de Bakker, Chantal M J; Altman, Allison R; Tseng, Wei-Ju; Tribble, Mary Beth; Li, Connie; Chandra, Abhishek; Qin, Ling; Liu, X Sherry
2015-04-01
Current osteoporosis treatments improve bone mass by increasing net bone formation: anti-resorptive drugs such as bisphosphonates block osteoclast activity, while anabolic agents such as parathyroid hormone (PTH) increase bone remodeling, with a greater effect on formation. Although these drugs are widely used, their role in modulating formation and resorption is not fully understood, due in part to technical limitations in the ability to longitudinally assess bone remodeling. Importantly, it is not known whether or not PTH-induced bone formation is independent of resorption, resulting in controversy over the effectiveness of combination therapies that use both PTH and an anti-resorptive. In this study, we developed a μCT-based, in vivo dynamic bone histomorphometry technique for rat tibiae, and applied this method to longitudinally track changes in bone resorption and formation as a result of treatment with alendronate (ALN), PTH, or combination therapy of both PTH and ALN (PTH+ALN). Correlations between our μCT-based measures of bone formation and measures of bone formation based on calcein-labeled histology (r=0.72-0.83) confirm the accuracy of this method. Bone remodeling parameters measured through μCT-based in vivo dynamic bone histomorphometry indicate an increased rate of bone formation in rats treated with PTH and PTH+ALN, together with a decrease in bone resorption measures in rats treated with ALN and PTH+ALN. These results were further supported by traditional histology-based measurements, suggesting that PTH was able to induce bone formation while bone resorption was suppressed. Copyright © 2014 Elsevier Inc. All rights reserved.
Strontium ranelate: a novel mode of action leading to renewed bone quality.
Ammann, Patrick
2005-01-01
Various bone resorption inhibitors and bone stimulators have been shown to decrease the risk of osteoporotic fractures. However, there is still a need for agents promoting bone formation by inducing positive uncoupling between bone formation and bone resorption. In vitro studies have suggested that strontium ranelate enhances osteoblast cell replication and activity. Simultaneously, strontium ranelate dose-dependently inhibits osteoclast activity. In vivo studies indicate that strontium ranelate stimulates bone formation and inhibits bone resorption and prevents bone loss and/or promotes bone gain. This positive uncoupling between bone formation and bone resorption results in bone gain and improvement in bone geometry and microarchitecture, without affecting the intrinsic bone tissue quality. Thus, all the determinants of bone strength are positively influenced. In conclusion, strontium ranelate, a new treatment of postmenopausal osteoporosis, acts through an innovative mode of action, both stimulating bone formation and inhibiting bone resorption, resulting in the rebalancing of bone turnover in favor of bone formation. Strontium ranelate increases bone mass while preserving the bone mineralization process, resulting in improvement in bone strength and bone quality.
Bone formation: roles of genistein and daidzein
USDA-ARS?s Scientific Manuscript database
Bone remodeling consists of a balance between bone formation by osteoblasts and bone resorption by osteoclasts. Osteoporosis is the result of increased bone resorption and decreased bone formation causing a decreased bone mass density, loss of bone microarchitecture, and an increased risk of fractu...
[Clinical usefulness of bone turnover markers in the management of osteoporosis].
Yano, Shozo
2013-09-01
Osteoporosis is a state of elevated risk for bone fracture due to depressed bone strength, which is considered to be the sum of bone mineral density and bone quality. Since a measure of bone quality has not been established, bone mineral density and bone turnover markers are the only way to evaluate bone strength. Bone turnover markers are classified into bone formation marker and resorption marker, which are correlated with the bone formation rate and resorption rate, respectively, and bone matrix-related marker. Bone is always metabolized; old tissue is resorbed by acids and proteases derived from osteoclasts, whereas new bone is produced by osteoblasts. Bone formation and resorption rates should be balanced (also called coupled). When the bone resorption rate exceeds the formation rate(uncoupled state), bone volume will be reduced. Thus, we can comprehend bone metabolism by measuring both formation and resorption markers at the same time. Increased fracture risk is recognized by elevated bone resorption markers and undercarboxylated osteocalcin, which reflects vitamin K insufficiency and bone turnover. These values and the time course give us helpful information to choose medicine suitable for the patients and to judge the responsiveness. If the value is extraordinarily high without renal failure, metabolic bone disorder or bone metastatic tumor should be considered. Bone quality may be assessed by measuring bone matrix-related markers such as homocystein and pentosidine. Since recent studies indicate that the bone is a hormone-producing organ, it is possible that glucose metabolism or an unknown mechanism could be assessed in the future.
Simulation of bone resorption-repair coupling in vitro.
Jones, S J; Gray, C; Boyde, A
1994-10-01
In the normal adult human skeleton, new bone formation by osteoblasts restores the contours of bone surfaces following osteoclastic bone resorption, but the evidence for resorption-repair coupling remains circumstantial. To investigate whether sites of prior resorption, more than the surrounding unresorbed surface, attract osteoblasts or stimulate them to proliferate or make new matrix, we developed a simple in vitro system in which resorption-repair coupling occurs. Resorption pits were produced in mammalian dentine or bone slabs by culturing chick bone-derived cells on them for 2-3 days. The chick cells were swept off and the substrata reseeded with rat calvarial osteoblastic cells, which make bone nodules in vitro, for periods of up to 8 weeks. Cell positions and new bone formation were investigated by ordinary light microscopy, fluorescence and reflection confocal laser microscopy, and SEM, in stained and unstained samples. There was no evidence that the osteoblasts were especially attracted to, or influenced by, the sites of resorption in dentine or bone before cell confluence was reached. Bone formation was identified by light microscopy by the accumulation of matrix, staining with alizarin and calcein and by von Kossa's method, and confirmed by scanning electron microscopy (SEM) by using backscattered electron (BSE) and transmitted electron imaging of unembedded samples and BSE imaging of micro-milled embedded material. These new bone patches were located initially in the resorption pits. The model in vitro system may throw new light on the factors that control resorption-repair coupling in the mineralised tissues in vivo.
Bone cell communication factors and Semaphorins
Negishi-Koga, Takako; Takayanagi, Hiroshi
2012-01-01
Bone tissue is continuously renewed throughout adult life by a process called 'remodeling', which involves a dynamic interplay among bone cells including osteoclasts, osteoblasts and osteocytes. For example, a tight coupling between bone resorption and formation is essential for the homeostasis of the skeletal system. Studies on the coupling mechanism in physiological and pathological settings have revealed that osteoclasts or osteoclastic bone resorption promote bone formation through the production of diverse coupling factors. The classical coupling factors are the molecules that promote bone formation after resorption, but there may be distinct mechanisms at work in various phases of bone remodeling. A recent study revealed that the Semaphorin 4D expressed by osteoclasts inhibits bone formation, which represents a mechanism by which coupling is dissociated. Furthermore, it has been demonstrated that osteoblastic expression of Semaphorin 3A exerts an osteoprotective effect by both suppressing bone resorption and increasing bone formation. Thus, recent advances have made it increasingly clear that bone remodeling is regulated by not only classical coupling factors, but also molecules that mediate cell–cell communication among bone cells. We propose that such factors be called bone cell communication factors, which control the delicate balance of the interaction of bone cells so as to maintain bone homeostasis. PMID:24171101
Bone formation is not impaired by hibernation (disuse) in black bears Ursus americanus
Donahue, S.W.; Vaughan, M.R.; Demers, L.M.; Donahue, H.J.
2003-01-01
Disuse by bed rest, limb immobilization or space flight causes rapid bone loss by arresting bone formation and accelerating bone resorption. This net bone loss increases the risk of fracture upon remobilization. Bone loss also occurs in hibernating ground squirrels, golden hamsters, and little brown bats by arresting bone formation and accelerating bone resorption. There is some histological evidence to suggest that black bears Ursus americanus do not lose bone mass during hibernation (i.e. disuse). There is also evidence suggesting that muscle mass and strength are preserved in black bears during hibernation. The question of whether bears can prevent bone loss during hibernation has not been conclusively answered. The goal of the current study was to further assess bone metabolism in hibernating black bears. Using the same serum markers of bone remodeling used to evaluate human patients with osteoporosis, we assayed serum from five black bears, collected every 10 days over a 196-day period, for bone resorption and formation markers. Here we show that bone resorption remains elevated over the entire hibernation period compared to the pre-hibernation period, but osteoblastic bone formation is not impaired by hibernation and is rapidly accelerated during remobilization following hibernation.
Effects of Vitamin K2 on the Development of Osteopenia in Rats as the Models of Osteoporosis
Takeda, Tsuyoshi; Sato, Yoshihiro
2006-01-01
Vitamin K2 is widely used for the treatment of osteoporosis in Japan. To understand the effects of vitamin K2 on bone mass and bone metabolism, we reviewed its effects on the development of osteopenia in rats, which characterizes models of osteoporosis. Vitamin K2 was found to attenuate the increase in bone resorption and/or maintain bone formation, reduce bone loss, protect against the loss of trabecular bone mass and its connectivity, and prevent the decrease in strength of the long bone in ovariectomized rats. However, combined treatment of bisphosphonates and vitamin K2 had an additive effect in preventing the deterioration of the trabecular bone architecture in ovariectomized rats, while the combined treatment of raloxifene and vitamin K2 improved the bone strength of the femoral neck. The use of vitamin K2 alone suppressed the increase in trabecular bone turnover and endocortical bone resorption, which attenuated the development of cancellous and cortical osteopenia in orchidectomized rats. In addition, vitamin K2 inhibited the decrease in bone formation in prednisolone-treated rats, thereby preventing cancellous and cortical osteopenia. In sciatic neurectomized rats, vitamin K2 suppressed endocortical bone resorption and stimulated bone formation, delaying the reduction of the trabecular thickness and retarding the development of cortical osteopenia. Vitamin K2 also prevented the acceleration of bone resorption and the reduction in bone formation in tail-suspended rats, which counteracted cancellous bone loss. Concomitant use of vitamin K2 with a bisphosphonate ameliorated the suppression of bone formation and more effectively prevented cancellous bone loss in tail-suspended rats. Vitamin K2 stimulated renal calcium reabsorption, retarded the increase in serum parathyroid hormone levels, and attenuated cortical bone loss primarily by suppressing bone resorption in calcium-deficient rats while maintaining the strength of the long bone in rats with magnesium deficiency. These findings suggest that vitamin K2 may not only stimulate bone formation, but may also suppress bone resorption. Thus, vitamin K2 could regulate bone metabolism in rats, which represented the various models of osteoporosis. However, the effects of vitamin K2 on bone mass and bone metabolism seem to be modest. PMID:16642543
Yamamoto, Shoko; Matsushima, Yuta; Kanayama, Yoshitaka; Seki, Azusa; Honda, Haruya; Unuma, Hidero; Sakai, Yasuo
2017-03-01
Calcium phosphate cements (CPCs), consisting of a mixture of calcium phosphate powders and setting liquid, have been widely used in orthopedic applications. One of the drawbacks of CPCs is their poor resorbability in the living body, which hinders substitution with natural bones. One of the strategies to facilitate the resorption of CPCs is the incorporation of bioresorbable or water-soluble pore-generating particles (porogens), such as gelatin, in the CPC matrices. In spite of numerous reports, however, little is known about the effect of the dissolution/resorption rate of the porogens on concomitant bone regeneration. In the present study, we prepared preset CPCs dispersed with 10 mass% of low-endotoxin gelatin particles 200-500 μm in diameter having different heat-treatment histories, therefore exhibiting different dissolution rate, and then the obtained CPC/gelatin composites were evaluated for in vivo resorption and concomitant in vivo bone formation behaviors. As the results, the dispersion of gelatin particles markedly promoted in vivo resorption of CPC, and enhanced concomitant bone formation, connective tissue formation, osteoblast proliferation, and vascularization. The dissolution/resorption rate was able to be controlled by changing the up-front heat-treatment temperature. In particular, when CPC/gelatin composites were implanted in distal metaphysis of rabbits, the optimum dissolution/resorption was attained by heat-treating gelatin particles at 383 K for 24 h before dispersing in CPC. Quick resorption of calcium phosphate cement and concomitant bone formation by dispersing properly heat-treated with gelatin particles.
Biochemical Bone Turnover Markers and Osteoporosis in Older Men: Where Are We?
Szulc, Pawel
2011-01-01
In men aged less than 60, the association of serum and urinary levels of biochemical bone turnover markers (BTMs) and bone mineral density (BMD) is weak or not significant. After this age, higher BTM levels are correlated weakly, but significantly, with lower BMD and faster bone loss. Limited data from the cohort studies suggest that BTM measurement does not improve the prediction of fragility fractures in older men in comparison with age, BMD, history of falls and fragility fractures. Testosterone replacement therapy (TRT) decreases bone resorption. During TRT, bone formation markers slightly increase (direct effect on osteoblasts), then decrease (slowdown of bone turnover). Bisphosphonates (alendronate, risedronate, ibandronate, zoledronate) induce a rapid decrease in bone resorption followed by a milder decrease in bone formation. In men receiving antiresorptive therapy for prostate cancer, zoledronate, denosumab and toremifene decrease significantly levels of bone resorption and bone formation markers. Teriparatide induced a rapid increase in serum concentrations of bone formation markers followed by an increase in bone resorption. We need more studies on the utility of BTM measurement for the improvement of the persistence and adherence to the anti-osteoporotic treatment in men. PMID:22220284
Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells
Florencio-Silva, Rinaldo; Sasso-Cerri, Estela; Simões, Manuel Jesus; Cerri, Paulo Sérgio
2015-01-01
Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling. PMID:26247020
Leptin regulation of bone resorption by the sympathetic nervous system and CART.
Elefteriou, Florent; Ahn, Jong Deok; Takeda, Shu; Starbuck, Michael; Yang, Xiangli; Liu, Xiuyun; Kondo, Hisataka; Richards, William G; Bannon, Tony W; Noda, Masaki; Clement, Karine; Vaisse, Christian; Karsenty, Gerard
2005-03-24
Bone remodelling, the mechanism by which vertebrates regulate bone mass, comprises two phases, namely resorption by osteoclasts and formation by osteoblasts; osteoblasts are multifunctional cells also controlling osteoclast differentiation. Sympathetic signalling via beta2-adrenergic receptors (Adrb2) present on osteoblasts controls bone formation downstream of leptin. Here we show, by analysing Adrb2-deficient mice, that the sympathetic nervous system favours bone resorption by increasing expression in osteoblast progenitor cells of the osteoclast differentiation factor Rankl. This sympathetic function requires phosphorylation (by protein kinase A) of ATF4, a cell-specific CREB-related transcription factor essential for osteoblast differentiation and function. That bone resorption cannot increase in gonadectomized Adrb2-deficient mice highlights the biological importance of this regulation, but also contrasts sharply with the increase in bone resorption characterizing another hypogonadic mouse with low sympathetic tone, the ob/ob mouse. This discrepancy is explained, in part, by the fact that CART ('cocaine amphetamine regulated transcript'), a neuropeptide whose expression is controlled by leptin and nearly abolished in ob/ob mice, inhibits bone resorption by modulating Rankl expression. Our study establishes that leptin-regulated neural pathways control both aspects of bone remodelling, and demonstrates that integrity of sympathetic signalling is necessary for the increase in bone resorption caused by gonadal failure.
Ping, Zichuan; Wang, Zhirong; Shi, Jiawei; Wang, Liangliang; Guo, Xiaobin; Zhou, Wei; Hu, Xuanyang; Wu, Xiexing; Liu, Yu; Zhang, Wen; Yang, Huilin; Xu, Yaozeng; Gu, Ye; Geng, Dechun
2017-10-15
Wear debris-induced peri-implant osteolysis challenges the longevity of implants. The host response to wear debris causes chronic inflammation, promotes bone resorption, and impairs bone formation. We previously demonstrated that melatonin enhances bone formation and attenuates wear debris-induced bone loss in vivo. However, whether melatonin inhibits chronic inflammation and bone resorption at sites of wear debris-induced osteolysis remains unclear. In this study, we examined the potential inhibitory effects of melatonin on titanium particle-induced inflammatory osteolysis in a murine calvarial model and on RANKL-induced osteoclastic formation in bone marrow-derived macrophages. We found that the exogenous administration of melatonin significantly inhibited wear debris-induced bone resorption and the expression of inflammatory cytokines in vivo. Additionally, melatonin inhibited RANKL-induced osteoclast differentiation, F-actin ring formation, and osteoclastic resorption in a concentration-dependent manner in vitro. We also showed that melatonin blocked the phosphorylation of IκB-α and p65, but not IKKα, and significantly inhibited the expression of NFATc1 and c-Fos. However, melatonin had no effect on MAPK or PI3K/AKT signaling pathways. These results provide novel mechanistic insight into the anti-inflammatory and anti-bone resorptive effects of melatonin on wear debris-induced bone loss and provide an evidence-based rationale for the protective effects of melatonin as a treatment for peri-implant osteolysis. Wear debris-induced chronic inflammation, osteoclastic activation and osteoblastic inhibition have been identified as critical factors of peri-implant bone loss. We previously demonstrated that melatonin, a bioactive indolamine secreted mainly by the pineal gland, activates Wnt/β-catenin signaling pathway and enhances bone regeneration at osteolytic site in vivo. In the current study, we further demonstrated that melatonin significantly suppresses wear debris-induced bone resorption and inflammatory cytokine expression in vivo. In addition, melatonin inhibits receptor activator of nuclear factor kappa-B ligand induced osteoclast formation and osteoclastic bone resorption in vitro. Meanwhile, we found that melatonin mediates its anti-inflammation and anti-bone resorption effects by abrogating nuclear factor kappa-B activation. These results further support the protective effects of melatonin on wear debris-induced peri-implant bone loss, and strongly suggest that melatonin could be considered as a potential candidate for the prevention and treatment of wear debris-induced osteolysis and subsequent aseptic loosening. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Weivoda, Megan M; Ruan, Ming; Pederson, Larry; Hachfeld, Christine; Davey, Rachel A; Zajac, Jeffrey D; Westendorf, Jennifer J; Khosla, Sundeep; Oursler, Merry Jo
2016-01-01
Osteoblast-mediated bone formation is coupled to osteoclast-mediated bone resorption. These processes become uncoupled with age, leading to increased risk for debilitating fractures. Therefore, understanding how osteoblasts are recruited to sites of resorption is vital to treating age-related bone loss. Osteoclasts release and activate TGF-β from the bone matrix. Here we show that osteoclastspecific inhibition of TGF-β receptor signaling in mice results in osteopenia due to reduced osteoblast numbers with no significant impact on osteoclast numbers or activity. TGF-β induced osteoclast expression of Wnt1, a protein crucial to normal bone formation, and this response was blocked by impaired TGF-β receptor signaling. Osteoclasts in aged murine bones had lower TGF-β signaling and Wnt1 expression in vivo. Ex vivo stimulation of osteoclasts derived from young or old mouse bone marrow macrophages showed no difference in TGF-β–induced Wnt1 expression. However, young osteoclasts expressed reduced Wnt1 when cultured on aged mouse bone chips compared to young mouse bone chips, consistent with decreased skeletal TGF-β availability with age. Therefore, osteoclast responses to TGF-β are essential for coupling bone resorption to bone formation, and modulating this pathway may provide opportunities to treat age-related bone loss. PMID:26108893
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilmour, Peter S., E-mail: Peter.Gilmour@astrazeneca.com; O'Shea, Patrick J.; Fagura, Malbinder
Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitorsmore » caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH{sub 1–34} or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis and mineralisation produced by GSK-3 inhibition. • In rats, 3 GSK-3 inhibitors produced a unique serum bone turnover biomarker profile. • Enhanced bone formation was seen within 7 to 14 days of compound treatment in rats.« less
Evidence that Resorption of Bone by Rat Peritoneal Macrophages Occurs in an Acidic Environment
NASA Technical Reports Server (NTRS)
Blair, H. C.
1985-01-01
Skeletal loss in space, like any form of osteoporosis, reflects a relative imbalance of the activities of cells resorbing (degrading) or forming bone. Consequently, prevention of weightlessness induced bone loss may theoretically be accomplished by (1) stimulating bone formation or (2) inhibiting bone resorption. This approach, however, requires fundamental understanding of the mechanisms by which cells form or degrade bone, information not yet at hand. An issue central to bone resorption is the pH at which resorption takes place. The pH dependent spectral shift of a fluorescent dye (fluorescein isothiocyanate) conjugated to bone matrix was used to determine the pH at the resorptive cell bone matrix interface. Devitalized rat bone was used as the substrate, and rat peritoneal macrophages were used as the bone resorbing cells. The results suggest that bone resorption is the result of generation of an acidic microenvironment at the cell matrix junction.
Hussein, H; Dulin, J; Smanik, L; Drost, W T; Russell, D; Wellman, M; Bertone, A
2017-08-01
Our investigations evaluated the effect of VEL-0230, a highly specific irreversible inhibitor of cathepsin K (CatK). The objectives of our study were to determine whether repeated dosing of a CatK inhibitor (CatKI) produced a desired inhibition of the bone resorption biomarker (CTX-1), and document the effect of repeated dosing on bone homeostasis, structure, and dynamics of bone resorption and formation in horses. Twelve young exercising horses were randomized in a prospective, controlled clinical trial and received 4 weekly doses of a CatKI or vehicle. Baseline and poststudy nuclear scintigraphy, blood sampling and analysis of plasma bone biomarkers (CTX-1 and osteocalcin), poststudy bone fluorescent labeling, and bone biopsy were performed. Bone specimens were further processed for microcomputed tomography and bone histomorphometry. Each dose of this CatKI transiently inhibited plasma CTX-1 (reflecting inhibition of bone collagen resorption) and increased bone plasma osteocalcin concentrations, with no detectable adverse effect on normal bone turnover in the face of exercise. Bone morphology, density, and formation rate were not different between control and treated group. Further investigation of CatK inhibition in abnormal bone turnover is required in animals with bone diseases. © 2016 John Wiley & Sons Ltd.
Tominari, Tsukasa; Hirata, Michiko; Matsumoto, Chiho; Inada, Masaki; Miyaura, Chisato
2012-01-01
Nobiletin, a polymethoxy flavonoid (PMF), inhibits systemic bone resorption and maintains bone mass in estrogen-deficient ovariectomized mice. This study examined the anti-inflammatory effects of PMFs, nobiletin, and tangeretin on lipopolysaccharide (LPS)-induced bone resorption. Nobiletin and tangeretin suppressed LPS-induced osteoclast formation and bone resorption and suppressed the receptor activator of NFκB ligand-induced osteoclastogenesis in RAW264.7 macrophages. Nobiletin clearly restored the alveolar bone mass in a mouse experimental model for periodontitis by inhibiting LPS-induced bone resorption. PMFs may therefore provide a new therapeutic approach for periodontal bone loss.
[Osteoporosis treatment in patients with hyperthyroidism].
Saito, Jun; Nishikawa, Tetsuo
2009-05-01
Childhood thyroid hormone (T3) is essential for the normal development of endochondral and intramembranous bone and plays an important role in the linear growth and maintenance of bone mass. In adult, T3 stimulates osteoclastic bone resorption mediated primarily by TR alpha and local conversion by deiodinase D2 may play a role in local activation. TSH seems to be an inhibitor of bone resorption and formation. In thyrotoxicosis patients with Graves' disease, there is increased bone remodelling, characterized by an imbalance between bone resorption and formation, which results in a decrease of bone mineral density (BMD) and an increased risk for osteoporotic fracture. Antithyroid treatment is able to reduce dramatically the bone resorption and to normalize BMD reduction. But previous hyperthyroidism is independently associated with an increased risk for fracture. Although further studies relating to the mechanism for possible impaired bone strength in these patients will be needed, bisphosphonates may be beneficial treatment for prevention of bone fractures in patients with severe risk for fractures, such as post-menopausal women.
Bone Balance within a Cortical BMU: Local Controls of Bone Resorption and Formation
Smith, David W.; Gardiner, Bruce S.; Dunstan, Colin
2012-01-01
Maintaining bone volume during bone turnover by a BMU is known as bone balance. Balance is required to maintain structural integrity of the bone and is often dysregulated in disease. Consequently, understanding how a BMU controls bone balance is of considerable interest. This paper develops a methodology for identifying potential balance controls within a single cortical BMU. The theoretical framework developed offers the possibility of a directed search for biological processes compatible with the constraints of balance control. We first derive general control constraint equations and then introduce constitutive equations to identify potential control processes that link key variables that describe the state of the BMU. The paper describes specific local bone volume balance controls that may be associated with bone resorption and bone formation. Because bone resorption and formation both involve averaging over time, short-term fluctuations in the environment are removed, leaving the control systems to manage deviations in longer-term trends back towards their desired values. The length of time for averaging is much greater for bone formation than for bone resorption, which enables more filtering of variability in the bone formation environment. Remarkably, the duration for averaging of bone formation may also grow to control deviations in long-term trends of bone formation. Providing there is sufficient bone formation capacity by osteoblasts, this leads to an extraordinarily robust control mechanism that is independent of either osteoblast number or the cellular osteoid formation rate. A complex picture begins to emerge for the control of bone volume. Different control relationships may achieve the same objective, and the ‘integration of information’ occurring within a BMU may be interpreted as different sets of BMU control systems coming to the fore as different information is supplied to the BMU, which in turn leads to different observable BMU behaviors. PMID:22844401
Novel Radiomitigator for Radiation-Induced Bone Loss
NASA Technical Reports Server (NTRS)
Schreurs, A-S; Shirazi-fard, Y.; Terada, M.; Alwood, J. S.; Steczina, S.; Medina, C.; Tahimic, C. G. T.; Globus, R. K.
2016-01-01
Radiation-induced bone loss can occur with radiotherapy patients, accidental radiation exposure and during long-term spaceflight. Bone loss due to radiation is due to an early increase in oxidative stress, inflammation and bone resorption, resulting in an imbalance in bone remodeling. Furthermore, exposure to high-Linear Energy Transfer (LET) radiation will impair the bone forming progenitors and reduce bone formation. Radiation can be classified as high-LET or low-LET based on the amount of energy released. Dried Plum (DP) diet prevents bone loss in mice exposed to total body irradiation with both low-LET and high-LET radiation. DP prevents the early radiation-induced bone resorption, but furthermore, we show that DP protects the bone forming osteoblast progenitors from high-LET radiation. These results provide insight that DP re-balances the bone remodeling by preventing resorption and protecting the bone formation capacity. This data is important considering that most of the current osteoporosis treatments only block the bone resorption but do not protect bone formation. In addition, DP seems to act on both the oxidative stress and inflammation pathways. Finally, we have preliminary data showing the potential of DP to be radio-protective at a systemic effect and could possible protect other tissues at risk of total body-irradiation such as skin, brain and heart.
Baas, Jorgen; Vestermark, Marianne; Jensen, Thomas; Bechtold, Joan; Soballe, Kjeld; Jakobsen, Thomas
2017-04-01
Bone allograft is used in total joint arthroplasties in order to enhance implant fixation. BMPs are known to stimulate new bone formation within allograft, but also known to accelerate graft resorption. Bisphosphonates are strong inhibitor of bone resorption. The aim of this study was to investigate whether the bisphosphonate zoledronate was able to counteract the accelerated graft resorption without interfering with the BMP induced bone formation. In the present study the two drugs alone and in combination were studied in our canine model of impaction bone grafting. We included 10 dogs in this study. Cancellous allograft bone grafts were soaked in either saline or zoledronate solution (0.005mg/mL) and then vehicle or BMP2 (0.15mg rhBMP2) was added. This produced four treatment groups: A) control, B) BMP2, C) zoledronate and D) BMP2+zoledronate. The allograft treated with A, B, C or D was impacted into a circumferential defect of 2.5mm around HA-coated porous Ti implants. Each dog received all four treatment groups with two implants in the distal part of each femur. The group with allograft soaked in zoledronate (C) showed better biomechanical fixation than all other groups (p<0.05). It had less allograft resorption compared to all other groups (p<0.005) without any statistically significant change in new bone formation. The addition of BMP2 to the allograft did not increase new bone formation significantly, but did accelerate allograft resorption. This was also the case where the allograft was treated with BMP2 and zoledronate in combination (D). This caused a decrease in mechanical implant fixation in both these groups compared to the control group, however only statistically significant for the BMP2 group compared to control. The study shows that topical zoledronate can be a valuable tool for augmenting bone grafts when administered optimally. The use of BMP2 in bone grafting procedures seems associated with a high risk of bone resorption and mechanical weakening. Copyright © 2017 Elsevier Inc. All rights reserved.
Baas, Jorgen; Vestermark, Marianne; Jensen, Thomas; Bechtold, Joan; Soballe, Kjeld; Jakobsen, Thomas
2017-01-01
Bone allograft is used in total joint artroplasties in order to enhance implant fixation. BMPs are known to stimulate new bone formation within allograft, but also known to accelerate graft resorption. Bisphosphonates are strong inhibitor of bone resorption. The aim of this study was to investigate whether the bisphosphonate zoledronate was able to counteract the accelerated graft resorption without interfering with the BMP induced bone formation. In the present study the two drugs alone and in combination were studied in our canine model of impaction bone grafting. We included 10 dogs in this study. Cancellous allograft bone grafts were soaked in either saline or zoledronate solution (0.005 mg/mL) and then vehicle or BMP2 (0.15 mg rhBMP2) was added. This produced four treatment groups: A) control B) BMP2 C) zoledronate and D) BMP2+ zoledronate. The allograft treated with A,B,C or D was impacted into a circumferential defect of 2.5 mm around HA-coated porous Ti implants. Each dog received all four treatment groups with two implants in the distal part of each femur. The group with allograft soaked in zoledronate (C) showed better biomechanical fixation than all other groups (p<0.05). It had less allograft resorption compared to all other groups (p<0.005) without any statistically significant change in new bone formation. The addition of BMP2 to the allograft did not increase new bone formation significantly, but did accelerate allograft resorption. This was also the case where the allograft was treated with BMP2 and zoledronate in combination (D). This caused a decrease in mechanical implant fixation in both these groups compared to the control group, however only statistically significant for the BMP2 group compared to control. The study shows that topical zoledronate can be a valuable tool for augmenting bone grafts when administered optimally. The use of BMP2 in bone grafting procedures seems associated with a high risk of bone resorption and mechanical weakening. PMID:28082076
McGee, Meghan E; Maki, Aaron J; Johnson, Steven E; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W
2008-02-01
Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. Here we show decreased cortical bone turnover during hibernation with balanced formation and resorption in grizzly bear femurs. Hibernating grizzly bear femurs were less porous and more mineralized, and did not demonstrate any changes in cortical bone geometry or whole bone mechanical properties compared to active grizzly bear femurs. The activation frequency of intracortical remodeling was 75% lower during hibernation than during periods of physical activity, but the normalized mineral apposition rate was unchanged. These data indicate that bone turnover decreases during hibernation, but osteons continue to refill at normal rates. There were no changes in regional variation of porosity, geometry, or remodeling indices in femurs from hibernating bears, indicating that hibernation did not preferentially affect one region of the cortex. Thus, grizzly bears prevent bone loss during disuse by decreasing bone turnover and maintaining balanced formation and resorption, which preserves bone structure and strength. These results support the idea that bears possess a biological mechanism to prevent disuse osteoporosis.
WAIF1 Is a Cell-Surface CTHRC1 Binding Protein Coupling Bone Resorption and Formation.
Matsuoka, Kazuhiko; Kohara, Yukihiro; Naoe, Yoshinori; Watanabe, Atsushi; Ito, Masako; Ikeda, Kyoji; Takeshita, Sunao
2018-04-06
The osteoclast-derived collagen triple helix repeat containing 1 (CTHRC1) protein stimulates osteoblast differentiation, but the underlying mechanism remains unclear. Here, we identified Wnt-activated inhibitory factor 1 (WAIF1)/5T4 as a cell-surface protein binding CTHRC1. The WAIF1-encoding Trophoblast glycoprotein (Tpbg) gene, which is abundantly expressed in the brain and bone but not in other tissues, showed the same expression pattern as Cthrc1. Tpbg downregulation in marrow stromal cells reduced CTHRC1 binding and CTHRC1-stimulated alkaline phosphatase activity through PKCδ activation of MEK/ERK, suggesting a novel WAIF1/PKCδ/ERK pathway triggered by CTHRC1. Unexpectedly, osteoblast lineage-specific deletion of Tpbg downregulated Rankl expression in mouse bones and reduced both bone formation and resorption; importantly, it impaired bone mass recovery following RANKL-induced resorption, reproducing the phenotype of osteoclast-specific Cthrc1 deficiency. Thus, the binding of osteoclast-derived CTHRC1 to WAIF1 in stromal cells activates PKCδ-ERK osteoblastogenic signaling and serves as a key molecular link between bone resorption and formation during bone remodeling. © 2018 American Society for Bone and Mineral Research. © 2018 American Society for Bone and Mineral Research.
Impairment of osteoclastic bone resorption in rapidly growing female p47phox knockout mice
USDA-ARS?s Scientific Manuscript database
Bone formation is dependent on the activity and differentiation of osteoblasts; whereas resorption of preexisting mineralized bone matrix by osteoclasts is necessary not only for bone development but also for regeneration and remodeling. Bone remodeling is a process in which osteoblasts and osteocla...
NASA Astrophysics Data System (ADS)
Tang, Anming; Qian, Yu; Liu, Shuang; Wang, Weijuan; Xu, Bing; Qin, An; Liang, Gaolin
2016-05-01
Osteoporosis (OP) is an important aging-related disease and the effective prevention/treatment of this disease remains challenging. Considering the acidic microenvironment of bone resorption lacunae, herein, we rationally designed two pamidronate (Pami)-derivative and alendronate (Alen)-derivative hydrogelators Pami-D and Alen-D which self-assemble into nanofibers to form supramolecular hydrogels under acidic conditions. Cell viability assay, osteoclastogenesis, osteoclastic gene expression, and in vitro bone resorption results indicated that both Pami-D and Alen-D have better inhibitory effects on osteoclastic formation and bone resorption than Pami and Alen, respectively. We anticipate that our new drugs Pami-D and Alen-D could ``smartly'' self-assemble and locally concentrate the drugs at bone resorption lacunae in vivo and subsequently prevent/treat osteoporosis more efficiently.Osteoporosis (OP) is an important aging-related disease and the effective prevention/treatment of this disease remains challenging. Considering the acidic microenvironment of bone resorption lacunae, herein, we rationally designed two pamidronate (Pami)-derivative and alendronate (Alen)-derivative hydrogelators Pami-D and Alen-D which self-assemble into nanofibers to form supramolecular hydrogels under acidic conditions. Cell viability assay, osteoclastogenesis, osteoclastic gene expression, and in vitro bone resorption results indicated that both Pami-D and Alen-D have better inhibitory effects on osteoclastic formation and bone resorption than Pami and Alen, respectively. We anticipate that our new drugs Pami-D and Alen-D could ``smartly'' self-assemble and locally concentrate the drugs at bone resorption lacunae in vivo and subsequently prevent/treat osteoporosis more efficiently. Electronic supplementary information (ESI) available: Experiment methods and details; syntheses and characterization of Pami-D and Alen-D; HPLC conditions; Fig. S1-S15, Schemes S1 and S2, Tables S1 and S2. See DOI: 10.1039/c6nr00843g
Regulatory mechanism of food factors in bone metabolism and prevention of osteoporosis.
Yamaguchi, Masayoshi
2006-11-01
Aging induces a decrease in bone mass, and osteoporosis with its accompanying decrease in bone mass is widely recognized as a major public health problem. Bone loss with increasing age may be due to decreased bone formation and increased bone resorption. Pharmacologic and nutritional factors may prevent bone loss with aging, although chemical compounds in food and plants which act on bone metabolism are poorly understood. We have found that isoflavones (including genistein and daidzein), which are contained in soybeans, have a stimulatory effect on osteoblastic bone formation and an inhibitory effect on osteoclastic bone resorption, thereby increasing bone mass. Menaquinone-7, an analogue of vitamin K(2) which is abundant in fermented soybeans, has been demonstrated to stimulate osteoblastic bone formation and to inhibit osteoclastic bone resorption. Of various carotenoids, beta-cryptoxanthin, which is abundant in Satsuma mandarin (Citrus unchiu MARC), has a stimulatory effect on osteoblastic bone formation and an inhibitory effect on osteoclastic bone resorption. The supplementation of these factors has a preventive effect on bone loss induced by ovariectomy in rats, which are an animal model of osteoporosis, and their intake has been shown to have a stimulatory effect on bone mass in humans. Factors with an anabolic effect on bone metabolism were found in extracts obtained from wasabi leafstalk (Wasabi japonica MATSUM), the marine alga Sargassum horneri, and bee pollen Cistus ladaniferus. Phytocomponent p-hydroxycinnamic acid was also found to have an anabolic effect on bone metabolism. Food chemical factors thus play a role in bone health and may be important in the prevention of bone loss with increasing age.
ASSOCIATION BETWEEN NON-ENZYMATIC GLYCATION, RESORPTION, AND MICRODAMAGE IN HUMAN TIBIAL CORTICES
Karim, Lamya; Diab, Tamim; Vashishth, Deepak
2015-01-01
Purpose/Introduction Changes in the quality of bone material contribute significantly to bone fragility. In order to establish a better understanding of the interaction of the different components of bone quality and their influence on bone fragility we investigated the relationship between non-enzymatic glycation, resorption, and microdamage generated in vivo in cortical bone using bone specimens from the same donors. Methods Total fluorescent advanced glycation end-products (AGEs) were measured in 96 human cortical bone samples from 83 donors. Resorption pit density, average resorption pit area, and percent resorption area were quantified in samples from 48 common donors with AGE measurements. Linear microcrack density and diffuse damage were measured in 21 common donors with AGE and resorption measurements. Correlation analyses were performed between all measured variables to establish the relationships among them and their variation with age. Results We found that average resorption pit area and percent resorption area decreased with increasing AGEs independently of age. Resorption pit density and percent resorption area demonstrated negative age-adjusted correlation with diffuse damage. Furthermore, average resorption pit area, resorption pit density, and percent resorption area were found to decrease significantly with age. Conclusions The current study demonstrated the in vivo interrelationship between the organic constituents, remodeling, and damage formation in cortical bone. In addition to the age-related reduction in resorption, there is a negative correlation between AGEs and resorption independent of age. This inverse relationship indicates that AGEs alter the resorption process and/or accumulate in the tissue as a result of reduced resorption and may lead to bone fragility by adversely affecting fracture resistance through altered bone matrix properties. PMID:25326375
Kassem, Ali; Lindholm, Catharina; Lerner, Ulf H
2016-01-01
Severe Staphylococcus aureus (S. aureus) infections pose an immense threat to population health and constitute a great burden for the health care worldwide. Inter alia, S. aureus septic arthritis is a disease with high mortality and morbidity caused by destruction of the infected joints and systemic bone loss, osteoporosis. Toll-Like receptors (TLRs) are innate immune cell receptors recognizing a variety of microbial molecules and structures. S. aureus recognition via TLR2 initiates a signaling cascade resulting in production of various cytokines, but the mechanisms by which S. aureus causes rapid and excessive bone loss are still unclear. We, therefore, investigated how S. aureus regulates periosteal/endosteal osteoclast formation and bone resorption. S. aureus stimulation of neonatal mouse parietal bone induced ex vivo bone resorption and osteoclastic gene expression. This effect was associated with increased mRNA and protein expression of receptor activator of NF-kB ligand (RANKL) without significant change in osteoprotegerin (OPG) expression. Bone resorption induced by S. aureus was abolished by OPG. S. aureus increased the expression of osteoclastogenic cytokines and prostaglandins in the parietal bones but the stimulatory effect of S. aureus on bone resorption and Tnfsf11 mRNA expression was independent of these cytokines and prostaglandins. Stimulation of isolated periosteal osteoblasts with S. aureus also resulted in increased expression of Tnfsf11 mRNA, an effect lost in osteoblasts from Tlr2 knockout mice. S. aureus stimulated osteoclastogenesis in isolated periosteal cells without affecting RANKL-stimulated resorption. In contrast, S. aureus inhibited RANKL-induced osteoclast formation in bone marrow macrophages. These data show that S. aureus enhances bone resorption and periosteal osteoclast formation by increasing osteoblast RANKL production through TLR2. Our study indicates the importance of using different in vitro approaches for studies of how S. aureus regulates osteoclastogenesis to obtain better understanding of the complex mechanisms of S. aureus induced bone destruction in vivo. PMID:27311019
Mukherjee, Kakoli; Chattopadhyay, Naibedya
2016-10-01
Osteoporosis is a metabolic bone disease that is characterized by heightened state of bone resorption accompanied by diminished bone formation, leading to a reduction of bone mineral density (BMD) and deterioration of bone quality, thus increasing the risk of developing fractures. Molecular insight into bone biology identified cathepsin K (CatK) as a novel therapeutic target. CatK is a lysosomal cysteine protease secreted by activated osteoclasts during bone resorption, whose primary substrate is type I collagen, the major component of organic bone matrix. Available anti-resorptive drugs affect osteoclast survival and influence both resorption and formation of bone. CatK inhibitors are distinct from the existing anti-resorptives as they only target the resorption process itself without impairing osteoclast differentiation and do not interfere with bone formation. An inhibitor of CatK, odanacatib, robustly increased both trabecular and cortical BMD in postmenopausal osteoporosis patients. The phase III fracture prevention trial with odanacatib ended early due to good efficacy and a favorable benefit/risk profile, thus, enhancing the opportunity for CatK as a pharmacological target for osteoporosis. So far, all the inhibitors that reached to the stage of clinical trial targeted active site of CatK to abrogate the entire proteolytic activity of the enzyme in addition to the desired blockage of excessive elastin and collagen degradation, and could thus pose safety concerns with long term use. Identification of selective exosite inhibitors that inhibit CatK's elastase and/or collagenase activity but do not affect the hydrolysis of other physiologically relevant substrates of CatK would be an improved strategy to inhibit this enzyme. Copyright © 2016 Elsevier Inc. All rights reserved.
Smad4 is required to inhibit osteoclastogenesis and maintain bone mass.
Morita, Mayu; Yoshida, Shigeyuki; Iwasaki, Ryotaro; Yasui, Tetsuro; Sato, Yuiko; Kobayashi, Tami; Watanabe, Ryuichi; Oike, Takatsugu; Miyamoto, Kana; Takami, Masamichi; Ozato, Keiko; Deng, Chu-Xia; Aburatani, Hiroyuki; Tanaka, Sakae; Yoshimura, Akihiko; Toyama, Yoshiaki; Matsumoto, Morio; Nakamura, Masaya; Kawana, Hiromasa; Nakagawa, Taneaki; Miyamoto, Takeshi
2016-10-12
Bone homeostasis is maintained as a delicate balance between bone-resorption and bone-formation, which are coupled to maintain appropriate bone mass. A critical question is how bone-resorption is terminated to allow bone-formation to occur. Here, we show that TGFβs inhibit osteoclastogenesis and maintain bone-mass through Smad4 activity in osteoclasts. We found that latent-TGFβ1 was activated by osteoclasts to inhibit osteoclastogenesis. Osteoclast-specific Smad4 conditional knockout mice (Smad4-cKO) exhibited significantly reduced bone-mass and elevated osteoclast formation relative to controls. TGFβ1-activation induced expression of Irf8 and Bcl6, both of which encode factors inhibiting osteoclastogenesis, by blocking their negative regulator, Prdm1, in osteoclasts in a Smad4-dependent manner. Reduced bone-mass and accelerated osteoclastogenesis seen in Smad4-cKO were abrogated by Prdm1 deletion. Administration of latent-TGFβ1-Fc to wild-type mice antagonized LPS-induced bone destruction in a model of activated osteoclast-mediated bone destruction. Thus, latent-TGFβ1-Fc could serve as a promising new therapeutic agent in bone diseases marked by excessive resorption.
Hypercalcaemia and hypocalcaemia: finding the balance.
Body, Jean-Jacques; Niepel, Daniela; Tonini, Giuseppe
2017-05-01
The balance between bone formation and resorption may be disrupted in patients with cancer, leading either to increased bone resorption, calcium release, and possibly hypercalcaemia, or to increased bone formation, sequestration of calcium, and possibly hypocalcaemia. In adults, hypercalcaemia of malignancy is most common in patients with tumours that produce factors that induce osteoclast activation and enhance bone resorption. Impaired renal function and increased renal tubular calcium resorption may further affect calcium levels. Inhibitors of bone resorption, first the bisphosphonates and, later, denosumab, have been shown to be effective in hypercalcaemia treatment. Bisphosphonates (which are administered intravenously) are approved for hypercalcaemia of malignancy and are the current mainstay of treatment, whereas denosumab (which is administered subcutaneously) may offer an option for patients who do not respond to bisphosphonates or suffer from renal insufficiency. TREATMENT AND PREVENTION: Hypocalcaemia is most common in patients with prostate cancer and osteoblastic bone metastases, but can occur in patients with a variety of tumour types who are receiving inhibitors of bone resorption. While patients often respond to calcium and vitamin D supplementation, prevention should be the aim; at-risk patients should be identified before starting treatment with inhibitors of bone resorption, be closely monitored during at least the first few months of treatment, and receive concomitant calcium and vitamin D supplementation unless hypercalcaemia is present. Both hypercalcaemia and hypocalcaemia can be serious if left untreated. It is therefore important that patients with cancer are closely monitored and receive adequate prevention and treatment measures to maintain normal blood calcium levels.
Suzuki, Selly Sayuri; Garcez, Aguinaldo Silva; Suzuki, Hideo; Ervolino, Edilson; Moon, Won; Ribeiro, Martha Simões
2016-12-01
This study evaluated the biological effects of low-level laser therapy (LLLT) on bone remodeling, tooth displacement and root resorption, occurred during the orthodontic tooth movement. Upper first molars of a total of sixty-eight male rats were subjected to orthodontic tooth movement and euthanized on days 3, 6, 9, 14 and 21 days and divided as negative control, control and LLLT group. Tooth displacement and histomorphometric analysis were performed in all animals; scanning electron microscopy analysis was done on days 3, 6 and 9, as well as the immunohistochemistry analysis of RANKL/OPG and TRAP markers. Volumetric changes in alveolar bone were analyzed using MicroCT images on days 14 and 21. LLLT influenced bone resorption by increasing the number of TRAP-positive osteoclasts and the RANKL expression at the compression side. This resulted in less alveolar bone and hyalinization areas on days 6, 9 and 14. LLLT also induced less bone volume and density, facilitating significant acceleration of tooth movement and potential reduction in root resorption besides stimulating bone formation at the tension side by enhancing OPG expression, increasing trabecular thickness and bone volume on day 21. Taken together, our results indicate that LLLT can stimulate bone remodeling reducing root resorption in a rat model. LLLT improves tooth movement via bone formation and bone resorption in a rat model. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Serum markers of bone metabolism show bone loss in hibernating bears
Donahue, S.W.; Vaughan, M.R.; Demers, L.M.; Donahue, H.J.
2003-01-01
Disuse osteopenia was studied in hibernating black bears (Ursus americanus) using serum markers of bone metabolism. Blood samples were collected from male and female, wild black bears during winter denning and active summer periods. Radioimmunoassays were done to determine serum concentrations of cortisol, the carboxy-terminal cross-linked telopeptide, and the carboxy-terminal propeptide of Type I procollagen, which are markers of hone resorption and formation, respectively. The bone resorption marker was significantly higher during winter hibernation than it was in the active summer months, but the bone formation marker was unchanged, suggesting an imbalance in bone remodeling and a net bone loss during disuse. Serum cortisol was significantly correlated with the bone resorption marker, but not with the bone formation marker. The bone formation marker was four- to fivefold higher in an adolescent and a 17-year-old bear early in the remobilization period compared with the later summer months. These findings raise the possibility that hibernating black bears may minimize bone loss during disuse by maintaining osteoblastic function and have a more efficient compensatory mechanism for recovering immobilization-induced bone loss than that of humans or other animals.
Rumpler, M; Würger, T; Roschger, P; Zwettler, E; Sturmlechner, I; Altmann, P; Fratzl, P; Rogers, M J; Klaushofer, K
2013-12-01
The main function of osteoclasts in vivo is the resorption of bone matrix, leaving behind typical resorption traces consisting of pits and trails. The mechanism of pit formation is well described, but less is known about trail formation. Pit-forming osteoclasts possess round actin rings. In this study we show that trail-forming osteoclasts have crescent-shaped actin rings and provide a model that describes the detailed mechanism. To generate a trail, the actin ring of the resorption organelle attaches with one side outside the existing trail margin. The other side of the ring attaches to the wall inside the trail, thus sealing that narrow part to be resorbed next (3–21 lm). This 3D configuration allows vertical resorption layer-by-layer from the surface to a depth in combination with horizontal cell movement. Thus, trails are not just traces of a horizontal translation of osteoclasts during resorption. Additionally, we compared osteoclastic resorption on bone and dentin since the latter is the most frequently used in vitro model and data are extrapolated to bone. Histomorphometric analyses revealed a material-dependent effect reflected by an 11-fold higher resorption area and a sevenfold higher number of pits per square centimeter on dentin compared to bone. An important material-independent aspect was reflected by comparable mean pit area (μm²) and podosome patterns. Hence, dentin promotes the generation of resorbing osteoclasts, but once resorption has started, it proceeds independently of material properties. Thus, dentin is a suitable model substrate for data acquisition as long as osteoclast generation is not part of the analyses.
Monosodium glutamate-sensitive hypothalamic neurons contribute to the control of bone mass
NASA Technical Reports Server (NTRS)
Elefteriou, Florent; Takeda, Shu; Liu, Xiuyun; Armstrong, Dawna; Karsenty, Gerard
2003-01-01
Using chemical lesioning we previously identified hypothalamic neurons that are required for leptin antiosteogenic function. In the course of these studies we observed that destruction of neurons sensitive to monosodium glutamate (MSG) in arcuate nuclei did not affect bone mass. However MSG treatment leads to hypogonadism, a condition inducing bone loss. Therefore the normal bone mass of MSG-treated mice suggested that MSG-sensitive neurons may be implicated in the control of bone mass. To test this hypothesis we assessed bone resorption and bone formation parameters in MSG-treated mice. We show here that MSG-treated mice display the expected increase in bone resorption and that their normal bone mass is due to a concomitant increase in bone formation. Correction of MSG-induced hypogonadism by physiological doses of estradiol corrected the abnormal bone resorptive activity in MSG-treated mice and uncovered their high bone mass phenotype. Because neuropeptide Y (NPY) is highly expressed in MSG-sensitive neurons we tested whether NPY regulates bone formation. Surprisingly, NPY-deficient mice had a normal bone mass. This study reveals that distinct populations of hypothalamic neurons are involved in the control of bone mass and demonstrates that MSG-sensitive neurons control bone formation in a leptin-independent manner. It also indicates that NPY deficiency does not affect bone mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Xinhua; Zhai, Zanjing; Liu, Xuqiang
Highlights: •A natural-derived compound, dioscin, suppresses osteoclast formation and bone resorption. •Dioscin inhibits osteolytic bone loss in vivo. •Dioscin impairs the Akt signaling cascades pathways during osteoclastogenesis. •Dioscin have therapeutic value in treating osteoclast-related diseases. -- Abstract: Bone resorption is the unique function of osteoclasts (OCs) and is critical for both bone homeostasis and pathologic bone diseases including osteoporosis, rheumatoid arthritis and tumor bone metastasis. Thus, searching for natural compounds that may suppress osteoclast formation and/or function is promising for the treatment of osteoclast-related diseases. In this study, we for the first time demonstrated that dioscin suppressed RANKL-mediated osteoclast differentiationmore » and bone resorption in vitro in a dose-dependent manner. The suppressive effect of dioscin is supported by the reduced expression of osteoclast-specific markers. Further molecular analysis revealed that dioscin abrogated AKT phosphorylation, which subsequently impaired RANKL-induced nuclear factor-kappaB (NF-κB) signaling pathway and inhibited NFATc1 transcriptional activity. Moreover, in vivo studies further verified the bone protection activity of dioscin in osteolytic animal model. Together our data demonstrate that dioscin suppressed RANKL-induced osteoclast formation and function through Akt signaling cascades. Therefore, dioscin is a potential natural agent for the treatment of osteoclast-related diseases.« less
McGee-Lawrence, Meghan E; Wojda, Samantha J; Barlow, Lindsay N; Drummer, Thomas D; Castillo, Alesha B; Kennedy, Oran; Condon, Keith W; Auger, Janene; Black, Hal L; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W
2009-12-01
Disuse typically causes an imbalance in bone formation and bone resorption, leading to losses of cortical and trabecular bone. In contrast, bears maintain balanced intracortical remodeling and prevent cortical bone loss during disuse (hibernation). Trabecular bone, however, is more detrimentally affected than cortical bone in other animal models of disuse. Here we investigated the effects of hibernation on bone remodeling, architectural properties, and mineral density of grizzly bear (Ursus arctos horribilis) and black bear (Ursus americanus) trabecular bone in several skeletal locations. There were no differences in bone volume fraction or tissue mineral density between hibernating and active bears or between pre- and post-hibernation bears in the ilium, distal femur, or calcaneus. Though indices of cellular activity level (mineral apposition rate, osteoid thickness) decreased, trabecular bone resorption and formation indices remained balanced in hibernating grizzly bears. These data suggest that bears prevent bone loss during disuse by maintaining a balance between bone formation and bone resorption, which consequently preserves bone structure and strength. Further investigation of bone metabolism in hibernating bears may lead to the translation of mechanisms preventing disuse-induced bone loss in bears into novel treatments for osteoporosis.
McGee-Lawrence, Meghan E.; Wojda, Samantha J.; Barlow, Lindsay N.; Drummer, Thomas D.; Castillo, Alesha B.; Kennedy, Oran; Condon, Keith W.; Auger, Janene; Black, Hal L.; Nelson, O. Lynne; Robbins, Charles T.; Donahue, Seth W.
2009-01-01
Disuse typically causes an imbalance in bone formation and bone resorption, leading to losses of cortical and trabecular bone. In contrast, bears maintain balanced intracortical remodeling and prevent cortical bone loss during disuse (hibernation). Trabecular bone, however, is more detrimentally affected than cortical bone in other animal models of disuse. Here we investigated the effects of hibernation on bone remodeling, architectural properties, and mineral density of grizzly bear (Ursus arctos horribilis) and black bear (Ursus americanus) trabecular bone in several skeletal locations. There were no differences in bone volume fraction or tissue mineral density between hibernating and active bears or between pre- and post-hibernation bears in the ilium, distal femur, or calcaneus. Though indices of cellular activity level (mineral apposition rate, osteoid thickness) decreased, trabecular bone resorption and formation indices remained balanced in hibernating grizzly bears. These data suggest that bears prevent bone loss during disuse by maintaining a balance between bone formation and bone resorption, which consequently preserves bone structure and strength. Further investigation of bone metabolism in hibernating bears may lead to the translation of mechanisms preventing disuse induced bone loss in bears into novel treatments for osteoporosis. PMID:19703606
Liu, Jess; Czernick, Drew; Lin, Shih-Chun; Alasmari, Abeer; Serge, Dibart; Salih, Erdjan
2013-09-01
Egg yolk phosvitin is one of the most highly phosphorylated extracellular matrix proteins known in nature with unique physico-chemical properties deemed to be critical during ex-vivo egg embryo development. We have utilized our unique live mouse calvarial bone organ culture models under conditions which dissociates the two bone remodeling stages, viz., resorption by osteoclasts and formation by osteoblasts, to highlight important and to date unknown critical biological functions of egg phosvitin. In our resorption model live bone cultures were grown in the absence of ascorbate and were stimulated by parathyroid hormone (PTH) to undergo rapid osteoclast formation/differentiation with bone resorption. In this resorption model native phosvitin potently inhibited PTH-induced osteoclastic bone resorption with simultaneous new osteoid/bone formation in the absence of ascorbate (vitamin C). These surprising and critical observations were extended using the bone formation model in the absence of ascorbate and in the presence of phosvitin which supported the above results. The results were corroborated by analyses for calcium release or uptake, tartrate-resistant acid phosphatase activity (marker for osteoclasts), alkaline phosphatase activity (marker for osteoblasts), collagen and hydroxyproline composition, and histological and quantitative histomorphometric evaluations. The data revealed that the discovered bioactivity of phosvitin mirrors that of ascorbate during collagen synthesis and the formation of new osteoid/bone. Complementing those studies use of the synthetic collagen peptide analog and cultured calvarial osteoblasts in conjunction with mass spectrometric analysis provided results that augmented the bone organ culture work and confirmed the capacity of phosvitin to stimulate differentiation of osteoblasts, collagen synthesis, hydroxyproline formation, and biomineralization. There are striking implications and interrelationships of this affect that relates to the evolutionary inactivation of the gene of an enzyme L-gulono-γ-lactone oxidase, which is involved in the final step of ascorbate biosynthesis, in many vertebrate species including passeriform birds, reptiles and teleost fish whose egg yolk contain phosvitin. These represent examples of how developing ex-vivo embryos of such species can achieve connective tissue and skeletal system formation in the absence of ascorbate. Copyright © 2013 Elsevier Inc. All rights reserved.
Bone metabolism and renal stone risk during International Space Station missions.
Smith, Scott M; Heer, Martina; Shackelford, Linda C; Sibonga, Jean D; Spatz, Jordan; Pietrzyk, Robert A; Hudson, Edgar K; Zwart, Sara R
2015-12-01
Bone loss and renal stone risk are longstanding concerns for astronauts. Bone resorption brought on by spaceflight elevates urinary calcium and the risk of renal stone formation. Loss of bone calcium leads to concerns about fracture risk and increased long-term risk of osteoporosis. Bone metabolism involves many factors and is interconnected with muscle metabolism and diet. We report here bone biochemistry and renal stone risk data from astronauts on 4- to 6-month International Space Station missions. All had access to a type of resistive exercise countermeasure hardware, either the Advanced Resistance Exercise Device (ARED) or the Interim Resistance Exercise Device (iRED). A subset of the ARED group also tested the bisphosphonate alendronate as a potential anti-resorptive countermeasure (Bis+ARED). While some of the basic bone marker data have been published, we provide here a more comprehensive evaluation of bone biochemistry with a larger group of astronauts. Regardless of exercise, the risk of renal stone formation increased during spaceflight. A key factor in this increase was urine volume, which was lower during flight in all groups at all time points. Thus, the easiest way to mitigate renal stone risk is to increase fluid consumption. ARED use increased bone formation without changing bone resorption, and mitigated a drop in parathyroid hormone in iRED astronauts. Sclerostin, an osteocyte-derived negative regulator of bone formation, increased 10-15% in both groups of astronauts who used the ARED (p<0.06). IGF-1, which regulates bone growth and formation, increased during flight in all 3 groups (p<0.001). Our results are consistent with the growing body of literature showing that the hyper-resorptive state of bone that is brought on by spaceflight can be countered pharmacologically or mitigated through an exercise-induced increase in bone formation, with nutritional support. Key questions remain about the effect of exercise-induced alterations in bone metabolism on bone strength and fracture risk. Published by Elsevier Inc.
Role of RANKL in bone diseases.
Anandarajah, Allen P
2009-03-01
Bone remodeling is a tightly regulated process of osteoclast-mediated bone resorption, balanced by osteoblast-mediated bone formation. Disruption of this balance can lead to increased bone turnover, resulting in excessive bone loss or extra bone formation and consequent skeletal disease. The receptor activator of nuclear factor kappaB ligand (RANKL) (along with its receptor), the receptor activator of nuclear factor kappaB and its natural decoy receptor, osteoprotegerin, are the final effector proteins of osteoclastic bone resorption. Here, I provide an overview of recent studies that highlight the key role of RANKL in the pathophysiology of several bone diseases and discuss the novel therapeutic approaches afforded by the modulation of RANKL.
Duan, Xiaohong; Liu, Jin; Zheng, Xueni; Wang, Zhe; Zhang, Yanli; Hao, Ying; Yang, Tielin; Deng, Hongwen
2016-01-01
Vacuolar-type H +-ATPase (V-ATPase) is a highly conserved, ancient enzyme that couples the energy of ATP hydrolysis to proton transport across vesicular and plasma membranes of eukaryotic cells. Previously reported mutations of various V-ATPase subunits are associated with increased bone density. We now show that haploinsufficiency for the H subunit of the V1 domain (ATP6V1H) is associated with osteoporosis in humans and mice. A genome-wide SNP array analysis of 1625 Han Chinese found that 4 of 15 tag SNPs (26.7%) within ATP6V1H were significantly associated with low spine bone mineral density. Atp6v1h+/- knockout mice generated by the CRISPR/Cas9 technique had decreased bone remodeling and a net bone matrix loss. Atp6v1h+/- osteoclasts showed impaired bone formation and increased bone resorption. The increased intracellular pH of Atp6v1h+/- osteoclasts downregulated TGF-β1 activation, thereby reducing induction of osteoblast formation but the bone mineralization was not altered. However, bone formation was reduced more than bone resorption. Our data provide evidence that partial loss of ATP6V1H function results in osteoporosis/osteopenia. We propose that defective osteoclast formation triggers impaired bone formation by altering bone remodeling. In the future, ATP6V1H might, therefore, serve as a target for the therapy of osteoporosis. PMID:27924156
Suppressed bone remodeling in black bears conserves energy and bone mass during hibernation
McGee-Lawrence, Meghan; Buckendahl, Patricia; Carpenter, Caren; Henriksen, Kim; Vaughan, Michael; Donahue, Seth
2015-01-01
ABSTRACT Decreased physical activity in mammals increases bone turnover and uncouples bone formation from bone resorption, leading to hypercalcemia, hypercalcuria, bone loss and increased fracture risk. Black bears, however, are physically inactive for up to 6 months annually during hibernation without losing cortical or trabecular bone mass. Bears have been shown to preserve trabecular bone volume and architectural parameters and cortical bone strength, porosity and geometrical properties during hibernation. The mechanisms that prevent disuse osteoporosis in bears are unclear as previous studies using histological and serum markers of bone remodeling show conflicting results. However, previous studies used serum markers of bone remodeling that are known to accumulate with decreased renal function, which bears have during hibernation. Therefore, we measured serum bone remodeling markers (BSALP and TRACP) that do not accumulate with decreased renal function, in addition to the concentrations of serum calcium and hormones involved in regulating bone remodeling in hibernating and active bears. Bone resorption and formation markers were decreased during hibernation compared with when bears were physically active, and these findings were supported by histomorphometric analyses of bone biopsies. The serum concentration of cocaine and amphetamine regulated transcript (CART), a hormone known to reduce bone resorption, was 15-fold higher during hibernation. Serum calcium concentration was unchanged between hibernation and non-hibernation seasons. Suppressed and balanced bone resorption and formation in hibernating bears contributes to energy conservation, eucalcemia and the preservation of bone mass and strength, allowing bears to survive prolonged periods of extreme environmental conditions, nutritional deprivation and anuria. PMID:26157160
Łukaszkiewicz, Jacek; Karczmarewicz, Elzbieta; Płudowski, Paweł; Jaworski, Maciej; Czerwiński, Edward; Lewiński, Andrzej; Marcinowska-Suchowierska, Ewa; Milewicz, Andrzej; Spaczyński, Marek; Lorenc, Roman S
2008-12-01
One of the most important risk factors for osteoporotic fractures in postmenopausal women is elevated bone turnover (EBT), occurring in 25-30% of this population. This study's aim was to find a correlation between bone resorption and bone formation markers to assess bone turnover rate and qualify an individual postmenopausal woman as a possible EBT subject. Three hundred twenty postmenopausal women (> or = one year after the last menstruation, < or = 70 years old) were enrolled at seven clinical sites in this cross-sectional observational study conducted within the EPOLOS. The group was a random sample of the population. The study was performed in a referral center involved in the diagnosis and treatment of osteoporosis. The exclusion criteria included pregnancy, cancer, fracture in the last year, and overweight (> 100 kg). Bone mineral density (BMD) measurements of the lumbar spine, total hip, trochanter, and femoral neck regions were performed. Bone resorption and formation rates were evaluated by serum levels of C-terminal telopeptide of type I collagen (CTX) and osteocalcin (OC), respectively. Using logistic regression to correlate the concentrations of CTX and OC it was possible not only to distinguish the EBT subgroup, but also to construct a simple nomogram for easy classification of individual patients as possible EBT subjects. EBT patients showed generally decreased BMD values and increased bone formation and resorption rates. Evaluation of both CTX and OC levels enables a more proper indication for EBT. The proposed nomogram may assist in evaluating outcome from the two markers of bone turnover.
Responds of Bone Cells to Microgravity: Ground-Based Research
NASA Astrophysics Data System (ADS)
Zhang, Jian; Li, Jingbao; Xu, Huiyun; Yang, Pengfei; Xie, Li; Qian, Airong; Zhao, Yong; Shang, Peng
2015-11-01
Severe loss of bone occurs due to long-duration spaceflight. Mechanical loading stimulates bone formation, while bone degradation happens under mechanical unloading. Bone remodeling is a dynamic process in which bone formation and bone resorption are tightly coupled. Increased bone resorption and decreased bone formation caused by reduced mechanical loading, generally result in disrupted bone remodeling. Bone remodeling is orchestrated by multiple bone cells including osteoblast, osteocyte, osteoclast and mesenchymal stem cell. It is yet not clear that how these bone cells sense altered gravity, translate physical stimulus into biochemical signals, and then regulate themselves structurally and functionally. In this paper, studies elucidating the bioeffects of microgravity on bone cells (osteoblast, osteocyte, osteoclast, mesenchymal stem cell) using various platforms including spaceflight and ground-based simulated microgravity were summarized. Promising gravity-sensitive signaling pathways and protein molecules were proposed.
Keune, Jessica A; Philbrick, Kenneth A; Branscum, Adam J; Iwaniec, Urszula T; Turner, Russell T
2016-01-01
There is often a reciprocal relationship between bone marrow adipocytes and osteoblasts, suggesting that marrow adipose tissue (MAT) antagonizes osteoblast differentiation. MAT is increased in rodents during spaceflight but a causal relationship between MAT and bone loss remains unclear. In the present study, we evaluated the effects of a 14-day spaceflight on bone mass, bone resorption, bone formation, and MAT in lumbar vertebrae of ovariectomized (OVX) rats. Twelve-week-old OVX Fischer 344 rats were randomly assigned to a ground control or flight group. Following flight, histological sections of the second lumbar vertebrae (n=11/group) were stained using a technique that allowed simultaneous quantification of cells and preflight fluorochrome label. Compared with ground controls, rats flown in space had 32% lower cancellous bone area and 306% higher MAT. The increased adiposity was due to an increase in adipocyte number (224%) and size (26%). Mineral apposition rate and osteoblast turnover were unchanged during spaceflight. In contrast, resorption of a preflight fluorochrome and osteoclast-lined bone perimeter were increased (16% and 229%, respectively). The present findings indicate that cancellous bone loss in rat lumbar vertebrae during spaceflight is accompanied by increased bone resorption and MAT but no change in bone formation. These findings do not support the hypothesis that increased MAT during spaceflight reduces osteoblast activity or lifespan. However, in the context of ovarian hormone deficiency, bone formation during spaceflight was insufficient to balance increased resorption, indicating defective coupling. The results are therefore consistent with the hypothesis that during spaceflight mesenchymal stem cells are diverted to adipocytes at the expense of forming osteoblasts. PMID:28725730
Bone remodeling and calcium homeostasis in patients with spinal cord injury: a review.
Maïmoun, Laurent; Fattal, Charles; Sultan, Charles
2011-12-01
Patients with spinal cord injury exhibit early and acute bone loss with the major functional consequence being a high incidence of pathological fractures. The bone status of these patients is generally investigated by dual-energy x-ray absorptiometry, but this technique does not reveal the pathophysiological mechanism underlying the bone loss. Bone cell activity can be indirectly evaluated by noninvasive techniques, including measurement of specific biochemical markers of bone formation (such as osteocalcin or bone-alkaline phosphatase) and resorption (such as procollagen type I N- or C-terminal propeptide). The bone loss in spinal cord injury is clearly due to an uncoupling of bone remodeling in favor of bone resorption, which starts just after the injury and peaks at about 1 to 4 months. Beyond 6 months, bone resorption activity decreases progressively but remains elevated for many years after injury. Conversely, bone formation is less affected. Antiresorptive treatment induces an early and acute reduction in bone resorption markers. Level of injury and health-related complications do not seem to be implicated in the intensity of bone resorption. During the acute phase, the hypercalcemic status is associated with the suppression of parathyroid hormone and vitamin D metabolites. The high sensitivity of these markers after treatment suggests that they can be used for monitoring treatment efficacy and patient compliance. The concomitant use of bone markers and dual-energy x-ray absorptiometry may improve the physician's ability to detect patients at risk of severe bone loss and subsequent fractures. Copyright © 2011 Elsevier Inc. All rights reserved.
Collin-Osdoby, P; Rothe, L; Bekker, S; Anderson, F; Osdoby, P
2000-03-01
High nitric oxide (NO) levels inhibit osteoclast (OC)-mediated bone resorption in vivo and in vitro, and nitrate donors protect against estrogen-deficient bone loss in postmenopausal women. Conversely, decreased NO production potentiates OC bone resorption in vitro and is associated with in vivo bone loss in rats and humans. Previously, we reported that bone sections from rats administered aminoguanidine (AG), a selective inhibitor of NO production via inducible NO synthase, exhibited both increased OC resorptive activity as well as greater numbers of OC. Here, we investigated further whether AG promoted osteoclastogenesis, in addition to stimulating mature OC function, using a modified in vivo chick chorioallantoic membrane (CAM) system and an in vitro chick bone marrow OC-like cell developmental model. AG, focally administered in small agarose plugs placed directly adjacent to a bone chip implanted on the CAM, dose-dependently elicited neoangiogenesis while stimulating the number, size, and bone pit resorptive activity of individual OC ectopically formed in vivo. In addition to enhancing OC precursor recruitment via neoangiogenesis, AG also exerted other vascular-independent effects on osteoclastogenesis. Thus, AG promoted the in vitro fusion and formation from bone marrow precursor cells of larger OC-like cells that contained more nuclei per cell and exhibited multiple OC differentiation markers. AG stimulated development was inversely correlated with declining medium nitrite levels. In contrast, three different NO donors each dose-dependently inhibited in vitro OC-like cell development while raising medium nitrite levels. Therefore, NO sensitively regulates OC-mediated bone resorption through affecting OC recruitment (angiogenesis), formation (fusion and differentiation), and bone resorptive activity in vitro and in vivo. Possibly, the stimulation of neoangiogenesis and OC-mediated bone remodeling via AG or other pro-angiogenic agents may find clinical applications in reconstructive surgery, fracture repair, or the treatment of avascular necrosis.
Walker, Emma C.; McGregor, Narelle E.; Poulton, Ingrid J.; Solano, Melissa; Pompolo, Sueli; Fernandes, Tania J.; Constable, Matthew J.; Nicholson, Geoff C.; Zhang, Jian-Guo; Nicola, Nicos A.; Gillespie, Matthew T.; Martin, T. John; Sims, Natalie A.
2010-01-01
Effective osteoporosis therapy requires agents that increase the amount and/or quality of bone. Any modification of osteoclast-mediated bone resorption by disease or drug treatment, however, elicits a parallel change in osteoblast-mediated bone formation because the processes are tightly coupled. Anabolic approaches now focus on uncoupling osteoblast action from osteoclast formation, for example, by inhibiting sclerostin, an inhibitor of bone formation that does not influence osteoclast differentiation. Here, we report that oncostatin M (OSM) is produced by osteoblasts and osteocytes in mouse bone and that it has distinct effects when acting through 2 different receptors, OSM receptor (OSMR) and leukemia inhibitory factor receptor (LIFR). Specifically, mouse OSM (mOSM) inhibited sclerostin production in a stromal cell line and in primary murine osteoblast cultures by acting through LIFR. In contrast, when acting through OSMR, mOSM stimulated RANKL production and osteoclast formation. A key role for OSMR in bone turnover was confirmed by the osteopetrotic phenotype of mice lacking OSMR. Furthermore, in contrast to the accepted model, in which mOSM acts only through OSMR, mOSM inhibited sclerostin expression in Osmr–/– osteoblasts and enhanced bone formation in vivo. These data reveal what we believe to be a novel pathway by which bone formation can be stimulated independently of bone resorption and provide new insights into OSMR and LIFR signaling that are relevant to other medical conditions, including cardiovascular and neurodegenerative diseases and cancer. PMID:20051625
Mohanty, Sindhu T.; Seckinger, Anja; Terry, Rachael L.; Pettitt, Jessica A.; Simic, Marija K.; Le, Lawrence M. T.; Kramer, Ina; Falank, Carolyne; Fairfield, Heather; Ghobrial, Irene M.; Baldock, Paul A.; Little, David G.; Kneissel, Michaela; Vanderkerken, Karin; Bassett, J. H. Duncan; Williams, Graham R.; Oyajobi, Babatunde O.; Hose, Dirk
2017-01-01
Multiple myeloma (MM) is a plasma cell cancer that develops in the skeleton causing profound bone destruction and fractures. The bone disease is mediated by increased osteoclastic bone resorption and suppressed bone formation. Bisphosphonates used for treatment inhibit bone resorption and prevent bone loss but fail to influence bone formation and do not replace lost bone, so patients continue to fracture. Stimulating bone formation to increase bone mass and fracture resistance is a priority; however, targeting tumor-derived modulators of bone formation has had limited success. Sclerostin is an osteocyte-specific Wnt antagonist that inhibits bone formation. We hypothesized that inhibiting sclerostin would prevent development of bone disease and increase resistance to fracture in MM. Sclerostin was expressed in osteocytes from bones from naive and myeloma-bearing mice. In contrast, sclerostin was not expressed by plasma cells from 630 patients with myeloma or 54 myeloma cell lines. Mice injected with 5TGM1-eGFP, 5T2MM, or MM1.S myeloma cells demonstrated significant bone loss, which was associated with a decrease in fracture resistance in the vertebrae. Treatment with anti-sclerostin antibody increased osteoblast numbers and bone formation rate but did not inhibit bone resorption or reduce tumor burden. Treatment with anti-sclerostin antibody prevented myeloma-induced bone loss, reduced osteolytic bone lesions, and increased fracture resistance. Treatment with anti-sclerostin antibody and zoledronic acid combined increased bone mass and fracture resistance when compared with treatment with zoledronic acid alone. This study defines a therapeutic strategy superior to the current standard of care that will reduce fractures for patients with MM. PMID:28515094
Rapidly Assessing Changes in Bone Mineral Balance Using Natural Stable Calcium Isotopes
NASA Technical Reports Server (NTRS)
Morgan, J. L. L.; Gordon, G. W.; Romaniello, S. J.; Skulan, J. L.; Smith, S. M.; Anbar, A. D.
2011-01-01
We demonstrate that variations in the Ca isotope ratios in urine rapidly and quantitatively reflect changes in bone mineral balance. This variation occurs because bone formation depletes soft tissue of light Ca isotopes, while bone resorption releases that isotopically light Ca back into soft tissue. In a study of 12 individuals confined to bed rest, a condition known to induce bone resorption, we show that Ca isotope ratios shift in a direction consistent with net bone loss after just 7 days, long before detectible changes in bone density occur. Consistent with this interpretation, the Ca isotope variations track changes observed in N-teleopeptide, a bone resorption biomarker, while bone-specific alkaline phosphatase, a bone formation biomarker, is unchanged. Ca isotopes can in principle be used to quantify net changes in bone mass. Ca isotopes indicate an average loss of 0.62 +/- 0.16 % in bone mass over the course of this 30-day study. The Ca isotope technique should accelerate the pace of discovery of new treatments for bone disease and provide novel insights into the dynamics of bone metabolism.
Improved bone metabolism in female elite athletes after vitamin K supplementation.
Craciun, A M; Wolf, J; Knapen, M H; Brouns, F; Vermeer, C
1998-10-01
In female elite athletes strenuous exercise may result in hypoestrogenism and amenorrhoea. As a consequence a low peak bone mass and rapid bone loss are often seen in relatively young athletes. In postmenopausal women, increased intake of vitamin K may result in an increase of serum markers for bone formation, a decrease of urinary markers for bone resorption, and a decrease in urinary calcium loss. In the present paper we report an intervention study among eight female athletes, four of whom had been amenorrhoeic for more than one year, whereas the others had been using oral contraceptives. All participants received vitamin K supplementation (10 mg/day) during one month, and various bone markers were measured before and after treatment. At baseline the athletes not using oral contraceptives were biochemically vitamin K-deficient as deduced from the calcium binding capacity of the circulating bone protein osteocalcin. In all subjects increased vitamin K was associated with an increased calcium-binding capacity of osteocalcin. In the low-estrogen group vitamin K supplementation induced a 15-20% increase of bone formation markers and a parallel 20-25% decrease of bone resorption markers. This shift is suggestive for an improved balance between bone formation and resorption.
Volejnikova, S.; Laskari, M.; Marks, S. C.; Graves, D. T.
1997-01-01
Tooth eruption is defined as the movement of a tooth from its site of development within the alveolar bone to its position of function in the oral cavity. It represents an excellent model to examine osseous metabolism as bone resorption and bone formation occur simultaneously and are spatially separated. Bone resorption occurs in the coronal (occlusal) area, whereas bone formation occurs in the basal area. Monocytes are thought to have a significant role in the regulation of osseous metabolism. The goal of this study was to examine the recruitment of monocytes to bone in C57BL/6J mice that are undergoing developmentally regulated bone remodeling. Monocytes were detected by immunohistochemistry and osteoclasts were counted as bone-associated multi-nucleated, tartrate-resistant acid phosphatase (TRAP)-positive cells. Cell numbers were obtained from histological sections of animals sacrificed daily for 14 days after birth; an image analysis system was used for quantification. The results demonstrated that, immediately after birth, there were relatively few monocytic cells. In the area of bone resorption, the number of monocytes increased with time, reaching peaks at 5 and 9 days, and decreased thereafter. A similar pattern was observed for osteoclasts. In the area of bone formation, there was a time-dependent increase in the number of monocytes. In contrast, the number of osteoclasts in this area was highest at the earliest time points and decreased after day 3. To investigate potential mechanisms for the recruitment of monocytes, expression of monocyte chemoattractant protein (MCP)-1 was assessed. The number of MCP-1-positive cells increased with time and was generally proportional to the recruitment of mononuclear phagocytes. Osteoblasts were the principal bone cell type expressing MCP-1. The results demonstrate that the recruitment of mononuclear cells in the occlusal area is associated with bone resorption. In contrast, recruitment of monocytes in the basal area is associated with bone formation and a decrease in the number of osteoclasts. These results suggest that monocytes have different functional roles in areas of bone formation compared with bone resorption. Furthermore, the expression of MCP-1 is developmentally regulated and may provide a mechanistic basis to explain the recruitment of monocytic cells. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9137095
Osteoinductive effect of bone bank allografts on human osteoblasts in culture.
de la Piedra, Concepción; Vicario, Carlos; de Acuña, Lucrecia Rodríguez; García-Moreno, Carmen; Traba, Maria Luisa; Arlandis, Santiago; Marco, Fernando; López-Durán, Luis
2008-02-01
Incorporation of a human bone allograft requires osteoclast activity and growth of recipient osteoblasts. The aim of this work was to study the effects produced by autoclavated and -80 degrees C frozen bone allografts on osteoblast proliferation and synthesis of interleukin 6 (IL6), activator of bone resorption, aminoterminal propeptide of procollagen I (PINP), marker of bone matrix formation, and osteoprotegerin (OPG), inhibitor of osteoclast activity and differentiation. Allografts were obtained from human femoral heads. Human osteoblasts were cultured in the presence (problem group) or in the absence (control group) of allografts during 15 days. Allografts produced a decrease in osteoblast proliferation in the first week of the experiment, and an increase in IL6 mRNA, both at 3 h and 2 days, and an increase in the IL6 released to the culture medium the second day of the experiment. We found a decrease in OPG released to the culture on the 2nd and fourth days. These results suggest an increase in bone resorption and a decrease in bone formation in the first week of the experiment. In the second week, allografts produced an increase in osteoblast proliferation and PINP release to the culture medium, indicating an increase in bone formation; an increase in OPG released to the culture medium, which would indicate a decrease in bone resorption; and a decrease in IL6, indicating a decrease in bone resorption stimulation. These results demonstrate that autoclavated and -80 degrees C frozen bone allografts produce in bone environment changes that regulate their own incorporation to the recipient bone.
Pharmacological management of osteogenesis
Nardone, Valeria; D'Asta, Federica; Brandi, Maria Luisa
2014-01-01
Osteogenesis and bone remodeling are complex biological processes that are essential for the formation of new bone tissue and its correct functioning. When the balance between bone resorption and formation is disrupted, bone diseases and disorders such as Paget's disease, fibrous dysplasia, osteoporosis and fragility fractures may result. Recent advances in bone cell biology have revealed new specific targets for the treatment of bone loss that are based on the inhibition of bone resorption by osteoclasts or the stimulation of bone formation by osteoblasts. Bisphosphonates, antiresorptive agents that reduce bone resorption, are usually recommended as first-line therapy in women with postmenopausal osteoporosis. Numerous studies have shown that bisphosphonates are able to significantly reduce the risk of femoral and vertebral fractures. Other antiresorptive agents indicated for the treatment of osteoporosis include selective estrogen receptor modulators, such as raloxifene. Denosumab, a human monoclonal antibody, is another antiresorptive agent that has been approved in Europe and the USA. This agent blocks the RANK/RANKL/OPG system, which is responsible for osteoclastic activation, thus reducing bone resorption. Other approved agents include bone anabolic agents, such as teriparatide, a recombinant parathyroid hormone that improves bone microarchitecture and strength, and strontium ranelate, considered to be a dual-action drug that acts by both osteoclastic inhibition and osteoblastic stimulation. Currently, anti-catabolic drugs that act through the Wnt-β catenin signaling pathway, serving as Dickkopf-related protein 1 inhibitors and sclerostin antagonists, are also in development. This concise review provides an overview of the drugs most commonly used for the control of osteogenesis in bone diseases. PMID:24964310
Liu, X. Sherry; Huang, Angela H.; Zhang, X. Henry; Sajda, Paul; Ji, Baohua; Guo, X. Edward
2008-01-01
A three dimensional (3D) computational simulation of dynamic process of trabecular bone remodeling was developed with all the parameters derived from physiological and clinical data. Contributions of the microstructural bone formation deficits: trabecular plate perforations, trabecular rod breakages, and isolated bone fragments, to the rapid bone loss and disruption of trabecular microarchitecture during menopause were studied. Eighteen human trabecular bone samples from femoral neck (FN) and spine were scanned using a micro computed tomography (μCT) system. Bone resorption and formation were simulated as a computational cycle corresponding to 40-day resorption/160-day formation. Resorption cavities were randomly created over the bone surface according to the activation frequency, which was strictly based on clinical data. Every resorption cavity was refilled during formation unless it caused trabecular plate perforation, trabecular rod breakage or isolated fragments. A 20-year-period starting 5 years before and ending 15 years after menopause was simulated for each specimen. Elastic moduli, standard and individual trabeculae segmentation (ITS)-based morphological parameters were evaluated for each simulated 3D image. For both spine and FN groups, the time courses of predicted bone loss pattern by microstructural bone formation deficits were fairly consistent with the clinical measurements. The percentage of bone loss due to trabecular plate perforation, trabecular rod breakage, and isolated bone fragments were 73.2%, 18.9% and 7.9% at the simulated 15 years after menopause. The ITS-based plate fraction (pBV/BV), mean plate surface area (pTb.S), plate number density (pTb.N), and mean rod thickness (rTb.Th) decreased while rod fraction (rBV/BV) and rod number density (rTb.N) increased after the simulated menopause. The dynamic bone remodeling simulation based on microstructural bone formation deficits predicted the time course of menopausal bone loss pattern of spine and FN. Microstructural plate perforation could be the primary cause of menopausal trabecular bone loss. The combined effect of trabeculae perforation, breakage, and isolated fragments resulted in fewer and smaller trabecular plates and more but thinner trabecular rods. PMID:18550463
Immobilization-associated osteoporosis in primates
NASA Technical Reports Server (NTRS)
Young, D. R.; Niklowitz, W. J.; Brown, R. J.; Jee, W. S. S.
1986-01-01
Osteopenic changes in the tibial compact bone of fifteen adult male monkeys immobilized for up to 7 months are examined histologically. Osteonal formation in the proximal tibia is analyzed. The analysis reveals the loss of haversian bone in the proximal tibia, increased activation with excessive depth of penetration of osteoclastic activity, rapid bone loss, and resorption cavities of irregular size and orientation. Osteonal formation following reambulation is examined; the recovery of cortical is a repair and rejuvenation process characterized by refilling of resorption cavities and remodeling activities.
Kim, Jung-Lye; Kang, Min-Kyung; Gong, Ju-Hyun; Park, Sin-Hye; Han, Seon-Young; Kang, Young-Hee
2012-08-01
Bone-remodeling imbalance resulting in more bone resorption than bone formation is known to cause skeletal diseases such as osteoporosis. Phloretin, a natural dihydrochalcone compound largely present in apple peels, possesses antiphotoaging, and antiinflammatory activity. Phloretin inhibited receptor activator of NF-κB ligand (RANKL)-induced formation of multinucleated osteoclasts and diminished bone resorption area produced during the osteoclast differentiation process. It was also found that ≥ 10 μM phloretin reduced RANKL-enhanced tartrate-resistance acid phosphatase activity and matrix metalloproteinase-9 secretion in a dose-dependent manner. The phloretin treatment retarded RANKL-induced expression of carbonic anhydrase II, vacuolar-type H(+) -ATPase D2 and β3 integrin, all involved in the bone resorption. Furthermore, submicromolar phloretin diminished the expression and secretion of cathepsin K elevated by RANKL, being concurrent with inhibition of TRAF6 induction and NF-κB activation. RANKL-induced activation of nuclear factor of activated T cells c1 (NFATc1) and microphthalmia-associated transcription factor was also suppressed by phloretin. These results demonstrate that the inhibition of osteoclast differentiation and bone resorption by phloretin entail a disturbance of TRAF6-NFATc1-NF-κB pathway triggered by RANKL. Therefore, phloretin may be a potential therapeutic agent targeting osteoclast differentiation and bone resorption in skeletal diseases such as osteoporosis. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hypergravity suppresses bone resorption in ovariectomized rats
NASA Astrophysics Data System (ADS)
Ikawa, Tesshu; Kawaguchi, Amu; Okabe, Takahiro; Ninomiya, Tadashi; Nakamichi, Yuko; Nakamura, Midori; Uehara, Shunsuke; Nakamura, Hiroaki; Udagawa, Nobuyuki; Takahashi, Naoyuki; Nakamura, Hiroaki; Wakitani, Shigeyuki
2011-04-01
The effects of gravity on bone metabolism are unclear, and little has been reported about the effects of hypergravity on the mature skeleton. Since low gravity has been shown to decrease bone volume, we hypothesized that hypergravity increases bone volume. To clarify this hypothesis, adult female rats were ovariectomized and exposed to hypergravity (2.9G) using a centrifugation system. The rats were killed 28 days after the start of loading, and the distal femoral metaphysis of the rats was studied. Bone architecture was assessed by micro-computed tomography (micro-CT) and bone mineral density was measured using peripheral quantitative CT (pQCT). Hypergravity increased the trabecular bone volume of ovariectomized rats. Histomorphometric analyses revealed that hypergravity suppressed both bone formation and resorption and increased bone volume in ovariectomized rats. Further, the cell morphology, activity, proliferation, and differentiation of osteoclasts and osteoblasts exposed to hypergravity were evaluated in vitro. Hypergravity inhibited actin ring formation in mature osteoclasts, which suggested that the osteoclast activity was suppressed. However, hypergravity had no effect on osteoblasts. These results suggest that hypergravity can stimulate an increase in bone volume by suppressing bone resorption in ovariectomized rats.
Inhibition of Osteoclast Differentiation and Bone Resorption by N-Methylpyrrolidone*
Ghayor, Chafik; Correro, Rita M.; Lange, Katrin; Karfeld-Sulzer, Lindsay S.; Grätz, Klaus W.; Weber, Franz E.
