arrest. Further study is required to conclusively determine whether MLF1IP is upregulated in human prostate cancer tumors and to determine the precise cellular mechanism(s) for MLF1IP in prostate carcinogenesis.

  16. Nyctanthes arbortristis mediated synthesis of silver nanoparticles: Cytotoxicity assay against THP-1 human leukemia cell lines

    NASA Astrophysics Data System (ADS)

    Kumari, Priti; Kumari, Niraj; Jha, Anal K.; Singh, K. P.; Prasad, K.

    2018-05-01

    Green synthesis, characterizations and applications of nanoparticles have become an important branch of nanotechnology now a day. In this paper, green synthesis of silver nanoparticles (AgNPs) using the aqueous extract of Nyctanthes arbortristis as a reducing and stabilizing agent, has been discussed. Present synthetic method is very handy, cost-effective and reproducible. Formation of AgNPs was characterized by X-ray diffraction, dynamic light scattering, scanning electron microscopy and UV-visible spectroscopy techniques. The phytochemicals responsible for nano-transformation were principally flavonoids, phenols and glycosides present in the leaves. Further, the dose dependent cytotoxicity assay of biosynthesized AgNPs against THP-1 human leukemia cell lines showed the encouraging results.

  17. A High-Content Assay for Biosensor Validation and for Examining Stimuli that Affect Biosensor Activity.

    PubMed

    Slattery, Scott D; Hahn, Klaus M

    2014-12-01

    Biosensors are valuable tools used to monitor many different protein behaviors in vivo. Demand for new biosensors is high, but their development and characterization can be difficult. During biosensor design, it is necessary to evaluate the effects of different biosensor structures on specificity, brightness, and fluorescence responses. By co-expressing the biosensor with upstream proteins that either stimulate or inhibit the activity reported by the biosensor, one can determine the difference between the biosensor's maximally activated and inactivated state, and examine response to specific proteins. We describe here a method for biosensor validation in a 96-well plate format using an automated microscope. This protocol produces dose-response curves, enables efficient examination of many parameters, and unlike cell suspension assays, allows visual inspection (e.g., for cell health and biosensor or regulator localization). Optimization of single-chain and dual-chain Rho GTPase biosensors is addressed, but the assay is applicable to any biosensor that can be expressed or otherwise loaded in adherent cells. The assay can also be used for purposes other than biosensor validation, using a well-characterized biosensor as a readout for effects of upstream molecules. Copyright © 2014 John Wiley & Sons, Inc.

  18. A novel compound inhibits rHDL assembly and blocks nascent HDL biogenesis downstream of apoAI binding to ABCA1 expressing cells

    PubMed Central

    Lyssenko, Nicholas N.; Brubaker, Gregory; Smith, Bradley D.; Smith, Jonathan D.

    2011-01-01

    Objective Nascent high-density lipoprotein (HDL) particles form from cellular lipids and extracellular lipid-free apolipoprotein AI (apoAI) in a process mediated by ATP-binding cassette transporter A1 (ABCA1). We have sought out compounds that inhibit nascent HDL biogenesis without affecting ABCA1 activity. Methods and Results Reconstituted HDL (rHDL) formation and cellular cholesterol efflux assays were used to show that two compounds that bond via hydrogen with phospholipids inhibit rHDL and nascent HDL production. In rHDL formation assays, the inhibitory effect of compound 1 (methyl 3α-acetoxy-7α,12α-di[(phenylaminocarbonyl)amino]-5β-cholan-24-oate), the more active of the two, depended on its ability to associate with phospholipids. In cell assays, compound 1 suppressed ABCA1-mediated cholesterol efflux to apoAI, the 18A peptide, and taurocholate with high specificity, without affecting ABCA1-independent cellular cholesterol efflux to HDL and endocytosis of acetylated low-density lipoprotein (AcLDL) and transferrin. Furthermore, compound 1 did not affect ABCA1 activity adversely, as ABCA1-mediated shedding of microparticles proceeded unabated and apoAI binding to ABCA1-expressing cells increased in its presence. Conclusions The inhibitory effects of compound 1 support a three-step model of nascent HDL biogenesis: plasma membrane remodeling by ABCA1, apoAI binding to ABCA1, and lipoprotein particle assembly. The compound inhibits the final step, causing accumulation of apoAI in ABCA1-expressing cells. PMID:21836073

  19. In vitro screening of environmental chemicals for targeted testing prioritization: the ToxCast project.

    PubMed

    Judson, Richard S; Houck, Keith A; Kavlock, Robert J; Knudsen, Thomas B; Martin, Matthew T; Mortensen, Holly M; Reif, David M; Rotroff, Daniel M; Shah, Imran; Richard, Ann M; Dix, David J

    2010-04-01

    Chemical toxicity testing is being transformed by advances in biology and computer modeling, concerns over animal use, and the thousands of environmental chemicals lacking toxicity data. The U.S. Environmental Protection Agency's ToxCast program aims to address these concerns by screening and prioritizing chemicals for potential human toxicity using in vitro assays and in silico approaches. This project aims to evaluate the use of in vitro assays for understanding the types of molecular and pathway perturbations caused by environmental chemicals and to build initial prioritization models of in vivo toxicity. We tested 309 mostly pesticide active chemicals in 467 assays across nine technologies, including high-throughput cell-free assays and cell-based assays, in multiple human primary cells and cell lines plus rat primary hepatocytes. Both individual and composite scores for effects on genes and pathways were analyzed. Chemicals displayed a broad spectrum of activity at the molecular and pathway levels. We saw many expected interactions, including endocrine and xenobiotic metabolism enzyme activity. Chemicals ranged in promiscuity across pathways, from no activity to affecting dozens of pathways. We found a statistically significant inverse association between the number of pathways perturbed by a chemical at low in vitro concentrations and the lowest in vivo dose at which a chemical causes toxicity. We also found associations between a small set of in vitro assays and rodent liver lesion formation. This approach promises to provide meaningful data on the thousands of untested environmental chemicals and to guide targeted testing of environmental contaminants.

  20. Long Non-Coding RNA (LncRNA) HOXA11-AS Promotes Breast Cancer Invasion and Metastasis by Regulating Epithelial-Mesenchymal Transition

    PubMed Central

    Li, Wenlei; Jia, Guotao; Qu, Yanwen; Du, Qian; Liu, Baoguo; Liu, Bin

    2017-01-01

    Background To detect the expression of lncRNA HOXA11-AS and its biological effect in breast cancer. Material/Methods In this study, fluorescent quantitative real-time PCR (qRT-PCR), MTT assay and clone formation assay, flow cytometry, Transwell assay and wound healing assay, immunofluorescence, and Western blot analysis were conducted to detect the expression of lncRNA HOXA11-AS, cell proliferation activity, cell apoptosis rate and cell cycle distribution, the changes of cell invasion and metastasis capacity, and the expressions of molecular markers of epithelial-mesenchymal transition (EMT), respectively. Additionally, a nude mouse metastatic tumor model was established to study the influence of lncRNA HOXA11-AS on invasion and metastasis capacity of breast cancer cells. Results The qRT-PCR experiment results showed that HOXA11-AS expression in breast cancer tissue of 50 patients was relatively higher than that in tissue adjacent to cancer. MTT assay suggested that tumor cell proliferation capacity was suppressed followed by the knockdown of lncRNA HOXA11-AS expression in MDA-MB-231 and MCF-7 cells; flow cytometry results demonstrated that interfering in lncRNA HOXA11-AS could induce tumor cell apoptosis and promote cell cycle progression to be arrested in G1/G0 stage; experiments in vivo/vitro manifested that interfering in lncRNA HOXA11-AS could inhibit tumor cell invasion and migration capacity by affecting the expressions of EMT-related molecular markers (E-cadherin, N-cadherin, Vimentin). Conclusions High expression of lncRNA HOXA11-AS promotes breast cancer invasion and metastasis by affecting EMT, and interfering in lncRAN HOXA11-AS expression provides a theoretical basis and important molecular target for inhibiting the distant metastasis of breast cancer in clinical practice. PMID:28701685

  1. Development of microLIPS (Luciferase Immunoprecipitation Systems): a novel microfluidic assay for rapid serum antibody detection

    NASA Astrophysics Data System (ADS)

    Chandrangsu, Matt; Burbelo, Peter D.; Iadarola, Michael J.; Smith, Paul D.; Morgan, Nicole Y.

    2012-06-01

    There is considerable interest in the development of rapid, point-of-care antibody detection for the diagnosis of infectious and auto-immune diseases. In this paper, we present work on the development of a self-contained microfluidic format for the Luciferase Immunoprecipitation Systems (LIPS) assay. Whereas the majority of immunoassays for antigen-specific antibodies employ either bacteria- or yeast-expressed proteins and require the use of secondary antibodies, the LIPS technique uses a fusion protein comprised of a Renilla luciferase reporter and the antigen of interest produced via mammalian cell culture, ensuring the addition of mammalian post-translational modifications. Patient serum is mixed with the fusion protein and passed over immobilized Protein A/G; after washing, the only remaining luciferase-tagged antigens are those retained by specific antibodies. These can be quantitatively measured using chemiluminescence upon the introduction of coelenterazine. The assay has been successfully employed for a wide variety of diseases in a microwell format. We report on a recent demonstration of rapid HSV-2 diagnosis with the LIPS assay in a microfluidic format, using one microliter of serum and obtaining results in under ten minutes. We will also discuss recent progress on two fronts, both aimed at the deployment of this technology in the field: first, simplifying assay operation through the automation of flow control using power-free means; and second, efforts to increase signal levels, primarily through strategies to increase antibody binding capacity, in order to move towards portable battery powered electronics.

  2. Targeting Phosphatidylinositol 4-Kinase IIIα for Radiosensitization: A Potential Model of Drug Repositioning Using an Anti-Hepatitis C Viral Agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Jeanny; Kim, Dan Hyo; Park, Ji Min

    Purpose: To investigate which isotype of phosphatidylinositol 4-kinase (PI4K) may affect radiosensitivity and examine whether anti–hepatitis C viral (HCV) agents, some of which have been shown to inhibit PI4K IIIα activity, could be repositioned as a radiosensitizer in human cancer cells. Methods and Materials: U251, BT474, and HepG2 cell lines and normal human astrocyte were used. Ribonucleic acid interference, clonogenic assays, Western blotting, immunofluorescence, annexin V assay, lysotracker staining, and β-galactosidase assay were performed. Results: Of the 4 PI4K isotypes, specific inhibition of IIIα increased radiosensitivity. For pharmacologic inhibition of PI4K IIIα, we screened 9 anti-HCV agents by half-maximal inhibitorymore » concentration assay. Simeprevir was selected, and its inhibition of PI4K IIIα activity was confirmed. Combination of simeprevir treatment and radiation significantly attenuated expression of phospho-phospho-PKC and phospho-Akt and increased radiation-induced cell death in tested cell lines. Pretreatment with simeprevir prolonged γH2AX foci formation and down-regulation of phospho-DNA-PKcs, indicating impairment of nonhomologous end-joining repair. Cells pretreated with simeprevir exhibited mixed modes of cell death, including apoptosis and autophagy. Conclusion: These data demonstrate that targeting PI4K IIIα using an anti-HCV agent is a viable approach to enhance the therapeutic efficacy of radiation therapy in various human cancers, such as glioma, breast, and hepatocellular carcinoma.« less

  3. Platelet-free shear flow assay facilitates analysis of shear-dependent functions of VWF and ADAMTS13.

    PubMed

    Kraus, Emma; Kraus, Kristina; Obser, Tobias; Oyen, Florian; Klemm, Ulrike; Schneppenheim, Reinhard; Brehm, Maria A

    2014-12-01

    The multimeric form of von Willebrand factor (VWF), is the largest soluble protein in mammals and exhibits a multidomain structure resulting in multiple functions. Upon agonist stimulation endothelial cells secrete VWF multimers from Weibel-Palade bodies into the blood stream where VWF plays an essential role in platelet-dependent primary hemostasis. Elongation of VWF strings on the cells' surface leads to accessibility of VWF binding sites for proteins, such as platelet membrane glycoprotein Ib. The prothrombotic strings are size-regulated by the metalloprotease ADAMTS13 by shear force-activated proteolytic cleavage. VWF string formation was induced by histamine stimulation of HUVEC cells under unidirectional shear flow and VWF strings were detected employing the VWF binding peptide of platelet glycoprotein Ib coupled to latex beads. VWF strings were then used as substrate for kinetic studies of recombinant and plasma ADAMTS13. To investigate specific aspects of the shear-dependent functions of VWF and ADAMTS13, we developed a shear flow assay that allows observation of VWF string formation and their degradation by ADAMTS13 without the need for isolated platelets. Our assay specifically detects VWF strings, can be coupled with fluorescent applications and allows semi-automated, quantitative assessment of recombinant and plasma ADAMTS13 activity. Our assay may serve as a valuable research tool to investigate the biochemical characteristics of VWF and ADAMTS13 under shear flow and could complement diagnostics of von Willebrand Disease and Thrombotic Thrombocytopenic Purpura as it allows detection of shear flow-dependent dysfunction of VWD-associated VWF mutants as well as TTP-associated ADAMTS13 mutants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Leaf extracts from Moricandia arvensis promote antiproliferation of human cancer cells, induce apoptosis, and enhance antioxidant activity.