2011-01-01
Regulation of RANKL (receptor activator of nuclear factor κB ligand)-induced osteoclast differentiation is of current interest in the development of antiresorptive agents. Osteoclasts are multinucleated cells that play a crucial role in bone resorption. In this study, we investigated the effects of N-methylpyrrolidone (NMP) on the regulation of RANKL-induced osteoclastogenesis. NMP inhibited RANKL-induced tartrate-resistant acid phosphatase activity and the formation of tartrate-resistant acid phosphatase-positive multinucleated cells. The RANKL-induced expression of NFATc1 (nuclear factor of activated T cells, cytoplasmic 1) and c-Fos, which are key transcription factors for osteoclastogenesis, was also reduced by treatment with NMP. Furthermore, NMP induced disruption of the actin rings and decreased the mRNAs of cathepsin K and MMP-9 (matrix metalloproteinase-9), both involved in bone resorption. Taken together, these results suggest that NMP inhibits osteoclast differentiation and attenuates bone resorption. Therefore, NMP could prove useful for the treatment of osteoporosis or other bone diseases associated with excessive bone resorption. PMID:21613210
Quint, Patrick; Ruan, Ming; Pederson, Larry; Kassem, Moustapha; Westendorf, Jennifer J.; Khosla, Sundeep; Oursler, Merry Jo
2013-01-01
Normal bone turnover requires tight coupling of bone resorption and bone formation to preserve bone quantity and structure. With aging and during several pathological conditions, this coupling breaks down, leading to either net bone loss or excess bone formation. To preserve or restore normal bone metabolism, it is crucial to determine the mechanisms by which osteoclasts and osteoblast precursors interact and contribute to coupling. We showed that osteoclasts produce the chemokine sphingosine 1-phosphate (S1P), which stimulates osteoblast migration. Thus, osteoclast-derived S1P may recruit osteoblasts to sites of bone resorption as an initial step in replacing lost bone. In this study we investigated the mechanisms by which S1P stimulates mesenchymal (skeletal) cell chemotaxis. S1P treatment of mesenchymal (skeletal) cells activated RhoA GTPase, but this small G protein did not contribute to migration. Rather, two S1P receptors, S1PR1 and S1PR2, coordinately promoted migration through activation of the JAK/STAT3 and FAK/PI3K/AKT signaling pathways, respectively. These data demonstrate that the chemokine S1P couples bone formation to bone resorption through activation of kinase signaling pathways. PMID:23300082
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Feng; Shen, Yi; Liu, Bo
Bone is a rigid yet dynamic organ, and this dynamism is mediated by the delicate balance between osteoclastic bone resorption and osteoblastic bone formation. However, excessive activation of osteoclasts is responsible for many bone diseases such as osteoporosis, Paget disease, and tumor bone metastasis. Agents that could inhibit osteoclast formation or function are regarded as promising alternatives to treat osteoclast-related diseases. Recently, traditional Chinese medicine has attracted attention because of its multiple activities in bone metabolism. Among them, gastrodin has been reported as an anti-osteoporosis agent that reduces reactive oxygen species. However, the direct action of gastrodin on osteoclast differentiationmore » and bone resorption, and its underlying molecular mechanism, remain unknown. In this study, we investigated the effects of gastrodin on receptor activator NF-κB ligand (RANKL)-activated osteoclasts formation and bone resorption. Our results showed that gastrodin retarded RANKL-induced osteoclast differentiation efficiently by downregulating transcriptional and translational expression of nuclear factor of activated T cells cl (NFATc1), a major factor in RANKL-mediated osteoclastogenesis. Meanwhile, gastrodin prevented osteoclast maturation and migration by inhibiting the gene expression of dendrocyte expressed seven transmembrane protein (DC-STAMP), an osteoclastic-specific gene that controls cells fusion and movement. And gastrodin prevented RANKL-induced osteoclastic bone erosion in vitro. In addition, gastrodin also stimulated bone mesenchymal stem cell (BMSC) spreading and osseointegration in titanium plate. In summary, gastrodin could prevent osteoclasts formation and bone resorption via blockage of NFATc1 activity, and stimulate osseointegration in vitro. Gastrodin could be developed as a potent phytochemical candidate to treat osteolytic diseases. - Highlights: • Gastrodin suppresses osteoclasts formation and function in vitro. • Gastrodin impairs NFATc1 activation. • Gastrodin stimulates osseointegration in vitro. • Gastrodin may be used for treating osteoclast related diseases.« less
Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair.
Paiva, Katiucia B S; Granjeiro, José M
2017-01-01
Matrix metalloproteinases (MMPs) are the major protease family responsible for the cleavage of the matrisome (global composition of the extracellular matrix (ECM) proteome) and proteins unrelated to the ECM, generating bioactive molecules. These proteins drive ECM remodeling, in association with tissue-specific and cell-anchored inhibitors (TIMPs and RECK, respectively). In the bone, the ECM mediates cell adhesion, mechanotransduction, nucleation of mineralization, and the immobilization of growth factors to protect them from damage or degradation. Since the first description of an MMP in bone tissue, many other MMPs have been identified, as well as their inhibitors. Numerous functions have been assigned to these proteins, including osteoblast/osteocyte differentiation, bone formation, solubilization of the osteoid during bone resorption, osteoclast recruitment and migration, and as a coupling factor in bone remodeling under physiological conditions. In turn, a number of pathologies, associated with imbalanced bone remodeling, arise mainly from MMP overexpression and abnormalities of the ECM, leading to bone osteolysis or bone formation. In this review, we will discuss the functions of MMPs and their inhibitors in bone cells, during bone remodeling, pathological bone resorption (osteoporosis and bone metastasis), bone repair/regeneration, and emergent roles in bone bioengineering. © 2017 Elsevier Inc. All rights reserved.
Three-Dimensional Dynamic Bone Histomorphometry
Slyfield, C.R.; Tkachenko, E.V.; Wilson, D.L.; Hernandez, C.J.
2011-01-01
Dynamic bone histomorphometry is the standard method for measuring bone remodeling at the level of individual events. While dynamic bone histomorphometry is an invaluable tool for understanding osteoporosis and other metabolic bone diseases, the technique’s two-dimensional nature requires the use of stereology and prevents measures of individual remodeling event number and size. Here, we use a novel three-dimensional fluorescence imaging technique to achieve measures of individual resorption cavities and formation events. We perform this three-dimensional histomorphometry approach using a common model of postmenopausal osteoporosis, the ovariectomized rat. The three-dimensional images demonstrate the spatial relationship between resorption cavities and formation events consistent with the hemi-osteonal model of cancellous bone remodeling. Established ovariectomy was associated with significant increases in the number of resorption cavities per unit bone surface (2.38 ± 0.24 mm−2 SHAM v. 3.86 ± 0.35 mm−2 OVX, mean ± SD, p < 0.05) and total volume occupied by cavities per unit bone volume (0.38 ± 0.06% SHAM v. 1.12 ± 0.18% OVX, p < 0.001), but no difference in surface area per resorption cavity, maximum cavity depth, or cavity volume. Additionally, we find that established ovariectomy is associated with increased size of bone formation events due to merging of formation events (23,700 ± 6,890 μm2 SHAM v. 33,300 ± 7,950 μm2 OVX). No differences in mineral apposition rate (determined in 3D) were associated with established ovariectomy. That established estrogen depletion is associated with increased number of remodeling events with only subtle changes in remodeling event size suggests that circulating estrogens may have their primary effect on the origination of new basic multicellular units with relatively little effect on the progression and termination of active remodeling events. PMID:22028195
Myricetin Prevents Alveolar Bone Loss in an Experimental Ovariectomized Mouse Model of Periodontitis
Huang, Jialiang; Wu, Chuanlong; Tian, Bo; Zhou, Xiao; Ma, Nian; Qian, Yufen
2016-01-01
Periodontitis is a common chronic inflammatory disease, which leads to alveolar bone resorption. Healthy and functional alveolar bone, which can support the teeth and enable their movement, is very important for orthodontic treatment. Myricetin inhibited osteoclastogenesis by suppressing the expression of some genes, signaling pathways, and cytokines. This study aimed to investigate the effects of myricetin on alveolar bone loss in an ovariectomized (OVX) mouse model of periodontitis as well as in vitro osteoclast formation and bone resorption. Twenty-four healthy eight-week-old C57BL/J6 female mice were assigned randomly to four groups: phosphate-buffered saline (PBS) control (sham) OVX + ligature + PBS (vehicle), and OVX + ligature + low or high (2 or 5 mg∙kg−1∙day−1, respectively) doses of myricetin. Myricetin or PBS was injected intraperitoneally (i.p.) every other day for 30 days. The maxillae were collected and subjected to further examination, including micro-computed tomography (micro-CT), hematoxylin and eosin (H&E) staining, and tartrate-resistant acid phosphatase (TRAP) staining; a resorption pit assay was also performed in vitro to evaluate the effects of myricetin on receptor activator of nuclear factor κ-B ligand (RANKL)-induced osteoclastogenesis. Myricetin, at both high and low doses, prevented alveolar bone resorption and increased alveolar crest height in the mouse model and inhibited osteoclast formation and bone resorption in vitro. However, myricetin was more effective at high dose than at low dose. Our study demonstrated that myricetin had a positive effect on alveolar bone resorption in an OVX mouse model of periodontitis and, therefore, may be a potential agent for the treatment of periodontitis and osteoporosis. PMID:27011174
Function of Matrix IGF-1 in Coupling Bone Resorption and Formation
Crane, Janet L.; Cao, Xu
2013-01-01
Balancing bone resorption and formation is the quintessential component for the prevention of osteoporosis. Signals that determine the recruitment, replication, differentiation, function, and apoptosis of osteoblasts and osteoclasts direct bone remodeling and determine whether bone tissue is gained, lost, or balanced. Therefore understanding the signaling pathways involved in the coupling process will help develop further targets for osteoporosis therapy, by blocking bone resorption or enhancing bone formation in a space and time dependent manner. Insulin-like growth factor type 1 (IGF-1) has long been known to play a role in bone strength. It is one of the most abundant substances in the bone matrix, circulates systemically and is secreted locally, and has a direct relationship with bone mineral density. Recent data has helped further our understanding of the direct role of IGF-1 signaling in coupling bone remodeling which will be discussed in this review. The bone marrow microenvironment plays a critical role in the fate of MSCs and HSCs and thus how IGF-1 interacts with other factors in the microenvironment are equally important. While previous clinical trials with IGF-1 administration have been unsuccessful at enhancing bone formation, advances in basic science studies have provided insight into further mechanisms that should be considered for future trials. Additional basic science studies dissecting the regulation and the function of matrix IGF-1 in modeling and remodeling will continue to provide further insight for future directions for anabolic therapies for osteoporosis. PMID:24068256
Function of matrix IGF-1 in coupling bone resorption and formation.
Crane, Janet L; Cao, Xu
2014-02-01
Balancing bone resorption and formation is the quintessential component for the prevention of osteoporosis. Signals that determine the recruitment, replication, differentiation, function, and apoptosis of osteoblasts and osteoclasts direct bone remodeling and determine whether bone tissue is gained, lost, or balanced. Therefore, understanding the signaling pathways involved in the coupling process will help develop further targets for osteoporosis therapy, by blocking bone resorption or enhancing bone formation in a space- and time-dependent manner. Insulin-like growth factor type 1 (IGF-1) has long been known to play a role in bone strength. It is one of the most abundant substances in the bone matrix, circulates systemically and is secreted locally, and has a direct relationship with bone mineral density. Recent data has helped further our understanding of the direct role of IGF-1 signaling in coupling bone remodeling which will be discussed in this review. The bone marrow microenvironment plays a critical role in the fate of mesenchymal stem cells and hematopoietic stem cells and thus how IGF-1 interacts with other factors in the microenvironment are equally important. While previous clinical trials with IGF-1 administration have been unsuccessful at enhancing bone formation, advances in basic science studies have provided insight into further mechanisms that should be considered for future trials. Additional basic science studies dissecting the regulation and the function of matrix IGF-1 in modeling and remodeling will continue to provide further insight for future directions for anabolic therapies for osteoporosis.
Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis.
Langdahl, Bente; Ferrari, Serge; Dempster, David W
2016-12-01
The adult skeleton is renewed by remodeling throughout life. Bone remodeling is a process where osteoclasts and osteoblasts work sequentially in the same bone remodeling unit. After the attainment of peak bone mass, bone remodeling is balanced and bone mass is stable for one or two decades until age-related bone loss begins. Age-related bone loss is caused by increases in resorptive activity and reduced bone formation. The relative importance of cortical remodeling increases with age as cancellous bone is lost and remodeling activity in both compartments increases. Bone modeling describes the process whereby bones are shaped or reshaped by the independent action of osteoblast and osteoclasts. The activities of osteoblasts and osteoclasts are not necessarily coupled anatomically or temporally. Bone modeling defines skeletal development and growth but continues throughout life. Modeling-based bone formation contributes to the periosteal expansion, just as remodeling-based resorption is responsible for the medullary expansion seen at the long bones with aging. Existing and upcoming treatments affect remodeling as well as modeling. Teriparatide stimulates bone formation, 70% of which is remodeling based and 20-30% is modeling based. The vast majority of modeling represents overflow from remodeling units rather than de novo modeling. Denosumab inhibits bone remodeling but is permissive for modeling at cortex. Odanacatib inhibits bone resorption by inhibiting cathepsin K activity, whereas modeling-based bone formation is stimulated at periosteal surfaces. Inhibition of sclerostin stimulates bone formation and histomorphometric analysis demonstrated that bone formation is predominantly modeling based. The bone-mass response to some osteoporosis treatments in humans certainly suggests that nonremodeling mechanisms contribute to this response and bone modeling may be such a mechanism. To date, this has only been demonstrated for teriparatide, however, it is clear that rediscovering a phenomenon that was first observed more half a century ago will have an important impact on our understanding of how new antifracture treatments work.
Increased bone density in mice lacking the proton receptor, OGR1
Krieger, Nancy S.; Yao, Zhenqiang; Kyker-Snowman, Kelly; Kim, Min Ho; Boyce, Brendan F.; Bushinsky, David A.
2016-01-01
Chronic metabolic acidosis stimulates cell-mediated calcium efflux from bone through osteoblastic prostaglandin E2-induced stimulation of RANKL leading to increased osteoclastic bone resorption. Osteoblasts express the proton-sensing G-protein coupled receptor, OGR1, which activates IP3-mediated intracellular calcium. Proton-induced osteoblastic intracellular calcium signaling requires OGR1, suggesting OGR1 is the sensor activated during acidosis to cause bone resorption. Growing mice produce large amounts of metabolic acids which must be buffered, primarily by bone, prior to excretion by the kidney. Here we tested whether lack of OGR1 inhibits proton-induced bone resorption by measuring bone mineral density by μCT and histomorphometry in 8 week old male OGR1−/− and C57/Bl6 wild type mice. OGR1−/− mice have normal skeletal development with no atypical gross phenotype. Trabecular and cortical bone volume was increased in tibiae and vertebrae from OGR1−/−. There were increased osteoblast numbers on the cortical and trabecular surfaces of tibiae from OGR1−/− mice, increased endocortical and trabecular bone formation rates, and osteoblastic gene expression. Osteoclast numbers and surface were increased in tibiae of OGR1−/− mice. Thus, in rapidly growing mice, lack of OGR1 leads to increased bone mass with increased bone turnover and a greater increase in bone formation than resorption. This supports the important role of the proton receptor, OGR1, in the response of bone to protons. PMID:26880453
IFN-γ stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation
Gao, Yuhao; Grassi, Francesco; Ryan, Michaela Robbie; Terauchi, Masakazu; Page, Karen; Yang, Xiaoying; Weitzmann, M. Neale; Pacifici, Roberto
2006-01-01
T cell–produced cytokines play a pivotal role in the bone loss caused by inflammation, infection, and estrogen deficiency. IFN-γ is a major product of activated T helper cells that can function as a pro- or antiresorptive cytokine, but the reason why IFN-γ has variable effects in bone is unknown. Here we show that IFN-γ blunts osteoclast formation through direct targeting of osteoclast precursors but indirectly stimulates osteoclast formation and promotes bone resorption by stimulating antigen-dependent T cell activation and T cell secretion of the osteoclastogenic factors RANKL and TNF-α. Analysis of the in vivo effects of IFN-γ in 3 mouse models of bone loss — ovariectomy, LPS injection, and inflammation via silencing of TGF-β signaling in T cells — reveals that the net effect of IFN-γ in these conditions is that of stimulating bone resorption and bone loss. In summary, IFN-γ has both direct anti-osteoclastogenic and indirect pro-osteoclastogenic properties in vivo. Under conditions of estrogen deficiency, infection, and inflammation, the net balance of these 2 opposing forces is biased toward bone resorption. Inhibition of IFN-γ signaling may thus represent a novel strategy to simultaneously reduce inflammation and bone loss in common forms of osteoporosis. PMID:17173138
Ru, Nan; Liu, Sean Shih-Yao; Zhuang, Li; Li, Song; Bai, Yuxing
2013-05-01
To observe the real-time microarchitecture changes of the alveolar bone and root resorption during orthodontic treatment. A 10 g force was delivered to move the maxillary left first molars mesially in twenty 10-week-old rats for 14 days. The first molar and adjacent alveolar bone were scanned using in vivo microcomputed tomography at the following time points: days 0, 3, 7, and 14. Microarchitecture parameters, including bone volume fraction, structure model index, trabecular thickness, trabecular number, and trabecular separation of alveolar bone, were measured on the compression and tension side. The total root volume was measured, and the resorption crater volume at each time point was calculated. Univariate repeated measures analysis of variance with Bonferroni corrections were performed to compare the differences in each parameter between time points with significance level at P < .05. From day 3 to day 7, bone volume fraction, structure model index, trabecular thickness, and trabecular separation decreased significantly on the compression side, but the same parameters increased significantly on the tension side from day 7 to day 14. Root resorption volume of the mesial root increased significantly on day 7 of orthodontic loading. Real-time root and bone resorption during orthodontic movement can be observed in 3 dimensions using in vivo micro-CT. Alveolar bone resorption and root resorption were observed mostly in the apical third on day 7 on the compression side; bone formation was observed on day 14 on the tension side during orthodontic tooth movement.
Aromatization of androgens is important for skeletal maintenance of aged male rats.
Vanderschueren, D; Van Herck, E; De Coster, R; Bouillon, R
1996-09-01
A nonsteroidal aromatase inhibitor vorozole (VOR) was administered to aged (12 months old) male Wistar rats and its effect was compared with the effect of androgen deficiency. The rats were either sham-operated (SHAM) or orchidectomized (ORCH) and treated with or without VOR. Thus, four experimental groups were created (SHAM, ORCH, SHAM + VOR, ORCH + VOR). The follow-up period was 4 months. At the end of the experimental period, bone mineral density (BMD) of the first four lumbar vertebrae and right femur was measured ex vivo with dual-energy X-ray absorptiometry, bone formation was evaluated by serum osteocalcin, and bone resorption by urinary excretion of (deoxy)pyridinoline. Orchidectomy increased bone resorption 2- to 3-fold whereas bone formation was only slightly increased. Treatment of intact male rats with VOR also increased bone resorption (+30% increase) whereas bone formation was not increased in this SHAM + VOR group. Their BMD was 7% lower in the femur (P < 0.01) and 6% lower in the lumbar vertebrae (P < 0.01) compared with the SHAM group that had not received VOR. Moreover, this decrease of bone mineral density was not significantly different from the expected decrease of bone density observed in the ORCH groups (6-10%). This was also reflected by a decrease of calcium content of the first four lumbar vertebrae of 15% (P < 0.001) in the SHAM + VOR group and 9-14% (P < 0.05) in the ORCH groups compared with the SHAM group, respectively. These data therefore suggest that inhibition of aromatization of androgens into estrogens increases bone resorption and bone loss similar to that observed after complete removal of androgens. Aromatization of androgens into estrogens may therefore, at least partly, explain the effects of androgens on skeletal maintenance.
Bone Metabolism on ISS Missions
NASA Technical Reports Server (NTRS)
Smith, S. M.; Heer, M. A.; Shackelford, L. C.; Zwart, S. R.
2014-01-01
Spaceflight-induced bone loss is associated with increased bone resorption (1, 2), and either unchanged or decreased rates of bone formation. Resistive exercise had been proposed as a countermeasure, and data from bed rest supported this concept (3). An interim resistive exercise device (iRED) was flown for early ISS crews. Unfortunately, the iRED provided no greater bone protection than on missions where only aerobic and muscular endurance exercises were available (4, 5). In 2008, the Advanced Resistive Exercise Device (ARED), a more robust device with much greater resistance capability, (6, 7) was launched to the ISS. Astronauts who had access to ARED, coupled with adequate energy intake and vitamin D status, returned from ISS missions with bone mineral densities virtually unchanged from preflight (7). Bone biochemical markers showed that while the resistive exercise and adequate energy consumption did not mitigate the increased bone resorption, bone formation was increased (7, 8). The typical drop in circulating parathyroid hormone did not occur in ARED crewmembers. In 2014, an updated look at the densitometry data was published. This study confirmed the initial findings with a much larger set of data. In 42 astronauts (33 male, 9 female), the bone mineral density response to flight was the same for men and women (9), and those with access to the ARED did not have the typical decrease in bone mineral density that was observed in early ISS crewmembers with access to the iRED (Figure 1) (7). Biochemical markers of bone formation and resorption responded similarly in men and women. These data are encouraging, and represent the first in-flight evidence in the history of human space flight that diet and exercise can maintain bone mineral density on long-duration missions. However, the maintenance of bone mineral density through bone remodeling, that is, increases in both resorption and formation, may yield a bone with strength characteristics different from those that existed before space flight. Studies to assess bone strength after flight are underway at NASA, to better understand the results of bone remodeling. Studies are also underway to evaluate optimized exercise protocols and nutritional countermeasures. Regardless, there is clear evidence of progress being made to protect bone during spaceflight.
Uzawa, Toyonobu
2007-01-01
The parathyroid hormone (PTH) that is marketed outside Japan is for daily administration. It has been proven to increase bone mass and prevent fractures, and the effects are very strong. However, data suggest that daily administration of PTH increases bone resorption. By contrast, weekly administration of PTH, which is being developed in Japan, actually decreases bone resorption, and data suggest that this regimen maintains a good balance between bone formation (predominant) and bone resorption. Furthermore, it has been reported that weekly administration of PTH increases bone mass as much as every day administration of PTH, and as such, weekly administration of PTH has the potential to be a useful regimen with characteristics that are different from those of daily administration of PTH.
Bone apatite composition of necrotic trabecular bone in the femoral head of immature piglets.
Aruwajoye, Olumide O; Kim, Harry K W; Aswath, Pranesh B
2015-04-01
Ischemic osteonecrosis of the femoral head (IOFH) can lead to excessive resorption of the trabecular bone and collapse of the femoral head as a structure. A well-known mineral component to trabecular bone is hydroxyapatite, which can be present in many forms due to ionic substitution, thus altering chemical composition. Unfortunately, very little is known about the chemical changes to bone apatite following IOFH. We hypothesized that the apatite composition changes in necrotic bone possibly contribute to increased osteoclast resorption and structural collapse of the femoral head. The purpose of this study was to assess the macroscopic and local phosphate composition of actively resorbed necrotic trabecular bone to isolate differences between areas of increased osteoclast resorption and normal bone formation. A piglet model of IOFH was used. Scanning electron microscopy (SEM), histology, X-ray absorbance near edge structure (XANES), and Raman spectroscopy were performed on femoral heads to characterize normal and necrotic trabecular bone. Backscattered SEM, micro-computed tomography and histology showed deformity and active resorption of necrotic bone compared to normal. XANES and Raman spectroscopy obtained from actively resorbed necrotic bone and normal bone showed increased carbonate-to-phosphate content in the necrotic bone. The changes in the apatite composition due to carbonate substitution may play a role in the increased resorption of necrotic bone due to its increase in solubility. Indeed, a better understanding of the apatite composition of necrotic bone could shed light on osteoclast activity and potentially improve therapeutic treatments that target excessive resorption of bone.
Sakai, Eiko; Aoki, Yuri; Yoshimatsu, Masako; Nishishita, Kazuhisa; Iwatake, Mayumi; Fukuma, Yutaka; Okamoto, Kuniaki; Tanaka, Takashi; Tsukuba, Takayuki
2016-07-15
Osteoclasts are multinucleated bone-resorbing cells that differentiate in response to receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL). Enhanced osteoclastogenesis contributes to bone diseases, such as osteoporosis and rheumatoid arthritis. Rubus parvifolius L. is traditionally used as an herbal medicine for rheumatism; however, its detailed chemical composition and the molecular mechanisms responsible for its biological action have not been elucidated. To investigate the mechanisms by which R. parvifolius L. extract and its major constituent sanguiin H-6, inhibit osteoclastogenesis and bone resorption. Cell proliferation, cell differentiation, and bone resorption were detected in vitro. Inhibition of signaling pathways, marker protein expression, and protein nuclear translocation were evaluated by western blot analysis. Tumor necrosis factor-α (TNF-α)-mediated osteoclastogenesis was examined in vivo. R. parvifolius L. extract inhibited the bone-resorption activity of osteoclasts. In addition, sanguiin H-6 markedly inhibited RANKL-induced osteoclast differentiation and bone resorption, reduced reactive oxygen species production, and inhibited the phosphorylation of inhibitor of NF-κB alpha (IκBα) and p38 mitogen-activated protein kinase. Sanguiin H-6 also decreased the protein levels of nuclear factor of activated T cells cytoplasmic-1 (NFATc1), cathepsin K, and c-Src. Moreover, sanguiin H-6 inhibited the nuclear translocation of NFATc1, c-Fos, and NF-κB in vitro, as well as TNF-α-mediated osteoclastogenesis in vivo. Our data revealed that R. parvifolius L. has anti-bone resorption activity and suggest that its constituent, sanguiin H-6, can potentially be used for the prevention and treatment of bone diseases associated with excessive osteoclast formation and subsequent bone destruction. Copyright © 2016 Elsevier GmbH. All rights reserved.
Bone and Calcium Metabolism During Space Flight
NASA Technical Reports Server (NTRS)
Smith, Scott M.
2004-01-01
Understanding bone loss during space flight is one of the most critical challenges for maintaining astronaut health on space exploration missions. Flight and ground-based studies have been conducted to better understand the nature and mechanisms of weightlessness-induced bone loss, and to identify a means to counteract the loss. Maintenance of bone health requires a balance between bone formation and bone resorption. Early space research identified bone loss as a critical health issue, but could not provide a distinction between the bone formation and breakdown processes. The recent identification of collagen crosslinks as markers of bone resorption has made possible a clear understanding that a decrease in bone resorption is an important effect of space flight, with bone formation being unchanged or only slightly decreased. Calcium regulatory factors have also been studied, in an attempt to understand their role in bone loss. The lack of ultraviolet light exposure and insufficient dietary sources of vitamin D often lead to reduced vitamin D stores on long-duration flights. Serum parathyroid hormone (PTH) concentrations are decreased during flight compared to before flight, although small subject numbers often make this hard to document statistically. As expected, reduced PTH concentrations are accompanied by reduced 1,25-dihydroxyvitamin D concentrations. Calcium kinetic studies during space flight confirm and extend the information gained from biochemical markers of bone metabolism. Calcium kinetic studies demonstrate that bone resorption is increased, bone formation is unchanged or decreased, and dietary calcium absorption is reduced during space flight. Evaluations have also been conducted of countermeasures, including dietary, exercise, and pharmacological treatments. In recent studies, many potential countermeasures show promise at mitigating bone loss in ground-based analogs of weightlessness (e.g., bed rest), but require further ground and flight testing to ensure that the beneficial effects are seen in space flight. As we begin to plan for missions to go back to the Moon, and even off to Mars, many questions are yet to be answered. Maintaining bone is one of the greatest challenges, but with a better understanding of the mechanical processes of bone loss, countermeasures can be designed more efficiently, and the solution (or solutions) may be just over the horizon.
The biodegradation of hydroxyapatite bone graft substitutes in vivo.
Rumpel, E; Wolf, E; Kauschke, E; Bienengräber, V; Bayerlein, T; Gedrange, T; Proff, P
2006-02-01
Hydroxyapatite (HA) ceramics are widely used for bone reconstruction. They are osteoconductive and serve as structural scaffolds for the deposition of new bone. Generally, scaffold materials should be degradable as they affect the mechanical properties of the reconstructed bone negatively. Degradation by osteoclasts during the bone remodelling process is desirable but often does not take place. In the current study we analysed by light microscopy the degradation of two granular HA implants in critically sized defects in the mandibula of Goettingen mini-pigs five weeks after implantation. Bio-Oss consists of sintered bovine bone and NanoBone is a synthetic HA produced in a sol-gel process in the presence of SiO2. We found that both biomaterials were degraded by osteoclasts with ruffled borders and acid phosphatase activity. The osteoclasts created resorption lacunae and resorptive trails and contained mineral particles. Frequently, resorption surfaces were in direct contact with bone formative surfaces on one granule. Granules, especially of NanoBone, were also covered by osteoclasts if located in vascularised connective tissue distant from bone tissue. However, this usually occurred without the creation of resorption lacunae. The former defect margins consisted of newly formed bone often without remnants of bone substitutes. Our results show that the degradation of both biomaterials corresponds to the natural bone degradation processes and suggest the possibility of complete resorption during bone remodelling.
Feng, Xu; McDonald, Jay M.
2013-01-01
The skeleton provides mechanical support for stature and locomotion, protects vital organs, and controls mineral homeostasis. A healthy skeleton must be maintained by constant bone modeling to carry out these crucial functions throughout life. Bone remodeling involves the removal of old or damaged bone by osteoclasts (bone resorption) and the subsequent replacement of new bone formed by osteoblasts (bone formation). Normal bone remodeling requires a tight coupling of bone resorption to bone formation to guarantee no alteration in bone mass or quality after each remodeling cycle. However, this important physiological process can be derailed by a variety of factors, including menopause-associated hormonal changes, age-related factors, changes in physical activity, drugs, and secondary diseases, which lead to the development of various bone disorders in both women and men. We review the major diseases of bone remodeling, emphasizing our current understanding of the underlying pathophysiological mechanisms. PMID:20936937
Calcineurin/NFAT signaling in osteoblasts regulates bone mass.
Winslow, Monte M; Pan, Minggui; Starbuck, Michael; Gallo, Elena M; Deng, Lei; Karsenty, Gerard; Crabtree, Gerald R
2006-06-01
Development and repair of the vertebrate skeleton requires the precise coordination of bone-forming osteoblasts and bone-resorbing osteoclasts. In diseases such as osteoporosis, bone resorption dominates over bone formation, suggesting a failure to harmonize osteoclast and osteoblast function. Here, we show that mice expressing a constitutively nuclear NFATc1 variant (NFATc1(nuc)) in osteoblasts develop high bone mass. NFATc1(nuc) mice have massive osteoblast overgrowth, enhanced osteoblast proliferation, and coordinated changes in the expression of Wnt signaling components. In contrast, viable NFATc1-deficient mice have defects in skull bone formation in addition to impaired osteoclast development. NFATc1(nuc) mice have increased osteoclastogenesis despite normal levels of RANKL and OPG, indicating that an additional NFAT-regulated mechanism influences osteoclastogenesis in vivo. Calcineurin/NFATc signaling in osteoblasts controls the expression of chemoattractants that attract monocytic osteoclast precursors, thereby coupling bone formation and bone resorption. Our results indicate that NFATc1 regulates bone mass by functioning in both osteoblasts and osteoclasts.
Stensby, J Derek; Kaliney, Ryan W; Alford, Bennett; Shen, Francis H; Patrie, James T; Fox, Michael G
2016-03-01
The purpose of this study is to determine whether recombinant human morphogenetic protein-2 (rhBMP-2) alters the findings on routine radiographs performed after transforaminal lumbar interbody fusion (TLIF). A retrospective review of 256 TLIF procedures in 200 patients was performed over a 4-year period. The rhBMP-2 group included 204 TLIFs in 160 patients, and the control group included 52 TLIFs in 40 patients. Two musculoskeletal radiologists reviewed the postoperative radiographs for endplate resorption, resorption resolution, new bone formation, bridging bone, and allograft migration. Statistical analysis was performed using logistic regression. The median age was 53 years in the rhBMP-2 group and 54 years in the control group (p = 0.182). The groups were similar with regard to sex (p = 0.517), single or multilevel TLIF (p = 0.921), specific TLIF levels (p = 0.53), and median radiographic follow-up (373 vs 366 days; p = 0.34). Findings that were more common in the rhBMP-2 group than in the control group included endplate resorption (38% [78/204] vs 12% [6/52]; odds ratio [OR], 4.67; 95% CI, 1.99-12.54; p < 0.001), resorption resolution (59% [46/78] vs 0% [0/6]; OR, 8.09; 95% CI, 1.41 to ∞; p = 0.022), new bone formation (84% [171/204] vs 67% [35/52]; OR, 2.51; 95% CI, 1.24-4.99; p = 0.011), bridging bone (55% [112/204] vs 31% [16/52]; OR, 2.73; 95% CI, 1.43-5.34; p = 0.002), and allograft migration (17% [35/204] vs 2% [1/52]; OR, 6.30; 95% CI, 0.91-151.41; p = 0.065). A statistically significant higher frequency of endplate resorption, new bone formation, and bone bridging is present in TLIF augmented by rhBMP-2 compared with TLIF performed without rhBMP-2. Endplate resorption resolves without treatment in most cases after rhBMP-2 use.
Koide, M; Okahashi, N; Tanaka, R; Kazuno, K; Shibasaki, K; Yamazaki, Y; Kaneko, K; Ueda, N; Ohguchi, M; Ishihara, Y; Noguchi, T; Nishihara, T
1999-09-01
It is known that bone resorption is mediated by osteoclasts, and lipopolysaccharide (LPS) and inflammatory mediators such as interleukin-1 (IL-1) and prostaglandin E2 (PGE2) induce osteoclast differentiation from haemopoietic cells, 2-aminoethanesulphonic acid, which is known as taurine, is an important nutrient and is added to most synthetic human infant milk formulas. In this study, it was found that 2-aminoethanesulphonic acid inhibits the stimulation of bone resorption mediated by LPS of the periodontopathic microorganism Actinobacillus actinomycetemcomitans Y4 in organ cultures of newborn mouse calvaria. The effect of 2-aminoethanesulphonic acid on the development and survival of osteoclast-like multinucleated cells produced in a mouse bone-marrow culture system was also examined. 2-aminoethanesulphonic acid (100 microg/ml) suppressed the formation of these osteoclast-like cells in the presence of LPS of A. actinomycetemcomitans Y4, IL-1alpha or PGE2 in mouse marrow cultures. On the other hand, 2-aminoethanesulphonic acid did not inhibit 1alpha, 25-dihydroxyvitamin D3-mediated osteoclast differentiation. Although IL-1alpha elongated the survival of the osteoclast-like cells, 2-aminoethanesulphonic acid blocked the supportive effect of IL-1alpha on osteoclast survival. 2-aminoethanesulphonic acid showed no effect on the growth of mouse osteoblasts. Finally, it was found that 2-aminoethanesulphonic acid inhibited alveolar bone resorption in experimental periodontitis in hamsters. These results suggest that 2-aminoethanesulphonic acid is an effective agent in preventing inflammatory bone resorption in periodontal diseases.
Metabolic bone disease in chronic renal failure. II. Renal transplant patients.
Huffer, W. E.; Kuzela, D.; Popovtzer, M. M.; Starzl, T. E.
1975-01-01
Trabecular vertebral bone of renal transplant patients was quantitatively compared with bone from normal individuals and dialyzed and nondialyzed patienets with chronic renal failure reported in detail in an earlier study. Long- and short-term transplant patients have increased bone resorption and mineralization defects similar to renal osteodystrophy in dialyzed and nondialyzed patients. However, in transplant patients the magnitude of resorption is greater, and bone volume tends to decrease rather than increase. Resorptive activity in transplant patients is maximal during the first year after transplantation. Bone volume decreases continuously for at least 96 months after transplantation. Only decreased bone volume correlated with success or failure of the renal transplant. Morphologic findings in this study correlate with other clinical and morphologic data to suggest that reduction in bone volume in transplant patients results from a combination of persistent hyperparathyroidism and suppression of bone formation by steroid therapy. Images Fig 1 PMID:1091152
Yamaguchi, Masayoshi
2016-10-01
Bone homeostasis is maintained through a balance between osteoblastic bone formation and osteoclastic bone resorption. Bone loss with aging is induced by decreasing in osteoblastic bone formation and increasing in osteoclastic bone resorption, thereby leading to osteoporosis. Osteoporosis with its accompanying decrease in bone mass is widely recognized as a major public heath problem. Pharmacologic and nutritional factors may play a role in the prevention and treatment of bone loss with aging. p-Hydroxycinnamic acid (HCA), which stimulates bone mineralization in mouse bone tissues in vitro, has been found to be present in the leafstalk of wasabi (Wasabi japonica MATSUM) among various food and plants. Other phenolic acids including cinnamic acid, ferulic acid, caffeic acid and 3,4-dimethoxycinnamic acid did not have osteogenic effects. HCA was demonstrated to stimulate osteoblastic bone formation and suppresses osteoclastic bone resorption in vitro by antagonizing activation of the nuclear factor kappa B. Oral administration of HCA was found to exhibit restorative effects on bone loss induced by ovariectomy and diabetic states, supporting a role in the treatment of osteoporosis. Moreover, HCA was demonstrated to prevent the suppressed osteoblastic mineralization and the enhanced osteoclastogenesis in mouse bone marrow cells cocultured with bone metastatic MDA-MB-231 human breast cancer cells in vitro. The botanical molecule HCA, as a new osteogenic agent, is suggested to play a role in the treatment of cancer bone metastases. This review will discuss an advanced recent finding that HCA may be a useful agent to treat bone metabolic disorder.
Decursin from Angelica gigas suppresses RANKL-induced osteoclast formation and bone loss.
Wang, Xin; Zheng, Ting; Kang, Ju-Hee; Li, Hua; Cho, Hyewon; Jeon, Raok; Ryu, Jae-Ha; Yim, Mijung
2016-03-05
Osteoclasts are the only cells capable of breaking down bone matrix, and excessive activation of osteoclasts is responsible for bone-destructive diseases. In this study, we investigated the effects of decursin from extract of Angelica gigas root on receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast formation using mouse bone marrow-derived macrophages (BMMs). Decursin inhibited RANKL-induced osteoclast formation without cytotoxicity. In particular, decursin maintains the characteristics of macrophages by blocking osteoclast differentiation by RANKL. Furthermore, the RANKL-stimulated bone resorption was diminished by decursin. Mechanistically, decursin blocked the RANKL-triggered ERK mitogen-activated protein kinases (MAPK) phosphorylation, which results in suppression of c-Fos and the nuclear factor of activated T cells (NFATc1) expression. In accordance with the in vitro study, decursin reduced lipopolysaccharide (LPS)- or ovariectomy (OVX)-induced bone loss in vivo. Therefore, decursin exerted an inhibitory effect on osteoclast formation and bone loss in vitro and in vivo. Decursin could be useful for the treatment of bone diseases associated with excessive bone resorption. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Bikle, D. D.; Morey-Holton, E. R.; Doty, S. B.; Currier, P. A.; Tanner, S. J.; Halloran, B. P.
1994-01-01
Loss of bone mass during periods of skeletal unloading remains an important clinical problem. To determine the extent to which resorption contributes to the relative loss of bone during skeletal unloading of the growing rat and to explore potential means of preventing such bone loss, 0.1 mg P/kg alendronate was administered to rats before unloading of the hindquarters. Skeletal unloading markedly reduced the normal increase in tibial mass and calcium content during the 9 day period of observation, primarily by decreasing bone formation, although bone resorption was also modestly stimulated. Alendronate not only prevented the relative loss of skeletal mass during unloading but led to a dramatic increase in calcified tissue in the proximal tibia compared with the vehicle-treated unloaded or normally loaded controls. Bone formation, however, assessed both by tetracycline labeling and by [3H]proline and 45Ca incorporation, was suppressed by alendronate treatment and further decreased by skeletal unloading. Total osteoclast number increased in alendronate-treated animals, but values were similar to those in controls when corrected for the increased bone area. However, the osteoclasts had poorly developed brush borders and appeared not to engage the bone surface when examined at the ultrastructural level. We conclude that alendronate prevents the relative loss of mineralized tissue in growing rats subjected to skeletal unloading, but it does so primarily by inhibiting the resorption of the primary and secondary spongiosa, leading to altered bone modeling in the metaphysis.
Arlot, M; Edouard, C; Meunier, P J; Neer, R M; Reeve, J
1984-09-01
Osteoblast function was investigated in 27 patients with idiopathic osteoporosis. Transiliac bone biopsy specimens were taken after double labelling with tetracycline, and metabolic calcium balance was studied almost simultaneously. Many of the patients showed poor double labelling of their otherwise unremarkable trabecular osteoid, suggesting impaired formation of bone at many of these surfaces. This phenomenon was not accompanied by increased width of osteoid seams (as seen in osteomalacia), indicating that formation of the matrix and its mineralisation were in equilibrium. For the first time, highly significant positive correlations (p less than 0.01) were found between indices of bone formation, determined by labelling with tetracycline, and calcium balance. Thus some patients with osteoporosis who are rapidly losing bone have low rates of formation of trabecular bone both by individual osteoblasts and in relation to available bone surfaces. As histological indices of bone resorption also independently correlated strongly and inversely (p less than 0.01) with calcium balance the rate of initiation of new basic multicellular units by osteoclastic resorption of trabecular surfaces (or the depth of resorption at these surfaces) also appears to be an important determinant of mineral balance. The mechanisms that regulate the effective life span of mature osteoblasts require further investigation, particularly as some promising treatments that can increase trabecular bone volume in osteoporosis, such as parathyroid peptide hPTH (1-34) and sodium fluoride, must work through a reversal of osteoblastic depression.
Effects of epidermal growth factor on bone formation and resorption in vivo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marie, P.J.; Hott, M.; Perheentupa, J.
1990-02-01
The effects of mouse epidermal growth factor (EGF) on bone formation and resorption were examined in male mice. EGF administration (2-200 ng.g-1.day-1 ip for 7 days) induced a dose-dependent rise in plasma EGF levels that remained within physiological range. Histomorphometric analysis of caudal vertebrae showed that EGF (20 and 200 ng.g-1.day-1) reduced the endosteal matrix and mineral appositional rates after 5 days of treatment as measured by double (3H)proline labeling and double tetracycline labeling, respectively. This effect was transitory and was not observed after 7 days of EGF administration. EGF administered for 7 days induced a dose-dependent increase in themore » periosteal osteoblastic and tetracycline double-labeled surfaces. At high dosage (200 ng.g-1.day-1) EGF administration increased the osteoclastic surface and the number of acid phosphatase-stained osteoclasts, although plasma calcium remained normal. The results show that EGF administration at physiological doses induces distinct effects on endosteal and periosteal bone formation and that the effects are dependent on EGF dosage and duration of treatment. This study indicates that EGF at physiological dosage stimulates periosteal bone formation and increases endosteal bone resorption in the growing mouse.« less
Non-canonical Wnt4 prevents skeletal aging and inflammation by inhibiting NF-κB
Yu, Bo; Chang, Jia; Liu, Yunsong; Li, Jiong; Kevork, Kareena; Al-Hezaimi, Khalid; Graves, Dana T; Park, No-Hee; Wang, Cun-Yu
2014-01-01
Aging-related bone loss and osteoporosis affect millions of patients worldwide. Chronic inflammation associated with aging and arthritis promotes bone resorption and impairs bone formation. Here we show that Wnt4 attenuated bone loss in osteoporosis and skeletal aging by inhibiting nuclear factor-kappa B (NF-κB) via non-canonical Wnt signaling. Transgenic mice expressing Wnt4 from osteoblasts were significantly protected from bone loss and chronic inflammation induced by ovariectomy, tumor necrosis factor or natural aging. In addition to promoting bone formation, Wnt4 could inhibit osteoclast formation and bone resorption. Mechanistically, Wnt4 inhibited transforming growth factor beta-activated kinase 1-mediated NF-κB activation in macrophages and osteoclast precursors independent of β-catenin. Moreover, recombinant Wnt4 proteins were able to alleviate osteoporotic bone loss and inflammation by inhibiting NF-κB in vivo. Taken together, our results suggest that Wnt4 might be used as a therapeutic agent for treating osteoporosis by attenuating NF-κB. PMID:25108526
Bone Formation Rate in Experimental Disuse Osteoporosis in Monkeys
NASA Technical Reports Server (NTRS)
Cann, Christopher; Young, Donald R.
1976-01-01
Specific mechanisms underlying weightless and hypodynamic bone loss are obscure. A principal relationship which must be affected is the balance between bone formation and bone resorption rates. In order to better define the influence of those parameters on bone loss, and also to develop measurements in other species as a useful adjunct to human research, studies were undertaken with experimental monkeys. Tests were conducted with a total of 6 adult male monkeys, weighing 10-13 kg, and approximately 10-12 yrs. of age to evaluate specifically bone formation rate during the development of disuse osteoporosis and osteopenia. Three animals were restrained in a semi-recumbent position for six months; three animals served as normal caged controls. Food intake (Purina) was held relatively constant at 200g/day for each animal. Using a Norland Bone Mineral Analyzer, bone mineral losses of 3.5 to 6% were seen in the mid-shaft of the tibia and in the distal radius. Bone loss was confirmed radiographically, with observation of thinning of the proximal tibial cortex and trabeculae in the calcaneus. Bone formation rate was determined using standard Ca-47 kinetics under metabolic balance conditions. After six months of restraint, accretion was 7.2-13.2 mg Ca/kg/day, compared to 3.2-4.1 mg Ca/kg/day in caged controls and 3-8 mg Ca/kg/day in normal adult humans. Fecal and urine calcium was 25-40% higher in restrained animals than in controls. Dietary calcium absorption decreases during restraint, and calcium turnover increases, implying a rise in bone resorption rate concommitant with the observed rise in bone accretion rate. Further studies dealing specifically with bone resorption are underway to define this more fully.
Kettenberger, Ulrike; Luginbuehl, Vera; Procter, Philip; Pioletti, Dominique P
2017-07-01
Locally applied bisphosphonates, such as zoledronate, have been shown in several studies to inhibit peri-implant bone resorption and recently to enhance peri-implant bone formation. Studies have also demonstrated positive effects of hydroxyapatite (HA) particles on peri-implant bone regeneration and an enhancement of the anti-resorptive effect of bisphosphonates in the presence of calcium. In the present study, both hydroxyapatite nanoparticles (nHA) and zoledronate were combined to achieve a strong reinforcing effect on peri-implant bone. The nHA-zoledronate combination was first investigated in vitro with a pre-osteoclastic cell assay (RAW 264.7) and then in vivo in a rat model of postmenopausal osteoporosis. The in vitro study confirmed that the inhibitory effect of zoledronate on murine osteoclast precursor cells was enhanced by loading the drug on nHA. For the in vivo investigation, either zoledronate-loaded or pure nHA were integrated in hyaluronic acid hydrogel. The gels were injected in screw holes that had been predrilled in rat femoral condyles before the insertion of miniature screws. Micro-CT-based dynamic histomorphometry and histology revealed an unexpected rapid mineralization of the hydrogel in vivo through formation of granules, which served as scaffold for new bone formation. The delivery of zoledronate-loaded nHA further inhibited a degradation of the mineralized hydrogel as well as a resorption of the peri-implant bone as effectively as unbound zoledronate. Hyaluronic acid with zoledronate-loaded nHA, thanks to its dual effect on inducing a rapid mineralization and preventing resorption, is a promising versatile material for bone repair and augmentation. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Fee, L
2017-04-21
Socket preservation maintains bone volume post-extraction in anticipation of an implant placement or fixed partial denture pontic site. This procedure helps compensate for the resorption of the facial bone wall. Socket preservation should be considered when implant placement needs to be delayed for patient or site-related reasons. The ideal healing time before implant placement is six months. Socket preservation can reduce the need for later bone augmentation. By reducing bone resorption and accelerating bone formation it increases implant success and survival. Biomaterials for socket grafting including autograft, allograft, xenograft and alloplast. A bone substitute with a low substitution rate is recommended.
Impact of Dietary Intake on Bone Turnover in Patients with Phenylalanine Hydroxylase Deficiency.
Coakley, Kathryn E; Felner, Eric I; Tangpricha, Vin; Wilson, Peter W F; Singh, Rani H
2017-01-01
Phenylalanine hydroxylase (PAH) deficiency is a genetic disorder characterized by deficiency of the PAH enzyme. Patients follow a phenylalanine-restricted diet low in intact protein, and must consume synthetic medical food (MF) to supply phenylalanine-free protein. We assessed relationships between dietary intake and nutrient source (food or MF) on bone mineral density (BMD) and bone turnover markers (BTM) in PAH deficiency. Blood from 44 fasted females 11-52 years of age was analyzed for plasma phenylalanine, serum BTM [CTx (resorption), P1NP (formation)], vitamin D, and parathyroid hormone (PTH). BTM ratios were calculated to assess resorption relative to formation (CTx/P1NP). Dual energy X-ray absorptiometry measured total BMD and age-matched Z-scores. Three-day food records were analyzed for total nutrient intake, nutrients by source (food, MF), and compliance with MF prescription. Spearman's partial coefficients (adjusted for age, BMI, energy intake, blood phenylalanine) assessed correlations. All had normal BMD for age (Z-score >-2). Sixty-four percent had high resorption and normal formation indicating uncoupled bone turnover. CTx/P1NP was positively associated with food phenylalanine (r 2 = 0.39; p-value = 0.017), energy (r 2 = 0.41; p-value = 0.011) and zinc (r 2 = 0.41; p-value = 0.014). CTx/P1NP was negatively associated with MF fat (r 2 = -0.44; p-value = 0.008), MF compliance (r 2 = -0.34; p-value = 0.056), and positively with food sodium (r 2 = 0.43; p-value = 0.014). CTx/P1NP decreased significantly with age (p-value = 0.002) and higher PTH (p-value = 0.0002). Phenylalanine was not correlated with any bone indicator. Females with PAH deficiency had normal BMD but elevated BTM, particularly resorption. More favorable ratios were associated with nutrients from MF and compliance. Younger females had less favorable BTM ratios. Promoting micronutrient intake through compliance with MF may impact bone metabolism in patients with PAH deficiency. Bone mineral density was normal in 44 females with PAH deficiency; however, bone turnover markers suggested uncoupling of bone resorption and formation, particularly in younger patients. Adequate nutrient intake from medical food and overall medical food compliance may positively impact bone turnover.
Vitamin K, bone turnover, and bone mass in girls.
Kalkwarf, Heidi J; Khoury, Jane C; Bean, Judy; Elliot, James G
2004-10-01
Vitamin K has been suggested to have a role in bone metabolism, and low vitamin K intake has been related to low bone density and increased risk of osteoporotic fracture. The objective of this study was to determine whether phylloquinone (vitamin K(1)) intake and biochemical indicators of vitamin K status are related to bone mineral content (BMC) and markers of bone formation and bone resorption in girls. Vitamin K status [plasma phylloquinone concentration and percentage of undercarboxylated osteocalcin (%ucOC)] was measured at baseline in a study of 245 healthy girls aged 3-16 y. Cross-linked N-telopeptide of type 1 collagen (NTx) breakdown, osteocalcin, and bone-specific alkaline phosphatase were measured to reflect bone resorption and formation. BMC of the total body, lumbar spine, and hip and dietary phylloquinone intake were measured annually for 4 y. Phylloquinone intake (median: 45 microg/d) was not consistently associated with bone turnover markers or BMC. Better vitamin K status (high plasma phylloquinone and low %ucOC) was associated with lower bone resorption and formation. Plasma phylloquinone was inversely associated with NTx and osteocalcin concentrations (P < 0.05), and %ucOC was positively associated with NTx and bone-specific alkaline phosphatase concentrations (P < 0.05). Indicators of vitamin K status were not consistently associated with current BMC or gain in BMC over the 4-y study period. Better vitamin K status was associated with decreased bone turnover in healthy girls consuming a typical US diet. Randomized phylloquinone supplementation trials are needed to further understand the potential benefits of phylloquinone on bone acquisition in growing children.
Merolli, Antonio; Fung, Stephanie; Murthy, N Sanjeeva; Pashuck, E Thomas; Mao, Yong; Wu, Xiaohuan; Steele, Joseph A M; Martin, Daniel; Moghe, Prabhas V; Bromage, Timothy; Kohn, Joachim
2018-03-21
Osteoclasts are large multinucleated giant cells that actively resorb bone during the physiological bone turnover (BTO), which is the continuous cycle of bone resorption (by osteoclasts) followed by new bone formation (by osteoblasts). Osteoclasts secrete chemotactic signals to recruit cells for regeneration of vasculature and bone. We hypothesize that a biomaterial that attracts osteoclasts and re-establishes BTO will induce a better healing response than currently used bone graft materials. While the majority of bone regeneration efforts have focused on maximizing bone deposition, the novelty in this approach is the focus on stimulating osteoclastic resorption as the starter for BTO and its concurrent new vascularized bone formation. A biodegradable tyrosine-derived polycarbonate, E1001(1k), was chosen as the polymer base due to its ability to support bone regeneration in vivo. The polymer was functionalized with a RGD peptide or collagen I, or blended with β-tricalcium phosphate. Osteoclast attachment and early stages of active resorption were observed on all substrates. The transparency of E1001(1k) in combination with high resolution confocal imaging enabled visualization of morphological features of osteoclast activation such as the formation of the "actin ring" and the "ruffled border", which previously required destructive forms of imaging such as transmission electron microscopy. The significance of these results is twofold: (1) E1001(1k) is suitable for osteoclast attachment and supports osteoclast maturation, making it a base polymer that can be further modified to optimize stimulation of BTO and (2) the transparency of this polymer makes it a suitable analytical tool for studying osteoclast behavior.
Thymidine phosphorylase exerts complex effects on bone resorption and formation in myeloma
Liu, Huan; Liu, Zhiqiang; Du, Juan; He, Jin; Lin, Pei; Amini, Behrang; Starbuck, Michael W.; Novane, Nora; Shah, Jatin J.; Davis, Richard E.; Hou, Jian; Gagel, Robert F.; Yang, Jing
2016-01-01
Myelomatous bone disease is characterized by the development of lytic bone lesions and a concomitant reduction in bone formation, leading to chronic bone pain and fractures. To understand the underlying mechanism, we investigated the contribution of myeloma-expressed thymidine phosphorylase (TP) to bone lesions. In osteoblast progenitors, TP upregulated the methylation of RUNX2 and osterix, leading to decreased bone formation. In osteoclast progenitors, TP upregulated the methylation of IRF8, thereby enhanced expression of NFATc1, leading to increased bone resorption. TP reversibly catalyzes thymidine into thymine and 2DDR. Myeloma-secreted 2DDR bound to integrin αVβ3/α5β1 in the progenitors, activated PI3K/Akt signaling, and increased DNMT3A expression, resulting in hypermethylation of RUNX2, osterix, and IRF8. This study elucidates an important mechanism for myeloma-induced bone lesions, suggesting that targeting TP may be a viable approach to healing resorbed bone in patients. As TP overexpression is common in bone-metastatic tumors, our findings could have additional mechanistic implications. PMID:27559096
Development, validation and characterization of a novel mouse model of Adynamic Bone Disease (ABD).
Ng, Adeline H; Willett, Thomas L; Alman, Benjamin A; Grynpas, Marc D
2014-11-01
The etiology of Adynamic Bone Disease (ABD) is poorly understood but the hallmark of ABD is a lack of bone turnover. ABD occurs in renal osteodystrophy (ROD) and is suspected to occur in elderly patients on long-term anti-resorptive therapy. A major clinical concern of ABD is diminished bone quality and an increased fracture risk. To our knowledge, experimental animal models for ABD other than ROD-ABD have not been developed or studied. The objectives of this study were to develop a mouse model of ABD without the complications of renal ablation, and to characterize changes in bone quality in ABD relative to controls. To re-create the adynamic bone condition, 4-month old female Col2.3Δtk mice were treated with ganciclovir to specifically ablate osteoblasts, and pamidronate was used to inhibit osteoclastic resorption. Four groups of animals were used to characterize bone quality in ABD: Normal bone controls, No Formation controls, No Resorption controls, and an Adynamic group. After a 6-week treatment period, the animals were sacrificed and the bones were harvested for analyses. Bone quality assessments were conducted using established techniques including bone histology, quantitative backscattered electron imaging (qBEI), dual energy X-ray absorptiometry (DXA), microcomputed tomography (microCT), and biomechanical testing. Histomorphometry confirmed osteoblast-related hallmarks of ABD in our mouse model. Bone formation was near complete suppression in the No Formation and Adynamic specimens. Inhibition of bone resorption in the Adynamic group was confirmed by tartrate-resistant acid phosphatase (TRAP) stain. Normal bone mineral density and architecture were maintained in the Adynamic group, whereas the No Formation group showed a reduction in bone mineral content and trabecular thickness relative to the Adynamic group. As expected, the No Formation group had a more hypomineralized profile and the Adynamic group had a higher mean mineralization profile that is similar to suppressed bone turnover in human. This data confirms successful replication of the adynamic bone condition in a mouse without the complication of renal ablation. Our approach is the first model of ABD that uses pharmacological manipulation in a transgenic mouse to mimic the bone cellular dynamics observed in the human ABD condition. We plan to use our mouse model to investigate the adynamic bone condition in aging and to study changes to bone quality and fracture risk as a consequence of over-suppressed bone turnover. Copyright © 2014 Elsevier Inc. All rights reserved.
Roy, Mangal; Bose, Susmita
2012-01-01
Bone substitute materials are required to support the remodeling process, which consists of osteoclastic resorption and osteoblastic synthesis. Osteoclasts, the bone resorbing cells, generate from differentiation of hemopoietic mononuclear cells. In the present study we have evaluated the effects of 1.0 wt% strontium (Sr) and 1.0 wt% magnesium (Mg) doping in beta-tricalcium phosphate (β-TCP) on the differentiation of mononuclear cells into osteoclast-like cells and its resorptive activity. In vitro osteoclast-like cell formation, adhesion, and resorption were studied using osteoclast precursor RAW 264.7 cell, supplemented with receptor activator of nuclear factor κβ ligand (RANKL). Osteoclast-like cell formation was noticed on pure and Sr doped β-TCP samples at day 8 which was absent on Mg doped β-TCP samples indicating decrease in initial osteoclast differentiation due to Mg doping. After 21 days of culture, osteoclast-like cell formation was evident on all samples with osteoclastic markers such as actin ring, multiple nuclei, and presence of vitronectin receptor αvβ3 integrin. After osteoclast differentiation, all substrates showed osteoclast-like cell mediated degradation, however; significantly restricted for Mg doped β-TCP samples. Our present results indicated substrate chemistry controlled osteoclast differentiation and resorptive activity which can be used in designing TCP based resorbable bone substitutes with controlled degradation properties. PMID:22566212
Roy, Mangal; Bose, Susmita
2012-09-01
Bone substitute materials are required to support the remodeling process, which consists of osteoclastic resorption and osteoblastic synthesis. Osteoclasts, the bone-resorbing cells, generate from differentiation of hemopoietic mononuclear cells. In the present study, we have evaluated the effects of 1.0 wt % strontium (Sr) and 1.0 wt % magnesium (Mg) doping in beta-tricalcium phosphate (β-TCP) on the differentiation of mononuclear cells into osteoclast-like cells and its resorptive activity. In vitro osteoclast-like cell formation, adhesion, and resorption were studied using osteoclast precursor RAW 264.7 cell, supplemented with receptor activator of nuclear factor κβ ligand (RANKL). Osteoclast-like cell formation was noticed on pure and Sr-doped β-TCP samples at day 8, which was absent on Mg-doped β-TCP samples indicating decrease in initial osteoclast differentiation due to Mg doping. After 21 days of culture, osteoclast-like cell formation was evident on all samples with osteoclastic markers such as actin ring, multiple nuclei, and presence of vitronectin receptor α(v)β(3) integrin. After osteoclast differentiation, all substrates showed osteoclast-like cell-mediated degradation, however, significantly restricted for Mg-doped β-TCP samples. Our present results indicated that substrate chemistry controlled osteoclast differentiation and resorptive activity, which can be used in designing TCP-based resorbable bone substitutes with controlled degradation properties. Copyright © 2012 Wiley Periodicals, Inc.
Astronaut Bones: Stable Calcium Isotopes in Urine as a Biomarker of Bone Mineral Balance
NASA Astrophysics Data System (ADS)
Skulan, J.; Gordon, G. W.; Romaniello, S. J.; Anbar, A. D.; Smith, S. M.; Zwart, S.
2016-12-01
Bone loss is a common health concern, in conditions ranging from osteoporosis to cancer. Bone loss due to unloading is also an important health issue for astronauts. We demonstrate stable calcium isotopes, a tool developed in geochemistry, are capable of detecting real-time quantitative changes in net bone mineral balance (BMB) using serum and urine [1]. We validated this technique by comparing with DEXA and biomarker data in subjects during bed rest, a ground-based analog of space flight effects [2-4]. We now apply this tool to assess changes in astronauts' BMB before, during and after 4-6 month space missions. There is stable isotope fractionation asymmetry between bone formation and resorption. During bone formation there is a mass-dependent preference for "lighter" calcium isotopes to be removed from serum and incorporated into bone mineral. During bone resorption, there is no measurable isotopic discrimination between serum and bone. Hence, when bone formation rates exceed that of resorption, serum and urine become isotopically "heavy" due to the sequestration of "light" calcium in bone. Conversely, when bone resorption exceeds bone formation, serum and urine become isotopically "light" due to the release of the sequestered light calcium from bone. We measured Ca isotopes in urine of thirty International Space Station astronauts. Average Ca isotope values in astronauts' urine shift isotopically lighter during microgravity, consistent with negative net BMB. Within a month of return to Earth, astronauts returned to within error of their δ44Ca value prior to departure. Urine samples from astronauts testing bone loss countermeasures showed bisphosphonates provide a viable pharmacological countermeasure. Some, but not all, individuals appear able to resist bone loss through diet and intensive resistive exercise alone. This is a promising new technique for monitoring BMB in astronauts, and hopefully someday on the way to/from Mars, this also has important clinical applications for human health and terrestrial medicine [5]. REFERENCES [1] Morgan, J.L. et al (2011) Anal Chem 83, 6956-6962. [2] Skulan, J.L. et al. (2007) Clin Chem 53, 1155-1158. [3] Morgan, J.L. et al (2012) PNAS 109, 9989-9994. [4] Channon, M.B. et al (2015) Bone 77, 69-74. [5] Gordon, G.W. et al (2014) Leukemia 28, 2112-2115.
Song, Ruilong; Gu, Jianhong; Liu, Xuezhong; Zhu, Jiaqiao; Wang, Qichao; Gao, Qian; Zhang, Jiaming; Cheng, Laiyang; Tong, Xishuai; Qi, Xinyi; Yuan, Yan; Liu, Zongping
2014-09-01
Bone remodeling is dependent on the dynamic equilibrium between osteoclast-mediated bone resorption and osteoblast-mediated osteogenesis. The sealing zone is an osteoclast-specific cytoskeletal structure, the integrity of which is critical for osteoclast-mediated bone resorption. To date, studies have focused mainly on the osteoprotegerin (OPG)‑induced inhibition of osteoclast differentiation through the OPG/receptor activator of the nuclear factor kappa-B ligand (RANKL)/RANK system, which affects the bone resorption of osteoclasts. However, the effects of OPG on the sealing zone have not been reported to date. In this study, the formation of the sealing zone was observed by Hoffman modulation contrast (HMC) microscopy and confocal laser scanning microscopy. The effects of OPG on the existing sealing zone and osteoclast-mediated bone resorption activity, as well as the regulatory role of genes involved in the formation of the sealing zone were examined by immunofluorescence staining, HMC microscopy, quantitative reverse transcription polymerase chain reaction (RT-qPCR), western blot analysis and scanning electron microscopy. The sealing zone was formed on day 5, with belt-like protuberances at the cell edge and scattered distribution of cell nuclei, but no filopodia. The sealing zone was intact in the untreated control group. However, defects in the sealing zone were observed in the OPG-treated group (20 ng/ml) and the structure was absent in the groups treated with 40 and 80 ng/ml OPG. The podosomes showed a scattered or clustered distribution between the basal surface of the osteoclasts and the well surface. Furthermore, resorption lacunae were not detected in the 20 ng/ml OPG-treated group, indicating the loss of osteoclast-mediated bone resorption activity. Treatment with OPG resulted in a significant decrease in the expression of Arhgef8/Net1 and DOCK5 Rho guanine nucleotide exchange factors (RhoGEFs), 10 of 18 RhoGTPases (RhoA, RhoB, cdc42v1, cdc42v2, RhoU/Wrch1, RhoF/Rif, Rac2, RhoG, Rnd1 and RhoBTB1), ROCK1 and ROCK2. In conclusion, podosome distribution was affected by the OPG-induced inhibition of the expression of genes in the RhoGTPase signaling pathway. This resulted in damage to or destruction of the sealing zone, thus inhibiting osteoclast-mediated bone resorption activity.
Emerging treatments for postmenopausal osteoporosis – focus on denosumab
Geusens, Piet
2009-01-01
The pathway of the receptor activator of the nuclear factor κB ligand (RANKL), RANK and osteoprotegerin (OPG) plays a central role in coupling bone formation and resorption during normal bone turnover and in a wide spectrum of diseases characterized by disturbed bone remodeling, increased bone resorption and bone destruction (osteoporosis, Paget’s disease of bone, rheumatoid arthritis [RA], metastatic bone disease). Clinical trials indicate that denosumab, a RANKL-specific recombinant humanized monoclonal antibody, is effective in suppressing bone resorption, resulting in increase in bone mineral density (BMD) in post-menopausal women with low BMD, and has the potential to prevent progression of erosions in RA and of skeletal-related events in metastatic bone disease. The effects on fracture reduction in postmenopausal osteoporosis are awaited from the recently finished FREEDOM study. In clinical trials with denosumab, overall adverse events were similar to placebo or comparators, indicating a favorable safety profile in these diseases, which until now have been available up to 4 years, but data on long-term safety will be needed. PMID:19554095
Tominari, Tsukasa; Ichimaru, Ryota; Yoshinouchi, Shosei; Matsumoto, Chiho; Watanabe, Kenta; Hirata, Michiko; Grundler, Florian M W; Inada, Masaki; Miyaura, Chisato
2017-12-01
(-)-Epigallocatechin-3- O -gallate (EGCG), present in green tea, exhibits antioxidant and antiallergy effects. EGCG3″Me, a 3- O -methylated derivative of EGCG, has been reported to show similar biological functions; the inhibitory activity of EGCG3″Me in a mouse allergy model was more potent than that of EGCG, probably due to the efficiency of absorption from the intestine. However, the functional potency of these EGCGs is controversial in each disease model. We previously observed that EGCG suppressed inflammatory bone resorption and prevented alveolar bone loss in a mouse model of periodontosis. In this study, we examined the role of EGCG3″Me in bone resorption using a mouse model of periodontitis. Lipopolysaccharide (LPS)-induced osteoclast formation was suppressed by adding EGCG3″Me to cocultures of osteoblasts and bone marrow cells, and LPS-induced bone resorption was also inhibited by EGCG3″Me in calvarial organ cultures. EGCG3″Me acted on osteoblasts and suppressed prostaglandin E (PGE) production, which is critical for inflammatory bone resorption, by inhibiting the expression of COX-2 and mPGES-1, key enzymes for PGE synthesis. In osteoclast precursor macrophages, EGCG3″Me suppressed RANKL-dependent differentiation into mature osteoclasts. In a mouse model of periodontitis, LPS-induced bone resorption was suppressed by EGCG3″Me in organ culture of mouse alveolar bone, and the alveolar bone loss was further attenuated by the treatment of EGCG3″Me in the lower gingiva in vivo . EGCG3″Me may be a potential natural compound for the protection of inflammatory bone loss in periodontitis.
Gallium modulates osteoclastic bone resorption in vitro without affecting osteoblasts
Verron, Elise; Masson, Martial; Khoshniat, Solmaz; Duplomb, Laurence; Wittrant, Yohann; Baud'huin, Marc; Badran, Zahi; Bujoli, Bruno; Janvier, Pascal; Scimeca, Jean-Claude; Bouler, Jean-Michel; Guicheux, Jérôme
2010-01-01
Background and purpose: Gallium (Ga) has been shown to be effective in the treatment of disorders associated with accelerated bone loss, including cancer-related hypercalcemia and Paget's disease. These clinical applications suggest that Ga could reduce bone resorption. However, few studies have studied the effects of Ga on osteoclastic resorption. Here, we have explored the effects of Ga on bone cells in vitro. Experimental approach: In different osteoclastic models [osteoclasts isolated from long bones of neonatal rabbits (RBC), murine RAW 264.7 cells and human CD14-positive cells], we have performed resorption activity tests, staining for tartrate resistant acid phosphatase (TRAP), real-time polymerase chain reaction analysis, viability and apoptotic assays. We also evaluated the effect of Ga on osteoblasts in terms of proliferation, viability and activity by using an osteoblastic cell line (MC3T3-E1) and primary mouse osteoblasts. Key results: Gallium dose-dependently (0–100 µM) inhibited the in vitro resorption activity of RBC and induced a significant decrease in the expression level of transcripts coding for osteoclastic markers in RAW 264.7 cells. Ga also dramatically reduced the formation of TRAP-positive multinucleated cells. Ga down-regulated in a dose-dependant manner the expression of the transcription factor NFATc1. However, Ga did not affect the viability or activity of primary and MC3T3-E1 osteoblasts. Conclusions and implications: Gallium exhibits a dose-dependent anti-osteoclastic effect by reducing in vitro osteoclastic resorption, differentiation and formation without negatively affecting osteoblasts. We provide evidence that this inhibitory mechanism involves down-regulation of NFATc1 expression, a master regulator of RANK-induced osteoclastic differentiation. PMID:20397300
Basic research and clinical application of beta-tricalcium phosphate (β-TCP).
Tanaka, T; Komaki, H; Chazono, M; Kitasato, S; Kakuta, A; Akiyama, S; Marumo, K
2017-09-01
The mechanism of bone substitute resorption involves two processes: solution-mediated and cell-mediated disintegration. In our previous animal studies, the main resorption process of beta-tricalcium phosphate (β-TCP) was considered to be cell-mediated disintegration by TRAP-positive cells. Thus, osteoclast-mediated resorption of β-TCP is important for enabling bone formation. We also report the results of treatment with β-TCP graft in patients since 1989. Two to three weeks after implantation, resorption of β-TCP occurred from the periphery, and then continued toward the center over time. Complete or nearly complete bone healing was achieved in most cases within a few years and was dependent upon the amount of implanted material, the patient's age, and the type of bone (cortical or cancellous). We have previously reported that an injectable complex of β-TCP granules and collagen supplemented with rhFGF-2 enabled cortical bone regeneration of rabbit tibiae. Based on the experimental results, we applied this technique to the patients with femoral and humeral fractures in elderly patients, and obtained bone union. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Na Ayudthaya, Wanitcha Chatkun; Kritpet, Thanomwong
2015-09-01
To investigate the effects of low impact aerobic dance and fitball training on bone resorption in Thai working women. The samples of this study consisted of 47 females at the age from 35-45. The subjects were divided into two groups: A) 23 females in a low impact aerobic dance (20 min) and fitball (15 min) training group, and B) 24 females in a low impact aerobic dance training group (35 min). Both groups wore a heart rate monitor during the exercise training. The sessions in the training program over 12 weeks were performed a 3-day a week, 35-minute for work out per session at an intensity of 60-80% of maximum heart rate. Before and after the 12-week training program, bone resorption (Telopeptidecrosslinked: β-CrossLaps) and bone formation (N-terminal propeptine of procollagen type 1: P1NP) including physiological and fitness data were assessed. The data of pre and post trainings within and between the groups as well as the data of changes in dependent variables were compared and analyzed by using paired t-test and independent-test. The statistically significant difference was set at the 0.05 level. Both the low impact aerobic dance and fitball training group and the low impact aerobic dance training group revealed their lower level of bone resorption (β-CrossLaps) while the first group showed statistically significant change (p < 0.05). In addition, there were no significant changes of bone resorption (β-CrossLaps) and bone formation (P1NP) between these two groups. However; both groups had not only a significant decrease in resting heart rate, systolic and diastolic pressure, but also an increase in muscular strength and endurance and maximum oxygen uptake when the training was completed. Flexibility ofthe group withfitball was increased significantly (p < 0.05). Low impact aerobic dance and fitball training has the positive effect of slowing down bone resorption and is beneficial to healthy bones. They concurrently increase lower back flexibility.
Buchwald, Zachary S.; Yang, Chang; Nellore, Suman; Shashkova, Elena V.; Davis, Jennifer L.; Cline, Anna; Ko, Je; Novack, Deborah V.; DiPaolo, Richard; Aurora, Rajeev
2015-01-01
TNFα and IL-17 secreted by proinflammatory T-cells (TEFF) promote bone erosion by activating osteoclasts. We previously demonstrated that in addition to bone resorption, osteoclasts act as antigen presenting cells to induce FoxP3 in CD8 T-cells (TcREG). The osteoclast-induced regulatory CD8 T-cells limit bone resorption in ovariectomized mice (a murine model of postmenopausal osteoporosis). Here we show that while low-dose RANKL maximally induces TcREG via Notch signaling pathway to limit bone resorption, high-dose RANKL promotes bone resorption. In vitro, both TNFα and IL-17, cytokines that are abundant in ovariectomized animals, suppress TcREG induction by osteoclasts by repressing Notch ligand expression in osteoclasts but this effect can be counteracted by addition of RANKL. Ovariectomized mice treated with low-dose RANKL induced TcREG that suppressed bone resorption, decreased TEFF levels and increased bone formation. High dose RANKL had the expected osteolytic effect. Low dose RANKL administration in ovariectomized mice lacking CD8 T-cells was also osteolytic, confirming that TcREG mediate this bone anabolic effect. Our results show that while RANKL directly stimulates osteoclasts to resorb bone, it also controls the osteoclasts’ ability to induce regulatory T-cells, engaging an important negative feedback loop. In addition to the conceivable clinical relevance to treatment of osteoporosis, these observations have potential relevance to induction of tolerance and autoimmune diseases. PMID:25656537
Pereira, M; Jeyabalan, J; Jørgensen, C S; Hopkinson, M; Al-Jazzar, A; Roux, J P; Chavassieux, P; Orriss, I R; Cleasby, M E; Chenu, C
2015-12-01
Some anti-diabetic therapies can have adverse effects on bone health and increase fracture risk. In this study, we tested the skeletal effects of chronic administration of two Glucagon-like peptide-1 receptor agonists (GLP-1RA), increasingly used for type 2 diabetes treatment, in a model of osteoporosis associated bone loss and examined the expression and activation of GLP-1R in bone cells. Mice were ovariectomised (OVX) to induce bone loss and four weeks later they were treated with Liraglutide (LIR) 0.3mg/kg/day, Exenatide (Ex-4) 10 μg/kg/day or saline for four weeks. Mice were injected with calcein and alizarin red prior to euthanasia, to label bone-mineralising surfaces. Tibial micro-architecture was determined by micro-CT and bone formation and resorption parameters measured by histomorphometric analysis. Serum was collected to measure calcitonin and sclerostin levels, inhibitors of bone resorption and formation, respectively. GLP-1R mRNA and protein expression were evaluated in the bone, bone marrow and bone cells using RT-PCR and immunohistochemistry. Primary osteoclasts and osteoblasts were cultured to evaluate the effect of GLP-1RA on bone resorption and formation in vitro. GLP-1RA significantly increased trabecular bone mass, connectivity and structure parameters but had no effect on cortical bone. There was no effect of GLP-1RA on bone formation in vivo but an increase in osteoclast number and osteoclast surfaces was observed with Ex-4. GLP-1R was expressed in bone marrow cells, primary osteoclasts and osteoblasts and in late osteocytic cell line. Both Ex-4 and LIR stimulated osteoclastic differentiation in vitro but slightly reduced the area resorbed per osteoclast. They had no effect on bone nodule formation in vitro. Serum calcitonin levels were increased and sclerostin levels decreased by Ex-4 but not by LIR. Thus, GLP-1RA can have beneficial effects on bone and the expression of GLP-1R in bone cells may imply that these effects are exerted directly on the tissue. Copyright © 2015 Elsevier Inc. All rights reserved.
New mechanisms and targets in the treatment of bone fragility.
Martin, T John; Seeman, Ego
2007-01-01
Bone modelling and remodelling are cell-mediated processes responsible for the construction and reconstruction of the skeleton throughout life. These processes are chiefly mediated by locally generated cytokines and growth factors that regulate the differentiation, activation, work and life span of osteoblasts and osteoclasts, the cells that co-ordinate the volumes of bone resorbed and formed. In this way, the material composition and structural design of bone is regulated in accordance with its loading requirements. Abnormalities in this regulatory system compromise the material and structural determinants of bone strength producing bone fragility. Understanding the intercellular control processes that regulate bone modelling and remodelling is essential in planning therapeutic approaches to prevention and treatment of bone fragility. A great deal has been learnt in the last decade. Clinical trials carried out exclusively with drugs that inhibit bone resorption have identified the importance of reducing the rate of bone remodelling and so the progression of bone fragility to achieved fracture reductions of approx. 50%. These trials have also identified limitations that should be placed upon interpretation of bone mineral density changes in relation to treatment. New resorption inhibitors are being developed, based on mechanisms of action that are different from existing drugs. Some of these might offer resorption inhibition without reducing bone formation. More recent research has provided the first effective anabolic therapy for bone reconstruction. Daily injections of PTH (parathyroid hormone)-(1-34) have been shown in preclinical studies and in a large clinical trial to increase bone tissue mass and reduce the risk of fractures. The action of PTH differs from that of the resorption inhibitors, but whether it is more effective in fracture reduction is not known. Understanding the cellular and molecular mechanisms of PTH action, particularly its interactions with other pathways in determining bone formation, is likely to lead to new therapeutic developments. The recent discovery through mouse genetics that PTHrP (PTH-related protein) is a crucial bone-derived paracrine regulator of remodelling offers new and interesting therapeutic targets.
Wade-Gueye, Ndéye Marième; Boudiffa, Maya; Laroche, Norbert; Vanden-Bossche, Arnaud; Fournier, Carole; Aubin, Jane E; Vico, Laurence; Lafage-Proust, Marie-Hélène; Malaval, Luc
2010-11-01
Bone sialoprotein (BSP) belongs to the small integrin-binding ligand, N-linked glycoprotein (SIBLING) family, whose members play multiple and distinct roles in the development, turnover, and mineralization of bone and dentin. The functions of BSP in bone remodeling are not yet well established. We previously showed that BSP knockout (BSP(-/-)) mice exhibit a higher trabecular bone volume, concomitant with lower bone remodeling, than wild-type (BSP(+/+)) mice. To determine whether bone turnover can be stimulated in the absence of BSP, we subjected BSP(+/+) and BSP(-/-) mice to catabolic [ovariectomy (OVX)] or anabolic (intermittent PTH administration) hormonal challenges. BSP(-/-) mice progressively develop hypocalcemia and high serum PTH between 2 and 4 months of age. Fifteen and 30 d after OVX, microtomography analysis showed a significant decrease of trabecular bone volume in tibiae of both genotypes. Histomorphometric parameters of bone formation and resorption were significantly increased by OVX. PTH treatment resulted in an increase of trabecular thickness and both bone formation and resorption parameters at all skeletal sites in both genotypes and a decrease of trabecular bone volume in tibiae of BSP(+/+) but not BSP(-/-) mice. PTH increased cortical thickness and bone area in BSP(+/+) but not BSP(-/-) mice and stimulated the bone formation rate specifically in the endosteum of BSP(+/+) mice and the periosteum of BSP(-/-) mice. PTH enhanced the expression of RANKL, MEPE, and DMP1 in both genotypes but increased OPG and OPN expression only in BSP(-/-) mice. In conclusion, despite the low basal turnover, both catabolic and anabolic challenges increase bone formation and resorption in BSP(-/-) mice, suggesting that compensatory pathways are operative in the skeleton of BSP-deficient mice. Although up-regulation of one or several other SIBLINGs is a possible mechanism, further studies are needed to analyze the interplay and cross-regulation involved in compensating for the absence of BSP.
[Mechanism of "crescent sign" formation in avascular necrosis of femoral head].
Zhang, Nianfei; Qi, Shengwen; Chai, Jianfeng
2008-03-01
To investigate corresponding relation between structure change of the femoral head with "crescent sign" and stress exerted on the avascular necrosis of femoral head, to explore the mechanism of the "crescent sign" formation. From March 1998 to April 2003, the femoral heads of 18 hips in 16 cases having osteonecrosis and "crescent sign" in X-ray film before total hip arthroplasty, were collected. General and coronal section plane morphology of the femoral heads were observed. The principle of effective stress and stress concentration theory were used to explain the phenomena and structure changes in osteonecrosis of the femoral head. Cancellous bone existed as a three-dimensional, interconnected network of trabeculae rods and plates, with 50%-90% of porosity and 20-30 mmHg bone marrow pressure. According to the definition of porous media, bones especially cancellous bone was a kind of solid and liquid two phases porous media. Cross-sectional structure changes in the junction between subchondral plate and cancellous were the place where stress concentrated. The principle of effective stress and stress concentration theory could explain the phenomena and their relationship that occurred in avascular necrosis of the femoral head. The "crescent sign" starts in an area of very focal resorption in the subchondral plate laterally and peripherally. The focal resorption in the subchondral plate breaks the continuity of subchondral plate and causes stress concentration in the resorption region. The concentrated stress accumulates in the junction between subchondral plate and unrepaired necrotic cancellous bone brings on the fracture right below the subchondral plate. The focal resorption of the subchondral plate also provides a pathway for the pore water in the unrepaired necrotic bone skeleton to outflow, therefore cause effective stress increase and unrepaired necrotic bone skeleton be compacted by increased effective stress applied on unrepaired necrotic cancellous bone skeleton, and results in the volume decrease of unrepaired necrotic cancellous bone and the formation of cavum below the subchondral plate. The cavum shows "crescent sign" in the X-ray film.
Osteopenia in anorexia nervosa: specific mechanisms of bone loss.
Lennkh, C; de Zwaan, M; Bailer, U; Strnad, A; Nagy, C; el-Giamal, N; Wiesnagrotzki, S; Vytiska, E; Huber, J; Kasper, S
1999-01-01
Osteopenia is a well recognized medical complication of anorexia nervosa (AN). The mechanism of bone loss is not fully understood and there is uncertainty about its management. New markers of bone turnover have been developed. C-terminal type 1 propeptide (PICP) is a measure of bone formation and urinary pyridinolines such as deoxypyridinoline (DPYRX) and serum carboxyterminal crosslinked telopeptide (ICTP) are markers of bone resorption. The aim of this study was to examine these bone markers in patients with AN. Twenty female patients with AN and 12 healthy controls were included in the study. Bone mineral density (BMD) of AN patients was measured by dual energy X-ray absorptiometry (DEXA). Lumbar bone density was significantly reduced in the AN group compared to standardised values of thirty year old adults (t-score 83.2%, S.D. 12.1). Femoral neck bone density showed an even greater reduction (t-score 79.4%, S.D. 13.5). We found a significant negative correlation between femoral BMD and the duration of the illness. Femoral BMD correlated significantly with minimal body weight (r(16) = 0.504, p = 0.033). The markers of bone resorption were significantly higher in the patients with AN compared to the values of the control group (ICTP t(30) = -2.15, p = 0.04, DPYRX t(25) = -2.26, p = 0.033), whereas the markers of bone formation did not differ significantly between the groups. AN appears to be a low turn over state associated with increased bone resorption without concomitant bone formation. This pattern differs from osteopenia in menopausal women and should, therefore, lead to the development of specific therapeutic strategies in AN associated osteopenia. Hormone replacement therapy as well as calcium and vitamine D-supplementation are so far discussed controversially. Long-term treatment studies are warranted.
Changes in markers of bone formation and resorption in a bed rest model of weightlessness
NASA Technical Reports Server (NTRS)
Lueken, S. A.; Arnaud, S. B.; Taylor, A. K.; Baylink, D. J.
1993-01-01
To study the mechanism of bone loss in physical unloading, we examined indices of bone formation and bone resorption in the serum and urine of eight healthy men during a 7 day -6 degrees head-down tilt bed rest. Prompt increases in markers of resorption--pyridinoline (PD), deoxypyridinoline (DPD), and hydroxyproline (Hyp)/g creatinine--during the first few days of inactivity were paralleled by tartrate-resistant acid phosphatase (TRAP) with significant increases in all these markers by day 4 of bed rest. An index of formation, skeletal alkaline phosphatase (SALP), did not change during bed rest and showed a moderate 15% increase 1 week after reambulation. In contrast to SALP, serum osteocalcin (OC) began increasing the day preceding the increase in Hyp, remained elevated for the duration of the bed rest, and returned to pre-bed rest values within 5 days of reambulation. Similarly, DPD increased significantly at the onset of bed rest, remained elevated for the duration of bed rest, and returned to pre-bed rest levels upon reambulation. On the other hand, the other three indices of resorption, Hyp, PD, and TRAP, remained elevated for 2 weeks after reambulation. The most sensitive indices of the levels of physical activity proved to be the noncollagenous protein, OC, and the collagen crosslinker, DPD. The bed rest values of both these markers were significantly elevated compared to both the pre-bed rest values and the post-bed rest values. The sequence of changes in the circulating markers of bone metabolism indicated that increases in serum OC are the earliest responses of bone to head-down tilt bed rest.
Long-term effects of local pretreatment with alendronate on healing of replanted rat teeth.
Komatsu, K; Shimada, A; Shibata, T; Shimoda, S; Oida, S; Kawasaki, K; Nifuji, A
2008-04-01
Our previous study showed that topical alendronate, an inhibitor of bone resorption, reduces root resorption and ankylosis for 21 d after replantation of rat teeth. The aim of the present study was to evaluate the long-term inhibitory effects of topical alendronate in the replanted teeth. The rat maxillary first molars were extracted, placed in saline containing 1 mm alendronate (alendronate group) or saline (saline group) for 5 min and then replanted. The maxillae were dissected at 60 and 120 d. Microcomputed tomography horizontal sections at three root levels were analyzed for root and bone resorption, ankylosis and pulp mineralization. In the alendronate group at 60 and 120 d, the frequencies of resorption of roots and bone were lower than those in the saline group. The p values show statistical significances of lower frequencies in the alendronate group than in the saline group by chi-square test (see Table 1). Ankylosis and pulp mineralization occurred in the alendronate and saline groups. Bone marrow spaces were narrowed in conjunction with bone tissue expansion around the replanted teeth in the alendronate group. The inhibitory effects of topical alendronate were retained on root and bone resorption, but not on ankylosis and pulp mineralization, in the replanted teeth for 4 mo. Alendronate might also stimulate bone formation around the rat replanted teeth.
NASA Technical Reports Server (NTRS)
Ma, Y. F.; Ke, H. Z.; Jee, W. S. S.
1994-01-01
The objects of this study were to determine the responses of a cancellous bone site with a closed growth plate (the distal tibial metaphysis, DTM) to ovariectomy (OVX) and OVX plus a prostaglandin E2 (PGE2) treatment, and compare the site's response to previous findings reported for another site (the proximal tibial metaphysis, PTM). Thirty-five 3-month old female Sprague-Dawley rats were divided into five groups: basal, sham-OVX, and OVX+0, +1, or +6 mg PGE2/kg/d injected subcutaneously for 3 months and given double fluorescent labels before sacrifice. Cancellous bone histomorphometric analyses were performed on 20-micron-thick undecalcified DTM sections. Similar to the PTM, the DTM showed age-related decreases in bone formation and increases in bone resorption, but it differed in that at 3 months post-OVX; there was neither bone loss nor changes in formation endpoints. Giving 1 mg PGE2/kg/d to OVX rats prevented most age-related changes and maintained the bone formation histomorphometry near basal levels. Treating OVX rats with 6 mg PGE2/kg/d prevented age-related bone changes, added extra bone, and improved microanatomical structure by stimulating bone formation without altering bone resorption. Furthermore, after PGE2 administration, the DTM, a cancellous bone site with a closed growth plate, inereased bone formation more than did the cancellous bone in the PTM.
Wei, X X; Chu, J P; Zou, Y Z; Ru, N; Cui, S X; Bai, Y X
2015-12-22
The aim of this study was to investigate the effect of local administration of odanacatib (ODN) on orthodontic root resorption and the status of alveolar bone metabolism in rat molars. All specimens were scanned using microcomputed tomography and then the raw images were reconstructed. The total volume of the root resorption craters of the 60 g-NS (normal saline) group was higher than in the 60 g-ODN group and the control group. In the 60 g-NS group, the bone volume fraction values of alveolar bone were significantly decreased compared with the other 2 groups. There were no significant differences in the bone volume fraction values of the tibiae among the 3 groups. The results of tartrate-resistant acid phosphatase-positive (TRAP+) numbers showed that there was no difference between the 60 g-NS group and the 60 g-ODN group. The expression of cathepsin K was decreased significantly in the 60 g-ODN group. These results indicate that ODN reduces orthodontics-induced external root resorption and increases alveolar bone metabolism. This may be because ODN inhibits the activity of odontoclasts, but maintains the quantity of odontoclasts and enhances bone formation. ODN promotes local alveolar bone metabolism, but does not affect systemic bone metabolism.
Buckling and bone modeling as factors in the development of idiopathic scoliosis.
Goto, Manabu; Kawakami, Noriaki; Azegami, Hideyuki; Matsuyama, Yukihiro; Takeuchi, Kenzen; Sasaoka, Ryu
2003-02-15
Computational analysis using the finite-element method was used to examine a possible etiology of idiopathic scoliosis. To compare changes in the coronal and the transverse planes of idiopathic thoracic scoliosis with changes produced in a finite-element buckling model, and to investigate the influence of bone modeling on the buckling spine. Although it is now widely accepted that growth is related strongly to the onset and progression of scoliosis, the pathomechanism or etiology of idiopathic scoliosis still is not clear. A previous study showed that a buckling phenomenon caused by anterior spinal overgrowth can produce scoliosis, and that the fourth buckling mode matched the clinical characteristics associated with the thoracic type of idiopathic scoliosis. The fourth buckling mode occurs when the first, second, and third buckling modes are prevented. The spinal finite-element model used in this study consisted of 68,582 elements and 84,603 nodes. The transverse changes seen in the computed tomography images of 41 patients with idiopathic thoracic scoliosis (apex, T8; average Cobb angle, 52.5 degrees) were compared with those produced in the fourth buckling mode. Bone modeling (bone formation and resorption) was simulated as heat deformation caused by changes in temperature. The bone formation and resorption were simulated, respectively, by positive and negative volume changes in proportion to the stress that occurred in the buckling spine. Computed tomography images of scoliosis show that as the scoliosis becomes more severe, the thoracic cage decreases on the convex side of the curve and increases on the concave side. The opposite thoracic cage deformation was obtained in the fourth buckling mode. In patients with scoliosis, the sternum essentially remains in its original position with respect to the vertebrae, but in the linear buckling model, it shifted in the direction of vertebral body rotation. In contrast to clinical data, the incremental deformation resulting from bone formation corrected the original curve, and the thoracic cage distorted. On the other hand, incremental deformation resulting from bone resorption worsened the original curve, and the thoracic cage distorted in a manner similar to that described by the clinical data. This computational investigation suggests that scoliotic changes in the spinal column triggered by the buckling phenomenon are counteracted by bone formation, but worsened by bone resorption. The authors hypothesized that scoliosis progressed with resorption of loaded bone. However, it is unclear whether this hypothesis applies to a living body in practice because of the effects from additional factors.