    PubMed

    Skandrani, Ines; Boubaker, Jihed; Bhouri, Wissem; Limem, Ilef; Kilani, Soumaya; Ben Sghaier, Mohamed; Neffati, Aicha; Bouhlel, Ines; Ghedira, Kamel; Chekir-Ghedira, Leila

    2010-01-01

    The in vitro antiproliferative, apoptotic, and antioxidant activities from leaf extracts of Moricandia arvensis, which are used in traditional cooking and medicines, were investigated. The MTT assay revealed that only TOF (total oligomer flavonoids), ethyl acetate (EA), chloroform (Chl), and petroleum ether (PE) extracts inhibited the proliferation of K562 cells. Apoptosis plays a very important role in the treatment of cancer by promoting the apoptosis of cancer cells and limiting the concurrent death of normal cells. Thus, the possible effects of M. arvensis extracts on the induction of apoptosis in human leukemic cells (K562 cells) were investigated. The electrophoretic analysis of DNA fragmentation confirms that TOF, Chl, PE, and EA extracts provoke DNA fragmentation. Using the lipid peroxidation inhibitory assay, the antioxidant capacity of M. arvensis extracts was evaluated by the ability of each extract to inhibit malondialdehyde formation. It was revealed that EA and TOF extracts are the most active in scavenging the hydroxyl radicals.

  5. Microfluidic Cell-based Assays in Stem Cell and Other Rare Cell Type Research

    DOE PAGES

    Wu, Meiye

    2015-03-23

    Microfluidics is a technology defined by the engineered precise manipulation of minute amount of liquids through channels with dimensions in the micron scale. Much of microfluidic devices used for biomedical purposes are produced in the form of so called “lab-on-a-chip” format, where multiple steps of conventional biochemical analyses such as staining, washing, and signal collection are miniaturized and integrated into chips fabricated from polymer or glass. Cell-based microfluidic lab-on-achip technology provides some obvious advantages: 1) drastically reduced sample and reagent requirement, and 2) separation and detection with improved sensitivity due to fluid properties at the microscale, i.e. laminar flow. Basedmore » on these two advantages, the obvious place where microfluidic cell assays will provide the most benefit is wherescientists must gather much information from precious little sample. Stem cells and other precious cell types such as circulating tumor cells (CTCs), and rare immune subsets are the perfect match for microfluidic multiplex assays. The recent demonstration that multiple cellular changes such as surface receptor activation, protein translocation, long and short RNA, and DNA changes can all be extracted from intact single cells paves the way to systems level understanding of cellular states during development or disease. Finally, with the ability to preserve cell integrity in a microfluidic device during multiplexed analysis, one also preserves the single cell resolution, where information regarding the cell-to-cell heterogeneity during differentiation or response to stimuli is vitally important.« less

  6. Erythropoietin in sickle cell disease: relation of erythropoietin levels to crisis and other complications.

    PubMed

    Haddy, T B

    1982-01-01

    Erythropoietin responsible for the hormonal regulation of red blood cell production. Its formation is largely controlled by the kidneys. A number of assay methods for erythropoietin are available. Asymptomatic patients with sickle cell disease have elevated erythropoietin levels, as expected with chronic hemolysis. When complicated by chronic renal failure, erythropoietin levels do not rise appropriately. Chronic infection has not been studied, but the erythropoietin response in acute infection does not seem to conform to a pattern. Aplastic crises are characterized by very high levels of erythropoietin, suggesting bone marrow suppression, but events that trigger the crises remain obscure. In vaso-occlusive crises, there is also some suggestion of mild and transient lack of bone marrow response. Patients with sickle cell disease, with their chronic high erythropoietin anemia and susceptibility to altered states, are uniquely suited for investigating the physiology of erythropoietin, especially under the constraints of present assay methods.

  7. Hematological measurements in rats flown on Spacelab shuttle, SL-3

    NASA Technical Reports Server (NTRS)

    Lange, R. D.; Andrews, R. B.; Gibson, L. A.; Congdon, C. C.; Wright, P.; Dunn, C. D.; Jones, J. B.

    1987-01-01

    Previous studies have shown that a decrease in red cell mass occurs in astronauts, and some studies indicate a leukocytosis occurs. A life science module housing young and mature rats was flown on shuttle mission Spacelab 3 (SL-3), and the results of hematology studies of flight and control rats are presented. Statistically significant increases in the hematocrit, red blood cell counts, and hemoglobin determinations, together with a mild neutrophilia and lymphopenia, were found in flight animals. No significant changes were found in bone marrow and spleen cell differentials or erythropoietin determinations. Clonal assays demonstrated an increased erythroid colony formation of flight animal bone marrow cells at erythropoietin doses of 0.02 and 1.0 U/ml but not 0.20 U/ml. These results agree with some but vary from other previously published studies. Erythropoietin assays and clonal studies were performed for the first time.

  8. miR-1182 inhibits growth and mediates the chemosensitivity of bladder cancer by targeting hTERT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Jun; Dai, Wenbin, E-mail: daiwenbin271@163.com; Song, Jianming

    2016-02-05

    microRNAs (miRNAs) have been demonstrated to contribute to tumor progression and metastasis and proposed to be key regulators of diverse biological processes. In this study, we report that miR-1182 is deregulated in bladder cancer tissues and cell lines. To characterize the role of miR-1182 in bladder cancer cells, we performed functional assays. The overexpression of miR-1182 significantly inhibits bladder cancer cell proliferation, colony formation, and invasion. Moreover, its up-regulation induced cell cycle arrest and apoptosis and mediated chemosensitivity to cisplatin in bladder cancer. Furthermore, a luciferase reporter assay and a rescue experiment indicated that miR-1182 directly targets hTERT by bindingmore » its 3′UTR. In conclusion, these results demonstrate that miR-1182 acts as a tumor suppressor and may be a potential biomarker for bladder cancer diagnosis and treatment.« less

  9. A carboxylated Zn-phthalocyanine inhibits fibril formation of Alzheimer's amyloid β peptide.

    PubMed

    Tabassum, Shatera; Sheikh, Abdullah M; Yano, Shozo; Ikeue, Takafumi; Handa, Makoto; Nagai, Atsushi

    2015-02-01

    Amyloid β (Aβ), a 39-42 amino acid peptide derived from amyloid precursor protein, is deposited as fibrils in Alzheimer's disease brains, and is considered to play a major role in the pathogenesis of the disease. We have investigated the effects of a water-soluble Zn-phthalocyanine, ZnPc(COONa)₈, a macrocyclic compound with near-infrared optical properties, on Aβ fibril formation in vitro. A thioflavin T fluorescence assay showed that ZnPc(COONa)₈ significantly inhibited Aβ fibril formation, increasing the lag time and dose-dependently decreasing the plateau level of fibril formation. Moreover, it destabilized pre-formed Aβ fibrils, resulting in an increase in low-molecular-weight species. After fibril formation in the presence of ZnPc(COONa)₈, immunoprecipitation of Aβ₁₋₄₂ using Aβ-specific antibody followed by near-infrared scanning demonstrated binding of ZnPc(COONa)₈ to Aβ₁₋₄₂. A study using the hydrophobic fluorescent probe 8-anilino-1-naphthalenesulfonic acid showed that ZnPc(COONa)8 decreased the hydrophobicity during Aβ₁₋₄₂ fibril formation. CD spectroscopy showed an increase in the α helix structure and a decrease in the β sheet structure of Aβ₁₋₄₀ in fibril-forming buffer containing ZnPc(COONa)₈. SDS/PAGE and a dot-blot immunoassay showed that ZnPc(COONa)₈ delayed the disappearance of low-molecular-weight species and the appearance of higher-molecular-weight oligomeric species of Aβ₁₋₄₂. A cell viability assay showed that ZnPc(COONa)₈ was not toxic to a neuronal cell line (A1), but instead protected A1 cells against Aβ₁₋₄₂-induced toxicity. Overall, our results indicate that ZnPc(COONa)₈ binds to Aβ and decreases the hydrophobicity, and this change is unfavorable for Aβ oligomerization and fibril formation. © 2014 FEBS.

  10. Progressive Chromatin Condensation and H3K9 Methylation Regulate the Differentiation of Embryonic and Hematopoietic Stem Cells

    DOE PAGES

    Ugarte, Fernando; Sousae, Rebekah; Cinquin, Bertrand; ...

    2015-10-17

    Epigenetic regulation serves as the basis for stem cell differentiation into distinct cell types, but it is unclear how global epigenetic changes are regulated during this process. Here, we tested the hypothesis that global chromatin organization affects the lineage potential of stem cells and that manipulation of chromatin dynamics influences stem cell function. Using nuclease sensitivity assays, we found a progressive decrease in chromatin digestion among pluripotent embryonic stem cells (ESCs), multipotent hematopoietic stem cells (HSCs), and mature hematopoietic cells. Quantitative high-resolution microscopy revealed that ESCs contain significantly more euchromatin than HSCs, with a further reduction in mature cells. Increasedmore » cellular maturation also led to heterochromatin localization to the nuclear periphery. Functionally, prevention of heterochromatin formation by inhibition of the histone methyltransferase G9A resulted in delayed HSC differentiation. Lastly, our results demonstrate global chromatin rearrangements during stem cell differentiation and that heterochromatin formation by H3K9 methylation regulates HSC differentiation.« less

  11. Progressive Chromatin Condensation and H3K9 Methylation Regulate the Differentiation of Embryonic and Hematopoietic Stem Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ugarte, Fernando; Sousae, Rebekah; Cinquin, Bertrand

    Epigenetic regulation serves as the basis for stem cell differentiation into distinct cell types, but it is unclear how global epigenetic changes are regulated during this process. Here, we tested the hypothesis that global chromatin organization affects the lineage potential of stem cells and that manipulation of chromatin dynamics influences stem cell function. Using nuclease sensitivity assays, we found a progressive decrease in chromatin digestion among pluripotent embryonic stem cells (ESCs), multipotent hematopoietic stem cells (HSCs), and mature hematopoietic cells. Quantitative high-resolution microscopy revealed that ESCs contain significantly more euchromatin than HSCs, with a further reduction in mature cells. Increasedmore » cellular maturation also led to heterochromatin localization to the nuclear periphery. Functionally, prevention of heterochromatin formation by inhibition of the histone methyltransferase G9A resulted in delayed HSC differentiation. Lastly, our results demonstrate global chromatin rearrangements during stem cell differentiation and that heterochromatin formation by H3K9 methylation regulates HSC differentiation.« less

  12. Manuka honey inhibits adhesion and invasion of medically important wound bacteria in vitro.

    PubMed

    Maddocks, Sarah Elizabeth; Jenkins, Rowena Eleri; Rowlands, Richard Samuel; Purdy, Kevin John; Cooper, Rose Agnes

    2013-12-01

    To characterize the effect of manuka honey on medically important wound bacteria in vitro, focusing on its antiadhesive properties. Crystal violet biofilm assays, fluorescent microscopy, protein adhesion assay and gentamicin protection assay were used to determine the impact of manuka honey on biofilm formation, human protein binding and adherence to/invasion into human keratinocytes. Manuka honey effectively disrupted and caused extensive cell death in biofilms of Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyogenes. Sublethal doses of manuka honey inhibited bacterial adhesion to the fibronectin, fibrinogen and collagen. Manuka honey impaired adhesion of laboratory and clinical isolates of S. aureus, P. aeruginosa and S. pyogenes to human keratinocytes in vitro, and inhibited invasion by S. pyogenes and homogeneous vancomycin intermediate S. aureus. Manuka honey can directly affect bacterial cells embedded in a biofilm and exhibits antiadhesive properties against three common wound pathogens.

  13. SIRT6 reduces macrophage foam cell formation by inducing autophagy and cholesterol efflux under ox-LDL condition.

    PubMed

    He, Jiangping; Zhang, Guangya; Pang, Qi; Yu, Cong; Xiong, Jie; Zhu, Jing; Chen, Fengling

    2017-05-01

    SIRT6 is a pivotal regulator of lipid metabolism. It is also closely connected to cardiovascular diseases, which are the main cause of death in diabetic patients. We observed a decrease in the expression of SIRT6 and key autophagy effectors (ATG5, LC3B, and LAMP1) in ox-LDL-induced foam cells, a special form of lipid-laden macrophages. In these cells, SIRT6 WT but not SIRT6 H133Y overexpression markedly reduced foam cell formation, as shown by Oil Red O staining, while inducing autophagy flux, as determined by both mRFP-GFP-LC3 labeling and transmission electron microscopy. Silencing the key autophagy initiation gene ATG5, reversed the autophagy-promoting effect of SIRT6 in ox-LDL-treated THP1 cells, as evidenced by an increase in foam cells. Cholesterol efflux assays indicated that SIRT6 overexpression in foam cells promoted cholesterol efflux, increased the levels of ABCA1 and ABCG1, and reduced miR-33 levels. By transfecting miR-33 into cells overexpressing SIRT6, we observed that reduced foam cell formation and autophagy flux induction were largely reversed. These data imply that SIRT6 plays an essential role in protecting against atherosclerosis by reducing foam cell formation through an autophagy-dependent pathway. © 2017 Federation of European Biochemical Societies.

  14. MULTI-SENSOR REPORTER CELL TECHNOLOGY TO ASSESS HAZARD INVOLVING ENDOCRINE SIGNALING PATHWAYS

    EPA Science Inventory

    Results will define an experimental approach that can be used in a high-throughput format to evaluate the response of hormone signaling pathways and networks to individual chemicals or mixtures. The assay also will have application across species and would significantly reduce...

  15. Novel smac mimetic APG-1387 elicits ovarian cancer cell killing through TNF-alpha, Ripoptosome and autophagy mediated cell death pathway.

    PubMed

    Li, Bao-Xia; Wang, Heng-Bang; Qiu, Miao-Zhen; Luo, Qiu-Yun; Yi, Han-Jie; Yan, Xiang-Lei; Pan, Wen-Tao; Yuan, Lu-Ping; Zhang, Yu-Xin; Xu, Jian-Hua; Zhang, Lin; Yang, Da-Jun

    2018-03-12

    Ovarian cancer is a deadly disease. Inhibitors of apoptosis proteins (IAPs) are key regulators of apoptosis and are frequently dysregulated in ovarian cancer. Overexpression of IAPs proteins has been correlated with tumorigenesis, treatment resistance and poor prognosis. Reinstalling functional cell death machinery by pharmacological inhibition of IAPs proteins may represent an attractive therapeutic strategy for treatment of ovarian cancer. CCK-8 and colony formation assay was performed to examine cytotoxic activity. Apoptosis was analyzed by fluorescence microscopy, flow cytometry and TUNEL assay. Elisa assay was used to determine TNFα protein. Caspase activity assay was used for caspase activation evaluation. Immunoprecipitation and siRNA interference were carried out for functional analysis. Western blotting analysis were carried out to test protein expression. Ovarian cancer cell xenograft nude mice model was used for in vivo efficacy evaluation. APG-1387 demonstrated potent inhibitory effect on ovarian cancer cell growth and clonogenic cell survival. APG-1387 induced RIP1- and TNFα-dependent apoptotic cell death in ovarian cancer through downregulation of IAPs proteins and induction of caspase-8/FADD/RIP1 complex, which drives caspase-8 activation. NF-κB signaling pathway was activated upon APG-1387 treatment and RIP1 contributed to NF-κB activation. APG-1387 induced cytoprotective autophagy while triggering apoptosis in ovarian cancer cells and inhibition of autophagy enhanced APG-1387-induced apoptotic cell death. APG-1387 exhibited potent antitumor activity against established human ovarian cancer xenografts. Our results demonstrate that APG-1387 targets IAPs proteins to potently elicit apoptotic cell death in vitro and in vivo, and provide mechanistic and applicable rationale for future clinical evaluation of APG-1387 in ovarian cancer.

  16. Effects of globularifolin on cell survival, nuclear factor-κB activity, neopterin production, tryptophan breakdown and free radicals in vitro.

    PubMed

    Sipahi, Hande; Becker, Kathrin; Gostner, Johanna M; Charehsaz, Mohammad; Kirmizibekmez, Hasan; Schennach, Harald; Aydin, Ahmet; Fuchs, Dietmar

    2014-01-01

    The potential effects of globularifolin, an acylated iridoid glucoside, on cell survival, inflammation markers and free radicals scavenging were investigated. Viability assay on human myelomomonocytic cell line THP-1 and human peripheral blood mononuclear cells (PBMC) using the Cell-Titer Blue assay proved that globularifolin had no toxic effect at the tested concentrations. Conversely, it is proportional to the dose globularifolin increased growth of THP-1 cells (p <0.01). On human PBMC, globularifolin at 6.25 and 12.5 μM concentrations showed a stimulatory effect, while at 12.5-200 μM it suppressed response of PBMC to stimulation with phytohemagglutinin (PHA). Globularifolin (50-200 μM) enhanced neopterin formation dose-dependently, whereas tryptophan breakdown was not influenced. At 50-200 μM in unstimulated PBMC in THP-1 cells, globularifolin induced a significant expression of nuclear factor-κB (NF-κB) as was quantified by Quanti-Blue assay. By contrast, in lipopolysaccharide (LPS)-stimulated cells, the higher concentrations of globularifolin suppressed NF-κB expression dose-dependently and a significant decrease was observed at 200 μM concentration. A positive correlation was found between increased neopterin and NF-κB activity (p <0.01). Similarly, a positive correlation was observed between neopterin levels in mitogen-induced cells and NF-κB activity in LPS-stimulated cells after treatment with globularifolin (p=0.001). The free radical scavenging capacity of globularifolin evaluated by Oxygen Radical Absorbance Capacity (ORAC) assay showed relative ORAC values of 0.36±0.05 μmol Trolox equivalent/μmol. All together, results show that natural antioxidant globularifolin might represent a potential immunomodulatory as well as proliferative agent, which deserves further in vitro and in vivo studies. © 2013.

  17. Rapid simultaneous determination of apoptosis, necrosis, and viability in sulfur mustard exposed HaCaT cell cultures.

    PubMed

    Heinrich, A; Balszuweit, F; Thiermann, H; Kehe, K

    2009-12-15

    Sulfur mustard (SM; bis(2-chloroethyl)sulphide; HD) is a blister inducing agent causing DNA damage and subsequently, cell death, mostly by apoptosis in basal keratinocytes. Despite intensive investigations on the cellular mechanism, there are, as of now, no causal therapeutics to prevent or antagonize SM-related damage to cells and tissues. In order to develop treatment strategies against vesication, it is important to distinguish apoptosis from necrosis in SM treated human keratinocytes. DNA fragmentation is a hallmark of apoptosis and regulated by a cascade of enzymes (endonucleases, DNase I, NUC 18), which finally cut the chromatin into specific formations of 180-200 base pairs, the nucleosomes. A feasible way to monitor apoptosis is the detection of nucleosomes by means of the Cell Death Detection ELISA(plus) (CDDE). In contrast, during necrosis DNA fragmentation is at random and delivers larger fragments, which therefore are significantly less in number and predominantly occur in cell culture supernatant. To monitor necrosis, we measured the release of intracellular adenylate kinase (AK) into cell culture supernatant by means of the ToxiLight Bioluminescence Assay (TL). With combination of the Cell Death Detection ELISA(plus) and the ToxiLight Bioluminescence Assay, we acquired more comprehensive information on cell survival and mechanisms of cell death, following an SM exposure. To validate the assay we tested common apoptosis- and necrosis-inducing agents like SM 300 microM for 30 min, Lewisite (L) 60 microM for 5 min and Triton X-100 0.1%. The results show that it is possible to differentiate between the two modes of cell death and to quantify their extent. This assay is highly effective in quantifying apoptosis and necrosis caused by cytotoxic agents and in estimating protective effects of potential active pharmaceutical ingredients.

  18. Wnt Responsive Lgr5-Expressing Stem Cells Are Hair Cell Progenitors in the Cochlea

    PubMed Central

    Shi, Fuxin; Kempfle, Judith; Edge, Albert S. B.

    2012-01-01

    Auditory hair cells are surrounded on their basolateral aspects by supporting cells, and these two cell types together constitute the sensory epithelium of the organ of Corti, which is the hearing apparatus of the ear. We show here that Lgr5, a marker for adult stem cells, was expressed in a subset of supporting cells in the newborn and adult murine cochlea. Lgr5-expressing supporting cells, sorted by flow cytometry and cultured in a single cell suspension, as compared to unsorted cells, displayed an enhanced capacity for self-renewing neurosphere formation in response to Wnt and were converted to hair cells at a higher (>10-fold) rate. The greater differentiation of hair cell in the neurosphere assay showed that Lgr5-positive cells had the capacity to act as cochlear progenitor cells, and lineage tracing confirmed that Lgr5-expressing cells accounted for the cells that formed neurospheres and differentiated to hair cells. The responsiveness to Wnt of cells with a capacity for division and sensory cell formation suggests a potential route to new hair cell generation in the adult cochlea. PMID:22787049

  19. Astaxanthin induces angiogenesis through Wnt/β-catenin signaling pathway.

    PubMed

    Xu, Yangyang; Zhang, Jie; Jiang, Wanglin; Zhang, Shuping

    2015-07-15

    In the present study, we sought to elucidate whether astaxanthin contributes to induce angiogenesis and its mechanisms. To this end, we examined the role of astaxanthin on human brain microvascular endothelial cell line (HBMEC) and rat aortic smooth muscle cell (RASMC) proliferation, invasion and tube formation in vitro. For study of mechanism, the Wnt/β-catenin signaling pathway inhibitor IWR-1-endo was used. HMBECs and RASMCs proliferation were tested by cell counting. Scratch adhesion test was used to assess the ability of invasion. A matrigel tube formation assay was performed to test capillary tube formation ability. The Wnt/β-catenin pathway activation in HMBECs and RASMCs were tested by Western blot. Our data suggested that astaxanthin induces angiogenesis by increasing proliferation, invasion and tube formation in vitro. Wnt and β-catenin expression were increased by astaxanthin and counteracted by IWR-1-endo in HMBECs and RASMCs. Tube formation was increased by astaxanthin and counteracted by IWR-1-endo. It may be suggested that astaxanthin induces angiogenesis in vitro via a programmed Wnt/β-catenin signaling pathway. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. Lysosomal enzyme cathepsin B enhances the aggregate forming activity of exogenous α-synuclein fibrils.

    PubMed

    Tsujimura, Atsushi; Taguchi, Katsutoshi; Watanabe, Yoshihisa; Tatebe, Harutsugu; Tokuda, Takahiko; Mizuno, Toshiki; Tanaka, Masaki

    2015-01-01

    The formation of intracellular aggregates containing α-synuclein (α-Syn) is one of the key steps in the progression of Parkinson's disease and dementia with Lewy bodies. Recently, it was reported that pathological α-Syn fibrils can undergo cell-to-cell transmission and form Lewy body-like aggregates. However, little is known about how they form α-Syn aggregates from fibril seeds. Here, we developed an assay to study the process of aggregate formation using fluorescent protein-tagged α-Syn-expressing cells and examined the aggregate forming activity of exogenous α-Syn fibrils. α-Syn fibril-induced formation of intracellular aggregates was suppressed by a cathepsin B specific inhibitor, but not by a cathepsin D inhibitor. α-Syn fibrils pretreated with cathepsin B in vitro enhanced seeding activity in cells. Knockdown of cathepsin B also reduced fibril-induced aggregate formation. Moreover, using LAMP-1 immunocytochemistry and live-cell imaging, we observed that these aggregates initially occurred in the lysosome. They then rapidly grew larger and moved outside the boundary of the lysosome within one day. These results suggest that the lysosomal protease cathepsin B is involved in triggering intracellular aggregate formation by α-Syn fibrils. Copyright © 2015. Published by Elsevier Inc.

  1. Riboflavin Depletion Promotes Tumorigenesis in HEK293T and NIH3T3 Cells by Sustaining Cell Proliferation and Regulating Cell Cycle-Related Gene Transcription.