Diamagnetic levitation promotes osteoclast differentiation from RAW264.7 cells.
Sun, Yu-Long; Chen, Zhi-Hao; Chen, Xiao-Hu; Yin, Chong; Li, Di-Jie; Ma, Xiao-Li; Zhao, Fan; Zhang, Ge; Shang, Peng; Qian, Ai-Rong
2015-03-01
The superconducting magnet with a high magnetic force field can levitate diamagnetic materials. In this study, a specially designed superconducting magnet with large gradient high magnetic field (LGHMF), which provides three apparent gravity levels (μg, 1 g, and 2 g), was used to study its influence on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation from preosteoclast cell line RAW264.7. The effects of LGHMF on the viability, nitric oxide (NO) production, morphology in RAW264.7 cells were detected by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, the Griess method, and the immunofluorescence staining, respectively. The changes induced by LGHMF in osteoclast formation, mRNA expression, and bone resorption were determined by tartrate-resistant acid phosphatase staining, semiquantity PCR, and bone resorption test, respectively. The results showed that: 1) LGHMF had no lethal effect on osteoclast precursors but attenuated NO release in RAW264.7 cells. 2) Diamagnetic levitation (μg) enhanced both the formation and bone resorption capacity of osteoclast. Moreover, diamagnetic levitation up-regulated mRNA expression of RANK, Cathepsin K, MMP-9, and NFATc1, while down-regulated RunX2 in comparison with controls. Furthermore, diamagnetic levitation induced obvious morphological alterations in osteoclast, including active cytoplasmic peripheral pseudopodial expansion, formation of pedosome belt, and aggregation of actin ring. 3) Magnetic field produced by LGHMF attenuated osteoclast resorption activity. Collectively, LGHMF with combined effects has multiple effects on osteoclast, which attenuated osteoclast resorption with magnetic field, whereas promoted osteoclast differentiation with diamagnetic levitation. Therefore, these findings indicate that diamagnetic levitation could be used as a novel ground-based microgravity simulator, which facilitates bone cell research of weightlessness condition.
Pathophysiology and new strategies for the treatment of Legg-Calvé-Perthes disease.
Kim, Harry K W
2012-04-04
Legg-Calvé-Perthes disease is a juvenile form of idiopathic osteonecrosis of the femoral head that can lead to permanent femoral head deformity and premature osteoarthritis. According to two recent multicenter, prospective cohort studies, current nonoperative and operative treatments have modest success rates of producing a good outcome with a spherical femoral head in older children with Legg-Calvé-Perthes disease. Experimental studies have revealed that the immature femoral head is mechanically weakened following ischemic necrosis. Increased bone resorption and delayed new bone formation, in combination with continued mechanical loading of the hip, contribute to the pathogenesis of the femoral head deformity. Biological treatment strategies to improve the healing process by decreasing bone resorption and stimulating bone formation appear promising in nonhuman preclinical studies.
Busse, Björn; Schilling, Arndt F.; Schinke, Thorsten; Amling, Michael; Lange, Tobias
2012-01-01
Bioactive bone substitute materials are a valuable alternative to autologous bone transplantations in the repair of skeletal defects. However, clinical studies have reported varying success rates for many commonly used biomaterials. While osteoblasts have traditionally been regarded as key players mediating osseointegration, increasing evidence suggests that bone-resorbing osteoclasts are of crucial importance for the longevity of applied biomaterials. As no standardized data on the resorbability of biomaterials exists, we applied an in vitro-assay to compare ten commonly used bone substitutes. Human peripheral blood mononuclear cells (PBMCs) were differentiated into osteoclasts in the co-presence of dentin chips and biomaterials or dentin alone (control) for a period of 28 days. Osteoclast maturation was monitored on day 0 and 14 by light microscopy, and material-dependent changes in extracellular pH were assessed twice weekly. Mature osteoclasts were quantified using TRAP stainings on day 28 and their resorptive activity was determined on dentin (toluidin blue staining) and biomaterials (scanning electron microscopy, SEM). The analyzed biomaterials caused specific changes in the pH, which were correlated with osteoclast multinuclearity (r = 0.942; p = 0.034) and activity on biomaterials (r = 0.594; p = 0.041). Perossal led to a significant reduction of pH, nuclei per osteoclast and dentin resorption, whereas Tutogen bovine and Tutobone human strikingly increased all three parameters. Furthermore, natural biomaterials were resorbed more rapidly than synthetic biomaterials leading to differential relative resorption coefficients, which indicate whether bone substitutes lead to a balanced resorption or preferential resorption of either the biomaterial or the surrounding bone. Taken together, this study for the first time compares the effects of widely used biomaterials on osteoclast formation and resorbability in an unbiased approach that may now aid in improving the preclinical evaluation of bone substitute materials. PMID:23071629
Herford, Alan Scott; Cicciù, Marco
2012-01-01
Purpose: The aim of this investigation was to evaluate whether the addition of the platelet derived growth factor type BB (PDGF-BB) to a collagen matrix applied on a titanium mesh would favor healing and resorption onto the grafted bone. A histologic and radiographic study of two different groups (test and control) was performed. Designs: A surgical procedure was performed on 8 pigs to obtain 16 bilateral mandibular alveolar defects. All the defects were then reconstructed with a mixture of autogenous bovine bone using titanium mesh positioning. Two groups, with a total of 16 defects were created: The first to study collagen sponge and PDGF-BB and the second to control collagen only. The collagen matrix was positioned directly over the mesh and soft tissue was closed without tensions onto both groups without attempting to obtain primary closure. Possible exposure of the titanium mesh as well as the height and volume of the new bone was recorded. Results: New bone formation averaged about 6.68 mm in the test group studied; the control group had less regenerated bone at 4.62 mm. Conclusion: PDGF-BB addition to the collagen matrix induced a strong increase in hard and soft tissue healing and favored bone formation, reducing bone resorption even if the mesh was exposed. PMID:23833493
Cong, Qian; Jia, Hao; Li, Ping; Qiu, Shoutao; Yeh, James; Wang, Yibin; Zhang, Zhen-Lin; Ao, Junping; Li, Baojie; Liu, Huijuan
2017-01-01
Bone mass is determined by the balance between bone formation, carried out by mesenchymal stem cell-derived osteoblasts, and bone resorption, carried out by monocyte-derived osteoclasts. Here we investigated the potential roles of p38 MAPKs, which are activated by growth factors and cytokines including RANKL and BMPs, in osteoclastogenesis and bone resorption by ablating p38α MAPK in LysM+monocytes. p38α deficiency promoted monocyte proliferation but regulated monocyte osteoclastic differentiation in a cell-density dependent manner, with proliferating p38α−/− cultures showing increased differentiation. While young mutant mice showed minor increase in bone mass, 6-month-old mutant mice developed osteoporosis, associated with an increase in osteoclastogenesis and bone resorption and an increase in the pool of monocytes. Moreover, monocyte-specific p38α ablation resulted in a decrease in bone formation and the number of bone marrow mesenchymal stem/stromal cells, likely due to decreased expression of PDGF-AA and BMP2. The expression of PDGF-AA and BMP2 was positively regulated by the p38 MAPK-Creb axis in osteoclasts, with the promoters of PDGF-AA and BMP2 having Creb binding sites. These findings uncovered the molecular mechanisms by which p38α MAPK regulates osteoclastogenesis and coordinates osteoclastogenesis and osteoblastogenesis. PMID:28382965
Evenepoel, Pieter; Behets, Geert J; Viaene, Liesbeth; D'Haese, Patrick C
2017-02-01
Renal transplantation is believed to have a major impact on bone health. The present prospective observational bone biopsy study aimed to define the natural history of bone histomorphometry parameters in contemporaneous de novo renal transplant recipients. Paired bone biopsies were performed at the time of transplantation and at one-year posttransplantation in an unselected cohort of 36 patients referred for deceased kidney replacement. Parameters of mineral metabolism and circulating bone turnover markers were monitored as well. Static parameters of bone formation and especially bone resorption being already low-normal in the majority of patients at the time of renal transplantation, further declined during the first posttransplant year. However, interindividual variation was substantial, and significance was reached only for bone resorption parameters. Bone mineralization and trabecular bone volume were within the normal range at the time of transplantation (83.3% and 91.7% of graft recipients, respectively) and showed little change one-year posttransplantation. Changes in osteoclast number were paralleled by changes in circulating tartrate-resistant acid phosphatase 5b levels. Finally, cumulative glucocorticoid dose, but not the posttransplantation parathyroid hormone level, associated with trabecular bone loss. Thus, the impact of renal transplantation on bone histomorphometry is limited with only bone resorption, being already low at the time of transplantation, showing a further decline. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
The inhibitory effect of vitamin K on RANKL-induced osteoclast differentiation and bone resorption.
Wu, Wei-Jie; Kim, Min Seuk; Ahn, Byung-Yong
2015-10-01
To further understand the correlation between vitamin K and bone metabolism, the effects of vitamins K1, menaquinone-4 (MK-4), and menaquinone-7 (MK-7) on RANKL-induced osteoclast differentiation and bone resorption were comparatively investigated. Vitamin K2 groups (MK-4 and MK-7) were found to significantly inhibit RANKL-medicated osteoclast cell formation of bone marrow macrophages (BMMs) in a dose-dependent manner, without any evidence of cytotoxicity. The mRNA expression of specific osteoclast differentiation markers, such as c-Fos, NFATc1, OSCAR, and TRAP, as well as NFATc1 protein expression and TRAP activity in RANKL-treated BMMs were inhibited by vitamin K2, although MK-4 exhibited a significantly greater efficiency compared to MK-7. In contrast, the same dose of vitamin K1 had no inhibitory effect on RANKL-induced osteoclast cell formation, but increased the expression of major osteoclastogenic genes. Interestingly, vitamins K1, MK-4 and MK-7 all strongly inhibited osteoclastic bone resorption (p < 0.01) in a dose dependent manner. These results suggest that vitamins K1, MK-4 and MK-7 have anti-osteoporotic properties, while their regulation effects on osteoclastogenesis are somewhat different.
Bone mineral density and metabolic indices in hyperthyroidism.
Al-Nuaim, A; El-Desouki, M; Sulimani, R; Mohammadiah, M
1991-09-01
Hyperthyroidism can alter bone metabolism by increasing both bone resorption and formation. The increase in bone resorption predominates, leading to a decrease in bone mass. To assess the effect of hyperthyroidism on bone and mineral metabolism, we measured bone density using single photon absorptiometry in 30 untreated hyperthyroid patients. Patients were categorized into three groups based on sex and alkaline phosphatase levels: 44 sex- and age-matched subjects were used as controls. Bone densities were significanlty lower in all patient groups compared with controls. Alkaline phosphatase was found to be a useful marker for assessing severity of bone disease in hyperthyroid patients as there is significant bone density among patients with higher alkaline phosphatase value. Hyperthyroidism should be considered in the differential diagnosis of unexplained alkaline phophatase activity.
Misiorowski, Waldemar
2011-01-01
Most medical agents currently applied in osteoporosis therapy act by inhibiting bone resorption and reducing bone remodelling, i.e. they inhibit the process of bone mass loss by suppressing bone resorption processes. These drugs provide an ideal therapeutic option to prevent osteoporosis progression. They however have a rather limited usefulness when the disease has already reached its advanced stages with distinctive bone architecture lesions. The fracture risk reduction rate, achieved in the course of anti-resorptive therapy, is insufficient for patients with severe osteoporosis to stop the downward spiral of their quality of life (QoL) with a simultaneously increasing threat of premature death. The activity of the N-terminal fragment of 1-34 human parathormone (teriparatide - 1-34 rhPTH), a parathyroid hormone (PTH) analogue obtained via genetic engineering , is expressed by increased bone metabolism, while promoting new bone tissue formation by stimulating the activity of osteoblasts more than that of osteoclasts. The anabolic activity of PTH includes both its direct effect on the osteoblast cell line, and its indirect actions exerted via its regulatory effects on selected growth factors, e.g. IGF-1 or sclerostin. However, the molecular mechanisms responsible for the actual anabolic effects of PTH remain mostly still unclear. Clinical studies have demonstrated that therapeutic protocols with the application of PTH analogues provide an effective protection against all osteoporotic fracture types in post-menopausal women and in elderly men with advanced osteoporosis. Particular hopes are pinned on the possibility of applying PTH in the therapy of post-steroid osteoporosis, mainly to suppress bone formation, the most important pathological process in this regard. The relatively short therapy period with a PTH analogue (24 months) should then be replaced and continued by anti-resorptive treatment.
Misiorowski, Waldemar
2011-01-01
Most medical agents currently applied in osteoporosis therapy act by inhibiting bone resorption and reducing bone remodelling, i.e. they inhibit the process of bone mass loss by suppressing bone resorption processes. These drugs provide an ideal therapeutic option to prevent osteoporosis progression. They however have a rather limited usefulness when the disease has already reached its advanced stages with distinctive bone architecture lesions. The fracture risk reduction rate, achieved in the course of anti-resorptive therapy, is insufficient for patients with severe osteoporosis to stop the downward spiral of their quality of life (QoL) with a simultaneously increasing threat of premature death. The activity of the N-terminal fragment of 1-34 human parathormone (teriparatide - 1-34 rhPTH), a parathyroid hormone (PTH) analogue obtained via genetic engineering , is expressed by increased bone metabolism, while promoting new bone tissue formation by stimulating the activity of osteoblasts more than that of osteoclasts. The anabolic activity of PTH includes both its direct effect on the osteoblast cell line, and its indirect actions exerted via its regulatory effects on selected growth factors, e.g. IGF-1 or sclerostin. However, the molecular mechanisms responsible for the actual anabolic effects of PTH remain mostly still unclear. Clinical studies have demonstrated that therapeutic protocols with the application of PTH analogues provide an effective protection against all osteoporotic fracture types in post-menopausal women and in elderly men with advanced osteoporosis. Particular hopes are pinned on the possibility of applying PTH in the therapy of post-steroid osteoporosis, mainly to suppress bone formation, the most important pathological process in this regard. The relatively short therapy period with a PTH analogue (24 months) should then be replaced and continued by anti-resorptive treatment.
Hayami, Tadashi; Pickarski, Maureen; Wesolowski, Gregg A; McLane, Julia; Bone, Ashleigh; Destefano, James; Rodan, Gideon A; Duong, Le T
2004-04-01
It has been suggested that subchondral bone remodeling plays a role in the progression of osteoarthritis (OA). To test this hypothesis, we characterized the changes in the rat anterior cruciate ligament transection (ACLT) model of OA and evaluated the effects of alendronate (ALN), a potent inhibitor of bone resorption, on cartilage degradation and on osteophyte formation. Male Sprague-Dawley rats underwent ACLT or sham operation of the right knee. Animals were then treated with ALN (0.03 and 0.24 microg/kg/week subcutaneously) and necropsied at 2 or 10 weeks postsurgery. OA changes were evaluated. Subchondral bone volume and osteophyte area were measured by histomorphometric analysis. Coimmunostaining for transforming growth factor beta (TGF beta), matrix metalloproteinase 9 (MMP-9), and MMP-13 was performed to investigate the effect of ALN on local activation of TGF beta. ALN was chondroprotective at both dosages, as determined by histologic criteria and collagen degradation markers. ALN suppressed subchondral bone resorption, which was markedly increased 2 weeks postsurgery, and prevented the subsequent increase in bone formation 10 weeks postsurgery, in the untreated tibial plateau of ACLT joints. Furthermore, ALN reduced the incidence and area of osteophytes in a dose-dependent manner. ALN also inhibited vascular invasion into the calcified cartilage in rats with OA and blocked osteoclast recruitment to subchondral bone and osteophytes. ALN treatment reduced the local release of active TGF beta, possibly via inhibition of MMP-13 expression in articular cartilage and MMP-9 expression in subchondral bone. Subchondral bone remodeling plays an important role in the pathogenesis of OA. ALN or other inhibitors of bone resorption could potentially be used as disease-modifying agents in the treatment of OA.
A theoretical framework for strain-related trabecular bone maintenance and adaptation.
Ruimerman, R; Hilbers, P; van Rietbergen, B; Huiskes, R
2005-04-01
It is assumed that density and morphology of trabecular bone is partially controlled by mechanical forces. How these effects are expressed in the local metabolic functions of osteoclast resorption and osteoblast formation is not known. In order to investigate possible mechano-biological pathways for these mechanisms we have proposed a mathematical theory (Nature 405 (2000) 704). This theory is based on hypothetical osteocyte stimulation of osteoblast bone formation, as an effect of elevated strain in the bone matrix, and a role for microcracks and disuse in promoting osteoclast resorption. Applied in a 2-D Finite Element Analysis model, the theory explained the formation of trabecular patterns. In this article we present a 3-D FEA model based on the same theory and investigated its potential morphological predictability of metabolic reactions to mechanical loads. The computations simulated the development of trabecular morphological details during growth, relative to measurements in growing pigs, reasonably realistic. They confirmed that the proposed mechanisms also inherently lead to optimal stress transfer. Alternative loading directions produced new trabecular orientations. Reduction of load reduced trabecular thickness, connectivity and mass in the simulation, as is seen in disuse osteoporosis. Simulating the effects of estrogen deficiency through increased osteoclast resorption frequencies produced osteoporotic morphologies as well, as seen in post-menopausal osteoporosis. We conclude that the theory provides a suitable computational framework to investigate hypothetical relationships between bone loading and metabolic expressions.
Ayranci, Ferhat; Gungormus, Metin; Omezli, Mehmet Melih; Gundogdu, Betul
2015-12-01
Increasing sinus pneumatization and the accompanying alveolar bone resorption complicate dental implant placement. This problem can be overcome today by raising the maxillary sinus floor with graft materials. Bisphosphonates are commonly used to accelerate the recovery of the graft materials and to prevent resorption. The purpose of this study is to investigate whether systemic administration of a bisphosphonate (alendronate) would improve new bone formation and reduce fibrous tissue formation over a 6-week follow-up in rabbits treated with two different grafting materials for maxillary sinus floor augmentation. This experimental animal study was conducted at the Experimental Medical Application and Research Center at Erzurum/ Turkey. Twelve New Zealand rabbits, each weighing between 2.7 and 3.3 kg, were used. Twenty-four maxillary sinus floor elevation operations were performed, two on each animal (n = 24). Each elevation was repaired with either deproteinized bovine bone (xenograft) or autogenous bone graft obtained from the iliac crest. Both groups were divided into 2 subgroups: saline-treated and alendronate-treated. All groups underwent the same surgical procedures and evaluation, and were sacrificed at the 6th postoperative week. Sinuses augmented with deproteinized bovine bone (xenograft) and autogenous bone graft were examined histopathologically and histomorphometrically. At 6 weeks, the bone area was significantly larger in the Xenograft-Alendronate group (33.0% ± 5.0%) than in the Xenograft-Saline group (20.8% ± 4.9%) and the bone area was significantly larger in the Autogenous-Alendronate group (43.3% ± 3.8%) than in the Autogenous-Saline group (37.5% ± 6.6%) (P = 0.001). The histomorphometric and histopathological results consistently showed that alendronate stimulated bone formation and reduced fibrous tissue formation in maxillary sinus augmentation grafts, especially in the deproteinized bovine bone group (xenograft). Alendronate may be considered a therapeutic option for improving the bone formation process and reducing resorption in different bone grafting procedures. Further detailed studies should focus on dosage and time-dependent effects of alendronate on bone remodeling.
Ayranci, Ferhat; Gungormus, Metin; Omezli, Mehmet Melih; Gundogdu, Betul
2015-01-01
Background: Increasing sinus pneumatization and the accompanying alveolar bone resorption complicate dental implant placement. This problem can be overcome today by raising the maxillary sinus floor with graft materials. Bisphosphonates are commonly used to accelerate the recovery of the graft materials and to prevent resorption. Objectives: The purpose of this study is to investigate whether systemic administration of a bisphosphonate (alendronate) would improve new bone formation and reduce fibrous tissue formation over a 6-week follow-up in rabbits treated with two different grafting materials for maxillary sinus floor augmentation. Materials and Methods: This experimental animal study was conducted at the Experimental Medical Application and Research Center at Erzurum/ Turkey. Twelve New Zealand rabbits, each weighing between 2.7 and 3.3 kg, were used. Twenty-four maxillary sinus floor elevation operations were performed, two on each animal (n = 24). Each elevation was repaired with either deproteinized bovine bone (xenograft) or autogenous bone graft obtained from the iliac crest. Both groups were divided into 2 subgroups: saline-treated and alendronate-treated. All groups underwent the same surgical procedures and evaluation, and were sacrificed at the 6th postoperative week. Sinuses augmented with deproteinized bovine bone (xenograft) and autogenous bone graft were examined histopathologically and histomorphometrically. Results: At 6 weeks, the bone area was significantly larger in the Xenograft-Alendronate group (33.0% ± 5.0%) than in the Xenograft-Saline group (20.8% ± 4.9%) and the bone area was significantly larger in the Autogenous-Alendronate group (43.3% ± 3.8%) than in the Autogenous-Saline group (37.5% ± 6.6%) (P = 0.001). The histomorphometric and histopathological results consistently showed that alendronate stimulated bone formation and reduced fibrous tissue formation in maxillary sinus augmentation grafts, especially in the deproteinized bovine bone group (xenograft). Conclusions: Alendronate may be considered a therapeutic option for improving the bone formation process and reducing resorption in different bone grafting procedures. Further detailed studies should focus on dosage and time-dependent effects of alendronate on bone remodeling. PMID:26756022
Hydroxychloroquine affects bone resorption both in vitro and in vivo.
Both, Tim; Zillikens, M Carola; Schreuders-Koedam, Marijke; Vis, Marijn; Lam, Wai-Kwan; Weel, Angelique E A M; van Leeuwen, Johannes P T M; van Hagen, P Martin; van der Eerden, Bram C J; van Daele, Paul L A
2018-02-01
We recently showed that patients with primary Sjögren syndrome (pSS) have significantly higher bone mineral density (BMD) compared to healthy controls. The majority of those patients (69%) was using hydroxychloroquine (HCQ), which may have favorable effects on BMD. The aim of the study was to evaluate whether HCQ modulates osteoclast function. Osteoclasts were cultured from PBMC-sorted monocytes for 14 days and treated with different HCQ doses (controls 1 and 5 μg/ml). TRAP staining and resorption assays were performed to evaluate osteoclast differentiation and activity, respectively. Staining with an acidification marker (acridine orange) was performed to evaluate intracellular pH at multiple timepoints. Additionally, a fluorescent cholesterol uptake assay was performed to evaluate cholesterol trafficking. Serum bone resorption marker β-CTx was evaluated in rheumatoid arthritis patients. HCQ inhibits the formation of multinuclear osteoclasts and leads to decreased bone resorption. Continuous HCQ treatment significantly decreases intracellular pH and significantly enhanced cholesterol uptake in mature osteoclasts along with increased expression of the lowdensity lipoprotein receptor. Serum β-CTx was significantly decreased after 6 months of HCQ treatment. In agreement with our clinical data, we demonstrate that HCQ suppresses bone resorption in vitro and decreases the resorption marker β-CTx in vivo. We also showed that HCQ decreases the intracellular pH in mature osteoclasts and stimulates cholesterol uptake, suggesting that HCQ induces osteoclastic lysosomal membrane permeabilization (LMP) leading to decreased resorption without changes in apoptosis. We hypothesize that skeletal health of patients with increased risk of osteoporosis and fractures may benefit from HCQ by preventing BMD loss. © 2017 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Lotinun, Sutada; Sibonga, Jean D.; Turner, Russell T.
2003-01-01
Parathyroid bone disease in humans is caused by chronic hyperparathyroidism (HPT). Continuous infusion of PTH into rats results in histological changes similar to parathyroid bone disease, including increased bone formation, focal bone resorption, and severe peritrabecular fibrosis, whereas pulsatile PTH increases bone formation without skeletal abnormalities. Using a cDNA microarray with over 5000 genes, we identified an association between increased platelet-derived growth factor-A (PDGF-A) signaling and PTH-induced bone disease in rats. Verification of PDGF-A overexpression was accomplished with a ribonuclease protection assay. Using immunohistochemistry, PDGF-A peptide was localized to mast cells in PTH-treated rats. We also report a novel strategy for prevention of parathyroid bone disease using triazolopyrimidine (trapidil). Trapidil, an inhibitor of PDGF signaling, did not have any effect on indexes of bone turnover in normal rats. However, dramatic reductions in marrow fibrosis and bone resorption, but not bone formation, were observed in PTH-treated rats given trapidil. Also, trapidil antagonized the PTH-induced increases in mRNA levels for PDGF-A. These results suggest that PDGF signaling is important for the detrimental skeletal effects of HPT, and drugs that target the cytokine or its receptor might be useful in reducing or preventing parathyroid bone disease.
Al Mamun, Md Abdullah; Islam, Kamrul; Alam, Md Jahangir; Khatun, Amina; Alam, M Masihul; Al-Bari, Md Abdul Alim; Alam, Md Jahangir
2015-09-12
The Tridax procumbens flavonoids (TPF), are well known for their medicinal properties among local natives. The TPF are traditionally used for dropsy, anaemia, arthritis, gout, asthma, ulcer, piles, and urinary problems. It also used in treating gastric problems, body pain, and rheumatic pains of joints. The TPF have been reported to increase osteogenic functioning in mesenchymal stem cells. However, their effects on osteoclastogenesis remain unclear. The TPF isolated from T. procumbens and investigated the effects of the TPF inhibit on osteoclast differentiation and bone resorption activities using primary osteoclastic cells. Osteoclast formation was assessed by counting the number of tartrate resistant acid phosphatase (TRAP) positive multinucleated cells and by measuring both TRAP activities. The TPF significantly suppressed the RANKL-induced differentiation of osteoclasts and the formation of pits in primary osteoclastic cells. The TPF also decreased the expression of mRNAs related to osteoclast differentiation, including Trap, Cathepsin K, Mmp-9, and Mmp-13 in primary osteoclastic cells. The treatment of primary osteoclastic cells with the TPF decreased Cathepsin K, Mmp-9, and Mmp-13 proteins expression in primary osteoclastic cells. These results indicated that TPF inhibit osteoclastogenesis and pits formation activities. Our results suggest that the TPF could be a potential anti-bone resorptic agent to treat patients with bone loss-associated diseases such as osteoporosis.
Binkley, N; Krueger, D
2000-05-01
Animal, human, and in vitro data all indicate that excess vitamin A stimulates bone resorption and inhibits bone formation. This combination would be expected to produce bone loss and to contribute to osteoporosis development and may occur with relatively low vitamin A intake. It is possible that unappreciated hypervitaminosis A contributes to osteoporosis pathogenesis.
Fifty years of human space travel: implications for bone and calcium research
USDA-ARS?s Scientific Manuscript database
Calcium and bone metabolism remain key concerns for space travelers, and ground-based models of space flight have provided a vast literature to complement the smaller set of reports from flight studies. Increased bone resorption and largely unchanged bone formation result in the loss of calcium and ...
USDA-ARS?s Scientific Manuscript database
Chronic alcohol consumption results in bone loss through increased bone resorption and decreased bone formation. These effects can be reversed by estradiol (E2) supplementation. Soy diets are suggested to have protective effects on bone loss in men and women, as a result of the presence of soy prote...
Thymidine phosphorylase exerts complex effects on bone resorption and formation in myeloma.
Liu, Huan; Liu, Zhiqiang; Du, Juan; He, Jin; Lin, Pei; Amini, Behrang; Starbuck, Michael W; Novane, Nora; Shah, Jatin J; Davis, Richard E; Hou, Jian; Gagel, Robert F; Yang, Jing
2016-08-24
Myelomatous bone disease is characterized by the development of lytic bone lesions and a concomitant reduction in bone formation, leading to chronic bone pain and fractures. To understand the underlying mechanism, we investigated the contribution of myeloma-expressed thymidine phosphorylase (TP) to bone lesions. In osteoblast progenitors, TP up-regulated the methylation of RUNX2 and osterix, leading to decreased bone formation. In osteoclast progenitors, TP up-regulated the methylation of IRF8 and thereby enhanced expression of NFATc1 (nuclear factor of activated T cells, cytoplasmic 1 protein), leading to increased bone resorption. TP reversibly catalyzes thymidine into thymine and 2-deoxy-d-ribose (2DDR). Myeloma-secreted 2DDR bound to integrin αVβ3/α5β1 in the progenitors, activated PI3K (phosphoinositide 3-kinase)/Akt signaling, and increased DNMT3A (DNA methyltransferase 3A) expression, resulting in hypermethylation of RUNX2, osterix, and IRF8 This study elucidates an important mechanism for myeloma-induced bone lesions, suggesting that targeting TP may be a viable approach to healing resorbed bone in patients. Because TP overexpression is common in bone-metastatic tumors, our findings could have additional mechanistic implications. Copyright © 2016, American Association for the Advancement of Science.
The estrogen-related receptors (ERRs): potential targets against bone loss.
Zhang, Ling; Wong, Jiemin; Vanacker, Jean-Marc
2016-10-01
Bone loss and the resulting skeletal fragility is induced by several pathological or natural conditions, the most prominent of which being aging as well as the decreased levels of circulating estrogens in post-menopause females. To date, most treatments against bone loss aim at preventing excess bone resorption. We here summarize data indicating that the estrogen-related receptors (ERRs) α and γ prevent bone formation. Inhibiting these receptors may thus constitute an anabolic approach by increasing bone formation.
Bone formation is suppressed with multi-stressor military training.
Hughes, Julie M; Smith, Martha A; Henning, Paul C; Scofield, Dennis E; Spiering, Barry A; Staab, Jeffery S; Hydren, Jay R; Nindl, Bradley C; Matheny, Ronald W
2014-11-01
To determine the effects of US Army Ranger Training, an 8-week, physically demanding program (energy expenditure of 2,500-4,500 kcal/day) with energy restriction (deficit of 1,000-4,000 kcal/day) and sleep deprivation (<4 h sleep/night) on bone metabolism. Blood was collected from 22 men (age 24 ± 4 years) before and after training. Follow-up measurements were made in a subset of 8 subjects between 2 and 6 weeks after training. Serum was analyzed for bone formation biomarkers [bone alkaline phosphatase (BAP) and osteocalcin (OCN)], bone resorption biomarkers [C-telopeptide cross-links of type I collagen (CTX) and tartrate-resistant acid phosphatase (TRAP5b)], calcium, parathyroid hormone (PTH), and vitamin D 25(OH)D increased significantly by 37.3 ± 45.2 % with training [corrected]. A repeated-measures ANOVA with time as the only factor was used to analyze data on the subset of 8 subjects who completed follow-up data collection. BAP and OCN significantly decreased by 22.8 ± 15.5% (pre 41.9 ± 10.1; post 31.7 ± 7.8 ng/ml) and 21.0 ± 23.3% (pre 15.0 ± 3.5; post 11.3 ± 2.1 ng/ml), respectively, with training, suggesting suppressed bone formation. OCN returned to baseline, while BAP remained suppressed 2-6 weeks post-training. TRAP5b significantly increased by 57.5 ± 51.6% (pre 3.0 ± 0.9; post 4.6 ± 1.4 ng/ml) from pre- to post-training, suggesting increased bone resorption, and returned to baseline 2-6 weeks post-training. PTH Increased significantly by 37.3 ± 45.2% with training. No changes in CTX, calcium, or PTH were detected. These data indicate that multi-stressor military training results in increased bone resorption and suppressed bone formation, with recovery of bone metabolism 2-6 weeks after completion of training.
NASA Technical Reports Server (NTRS)
Globus, Ruth K.; Schreurs, Ann-Sofie; Shirazi-Fard, Yasaman; Terada, Masahiro; Alwood, Joshua; Halloran, Bernard; Tahimic, Candice
2016-01-01
Future long-duration space exploration beyond the earths magnetosphere will increase human exposure to space radiation and associated risks to skeletal health. We hypothesize that oxidative stress resulting from radiation exposure causes progressive bone loss and dysfunction in associated tissue. In animal studies, increased free radical formation is associated with pathological changes in bone structure, enhanced bone resorption, reduced bone formation and decreased bone mineral density, which can lead to skeletal fragility.
Doherty, Alison H; Roteliuk, Danielle M; Gookin, Sara E; McGrew, Ashley K; Broccardo, Carolyn J; Condon, Keith W; Prenni, Jessica E; Wojda, Samantha J; Florant, Gregory L; Donahue, Seth W
2016-01-01
Periods of physical inactivity increase bone resorption and cause bone loss and increased fracture risk. However, hibernating bears, marmots, and woodchucks maintain bone structure and strength, despite being physically inactive for prolonged periods annually. We tested the hypothesis that bone turnover rates would decrease and bone structural and mechanical properties would be preserved in hibernating marmots (Marmota flaviventris). Femurs and tibias were collected from marmots during hibernation and in the summer following hibernation. Bone remodeling was significantly altered in cortical and trabecular bone during hibernation with suppressed formation and no change in resorption, unlike the increased bone resorption that occurs during disuse in humans and other animals. Trabecular bone architecture and cortical bone geometrical and mechanical properties were not different between hibernating and active marmots, but bone marrow adiposity was significantly greater in hibernators. Of the 506 proteins identified in marmot bone, 40 were significantly different in abundance between active and hibernating marmots. Monoaglycerol lipase, which plays an important role in fatty acid metabolism and the endocannabinoid system, was 98-fold higher in hibernating marmots compared with summer marmots and may play a role in regulating the changes in bone and fat metabolism that occur during hibernation.
The Effect of Rosiglitazone on Bone Quality in a Rat Model of Insulin Resistance and Osteoporosis
NASA Astrophysics Data System (ADS)
Sardone, Laura Donata
Rosiglitazone (RSG) is an insulin-sensitizing drug used to treat Type 2 Diabetes Mellitus (T2DM). Clinical trials show that women taking RSG experience more limb fractures than patients taking other T2DM drugs. The purpose of this study is to understand how RSG (3mg/kg/day and 10mg/kg/day) and the bisphosphonate alendronate (0.7mg/kg/week) alter bone quality in the male, female and female ovariectomized (OVX) Zucker fatty rat model over a 12 week period. Bone quality was evaluated by mechanical testing of cortical and trabecular bone. Microarchitecture, bone mineral density (BMD), cortical bone porosity, bone formation/resorption and mineralization were also measured. Female OVX RSG10mg/kg rats had significantly lower vertebral BMD and compromised trabecular architecture versus OVX controls. Increased cortical porosity and decreased mechanical properties occurred in these rats. ALN treatment prevented these negative effects in the OVX RSG model. Evidence of reduced bone formation and excess bone resorption was detected in female RSG-treated rats.
Lee, Jongsung; Nho, Youn Hwa; Yun, Seok Kyun; Hwang, Young Sun
2017-02-16
The fruit of the Terminalia chebula tree has been widely used for the treatment of various disorders. Its anti-diabetic, anti-mutagenic, anti-oxidant, anti-bacterial, anti-fungal, and anti-viral effects have been studied. Dental plaque bacteria (DPB) are intimately associated with gingivitis and periodontitis. In the quest for materials that will prove useful in the treatment and prevention of periodontal disease, we investigated the preventive effects of an ethanol extract of Terminalia chebula (EETC) on DPB-induced inflammation and bone resorption. The anti-bacterial effect of EETC was analyzed using the disc diffusion method. The anti-inflammatory effect of EETC was determined by molecular biological analysis of the DPB-mediated culture cells. Prevention of osteoclastic bone resorption by EETC was explored using osteoclast formation and pit formation assays. EETC suppressed the growth of oral bacteria and reduced the induction of inflammatory cytokines and proteases, abolishing the expression of PGE2 and COX-2 and inhibiting matrix damage. By stimulating the DPB-derived lipopolysaccharides, EETC inhibited both osteoclast formation in osteoclast precursors and RANKL expression in osteoblasts, thereby contributing to the prevention of bone resorption. EETC may be a beneficial supplement to help prevent DPB-mediated periodontal disease.
Regulation of bone remodeling by vasopressin explains the bone loss in hyponatremia
Tamma, Roberto; Sun, Li; Cuscito, Concetta; Lu, Ping; Corcelli, Michelangelo; Li, Jianhua; Colaianni, Graziana; Moonga, Surinder S.; Di Benedetto, Adriana; Grano, Maria; Colucci, Silvia; Yuen, Tony; New, Maria I.; Zallone, Alberta; Zaidi, Mone
2013-01-01
Although hyponatremia is known to be associated with osteoporosis and a high fracture risk, the mechanism through which bone loss ensues has remained unclear. As hyponatremic patients have elevated circulating arginine-vasopressin (AVP) levels, we examined whether AVP can affect the skeleton directly as yet another component of the pituitary-bone axis. Here, we report that the two Avp receptors, Avpr1α and Avpr2, coupled to Erk activation, are expressed in osteoblasts and osteoclasts. AVP injected into wild-type mice enhanced and reduced, respectively, the formation of bone-resorbing osteoclasts and bone-forming osteoblasts. Conversely, the exposure of osteoblast precursors to Avpr1α or Avpr2 antagonists, namely SR49059 or ADAM, increased osteoblastogenesis, as did the genetic deletion of Avpr1α. In contrast, osteoclast formation and bone resorption were both reduced in Avpr1α−/− cultures. This process increased bone formation and reduced resorption resulted in a profound enhancement of bone mass in Avpr1α−/− mice and in wild-type mice injected with SR49059. Collectively, the data not only establish a primary role for Avp signaling in bone mass regulation, but also call for further studies on the skeletal actions of Avpr inhibitors used commonly in hyponatremic patients. PMID:24167258
Manolagas, Stavros C.; Parfitt, A. Michael
2012-01-01
Osteocytes are long-lived and far more numerous than the short-lived osteoblasts and osteoclasts. Immured within the lacunar-canalicular system and mineralized matrix, osteocytes are ideally located throughout bone to detect the need for, and accordingly choreograph, the bone regeneration process by independently controlling rate limiting steps of bone resorption and formation. Consistent with this role, emerging evidence indicates that signals arising from apoptotic and old/or dysfunctional osteocytes are seminal culprits in the pathogenesis of involutional, post-menopausal, steroid-, and immobilization-induced osteoporosis. Osteocyte-originated signals may also contribute to the increased bone fragility associated with bone matrix disorders like osteogenesis imperfecta, and perhaps the rapid reversal of bone turnover above baseline following discontinuation of anti-resorptive treatments, like denosumab. PMID:23010104
Saito, Mitsuru; Grynpas, Marc D; Burr, David B; Allen, Matthew R; Smith, Susan Y; Doyle, Nancy; Amizuka, Norio; Hasegawa, Tomoka; Kida, Yoshikuni; Marumo, Keishi; Saito, Hitoshi
2015-04-01
Eldecalcitol (ELD), an active form of vitamin D analog approved for the treatment of osteoporosis in Japan, increases lumbar spine bone mineral density (BMD), suppresses bone turnover markers, and reduces fracture risk in patients with osteoporosis. We have previously reported that treatment with ELD for 6 months improved the mechanical properties of the lumbar spine in ovariectomized (OVX) cynomolgus monkeys. ELD treatment increased lumbar BMD, suppressed bone turnover markers, and reduced histomorphometric parameters of both bone formation and resorption in vertebral trabecular bone. In this study, we elucidated the effects of ELD on bone quality (namely, mineralization, microarchitecture, microdamage, and bone collagen crosslinks) in OVX cynomolgus monkeys in comparison with OVX-vehicle control monkeys. Density fractionation of bone powder prepared from lumbar vertebrae revealed that ELD treatment shifted the distribution profile of bone mineralization to a higher density, and backscattered electron microscopic imaging showed improved trabecular bone connectivity in the ELD-treated groups. Higher doses of ELD more significantly reduced the amount of microdamage compared to OVX-vehicle controls. The fractionated bone powder samples were divided according to their density, and analyzed for collagen crosslinks. Enzymatic crosslinks were higher in both the high-density (≥2.0 mg/mL) and low-density (<2.0 mg/mL) fractions from the ELD-treated groups than in the corresponding fractions in the OVX-vehicle control groups. On the other hand, non-enzymatic crosslinks were lower in both the high- and low-density fractions. These observations indicated that ELD treatment stimulated the enzymatic reaction of collagen crosslinks and bone mineralization, but prevented non-enzymatic reaction of collagen crosslinks and accumulation of bone microdamage. Bone anti-resorptive agents such as bisphosphonates slow down bone remodeling so that bone mineralization, bone microdamage, and non-enzymatic collagen crosslinks all increase. Bone anabolic agents such as parathyroid hormone decrease bone mineralization and bone microdamage by stimulating bone remodeling. ELD did not fit into either category. Histological analysis indicated that the ELD treatment strongly suppressed bone resorption by reducing the number of osteoclasts, while also stimulating focal bone formation without prior bone resorption (bone minimodeling). These bidirectional activities of ELD may account for its unique effects on bone quality. Copyright © 2014. Published by Elsevier Inc.
Hajdu Cheney Mouse Mutants Exhibit Osteopenia, Increased Osteoclastogenesis, and Bone Resorption.
Canalis, Ernesto; Schilling, Lauren; Yee, Siu-Pok; Lee, Sun-Kyeong; Zanotti, Stefano
2016-01-22
Notch receptors are determinants of cell fate and function and play a central role in skeletal development and bone remodeling. Hajdu Cheney syndrome, a disease characterized by osteoporosis and fractures, is associated with NOTCH2 mutations resulting in a truncated stable protein and gain-of-function. We created a mouse model reproducing the Hajdu Cheney syndrome by introducing a 6955C→T mutation in the Notch2 locus leading to a Q2319X change at the amino acid level. Notch2(Q2319X) heterozygous mutants were smaller and had shorter femurs than controls; and at 1 month of age they exhibited cancellous and cortical bone osteopenia. As the mice matured, cancellous bone volume was restored partially in male but not female mice, whereas cortical osteopenia persisted in both sexes. Cancellous bone histomorphometry revealed an increased number of osteoclasts and bone resorption, without a decrease in osteoblast number or bone formation. Osteoblast differentiation and function were not affected in Notch2(Q2319X) cells. The pre-osteoclast cell pool, osteoclast differentiation, and bone resorption in response to receptor activator of nuclear factor κB ligand in vitro were increased in Notch2(Q2319X) mutants. These effects were suppressed by the γ-secretase inhibitor LY450139. In conclusion, Notch2(Q2319X) mice exhibit cancellous and cortical bone osteopenia, enhanced osteoclastogenesis, and increased bone resorption. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Differences in responses to X-ray exposure between osteoclast and osteoblast cells
Zhang, Jian; Wang, Ziyang; Wu, Anqing; Nie, Jing; Pei, Hailong; Hu, Wentao; Wang, Bing; Shang, Peng; Li, Bingyan
2017-01-01
Abstract Radiation-induced bone loss is a potential health concern for cancer patients undergoing radiotherapy. Enhanced bone resorption by osteoclasts and decreased bone formation by osteoblasts were thought to be the main reasons. In this study, we showed that both pre-differentiating and differentiating osteoclasts were relatively sensitive to X-rays compared with osteoblasts. X-rays decreased cell viability to a greater degree in RAW264.7 cells and in differentiating cells than than in osteoblastic MC3T3-E1 cells. X-rays at up to 8 Gy had little effects on osteoblast mineralization. In contrast, X-rays at 1 Gy induced enhanced osteoclastogenesis by enhanced cell fusion, but had no effects on bone resorption. A higher dose of X-rays at 8 Gy, however, had an inhibitory effect on bone resorption. In addition, actin ring formation was disrupted by 8 Gy of X-rays and reorganized into clusters. An increased activity of Caspase 3 was found after X-ray exposure. Actin disorganization and increased apoptosis may be the potential effects of X-rays at high doses, by inhibiting osteoclast differentiation. Taken together, our data indicate high radiosensitivity of osteoclasts. X-ray irradiation at relatively low doses can activate osteoclastogenesis, but not osteogenic differentiation. The radiosensitive osteoclasts are the potentially responsive cells for X-ray-induced bone loss. PMID:28541506
Shaarawy, Mohamed; Abassi, Asmaa Farid; Hassan, Hany; Salem, Mahmoud E
2003-04-01
To determine whether leptin is involved in bone remodeling in patients with postmenopausal osteoporosis. Cross-sectional study. Department of Obstetrics and Gynecology, Faculty of Medicine, Cairo University. Ninety postmenopausal osteoporotic women (37 obese and 53 nonobese) and 30 healthy premenopausal women from the same clinic served as controls. Lumbar spine bone mineral density (LS-BMD) of osteoporotic patients was more than 2.5 SD below the normal mean of healthy premenopausal women. Serum levels of leptin, osteocalcin (OC), bone alkaline phosphatase (B-ALP), urinary deoxypyridinoline (DPyr), and N-telopeptide of type 1 collagen (NTX) as well as LS-BMD using dual energy X-ray absorptiometry (DEXA). The serum leptin level in obese postmenopausal osteoporotic patients was significantly increased compared with nonobese osteoporotic patients. There were no significant differences of bone formation markers (B-ALP, OC), bone resorption markers (DPyr, NTX), or LS-BMD between the obese and nonobese groups. There were no significant correlations between serum leptin and any biomarkers of bone turnover and BMD. In postmenopausal osteoporotic patients with increased bone turnover, serum leptin concentration is not correlated with BMD or with the biomarkers of bone formation or bone resorption.
Valverde, Paloma; Zhang, Jin; Fix, Amanda; Zhu, Ji; Ma, Wenli; Tu, Qisheng; Chen, Jake
2008-11-01
The purpose of this study was to determine the effects of bone sialoprotein (BSP) overexpression in bone metabolism in vivo by using a homozygous transgenic mouse line that constitutively overexpresses mouse BSP cDNA driven by the cytomegalovirus (CMV) promoter. CMV-BSP transgenic (TG) mice and wildtype mice were weighed, and their length, BMD, and trabecular bone volume were measured. Serum levels of RANKL, osteocalcin, osteoprotegerin (OPG), TRACP5b, and PTH were determined. Bone histomorphometry, von Kossa staining, RT-PCR analysis, Western blot, MTS assay, in vitro mineralization assay, and TRACP staining were also performed to delineate phenotypes of this transgenic mouse line. Compared with wildtype mice, adult TG mice exhibit mild dwarfism, lower values of BMD, and lower trabecular bone volume. TG mice serum contained increased calcium levels and decreased PTH levels, whereas the levels of phosphorus and magnesium were within normal limits. TG mice serum also exhibited lower levels of osteoblast differentiation markers and higher levels of markers, indicating osteoclastic activity and bone resorption. H&E staining, TRACP staining, and bone histomorphometry showed that adult TG bones were thinner and the number of giant osteoclasts in TG mice was higher, whereas there were no significant alterations in osteoblast numbers between TG mice and WT mice. Furthermore, the vertical length of the hypertrophic zone in TG mice was slightly enlarged. Moreover, ex vivo experiments indicated that overexpression of BSP decreased osteoblast population and increased osteoclastic activity. Partly because of its effects in enhancing osteoclastic activity and decreasing osteoblast population, BSP overexpression leads to an uncoupling of bone formation and resorption, which in turn results in osteopenia and mild dwarfism in mice. These findings are expected to help the development of therapies to metabolic bone diseases characterized by high serum level of BSP.
Feeding blueberry diets dose-dependently inhibits bone resorption in young rats
USDA-ARS?s Scientific Manuscript database
Nutritional status is a critical factor that influences bone development. We previously reported that weanling rats fed AIN-93G semi-purified diets supplemented with 10% whole blueberry (BB) powder for only two weeks beginning on postnatal day 21 (PND21) significantly promoted bone formation. Howeve...
Cordycepin Prevents Bone Loss through Inhibiting Osteoclastogenesis by Scavenging ROS Generation
Dou, Ce; Cao, Zhen; Ding, Ning; Hou, Tianyong; Luo, Fei; Kang, Fei; Yang, Xiaochao; Jiang, Hong; Xie, Zhao; Hu, Min; Xu, Jianzhong; Dong, Shiwu
2016-01-01
Cordycepin was previously reported to have anti-tumor, anti-inflammatory and anti-oxidant activity. However, the potential role of cordycepin in bone metabolism and cell biology of osteoclasts remains unclear. In our study, we focused on the in vitro effects of cordycepin on osteoclastogenesis and its in vivo effects in ovariectomized (OVX) mice. Osteoclast differentiation, formation and fusion were evaluated by Tartrate-resistant acid phosphatase (TRAP) stain, focal adhesion stain and fusion assay, respectively. Osteoclastic bone resorption was evaluated by pit formation assay. Reactive oxygen species (ROS) generation and removal were detected by the ROS assay. OVX mice were orally administered with 10 mg/kg of cordycepin daily for four weeks. In vitro results revealed that cordycepin inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation, formation, fusion and bone resorption activity. We further proved that cordycepin treatments scavenged the generation of ROS, upregulated interferon regulatory factor 8 (IRF-8) and suppressed the activity of nuclear factor of activated T cells c1 (NFATc1) during osteoclastogenesis. In vivo results indicated cordycepin prevents bone loss, rescues bone microarchitecture, and restores bone mineralization in OVX mice. Our observations strongly suggested that cordycepin is an efficient osteoclast inhibitor and hold potential therapeutic value in preventing bone loss among postmenopausal osteoporosis patients. PMID:27104563
Cordycepin Prevents Bone Loss through Inhibiting Osteoclastogenesis by Scavenging ROS Generation.
Dou, Ce; Cao, Zhen; Ding, Ning; Hou, Tianyong; Luo, Fei; Kang, Fei; Yang, Xiaochao; Jiang, Hong; Xie, Zhao; Hu, Min; Xu, Jianzhong; Dong, Shiwu
2016-04-20
Cordycepin was previously reported to have anti-tumor, anti-inflammatory and anti-oxidant activity. However, the potential role of cordycepin in bone metabolism and cell biology of osteoclasts remains unclear. In our study, we focused on the in vitro effects of cordycepin on osteoclastogenesis and its in vivo effects in ovariectomized (OVX) mice. Osteoclast differentiation, formation and fusion were evaluated by Tartrate-resistant acid phosphatase (TRAP) stain, focal adhesion stain and fusion assay, respectively. Osteoclastic bone resorption was evaluated by pit formation assay. Reactive oxygen species (ROS) generation and removal were detected by the ROS assay. OVX mice were orally administered with 10 mg/kg of cordycepin daily for four weeks. In vitro results revealed that cordycepin inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation, formation, fusion and bone resorption activity. We further proved that cordycepin treatments scavenged the generation of ROS, upregulated interferon regulatory factor 8 (IRF-8) and suppressed the activity of nuclear factor of activated T cells c1 (NFATc1) during osteoclastogenesis. In vivo results indicated cordycepin prevents bone loss, rescues bone microarchitecture, and restores bone mineralization in OVX mice. Our observations strongly suggested that cordycepin is an efficient osteoclast inhibitor and hold potential therapeutic value in preventing bone loss among postmenopausal osteoporosis patients.
Junrui, Pei; Bingyun, Li; Yanhui, Gao; Xu, Jiaxun; Darko, Gottfried M; Dianjun, Sun
2016-09-01
Skeletal fluorosis is a metabolic bone disease caused by excessive accumulation of fluoride. Although the cause of this disease is known, the mechanism by which fluoride accumulates on the bone has not been clearly defined, thus there are no markers that can be used for screening skeletal fluorosis in epidemiology. In this study, osteoclasts were formed from bone marrow cells of C57BL/6 mice-treated with macrophage colony stimulating factor and receptor activator of nuclear factor kappa-B ligand. The mRNA expression of tartrate-resistant acid phosphatase 5b (TRAP5b), osteoclast-associated receptor (OSCAR), calcitonin receptor (CTR), matrix metalloproteinase 9 (MMP9) and cathepsin K (CK) were detected using real-time PCR (RT-PCR). Results showed that fluoride between 0.5 and 8mg/l had no effect on osteoclast formation. However fluoride at 0.5mg/l level significantly decreased the activity of osteoclast bone resorption. Fluoride concentration was negatively correlated with the activity of osteoclast bone resorption. On day 5 of osteoclast differentiation maturity, MMP9 and CK mRNA expression were not only negatively correlated with fluoride concentration, but directly correlated with the activity of osteoclast bone resorption. TRAP5b, CTR and OSCAR mRNA expression were positively correlated with the number of osteoclast and they had no correlation with the activity of osteoclast bone resorption. Thus, it can be seen that MMP9 and CK may reflect the change of activity of bone resorption as well the degree of fluoride exposure. TRAP5b, CTR and OSCAR can represent the change of number of osteoclast formed. Copyright © 2016 Elsevier B.V. All rights reserved.
Ryan, B M; Russel, M G V M; Schurgers, L; Wichers, M; Sijbrandij, J; Stockbrugger, R W; Schoon, E
2004-10-15
Patients with Crohn's disease are at increased risk of osteoporosis. Disease activity and circulating proinflammatory cytokines are thought to play a role in this process. Infliximab, a chimaeric antitumour necrosis factor-alpha antibody is effective in the treatment of Crohn's disease. The aim of this study was to investigate the impact of treatment with infliximab on bone turnover in Crohn's disease patients. This was a prospective trial. Twenty-four patients with active Crohn's disease were treated with infliximab (5 mg/kg). Bone markers were assayed pre- and post-treatment. Bone formation was measured using serum bone-specific alkaline phosphatase and total osteocalcin and bone resorption using serum N-telopeptide cross-linked type 1 collagen. Infliximab therapy caused a significant increase in both markers of bone formation in patients with active Crohn's disease. No significant change in the bone resorption marker serum N-telopeptide cross-linked type 1 was found. Infliximab therapy had a significant beneficial effect on bone metabolism in patients with active Crohn's disease. These findings further support the theory that active ongoing inflammation and high levels of circulating cytokines play a pivotal role in the pathogenesis of bone loss in patients with Crohn's disease.
Sun, Li; Zaidi, Mone; Zallone, Alberta
2014-01-01
One of the most meaningful results recently achieved in bone research has been to reveal that the pituitary hormones have profound effect on bone, so that the pituitary-bone axis has become one of the major topics in skeletal physiology. Here, we discuss the relevant evidence about the posterior pituitary hormone oxytocin (OT), previously thought to exclusively regulate parturition and breastfeeding, which has recently been established to directly regulate bone mass. Both osteoblasts and osteoclasts express OT receptors (OTR), whose stimulation enhances bone mass. Consistent with this, mice deficient in OT or OTR display profoundly impaired bone formation. In contrast, bone resorption remains unaffected in OT deficiency because, even while OT stimulates the genesis of osteoclasts, it inhibits their resorptive function. Furthermore, in addition to its origin from the pituitary, OT is also produced by bone marrow osteoblasts acting as paracrine-autocrine regulator of bone formation modulated by estrogens. In turn, the power of estrogen to increase bone mass is OTR-dependent. Therefore, OTR−/− mice injected with 17β-estradiol do not show any effects on bone formation parameters, while the same treatment increases bone mass in wild-type mice. These findings together provide evidence for an anabolic action of OT in regulating bone mass and suggest that bone marrow OT may enhance the bone-forming action of estrogen through an autocrine circuit. This established new physiological role for OT in the maintenance of skeletal integrity further suggests the potential use of this hormone for the treatment of osteoporosis. PMID:25209411
Cathepsin K activity-dependent regulation of osteoclast actin ring formation and bone resorption.
Wilson, Susan R; Peters, Christoph; Saftig, Paul; Brömme, Dieter
2009-01-23
Cathepsin K is responsible for the degradation of type I collagen in osteoclast-mediated bone resorption. Collagen fragments are known to be biologically active in a number of cell types. Here, we investigate their potential to regulate osteoclast activity. Mature murine osteoclasts were seeded on type I collagen for actin ring assays or dentine discs for resorption assays. Cells were treated with cathepsins K-, L-, or MMP-1-predigested type I collagen or soluble bone fragments for 24 h. The presence of actin rings was determined fluorescently by staining for actin. We found that the percentage of osteoclasts displaying actin rings and the area of resorbed dentine decreased significantly on addition of cathepsin K-digested type I collagen or bone fragments, but not with cathepsin L or MMP-1 digests. Counterintuitively, actin ring formation was found to decrease in the presence of the cysteine proteinase inhibitor LHVS and in cathepsin K-deficient osteoclasts. However, cathepsin L deficiency or the general MMP inhibitor GM6001 had no effect on the presence of actin rings. Predigestion of the collagen matrix with cathepsin K, but not by cathepsin L or MMP-1 resulted in an increased actin ring presence in cathepsin K-deficient osteoclasts. These studies suggest that cathepsin K interaction with type I collagen is required for 1) the release of cryptic Arg-Gly-Asp motifs during the initial attachment of osteoclasts and 2) termination of resorption via the creation of autocrine signals originating from type I collagen degradation.
Pederson, Larry; Ruan, Ming; Westendorf, Jennifer J.; Khosla, Sundeep; Oursler, Merry Jo
2008-01-01
Under most conditions, resorbed bone is nearly precisely replaced in location and amount by new bone. Thus, it has long been recognized that bone loss through osteoclast-mediated bone resorption and bone replacement through osteoblast-mediated bone formation are tightly coupled processes. Abundant data conclusively demonstrate that osteoblasts direct osteoclast differentiation. Key questions remain, however, as to how osteoblasts are recruited to the resorption site and how the amount of bone produced is so precisely controlled. We hypothesized that osteoclasts play a crucial role in the promotion of bone formation. We found that osteoclast conditioned medium stimulates human mesenchymal stem (hMS) cell migration and differentiation toward the osteoblast lineage as measured by mineralized nodule formation in vitro. We identified candidate osteoclast-derived coupling factors using the Affymetrix microarray. We observed significant induction of sphingosine kinase 1 (SPHK1), which catalyzes the phosphorylation of sphingosine to form sphingosine 1-phosphate (S1P), in mature multinucleated osteoclasts as compared with preosteoclasts. S1P induces osteoblast precursor recruitment and promotes mature cell survival. Wnt10b and BMP6 also were significantly increased in mature osteoclasts, whereas sclerostin levels decreased during differentiation. Stimulation of hMS cell nodule formation by osteoclast conditioned media was attenuated by the Wnt antagonist Dkk1, a BMP6-neutralizing antibody, and by a S1P antagonist. BMP6 antibodies and the S1P antagonist, but not Dkk1, reduced osteoclast conditioned media-induced hMS chemokinesis. In summary, our findings indicate that osteoclasts may recruit osteoprogenitors to the site of bone remodeling through SIP and BMP6 and stimulate bone formation through increased activation of Wnt/BMP pathways. PMID:19075223
Manolagas, Stavros C; Parfitt, A Michael
2013-06-01
Osteocytes are long-lived and far more numerous than the short-lived osteoblasts and osteoclasts. Immured within the lacunar-canalicular system and mineralized matrix, osteocytes are ideally located throughout the bone to detect the need for, and accordingly choreograph, the bone regeneration process by independently controlling rate limiting steps of bone resorption and formation. Consistent with this role, emerging evidence indicates that signals arising from apoptotic and old/or dysfunctional osteocytes are seminal culprits in the pathogenesis of involutional, post-menopausal, steroid-, and immobilization-induced osteoporosis. Osteocyte-originated signals may also contribute to the increased bone fragility associated with bone matrix disorders like osteogenesis imperfecta, and perhaps the rapid reversal of bone turnover above baseline following discontinuation of anti-resorptive treatments, like denosumab. Published by Elsevier Inc.
A 7-day continuous infusion of PTH or PTHrP suppresses bone formation and uncouples bone turnover.
Horwitz, Mara J; Tedesco, Mary Beth; Sereika, Susan M; Prebehala, Linda; Gundberg, Caren M; Hollis, Bruce W; Bisello, Alessandro; Garcia-Ocaña, Adolfo; Carneiro, Raquel M; Stewart, Andrew F
2011-09-01
Human in vivo models of primary hyperparathyroidism (HPT), humoral hypercalcemia of malignancy (HHM), or lactational bone mobilization for more than 48 hours have not been described previously. We therefore developed 7-day continuous-infusion models using human parathyroid hormone(1-34) [hPTH(1-34)] and human parathyroid hormone-related protein(1-36) [hPTHrP(1-36)] in healthy human adult volunteers. Study subjects developed sustained mild increases in serum calcium (10.0 mg/dL), with marked suppression of endogenous PTH(1-84). The maximal tolerated infused doses over a 7-day period (2 and 4 pmol/kg/h for PTH and PTHrP, respectively) were far lower than in prior, briefer human studies (8 to 28 pmol/kg/h). In contrast to prior reports using higher PTH and PTHrP doses, both 1,25-dihydroxyvitamin D(3) [1,25(OH)(2) D(3) ] and tubular maximum for phosphorus (TmP/GFR) remained unaltered with these low doses despite achievement of hypercalcemia and hypercalciuria. As expected, bone resorption increased rapidly and reversed promptly with cessation of the infusion. However, in contrast to events in primary HPT, bone formation was suppressed by 30% to 40% for the 7 days of the infusions. With cessation of PTH and PTHrP infusion, bone-formation markers abruptly rebounded upward, confirming that bone formation is suppressed by continuous PTH or PTHrP infusion. These studies demonstrate that continuous exposure of the human skeleton to PTH or PTHrP in vivo recruits and activates the bone-resorption program but causes sustained arrest in the osteoblast maturation program. These events would most closely mimic and model events in HHM. Although not a perfect model for lactation, the increase in resorption and the rebound increase in formation with cessation of the infusions are reminiscent of the maternal skeletal calcium mobilization and reversal that occur following lactation. The findings also highlight similarities and differences between the model and HPT. Copyright © 2011 American Society for Bone and Mineral Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nurmio, Mirja, E-mail: Mirja.Nurmio@utu.fi; Department of Pediatrics, University of Turku; Joki, Henna, E-mail: Henna.Joki@utu.fi
During postnatal skeletal growth, adaptation to mechanical loading leads to cellular activities at the growth plate. It has recently become evident that bone forming and bone resorbing cells are affected by the receptor tyrosine kinase (RTK) inhibitor imatinib mesylate (STI571, Gleevec (registered)) . Imatinib targets PDGF, ABL-related gene, c-Abl, c-Kit and c-Fms receptors, many of which have multiple functions in the bone microenvironment. We therefore studied the effects of imatinib in growing bone. Young rats were exposed to imatinib (150 mg/kg on postnatal days 5-7, or 100 mg/kg on postnatal days 5-13), and the effects of RTK inhibition on bonemore » physiology were studied after 8 and 70 days (3-day treatment), or after 14 days (9-day treatment). X-ray imaging, computer tomography, histomorphometry, RNA analysis and immunohistochemistry were used to evaluate bone modeling and remodeling in vivo. Imatinib treatment eliminated osteoclasts from the metaphyseal osteochondral junction at 8 and 14 days. This led to a resorption arrest at the growth plate, but also increased bone apposition by osteoblasts, thus resulting in local osteopetrosis at the osteochondral junction. The impaired bone remodelation observed on day 8 remained significant until adulthood. Within the same bone, increased osteoclast activity, leading to bone loss, was observed at distal bone trabeculae on days 8 and 14. Peripheral quantitative computer tomography (pQCT) and micro-CT analysis confirmed that, at the osteochondral junction, imatinib shifted the balance from bone resorption towards bone formation, thereby altering bone modeling. At distal trabecular bone, in turn, the balance was turned towards bone resorption, leading to bone loss. - Research Highlights: > 3-Day imatinib treatment. > Causes growth plate anomalies in young rats. > Causes biomechanical changes and significant bone loss at distal trabecular bone. > Results in loss of osteoclasts at osteochondral junction.« less
Zhang, Qiao; Jing, Dai; Zhang, Yufeng; Miron, Richard J
Bone grafting materials are frequently utilized in oral surgery and periodontology to fill bone defects and augment lost or missing bone. The purpose of this study was to compare new bone formation in bone defects created in both normal and osteoporotic animals loaded with three types of bone grafts from different origins. Forty-eight female Wistar rats were equally divided into control normal and ovariectomized animals. Bilateral 2.5-mm femur defects were created and filled with an equal weight of (1) natural bone mineral (NBM, BioOss) of bovine origin, (2) demineralized freeze-dried bone allograft (DFDBA, LifeNet), or (3) biphasic calcium phosphate (BCP, Vivoss). Following 3 and 6 weeks of healing, hematoxylin and eosin and TRAP staining was performed to determine new bone formation, material degradation, and osteoclast activity. All bone substitutes demonstrated osteoconductive potential at 3 and 6 weeks with higher osteoclast numbers observed in all ovariectomized animals. NBM displayed continual new bone formation with little to no sign of particle degradation, even in osteoporotic animals. DFDBA particles showed similar levels of new bone formation but rapid particle degradation rates with lower levels of mineralized tissue. BCP bone grafts demonstrated significantly higher new bone formation when compared with both NBM and DFDBA particles; however, the material was associated with higher osteoclast activity and particle degradation. Interestingly, in osteoporotic animals, BCP displayed synergistically and markedly more rapid rates of particle degradation. Recent modifications to synthetically fabricated materials were shown to be equally or more osteopromotive than NBM and DFDBA. However, the current BCP utilized demonstrated much faster resorption properties in osteoporotic animals associated with a decrease in total bone volume when compared with the slowly/nonresorbing NBM. The results from this study point to the clinical relevance of minimizing fast-resorbing bone grafting materials in osteoporotic phenotypes due to the higher osteoclastic activity and greater material resorption.
The response of bone to unloading
NASA Technical Reports Server (NTRS)
Bikle, D. D.; Halloran, B. P.
1999-01-01
Skeletal unloading leads to decreased bone formation and decreased bone mass. Bone resorption is uncoupled from bone formation, contributing to the bone loss. During spaceflight bone is lost principally from the bones most loaded in the 1-g environment, and some redistribution of bone from the lower extremities to the head appears to take place. Although changes in calcitropic hormones have been demonstrated during skeletal unloading (PTH and 1,25(OH)2D decrease), it remains unclear whether such changes account for or are in response to the changes in bone formation and resorption. Bed rest studies with human volunteers and hindlimb elevation studies with rats have provided useful data to help explain the changes in bone formation during spaceflight. These models of skeletal unloading reproduce a number of the conditions associated with microgravity, and the findings from such studies confirm many of the observations made during spaceflight. Determining the mechanism(s) by which loading of bone is sensed and translated into a signal(s) controlling bone formation remains the holy grail in this field. Such investigations couple biophysics to biochemistry to cell and molecular biology. Although studies with cell cultures have revealed biochemical responses to mechanical loads comparable to that seen in intact bone, it seems likely that matrix-cell interactions underlie much of the mechanocoupling. The role for systemic hormones such as PTH, GH, and 1,25(OH)2D compared to locally produced factors such as IGF-I, PTHrP, BMPs, and TGF-beta in modulating the cellular response to load remains unclear. As the mechanism(s) by which bone responds to mechanical load with increased bone formation are further elucidated, applications of this knowledge to other etiologies of osteoporosis are likely to develop. Skeletal unloading provides a perturbation in bone mineral homeostasis that can be used to understand the mechanisms by which bone mineral homeostasis is maintained, with the expectation that such understanding will lead to effective treatment for disuse osteoporosis.
Ren, Zhaozhou; Yang, Liqing; Xue, Feng; Meng, Qingjie; Wang, Kejia; Wu, Xian; Ji, Chao; Jiang, Teng; Liu, Da; Zhou, Long; Zhang, Jing; Fu, Qin
2013-06-01
Glucocorticoids (GC) are potent anti-inflammatory agents and widely used for the treatment of many immune-mediated and inflammatory diseases, whereas GC-induced osteoporosis (GIOP) is the most common cause of secondary osteoporosis and significantly increases the patients' morbidity and mortality. GIOP is characterized as diminished osteogenesis and accelerated bone resorption. Yeast-incorporated gallium (YG) as an organic compound not only reduces elements-associated toxicity, but also maintains its therapeutic effect on improving bone loss or promoting fracture healing in ovariectomized female rats. The aim of this study was to examine whether YG could prevent GC-induced bone loss. Five-month-old male Sprague-Dawley rats were randomly divided into three groups (n = 6): two groups were administered dexamethasone (0.1 mg/kg/day) or vehicle (PBS) subcutaneously for 5 weeks; one other group was received dexamethasone subcutaneously and YG (120 μg/kg/day) orally. Trabecular bone microarchitectural parameters, bone mineral density (BMD), bone strength, body weight, and serum biochemical markers of bone resorption and formation were examined. Compared to the GC alone group, treatment with YG not only prevented microarchitectural deterioration of trabecular bone volume relative to tissue volume, trabecular number, and trabecular separation, but also significantly improved BMD, mechanical strength, and body weight in GC-treated rats. Moreover, YG decreased tartrate-resistant acid phosphatase 5b level but failed to change alkaline phosphatase level in GC-treated rats. This is the first study to show that YG prominently attenuates bone loss and microarchitectural deterioration and inhibits the increased bone resorption in GIOP. It implies that YG might be an alternative therapy for prevention of GC-induced bone loss in humans.
2012-01-01
Background Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF). However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smoke. Methods Fifty male Wistar rats were randomized into five groups: controls, passive smoking groups and passive smoking rats administered EPF at three dosage levels (75, 150 or 300 mg/kg/day) in drinking water for 4 months. A rat model of passive smoking was prepared by breeding male rats in a cigarette-smoking box. Bone mineral content (BMC), bone mineral density (BMD), bone turnover markers, bone histomorphometric parameters and biomechanical properties were examined. Results Smoke exposure decreased BMC and BMD, increased bone turnover (inhibited bone formation and stimulated its resorption), affected bone histomorphometry (increased trabecular separation and osteoclast surface per bone surface; decreased trabecular bone volume, trabecular thickness, trabecular number, cortical thickness, bone formation rate and osteoblast surface per bone surface), and reduced mechanical properties. EPF supplementation during cigarette smoke exposure prevented smoke-induced changes in bone mineral status and bone turnover. Conclusion The results suggest that EPF can prevent the adverse effects of smoke exposure on bone by stimulating bone formation and inhibiting bone turnover and bone resorption. PMID:22713117
Gao, Shu-guang; Cheng, Ling; Li, Kang-hua; Liu, Wen-He; Xu, Mai; Jiang, Wei; Wei, Li-Cheng; Zhang, Fang-jie; Xiao, Wen-feng; Xiong, Yi-lin; Tian, Jian; Zeng, Chao; Sun, Jin-peng; Xie, Qiang; Lei, Guang-hua
2012-06-19
Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF). However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smoke. Fifty male Wistar rats were randomized into five groups: controls, passive smoking groups and passive smoking rats administered EPF at three dosage levels (75, 150 or 300 mg/kg/day) in drinking water for 4 months. A rat model of passive smoking was prepared by breeding male rats in a cigarette-smoking box. Bone mineral content (BMC), bone mineral density (BMD), bone turnover markers, bone histomorphometric parameters and biomechanical properties were examined. Smoke exposure decreased BMC and BMD, increased bone turnover (inhibited bone formation and stimulated its resorption), affected bone histomorphometry (increased trabecular separation and osteoclast surface per bone surface; decreased trabecular bone volume, trabecular thickness, trabecular number, cortical thickness, bone formation rate and osteoblast surface per bone surface), and reduced mechanical properties. EPF supplementation during cigarette smoke exposure prevented smoke-induced changes in bone mineral status and bone turnover. The results suggest that EPF can prevent the adverse effects of smoke exposure on bone by stimulating bone formation and inhibiting bone turnover and bone resorption.
Reddy, G Thirumal; Kumar, T M Pramod; Veena
2005-01-01
Alendronate sodium is formulated into gels and evaluated for the treatment of bone resorptive lesions in periodontitis. Carbopol 934P was used for the preparation of gels in three different concentrations. The prepared gel was evaluated for various properties such as preformulation, content uniformity, viscosity, compatibility, sterility, in vitro diffusion, and in vivo studies. The drug and the polymer were found to be compatible and confirmed by Fourier transform infrared spectroscopy. Viscosity of the gels increased with the increase in the polymer concentration. The formulations were found to be sterile. In vitro release study revealed that drug released from the gel follows non-Fickian diffusion followed by first-order release. In vivo studies were carried out for 6 months in patients. The results revealed a significant improvement in the clinical parameters such as gingival index, probing pocket depth, clinical attachment level, and potent inhibitory effect on bone resorption by inhibition of osteoclasts. In addition, there was increase in the new bone formation.
Song, Dezhi; Cao, Zhen; Tickner, Jennifer; Qiu, Heng; Wang, Chao; Chen, Kai; Wang, Ziyi; Guo, Chunyu; Dong, Shiwu; Xu, Jiake
2018-06-01
Pathological fractures caused by osteolytic lesions seriously threaten the health of patients. Osteoclasts play important roles in bone resorption whose hyperfunction are closely related to osteolytic lesions. Studies on osteoclast differentiation and function assist in the prevention of excessive bone loss associated diseases. We screened a variety of natural compounds with anti-inflammatory effect and found that poria cocos polysaccharide (PCP) inhibited RANKL-induced osteoclast formation and bone resorption via TRAcP staining, immunofluorescence, RT-PCR and western blot. PCP down-regulated phosphorylation of STAT3, P38, ERK and JNK, and thus repressed the expression of NFAcT1 and c-Fos during RANKL-induced osteoclastogenesis. Besides, the expression of bone resorption related genes such as TRAcP and CTSK was suppressed by PCP. The results suggest that PCP can be invoked as a candidate for the treatment of osteolytic diseases by inhibiting osteoclastogenesis. Copyright © 2018 Elsevier Inc. All rights reserved.
Biocompatibility and Biocorrosion of Hydroxyapatite-Coated Magnesium Plate: Animal Experiment.
Lim, Ho-Kyung; Byun, Soo-Hwan; Woo, Jae-Man; Kim, Sae-Mi; Lee, Sung-Mi; Kim, Bong-Ju; Kim, Hyoun-Ee; Lee, Jung-Woo; Kim, Soung-Min; Lee, Jong-Ho
2017-09-30
Magnesium (Mg) has the advantage of being resorbed in vivo, but its resorption rate is difficult to control. With uncontrolled resorption, Magnesium as a bone fixation material has minimal clinical value. During resorption not only is the strength rapidly weakened, but rapid formation of metabolite also occurs. In order to overcome these disadvantages, hydroxyapatite (HA) surface coating of pure magnesium plate was attempted in this study. Magnesium plates were inserted above the frontal bone of Sprague-Dawley rats in both the control group (Bare-Mg group) and the experimental group (HA-Mg group). The presence of inflammation, infection, hydrogen gas formation, wound dehiscence, and/or plate exposure was observed, blood tests were performed, and the resorption rate and tensile strength of the retrieved metal plates were measured. The HA-Mg group showed no gas formation or plate exposure until week 12. However, the Bare-Mg group showed consistent gas formation and plate exposure beginning in week 2. WBC (White Blood Cell), BUN (Blood Urea Nitrogen), Creatinine, and serum magnesium concentration levels were within normal range in both groups. AST (Aspartate Aminotransferase) and ALT (Alanine Aminotransferase) values, however, were above normal range in some animals of both groups. The HA-Mg group showed statistically significant advantage in resistance to degradation compared to the Bare-Mg group in weeks 2, 4, 6, 8, and 12. Degradation of HA-Mg plates proceeded after week 12. Coating magnesium plates with hydroxyapatite may be a viable method to maintain their strength long enough to allow bony healing and to control the resorption rate during the initial period.
Biocompatibility and Biocorrosion of Hydroxyapatite-Coated Magnesium Plate: Animal Experiment
Woo, Jae-Man; Kim, Sae-Mi; Lee, Sung-Mi; Kim, Hyoun-Ee; Lee, Jung-Woo; Lee, Jong-Ho
2017-01-01
Magnesium (Mg) has the advantage of being resorbed in vivo, but its resorption rate is difficult to control. With uncontrolled resorption, Magnesium as a bone fixation material has minimal clinical value. During resorption not only is the strength rapidly weakened, but rapid formation of metabolite also occurs. In order to overcome these disadvantages, hydroxyapatite (HA) surface coating of pure magnesium plate was attempted in this study. Magnesium plates were inserted above the frontal bone of Sprague-Dawley rats in both the control group (Bare-Mg group) and the experimental group (HA-Mg group). The presence of inflammation, infection, hydrogen gas formation, wound dehiscence, and/or plate exposure was observed, blood tests were performed, and the resorption rate and tensile strength of the retrieved metal plates were measured. The HA-Mg group showed no gas formation or plate exposure until week 12. However, the Bare-Mg group showed consistent gas formation and plate exposure beginning in week 2. WBC (White Blood Cell), BUN (Blood Urea Nitrogen), Creatinine, and serum magnesium concentration levels were within normal range in both groups. AST (Aspartate Aminotransferase) and ALT (Alanine Aminotransferase) values, however, were above normal range in some animals of both groups. The HA-Mg group showed statistically significant advantage in resistance to degradation compared to the Bare-Mg group in weeks 2, 4, 6, 8, and 12. Degradation of HA-Mg plates proceeded after week 12. Coating magnesium plates with hydroxyapatite may be a viable method to maintain their strength long enough to allow bony healing and to control the resorption rate during the initial period. PMID:28973984
Estrogen-Related Receptors and the control of bone cell fate.
Carnesecchi, Julie; Vanacker, Jean-Marc
2016-09-05
Bone loss is naturally occurring in aging males and females and exacerbated in the latter after menopause, altogether leading to cumulative skeleton fragility and increased fracture risk. Two types of therapeutic strategies can be envisioned to counteract age- or menopause-associated bone loss, aiming at either reducing bone resorption exerted by osteoclasts or, alternatively, promoting bone formation by osteoblasts. We here summarize data suggesting that inhibition of the Estrogen-Related Receptors α and/or γ could promote bone formation and compensate for bone loss induced by ageing or estrogen-deficiency. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Westerlind, K. C.; Wronski, T. J.; Ritman, E. L.; Luo, Z. P.; An, K. N.; Bell, N. H.; Turner, R. T.
1997-01-01
Estrogen deficiency induced bone loss is associated with increased bone turnover in rats and humans. The respective roles of increased bone turnover and altered balance between bone formation and bone resorption in mediating estrogen deficiency-induced cancellous bone loss was investigated in ovariectomized rats. Ovariectomy resulted in increased bone turnover in the distal femur. However, cancellous bone was preferentially lost in the metaphysis, a site that normally experiences low strain energy. No bone loss was observed in the epiphysis, a site experiencing higher strain energy. The role of mechanical strain in maintaining bone balance was investigated by altering the strain history. Mechanical strain was increased and decreased in long bones of ovariectomized rats by treadmill exercise and functional unloading, respectively. Functional unloading was achieved during orbital spaceflight and following unilateral sciatic neurotomy. Increasing mechanical loading reduced bone loss in the metaphysis. In contrast, decreasing loading accentuated bone loss in the metaphysis and resulted in bone loss in the epiphysis. Finally, administration of estrogen to ovariectomized rats reduced bone loss in the unloaded and prevented loss in the loaded limb following unilateral sciatic neurotomy in part by reducing indices of bone turnover. These results suggest that estrogen regulates the rate of bone turnover, but the overall balance between bone formation and bone resorption is influenced by prevailing levels of mechanical strain.
Design, synthesis, and osteogenic activity of daidzein analogs on human mesenchymal stem cells
USDA-ARS?s Scientific Manuscript database
Osteoporosis, defined by the loss of bone mass and strength, results in the loss of structural and mechanical support in bone, and leads to an increased risk of fractures. In the adult skeleton, the bone undergoes continuous resorption carried out by osteoclast cells, and formation by osteoblast cel...
Iacobini, Carla; Fantauzzi, Claudia Blasetti; Bedini, Rossella; Pecci, Raffaella; Bartolazzi, Armando; Amadio, Bruno; Pesce, Carlo; Pugliese, Giuseppe; Menini, Stefano
2018-02-09
Galectin-3 is constitutively expressed in bone cells and was recently shown to modulate osteogenic transdifferentiation of vascular smooth muscle cells and atherosclerotic calcification. However, the role of galectin-3 in bone physiology is largely undefined. To address this issue, we analyzed (1) the skeletal features of 1-, 3- and 6-month-old galectin-3 null (Lgals3 -/- ) and wild type (WT) mice and (2) the differentiation and function of osteoblasts and osteoclasts derived from these animals. Long bone phenotype, gene expression profile, and remodeling were investigated by micro-computed tomography, real time-PCR, static and dynamic histomorphometry, and assessment of biochemical markers of bone resorption and formation. Bone competence was also evaluated by biomechanical testing at 3 months. In vitro, the effects of galectin-3 deficiency on bone cell differentiation and function were investigated by assessing (a) gene expression of osteoblast markers, alkaline phosphatase activity, mineralization assay, and WNT/β-catenin signaling (of which galectin-3 is a known regulator) in osteoblasts; and (b) tartrate-resistant acid phosphatase activity and bone resorption activity in osteoclasts. Lgals3 -/- mice revealed a wide range of age-dependent alterations including lower bone formation and higher bone resorption, accelerated age-dependent trabecular bone loss (p < 0.01 vs. WT at 3 months) and reduced bone strength (p < 0.01 vs. WT at 3 months). These abnormalities were accompanied by a steady inflammatory state, as revealed by higher bone expression of the pro-inflammatory cytokines interleukin (IL)-1β and IL-6 (p < 0.001 vs. WT at 3 months), increased content of osteal macrophages (p < 0.01 vs. WT at 3 months), and reduced expression of markers of alternative (M2) macrophage activation. Lgals3 -/- osteoblasts and osteoclasts showed impaired terminal differentiation, reduced mineralization capacity (p < 0.01 vs. WT cells) and resorption activity (p < 0.01 vs. WT cells). Mechanistically, impaired differentiation and function of Lgals3 -/- osteoblasts was associated with altered WNT/β-catenin signaling (p < 0.01 vs. WT cells). These data provide evidence for a contribution of galectin-3 to bone cell maturation and function, bone remodeling, and biomechanical competence, thus identifying galectin-3 as a promising therapeutic target for age-related disorders of bone remodeling. Copyright © 2018. Published by Elsevier Inc.
O'Brien, Eileen C; Kilbane, Mark T; McKenna, Malachi J; Segurado, Ricardo; Geraghty, Aisling A; McAuliffe, Fionnuala M
2018-04-01
Pregnancy is characterised by increased bone turnover, but high bone turnover with resorption exceeding formation may lead to negative maternal bone remodelling. Recent studies are conflicting regarding the effect of calcium on skeletal health in pregnancy. The aim of this study was to examine the seasonal effect of serum 25-hydroxyvitamin D (25OHD) and dietary calcium on a marker of bone resorption. This was prospective study of 205 pregnant women [two cohorts; early pregnancy at 13 weeks (n = 96), and late pregnancy at 28 weeks (n = 109)]. Serum 25OHD and urine cross-linked N-telopeptides of type I collagen (uNTX) were measured at both time points. Intakes of vitamin D and calcium were recorded using 3-day food diaries at each trimester. Compared to summer pregnancies, winter pregnancies had significantly lower 25OHD and significantly higher uNTX. Higher calcium intakes were negatively correlated with uNTX in winter, but not summer. In late pregnancy, compared to those reporting calcium intakes ≥1000 mg/day, intakes of <1000 mg/day were associated with a greater increase in uNTX in winter pregnancies than in summer (41.8 vs. 0.9%). Increasing calcium intake in winter by 200 mg/day predicted a 13.3% reduction in late pregnancy uNTX. In late pregnancy, during winter months when 25OHD is inadequate, intakes of dietary calcium <1000 mg/day were associated with significantly increased bone resorption (uNTX). Additional dietary calcium is associated with reduced bone resorption in late pregnancy, with greater effect observed in winter. Further research regarding optimal dietary calcium and 25OHD in pregnancy is required, particularly for women gestating through winter.
Sakuma, Yoko; Tanaka, Kiyoshi; Suda, Michio; Komatsu, Yasato; Yasoda, Akihiro; Miura, Masako; Ozasa, Ami; Narumiya, Shuh; Sugimoto, Yukihiko; Ichikawa, Atsushi; Ushikubi, Fumitaka; Nakao, Kazuwa
2000-01-01
In a previous study we showed that the involvement of EP4 subtype of the prostaglandin E (PGE) receptor is crucial for lipopolysaccharide (LPS)-induced osteoclast formation in vitro. The present study was undertaken to test whether EP4 is actually associated with LPS-induced bone resorption in vivo. In wild-type (WT) mice, osteoclast formation in vertebrae and tibiae increased 5 days after systemic LPS injection, and urinary excretion of deoxypyridinoline, a sensitive marker for bone resorption, statistically increased 10 days after injection. In EP4 knockout (KO) mice, however, LPS injection caused no significant changes in these parameters throughout the experiment. LPS exposure for 4 h strongly induced osteoclast differentiation factor (ODF) mRNA expression in primary osteoblastic cells (POB) both from WT and EP4 KO mice, and this expression was not inhibited by indomethacin, suggesting prostaglandin (PG) independence. LPS exposure for 24 h further induced ODF expression in WT POB, but not in EP4 KO POB. Indomethacin partially inhibited ODF expression in WT POB, but not in EP4 KO POB. These data suggest that ODF is induced both PG dependently and PG independently. LPS exposure for 24 h induced slightly greater osteoclastgenesis inhibitory factor (OCIF) mRNA expression in EP4 KO than in WT POB. These findings suggest that the reduced ODF expression and apparently increased OCIF expression also are responsible for the markedly reduced LPS-induced osteoclast formation in EP4 KO mice. Our results show that the EP4 subtype of the PGE receptor is involved in LPS-induced bone resorption in vivo also. Since LPS is considered to be largely involved in bacterially induced bone loss, such as in periodontitis and osteomyelitis, our study is expected to help broaden our understanding of the pathophysiology of these conditions. PMID:11083800
Chen, Chun-Liang; Lee, Chia-Chung; Liu, Fei-Lan; Chen, Tsung-Chih; Ahmed Ali, Ahmed Atef; Chang, Deh-Ming; Huang, Hsu-Shan
2016-07-19
Inhibiting osteoclastogenesis is a promising therapeutic target for treating osteoclast-related diseases. Herein, we synthesized a series of modified salicylanilides and their corresponding 3-phenyl-2H-benzo[e][1,3]oxazine-2,4(3H)-dione and 10-phenyldibenzo[b,f][1,4]oxazepin-11(10H)-one derivatives, and investigated the effects of such compounds on RANKL-induced osteoclast formation. Among them, a salicylanilide derivative (A04) and its 3-phenyl-2H-benzo[e][1,3]oxazine-2,4(3H)-dione derivative (B04) markedly suppressed RANKL-induced osteoclast differentiation and showed no significant cytotoxic effects at doses higher than that required to inhibit osteoclast formation. Both compounds reduced osteoclast formation and bone resorptive activity of osteoclasts in a dose-dependent manner. Further, the anti-osteoclastogenic effects of A04 and B04 may operate through reducing the RANKL-induced nuclear translocation of NFATc1. Accordingly, we present the potent anti-osteoclastogenic compounds A04 and B04 as promising candidates for further optimization as anti-resorptive agents. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Tan, Shuang; Zhang, Binbin; Zhu, Xiaomei; Ao, Ping; Guo, Huajie; Yi, Weihong; Zhou, Guang-Qian
2014-01-01
Age-related bone loss and osteoporosis are associated with bone remodeling changes that are featured with decreased trabecular and periosteal bone formation relative to bone resorption. Current anticatabolic therapies focusing on the inhibition of bone resorption may not be sufficient in the prevention or reversal of age-related bone deterioration and there is a big need in promoting osteoblastogenesis and bone formation. Enhanced understanding of the network formed by key signaling pathways and molecules regulating bone forming cells in health and diseases has therefore become highly significant. The successful development of agonist/antagonist of the PTH and Wnt signaling pathways are profits of the understanding of these key pathways. As the core component of an approved antiosteoporosis agent, strontium takes its effect on osteoblasts at multilevel through multiple pathways, representing a good example in revealing and exploring anabolic mechanisms. The recognition of strontium effects on bone has led to its expected application in a variety of biomaterial scaffolds used in tissue engineering strategies aiming at bone repairing and regeneration. While summarizing the recent progress in these respects, this review also proposes the new approaches such as systems biology in order to reveal new insights in the pathology of osteoporosis as well as possible discovery of new therapies. PMID:24800251
CD147 promotes the formation of functional osteoclasts through NFATc1 signalling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishioku, Tsuyoshi, E-mail: nishiokut@niu.ac.jp; Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180; Terasawa, Mariko
CD147, a membrane glycoprotein of the immunoglobulin superfamily, is highly upregulated during dynamic cellular events including tissue remodelling. Elevated CD147 expression is present in the joint of rheumatoid arthritis patients. However, the role of CD147 in bone destruction remains unclear. To determine whether CD147 is involved in osteoclastogenesis, we studied its expression in mouse osteoclasts and its role in osteoclast differentiation and function. CD147 expression was markedly upregulated during osteoclast differentiation. To investigate the role of CD147 in receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and bone resorption activity, osteoclast precursor cells were transfected with CD147 siRNA. Decreasedmore » CD147 expression inhibited osteoclast formation and bone resorption, inhibited RANKL-induced nuclear translocation of the nuclear factor of activated T cells (NFAT) c1 and decreased the expression of the d2 isoform of vacuolar ATPase Vo domain and cathepsin K. Therefore, CD147 plays a critical role in the differentiation and function of osteoclasts by upregulating NFATc1 through the autoamplification of its expression in osteoclastogenesis. - Highlights: • CD147 expression was markedly upregulated during osteoclast differentiation. • Downregulation of CD147 expression inhibited osteoclastgenesis and bone resorption. • Decreased CD147 expression inhibited RANKL-induced nuclear translocation of NFATc1.« less
Trabecular bone adaptation to low-magnitude high-frequency loading in microgravity.