    PubMed

    Long, Lin; He, Jian-Zhong; Chen, Ye; Xu, Xiu-E; Liao, Lian-Di; Xie, Yang-Min; Li, En-Min; Xu, Li-Yan

    2018-05-07

    Riboflavin is an essential component of the human diet and its derivative cofactors play an established role in oxidative metabolism. Riboflavin deficiency has been linked with various human diseases. The objective of this study was to identify whether riboflavin depletion promotes tumorigenesis. HEK293T and NIH3T3 cells were cultured in riboflavin-deficient or riboflavin-sufficient medium and passaged every 48 h. Cells were collected every 5 generations and plate colony formation assays were performed to observe cell proliferation. Subcutaneous tumorigenicity assays in NU/NU mice were used to observe tumorigenicity of riboflavin-depleted HEK293T cells. Mechanistically, gene expression profiling and gene ontology analysis were used to identify abnormally expressed genes induced by riboflavin depletion. Western blot analyses, cell cycle analyses, and chromatin immunoprecipitation were used to validate the expression of cell cycle-related genes. Plate colony formation of NIH3T3 and HEK293T cell lines was enhanced >2-fold when cultured in riboflavin-deficient medium for 10-20 generations. Moreover, we observed enhanced subcutaneous tumorigenicity in NU/NU mice following injection of riboflavin-depleted compared with normal HEK293T cells (55.6% compared with 0.0% tumor formation, respectively). Gene expression profiling and gene ontology analysis revealed that riboflavin depletion induced the expression of cell cycle-related genes. Validation experiments also found that riboflavin depletion decreased p21 and p27 protein levels by ∼20%, and increased cell cycle-related and expression-elevated protein in tumor (CREPT) protein expression >2-fold, resulting in cyclin D1 and CDK4 levels being increased ∼1.5-fold, and cell cycle acceleration. We also observed that riboflavin depletion decreased intracellular riboflavin levels by 20% and upregulated expression of riboflavin transporter genes, particularly SLC52A3, and that the changes in CREPT and SLC52A3 correlated with specific epigenetic changes in their promoters in riboflavin-depleted HEK293T cells. Riboflavin depletion contributes to HEK293T and NIH3T3 cell tumorigenesis and may be a risk factor for tumor development.

  2. SHCBP1 is over-expressed in breast cancer and is important in the proliferation and apoptosis of the human malignant breast cancer cell line.

    PubMed

    Feng, Wen; Li, Hong-Chang; Xu, Ke; Chen, Ya-Feng; Pan, Li-Yun; Mei, Yi; Cai, Han; Jiang, Yi-Ming; Chen, Teng; Feng, Dian-Xu

    2016-08-01

    SHC SH2-binding protein 1, a member of Src homolog and collagen homolog (Shc) family, has been recently identified in different contexts in unbiased screening assays. It has been reported to be over-expressed in several malignant cancers. Immunohistochemistry of SHCBP1 on 128 breast cancer tissues and adjacent normal tissues were used to evaluate the prognostic significance of SHCBP1. Survival analyses were performed by Kaplan-Meier method. CRISPR/CAS9 method was used to knockout SHCBP1 expression. CRISPR/CAS9 technology was used to knockout SHCBP1 in 2 breast cancer cell lines. MTT assay, BrdU assay, colony formation assay, cell cycle assay and apoptosis analysis in MCF-7 and MDA-MB-231 cell lines were carried out to evaluate the effects of SHCBP1 on breast cancer in vitro. Immunohistochemical analysis revealed SHCBP1 was significantly up-regulated in breast cancer tissues compared with adjacent normal tissues (82 of 128, 64%). Over-expressed SHCBP1 was correlated with advanced clinical stage and poorer survival. Ablation of SHCBP1 inhibited the proliferation in vitro. SHCBP1 knockout increased cyclin-dependent kinase inhibitor p21, and decreased the Cyclin B1 and CDK1. Our study suggests SHCBP1 is dysregulated expressed in breast cancer and plays a critical role in cancer progression, which can be a potential prognosis predictor of breast cancer. Copyright © 2016. Published by Elsevier B.V.

  3. Single cell multiplexed assay for proteolytic activity using droplet microfluidics.

    PubMed

    Ng, Ee Xien; Miller, Miles A; Jing, Tengyang; Chen, Chia-Hung

    2016-07-15

    Cellular enzymes interact in a post-translationally regulated fashion to govern individual cell behaviors, yet current platform technologies are limited in their ability to measure multiple enzyme activities simultaneously in single cells. Here, we developed multi-color Förster resonance energy transfer (FRET)-based enzymatic substrates and use them in a microfluidics platform to simultaneously measure multiple specific protease activities from water-in-oil droplets that contain single cells. By integrating the microfluidic platform with a computational analytical method, Proteolytic Activity Matrix Analysis (PrAMA), we are able to infer six different protease activity signals from individual cells in a high throughput manner (~100 cells/experimental run). We characterized protease activity profiles at single cell resolution for several cancer cell lines including breast cancer cell line MDA-MB-231, lung cancer cell line PC-9, and leukemia cell line K-562 using both live-cell and in-situ cell lysis assay formats, with special focus on metalloproteinases important in metastasis. The ability to measure multiple proteases secreted from or expressed in individual cells allows us to characterize cell heterogeneity and has potential applications including systems biology, pharmacology, cancer diagnosis and stem cell biology. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Development and application of test methods for the detection of dietary constituents which protect against heterocyclic aromatic amines.

    PubMed

    Kassie, Fekadu; Sundermann, Volker Mersch; Edenharder, R; Platt, Karl L; Darroudi, F; Lhoste, Evelyne; Humbolt, C; Muckel, Eva; Uhl, Maria; Kundi, Michael; Knasmüller, Siegfried

    2003-01-01

    This article describes the development and use of assay models in vitro (genotoxicity assay with genetically engineered cells and human hepatoma (HepG2) cells) and in vivo (genotoxicity and short-term carcinogenicity assays with rodents) for the identification of dietary constituents which protect against the genotoxic and carcinogenic effects of heterocyclic aromatic amines (HAs). The use of genetically engineered cells expressing enzymes responsible for the bioactivation of HAs enables the detection of dietary factors that inhibit the metabolic activation of HAs. Human derived hepatoma (HepG2) cells are sensitive towards HAs and express several enzymes [glutathione S-transferase (GST), N-acetyltransferase (NAT), sulfotransferase (SULT), UDP-glucuronosyltransferase (UDPGT), and cytochrome P450 isozymes] involved in the biotransformation of HAs. Hence these cells may reflect protective effects, which are due to inhibition of activating enzymes and/or induction of detoxifying enzymes. The SCGE assay with rodent cells has the advantage that HA-induced DNA damage can be monitored in a variety of organs which are targets for tumor induction by HAs. ACF and GST-P(+) foci constitute preneoplastic lesions that may develop into tumors. Therefore, agents that prevent the formation of these lesions may be anticarcinogens. The foci yield and the sensitivity of the system could be substantially increased by using a modified diet. The predictive value of the different in vitro and in vivo assays described here for the identification of HA-protective dietary substances relevant for humans is probably better than that of conventional in vitro test methods with enzyme homogenates. Nevertheless, the new test methods are not without shortcomings and these issues are critically discussed in the present article. Copyright 2002 Elsevier Science B.V.

  5. Development of a cell-based high throughput luciferase enzyme fragment complementation assay to identify nuclear-factor-e2-related transcription factor 2 activators.

    PubMed

    Xie, Wensheng; Pao, Christina; Graham, Taylor; Dul, Ed; Lu, Quinn; Sweitzer, Thomas D; Ames, Robert S; Li, Hu

    2012-12-01

    Nuclear-factor-E2-related transcription factor 2 (Nrf2) regulates a large panel of Phase II genes and plays an important role in cell survival. Nrf2 activation has been shown as preventing cigarette smoke-induced alveolar enlargement in mice. Therefore, activation of the Nrf2 protein by small-molecule activators represents an attractive therapeutic strategy that is used for chronic obstructive pulmonary disease. In this article, we describe a cell-based luciferase enzyme fragment complementation assay that identifies Nrf2 activators. This assay is based on the interaction of Nrf2 with its nuclear partner MafK or runt-related transcription factor 2 (RunX2) and is dependent on the reconstitution of a "split" luciferase. Firefly luciferase is split into two fragments, which are genetically fused to Nrf2 and MafK or RunX2, respectively. BacMam technology was used to deliver the fusion constructs into cells for expression of the tagged proteins. When the BacMam-transduced cells were treated with Nrf2 activators, the Nrf2 protein was stabilized and translocated into the nucleus where it interacted with MafK or RunX2. The interaction of Nrf2 and MafK or RunX2 brought together the two luciferase fragments that form an active luciferase. The assay was developed in a 384-well format and was optimized by titrating the BacMam concentration, transduction time, cell density, and fetal bovine serum concentration. It was further validated with known Nrf2 activators. Our data show that this assay is robust, sensitive, and amenable to high throughput screening of a large compound collection for the identification of novel Nrf2 activators.

  6. CPTAC Develops Fit-for-Purpose Multiplex Immuno-MRM Assay for Profiling the DNA Damage Response Pathway | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Ionizing radiation (IR) is a commonly employed cancer treatment that kills cancer cells by damaging their DNA. While the DNA damage response (DDR) pathway may be key to determining tumor responses, radiochemical damage due to IR can target the patients’ healthy dividing cells, leading to the formation of secondary hematologic and solid tumors after DNA-damaging therapy.

  7. Inorganic fullerene-like molybdenum selenide with good biocompatibility synthesized by laser ablation in liquids

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoju; Tian, Xiumei; Chen, Tongming; Zeng, Ao; Yang, Guowei

    2018-07-01

    The fabrication of inorganic fullerene-like nanoparticles (IFNPs) is an attractive idea due to their unique structures and various potential applications. To date, IFNPs have been made from numerous compounds with layered two-dimensional structures, based on various synthetic methods. Here we have demonstrated for the first time that inorganic fullerene-like molybdenum selenide nanoparticles (MoSe2 IFNPs) can be synthesized by laser ablating a molybdenum selenide target in 30 vol % ethanol/water mixture at ambient temperature and pressure. The formation mechanism was proposed to elucidate the production of MoSe2 IFNPs in the process of laser ablation in liquids (LAL). The appropriate solvent facilitates the condensation of the plasma plume created by LAL to planar MoSe2. Then, laser-induced high temperature and high pressure lead to the formation of a vacancy in the planar MoSe2, causing the generation of nucleation and growth of the MoSe2 IFNPs. In addition, a CCK-8 (cell counting kit-8) assay and a cell viability assay were performed to examine the cytotoxic behavior and the effect on cell viability of MoSe2 IFNPs. The results show that MoSe2 IFNPs are reasonably nontoxic and biocompatible with the given cells, showing they have significant potential in biomedical applications.

  8. Inorganic fullerene-like molybdenum selenide with good biocompatibility synthesized by laser ablation in liquids.

    PubMed

    Wu, Xiaoju; Tian, Xiumei; Chen, Tongming; Zeng, Ao; Yang, Guowei

    2018-07-20

    The fabrication of inorganic fullerene-like nanoparticles (IFNPs) is an attractive idea due to their unique structures and various potential applications. To date, IFNPs have been made from numerous compounds with layered two-dimensional structures, based on various synthetic methods. Here we have demonstrated for the first time that inorganic fullerene-like molybdenum selenide nanoparticles (MoSe 2 IFNPs) can be synthesized by laser ablating a molybdenum selenide target in 30 vol % ethanol/water mixture at ambient temperature and pressure. The formation mechanism was proposed to elucidate the production of MoSe 2 IFNPs in the process of laser ablation in liquids (LAL). The appropriate solvent facilitates the condensation of the plasma plume created by LAL to planar MoSe 2 . Then, laser-induced high temperature and high pressure lead to the formation of a vacancy in the planar MoSe 2 , causing the generation of nucleation and growth of the MoSe 2 IFNPs. In addition, a CCK-8 (cell counting kit-8) assay and a cell viability assay were performed to examine the cytotoxic behavior and the effect on cell viability of MoSe 2 IFNPs. The results show that MoSe 2 IFNPs are reasonably nontoxic and biocompatible with the given cells, showing they have significant potential in biomedical applications.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Ming-Hung; School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; Haung, Chiung-Fang

    In this study, neodymium-doped yttrium orthovanadate (Nd:YVO{sub 4}) as a laser source with different scanning speeds was used on biomedical Ti surface. The microstructural and biological properties of laser-modified samples were investigated by means of optical microscope, electron microscope, X-ray diffraction, surface roughness instrument, contact angle and cell cytotoxicity assay. After laser modification, the rough volcano-like recast layer with micro-/nanoporous structure and wave-like recast layer with nanoporous structure were generated on the surfaces of laser-modified samples, respectively. It was also found out that, an α → (α + rutile-TiO{sub 2}) phase transition occurred on the recast layers of laser-modified samples.more » The Ti surface becomes hydrophilic at a high speed laser scanning. Moreover, the cell cytotoxicity assay demonstrated that laser-modified samples did not influence the cell adhesion and proliferation behaviors of osteoblast (MG-63) cell. The laser with 50 mm/s scanning speed induced formation of rough volcano-like recast layer accompanied with micro-/nanoporous structure, which can promote cell adhesion and proliferation of MG-63 cell on Ti surface. The results indicated that the laser treatment was a potential technology to enhance the biocompatibility for titanium. - Highlights: • Laser induced the formation of recast layer with micro-/nanoporous structure on Ti. • An α → (α + rutile-TiO{sub 2}) phase transition was observed within the recast layer. • The Ti surface becomes hydrophilic at a high speed laser scanning. • Laser-modified samples exhibit good biocompatibility to osteoblast (MG-63) cell.« less

  10. Liposome-based delivery of a boron-containing cholesteryl ester for high-LET particle-induced damage of prostate cancer cells: a boron neutron capture therapy study.