Torcasio, Antonia; Jähn, Katharina; Van Guyse, Maarten; Spaepen, Pieter; Tami, Andrea E; Vander Sloten, Jos; Stoddart, Martin J; van Lenthe, G Harry
2014-01-01
Exposure to microgravity causes loss of lower body bone mass in some astronauts. Low-magnitude high-frequency loading can stimulate bone formation on earth. Here we hypothesized that low-magnitude high-frequency loading will also stimulate bone formation under microgravity conditions. Two groups of six bovine cancellous bone explants were cultured at microgravity on a Russian Foton-M3 spacecraft and were either loaded dynamically using a sinusoidal curve or experienced only a static load. Comparable reference groups were investigated at normal gravity. Bone structure was assessed by histology, and mechanical competence was quantified using μCT and FE modelling; bone remodelling was assessed by fluorescent labelling and secreted bone turnover markers. Statistical analyses on morphometric parameters and apparent stiffness did not reveal significant differences between the treatment groups. The release of bone formation marker from the groups cultured at normal gravity increased significantly from the first to the second week of the experiment by 90.4% and 82.5% in response to static and dynamic loading, respectively. Bone resorption markers decreased significantly for the groups cultured at microgravity by 7.5% and 8.0% in response to static and dynamic loading, respectively. We found low strain magnitudes to drive bone turnover when applied at high frequency, and this to be valid at normal as well as at microgravity. In conclusion, we found the effect of mechanical loading on trabecular bone to be regulated mainly by an increase of bone formation at normal gravity and by a decrease in bone resorption at microgravity. Additional studies with extended experimental time and increased samples number appear necessary for a further understanding of the anabolic potential of dynamic loading on bone quality and mechanical competence.
A concise review of testosterone and bone health
Mohamad, Nur-Vaizura; Soelaiman, Ima-Nirwana; Chin, Kok-Yong
2016-01-01
Osteoporosis is a condition causing significant morbidity and mortality in the elderly population worldwide. Age-related testosterone deficiency is the most important factor of bone loss in elderly men. Androgen can influence bone health by binding to androgen receptors directly or to estrogen receptors (ERs) indirectly via aromatization to estrogen. This review summarized the direct and indirect effects of androgens on bone derived from in vitro, in vivo, and human studies. Cellular studies showed that androgen stimulated the proliferation of preosteoblasts and differentiation of osteoblasts. The converted estrogen suppressed osteoclast formation and resorption activity by blocking the receptor activator of nuclear factor k-B ligand pathway. In animal studies, activation of androgen and ERα, but not ERβ, was shown to be important in acquisition and maintenance of bone mass. Human epidemiological studies demonstrated a significant relationship between estrogen and testosterone in bone mineral density and fracture risk, but the relative significance between the two remained debatable. Human experimental studies showed that estrogen was needed in suppressing bone resorption, but both androgen and estrogen were indispensable for bone formation. As a conclusion, maintaining optimal level of androgen is essential in preventing osteoporosis and its complications in elderly men. PMID:27703340
Dénarié, Delphine; Constant, Elodie; Thomas, Thierry
2014-01-01
Objective. The aim of this review is to clarify the usefulness of bone, cartilage, and synovial biomarker in the management of rheumatoid arthritis (RA) therapy in remission. Synovial Biomarkers. High MMP-3 levels are associated with joint progression in RA patients, but there is no data about their utility in clinical remission. IIINys and Glc-Gal-PYD seem to be more specific to synovium, but more studies are required. Cartilage Biomarkers. Unbalance between cartilage break-down biomarkers (urinary CTX II and COMP) and cartilage formation biomarker (PIIANP) was described. This unbalance is also associated with joint destruction and prognosis of destruction. No data are available on patients in remission. Bone Biomarkers. RA activity is correlated with an increase of bone resorption markers such as CTX I, PYD, and TRACP 5b and a decrease of bone formation markers such as OC and BALP. RA therapies seem to improve bone turnover in limiting bone resorption. There is no study about bone marker utility in remission. Conclusion. Biomarkers seem to correlate with RA activity and progression. They also could be used to manage RA therapies, but we need more data on RA remission to predict relapse. PMID:24744505
Xiao, Ya-Ping; Zeng, Jie; Jiao, Lin-Na; Xu, Xiao-Yu
2018-01-01
The treatment effect and signaling pathway regulation effects of kidney-tonifying traditional Chinese medicine on osteoporosis have been widely studied, but there is no systematic summary currently. This review comprehensively collected and analyzed the traditional Chinese medicines on the treatment and signaling pathway regulation of osteoporosis in recent ten years, such as Epimedii Folium, Drynariae Rhizoma, Cnidii Fructus, Eucommiae Cortex, Psoraleae Fructus and Dipsaci Radix. Based on the existing findings, the following conclusions were obtained: ①kidney-tonifying traditional Chinese medicine treated osteoporosis mainly through BMP-Smads, Wnt/ β -catenin, MAPK, PI3K/AKT signaling pathway to promote osteoblast bone formation and through OPG/RANKL/ RANK, estrogen, CTSK signaling pathway to inhibit osteoclasts of bone resorption. Epimedii Folium, Drynariae Rhizoma, Cnidii Fructus and Psoraleae Fructus up-regulated the expression of key proteins and genes of BMP-Smads and Wnt/ β -catenin signaling pathways to promote bone formation. Epimedii Folium, Drynariae Rhizoma, Cnidii Fructus, Eucommiae Cortex, Psoraleae Fructus and Dipsaci Radix inhibited the bone resorption by mediating the OPG/RANKL/RANK signaling pathway. ②Kidney-tonifying traditional Chinese medicine prevented and treated osteoporosis through a variety of ways: icariin in Epimedii Folium, naringin in Drynariae Rhizoma, osthole in Cnidii Fructus and psoralen in Psoraleae Fructus can regulate BMP-Smads, Wnt/ β -catenin signaling pathway to promote bone formation, but also activate OPG/RANKL/RANK, CTSK and other signaling pathways to inhibit bone resorption. ③The crosstalk of the signaling pathways and the animal experiments of the traditional Chinese medicine on the prevention and treatment of osteoporosis as well as their multi-target mechanism and comprehensive regulation need further clarification. Copyright© by the Chinese Pharmaceutical Association.
Bonjour, Jean-Philippe; Benoit, Valérie; Pourchaire, Olivier; Ferry, Monique; Rousseau, Brigitte; Souberbielle, Jean-Claude
2009-10-01
Acceleration of bone remodelling increases the risk of fragility fractures. The objective of the present study was to explore in elderly women whether a vitamin D and Ca-fortified dairy product providing about 17-25 % of the recommended intakes in vitamin D, Ca and proteins would reduce secondary hyperparathyroidism and bone remodelling in a way that may attenuate age-related bone loss in the long term. Thirty-seven institutionalised women, aged 84.8 (sd 8.1) years, with low serum 25-hydroxyvitamin D (5.5 (sd 1.7) ng/ml) were enrolled into a multicentre open trial to consume during 1 month two servings of soft plain cheese made of semi-skimmed milk providing daily 686 kJ (164 kcal), 2.5 microg vitamin D, 302 mg Ca and 14.2 g proteins. The primary endpoint was the change in serum carboxy terminal cross-linked telopeptide of type I collagen (CTX), selected as a marker of bone resorption. Thirty-five subjects remained compliant. Mean serum changes were: 25-hydroyvitamin D, +14.5 % (P = 0.0051); parathyroid hormone (PTH), - 12.3 % (P = 0.0011); CTX, - 7.5 % (P = 0.01); tartrate-resistant acid phosphatase isoform 5b (TRAP 5b), - 9.9 % (P < 0.0001); albumin, +6.2 % (P < 0.0001); insulin-like growth factor-I (IGF-I),+16.9 % (P < 0.0001); osteocalcin, +8.3 % (P = 0.0166); amino-terminal propeptide of type 1 procollagen (P1NP),+19.3 % (P = 0.0031). The present open trial suggests that fortified soft plain cheese consumed by elderly women with vitamin D insufficiency can reduce bone resorption markers by positively influencing Ca and protein economy, as expressed by decreased PTH and increased IGF-I, respectively. The rise in the bone formation marker P1NP could be explained by a protein-mediated increase in IGF-I. Thus, such a dietary intervention might uncouple, at least transiently, bone resorption from bone formation and thereby attenuate age-related bone loss.
NASA Technical Reports Server (NTRS)
Zerwekh, J. E.; Ruml, L. A.; Gottschalk, F.; Pak, C. Y.; Blomqvist, C. G. (Principal Investigator)
1998-01-01
This study was undertaken to examine the effects of 12 weeks of skeletal unloading on parameters of calcium homeostasis, calcitropic hormones, bone histology, and biochemical markers of bone turnover in 11 normal subjects (9 men, 2 women; 34 +/- 11 years of age). Following an ambulatory control evaluation, all subjects underwent 12 weeks of bed rest. An additional metabolic evaluation was performed after 12 days of reambulation. Bone mineral density declined at the spine (-2.9%, p = 0.092) and at the hip (-3.8%, p = 0.002 for the trochanter). Bed rest prompted a rapid, sustained, significant increase in urinary calcium and phosphorus as well as a significant increase in serum calcium. Urinary calcium increased from a pre-bed rest value of 5.3 mmol/day to values as high as 73 mmol/day during bed rest. Immunoreactive parathyroid hormone and serum 1,25-dihydroxyvitamin D declined significantly during bed rest, although the mean values remained within normal limits. Significant changes in bone histology included a suppression of osteoblastic surface for cancellous bone (3.1 +/- 1.3% to 1.9 +/- 1.5%, p = 0.0142) and increased bone resorption for both cancellous and cortical bone. Cortical eroded surface increased from 3.5 +/- 1.1% to 7.3 +/- 4.0% (p = 0.018) as did active osteoclastic surface (0.2 +/- 0.3% to 0.7 +/- 0.7%, p = 0.021). Cancellous eroded surface increased from 2.1 +/- 1.1% to 4.7 +/- 2.2% (p = 0.002), while mean active osteoclastic surface doubled (0.2 +/- 0.2% to 0.4 +/- 0.3%, p = 0.020). Serum biochemical markers of bone formation (osteocalcin, bone-specific alkaline phosphatase, and type I procollagen extension peptide) did not change significantly during bed rest. Urinary biochemical markers of bone resorption (hydroxyproline, deoxypyridinoline, and N-telopeptide of type I collagen) as well as a serum marker of bone resorption (type I collagen carboxytelopeptide) all demonstrated significant increases during bed rest which declined toward normal during reambulation. Thus, under the conditions of this study, the human skeleton appears to respond to unloading by a rapid and sustained increase in bone resorption and a more subtle decrease in bone formation.
Zhang, Jian; Lazarenko, Oxana P.; Kang, Jie; Blackburn, Michael L.; Ronis, Martin J. J.; Badger, Thomas M.; Chen, Jin-Ran
2013-01-01
Previous studies have demonstrated that weanling rats fed AIN-93G semi-purified diets supplemented with 10% whole blueberry (BB) powder for two weeks beginning on postnatal day 21 (PND21) significantly increased bone formation at PND35. However, the minimal level of dietary BB needed to produce these effects is, as yet, unknown. The current study examined the effects of three different levels of BB diet supplementation (1, 3, and 5%) for 35 days beginning on PND25 on bone quality, and osteoclastic bone resorption in female rats. Peripheral quantitative CT scan (pQCT) of tibia, demonstrated that bone mineral density (BMD) and content (BMC) were dose-dependently increased in BB-fed rats compared to controls (P<0.05). Significantly increased bone mass after feeding 5% BB extracts was also observed in a TEN (total enteral nutrition) rat model in which daily caloric and food intake was precisely controlled. Expression of RANKL (receptor activator of nuclear factor-κB ligand) a protein essential for osteoclast formation was dose-dependently decreased in the femur of BB animals. In addition, expression of PPARγ (peroxisome proliferator-activated receptor γ) which regulates bone marrow adipogenesis was suppressed in BB diet rats compared to non-BB diet controls. Finally, a set of in vitro cell cultures revealed that the inhibitory effect of BB diet rat serum on RANKL expression was more profound in mesenchymal stromal cells compared to its effect on mature osteoblasts, pre-adipocytes and osteocytes. These results suggest that inhibition of bone resorption may contribute to increased bone mass during early development after BB consumption. PMID:23936431
Review of osteoimmunology and the host response in endodontic and periodontal lesions
Graves, Dana T.; Oates, Thomas; Garlet, Gustavo P.
2011-01-01
Both lesions of endodontic origin and periodontal diseases involve the host response to bacteria and the formation of osteolytic lesions. Important for both is the upregulation of inflammatory cytokines that initiate and sustain the inflammatory response. Also important are chemokines that induce recruitment of leukocyte subsets and bone-resorptive factors that are largely produced by recruited inflammatory cells. However, there are differences also. Lesions of endodontic origin pose a particular challenge since that bacteria persist in a protected reservoir that is not readily accessible to the immune defenses. Thus, experiments in which the host response is inhibited in endodontic lesions tend to aggravate the formation of osteolytic lesions. In contrast, bacteria that invade the periodontium appear to be less problematic so that blocking arms of the host response tend to reduce the disease process. Interestingly, both lesions of endodontic origin and periodontitis exhibit inflammation that appears to inhibit bone formation. In periodontitis, the spatial location of the inflammation is likely to be important so that a host response that is restricted to a subepithelial space is associated with gingivitis, while a host response closer to bone is linked to bone resorption and periodontitis. However, the persistence of inflammation is also thought to be important in periodontitis since inflammation present during coupled bone formation may limit the capacity to repair the resorbed bone. PMID:21547019
Gauthier, O; Bouler, J M; Weiss, P; Bosco, J; Aguado, E; Daculsi, G
1999-08-01
This in vivo study investigated the influence of two calcium phosphate particle sizes (40-80 microm and 200-500 microm) on the cellular degradation activity associated with the bone substitution process of two injectable bone substitutes (IBS). The tested biomaterials were obtained by associating a biphasic calcium phosphate (BCP) ceramic mineral phase and a 3% aqueous solution of a cellulosic polymer (hydroxypropylmethylcellulose). Both were injected into osseous defects at the distal end of rabbit femurs for 2- and 3-week periods. Quantitative results for tartrate-resistant acid phosphatase (TRAP) cellular activity, new bone formation, and ceramic resorption were studied for statistical purposes. Positive TRAP-stained degradation cells were significantly more numerous for IBS 40-80 than IBS 200-500, regardless of implantation time. BCP degradation was quite marked during the first 2 weeks for IBS 40-80, and bone colonization occurred more extensively for IBS 40-80 than for IBS 200-500. The resorption-bone substitution process occurred earlier and faster for IBS 40-80 than IBS 200-500. Both tested IBS displayed similar biological efficiency, with conserved in vivo bioactivity and bone-filling ability. Differences in calcium phosphate particle sizes influenced cellular degradation activity and ceramic resorption but were compatible with efficient bone substitution.
Yang, Xiao; Gandhi, Chintan; Rahman, Md Mizanur; Appleford, Mark; Sun, Lian-Wen; Wang, Xiaodu
2015-12-01
Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Previous studies have shown controversial results regarding the role of in situ AGEs accumulation in osteoclastic resorption. To address this issue, this study cultured human osteoclast cells directly on human cadaveric bone slices from different age groups (young and elderly) to warrant its relevance to in vivo conditions. The cell culture was terminated on the 3rd, 7th, and 10th day, respectively, to assess temporal changes in the number of differentiated osteoclasts, the number and size of osteoclastic resorption pits, the amount of bone resorbed, as well as the amount of matrix AGEs released in the medium by resorption. In addition, the in situ concentration of matrix AGEs at each resorption pit was also estimated based on its AGEs autofluorescent intensity. The results indicated that (1) osteoclastic resorption activities were significantly correlated with the donor age, showing larger but shallower resorption pits on the elderly bone substrates than on the younger ones; (2) osteoclast resorption activities were not significantly dependent on the in situ AGEs concentration in bone matrix, and (3) a correlation was observed between osteoclast activities and the concentration of AGEs released by the resorption. These results suggest that osteoclasts tend to migrate away from initial anchoring sites on elderly bone substrate during resorption compared to younger bone substrates. However, such behavior is not directly related to the in situ concentration of AGEs in bone matrix at the resorption sites.
A novel role for cathepsin K in periosteal osteoclast precursors during fracture repair.
Walia, Bhavita; Lingenheld, Elizabeth; Duong, Le; Sanjay, Archana; Drissi, Hicham
2018-03-01
Osteoporosis management is currently centered around bisphosphonates, which inhibit osteoclast (OC) bone resorption but do not affect bone formation. This reduces fracture risk, but fails to restore healthy bone remodeling. Studies in animal models showed that cathepsin K (CatK) inhibition by genetic deletion or chemical inhibitors maintained bone formation while abrogating resorption during bone remodeling and stimulated periosteal bone modeling. Recently, periosteal mononuclear tartrate-resistant acid phosphatase-positive (TRAP + ) osteoclast precursors (OCPs) were shown to augment angiogenesis-coupled osteogenesis. CatK gene deletion increased osteoblast differentiation via enhanced OCP and OC secretion of platelet-derived growth factor (PDGF)-BB and sphingosine 1 phosphate. The effects of periosteum-derived OCPs on bone remodeling are unknown, particularly with regard to fracture repair. We hypothesized that periosteal OCPs derived from CatK-null (Ctsk -/- ) mice may enhance periosteal bone formation during fracture repair. We found fewer periosteal OCPs in Ctsk -/- mice under homeostatic conditions; however, after fracture, this population increased in number relative to that seen in wild-type (WT) mice. Enhanced TRAP staining and greater expression of PDGF-BB were observed in fractured Ctsk -/- femurs relative to WT femurs. This early pattern of augmented PDGF-BB expression in Ctsk -/- mice may contribute to improved fracture healing by enhancing callus mineralization in Ctsk -/- mice. © 2018 New York Academy of Sciences.
Impaired rib bone mass and quality in end-stage cystic fibrosis patients.
Mailhot, Geneviève; Dion, Natalie; Farlay, Delphine; Rizzo, Sébastien; Bureau, Nathalie J; Jomphe, Valérie; Sankhe, Safiétou; Boivin, Georges; Lands, Larry C; Ferraro, Pasquale; Ste-Marie, Louis-Georges
2017-05-01
Advancements in research and clinical care have considerably extended the life expectancy of cystic fibrosis (CF) patients. However, with this extended survival come comorbidities. One of the leading co-morbidities is CF-related bone disease (CFBD), which progresses with disease severity and places patients at high risk for fractures, particularly of the ribs and vertebrae. Evidence that CF patients with vertebral fractures had higher bone mineral density (BMD) than the nonfracture group led us to postulate that bone quality is impaired in these patients. We therefore examined rib specimens resected at the time of lung transplant in CF patients to measure parameters of bone quantity and quality. In this exploratory study, we analysed 19 end-stage CF and 13 control rib specimens resected from otherwise healthy lung donors. BMD, bone microarchitecture, static parameters of bone formation and resorption and microcrack density of rib specimens were quantified by imaging, histomorphometric and histological methods. Variables reflecting the mineralization of ribs were assessed by digitized microradiography. The degree of bone mineralization (g/cm 3 ) and the heterogeneity index of the mineralization (g/cm 3 ) were calculated for trabecular and cortical bone. Compared to controls, CF ribs exhibited lower areal and trabecular volumetric BMD, decreased trabecular thickness and osteoid parameters, and increased microcrack density, that was particularly pronounced in specimens from patients with CF-related diabetes. Static parameters of bone resorption were similar in both groups. Degree of mineralization of total bone, but not heterogeneity index, was increased in CF specimens. The combination of reduced bone mass, altered microarchitecture, imbalanced bone remodeling (maintained bone resorption but decreased formation), increased microdamage and a small increase of the degree of mineralization, may lead to decreased bone strength, which, when coupled with chronic coughing and chest physical therapy, may provide an explanation for the increased incidence of rib fractures previously reported in this population. Copyright © 2017 Elsevier Inc. All rights reserved.
Krieger, Nancy S; Bushinsky, David A
2017-10-01
Serum fibroblast growth factor 23 (FGF23) increases progressively in chronic kidney disease (CKD) and is associated with increased mortality. FGF23 is synthesized in osteoblasts and osteocytes; however, the factors regulating its production are not clear. Patients with CKD have decreased renal acid excretion leading to metabolic acidosis (MET). During MET, acid is buffered by bone with release of mineral calcium (Ca) and phosphate (P). MET increases intracellular Ca signaling and cyclooxygenase 2 (COX2)-induced prostaglandin production in the osteoblast, leading to decreased bone formation and increased bone resorption. We found that MET directly stimulates FGF23 in mouse bone organ cultures and primary osteoblasts. We hypothesized that MET increases FGF23 through similar pathways that lead to bone resorption. Neonatal mouse calvariae were incubated in neutral (NTL, pH = 7.44, Pco 2 = 38 mmHg, [HCO 3 - ] = 27 mM) or acid (MET, pH = 7.18, Pco 2 = 37 mmHg, [HCO 3 - ] = 13 mM) medium without or with 2-APB (50 μM), an inhibitor of intracellular Ca signaling or NS-398 (1 μM), an inhibitor of COX2. Each agent significantly inhibited MET stimulation of medium FGF23 protein and calvarial FGF23 RNA as well as bone resorption at 48 h. To exclude the potential contribution of MET-induced bone P release, we utilized primary calvarial osteoblasts. In these cells each agent inhibited MET stimulation of FGF23 RNA expression at 6 h. Thus stimulation of FGF23 by MET in mouse osteoblasts utilizes the same initial signaling pathways as MET-induced bone resorption. Therapeutic interventions directed toward correction of MET, especially in CKD, have the potential to not only prevent bone resorption but also lower FGF23 and perhaps decrease mortality. Copyright © 2017 the American Physiological Society.
Shiraishi, Ayako; Sakai, Sadaoki; Saito, Hitoshi; Takahashi, Fumiaki
2014-10-01
Eldecalcitol (ELD), a 2β-hydroxypropyloxy derivative of 1α,25(OH)2D3, is a potent inhibitor of bone resorption that has demonstrated a greater effect at reducing the risk of fracture in osteoporotic patients than alfacalcidol (ALF). In the present study, we used the senescence-accelerated mouse strain P6 (SAM/P6), which has low bone mass caused by osteoblast dysfunction, to evaluate the effect of ELD on cortical bone in comparison with ALF. Four-month-old SAM/P6 mice were given either ELD (0.025 or 0.05μg/kg) or ALF (0.2 or 0.4μg/kg) by oral gavage 5 times/week for 6 weeks. Both ELD and ALF increased serum calcium (Ca) in a dose-dependent manner. Serum Ca levels in the ELD 0.05μg/kg group were comparable to those of the ALF 0.2μg/kg group. ELD 0.05μg/kg significantly improved the bone biomechanical properties of the femur compared with the vehicle control group (p<0.001) and the ALF 0.2μg/kg group (p<0.05) evaluated by 3-point bending test. The cortical area of the mid-femur in the ELD 0.05μg/kg group but not the ALF 0.2μg/kg group was significantly higher than those of the vehicle control group (p<0.001). Bone histomorphometry revealed that in the femoral endocortical surface, the suppression of bone resorption parameters (N.Oc/BS) and bone formation parameters (MS/BS) by ELD (0.05μg/kg) was greater than that by ALF (0.2μg/kg). In contrast, in the femoral periosteal surface, ELD 0.05μg/kg significantly increased bone formation parameters (BFR/BS, MS/BS) compared with the vehicle control group (p<0.05, p<0.01, respectively), whereas ALF 0.2μg/kg did not alter these parameters. These results indicate that ELD improved the biomechanical properties of femoral cortical bone not only by inhibiting endocortical bone resorption but also by stimulating the periosteal bone formation in SAM/P6 mice. This article is part of a Special Issue entitled '16th Vitamin D Workshop'. Copyright © 2013 Elsevier Ltd. All rights reserved.
Khorasani, Mohammad S; Diko, Sindi; Hsia, Allison W; Anderson, Matthew J; Genetos, Damian C; Haudenschild, Dominik R; Christiansen, Blaine A
2015-02-16
Previous studies in animal models of osteoarthritis suggest that alendronate (ALN) has antiresorptive and chondroprotective effects, and can reduce osteophyte formation. However, these studies used non-physiologic injury methods, and did not investigate early time points during which bone is rapidly remodeled prior to cartilage degeneration. The current study utilized a non-invasive model of knee injury in mice to investigate the effect of ALN treatment on subchondral bone changes, articular cartilage degeneration, and osteophyte formation following injury. Non-invasive knee injury via tibial compression overload or sham injury was performed on a total of 90 mice. Mice were treated with twice weekly subcutaneous injections of low-dose ALN (40 μg/kg/dose), high-dose ALN (1,000 μg/kg/dose), or vehicle, starting immediately after injury until sacrifice at 7, 14 or 56 days. Trabecular bone of the femoral epiphysis, subchondral cortical bone, and osteophyte volume were quantified using micro-computed tomography (μCT). Whole-joint histology was performed at all time points to analyze articular cartilage and joint degeneration. Blood was collected at sacrifice, and serum was analyzed for biomarkers of bone formation and resorption. μCT analysis revealed significant loss of trabecular bone from the femoral epiphysis 7 and 14 days post-injury, which was effectively prevented by high-dose ALN treatment. High-dose ALN treatment was also able to reduce subchondral bone thickening 56 days post-injury, and was able to partially preserve articular cartilage 14 days post-injury. However, ALN treatment was not able to reduce osteophyte formation at 56 days post-injury, nor was it able to prevent articular cartilage and joint degeneration at this time point. Analysis of serum biomarkers revealed an increase in bone resorption at 7 and 14 days post-injury, with no change in bone formation at any time points. High-dose ALN treatment was able to prevent early trabecular bone loss and cartilage degeneration following non-invasive knee injury, but was not able to mitigate long-term joint degeneration. These data contribute to understanding the effect of bisphosphonates on the development of osteoarthritis, and may support the use of anti-resorptive drugs to prevent joint degeneration following injury, although further investigation is warranted.
USDA-ARS?s Scientific Manuscript database
We conducted a study to examine how the development of obesity and the associated insulin resistance affect bone structural and material properties, and bone formation and resorption markers in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat model. This was a 36-week study of sedentary, hyperphag...
Bone Resorption Increases as Early as the Second Day in Head- Down Bed Rest
NASA Astrophysics Data System (ADS)
Heer, M.; Kamps, N.; Mika, C.; Boese, A.; Gerzer, R.
Long-term bed rest and space mission studies have shown that immobilization as well as microgravity induce increased bone resorption while bone formation tends to decrease. In order to analyze the kinetics of short-term changes in bone turnover we studied in a randomized, strictly controlled crossover design the effects of 6 days 6° head-down tilt bed rest (HDT) in 8 male healthy subjects (mean body weight (BW): 70.1 +/- 1.88 kg; mean age: 25.5 +/- 1.04 years) in our metabolic ward. Two days before arriving in the metabolic ward the subjects started with a diet consisting of an energy content of 10 MJ/d, 2000 mg Calcium/d, 400 i.U. Vitamin D, 200 mEq Na+ and 50 ml water/kg BW/d. The diet was continued in the metabolic ward. The metabolic ward period (11days) was divided into 3 parts: 4 ambulatory days, 6 days either HDT or control and 1 recovery day. Continuous urine collection started on the first day in the metabolic ward to analyze calcium excretion and bone resorption markers, namely C-telopeptide (CTX) and N-telopeptide (NTX). On the 2nd ambulatory day in the metabolic ward and on the 5th day in HDT or control blood was drawn to analyze serum calcium, parathyroid hormone, and bone formation markers (bone Alkaline Phosphatase (bAP), Procollagen-I-Propeptide (P-I-CP). Both study phases were identical with respect to environmental conditions, study protocol and diet. Urinary calcium excretion was as early as the first day in immobilization increased (p<0.01). CTX- and NTX-excretion stayed unchanged the first 24 hours in HDT compared to the control. But, already on the 2nd day of immobilization both bone resorption markers significantly increased. NTX-excretion was increased by 28.7 +/- 14.0% (p<0.05), while CTX-excretion rose by 17.8 +/- 8.3% (p<0.01). Both, the CTX- excretion as well as the calcium excretion keep the significantly higher level during the HDT period, and even continued through the first day of recovery. However, NTX excretion, descended from day three until the end of HDT. But, the level of NTX excretion during HDT was always higher than during control. In contrast to the bone resorption markers, the formation marker P-I-CP tended to decrease as early as the fifth day of immobilization (p<0.10). Serum calcium-, parathyroid hormone-, as well as bAP concentrations were unchanged. We conclude from these results of a pronounced rise of bone resorption markers that already 24 hours of immobilization induce a significant rise in osteoclast activity in healthy subjects. Thus, it appears possible to use short-term bed rest studies for the development of countermeasures to immobilization osteoporosis and to avoid long-term studies, which presently impose major detectable changes on the health status of healthy human subjects. Further studies are mandatory to investigate the underlying mechanisms and respective countermeasures.
Investigation of strontium accumulation on ovariectomized Sprague-Dawley rat tibia by micro-PIXE
NASA Astrophysics Data System (ADS)
Li, X.; Li, Y.; Jin, W.; Zheng, Y.; Rong, C.; Lyu, H.; Shen, H.
2014-08-01
Strontium ranelate is a newly developed drug effective in osteoporosis treatment by depressing bone resorption and maintaining bone formation. Strontium accumulation and distribution are determined in bones of rat after strontium ranelate administration by using micro-PIXE. The investigated rats are divided into four groups: (A) control, (B) ovariectomized, (C) ovariectomized followed with strontium chloride, (D) ovariectomized followed with strontium ranelate. It was found that strontium ranelate would result in increasing trabecular volume and decreasing bone resorption to treat osteoporosis. There are similar contours of calcium and strontium in two-dimensional images, while the strontium is not evenly distributed in the bone. It supports the conclusion that strontium has an affinity for bone and it is capable of replacing calcium atoms as a part of the strontium mechanism in the osteoporosis treatment. The results related to biochemistry are also discussed.
Kawada, Etsuo; Moridaira, Kazuaki; Itoh, Katsuhiko; Hoshino, Ayami; Tamura, Jun'ichi; Morita, Toyoho
2006-01-01
Although the effect of copper on bone has been tested in animals and healthy subjects, no studies concerning the effect of copper supplementation on bone metabolism in patients with copper deficiency have been reported because of the rarity of these patients. This study was conducted to investigate the effect of copper supplementation on bone metabolism in copper-deficient patients. This study included 10 patients (83.7 +/- 8.3 years) with dietary copper deficiency under long-term bed rest for more than 12 months. They had their diets supplemented with copper sulfate (3 mg/day) over 12 weeks in addition to their diet of only one kind of enteral food with a low concentration of copper. Serum copper and ceruloplasmin, urinary deoxypyridinoline (DPD) and collagen-type 1 N-telopeptide (NTX) (biomarkers of bone resorption), serum osteocalcin (OC) and bone-specific alkaline phosphatase (Bone ALP) (biomarkers of bone formation) were analyzed at baseline, 4 and 12 weeks after copper supplementation. DPD and NTX excretion were significantly increased 4 weeks after copper supplementation (p = 0.009 and p = 0.013, respectively). Serum bone ALP and OC were not significantly changed 12 weeks after copper supplementation (p = 0.051 and p = 0.594). In patients with nutritional copper deficiency, bone resorption markers are increased with copper supplementation. Copyright (c) 2006 S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, Shaobo; Xu, Jiawei; Zhang, Chenghua
Receptor activator of nuclear factor (NF)-κB ligand (RANKL)-activated signaling is essential for osteoclast differentiation, activation, and survival. Salicortin is a phenolic glycoside that has been isolated from many plants such as Populus and Salix species, and has been shown to have anti-amnesic and anti-adipogenic effects. In this study, we investigated the effect of salicortin on RANKL-induced osteoclasts formation, bone resorption, and activation of osteoclast-related signaling pathways. Salicortin suppressed RANKL-induced osteoclastogenesis in bone marrow macrophage cultures in a dose-dependent manner, and inhibited osteoclastic bone resorption activity without any cytotoxicity. Salicortin inhibited RANKL-induced c-Jun N-terminal kinase and NF-κB activation, concomitant with retardedmore » IκBα phosphorylation and inhibition of p65 nuclear translocation, leading to impaired transcription of nuclear factor of activated T cells c1 (NFATc1) and expression of osteoclastic-specific genes. Taken together, our findings demonstrate that salicortin inhibits NF-κB and NFATc1 activation, leading to attenuation of osteoclastogenesis and bone resorption. Thus, salicortin may be of interest in developments of treatment for osteoclast related diseases. - Highlights: • Salicortin suppresses osteoclastogenesis in vitro. • Salicortin impairs the JNK and NF-κB/NFATc1 signaling pathway. • Salicortin may be of interest in developments of osteoporosis treatment.« less
Ergonomic task reduction prevents bone osteopenia in a rat model of upper extremity overuse
BARBE, Mary F.; JAIN, Nisha X.; MASSICOTTE, Vicky S.; POPOFF, Steven N.; BARR-GILLESPIE, Ann E.
2015-01-01
We evaluated the effectiveness of ergonomic workload reduction of switching rats from a high repetition high force (HRHF) lever pulling task to a reduced force and reach rate task for preventing task-induced osteopenic changes in distal forelimb bones. Distal radius and ulna trabecular structure was examined in young adult rats performing one of three handle-pulling tasks for 12 wk: 1) HRHF, 2) low repetition low force (LRLF); or 3) HRHF for 4 wk and than LRLF thereafter (HRHF-to-LRLF). Results were compared to age-matched controls rats. Distal forelimb bones of 12-wk HRHF rats showed increased trabecular resorption and decreased volume, as control rats. HRHF-to-LRLF rats had similar trabecular bone quality as control rats; and decreased bone resorption (decreased trabecular bone volume and serum CTX1), increased bone formation (increased mineral apposition, bone formation rate, and serum osteocalcin), and decreased osteoclasts and inflammatory cytokines, than HRHF rats. Thus, an ergonomic intervention of HRHF-to-LRLF prevented loss of trabecular bone volume occurring with prolonged performance of a repetitive upper extremity task. These findings support the idea of reduced workload as an effective approach to management of work-related musculoskeletal disorders, and begin to define reach rate and load level boundaries for such interventions. PMID:25739896
Bis-enoxacin Inhibits Bone Resorption and Orthodontic Tooth Movement
Toro, E.J.; Zuo, J.; Guiterrez, A.; La Rosa, R.L.; Gawron, A.J.; Bradaschia-Correa, V.; Arana-Chavez, V.; Dolce, C.; Rivera, M.F.; Kesavalu, L.; Bhattacharyya, I.; Neubert, J.K.; Holliday, L.S.
2013-01-01
Enoxacin inhibits binding between the B-subunit of vacuolar H+-ATPase (V-ATPase) and microfilaments, and also between osteoclast formation and bone resorption in vitro. We hypothesized that a bisphosphonate derivative of enoxacin, bis-enoxacin (BE), which was previously studied as a bone-directed antibiotic, might have similar activities. BE shared a number of characteristics with enoxacin: It blocked binding between the recombinant B-subunit and microfilaments and inhibited osteoclastogenesis in cell culture with IC50s of about 10 µM in each case. BE did not alter the relative expression levels of various osteoclast-specific proteins. Even though tartrate-resistant acid phosphatase 5b was expressed, proteolytic activation of the latent pro-enzyme was inhibited. However, unlike enoxacin, BE stimulated caspase-3 activity. BE bound to bone slices and inhibited bone resorption by osteoclasts on BE-coated bone slices in cell culture. BE reduced the amount of orthodontic tooth movement achieved in rats after 28 days. Analysis of these data suggests that BE is a novel anti-resorptive molecule that is active both in vitro and in vivo and may have clinical uses. Abbreviations: BE, bis-enoxacin; V-ATPase, vacuolar H+-ATPase; TRAP, tartrate-resistant acid phosphatase; αMEM D10, minimal essential media, alpha modification with 10% fetal bovine serum; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; RANKL, receptor activator of nuclear factor kappa B-ligand; NFATc1, nuclear factor of activated T-cells; ADAM, a disintegrin and metalloprotease domain; OTM, orthodontic tooth movement. PMID:23958763
Qiu, Zuo-Cheng; Dong, Xiao-Li; Dai, Yi; Xiao, Gao-Keng; Wang, Xin-Luan; Wong, Ka-Chun; Wong, Man-Sau; Yao, Xin-Sheng
2016-01-01
Rhizoma Drynariae (RD), as one of the most common clinically used folk medicines, has been reported to exert potent anti-osteoporotic activity. The bioactive ingredients and mechanisms that account for its bone protective effects are under active investigation. Here we adopt a novel in silico target fishing method to reveal the target profile of RD. Cathepsin K (Ctsk) is one of the cysteine proteases that is over-expressed in osteoclasts and accounts for the increase in bone resorption in metabolic bone disorders such as postmenopausal osteoporosis. It has been the focus of target based drug discovery in recent years. We have identified two components in RD, Kushennol F and Sophoraflavanone G, that can potentially interact with Ctsk. Biological studies were performed to verify the effects of these compounds on Ctsk and its related bone resorption process, which include the use of in vitro fluorescence-based Ctsk enzyme assay, bone resorption pit formation assay, as well as Receptor Activator of Nuclear factor κB (NF-κB) ligand (RANKL)-induced osteoclastogenesis using murine RAW264.7 cells. Finally, the binding mode and stability of these two compounds that interact with Ctsk were determined by molecular docking and dynamics methods. The results showed that the in silico target fishing method could successfully identify two components from RD that show inhibitory effects on the bone resorption process related to protease Ctsk. PMID:27999266
Bone anabolics in osteoporosis: Actuality and perspectives
Montagnani, Andrea
2014-01-01
Vertebral and nonvertebral fractures prevention is the main goal for osteoporosis therapy by inhibiting bone resorption and/or stimulating bone formation. Antiresorptive drugs decrease the activation frequency, thereby determining a secondary decrease in bone formation rate and a low bone turnover. Bisphosphonates are today’s mainstay among antiresorptive treatment of osteoporosis. Also, oral selective estrogen receptor modulators and recently denosumab have a negative effect on bone turnover. Agents active on bone formation are considered a better perspective in the treatment of severe osteoporosis. Recombinant-human parathyroid hormone (PTH) has showed to increase bone formation and significantly decrease vertebral fractures in severe patients, but with a modest effect on nonvertebral fractures. The study of Wnt signaling pathway, that induces prevalently an osteoblastic activity, opens large possibilities to antagonists of Wnt-inhibitors, such as sclerostin antibodies and dickkopf-1 antagonists, with potential effects not only on trabecular bone but also on cortical bone. PMID:25035827
Valverde, Paloma; Zhang, Jin; Fix, Amanda; Zhu, Ji; Ma, Wenli; Tu, Qisheng; Chen, Jake
2008-01-01
The purpose of this study was to determine the effects of bone sialoprotein (BSP) overexpression in bone metabolism in vivo by using a homozygous transgenic mouse line that constitutively overexpresses mouse BSP cDNA driven by the cytomegalovirus (CMV) promoter. CMV-BSP transgenic (TG) mice and wildtype mice were weighed, and their length, BMD, and trabecular bone volume were measured. Serum levels of RANKL, osteocalcin, osteoprotegerin (OPG), TRACP5b, and PTH were determined. Bone histomorphometry, von Kossa staining, RT-PCR analysis, Western blot, MTS assay, in vitro mineralization assay, and TRACP staining were also performed to delineate phenotypes of this transgenic mouse line. Compared with wildtype mice, adult TG mice exhibit mild dwarfism, lower values of BMD, and lower trabecular bone volume. TG mice serum contained increased calcium levels and decreased PTH levels, whereas the levels of phosphorus and magnesium were within normal limits. TG mice serum also exhibited lower levels of osteoblast differentiation markers and higher levels of markers, indicating osteoclastic activity and bone resorption. H&E staining, TRACP staining, and bone histomorphometry showed that adult TG bones were thinner and the number of giant osteoclasts in TG mice was higher, whereas there were no significant alterations in osteoblast numbers between TG mice and WT mice. Furthermore, the vertical length of the hypertrophic zone in TG mice was slightly enlarged. Moreover, ex vivo experiments indicated that overexpression of BSP decreased osteoblast population and increased osteoclastic activity. Partly because of its effects in enhancing osteoclastic activity and decreasing osteoblast population, BSP overexpression leads to an uncoupling of bone formation and resorption, which in turn results in osteopenia and mild dwarfism in mice. These findings are expected to help the development of therapies to metabolic bone diseases characterized by high serum level of BSP. PMID:18597627
NASA Astrophysics Data System (ADS)
Tamagawa, Hiroki; Tenkumo, Taichi; Sugaya, Tsutomu; Kawanami, Masamitsu
2012-12-01
AimThe purpose of this study was to evaluate the effects of the addition of nano-hydroxyapatite to a collagen membrane-carrier of recombinant human bone morphogenetic protein-2 (rhBMP-2) on hard tissue formation and dentin resorption on dentin surfaces in vivo. Materials and methodsNano-hydroxyapatite collagen composite (nHAC) membranes or collagen (C) membranes were each immersed in either 100 or 400 μg/ml rhBMP-2 and placed on dentin chips that were implanted into rat thigh muscle. The implants were analyzed at 2 or 4 weeks after surgery by histological observation and histomorphometric analysis. ResultsThe percentage of the hard tissue formed by each nHAC group was significantly higher than that formed by any of the C groups, except for that formed by the group loaded with 400 μg/ml rhBMP-2 at 4 weeks after implantation. No significant differences were observed in the percentage of dentin resorption between the nHAC groups and C groups at any stage or at any rhBMP-2 concentration. ConclusionThese findings showed that addition of nano-hydroxyapatite to a collagen membrane accelerated the formation of hard tissue induced by a low dose of rhBMP-2 on dentin surfaces at an early stage after implantation into rat thigh muscle, without increasing dentin resorption.
Kimoto, Aishi; Tanaka, Makoto; Nozaki, Kazutoshi; Mori, Masamichi; Fukushima, Shinji; Mori, Hiroshi; Shiroya, Tsutomu; Nakamura, Toshitaka
2013-07-01
This study examined and compared the effects of four-week intermittent and daily administrations of minodronic acid, a highly potent nitrogen-containing bisphosphonate, on bone mineral density (BMD), bone strength, bone turnover, and histomorphometry on established osteopenia in ovariectomized (OVX) rats. Fourteen-week-old female F344 rats were OVX or sham-operated. At 12 weeks post surgery, minodronic acid was orally administered once every 4 weeks at 0.2, 1, and 5 mg/kg and once daily at 0.006, 0.03, and 0.15 mg/kg for 12 months. The total dosing amount was comparable between the two dosing regimens. The levels of urinary deoxypyridinoline and serum osteocalcin were measured to assess bone turnover. BMD as assessed via dual-energy X-ray absorptiometry, bone structure and dynamical changes in vertebral trabecula and biomechanical properties were measured ex vivo at 12 months to assess bone content and material properties. Minodronic acid dose-dependently ameliorated the decrease in BMD of lumbar vertebrae and the femur in both treatment regimens similarly. Minodronic acid suppressed elevated urinary levels of deoxypyridinoline, a bone resorption marker, and reduced the serum levels of osteocalcin, a bone formation marker. In the mechanical test at 12 months of treatment, minodronic acid dose-dependently ameliorated the reduction in bone strength in femur and vertebral body. There is no significant difference in parameters between the two regimens except maximal load of lower doses in lumbar vertebral body and absorption energy of middle doses in femur. With these parameters with significant differences, values of the intermittent regimen were significantly lower than that of daily repeated regimen. Bone histomorphometric analysis of the lumbar vertebral body showed that minodronic acid significantly ameliorated the decrease in bone mass, trabecular thickness and number, and the increase in trabecular separation, bone resorption indices (Oc.S/BS and N.Oc/BS), and bone formation indices (BFR/BS, MAR and OV/BV) in both regimens. Minodronic acid suppressed OVX-induced increases in bone turnover at the tissue level and ameliorated all structural indices, thereby improving the deterioration of bone quality under osteoporotic disease conditions regardless of the regimen. In conclusion, a four-week intermittent treatment of minodronic acid suppressed increased bone resorption as daily treatment when considering the total administered dose in OVX rats with established osteopenia. The improvement of microarchitectural destruction in low dose of intermittent treatment was weaker than that observed in a daily repeated regimen; however the effects of high and middle doses of intermittent treatment were equivalent to that observed in daily repeated regimen accompanied by sufficient bone resorption inhibition in rats. These findings suggest that minodronic acid at an appropriate dose in an intermittent regimen may be as clinically useful in osteoporosis therapy as in daily treatment. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Durnova, G.; Kaplansky, A.; Morey-Holton, E.
1996-01-01
Tibial bones of rats flown onboard the SLS-2 shuttle mission were studied. Trabecular bone parameters were investigated, including growth plate height, trabecular bone volume, thickness and number, and trabecular separation in the primary and secondary spongiosa. Several histomorphometric changes were noted, allowing researchers to conclude that exposure to microgravity resulted in osteopenia of spongy bone of tibial metaphysis. The roles of bone formation and bone resorption are discussed.
Sato, Reiichiro; Onda, Ken; Kato, Hajime; Ochiai, Hideharu; Kawai, Kazuhiro; Iriki, Tsunenori; Kaneko, Kazuyuki; Yamazaki, Yukio; Wada, Yasunori
2013-08-01
Various biochemical markers help to evaluate the state of bone turnover in humans and could be used during the peri-parturient period in dairy cows when calcium (Ca) metabolism changes dramatically. To investigate this, the peri-partum characteristics of serum bone-specific alkaline phosphatase (BAP) and urinary deoxypyridinoline (DPD) were investigated. Both serum BAP activity and urinary DPD concentrations were increased and demonstrated wide variability in younger animals, and these findings were consistent with other bone turnover markers. Around the time of parturition, serum Ca concentration and serum BAP activity in multiparous cows were significantly lower than in primiparous cows, but urinary DPD concentration was unchanged. The use of BAP as a bone formation marker appears to be valuable for evaluating bone remodelling status in cows, but the specificity of the test needs to be confirmed. The DPD/BAP ratio around parturition demonstrated a clear difference in bone turnover status between the two parity groups with multiparous cows demonstrating increased signs of bone resorption compared with primiparous cows, corresponding to the Ca requirement for milk production. In future studies, the applicability of the ratio of bone resorption marker to bone formation marker should be evaluated for bone turnover assessment. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Smith, Scott M.; Wastney, Meryl E.; O'Brien, Kimberly O.; Morukov, Boris V.; Larina, Irina M.; Abrams, Steven A.; Davis-Street, Janis E.; Oganov, Victor; Shackelford, Linda C.
2005-01-01
Bone loss is a current limitation for long-term space exploration. Bone markers, calcitropic hormones, and calcium kinetics of crew members on space missions of 4-6 months were evaluated. Spaceflight-induced bone loss was associated with increased bone resorption and decreased calcium absorption. INTRODUCTION: Bone loss is a significant concern for the health of astronauts on long-duration missions. Defining the time course and mechanism of these changes will aid in developing means to counteract these losses during space flight and will have relevance for other clinical situations that impair weight-bearing activity. MATERIALS AND METHODS: We report here results from two studies conducted during the Shuttle-Mir Science Program. Study 1 was an evaluation of bone and calcium biochemical markers of 13 subjects before and after long-duration (4-6 months) space missions. In study 2, stable calcium isotopes were used to evaluate calcium metabolism in six subjects before, during, and after flight. Relationships between measures of bone turnover, biochemical markers, and calcium kinetics were examined. RESULTS: Pre- and postflight study results confirmed that, after landing, bone resorption was increased, as indicated by increases in urinary calcium (p < 0.05) and collagen cross-links (N-telopeptide, pyridinoline, and deoxypyridinoline were all increased >55% above preflight levels, p < 0.001). Parathyroid hormone and vitamin D metabolites were unchanged at landing. Biochemical markers of bone formation were unchanged at landing, but 2-3 weeks later, both bone-specific alkaline phosphatase and osteocalcin were significantly (p < 0.01) increased above preflight levels. In studies conducted during flight, bone resorption markers were also significantly higher than before flight. The calcium kinetic data also validated that bone resorption was increased during flight compared with preflight values (668 +/- 130 versus 427 +/- 153 mg/day; p < 0.001) and clearly documented that true intestinal calcium absorption was significantly lower during flight compared with preflight values (233 +/- 87 versus 460 +/- 47 mg/day; p < 0.01). Weightlessness had a detrimental effect on the balance in bone turnover such that the daily difference in calcium retention during flight compared with preflight values approached 300 mg/day (-234 +/- 102 versus 63 +/- 75 mg/day; p < 0.01). CONCLUSIONS: These bone marker and calcium kinetic studies indicated that the bone loss that occurs during space flight is a consequence of increased bone resorption and decreased intestinal calcium absorption.
Allografts with autogenous platelet-rich plasma for tibial defect reconstruction: a rabbit study.
Nather, Aziz; Wong, Keng Lin; David, Vikram; Pereira, Barry P
2012-12-01
To evaluate the effect of autogenous platelet-rich plasma (PRP) for fresh-frozen allografts in tibial defect reconstruction in rabbits. 40 adult New Zealand white rabbits underwent tibial defect reconstruction with autografts (n=12), allografts without PRP (n=12), or allografts with PRP (n=12) and were observed for 12, 16, and 24 weeks (4 for each period). Tibias of the remaining 4 rabbits were used as donor allografts, and the remaining allografts were procured from recipient rabbits. A 1.5- cm cortical segment of the tibia was osteotomised, and then fixed with a 9-hole mini-compression plate and 2 cerclage wires. Allografts were stripped off the periosteum and soft tissues and medullary contents, and then stored in a freezer at -80 ºC. All allografts were deep frozen for at least 4 weeks before transplantation. 7 ml of whole blood was drawn to prepare 1 ml of PRP. The PRP was then mixed with 1.0 ml of human thrombin to form a platelet gel. The PRP gel was then packed into the medullary canal of the allograft and applied on the cortical surface before tibial defect reconstruction. Rabbits were sacrificed at 12, 16, and 24 weeks. The specimens were assessed for bone union at host-graft junctions and for bone resorption, new bone formation, callus encasement, and viable osteocyte counts. There were 4 specimens in each group at each observation period. Osteoid bridging the gap at host-graft junctions was noted in all specimens in the autograft and allograft-with-PRP groups at week 12 and in the allograft-without-PRP group at week 24. Bone union in allografts without PRP was delayed. All indices for biological incorporation (resorption index, new bone formation index, callus encasement index, and viable osteocyte count) were significantly greater in the autograft than allograft-without-PRP groups, except for the resorption index at week 24, whereas the differences were not significant between the autograft and allograft-with-PRP groups. The differences between the 2 allograft groups were usually not significant, except for the resorption index. PRP-augmented allografts behaved similarly to autografts for tibial defect reconstruction in rabbits. PRP increased bone union and bone resorption.
Vinoth, Jayaseelan K; Patel, Kaval J; Lih, Wei-Song; Seow, Yian-San; Cao, Tong; Meikle, Murray C
2013-12-01
To understand, in greater detail, the molecular mechanisms regulating the complex relationship between mechanical strain and alveolar bone metabolism during orthodontic treatment, passive cross-arch palatal springs were bonded to the maxillary molars of 6-wk-old rats, which were killed after 4 and 8 d. Outcome measures included serum assays for markers of bone formation and resorption and for the multifunctional hormone leptin, and histomorphometry of the inter-radicular bone. The concentration of the bone-formation marker alkaline phosphatase (ALP) was significantly reduced at both time points in the appliance group, accompanied by a 50% reduction in inter-radicular bone volume; however, osteocalcin (bone Gla protein) levels remained unaffected. Bone collagen deoxypyridinoline (DPD) crosslinks increased 2.3-fold at 4 d only, indicating a transient increase in bone resorption; in contrast, the level of the osteoclast-specific marker, tartrate-resistant acid phosphatase 5b (TRACP 5b), was unchanged. Leptin levels closely paralleled ALP reductions at both time points, suggesting an important role in the mechanostat negative-feedback loop required to normalize bone mass. These data suggest that an orthodontic appliance, in addition to remodeling the periodontal ligament (PDL)-bone interface, may exert unexpected side-effects on the tooth-supporting alveolar bone, and highlights the importance of recognizing that bone strains can have negative, as well as positive, effects on bone mass. © 2013 Eur J Oral Sci.
Progesterone as a bone-trophic hormone.
Prior, J C
1990-05-01
Experimental, epidemiological, and clinical data indicate that progesterone is active in bone metabolism. Progesterone appears to act directly on bone by engaging an osteoblast receptor or indirectly through competition for a glucocorticoid osteoblast receptor. Progesterone seems to promote bone formation and/or increase bone turnover. It is possible, through estrogen-stimulated increased progesterone binding to the osteoblast receptor, that progesterone plays a role in the coupling of bone resorption with bone formation. A model of the interdependent actions of progesterone and estrogen on appropriately-"ready" cells in each bone multicellular unit can be tied into the integrated secretions of these hormones within the ovulatory cycle. Figure 5 is an illustration of this concept. It shows the phases of the bone remodeling cycle in parallel with temporal changes in gonadal steroids across a stylized ovulatory cycle. Increasing estrogen production before ovulation may reverse the resorption occurring in a "sensitive" bone multicellular unit while gonadal steroid levels are low at the time of menstrual flow. The bone remodeling unit would then be ready to begin a phase of formation as progesterone levels peaked in the midluteal phase. From this perspective, the normal ovulatory cycle looks like a natural bone-activating, coherence cycle. Critical analysis of the reviewed data indicate that progesterone meets the necessary criteria to play a causal role in mineral metabolism. This review provides the preliminary basis for further molecular, genetic, experimental, and clinical investigation of the role(s) of progesterone in bone remodeling. Much further data are needed about the interrelationships between gonadal steroids and the "life cycle" of bone. Feldman et al., however, may have been prophetic when he commented; "If this anti-glucocorticoid effect of progesterone also holds true in bone, then postmenopausal osteoporosis may be, in part, a progesterone deficiency disease."
Alasmari, Abeer; Lin, Shih-Chun; Dibart, Serge; Salih, Erdjan
2016-08-01
Anti-resorptive bisphosphonates (BPs) have been clinically used to prevent cancer-bone metastasis and cancer-induced bone pathologies despite the fact that the phenotypic response of the cancer-bone interactions to BP exposure is "uncharted territory". This study offers unique insights into the interplay between cancer stem cells and osteocytes/osteoblasts and mesenchymal stem cells using a three-dimensional (3D) live cancer-bone interactive model. We provide extraordinary cryptic details of the biological events that occur as a result of alendronate (ALN) treatment using 3D live cancer-bone model systems under specific bone remodeling stages. While cancer cells are susceptible to BP treatment in the absence of bone, they are totally unaffected in the presence of bone. Cancer cells colonize live bone irrespective of whether the bone is committed to bone resorption or formation and hence, cancer-bone metastasis/interactions are though to be "independent of bone remodeling stages". In our 3D live bone model systems, ALN inhibited bone resorption at the osteoclast differentiation level through effects of mineral-bound ALN on osteocytes and osteoblasts. The mineral-bound ALN rendered bone incapable of osteoblast differentiation, while cancer cells colonize the bone with striking morphological adaptations which led to a conclusion that a direct anti-cancer effect of BPs in a "live or in vivo" bone microenvironment is implausible. The above studies were complemented with mass spectrometric analysis of the media from cancer-bone organ cultures in the absence and presence of ALN. The mineral-bound ALN impacts the bone organs by limiting transformation of mesenchymal stem cells to osteoblasts and leads to diminished endosteal cell population and degenerated osteocytes within the mineralized bone matrix.
Callaway, Danielle A; Jiang, Jean X
2015-07-01
Osteoclasts are cells derived from bone marrow macrophages and are important in regulating bone resorption during bone homeostasis. Understanding what drives osteoclast differentiation and activity is important when studying diseases characterized by heightened bone resorption relative to formation, such as osteoporosis. In the last decade, studies have indicated that reactive oxygen species (ROS), including superoxide and hydrogen peroxide, are crucial components that regulate the differentiation process of osteoclasts. However, there are still many unanswered questions that remain. This review will examine the mechanisms by which ROS can be produced in osteoclasts as well as how it may affect osteoclast differentiation and activity through its actions on osteoclastogenesis signaling pathways. In addition, the contribution of ROS to the aging-associated disease of osteoporosis will be addressed and how targeting ROS may lead to the development of novel therapeutic treatment options.
NASA Technical Reports Server (NTRS)
Globus, Ruth; Schreurs, Ann-Sofie; Tahimic, Candice; Shirazi-Fard, Yasaman; Alwood, Joshua; Shahnazari, Mohammed; Halloran, Bernard
2015-01-01
Our central hypothesis is that oxidative stress plays a key role in cell dysfunction and progressive bone loss caused by radiation exposure during spaceflight. In animal studies, excess free radical formation is associated with pathological changes in bone structure, enhanced bone resorption, reduced bone formation and decreased bone mineral density, which can lead to skeletal fragility. We previously reported that exposure to low or high-LET radiation rapidly increases expression levels of pro-osteoclastogenic and oxidative stress-related genes in bone and marrow, followed by pathological changes in skeletal structure. To screen various antioxidants for radioprotective effects on bone, 4 month old, male C57Bl6/J mice were treated with a dietary antioxidant cocktail, injectable alpha-lipoic acid, or a dried plum-enriched diet (DP). Mice were then exposed to 2Gy 137Cs total body radiation and one day later marrow cells were collected and the relevant genes analyzed for expression levels. Of the candidates tested, DP was most effective in reducing bone resorption-related gene expression. Microcomputed tomography revealed that DP also prevented the radiation-induced deterioration of skeletal microarchitecture, as indicated by percent bone volume, trabecular spacing and trabecular number. DP had similar protective effects on skeletal structure after sequential exposure to protons (0.5 Gy, 150MeV/n) and 56Fe 0.5Gy, 600 MeV/n). When cultured ex vivo under osteogenic conditions, bone marrow-derived cells from DP-fed animals exhibited increased colony numbers compared to control diet-fed animals. These findings suggest that DP exerted pro-osteogenic effects apart from previously identified anti-resorptive actions, which may contribute to radioprotection of skeletal tissue. In conclusion, a diet enriched in certain types of antioxidants and polyphenols such as DP may be useful as an intervention to protect tissues from degenerative effects of ionizing radiation.
The clinical utility of bone marker measurements in osteoporosis
2013-01-01
Osteoporosis is characterised by low bone mass and structural deterioration of bone tissue, resulting in increased fragility and susceptibility to fracture. Osteoporotic fractures are a significant cause of morbidity and mortality. Direct medical costs from such fractures in the UK are currently estimated at over two billion pounds per year, resulting in a substantial healthcare burden that is expected to rise exponentially due to increasing life expectancy. Currently bone mineral density is the WHO standard for diagnosis of osteoporosis, but poor sensitivity means that potential fractures will be missed if it is used alone. During the past decade considerable progress has been made in the identification and characterisation of specific biomarkers to aid the management of metabolic bone disease. Technological developments have greatly enhanced assay performance producing reliable, rapid, non-invasive cost effective assays with improved sensitivity and specificity. We now have a greater understanding of the need to regulate pre-analytical sample collection to minimise the effects of biological variation. However, bone turnover markers (BTMs) still have limited clinical utility. It is not routinely recommended to use BTMs to select those at risk of fractures, but baseline measurements of resorption markers are useful before commencement of anti-resorptive treatment and can be checked 3–6 months later to monitor response and adherence to treatment. Similarly, formation markers can be used to monitor bone forming agents. BTMs may also be useful when monitoring patients during treatment holidays and aid in the decision as to when therapy should be recommenced. Recent recommendations by the Bone Marker Standards Working Group propose to standardise research and include a specific marker of bone resorption (CTX) and bone formation (P1NP) in all future studies. It is hoped that improved research in turn will lead to optimised markers for the clinical management of osteoporosis and other bone diseases. PMID:23984630
Zhao, Ji-Jun; Wu, Zhao-Feng; Yu, Ying-Hao; Wang, Ling; Cheng, Li
2018-09-01
To explore the effects of IL-7/IL-7R on the RANKL-mediated osteoclast differentiation in vitro and OVX-induced bone loss in vivo. BMMs and RAW264.7 were transfected with IL-7, IL-7R siRNA, c-Fos siRNA, and c-jun siRNA and later stimulated by RANKL. TRAP and toluidine blue staining were used to observe osteoclast formation and bone resorption, respectively. HE and TRAP staining were used to detect trabecular bone microstructure and osteoclasts of mice, respectively. qRT-PCR and Western blot analysis were used to examine expression. IL-7 unregulated the expression of CTSK, NFATc1, MMP9, and the phosphorylation of p38 and Akt by activating the c-Fos/c-Jun pathway, which increased osteoclast numbers and bone resorption in RANKL-stimulated macrophages. While IL-7R siRNA and c-Fos siRNA decreased the expression, as well as and the phosphorylation of p38 and Akt.IL-7 decreased the BMD and OPG expression in OVX-induced mice and increased the TRAP positive cells, the mRNA expression of c-fos, c-jun, and RANKL, which was contradictory to IL-7R siRNA, and c-Fos siRNA. Furthermore, IL-7R siRNA and c-Fos siRNA caused thicker trabeculae, increased trabecular number, and decreased osteolysis in OVX mice. IL-7/IL-7R can promote RANKL-mediated osteoclast formation and bone resorption by activating the c-Fos/c-Jun pathway, as well as inducing bone loss in OVX mice. © 2018 Wiley Periodicals, Inc.
Calcium Kinetics During Space Flight
NASA Technical Reports Server (NTRS)
Smith, Scott M.; OBrien, K. O.; Abrams, S. A.; Wastney, M. E.
2005-01-01
Bone loss during space flight is one of the most critical challenges to astronaut health on space exploration missions. Defining the time course and mechanism of these changes will aid in developing means to counteract bone loss during space flight, and will have relevance for other clinical situations that impair weight-bearing activity. Bone health is a product of the balance between bone formation and bone resorption. Early space research could not clearly identify which of these was the main process altered in bone loss, but identification of the collagen crosslinks in the 1990s made possible a clear understanding that the impact of space flight was greater on bone resorption, with bone formation being unchanged or only slightly decreased. Calcium kinetics data showed that bone resorption was greater during flight than before flight (668 plus or minus 130 vs. 427 plus or minus 153 mg/d, p less than 0.001), and clearly documented that true intestinal calcium absorption was lower during flight than before flight (233 plus or minus 87 vs. 460 plus or minus 47 mg/d, p less than 0.01). Weightlessness had a detrimental effect on the balance in bone turnover: the difference between daily calcium balance during flight (-234 plus or minus 102 mg/d) and calcium balance before flight (63 plus or minus 75 mg/d) approached 300 mg/d (p less than 0.01). These data demonstrate that the bone loss that occurs during space flight is a consequence of increased bone resorption and decreased intestinal calcium absorption. Examining the changes in bone and calcium homeostasis in the initial days and weeks of space flight, as well as at later times on missions longer than 6 months, is critical to understanding the nature of bone adaptation to weightlessness. To increase knowledge of these changes, we studied bone adaptation to space flight on the 16-day Space Shuttle Columbia (STS-107) mission. When the brave and talented crew of Columbia were lost during reentry on the tragic morning of February 1, 2003, in a much smaller matter, the scientific products of this experiment, successfully obtained on orbit, were lost as well. As we begin to plan for missions back to the Moon, and even off to Mars, many questions remain to be answered. Counteracting bone loss is one of the greatest challenges. Calcium kinetics studies provide a valuable tool for assessing this loss, and evaluating countermeasures.
Liu, Yan-Qiu; Hong, Zhi-Lai; Zhan, Li-Bin; Chu, Hui-Ying; Zhang, Xiao-Zhe; Li, Guo-Hui
2016-08-25
Bone homeostasis is maintained by formation and destruction of bone, which are two processes tightly coupled and controlled. Targeting both stimulation on bone formation and suppression on bone resorption becomes a promising strategy for treating osteoporosis. In this study, we examined the effect of wedelolactone, a natural product from Ecliptae herba, on osteoblastogenesis as well as osteoclastogenesis. In mouse bone marrow mesenchymal stem cells (BMSC), wedelolactone stimulated osteoblast differentiation and bone mineralization. At the molecular level, wedelolactone directly inhibited GSK3β activity and enhanced the phosphorylation of GSK3β, thereafter stimulated the nuclear translocation of β-catenin and runx2. The expression of osteoblastogenesis-related marker gene including osteorix, osteocalcin and runx2 increased. At the same concentration range, wedelolactone inhibited RANKL-induced preosteoclastic RAW264.7 actin-ring formation and bone resorption pits. Further, wedelolactone blocked NF-kB/p65 phosphorylation and abrogated the NFATc1 nuclear translocation. As a result, osteoclastogenesis-related marker gene expression decreased, including c-src, c-fos, and cathepsin K. In ovariectomized mice, administration of wedelolactone prevented ovariectomy-induced bone loss by enhancing osteoblast activity and inhibiting osteoclast activity. Together, these data demonstrated that wedelolactone facilitated osteoblastogenesis through Wnt/GSK3β/β-catenin signaling pathway and suppressed RANKL-induced osteoclastogenesis through NF-κB/c-fos/NFATc1 pathway. These results suggested that wedelolacone could be a novel dual functional therapeutic agent for osteoporosis.
RANKL, Osteopontin, and Osteoclast Homeostasis in a Hyper-Occlusion Mouse Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Cameron G.; Ito, Yoshihiro; Dangaria, Smit
2010-11-15
The biological mechanisms that maintain the position of teeth in their sockets establish a dynamic equilibrium between bone resorption and apposition. In order to reveal some of the dynamics involved in the tissue responses towards occlusal forces on periodontal ligament (PDL) and alveolar bone homeostasis, we developed the first mouse model of hyperocclusion. Swiss-Webster mice were kept in hyperocclusion for 0, 3, 6, and 9 d. Morphological and histological changes in the periodontium were assessed using micro-computed tomography (micro-CT) and ground sections with fluorescent detection of vital dye labels. Sections were stained for tartrate-resistant acid phosphatase, and the expression ofmore » receptor activator of nuclear factor-{kappa}B ligand (RANKL) and osteopontin (OPN) was analyzed by immunohistochemistry and real-time polymerase chain reaction (PCR). Traumatic occlusion resulted in enamel surface abrasion, inhibition of alveolar bone apposition, significant formation of osteoclasts at 3, 6 and 9 d, and upregulation of OPN and RANKL. Data from this study suggest that both OPN and RANKL contribute to the stimulation of bone resorption in the hyperocclusive state. In addition, we propose that the inhibition of alveolar bone apposition by occlusal forces is an important mechanism for the control of occlusal height that might work in synergy with RANKL-induced bone resorption to maintain normal occlusion.« less
RANKL, osteopontin, and osteoclast homeostasis in a hyperocclusion mouse model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Cameron G.; Ito, Yoshihiro; Dangaria, Smit
2009-10-21
The biological mechanisms that maintain the position of teeth in their sockets establish a dynamic equilibrium between bone resorption and apposition. In order to reveal some of the dynamics involved in the tissue responses towards occlusal forces on periodontal ligament (PDL) and alveolar bone homeostasis, we developed the first mouse model of hyperocclusion. Swiss-Webster mice were kept in hyperocclusion for 0, 3, 6, and 9 d. Morphological and histological changes in the periodontium were assessed using micro-computed tomography (micro-CT) and ground sections with fluorescent detection of vital dye labels. Sections were stained for tartrate-resistant acid phosphatase, and the expression ofmore » receptor activator of nuclear factor-{kappa}B ligand (RANKL) and osteopontin (OPN) was analyzed by immunohistochemistry and real-time polymerase chain reaction (PCR). Traumatic occlusion resulted in enamel surface abrasion, inhibition of alveolar bone apposition, significant formation of osteoclasts at 3, 6 and 9 d, and upregulation of OPN and RANKL. Data from this study suggest that both OPN and RANKL contribute to the stimulation of bone resorption in the hyperocclusive state. In addition, we propose that the inhibition of alveolar bone apposition by occlusal forces is an important mechanism for the control of occlusal height that might work in synergy with RANKL-induced bone resorption to maintain normal occlusion.« less
Concise Review: Stem Cells in Osteoimmunology.
Fierro, Fernando A; Nolta, Jan A; Adamopoulos, Iannis E
2017-06-01
Bone remodeling is a lifelong process in which mature bone tissue is removed from the skeleton by bone resorption and is replenished by new during ossification or bone formation. The remodeling cycle requires both the differentiation and activation of two cell types with opposing functions; the osteoclast, which orchestrates bone resorption, and the osteoblast, which orchestrates bone formation. The differentiation of these cells from their respective precursors is a process which has been overshadowed by enigma, particularly because the precise osteoclast precursor has not been identified and because the identification of skeletal stem cells, which give rise to osteoblasts, is very recent. Latest advances in the area of stem cell biology have enabled us to gain a better understanding of how these differentiation processes occur in physiological and pathological conditions. In this review we postulate that modulation of stem cells during inflammatory conditions is a necessary prerequisite of bone remodeling and therefore an essential new component to the field of osteoimmunology. In this context, we highlight the role of transcription factor nuclear factor of activated T cells cytoplasmic 1 (NFATc1), because it directly links inflammation with differentiation of osteoclasts and osteoblasts. Stem Cells 2017;35:1461-1467. © 2017 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Uremic toxin and bone metabolism.
Iwasaki, Yoshiko; Yamato, Hideyuki; Nii-Kono, Tomoko; Fujieda, Ayako; Uchida, Motoyuki; Hosokawa, Atsuko; Motojima, Masaru; Fukagawa, Masafumi
2006-01-01
Patients with end-stage renal disease (ESRD) develop various kinds of abnormalities in bone and mineral metabolism, widely known as renal osteodystrophy (ROD). Although the pathogenesis of ESRD may be similar in many patients, the response of the bone varies widely, ranging from high to low turnover. ROD is classified into several types, depending on the status of bone turnover, by histomorphometric analysis using bone biopsy samples [1,2]. In the mild type, bone metabolism is closest to that of persons with normal renal function. In osteitis fibrosa, bone turnover is abnormally activated. This is a condition of high-turnover bone. A portion of the calcified bone loses its lamellar structure and appears as woven bone. In the cortical bone also, bone resorption by osteoclasts is active, and a general picture of bone marrow tissue infiltration and the formation of cancellous bone can be observed. In osteomalacia, the bone surface is covered with uncalcified osteoid. This condition is induced by aluminum accumulation or vitamin D deficiency. The mixed type possesses characteristics of both osteitis fibrosa and osteomalacia. The bone turnover is so markedly accelerated that calcification of the osteoid cannot keep pace. In the adynamic bone type, bone resorption and bone formation are both lowered. While bone turnover is decreased, there is little osteoid. The existence of these various types probably accounts for the diversity in degree of renal impairment, serum parathyroid hormone (PTH) level, and serum vitamin D level in patients with ROD. However, all patients share a common factor, i.e., the presence of a uremic condition.
Tanaka, Hideki; Tanabe, Natsuko; Kawato, Takayuki; Nakai, Kumiko; Kariya, Taro; Matsumoto, Sakurako; Zhao, Ning; Motohashi, Masafumi; Maeno, Masao
2013-01-01
Tobacco smoking is an important risk factor for the development of several cancers, osteoporosis, and inflammatory diseases such as periodontitis. Nicotine is one of the major components of tobacco. In previous study, we showed that nicotine inhibits mineralized nodule formation by osteoblasts, and the culture medium from osteoblasts containing nicotine and lipopolysaccharide increases osteoclast differentiation. However, the direct effect of nicotine on the differentiation and function of osteoclasts is poorly understood. Thus, we examined the direct effects of nicotine on the expression of nicotine receptors and bone resorption-related enzymes, mineral resorption, actin organization, and bone resorption using RAW264.7 cells and bone marrow cells as osteoclast precursors. Cells were cultured with 10−5, 10−4, or 10−3 M nicotine and/or 50 µM α-bungarotoxin (btx), an 7 nicotine receptor antagonist, in differentiation medium containing the soluble RANKL for up 7 days. 1–5, 7, 9, and 10 nicotine receptors were expressed on RAW264.7 cells. The expression of 7 nicotine receptor was increased by the addition of nicotine. Nicotine suppressed the number of tartrate-resistant acid phosphatase positive multinuclear osteoclasts with large nuclei(≥10 nuclei), and decreased the planar area of each cell. Nicotine decreased expression of cathepsin K, MMP-9, and V-ATPase d2. Btx inhibited nicotine effects. Nicotine increased CA II expression although decreased the expression of V-ATPase d2 and the distribution of F-actin. Nicotine suppressed the planar area of resorption pit by osteoclasts, but did not affect mineral resorption. These results suggest that nicotine increased the number of osteoclasts with small nuclei, but suppressed the number of osteoclasts with large nuclei. Moreover, nicotine reduced the planar area of resorption pit by suppressing the number of osteoclasts with large nuclei, V-ATPase d2, cathepsin K and MMP-9 expression and actin organization. PMID:23555029
The Multifaceted Osteoclast; Far and Beyond Bone Resorption.
Drissi, Hicham; Sanjay, Archana
2016-08-01
The accepted function of the bone resorbing cell, osteoclast, has been linked to bone remodeling and pathological osteolysis. Emerging evidence points to novel functions of osteoclasts in controlling bone formation and angiogenesis. Thus, while the concept of a "clastokine" with the potential to regulate osteogenesis during remodeling did not come as a surprise, new evidence provided unique insight into the mechanisms underlying osteoclastic control of bone formation. The question still remains as to whether osteoclast precursors or a unique trap positive mononuclear cell, can govern any aspect of bone formation. The novel paradigm eloquently proposed by leaders in the field brings together the concept of clastokines and osteoclast precursor-mediated bone formation, potentially though enhanced angiogenesis. These fascinating advances in osteoclast biology have motivated this short review, in which we discuss these new roles of osteoclasts. J. Cell. Biochem. 117: 1753-1756, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Klijn, R J; van den Beucken, J J J P; Bronkhorst, E M; Berge, S J; Meijer, G J; Jansen, J A
2012-04-01
No studies are available that provide predictive parameters regarding the expected amount of resorption after maxillary sinus augmentation surgery using autologous bone grafts. Therefore, the aim of this study was to determine parameters influencing the outcome of the bone graft resorption process. In 20 patients, three-dimensional analysis of alveolar ridge dimensions and bone graft volume change in the atrophic posterior maxilla was performed by Cone-Beam Computerized Tomography imaging. Ridge dimensions were assessed before maxillary sinus augmentation surgery. Bone graft volumes were compared after maxillary sinus floor augmentation surgery and a graft healing interval of several months. To analyze the relation between bone volume changes with the independent variables, patients' gender, age, alveolar crest height and width, and graft healing time interval, a multi-level extension of linear regression was applied. A residual bone height of 6.0 mm (SD = 3.6 mm) and 6.2 mm (SD = 3.6 mm) was found at the left and right sides, respectively. Moreover, alveolar bone widths of 6.5 mm (SD = 2.2 mm) and 7.0 mm (SD = 2.3 mm) at the premolars, and 8.8 mm (SD = 2.2 mm) and 8.9 mm (SD = 2.5 mm) at the molars regions were found at the left and right site, respectively. Bone graft volume decreased by 25.0% (SD = 21.0%) after 4.7 months (SD = 2.7, median = 4.0 months) of healing time. The variables "age" (P = 0.009) and mean alveolar crest "bone height" (P = 0.043), showed a significant influence on bone graft resorption. A decrease of 1.0% (SE = 0.3%) of bone graft resorption was found for each year the patient grew older, and an increase in bone graft resorption of 1.8% (SE = 0.8%) was found for each mm of original bone height before sinus floor augmentation. Graft resorption occurs when using autologous bone grafts for maxillary sinus augmentation. Alveolar crest bone height and patient age have a significant effect on graft resorption, with increased resorption for higher alveolar crest bone height and decreased resorption for older patients. Consequently, patient characteristics that affect the process of bone graft resorption should be given full consideration, when performing sinus augmentation surgery. © 2011 John Wiley & Sons A/S.
Gregory, Naina Sinha; Kumar, Rekha; Stein, Emily M; Alexander, Ellen; Christos, Paul; Bockman, Richard S; Rodman, John S
2015-12-01
Diets rich in animal protein, such as the typical American diet, are thought to create a high acid load. An association between acid load and bone loss has led to the idea that providing positive alkaline salt therapy could have beneficial effects on bone metabolism. The objective of this study was to investigate the effects of potassium citrate (K-citrate), 40 mEq daily, over 1 year on bone resorption and formation. A randomized, double-blind, placebo-controlled trial of 83 women with postmenopausal osteopenia. Levels of bone turnover markers, specifically urinary N-telopeptide of collagen type 1 (u-NTX), amino-terminal propeptide of type 1 procollagen (P1NP), bone-specific alkaline phosphatase (BSAP), and osteocalcin (OC) were compared. Changes in bone mineral density (BMD) were also examined. K-citrate decreased both u-NTX (P = .005) and serum P1NP (P<.001) starting at month 1 and continuing through month 12. No significant change was seen in BSAP or OC. No significant change was seen in lumbar or hip BMD between the 2 groups. In women with postmenopausal osteopenia, treatment with K-citrate for 1 year resulted in a significant decrease in markers of turnover. The effect on markers of bone formation was not consistent. K-citrate may serve as a potential treatment for bone loss that is well tolerated and without any significant known long-term consequences.
Vitamin D status and bone turnover in women with acute hip fracture.
Nuti, Ranuccio; Martini, Giuseppe; Valenti, Roberto; Gambera, Dario; Gennari, Luigi; Salvadori, Stefania; Avanzati, Annalisa
2004-05-01
Hypovitaminosis D is common in elderly women. Few data are available on vitamin D status and bone turnover in women with acute hip fracture. The aims of this study were to determine whether elderly Italian women with an acute hip fracture also had low vitamin D levels and an increase of bone turnover compared with elderly women with osteoporosis but without fractures. Seventy-four women with acute osteoporotic hip fracture and 73 women with postmenopausal osteoporosis were studied. All women were self-sufficient and had adequate sunlight exposure. To exclude the effect of trauma on serum 25-hydroxycolecalciferol levels and bone markers (bone alkaline phosphatase and C-terminal telopeptides of Type I collagen as indices of bone formation and bone resorption), blood samples were drawn within 24 hours of the fracture. Current data indicated that in our patients the prevalence of hypovitaminosis D is common although to a lesser extent than in women who are housebound. Women with acute hip fractures had a higher prevalence of vitamin deficiency defined as serum 25-hydroxycolecalciferol lower than 12 ng/mL, compared with women with osteoporosis. Moreover, the presence of fracture did not influence the rate of bone formation, whereas the increase in bone resorption could be attributed to an older age of women with acute hip fracture because of similar values of parathyroid hormone levels in the two groups.
Modulation of bone resorption by phosphorylation state of bone sialoprotein.
Curtin, Paul; McHugh, Kevin P; Zhou, Hai-Yan; Flückiger, Rudolf; Goldhaber, Paul; Oppenheim, Frank G; Salih, Erdjan
2009-07-28
We have determined transmembrane protein tyrosine phosphorylation (outside-in signaling) in cultured osteoclasts and macrophages in response to added native purified bone sialoprotein (nBSP) and its dephosphorylated form (dBSP). There were selective/differential and potent inhibitory effects by dBSP and minimal effect by nBSP on intracellular tyrosine phosphorylation in macrophages and osteoclasts. Further studies on the downstream gene expression effects led to identification of a large number of differentially expressed genes in response to nBSP relative to dBSP in both macrophages and osteoclasts. These studies were extended to a bone resorption model using live mouse neonatal calvarial bone organ cultures stimulated by parathyroid hormone (PTH) to undergo bone resorption. Inclusion of nBSP in such cultures showed no effect on type I collagen telopeptide fragment release, hence overall bone resorption, whereas addition of dBSP abolished the PTH-induced bone resorption. The inhibition of bone resorption by dBSP was shown to be unique since in complementary experiments use of integrin receptor binding ligand, GRGDS peptide, offered only partial reduction on overall bone resorption. Quantitative RANKL analysis indicated that mechanistically the PTH-induced bone resorption was inhibited by dBSP via down-regulation of the osteoblastic RANKL production. This conclusion was supported by the RANKL analysis in cultured MC3T3-E1 osteoblast cells. Overall, these studies provided direct evidence for the involvement of covalently bound phosphates on BSP in receptor mediated "outside-in" signaling via transmembrane tyrosine phosphorylation with concurrent effects on downstream gene expressions. The use of a live bone organ culture system augmented these results with further evidence that links the observed in vivo variable state of phosphorylation with bone remodeling.
Mechanisms of bone remodeling: implications for clinical practice.
Kenny, Anne M; Raisz, Lawrence G
2002-01-01
The adult skeleton undergoes continuous remodeling. The remodeling cycle involves the interaction of cells of osteoblastic and osteoclastic lineage and is regulated by both systemic hormones and local factors. In addition to the systemic calcium-regulating hormones, parathyroid hormone, 1,25-dihydroxy vitamin D and calcitonin, sex hormones play an important role. Estrogen has been identified as the major inhibitor of bone resorption in both men and women. Androgen is important not only as a source of estrogen, through the action of aromatase, but also for its direct effect in stimulating bone formation. The effects of sex hormones may be mediated by their ability to alter the secretion of local cytokines, prostaglandins and growth factors. Sex hormone action is also modulated by the level of sex hormone-binding globulin in the circulation. A more precise analysis of these effects has been made possible by the development of new methods of measuring not only bone mineral density, but also relative rates of bone formation and resorption using biochemical markers. These new approaches have allowed us to define more precisely the specific roles of androgens, estrogens and other regulatory hormones in human skeletal physiology and pathophysiology.
2016-01-01
Introduction. This study aimed to evaluate the effects of resorbable blasting media (RBM) treatment on early stability of orthodontic mini-implants by mechanical, histomorphometric, and histological analyses. Methods. Ninety-six (64 for mechanical study and 32 for histological study and histomorphometric analysis) titanium orthodontic mini-implants (OMIs) with machined (machined group) or RBM-treated (CaP) surface (RBM group) were implanted in the tibiae of 24 rabbits. Maximum initial torque (MIT) was measured during insertion, and maximum removal torque (MRT) and removal angular momentum (RAM) were measured at 2 and 4 weeks after implantation. Bone-to-implant contact (BIC) and bone area (BA) were analyzed at 4 weeks after implantation. Results. RBM group exhibited significantly lower MIT and significantly higher MRT and RAM at 2 weeks than machined group. No significant difference in MRT, RAM, and BIC between the two groups was noted at 4 weeks, although BA was significantly higher in RBM group than in machined group. RBM group showed little bone resorption, whereas machined group showed new bone formation after bone resorption. Conclusions. RBM surface treatment can provide early stability of OMIs around 2 weeks after insertion, whereas stability of machined surface OMIs may decrease in early stages because of bone resorption, although it can subsequently recover by new bone apposition. PMID:26942200
2012-01-01
Background Bone grafts from bone banks might be mixed with bisphosphonates to inhibit the osteoclastic response. This inhibition prevents the osteoclasts to resorb the allograft bone before new bone has been formed by the osteoblasts, which might prevent instability. Since bisphosphonates may not only inhibit osteoclasts, but also osteoblasts and thus bone formation, we studied different bisphosphonate concentrations combined with allograft bone. We investigated whether locally applied alendronate has an optimum dose with respect to bone resorption and formation. Further, we questioned whether the addition of demineralized bone matrix (DBM), would stimulate bone formation. Finally, we studied the effect of high levels of antibiotics on bone allograft healing, since mixing allograft bone with antibiotics might reduce the infection risk. Methods 25 goats received eight bone conduction chambers in the cortical bone of the proximal medial tibia. Five concentrations of alendronate (0, 0.5 mg/mL, 1 mg/mL, 2 mg/mL, and 10 mg/mL) were tested in combination with allograft bone and supplemented with cefazolin (200 μg/mL). Allograft not supplemented with alendronate and cefazolin served as control. In addition, allograft mixed with demineralized bone matrix, with and without alendronate, was tested. After 12 weeks, graft bone area and new bone area were determined with manual point counting. Results Graft resorption decreased significantly (p < 0.001) with increasing alendronate concentration. The area of new bone in the 1 mg/mL alendronate group was significantly (p = 0.002) higher when compared to the 10 mg/mL group. No differences could be observed between the group without alendronate, but with demineralized bone, and the control groups. Conclusions A dose-response relationship for local application of alendronate has been shown in this study. Most new bone was present at 1 mg/mL alendronate. Local application of cefazolin had no effect on bone remodelling. PMID:22443362
Sabuncu, T; Aksoy, N; Arikan, E; Ugur, B; Tasan, E; Hatemi, H
2001-01-01
The effects of thyroid hormones on various organs and metabolic systems have been the focus of intensive research. In this study we investigated the mechanisms of the changes in some parameters of bone and mineral metabolism before and during treatment of hyper- and hypothyroidism. Our study groups were as follows; 1) Untreated hyperthyroid patients (n= 38), 2) Hyperthyroid patients treated for three months (n=21), 3) Untreated hypothyroid patients (n=27), 4) Hypothyroid patients treated for three months (n= 20), and 5) Euthyroid control subjects (age, weight, sex and menopausal status matched) (n = 47). As expected, the mean serum calcium (Ca), phosphorus (P), alkaline phosphatase (ALP), and urinary Ca/creatinine and deoxypyridinoline (D-Pyr)/creatinine levels were higher in group-1 than in the control group. Serum PTH level was lower in group-1 than in group-5. However, after treatment for three months (group-2) we found that the serum and urinary levels of these parameters (except ALP) were not different than in the control group. Group-3 and group-4 did not show any differences in these parameters compared with group-5. Covariance analysis showed that urinary D-Pyr excretion had a positive, independent relationship to the serum free T3 level and age (P < 0.001 and P = 0.02, respectively). These results suggest that both bone formation and resorption markers increase in hyperthyroid patients, and with the treatment, particularly, in the period of first three months the bone resorption markers decrease rapidly. If the treatment is maintained the decrease slows, becoming more gradual. However, bone formation markers like ALP remain high in hyperthyroid patients during the treatment. In the light of this data, it is possible to conclude that osteoblastic activity lasts longer in hyperthyroidism. On the other hand, we demonstrated that these bone formation and resorption markers do not seem to be different in hypothyroid patients, even during the treatment, compared to the euthyroid controls.
Lennox, Alanda R; Goodship, Allen E
2008-02-01
Some hibernating animals are known to reduce muscle and bone loss associated with mechanical unloading during prolonged immobilisation,compared to humans. However, here we show that wild pregnant polar bears (Ursus maritimus) are the first known animals to avoid significant bone loss altogether, despite six months of continuous hibernation. Using serum biochemical markers of bone turnover, we showed that concentrations for bone resorption are not significantly increased as a consequence of hibernation in wild polar bears. This is in sharp contrast to previous studies on other hibernating species, where for example, black bears (Ursus americanus), show a 3-4 fold increase in serum bone resorption concentrations posthibernation,and must compensate for this loss through rapid bone recovery on remobilisation, to avoid the risk of fracture. In further contrast to black bears, serum concentrations of bone formation markers were highly significantly increased in pregnant female polar bears compared to non-pregnant,thus non-hibernating females both prior to and after hibernation. However, bone formation concentrations in new mothers were significantly reduced compared to pre-hibernation concentrations. The de-coupling of bone turnover in favour of bone formation prior to hibernation, suggests that wild polar bears may posses a unique physiological mechanism for building bone in protective preparation against expected osteopenia associated with disuse,starvation, and hormonal drives to mobilise calcium for reproduction, during hibernation. Understanding this physiological mechanism could have profound implications for a natural solution for the prevention of osteoporosis in animals subjected to captivity with inadequate space for exercise,humans subjected to prolonged bed rest while recovering from illness, or astronauts exposed to antigravity during spaceflight.© 2008 Elsevier Inc. All rights reserved.
Resorption of Autogenous Bone Graft in Cranioplasty: Resorption and Reintegration Failure
Lee, Si Hoon; Lee, Uhn; Park, Cheol Wan; Lee, Sang Gu; Kim, Woo Kyung
2014-01-01
Objective Re-implantation of autologous skull bone has been known to be difficult because of its propensity for resorption. Moreover, the structural characteristics of the area of the defect cannot tolerate physiologic loading, which is an important factor for graft healing. This paper describes our experiences and results with cranioplasty following decompressive craniectomy using autologous bone flaps. Methods In an institutional review, the authors identified 18 patients (11 male and 7 female) in whom autologous cranioplasty was performed after decompressive craniectomy from January 2008 to December 2011. We examined the age, reasons for craniectomy, size of the skull defect, presence of bony resorption, and postoperative complications. Results Postoperative bone resorption occurred in eight cases (44.4%). Among them, two experienced symptomatic breakdown of the autologous bone graft that required a second operation to reconstruct the skull contour using porous polyethylene implant (Medpor®). The incidence of bone resorption was more common in the pediatric group and in those with large cranial defects (>120 cm2). No significant correlation was found with sex, reasons for craniectomy, and cryopreservation period. Conclusion The use of autologous bone flap for reconstruction of a skull defect after decompressive craniectomy is a quick and cost-effective method. But, the resorption rate was greater in children and in patients with large skull defects. As a result, we suggest compressive force of the tightened scalp, young age, large skull defect, the gap between bone flap and bone edge and heat sterilization of autologous bone as risk factors for bone resorption. PMID:27169026
NASA Technical Reports Server (NTRS)
Morgan, J. L. L.; Skulan, J. L.; Gordon, G. E.; Smith, Scott M.; Romaniello, S. J.; Anbar, A. D.
2012-01-01
Metabolic bone diseases like osteoporosis result from the disruption of normal bone mineral balance (BMB) resulting in bone loss. During spaceflight astronauts lose substantial bone. Bed rest provides an analog to simulate some of the effects of spaceflight; including bone and calcium loss and provides the opportunity to evaluate new methods to monitor BMB in healthy individuals undergoing environmentally induced-bone loss. Previous research showed that natural variations in the Ca isotope ratio occur because bone formation depletes soft tissue of light Ca isotopes while bone resorption releases that isotopically light Ca back into soft tissue (Skulan et al, 2007). Using a bed rest model, we demonstrate that the Ca isotope ratio of urine shifts in a direction consistent with bone loss after just 7 days of bed rest, long before detectable changes in bone mineral density (BMD) occur. The Ca isotope variations tracks changes observed in urinary N-teleopeptide, a bone resorption biomarker. Bone specific alkaline phosphatase, a bone formation biomarker, is unchanged. The established relationship between Ca isotopes and BMB can be used to quantitatively translate the changes in the Ca isotope ratio to changes in BMD using a simple mathematical model. This model predicts that subjects lost 0.25 0.07% ( SD) of their bone mass from day 7 to day 30 of bed rest. Given the rapid signal observed using Ca isotope measurements and the potential to quantitatively assess bone loss; this technique is well suited to study the short-term dynamics of bone metabolism.
Disruption of c-Kit Signaling in Kit(W-sh/W-sh) Growing Mice Increases Bone Turnover.
Lotinun, Sutada; Krishnamra, Nateetip
2016-08-16
c-Kit tyrosine kinase receptor has been identified as a regulator of bone homeostasis. The c-Kit loss-of-function mutations in WBB6F1/J-Kit(W/W-v) mice result in low bone mass. However, these mice are sterile and it is unclear whether the observed skeletal phenotype is secondary to a sex hormone deficiency. In contrast, C57BL/6J-Kit(W-sh)/(W-sh) (W(sh)/W(sh)) mice, which carry an inversion mutation affecting the transcriptional regulatory elements of the c-Kit gene, are fertile. Here, we showed that W(sh)/W(sh) mice exhibited osteopenia with elevated bone resorption and bone formation at 6- and 9-week-old. The c-Kit W(sh) mutation increased osteoclast differentiation, the number of committed osteoprogenitors, alkaline phosphatase activity and mineralization. c-Kit was expressed in both osteoclasts and osteoblasts, and c-Kit expression was decreased in W(sh)/W(sh)osteoclasts, but not osteoblasts, suggesting an indirect effect of c-Kit on bone formation. Furthermore, the osteoclast-derived coupling factor Wnt10b mRNA was increased in W(sh)/W(sh) osteoclasts. Conditioned medium from W(sh)/W(sh) osteoclasts had elevated Wnt10b protein levels and induced increased alkaline phosphatase activity and mineralization in osteoblast cultures. Antagonizing Wnt10b signaling with DKK1 or Wnt10b antibody inhibited these effects. Our data suggest that c-Kit negatively regulates bone turnover, and disrupted c-Kit signaling couples increased bone resorption with bone formation through osteoclast-derived Wnt 10 b.
Henriksen, K; Leeming, D J; Byrjalsen, I; Nielsen, R H; Sorensen, M G; Dziegiel, M H; Martin, T John; Christiansen, C; Qvist, P; Karsdal, M A
2007-06-01
We investigated whether the age of the bones endogenously exerts control over the bone resorption ability of the osteoclasts, and found that osteoclasts preferentially develop and resorb bone on aged bone. These findings indicate that the bone matrix itself plays a role in targeted remodeling of aged bones. Osteoclasts resorb aging bone in order to repair damage and maintain the quality of bone. The mechanism behind the targeting of aged bone for remodeling is not clear. We investigated whether bones endogenously possess the ability to control osteoclastic resorption. To biochemically distinguish aged and young bones; we measured the ratio between the age-isomerized betaCTX fragment and the non-isomerized alphaCTX fragment. By measurement of TRACP activity, CTX release, number of TRACP positive cells and pit area/pit number, we evaluated osteoclastogenesis as well as osteoclast resorption on aged and young bones. We found that the alphaCTX/betaCTX ratio is 3:1 in young compared to aged bones, and we found that both alpha and betaCTX are released by osteoclasts during resorption. Osteoclastogenesis was augmented on aged compared to young bones, and the difference was enhanced under low serum conditions. We found that mature osteoclasts resorb more on aged than on young bone, despite unchanged adhesion and morphology. These data indicate that the age of the bone plays an important role in controlling osteoclast-mediated resorption, with significantly higher levels of osteoclast differentiation and resorption on aged bones when compared to young bones.
Qu, Bo; Xia, Xun; Yan, Ming; Gong, Kai; Deng, Shaolin; Huang, Gang; Ma, Zehui; Pan, Xianming
2015-10-15
The increased osteoclastic activity accounts for pathological bone loss in diseases including osteoporosis. MicroRNAs are widely accepted to be involved in the regulation of osteopenic diseases. Recently, the low expression of miR-218 was demonstrated in CD14(+) peripheral blood mononuclear cells (PBMCs) from patients with postmenopausal osteoporosis. However, its role and the underlying mechanism in osteoporosis are still undefined. Here, an obvious decrease in miR-218 expression was observed during osteoclastogenesis under receptor activator of nuclear factor κB ligand (RANKL) stimulation, in both osteoclast precursors of bone marrow macrophages (BMMs) and RAW 264.7. Further analysis confirmed that overexpression of miR-218 obviously attenuated the formation of multinuclear mature osteoclasts, concomitant with the decrease in Trap and Cathepsin K levels, both the master regulators of osteoclastogenesis. Moreover, miR-218 up-regulation dramatically inhibited osteoclast precursor migration, actin ring formation and bone resorption. Mechanism assay demonstrated that miR-218 overexpression attenuated the expression of p38MAPK, c-Fos and NFATc1 signaling molecules. Following preconditioning with P79350, an agonist of p38MAPK, the inhibitor effect of miR-218 on osteoclastogenesis and bone-resorbing activity was strikingly ameliorated. Together, this study revealed a crucial role of miR-218 as a negative regulator for osteoclastogenesis and bone resorption by suppressing the p38MAPK-c-Fos-NFATc1 pathway. Accordingly, this research will provide a promising therapeutic agent against osteopenic diseases including osteoporosis. Copyright © 2015 Elsevier Inc. All rights reserved.
Role of carbonic anhydrase in bone resorption induced by prostaglandin E2 in vitro
NASA Technical Reports Server (NTRS)
Hall, G. E.; Kenny, A. D.
1985-01-01
The possible role of carbonic anhydrase in bone resorption induced by prostaglandin E2 (PGE2) was studied using an in vitro neonatal mouse calvarial culture system. PGE2 (10 to the -6th M) was effective in stimulating resorption, as assessed by calcium release into culture media. This enhanced resorption was accompanied by significant increases in calvarial carbonic anhydrase activity over control values at 48 and 96 h. At 48 h, bones treated with PGE2 had 20 percent more carbonic anhydrase activity than controls. By 96 h, treated bones contained 79 percent more carbonic anhydrase activity than controls. PGE2-induced bone resorption was inhibited by the carbonic anhydrase inhibitor acetazolamide in a dose-dependent fashion from 10 to the -5th to 10 to the -4th M with 77 percent inhibition observed at 10 to the -4th M. The acetazolamide analogue CL 13,850 (N-t-butylacetazolamide), which does not inhibit carbonic anhydrase, failed to inhibit PGE2-induced resorption. These results are consistent with the hypothesis that carbonic anhydrase is a necessary component of the osteoclastic bone resorptive mechanism.
NASA Technical Reports Server (NTRS)
Hurowitz, J.; Abelson, J.; Allwood, A.; Anderson, R.; Atkinson, B.; Beaty, D.; Bristow, T.; Ehlmann, B.; Eigenbrode, J.; Grotzinger, J.;
2011-01-01
Metabolic bone diseases like osteoporosis result from the disruption of normal bone mineral balance (BMB) resulting in bone loss. During spaceflight astronauts lose substantial bone. Bed rest provides an analog to simulate some of the effects of spaceflight; including bone and calcium loss and provides the opportunity to evaluate new methods to monitor BMB in healthy individuals undergoing environmentally induced-bone loss. Previous research showed that natural variations in the Ca isotope ratio occur because bone formation depletes soft tissue of light Ca isotopes while bone resorption releases that isotopically light Ca back into soft tissue (Skulan et al, 2007). Using a bed rest model, we demonstrate that the Ca isotope ratio of urine shifts in a direction consistent with bone loss after just 7 days of bed rest, long before detectable changes in bone mineral density (BMD) occur. The Ca isotope variations tracks changes observed in urinary N-teleopeptide, a bone resorption biomarker. Bone specific alkaline phosphatase, a bone formation biomarker, is unchanged. The established relationship between Ca isotopes and BMB can be used to quantitatively translate the changes in the Ca isotope ratio to changes in BMD using a simple mathematical model. This model predicts that subjects lost 0.25 +/- 0.07% (+/- SD) of their bone mass from day 7 to day 30 of bed rest. Given the rapid signal observed using Ca isotope measurements and the potential to quantitatively assess bone loss; this technique is well suited to study the short-term dynamics of bone metabolism.
Karsdal, Morten A; Qvist, Per; Christiansen, Claus; Tankó, László B
2006-01-01
Accelerated bone turnover with bone resorption exceeding bone formation is a major mechanism underlying postmenopausal bone loss and hence the development of osteoporosis. Accordingly, inhibition of bone resorption is a rational approach for the prevention of osteoporosis. In this context, the most logical option, hormone replacement therapy, reverses the rate of bone turnover to premenopausal levels, whereas the magnitude of inhibition by amino-bisphosphonates and the recently introduced anti-receptor activator of NFkappaB ligand (RANKL) antibody often exceeds this. As bone turnover has crucial implications for the continuous renewal of bone tissue, the over-suppression of bone turnover has potential consequences for bone quality and strength. Long-term treatment with potent bisphosphonates has recently been associated with osteonecrosis of the jaw and dose-dependent increases in micro-crack accumulation in animals. Although these observations are the subject of ongoing discussions, it is timely to discuss whether the over-suppression of bone turnover below premenopausal levels is really our ultimate goal when defining the success criteria for antiresorptive agents. In this review, the implications of high and excessively low bone turnover of endogenous origin for bone quality, fracture risk and integrity of the jaw are discussed. In addition, animal and clinical research revealing initial findings regarding the potential adverse effects of drug-induced suppression of bone remodeling are summarised. The inhibition of bone resorption, which is either transient between doses (e.g. with calcitonin) or does not exceed premenopausal levels (with hormone replacement therapy or selective estrogen receptor modulators), is preferable because it not only provides similar antifracture efficacy but can also assist in the maintenance of the dynamic repair of micro-cracks/micro-fractures.
Naineni, Rohini; Ravi, Vishali; Subbaraya, Dwijendra Kocherlakota; Prasanna, Jammula Surya; Panthula, Veerendranath Reddy; Koduganti, Rekha Rani
2016-08-01
Alendronate (ALN), an aminobisphosphonate, inhibits osteoclastic bone resorption and also stimulates osteogenesis. Beta-Tricalcium Phosphate (β-TCP) is an osteoconductive graft material which provides a scaffold for bone formation and also a widely used drug delivery vehicle for growth factors and antibiotics. Drug delivery vehicles, like β-TCP, improve the potency of the drugs by specific local site delivery of the drug, optimal release characteristics and easy handling. The aim of the this study was to evaluate the bone formation potential of 400μg ALN delivered in β-TCP in the treatment of periodontal intra-osseous defects. Thirty patients with periodontal defects were randomly assigned to 400μg ALN + β-TCP + Saline (test) group and β-TCP + Saline (active-control) group. Clinical parameters like Clinical Attachment Level (CAL) gain, Probing Depth (PD) reduction, post-operative Gingival Recession (GR) were assessed from the baseline, 3 months and 6 months recordings. Radiographic parameters like Linear Bone Growth (LBG), Percentage Bone Fill (%BF), and change in alveolar crest height (ACH) were assessed from baseline and 6 months radiographs. Mean measurements in the ALN test group for CAL gain (3.4 ± 0.74 mm), PD reduction (4.33 ± 0.82 mm), LBG (2.88 ± 0.88 mm), and %BF (51.98 ± 15.84%) were significantly greater with a p-value <0.05 compared to the mean measurements of CAL gain (2.20 ± 0.86 mm), PD reduction (3.20 ± 1.15 mm), LBG (1.70 ± 0.39 mm), and %BF (30.35 ± 6.88%) of the control group. There was mild alveolar crestal apposition (0.32 ± 0.68 mm) in the ALN test group and mild alveolar crestal resorption (-0.24 ± 0.40 mm) in the control group. 400μg ALN combined with β-TCP bone graft material was effective in improving soft tissue parameters, inhibiting alveolar crestal resorption and enhancing bone formation, compared to β-TCP alone.
Wan Hasan, Wan Nuraini; Chin, Kok-Yong; Jolly, James Jam; Abd Ghafar, Norzana; Soelaiman, Ima Nirwana
2018-04-23
Osteoporosis is a silent skeletal disease characterized by low bone mass and destruction of skeletal microarchitecture, leading to an increased fracture risk. This occurs due to an imbalance in bone remodelling, whereby the rate of bone resorption is greater than bone formation. Mevalonate pathway, previously known to involve in cholesterol synthesis, is an important regulatory pathway for bone remodelling. This review aimed to provide an overview of the relationship between mevalonate pathway and bone metabolism, as well as agents which act through this pathway to achieve their therapeutic potential. Mevalonate pathway produces farnesyl pyrophosphate and geranylgeranyl pyrophosphate essential in protein prenylation. An increase in protein prenylation favours bone resorption over bone formation. Non-nitrogen containing bisphosphonates inhibit farnesyl diphosphate synthase which produces farnesyl pyrophosphate. They are used as the first line therapy for osteoporosis. Statins, a well-known class of cholesterol-lowering agents, inhibit 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, the rate-determining enzyme in the mevalonate pathway. It was shown to increase bone mineral density and prevent fracture in humans. Tocotrienol is a group of vitamin E commonly found in palm oil, rice bran and annatto bean. It causes degradation of HMG-CoA reductase. Many studies demonstrated that tocotrienol prevented bone loss in animal studies but its efficacy has not been tested in humans. mevalonate pathway can be exploited to develop effective antiosteoporosis agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Osteoporosis: the current status of mesenchymal stem cell-based therapy.
Phetfong, Jitrada; Sanvoranart, Tanwarat; Nartprayut, Kuneerat; Nimsanor, Natakarn; Seenprachawong, Kanokwan; Prachayasittikul, Virapong; Supokawej, Aungkura
2016-01-01
Osteoporosis, or bone loss, is a progressive, systemic skeletal disease that affects millions of people worldwide. Osteoporosis is generally age related, and it is underdiagnosed because it remains asymptomatic for several years until the development of fractures that confine daily life activities, particularly in elderly people. Most patients with osteoporotic fractures become bedridden and are in a life-threatening state. The consequences of fracture can be devastating, leading to substantial morbidity and mortality of the patients. The normal physiologic process of bone remodeling involves a balance between bone resorption and bone formation during early adulthood. In osteoporosis, this process becomes imbalanced, resulting in gradual losses of bone mass and density due to enhanced bone resorption and/or inadequate bone formation. Several growth factors underlying age-related osteoporosis and their signaling pathways have been identified, such as osteoprotegerin (OPG)/receptor activator of nuclear factor B (RANK)/RANK ligand (RANKL), bone morphogenetic protein (BMP), wingless-type MMTV integration site family (Wnt) proteins and signaling through parathyroid hormone receptors. In addition, the pathogenesis of osteoporosis has been connected to genetics. The current treatment of osteoporosis predominantly consists of antiresorptive and anabolic agents; however, the serious adverse effects of using these drugs are of concern. Cell-based replacement therapy via the use of mesenchymal stem cells (MSCs) may become one of the strategies for osteoporosis treatment in the future.
Hong, Seong-Eun; Lee, Jiae; Seo, Dong-Hyun; In Lee, Hye; Ri Park, Doo; Lee, Gong-Rak; Jo, You-Jin; Kim, Narae; Kwon, Minjung; Shon, Hansem; Kyoung Seo, Eun; Kim, Han-Sung; Young Lee, Soo; Jeong, Woojin
2017-11-01
Excessive bone resorption caused by increased osteoclast number or activity leads to a variety of bone diseases including osteoporosis, rheumatoid arthritis and periodontitis. Thus, the therapeutic strategy for these diseases has been focused primarily on the inhibition of osteoclast formation and function. This study shows that euphorbia factor L1 (EFL1), a diterpenoid isolated from Euphorbia lathyris, inhibited osteoclastogenesis and induced osteoclast apoptosis. EFL1 suppressed osteoclast formation and bone resorption at both initial and terminal differentiation stages. EFL1 inhibited receptor activator of NF-κB ligand (RANKL)-induced NFATc1 induction with attenuated NF-κB activation and c-Fos expression. EFL1 decreased the level of reactive oxygen species by scavenging them or activating Nrf2, and inhibited PGC-1β that regulates mitochondria biogenesis. In addition, EFL1 induced apoptosis in differentiated osteoclasts by increasing Fas ligand expression followed by caspase activation. Moreover, EFL1 inhibited inflammation-induced bone erosion and ovariectomy-induced bone loss in mice. These findings suggest that EFL1 inhibits osteoclast differentiation by regulating cellular redox status and induces Fas-mediated apoptosis in osteoclast, and may provide therapeutic potential for preventing or treating bone-related diseases caused by excessive osteoclast. Copyright © 2017 Elsevier Inc. All rights reserved.
OSTEOCLAST-INDUCED FOXP3+ CD8 T-CELLS LIMIT BONE LOSS IN MICE
Buchwald, Zachary S.; Kiesel, Jennifer R.; Yang, Chang; DiPaolo, Richard; Novack, Deborah V.; Aurora, Rajeev
2014-01-01
Osteoimmunology is the crosstalk between the skeletal and immune system. We have previously shown in vitro that osteoclasts (OC) crosspresent antigens to induce FoxP3 in CD8 T-cells (OCiTcREG), which then suppress osteoclast activity. Here we assessed the ability of OC-iTcREG to limit bone resorption in vivo. Mice lacking CD8 T-cells lose more bone in response to RANKL (Tnfsf11) administration. Using adoptive transfer experiments we demonstrate that FoxP3+ CD8 T-cells limit bone loss by RANKL administration. In ovariectomized mice, a murine model of postmenopausal osteoporosis, OC-iTcREG limited bone loss and increased bone density as assessed by serum markers, micro computed tomography (μCT) and histomorphometry. Indeed, OC-iTcREG—treated ovariectomized mice had decreased levels of effector T-cells in the bone marrow compared to untreated mice, and increased bone formation rates relative to bisphosphonate-treated mice. Our results provide the first in vivo evidence that OC-iTcREG have anti-resorptive activity and repress the immune system, thus extending the purview of osteoimmunology. PMID:23756229
Tominari, Tsukasa; Matsumoto, Chiho; Watanabe, Kenta; Hirata, Michiko; Grundler, Florian M W; Miyaura, Chisato; Inada, Masaki
2015-01-01
Epigallocatechin gallate (EGCG), a major polyphenol in green tea, possesses antioxidant properties and regulates various cell functions. Here, we examined the function of EGCG in inflammatory bone resorption. In calvarial organ cultures, lipopolysaccharide (LPS)-induced bone resorption was clearly suppressed by EGCG. In osteoblasts, EGCG suppressed the LPS-induced expression of COX-2 and mPGES-1 mRNAs, as well as prostaglandin E2 production, and also suppressed RANKL expression, which is essential for osteoclast differentiation. LPS-induced bone resorption of mandibular alveolar bones was attenuated by EGCG in vitro, and the loss of mouse alveolar bone mass was inhibited by the catechin in vivo.
USDA-ARS?s Scientific Manuscript database
Previous studies have demonstrated that weanling rats fed AIN-93G semi-purified diets supplemented with 10% whole blueberry (BB) powder for two weeks beginning on postnatal day 21 (PND21) significantly increased bone formation at PND35. However, the minimal level of dietary BB needed to produce thes...
Kurohama, Takeshi; Hotokezaka, Hitoshi; Hashimoto, Megumi; Tajima, Takako; Arita, Kotaro; Kondo, Takanobu; Ino, Airi; Yoshida, Noriaki
2017-06-01
The purpose of this study was to evaluate the relationships among the volume of bone cut during corticotomy, amount of tooth movement, volume of root resorption, and volume of the resultant alveolar bone resorption after tooth movement. Ten-week-old female Wistar rats were distributed into the corticotomy groups and a control group that underwent sham corticotomy. Two experiments employing two different orthodontic forces (10 or 25g) and experimental periods (14 or 21 days) were performed. The volumes of the bone cut by corticotomy were 0.1, 1.0, and 1.7mm3 in the 25g groups, and 1.0 and 1.7mm3 in the 10g groups. Nickel-titanium closed-coil springs were set on the maxillary left first molars to induce mesial movement. After orthodontic tooth movement, the amount of tooth movement, volume of root resorption, and volume of alveolar bone resorption were measured. Despite differences in the volume of bone cut among the different corticotomy groups, there were not significant differences in the amount of tooth movement and volume of root resorption between the control group and any of the corticotomy groups. However, higher volume of bone cut during corticotomy was significantly related to the decreased alveolar bone volume-in particular, to the reduced height of the alveolar bone crest after tooth movement. The volume of the alveolar bone cut during corticotomy does not affect tooth movement or root resorption in 10-week-old female Wistar rats; however, it may increase alveolar bone loss after tooth movement. © The Author 2016. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com
Al Mamun, Md Abdullah; Hosen, Mohammad Jakir; Khatun, Amina; Alam, M Masihul; Al-Bari, Md Abdul Alim
2017-09-08
The Tridax procumbens extracts (TPE) are known for their ethno-medicinal properties to increase osteogenic functioning in mesenchymal stem cells. Recently, we found that the T. procumbens flavonoids (TPF) significantly suppressed the RANKL-induced osteoclasts differentiation and bone resorption. The TPF also promoted osteoblasts differentiation and bone formation demonstrated by increasing bone formation markers in cultured mouse primary osteoblasts. However, the effects of the TPF on in vivo bone formation remain unclear. In this study, we investigated the effects of the TPF on in vivo bone formation, injected the TPF (20 mg/kg) twice a day in the low calcium diet mice and killed them after 21 day. Radiographic and histomorphometric analyses were performed on the dissected bones to determine the anabolic effects of the TPF. Bone mineral density and bone mineral content of the TPF-treated mice were significantly increased compared to the control mice. Bone formation-related indices like osteoblast number, osteoblast surface, bone volume, mineralizing surface, mineral apposition rate and bone formation rate were significantly increased in the TPF-treated mice compared to the control mice. Our findings point towards the stimulation of bone formation by TPF, suggested that the TPF could be a potential natural anabolic agent to treat patients with bone loss-associated diseases such as osteoporosis.
Gennari, C; Martini, G; Nuti, R
1998-06-01
Generalized osteoporosis currently represents a heterogeneous group of conditions with many different causes and pathogenetic mechanisms, that often are variably associated. The term "secondary" is applied to all patients with osteoporosis in whom the identifiable causal factors are other than menopause and aging. In this heterogeneous group of conditions, produced by many different pathogenetic mechanisms, a negative bone balance may be variably associated with low, normal or increased bone remodeling states. A consistent group of secondary osteoporosis is related to endocrinological or iatrogenic causes. Exogenous hypercortisolism may be considered an important risk factor for secondary osteoporosis in the community, and probably glucocorticoid-induced osteoporosis is the most common type of secondary osteoporosis. Supraphysiological doses of corticosteroids cause two abnormalities in bone metabolism: a relative increase in bone resorption, and a relative reduction in bone formation. Bone loss, mostly of trabecular bone, with its resultant fractures is the most incapacitating consequence of osteoporosis. The estimated incidence of fractures in patients prescribed corticosteroid is 30% to 50%. Osteoporosis is considered one of the potentially serious side effects of heparin therapy. The occurrence of heparin-induced osteoporosis appeared to be strictly related to the length of treatment (over 4-5 months), and the dosage (15,000 U or more daily), but the pathogenesis is poorly understood. It has been suggested that heparin could cause an increase in bone resorption by increasing the number of differentiated osteoclasts, and by enhancing the activity of individual osteoclasts. Hyperthyroidism is frequently associated with loss of trabecular and cortical bone; the enhanced bone turnover that develops in thyrotoxicosis is characterized by an increase in the number of osteoclasts and resorption sites, and an increase in the ratio of resorptive to formative bone surfaces, with the net result of bone loss. Despite these findings, the occurrence of pathological fractures in patients with hyperthyroidism is relatively low, and probably due to the fact that deficiencies in bone mass may be reversed by treatment of the thyroid disease. Most, but not all, studies on insulin-dependent diabetes mellitus (IDDM) report an association with osteopenia. In IDDM, the extent of bone loss is usually slight, which helps explain the discrepancy between the frequency of decreased bone mineral density, and the frequency of osteoporotic fractures in long-standing diabetes. Contradictory results have been obtained in non-insulin-dependent diabetes mellitus (NIDDM) patients. Increased rates of bone loss at the radius and lumbar spine were demonstrated either in patients with two-thirds gastric resection and Billroth II reconstruction, or in those with one-third resection and Billroth I anastomosis, and the metabolic bone disease following gastrectomy may consist also of osteomalacia or mixed pattern of osteoporosis-osteomalacia, with secondary hyperparathyroidism. Miscellaneous causes of secondary osteoporosis are also immobilization, pregnancy and lactation, and alcohol abuse.
3H-tetracycline as a proxy for 41Ca for measuring dietary perturbations of bone resorption
NASA Astrophysics Data System (ADS)
Weaver, Connie; Cheong, Jennifer; Jackson, George; Elmore, David; McCabe, George; Martin, Berdine
2007-06-01
Our group is interested in evaluating early effects of dietary interventions on bone loss. Postmenopausal women lose bone following reduction in estrogen which leads to increased risk of fracture. Traditional means of monitoring bone loss and effectiveness of treatments include changes in bone density, which takes 6 months to years to observe effects, and changes in biochemical markers of bone turnover, which are highly variable and lack specificity. Prelabeling bone with 41Ca and measuring urinary 41Ca excretion with accelerator mass spectrometry provides a sensitive, specific, and rapid approach to evaluating effectiveness of treatment. To better understand 41Ca technology as a tool for measuring effective treatments on reducing bone resorption, we perturbed bone resorption by manipulating dietary calcium in rats. We used 3H-tetracycline (3H-TC) as a proxy for 41Ca and found that a single dose is feasible to study bone resorption. Suppression of bone resorption, as measured by urinary 3H-TC, by dietary calcium was observed in rats stabilized after ovariectomy, but not in recently ovariectomized rats.
Broeren, Mathijs G A; Di Ceglie, Irene; Bennink, Miranda B; van Lent, Peter L E M; van den Berg, Wim B; Koenders, Marije I; Blaney Davidson, Esmeralda N; van der Kraan, Peter M; van de Loo, Fons A J
2018-01-01
Tumor necrosis factor-inducible gene 6 (TSG-6) has anti-inflammatory and chondroprotective effects in mouse models of inflammatory arthritis. Because cartilage damage and inflammation are also observed in osteoarthritis (OA), we determined the effect of viral overexpression of TSG-6 in experimental osteoarthritis. Bone marrow-derived cells were differentiated to multinucleated osteoclasts in the presence of recombinant TSG-6 or after transduction with a lentiviral TSG-6 expression vector. Multi-nucleated osteoclasts were analyzed after tartrate resistant acid phosphatase staining and resorption activity was determined on dentin slices. Collagenase-induced osteoarthritis (CIOA) was induced in C57BL/6 mice after intra-articular injection of an adenoviral TSG-6 or control luciferase expression vector. Inflammation-related protease activity was measured using bioluminescent Prosense probes. After a second adenovirus injection, cartilage damage was assessed in histological sections stained with Safranin-O. Ectopic bone formation was scored in X-ray images of the affected knees. TSG-6 did not inhibit the formation of multi-nucleated osteoclasts, but caused a significant reduction in the resorption activity on dentin slices. Adenoviral TSG-6 gene therapy in CIOA could not reduce the cartilage damage compared to the luciferase control virus and no significant difference in inflammation-related protease activity was noted between the TSG-6 and control treated group. Instead, X-ray analysis and histological analysis revealed the presence of ectopic bone formation in the TSG-6 treated group. Gene therapy based on the expression of TSG-6 could not provide cartilage protection in experimental osteoarthritis, but instead resulted in increased ectopic bone formation.
[Kidney stone formation during space flight and long-term bed rest].
Okada, Atsushi; Ichikawa, Jun; Tozawa, Keiichi
2011-10-01
Microgravity environment like space flight or a condition requiring long-term bed-rest increase bone resorption and decrease bone formation, inducing the rapid decrease of bone minerals to osteoporosis. Bone mineral loss increases urinary calcium excretion and the risk of urinary stone formation. To clarify the influence of the conditions on renal stone formation, a 90-day bed rest test was performed to analyze the mechanism of microgravity or bed rest-induced stone formation and prevention by bisphosphonate medication and bed-rest exercise. As the results, renal stone formation was observed in control and exercise groups and no stone was seen in the medication group. In the medication group, urinary calcium excretion and relative supersaturation of calcium oxalate were lower than in the control group throughout the bed-rest and recovery period. Bisphosphonate is useful for the prevention of renal stone formation during space flight and long-term bed-rest.
Incorporation of RANKL promotes osteoclast formation and osteoclast activity on β-TCP ceramics.
Choy, John; Albers, Christoph E; Siebenrock, Klaus A; Dolder, Silvia; Hofstetter, Wilhelm; Klenke, Frank M
2014-12-01
β-Tricalcium phosphate (β-TCP) ceramics are approved for the repair of osseous defects. In large defects, however, the substitution of the material by authentic bone is inadequate to provide sufficient long-term mechanical stability. We aimed to develop composites of β-TCP ceramics and receptor activator of nuclear factor κ-B ligand (RANKL) to enhance the formation of osteoclasts and promote cell mediated calcium phosphate resorption. RANKL was adsorbed superficially onto β-TCP ceramics or incorporated into a crystalline layer of calcium phosphate by the use of a co-precipitation technique. Murine osteoclast precursors were seeded onto the ceramics. After 15 days, the formation of osteoclasts was quantified cytologically and colorimetrically with tartrate-resistant acidic phosphatase (TRAP) staining and TRAP activity measurements, respectively. Additionally, the expression of transcripts encoding the osteoclast gene products cathepsin K, calcitonin receptor, and of the sodium/hydrogen exchanger NHA2 were quantified by real-time PCR. The activity of newly formed osteoclasts was evaluated by means of a calcium phosphate resorption assay. Superficially adsorbed RANKL did not induce the formation of osteoclasts on β-TCP ceramics. When co-precipitated onto β-TCP ceramics RANKL supported the formation of mature osteoclasts. The development of osteoclast lineage cells was further confirmed by the increased expression of cathepsin K, calcitonin receptor, and NHA2. Incorporated RANKL stimulated the cells to resorb crystalline calcium phosphate. Our in vitro study shows that RANKL incorporated into β-TCP ceramics induces the formation of active, resorbing osteoclasts on the material surface. Once formed, osteoclasts mediate the release of RANKL thereby perpetuating their differentiation and activation. In vivo, the stimulation of osteoclast-mediated resorption may contribute to a coordinated sequence of material resorption and bone formation. Further in vivo studies are needed to confirm the current in vitro findings. Copyright © 2014 Elsevier Inc. All rights reserved.
[Neuro-skeletal biology and its importance for clinical osteology].
Zofková, I
2012-01-01
Bone remodeling is determined by function of two basic cell forms--bone resorbing osteoclasts and bone formation activating osteoblasts. Both cells are under control of a variety of endogenic and environmental factors, which ensure balance between bone resorption and bone formation. This article reviews the neuro-hormonal factors with osteoanabolic (central isoform of serotonin, melatonin, cannabinoids, beta 1 adrenergic system, oxytocin, ACTH and TSH) or osteocatabolic effects (neuropeptide Y, neuromedin U, beta2 adrenergic system). The dual effects of the beta-adrenergic system, serotonin and leptin are also discussed. The goal of studies focused on neuro-skeletal interaction is to synthesize new molecules, which can modify osteo-anabolic or osteo-catabolic pathways.
Zhou, Yi; Guan, Xiaoxu; Liu, Tie; Wang, Xinhua; Yu, Mengfei; Yang, Guoli; Wang, Huiming
2015-02-01
Due to the reduction in bone mass and deterioration in bone microarchitecture, osteoporosis is an important risk factor for impairing implant osseointegration. Recently, low-magnitude, high-frequency (LMHF) vibration (LM: <1×g; HF: 20-90Hz) has been shown to exhibit anabolic, but anti-resorptive effects on skeletal homeostasis. Therefore, we hypothesized that LMHF loading, in terms of whole body vibration (WBV), may improve implant fixation under osteoporotic status. In the in vivo study, WBV treatment (magnitude: 0.3g, frequency: 40Hz, time: 30min/12h, 5days/week) was applied after hydroxyapatite-coated titanium implants were inserted in the bilateral tibiae of ovariectomized rats. The bone mass and the osteospecific gene expressions were measured at 12weeks post implantation. In the in vitro study, the cellular and molecular mechanisms underlying osteoblastic and osteoclastic activities were fully investigated using various experimental assays. Micro-CT examination showed that WBV could enhance osseointegration by improving microstructure parameters surrounding implants. WBV-regulated gene levels in favor of bone formation over resorption may be the reason for the favorable adaptive bone remolding on bone-implant surface. The in vitro study showed that vibration (magnitude: 0.3g, frequency: 40Hz, time: 30min/12h) up-regulated osteoblast differentiation, matrix synthesis and mineralization. However, mechanically regulated osteoclastic activity was mainly through the effect on osteoblastic cells producing osteoclastogenesis-associated key soluble factors, including RANKL and M-CSF. Osteoblasts were therefore the direct target cells during the mechanotransduction process. The ERK1/2 pathway was demonstrated to play an essential role in vibration-induced enhancement of bone formation and decreased bone resorption. Our data suggests that WBV was a helpful non-pharmacological intervention for improving osseointegration under osteoporosis. Copyright © 2014 Elsevier Inc. All rights reserved.
Kinetic examination of femoral bone modeling in broilers.
Prisby, R; Menezes, T; Campbell, J; Benson, T; Samraj, E; Pevzner, I; Wideman, R F
2014-05-01
Lameness in broilers can be associated with progressive degeneration of the femoral head leading to femoral head necrosis and osteomyelitis. Femora from clinically healthy broilers were dissected at 7 (n = 35, 2), 14 (n = 32), 21 (n = 33), 28 (n = 34), and 42 (n = 28) d of age, and were processed for bone histomorphometry to examine bone microarchitecture and bone static and dynamic properties in the secondary spongiosa (IISP) of the proximal femoral metaphysis. Body mass increased rapidly with age, whereas the bone volume to tissue volume ratio remained relatively consistent. The bone volume to tissue volume ratio values generally reflected corresponding values for both mean trabecular thickness and mean trabecular number. Bone metabolism was highest on d 7 when significant osteoblast activity was reflected by increased osteoid surface to bone surface and mineralizing surface per bone surface ratios. However, significant declines in osteoblast activity and bone formative processes occurred during the second week of development, such that newly formed but unmineralized bone tissue (osteoid) and the percentages of mineralizing surfaces both were diminished. Osteoclast activity was elevated to the extent that measurement was impossible. Intense osteoclast activity presumably reflects marked bone resorption throughout the experiment. The overall mature trabecular bone volume remained relatively low, which may arise from extensive persistence of chondrocyte columns in the metaphysis, large areas in the metaphysis composed of immature bone, destruction of bone tissue in the primary spongiosa, and potentially reduced bone blood vessel penetration that normally would be necessary for robust development. Delayed bone development in the IISP was attributable to an uncoupling of osteoblast and osteoclast activity, whereby bone resorption (osteoclast activity) outpaced bone formation (osteoblast activity). Insufficient maturation and mineralization of the IISP may contribute to subsequent pathology of the femoral head in fast-growing broilers.
Reduced energy availability: implications for bone health in physically active populations.
Papageorgiou, Maria; Dolan, Eimear; Elliott-Sale, Kirsty J; Sale, Craig
2018-04-01
The present review critically evaluates existing literature on the effects of short- and long-term low energy availability (EA) on bone metabolism and health in physically active individuals. We reviewed the literature on the short-term effects of low EA on markers of bone metabolism and the long-term effects of low EA on outcomes relating to bone health (bone mass, microarchitecture and strength, bone metabolic markers and stress fracture injury risk) in physically active individuals. Available evidence indicates that short-term low EA may increase markers of bone resorption and decrease markers of bone formation in physically active women. Bone metabolic marker responses to low EA are less well known in physically active men. Cross-sectional studies investigating the effects of long-term low EA suggest that physically active individuals who have low EA present with lower bone mass, altered bone metabolism (favouring bone resorption), reduced bone strength and increased risk for stress fracture injuries. Reduced EA has a negative influence on bone in both the short- and long-term, and every effort should be made to reduce its occurrence in physically active individuals. Future interventions are needed to explore the effects of long-term reduced EA on bone health outcomes, while short-term low EA studies are also required to give insight into the pathophysiology of bone alterations.
Wojda, Samantha J; Weyland, David R; Gray, Sarah K; McGee-Lawrence, Meghan E; Drummer, Thomas D; Donahue, Seth W
2013-08-01
Intracortical bone remodeling is persistent throughout life, leading to age related increases in osteon population density (OPD). Intracortical porosity also increases with age in many mammals including humans, contributing to bone fragility and fracture risk. Unbalanced bone resorption and formation during disuse (e.g., physical inactivity) also increases intracortical porosity. In contrast, hibernating bears are a naturally occurring model for the prevention of both age-related and disuse osteoporoses. Intracortical bone remodeling is decreased during hibernation, but resorption and formation remain balanced. Black bears spend 0.25-7 months in hibernation annually depending on climate and food availability. We found longer hibernating bears demonstrate lower OPD and higher cortical bone mineralization than bears with shorter hibernation durations, but we surprisingly found longer hibernating bears had higher intracortical porosity. However, bears from three different latitudes showed age-related decreases in intracortical porosity, indicating that regardless of hibernation duration, black bears do not show the disuse- or age-related increases in intracortical porosity which is typical of other animals. This ability to prevent increases in intracortical porosity likely contributes to their ability to maintain bone strength during prolonged periods of physical inactivity and throughout life. Improving our understanding of the unique bone metabolism in hibernating bears will potentially increase our ability to develop treatments for age- and disuse-related osteoporoses in humans. Copyright © 2013 Wiley Periodicals, Inc.
Contribution of dietary and loading changes to the effects of suspension on mouse femora
NASA Technical Reports Server (NTRS)
Simske, S. J.; Broz, J. J.; Fleet, M. L.; Schmeister, T. A.; Gayles, E. C.; Luttges, M. W.; Spooner, B. S. (Principal Investigator)
1994-01-01
The present study assessed the contributions of feeding changes and unloading to the overall measured effects of 2-wk hindlimb (Tail) suspension on the mouse femora. Feeding changes were addressed by considering the effects of matched feeding among suspended and control mice. The effects of hind limb unloading were considered by comparing suspended mice to mice equipped identically (though not suspended) and matched-fed. The feeding and unloading aspects of suspension appear to cause distinctly differing effects on the stereotypic modeling of the femora. Matched-feeding was accompanied by increased resorption surface in comparison to suspended mice, while unloading led to reduced bone formation at the mid-diaphysis of the femora. Reduced mineral content was observed in the bones of suspended mice when compared to the other mice groups, but without increased resorption surface. Thus, the unloading aspects of the antiorthostatic suspension protocol apparently causes reduced formation and mineralization in the femur.
Al-Sebaei, Maisa O; Daukss, Dana M; Belkina, Anna C; Kakar, Sanjeev; Wigner, Nathan A; Cusher, Daniel; Graves, Dana; Einhorn, Thomas; Morgan, Elise; Gerstenfeld, Louis C
2014-01-01
Previous studies showed that loss of tumor necrosis factor α (TNFα) signaling delayed fracture healing by delaying chondrocyte apoptosis and cartilage resorption. Mechanistic studies showed that TNFα induced Fas expression within chondrocytes; however, the degree to which chondrocyte apoptosis is mediated by TNFα alone or dependent on the induction of Fas is unclear. This question was addressed by assessing fracture healing in Fas-deficient B6.MRL/Faslpr/J mice. Loss of Fas delayed cartilage resorption but also lowered bone fraction in the calluses. The reduced bone fraction was related to elevated rates of coupled bone turnover in the B6.MRL/Faslpr/J calluses, as evidenced by higher osteoclast numbers and increased osteogenesis. Analysis of the apoptotic marker caspase 3 showed fewer positive chondrocytes and osteoclasts in calluses of B6.MRL/Faslpr/J mice. To determine if an active autoimmune state contributed to increased bone turnover, the levels of activated T cells and Treg cells were assessed. B6.MRL/Faslpr/J mice had elevated Treg cells in both spleens and bones of B6.MRL/Faslpr/J but decreased percentage of activated T cells in bone tissues. Fracture led to ∼30% to 60% systemic increase in Treg cells in both wild-type and B6.MRL/Faslpr/J bone tissues during the period of cartilage formation and resorption but either decreased (wild type) or left unchanged (B6.MRL/Faslpr/J) the numbers of activated T cells in bone. These results show that an active autoimmune state is inhibited during the period of cartilage resorption and suggest that iTreg cells play a functional role in this process. These data show that loss of Fas activity specifically in chondrocytes prolonged the life span of chondrocytes and that Fas synergized with TNFα signaling to mediate chondrocyte apoptosis. Conversely, loss of Fas systemically led to increased osteoclast numbers during later periods of fracture healing and increased osteogenesis. These findings suggest that retention of viable chondrocytes locally inhibits osteoclast activity or matrix proteolysis during cartilage resorption. © 2014 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research. PMID:24677136
[Osteostimulating effect of bone xenograft on bone tissue regeneration].
Balin, V N; Balin, D V; Iordanishvili, A K; Musikin, M I
2015-01-01
The aim of experimental case-control study performed in 28 dogs divided in 2 groups was to assess local tissue reactions on bone xenograft transplantation; dynamics of bone remodeling and formation at the site of bone defect wall contacting with bone xenograft; dynamics and mechanisms of xenograft remodeling. Transplantation of xenograft in conventional bone defects did not cause inflammatory of destructive reactions because of high biocompatibility of the material. At transplantation site active fibrous bone trabeculae formation filling the spaces between xenograft participles was observed. On the 90th day newly formed bone showed lammelar structure. Simultaneously from the 42d day the invasion of cell elements from recipient bed into the material was seen leading to xenograft resorption. The observed dynamics may be assessed as gradual substitution of xenograft with newly formed host bone structures.
Mechanisms Inducing Low Bone Density in Duchenne Muscular Dystrophy in Mice and Humans
Rufo, Anna; Del Fattore, Andrea; Capulli, Mattia; Carvello, Francesco; De Pasquale, Loredana; Ferrari, Serge; Pierroz, Dominique; Morandi, Lucia; De Simone, Michele; Rucci, Nadia; Bertini, Enrico; Bianchi, Maria Luisa; De Benedetti, Fabrizio; Teti, Anna
2011-01-01
Patients affected by Duchenne muscular dystrophy (DMD) and dystrophic MDX mice were investigated in this study for their bone phenotype and systemic regulators of bone turnover. Micro–computed tomographic (µCT) and histomorphometric analyses showed reduced bone mass and higher osteoclast and bone resorption parameters in MDX mice compared with wild-type mice, whereas osteoblast parameters and mineral apposition rate were lower. In a panel of circulating pro-osteoclastogenic cytokines evaluated in the MDX sera, interleukin 6 (IL-6) was increased compared with wild-type mice. Likewise, DMD patients showed low bone mineral density (BMD) Z-scores and high bone-resorption marker and serum IL-6. Human primary osteoblasts from healthy donors incubated with 10% sera from DMD patients showed decreased nodule mineralization. Many osteogenic genes were downregulated in these cultures, including osterix and osteocalcin, by a mechanism blunted by an IL-6-neutralizing antibody. In contrast, the mRNAs of osteoclastogenic cytokines IL6, IL11, inhibin-βA, and TGFβ2 were increased, although only IL-6 was found to be high in the circulation. Consistently, enhancement of osteoclastogenesis was noted in cultures of circulating mononuclear precursors from DMD patients or from healthy donors cultured in the presence of DMD sera or IL-6. Circulating IL-6 also played a dominant role in osteoclast formation because ex vivo wild-type calvarial bones cultured with 10% sera of MDX mice showed increase osteoclast and bone-resorption parameters that were dampen by treatment with an IL-6 antibody. These results point to IL-6 as an important mediator of bone loss in DMD and suggest that targeted anti-IL-6 therapy may have a positive impact on the bone phenotype in these patients. © 2011 American Society for Bone and Mineral Research PMID:21509823
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shagina, N. B.; Tolstykh, E. I.; Degteva, M. O.
2012-06-01
The rate of cortical bone resorption was assessed from long-term in vivo measurements of 90Sr content in the skeleton for men aged 50-80 years and for women 0-30 years after menopause. Measurements of 90Sr were conducted with a whole body counter for residents of the Techa Riverside communities (Southern Urals, Russia), who ingested large amounts of 90Sr as a result of releases of liquid radioactive wastes into the river from the Mayak plutonium facility in early 1950s. The results of this study showed an increase in the rate of cortical bone resorption in both men and women, as based onmore » the use of accidentally ingested 90Sr as a tracer for bone metabolism. In men there was a continuous gradual increase in the rate of cortical bone resorption after 55 years from 2.8 to 4.5%/year by the age of 75 years. In women, there was a doubled increase in the rate of cortical bone resorption after menopause of up to 6%/year; then the rate remained unchanged for 10-12 years with a subsequent gradual decline down to 5-5.5%/year. Comparison of the rate of cortical bone resorption in men and women older than 55 years showed that women expressed significantly higher levels of cortical bone resorption.« less
Yoneda, Toshiki; Tomofuji, Takaaki; Kunitomo, Muneyoshi; Ekuni, Daisuke; Irie, Koichiro; Azuma, Tetsuji; Machida, Tatsuya; Miyai, Hisataka; Fujimori, Kouhei; Morita, Manabu
2017-01-01
Obesity induces gingival oxidative stress, which is involved in the progression of alveolar bone resorption. The antioxidant effect of hydrogen-rich water may attenuate gingival oxidative stress and prevent alveolar bone resorption in cases of obesity. We examined whether hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption in obese rats fed a high-fat diet. Male Fischer 344 rats (n = 18) were divided into three groups of six rats each: a control group (fed a regular diet and drinking distilled water) and two experimental groups (fed a high-fat diet and drinking distilled water or hydrogen-rich water). The level of 8-hydroxydeoxyguanosine was determined to evaluate oxidative stress. The bone mineral density of the alveolar bone was analyzed by micro-computerized tomography. Obese rats, induced by a high-fat diet, showed a higher gingival level of 8-hydroxydeoxyguanosine and a lower level of alveolar bone density compared to the control group. Drinking hydrogen-rich water suppressed body weight gain, lowered gingival level of 8-hydroxydeoxyguanosine, and reduced alveolar bone resorption in rats on a high-fat diet. The results indicate that hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption by limiting obesity. PMID:28098768
Yoneda, Toshiki; Tomofuji, Takaaki; Kunitomo, Muneyoshi; Ekuni, Daisuke; Irie, Koichiro; Azuma, Tetsuji; Machida, Tatsuya; Miyai, Hisataka; Fujimori, Kouhei; Morita, Manabu
2017-01-13
Obesity induces gingival oxidative stress, which is involved in the progression of alveolar bone resorption. The antioxidant effect of hydrogen-rich water may attenuate gingival oxidative stress and prevent alveolar bone resorption in cases of obesity. We examined whether hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption in obese rats fed a high-fat diet. Male Fischer 344 rats ( n = 18) were divided into three groups of six rats each: a control group (fed a regular diet and drinking distilled water) and two experimental groups (fed a high-fat diet and drinking distilled water or hydrogen-rich water). The level of 8-hydroxydeoxyguanosine was determined to evaluate oxidative stress. The bone mineral density of the alveolar bone was analyzed by micro-computerized tomography. Obese rats, induced by a high-fat diet, showed a higher gingival level of 8-hydroxydeoxyguanosine and a lower level of alveolar bone density compared to the control group. Drinking hydrogen-rich water suppressed body weight gain, lowered gingival level of 8-hydroxydeoxyguanosine, and reduced alveolar bone resorption in rats on a high-fat diet. The results indicate that hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption by limiting obesity.
Trisi, Paolo; Berardini, Marco; Falco, Antonello; Podaliri Vulpiani, Michele; Perfetti, Giorgio
2014-06-01
To measure in vivo impact of dense bone overheating on implant osseointegration and peri-implant bone resorption comparing different bur irrigation methods vs. no irrigation. Twenty TI-bone implants were inserted in the inferior edge of mandibles of sheep. Different cooling procedures were used in each group: no irrigation (group A), only internal bur irrigation (group B), both internal and external irrigation (group C), and external irrigation (group D). The histomorphometric parameters calculated for each implant were as follows: %cortical bone-implant contact (%CBIC) and %cortical bone volume (%CBV). Friedman's test was applied to test the statistical differences. In group A, we found a huge resorption of cortical bone with %CBIC and %CBV values extremely low. Groups B and C showed mean %CBIC and %BV values higher than other groups The mean %CBV value was significantly different when comparing group B and group C vs. group A (P < 0.05). Significant differences in %CBIC were found also between group C and group A (P < 0.05). Thermal injury, due to insufficient irrigation, of hard bone caused massive resorption of the cortical bone and implant failure. Drilling procedures on hard bone need an adequate cooling supply because the bone matrix overheating may induce complete resorption of dense bone around implants. Internal-external irrigation and only internal irrigation showed to be more efficient than other types of cooling methods in preventing bone resorption around implants. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
Spector, Tim D; Calomme, Mario R; Anderson, Simon H; Clement, Gail; Bevan, Liisa; Demeester, Nathalie; Swaminathan, Rami; Jugdaohsingh, Ravin; Berghe, Dirk A Vanden; Powell, Jonathan J
2008-01-01
Background Mounting evidence supports a physiological role for silicon (Si) as orthosilicic acid (OSA, Si(OH)4) in bone formation. The effect of oral choline-stabilized orthosilicic acid (ch-OSA) on markers of bone turnover and bone mineral density (BMD) was investigated in a double-blind placebo-controlled trial. Methods Over 12-months, 136 women out of 184 randomized (T-score spine < -1.5) completed the study and received, daily, 1000 mg Ca and 20 μg cholecalciferol (Vit D3) and three different ch-OSA doses (3, 6 and 12 mg Si) or placebo. Bone formation markers in serum and urinary resorption markers were measured at baseline, and after 6 and 12 months. Femoral and lumbar BMD were measured at baseline and after 12 months by DEXA. Results Overall, there was a trend for ch-OSA to confer some additional benefit to Ca and Vit D3 treatment, especially for markers of bone formation, but only the marker for type I collagen formation (PINP) was significant at 12 months for the 6 and 12 mg Si dose (vs. placebo) without a clear dose response effect. A trend for a dose-corresponding increase was observed in the bone resorption marker, collagen type I C-terminal telopeptide (CTX-I). Lumbar spine BMD did not change significantly. Post-hoc subgroup analysis (baseline T-score femur < -1) however was significant for the 6 mg dose at the femoral neck (T-test). There were no ch-OSA related adverse events observed and biochemical safety parameters remained within the normal range. Conclusion Combined therapy of ch-OSA and Ca/Vit D3 had a potential beneficial effect on bone collagen compared to Ca/Vit D3 alone which suggests that this treatment is of potential use in osteoporosis. NTR 1029 PMID:18547426
NASA Astrophysics Data System (ADS)
Zhang, Min; Katsumata, Akitoshi; Muramatsu, Chisako; Hara, Takeshi; Suzuki, Hiroki; Fujita, Hiroshi
2014-03-01
Periodontal disease is a kind of typical dental diseases, which affects many adults. The presence of alveolar bone resorption, which can be observed from dental panoramic radiographs, is one of the most important signs of the progression of periodontal disease. Automatically evaluating alveolar-bone resorption is of important clinic meaning in dental radiology. The purpose of this study was to propose a novel system for automated alveolar-bone-resorption evaluation from digital dental panoramic radiographs for the first time. The proposed system enables visualization and quantitative evaluation of alveolar bone resorption degree surrounding the teeth. It has the following procedures: (1) pre-processing for a test image; (2) detection of tooth root apices with Gabor filter and curve fitting for the root apex line; (3) detection of features related with alveolar bone by using image phase congruency map and template matching and curving fitting for the alveolar line; (4) detection of occlusion line with selected Gabor filter; (5) finally, evaluation of the quantitative alveolar-bone-resorption degree in the area surrounding teeth by simply computing the average ratio of the height of the alveolar bone and the height of the teeth. The proposed scheme was applied to 30 patient cases of digital panoramic radiographs, with alveolar bone resorption of different stages. Our initial trial on these test cases indicates that the quantitative evaluation results are correlated with the alveolar-boneresorption degree, although the performance still needs further improvement. Therefore it has potential clinical practicability.
Siebelt, M; Waarsing, J H; Groen, H C; Müller, C; Koelewijn, S J; de Blois, E; Verhaar, J A N; de Jong, M; Weinans, H
2014-09-01
Osteoarthritis (OA) is a non-rheumatoid joint disease characterized by progressive degeneration of extra-cellular cartilage matrix (ECM), enhanced subchondral bone remodeling, osteophyte formation and synovial thickening. Alendronate (ALN) is a potent inhibitor of osteoclastic bone resorption and results in reduced bone remodeling. This study investigated the effects of pre-emptive use of ALN on OA related osteoclastic subchondral bone resorption in an in vivo rat model for severe OA. Using multi-modality imaging we measured effects of ALN treatment within cartilage and synovium. Severe osteoarthritis was induced in left rat knees using papain injections in combination with a moderate running protocol. Twenty rats were treated with subcutaneous ALN injections and compared to twenty untreated controls. Animals were longitudinally monitored for 12weeks with in vivo μCT to measure subchondral bone changes and SPECT/CT to determine synovial macrophage activation using a folate-based radiotracer. Articular cartilage was analyzed at 6 and 12weeks with ex vivo contrast enhanced μCT and histology to measure sulfated-glycosaminoglycan (sGAG) content and cartilage thickness. ALN treatment successfully inhibited subchondral bone remodeling. As a result we found less subchondral plate porosity and reduced osteophytosis. ALN treatment did not reduce subchondral sclerosis. However, after the OA induction phase, ALN treatment protected cartilage ECM from degradation and reduced synovial macrophage activation. Surprisingly, ALN treatment also improved sGAG content of tibia cartilage in healthy joints. Our data was consistent with the hypothesis that osteoclastic bone resorption might play an important role in OA and may be a driving force for progression of the disease. However, our study suggest that this effect might not solely be effects on osteoclastic activity, since ALN treatment also influenced macrophage functioning. Additionally, ALN treatment and physical activity exercised a positive effect in healthy control joints, which increased cartilage sGAG content. More research on this topic might lead to novel insights as to improve cartilage quality. Copyright © 2014 Elsevier Inc. All rights reserved.
Skeletal response to short-term weightlessness
NASA Technical Reports Server (NTRS)
Wronski, T. J.; Morey-Holton, E. R.
1986-01-01
Male Sprague Dawley rats were placed in orbit for 7 days aboard the space shuttle. Bone histomorphometry was performed in the long bones and lumbar vertebrae of flight rats and compared to data derived from ground based control rats. Trabecular bone mass was not altered during the first week of weightlessness. Strong trends were observed in flight rats for decreased periosteal bone formation in the tibial diaphysis, reduced osteoblast size in the proximal tibia, and decreased osteoblast surface and number in the lumbar vertebra. Histologic indices of bone resorption was relatively normal in flight rats. The results indicate that 7 day of weightlessness are not of sufficient duration to induce histologicaly detectable loss of trabecular bone in rats. However, cortical and trabecular bone formation appear to be diminished during the first week of space flight.
Yovich, S; Seydel, U; Papadimitriou, J M; Nicholson, G C; Wood, D J; Zheng, M H
1998-04-01
Osteoclasts resorb bone by a complex dynamic process that initially involves attachment, polarization and enzyme secretion, followed by their detachment and migration to new sites. In this study, we postulated that mineralized and osteoid bone matrix signal osteoclasts differently, resulting in the resorption of mineralized bone matrix only. We, therefore, compared the cytoplasmic distribution of cytoskeletal proteins F-actin and vinculin using confocal laser-scanning microscopy in osteoclasts cultured on mineralized and demineralized bone slices and correlated the observations with their functional activity. Our results have demonstrated significant differences in F-actin and vinculin staining patterns between osteoclasts cultured on mineralized bone matrix and those on demineralized bone matrix. In addition, the structural variations were accompanied by significant differences in bone resorbing activity between osteoclasts grown on mineralized bone matrix and those on demineralized bone matrix after 24 h of culture --resorption only occurring in mineralized bone but not in demineralized bone. These results indicated that failure of osteoid bone resorption is caused by perturbation of osteoclast polarization.
Aoki, Motokuni; Kawahata, Hirohisa; Sotobayashi, Daisuke; Yu, Hisahiro; Moriguchi, Atsushi; Nakagami, Hironori; Ogihara, Toshio; Morishita, Ryuichi
2015-08-01
Although recent studies suggest that several antihypertensive drugs could reduce the risk of bone fracture, it is still unclear how these drugs act on bone remodeling, especially in elderly women with severe osteoporosis with disuse syndrome. In the present study, we investigated the effects of a calcium channel blocker (CCB) and an angiotensin II receptor blocker (ARB) on bone metabolism in elderly bedridden women with hypertension and disuse syndrome. Elderly bedridden women (aged >75 years) receiving antihypertensive therapy treated with CCB were recruited in the present study. The participants were divided into two groups--CCB group and ARB group--and followed up to 12 months. Markers of bone resorption were markedly increased, suggesting accelerated bone resorption in the participants of the present study. In the follow-up period, the patients treated with a CCB showed a significant decrease in bone mineral density in a time-dependent manner, accompanied by a significant increase in bone resorption markers, whereas treatment with olmesartan inhibited bone loss, associated with attenuation of increased bone resorption markers. Bone mineral density of femoral neck in the CCB group was significantly lower than that in the ARB group at 6 months. The present study showed inhibitory effects of an ARB on bone resorption in hypertensive patients with accelerated bone resorption, such as elderly bedridden women, and indicated an important role of the renin-angiotensin system in bone metabolism. In elderly hypertensive patients, ARB might be expected to have additional beneficial potential to maintain bone health in bedridden patients. © 2014 Japan Geriatrics Society.
Severe hypocalcemia following bisphosphonate treatment in a patient with Paget's disease of bone.
Whitson, Heather E; Lobaugh, Bruce; Lyles, Kenneth W
2006-10-01
Bisphosphonate therapy is a common and effective treatment for Paget's disease of bone, osteoporosis, hypercalcemia of malignancy and cancer metastatic to bone. Clinically significant hypocalcemia has not been reported in patients with Paget's disease of bone and normal parathyroid function treated with an aminobisphosphonate. We treated a 52-year-old woman with polyostotic Paget's disease of bone (serum alkaline phosphatase level-1971 IU/L [normal 31-110 IU/L]), who had not previously received bisphosphonates, with daily oral 30 mg risedronate, oral 1000 mg elemental calcium and oral 400 IU cholecalciferol. After 10 days of treatment, she developed severe hypocalcemia (5.4 mg/dL [normal 8.7-10.2 mg/dL]), requiring hospitalization and support with 5 days of intravenous calcium gluconate. On the day risedronate treatment began, her PTH was low normal at 14 pg/mL (normal 12-72 pg/mL), consistent with a relatively suppressed PTH axis due to high bone turnover. Her vitamin D level was within normal limits (serum 25(OH)D 19 ng/mL [normal 8-38 ng/mL]), although possibly not optimally repleted. We hypothesize that this case represents an example of hungry bone syndrome in a patient with extensive Paget's disease of bone who received risedronate, causing acute suppression of bone resorption while elevated bone formation rates continued. In the year following her recovery, the patient was successfully treated with slowly titrated anti-resorptive therapy (subcutaneous calcitonin followed by titrated doses of risedronate), and is now clinically well. Physicians should be aware of the potential for hypocalcemia when patients with polyostotic Paget's disease and markedly elevated indicators of bone remodeling are initiated on powerful anti-resorptive therapy.
Reduced proliferation and osteocalcin expression in osteoblasts of male idiopathic osteoporosis.
Ruiz-Gaspà, Sílvia; Blanch-Rubió, Josep; Ciria-Recasens, Manuel; Monfort, Jordi; Tío, Laura; Garcia-Giralt, Natàlia; Nogués, Xavier; Monllau, Joan C; Carbonell-Abelló, Jordi; Pérez-Edo, Lluis
2010-03-01
Osteoporosis is characterized by low bone mineral density (BMD), resulting in increasing susceptibility to bone fractures. In men, it has been related to some diseases and toxic habits, but in some instances the cause of the primary--or idiopathic--osteoporosis is not apparent. In a previous study, our group compared histomorphometric measurements in cortical and cancellous bones from male idiopathic osteoporosis (MIO) patients to those of control subjects and found reduced bone formation without major differences in bone resorption. To confirm these results, this study analyzed the etiology of this pathology, examining the osteoblast behavior in vitro. We compared two parameters of osteoblast activity in MIO patients and controls: osteoblastic proliferation and gene expression of COL1A1 and osteocalcin, in basal conditions and with vitamin D(3) added. All these experiments were performed from a first-passage osteoblastic culture, obtained from osteoblasts that had migrated from the transiliac explants to the plate. The results suggested that the MIO osteoblast has a slower proliferation rate and decreased expression of genes related to matrix formation, probably due to a lesser or slower response to some stimulus. We concluded that, contrary to female osteoporosis, in which loss of BMD is predominantly due to increased resorption, low BMD in MIO seems to be due to an osteoblastic defect.
NASA Technical Reports Server (NTRS)
Jee, Webster S. S.; Li, Xiao Jian; Schaffler, Mitchell B.
1991-01-01
The experimental increase in mechanical usage or overloading of the left hindlimb was produced by immobilization of the contralateral hindlimb. The right hindlimb was placed in a flexed position against the body and was immobilized using an elastic bandage. Some control animals were sacrificed initially at time zero and increased mechanical usage and age-matched control animals were sacrificed after 2, 10, 18, and 26 weeks of treatment. All animals received double bone fluorochrome labeling prior to sacrifice. Cortical bone histomorphometry and cross-sectional moments of inertia were determined. Marrow cavity enlargement and total cross-sectional area expansion represented the age-related cortical bone changes. Increased mechanical usage enhanced periosteal bone modeling in the formation mode and dampened endocortical bone remodeling and bone modeling in the resorption mode (resorption drift) to create a slight positive bone balance. These observations are in general agreement with Frost's postulate for mechanical effects on bone modeling and remodeling. The maximum moment of inertia did not change significantly in either control or overloaded tibial shafts. The minimum and polar moment of inertias in overloaded bones increases over those of controls at 18 and 26 weeks of the experiment.
NASA Technical Reports Server (NTRS)
Jee, Webster S. S.; Li, Xiao Jian; Schaffler, Mitchell B.
1991-01-01
The experimental increase in mechanical usage or overloading of the left hindlimb was produced by immobilization of the contralateral hindlimb. The right hindlimb was placed in a flexed position against the body and was immobilized using an elastic bandage. Some control animals were sacrificed initially at time zero and increased mechanical usage and age-matched control animals were sacrificed after 2, 10, 18, and 26 weeks of treatment. All animals received double bone fluorochrome labeling prior to sacrifice. Cortical bone histomorphometry and cross-sectional moments of inertia were determined. Marrow cavity enlargement and total cross-sectional area expansion represented the age-related cortical bone changes. Increased mechanical usage enhanced periosteal bone modeling in the formation mode and dampened endocortical bone remodeling and bone modeling in the resorption mode (resorption drift) to create a slight positive bone balance. These observations are in general agreement with Frost's postulate for mechanical effects on bone modeling and remodeling. The maximum moment of inertia did not change significantly in either control or overloaded tibial shafts. The minimum and polar moment of inertias in overloaded bones increases over those of controls at 18 and 26 weeks of the experiment.
Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases.
Ke, Hua Zhu; Richards, William G; Li, Xiaodong; Ominsky, Michael S
2012-10-01
The processes of bone growth, modeling, and remodeling determine the structure, mass, and biomechanical properties of the skeleton. Dysregulated bone resorption or bone formation may lead to metabolic bone diseases. The Wnt pathway plays an important role in bone formation and regeneration, and expression of two Wnt pathway inhibitors, sclerostin and Dickkopf-1 (DKK1), appears to be associated with changes in bone mass. Inactivation of sclerostin leads to substantially increased bone mass in humans and in genetically manipulated animals. Studies in various animal models of bone disease have shown that inhibition of sclerostin using a monoclonal antibody (Scl-Ab) increases bone formation, density, and strength. Additional studies show that Scl-Ab improves bone healing in models of bone repair. Inhibition of DKK1 by monoclonal antibody (DKK1-Ab) stimulates bone formation in younger animals and to a lesser extent in adult animals and enhances fracture healing. Thus, sclerostin and DKK1 are emerging as the leading new targets for anabolic therapies to treat bone diseases such as osteoporosis and for bone repair. Clinical trials are ongoing to evaluate the effects of Scl-Ab and DKK1-Ab in humans for the treatment of bone loss and for bone repair.
The impact of microgravity on bone metabolism in vitro and in vivo.
Loomer, P M
2001-01-01
Exposure to microgravity has been associated with several physiological changes in astronauts and cosmonauts, including an osteoporosis-like loss of bone mass. In-flight measures used to counteract this, including intensive daily exercise regimens, have been only partially successful in reducing the bone loss and in the process have consumed valuable work time. If this bone loss is to be minimized or, preferably, prevented, more effective treatment strategies are required. This, however, requires a greater understanding of the mechanisms through which bone metabolism is affected by microgravity. Various research strategies have been used to examine this problem, including in vitro studies using bone cells and in vivo studies on humans and rats. These have been conducted both in flight and on the ground, by strategies that produce weightlessness to mimic the effects of microgravity. Overall, the majority of the studies have found that marked decreases in gravitation loading result in the loss of bone mass. The processes of bone formation and bone resorption become uncoupled, with an initial transitory increase in resorption accompanied by a prolonged decrease in formation. Loss of bone mass is not uniform throughout the skeleton, but varies at different sites depending on the type of bone and on the mechanical load received. It appears that the skeletal response is a physiologic adaptation to the space environment which, after long space flights or repeated shorter ones, could eventually lead to significant reductions in the ability of the skeletal tissues to withstand the forces of gravity and increased susceptibility to fracture.
2011-01-01
Introduction Glucosamine is an amino-monosaccharide and precursor of glycosaminoglycans, major components of joint cartilage. Glucosamine has been clinically introduced for the treatment of osteoarthritis but the data about its protective role in disease are insufficient. The goal of this study was to investigate the effect of long term administration of glucosamine on bone resorption and remodeling. Methods The effect of glucosamine on bone resorption and remodeling was studied in a model of collagenase-induced osteoarthritis (CIOA). The levels of macrophage-inflammatory protein (MIP)-1α, protein regulated upon activation, normal T-cell expressed, and secreted (RANTES), soluble receptor activator of nuclear factor kappa-B ligand (RANKL), tumor necrosis factor (TNF)-α, and interleukin (IL)-6, 4 and 10 in synovial fluid were measured by enzyme-linked immunosorbent assay (ELISA). Cell populations in synovial extracts and the expression of RANKL, of receptors for TNF-α (TNF-αR) and interferon γ (IFN-γR) on clusters of differentiation (CD) three positive T cells were analyzed by flow cytometry. Transforming growth factor (TGF)-β3, bone morphogenetic protein (BMP)-2, phosphorylated protein mothers against decapentaplegic homolog 2 (pSMAD-2), RANKL and Dickkopf-1 protein (DKK-1) positive staining in CIOA joints were determined by immunohistochemistry. Results The administration of glucosamine hydrochloride in CIOA mice inhibited loss of glycosaminoglycans (GAGs) and proteoglycans (PGs) in cartilage, bone erosion and osteophyte formation. It decreased the levels of soluble RANKL and IL-6 and induced IL-10 increase in the CIOA joint fluids. Glucosamine limited the number of CD11b positive Ly6G neutrophils and RANKL positive CD3 T cells in the joint extracts. It suppressed bone resorption via down-regulation of RANKL expression and affected bone remodeling in CIOA by decreasing BMP-2, TGF-β3 and pSMAD-2 expression and up-regulating DKK-1 joint levels. Conclusions Our data suggest that glucosamine hydrochloride inhibits bone resorption through down-regulation of RANKL expression in the joints, via reduction of the number of RANKL positive CD3 T cells and the level of sRANKL in the joints extracts. These effects of glucosamine appear to be critical for the progression of CIOA and result in limited bone remodeling of the joints. PMID:21410959
CD147 promotes the formation of functional osteoclasts through NFATc1 signalling.
Nishioku, Tsuyoshi; Terasawa, Mariko; Baba, Misaki; Yamauchi, Atsushi; Kataoka, Yasufumi
2016-04-29
CD147, a membrane glycoprotein of the immunoglobulin superfamily, is highly upregulated during dynamic cellular events including tissue remodelling. Elevated CD147 expression is present in the joint of rheumatoid arthritis patients. However, the role of CD147 in bone destruction remains unclear. To determine whether CD147 is involved in osteoclastogenesis, we studied its expression in mouse osteoclasts and its role in osteoclast differentiation and function. CD147 expression was markedly upregulated during osteoclast differentiation. To investigate the role of CD147 in receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and bone resorption activity, osteoclast precursor cells were transfected with CD147 siRNA. Decreased CD147 expression inhibited osteoclast formation and bone resorption, inhibited RANKL-induced nuclear translocation of the nuclear factor of activated T cells (NFAT) c1 and decreased the expression of the d2 isoform of vacuolar ATPase Vo domain and cathepsin K. Therefore, CD147 plays a critical role in the differentiation and function of osteoclasts by upregulating NFATc1 through the autoamplification of its expression in osteoclastogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Smith, Scott M.; Zwart, S. R.; Heer, M. A.; Lee, S. M. C.; Macias, B. R.; Schneider, S. M.; Trappe, S. M.; Hargens, A. R.
2006-01-01
Exercise can attenuate bone loss associated with disuse during bed rest (BR), an analog of space flight. Previous studies have examined the efficacy of aerobic or resistive exercise countermeasures, but not in combination. We sought to determine the effect of a combined resistive and aerobic exercise regimen on bone metabolism during BR. After a 20-d ambulatory adaptation to confinement and diet, 16 women participated in a 60-d head-down-tilt BR. Control subjects (CN, n=8) performed no countermeasures. Exercise subjects, (EX, n=8) participated in exercise alternating daily between supine treadmill exercise within lower body negative pressure and resistive fly-wheel exercise (6-d wk(sup -1)). In the last week of BR, bone resorption was greater (p less than 79 plus or minus 44%, mean plus or minus SD) and EX groups (64 50%). N-telopeptide also increased (CN: 51 plus or minus 34%; EX: 43 plus or minus 56%). However, bone-specific alkaline phosphatase, a bone formation marker, tended to be higher in EX (26 plus or minus 18%) than in CN (8 plus or minus 33%) groups. The combination of resistive and aerobic exercise does not prevent bone resorption, but may promote formation, potentially mitigating the net bone loss associated with simulated microgravity. This study was supported by CNES, CSA, ESA, NASA, and NASA grant NNJ04HF71G to ARH. MEDES (French Institute for Space Medicine and Physiology) organized the study.
Alm, Jessica J; Frantzén, Janek P A; Moritz, Niko; Lankinen, Petteri; Tukiainen, Mikko; Kellomäki, Minna; Aro, Hannu T
2010-05-01
The purpose of this study was to perform an intra-animal comparison of biodegradable woven fabrics made of bioactive glass (BG) fibers and poly(L-lactide-co-glycolide) 80/20 copolymer (PLGA(80)) fibers or PLGA(80) fibers alone, in surgical stabilization of bone graft. The BG fibers (BG 1-98) were aimed to enhance bone growth at site of bone grafting, whereas the PLGA component was intended to provide structural strength and flexibility to the fabric. Bone formation was analyzed qualitatively by histology and quantitatively by peripheral quantitative computed tomography (pQCT) at 12 weeks. The surgical handling properties of the control PLGA(80) fabric were more favorable. Both fabrics were integrated with the cortical bone surfaces, but BG fibers showed almost complete resorption. There were no signs of adverse local tissue reactions. As a proof of material integration and induced new bone formation, there was a significant increase in bone volume of the operated femurs compared with the contralateral intact bone (25% with BG/PLGA(80) fabric, p < 0.001 and 28% with the control PLGA(80) fabric, p = 0.006). This study failed to demonstrate the previously seen positive effect of BG 1-98 on osteogenesis, probably due to the changed resorption properties of BG in the form of fibers. Therefore, the feasibility and safety of BG as fibers needs to be reevaluated before use in clinical applications. (c) 2010 Wiley Periodicals, Inc.
Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation.
Glass, Donald A; Bialek, Peter; Ahn, Jong Deok; Starbuck, Michael; Patel, Millan S; Clevers, Hans; Taketo, Mark M; Long, Fanxin; McMahon, Andrew P; Lang, Richard A; Karsenty, Gerard
2005-05-01
Inactivation of beta-catenin in mesenchymal progenitors prevents osteoblast differentiation; inactivation of Lrp5, a gene encoding a likely Wnt coreceptor, results in low bone mass (osteopenia) by decreasing bone formation. These observations indicate that Wnt signaling controls osteoblast differentiation and suggest that it may regulate bone formation in differentiated osteoblasts. Here, we study later events and find that stabilization of beta-catenin in differentiated osteoblasts results in high bone mass, while its deletion from differentiated osteoblasts leads to osteopenia. Surprisingly, histological analysis showed that these mutations primarily affect bone resorption rather than bone formation. Cellular and molecular studies showed that beta-catenin together with TCF proteins regulates osteoblast expression of Osteoprotegerin, a major inhibitor of osteoclast differentiation. These findings demonstrate that beta-catenin, and presumably Wnt signaling, promote the ability of differentiated osteoblasts to inhibit osteoclast differentiation; thus, they broaden our knowledge of the functions Wnt proteins have at various stages of skeletogenesis.
Yamaguchi, Masayoshi; Weitzmann, M Neale
2011-01-01
Several bone protective factors are reported to exhibit stimulatory activities on bone formation coupled with inhibitory effects on bone resorption; one such factor is vitamin K2. Vitamin K species [K1 (phylloquinone) and K2 (menaquinone)] have long been associated with bone protective activities and are receiving intense interest as nutritional supplements for the prevention or amelioration of bone disease in humans. However, the mechanisms of vitamin K action on the skeleton are poorly defined. Activation of the nuclear factor κB (NF-κB) signal transduction pathway is essential for osteoclast formation and resorption. By contrast, NF-κB signaling potently antagonizes osteoblast differentiation and function, prompting us to speculate that NF-κB antagonists may represent a novel class of dual anti-catabolic and pro-anabolic agents. We now show that vitamin K2 action on osteoblast and osteoclast formation and activity is accomplished by down-regulating basal and cytokine-induced NF-κB activation, by increasing IκB mRNA, in a γ-carboxylation-independent manner. Furthermore, vitamin K2 prevented repression by tumor necrosis factor α (TNFα) of SMAD signaling induced by either transforming growth factor ß (TGFß) or bone morphogenetic protein-2 (BMP-2). Vitamin K2 further antagonized receptor activator of NF-κB (RANK) ligand (RANKL)-induced NF-κB activation in osteoclast precursors. Our data provide a novel mechanism to explain the dual pro-anabolic and anti-catabolic activities of vitamin K2, and may further support the concept that pharmacological modulation of NF-κB signal transduction may constitute an effective mechanism for ameliorating pathological bone loss and for promoting bone health.
Lymphatic Endothelial Cells Produce M-CSF, Causing Massive Bone Loss in Mice.
Wang, Wensheng; Wang, Hua; Zhou, Xichao; Li, Xing; Sun, Wen; Dellinger, Michael; Boyce, Brendan F; Xing, Lianping
2017-05-01
Gorham-Stout disease (GSD) is a rare bone disorder characterized by aggressive osteolysis associated with lymphatic vessel invasion within bone marrow cavities. The etiology of GSD is not known, and there is no effective therapy or animal model for the disease. Here, we investigated if lymphatic endothelial cells (LECs) affect osteoclasts (OCs) to cause a GSD osteolytic phenotype in mice. We examined the effect of a mouse LEC line on osteoclastogenesis in co-cultures. LECs significantly increased receptor activator of NF-κB ligand (RANKL)-mediated OC formation and bone resorption. LECs expressed high levels of macrophage colony-stimulating factor (M-CSF), but not RANKL, interleukin-6 (IL-6), and tumor necrosis factor (TNF). LEC-mediated OC formation and bone resorption were blocked by an M-CSF neutralizing antibody or Ki20227, an inhibitor of the M-CSF receptor, c-Fms. We injected LECs into the tibias of wild-type (WT) mice and observed massive osteolysis on X-ray and micro-CT scans. Histology showed that LEC-injected tibias had significant trabecular and cortical bone loss and increased OC numbers. M-CSF protein levels were significantly higher in serum and bone marrow plasma of mice given intra-tibial LEC injections. Immunofluorescence staining showed extensive replacement of bone and marrow by podoplanin+ LECs. Treatment of LEC-injected mice with Ki20227 significantly decreased tibial bone destruction. In addition, lymphatic vessels in a GSD bone sample were stained positively for M-CSF. Thus, LECs cause bone destruction in vivo in mice by secreting M-CSF, which promotes OC formation and activation. Blocking M-CSF signaling may represent a new therapeutic approach for treatment of patients with GSD. Furthermore, tibial injection of LECs is a useful mouse model to study GSD. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.
Aging and bone loss: new insights for the clinician
Demontiero, Oddom; Vidal, Christopher
2012-01-01
It is well known that the underlying mechanisms of osteoporosis in older adults are different than those associated with estrogen deprivation. Age-related bone loss involves a gradual and progressive decline, which is also seen in men. Markedly increased bone resorption leads to the initial fall in bone mineral density. With increasing age, there is also a significant reduction in bone formation. This is mostly due to a shift from osteoblastogenesis to predominant adipogenesis in the bone marrow, which also has a lipotoxic effect that affects matrix formation and mineralization. We review new evidence on the pathophysiology of age-related bone loss with emphasis upon the mechanism of action of current osteoporosis treatments. New potential treatments are also considered, including therapeutic approaches to osteoporosis in the elderly that focus on the pathophysiology and potential reversal of adipogenic shift in bone. PMID:22870496
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodges, Y.; Maser, M.R.; Britton, M.C.
1986-03-01
RAST, maintained in organ culture, releases two distinct types of bone resorptive factors and one co-resorptive factor. The first is prostaglandin E/sub 2/ (PGE/sub 2/), while the second is a protein with properties of IL-1. The co-resorptive factor collagenase, cannot induce bone resorption by itself, but augments the bone resorptive activity initiated by either PGE/sub 2/ or the IL-l-like factor. Bone resorptive activity was assessed by measuring the release of /sup 45/Ca from prelabelled rat fetal bones. We investigated the effects of five non-steroidal anti-inflammatory drugs (NSAIDs) and two disease-modifying anti-rheumatic drugs (DMARDs), (I) and (II), on bone degradation mediatedmore » by the IL-l-like factor. None of the NSAIDs tested inhibited bone degradation at 5 x 10/sup -5/ M. On the other hand, both (I) and (II) inhibited bone degradation 60 to 100% at 1 x 10/sup -6/ M and 8 x 10/sup -6/ M respectively. They can inhibit the action of IL-l-like factor on bone at therapeutically attainable concentrations. Additionally, both (I) and (II) block the release of collagenase from the organ culture of RAST with IC/sub 50/s of 5 x 10/sup -6/ M. This unique ability to inhibit collagenase release may contribute to their effectiveness is preventing bone loss in this test model.« less
Effect of supplementary zinc on orthodontic tooth movement in a rat model
Sadegh, Ahmad Akhoundi Mohammad; Rezvaneh, Ghazanfari; Shahroo, Etemad-Moghadam; Mojgan, Alaeddini; Azam, Khorshidian; Shahram, Rabbani; Reza, Shamshiri Ahmad; Nafiseh, Momeni
2016-01-01
ABSTRACT Introduction: Osteoclasts and osteoblasts are responsible for regulating bone homeostasis during which the trace element zinc has been shown to exert a cumulative effect on bone mass by stimulating osteoblastic bone formation and inhibiting osteoclastic bone resorption. Objective: The aim of the present study was to investigate the effects of zinc (Zn) on orthodontic tooth movement (OTM) in a rat model. Material and Methods: A total of 44 male Wistar rats were divided into four groups of 11 animals each and received 0, 1.5, 20 and 50 ppm Zn in distilled water for 60 days. In the last 21 days of the study, nickel-titanium closed coil springs were ligated between maxillary right incisors and first molars of all rats, and tooth movement was measured at the end of this period. Histological analysis of hematoxylin/eosin slides was performed to assess root resorption lacunae, osteoclast number and periodontal ligament (PDL) width. Results: Mean OTM was calculated as 51.8, 49.1, 35.5 and 45 µm in the 0, 1.5, 20 and 50 ppm zinc-receiving groups, respectively. There were no significant differences in neither OTM nor histological parameters among the study groups (p > 0.05). Conclusion: According to the results obtained in the current investigation, increase in supplementary zinc up to 50 ppm does not affect the rate of OTM neither bone and root resorption in rats. PMID:27275614
S-Ketoprofen Inhibits Tenotomy-Induced Bone Loss and Dynamics in Weanling Rats
NASA Technical Reports Server (NTRS)
Zeng, Q. Q.; Jee, W. S. S.; Ke, H. Z.; Wechter, W. J.
1993-01-01
The objects of this study were to determine whether S-ketoprofen, a non-steroidal anti-inflammatory drug (NSAID), can prevent immobilization (tenotomy)-induced bone loss in weanling rats. Forty five 4 week-old Sprague-Dawley female rats were either sham-operated or subjected to knee tenotomy and treated simultaneously with 0, 0.02, 0.1, 0.5 or 2.5 mg of S-ketoprofen/kg per day for 21 days. We then studied double-fluorescent labeled proximal tibial longitudinal sections and tibial shaft cross sections using static and dynamic histomorphometry. Less cancellous bone mass in proximal tibial metaphyses was found in tenotomized controls than in basal (36%) and sham-operated (54%) controls. This was due to the inhibition of age-related bone gain and induced bone loss due to increased bone resorption and decreased bone formation. S-ketoprofen prevented both the inhibition of age-related bone gain and the stimulation of bone loss at the 2.5 mg/kg per day dose level, while it only prevented bone loss at the 0.5 mg/kg dose levels. In cancellous bone, dynamic histomorphometry showed that S-ketoprofen prevented the tenotomy induced decrease in bone formation and increase in bone resorption. In the tibial shaft, tenotomy inhibited the enlargement of total tissue area by depressing periosteal bone formation, and thus inhibited age-related cortical bone gain. S-ketoprofen treatment did not prevent this change at all dose levels, but reduced marrow cavity area to increase cortical bone area at the 0.1, 0.5 and 2.5 mg/kg per dose levels compared to tenotomy controls. However, the cortical bone area in the 0.1 and 0.5 mg dose-treated treated tenotomy rats was still lower than in the age-related controls. S-ketoprofen also prevented the increase in endocortical eroded perimeter induced by tenotomy. In summary, tenotomy inhibited age-related bone gain and stimulated bone loss in cancellous bone sites, and only inhibited age-related bone gain in cortical bone sites. S-ketoprofen treatment at the highest dose levels prevented the changes in cancellous bone, and reduced marrow area to increase cortical bone in the tibial shafts.
Triiodothyronine increases calcium loss in a bed rest antigravity model for space flight.
Smith, Steven R; Lovejoy, Jennifer C; Bray, George A; Rood, Jennifer; Most, Marlene M; Ryan, Donna H
2008-12-01
Bed rest has been used as a model to simulate the effects of space flight on bone metabolism. Thyroid hormones accelerate bone metabolism. Thus, supraphysiologic doses of this hormone might be used as a model to accelerate bone metabolism during bed rest and potentially simulate space flight. The objective of the study was to quantitate the changes in bone turnover after low doses of triiodothyronine (T(3)) added to short-term bed rest. Nine men and 5 women were restricted to bed rest for 28 days with their heads positioned 6 degrees below their feet. Subjects were randomly assigned to receive either placebo or oral T(3) at doses of 50 to 75 microg/d in a single-blind fashion. Calcium balance was measured over 5-day periods; and T(3), thyroxine, thyroid-stimulating hormone, immunoreactive parathyroid hormone, osteocalcin, bone alkaline phosphatase, and urinary deoxypyridinoline were measured weekly. Triiodothyronine increased 2-fold in the men and 5-fold in the women during treatment, suppressing both thyroxine and thyroid-stimulating hormone. Calcium balance was negative by 300 to 400 mg/d in the T(3)-treated volunteers, primarily because of the increased fecal loss that was not present in the placebo group. Urinary deoxypyridinoline to creatinine ratio, a marker of bone resorption, increased 60% in the placebo group during bed rest, but more than doubled in the T(3)-treated subjects (P < .01), suggesting that bone resorption was enhanced by treatment with T(3). Changes in serum osteocalcin and bone-specific alkaline phosphatase, markers of bone formation, were similar in T(3)- and placebo-treated subjects. Triiodothyronine increases bone resorption and fecal calcium loss in subjects at bed rest.
Gauthier, O; Bouler, J M; Weiss, P; Bosco, J; Daculsi, G; Aguado, E
1999-10-01
This study investigated the in vivo performance of two composite injectable bone substitutes (IBS), each with different calcium-phosphate particles granulometries [40-80 (IBS 40-80) and 200-500 microm (IBS 200-500)]. These biomaterials were obtained by associating a biphasic calcium-phosphate (BCP) ceramic mineral phase with a 3% aqueous solution of a cellulosic polymer (hydroxy-propyl-methyl-cellulose). Both materials were injected for periods of 2, 3, 8, or 12 weeks into bone defects at the distal end of rabbit femurs. Quantitative results on new bone formation, BCP resorption, and staining for tartrate-resistant acid phosphatase (TRAP) activity were studied for statistical purposes. Measurements with scanning electron microscopy and image analysis showed that the final rates of newly formed bone were similar for both tested IBS after 12 weeks of implantation. Bone colonization occurred more extensively during early implantation times for IBS 40-80 than for IBS 200-500. For the latter, BCP degradation occurred regularly throughout the implantation period, whereas it was very intensive during the first 2 weeks for IBS 40-80. Positive TRAP-stained degradation cells were significantly more numerous for IBS 40-80 than for IBS 200-500 regardless of implantation time. With the granulometry of either mineral phase, both tested IBS supported extensive bone colonization, which was greater than that previously reported for an equivalent block of macroporous BCP. The resorption-bone substitution process seemed to occur earlier and faster for IBS 40-80 than for IBS 200-500. Both tested IBS expressed similar biological efficiency, with conserved in vivo bioactivity and bone-filling ability. Copyright 1999 John Wiley & Sons, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shuo; Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410012; Li, Xianan
Tenuigenin, a major active component of polygala tenuifolia root, has been used to treat patients with insomnia, dementia, and neurosis. In this study, we aimed to investigate the effects of tenuigenin on osteoclastogenesis and clarify the possible mechanism. We showed that tenuigenin inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and bone resorption without cytotoxicity, which was further demonstrated by reduced osteoclast specific gene expression such as TRAP, c-Src, ATP6v0d2, etc. Moreover, the inhibitory effect of tenuigenin was associated with impaired NF-κB activity owing to delayed degradation/regeneration of IkBa and inhibition of p65 nuclear translocation. Consistent with themore » in vitro results, micro-ct scanning and analysis data showed that tenuigenin suppressed RANKL-induced bone loss in an animal model. Taken together, our data demonstrate that tenuigenin inhibit osteoclast formation and bone resorption both in vitro and in vivo, and comprise a potential therapeutic alternative for osteoclast-related disorders such as osteoporosis and cancer-induced bone destruction. - Highlights: • Tenuigenin suppresses osteoclasts formation, survival and function in vitro. • Tenuigenin impairs NF-κB activation. • Tenuigenin suppresses RANKL-induced bone lose in vivo. • Tenuigenin may be used for treating osteoclast related diseases.« less
Osteoblast and osteocyte: games without frontiers.
Capulli, Mattia; Paone, Riccardo; Rucci, Nadia
2014-11-01
The portrait of osteoblasts and osteocytes has been subjected to a revision, since a large body of evidence is attributing these cells amazing roles both inside and outside the bone. The osteoblast, long confined to its bone building function, is actually a very eclectic cell, actively regulating osteoclast formation and function as well as hematopoietic stem cells homeostasis. It is also an endocrine cell, affecting energy metabolism, male fertility and cognition through the release of osteocalcin, a perfect definition-fitting hormone in its uncarboxylated state. As for the osteocytes, many evidence shows that they do not merely represent the final destination of the osteoblasts, but they are instead very active cells that, besides a mechanosensorial function, actively contribute to the bone remodelling by regulating bone formation and resorption. The regulation is exerted by the production of sclerostin (SOST), which in turn inhibits osteoblast differentiation by blocking Wnt/beta-catenin pathway. At the same time, osteocytes influence bone resorption both indirectly, by producing RANKL, which stimulates osteoclastogenesis, and directly by means of a local osteolysis, which is observed especially under pathological conditions. The great versatility of both these cells reflects the complexity of the bone tissue, which has not only a structural role, but influences and is influenced by different organs, taking part in homeostatic and adaptive responses affecting the whole organism. Copyright © 2014. Published by Elsevier Inc.