    PubMed

    Gifford, Ian; Vreeland, Wyatt; Grdanovska, Slavica; Burgett, Eric; Kalinich, John; Vergara, Vernieda; Wang, C-K Chris; Maimon, Eric; Poster, Dianne; Al-Sheikhly, Mohamad

    2014-06-01

    The efficacy of a boron-containing cholesteryl ester compound (BCH) as a boron neutron capture therapy (BNCT) agent for the targeted irradiation of PC-3 human prostate cancer cells was examined. Liposome-based delivery of BCH was quantified with inductively coupled plasma-mass spectrometry (ICP-MS) and high-performance liquid chromatography (HPLC). Cytotoxicity of the BCH-containing liposomes was evaluated with neutral red, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS), and lactate dehydrogenase assays. Colony formation assays were utilized to evaluate the decrease in cell survival due to high-linear energy transfer (LET) particles resulting from (10)B thermal neutron capture. BCH delivery by means of encapsulation in a lipid bilayer resulted in a boron uptake of 35.2 ± 4.3 μg/10(9) cells, with minimal cytotoxic effects. PC-3 cells treated with BCH and exposed to a 9.4 × 10(11) n/cm(2) thermal neutron fluence yielded a 20-25% decrease in clonogenic capacity. The decreased survival is attributed to the generation of high-LET α particles and (7)Li nuclei that deposit energy in densely ionizing radiation tracks. Liposome-based delivery of BCH is capable of introducing sufficient boron to PC-3 cells for BNCT. High-LET α particles and (7)Li nuclei generated from (10)B thermal neutron capture significantly decrease colony formation ability in the targeted PC-3 cells.

  11. Function of Protein Phosphatase 2A in Control of Proliferation: Isolation and Analysis of Dominant-Defective Mutants

    DTIC Science & Technology

    1998-06-01

    the Ca gene. In the case of pWZLneo, translation of Ca and the neomycin phosphotransferase (Neo) protein are coupled by an IRES site. In the case of...expression of both the hygromycin resistance (Hyg) and PP2A-C cassettes. In the colony formation assay, cells infected with the retroviral construct are...than hygromycin in selecting for cells expressing high levels of drug resistance (Hanson and Sedivy, 1995). Cells expressing a relatively low level of

  12. A novel genotoxic aspect of thiabendazole as a photomutagen in bacteria and cultured human cells.

    PubMed

    Watanabe-Akanuma, Mie; Ohta, Toshihiro; Sasaki, Yu F

    2005-09-15

    Thiabendazole (TBZ) is a post-harvest fungicide commonly used on imported citrus fruits. We recently found that TBZ showed photomutagenicity with UVA-irradiation in the Ames test using plate incorporation method. In the present study, potential of DNA-damaging activity, mutagenicity, and clastogenicity were investigated by short pulse treatment for 10 min with TBZ (50-400 microg/ml) and UVA-irradiation (320-400 nm, 250 microW/cm2) in bacterial and human cells. UVA-irradiated TBZ caused DNA damage in Escherichia coli and human lymphoblastoid WTK1 cells assayed, respectively, by the umu-test and the single cell gel electrophoresis (comet) assay. In a modified Ames test using Salmonella typhimurium and E. coli, strong induction of -1 frameshift mutations as well as base-substitution mutations were detected. TBZ at 50-100 microg/ml with UVA-irradiation significantly induced micronuclei in WTK1 cells in the in vitro cytochalasin-B micronucleus assay. Pulse treatment for 10 min with TBZ alone did not show any genotoxicity. Although TBZ is a spindle poison that induces aneuploidy, we hypothesize that the photogenotoxicity of TBZ in the present study was produced by a different mechanism, probably by DNA adduct formation. We concluded that UVA-activated TBZ is genotoxic in bacterial and human cells in vitro.

  13. Development of leafhopper cell culture to trace the early infection process of a nucleorhabdovirus, rice yellow stunt virus, in insect vector cells.

    PubMed

    Wang, Haitao; Wang, Juan; Xie, Yunjie; Fu, Zhijun; Wei, Taiyun; Zhang, Xiao-Feng

    2018-04-20

    In China, the rice pathogen Rice yellow stunt virus (RYSV), a member of the genus Nucleorhabdovirus in the family Rhabdoviridae, was a severe threat to rice production during the1960s and1970s. Fundamental aspects of the biology of this virus such as protein localization and formation of the RYSV viroplasm during infection of insect vector cells are largely unexplored. The specific role(s) of the structural proteins nucleoprotein (N) and phosphoprotein (P) in the assembly of the viroplasm during RYSV infection in insect vector is also unclear. In present study, we used continuous leafhopper cell culture, immunocytochemical techniques, and transmission electron microscopy to investigate the subcellular distributions of N and P during RYSV infection. Both GST pull-down assay and yeast two-hybrid assay were used to assess the in vitro interaction of N and P. The dsRNA interference assay was performed to study the functional roles of N and P in the assembly of RYSV viroplasm. Here we demonstrated that N and P colocalized in the nucleus of RYSV-infected Nephotettix cincticeps cell and formed viroplasm-like structures (VpLSs). The transiently expressed N and P are sufficient to form VpLSs in the Sf9 cells. In addition, the interactions of N/P, N/N and P/P were confirmed in vitro. More interestingly, the accumulation of RYSV was significantly reduced when the transcription of N gene or P gene was knocked down by dsRNA treatment. In summary, our results suggest that N and P are the main viral factors responsible for the formation of viroplasm in RYSV-infected insect cells. Early during RYSV infection in the insect vector, N and P interacted with each other in the nucleus to form viroplasm-like structures, which are essential for the infection of RYSV.

  14. ER stress inducer tunicamycin suppresses the self-renewal of glioma-initiating cell partly through inhibiting Sox2 translation.

    PubMed

    Xing, Yang; Ge, Yuqing; Liu, Chanjuan; Zhang, Xiaobiao; Jiang, Jianhai; Wei, Yuanyan

    2016-06-14

    Glioma-initiating cells possess tumor-initiating potential and are relatively resistant to conventional chemotherapy and irradiation. Therefore, their elimination is an essential factor for the development of efficient therapy. Here, we report that endoplasmic reticulum (ER) stress inducer tunicamycin inhibits glioma-initiating cell self-renewal as determined by neurosphere formation assay. Moreover, tunicamycin decreases the efficiency of glioma-initiating cell to initiate tumor formation. Although tunicamycin induces glioma-initiating cell apoptosis, apoptosis inhibitor z-VAD-fmk only partly abrogates the reduction in glioma-initiating cell self-renewal induced by tunicamycin. Indeed, tunicamycin reduces the expression of self-renewal regulator Sox2 at translation level. Overexpression of Sox2 obviously abrogates the reduction in glioma-initiating cell self-renewal induced by tunicamycin. Taken together, tunicamycin suppresses the self-renewal and tumorigenic potential of glioma-initiating cell partly through reducing Sox2 translation. This finding provides a cue to potential effective treatment of glioblastoma through controlling stem cells.

  15. Effects of reactive oxygen species on sperm function.

    PubMed

    Guthrie, H D; Welch, G R

    2012-11-01

    Reactive oxygen species (ROS) formation and membrane lipid peroxidation have been recognized as problems for sperm survival and fertility. The precise roles and detection of superoxide (SO), hydrogen peroxide (HP), and membrane lipid peroxidation have been problematic, because of the low specificity and sensitivity of the established chemiluminescence assay technologies. We developed flow cytometric assays to measure SO, HP, membrane lipid peroxidation, and inner mitochondrial transmembrane potential in boar sperm. These methods were sufficiently sensitive to permit detection of early changes in ROS formation in sperm cells that were still viable. Basal ROS formation and membrane lipid peroxidation in the absence of ROS generators were low in viable sperm of both fresh and frozen-thawed boar semen, affecting less than 4% of the sperm cells on average. However, this is not the case in other species, as human, bovine, and poultry sperm have large increases in sperm ROS formation, lipid peroxidation, loss of motility, and death in vitro. Closer study of the effects of ROS formation on the relationship between sperm motility and ATP content in boar sperm was conducted using menadione (mitochondrial SO generator) and HP treatment. Menadione or HP caused an immediate disruption of motility with delayed or no decrease in sperm ATP content, respectively. Overall, the inhibitory effects of ROS on motility point to a mitochondrial-independent mechanism. The reduction in motility may have been due to a ROS-induced lesion in ATP utilization or in the contractile apparatus of the flagellum. Published by Elsevier Inc.

  16. Development of a luciferase based viral inhibition assay to evaluate vaccine induced CD8 T-cell responses

    PubMed Central

    Naarding, Marloes A.; Fernandez-Fernandez, Natalia; Kappes, John C.; Hayes, Peter; Ahmed, Tina; Icyuz, Mert; Edmonds, Tara G.; Bergin, Philip; Anzala, Omu; Hanke, Tomas; Clark, Lorna; Cox, Josephine H.; Cormier, Emmanuel; Ochsenbauer, Christina; Gilmour, Jill

    2014-01-01

    Emergence of SIV and HIV specific CD8 T cells has been shown to correlate with control of in vivo replication. Poor correlation between IFN-γ ELISPOT responses and in vivo control of the virus has triggered the development of more relevant assays to assess functional HIV-1 specific CD8 T-cell responses for the evaluation and prioritization of new HIV-1 vaccine candidates. We previously established a viral inhibition assay (VIA) that measures the ability of vaccine-induced CD8 T-cell responses to inhibit viral replication in autologous CD4 T cells. In this assay, viral replication is determined by measuring p24 in the culture supernatant. Here we describe the development of a novel VIA, referred to as IMC LucR VIA that exploits replication-competent HIV-1 infectious molecular clones (IMCs) in which the complete proviral genome is strain-specific and which express the Renilla luciferase (LucR) gene to determine viral growth and inhibition. The introduction of the luciferase readout does provide significant improvement of the read out time. In addition to switching to the LucR read out, changes made to the overall protocol resulted in the miniaturization of the assay from a 48 to a 96-well plate format, which preserved sample and allowed for the introduction of replicates. The overall assay time was reduced from 13 to 8 days. The assay has a high degree of specificity, and the previously observed non-specific background inhibition in cells from HIV-1 negative volunteers has been reduced dramatically. Importantly, we observed an increase in positive responses, indicating an improvement in sensitivity compared to the original VIA. Currently, only a limited number of “whole-genome” IMC-LucR viruses are available and our efforts will focus on expanding the panel to better evaluate anti-viral breadth. Overall, we believe the IMC LucR VIA provides a platform to assess functional CD8 T-cell responses in large-scale clinical trial testing, which will enhance the ability to select the most promising HIV-1 vaccine candidates capable of controlling HIV-1 replication in vivo. PMID:24291126

  17. Synthesis, cytotoxicity, and hydroxyapatite formation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses

    NASA Astrophysics Data System (ADS)

    Kaur, Gurbinder; Pickrell, G.; Kimsawatde, G.; Homa, D.; Allbee, H. A.; Sriranganathan, N.

    2014-03-01

    CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses were prepared via an optimized sol-gel method. The current investigation was focused on producing novel zinc based calcium phosphoborosilicate glasses and to evaluate their mechanical, rheological, and biocompatible properties. The morphology and composition of these glasses were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The particle size, mechanical and flexural strength was also determined. Furthermore, the zeta potential of all the glasses were determined to estimate their flocculation tendency. The thermal analysis and weight loss measurements were carried out using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) respectively. For assessing the in-vitro bioactive character of synthesized glasses, the ability for apatite formation on their surface upon their immersion in simulated body fluid (SBF) was checked using SEM and pH measurements. MTS assay cytotoxicity assay and live-dead cell viability test were conducted on J774A.1 cells murine macrophage cells for different glass concentrations.

  18. Synthesis, cytotoxicity, and hydroxyapatite formation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses.

    PubMed

    Kaur, Gurbinder; Pickrell, G; Kimsawatde, G; Homa, D; Allbee, H A; Sriranganathan, N

    2014-03-18

    CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses were prepared via an optimized sol-gel method. The current investigation was focused on producing novel zinc based calcium phosphoborosilicate glasses and to evaluate their mechanical, rheological, and biocompatible properties. The morphology and composition of these glasses were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The particle size, mechanical and flexural strength was also determined. Furthermore, the zeta potential of all the glasses were determined to estimate their flocculation tendency. The thermal analysis and weight loss measurements were carried out using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) respectively. For assessing the in-vitro bioactive character of synthesized glasses, the ability for apatite formation on their surface upon their immersion in simulated body fluid (SBF) was checked using SEM and pH measurements. MTS assay cytotoxicity assay and live-dead cell viability test were conducted on J774A.1 cells murine macrophage cells for different glass concentrations.