Osteocytes mediate the anabolic actions of canonical Wnt/β-catenin signaling in bone
Tu, Xiaolin; Delgado-Calle, Jesus; Condon, Keith W.; Maycas, Marta; Zhang, Huajia; Carlesso, Nadia; Taketo, Makoto M.; Burr, David B.; Plotkin, Lilian I.; Bellido, Teresita
2015-01-01
Osteocytes, >90% of the cells in bone, lie embedded within the mineralized matrix and coordinate osteoclast and osteoblast activity on bone surfaces by mechanisms still unclear. Bone anabolic stimuli activate Wnt signaling, and human mutations of components along this pathway underscore its crucial role in bone accrual and maintenance. However, the cell responsible for orchestrating Wnt anabolic actions has remained elusive. We show herein that activation of canonical Wnt signaling exclusively in osteocytes [dominant active (da)βcatOt mice] induces bone anabolism and triggers Notch signaling without affecting survival. These features contrast with those of mice expressing the same daß-catenin in osteoblasts, which exhibit decreased resorption and perinatal death from leukemia. daßcatOt mice exhibit increased bone mineral density in the axial and appendicular skeleton, and marked increase in bone volume in cancellous/trabecular and cortical compartments compared with littermate controls. daßcatOt mice display increased resorption and formation markers, high number of osteoclasts and osteoblasts in cancellous and cortical bone, increased bone matrix production, and markedly elevated periosteal bone formation rate. Wnt and Notch signaling target genes, osteoblast and osteocyte markers, and proosteoclastogenic and antiosteoclastogenic cytokines are elevated in bones of daßcatOt mice. Further, the increase in RANKL depends on Sost/sclerostin. Thus, activation of osteocytic β-catenin signaling increases both osteoclasts and osteoblasts, leading to bone gain, and is sufficient to activate the Notch pathway. These findings demonstrate disparate outcomes of β-catenin activation in osteocytes versus osteoblasts and identify osteocytes as central target cells of the anabolic actions of canonical Wnt/β-catenin signaling in bone. PMID:25605937
Thongchote, Kanogwun; Svasti, Saovaros; Teerapornpuntakit, Jarinthorn; Krishnamra, Nateetip; Charoenphandhu, Narattaphol
2014-06-15
A marked decrease in β-globin production led to β-thalassemia, a hereditary anemic disease associated with bone marrow expansion, bone erosion, and osteoporosis. Herein, we aimed to investigate changes in bone mineral density (BMD) and trabecular microstructure in hemizygous β-globin knockout thalassemic (BKO) mice and to determine whether endurance running (60 min/day, 5 days/wk for 12 wk in running wheels) could effectively alleviate bone loss in BKO mice. Both male and female BKO mice (1-2 mo old) showed growth retardation as indicated by smaller body weight and femoral length than their wild-type littermates. A decrease in BMD was more severe in female than in male BKO mice. Bone histomorphometry revealed that BKO mice had decreases in trabecular bone volume, trabecular number, and trabecular thickness, presumably due to suppression of osteoblast-mediated bone formation and activation of osteoclast-mediated bone resorption, the latter of which was consistent with elevated serum levels of osteoclastogenic cytokines IL-1α and -1β. As determined by peripheral quantitative computed tomography, running increased cortical density and thickness in the femoral and tibial diaphyses of BKO mice compared with those of sedentary BKO mice. Several histomorphometric parameters suggested an enhancement of bone formation (e.g., increased mineral apposition rate) and suppression of bone resorption (e.g., decreased osteoclast surface), which led to increases in trabecular bone volume and trabecular thickness in running BKO mice. In conclusion, BKO mice exhibited pervasive osteopenia and impaired bone microstructure, whereas running exercise appeared to be an effective intervention in alleviating bone microstructural defect in β-thalassemia. Copyright © 2014 the American Physiological Society.
Shi, Changgui; Hu, Bo; Guo, Lei; Cao, Peng; Tian, Ye; Ma, Jun; Chen, Yuanyuan; Wu, Huiqiao; Hu, Jinquan; Deng, Lianfu; Zhang, Ying; Yuan, Wen
2016-05-01
Osteogenesis imperfecta (OI) is a genetic bone dysplasia characterized by brittle bones with increased fracture risk. Although current treatment options to improve bone strength in OI focus on antiresorptive bisphosphonates, controlled clinical trials suggest they have an equivocal effect on reducing fracture risk. Strontium ranelate (SrR) is a promising therapy with a dual mode of action that is capable of simultaneously maintaining bone formation and reducing bone resorption, and may be beneficial for the treatment of OI. In this study, SrR therapy was investigated to assess its effects on fracture frequency and bone mass and strength in an animal model of OI, the oim/oim mouse. Three-week-old oim/oim and wt/wt mice were treated with either SrR or vehicle (Veh) for 11 weeks. After treatment, the average number of fractures sustained by SrR-treated oim/oim mice was significantly reduced compared to Veh-treated oim/oim mice. Micro-computed tomographic (μCT) analyses of femurs showed that both trabecular and cortical bone mass were significantly improved with SrR treatment in both genotypes. SrR significantly inhibited bone resorption, whereas bone formation indices were maintained. Biomechanical testing revealed improved bone structural properties in both oim/oim and wild-type (wt/wt) mice under the treatment, whereas no significant effects on bone brittleness and material quality were observed. In conclusion, SrR was able to effectively reduce fractures in oim/oim mice by improving bone mass and strength and thus represents a potential therapy for the treatment of pediatric OI. © 2015 American Society for Bone and Mineral Research. © 2015 American Society for Bone and Mineral Research.
Su, Nan; Sun, Qidi; Li, Can; Lu, Xiumin; Qi, Huabing; Chen, Siyu; Yang, Jing; Du, Xiaolan; Zhao, Ling; He, Qifen; Jin, Min; Shen, Yue; Chen, Di; Chen, Lin
2010-01-01
Achondroplasia (ACH) is a short-limbed dwarfism resulting from gain-of-function mutations in fibroblast growth factor receptor 3 (FGFR3). Previous studies have shown that ACH patients have impaired chondrogenesis, but the effects of FGFR3 on bone formation and bone remodeling at adult stages of ACH have not been fully investigated. Using micro-computed tomography and histomorphometric analyses, we found that 2-month-old Fgfr3G369C/+ mice (mouse model mimicking human ACH) showed decreased bone mass due to reduced trabecular bone volume and bone mineral density, defect in bone mineralization and increased osteoclast numbers and activity. Compared with primary cultures of bone marrow stromal cells (BMSCs) from wild-type mice, Fgfr3G369C/+ cultures showed decreased cell proliferation, increased osteogenic differentiation including up-regulation of alkaline phosphatase activity and expressions of osteoblast marker genes, and reduced bone matrix mineralization. Furthermore, our studies also suggest that decreased cell proliferation and enhanced osteogenic differentiation observed in Fgfr3G369C/+ BMSCs are caused by up-regulation of p38 phosphorylation and that enhanced Erk1/2 activity is responsible for the impaired bone matrix mineralization. In addition, in vitro osteoclast formation and bone resorption assays demonstrated that osteoclast numbers and bone resorption area were increased in cultured bone marrow cells derived from Fgfr3G369C/+ mice. These findings demonstrate that gain-of-function mutation in FGFR3 leads to decreased bone mass by regulating both osteoblast and osteoclast activities. Our studies provide new insight into the mechanism underlying the development of ACH. PMID:20053668
Choi, Joo-Hee; Lim, Seul-Ki; Kim, Dong-Il; Park, Min-Jung; Kim, Young-Kuk; Lee, An-Chul; Kim, Young-Min; Yang, Soo-Jin; Park, Jong-Hwan
2017-10-15
The powder and extract of safflower seeds are known to be effective in the prevention of bone loss in ovariectomized animals. However, the inhibitory effect and molecular mechanisms of safflower bud (SB), the germinated safflower, on bone destruction is unclear. The present study was designed to investigate the inhibitory effect and molecular mechanism of SB on osteoclastic differentiation and on bone loss in ovarietomized (OVX) mice. Osteoclastogenesis was determined by TRAP staining, F-actin ring formation, and bone resorption assay. NF-κB and MAPKs activation was analyzed by transfection assay and Western blot, respectively. Real-time PCR was performed to examine the expression of osteoclastogenesis-related genes. Histological changes, increases in TRAP-positive cells, and cathepsin K expression were examined in the metaphysis of OVX mice. Density of bone marrow was evaluated by µCT. SB inhibited the RANKL-induced differentiation of BMDMs into osteoclasts in a dose-dependent manner. F-actin ring formation and bone resorption were also reduced by SB in RANKL-treated BMDMs. In addition, SB decreased the activation of NF-κB and MAPKs and the expression of osteoclastogenesis-related genes in BMDMs treated with RANKL. Feeding of SB-included diet prevented bone loss in OVX mice. The number of TRAP-positive cells and level of protein expression of cathepsin K was reduced and bone mineral density was increased in the metaphysis of mice fed SB compared with OVX mice. These findings suggest that SB can be a preventive and therapeutic candidate for destructive bone diseases. Copyright © 2017. Published by Elsevier GmbH.
Kuroshima, Shinichiro; Al-Salihi, Zeina; Yamashita, Junro
2013-02-01
The quality and quantity of bone formed in tooth extraction sockets impact implant therapy. Therefore, the establishment of a new approach to enhance bone formation and to minimize bone resorption is important for the success of implant therapy. In this study, we investigated whether intermittent parathyroid hormone (PTH) therapy enhanced bone formation in grafted sockets. Tooth extractions of the maxillary first molars were performed in rats, and the sockets were grafted with xenograft. Intermittent PTH was administered either for 7 days before extractions, for 14 days after extractions, or both. The effect of PTH therapy on bone formation in the grafted sockets was assessed using microcomputed tomography at 14 days after extractions. PTH therapy for 7 days before extractions was not effective to augment bone fill, whereas PTH therapy for 14 days after operation significantly augmented bone formation in the grafted sockets. Intermittent PTH therapy starting right after tooth extractions significantly enhanced bone fill in the grafted sockets, suggesting that PTH therapy can be a strong asset for the success of the ridge preservation procedure.
Insulin resistance and bone: a biological partnership.
Conte, Caterina; Epstein, Solomon; Napoli, Nicola
2018-04-01
Despite a clear association between type 2 diabetes (T2D) and fracture risk, the pathogenesis of bone fragility in T2D has not been clearly elucidated. Insulin resistance is the primary defect in T2D. Insulin signalling regulates both bone formation and bone resorption, but whether insulin resistance can affect bone has not been established. On the other hand, evidence exists that bone might play a role in the regulation of glucose metabolism. This article reviews the available experimental and clinical evidence on the interplay between bone and insulin resistance. Interestingly, a bilateral relationship between bone and insulin resistance seems to exist that unites them in a biological partnership.
Diabetes mellitus related bone metabolism and periodontal disease
Wu, Ying-Ying; Xiao, E; Graves, Dana T
2015-01-01
Diabetes mellitus and periodontal disease are chronic diseases affecting a large number of populations worldwide. Changed bone metabolism is one of the important long-term complications associated with diabetes mellitus. Alveolar bone loss is one of the main outcomes of periodontitis, and diabetes is among the primary risk factors for periodontal disease. In this review, we summarise the adverse effects of diabetes on the periodontium in periodontitis subjects, focusing on alveolar bone loss. Bone remodelling begins with osteoclasts resorbing bone, followed by new bone formation by osteoblasts in the resorption lacunae. Therefore, we discuss the potential mechanism of diabetes-enhanced bone loss in relation to osteoblasts and osteoclasts. PMID:25857702
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Liang; Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai; Kang, Hui
Wear particles liberated from the surface of prostheses are considered to be main reason for osteoclast bone resorption and that extensive osteoclastogenesis leads to peri-implant osteolysis and subsequent prosthetic loosening. The aim of this study was to assess the effect of rifampin on osteoclastogenesis and titanium (Ti) particle-induced osteolysis. The Ti particle-induced osteolysis mouse calvarial model and bone marrow-derived macrophages (BMMs) were used. Rifampin, at dose of 10 or 50 mg/kg/day, was respectively given intraperitoneally for 14 days in vivo. The calvariae were removed and processed for Further histological analysis. In vitro, osteoclasts were generated from mouse BMMs with receptor activator of nuclearmore » factor-κB ligand (RANKL) and the macrophage colony stimulating factor. Rifampin at different concentrations was added to the medium. The cell viability, tartrate-resistant acid phosphatase (TRAP) staining, TRAP activity and resorption on bone slices were analysis. Osteoclast-specific genes and RANKL-induced MAPKs signaling were tested for further study of the mechanism. Rifampin inhibited Ti-induced osteolysis and osteoclastogenesis in vivo. In vitro data indicated that rifampin suppressed osteoclast differentiation and bone resorption in a dose-dependent manner. Moreover, rifampin significantly reduced the expression of osteoclast-specific markers, including TRAP, cathepsin K, V-ATPase d2, V-ATPase a3, c-Fos, and nuclear factor of activated T cells (NFAT) c1. Further investigation revealed that rifampin inhibited osteoclast formation by specifically abrogating RANKL-induced p38 and NF-κB signaling. Rifampin had significant potential for the treatment of particle-induced peri-implant osteolysis and other diseases caused by excessive osteoclast formation and function. - Highlights: • Rifampin inhibited Ti-induced osteolysis and osteoclastogenesis in vivo. • Rifampin suppressed osteoclast differentiation and bone resorption in a dose-dependent manner. • Rifampin significantly reduced the expression of osteoclast-specific markers in vitro. • RANKL-induced p38 and NF-κB signaling may be involved behind the effects of rifampin treatment on osteoclastogenesis.« less
What is the impact of immunosuppressive treatment on the post-transplant renal osteopathy?
Blaslov, Kristina; Katalinic, Lea; Kes, Petar; Spasovski, Goce; Smalcelj, Ruzica; Basic-Jukic, Nikolina
2014-05-01
Although glucocorticoid therapy is considered to be the main pathogenic factor, a consistent body of evidence suggests that other immunosuppressants might also play an important role in the development of the post-transplant renal osteopathy (PRO) through their pleiotropic pharmacological effects. Glucocorticoids seem to induce osteoclasts' activity suppressing the osteoblasts while data regarding other immunosuppressive drugs are still controversial. Mycophenolate mofetil and azathioprine appear to be neutral regarding the bone metabolism. However, the study analyzing any independent effect of antimetabolites on bone turnover has not been conducted yet. Calcineurin inhibitors (CNIs) induce trabecular bone loss in rodent, with contradictory results in renal transplant recipients. Suppression of vitamin D receptor is probably the underlying mechanism of renal calcium wasting in renal transplant recipients receiving CNI. In spite of an increased 1,25(OH)2 vitamin D level, the kidney is not able to reserve calcium, suggesting a role of vitamin D resistance that may be related to bone loss. More efforts should be invested to determine the role of CNI in PRO. In particular, data regarding the role of mammalian target of rapamycin inhibitors (mTORi), such as sirolimus and everolimus, in the PRO development are still controversial. Rapamycin markedly decreases bone longitudinal growth as well as callus formation in experimental models, but also lowers the rate of bone resorption markers and glomerular filtration in clinical studies. Everolimus potently inhibits primary mouse and human osteoclast activity as well as the osteoclast differentiation. It also prevents the ovariectomy-induced loss of cancellous bone by 60 %, an effect predominantly associated with a decreased osteoclast-mediated bone resorption, resulting in a partial preservation of the cancellous bone. At present, there is no clinical study analyzing the effect of everolimus on bone turnover in renal transplant recipients or comparing sirolimus versus everolimus impact on bone, so only general conclusions could be drawn. Hence, the use of mTORi might be useful in patients with PRO due to their possible potential to inhibit osteoclast activity which might lead to a decreased rate of bone resorption. In addition, it should be also emphasized that they might inhibit osteoblast activity which may lead to a decreased bone formation and adynamic bone disease. Further studies are urgently needed to solve these important clinical dilemmas.
Expression of extracellular calcium (Ca2+o)-sensing receptor in human peripheral blood monocytes
NASA Technical Reports Server (NTRS)
Yamaguchi, T.; Olozak, I.; Chattopadhyay, N.; Butters, R. R.; Kifor, O.; Scadden, D. T.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)
1998-01-01
The calcium-sensing receptor (CaR) is a G protein-coupled receptor playing key roles in extracellular calcium ion (Ca2+o) homeostasis in parathyroid gland and kidney. Macrophage-like mononuclear cells appear at sites of osteoclastic bone resorption during bone turnover and may play a role in the "reversal" phase of skeletal remodeling that follows osteoclastic resorption and precedes osteoblastic bone formation. Bone resorption produces substantial local increases in Ca2+o that could provide a signal for such mononuclear cells present locally within the bone marrow microenvironment. Indeed, previous studies by other investigators have shown that raising Ca2+o either in vivo or in vitro stimulated the release of interleukin-6 (IL-6) from human peripheral blood monocytes, suggesting that these cells express a Ca2+o-sensing mechanism. In these earlier studies, however, the use of reverse transcription-polymerase chain reaction (RT-PCR) failed to detect transcripts for the CaR previously cloned from parathyroid and kidney in peripheral blood monocytes. Since we recently found that non-specific esterase-positive, putative monocytes isolated from murine bone marrow express the CaR, we reevaluated the expression of this receptor in human peripheral blood monocytes. Immunocytochemistry, flow cytometry, and Western blot analysis, performed using a polyclonal antiserum specific for the CaR, detected CaR protein in human monocytes. In addition, the use of RT-PCR with CaR-specific primers, followed by nucleotide sequencing of the amplified products, identified CaR transcripts in the cells. Therefore, taken together, our data show that human peripheral blood monocytes possess both CaR protein and mRNA very similar if not identical to those expressed in parathyroid and kidney that could mediate the previously described, direct effects of Ca2+o on these cells. Furthermore, since mononuclear cells isolated from bone marrow also express the CaR, the latter might play some role in the "reversal" phase of bone remodeling, sensing local changes in Ca2+o resulting from osteoclastic bone resorption and secreting osteotropic cytokines or performing other Ca2+o-regulated functions that contribute to the control of bone turnover.
Che Ahmad Tantowi, Nur Adeelah; Lau, Seng Fong; Mohamed, Suhaila
2018-05-28
Osteoporosis (OP) and osteoarthritis (OA) are debilitating musculoskeletal diseases of the elderly. Ficus deltoidea (FD) or mistletoe fig, a medicinal plant, was pre-clinically evaluated against OP- and OA-related bone alterations, in postmenopausal OA rat model. Thirty twelfth-week-old female rats were divided into groups (n = 6). Four groups were bilateral ovariectomized (OVX) and OA-induced by intra-articular monosodium iodoacetate (MIA) injection into the right knee joints. The Sham control and OVX-OA non-treated groups were given deionized water. The three other OVX-OA groups were orally administered daily with FD extract (200, 400 mg/kg) or diclofenac (5 mg/kg) for 4 weeks. The rats' bones and blood were evaluated for protein and mRNA expressions of osteoporosis and inflammatory indicators, and micro-CT computed tomography for bone microstructure. The non-treated OVX-OA rats developed severe OP bone loss and bone microstructural damage in the subchondral and metaphyseal regions, supported by reduced serum bone formation markers (osteocalcin, osteoprotegerin) and increased bone resorption markers (RANKL and CTX-I). The FD extract significantly (p < 0.05) mitigated these bone microstructural and biomarker changes by dose-dependently down-regulating pro-inflammatory NF-κβ, TNF-α, and IL-6 mRNA expressions. The FD extract demonstrated good anti-osteoporotic properties in this OP/OA preclinical model by stimulating bone formation and suppressing bone resorption via anti-inflammatory pathways. This is among the few reports relating the subchondral bone plate and trabecular thickening with the metaphyseal trabecular osteopenic bone loss under osteoporotic-osteoarthritis conditions, providing some insights on the debated inverse relationship between osteoporosis and osteoarthritis.
Larmonier, C. B.; McFadden, R.-M. T.; Hill, F. M.; Schreiner, R.; Ramalingam, R.; Besselsen, D. G.; Ghishan, F. K.
2013-01-01
Decreased bone mineral density (BMD) represents an extraintestinal complication of inflammatory bowel disease (IBD). Vitamin D3 has been considered a viable adjunctive therapy in IBD. However, vitamin D3 plays a pleiotropic role in bone modeling and regulates the bone formation-resorption balance, depending on the physiological environment, and supplementation during active IBD may have unintended consequences. We evaluated the effects of vitamin D3 supplementation during the active phase of disease on colonic inflammation, BMD, and bone metabolism in an adoptive IL-10−/− CD4+ T cell transfer model of chronic colitis. High-dose vitamin D3 supplementation for 12 days during established disease had negligible effects on mucosal inflammation. Plasma vitamin D3 metabolites correlated with diet, but not disease, status. Colitis significantly reduced BMD. High-dose vitamin D3 supplementation did not affect cortical bone but led to a further deterioration of trabecular bone morphology. In mice fed a high vitamin D3 diet, colitis more severely impacted bone formation markers (osteocalcin and bone alkaline phosphatase) and increased bone resorption markers, ratio of receptor activator of NF-κB ligand to osteoprotegrin transcript, plasma osteoprotegrin level, and the osteoclast activation marker tartrate-resistant acid phosphatase (ACp5). Bone vitamin D receptor expression was increased in mice with chronic colitis, especially in the high vitamin D3 group. Our data suggest that vitamin D3, at a dose that does not improve inflammation, has no beneficial effects on bone metabolism and density during active colitis or may adversely affect BMD and bone turnover. These observations should be taken into consideration in the planning of further clinical studies with high-dose vitamin D3 supplementation in patients with active IBD. PMID:23639807
Larmonier, C B; McFadden, R-M T; Hill, F M; Schreiner, R; Ramalingam, R; Besselsen, D G; Ghishan, F K; Kiela, P R
2013-07-01
Decreased bone mineral density (BMD) represents an extraintestinal complication of inflammatory bowel disease (IBD). Vitamin D₃ has been considered a viable adjunctive therapy in IBD. However, vitamin D₃ plays a pleiotropic role in bone modeling and regulates the bone formation-resorption balance, depending on the physiological environment, and supplementation during active IBD may have unintended consequences. We evaluated the effects of vitamin D₃ supplementation during the active phase of disease on colonic inflammation, BMD, and bone metabolism in an adoptive IL-10-/- CD4⁺ T cell transfer model of chronic colitis. High-dose vitamin D₃ supplementation for 12 days during established disease had negligible effects on mucosal inflammation. Plasma vitamin D₃ metabolites correlated with diet, but not disease, status. Colitis significantly reduced BMD. High-dose vitamin D₃ supplementation did not affect cortical bone but led to a further deterioration of trabecular bone morphology. In mice fed a high vitamin D₃ diet, colitis more severely impacted bone formation markers (osteocalcin and bone alkaline phosphatase) and increased bone resorption markers, ratio of receptor activator of NF-κB ligand to osteoprotegrin transcript, plasma osteoprotegrin level, and the osteoclast activation marker tartrate-resistant acid phosphatase (ACp5). Bone vitamin D receptor expression was increased in mice with chronic colitis, especially in the high vitamin D₃ group. Our data suggest that vitamin D₃, at a dose that does not improve inflammation, has no beneficial effects on bone metabolism and density during active colitis or may adversely affect BMD and bone turnover. These observations should be taken into consideration in the planning of further clinical studies with high-dose vitamin D₃ supplementation in patients with active IBD.
Oleoyl serine, an endogenous N-acyl amide, modulates bone remodeling and mass
Smoum, Reem; Bar, Arik; Tan, Bo; Milman, Garry; Attar-Namdar, Malka; Ofek, Orr; Stuart, Jordyn M.; Bajayo, Alon; Tam, Joseph; Kram, Vardit; O'Dell, David; Walker, Michael J.; Bradshaw, Heather B.; Bab, Itai; Mechoulam, Raphael
2010-01-01
Bone mass is determined by a continuous remodeling process, whereby the mineralized matrix is being removed by osteoclasts and subsequently replaced with newly formed bone tissue produced by osteoblasts. Here we report the presence of endogenous amides of long-chain fatty acids with amino acids or with ethanolamine (N-acyl amides) in mouse bone. Of these compounds, N-oleoyl-l-serine (OS) had the highest activity in an osteoblast proliferation assay. In these cells, OS triggers a Gi-protein-coupled receptor and Erk1/2. It also mitigates osteoclast number by promoting osteoclast apoptosis through the inhibition of Erk1/2 phosphorylation and receptor activator of nuclear-κB ligand (RANKL) expression in bone marrow stromal cells and osteoblasts. In intact mice, OS moderately increases bone volume density mainly by inhibiting bone resorption. However, in a mouse ovariectomy (OVX) model for osteoporosis, OS effectively rescues bone loss by increasing bone formation and markedly restraining bone resorption. The differential effect of exogenous OS in the OVX vs. intact animals is apparently a result of an OVX-induced decrease in skeletal OS levels. These data show that OS is a previously unexplored lipid regulator of bone remodeling. It represents a lead to antiosteoporotic drug discovery, advantageous to currently available therapies, which are essentially either proformative or antiresorptive. PMID:20876113
Oleoyl serine, an endogenous N-acyl amide, modulates bone remodeling and mass.
Smoum, Reem; Bar, Arik; Tan, Bo; Milman, Garry; Attar-Namdar, Malka; Ofek, Orr; Stuart, Jordyn M; Bajayo, Alon; Tam, Joseph; Kram, Vardit; O'Dell, David; Walker, Michael J; Bradshaw, Heather B; Bab, Itai; Mechoulam, Raphael
2010-10-12
Bone mass is determined by a continuous remodeling process, whereby the mineralized matrix is being removed by osteoclasts and subsequently replaced with newly formed bone tissue produced by osteoblasts. Here we report the presence of endogenous amides of long-chain fatty acids with amino acids or with ethanolamine (N-acyl amides) in mouse bone. Of these compounds, N-oleoyl-l-serine (OS) had the highest activity in an osteoblast proliferation assay. In these cells, OS triggers a Gi-protein-coupled receptor and Erk1/2. It also mitigates osteoclast number by promoting osteoclast apoptosis through the inhibition of Erk1/2 phosphorylation and receptor activator of nuclear-κB ligand (RANKL) expression in bone marrow stromal cells and osteoblasts. In intact mice, OS moderately increases bone volume density mainly by inhibiting bone resorption. However, in a mouse ovariectomy (OVX) model for osteoporosis, OS effectively rescues bone loss by increasing bone formation and markedly restraining bone resorption. The differential effect of exogenous OS in the OVX vs. intact animals is apparently a result of an OVX-induced decrease in skeletal OS levels. These data show that OS is a previously unexplored lipid regulator of bone remodeling. It represents a lead to antiosteoporotic drug discovery, advantageous to currently available therapies, which are essentially either proformative or antiresorptive.
Ontogeny of the maxilla in Neanderthals and their ancestors
Lacruz, Rodrigo S.; Bromage, Timothy G.; O'Higgins, Paul; Arsuaga, Juan-Luis; Stringer, Chris; Godinho, Ricardo Miguel; Warshaw, Johanna; Martínez, Ignacio; Gracia-Tellez, Ana; de Castro, José María Bermúdez; Carbonell, Eudald
2015-01-01
Neanderthals had large and projecting (prognathic) faces similar to those of their putative ancestors from Sima de los Huesos (SH) and different from the retracted modern human face. When such differences arose during development and the morphogenetic modifications involved are unknown. We show that maxillary growth remodelling (bone formation and resorption) of the Devil's Tower (Gibraltar 2) and La Quina 18 Neanderthals and four SH hominins, all sub-adults, show extensive bone deposition, whereas in modern humans extensive osteoclastic bone resorption is found in the same regions. This morphogenetic difference is evident by ∼5 years of age. Modern human faces are distinct from those of the Neanderthal and SH fossils in part because their postnatal growth processes differ markedly. The growth remodelling identified in these fossil hominins is shared with Australopithecus and early Homo but not with modern humans suggesting that the modern human face is developmentally derived. PMID:26639346
Ontogeny of the maxilla in Neanderthals and their ancestors.
Lacruz, Rodrigo S; Bromage, Timothy G; O'Higgins, Paul; Arsuaga, Juan-Luis; Stringer, Chris; Godinho, Ricardo Miguel; Warshaw, Johanna; Martínez, Ignacio; Gracia-Tellez, Ana; de Castro, José María Bermúdez; Carbonell, Eudald
2015-12-07
Neanderthals had large and projecting (prognathic) faces similar to those of their putative ancestors from Sima de los Huesos (SH) and different from the retracted modern human face. When such differences arose during development and the morphogenetic modifications involved are unknown. We show that maxillary growth remodelling (bone formation and resorption) of the Devil's Tower (Gibraltar 2) and La Quina 18 Neanderthals and four SH hominins, all sub-adults, show extensive bone deposition, whereas in modern humans extensive osteoclastic bone resorption is found in the same regions. This morphogenetic difference is evident by ∼5 years of age. Modern human faces are distinct from those of the Neanderthal and SH fossils in part because their postnatal growth processes differ markedly. The growth remodelling identified in these fossil hominins is shared with Australopithecus and early Homo but not with modern humans suggesting that the modern human face is developmentally derived.
Campolongo, Martin G; Cabras, Marco; Bava, Luca; Arduino, Paolo G; Carbone, Mario
2018-06-01
To present a case of early diagnosis mandibular Paget's disease of bone (PDB), recognised by a general dentist. PDB is responsible of rapid bone resorption and disorganised bone formation. The patient was a 72-year-old female patient complaining of dental malposition and blatant prognathism. Clinicians should consider PDB in differential diagnosis for an elderly patient undergoing unexplained alteration in face profile and occlusion. © 2018 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.
Non-reproductive Effects of Anovulation
Niethammer, B.; Körner, C.; Schmidmayr, M.; Luppa, P. B.; Seifert-Klauss, V. R.
2015-01-01
Introduction: Several authors have linked subclinical ovulatory disturbances in normal length menstrual cycles to premenopausal fracture risk and bone changes. This study systematically examined the influence of ovulation and anovulation on the bone metabolism of premenopausal women. Participants and Methods: In 176 cycles in healthy premenopausal women, FSH, 17β-estradiol (E2) and progesterone (P4) as well as bone alkalic phosphatase (BAP), pyridinoline (PYD) and C-terminal crosslinks (CTX) were measured during the follicular and during the luteal phase. The probability and timing of ovulation was self-assessed by a monitoring device. In addition, bone density of the lumbar spine was measured by quantitative computed tomography (QCT) at baseline and at the end of the study. Analysis was restricted to blood samples taken more than three days before the following menstruation. Results: 118 cycles out of the 176 collected cycles were complete with blood samples taken within the correct time interval. Of these, 56.8 % were ovulatory by two criteria (ovulation symbol shown on the monitor display and LP progesterone > 6 ng/ml), 33.1 % were possibly ovulatory by one criterion (ovulation symbol shown on the monitor display or LP progesterone > 6 ng/ml), and 10.2 % were anovulatory by both criteria). Ovulation in the previous cycle and in the same cycle did not significantly influence the mean absolute concentrations of the bone markers. However, bone formation (BAP) was higher in the luteal phase of ovulatory cycles than in anovulatory cycles (n. s.) and the relative changes within one cycle were significantly different for bone resorption (CTX) during ovulatory vs. anovulatory cycles (p < 0.01). In 68 pairs of cycles following each other directly, both ovulation in the previous cycle and ovulation in the present cycle influenced CTX, but not the differences of other bone markers. Conclusion: Ovulatory cycles reduce bone resorption in their luteal phase and that of the following cycle. The interaction between ovulation and bone metabolism is complex. Since anovulation may occur in low estrogen states such as pre-anorexic dietary restraint, as well as with high estrogenic circumstances e.g. from functional perimenopausal ovarian cysts, the association with bone changes has been variable in the literature. Accumulating physiological and clinical evidence however point towards a role for ovulation in enhancing bone formation and limiting bone resorption. PMID:26726266
Loss of Cbl-PI3K interaction in mice prevents significant bone loss following ovariectomy
Adapala, Naga Suresh; Holland, Danielle; Piccuillo, Vanessa; Barbe, Mary F.; Langdon, Wallace Y.; Tsygankov, Alexander Y.; Lorenzo, Joseph A.; Sanjay, Archana
2014-01-01
Cbl and Cbl-b are E3 ubiquitin ligases and adaptor proteins, which perform regulatory roles in bone remodeling. Cbl−/− mice have delayed bone development due to decreased osteoclast migration. Cbl-b−/− mice are osteopenic due to increased bone resorbing activity of osteoclasts. Unique to Cbl, but not present in Cbl-b, is tyrosine 737 in the YEAM motif, which upon phosphorylation provides a binding site for the regulatory p85 subunit of PI3K. Substitution of tyrosine 737 with phenylalanine (Y737F, CblYF/YF mice) prevents Y737 phosphorylation and abrogates the Cbl-PI3K interaction. We have previously reported that CblYF/YF mice had increased bone volume due to defective bone resorption and increased bone formation. Here we show that the lumbar vertebra from CblYF/YF mice did not have significant bone loss following ovariectomy. Our data also suggests that abrogation of Cbl-PI3K interaction in mice results in the loss of coupling between bone resorption and formation, since ovariectomized CblYF/YF mice did not show significant changes in serum levels of c-terminal telopeptide (CTX), whereas the serum levels of pro-collagen type-1 amino-terminal pro-peptide (P1NP) were decreased. In contrast, following ovariectomy, Cbl−/− and Cbl-b−/− mice showed significant bone loss in tibiae and L2 vertebrae, concomitant with increased serum CTX and P1NP levels. These data indicate that while lack of Cbl or Cbl-b distinctly affects bone remodeling, only the loss of Cbl-PI3K interaction protects mice from significant bone loss following ovariectomy. PMID:24994594
Loss of Cbl-PI3K interaction in mice prevents significant bone loss following ovariectomy.
Adapala, Naga Suresh; Holland, Danielle; Scanlon, Vanessa; Barbe, Mary F; Langdon, Wallace Y; Tsygankov, Alexander Y; Lorenzo, Joseph A; Sanjay, Archana
2014-10-01
Cbl and Cbl-b are E3 ubiquitin ligases and adaptor proteins, which perform regulatory roles in bone remodeling. Cbl-/- mice have delayed bone development due to decreased osteoclast migration. Cbl-b-/- mice are osteopenic due to increased bone resorbing activity of osteoclasts. Unique to Cbl, but not present in Cbl-b, is tyrosine 737 in the YEAM motif, which upon phosphorylation provides a binding site for the regulatory p85 subunit of PI3K. Substitution of tyrosine 737 with phenylalanine (Y737F, CblYF/YF mice) prevents Y737 phosphorylation and abrogates the Cbl-PI3K interaction. We have previously reported that CblYF/YF mice had increased bone volume due to defective bone resorption and increased bone formation. Here we show that the lumbar vertebra from CblYF/YF mice did not have significant bone loss following ovariectomy. Our data also suggests that abrogation of Cbl-PI3K interaction in mice results in the loss of coupling between bone resorption and formation, since ovariectomized CblYF/YF mice did not show significant changes in serum levels of c-terminal telopeptide (CTX), whereas the serum levels of pro-collagen type-1 amino-terminal pro-peptide (P1NP) were decreased. In contrast, following ovariectomy, Cbl-/- and Cbl-b-/- mice showed significant bone loss in the tibiae and L2 vertebrae, concomitant with increased serum CTX and P1NP levels. These data indicate that while lack of Cbl or Cbl-b distinctly affects bone remodeling, only the loss of Cbl-PI3K interaction protects mice from significant bone loss following ovariectomy. Copyright © 2014 Elsevier Inc. All rights reserved.
Saetung, Sunee; Chailurkit, La-or; Ongphiphadhanakul, Boonsong
2010-07-01
Mechanical loadings by active exercise or passive low amplitude vibration have been demonstrated to enhance bone mass or delay bone loss. Traditional Thai massage can be anabolic to bone due to the application of physical loading on the body in a rhythmic fashion. To explore the skeletal effect of Thai traditional massage by examining the changes in biochemical markers of bone turnover immediately after the massage. Subjects consisted of 30 healthy females aged 20-40 years. Each subject received Thai traditional massage for 2 hours by a single masseuse. Bone mineral density (BMD) at baseline was measured by dual-energy X-ray absorptiometry (DEXA). C-terminal telopeptide of type 1 collagen (CTx-I) and total procollagen type 1 amino-terminal propeptide (P1NP) were determined by electrochemiluminescence immunoassay. There was a 4.8% increase in serum P1NP concentrations after massage (median 43.4 ng/ml vs. 41.3 ng/ml, p < 0.05). Serum CTx-I also decreased after massage (median 2-hour vs. baseline 0.29 ng/ml vs. 0.31 ng/ml, p < 0.05). There was a nearly significant negative correlation between the percentage change in serum P1NP and BMD at the total femur (r = -0.37, p = 0.056) whereas the statistically significant correlation disappeared between percentage change in bone turnover and the other sites of BMD. Thai traditional massage induces acute changes in bone formation and resorption markers. Study on the more prolonged effects of Thai traditional massage is warranted to explore its implication in the enhancement of bone health.
Hutami, Islamy Rahma; Izawa, Takashi; Mino-Oka, Akiko; Shinohara, Takehiro; Mori, Hiroki; Iwasa, Akihiko; Tanaka, Eiji
2017-09-02
Enhanced turnover of subchondral trabecular bone is a hallmark of rheumatoid arthritis (RA) and it results from an imbalance between bone resorption and bone formation activities. To investigate the formation and activation of osteoclasts which mediate bone resorption, a Fas-deficient MRL/lpr mouse model which spontaneously develops autoimmune arthritis and exhibits decreased bone mass was studied. Various assays were performed on subchondral trabecular bone of the temporomandibular joint (TMJ) from MRL/lpr mice and MRL+/+ mice. Initially, greater osteoclast production was observed in vitro from bone marrow macrophages obtained from MRL/lpr mice due to enhanced phosphorylation of NF-κB, as well as Akt and MAPK, to receptor activator of nuclear factor-κB ligand (RANKL). Expression of sphingosine 1-phosphate receptor 1 (S1P 1 ) was also significantly upregulated in the condylar cartilage. S1P 1 was found to be required for S1P-induced migration of osteoclast precursor cells and downstream signaling via Rac1. When SN50, a synthetic NF-κB-inhibitory peptide, was applied to the MRL/lpr mice, subchondral trabecular bone loss was reduced and both production of osteoclastogenesis markers and sphingosine kinase (Sphk) 1/S1P 1 signaling were reduced. Thus, the present results suggest that Fas/S1P 1 signaling via activation of NF-κB in osteoclast precursor cells is a key factor in the pathogenesis of RA in the TMJ. Copyright © 2017 Elsevier Inc. All rights reserved.
Hayami, Tadashi; Pickarski, Maureen; Zhuo, Ya; Wesolowski, Gregg A; Rodan, Gideon A; Duong, Le T
2006-02-01
Osteoarthritis (OA) is a chronic joint disease characterized by cartilage destruction, subchondral bone sclerosis, and osteophyte formation. Subchondral bone stiffness has been proposed to initiate and/or contribute to cartilage deterioration in OA. The purpose of this study was to characterize subchondral bone remodeling, cartilage damage, and osteophytosis during the disease progression in two models of surgically induced OA. Rat knee joints were subjected either to anterior cruciate ligament transection (ACLT) alone or in combination with resection of medial menisci (ACLT + MMx). Histopathological changes in the surgical joints were compared with sham at 1, 2, 4, 6, and 10 weeks post-surgery. Using a modified Mankin scoring system, we demonstrate that articular cartilage damage occurs within 2 weeks post-surgery in both surgical models. Detectable cartilage surface damage and proteoglycan loss were observed as early as 1 week post-surgery. These were followed by the increases in vascular invasion into cartilage, in loss of chondrocyte number and in cell clustering. Histomorphometric analysis revealed subchondral bone loss in both models within 2 weeks post-surgery followed by significant increases in subchondral bone volume relative to sham up to 10 weeks post-surgery. Incidence of osteophyte formation was optimally observed in ACLT joints at 10 weeks and in ACLT + MMx joints at 6 weeks post-surgery. In summary, the two surgically induced rat OA models share many characteristics seen in human and other animal models of OA, including progressive articular cartilage degradation, subchondral bone sclerosis, and osteophyte formation. Moreover, increased subchondral bone resorption is associated with early development of cartilage lesions, which precedes significant cartilage thinning and subchondral bone sclerosis. Together, these findings support a role for bone remodeling in OA pathogenesis and suggest that these rat models are suitable for evaluating bone resorption inhibitors as potential disease-modifying pharmaco-therapies.
Leptin: a potential mediator for protective effects of fat mass on bone tissue.
Thomas, Thierry
2003-02-01
Body weight is among the most powerful predictors of bone status, and adipose tissue plays a substantial role in weight-related protective effects on bone. An understanding of the mechanisms underlying the relation between adipose tissue and bone may open up new perspectives for treatment. Leptin, which is known to regulate appetite and energy expenditures, may also contribute to mediate the effects of fat mass on bone. Although reported data are somewhat conflicting, there is some evidence that leptin may decrease bone formation via a central nervous effect and may stimulate both bone formation and bone resorption via direct peripheral effects on stromal precursor cells. The net result of these central and peripheral effects may depend on serum leptin levels and blood-brain barrier permeability, of which the first increase and the second decrease as obesity develops. Further work is needed to improve our understanding of these effects.
Bioactive scaffold for bone tissue engineering: An in vivo study
NASA Astrophysics Data System (ADS)
Livingston, Treena Lynne
Massive bone loss of the proximal femur is a common problem in revision cases of total hip implants. Allograft is typically used to reconstruct the site for insertion of the new prosthesis. However, for long term fixation and function, it is desirable that the allograft becomes fully replaced by bone tissue and aids in the regeneration of bone to that site. However, allograft use is typically associated with delayed incorporation and poor remodeling. Due to these profound limitations, alternative approaches are needed. Tissue engineering is an attractive approach to designing improved graft materials. By combining osteogenic activity with a resorbable scaffold, bone formation can be stimulated while providing structure and stability to the limb during incorporation and remodeling of the scaffold. Porous, surface modified bioactive ceramic scaffolds (pSMC) have been developed which stimulate the expression of the osteoblastic phenotype and production of bone-like tissue in vitro. The scaffold and two tissue-engineered constructs, osteoprogenitor cells seeded onto scaffolds or cells expanded in culture to form bone tissue on the scaffolds prior to implantation, were investigated in a long bone defect model. The rate of incorporation was assessed. Both tissue-engineered constructs stimulated bone formation and comparable repair at 2 weeks. In a rat femoral window defect model, bone formation increased over time for all groups in concert with scaffold resorption, leading to a 40% increase in bone and 40% reduction of the scaffold in the defect by 12 weeks. Both tissue-engineered constructs enhanced the rate of mechanical repair of long bones due to better bony union with the host cortex. Long bones treated with tissue engineered constructs demonstrated a return in normal torsional properties by 4 weeks as compared to 12 weeks for long bones treated with pSMC. Culture expansion of cells to produce bone tissue in vitro did not accelerate incorporation over the treatment with cells seeded at the time of surgery. Porous, surface modified bioactive ceramic is a promising scaffold material for tissue-engineered bone repair. Bone formation and scaffold resorption act in concert for maintenance and improvement of the structural properties of the long bones over time. As determined histomorphometrically and mechanically, the rate of incorporation of the scaffold was enhanced with the tissue-engineered constructs.
Petrova, Nina L; Petrov, Peter K; Edmonds, Michael E; Shanahan, Catherine M
2014-04-01
We hypothesized that newly formed osteoclasts from patients with acute Charcot osteoarthropathy can resorb surfaces of bone more extensively compared with controls. Peripheral blood monocytes, isolated from eight Charcot patients and nine controls, were cultured in vitro on 24-well plates and bovine bone discs in duplicate with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor κβ ligand (RANKL). Osteoclast formation was assessed by tartrate-resistant acid phosphatase staining (TRAcP) at day 17. Resorption was measured at day 21 after toluidine blue staining by two methods: (1) area of resorption at the surface by image analysis (%) and (2) area of resorption under the surface (μm(2)) measured by a Dektak 150 Surface Profiler. Ten 1,000 μm-long scans were performed per disc. Pits were classified as unidented, bidented, and multidented according to their shape. Although the number of newly formed TRAcP positive multinucleated cells (>3 nuclei) was similar in M-CSF + RANKL-treated cultures between controls and Charcot patients, the latter exhibited increased resorbing activity. The area of resorption on the surface by image analysis was significantly greater in Charcot patients compared with controls (21.1 % [14.5-26.2] vs. 40.8 % [35.4-46.0], median [25-75th percentile], p < 0.01), as was the area of resorption under the surface (2.7 x 10(3) μm(2) [1.6 x 10(3)- 3.9 x 10(3)] vs. 8.3 x 10(3) μm (2) [5.6 x 10(3)- 10.6 x 10(3), [corrected] p < 0.01) after profilometry. In Charcot patients pits were deeper and wider and more frequently presented as multidented pits. This application of the Dektak 150 Surface Profiler revealed novel differences in resorption pit profile from osteoclasts derived from Charcot patients compared with controls. Resorption in Charcot patients was mediated by highly aggressive newly formed osteoclasts from monocytes eroding large and deep areas of bone.
Elefteriou, Florent; Benson, M Douglas; Sowa, Hideaki; Starbuck, Michael; Liu, Xiuyun; Ron, David; Parada, Luis F; Karsenty, Gerard
2006-12-01
The transcription factor ATF4 enhances bone formation by favoring amino acid import and collagen synthesis in osteoblasts, a function requiring its phosphorylation by RSK2, the kinase inactivated in Coffin-Lowry Syndrome. Here, we show that in contrast, RSK2 activity, ATF4-dependent collagen synthesis, and bone formation are increased in mice lacking neurofibromin in osteoblasts (Nf1(ob)(-/-) mice). Independently of RSK2, ATF4 phosphorylation by PKA is enhanced in Nf1(ob)(-/-) mice, thereby increasing Rankl expression, osteoclast differentiation, and bone resorption. In agreement with ATF4 function in amino acid transport, a low-protein diet decreased bone protein synthesis and normalized bone formation and bone mass in Nf1(ob)(-/-) mice without affecting other organ weight, while a high-protein diet overcame Atf4(-/-) and Rsk2(-/-) mice developmental defects, perinatal lethality, and low bone mass. By showing that ATF4-dependent skeletal dysplasiae are treatable by dietary manipulations, this study reveals a molecular connection between nutrition and skeletal development.
Skeletal unloading and dietary copper depletion are detrimental to bone quality of mature rats
NASA Technical Reports Server (NTRS)
Smith, Brenda J.; King, Jarrod B.; Lucas, Edralin A.; Akhter, Mohammed P.; Arjmandi, Bahram H.; Stoecker, Barbara J.
2002-01-01
This study was designed to examine the skeletal response to copper depletion and mechanical unloading in mature animals. In a 2 x 2 experimental design, 5.5-mo-old male Sprague-Dawley rats (n = 36) consumed either the control (AIN-93M) or Cu-depletion ((-)Cu) diet beginning 21 d before suspension and throughout the remainder of the study. Half of the rats in each dietary treatment group were either tail-suspended (TS) or kept ambulatory (AMB) for 28 d. Lower bone mineral densities (BMD) of 5th lumbar vertebra (L5) (P < 0.05) and femur were observed with (-)Cu and TS, but no differences were noted in the BMD of the humerus. Mechanical strength in the femur and vertebra decreased in response to TS, but were unaffected by copper depletion. Urinary deoxypyridinoline, an index of bone resorption, was significantly greater in TS rats, but unaltered by (-)Cu. No changes in serum or bone alkaline phosphatase activity, an indicator of bone formation, were observed. Our findings suggest that TS and (-)Cu decreased BMD in unloaded femur and vertebra but had no effect on normally loaded humerus. Bone loss with TS appeared to be related to accelerated bone resorption. Alterations in bone metabolism and bone mechanical properties in the mature skeleton resulting from (-)Cu warrant further investigation.
NASA Technical Reports Server (NTRS)
Lotinun, Sutada; Sibonga, Jean D.; Turner, Russell T.
2002-01-01
A mechanism explaining the differential skeletal effects of intermittent and continuous elevation of serum parathyroid hormone (PTH) remains elusive. Intermittent PTH increases bone formation and bone mass and is being investigated as a therapy for osteoporosis. By contrast, chronic hyperparathyroidism results in the metabolic bone disease osteitis fibrosa characterized by osteomalacia, focal bone resorption, and peritrabecular bone marrow fibrosis. Intermittent and continuous PTH have similar effects on the number of osteoblasts and bone-forming activity. Many of the beneficial as well as detrimental effects of the hormone appear to be mediated by osteoblast-derived growth factors. This hypothesis was tested using cDNA microgene arrays to compare gene expression in tibia of rats treated with continuous and pulsatile administration of PTH. These treatments result in differential expression of many genes, including growth factors. One of the genes whose steady-state mRNA levels was increased by continuous but not pulsatile administration was platelet-derived growth factor-A (PDGF-A). Administration of a PDGF-A antagonist greatly reduced bone resorption, osteomalacia, and bone marrow fibrosis in a rat model for hyperparathyroidism, suggesting that PDGF-A is a causative agent for this disease. These findings suggest that profiling changes in gene expression can help identify the metabolic pathways responsible for the skeletal responses to the hormone.
Kim, Jung-Lye; Kim, Yun-Ho; Kang, Min-Kyung; Gong, Ju-Hyun; Han, Seoung-Jun; Kang, Young-Hee
2013-01-01
Bone integrity abnormality and imbalance between bone formation by osteoblasts and bone resorption by osteoclasts are known to result in metabolic bone diseases such as osteoporosis. Silymarin-rich milk thistle extract (MTE) and its component silibinin enhanced alkaline phosphatase activity of osteoblasts but reduced tartrate-resistant acid phosphatase (TRAP) activity of osteoclasts. The osteoprotective effects of MTE were comparable to those of estrogenic isoflavone. Low-dose combination of MTE and isoflavone had a pharmacological synergy that may be useful for osteogenic activity. This study attempted to reveal the suppressive effects of MTE on bone loss. C57BL/6 female mice were ovariectomized (OVX) as a model for postmenopausal osteopenia and orally administered 10 mg/kg MTE or silibinin for 8 weeks. The sham-operated mice served as estrogen controls. The treatment of ovariectomized mice with nontoxic MTE and silibinin improved femoral bone mineral density and serum receptor activator of nuclear factor- κB ligand/osteoprotegerin ratio, an index of osteoclastogenic stimulus. In addition, the administration of MTE or silibinin inhibited femoral bone loss induced by ovariectomy and suppressed femoral TRAP activity and cathepsin K induction responsible for osteoclastogenesis and bone resorption. Collectively, oral dosage of MTE containing silibinin in the preclinical setting is effective in preventing estrogen deficiency-induced bone loss.
Kim, Jung-Lye; Kim, Yun-Ho; Kang, Min-Kyung; Gong, Ju-Hyun; Han, Seoung-Jun; Kang, Young-Hee
2013-01-01
Bone integrity abnormality and imbalance between bone formation by osteoblasts and bone resorption by osteoclasts are known to result in metabolic bone diseases such as osteoporosis. Silymarin-rich milk thistle extract (MTE) and its component silibinin enhanced alkaline phosphatase activity of osteoblasts but reduced tartrate-resistant acid phosphatase (TRAP) activity of osteoclasts. The osteoprotective effects of MTE were comparable to those of estrogenic isoflavone. Low-dose combination of MTE and isoflavone had a pharmacological synergy that may be useful for osteogenic activity. This study attempted to reveal the suppressive effects of MTE on bone loss. C57BL/6 female mice were ovariectomized (OVX) as a model for postmenopausal osteopenia and orally administered 10 mg/kg MTE or silibinin for 8 weeks. The sham-operated mice served as estrogen controls. The treatment of ovariectomized mice with nontoxic MTE and silibinin improved femoral bone mineral density and serum receptor activator of nuclear factor-κB ligand/osteoprotegerin ratio, an index of osteoclastogenic stimulus. In addition, the administration of MTE or silibinin inhibited femoral bone loss induced by ovariectomy and suppressed femoral TRAP activity and cathepsin K induction responsible for osteoclastogenesis and bone resorption. Collectively, oral dosage of MTE containing silibinin in the preclinical setting is effective in preventing estrogen deficiency-induced bone loss. PMID:23781510
Fujii, Toshiaki; Ishikawa, Mizuho; Kubo, Akiko; Tanaka, Yoshitaka
2015-12-01
SI-591[N-[1-[[[(1S)-3-[[(3S)-hexahydro-2-oxo-1H-azepin-3-yl]amino]-1-(1-methylethyl)-2,3-dioxopropyl]amino]carbonyl]cyclohexyl]-2-furancarboxamide] is an orally bioavailable compound that was synthesized as one of several unique peptidomimetic compounds without a basic group. This compound was found to have the ability to inhibit cathepsin K, a lysosomal cysteine protease. Cathepsin K is known to be expressed in osteoclasts and involved in bone loss processes. In this study, SI-591 was shown to inhibit the activity of various purified cathepsin molecules at nanomolar concentrations but had high selectivity for cathepsin K over other subtypes including B and L. SI-591 also decreased the level of CTX-I, a bone resorption marker, which was released from osteoclasts in vitro in a dose-dependent manner. The mobilization of calcium from the bones to the blood stream is known to increase in rats fed with a low calcium diet; SI-591 inhibited this increase in serum calcium level at an oral dose of 3mg/kg. Furthermore, SI-591 significantly decreased the level of CTX-I and DPD, bone resorption markers, at oral doses of 10mg/kg or less in ovariectomized rats, while it did not affect the level of BGP, a bone formation marker. In addition, SI-591 prevented bone mineral density loss in the lumber vertebrae and femurs in ovariectomized rats. These results suggest that SI-591 inhibits bone resorption without affecting osteoblast maturation. Therefore, SI-591, a novel cathepsin K inhibitor, could be a promising agent for the treatment of postmenopausal osteoporosis. Copyright © 2015. Published by Elsevier Inc.
Lester, Mark E; Urso, Maria L; Evans, Rachel K; Pierce, Joseph R; Spiering, Barry A; Maresh, Carl M; Hatfield, Disa L; Kraemer, William J; Nindl, Bradley C
2009-10-01
Prescribing exercise based on intensity, frequency, and duration of loading may maximize osteogenic responses in bone, but a model of the osteogenic potential of exercise has not been established in humans. In rodents, an osteogenic index (OI) has been used to predict the osteogenic potential of exercise. The current study sought to determine whether aerobic, resistance, or combined aerobic and resistance exercise programs conducted over eight weeks and compared to a control group could produce changes in biochemical markers of bone turnover indicative of bone formation. We further sought to determine whether an OI could be calculated for each of these programs that would reflect observed biochemical changes. We collected serum biomarkers [bone-specific alkaline phosphatase (BAP), osteocalcin, tartrate-resistant acid phosphatase (TRAP), C-terminal telopeptide fragment of type I collagen (CTx), deoxypyridinoline (DPD), 25-hydroxy vitamin D (25(OH)D), and parathyroid hormone (PTH)] in 56 women (20.3+/-1.8 years) before, during and after eight weeks of training. We also measured bone mineral density (BMD) at regional areas of interest using DXA and pQCT. Biomarkers of bone formation (BAP and osteocalcin) increased in the Resistance and Combined groups (p<0.05), while biomarkers of bone resorption (TRAP and DPD) decreased and increased, respectively, after training (p<0.05) in all groups. Small changes in volumetric and areal BMD (p<0.05) were observed in the distal tibia in the Aerobic and Combined groups, respectively. Mean weekly OIs were 16.0+/-1.9, 20.6+/-2.2, and 36.9+/-5.2 for the Resistance, Aerobic, and Combined groups, respectively. The calculated osteogenic potential of our programs did not correlate with the observed changes in biomarkers of bone turnover. The results of the present study demonstrate that participation in an eight week physical training program that incorporates a resistance component by previously inactive young women results in alterations in biomarkers of bone remodeling indicative of increased formation without substantial alterations in markers of resorption.
A 14-day ground-based hypokinesia study in nonhuman primates: A compilation of results
NASA Technical Reports Server (NTRS)
Kazarian, L.; Cann, C. E.; Parfitt, M.; Simmons, D.; Morey-Holton, E.
1981-01-01
A 14 day ground based hypokinesia study with rhesus monkeys was conducted to determine if a spaceflight of similar duration might affect bone remodeling and calcium homeostatis. The monkeys were placed in total body casts and sacrificed either immediately upon decasting or 14 days after decasting. Changes in vertebral strength were noted and further deterioration of bone strength continued during the recovery phase. Resorption in the vertebrae increased dramatically while formation decreased. Cortical bone formation was impaired in the long bones. The immobilized animals showed a progressive decrease in total serum calcium which rebounded upon remobilization. Most mandibular parameters remained unchanged during casting except for retardation of osteon birth or maturation rate and density distribution of matrix and mineral moieties.
Tella, E; Aldahlawi, S; Eldeeb, A; El Gazaerly, H
2014-07-01
Aminoguanidine (guanylhydrazinehydrochloride) is a drug that prevents many of the classical systemic complications of diabetes including diabetic osteopenia through its inhibitory activity on the accumulation of advanced glycation end -products (AGEs). The aim of the present study was to evaluate the effectiveness of aminoguanidine versus doxycycline in reducing alveolar bone resorption following mucoperiosteal flap in diabetic rats, using the conventional histopathology and scanning electron microscope (SEM). Twenty-seven male albino rats were used in this study. Periodontal defects were induced experimentally on lower anterior teeth. All rats were subjected to induction of diabetes, by IV injection of the pancreatic B-cells toxin alloxan monohydrate. After eight weeks following the establishment of periodontal defects in all rats, the ligation was removed and 3 rats were scarified as negative control (group 1). The remaining animals were divided into three group based on treatment applied following mucoperiosteal flap surgery. Group 2 received saline treatment only, group 3 received doxycycline periostat (1.5 mg/kg/day) for 3 weeks, and group 4 received aminoguanidine (7.3 mmol/kg) for 3 weeks. The fasting glucose level was measured weekly post operatively. After 21 days all rats were sacrificed. Three anterior parts of the mandible of each group was prepared for histopathological examination and two parts were prepared for SEM. Aminoguanidine treated group (group 4) showed statistically significant increased new bone formation, higher number of osteoblasts and decrease osteoclasts number, resorptive lacunae and existing inflammatory cell infiltration as compared to positive control group (group 2) (P<0.05). Doxycycline was also effective in reducing bone loss as documental by histopathological study. The present study showed that aminoguanidine was significantly effective in reducing alveolar bone loss and can modify the detrimental effects of diabetes in alveolar bone resorption.
NASA Technical Reports Server (NTRS)
Yamaguchi, T.; Chattopadhyay, N.; Kifor, O.; Butters, R. R. Jr; Sugimoto, T.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)
1998-01-01
The calcium-sensing receptor (CaR) is a G protein-coupled receptor that plays key roles in extracellular calcium ion (Ca2+o) homeostasis in parathyroid gland and kidney. Osteoblasts appear at sites of osteoclastic bone resorption during bone remodeling in the "reversal" phase following osteoclastic resorption and preceding bone formation. Bone resorption produces substantial local increases in Ca2+o that could provide a signal for osteoblasts in the vicinity, leading us to determine whether such osteoblasts express the CaR. In this study, we used the mouse osteoblastic, clonal cell line MC3T3-E1. Both immunocytochemistry and Western blot analysis, using an antiserum specific for the CaR, detected CaR protein in MC3T3-E1 cells. We also identified CaR transcripts in MC3T3-E1 cells by Northern analysis using a CaR-specific riboprobe and by reverse transcription-polymerase chain reaction with CaR-specific primers, followed by nucleotide sequencing of the amplified products. Exposure of MC3T3-E1 cells to high Ca2+o (up to 4.8 mM) or the polycationic CaR agonists, neomycin and gadolinium (Gd3+), stimulated both chemotaxis and DNA synthesis in MC3T3-E1 cells. Therefore, taken together, our data strongly suggest that the osteoblastic cell line MC3T3-E1 possesses both CaR protein and mRNA very similar, if not identical, to those in parathyroid and kidney. Furthermore, the CaR in these osteoblasts could play a key role in regulating bone turnover by stimulating the proliferation and migration of such cells to sites of bone resorption as a result of local release of Ca2+o.
[Subchondral bone in osteoarthritis: a review].
Pang, Jian; Cao, Yue-long; Shi, Yin-yu
2011-08-01
Osteoarthritis (OA) is the most prevalent of joint diseases,and its pathology is characterized by the degeneration of cartilage, sclerosis of subchondral bone, and osteophyte formation. Localization of the early lesions of OA has not been clarified, but many researchers have focused on cartilage and have considered that changes in subchondral bone occur subsequently to the degeneration of cartilage. However, a low bone mineral density, particularly in the knee joint with OA, high bone turnover, and efficacy of bone resorption inhibitors for OA have recently been reported, suggesting that subchondral bone plays an important role in the pathogenesis of OA. This review aims to make a conclusion about advancement in research of subchondral bone in osteoarthritis.
Bone Metabolism in Anorexia Nervosa
Fazeli, Pouneh K.; Klibanski, Anne
2014-01-01
Anorexia nervosa (AN), a psychiatric disorder predominantly affecting young women, is characterized by self-imposed chronic nutritional deprivation and distorted body image. AN is associated with a number of medical co-morbidities including low bone mass. The low bone mass in AN is due to an uncoupling of bone formation and bone resorption, which is the result of hormonal adaptations aimed at decreasing energy expenditure during periods of low energy intake. Importantly, the low bone mass in AN is associated with a significant risk of fractures and therefore treatments to prevent bone loss are critical. In this review, we discuss the hormonal determinants of low bone mass in AN and treatments that have been investigated in this population. PMID:24419863
Yamaguchi, Masayoshi; Moore, Terry W; Sun, Aiming; Snyder, James P; Shoji, Mamoru
2012-08-01
Bone homeostasis is maintained through a balance between osteoblastic bone formation and osteoclastic bone resorption. Bone loss is induced due to decreased osteoblastic bone formation and increased osteoclastic bone resorption with various pathologic states. Osteoporosis with its accompanying decrease in bone mass is widely recognized as a major public health problem. Pharmacologic and functional food factors may play a role in the prevention of bone loss with aging. This study was undertaken to determine the effect of curcumin analogues (curcumin, EF31, ECMN909, and UBS109), which were newly synthesized, on osteoblastogenesis and osteoclastogenesis in vitro. Among these compounds, UBS109 had a unique stimulatory effect on osteoblastic differentiation and mineralization. UBS109 stimulated both basal and bone morphogenic protein-2 (BMP2)-increased Smad-luciferase activity, the Smad signaling of which is related to osteoblastogenesis. Such an effect was not seen with other compounds. Moreover, UBS109 potently suppressed tumor necrosis factor-α (TNF-α)-increased osteoblastic nuclear factor kappa B (NF-κB)-luciferase activity. In addition, EF31, ECMN909, and UBS109 had a suppressive effect on osteoclastogenesis as compared with that of curcumin. ECMN909 and UBS109 potently inhibited the receptor activator of NF-κB (RANK) ligand (RANKL)-increased preosteoclastic NF-κB-luciferase activity, in which NF-κB signaling plays a pivotal role in osteoclastogenesis. In the present study, curcumin analogue UBS109 was found to have a stimulating effect on osteoblastogenesis and a suppressive effect on osteoclastogenesis in vitro, suggesting an anabolic effect of the compound on bone mass.
Hygum, Katrine; Starup-Linde, Jakob; Harsløf, Torben; Vestergaard, Peter; Langdahl, Bente L
2017-03-01
To investigate the differences in bone turnover between diabetic patients and controls. A systematic review and meta-analysis. A literature search was conducted using the databases Medline at PubMed and EMBASE. The free text search terms 'diabetes mellitus' and 'bone turnover', 'sclerostin', 'RANKL', 'osteoprotegerin', 'tartrate-resistant acid' and 'TRAP' were used. Studies were eligible if they investigated bone turnover markers in patients with diabetes compared with controls. Data were extracted by two reviewers. A total of 2881 papers were identified of which 66 studies were included. Serum levels of the bone resorption marker C-terminal cross-linked telopeptide (-0.10 ng/mL (-0.12, -0.08)) and the bone formation markers osteocalcin (-2.51 ng/mL (-3.01, -2.01)) and procollagen type 1 amino terminal propeptide (-10.80 ng/mL (-12.83, -8.77)) were all lower in patients with diabetes compared with controls. Furthermore, s-tartrate-resistant acid phosphatase was decreased in patients with type 2 diabetes (-0.31 U/L (-0.56, -0.05)) compared with controls. S-sclerostin was significantly higher in patients with type 2 diabetes (14.92 pmol/L (3.12, 26.72)) and patients with type 1 diabetes (3.24 pmol/L (1.52, 4.96)) compared with controls. Also, s-osteoprotegerin was increased among patients with diabetes compared with controls (2.67 pmol/L (0.21, 5.14)). Markers of both bone formation and bone resorption are decreased in patients with diabetes. This suggests that diabetes mellitus is a state of low bone turnover, which in turn may lead to more fragile bone. Altered levels of sclerostin and osteoprotegerin may be responsible for this. © 2017 European Society of Endocrinology.
An essential role for the association of CD47 to SHPS-1 in skeletal remodeling.
Maile, Laura A; DeMambro, Victoria E; Wai, Christine; Lotinun, Sutada; Aday, Ariel W; Capps, Byron E; Beamer, Wesley G; Rosen, Clifford J; Clemmons, David R
2011-09-01
Integrin-associated protein (IAP/CD47) has been implicated in macrophage-macrophage fusion. To understand the actions of CD47 on skeletal remodeling, we compared Cd47(-/-) mice with Cd47(+/+) controls. Cd47(-/-) mice weighed less and had decreased areal bone mineral density compared with controls. Cd47(-/-) femurs were shorter in length with thinner cortices and exhibited lower trabecular bone volume owing to decreased trabecular number and thickness. Histomorphometry revealed reduced bone-formation and mineral apposition rates, accompanied by decreased osteoblast numbers. No differences in osteoclast number were observed despite a nonsignificant but 40% decrease in eroded surface/bone surface in Cd47(-/-) mice. In vitro, the number of functional osteoclasts formed by differentiating Cd47(-/-) bone marrow cells was significantly decreased compared with wild-type cultures and was associated with a decrease in bone-resorption capacity. Furthermore, by disrupting the CD47-SHPS-1 association, we found that osteoclastogenesis was markedly impaired. Assays for markers of osteoclast maturation suggested that the defect was at the point of fusion and not differentiation and was associated with a lack of SHPS-1 phosphorylation, SHP-1 phosphatase recruitment, and subsequent dephosphorylation of non-muscle cell myosin IIA. We also demonstrated a significant decrease in osteoblastogenesis in bone marrow stromal cells derived from Cd47(-/-) mice. Our finding of cell-autonomous defects in Cd47(-/-) osteoblast and osteoclast differentiation coupled with the pronounced skeletal phenotype of Cd47(-/-) mice support the conclusion that CD47 plays an important role in regulating skeletal acquisition and maintenance through its actions on both bone formation and bone resorption. Copyright © 2011 American Society for Bone and Mineral Research.
Catalano, A; Morabito, N; Di Vieste, G; Pintaudi, B; Cucinotta, D; Lasco, A; Di Benedetto, A
2013-05-01
Several studies have reported increased fracture risk in Type 1 diabetes mellitus (T1DM). Quantitative Ultrasound (QUS) provides information on the structure and elastic properties of bone, which are important determinants of fracture risk, along with bone mineral density. To study phalangeal sites by QUS, examine bone turnover markers and analyze association between these factors with metabolic control in a population of pre-menopausal women with T1DM. Thirty-five T1DM pre-menopausal women (mean age 34.5 ± 6.8 yr) attending the Diabetic Outpatients Clinic in the Department of Internal Medicine, University of Messina, were consecutively enrolled and divided into two groups, taking into account the mean value of glycated hemoglobin in the last three years. Twenty healthy age-matched women served as controls. Phalangeal ultrasound measurements [Amplitude Dependent Speed of Sound (AD-SoS), Ultrasound Bone Profile Index (UBPI), TScore, Z-Score] were performed using a DBM Sonic Bone Profiler. Osteocalcin and deoxypyridinoline served as markers of bone formation and bone resorption, respectively. T1DM women with poor metabolic control showed lower phalangeal QUS values compared to healthy controls (p<0.01) and T1DM women with good metabolic control (p<0.05). No significant differences in QUS measurements were detected between T1DM women with good metabolic control and healthy controls. Lower bone formation and increased bone resorption, although not statistically significant, were observed in patients with poor metabolic control in comparison to patients with good metabolic control. Poor metabolic control may worsen the quality of bone in T1DM. Phalangeal QUS could be considered as a tool to screen T1DM women for osteoporosis in pre-menopausal age.
NASA Technical Reports Server (NTRS)
Jee, W. S. S.; Tang, L.; Ke, H. Z.; Setterberg, R. B.; Kimmel, D. B.
1993-01-01
This experiment contains the crucial data for the Lose, Restore and Maintain (LRM) concept, a practical approach for reversing existing osteoporosis. The LRM concept uses ovariectomy (ox) to lose bone, an anabolic agent to restore bone mass and then switches to an anti-resorptive agent to maintain bone mass. We ox'd or sham-ox'd rats for 150 days (Loss Phase), treated them with 6 mg PGE2/kg/d for 75 days to restore lost cancellous bone mass (Restore Phase) and then stopped PGE2 treatment and began treatment with 1 or 5 micro-g/kg Risedronate, a bisphosphonate twice a week for 60 days (Maintain Phase). During the Loss Phase, cancellous bone volumes of the proximal tibial metaphysis (PTM) in the ox'd rat fell to 19% of initial controls. During the Restore Phase, the PTM bone volume in ox'd rats doubled. However, when PGE2 treatment was stopped, the PGE2-induced cancellous bone disappeared. In contrast, 5 micro-g of Risedronate inhibited the bone loss and maintained it at the PGE2 treatment level. The key dynamic histomorphometry value for the restore (R) and maintenance (M) phases was the ratio of bone formation to resorption rates. The ratio was elevated to 5.8 in the R phase and depressed to 0.4 for no and 1 micro-g Risedronate treated M phase and to a ratio of near unity of 1.1 for the 5 micro-g Risedronate treatment. These findings indicate that we were successful in maintaining the new PTM bone induced by PGE2 after discontinuing PGE2 by administering enough Risedronate, a resorption inhibitor. We concluded that the LRM concept is correct and such an approach should be considered when employing anabolic agents or growth factors in the treatment of osteoporosis. Continued use of an anabolic agent may not be appropriate because of cost, potential adverse side effects and a loss of efficacy.
Hambli, Ridha
2014-01-01
Bone adaptation occurs as a response to external loadings and involves bone resorption by osteoclasts followed by the formation of new bone by osteoblasts. It is directly triggered by the transduction phase by osteocytes embedded within the bone matrix. The bone remodeling process is governed by the interactions between osteoblasts and osteoclasts through the expression of several autocrine and paracrine factors that control bone cell populations and their relative rate of differentiation and proliferation. A review of the literature shows that despite the progress in bone remodeling simulation using the finite element (FE) method, there is still a lack of predictive models that explicitly consider the interaction between osteoblasts and osteoclasts combined with the mechanical response of bone. The current study attempts to develop an FE model to describe the bone remodeling process, taking into consideration the activities of osteoclasts and osteoblasts. The mechanical behavior of bone is described by taking into account the bone material fatigue damage accumulation and mineralization. A coupled strain-damage stimulus function is proposed, which controls the level of autocrine and paracrine factors. The cellular behavior is based on Komarova et al.'s (2003) dynamic law, which describes the autocrine and paracrine interactions between osteoblasts and osteoclasts and computes cell population dynamics and changes in bone mass at a discrete site of bone remodeling. Therefore, when an external mechanical stress is applied, bone formation and resorption is governed by cells dynamic rather than adaptive elasticity approaches. The proposed FE model has been implemented in the FE code Abaqus (UMAT routine). An example of human proximal femur is investigated using the model developed. The model was able to predict final human proximal femur adaptation similar to the patterns observed in a human proximal femur. The results obtained reveal complex spatio-temporal bone adaptation. The proposed FEM model gives insight into how bone cells adapt their architecture to the mechanical and biological environment.
Rachner, Tilman D.; Khosla, Sundeep; Hofbauer, Lorenz C.
2013-01-01
Summary Osteoporosis is a common disease characterised by a systemic impairment of bone mass and microarchitecture that results in fragility fractures. With an ageing population, the medical and socioeconomic impact of osteoporosis in general and postmenopausal osteoporosis in particular, will increase further. A detailed knowledge of bone biology with molecular insights into the communication between bone-forming osteoblasts and bone-resorbing osteoclasts and the orchestrating signalling network has led to the identification of novel therapeutic targets. Based on this, therapeutic strategies have been developed aimed at (I) inhibiting excessive bone resorption and by (II) increasing bone formation. The most promising novel treatments include denosumab, a monoclonal antibody against receptor activator of NF-κB ligand, a key osteoclast cytokine, odanacatib, a specific inhibitor of the osteoclast protease cathepsin K, and antibodies against the proteins sclerostin and dickkopf-1, two endogenous inhibitors of bone formation. This review provides an overview on these novel therapies and explains their underlying physiology. PMID:21450337
Li, Liang; Sapkota, Mahesh; Gao, Ming; Choi, Hyukjae; Soh, Yunjo
2017-11-15
The balance between bone formation and bone resorption is maintained by osteoblasts and osteoclasts. In the current study, macrolactin F (MF) was investigated for novel biological activity on the receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclastogenesis in primary bone marrow-derived macrophages (BMMs). We found that RANKL-induced osteoclast formation and differentiation from BMMs was significantly inhibited by MF in a dose-dependent manner without cytotoxicity. RANKL-induced F-actin ring formation and bone resorption activity in BMMs which was attenuated by MF. In addition, MF suppressed the expression of osteoclast-related genes, including c-myc, RANK, tartrate-resistant acid phosphatase (TRAP), nuclear factor of activated T cells c1 (NFATc1), cathepsin K and matrix metalloproteinase 9 (MMP9). Furthermore, the protein expression NFATc1, c-Fos, MMP9, cathepsin K and phosphorylation of Jun N-terminal kinase (JNK), p38 and Akt were also down-regulated by MF treatment. Interestingly, MF promoted pre-osteoblast cell differentiation on Alizarin Red-mineralization activity, alkaline phosphatase (ALP) activity, and the expression of osteoblastogenic markers including Runx2, Osterix, Smad4, ALP, type I collagen alpha 1 (Col1α), osteopontin (OPN), and osteocalcin (OCN) via activation of the BMP-2/smad/Akt/Runx2 pathway on MC3T3-E1. Taken together, these results indicate that MF may be useful as a therapeutic agent to enhance bone health and treat osteoporosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Experiment K-317: Bone resorption in rats during spaceflight
NASA Technical Reports Server (NTRS)
Cann, C. E.; Adachi, R. R.
1981-01-01
Direct measurement of bone resorption in flight and synchronous control rats is described. Continuous tracer administration techniques were used, with replacement of dietary calcium with isotopically enriched Ca40 and measurement by neutron activation analysis of the Ca48 released by the skeleton. There is no large change in bone resorption in rats. Based on the time course of changes, the measured 20-25% decrease in resorption is probably secondary to a decrease in total body calcium turnover. The excretion of sodium, potassium and zinc all increase during flight, sodium and potassium to a level 4-5 times control values.
Giuliani, Alessandra; Manescu, Adrian; Mohammadi, Sara; Mazzoni, Serena; Piattelli, Adriano; Mangano, Francesco; Iezzi, Giovanna; Mangano, Carlo
2016-02-01
Successful bone regeneration using both granules and blocks of biphasic calcium phosphate materials has been reported in the recent literature, in some clinical applications for maxillary sinus elevation, but the long-term kinetics of bone regeneration has still not been fully investigated. Twenty-four bilateral sinus augmentation procedures were performed and grafted with hydroxyapatite/β-tricalcium phosphate 30/70, 12 with granules and 12 with blocks. The samples were retrieved at different time points and were evaluated for bone regeneration, graft resorption, neovascularization, and morphometric parameters by computed microtomography and histology. A large amount of newly formed bone was detected in the retrieved specimens, together with a good rate of biomaterial resorption and the formation of a homogeneous and rich net of new vessels. The morphometric values were comparable at 5/6 months from grafting but, 9 months after grafting, revealed that the block-based specimens mimicked slightly better than granule-based samples the healthy native bone of the maxillary site. The scaffold morphology was confirmed to influence the long-term kinetics of bone regeneration.
Hruschka, Veronika; Tangl, Stefan; Ryabenkova, Yulia; Heimel, Patrick; Barnewitz, Dirk; Möbus, Günter; Keibl, Claudia; Ferguson, James; Quadros, Paulo; Miller, Cheryl; Goodchild, Rebecca; Austin, Wayne; Redl, Heinz; Nau, Thomas
2017-01-01
Nanocrystalline hydroxyapatite (HA) has good biocompatibility and the potential to support bone formation. It represents a promising alternative to autologous bone grafting, which is considered the current gold standard for the treatment of low weight bearing bone defects. The purpose of this study was to compare three bone substitute pastes of different HA content and particle size with autologous bone and empty defects, at two time points (6 and 12 months) in an ovine scapula drillhole model using micro-CT, histology and histomorphometry evaluation. The nHA-LC (38% HA content) paste supported bone formation with a high defect bridging-rate. Compared to nHA-LC, Ostim® (35% HA content) showed less and smaller particle agglomerates but also a reduced defect bridging-rate due to its fast degradation The highly concentrated nHA-HC paste (48% HA content) formed oversized particle agglomerates which supported the defect bridging but left little space for bone formation in the defect site. Interestingly, the gold standard treatment of the defect site with autologous bone tissue did not improve bone formation or defect bridging compared to the empty control. We concluded that the material resorption and bone formation was highly impacted by the particle-specific agglomeration behaviour in this study. PMID:28233833
Bone and hormonal changes induced by skeletal unloading in the mature male rat
NASA Technical Reports Server (NTRS)
Dehority, W.; Halloran, B. P.; Bikle, D. D.; Curren, T.; Kostenuik, P. J.; Wronski, T. J.; Shen, Y.; Rabkin, B.; Bouraoui, A.; Morey-Holton, E.
1999-01-01
To determine whether the rat hindlimb elevation model can be used to study the effects of spaceflight and loss of gravitational loading on bone in the adult animal, and to examine the effects of age on bone responsiveness to mechanical loading, we studied 6-mo-old rats subjected to hindlimb elevation for up to 5 wk. Loss of weight bearing in the adult induced a mild hypercalcemia, diminished serum 1,25-dihydroxyvitamin D, decreased vertebral bone mass, and blunted the otherwise normal increase in femoral mass associated with bone maturation. Unloading decreased osteoblast numbers and reduced periosteal and cancellous bone formation but had no effect on bone resorption. Mineralizing surface, mineral apposition rate, and bone formation rate decreased during unloading. Our results demonstrate the utility of the adult rat hindlimb elevation model as a means of simulating the loss of gravitational loading on the skeleton, and they show that the effects of nonweight bearing are prolonged and have a greater relative effect on bone formation in the adult than in the young growing animal.
Osher, Lawrence S; Blazer, Marie Mantini; Bumpus, Kelly
2013-01-01
We present a case report of melorheostosis with the novel radiographic finding of underlying cortical resorption. A number of radiographic patterns of melorheostosis have been described; however, the combination of new bone formation and resorption of the original cortex appears unique. Although the presence of underlying lysis has been postulated in published studies, direct radiographic evidence of bony resorption in melorheostosis has not been reported. These findings can be subtle and might go unnoticed using standard imaging. An in-depth review of the radiographic features is presented, including multimodality imaging with magnetic resonance imaging and computed tomography. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Excessive dietary intake of vitamin A reduces skull bone thickness in mice
Öhman, Caroline; Calounova, Gabriela; Rasmusson, Annica; Andersson, Göran; Pejler, Gunnar; Melhus, Håkan
2017-01-01
Calvarial thinning and skull bone defects have been reported in infants with hypervitaminosis A. These findings have also been described in humans, mice and zebrafish with loss-of-function mutations in the enzyme CYP26B1 that degrades retinoic acid (RA), the active metabolite of vitamin A, indicating that these effects are indeed caused by too high levels of vitamin A and that evolutionary conserved mechanisms are involved. To explore these mechanisms, we have fed young mice excessive doses of vitamin A for one week and then analyzed the skull bones using micro computed tomography, histomorphometry, histology and immunohistochemistry. In addition, we have examined the effect of RA on gene expression in osteoblasts in vitro. Compared to a standard diet, a high dietary intake of vitamin A resulted in a rapid and significant reduction in calvarial bone density and suture diastasis. The bone formation rate was almost halved. There was also increased staining of tartrate resistant acid phosphatase in osteocytes and an increased perilacunar matrix area, indicating osteocytic osteolysis. Consistent with this, RA induced genes associated with bone degradation in osteoblasts in vitro. Moreover, and in contrast to other known bone resorption stimulators, vitamin A induced osteoclastic bone resorption on the endocranial surfaces. PMID:28426756
Changes in biomarkers of bone turnover in an aripiprazole add-on or switching study.
Lodhi, Rohit J; Masand, Salaj; Malik, Amna; Shivakumar, Kuppuswami; McAllister, Victoria D M; O'Keane, Veronica; Young, Leah C; Heald, Adrian H; Sherwood, Roy A; Aitchison, Katherine J
2016-02-01
The association between mental illness and osteoporosis and fractures is particularly pronounced in psychotic disorders. Antipsychotic use has previously been described to affect bone density. A 52-week follow-up of patients switched to aripiprazole or with aripiprazole added on, conducting a specific analysis of markers of bone turnover: urinary NTX (a biomarker of bone resorption) and serum BSAP (a biomarker of bone formation). Baseline and serial measurements of bone markers NTX, BSAP and of hormones prolactin, oestrogen and testosterone were done at weeks 0 and 1, 2, 6, 12, 26 and 52, respectively. NTX concentration reduced over time but this did not reach significance in the whole group (log-NTX: β=-0.0012, p=0.142). For BSAP the addition of or replacement with aripiprazole produced a significant reduction (log-BSAP: β=-0.00039, p=0.002). Analysis with prolactin similarly showed a significant reduction (log-prolactin: β=-0.0024, p<0.001); other hormones did not change significantly. Sensitivity analysis to compare the switchers to aripiprazole versus the "add-on" showed that the former group had a significant reduction in NTX. We found that switching to aripiprazole was associated with changes in molecular biomarkers of bone resorption, indicating a more favourable profile for bone health. Copyright © 2015 Elsevier B.V. All rights reserved.
Cardiotonic agent milrinone stimulates resorption in rodent bone organ culture.
Krieger, N S; Stappenbeck, T S; Stern, P H
1987-01-01
The cardiotonic agent amrinone inhibits bone resorption in vitro. Milrinone, an amrinone analog, is a more potent cardiotonic agent with lower toxicity. In contrast to amrinone, milrinone stimulated resorption in cultures of neonatal mouse calvaria and fetal rat limb bones. Threshold doses were 0.1 microM in calvaria and 0.1 mM in limb bones; maximal stimulation occurred in calvaria at 0.1 mM. Maximal responses to milrinone and parathyroid hormone were comparable. Milrinone concentrations below 0.1 mM did not affect calvarial cyclic AMP. 0.5 microM indomethacin inhibited milrinone effects in calvaria but usually not in limb bones. 3 nM calcitonin inhibited milrinone-stimulated resorption and there was no escape from this inhibition. Structural homology between milrinone and thyroxine has been reported. We find similarities between milrinone and thyroxine actions on bone, because prostaglandin production was crucial for the effects of both agents in calvaria but not in limb bones, and neither agent exhibited escape from calcitonin inhibition. PMID:3027124
Bouleftour, Wafa; Boudiffa, Maya; Wade-Gueye, Ndeye Marième; Bouët, Guénaëlle; Cardelli, Marco; Laroche, Norbert; Vanden-Bossche, Arnaud; Thomas, Mireille; Bonnelye, Edith; Aubin, Jane E; Vico, Laurence; Lafage-Proust, Marie Hélène; Malaval, Luc
2014-01-01
Adult Ibsp-knockout mice (BSP-/-) display shorter stature, lower bone turnover and higher trabecular bone mass than wild type, the latter resulting from impaired bone resorption. Unexpectedly, BSP knockout also affects reproductive behavior, as female mice do not construct a proper "nest" for their offsprings. Multiple crossing experiments nonetheless indicated that the shorter stature and lower weight of BSP-/- mice, since birth and throughout life, as well as their shorter femur and tibia bones are independent of the genotype of the mothers, and thus reflect genetic inheritance. In BSP-/- newborns, µCT analysis revealed a delay in membranous primary ossification, with wider cranial sutures, as well as thinner femoral cortical bone and lower tissue mineral density, reflected in lower expression of bone formation markers. However, trabecular bone volume and osteoclast parameters of long bones do not differ between genotypes. Three weeks after birth, osteoclast number and surface drop in the mutants, concomitant with trabecular bone accumulation. The growth plates present a thinner hypertrophic zone in newborns with lower whole bone expression of IGF-1 and higher IHH in 6 days old BSP-/- mice. At 3 weeks the proliferating zone is thinner and the hypertrophic zone thicker in BSP-/- than in BSP+/+ mice of either sex, maybe reflecting a combination of lower chondrocyte proliferation and impaired cartilage resorption. Six days old BSP-/- mice display lower osteoblast marker expression but higher MEPE and higher osteopontin(Opn)/Runx2 ratio. Serum Opn is higher in mutants at day 6 and in adults. Thus, lack of BSP alters long bone growth and membranous/cortical primary bone formation and mineralization. Endochondral development is however normal in mutant mice and the accumulation of trabecular bone observed in adults develops progressively in the weeks following birth. Compensatory high Opn may allow normal endochondral development in BSP-/- mice, while impairing primary mineralization.
High dietary calcium intake does not counteract disuse-induced bone loss
NASA Astrophysics Data System (ADS)
Baecker, N.; Boese, A.; Smith, S. M.; Heer, M.
Reduction of mechanical stress on bone inhibits osteoblast-mediated bone formation, increases osteoclast-mediated bone resorption, and leads to what has been called disuse osteoporosis. Prolonged therapeutic bed rest, immobilization and space flight are common causes of disuse osteoporosis. There are sufficient data supporting the use of calcium in combination with vitamin D in the prevention and treatment of postmenopausal osteoporosis. In our study we examined the potential of high dietary calcium intake as a nutrition therapy for disuse-induced bone loss during head-down bed rest in healthy young men. In 2 identical metabolic ward, head-down bed rest (HDBR) experiments (crossover design), we studied the effect of high dietary calcium intake (2000 mg/d) in comparison to the recommended calcium intake of 1000 mg/d on markers of bone turnover. Experiment A (EA) was a 6-day randomized, controlled HDBR study. Experiment B (EB) was a 14-day randomized, controlled HDBR study. In both experiments, the test subjects stayed under well-controlled environmental conditions in our metabolic ward. Subjects' diets in the relevant study phases (HDBR versus Ambulatory Control) of EA and EB were identical except for the calcium intake. The subjects obtained 2000 mg/d Calcium in EA and 2000 mg/d in EB. Blood was drawn at baseline, before entering the relevant intervention period, on day 5 in study EA, and on days 6, 11 and 14 in study EB. Serum calcium, bone formation markers - Procollagen-I-C-Propeptide (PICP) and bone alkaline phosphatase (bAP) were analyzed in serum. 24h-urine was collected throughout the studies for determination of the excretion of calcium (UCaV) and a bone resorption marker, C-terminal telopeptide of collagen type I (UCTX). In both studies, serum calcium levels were unchanged. PICP tended to decrease in EA (p=0.08). In EB PICP decreased significantly over time (p=0.003) in both the control and HDBR periods, and tended to further decrease in the HDBR period (p=0.06). While HDBR did not affect bAP in both EA and EB, bAP decreased significantly over time in both groups of EB (p<0.001). UCaV significantly increased during HDBR in EA (p=0.002) and EB (p=0.004) compared to the ambulatory controls. UCTX significantly increased on the second day of HDBR by 18% (p<0.001) in EA and by 27% (p=0.03) in EB. We conclude from these results that doubling dietary calcium intake from the recommended level of 1000 mg/d to 2000 mg/d does not prevent the decrease in bone formation activity and the increase of bone resorption activity in disuse-induced bone loss.
Álvarez-Sánchez, Nuria; Álvarez-Ríos, Ana Isabel; Guerrero, Juan Miguel; García-García, Francisco José; Rodríguez-Mañas, Leocadio; Cruz-Chamorro, Ivan; Lardone, Patricia Judith; Carrillo-Vico, Antonio
2018-04-26
Homocysteine (Hcy) high levels are associated with fractures, bone resorption and an early onset of osteoporosis in elderly persons; a relationship between Hcy and bone formation has also been suggested but is still controversial. Frailty, an independent predictor of fractures and decreased bone mineral density is associated with altered bone metabolism in women. However, no previous works have studied the relationship among frailty, Hcy levels and bone turnover. We studied the association among Hcy, osteoporosis and N-terminal propeptide of type I procollagen (PINP), C-terminal telopeptide of type I collagen (β-CTX), parathyroid hormone (PTH), calcium and 25-hydroxyvitamin D (25(OH)D) in 631 Spanish women between the ages of 65-78 from the Toledo Study for Healthy Aging (TSHA) cohort, who were classified as highly functional (robust subjects) or non-robust (pre-frail or frail subjects) according to Fried's criteria. Hcy was independently associated with β-CTX in the entire population (B = 0.22; 95% CI, 0.09-0.34; p = 0.001) and in the non-robust group (B = 0.24; 95% CI, 0.09-0.39; p = 0.002). Hcy was also associated with PINP in the entire and non-robust populations, but the association was lost after including the levels of β-CTX, but not the other bone biomarkers, in the multivariate analysis. This suggests that the controversial relationship between Hcy and bone formation might be explained, at least to a certain extent, by the confounding effects of β-CTX. This work highlights the important implication of frailty status in the association between Hcy and increased bone turnover in older women. Copyright © 2018 Elsevier Inc. All rights reserved.