  19. Synthesis, cytotoxicity, and hydroxyapatite formation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses

    PubMed Central

    Kaur, Gurbinder; Pickrell, G.; Kimsawatde, G.; Homa, D.; Allbee, H. A.; Sriranganathan, N.

    2014-01-01

    CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses were prepared via an optimized sol–gel method. The current investigation was focused on producing novel zinc based calcium phosphoborosilicate glasses and to evaluate their mechanical, rheological, and biocompatible properties. The morphology and composition of these glasses were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The particle size, mechanical and flexural strength was also determined. Furthermore, the zeta potential of all the glasses were determined to estimate their flocculation tendency. The thermal analysis and weight loss measurements were carried out using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) respectively. For assessing the in-vitro bioactive character of synthesized glasses, the ability for apatite formation on their surface upon their immersion in simulated body fluid (SBF) was checked using SEM and pH measurements. MTS assay cytotoxicity assay and live-dead cell viability test were conducted on J774A.1 cells murine macrophage cells for different glass concentrations. PMID:24637634

  20. CD147-induced cell proliferation is associated with Smad4 signal inhibition.

    PubMed

    Qin, Hui; Rasul, Azhar; Li, Xin; Masood, Muqaddas; Yang, Guang; Wang, Na; Wei, Wei; He, Xi; Watanabe, Nobumoto; Li, Jiang; Li, Xiaomeng

    2017-09-15

    CD147 is a multifunctional trans-membrane glycoprotein, which is highly expressed in many cancers. However, the mechanism by which CD147 modulates cell proliferation is not fully understood. The aim of this study is to investigate the role of CD147 in cell proliferation associated with the TGF-β/Smad4 signaling pathway. Here, we used cell viability and clone formation assays in LNCaP prostate cancer cells to demonstrate that CD147 promotes cell proliferation. The luciferase assay and western blotting show that silencing CD147 using shRNA enhances transcription and expression of p21 WAF1 . Using immunofluorescence and nuclear-cytoplasmic separation, we show that this is primarily attributed to transport of Smad4 from the cytoplasm to nucleus. Other assays (GST pull-down, co-immunoprecipitation and immunofluorescence) demonstrate that Smad4 is a new interaction partner of CD147, with the Smad4 MH2 domain and CD147 intracellular domain (CD147-ICD) being involved in the interaction. Furthermore, we report that a phosphoserine (pSer) in CD147 (pSer252) is responsible for this interaction and inhibition of the Smad4/p21 WAF1 signal that promotes cell proliferation. Our results provide a novel molecular mechanism for CD147-induced cell proliferation associated with Smad4 signal inhibition. Copyright © 2017. Published by Elsevier Inc.

  1. Identification of small molecule inhibitors of the Chikungunya virus nsP1 RNA capping enzyme.

    PubMed

    Feibelman, Kristen M; Fuller, Benjamin P; Li, Linfeng; LaBarbera, Daniel V; Geiss, Brian J

    2018-06-01

    Chikungunya virus (CHIKV) is an arthropod-borne alphavirus. Alphaviruses are positive strand RNA viruses that require a 5' cap structure to direct translation of the viral polyprotein and prevent degradation of the viral RNA genome by host cell nucleases. Formation of the 5' RNA cap is orchestrated by the viral protein nsP1, which binds GTP and provides the N-7 methyltransferase and guanylyltransferase activities that are necessary for cap formation. Viruses with aberrant nsP1 activity are unable to replicate effectively suggesting that nsP1 is a promising target for antiviral drug discovery. Given the absence of commercially available antiviral therapies for CHIKV, it is imperative to identify compounds that could be developed as potential therapeutics. This study details a high-throughput screen of 3051 compounds from libraries containing FDA-approved drugs, natural products, and known bioactives against CHIKV nsP1 using a fluorescence polarization-based GTP competition assay. Several small molecule hits from this screen were able to compete with GTP for the CHIKV nsP1 GTP binding site at low molar concentrations. Compounds were also evaluated with an orthogonal assay that measured the ability of nsP1 to perform the guanylation step of the capping reaction in the presence of inhibitor. In addition, live virus assays with CHIKV and closely related alphavirus, Sindbis virus, were used in conjunction with cell toxicity assays to determine the antiviral activity of compounds in cell culture. The naturally derived compound lobaric acid was found to inhibit CHIKV nsP1 GTP binding and guanylation as well as attenuate viral growth in vitro at both 24 hpi and 48 hpi in hamster BHK21 and human Huh 7 cell lines. These data indicate that development of lobaric acid and further exploration of CHIKV nsP1 as a drug target may aid in the progress of anti-alphaviral drug development strategies. Copyright © 2018. Published by Elsevier B.V.

  2. Metformin Induces Cell Cycle Arrest, Reduced Proliferation, Wound Healing Impairment In Vivo and Is Associated to Clinical Outcomes in Diabetic Foot Ulcer Patients.

    PubMed

    Ochoa-Gonzalez, Fatima; Cervantes-Villagrana, Alberto R; Fernandez-Ruiz, Julio C; Nava-Ramirez, Hilda S; Hernandez-Correa, Adriana C; Enciso-Moreno, Jose A; Castañeda-Delgado, Julio E

    2016-01-01

    Several epidemiological studies in diabetic patients have demonstrated a protective effect of metformin to the development of several types of cancer. The underlying mechanisms of such phenomenon is related to the effect of metformin on cell proliferation among which, mTOR, AMPK and other targets have been identified. However, little is known about the role that metformin treatment have on other cell types such as keratinocytes and whether exposure to metformin of these cells might have serious repercussions in wound healing delay and in the development of complications in diabetic patients with foot ulcers or in their exacerbation. HaCaT Cells were exposed to various concentrations of metformin and cell viability was evaluated by a Resazurin assay; Proliferation was also evaluated with a colony formation assay and with CFSE dilution assay by flow cytometry. Cell cycle was also evaluated by flow cytometry by PI staining. An animal model of wound healing was used to evaluate the effect of metformin in wound closure. Also, an analysis of patients receiving metformin treatment was performed to determine the effect of metformin treatment on the outcome and wound area. Statistical analysis was performed on SPSS v. 18 and GraphPad software v.5. Metformin treatment significantly reduces cell proliferation; colony formation and alterations of the cell cycle are observed also in the metformin treated cells, particularly in the S phase. There is a significant increase in the area of the wound of the metformin treated animals at different time points (P<0.05). There is also a significant increase in the size and wound area of the patients with diabetic foot ulcers at the time of hospitalization. A protective effect of metformin was observed for amputation, probably associated with the anti inflammatory effects reported of metformin. Metformin treatment reduces cell proliferation and reduces wound healing in an animal model and affects clinical outcomes in diabetic foot ulcer patients. Chronic use of this drug should be further investigated to provide evidence of their security in association with DFU.

  3. Monosodium urate monohydrate crystals inhibit osteoblast viability and function: implications for development of bone erosion in gout.

    PubMed

    Chhana, Ashika; Callon, Karen E; Pool, Bregina; Naot, Dorit; Watson, Maureen; Gamble, Greg D; McQueen, Fiona M; Cornish, Jillian; Dalbeth, Nicola

    2011-09-01

    Bone erosion is a common manifestation of chronic tophaceous gout. To investigate the effects of monosodium urate monohydrate (MSU) crystals on osteoblast viability and function. The MTT assay and flow cytometry were used to assess osteoblast cell viability in the MC3T3-E1 and ST2 osteoblast-like cell lines, and primary rat and primary human osteoblasts cultured with MSU crystals. Quantitative real-time PCR and von Kossa stained mineralised bone formation assays were used to assess the effects of MSU crystals on osteoblast differentiation using MC3T3-E1 cells. The numbers of osteoblasts and bone lining cells were quantified in bone samples from patients with gout. MSU crystals rapidly reduced viability in all cell types in a dose-dependent manner. The inhibitory effect on cell viability was independent of crystal phagocytosis and was not influenced by differing crystal length or addition of serum. Long-term culture of MC3T3-E1 cells with MSU crystals showed a reduction in mineralisation and decreased mRNA expression of genes related to osteoblast differentiation such as Runx2, Sp7 (osterix), Ibsp (bone sialoprotein), and Bglap (osteocalcin). Fewer osteoblast and lining cells were present on bone directly adjacent to gouty tophus than bone unaffected by tophus in patients with gout. MSU crystals have profound inhibitory effects on osteoblast viability and differentiation. These data suggest that bone erosion in gout occurs at the tophus-bone interface through alteration of physiological bone turnover, with both excessive osteoclast formation, and reduced osteoblast differentiation from mesenchymal stem cells.

  4. Breast cancer stem-like cells are sensitized to tamoxifen induction of self-renewal inhibition with enforced Let-7c dependent on Wnt blocking

    PubMed Central

    Meng, Jinying; Wang, Jichang; Tang, Shou-Ching; Qin, Sida; Du, Ning; Li, Gang

    2018-01-01

    Let-7 microRNAs have been reported to have tumor suppressive functions; however, the effect of Let-7 when used in combination with chemotherapies is uncertain, but may have potential for use in clinical practice. In this study, we used RT-qPCR, western blot analysis, cell proliferation assay, flow cytometry analysis, immunohistochemistry (IHC) staining, luciferase assays, cell sorting analysis and xenografted tumor model to explore the role of Let-7 in the chemotherapy sensitivity of breast cancer stem cells. The findings of the current study indicated that Let-7 enhances the effects of endocrine therapy potentially by regulating the self-renewal of cancer stem cells. Let-7c increased the anticancer functions of tamoxifen and reduced the ratio of cancer stem-like cells (CSCs), sensitizing cells to therapy-induced repression in an estrogen receptor (ER)-dependent manner. Notably, Let-7 decreased the tumor formation ability of estrogen-treated breast CSCs in vivo and suppressed Wnt signaling, which further consolidated the previously hypothesis that Let-7 decreases the self-renewal ability, contributing to reduced tumor formation ability of stem cells. The suppressive effects exerted by Let-7 on stem-like cells involved Let-7c/ER/Wnt signaling, and the functions of Let-7c exerted with tamoxifen were dependent on ER. Taken together, the findings identified a biochemical and functional link between Let-7 and endocrine therapy in breast CSCs, which may facilitate clinical treatment in the future using delivery of suppressive Let-7. PMID:29336465

  5. Knockdown of stromal interaction molecule 1 inhibits proliferation of colorectal cancer cells by inducing apoptosis.

    PubMed

    Yang, Dong; Dai, Xiaoyu; Li, Keqiang; Xie, Yangyang; Zhao, Jianpei; Dong, Mingjun; Yu, Hua; Kong, Zhenfang

    2018-06-01

    Stromal interaction molecule 1 (STIM1) is an endoplasmic reticulum Ca 2+ sensor which has been reported to be overexpressed in numerous types of cancer, and is involved in the cell proliferation, invasion, migration and metastasis frequently observed in cancer. However, the role of STIM1 in colorectal cancer (CRC) remains unknown. The purpose of the present study was to investigate the effect of STIM1 in human CRC. The expression of STIM1 was specifically knocked down using lentivirus-mediated small hairpin RNA (shRNA) interference techniques in the CRC cell lines HCT116 and SW1116. Subsequently, the efficiency of infection was confirmed using green fluorescent protein (GFP)-positive signals. The knockdown efficiency was further determined using the reverse transcription-quantitative polymerase chain reaction and western blotting analysis. As a result, CRC cell lines with STIM1 silenced were successfully constructed and subsequently employed in a series of cell function assays. Knockdown of STIM1 significantly suppressed cell proliferation and colony formation, as revealed by an MTT and colony formation assay. Furthermore, it was identified that STIM1 silencing may promote cell apoptosis through the induction of mitochondria-associated apoptosis, as was identified by increased expression levels of B-cell lymphoma 2 (Bcl-2)-associated death promoter, Bcl-2-associated X protein and poly(ADP-ribose) polymerase cleavage. Therefore, STIM1 may serve a critical role in the progression of CRC by regulating cell proliferation and apoptosis, which may provide a potential therapeutic target for the treatment of CRC.

  6. Lentivirus mediated RNA interference of EMMPRIN (CD147) gene inhibits the proliferation, matrigel invasion and tumor formation of breast cancer cells.

    PubMed

    Yang, Jing; Wang, Rong; Li, Hongjiang; Lv, Qing; Meng, Wentong; Yang, Xiaoqin

    2016-07-08

    Overexpression of extracellular matrix metalloproteinase inducer (EMMPRIN) or cluster of differentiation 147 (CD147), a glycoprotein enriched on the plasma membrane of tumor cells, promotes proliferation, invasion, metastasis, and survival of malignant tumor cells. In this study, we sought to examine the expression of EMMPRIN in breast tumors, and to identify the potential roles of EMMPRIN on breast cancer cells. EMMPRIN expression in breast cancer tissues was assessed by immunohistochemistry. We used a lentivirus vector-based RNA interference (RNAi) approach expressing short hairpin RNA (shRNA) to knockdown EMMPRIN gene in breast cancer cell lines MDA-MB-231 and MCF-7. In vitro, Cell proliferative, invasive potential were determined by Cell Counting Kit (CCK-8), cell cycle analysis and matrigel invasion assay, respectively. In vivo, tumorigenicity was monitored by inoculating tumor cells into breast fat pad of female nude mice. EMMPRIN was over-expressed in breast tumors and breast cancer cell lines. Down-regulation of EMMPRIN by lentivirus vector-based RNAi led to decreased cell proliferative, decreased matrigel invasion in vitro, and attenuated tumor formation in vivo. High expression of EMMPRIN plays a crucial role in breast cancer cell proliferation, matrigel invasion and tumor formation.

  7. 5-Azacytidine treatment induces demethylation of DAPK1 and MGMT genes and inhibits growth in canine mammary gland tumor cells.

    PubMed

    Ren, Xiaoli; Li, Huatao; Song, Xianyi; Wu, Yuhong; Liu, Yun

    2018-01-01

    Canine mammary gland tumors (CMGTs) are the most common, spontaneous types of neoplasias in female dogs. Aberrant DAPK1 and MGMT methylation associated with tumor formation and development in various cancers. 5-Azacytidine is a known specific demethylation drug that covalently binds to DNA methyltransferase. However, the methylation of the DAPK1 and MGMT is unknown with respect to CMGTs. Therefore, we sought to demonstrate the effects of 5-azacytidine on the proliferation of CMGTs cell, and elucidate the potential molecular mechanisms of action in these cancerous cells. The effects of 5-azacytidine on CHMm and CHMp cell proliferation were evaluated by MTT assay. The DAPK1 and MGMT gene methylation patterns in CHMm and CHMp cells and CMGTs blood/tissue samples were analyzed by MSP assay. Effect of 5-azacytidine on the methylation of DAPK1 and MGMT gene, and DAPK1 and MGMT mRNA expression in CHMm and CHMp cells were analyzed by MSP assay and qRT-PCR assay, respectively. 5-Azacytidine may suppress the proliferation of CHMm and CHMp cells. Furthermore, the DAPK1 and MGMT genes were hypermethylated in CHMm/CHMp cells and clinical malignant tumor samples, but not in normal female dogs' blood and tissue. However, the DAPK1 and MGMT genes were re-inducible in CHMm and CHMp cells treated with 5 μM 5-azacytidine. Meanwhile, 5-azacytidine increased the expression of DAPK1 and MGMT mRNA. These results suggest that DAPK1 and MGMT methylation can serve as sensitive diagnostic biomarkers and therapeutic targets for CMGTs. 5-Azacytidine also could be a potential therapeutic candidate for CMGTs.

  8. Genotoxicity of waterpipe smoke in buccal cells and peripheral blood leukocytes as determined by comet assay.

    PubMed

    Al-Amrah, Hadba Jar-Allah; Aboznada, Osama Abdullah; Alam, Mohammad Zubair; ElAssouli, M-Zaki Mustafa; Mujallid, Mohammad Ibrahim; ElAssouli, Sufian Mohamad

    2014-12-01

    Waterpipe smoke causes DNA damage in peripheral blood leukocytes and in buccal cells of smokers. To determine the exposure effect of waterpipe smoke on buccal cells and peripheral blood leukocytes in regard to DNA damage using comet assay. The waterpipe smoke condensates were analyzed by gas chromatography-mass spectrometry (GC-MS). The study was performed on 20 waterpipe smokers. To perform comet assay on bucaal cells of smokers, 10 µl of cell suspension was mixed with 85 µl of pre-warmed 1% low melting agarose, applied to comet slide and electrophoresed. To analyze the effect of smoke condensate in vitro, 1 ml of peripheral blood was mixed with 10 µl of smoke condensate and subjected for comet assay. The GC-MS analysis revealed the presence of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4on, nicotine, hydroxymethyl furancarboxaldehyde and 3-ethoxy-4-hydroxybenzaldehyde in the smoke condensates. Waterpipe smoking caused DNA damage in vivo in buccal cells of smokers. The tail moment and tail length in buccal cells of smokers were 186 ± 26 and 456 ± 71, respectively, which are higher than control. The jurak and moassel smoke condensates were found to cause DNA damage in peripheral blood leukocytes. The moassel smoke condensate was more damaging. There is wide misconception that waterpipe smoking is not as harmful as cigarette smoking. This study demonstrated that waterpipe smoke induced DNA damage in exposed cells. Waterpipe smokes cause DNA damage in buccal cells. The smoke condensate of both jurak and moassel caused comet formation suggesting DNA damage in peripheral blood leukocytes.

  9. MicroRNA-130a-3p suppresses cell viability, proliferation and invasion in nasopharyngeal carcinoma by inhibiting CXCL12.

    PubMed

    Qu, Rongfeng; Sun, Yan; Li, Yarong; Hu, Chunmei; Shi, Guang; Tang, Yan; Guo, Dongrui

    2017-01-01

    Incidence of nasopharyngeal carcinoma (NPC) has remained high worldwide, posing a serious health problem. MicroRNAs (miRNAs) are a family of about 20-23 nucleotides small non-coding molecules, which play a significant role in NPC. In this study, we explored the molecular mechanisms of miR-130a-3p in inhibiting viability, proliferation, migration and invasion of NPC cells by suppressing CXCL12 . The relative expression of miR-130a-3p and CXCL12 mRNA expression in tissues and cells was measured by qRT-PCR. NPC cell line CNE-2Z was transfected with miR-130a-3p mimics, CXCL12 siRNA, cDNA- CXCL12 and negative control. Western Blot was performed to detect CXCL12 expression. The MTT assay was performed to study cell viability. The colony formation assay was done to test cell growth. Flow cytometry was conducted to analyze cell cycle and apoptosis. The Transwell assay was used to investigate cell migration and invasion. The results found that the up-regulation of miR-130a-3p or down-regulation of CXCL12 could inhibit viability, proliferation, migration and invasion of CNE-2Z cells. Luciferase-reporting system assay was performed to investigate miR-130a-3p could bind to the 3'UTR region of CXCL12 and the overexpression of miR-130a-3p could suppress CXCL12 expression. Collectively, our finding suggested demonstrated that miR-130a-3p could prohibit the progression of NPC by suppressing CXCL12 , which might serve as potential therapeutic targets for NPC.

  10. A Novel Dual Expression Platform for High Throughput Functional Screening of Phage Libraries in Product like Format.

    PubMed

    Xiao, Xiaodong; Chen, Yan; Mugabe, Sheila; Gao, Changshou; Tkaczyk, Christine; Mazor, Yariv; Pavlik, Peter; Wu, Herren; Dall'Acqua, William; Chowdhury, Partha Sarathi

    2015-01-01

    High throughput screenings of single chain Fv (scFv) antibody phage display libraries are currently done as soluble scFvs produced in E.coli. Due to endotoxin contaminations from bacterial cells these preparations cannot be reliably used in mammalian cell based assays. The monovalent nature and lack of Fc in soluble scFvs prevent functional assays that are dependent on target cross linking and/or Fc functions. A convenient approach is to convert scFvs into scFv.Fc fusion proteins and express them in mammalian cell lines for screening. This approach is low throughput and is only taken after primary screening of monovalent scFvs that are expressed in bacteria. There is no platform at present that combines the benefits of both bacterial and mammalian expression system for screening phage library output. We have, therefore, developed a novel dual expression vector, called pSplice, which can be used to express scFv.Fc fusion proteins both in E.coli and mammalian cell lines. The hallmark of the vector is an engineered intron which houses the bacterial promoter and signal peptide for expression and secretion of scFv.Fc in E.coli. When the vector is transfected into a mammalian cell line, the intron is efficiently spliced out resulting in a functional operon for expression and secretion of the scFv.Fc fusion protein into the culture medium. By applying basic knowledge of mammalian introns and splisosome, we designed this vector to enable screening of phage libraries in a product like format. Like IgG, the scFv.Fc fusion protein is bi-valent for the antigen and possesses Fc effector functions. Expression in E.coli maintains the speed of the bacterial expression platform and is used to triage clones based on binding and other assays that are not sensitive to endotoxin. Triaged clones are then expressed in a mammalian cell line without the need for any additional cloning steps. Conditioned media from the mammalian cell line containing the fusion proteins are then used for different types of cell based assays. Thus this system retains the speed of the current screening system for phage libraries and adds additional functionality to it.

  11. Simulating Limb Formation in the U.S. EPA Virtual Embryo - Risk Assessment Project

    EPA Science Inventory

    The U.S. EPA’s Virtual Embryo project (v-Embryo™) is a computer model simulation of morphogenesis that integrates cell and molecular level data from mechanistic and in vitro assays with knowledge about normal development processes to assess in silico the effects of chemicals on d...

  12. Methods for evaluating the Caenorhabditis elegans dauer state: standard dauer-formation assay using synthetic daumones and proteomic analysis of O-GlcNAc modifications.

    PubMed

    Lee, Jeeyong; Kim, Kwang-Youl; Joo, Hyoe-Jin; Kim, Heekyeong; Jeong, Pan-Young; Paik, Young-Ki

    2011-01-01

    The dauer state is a non-feeding, alternative L3 state characterized by a number of distinctive metabolic and morphological changes. There are many naturally occurring dauer-inducing pheromones, termed daumones, that have been suggested by some to exhibit differences in dauer-inducing activity. Here, we have established a standard dauer-formation assay that uses synthetic daumones 1, 2, and 3, the three major daumones. To analyze the proteome of Caenorhabditis elegans in the dauer state, we focused on O-GlcNAc modification, a cytosolic modification of proteins that is known to interact either competitively or synergistically with protein phosphorylation. Protein O-GlcNAc modification is an important biological process in cells that can ensure the timely response to extracellular stimuli, such as daumone, and maintain cellular homeostasis. Establishing a standard method for assaying dauer formation using different synthetic daumones, and using differences in O-GlcNAcylated proteins during the dauer state to analyze the dauer proteome will lead to a better understanding of dauer biology of C. elegans in the context of animal longevity and adaptation under harsh environments. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Placental growth factor neutralising antibodies give limited anti-angiogenic effects in an in vitro organotypic angiogenesis model.

    PubMed

    Brave, Sandra R; Eberlein, Cath; Shibuya, Masabumi; Wedge, Stephen R; Barry, Simon T

    2010-12-01

    Vascular Endothelial Growth Factor Receptor (VEGFR) mediated signalling drives angiogenesis. This is predominantly attributed to the activity of VEGFR-2 following binding of VEGF-A. Whether other members of the VEGFR and ligand families such as VEGFR-1 and its ligand Placental Growth Factor (PlGF) can also contribute to developmental and pathological angiogenesis is less clear. We explored the function of PlGF in VEGF-A dependent angiogenesis using an in vitro co-culture assay in which endothelial cells are cultured on a fibroblast feeder layer. In the presence of 2% FS MCDB media (containing limited growth factors) in vitro endothelial tube formation is driven by endogenous angiogenic stimuli which are produced by the fibroblast and endothelial cells. Under these conditions independent sequestration of either free VEGF-A or PlGF with polyclonal and monoclonal antibodies inhibited tube formation suggesting that both ligands are required to drive an angiogenic response. Endothelial tube formation could only be driven within this assay by the addition of exogenous VEGF-A, VEGF-E or VEGF-A/PlGF heterodimer, but not by PlGF alone, implying that activation of either VEGFR-2/VEGFR-1 heterodimers or VEGFR-2 homodimers were responsible for eliciting an angiogenic response directly, but not VEGFR-1 homodimers. In contrast to results obtained with an endogenous angiogenic drive, sequestration of PlGF did not affect endothelial tube formation when the assay was driven by 1 ng/ml exogenous VEGF-A. These data suggest that although neutralising PlGF can be shown to reduce endothelial tube formation in vitro, this effect is only observed under restricted culture conditions and is influenced by VEGF-A. Such data questions whether neutralising PlGF would have a therapeutic benefit in vivo in the presence of pathological concentrations of VEGF-A.

  14. On the Anticataractogenic Effects of L-Carnosine: Is It Best Described as an Antioxidant, Metal-Chelating Agent or Glycation Inhibitor?

    PubMed Central

    Alany, Raid G.