Leukemia inhibitory factor: a novel bone-active cytokine.
Reid, L R; Lowe, C; Cornish, J; Skinner, S J; Hilton, D J; Willson, T A; Gearing, D P; Martin, T J
1990-03-01
A number of cytokines have been found to be potent regulators of bone resorption and to share the properties originally attributed to osteoclast-activating factor. One such activity, differentiation-inducing factor (DIF, D-factor) from mouse spleen cells, shares a number of biological and biochemical properties with the recently characterized and cloned leukemia inhibitory factor (LIF). We have assessed the effects of recombinant LIF on bone resorption and other parameters in neonatal mouse calvaria. Both recombinant murine and human (h) LIFs stimulated 45Ca release from prelabeled calvaria in a dose-dependent manner. The increase in bone resorption was associated with an increase in the number of osteoclasts per mm2 bone. The osteolytic effect of hLIF were blocked by 10(-7) M indomethacin. hLIF also stimulated incorporation of [3H] thymidine into calvaria, but the dose-response relationship was distinct from that for bone resorption, and this effect was not blocked by indomethacin. Similarly, hLIF increased [3H]phenylalanine incorporation into calvaria, and this was also not inhibited by indomethacin. It is concluded that LIF stimulates bone resorption by a mechanism involving prostaglandin production, but that a distinct mechanism is responsible for its stimulation of DNA and protein synthesis. The primary structure of LIF differs from that of other fully characterized, bone-active cytokines, and it, thus, represents a novel factor which may be involved in the normal regulation of bone cell function.
NASA Technical Reports Server (NTRS)
Cavolina, J. M.; Evans, G. L.; Harris, S. A.; Zhang, M.; Westerlind, K. C.; Turner, R. T.
1997-01-01
A 14-day orbital spaceflight was performed using ovariectomized Fisher 344 rats to determine the combined effects of estrogen deficiency and near weightlessness on tibia radial bone growth and cancellous bone turnover. Twelve ovariectomized rats with established cancellous osteopenia were flown aboard the space shuttle Columbia (STS-62). Thirty ovariectomized rats were housed on earth as ground controls: 12 in animal enclosure modules, 12 in vivarium cages, and 6 killed the day of launch for baseline measurements. An additional 18 ovary-intact rats were housed in vivarium cages as ground controls: 8 rats were killed as baseline controls and the remaining 10 rats were killed 14 days later. Ovariectomy increased periosteal bone formation at the tibia-fibula synostosis; cancellous bone resorption and formation in the secondary spongiosa of the proximal tibial metaphysis; and messenger RNA (mRNA) levels for the prepro-alpha2(1) subunit of type 1 collagen, osteocalcin, transforming growth factor-beta, and insulin-like growth factor I in the contralateral proximal tibial metaphysis and for the collagen subunit in periosteum pooled from tibiae and femora and decreased cancellous bone area. Compared to ovariectomized weight-bearing rats, the flight group experienced decreases in periosteal bone formation, collagen subunit mRNA levels, and cancellous bone area. The flight rats had a small decrease in the cancellous mineral apposition rate, but no change in the calculated bone formation rate. Also, spaceflight had no effect on cancellous osteoblast and osteoclast perimeters or on mRNA levels for bone matrix proteins and signaling peptides. On the other hand, spaceflight resulted in an increase in bone resorption, as ascertained from the diminished retention of a preflight fluorochrome label. This latter finding suggests that osteoclast activity was increased. In a follow-up ground-based experiment, unilateral sciatic neurotomy of ovariectomized rats resulted in cancellous bone loss in the unloaded limb in excess of that induced by gonadal hormone deficiency. This additional bone loss was arrested by estrogen replacement. We conclude from these studies that estrogen alters the expression of signaling peptides believed to mediate skeletal adaptation to changes in mechanical usage and likewise modifies the skeletal response to mechanical unloading.
Jackson, Leila W; Cromer, Barbara A; Panneerselvamm, Ashok
2010-11-01
Blood lead levels (BLLs) have been shown to increase during periods of high bone turnover such as pregnancy and menopause. We examined the associations between bone turnover and micronutrient intake with BLLs in women 20-85 years of age (n = 2,671) participating in the National Health and Nutrition Examination Survey, 1999-2002. Serum bone-specific alkaline phosphatase (BAP) and urinary cross-linked N-telopeptides (NTx) were measured as markers of bone formation and resorption, respectively. Lead was quantified in whole blood. The association between tertiles of BAP and NTx, and BLLs was examined using linear regression with natural log transformed BLLs as the dependent variable and interpreted as the percent difference in geometric mean BLLs. In adjusted analyses, mean BLLs among postmenopausal women in the upper tertiles of NTx and BAP were 34% [95% confidence interval (CI), 23%-45%] and 30% (95% CI, 17%-43%) higher than BLLs among women in the lowest tertiles of NTx and BAP, respectively. These associations were weaker, but remained statistically significant, among premenopausal women (NTx: 10%; 95% CI, 0.60%-19%; BAP: 14%; 95% CI, 6%-22%). Within tertiles of NTx and BAP, calcium intake above the Dietary Reference Intake (DRI), compared with below the DRI, was associated with lower mean BLLs among postmenopausal women but not premenopausal women, although most of the associations were not statistically significant. We observed similar associations for vitamin D supplement use. Bone resorption and bone formation were associated with a significant increase in BLLs among pre- and postmenopausal women.
Kong, Xiangying; Wu, Wenbin; Yang, Yue; Wan, Hongye; Li, Xiaomin; Zhong, Michun; Zhao, Hongyan; Su, Xiaohui; Jia, Shiwei; Ju, Dahong; Lin, Na
2015-03-15
Osteoclasts, bone-specialized multinucleated cells, are responsible for bone destructive diseases such as rheumatoid arthritis and osteoporosis. Natural plant-derived products have received substantial attention given their potential therapeutic and preventive activities against bone destructive diseases. In the present study, we investigated the effects of total saponin (TS) from Anemone flaccida Fr. Schmidt, on receptor activator of nuclear factor-κB ligand (RANKL)-induced in vitro osteoclast differentiation. We observed that TS concentration-dependently inhibited RANKL-induced osteoclast formation from RAW 264.7 cell and bone marrow-derived macrophages (BMMs), as well as decreased extent of actin ring formation and lacunar resorption. The RANKL-stimulated expression of osteoclast-related transcription factors were also diminished by TS. Moreover, TS blocked the RANKL-triggered TRAF6 expression, phosphorylation of mitogen-activated protein kinases (MAPKs) and IκB-α, and inhibited NF-κB p65 DNA binding activity. Furthermore, TS almost abrogated the nuclear factor of activated T cells (NFATc1) and c-Fos expression. Taken together, our results demonstrated that TS suppresses RANKL-induced osteoclast differentiation and inflammatory bone loss via the down-regulation of TRAF6 level, suppression of JNK and p38 MAPKs and NF-κB activation, and subsequent decreased expression of c-Fos and NFATc1. Therefore, TS may be a potential agent and needs to be more evaluated in vivo or in clinical trials to become a therapeutic for lytic bone diseases.
Denosumab in Postmenopausal Osteoporosis: What the Clinician Needs to Know
Lewiecki, E. Michael
2009-01-01
Denosumab is a subcutaneously (SC) administered investigational fully human monoclonal antibody to receptor activator of nuclear factor-kB ligand (RANKL), a cytokine member of the tumor necrosis factor family that is the principal mediator of osteoclastic bone resorption. RANKL stimulates the formation, activity, and survival of osteoclasts, and is implicated in the pathogenesis of postmenopausal osteoporosis and other skeletal disorders associated with increased bone remodeling. Denosumab binds RANKL, preventing it from binding to RANK, thereby reducing the formation, activity, and survival of osteoclasts and slowing the rate of bone resorption. Postmenopausal women with low bone mineral density (BMD) treated with denosumab have a reduction of bone turnover markers and an increase in BMD that is rapid, sustained, and reversible. In postmenopausal women with osteoporosis, denosumab reduces the risk of vertebral, hip, and nonvertebral fractures. In postmenopausal women with low BMD randomized to receive denosumab or alendronate, denosumab is associated with a significantly greater increase in BMD and further reduction in bone turnover markers compared with alendronate. In postmenopausal women with low BMD who were previously treated with alendronate, those who switched to denosumab have a significantly greater BMD increase and further reduction in bone turnover markers compared with those continuing alendronate. Denosumab is well tolerated with a favorable safety profile. It is a promising emerging drug for the prevention and treatment of osteoporosis, offering a long dosing interval of every 6 months and convenient SC dosing, with the potential of improving long-term adherence to therapy compared with current oral treatments. PMID:22870424
Nakashima, Tomoki
Recent studies of mouse genetics and human gene mutations has greatly contributed to clarifying the molecular mechanism of bone metabolism. Bone is constantly renewed by the balanced action of osteoblastic bone formation and osteoclastic bone resorption both of which mainly occur at the bone surface. This restructuring process called "bone remodeling" is important not only for normal bone mass and strength, but also for mineral homeostasis. Bone remodeling is stringently regulated by communication among bone component cells such as osteoclasts, osteoblasts, osteocytes and endothelial cells. An imbalance of this process is often linked to various bone diseases. Thus, the elucidation of the molecular mechanisms involved in bone remodeling is critical for a deeper understanding of the maintenance of healthy skeleton and bone disease.
Suzuki, Selly Sayuri; Garcez, Aguinaldo Silva; Reese, Patricia Oblitas; Suzuki, Hideo; Ribeiro, Martha Simões; Moon, Won
2018-05-01
The aim of this study was to compare the rate of tooth displacement, quantity of root resorption, and alveolar bone changes in five groups: corticopuncture (CP), low-level laser therapy (LLLT), CP combined with LLLT (CP + LLLT), control (C), and negative control (NC). A total of 60 half-maxilla from 30 male Wistar rats (10 weeks old) were divided randomly into five groups: three (CP, LLLT, and CP + LLLT) test groups with different stimulation for accelerated-tooth-movement (ATM), one control (C) group, and one negative control (NC) group with no tooth movement. Nickel-titanium coil springs with 50 g of force were tied from the upper left and right first molars to micro-implants placed behind the maxillary incisors. For the CP and CP + LLLT groups, two perforations in the palate and one mesially to the molars were performed. For the LLLT and CP + LLLT groups, GaAlAs diode laser was applied every other day for 14 days (810 nm, 100 mW, 15 s). The tooth displacements were measured directly from the rat's mouth and indirectly from microcomputer (micro-CT) tomographic images. Bone responses at the tension and compression sites and root resorption were analyzed from micro-CT images. The resulting alveolar bone responses were evaluated by measuring bone mineral density (BMD), bone volume fraction (BV/TV), and trabecular thickness (TbTh). Root resorption crater volumes were measured on both compression and tension sides of mesial and distal buccal roots. The tooth displacement in the CP + LLLT group was the greatest when measured clinically, followed by the CP, LLLT, and control groups (C and NC), respectively (p <0.05). The tooth movements measured from micro-CT images showed statistically higher displacement in the CP and CP + LLLT groups compared to the LLLT and control groups. The BMD, BV/TV, and TbTh values were lower at the compression side and higher at the tension side for all three test groups compared to the control group. The root resorption crater volume of the distal buccal root was higher in the control group, followed by CP, LLLT, and CP + LLLT, mostly at the compression site. Combining corticopuncture and low-level laser therapy (CP + LLLT) produced more tooth displacement and less root resorption at the compression side. The combined technique also promoted higher alveolar bone formation at the tension side.
Effects of spaceflight on trabecular bone in rats
NASA Technical Reports Server (NTRS)
Jee, W. S. S.; Wronski, T. J.; Morey, E. R.; Kimmel, D. B.
1983-01-01
Alterations in trabecular bone were observed in growing male Wistar rats after 18.5 days of orbital flight on the COSMOS 1129 biosatellite. Spaceflight induced a decreased mass of mineralized tissue and an increased fat content of the bone marrow in the proximal tibial and humeral metaphyses. The osteoblast population appeared to decline immediately adjacent to the growth cartilage-metaphyseal junction, but osteoclast numbers were unchanged. These results suggested that bone formation may have been inhibited during spaceflight, but resorption remained constant. With the exception of trabecular bone mass in the proximal tibia, the observed skeletal changes returned to normal during a 29-day postflight period.
Niethammer, B; Körner, C; Schmidmayr, M; Luppa, P B; Seifert-Klauss, V R
2015-12-01
Introduction: Several authors have linked subclinical ovulatory disturbances in normal length menstrual cycles to premenopausal fracture risk and bone changes. This study systematically examined the influence of ovulation and anovulation on the bone metabolism of premenopausal women. Participants and Methods: In 176 cycles in healthy premenopausal women, FSH, 17β-estradiol (E2) and progesterone (P4) as well as bone alkalic phosphatase (BAP), pyridinoline (PYD) and C-terminal crosslinks (CTX) were measured during the follicular and during the luteal phase. The probability and timing of ovulation was self-assessed by a monitoring device. In addition, bone density of the lumbar spine was measured by quantitative computed tomography (QCT) at baseline and at the end of the study. Analysis was restricted to blood samples taken more than three days before the following menstruation. Results: 118 cycles out of the 176 collected cycles were complete with blood samples taken within the correct time interval. Of these, 56.8 % were ovulatory by two criteria (ovulation symbol shown on the monitor display and LP progesterone > 6 ng/ml), 33.1 % were possibly ovulatory by one criterion (ovulation symbol shown on the monitor display or LP progesterone > 6 ng/ml), and 10.2 % were anovulatory by both criteria). Ovulation in the previous cycle and in the same cycle did not significantly influence the mean absolute concentrations of the bone markers. However, bone formation (BAP) was higher in the luteal phase of ovulatory cycles than in anovulatory cycles (n. s.) and the relative changes within one cycle were significantly different for bone resorption (CTX) during ovulatory vs. anovulatory cycles (p < 0.01). In 68 pairs of cycles following each other directly, both ovulation in the previous cycle and ovulation in the present cycle influenced CTX, but not the differences of other bone markers. Conclusion: Ovulatory cycles reduce bone resorption in their luteal phase and that of the following cycle. The interaction between ovulation and bone metabolism is complex. Since anovulation may occur in low estrogen states such as pre-anorexic dietary restraint, as well as with high estrogenic circumstances e.g. from functional perimenopausal ovarian cysts, the association with bone changes has been variable in the literature. Accumulating physiological and clinical evidence however point towards a role for ovulation in enhancing bone formation and limiting bone resorption.
Laitala, T; Väänänen, H K
1994-01-01
The bone resorbing cells, osteoclasts, express high levels of carbonic anhydrase II (CA II) and vacuolar H(+)-ATPase (V-ATPase) during bone resorption. We have used antisense RNA and DNA molecules targeted against CA II, and against 16- and 60-kD subunits of vacuolar H(+)-ATPase (V-ATPase), to block the expression of these proteins in vitro. Osteoclastic bone resorption was studied in two in vitro culture systems: release of 45Calcium from prelabeled newborn mouse calvaria cultures, and resorption pit assays performed with rat osteoclasts cultured on bovine bone slices. Both antisense RNA and DNA against CA II and the V-ATPase were used to compare their specificities as regards inhibiting bone resorption in vitro. The antisense molecules inhibited the synthesis of these proteins by decreasing the amounts of mRNA in the cells in a highly specific manner. In osteoclast cultures treated with the 16-kD V-ATPase antisense RNA, acidification of an unknown population of intracellular vesicles was highly stimulated. The acidification of these vesicles was not sensitive to amiloride or bafilomycin A1. This suggests the existence of a back-up system for acidification of intracellular vesicles, when the expression of the V-ATPase is blocked. Our results further indicate that blocking the expression of CA II and V-ATPase with antisense RNA or DNA leads to decreased bone resorption. Images PMID:8200964
Effect of electrical polarization of hydroxyapatite ceramics on new bone formation.
Itoh, S; Nakamura, S; Kobayashi, T; Shinomiya, K; Yamashita, K; Itoh, S
2006-03-01
Large surface charges can be induced on hydroxyapatite (HAp) ceramics by proton transport polarization, but this does not affect beta-tricalcium phosphate (TCP) because of its low polarizability. We wished to examine differences in osteogenic cell activity and new bone growth between positively or negatively surface-charged HAp and HAp/TCP plates using a calvarial bone defect model. In the first group of rats, test pieces were placed with their positively charged surfaces face down on the dura mater. In the second group, test pieces were placed with their negatively charged surfaces face down on the dura mater. A third group received noncharged test pieces. Histological examination, including enzymatic staining for osteoblasts and osteoclasts, was carried out. While no bone formation was observed at the pericranium, direct bone formation on the cranial bone debris and new bone growth expanded from the margins of the sites of injury to bridge across both the positively and negatively charged surfaces of HAp and HAp/TCP plates occurred. Electrical polarization of implanted plates, including positive charge, led to enhanced osteoblast activity, though decreased osteoclast activity was seen on the positively charged plate surface. Thus, polarization of HAp ceramics may modulate new bone formation and resorption.
Spinal Cord Injury-Induced Osteoporosis: Pathogenesis and Emerging Therapies
Battaglino, Ricardo A.; Lazzari, Antonio A.; Garshick, Eric; Morse, Leslie R.
2012-01-01
Spinal cord injury causes rapid, severe osteoporosis with increased fracture risk. Mechanical unloading after paralysis results in increased osteocyte expression of sclerostin, suppressed bone formation, and indirect stimulation of bone resorption. At this time there are no clinical guidelines to prevent bone loss after SCI and fractures are common. More research is required to define the pathophysiology and epidemiology of SCI-induced osteoporosis. This review summarizes emerging therapeutics including anti-sclerostin antibodies, mechanical loading of the lower extremity with electrical stimulation, and mechanical stimulation via vibration therapy. PMID:22983921
Costa, Daniel O; Prowse, Paul D H; Chrones, Tom; Sims, Stephen M; Hamilton, Douglas W; Rizkalla, Amin S; Dixon, S Jeffrey
2013-10-01
The behavior of bone cells is influenced by the surface chemistry and topography of implants and scaffolds. Our purpose was to investigate how the topography of biomimetic hydroxyapatite (HA) coatings influences the attachment and differentiation of osteoblasts, and the resorptive activity of osteoclasts. Using strategies reported previously, we directly controlled the surface topography of HA coatings on polycaprolactone discs. Osteoblasts and osteoclasts were incubated on HA coatings having distinct isotropic topographies with submicrometer and micro-scale features. Osteoblast attachment and differentiation were greater on more complex, micro-rough HA surfaces (Ra ~2 μm) than on smoother topographies (Ra ~1 μm). In contrast, activity of the osteoclast marker tartrate-resistant acid phosphatase was greater on smoother than on micro-rough surfaces. Furthermore, scanning electron microscopy revealed the presence of resorption lacunae exclusively on smoother HA coatings. Inhibition of resorption on micro-rough surfaces was associated with disruption of filamentous actin sealing zones. In conclusion, HA coatings can be prepared with distinct topographies, which differentially regulate responses of osteoblasts, as well as osteoclastic activity and hence susceptibility to resorption. Thus, it may be possible to design HA coatings that induce optimal rates of bone formation and degradation specifically tailored for different applications in orthopedics and dentistry. Copyright © 2013 Elsevier Ltd. All rights reserved.
Inflammation, Fracture and Bone Repair
Loi, Florence; Córdova, Luis A.; Pajarinen, Jukka; Lin, Tzu-hua; Yao, Zhenyu; Goodman, Stuart B.
2016-01-01
The reconstitution of lost bone is a subject that is germane to many orthopaedic conditions including fractures and non-unions, infection, inflammatory arthritis, osteoporosis, osteonecrosis, metabolic bone disease, tumors, and periprosthetic particle-associated osteolysis. In this regard, the processes of acute and chronic inflammation play an integral role. Acute inflammation is initiated by endogenous or exogenous adverse stimuli, and can become chronic in nature if not resolved by normal homeostatic mechanisms. Dysregulated inflammation leads to increased bone resorption and suppressed bone formation. Crosstalk amongst inflammatory cells (polymorphonuclear leukocytes and cells of the monocyte-macrophage-osteoclast lineage) and cells related to bone healing (cells of the mesenchymal stem cell-osteoblast lineage and vascular lineage) is essential to the formation, repair and remodeling of bone. In this review, the authors provide a comprehensive summary of the literature related to inflammation and bone repair. Special emphasis is placed on the underlying cellular and molecular mechanisms, and potential interventions that can favorably modulate the outcome of clinical conditions that involve bone repair. PMID:26946132
Paget’s Disease in an Omani: Long-term Improvement Following a Single Injection of Zoledronic Acid
Elshafie, Omayma; Alsaffi, Nooralddin; Hussain, Samir; Woodhouse, Nicholas
2016-01-01
Paget’s disease of bone is a patchy skeletal disorder characterized by an increase in bone resorption and formation in the affected areas. It affects up to 3% of individuals of Anglo-Saxon origin over the age of 40 years but is rare in Arabs. Although most patients are asymptomatic, a variety of symptoms and complications may develop directly from bone involvement or secondarily to compression by bone expansion and increased blood flow. The disease can be treated by using medications that inhibit bone resorption, such as calcitonin and the bisphosphonates. Here we describe the case of an Omani patient with the disease, involving the skull, spine, pelvis, and tibia. He presented to the endocrine clinic in Sultan Qaboos University Hospital with a six-year history of headache, bone pain, progressive skull enlargement, and left-sided deafness. His alkaline phosphatase (ALP) level was 1500 U/L. His disease responded gradually to six months of subcutaneous and nasal calcitonin followed by a single 5 mg intravenous injection of zoledronic acid. This resulted in a further progressive reduction of his bone pain, skull size, and improvement in his hearing, as well as normalization of his serum ALP levels after one-year. This effect has been sustained for 3 years. PMID:27168927
Morimoto, Yoshitaka; Hoshino, Hironobu; Sakurai, Takashi; Terakawa, Susumu; Nagano, Akira
2009-04-01
Quantitative evaluation of the ability of bone resorption activity in live osteoclast-like cells (OCLs) has not yet been reported on. In this study, we observed the sequential morphological change of OCLs and measured the resorbing calcium phosphate (CP) area made by OCLs alone and with the addition of elcatonin utilizing incubator facilitated video-enhanced microscopy. OCLs, which were obtained from a coculture of ddy-mouse osteoblastic cells and bone marrow cells, were cultured on CP-coated quartz cover slips. The CP-free area increased constantly in the OCLs alone, whereas it did not increase after the addition of elcatonin. This study showed that analysis of the resorbed areas under the OCL body using this method enables the sequential quantitative evaluation of the bone resorption activity and the effect of several therapeutic agents on bone resorption in vitro.
A Novel Role for Thrombopoietin in Regulating Osteoclast Development in Humans and Mice
Bethel, Monique; Barnes, Calvin L. T.; Taylor, Amanda F.; Cheng, Ying-Hua; Chitteti, Brahmananda R.; Horowitz, Mark C.; Bruzzaniti, Angela; Srour, Edward F.; Kacena, Melissa A.
2015-01-01
Emerging data suggest that megakaryocytes (MKs) play a significant role in skeletal homeostasis. Indeed, osteosclerosis observed in several MK-related disorders may be a result of increased numbers of MKs. In support of this idea, we have previously demonstrated that MKs increase osteoblast (OB) proliferation by a direct cell-cell contact mechanism and that MKs also inhibit osteoclast (OC) formation. As MKs and OCs are derived from the same hematopoietic precursor, in these osteoclastogenesis studies we examined the role of the main MK growth factor, thrombopoietin (TPO) on OC formation and bone resorption. Here we show that TPO directly increases OC formation and differentiation in vitro. Specifically, we demonstrate the TPO receptor (c-mpl or CD110) is expressed on cells of the OC lineage, c-mpl is required for TPO to enhance OC formation in vitro, and TPO activates the MAPK, JAK/STAT, and NFκB signaling pathways, but does not activate the PI3K/AKT pathway. Further, we found TPO enhances OC resorption in CD14+CD110+ human OC progenitors derived from peripheral blood mononuclear cells (PBMCs), and further separating OC progenitors based on CD110 expression enriches for mature OC development. The regulation of OCs by TPO highlights a novel therapeutic target for bone loss diseases and may be important to consider in the numerous hematologic disorders associated with alterations in TPO/c-mpl signaling as well as in patients suffering from bone disorders. PMID:25656774
Alveolar ridge reduction after tooth extraction in adolescents: an animal study
Sun, Zongyang; Herring, Susan W.; Tee, Boon Ching; Gales, Jordan
2013-01-01
Objective The mechanism for tooth extraction induced residual alveolar ridge reduction (RRR) during adolescence is poorly understood. This study investigated the alveolar bone morphology, growth, resorption and functional loading at normal and extraction sites using an adolescent pig model. Design Sixteen 3-month-old pigs were divided into two groups – immediate post-extraction (IE) and 6-week post-extraction (SE). The IE group received an extraction of one deciduous mandibular molar, immediately followed by a final experiment to record masseter muscle EMGs and strains from the buccal surface of the extraction and contralateral non-extraction sites during function (mastication). The SE group was given the same tooth extraction, then kept for 6 weeks before the same final functional recording as the IE group. Both groups also received baseline (pre-extraction) EMGs and fluorescent vital stains 10 and 3 days before the final functional recording. Immediately after the final functional recording, animals were euthanized and alveolar bone specimens from extraction and contralateral non-extraction sites were collected and used to analyze alveolar bone morphology, apposition and resorption based on fluorescent and hematoxylin and eosin stained histological sections. Results At control sites (IE-extraction, IE-non-extraction and SE-non-extraction), the alveolar ridges grew gingivally and buccally. Bone formation characterized the buccal surface and lingual bundle bone, whereas resorption characterized the lingual surface and buccal bundle bone. The SE-extraction sites showed three major alterations: convergence of the buccal and lingual gingival crests, loss of apposition on the lingual bundle bone, and decelerated growth at the entire buccal surface. These alterations likely resulted from redirected crestal growth as part of the socket healing process, loss of tongue pressure to the lingual side of the teeth which normally provides mechanical stimulation for dental arch expansion, and masticatory underloading during the initial post-extraction period, respectively. Conclusions These data indicate that the initial phase of RRR in adolescents is a product of modified growth, not resorption, possibly because of decreased mechanical stimulation at the extraction site. PMID:23380583
Sukkeaw, Wittawat; Kritpet, Thanomwong; Bunyaratavej, Narong
2015-09-01
To compare the effects of aerobic dance training on mini-trampoline and hard wooden surface on bone resorption, health-related physical fitness, balance, and foot plantar pressure in Thai working women. Sixty-three volunteered females aged 35-45 years old participated in the study and were divided into 3 groups: A) aerobic dance on mini-trampoline (21 females), B) aerobic dance on hard wooden surface (21 females), and C) control group (21 females). All subjects in the aerobic dance groups wore heart rate monitors during exercise. Aerobic dance worked out 3 times a week, 40 minutes a day for 12 weeks. The intensity was set at 60-80% of the maximum heart rate. The control group engaged in routine physical activity. The collected data were bone formation (N-terminal propeptine of procollagen type I: P1NP) bone resorption (Telopeptide cross linked: β-CrossLaps) health-related physical fitness, balance, and foot plantar pressure. The obtained data from pre- and post trainings were compared and analyzed by paired samples t-test and one way analysis of covariance. The significant difference was at 0.05 level. After the 12-week training, the biochemical bone markers of both mini-trampoline and hard wooden surface aerobic dance training subjects decreased in bone resorption (β-CrossLaps) but increased in boneformation (P1NP). Health-related physical fitness, balance, and foot plantar pressure were not only better when comparing to the pre-test result but also significantly different when comparing to the control group (p < 0.05). The aerobic dance on mini-trampoline showed that leg muscular strength, balance and foot plantar pressure were significantly better than the aerobic dance on hard wooden surface (p < 0.05). The aerobic dance on mini-trampoline and hard wooden surface had positive effects on biochemical bone markers. However, the aerobic dance on mini-trampoline had more leg muscular strength and balance including less foot plantar pressure. It is considered to be an appropriate exercise programs in working women.
Plasma fluctuation in estradiol-17β and bone resorption markers around parturition in dairy cows
DEVKOTA, Bhuminad; TAKAHASHI, Masahiro; SATO, Saori; SASAKI, Kouya; UEKI, Atsushi; OSAWA, Takeshi; TAKAHASHI, Masahiro; YAMAGISHI, Norio
2015-01-01
Blood samples were obtained sequentially from 10 dairy cows around the time of parturition to assess plasma fluctuations in estradiol-17β (E2) levels in association with those of several bone resorption markers. Plasma E2 concentration increased sharply a few days prepartum and decreased quickly after parturition. In terms of bone resorption markers, the plasma level of tartrate-resistant acid phosphatase isoform 5b (TRAP5b) rose significantly, commencing 1 week prepartum, and was maintained at this level to a few days postpartum. The plasma concentration of carboxyterminal collagen cross-links of type-I collagen (CTx) increased significantly after parturition. These observations suggest that osteoclast-mediated bone resorption was activated after parturition when plasma E2 concentrations decreased. PMID:25755022
Plasma fluctuation in estradiol-17β and bone resorption markers around parturition in dairy cows.
Devkota, Bhuminad; Takahashi, Masahiro; Sato, Saori; Sasaki, Kouya; Ueki, Atsushi; Osawa, Takeshi; Takahashi, Masahiro; Yamagishi, Norio
2015-07-01
Blood samples were obtained sequentially from 10 dairy cows around the time of parturition to assess plasma fluctuations in estradiol-17β (E2) levels in association with those of several bone resorption markers. Plasma E2 concentration increased sharply a few days prepartum and decreased quickly after parturition. In terms of bone resorption markers, the plasma level of tartrate-resistant acid phosphatase isoform 5b (TRAP5b) rose significantly, commencing 1 week prepartum, and was maintained at this level to a few days postpartum. The plasma concentration of carboxyterminal collagen cross-links of type-I collagen (CTx) increased significantly after parturition. These observations suggest that osteoclast-mediated bone resorption was activated after parturition when plasma E2 concentrations decreased.
Fumoto, Toshio; Ishii, Kiyo-Aki; Ito, Masako; Berger, Stefan; Schütz, Günther; Ikeda, Kyoji
2014-05-09
Although the mineralocorticoid receptor (MR) is expressed in osteoblasts and osteocytes and frequently co-localizes with the glucocorticoid receptors (GR), its pathophysiological functions in bone remain elusive. We report here that pharmacologic inhibition of MR function with eplerenone resulted in increased bone mass, with stimulation of bone formation and suppression of resorption, while specific genetic deletion of MR in osteoblast lineage cells had no effect. Further, treatment with eplerenone as well as specific deletion of MR in osteocytes ameliorated the cortical bone thinning caused by slow-release prednisolone pellets. Thus, MR may be involved in the deleterious effects of glucocorticoid excess on cortical bone. Copyright © 2014 Elsevier Inc. All rights reserved.
[Research advances of fluid bio-mechanics in bone].
Chen, Zebin; Huo, Bo
2017-04-01
It has been found for more than one century that when experiencing mechanical loading, the structure of bone will adapt to the changing mechanical environment, which is called bone remodeling. Bone remodeling is charaterized as two processes of bone formation and bone resorption. A large number of studies have confirmed that the shear stress is resulted from interstitial fluid flow within bone cavities under mechanical loading and it is the key factor of stimulating the biological responses of bone cells. This review summarizes the major research progress during the past years, including the biological response of bone cells under fluid flow, the pressure within bone cavities, the theoretical modeling, numerical simulation and experiments about fluid flow within bone, and finally analyzes and predicts the possible tendency in this field in the future.
Figeac, Florence; Andersen, Ditte C; Nipper Nielsen, Casper A; Ditzel, Nicholas; Sheikh, Søren P; Skjødt, Karsten; Kassem, Moustapha; Jensen, Charlotte H; Abdallah, Basem M
2018-05-01
Soluble delta-like 1 homolog (DLK1) is a circulating protein that belongs to the Notch/Serrate/delta family, which regulates many differentiation processes including osteogenesis and adipogenesis. We have previously demonstrated an inhibitory effect of DLK1 on bone mass via stimulation of bone resorption and inhibition of bone formation. Further, serum DLK1 levels are elevated and positively correlated to bone turnover markers in estrogen (E)-deficient rodents and women. In this report, we examined whether inhibition of serum DLK1 activity using a neutralizing monoclonal antibody protects from E deficiency-associated bone loss in mice. Thus, we generated mouse monoclonal anti-mouse DLK1 antibodies (MAb DLK1) that enabled us to reduce and also quantitate the levels of bioavailable serum DLK1 in vivo. Ovariectomized (ovx) mice were injected intraperitoneally twice weekly with MAb DLK1 over a period of one month. DEXA-, microCT scanning, and bone histomorphometric analyses were performed. Compared to controls, MAb DLK1 treated ovx mice were protected against ovx-induced bone loss, as revealed by significantly increased total bone mass (BMD) due to increased trabecular bone volume fraction (BV/TV) and inhibition of bone resorption. No significant changes were observed in total fat mass or in the number of bone marrow adipocytes. These results support the potential use of anti-DLK1 antibody therapy as a novel intervention to protect from E deficiency associated bone loss. Copyright © 2018 Elsevier Inc. All rights reserved.
Inhibitory effects of a bisphosphonate (risedronate) on experimental periodontitis in rats.
Shoji, K; Horiuchi, H; Shinoda, H
1995-07-01
The present study was designed to examine whether systemic administration of a bisphosphonate, risedronate, could prevent alveolar bone resorption in rats with experimental periodontitis. On Day 1, an elastic ring was placed around the neck of the right mandibular 1st molar to induce inflammatory periodontitis. The animals were given daily injections of either 0.9% NaCl (control group), or 0.8, 1.6 or 3.2 mumoles/kg (s.c.) of risedronate (experimental groups) from Days 1 to 7, and were killed on Day 8. Histological examinations and determination of bone mineral density in the interdental area between the 1st and 2nd molars with an image analyzer revealed that the presence of the elastic ring induced a loss of attachment and bone resorption in the control group. Vigorous bone resorption, with appearance of a large number of osteoclasts, was observed in the interdental and bifurcation areas. In the experimental groups, however, the resorption of alveolar bone and the loss of bone mineral content in these areas were prevented in a dose-dependent fashion, especially at doses of 1.6 and 3.2 mumoles/kg. Many osteoclasts were detached from the surface of the alveolar bone and had degenerated appearances, such as rounded shapes, loss of polarity and pyknosis. These results suggest that administration of risedronate is effective in preventing bone resorption in periodontitis.
Estrogen Regulates Bone Turnover by Targeting RANKL Expression in Bone Lining Cells.
Streicher, Carmen; Heyny, Alexandra; Andrukhova, Olena; Haigl, Barbara; Slavic, Svetlana; Schüler, Christiane; Kollmann, Karoline; Kantner, Ingrid; Sexl, Veronika; Kleiter, Miriam; Hofbauer, Lorenz C; Kostenuik, Paul J; Erben, Reinhold G
2017-07-25
Estrogen is critical for skeletal homeostasis and regulates bone remodeling, in part, by modulating the expression of receptor activator of NF-κB ligand (RANKL), an essential cytokine for bone resorption by osteoclasts. RANKL can be produced by a variety of hematopoietic (e.g. T and B-cell) and mesenchymal (osteoblast lineage, chondrocyte) cell types. The cellular mechanisms by which estrogen acts on bone are still a matter of controversy. By using murine reconstitution models that allow for selective deletion of estrogen receptor-alpha (ERα) or selective inhibition of RANKL in hematopoietic vs. mesenchymal cells, in conjunction with in situ expression profiling in bone cells, we identified bone lining cells as important gatekeepers of estrogen-controlled bone resorption. Our data indicate that the increase in bone resorption observed in states of estrogen deficiency in mice is mainly caused by lack of ERα-mediated suppression of RANKL expression in bone lining cells.
NASA Technical Reports Server (NTRS)
Ma, Y. F.; Ke, H. Z.; Jee, W. S. S.
1994-01-01
The objects of this study were to determine the responses of a cancellous bone site with a closed growth plate, (the distal tibial metaphysis (DTM), to ovariectomy (OVX) and OVX plus a prostaglandin E(2) treatment, and compare the site's response to previous findings reported for another site, the proximal tibial metaphysis (PTM). Thirty five 3-month old female Sprague-Dawley rats were divided into five groups; basal, sham OVX, and OVX+0, +1, or +6 mg PGE(2)/kg/d injected subcutaneously for 3 months and given double fluorescent labels before sacrifice. Cancellous bone histomorphometric analyses were performed on 20 micrometer thick undecalcified DTM sections. Similar to the PTM, the DTM showed age-related decreases in bone formation and increases in bone resorption, but it differed in that at 3 months POST OVX there was neither bone loss nor changes in formation endpoints. Giving 1 mg PGE(2)/kg/d to OVX rats prevented most age-related changes and maintained the bone formation histomorphometry near basal levels. Treating OVX rats with 6 mg PGE(2)/kd/d prevented age-related bone changes, added extra bone, and improved microanatomical structure by stimulating bone formation, without altering bone resportion. Futhermore, After PGE(2) admimnistration, the DTM, a cancellous bone site with a closed growth plate, increased bone formation more than did the cancellous bone in the PTM.
NASA Technical Reports Server (NTRS)
Akamine, T.; Jee, W. S. S.; Ke, H. Z.; Li, X. J.; Lin, B. Y.
1992-01-01
The object of this study was to determine whether prostaglandin E2 (PGE2) can prevent disuse (underloading)-induced cancellous bone loss. Thirteen-month-old retired female Sprague-Dawley breeders served as controls or were subjected to right hindlimb immobilization by bandaging and simultaneously treated subcutaneously daily with 0, 1, 3, or 6 mg PGE2/kg/d for two and six weeks. Histomorphometric analyses were performed on the cancellous bone using double-fluorescent labeled, 20 micron thick, undecalcified distal femoral metaphysis sections. We found that PGE2 administration not only prevented disuse-induced bone loss, but also added extra bone to disuse cancellous bone in a dose-response manner. PGE2 prevented the disuse-induced osteopenia by stimulating more bone formation than and shortening the period of bone remodeling. It activated woven bone formation, stimulated lamellar bone formation, and increased the eroded bone surface above that caused by disuse alone. While underloading increased the remodeling period (sigma), PGE2 treatment of underloaded bone shortened the time for osteoclastic bone resorption and bone remodeling, and thus reduced the remodeling space. The study shows that PGE2 is a powerful anabolic agent that prevents disuse-induced osteopenia and adds extra bone to these same bones.
Gestational age, sex and maternal parity correlate with bone turnover in premature infants.
Aly, Hany; Moustafa, Mohamed F; Amer, Hanna A; Hassanein, Sahar; Keeves, Christine; Patel, Kantilal
2005-05-01
Factors affecting bone turnover in premature infants are not entirely clear but certainly are different from those influencing bones of adults and children. To identify fetal and maternal factors that might influence bone turnover, we prospectively studied 50 infants (30 preterm and 20 full-term) born at Ain Shams University Obstetric Hospital in Cairo, Egypt. Maternal parity and medical history and infant's weight, gestational age, gender and anthropometrical measurements were recorded. Cord blood samples were collected and serum type I collagen C-terminal propeptide (PICP) was assessed as a marker for fetal bone formation. First morning urine samples were collected and pyridinoline cross-links of collagen (Pyd) were measured as an index for bone resorption. Serum PICP was higher in premature infants when compared with full-term infants (73.30 +/- 15.1 versus 64.3 +/- 14.7, p = 0.022) and was higher in male premature infants when compared with females (81.64 +/- 9.06 versus 66.0 +/- 15.7, p = 0.018). In a multiple regression model using PICP as the dependent variable and controlling for different infant and maternal conditions, PICP significantly correlated with infant gender (r = 8.26 +/- 4.1, p = 0.05) maternal parity (r = -2.106 +/- 0.99, p = 0.041) and diabetes (r = 22.488 +/- 8.73, p = 0.041). Urine Pyd tended to increase in premature infants (612 +/- 308 versus 434 +/- 146, p = 0.057) and correlated significantly with gestational age (r = -63.93 +/- 19.55, p = 0.002). Therefore, bone formation (PICP) is influenced by fetal age and gender, as well as maternal parity and diabetes. Bone resorption (Pyd) is mostly dependent on gestational age only. Further in-depth studies are needed to enrich management of this vulnerable population.
Autophagy in osteoblasts is involved in mineralization and bone homeostasis
Nollet, Marie; Santucci-Darmanin, Sabine; Breuil, Véronique; Al-Sahlanee, Rasha; Cros, Chantal; Topi, Majlinda; Momier, David; Samson, Michel; Pagnotta, Sophie; Cailleteau, Laurence; Battaglia, Séverine; Farlay, Delphine; Dacquin, Romain; Barois, Nicolas; Jurdic, Pierre; Boivin, Georges; Heymann, Dominique; Lafont, Frank; Lu, Shi Shou; Dempster, David W; Carle, Georges F; Pierrefite-Carle, Valérie
2014-01-01
Bone remodeling is a tightly controlled mechanism in which osteoblasts (OB), the cells responsible for bone formation, osteoclasts (OC), the cells specialized for bone resorption, and osteocytes, the multifunctional mechanosensing cells embedded in the bone matrix, are the main actors. Increased oxidative stress in OB, the cells producing and mineralizing bone matrix, has been associated with osteoporosis development but the role of autophagy in OB has not yet been addressed. This is the goal of the present study. We first show that the autophagic process is induced in OB during mineralization. Then, using knockdown of autophagy-essential genes and OB-specific autophagy-deficient mice, we demonstrate that autophagy deficiency reduces mineralization capacity. Moreover, our data suggest that autophagic vacuoles could be used as vehicles in OB to secrete apatite crystals. In addition, autophagy-deficient OB exhibit increased oxidative stress and secretion of the receptor activator of NFKB1 (TNFSF11/RANKL), favoring generation of OC, the cells specialized in bone resorption. In vivo, we observed a 50% reduction in trabecular bone mass in OB-specific autophagy-deficient mice. Taken together, our results show for the first time that autophagy in OB is involved both in the mineralization process and in bone homeostasis. These findings are of importance for mineralized tissues which extend from corals to vertebrates and uncover new therapeutic targets for calcified tissue-related metabolic pathologies. PMID:25484092
Rosen, J; Negro-Vilar, A
2002-03-01
A novel approach to the treatment of osteoporosis in men, and possibly women, is the development of selective androgen receptor modulators (SARMs) that can stimulate formation of new bone with substantially diminished proliferative activity in the prostate, as well as reduced virilizing activity in women. Over the last several years, we have developed a program to discover and develop novel, non-steroidal, orally-active selective androgen receptor modulators (SARMs) that provide improved therapeutic benefits and reduce risk and side effects. In recent studies, we have used a skeletally mature orchiectomized (ORX) male rat as an animal model of male hypogonadism for assessing the efficacy of LGD2226, a nonsteroidal, non-aromatizable, and non-5alpha-reducible SARM. We assessed the activity of LGD2226 on bone turnover, bone mass and bone strength, and also evaluated the effects exerted on classic androgen-dependent targets, such as prostate, seminal vesicles and muscle. A substantial loss of bone density was observed in ORX animals, and this loss was prevented by SARMs, as well as standard androgens. Biochemical markers of bone turnover revealed an early increase of bone resorption in androgen-deficient rats that was repressed in ORX animals treated with the oral SARM, LGD2226, during a 4-month treatment period. Differences in architectural properties and bone strength were detected by histomorphometric and mechanical analyses, demonstrating beneficial effects of LGD2226 on bone quality in androgen-deficient rats. Histomorphometric analysis of cortical bone revealed distinct anabolic activity of LGD2226 in periosteal bone. LGD2226 was able to prevent bone loss and maintain bone quality in ORX rats by stimulating bone formation, while also inhibiting bone turnover. LGD2226 also exerted anabolic activity on the levator ani muscle. Taken together, these results suggest that orally-active, non-steroidal SARMs may be useful therapeutics for both muscle and bone in elderly hypogonadal men through their anabolic activities. Since SARMs both prevent bone loss, and also stimulate formation of new bone, they may have significant advantages relative to currently used anti-resorptive therapies. Coupled with their activity in muscle and their ability to maintain or restore libido, they offer new therapeutic approaches for male and female hormone replacement.
Bradykinin regulates osteoblast differentiation by Akt/ERK/NFκB signaling axis.
Srivastava, Swati; Sharma, Kirti; Kumar, Narender; Roy, Partha
2014-12-01
Bradykinin (BK), a well known mediator of pain and inflammation, is also known to be involved in the process of bone resorption. The present study therefore evaluated the role of BK in osteoblast lineage commitment. Our data showed that BK inhibits the migration of bone marrow mesenchymal stem cells, but does not affect their viability. Moreover, BK also inhibits osteoblastic differentiation by significantly downregulating the levels of mRNAs for osteopontin, runX2, col24, osterix, osteocalcin genes and bone mineralization (P < 0.05). Further, BK was found to elicit the BK receptors (BDKR1 and BDKR2) mediated activation of ERK1/2 and Akt pathways, which finally led to the activation of NFκB. BK also promoted the osteoclast differentiation of bone marrow derived preosteoclast cells by upregulating the expression of c-fos, NFATC1, TRAP, clcn7, cathK, and OSCAR genes and increasing TRAP activity through NFκB pathway. In conclusion, our data suggest that BK decreases the differentiation of osteoblasts with concomitant increase in osteoclast formation and thus provides new insight into the mechanism of action of BK in modulating bone resorption. © 2014 Wiley Periodicals, Inc.
Mineral balance and bone turnover in adolescents with anorexia nervosa.
Abrams, S A; Silber, T J; Esteban, N V; Vieira, N E; Stuff, J E; Meyers, R; Majd, M; Yergey, A L
1993-08-01
We evaluated seven female adolescents with anorexia nervosa to determine whether calcium metabolism was affected by their disorder. We measured calcium absorption, urinary calcium excretion, and calcium kinetics, using a dual-tracer, stable-isotope technique during the first weeks of an inpatient nutritional rehabilitation program. Results were compared with those from a control group of seven healthy adolescent girls of similar ages. The percentage of absorption of calcium was lower in subjects with anorexia nervosa than in control subjects (16.2% +/- 6.3% vs 24.6% +/- 7.2%; p < 0.05). Urinary calcium excretion was greater in subjects with anorexia nervosa than in control subjects (6.4 +/- 2.5 vs 1.6 +/- 0.7 mg.kg-1 x day-1; p < 0.01) and was associated with bone resorption rather than calcium hyper-absorption. Calcium kinetic studies demonstrated a decreased rate of bone formation and an increased rate of bone resorption. These results suggest marked abnormalities in mineral metabolism in patients with anorexia nervosa. From these results, we hypothesize that improvement in bone mineralization during recovery from anorexia nervosa will require resolution of hormonal abnormalities, including hypercortisolism, in addition to increased calcium intake.
Ru, Nan; Liu, Sean Shih-Yao; Bai, Yuxing; Li, Song; Liu, Yunfeng; Wei, Xiaoxia
2016-04-01
BoneCeramic (Straumann, Basel, Switzerland) can regenerate bone in alveolar defects after tooth extraction, but it is unknown whether it is feasible to move a tooth through BoneCeramic grafting sites. The objective of this study was to investigate 3-dimensional real-time root resorption and bone responses in grafted sites during orthodontic tooth movement. Sixty 5-week-old rats were randomly assigned to 3 groups to receive BoneCeramic, natural bovine cancellous bone particles (Bio-Oss; Geistlich Pharma, Wolhusen, Switzerland), or no graft, after the extraction of the maxillary left first molar. After 4 weeks, the maxillary left second molar was moved into the extraction site for 28 days. Dynamic bone microstructures and root resorption were evaluated using in-vivo microcomputed tomography. Stress distribution and corresponding tissue responses were examined by the finite element method and histology. Mixed model analysis of variance was performed to compare the differences among time points with Bonferroni post-hoc tests at the significance level of P <0.05. The BoneCeramic group had the least amount of tooth movement and root resorption volumes and craters, and the highest bone volume fraction, trabecular number, and mean trabecular thickness, followed by the Bio-Oss and the control groups. The highest stress accumulated in the cervical region of the mesial roots. BoneCeramic has better osteoconductive potential and induces less root resorption compared with Bio-Oss grafting and naturally recovered extraction sites. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Elefteriou, Florent; Benson, M. Douglas; Sowa, Hideaki; Starbuck, Michael; Liu, Xiuyun; Ron, David; Parada, Luis F.; Karsenty, Gerard
2009-01-01
Summary The transcription factor ATF4 enhances bone formation by favoring amino acid import and collagen synthesis in osteoblasts, a function requiring its phosphorylation by RSK2, the kinase inactivated in Coffin-Lowry Syndrome. Here, we show that in contrast, RSK2 activity, ATF4-dependent collagen synthesis, and bone formation are increased in mice lacking neurofibromin in osteoblasts (Nf1ob−/− mice). Independently of RSK2, ATF4 phosphorylation by PKA is enhanced in Nf1ob−/− mice, thereby increasing Rankl expression, osteoclast differentiation, and bone resorption. In agreement with ATF4 function in amino acid transport, a low-protein diet decreased bone protein synthesis and normalized bone formation and bone mass in Nf1ob−/− mice without affecting other organ weight, while a high-protein diet overcame Atf4−/− and Rsk2−/− mice developmental defects, perinatal lethality, and low bone mass. By showing that ATF4-dependent skeletal dysplasiae are treatable by dietary manipulations, this study reveals a molecular connection between nutrition and skeletal development. PMID:17141628
Sanbe, Toshihiro; Tomofuji, Takaaki; Ekuni, Daisuke; Azuma, Tetsuji; Tamaki, Naofumi; Yamamoto, Tatsuo
2007-11-01
A high-cholesterol diet stimulates alveolar bone resorption, which may be induced via tissue oxidative damage. Vitamin C reduces tissue oxidative damage by neutralizing free radicals and scavenging hydroxyl radicals, and its antioxidant effect may offer the clinical benefit of preventing alveolar bone resorption in cases of hyperlipidemia. We examined whether vitamin C could suppress alveolar bone resorption in rats fed a high-cholesterol diet. In this 12-week study, rats were divided into four groups: a control group (fed a regular diet) and three experimental groups (fed a high-cholesterol diet supplemented with 0, 1, or 2 g/l vitamin C). Vitamin C was provided by adding it to the drinking water. The bone mineral density of the alveolar bone was analyzed by microcomputerized tomography. As an index of tissue oxidative damage, the 8-hydroxydeoxyguanosine level in the periodontal tissue was determined using a competitive enzyme-linked immunosorbent assay. Hyperlipidemia, induced by a high-cholesterol diet, decreased rat alveolar bone density and increased the number of tartrate-resistant acid phosphatase-positive osteoclasts. The expression of 8-hydroxydeoxyguanosine was upregulated in the periodontal tissues. Intake of vitamin C reduced the effect of a high-cholesterol diet on alveolar bone density and osteoclast differentiation and decreased periodontal 8-hydroxydeoxyguanosine expression. In the rat model, vitamin C suppressed alveolar bone resorption, induced by high dietary cholesterol, by decreasing the oxidative damage of periodontal tissue.
Boix, D; Weiss, P; Gauthier, O; Guicheux, J; Bouler, J-M; Pilet, P; Daculsi, G; Grimandi, G
2006-11-01
The aim of the present study was to assess the efficacy of a ready-to-use injectable bone substitute on the prevention of alveolar ridge resorption after tooth extraction. Maxillary and mandibular premolars were extracted from 3 Beagle dogs with preservation of alveolar bone. Thereafter, distal sockets were filled with an injectable bone substitute (IBS), obtained by combining a polymer solution and granules of a biphasic calcium phosphate (BCP) ceramic. As a control, the mesial sockets were left unfilled. After a 3 months healing period, specimens were removed and prepared for histomorphometric evaluation with image analysis. Histomorphometric study allowed to measure the mean and the maximal heights of alveolar crest modifications. Results always showed an alveolar bone resorption in unfilled sockets. Resorption in filled maxillary sites was significantly lower than in control sites. Interestingly, an alveolar ridge augmentation was measured in mandibular filled sockets including 30% of newly-formed bone. It was concluded that an injectable bone substitute composed of a polymeric carrier and calcium phosphate can significantly increase alveolar ridge preservation after tooth extraction.
NASA Technical Reports Server (NTRS)
Yamaguchi, T.; Kifor, O.; Chattopadhyay, N.; Bai, M.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)
1998-01-01
The calcium-sensing receptor (CaR) is a G protein-coupled receptor that plays key roles in extracellular calcium ion (Ca2+o) homeostasis in parathyroid gland and kidney. Macrophage-like mononuclear cells appear at sites of osteoclastic bone resorption during bone remodeling and may play a role in the "reversal" phase following osteoclastic resorption and preceding bone formation. Bone resorption produces substantial local increases in Ca2+o that could provide a signal for bone marrow mononuclear cells in the vicinity, leading us to investigate whether such mononuclear cells express the CaR. In this study, we used the mouse J774 cell line, which exhibits a pure monocyte-macrophage phenotype. Both immunocytochemistry and Western blot analysis, using polyclonal antisera specific for the CaR, detected CaR protein in J774 cells. The use of reverse transcriptase-polymerase chain reaction with CaR-specific primers, including a set of intron-spanning primers, followed by nucleotide sequencing of the amplified products, also identified CaR transcripts in J774 cells. Exposure of J774 cells to high Ca2+o (2.8 mM or more) or the polycationic CaR agonist, neomycin (100 microM), stimulated both chemotaxis and DNA synthesis in J774 cells. Therefore, taken together, our data strongly suggest that the monocyte-macrophage cell line, J774, possesses both CaR protein and mRNA very similar, if not identical, to those in parathyroid and kidney.
Effect of low gravity on calcium metabolism and bone formation (L-7)
NASA Technical Reports Server (NTRS)
Suda, Tatsuo
1993-01-01
Recently, attention has been focused on the disorders of bone and calcium metabolism during space flight. The skeletal system has evolved on the Earth under 1-g. Space flights under low gravity appear to cause substantial changes in bone and calcium homeostasis of the animals adapted to 1-g. A space experiment for the First Materials Processing Test (FMPT) was proposed to examine the effects of low gravity on calcium metabolism and bone formation using chick embryos loaded in a space shuttle. This space experiment was proposed based on the following two experimental findings. First, it has been reported that bone density decreases significantly during prolonged space flight. The data obtained from the US Skylab and the U.S.S.R. Salyut-6 cosmonauts have also documented that the degree of bone loss is related to the duration of space flight. Second, the US-Soviet joints space experiment demonstrated that the decrease in bone density under low gravity appears to be due to the decrease in bone formation rather than the increase in bone resorption. The purpose of our space experiment is, therefore, to investigate further the mechanisms of bone growth under low gravity using fertilized chick embryos.
Kim, Harry K W; Aruwajoye, Olumide; Du, Justin; Kamiya, Nobuhiro
2014-09-17
Non-weight-bearing decreases the femoral head deformity but increases bone resorption without increasing bone formation in an experimental animal model of Legg-Calvé-Perthes disease. We sought to determine if local administration of bone morphogenetic protein (BMP)-2 with or without bisphosphonate can increase the bone formation during the non-weight-bearing treatment in the large animal model of Legg-Calvé-Perthes disease. Eighteen piglets were surgically induced with femoral head ischemia. Immediately following the surgery, all animals received an above-the-knee amputation to enforce local non-weight-bearing (NWB). One to two weeks later, six animals received local BMP-2 to the necrotic head (BMP group), six received local BMP-2 and ibandronate (BMP+IB group), and the remaining six received no treatment (NWB group). All animals were killed at eight weeks after the induction of ischemia. Radiographic, microcomputed tomography (micro-CT), and histomorphometric assessments were performed. Radiographic assessment showed that the femoral heads in the NWB, BMP, and BMP+IB groups had a decrease of 20%, 14%, and 10%, respectively, in their mean epiphyseal quotient in comparison with the normal control group. Micro-CT analyses showed significantly higher femoral head bone volume in the BMP+IB group than in the BMP group (p = 0.02) and the NWB group (p < 0.001). BMP+IB and BMP groups had a significantly higher trabecular number (p < 0.01) and lower trabecular separation (p < 0.02) than the NWB group. In addition, the osteoclast number per bone surface was significantly lower in the BMP+IB group compared with the NWB group. Calcein labeling showed significantly higher bone formation in the BMP and BMP+IB groups than in the NWB group (p < 0.05). Heterotopic ossification was found in the capsule of four hips in the BMP+IB group but not in the BMP group. Administration of BMP-2 with bisphosphonate best decreased bone resorption and increased new bone formation during non-weight-bearing treatment of ischemic osteonecrosis in a pig model, but heterotopic ossification is a concern. This preclinical study provides new evidence that BMP-2 with bisphosphonate can effectively prevent the extreme bone loss associated with the non-weight-bearing treatment and increase new bone formation in the femoral head in this animal model of ischemic osteonecrosis. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.
Wu, Mengrui; Wang, Yiping; Deng, Lianfu; Chen, Wei; Li, Yi-Ping
2012-01-01
Osteoclasts are the principle bone-resorbing cells. Precise control of balanced osteoclast activity is indispensable for bone homeostasis. Osteoclast activation mediated by RANK-TRAF6 axis has been clearly identified. However, a negative regulation-machinery in osteoclast remains unclear. TRAF family member-associated NF-κB activator (TANK) is induced by about 10 folds during osteoclastogenesis, according to a genome-wide analysis of gene expression before and after osteoclast maturation, and confirmed by western blot and quantitative RT-PCR. Bone marrow macrophages (BMMs) transduced with lentivirus carrying tank-shRNA were induced to form osteoclast in the presence of RANKL and M-CSF. Tank expression was downregulated by 90% by Tank-shRNA, which is confirmed by western blot. Compared with wild-type (WT) cells, osteoclastogenesis of Tank-silenced BMMs was increased, according to tartrate-resistant acid phosphatase (TRAP) stain on day 5 and day 7. Number of bone resorption pits by Tank-silenced osteoclasts was increased by 176% compared with WT cells, as shown by wheat germ agglutinin (WGA) stain and scanning electronic microscope (SEM) analysis. Survival rate of Tank-silenced mature osteoclast is also increased. However, acid production of Tank-knockdown cells was not changed compared with control cells. IκBα phosphorylation is increased in tank-silenced cells, indicating that TANK may negatively regulate NF-κB activity in osteoclast. In conclusion, Tank, whose expression is increased during osteoclastogenesis, inhibits osteoclast formation, activity and survival, by regulating NF-κB activity and c-FLIP expression. Tank enrolls itself in a negative feedback loop in bone resorption. These results may provide means for therapeutic intervention in diseases of excessive bone resorption. PMID:23139637
Azuma, Mariane Maffei; Gomes-Filho, João Eduardo; Ervolino, Edilson; Pipa, Camila Barbosa; Cardoso, Carolina de Barros Morais; Andrada, Ana Cristina; Kawai, Toshihisa; Cintra, Luciano Tavares Angelo
2017-06-01
This study evaluated the effects of the dietary supplement omega 3 polyunsaturated fatty acids (ω-3 PUFAs) on pulp exposure-induced apical periodontitis (AP) in rats. Twenty-eight male rats were divided into groups: control untreated rats (C), control rats treated with ω-3 PUFAs alone (C-O), rats with pulp exposure-induced AP, and rats with pulp exposure-induced AP treated with ω-3 PUFAs (AP-O). The ω-3 PUFAs were administered orally, once a day, for 15 days before pulp exposure and, subsequently, 30 days after pulp exposure. Rats were killed 30 days after pulp exposure, and jaws were subjected to histologic and immunohistochemical analyses. Immunohistochemical analyses were performed to detect tartrate-resistant acid phosphatase-positive osteoclasts and osteocalcin-positive osteoblasts on the bone surface of periapical area. Results were statistically evaluated by using analysis of variance and Tukey honestly significant difference, and P < .05 was considered statistically significant. The bone resorption lesion was significantly larger in the AP group compared with AP-O, C, and C-O groups (P < .05). The level of inflammatory cell infiltration was significantly elevated, and the number of tartrate-resistant acid phosphatase-positive osteoclasts was significantly higher in the periapical lesions of the AP group compared with AP-O, C, and C-O groups (P < .05). The number of osteocalcin-positive osteoblasts was significantly increased in the AP-O group compared with the AP group (P > .05). Supplementation with ω-3 PUFAs not only suppresses bone resorption but also promotes new bone formation in the periapical area of rats with AP in conjunction with downregulation of inflammatory cell infiltration into the lesion. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Wu, Mengrui; Wang, Yiping; Deng, Lianfu; Chen, Wei; Li, Yi-Ping
2012-01-01
Osteoclasts are the principle bone-resorbing cells. Precise control of balanced osteoclast activity is indispensable for bone homeostasis. Osteoclast activation mediated by RANK-TRAF6 axis has been clearly identified. However, a negative regulation-machinery in osteoclast remains unclear. TRAF family member-associated NF-κB activator (TANK) is induced by about 10 folds during osteoclastogenesis, according to a genome-wide analysis of gene expression before and after osteoclast maturation, and confirmed by western blot and quantitative RT-PCR. Bone marrow macrophages (BMMs) transduced with lentivirus carrying tank-shRNA were induced to form osteoclast in the presence of RANKL and M-CSF. Tank expression was downregulated by 90% by Tank-shRNA, which is confirmed by western blot. Compared with wild-type (WT) cells, osteoclastogenesis of Tank-silenced BMMs was increased, according to tartrate-resistant acid phosphatase (TRAP) stain on day 5 and day 7. Number of bone resorption pits by Tank-silenced osteoclasts was increased by 176% compared with WT cells, as shown by wheat germ agglutinin (WGA) stain and scanning electronic microscope (SEM) analysis. Survival rate of Tank-silenced mature osteoclast is also increased. However, acid production of Tank-knockdown cells was not changed compared with control cells. IκBα phosphorylation is increased in tank-silenced cells, indicating that TANK may negatively regulate NF-κB activity in osteoclast. In conclusion, Tank, whose expression is increased during osteoclastogenesis, inhibits osteoclast formation, activity and survival, by regulating NF-κB activity and c-FLIP expression. Tank enrolls itself in a negative feedback loop in bone resorption. These results may provide means for therapeutic intervention in diseases of excessive bone resorption.
NF-κB as a Therapeutic Target in Inflammatory-Associated Bone Diseases.
Lin, T-H; Pajarinen, J; Lu, L; Nabeshima, A; Cordova, L A; Yao, Z; Goodman, S B
Inflammation is a defensive mechanism for pathogen clearance and maintaining tissue homeostasis. In the skeletal system, inflammation is closely associated with many bone disorders including fractures, nonunions, periprosthetic osteolysis (bone loss around orthopedic implants), and osteoporosis. Acute inflammation is a critical step for proper bone-healing and bone-remodeling processes. On the other hand, chronic inflammation with excessive proinflammatory cytokines disrupts the balance of skeletal homeostasis involving osteoblastic (bone formation) and osteoclastic (bone resorption) activities. NF-κB is a transcriptional factor that regulates the inflammatory response and bone-remodeling processes in both bone-forming and bone-resorption cells. In vitro and in vivo evidences suggest that NF-κB is an important potential therapeutic target for inflammation-associated bone disorders by modulating inflammation and bone-remodeling process simultaneously. The challenges of NF-κB-targeting therapy in bone disorders include: (1) the complexity of canonical and noncanonical NF-κB pathways; (2) the fundamental roles of NF-κB-mediated signaling for bone regeneration at earlier phases of tissue damage and acute inflammation; and (3) the potential toxic effects on nontargeted cells such as lymphocytes. Recent developments of novel inhibitors with differential approaches to modulate NF-κB activity, and the controlled release (local) or bone-targeting drug delivery (systemic) strategies, have largely increased the translational application of NF-κB therapy in bone disorders. Taken together, temporal modulation of NF-κB pathways with the combination of recent advanced bone-targeting drug delivery techniques is a highly translational strategy to reestablish homeostasis in the skeletal system. © 2017 Elsevier Inc. All rights reserved.
NF-κB as a Therapeutic Target in Inflammatory-Associated Bone Diseases
Lin, T.-h.; Pajarinen, J.; Lu, L.; Nabeshima, A.; Cordova, L.A.; Yao, Z.; Goodman, S.B.
2017-01-01
Inflammation is a defensive mechanism for pathogen clearance and maintaining tissue homeostasis. In the skeletal system, inflammation is closely associated with many bone disorders including fractures, nonunions, periprosthetic osteolysis (bone loss around orthopedic implants), and osteoporosis. Acute inflammation is a critical step for proper bone-healing and bone-remodeling processes. On the other hand, chronic inflammation with excessive proinflammatory cytokines disrupts the balance of skeletal homeostasis involving osteoblastic (bone formation) and osteoclastic (bone resorption) activities. NF-κB is a transcriptional factor that regulates the inflammatory response and bone-remodeling processes in both bone-forming and bone-resorption cells. In vitro and in vivo evidences suggest that NF-κB is an important potential therapeutic target for inflammation-associated bone disorders by modulating inflammation and bone-remodeling process simultaneously. The challenges of NF-κB-targeting therapy in bone disorders include: (1) the complexity of canonical and noncanonical NF-κB pathways; (2) the fundamental roles of NF-κB-mediated signaling for bone regeneration at earlier phases of tissue damage and acute inflammation; and (3) the potential toxic effects on nontargeted cells such as lymphocytes. Recent developments of novel inhibitors with differential approaches to modulate NF-κB activity, and the controlled release (local) or bone-targeting drug delivery (systemic) strategies, have largely increased the translational application of NF-κB therapy in bone disorders. Taken together, temporal modulation of NF-κB pathways with the combination of recent advanced bone-targeting drug delivery techniques is a highly translational strategy to reestablish homeostasis in the skeletal system. PMID:28215222
Osteoporosis Prevention and Management.
Pai, Muralidhar V
2017-08-01
Osteoporosis, defined by BMD at the hip or lumbar spine that is less than or equal to 2.5 standard deviations below the mean BMD of a young-adult reference population, is the most common bone disease in humans affecting both sexes and all races. It's a silent killer affecting the quality of life due to fractures and postural changes. In osteoporosis there is an imbalance between bone formation and bone resorption in favor of latter. Preventive measures and treatments are available to combat this evil. Counseling is the integral part of prevention as well as treatment of osteoporosis. Preventive strategy includes life style changes, exercise, intake of calcium and vitamin D, avoiding alcohol, smoking and excessive intake of salt. Estrogen therapy/estrogen+progesterone therapy (ET/EPT) is no longer recommended as a first-line therapy for the prevention of osteoporosis. They may be used in the therapy for osteoporosis in women under 60. Diagnosis and classification are made by assessment of BMD using DEXA or ultrasound and laboratory investigations. Management includes estimation of 10-year fracture risk using FRAX, life style and diet modification and pharmacological therapy. The drugs used in osteoporosis may be those that inhibit bone resorption-bisphosphonates, denosumab, calcitonin, SERMs, estrogen and progesterone-or that stimulate bone formation-PTH, Teriparatide. Combination therapies are not recommended as they do not have proven additional BMD/fracture benefits. No therapy should be indefinite in duration. There are no uniform recommendations to all patients. Duration decisions need to be individualized. While on treatment monitoring should be done with BMD assessment by DEXA/ultrasound and bone turnover markers.
Zhang, Wenjing; Tian, Yu; He, Hongyan; Chen, Rui; Ma, Yifan; Guo, Han; Yuan, Yuan; Liu, Changsheng
2016-03-01
Strontium (Sr(2+)) has pronounced effects on stimulating bone formation and inhibiting bone resorption in bone regeneration. In this current study, the effect and the underlying mechanism involved of Sr(2+) on the biological activity of bone morphogenetic protein-2 (BMP-2) were studied in detail with pluripotent skeletal muscle myogenic progenitor C2C12 model cell line. The results indicated that Sr(2+) could bind recombinant human BMP-2 (rhBMP-2) rapidly, even in the presence of Ca(2+) and Mg(2+), and inhibited rhBMP-2-induced osteogenic differentiation in vitro and osteogenetic efficiency in vivo. Further studies demonstrated that Sr(2+) treatment undermined the binding capacity of rhBMP-2 with its receptor BMPRIA and thus attenuated Smad 1/5/8 phosphorylation without affecting their dephosphorylation in C2C12 cells. Furthermore, circular dichroism spectroscopy, fluorescence spectroscopy and X-ray photoelectron spectroscopy all revealed that the inhibitory effect of Sr(2+) on the rhBMP-2 osteogenic activity was associated with the formation of Sr-rhBMP-2 complex and ensuing enhancement of β-sheet structure. Our work suggests the activity of rhBMP-2 to induce osteogenic differentiation was decreased by directly interaction with free Sr ions in solution, which should provide guide and assist for development of BMP-2-based materials for bone regeneration. Due to easy denaturation and ensuing the reduced activity of rhBMP-2, preserving/enhancing the capacity of rhBMP-2 to induce osteogenic differentiation is of critical importance in developing the protein-based therapy. Cations as effective elements influence the conformation and thereby the bioactivity of protein. Strontium (Sr(2+)), stimulating bone formation and inhibiting bone resorption, has been incorporated into biomaterials/scaffold to improve the bioactivity for bone-regeneration applications. However, Sr(2+)-induced changes in the conformation and bioactivity of BMP-2 have never been investigated. In this study, the formation of Sr-rhBMP-2 complex inhibited the osteogenic differentiation in vitro and osteogenetic efficiency in vivo through the inhibition of BMP/Smad signaling pathway, providing guidance for development of Sr-containing BMP-2-based bone scaffold/matrice and other Sr-dopped protein therapy. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Sowers, MaryFran R; Zheng, Huiyong; Greendale, Gail A; Neer, Robert M; Cauley, Jane A; Ellis, Jayne; Johnson, Sarah; Finkelstein, Joel S
2013-07-01
Our objective was to characterize changes in bone resorption in relation to the final menstrual period (FMP), reproductive hormones, body mass index (BMI), and ethnicity. Urinary type I collagen N-telopeptide (NTX), estradiol, and FSH levels were measured annually for up to 8 years spanning the menopause transition in 918 African American, Chinese, Japanese, or Caucasian women. Urinary NTX began to increase sharply about 2 years before the FMP, reaching its peak level about 1 to 1.5 years after the FMP. NTX levels declined modestly from 2 to 6 years after the FMP but remained about 20% higher than before the menopause transition. The sharp rise in FSH occurred in conjunction with a sharp decline in estradiol and shortly after FSH levels began increasing rapidly. The mean increase in urinary NTX across the menopause transition was greatest in women with BMI <25 kg/m² and smallest in women with BMI >30 kg/m². Increases in NTX were greatest in Japanese women and smallest in African Americans. These differences were attenuated, but not eliminated, when analyses were adjusted for covariates, particularly BMI. During the menopause transition, a decline in ovarian function beginning about 2 years before the FMP is followed by an increase in bone resorption and subsequently by bone loss. The magnitude of the increase in bone resorption is inversely associated with BMI. Ethnic differences in changes in bone resorption are attenuated, but not eliminated, by adjustment for BMI. Ethnic differences in BMI, and corresponding ethnic differences in bone resorption, appear to account for much of the ethnic variation in perimenopausal bone loss.
Artificial Gravity: Effects on Bone Turnover
NASA Technical Reports Server (NTRS)
Heer, M.; Zwart, S /R.; Baecker, N.; Smith, S. M.
2007-01-01
The impact of microgravity on the human body is a significant concern for space travelers. Since mechanical loading is a main reason for bone loss, artificial gravity might be an effective countermeasure to the effects of microgravity. In a 21-day 6 head-down tilt bed rest (HDBR) pilot study carried out by NASA, USA, the utility of artificial gravity (AG) as a countermeasure to immobilization-induced bone loss was tested. Blood and urine were collected before, during, and after bed rest for bone marker determinations. Bone mineral density was determined by DXA and pQCT before and after bed rest. Urinary excretion of bone resorption markers (n-telopeptide and helical peptide) were increased from pre-bed rest, but there was no difference between the control and the AG group. The same was true for serum c-telopeptide measurements. Bone formation markers were affected by bed rest and artificial gravity. While bone-specific alkaline phosphatase tended to be lower in the AG group during bed rest (p = 0.08), PINP, another bone formation marker, was significantly lower in AG subjects than CN before and during bed rest. PINP was lower during bed rest in both groups. For comparison, artificial gravity combined with ergometric exercise was tested in a 14-day HDBR study carried out in Japan (Iwase et al. J Grav Physiol 2004). In that study, an exercise regime combined with AG was able to significantly mitigate the bed rest-induced increase in the bone resorption marker deoxypyridinoline. While further study is required to more clearly differentiate bone and muscle effects, these initial data demonstrate the potential effectiveness of short-radius, intermittent AG as a countermeasure to the bone deconditioning that occurs during bed rest and spaceflight. Future studies will need to optimize not only the AG prescription (intensity and duration), but will likely need to include the use of exercise or other combined treatments.
Does methamphetamine affect bone metabolism?
Tomita, Masafumi; Katsuyama, Hironobu; Watanabe, Yoko; Okuyama, Toshiko; Fushimi, Shigeko; Ishikawa, Takaki; Nata, Masayuki; Miyamoto, Osamu
2014-05-07
There is a close relationship between the central nervous system activity and bone metabolism. Therefore, methamphetamine (METH), which stimulates the central nervous system, is expected to affect bone turnover. The aim of this study was to investigate the role of METH in bone metabolism. Mice were divided into 3 groups, the control group receiving saline injections, and the 5 and 10mg/kg METH groups (n=6 in each group). All groups received an injection of saline or METH every other day for 8 weeks. Bone mineral density (BMD) was assessed by X-ray computed tomography. We examined biochemical markers and histomorphometric changes in the second cancellous bone of the left femoral distal end. The animals that were administered 5mg/kg METH showed an increased locomotor activity, whereas those receiving 10mg/kg displayed an abnormal and stereotyped behavior. Serum calcium and phosphorus concentrations were normal compared to the controls, whereas the serum protein concentration was lower in the METH groups. BMD was unchanged in all groups. Bone formation markers such as alkaline phosphatase and osteocalcin significantly increased in the 5mg/kg METH group, but not in the 10mg/kg METH group. In contrast, bone resorption markers such as C-terminal telopeptides of type I collagen and tartrate-resistant acid phosphatase 5b did not change in any of the METH groups. Histomorphometric analyses were consistent with the biochemical markers data. A significant increase in osteoblasts, especially in type III osteoblasts, was observed in the 5mg/kg METH group, whereas other parameters of bone resorption and mineralization remained unchanged. These results indicate that bone remodeling in this group was unbalanced. In contrast, in the 10mg/kg METH group, some parameters of bone formation were significantly or slightly decreased, suggesting a low turnover metabolism. Taken together, our results suggest that METH had distinct dose-dependent effects on bone turnover and that METH might induce adverse effects, leading to osteoporosis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Keller, Johannes; Catala-Lehnen, Philip; Huebner, Antje K.; Jeschke, Anke; Heckt, Timo; Lueth, Anja; Krause, Matthias; Koehne, Till; Albers, Joachim; Schulze, Jochen; Schilling, Sarah; Haberland, Michael; Denninger, Hannah; Neven, Mona; Hermans-Borgmeyer, Irm; Streichert, Thomas; Breer, Stefan; Barvencik, Florian; Levkau, Bodo; Rathkolb, Birgit; Wolf, Eckhard; Calzada-Wack, Julia; Neff, Frauke; Gailus-Durner, Valerie; Fuchs, Helmut; de Angelis, Martin Hrabĕ; Klutmann, Susanne; Tsourdi, Elena; Hofbauer, Lorenz C.; Kleuser, Burkhard; Chun, Jerold; Schinke, Thorsten; Amling, Michael
2014-01-01
The hormone calcitonin (CT) is primarily known for its pharmacologic action as an inhibitor of bone resorption, yet CT-deficient mice display increased bone formation. These findings raised the question about the underlying cellular and molecular mechanism of CT action. Here we show that either ubiquitous or osteoclast-specific inactivation of the murine CT receptor (CTR) causes increased bone formation. CT negatively regulates the osteoclast expression of Spns2 gene, which encodes a transporter for the signalling lipid sphingosine 1-phosphate (S1P). CTR-deficient mice show increased S1P levels, and their skeletal phenotype is normalized by deletion of the S1P receptor S1P3. Finally, pharmacologic treatment with the nonselective S1P receptor agonist FTY720 causes increased bone formation in wild-type, but not in S1P3-deficient mice. This study redefines the role of CT in skeletal biology, confirms that S1P acts as an osteoanabolic molecule in vivo and provides evidence for a pharmacologically exploitable crosstalk between osteoclasts and osteoblasts. PMID:25333900
Evaluation of novel resorbable membranes for bone augmentation in a rat model.
Zeng, Ni; van Leeuwen, Anne; Yuan, Huipin; Bos, Ruud R M; Grijpma, Dirk W; Kuijer, Roel
2016-02-01
Our study compared two novel, biodegradable poly(trimethylene carbonate) (PTMC) barrier membranes to clinically applied barrier membranes in maintaining volume of block autologous bone grafts in a rat mandible model. Two hundred and forty rats were included in this study. Block autologous bone grafts of 5 mm in diameter were harvested from the mandibular angles and transplanted onto the contralateral side. The bone grafts were either covered with a membrane or left uncovered. The applied membranes included pure PTMC membranes, biphasic calcium phosphate (BCP) incorporated PTMC composite membranes, expanded poly(tetrafluoroethylene) (e-PTFE) membranes (Tex) and collagen membranes (Geistlich Bio-Gide). After 2, 4 and 12 weeks, the rat mandibles were retrieved and analysed by histological evaluation and μCT quantification. The histological evaluation revealed that in time the block autologous bone graft was well integrated to the recipient bone via gradually maturing newly formed bone and did not show signs of resorption, independent of membrane coverage or types of membrane. μCT quantification showed the volume of the bone graft and recipient bone together was maintained by new bone formation and recipient bone resorption. Our study showed that the use of PTMC membranes and PTMC-BCP composite membranes resulted in similar bone remodelling to the collagen membranes and e-PTFE membranes and that the use of barrier membranes did not interfere with bone remodelling of the bone grafts and recipient bones. However, the used barrier membranes seemed not to contribute in maintaining the volume of block autologous bone grafts. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Kresnoadi, Utari; Ariani, Maretaningtias Dwi; Djulaeha, Eha; Hendrijantini, Nike
2017-01-01
Following the extraction of a tooth, bone resorption can cause significant problems for a subsequent denture implant and restorative dentistry. Thus, the tooth extraction socket needs to be maintained to reduce the chance of any alveolar ridge bone resorption. The objective of this study is to determine whether the administration of mangosteen peel extracts (MPEs), combined with demineralized freeze-dried bovine bone xenograft (DFBBX) materials for tooth extraction socket preservation, could potentially reduce inflammation by decreased the expression of nuclear factor κβ (NfKb) and receptor activator of nuclear factor-κβ ligand (RANKL), to inhibit alveolar bone resorption, and increased of bone morphogenetic protein-2 (BMP2) expressions to accelerate alveolar bone regeneration. This study consists of several stages. First, a dosage of MPE combined with graft materials was applied to a preserved tooth extraction socket of a Cavia cobaya . Second, the C. cobaya was examined using immune histochemical expression of NfKb, RANKL, BMP2, as well as histology of osteoblasts and osteoclasts. The research was statistically analyzed, using an analysis of variance test and Tukey honest significant difference test. The results of this research were that it was determined that MPEs combined with graft materials on a preserved tooth extraction socket can reduce NfKb, RANK, and osteoclasts also increase of BMP2 and osteoblast. The induction of MPEs and DFBBX is effective in reducing inflammation, lowering osteoclasts, decreasing alveolar bone resorption, and also increasing BMP2 expression and alveolar bone regeneration.
On Orbit Osteobiology Experiments: from "STROMA" to "MDS" -from in vitro to in vivo
NASA Astrophysics Data System (ADS)
Liu, Yi; Cancedda, Ranieri
Spaceflight causes profound changes in the skeleton, in particular, in the weight-loading bones. Uncoupling of bone remodeling equilibrium between bone formation and resorption is con-sidered responsible for the microgravity-induced bone loss. These changes result in weak-ened and brittle bones prone to fracture on re-entry and in accelerated osteoporosis, making bone deterioration a major problem obstructing the prospects of long-duration manned space flight. Osteoblasts (bone forming cells) and osteocytes (bone resorption cells) are known to be mechano-sensors. Short-exposure of osteoblasts to simulated microgravity ensnarled cell adhe-sion and cytoskeleton. Also osteoblast precursors such as bone marrow stroma cells (BMSC) were shown to be sensitive to mechanical loading. We performed a series of STROMA space-flight experiments by culturing BMSC or co-culturing osteoblasts and osteoclast precursors in automated bioreactors on orbit. Genechip analysis revealed an inhibition of cell proliferation and an unexpected activation of nervous system development genes by spaceflight. To unravel effects of microgravity on genes governing bone mass, transgenic mice with a higher bone mass were flown to orbit inside the Mice Drawer System (MDS) payload. The MDS experiment was launched inside Shuttle Discovery in STS-128 on August 28 2009 at 23:58 EST, and returned to earth by Shuttle Atlantis in STS129 on November 27 2009 at 9:47 EST, marking it as the first long duration animal experiment on the International Space Station (ISS).
Dong, Jinlei; Thu, Hnin Ei; Abourehab, Mohammed A S; Hussain, Zahid
2018-05-18
Osteoporosis is a medical condition of fragile bones with an increased susceptibility to bone fracture. Despite having availability of a wide range of pharmacological agents, prevalence of this metabolic disorder is continuously escalating. Owing to excellent biomedical achievements of nanomedicines in the last few decades, we aimed combo delivery of bone anti-resorptive agent, alendronate (ALN), and bone density enhancing drug, curcumin (CUR), in the form of polymeric nanoparticles. To further optimize the therapeutic efficacy, the prepared ALN/CUR nanoparticles were decorated with hyaluronic acid which is a well-documented biomacromolecule having exceptional bone regenerating potential. The optimized nanoformulation was evaluated for bone regeneration efficacy by assessing the time-mannered modulation in the proliferation, differentiation, and mineralization of MC3T3-E1 cells, a pre-osteoblast model. Moreover, the time-mannered expressions of various bone-forming protein biomarkers including bone morphogenetic protein, runt related transcription factor 2, and osteocalcin were assessed in the cell lysates. Results revealed that HA-ALN/CUR NPs provoke remarkable increase in proliferation, differentiation, and mineralization in the ECM of MC3T3-E1 cells which ultimately leads to enhanced bone formation. This new strategy employing simultaneous delivery of anti-resorptive and bone forming agents would open new horizons for the scientists as an efficient alternative pharmacotherapy for the management of osteoporosis. Copyright © 2017. Published by Elsevier B.V.
Darling, A L; Hart, K H; Gossiel, F; Robertson, F; Hunt, J; Hill, T R; Johnsen, S; Berry, J L; Eastell, R; Vieth, R; Lanham-New, S A
2017-05-01
Few data exist on bone turnover in South Asian women and it is not well elucidated as to whether Western dwelling South Asian women have different bone resorption levels to that of women from European ethnic backgrounds. This study assessed bone resorption levels in UK dwelling South Asian and Caucasian women as well as evaluating whether seasonal variation in 25-hydroxyvitamin D [25(OH)D] is associated with bone resorption in either ethnic group. Data for seasonal measures of urinary N-telopeptide of collagen (uNTX) and serum 25(OH)D were analysed from n=373 women (four groups; South Asian postmenopausal n=44, South Asian premenopausal n=50, Caucasian postmenopausal n=144, Caucasian premenopausal n=135) (mean (±SD) age 48 (14) years; age range 18-79years) who participated in the longitudinal D-FINES (Diet, Food Intake, Nutrition and Exposure to the Sun in Southern England) cohort study (2006-2007). A mixed between-within subjects ANOVA (n=192) showed a between subjects effect of the four groups (P<0.001) on uNTX concentration, but no significant main effect of season (P=0.163). Bonferroni adjusted Post hoc tests (P≤0.008) suggested that there was no significant difference between the postmenopausal Asian and premenopausal Asian groups. Season specific age-matched-pairs analyses showed that in winter (P=0.04) and spring (P=0.007), premenopausal Asian women had a 16 to 20nmolBCE/mmol Cr higher uNTX than premenopausal Caucasian women. The (amplitude/mesor) ratio (i.e. seasonal change) for 25(OH)D was predictive of uNTX, with estimate (SD)=0.213 (0.015) and 95% CI (0.182, 0.245; P<0.001) in a non-linear mixed model (n=154). This showed that individuals with a higher seasonal change in 25(OH)D, adjusted for overall 25(OH)D concentration, showed increased levels of uNTX. Although the effect size was smaller than for the amplitude/mesor ratio, the mesor for 25(OH)D concentration was also predictive of uNTX, with estimate (SD)=-0.035 (0.004), and 95% CI (-0.043, -0.028; P<0.001). This study demonstrates higher levels of uNTX in premenopausal South Asian women than would be expected for their age, being greater than same-age Caucasian women, and similar to postmenopausal Asian women. This highlights potentially higher than expected bone resorption levels in premenopausal South Asian women which, if not offset by concurrent increased bone formation, may have future clinical and public health implications which warrant further investigation. Individuals with a larger seasonal change in 25(OH)D concentration showed an increased bone resorption, an association which was larger than that of the 25(OH)D yearly average, suggesting it may be as important clinically to ensure a stable and steady 25(OH)D concentration, as well as one that is high enough to be optimal for bone health. Copyright © 2017 Elsevier Inc. All rights reserved.
Safety and tolerability of denosumab for the treatment of postmenopausal osteoporosis
Lewiecki, E Michael
2011-01-01
Denosumab is a fully human monoclonal antibody to receptor activator of nuclear factor kappa-B ligand (RANKL), a cytokine member of the tumor necrosis factor family that is the principal regulator of osteoclastic bone resorption. Postmenopausal osteoporosis (PMO) is a systemic skeletal disease associated with high levels of RANKL, resulting in a high rate of bone remodeling and an imbalance of bone resorption over bone formation. By inhibiting RANKL in women with PMO, denosumab reduces the rate of bone remodeling, thereby increasing bone mineral density, improving bone strength, and reducing the risk of fractures. In clinical trials of women with osteoporosis and low bone mineral density, denosumab has been well tolerated, with overall rates of adverse events and serious adverse events in women treated with denosumab similar to those receiving placebo. In the largest clinical trial of denosumab for the treatment of women with PMO, there was a significantly greater incidence of cellulitis reported as a serious adverse event, with no difference in the overall incidence of cellulitis, and a significantly lower incidence of the serious adverse event of concussions with denosumab compared with placebo. The evidence supports a favorable balance of benefits versus risks of denosumab for the treatment of PMO. Assessments of the long-term safety of denosumab are ongoing. Denosumab 60 mg subcutaneously every 6 months is an approved treatment for women with PMO who are at high risk for fracture. PMID:22279412
da Cunha, Marcos Guilherme; Ramos-Junior, Erivan Schnaider; Franchin, Marcelo; Taira, Thaise Mayumi; Beutler, John A; Franco, Gilson Cesar Nobre; Ikegaki, Masaharu; de Alencar, Severino Matias; Fukada, Sandra Yasuyo; Rosalen, Pedro Luiz
2017-06-23
Bone-loss-related diseases such as rheumatoid arthritis, osteomyelitis, osteoporosis, and periodontitis are associated with high rates of morbidity worldwide. These disorders are characterized by an imbalance between the formation and activity of osteoblasts and osteoclasts, leading to bone loss. In this context, we evaluated the effect of cinnamoyloxy-mammeisin (CNM), an anti-inflammatory coumarin found in Melipona scutellaris geopropolis, on key targets related to bone remodeling. In the present study we investigated the in vitro effects of CNM on osteoclast differentiation and M-CSF+RANKL-induced osteoclastogenic marker expression. Additionally, the interference of CNM treatment on osteoclast activity was evaluated by zymography and resorption area. Finally, we assessed the capacity of the compound to mitigate alveolar bone loss in vivo in experimental murine periodontitis induced by Porphyromonas gingivalis. We observed that treatment with CNM impaired osteoclast differentiation, as evidenced by a reduced number of tartrate-resistant acid-phosphatase-positive multinucleated cells (TRAP+) as well as the expression of osteoclastogenic markers upon M-CSF+RANKL-induced stimulation. Similarly, we observed reduced gelatinolytic and resorption capacity in M-CSF+RANKL-induced cells in vitro. Lastly, CNM attenuated alveolar bone loss in an experimental murine periodontitis model. These findings indicate that CNM may be considered a promising treatment for bone loss diseases.
Degradable poly(anhydride ester) implants: effects of localized salicylic acid release on bone.