    2016-01-01

    Purpose. L-Carnosine is a naturally occurring dipeptide which recently gained popularity as an anticataractogenic agent due to its purported antioxidant activities. There is a paucity of research and conclusive evidence to support such claims. This work offers compelling data that help clarify the mechanism(s) behind the anticataract properties of L-carnosine. Methods. Direct in vitro antioxidant free radical scavenging properties were assayed using three different antioxidant (TEAC, CUPRAC, and DPPH) assays. Indirect in vitro and ex vivo antioxidant assays were studied by measuring glutathione bleaching capacity and total sulfhydryl (SH) capacity of bovine lens homogenates as well as hydrogen-peroxide-stress assay using human lens epithelial cells. Whole porcine lenses were incubated in high galactose media to study the anticataract effects of L-carnosine. MTT cytotoxicity assays were conducted on human lens epithelial cells. Results. The results showed that L-carnosine is a highly potent antiglycating agent but with weak metal chelating and antioxidant properties. There were no significant decreases in lens epithelial cell viability compared to negative controls. Whole porcine lenses incubated in high galactose media and treated with 20 mM L-carnosine showed a dramatic inhibition of advanced glycation end product formation as evidenced by NBT and boronate affinity chromatography assays. Conclusion. L-Carnosine offers prospects for investigating new methods of treatment for diabetic cataract and any diseases that are caused by glycation. PMID:27822337

  15. ViroSpot microneutralization assay for antigenic characterization of human influenza viruses.

    PubMed

    van Baalen, Carel A; Jeeninga, Rienk E; Penders, Germaine H W M; van Gent, Brenda; van Beek, Ruud; Koopmans, Marion P G; Rimmelzwaan, Guus F

    2017-01-03

    The hemagglutination inhibition (HI) assay has been used for the antigenic characterization of influenza viruses for decades. However, the majority of recent seasonal influenza A viruses of the H3N2 subtype has lost the capacity to agglutinate erythrocytes of various species. The hemagglutination (HA) activity of other A(H3N2) strains is generally sensitive to the action of the neuraminidase inhibitor oseltamivir, which indicates that the neuraminidase and not the hemagglutinin is responsible for the HA activity. These findings complicate the antigenic characterization and selection of A(H3N2) vaccine strains, calling for alternative antigenic characterization assays. Here we describe the development and use of the ViroSpot microneutralization (MN) assay as a reliable and robust alternative for the HI assay. Serum neutralization of influenza A(H3N2) reference virus strains and epidemic isolates was determined by automated readout of immunostained cell monolayers, in a format designed to minimize the influence of infectious virus doses on serum neutralization titers. Neutralization of infection was largely independent from rates of viral replication and cell-to-cell transmission, facilitating the comparison of different virus isolates. Other advantages of the ViroSpot MN assay include its relative insensitivity to variation in test dose of infectious virus, automated capture and analyses of residual infection patterns, and compatibility with standardized large scale analyses. Using this assay, a number of epidemic influenza A(H3N2) strains that failed to agglutinate erythrocytes, were readily characterized antigenically. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. New Insights into the Formation of Viable but Nonculturable Escherichia coli O157:H7 Induced by High-Pressure CO2

    PubMed Central

    Zhao, Feng; Wang, Yongtao; An, Haoran; Hu, Xiaosong

    2016-01-01

    ABSTRACT The formation of viable but nonculturable (VBNC) Escherichia coli O157:H7 induced by high-pressure CO2 (HPCD) was investigated using RNA sequencing (RNA-Seq) transcriptomics and isobaric tag for relative and absolute quantitation (iTRAQ) proteomic methods. The analyses revealed that 97 genes and 56 proteins were significantly changed upon VBNC state entry. Genes and proteins related to membrane transport, central metabolisms, DNA replication, and cell division were mainly downregulated in the VBNC cells. This caused low metabolic activity concurrently with a division arrest in cells, which may be related to VBNC state formation. Cell division repression and outer membrane overexpression were confirmed to be involved in VBNC state formation by homologous expression of z2046 coding for transcriptional repressor and ompF encoding outer membrane protein F. Upon VBNC state entry, pyruvate catabolism in the cells shifted from the tricarboxylic acid (TCA) cycle toward the fermentative route; this led to a low level of ATP. Combating the low energy supply, ATP production in the VBNC cells was compensated by the degradation of l-serine and l-threonine, the increased AMP generation, and the enhanced electron transfer. Furthermore, tolerance of the cells with respect to HPCD-induced acid, oxidation, and high CO2 stresses was enhanced by promoting the production of ammonia and NADPH and by reducing CO2 production during VBNC state formation. Most genes and proteins related to pathogenicity were downregulated in the VBNC cells. This would decrease the cell pathogenicity, which was confirmed by adhesion assays. In conclusion, the decreased metabolic activity, repressed cell division, and enhanced survival ability in E. coli O157:H7 might cause HPCD-induced VBNC state formation. PMID:27578754

  17. Development of a highly-sensitive multi-plex assay using monoclonal antibodies for the simultaneous measurement of kappa and lambda immunoglobulin free light chains in serum and urine.

    PubMed

    Campbell, John P; Cobbold, Mark; Wang, Yanyun; Goodall, Margaret; Bonney, Sarah L; Chamba, Anita; Birtwistle, Jane; Plant, Timothy; Afzal, Zaheer; Jefferis, Roy; Drayson, Mark T

    2013-05-31

    Monoclonal κ and λ immunoglobulin free light chain (FLC) paraproteins in serum and urine are important markers in the diagnosis and monitoring of B cell dyscrasias. Current nephelometric and turbidimetric methods that use sheep polyclonal antisera to quantify serum FLC have a number of well-observed limitations. In this report, we describe an improved method using specific mouse anti-human FLC monoclonal antibodies (mAbs). Anti-κ and anti-λ FLC mAbs were, separately, covalently coupled to polystyrene Xmap® beads and assayed, simultaneously, in a multi-plex format by Luminex® (mAb assay). The mAbs displayed no cross-reactivity to bound LC, the alternate LC type, or other human proteins and had improved sensitivity and specificity over immunofixation electrophoresis (IFE) and Freelite™. The assay gives good linearity and sensitivity (<1 mg/L), and the competitive inhibition format gave a broad calibration curve up to 437.5 mg/L and prevented anomalous results for samples in antigen excess i.e. high FLC levels. The mAbs displayed good concordance with Freelite™ for the quantitation of normal polyclonal FLC in plasma from healthy donors (n=249). The mAb assay identified all monoclonal FLC in serum from consecutive patient samples (n=1000; 50.1% with monoclonal paraprotein by serum IFE), and all FLC in a large cohort of urine samples tested for Bence Jones proteins (n=13090; 22.8% with monoclonal κ, 9.0% with monoclonal λ, and 0.8% with poly LC detected by urine IFE). Importantly this shows that the mAbs are at least close to the ideal of detecting FLC from all patients and neoplastic plasma cell clones. Given the overall effectiveness of the anti-FLC mAbs, further clinical validation is now warranted on serial samples from a range of patients with B cell disorders. Use of these mAbs on other assay platforms should also be investigated. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. An endogenous inhibitor of angiogenesis derived from a transitional cell carcinoma: clipped beta2-glycoprotein-I.

    PubMed

    Beecken, Wolf-Dietrich C; Engl, Tobias; Ringel, Eva M; Camphausen, Kevin; Michaelis, Martin; Jonas, Dietger; Folkman, Judah; Shing, Yuen; Blaheta, Roman A

    2006-09-01

    Invasive cell carcinoma of the bladder often develops after complete transurethral excision of superficial transitional cell carcinoma. It has been postulated that primary tumors release angiogenesis-blocking proteins which suppress distant metastases. We have identified an endogenous protein which might be responsible for tumor dormancy. A transitional cell carcinoma cell line was developed (UMUC-3i) which inhibits the growth of a tumor implant at a distant site in SCID mice. Conditioned media of UMUC-3i cultured cells was first pooled and then fractioned, and the capacity of individual components to block endothelial cell growth was tested. The protein fraction responsible for blocking endothelial cell growth was identified by N-terminal amino acid sequencing as well as by mass-spectrometry. The effects of the purified protein in preventing endothelial cell proliferation and tube formation in an in vitro angiogenesis assay was investigated. The plasma protein beta(2)-glycoprotein-I (beta(2)gpI) was isolated and identified from conditioned medium of UMUC-3i cultured cells. Based on the in vitro angiogenesis assay, beta(2)gpI strongly inhibited endothelial cell growth and tube formation, whereby the inhibitory activity corresponded to the clipped version of beta(2)gpI (cbeta(2)gpI). Clipping was induced by adding plasmin at a molar ratio 1:15 (plasmin:substrate). Further analysis indicated that cbeta(2)gpI effects were mediated by annexin II surface receptors expressed on endothelial cells. cbeta2gpI may be involved in blocking angiogenic processes and bladder cancer progression. In this case, cbeta2gpI may be a promising tool in bladder cancer therapy.

  19. PlGF gene knockdown in human retinal pigment epithelial cells.

    PubMed

    Akrami, Hassan; Soheili, Zahra-Soheila; Sadeghizadeh, Majid; Ahmadieh, Hamid; Rezaeikanavi, Mozhgan; Samiei, Shahram; Khalooghi, Keynoush

    2011-04-01

    To evaluate the knockdown of placental growth factor (PlGF) gene expression in human retinal pigment epithelium (RPE) cells and its effect on cell proliferation, apoptosis and angiogenic potential of RPE cells. Human RPE cells were isolated by dispase I solution and cultured in DMEM/F12 supplemented with 10% fetal calf serum (FCS). A small interfering RNA (siRNA) corresponding to PlGF mRNA and a scrambled siRNA (scRNA) were introduced into the cells. Cell proliferation and cell death were examined by ELISA. PlGF mRNA and protein were quantified by real-time polymerase chain reaction (PCR) and western blot. The levels of gene expression for human retinal pigment epithelium-specific protein 65 kDa (RPE65), cellular retinaldehyde-binding protein (CRALBP) and tyrosinase were examined by real-time PCR. The angiogenic activity of RPE cell-derived conditioned media was assayed by a tube formation assay using human umbilical vein endothelial cells (HUVECs). At a final siRNA concentration of 20 pmol/ml, the transfection efficiency was about 80%. The amount of PlGF transcripts was reduced to 10% after 36 h of incubation, and the amount of PlGF protein in culture supernatant was significantly decreased. Suppression of PlGF gene had no effect on RPE cell proliferation and survival, and there were no notable changes in the transcript levels of RPE65, CRALBP or tyrosinase for the cultures treated by siRNA cognate to PlGF. Vascular tube formation was efficiently reduced in HUVECs. Our findings present PlGF as a key modulator of angiogenic potential in RPE cells of the human retina.

  20. MicroRNA-26a Promotes Cholangiocarcinoma Growth by Activating β-catenin

    PubMed Central

    Zhang, Jinqiang; Han, Chang; Wu, Tong

    2013-01-01

    Background & Aims MicroRNAs (miRNAs) have been implicated in the development and progression of human cancers. We investigated the roles and mechanisms of miR-26a in human cholangiocarcinoma. Methods We used in situ hybridization and quantitative reverse transcriptase polymerase chain reaction to measure expression of miR-26a in human cholangiocarcinoma tissues and cell lines (eg, CCLP1, SG231, HuCCT1, TFK1). Human cholangiocarcinoma cell lines were transduced with lentiviruses that expressed miR-26a1 or a scrambled sequence (control); proliferation and colony formation were analyzed. We analyzed growth of human cholangiocarcinoma cells that overexpress miR-26a or its inhibitor in severe combined immune-deficient mice. Immunoblot, immunoprecipitation, DNA pull-down, immunofluorescence, and luciferase reporter assays were used to measure expression and activity of glycogen synthase kinase (GSK)-3β, β-catenin, and related signaling molecules. Results Human cholangiocarcinoma tissues and cell lines had increased levels of miR-26a compared with the noncancerous biliary epithelial cells. Overexpression of miR-26a increased proliferation of cholangiocarcinoma cells and colony formation in vitro, whereas miR-26 depletion reduced these parameters. In severe combined immune-deficient mice, overexpression of miR-26a by cholangiocarcinoma cells increased tumor growth and overexpression of the miR-26a inhibitor reduced it. GSK-3β messenger RNA was identified as a direct target of miR-26a by computational analysis and experimental assays. miR-26a–mediated reduction of GSK-3β resulted in activation of β-catenin and induction of several downstream genes including c-Myc, cyclinD1, and peroxisome proliferator-activated receptor δ. Depletion of β-catenin partially prevented miR-26a-induced tumor cell proliferation and colony formation. Conclusions miR-26a promotes cholangiocarcinoma growth by inhibition of GSK-3β and subsequent activation of β-catenin. These signaling molecules might be targets for prevention or treatment of cholangiocarcinoma. PMID:22484120

Top