Erdmann, L; Macedo, B; Uhrich, K E
2000-12-01
Degradable poly(anhydride ester) implants in which the polymer backbone breaks down into salicylic acid (SA) were investigated. In this preliminary work, local release of SA from the poly(anhydride esters), thus classified as 'active polymers', on healthy bone and tissue was evaluated in vivo using a mouse model. Degradable polyanhydrides that break down into inactive by-products were used as control membranes because of their chemical similarity to the active polymers. Small polymer squares were inserted over the exposed palatal bone adjacent to the maxillary first molars. Active polymer membranes were placed on one side of the mouth, control polymers placed on the contra lateral side. Intraoral clinical examination showed that active polymer sites were less swollen and inflamed than control polymer sites. Histopathological examination at day 1 showed essentially no difference between control and active polymers. After 4 days, active polymer sites showed epithelial proliferation to a greater extent than the polyanhydride controls. After 20 days, active polymer sites showed greater thickness of new palatal bone and no resorptive areas, while control polymer sites showed less bone thickness as well as resorption including lacunae involving cementum and dentine. From these preliminary studies, we conclude that active polymers, namely poly(anhydride esters), stimulated new bone formation.
Kong, Xiangying; Yang, Yue; Wu, Wenbin; Wan, Hongye; Li, Xiaomin; Zhong, Michun; Su, Xiaohui; Jia, Shiwei; Lin, Na
2015-01-01
Excessive bone resorption by osteoclasts within inflamed joints is the most specific hallmark of rheumatoid arthritis. A. flaccida has long been used for the treatment of arthritis in folk medicine of China; however, the active ingredients responsible for the anti-arthritis effects of A. flaccida are still elusive. In this study, W3, a saponin isolated from the extract of A. flaccida was identified as the major active ingredient by using an osteoclast formation model induced by receptor activator of nuclear factor kappa-B ligand (RANKL). W3 dose-dependently suppressed the actin ring formation and lacunar resorption. Mechanistic investigation revealed that W3 inhibited the RANKL-induced TRAF6 expression, decreased phosphorylation of mitogen-activated protein kinases (MAPKs) and IκB-α, and suppressed NF-κB p65 DNA binding activity. Furthermore, W3 almost abrogated the expression of c-Fos and nuclear factor of activated T cells (NFATc1). Therefore, our results suggest that W3 is a potential agent for treating lytic bone diseases although further evaluation in vivo and in clinical trials is needed.
Ma, Yanfei L; Hamang, Matthew; Lucchesi, Jonathan; Bivi, Nicoletta; Zeng, Qianqiang; Adrian, Mary D; Raines, Sarah E; Li, Jiliang; Kuhstoss, Stuart A; Obungu, Victor; Bryant, Henry U; Krishnan, Venkatesh
2017-04-01
Sclerostin antibodies increase bone mass by stimulating bone formation. However, human and animal studies show that bone formation increases transiently and returns to pre-treatment level despite ongoing antibody treatment. To understand its mechanism of action, we studied the time course of bone formation, correlating the rate and extent of accrual of bone mass and strength after sclerostin antibody treatment. Ovariectomized (OVX) rats were treated with a sclerostin-antibody (Scle-ab) at 20mg/kg sc once weekly and sacrificed at baseline and 2, 3, 4, 6, and 8weeks post-treatment. In Scle-ab treated rats, serum PINP and OCN rapidly increased at week 1, peaked around week 3, and returned to OVX control levels by week 6. Transcript analyses from the distal femur revealed an early increase in bone formation followed by a sustained decrease in bone resorption genes. Lumbar vertebral (LV) osteoblast surface increased 88% by week 2, and bone formation rate (BFR/BS) increased 138% by week 4. Both parameters were below OVX control by week 8. Bone formation was primarily a result of modeling based formation. Endocortical and periosteal BFR/BS peaked around week 4 at 313% and 585% of OVX control, respectively. BFR/BS then declined but remained higher than OVX control on both surfaces through week 8. Histomorphometric analyses showed LV-BV/TV did not further increase after week 4, while BMD continued to increase at LV, mid femur (MF), and femoral neck (FN) through week 8. Biomechanical tests showed a similar improvement in bone strength through 8weeks in MF and FN, but bone strength plateaued between weeks 6 and 8 for LV. Our data suggest that bone formation with Scle-ab treatment is rapid and modeling formation dominated in OVX rats. Although transient, the bone formation response persists longer in cortical than trabecular bone. Copyright © 2016 Elsevier Inc. All rights reserved.
Scheiner, Stefan; Komlev, Vladimir S.; Gurin, Alexey N.; Hellmich, Christian
2016-01-01
We here explore for the very first time how an advanced multiscale mathematical modeling approach may support the design of a provenly successful tissue engineering concept for mandibular bone. The latter employs double-porous, potentially cracked, single millimeter-sized granules packed into an overall conglomerate-type scaffold material, which is then gradually penetrated and partially replaced by newly grown bone tissue. During this process, the newly developing scaffold-bone compound needs to attain the stiffness of mandibular bone under normal physiological conditions. In this context, the question arises how the compound stiffness is driven by the key design parameters of the tissue engineering system: macroporosity, crack density, as well as scaffold resorption/bone formation rates. We here tackle this question by combining the latest state-of-the-art mathematical modeling techniques in the field of multiscale micromechanics, into an unprecedented suite of highly efficient, semi-analytically defined computation steps resolving several levels of hierarchical organization, from the millimeter- down to the nanometer-scale. This includes several types of homogenization schemes, namely such for porous polycrystals with elongated solid elements, for cracked matrix-inclusion composites, as well as for assemblies of coated spherical compounds. Together with the experimentally known stiffnesses of hydroxyapatite crystals and mandibular bone tissue, the new mathematical model suggests that early stiffness recovery (i.e., within several weeks) requires total avoidance of microcracks in the hydroxyapatite scaffolds, while mid-term stiffness recovery (i.e., within several months) is additionally promoted by provision of small granule sizes, in combination with high bone formation and low scaffold resorption rates. PMID:27708584
The Triple Functions of D2 Silencing in Treatment of Periapical Disease.
Pan, Jie; Wang, Jue; Hao, Liang; Zhu, Guochun; Nguyen, Diep N; Li, Qian; Liu, Yuehua; Zhao, Zhihe; Li, Yi-Ping; Chen, Wei
2017-02-01
Dental caries is the most widespread chronic infectious disease. Inflammation in pulp tissues caused by dental caries will lead to periapical granulomas, bone erosion, loss of the tooth, and severe pain. Despite numerous efforts in recent studies to develop effective treatments for dental caries, the need for a potent therapy is still urgent. In this study, we applied a gene-based therapy approach by administering recombinant adeno-associated virus (AAV)-mediated Atp6v0d2 (d2) RNA interference knockdown of d2 gene expression to prevent periapical bone loss and suppress periapical inflammation simultaneously. The results showed that d2 depletion is simultaneously capable of reducing bone resorption with 75% protection through reducing osteoclasts, enhancing bone formation by increasing osterix expression, and inhibiting inflammation by decreasing T-cell infiltration. Notably, AAV-mediated gene therapy of d2 knockdown significantly reduced proinflammatory cytokine expression, including tumor necrosis factor α, interferon-γ, interleukin-1α, and interleukin 6 levels in periapical diseases caused by bacterial infection. Quantitative real-time polymerase chain reaction revealed that d2 knockdown reduced osteoclast-specific functional genes (ie, Acp5 and Ctsk) and increased osteoblast marker genes (ie, Osx and Opg) in periapical tissues. Collectively, our results showed that AAV-mediated d2 depletion in the periapical lesion area can prevent the progression of endodontic disease and bone erosion while significantly reducing the inflammatory over-response. These findings show that the depletion of d2 simultaneously reduces bone resorption, enhances bone formation, and inhibits inflammation caused by periapical diseases and provide significant insights into the potential effectiveness of AAV-sh-d2-mediated d2 silencing gene therapy as a major endodontic treatment. Copyright © 2016. Published by Elsevier Inc.
Jackson, Leila W.; Cromer, Barbara A.; Panneerselvamm, Ashok
2010-01-01
Background Blood lead levels (BLLs) have been shown to increase during periods of high bone turnover such as pregnancy and menopause. Objectives We examined the associations between bone turnover and micronutrient intake with BLLs in women 20–85 years of age (n = 2,671) participating in the National Health and Nutrition Examination Survey, 1999–2002. Methods Serum bone-specific alkaline phosphatase (BAP) and urinary cross-linked N-telopeptides (NTx) were measured as markers of bone formation and resorption, respectively. Lead was quantified in whole blood. The association between tertiles of BAP and NTx, and BLLs was examined using linear regression with natural log-transformed BLLs as the dependent variable and interpreted as the percent difference in geometric mean BLLs. Results In adjusted analyses, mean BLLs among postmenopausal women in the upper tertiles of NTx and BAP were 34% [95% confidence interval (CI), 23%–45%] and 30% (95% CI, 17%–43%) higher than BLLs among women in the lowest tertiles of NTx and BAP, respectively. These associations were weaker, but remained statistically significant, among premenopausal women (NTx: 10%; 95% CI, 0.60%–19%; BAP: 14%; 95% CI, 6%–22%). Within tertiles of NTx and BAP, calcium intake above the Dietary Reference Intake (DRI), compared with below the DRI, was associated with lower mean BLLs among postmenopausal women but not premenopausal women, although most of the associations were not statistically significant. We observed similar associations for vitamin D supplement use. Conclusions Bone resorption and bone formation were associated with a significant increase in BLLs among pre-and postmenopausal women. PMID:20688594
Rosol, T J; Capen, C C; Weisbrode, S E; Horst, R L
1986-06-01
A serially transplantable tumor line, designated CAC-8, has been developed in nude mice from a spontaneously occurring adenocarcinoma of the anal sac from a hypercalcemic dog. Nude mice with transplanted CAC-8 developed hypercalcemia (mean 16.3 +/- 0.6 mg/dl) and moderate hypophosphatemia without bone metastasis. Urinary excretion of calcium and hydroxyproline were increased 6- and 2.3-fold, respectively. Urinary excretion of cAMP was moderately increased but phosphorus excretion was not significantly altered. Serum 1,25-dihydroxycholecalciferol was increased significantly in tumor-bearing nude mice in proportion to the magnitude of tumor-induced hypercalcemia. Histomorphometric evaluation of lumbar vertebrae from nude mice with CAC-8 revealed decreased total and cortical bone volume, a 3.3-fold increase in bone resorption rate and a 2.5-fold increase in bone formation rate at the tissue level. The transplanted CAC-8 has maintained the histologic pattern of the original carcinoma up to the present sixth passage. Ultrastructural evaluation of transplanted tumor cells revealed 150-250-nm secretory-like granules. The granules did not stain by using an ultrastructural cytochemical (uranaffin) stain specific for neuroendocrine secretory granules. Ultrastructurally, the parathyroid glands of nude mice with CAC-8 appeared inactive with large intracytoplasmic whorl of agranular membranes. These data suggest the transplanted carcinoma secreted a humoral factor which resulted in hypercalcemia. The tumor line (CAC-8) propagated in nude mice represents an animal model of humoral hypercalcemia of malignancy that shares many features with the syndrome described in human patients. Unique features of this transplanted carcinoma associated with hypercalcemia include increased serum dihydroxycholecalciferol, increased rate of bone formation as well as bone resorption, an absence of bone metastases, and evidence of parathyroid gland suppression.
Bosco, Alvaro Francisco; Faleiros, Paula Lazilha; Carmona, Luana Rodrigues; Garcia, Valdir Gouveia; Theodoro, Letícia Helena; de Araujo, Nathália Januario; Nagata, Maria José Hitomi; de Almeida, Juliano Milanezi
2016-10-01
To histomorphometrically analyze the effect of low-level laser therapy (LLLT) on bone formation process in surgically created critical-size defects (CSDs) treated with bovine bone graft (BBG) and its influence over particles' resorption of BBG. A 10-mm diameter CSD was surgically created in the calvaria of 64 male rats, which were distributed into 4 experimental groups: the C group (control), only blood clot; the LLLT group, LLLT (GaAlAs, 660nm) and blood clot; the BBG group, CSD filled with BBG; the BBG/LLLT group, LLLT and CSD filled with BBG. Animals were euthanized at either 30 or 60days post-operation. A histological analysis was performed. Additionally, the percentage of newly formed bone area (NFBA) and remaining particles areas (RPA) of BBG were histometrically evaluated and data statistically analyzed. The LLLT (5.82±2.05; 7.34±1.01) group presented significantly greater NFBA when compared to the C group (1.61±0.30; 5.59±0.94) at 30 and 60days post-operation (p<0.05). The BBG/LLLT group (7.39±1.45; 9.44±2.36) presented significantly greater NFBA than the BBG group (3.85±1.56; 8.02±0.63) at 30 and 60days postoperation (p<0.05). There was no significant difference in the mean percentage of implanted material RPA between the BBG and the BBG/LLLT groups. LLLT can improve bone formation process in CSD filled or not with BBG in rat calvaria, but it is not able to accelerate particles resorption of this material in the interior of bone defect. Copyright © 2016 Elsevier B.V. All rights reserved.
A study of changes in bone metabolism in cases of gender identity disorder.
Miyajima, Tsuyoshi; Kim, Yoon Taek; Oda, Hiromi
2012-07-01
The aim of this study was to determine the effect of increasing estrogen and decreasing androgen in males and increasing androgen and decreasing estrogen in females on bone metabolism in patients with gender identity disorder (GID). We measured and examined bone mineral density (BMD) and bone metabolism markers retrospectively in GID patients who were treated in our hospital. In addition, we studied the effects of treatment on those who had osteoporosis. Patients who underwent a change from male to female (MtF) showed inhibition of bone resorption and increased L2-4 BMD whereas those who underwent a change from female to male (FtM) had increased bone resorption and decreased L2-4 BMD. Six months after administration of risedronate to FtM patients with osteoporosis, L2-4 BMD increased and bone resorption markers decreased. These results indicate that estrogen is an important element with regard to bone metabolism in males.
Segura-Castillo, José L; Aguirre-Camacho, Humberto; González-Ojeda, Alejandro; Michel-Perez, Jorge
2005-01-01
A major complication in 30% to 75% of cases of surgical treatment of alveolar cleft is resorption of the bone graft. A treatment alternative is the application of fibrin glue, which has the capacity to favor the integration of the graft. The main objective of the study was to evaluate if the use of the fibrin glue reduces bone resorption when it is applied locally. The authors designed a randomized clinical trial. Patients were divided into two groups: group 1, fibrin glue; and group 2, control. Pre- and postoperative graft volume, bone density, bone quality (Lekholm and Zarb, and Norton and Gamble classifications), and postoperative complications were evaluated. The follow-up for all patients was 3 months after discharge. Twenty-seven patients were surgically treated, 13 in group 1 and 14 in group 2. Group 1 had increased graft volume compared with group 2 (64.32 cm v 21.70 cm; P < 0.0001). Bone density was higher in group 1 than in group 2 (396.57 v 245.68; P > 0.076). Bone quality was type 1, 2 and 3 and 4 in group 1. Resorption in group 2 was 62.26%; in group 1, it was 29.72% (P > 0.081). The observed complications were infection and dehiscence of sutures (P > 0.537). The authors conclude that the fibrin glue significantly diminishes bone resorption, allowing improved graft integration and quality.
Lin, Yumei; Kazlova, Valentina; Ramakrishnan, Shyam; Murray, Mary A; Fast, David; Chandra, Amitabh; Gellenbeck, Kevin W
2016-01-15
Dietary intake of fruits and vegetables has been suggested to have a role in promoting bone health. More specifically, the polyphenols they contain have been linked to physiological effects related to bone mineral density and bone metabolism. In this research, we use standard microarray analyses of peripheral whole blood from post-menopausal women treated with two fixed combinations of plant extracts standardized to polyphenol content to identify differentially expressed genes relevant to bone health. In this 28-day open-label study, healthy post-menopausal women were randomized into three groups, each receiving one of three investigational fixed combinations of plant extracts: an anti-resorptive (AR) combination of pomegranate fruit (Punica granatum L.) and grape seed (Vitis vinifera L.) extracts; a bone formation (BF) combination of quercetin (Dimorphandra mollis Benth) and licorice (Glycyrrhiza glabra L.) extracts; and a fixed combination of all four plant extracts (AR plus BF). Standard microarray analysis was performed on peripheral whole blood samples taken before and after each treatment. Annotated genes were analyzed for their association to bone health by comparison to a gene library. The AR combination down-regulated a number of genes involved in reduction of bone resorption including cathepsin G (CTSG) and tachykinin receptor 1 (TACR1). The AR combination also up-regulated genes associated with formation of extracellular matrix including heparan sulfate proteoglycan 2 (HSPG2) and hyaluronoglucosaminidase 1 (HYAL1). In contrast, treatment with the BF combination resulted in up-regulation of bone morphogenetic protein 2 (BMP-2) and COL1A1 (collagen type I α1) genes which are linked to bone and collagen formation while down-regulating genes linked to osteoclastogenesis. Treatment with a combination of all four plant extracts had a distinctly different effect on gene expression than the results of the AR and BF combinations individually. These results could be due to multiple feedback systems balancing activities of osteoblasts and osteoclasts. In summary, this ex-vivo microarray study indicated that the pomegranate, grape seed, quercetin and licorice combinations of plant extracts modulated gene expression for both osteoclastic and osteogenic processes. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.
Sims, Natalie A
2016-10-01
Bone renews itself and changes shape throughout life to account for the changing needs of the body; this requires co-ordinated activities of bone resorbing cells (osteoclasts), bone forming cells (osteoblasts) and bone's internal cellular network (osteocytes). This review focuses on paracrine signaling by the IL-6 family of cytokines between bone cells, bone marrow, and skeletal muscle in normal physiology and in pathological states where their levels may be locally or systemically elevated. These functions include the support of osteoclast formation by osteoblast lineage cells in response to interleukin 6 (IL-6), interleukin 11 (IL-11), oncostatin M (OSM) and cardiotrophin 1 (CT-1). In addition it will discuss how bone-resorbing osteoclasts promote osteoblast activity by secreting CT-1, which acts as a "coupling factor" on osteocytes, osteoblasts, and their precursors to promote bone formation. OSM, produced by osteoblast lineage cells and macrophages, stimulates bone formation via osteocytes. IL-6 family cytokines also mediate actions of other bone formation stimuli like parathyroid hormone (PTH) and mechanical loading. CT-1, OSM and LIF suppress marrow adipogenesis by shifting commitment of pluripotent precursors towards osteoblast differentiation. Ciliary neurotrophic factor (CNTF) is released as a myokine from skeletal muscle and suppresses osteoblast differentiation and bone formation on the periosteum (outer bone surface in apposition to muscle). Finally, IL-6 acts directly on marrow-derived osteoclasts to stimulate release of "osteotransmitters" that act through the cortical osteocyte network to stimulate bone formation on the periosteum. Each will be discussed as illustrations of how the extended family of IL-6 cytokines acts within the skeleton in physiology and may be altered in pathological conditions or by targeted therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Phenotypic research on senile osteoporosis caused by SIRT6 deficiency
Zhang, De-Mao; Cui, Di-Xin; Xu, Ruo-Shi; Zhou, Ya-Chuan; Zheng, Li-Wei; Liu, Peng; Zhou, Xue-Dong
2016-01-01
Osteoporosis is a serious public bone metabolic disease. However, the mechanisms underlying bone loss combined with ageing, which is known as senile osteoporosis, remains unknown. Here we show the detailed phenotype of this disease caused by SIRT6 knock out (KO) in mice. To the best of our knowledge, this is the first study to reveal that SIRT6 is expressed in both bone marrow stroma cells and bone-related cells in both mouse and human models, which suggests that SIRT6 is an important regulator in bone metabolism. SIRT6-KO mice exhibit a significant decrease in body weight and remarkable dwarfism. The skeleton of the SIRT6-KO mouse is deficient in cartilage and mineralized bone tissue. Moreover, the osteocalcin concentration in blood is lower, which suggests that bone mass is markedly lost. Besides, the tartrate-resistant acid phosphatase 5b (TRAP5b) concentration is much higher, which suggests that bone resorption is overactive. Both trabecular and cortical bones exhibit severe osteopenia, and the bone mineral density is decreased. Moreover, double-labelling analysis shows that bone formation is much slower. To determine whether SIRT6 directly regulates bone metabolism, we cultured primary bone marrow stromal cells for osteogenesis and osteoclastogenesis separately to avoid indirect interference in vivo responses such as inflammation. Taken together, these results show that SIRT6 can directly regulate osteoblast proliferation and differentiation, resulting in attenuation in mineralization. Furthermore, SIRT6 can directly regulate osteoclast differentiation and results in a higher number of small osteoclasts, which may be related to overactive bone resorption. PMID:27357320
Rabbiteye blueberry prevents osteoporosis in ovariectomized rats.
Li, Tao; Wu, Shou-Mian; Xu, Zhi-Yuan; Ou-Yang, Sheng
2014-08-08
It has been forecasted that the rabbiteye blueberry could inhibit osteoporosis. However, the inhibition and prevention of osteoporosis via rabbiteye blueberry are still elusive. This study was aim to evaluate the anti-osteoporosis effects of rabbiteye blueberry in ovariectomized rats. Thirty rats were randomly divided into three groups of ten rats each as follows: sham-operated group (SG), ovariectomized model control group (OMG), and ovariectomized rabbiteye blueberry treatment group (OBG). The blood mineral levels, the alkaline phosphatase (ALP) activity, and osteoprotegerin (OPG) level were determined. The expression analyses of type I collagen, integrin-β1, and focal adhesion kinase (FAK) were performed. Besides, the bone mineral density (BMD) and bone histomorphometry (BH) were measured. The ALP activity in SG and OBG was significantly lower than that in OMG. For the OPG level, the significant increase of OPG level in OBG was indicated compared with the other groups. The mRNA expression levels of type I collagen, integrin-β1, and FAK in OMG were significantly lower than those in other groups. The BMD in OMG were all significantly lower than those in SG and OBG. For BH, blueberry significantly improved the trabecular bone volume fraction, trabecular thickness, mean trabecular bone number, and bone formation rate, and decreased the trabecular separation, the percent of bone resorption perimeter, and mean osteoclast number in OBG compared with OMG. The rabbiteye blueberries had an effective inhibition in bone resorption, bone loss, and reduction of bone strength of ovariectomized rats and could improve the BMD, osteogenic activity, and trabecular bone structure.
Fluorosis increases the risk of postmenopausal osteoporosis by stimulating interferon γ.
Lv, Yun-Gang; Kang, Li; Wu, Guangyao
2016-10-14
Estrogen deficiency in postmenopausal women frequently activates osteoclasts (OC), accelerates bone resorption, and leads to osteoporosis (OP). Previous studies have demonstrated that interferon γ (IFNγ) could increase bone resorption and may be involved in postmenopausal OP. Fluorosis also increased the risk of fractures and dental fluorosis, and fluoride may enhance osteoclast formation and induce osteoclastic bone destruction in postmenopausal women, but the underlying mechanisms are as yet unknown. Here, we show that serum fluoride and IFNγ levels are negatively correlated with bone mineral density (BMD) in postmenopausal women residing in a fluorotic area. Estrogen suppresses IFNγ, which is elevated by fluoride, playing a pivotal role in triggering bone loss in estrogen-deficient conditions. In vitro, IFNγ is inhibited by estrogen treatment and increased by fluoride in Raw264.7 cell, an osteoclast progenitor cell line. In ovariectomized (Ovx) mice, estrogen loss and IFNγ promote OC activation and subsequent bone loss in vivo. However, IFNγ deficiency prevents bone loss in Ovx mice even in fluoride conditions. Interestingly, fluoride fails to increase IFNγ expression in estrogen receptor α (ERα)-deficient conditions, but not in ERβ-deficient conditions. These findings demonstrate that fluorosis increases the bone loss in postmenopausal OP through an IFNγ-dependent mechanism. IFNγ signaling activates OC and aggravates estrogen deficiency inducing OP. Thus, stimulation of IFNγ production is a pivotal ''upstream'' mechanism by which fluoride promotes bone loss. Suppression of IFNγ levels may constitute a therapeutic approach for preventing bone loss. Copyright © 2016 Elsevier Inc. All rights reserved.
Ping, Zichuan; Hu, Xuanyang; Wang, Liangliang; Shi, Jiawei; Tao, Yunxia; Wu, Xiexing; Hou, Zhenyang; Guo, Xiaobin; Zhang, Wen; Yang, Huilin; Xu, Yaozeng; Wang, Zhirong; Geng, Dechun
2017-03-15
Wear debris-induced inhibition of bone regeneration and extensive bone resorption were common features in peri-prosthetic osteolysis (PPO). Here, we investigated the effect of melatonin on titanium particle-stimulated osteolysis in a murine calvariae model and mouse-mesenchymal-stem cells (mMSCs) culture system. Melatonin inhibited titanium particle-induced osteolysis and increased bone formation at osteolytic sites, confirmed by radiological and histomorphometric data. Furthermore, osteoclast numbers decreased dramatically in the low- and high-melatonin administration mice, as respectively, compared with the untreated animals. Melatonin alleviated titanium particle-induced depression of osteoblastic differentiation and mineralization in mMSCs. Mechanistically, melatonin was found to reduce the degradation of β-catenin, levels of which were decreased in presence of titanium particles both in vivo and in vitro. To further ensure whether the protective effect of melatonin was mediated by the Wnt/β-catenin signaling pathway, ICG-001, a selective β-catenin inhibitor, was added to the melatonin-treated groups and was found to attenuate the effect of melatonin on mMSC mineralization. We also demonstrated that melatonin modulated the balance between receptor activator of nuclear factor kappa-B ligand and osteoprotegerin via activation of Wnt/β-catenin signaling pathway. These findings strongly suggest that melatonin represents a promising candidate in the treatment of PPO. Peri-prosthetic osteolysis, initiated by wear debris-induced inhibition of bone regeneration and extensive bone resorption, is the leading cause for implant failure and reason for revision surgery. In the current study, we demonstrated for the first time that melatonin can induce bone regeneration and reduce bone resorption at osteolytic sites caused by titanium-particle stimulation. These effects might be mediated by activating Wnt/β-catenin signaling pathway and enhancing osteogenic differentiation. Meanwhile, the ability of melatonin to modulate the balance between receptor activator of nuclear factor kappa-B ligand and osteoprotegerin mediated by Wnt/β-catenin signaling pathway, thereby suppressing osteoclastogenesis, may be implicated in the protective effects of melatonin on titanium-particle-induced bone resorption. These results suggested that melatonin can be considered as a promising therapeutic agent for the prevention and treatment of peri-prosthetic osteolysis. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Effect of low-magnitude, high-frequency vibration on osteocytes in the regulation of osteoclasts
Lau, Esther; Al-Dujaili, Saja; Guenther, Axel; Liu, Dawei; Wang, Liyun; You, Lidan
2010-01-01
Osteocytes are well evidenced to be the major mechanosensor in bone, responsible for sending signals to the effector cells (osteoblasts and osteoclasts) that carry out bone formation and resorption. Consistent with this hypothesis, it has been shown that osteocytes release various soluble factors (e.g. transforming growth factor-β, nitric oxide, and prostaglandins) that influence osteoblastic and osteoclastic activities when subjected to a variety of mechanical stimuli, including fluid flow, hydrostatic pressure, and mechanical stretching. Recently, low-magnitude, high-frequency (LMHF) vibration (e.g., acceleration less than <1g, where g=9.98 m/s2, at 20-90 Hz) has gained much interest as studies have shown that such mechanical stimulation can positively influence skeletal homeostasis in animals and humans. Although the anabolic and anti-resorptive potential of LMHF vibration is becoming apparent, the signaling pathways that mediate bone adaptation to LMHF vibration are unknown. We hypothesize that osteocytes are the mechanosensor responsible for detecting the vibration stimulation and producing soluble factors that modulate the activity of effector cells. Hence, we applied low-magnitude (0.3g) vibrations to osteocyte-like MLO-Y4 cells at various frequencies (30, 60, 90 Hz) for 1 hour. We found that osteocytes were sensitive to this vibration stimulus at the transcriptional level: COX-2 maximally increased by 344% at 90 Hz, while RANKL decreased most significantly (-55%, p<0.01) at 60 Hz. Conditioned medium collected from the vibrated MLO-Y4 cells attenuated the formation of large osteoclasts (≥10 nuclei) by 36% (p<0.05) and the amount of osteoclastic resorption by 20% (p=0.07). The amount of soluble RANKL (sRANKL) in the conditioned medium was found to be 53% lower in the vibrated group (p<0.01), while PGE2 release was also significantly decreased (-61%, p<0.01). We conclude that osteocytes are able to sense LMHF vibration and respond by producing soluble factors that inhibit osteoclast formation. PMID:20211285
Bone Turnover Status: Classification Model and Clinical Implications
Fisher, Alexander; Fisher, Leon; Srikusalanukul, Wichat; Smith, Paul N
2018-01-01
Aim: To develop a practical model for classification bone turnover status and evaluate its clinical usefulness. Methods: Our classification of bone turnover status is based on internationally recommended biomarkers of both bone formation (N-terminal propeptide of type1 procollagen, P1NP) and bone resorption (beta C-terminal cross-linked telopeptide of type I collagen, bCTX), using the cutoffs proposed as therapeutic targets. The relationships between turnover subtypes and clinical characteristic were assessed in1223 hospitalised orthogeriatric patients (846 women, 377 men; mean age 78.1±9.50 years): 451(36.9%) subjects with hip fracture (HF), 396(32.4%) with other non-vertebral (non-HF) fractures (HF) and 376 (30.7%) patients without fractures. Resalts: Six subtypes of bone turnover status were identified: 1 - normal turnover (P1NP>32 μg/L, bCTX≤0.250 μg/L and P1NP/bCTX>100.0[(median value]); 2- low bone formation (P1NP ≤32 μg/L), normal bone resorption (bCTX≤0.250 μg/L) and P1NP/bCTX>100.0 (subtype2A) or P1NP/bCTX<100.0 (subtype 2B); 3- low bone formation, high bone resorption (bCTX>0.250 μg/L) and P1NP/bCTX<100.0; 4- high bone turnover (both markers elevated ) and P1NP/bCTX>100.0 (subtype 4A) or P1NP/bCTX<100.0 (subtype 4B). Compared to subtypes 1 and 2A, subtype 2B was strongly associated with nonvertebral fractures (odds ratio [OR] 2.0), especially HF (OR 3.2), age>75 years and hyperparathyroidism. Hypoalbuminaemia and not using osteoporotic therapy were two independent indicators common for subtypes 3, 4A and 4B; these three subtypes were associated with in-hospital mortality. Subtype 3 was associated with fractures (OR 1.7, for HF OR 2.4), age>75 years, chronic heart failure (CHF), anaemia, and history of malignancy, and predicted post-operative myocardial injury, high inflammatory response and length of hospital stay (LOS) above10 days. Subtype 4A was associated with chronic kidney disease (CKD), anaemia, history of malignancy and walking aids use and predicted LOS>20 days, but was not discriminative for fractures. Subtype 4B was associated with fractures (OR 2.1, for HF OR 2.5), age>75 years, CKD and indicated risks of myocardial injury, high inflammatory response and LOS>10 days. Conclusions: We proposed a classification model of bone turnover status and demonstrated that in orthogeriatric patients altered subtypes are closely related to presence of nonvertebral fractures, comorbidities and poorer in-hospital outcomes. However, further research is needed to establish optimal cut points of various biomarkers and improve the classification model. PMID:29511368
Intramedullary Mg2Ag nails augment callus formation during fracture healing in mice.
Jähn, Katharina; Saito, Hiroaki; Taipaleenmäki, Hanna; Gasser, Andreas; Hort, Norbert; Feyerabend, Frank; Schlüter, Hartmut; Rueger, Johannes M; Lehmann, Wolfgang; Willumeit-Römer, Regine; Hesse, Eric
2016-05-01
Intramedullary stabilization is frequently used to treat long bone fractures. Implants usually remain unless complications arise. Since implant removal can become technically very challenging with the potential to cause further tissue damage, biodegradable materials are emerging as alternative options. Magnesium (Mg)-based biodegradable implants have a controllable degradation rate and good tissue compatibility, which makes them attractive for musculoskeletal research. Here we report for the first time the implantation of intramedullary nails made of an Mg alloy containing 2% silver (Mg2Ag) into intact and fractured femora of mice. Prior in vitro analyses revealed an inhibitory effect of Mg2Ag degradation products on osteoclast differentiation and function with no impair of osteoblast function. In vivo, Mg2Ag implants degraded under non-fracture and fracture conditions within 210days and 133days, respectively. During fracture repair, osteoblast function and subsequent bone formation were enhanced, while osteoclast activity and bone resorption were decreased, leading to an augmented callus formation. We observed a widening of the femoral shaft under steady state and regenerating conditions, which was at least in part due to an uncoupled bone remodeling. However, Mg2Ag implants did not cause any systemic adverse effects. These data suggest that Mg2Ag implants might be promising for intramedullary fixation of long bone fractures, a novel concept that has to be further investigated in future studies. Biodegradable implants are promising alternatives to standard steel or titanium implants to avoid implant removal after fracture healing. We therefore developed an intramedullary nail using a novel biodegradable magnesium-silver-alloy (Mg2Ag) and investigated the in vitro and in vivo effects of the implants on bone remodeling under steady state and fracture healing conditions in mice. Our results demonstrate that intramedullary Mg2Ag nails degrade in vivo over time without causing adverse effects. Importantly, radiographs, μCT and bone histomorphometry revealed a significant increase in callus size due to an augmented bone formation rate and a reduced bone resorption in fractures supported by Mg2Ag nails, thereby improving bone healing. Thus, intramedullary Mg2Ag nails are promising biomaterials for fracture healing to circumvent implant removal. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
The impact of skeletal unloading on bone formation
NASA Technical Reports Server (NTRS)
Bikle, Daniel D.; Sakata, Takeshi; Halloran, Bernard P.
2003-01-01
Skeletal unloading leads to decreased bone formation and decreased bone mass. Bone resorption is uncoupled from bone formation, contributing to the bone loss. During space flight bone is lost principally from the bones most loaded in the 1 g environment. Determining the mechanism(s) by which loading of bone is sensed and translated into a signal(s) controlling bone formation remains the holy grail in this field. It seems likely that matrix/cell interactions will underlie much of the mechanocoupling. Integrins are a prime mediator of such interactions. The role for systemic hormones such as PTH, GH and 1,25(OH)2D compared to locally produced factors such as IGF-I, PTHrP, BMPs and TGF beta in modulating the cellular response to load remains unclear. Our studies demonstrate that skeletal unloading leads to resistance to the anabolic actions of IGF-I on bone as a result of failure of IGF-I to activate its own signaling pathways. This is associated with a reduction in integrin expression, suggesting crosstalk between these two pathways. As the mechanism(s) by which bone responds to changes in mechanical load with changes in bone formation is further elucidated, applications of this knowledge to other etiologies of osteoporosis are likely to develop. Skeletal unloading provides a perturbation in bone mineral homeostasis that can be used to understand the mechanisms by which bone mineral homeostasis is maintained, and that such understanding will lead to effective treatment for disuse osteoporosis in addition to preventive measures for the bone loss that accompanies space travel.
Dumas, Jerald E.; Prieto, Edna M.; Zienkiewicz, Katarzyna J.; Guda, Teja; Wenke, Joseph C.; Bible, Jesse; Holt, Ginger E.
2014-01-01
There is a compelling clinical need for bone grafts with initial bone-like mechanical properties that actively remodel for repair of weight-bearing bone defects, such as fractures of the tibial plateau and vertebrae. However, there is a paucity of studies investigating remodeling of weight-bearing bone grafts in preclinical models, and consequently there is limited understanding of the mechanisms by which these grafts remodel in vivo. In this study, we investigated the effects of the rates of new bone formation, matrix resorption, and polymer degradation on healing of settable weight-bearing polyurethane/allograft composites in a rabbit femoral condyle defect model. The grafts induced progressive healing in vivo, as evidenced by an increase in new bone formation, as well as a decrease in residual allograft and polymer from 6 to 12 weeks. However, the mismatch between the rates of autocatalytic polymer degradation and zero-order (independent of time) new bone formation resulted in incomplete healing in the interior of the composite. Augmentation of the grafts with recombinant human bone morphogenetic protein-2 not only increased the rate of new bone formation, but also altered the degradation mechanism of the polymer to approximate a zero-order process. The consequent matching of the rates of new bone formation and polymer degradation resulted in more extensive healing at later time points in all regions of the graft. These observations underscore the importance of balancing the rates of new bone formation and degradation to promote healing of settable weight-bearing bone grafts that maintain bone-like strength, while actively remodeling. PMID:23941405
Ye, Wei-Liang; Zhao, Yi-Pu; Cheng, Ying; Liu, Dao-Zhou; Cui, Han; Liu, Miao; Zhang, Bang-Le; Mei, Qi-Bing; Zhou, Si-Yuan
2018-01-16
In order to inhibit the growth of lung cancer bone metastasis and reduce the bone resorption at bone metastasis sites, a bone metastasis target micelle DOX@DBMs-ALN was prepared. The size and the zeta potential of DOX@DBNs-ALN were about 60 nm and -15 mV, respectively. DOX@DBMs-ALN exhibited high binding affinity with hydroxyapatite and released DOX in redox-responsive manner. DOX@DBMs-ALN was effectively up taken by A549 cells and delivered DOX to the nucleus of A549 cells, which resulted in strong cytotoxicity on A549 cells. The in vivo experimental results indicated that DOX@DBMs-ALN specifically delivered DOX to bone metastasis site and obviously prolonged the retention time of DOX in bone metastasis site. Moreover, DOX@DBMs-ALN not only significantly inhibited the growth of bone metastasis tumour but also obviously reduced the bone resorption at bone metastasis sites without causing marked systemic toxicity. Thus, DOX@DBMs-ALN has great potential in the treatment of lung cancer bone metastasis.
NASA Technical Reports Server (NTRS)
Heer, Martina; Smith, Scott M.; Frings-Meuthen, Petra; Zwart, Sara R.; Baecker, Natalie
2012-01-01
Inactivity, like bed rest (BR), causes insulin resistance (IR) and bone loss even in healthy subjects. High protein intake seems to mitigate this IR but might exacerbate bone loss. We hypothesized that high protein intake (animal:vegetable protein ratio: 60:40), isocaloric, compared to the control group plus high potassium intake would prevent IR without affecting bone turnover. After a 20-day ambulatory adaptation to controlled confinement and diet, 16 women participated in a 60-day, 6 deg head-down-tilt BR and were assigned randomly to one of the two groups. Control subjects (CON, n=8) received 1g/kg body mass/d dietary protein. Nutrition subjects (NUT, n=8) received 1.45g/kg body mass/d dietary protein plus 7.2g branched chain amino acids per day during BR. All subjects received 1670 kcal/d. Bed rest decreased glucose disposal by 35% (p<0.05) in CON. Isocaloric high protein intake prevented insulin resistance, but exacerbated bed rest induced increase in bone resorption markers C-telopeptide (> 30%) and Ntelopeptide (>20%) (both: p<0.001). Bone formation markers were unaffected by high protein intake. We conclude from these results that high protein intake might positively affect glucose tolerance, but might also foster bone loss. Further long-duration studies are mandatory before high protein intake for diabetic patients, who have an increased fracture risk, might be recommended.
Calcium and Bone Homeostasis During 4-6 Months Space Flight
NASA Technical Reports Server (NTRS)
Smith, Scott M.; OBrien, K.; Wastney, M.; Morukov, B.; Larina, I.; Abrams, S.; Lane, H.; Nillen, J.; Davis-Street, J.; Paloski, W. H. (Technical Monitor)
2000-01-01
Bone and calcium homeostasis are altered by weightlessness. We previously reported calcium studies on three subjects from the first joint US/Russian mission to Mir. We report here data on an additional three male subjects, whose stays on Mir were 4 (n= 1) and 6 (n=2) mos. Data were collected before, during, and after the missions. Inflight studies were conducted at 2-3 mos. Endocrine and biochemical indices were measured, along with 3-wk calcium tracer studies. Percent differences are reported compared to preflight. Ionized calcium was unchanged (2.8 +/-2.1 %) during flight. Calcium absorption was variable inflight, but was decreased after landing. Vitamin D stores were decreased 35 +/-24% inflight, similar to previous reports. Serum PTH was decreased 59 +/-9% during flight (greater than we previously reported), while 1,25(OH)(sub 2)-Vitamin D was decreased in 2 of 3 subjects. Markers of bone resorption (e.g., crosslinks) were increased in all subjects. Bone-specific alkaline phosphatase was decreased (n=1) or unchanged (n=2), while osteocalcin was decreased 34 +/-23%. Previously presented data showed that inflight bone loss is associated with increased resorption and unchanged/decreased formation. The data reported here support these earlier findings. These studies will help to extend our understanding of space flight-induced bone loss, and of bone loss associated with diseases such as osteoporosis or paralysis.
Selective Serotonin Reuptake Inhibitors (SSRIs) and Markers of Bone Turnover in Men.
Williams, Lana J; Berk, Michael; Hodge, Jason M; Kotowicz, Mark A; Stuart, Amanda L; Chandrasekaran, Vinoomika; Cleminson, Jasmine; Pasco, Julie A
2018-02-13
Selective serotonin reuptake inhibitors (SSRIs) have been shown to have a clinically significant impact on bone metabolism. To explore this further, we aimed to determine whether these agents are associated with serum markers of bone turnover utilising a population-based sample of men (n = 1138; 20-96 year) participating in the Geelong Osteoporosis Study. Blood samples were obtained and the bone resorption marker, C-telopeptide (CTx) and formation marker, type 1 procollagen amino-terminal-propeptide (PINP) were measured. Anthropometry and socio-economic status (SES) were determined and information on medication use and lifestyle was obtained via questionnaire. Lifetime mood disorders were assessed using semi-structured clinical interviews. Thirty-seven (3.3%) men reported using SSRIs. Age was an effect modifier in the association between SSRIs and markers of bone turnover. Among younger men (20-60 year; n = 557), adjusted mean CTx and PINP values were 12.4% [16.7 (95% CI 14.6-18.8) vs 19.1 (95% CI 18.7-19.4) pg/ml, p = 0.03] and 13.6% [5.6 (95% CI 4.9-6.3) vs 6.4 (95% CI 6.3-6.6) pg/ml, p = 0.02] lower among SSRI users compared to non-users, respectively. No differences in SSRI use and markers of bone turnover were detected among older men (61-94 year; all p > 0.05). These patterns persisted after further adjustment for activity, alcohol, smoking, SES, depression, bone active medications and other antidepressants. Our data suggest that SSRI use is associated with alterations in bone turnover markers among younger men. The observed decreases in both CTx and PINP are likely to contribute to a low bone turnover state and increased skeletal fragility with this potential imbalance between formation and resorption resulting in subsequent bone loss.
Li, Lihui; Chen, Xi; Lv, Shuang; Dong, Miaomiao; Zhang, Li; Tu, Jiaheng; Yang, Jie; Zhang, Lingli; Song, Yinan; Xu, Leiting; Zou, Jun
2014-01-01
This study aims to explore the effects of exercise on postmenopausal osteoporosis and the mechanisms by which exercise affects bone remodeling. Sixty-three Wistar female rats were randomly divided into five groups: (1) control group, (2) sham-operated group, (3) OVX (Ovariectomy) group, (4) DES-OVX (Diethylstilbestrol-OVX) group, and (5) Ex-OVX (Exercise-OVX) group. The rat osteoporosis model was established through ovariectomy. The Ex-OVX rats were made to run 251.2 meters every day, 6 d/wk for 3 months in a running wheel. Trabecular bone volume (TBV%), total resorption surface (TRS%), trabecular formation surface (TFS%), mineralization rate (MAR), bone cortex mineralization rate (mAR), and osteoid seam width (OSW) were determined by bone histomorphometry. The mRNA and protein levels of interleukin-1β (IL-1β2), interleukin-6 (IL-6), and cyclooxygenase-2 (Cox-2) were determined by in situ hybridization and immunohistochemistry, respectively. Serum levels of estrogen estradiol (E2), calcitonin (CT), osteocalcin (BGP), and parathyroid hormone (PTH) were determined by ELISA assays. The investigation revealed that compared to the control and the sham-operated groups, the OVX group showed significantly lower levels of TBV%, E2, and CT, but much higher levels of TRS%, TFS%, MAR, OSW, BGP, and PTH. The Ex-OVX group showed increased TBV% and serum levels of E2 and CT compared to the OVX group. Ovariectomy also led to a significant increase in IL-1β mRNA and protein levels in the bone marrow and IL-6 and Cox-2 protein levels in tibias. In addition, the Ex-OVX group showed lower levels of IL-1 mRNA and protein, IL-6 mRNA, and Cox-2 mRNA and protein than those in the OVX group. The upshot of the study suggests that exercise can significantly increase bone mass in postmenopausal osteoporosis rat models by inhibiting bone resorption and increasing bone formation, especially in trabecular bones.
Kattimani, Vivekanand S; Chakravarthi, Srinivas P; Neelima Devi, K Naga; Sridhar, Meka S; Prasad, L Krishna
2014-01-01
Bone grafts are frequently used in the treatment of bone defects. Bone harvesting can cause postoperative complications and sometimes does not provide a sufficient quantity of bone. Therefore, synthetic biomaterials have been investigated as an alternative to autogenous bone grafts. The aim of this study was to evaluate and compare bovine derived hydroxyapatite (BHA) and synthetic hydroxyapatite (SHA) graft material as bone graft substitute in maxillary cystic bony defects. Patients were analyzed by computerized densitometric study and digital radiography. In this study, 12 patients in each group were included randomly after clinical and radiological evaluation. The integration of hydroxyapatite was assessed with mean bone density, surgical site margin, and radiological bone formation characteristics, of the successful graft cases using computer densitometry and radio-visiograph. Statistical analysis was carried out using Mann-Whitney U-test, Wilcoxon matched pairs test and paired t-test. By the end of 24 th week, the grafted defects radiologically and statistically showed similar volumes of bone formation. However, the significant changes observed in the formation of bone and merging of material and surgical site margin at 1 st week to 1 st month. The results were significant and correlating with all the parameters showing the necessity of the grafting for early bone formation. However, the bone formation pattern is different in both BHA and SHA group at 3 rd month interval with significant P value. Both BHA and SHA graft materials are biocompatible for filling bone defects, showing less resorption and enhanced bone formation with similar efficacy. Our study showed maximum bone healing within 12 weeks of grafting of defects. The BHA is economical; however, price difference between the two is very nominal.
Multiscale Analyses of the Bone-implant Interface
Cha, J.Y.; Pereira, M.D.; Smith, A.A.; Houschyar, K.S.; Yin, X.; Mouraret, S.; Brunski, J.B.
2015-01-01
Implants placed with high insertion torque (IT) typically exhibit primary stability, which enables early loading. Whether high IT has a negative impact on peri-implant bone health, however, remains to be determined. The purpose of this study was to ascertain how peri-implant bone responds to strains and stresses created when implants are placed with low and high IT. Titanium micro-implants were inserted into murine femurs with low and high IT using torque values that were scaled to approximate those used to place clinically sized implants. Torque created in peri-implant tissues a distribution and magnitude of strains, which were calculated through finite element modeling. Stiffness tests quantified primary and secondary implant stability. At multiple time points, molecular, cellular, and histomorphometric analyses were performed to quantitatively determine the effect of high and low strains on apoptosis, mineralization, resorption, and collagen matrix deposition in peri-implant bone. Preparation of an osteotomy results in a narrow zone of dead and dying osteocytes in peri-implant bone that is not significantly enlarged in response to implants placed with low IT. Placing implants with high IT more than doubles this zone of dead and dying osteocytes. As a result, peri-implant bone develops micro-fractures, bone resorption is increased, and bone formation is decreased. Using high IT to place an implant creates high interfacial stress and strain that are associated with damage to peri-implant bone and therefore should be avoided to best preserve the viability of this tissue. PMID:25628271
Yang, Carrie S; Mercer, Kelly E; Alund, Alexander W; Suva, Larry J; Badger, Thomas M; Ronis, Martin J J
2014-10-01
Chronic alcohol consumption results in bone loss through increased bone resorption and decreased bone formation. These effects can be reversed by estradiol (E2) supplementation. Soy diets are suggested to have protective effects on bone loss in men and women, as a result of the presence of soy protein-associated phytoestrogens such as genistein (GEN). In this study, male mice were pair-fed (PF), a control diet, an ethanol (EtOH) diet, or EtOH diet supplemented with 250 mg/kg of GEN for 8 weeks to test if GEN protects against bone loss associated with chronic drinking. Interestingly, alcohol consumption reduced cortical area and thickness and trabecular bone volume in both EtOH and EtOH/GEN groups when compared to the corresponding PF and PF/GEN controls, P < 0.05. However, in the trabecular bone compartment, we observed a significant increase in overall trabecular bone density in the PF/GEN group compared to the PF controls. Bone loss in the EtOH-treated mice was associated with the inhibition of osteoblastogenesis as indicated by decreased alkaline phosphatase staining in ex vivo bone marrow cultures, P < 0.05. GEN supplementation improved osteoblastogenesis in the EtOH/GEN cultures compared to the EtOH group, P < 0.05. Vertebral expression of bone-formation markers, osteocalcin, and runt-related transcription factor 2 (Runx2) was also significantly up-regulated in the PF/GEN and EtOH/GEN groups compared to the PF and EtOH-treated groups. GEN supplementation also increased the expression of receptor activator of nuclear factor κ-B ligand (RANKL) in the PF/GEN, an increase that persisted in the EtOH/GEN-treated animals (P < 0.05), and increased basal hydrogen peroxide production and RANKL mRNA expression in primary bone marrow cultures in vitro, P < 0.05. These findings suggest that GEN supplementation increases the overall bone remodeling and, in the context of chronic alcohol consumption, does not protect against the oxidative stress-associated EtOH-mediated bone resorption. © 2014 by the Society for Experimental Biology and Medicine.
The Skeletal Biology of Hibernating Woodchucks (Marmota monax)
NASA Astrophysics Data System (ADS)
Doherty, Alison H.
Long periods of inactivity in most mammals lead to significant bone loss that may not be completely recovered during an individual's lifetime regardless of future activity. Extended bouts of inactivity are the norm for hibernating mammals. It remains largely unknown, however, how these animals avoid adversely affecting bone, their quality, and ultimately survival given the challenges posed to their skeletons by inactivity and nutritional deprivation during hibernation. The primary goal of this project was to identify the physiological mechanisms regulating bone density, area and strength during extended periods of annual inactivity in hibernating woodchucks (Marmota monax). The overall hypothesis that bone integrity is unaffected by several months of inactivity during hibernation in woodchucks was tested across multiple levels of biological function. To gain a holistic assessment of seasonal bone integrity, the locomotor behavior and estimated stresses acting on woodchuck bones were investigated in conjunction with computed tomography scans and three-point bending tests to determine bone density, geometry, and mechanical properties of the long bones throughout the year. In addition, serum protein expression was examined to ascertain bone resorption and formation processes indicative of overall annual skeletal health. It was determined that woodchucks avoid significant changes in gait preference, but experience a decrease in bending stresses acting on distal limb bones following hibernation. Computed tomography scans indicated that bone mass, distribution, and trabecular structure are maintained in these animals throughout the year. Surprisingly, cortical density increased significantly posthibernation. Furthermore, three-point bending tests revealed that although less stiff, woodchuck femora were just as tough during the hibernation season, unlike brittle bones associated with osteoporosis. Finally, bone serum markers suggested a net maintenance of bone resorption and formation processes throughout the year. Taken together, these findings strongly suggest that woodchucks do not lose bone to the extent that would be expected from a non-hibernating animal during four months of inactivity. It is concluded that bone integrity is not adversely affected by hibernation in woodchucks. The results of this work have several broader implications toward skeletal biology research, the evolution of skeletal plasticity, and biomedical applications to osteoporosis prevention and treatment.
Garnero, Patrick
2008-01-01
Osteoporosis is a systemic disease characterized by low bone mass and microarchitectural deterioration of bone tissue, resulting in an increased risk of fracture. While the level of bone mass can be estimated by measuring bone mineral density (BMD) using dual X-ray absorptiometry (DXA), its measurement does not capture all the risk factors for fracture. Quantitative changes in skeletal turnover can be assessed easily and non-invasively by the measurement of serum and urinary biochemical markers; the most sensitive markers include serum osteocalcin, bone specific alkaline phosphatase, the N-terminal propeptide of type I collagen for bone formation, and the crosslinked C- (CTX) and N- (NTX) telopeptides of type I collagen for bone resorption. Advances in our knowledge of bone matrix biochemistry, most notably of post-translational modifications in type I collagen, are likely to lead to the development of new biochemical markers that reflect changes in the material property of bone, an important determinant of bone strength. Among those, the measurement of the urinary ratio of native (alpha) to isomerized (beta) CTX - an index of bone matrix maturation - has been shown to be predictive of fracture risk independently of BMD and bone turnover. In postmenopausal osteoporosis, levels of bone resorption markers above the upper limit of the premenopausal range are associated with an increased risk of hip, vertebral, and nonvertebral fracture, independent of BMD. Therefore, the combined use of BMD measurement and biochemical markers is helpful in risk assessment, especially in those women who are not identified as at risk by BMD measurement alone. Levels of bone markers decrease rapidly with antiresorptive therapies, and the levels reached after 3-6 months of therapy have been shown to be more strongly associated with fracture outcome than changes in BMD. Preliminary studies indicate that monitoring changes of bone formation markers could also be useful to monitor anabolic therapies, including intermittent parathyroid hormone administration and, possibly, to improve adherence to treatment. Thus, repeated measurements of bone markers during therapy may help improve the management of osteoporosis in patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Fei; Zhai, Zanjing; Jiang, Chuan
Wear particle-induced osteolysis and subsequent aseptic loosening remains the most common complication that limits the longevity of prostheses. Wear particle-induced osteoclastogenesis is known to be responsible for extensive bone erosion that leads to prosthesis failure. Thus, inhibition of osteoclastic bone resorption may serve as a therapeutic strategy for the treatment of wear particle induced osteolysis. In this study, we demonstrated for the first time that geraniin, an active natural compound derived from Geranium thunbergii, ameliorated particle-induced osteolysis in a Ti particle-induced mouse calvaria model in vivo. We also investigated the mechanism by which geraniin exerts inhibitory effects on osteoclasts. Geraniinmore » inhibited RANKL-induced osteoclastogenesis in a dose-dependent manner, evidenced by reduced osteoclast formation and suppressed osteoclast specific gene expression. Specially, geraniin inhibited actin ring formation and bone resorption in vitro. Further molecular investigation demonstrated geraniin impaired osteoclast differentiation via the inhibition of the RANKL-induced NF-κB and ERK signaling pathways, as well as suppressed the expression of key osteoclast transcriptional factors NFATc1 and c-Fos. Collectively, our data suggested that geraniin exerts inhibitory effects on osteoclast differentiation in vitro and suppresses Ti particle-induced osteolysis in vivo. Geraniin is therefore a potential natural compound for the treatment of wear particle induced osteolysis in prostheses failure. - Highlights: • Geraniin suppresses osteoclasts formation and function in vitro. • Geraniin impairs RANKL-induced nuclear factor-κB and ERK signaling pathway. • Geraniin suppresses osteolysis in vivo. • Geraniin may be used for treating osteoclast related diseases.« less
Bone augmentation of the osteo-odonto alveolar lamina in MOOKP--will it delay laminar resorption?
Iyer, Geetha; Srinivasan, Bhaskar; Agarwal, Shweta; Rishi, Ekta; Rishi, Pukhraj; Rajan, Gunaseelan; Shanmugasundaram, Shanmugasundaram
2015-07-01
We aimed to describe a new technique and analyse the early outcomes of augmenting the canine tooth using a mandibular bone graft in an attempt to delay or retard the process of laminar resorption following the modified osteo odonto keratoprosthesis (MOOKP) procedure. This was a retrospective case series. Eyes that underwent the bone augmentation procedure between December 2012 and February 2014 were retrospectively analysed. The procedure, performed by the oromaxillofacial surgeon, involved securing a mandibular bone graft beneath the periosteum on the labial aspect of the canine tooth chosen to be harvested for the MOOKP procedure. This procedure was performed simultaneously with the Stage 1 A of the MOOKP. Three months later, the tooth was harvested and fashioned into the osteo-odonto alveolar lamina similar to the method described in the Rome-Vienna Protocol. The bone augmentation procedure was performed in 11 eyes (five SJS/ six chemical injuries). The mean follow-up after Stage 2 of MOOKP procedure in these eyes was 7.45 months (2 to 20 months). Complications noted were peripheral laminar exposure (three eyes-SJS) and bone graft exposure and necrosis in the mouth (nine-SJS). No evidence of clinical laminar resorption was noted in any of the eyes. Laminar resorption in MOOKP can lead to vision and globe threatening complications due to the consequent cylinder instability and chances of extrusion. Augmenting the bone on the labial aspect of the canine tooth might have a role to play in delaying or preventing laminar resorption.
Kular, Jasreen; Tickner, Jennifer C; Pavlos, Nathan J; Viola, Helena M; Abel, Tamara; Lim, Bay Sie; Yang, Xiaohong; Chen, Honghui; Cook, Robert; Hool, Livia C; Zheng, Ming Hao; Xu, Jiake
2015-01-16
The maintenance of bone homeostasis requires tight coupling between bone-forming osteoblasts and bone-resorbing osteoclasts. However, the precise molecular mechanism(s) underlying the differentiation and activities of these specialized cells are still largely unknown. Here, we identify choline kinase β (CHKB), a kinase involved in the biosynthesis of phosphatidylcholine, as a novel regulator of bone homeostasis. Choline kinase β mutant mice (flp/flp) exhibit a systemic low bone mass phenotype. Consistently, osteoclast numbers and activity are elevated in flp/flp mice. Interestingly, osteoclasts derived from flp/flp mice exhibit reduced sensitivity to excessive levels of extracellular calcium, which could account for the increased bone resorption. Conversely, supplementation of cytidine 5'-diphosphocholine in vivo and in vitro, a regimen that bypasses CHKB deficiency, restores osteoclast numbers to physiological levels. Finally, we demonstrate that, in addition to modulating osteoclast formation and function, loss of CHKB corresponds with a reduction in bone formation by osteoblasts. Taken together, these data posit CHKB as a new modulator of bone homeostasis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Rauner, Martina; Thiele, Sylvia; Fert, Ingrid; Araujo, Luiza M; Layh-Schmitt, Gerlinde; Colbert, Robert A; Hofbauer, Christine; Bernhardt, Ricardo; Bürki, Alexander; Schwiedrzik, Jakob; Zysset, Philippe K; Pietschmann, Peter; Taurog, Joel D; Breban, Maxime; Hofbauer, Lorenz C
2015-06-01
Although osteopenia is frequent in spondyloarthritis (SpA), the underlying cellular mechanisms and association with other symptoms are poorly understood. This study aimed to characterize bone loss during disease progression, determine cellular alterations, and assess the contribution of inflammatory bowel disease (IBD) to bone loss in HLA-B27 transgenic rats. Bones of 2-, 6-, and 12-month-old non-transgenic, disease-free HLA-B7 and disease-associated HLA-B27 transgenic rats were examined using peripheral quantitative computed tomography, μCT, and nanoindentation. Cellular characteristics were determined by histomorphometry and ex vivo cultures. The impact of IBD was determined using [21-3 x 283-2]F1 rats, which develop arthritis and spondylitis, but not IBD. HLA-B27 transgenic rats continuously lost bone mass with increasing age and had impaired bone material properties, leading to a 3-fold decrease in bone strength at 12 months of age. Bone turnover was increased in HLA-B27 transgenic rats, as evidenced by a 3-fold increase in bone formation and a 6-fold increase in bone resorption parameters. Enhanced osteoclastic markers were associated with a larger number of precursors in the bone marrow and a stronger osteoclastogenic response to RANKL or TNFα. Further, IBD-free [21-3 x 283-2]F1 rats also displayed decreased total and trabecular bone density. HLA-B27 transgenic rats lose an increasing amount of bone density and strength with progressing age, which is primarily mediated via increased bone remodeling in favor of bone resorption. Moreover, IBD and bone loss seem to be independent features of SpA in HLA-B27 transgenic rats. Copyright © 2015 Elsevier Inc. All rights reserved.
Thaunat, Mathieu; Nourissat, Geoffroy; Gaudin, Pascal; Beaufils, Philippe
2006-06-01
We report a case of tibial plateau fracture after previous anterior cruciate ligament (ACL) reconstruction using patellar tendon autograft and bioabsorbable screws 4 years previously. The fracture occurred through the tibial tunnel. The interference screw had undergone complete resorption and the tunnel widening had increased. The resorption of the interference screw did not simultaneously promote and foster the growth of surrounding bone tissue. Therefore, the area of reactive tissue left by the screw resorption in an enlarged bone tunnel may lead to vulnerability of the tibial plateau. Stress risers would occur following ACL reconstruction if either resorption is not complete or bony integration is not complete.
[Bone turnover in children and adolescents with diabetes mellitus type 1].
Pater, Agnieszka; Odrowąż-Sypniewska, Grażyna
2013-01-01
Biochemical bone turnover markers are fragments of protein structural elements of the bone created during the synthesis or degradation and enzymes specific for bone cells, released into the circulation during the metabolic activity of osteoblasts and osteoclasts. Bone turnover markers are used as indicators to evaluate the activity of modeling and remodeling processes. They are the result of the activity of all remodeling processes taking place at the moment in the whole skeleton. The assay allows quick assessment of the rate of bone formation and resorption processes. Among many complications in children with type 1 diabetes increased bone turnover leading to a reduction in bone mass may increase the risk of osteopenia or osteoporosis in adulthood. The aim of this manuscript is to review recent papers about bone turnover in children and adolescents with diabetes mellitus type 1.
Serum ionized calcium, intact PTH and novel markers of bone turnover in bedridden elderly patients.
Sorva, A; Välimäki, M; Risteli, J; Risteli, L; Elfving, S; Takkunen, H; Tilvis, R
1994-12-01
Chronic immobilization could markedly affect calcium and bone metabolism in elderly people. To investigate this, and to test the theory of 'type II' osteoporosis in bedridden elderly patients with low vitamin D status, 55 such subjects were examined. Serum concentrations of ionized calcium (Ca++), intact parathyrin (PTH) and two novel markers of bone collagen formation (carboxyterminal propeptide of type I procollagen; PICP) and resorption (carboxyterminal crosslinked telopeptide of type I collagen; ICTP) were measured. The effects on these parameters after 40 weeks of supplementation with vitamin D (1000 IU d-1) and/or calcium (1 g d-1) were subsequently prospectively evaluated. Despite low (mean 11.6 nmoll-1) serum 25-hydroxyvitamin D levels (25-OHD), those of 1,25-dihydroxy-vitamin D (1,25-(OH)2D) were mostly normal. Neither correlated with Ca++ or PTH. PTH correlated negatively not only with Ca++ (r = -0.328, P < 0.05) but also with ICTP (r = -0.306, P < 0.05). Mean PICP was normal but ICTP was elevated and tended to correlate positively with Ca++ (r = 0.268, P = 0.06). Vitamin D supplementation did not change PICP or ICTP considerably, despite slightly increased 1,25-(OH)2D and slightly decreased PTH. Ca++ values were normal and remained stable. In conclusion, Ca++ and PTH are poor indicators of vitamin D status in chronically immobilized elderly subjects. Furthermore, the results suggest that the increased bone resorption is not due to 'type II' secondary hyperparathyroidism; rather the resorption is primarily increased. Correction of vitamin D deficiency does not seem to benefit ageing bones unless adequate mechanical loading is provided.
Kierdorf, Uwe; Meng, Stefan; Kahlke, Ralf-Dietrich
2016-12-01
This report describes an isolated right horn core of a fossil steppe bison (Bison priscus) recovered from Late Pleistocene deposits near Langsdorf in the federal state of Mecklenburg-Vorpommern (Germany). AMS radiocarbon dating provided an age of 45353±2894cal yr BP for the specimen. The horn core, which by morphological criteria belonged to a female, has two depressions in its basal portion that differ in size, shape, and depth. While depressions are known from horn cores of domestic cattle, sheep, and goats, this is the first case reported from a wild bovid. Formation of the depressions on the steppe bison's horn core likely was caused by localized bone resorption during periods of increased demand for mineral elements that could not be met by dietary uptake. Such situations may have occurred in relation to pregnancy and/or lactation. Pronounced bone resorption as a means to mobilize skeletally stored mineral elements was observed in other mammals, too. Since horn cores are recovered frequently among skeletal remains of fossil bison, a systematic inspection of fossil collections for similar horn core depressions is encouraged. Copyright © 2016 Elsevier Inc. All rights reserved.
Matsumoto, Shigeru; Tominari, Tsukasa; Matsumoto, Chiho; Yoshinouchi, Shosei; Ichimaru, Ryota; Watanabe, Kenta; Hirata, Michiko; Grundler, Florian M W; Miyaura, Chisato; Inada, Masaki
2018-01-20
Polymethoxyflavonoids (PMFs) are a family of the natural compounds that mainly compise nobiletin, tangeretin, heptamethoxyflavone (HMF), and tetramethoxyflavone (TMF) in citrus fruits. PMFs have shown various biological functions, including anti-oxidative effects. We previously showed that nobiletin, tangeretin, and HMF all inhibited interleukin (IL)-1-mediated osteoclast differentiation via the inhibition of prostaglandin E2 synthesis. In this study, we created an original mixture of PMFs (nobiletin, tangeretin, HMF, and TMF) and examined whether or not PMFs exhibit co-operative inhibitory effects on osteoclastogenesis and bone resorption. In a coculture of bone marrow cells and osteoblasts, PMFs dose-dependently inhibited IL-1-induced osteoclast differentiation and bone resorption. The optimum concentration of PMFs was lower than that of nobiletin alone in the suppression of osteoclast differentiation, suggesting that the potency of PMFs was stronger than that of nobiletin in vitro. The oral administration of PMFs recovered the femoral bone loss induced by estrogen deficiency in ovariectomized mice. We further tested the effects of PMFs on lipopolysaccharide-induced bone resorption in mouse alveolar bone. In an ex vivo experimental model for periodontitis, PMFs significantly suppressed the bone-resorbing activity in organ cultures of mouse alveolar bone. These results indicate that a mixture of purified nobiletin, tangeretin, HMF, and TMF exhibits a co-operative inhibitory effect for the protection against bone loss in a mouse model of bone disease, suggesting that PMFs may be potential candidates for the prevention of bone resorption diseases, such as osteoporosis and periodontitis.
NASA Technical Reports Server (NTRS)
Zwart, S. R.; Watts, S. M.; Sams, C. F.; Whitson, P. A.; Smith, S. M.
2006-01-01
In several studies we tested the concepts that diet can alter acid-base balance and that reducing the dietary acid load has a positive effect on maintenance of bone. In study 1, (n = 11, 60-90 d bed rest), the renal acid load of the diet was estimated from its chemical composition, and was positively correlated with urinary markers of bone resorption (P less than 0.05); that is, the greater the acid load, the greater the excretion of bone resorption markers. In study 2, in males (n = 8, 30 d bed rest), an estimate of the ratio of nonvolatile acid precursors to base precursors in the diet was positively correlated (P less than 0.05) with markers of bone resorption. In study 3, for 28 d subjects received either a placebo (n = 6) or an essential amino acid supplement (n = 7) that included methionine, a known acid precursor. During bed rest (28 d), urinary calcium was greater than baseline levels in the supplemented group but not the control group (P less than 0.05), and in the supplemented group, urinary pH decreased (P less than 0.05). In study 4, less bone resorption occurred in space crew members who received potassium citrate (n = 6) during spaceflight of 4-6 months than in crew members who received placebo or were not in the study (n = 8) (P less than 0.05). Reducing acid load has the potential to mitigate increased bone resorption during spaceflight, and may serve as a bone loss countermeasure.
Correlating the nanoscale mechanical and chemical properties of knockout mice bones
NASA Astrophysics Data System (ADS)
Kavukcuoglu, Nadire Beril
Bone is a mineral-organic composite where the organic matrix is mainly type I collagen plus small amounts of non-collagenous proteins including osteopontin (OPN), osteocalcin (OC) and fibrillin 2 (Fbn2). Mature bone undergoes remodeling continually so new bone is formed and old bone resorbed. Uncoupling between the bone resorption and bone formation causes an overall loss of bone mass and leads to diseases like osteoporosis and osteopenia. These are characterized by structural deterioration of the bone tissue and an increased risk of fracture. The non-collagenous bone proteins are known to have a role in regulating bone turnover and to affect the structural integrity of bone. OPN and OC play a key role in bone resorption and formation, while absence of Fbn-2 causes a connective tissue disorder (congenital contractural arachnodactyly) and has been associated with decreased bone mass. In this thesis nanoindentation and Raman-microspectroscopy techniques were used to investigate and correlate the mechanical and chemical properties of cortical femoral bones from OPN deficient (OPN-/-), OC deficient (OC-/-) and Fbn-2 deficient (Fbn2-/-) mice and their age, sex and background matched wild-type controls (OPN+/+, OC+/+ and Fbn2+/+). For OPN the hardness (H) and elastic modulus (E) of under 12 week OPN-/- bones were significantly lower than for OPN+/+ bones, but Raman showed no significant difference. Mechanical properties of bones from mice older than 12 weeks were not significantly different with genotype. However, mineralization and crystallinity from >50 week OPN-/- bones were significantly higher than for OPN+/+ bones. Mechanical properties of OPN-/- bones showed no variation with age, but mineralization, crystallinity and type-B carbonate substitution increased for both genotypes. For OC-/- intra-bone analyses showed that the hardness and crystallinity of the bones were significantly higher, especially in the mid-cortical sections, compared to OC+/+ bones. Fbn2-/- bones had significantly lower hardness and elastic modulus compared to Fbn2+/+ bones, but the crystallinity was higher. Type-B carbonate substitution decreased significantly in OC-/- and Fbn2-/- bones compared to their wild-type controls. The thesis has provided new insight into how non-collagenous proteins affect the nanomechanics and chemistry of bone tissue. This information will assist in the development of new treatments for osteopenia/osteoporosis.
Risedronate Prevents Early Radiation-Induced Osteoporosis in Mice at Multiple Skeletal Locations
Willey, Jeffrey S.; Livingston, Eric W.; Robbins, Michael E.; Bourland, J. Daniel; Tirado-Lee, Leidamarie; Smith-Sielicki, Hope; Bateman, Ted A.
2009-01-01
Introduction Irradiation of normal, non-malignant bone during cancer therapy can lead to atrophy and increased risk of fracture at several skeletal sites, particularly the hip. This bone loss has been largely attributed to damaged osteoblasts. Little attention has been given to increased bone resorption as a contributor to radiation-induced osteoporosis. Our aims were to identify if radiation increases bone resorption resulting in acute bone loss, and if bone loss could be prevented by administering risedronate. Methods Twenty-week old female C57BL/6 mice were either: not irradiated and treated with placebo (NR+PL); whole-body irradiated with 2 Gy X-rays and treated with placebo (IR+PL); or irradiated and treated with risedronate (IR+RIS; 30μg/kg every other day). Calcein injections were administered 7 and 2 days before sacrifice. Bones were collected 1, 2, and 3 weeks after exposure. MicroCT analysis was performed at 3 sites: proximal tibial metaphysis; distal femoral metaphysis; and the body of the 5th lumbar vertebra (L5). Osteoclasts were identified from TRAP-stained histological sections. Dynamic histomorphometry of cortical and trabecular bone was performed. Circulating TRAP5b and osteocalcin concentrations were quantified. Results In animals receiving IR+PL, significant (P < 0.05) reduction in trabecular volume fraction relative to non-irradiated controls was observed at all three skeletal sites and time points. Likewise, radiation-induced loss of connectivity and trabecular number relative to NR+PL were observed at all skeletal sites throughout the study. Bone loss primarily occurred during the first week post-exposure. Trabecular and endocortical bone formation was not reduced until Week 2. Loss of bone volume was absent in animals receiving IR+RIS. Histology indicated greater osteoclast numbers at Week 1 within IR+PL mice. Serum TRAP5b concentration was increased in IR+PL mice only at Week 1 compared to NR+PL (P = 0.05). Risedronate treatment prevented the radiation-induced increase in osteoclast number, surface, and TRAP5b. Conclusion This study demonstrated a rapid loss of trabecular bone at several skeletal sites after whole-body irradiation. Changes were accompanied by an increase in osteoclast number and serum markers of bone loss. Risedronate entirely prevented bone loss, providing further evidence that an increase in bone resorption likely caused this radiation-induced bone loss. PMID:19747571
Maïmoun, L; Guillaume, S; Lefebvre, P; Philibert, P; Bertet, H; Picot, M-C; Gaspari, L; Paris, F; Seneque, M; Dupuys, A-M; Courtet, P; Thomas, E; Mariano-Goulart, D; Bringer, J; Renard, E; Sultan, C
2016-01-01
Low bone mass is a consequence of anorexia nervosa (AN). This study assessed the effects of energy deficiency on various bone and hormonal parameters. The interrelationships between energy deficiency and bone remodelling, glucose homeostasis and adipokines underscore the importance of preventing energy deficiency to limit demineralisation and hormonal alterations in AN patients. Low areal bone mineral density (aBMD) is a well-known consequence of AN. However, the impact of reduced energy expenditure on bone metabolism is unknown. This study assessed the effects of energy deficiency on bone remodelling and its potential interactions with glucose homeostasis and adipose tissue-derived hormones in AN, a clinical model for reduced energy expenditure. Fifty women with AN and 50 age-matched controls (mean age 18.1 ± 2.7 and 18.0 ± 2.1 years, respectively) were enrolled. aBMD was determined with DXA. Resting energy expenditure (REEm), a marker of energy status, was indirectly assessed by calorimetry. Bone turnover markers, undercarboxylated osteocalcin (ucOC), parameters of glucose homeostasis, adipokines and growth factors were concomitantly evaluated. AN patients presented low aBMD at all bone sites. REEm, bone formation markers, ucOC, glucose, insulin, HOMA-IR, leptin and IGF-1 were significantly reduced, whereas the bone resorption marker, leptin receptor (sOB-R) and adiponectin were elevated in AN compared with CON. In AN patients, REEm was positively correlated with weight, BMI, whole body (WB) fat mass, WB fat-free soft tissue, markers of bone formation, glucose, insulin, HOMA-IR, leptin and IGF-1 and negatively correlated with the bone resorption marker and sOB-R. Biological parameters, aBMD excepted, appeared more affected by the weight variation in the last 6 months than by the disease duration. The strong interrelationships between REEm and bone remodelling, glucose homeostasis and adipokines underscore the importance of preventing energy deficiency to limit short- and long-term bone demineralisation and hormonal alterations in AN patients.
Cortisol Secretory Parameters in Young Exercisers in Relation to LH Secretion and Bone Parameters
Ackerman, Kathryn E.; Patel, Kamal T.; Guereca, Gabriela; Pierce, Lisa; Herzog, David B.; Misra, Madhusmita
2012-01-01
Objective Amenorrhoea and low bone density are common in excessive exercisers, yet endocrine factors that differentiate adolescent amenorrhoeic exercisers (AE) from eumenorrhoeic exercisers (EE) are unclear. We have previously reported that high ghrelin and low leptin predict lower LH secretion in AE. Leptin and ghrelin impact cortisol secretion, and hypercortisolaemia can inhibit LH pulsatility. We hypothesized that higher cortisol secretion in young endurance weight-bearing AE compared with EE and non-exercisers predicts lower LH secretion, lower levels of a bone formation marker and higher levels of a bone resorption marker. Design Cross-sectional Subjects We studied 21 AE, 18 EE and 20 non-exercisers 14–21 years (BMI 10th–90th%iles). Measurements Subjects underwent frequent sampling (11 p.m. to 7 a.m.) to assess cortisol, ghrelin, leptin and LH secretory dynamics. Fasting levels of a bone formation (P1NP) and bone resorption (CTX) marker were measured. Results BMI did not differ among groups. Cortisol pulse amplitude, mass, half-life and area under the curve (AUC) were highest in AE (p=0.04, 0.007, 0.04 and 0.003) and were associated inversely with fat mass (r=−0.29, −0.28 and −0.35, p=0.03, 0.04 and 0.007). We observed inverse associations between cortisol and LH AUC (r= −0.36, p=0.008), which persisted after controlling for fat mass, leptin and ghrelin AUC. Cortisol correlated positively with CTX in EE and inversely with P1NP in non-exercisers. Conclusions Higher cortisol secretion in AE compared with EE and non-exercisers is associated with lower LH secretion. Effects of leptin and ghrelin on LH secretion may be mediated by increased cortisol. PMID:22671919
Kim, Yun-Ho; Kim, Jung-Lye; Lee, Eun-Jung; Park, Sin-Hye; Han, Seon-Young; Kang, Soon Ah; Kang, Young-Hee
2014-03-01
Osteoclastogenesis is comprised of several stage s including progenitor survival, differentiation to mononuclear preosteoclasts, cell fusion to multinuclear mature osteoclasts, and activation to osteoclasts with bone resorbing activity. Botanical antioxidants are now being increasingly investigated for their health-promoting effects on bone. This study investigated that fisetin, a flavonol found naturally in many fruits and vegetables, suppressed osteoclastogenesis by disturbing receptor activator of nuclear factor (NF)-κB ligand (RANKL)-mediated signaling pathway and demoting osteoclastogenic protein induction. Nontoxic fisetin at ≤10 μM inhibited the induction of RANK, tumor necrosis factor receptor associated factor 6 (TRAF6) and the activation of NF-κB in RANKL-stimulated RAW 264.7 macrophages. In RANKL-differentiated osteoclasts cell fusion protein of E-cadherin was induced, which was dampened by fisetin. The formation of tartrate-resistance acid phosphatase-positive multinucleated osteoclasts was suppressed by adding fisetin to RANKL-exposed macrophages. It was also found that fisetin reduced actin ring formation and gelsolin induction of osteclasts enhanced by RANKL through disturbing c-Src-proline-rich tyrosine kinase 2 signaling. Fisetin deterred preosteoclasts from the cell-cell fusion and the organization of the cytoskeleton to seal the resorbing area and to secret protons for bone resorption. Consistently, the 5 day-treatment of fisetin diminished RANKL-induced cellular expression of carbonic anhydrase II and integrin β3 concurrently with a reduction of osteoclast bone-resorbing activity. Therefore, fisetin was a natural therapeutic agent retarding osteoclast fusion and cytoskeletal organization such as actin rings and ruffled boarder, which is a property of mature osteoclasts and is required for osteoclasts to resorb bone. Copyright © 2014 Elsevier Inc. All rights reserved.
Cellular and molecular basis of tooth eruption
Wise, GE
2009-01-01
Objectives Tooth eruption requires the presence of a dental follicle (DF), alveolar bone resorption for an eruption pathway, and alveolar bone formation at the base of the bony crypt. The objectives of our investigations have been to determine how the DF regulates both the osteoclastogenesis and osteogenesis needed for eruption. Material & Methods Multiple experimental methods have been employed. Results The DF regulates osteoclastogenesis and osteogenesis by regulating the expression of critical genes in both a chronological and spatial fashion. In the rat 1st mandibular molar there is a major burst of osteoclastogenesis at day 3 postnatally and a minor burst at day 10. At day 3, the DF maximally expresses colony-stimulating factor-1 (CSF-1) to down-regulate the expression of osteoprotegerin such that osteoclastogenesis can occur. At day 10, the minor burst of osteoclastogenesis is promoted by upregulation of VEGF and RANKL in the DF. Spatially, the bone resorption is in the coronal portion of the bony crypt and genes such as RANKL are expressed more in the coronal region of the DF than in its basal one-half. For osteogenesis, bone formation begins at day 3 at the base of the bony crypt and maximal growth is at days 9–14. Osteo-inductive genes such as BMP-2 appear to promote this and are expressed more in the basal half of the DF than in the coronal. Conclusion The osteoclastogenesis and osteogenesis needed for eruption are regulated by differential gene expression in the DF both chronologically and spatially. PMID:19419449
Kobayashi, Kanichiro; Takahashi, Naoyuki; Jimi, Eijiro; Udagawa, Nobuyuki; Takami, Masamichi; Kotake, Shigeru; Nakagawa, Nobuaki; Kinosaki, Masahiko; Yamaguchi, Kyoji; Shima, Nobuyuki; Yasuda, Hisataka; Morinaga, Tomonori; Higashio, Kanji; Martin, T. John; Suda, Tatsuo
2000-01-01
Osteoclast differentiation factor (ODF, also called RANKL/TRANCE/OPGL) stimulates the differentiation of osteoclast progenitors of the monocyte/macrophage lineage into osteoclasts in the presence of macrophage colony-stimulating factor (M-CSF, also called CSF-1). When mouse bone marrow cells were cultured with M-CSF, M-CSF–dependent bone marrow macrophages (M-BMMφ) appeared within 3 d. Tartrate-resistant acid phosphatase–positive osteoclasts were also formed when M-BMMφ were further cultured for 3 d with mouse tumor necrosis factor α (TNF-α) in the presence of M-CSF. Osteoclast formation induced by TNF-α was inhibited by the addition of respective antibodies against TNF receptor 1 (TNFR1) or TNFR2, but not by osteoclastogenesis inhibitory factor (OCIF, also called OPG, a decoy receptor of ODF/RANKL), nor the Fab fragment of anti–RANK (ODF/RANKL receptor) antibody. Experiments using M-BMMφ prepared from TNFR1- or TNFR2-deficient mice showed that both TNFR1- and TNFR2-induced signals were important for osteoclast formation induced by TNF-α. Osteoclasts induced by TNF-α formed resorption pits on dentine slices only in the presence of IL-1α. These results demonstrate that TNF-α stimulates osteoclast differentiation in the presence of M-CSF through a mechanism independent of the ODF/RANKL–RANK system. TNF-α together with IL-1α may play an important role in bone resorption of inflammatory bone diseases. PMID:10637272
Evaluation of bone loss in antibacterial coated dental implants: An experimental study in dogs.
Godoy-Gallardo, Maria; Manzanares-Céspedes, Maria Cristina; Sevilla, Pablo; Nart, José; Manzanares, Norberto; Manero, José M; Gil, Francisco Javier; Boyd, Steven K; Rodríguez, Daniel
2016-12-01
The aim of this study was to evaluate the in vivo effect of antibacterial modified dental implants in the first stages of peri-implantitis. Thirty dental implants were inserted in the mandibular premolar sites of 5 beagle dogs. Sites were randomly assigned to Ti (untreated implants, 10units), Ti_Ag (silver electrodeposition treatment, 10units), and Ti_TSP (silanization treatment, 10units). Coated implants were characterized by scanning electron microscopy, interferometry and X-ray photoelectron spectroscopy. Two months after implant insertion, experimental peri-implantitis was initiated by ligature placement. Ligatures were removed 2months later, and plaque formation was allowed for 2 additional months. Clinical and radiographic analyses were performed during the study. Implant-tissue samples were prepared for micro computed tomography, backscattered scanning electron microscopy, histomorphometric and histological analyses and ion release measurements. X-ray, SEM and histology images showed that vertical bone resorption in treated implants was lower than in the control group (P<0.05). This effect is likely due to the capacity of the treatments to reduce bacteria colonization on the implant surface. Histological analysis suggested an increase of peri-implant bone formation on silanized implants. However, the short post-ligature period was not enough to detect differences in clinical parameters among implant groups. Within the limits of this study, antibacterial surface treatments have a positive effect against bone resorption induced by peri-implantitis. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolstykh, E I; Shagina, N B; Degteva, M O
2011-08-01
The Mayak Production Association released large amounts of 90Sr into the Techa River (Southern Urals, Russia) with peak amounts in 1950-1951. Techa Riverside residents ingested an average of about 3,000 kBq of 90Sr. The 90Sr-body burden of approximately 15,000 individuals has been measured in the Urals Research Center for Radiation Medicine in 1974-1997 with use of a special whole-body counter (WBC). Strontium-90 had mainly deposited in the cortical part of the skeleton by 25 years following intake, and 90Sr elimination occurs as a result of cortical bone resorption. The effect of 90Sr-radiation exposure on the rate of cortical bone resorptionmore » was studied. Data on 2,022 WBC measurements were selected for 207 adult persons, who were measured three or more times before they were 50-55 years old. The individual-resorption rates were calculated with the rate of strontium recirculation evaluated as 0.0018 year -1. Individual absorbed doses in red bone marrow (RBM) and bone surface (BS) were also calculated. Statistically significant negative relationships of cortical bone resorption rate were discovered related to 90Sr-body burden and dose absorbed in the RBM or the BS. The response appears to have a threshold of about 1.5-Gy RBM dose. The radiation induced decrease in bone resorption rate may not be significant in terms of health. However, a decrease in bone remodeling rate can be among several causes of an increased level of degenerative dystrophic bone pathology in exposed persons.« less
Peculiarities of the bone tissue resorption under microgravity conditions
NASA Astrophysics Data System (ADS)
Rodionova, N.; Oganov, V.; Polkovenko, O.; Nitsevich, T.
The actual problem - peculiarities of resorptive processes in the spongiose of thingbones - we studied with the use of tranmissive electron microscopy in experiments on rats (American space station SLS-2) and on monkeys Macaca mulatt? (BION-11). Animals were onboard during 2 weeks. There was established, that the resorption happen with osteoclasts participation. They can create groups of cells. In the osteoclasts population we indicated not typical for the control (ground experiment) "giant" cells, which have on ultrathin sections 5-6 nuclei, many lysosomes, well developed "light" zone and "brush-border". The destruction of minera lized matrix in bone lacunas also happens by the way of osteolytic activity of osteocytes. Lysosome ferments of osteocytes are secreted by the eczocytosis. The osteocytic osteolysis, as well as the osteoclastic one can be seen as a physiological, gormon-dependent mechanism of resorption. The presence of a considerable number of neutrophiles, which enter in some zones of resorption is also typical. When these neutrophiles destruct, they release lysosomic ferments that dissolve the bone matrix. In some zones of resorption we noted the presence of the row from collagen fibrils, which loosed crystals , on mineralized matrix borders. The cell detritus is noted in zones of surface dissolving among crystallic conglomerates. It certificates the processes of osteogenic cells destruction that happen here. So, under the microgravity conditions in zones of adaptive remodeling of the spongiose the processes of the bone tissue resorption happen by some ways, namely: by the functional activization of osteoclasts; by the osteocytic osteolysis increasing; as a result of hydrolytic activity of neutrophiles, entering in these zones, and also by the local demineralization and further destruction of bone matrix surface zones.
Targeted delivery of mesenchymal stem cells to the bone.
Yao, Wei; Lane, Nancy E
2015-01-01
Osteoporosis is a disease of excess skeletal fragility that results from estrogen loss and aging. Age related bone loss has been attributed to both elevated bone resorption and insufficient bone formation. We developed a hybrid compound, LLP2A-Ale in which LLP2A has high affinity for the α4β1 integrin on mesenchymal stem cells (MSCs) and alendronate has high affinity for bone. When LLP2A-Ale was injected into mice, the compound directed MSCs to both trabecular and cortical bone surfaces and increased bone mass and bone strength. Additional studies are underway to further characterize this hybrid compound, LLP2A-Ale, and how it can be utilized for the treatment of bone loss resulting from hormone deficiency, aging, and inflammation and to augment bone fracture healing. This article is part of a Special Issue entitled "Stem Cells and Bone". Copyright © 2014 Elsevier Inc. All rights reserved.
Anastasia, Luigi; Rota, Paola; Anastasia, Mario; Allevi, Pietro
2013-09-21
This review focuses on the chemical structure, biosynthesis and synthesis of free and glycosylated pyridinolines (Pyds), fluorescent collagen cross-links, with a pyridinium salt structure. Pyds derive from the degradation of bone collagen and have attracted attention for their use as biochemical markers of bone resorption and to assess fracture risk prediction in persons suffering from osteoporosis, bone cancer and other bone or collagen diseases. We consider and critically discuss all reported syntheses of free and glycosylated Pyds evidencing an unrevised chemistry, original and of general utility, analysis of which allows us to also support a previously suggested non-enzymatic formation of Pyds in collagen better rationalizing and justifying the chemical events.
Impact of bone lead and bone resorption on plasma and whole blood lead levels during pregnancy.
Téllez-Rojo, Martha María; Hernández-Avila, Mauricio; Lamadrid-Figueroa, Héctor; Smith, Donald; Hernández-Cadena, Leticia; Mercado, Adriana; Aro, Antonio; Schwartz, Joel; Hu, Howard
2004-10-01
The authors tested the hypotheses that maternal bone lead burden is associated with increasing maternal whole blood and plasma lead levels over the course of pregnancy and that this association is modified by rates of maternal bone resorption. A total of 193 Mexican women were evaluated (1997-1999) in the first, second, and third trimesters of pregnancy. Whole blood lead and plasma lead levels were measured in each trimester. Urine was analyzed for cross-linked N-telopeptides (NTx) of type I collagen, a biomarker of bone resorption. Patella and tibia lead levels were measured at 4 weeks postpartum. The relation between whole blood, plasma, and bone lead and NTx was assessed using mixed models. Plasma lead concentrations followed a U-shape, while NTx levels increased significantly during pregnancy. In a multivariate model, the authors observed a significant and positive interaction between NTx and bone lead when plasma lead was used as the outcome variable. Dietary calcium intake was inversely associated with plasma lead. Results for whole blood lead were similar but less pronounced. These results confirm previous evidence that bone resorption increases during pregnancy, with a consequential significant release of lead from bone, constituting an endogenous source of prenatal exposure. They also provide a rationale for testing strategies (e.g., nutritional supplementation with calcium) aimed at decreasing prenatal lead exposure.
Duong, Le T; Crawford, Randy; Scott, Kevin; Winkelmann, Christopher T; Wu, Gouxin; Szczerba, Pete; Gentile, Michael A
2016-12-01
Odanacatib (ODN) a selective and reversible cathepsin K inhibitor, inhibits bone resorption, increases bone mass and reduces fracture risk in women with osteoporosis. A 16-month (~7-remodeling cycles) study was carried out in treatment mode to assess the effects of ODN versus ALN on bone mass, remodeling status and biomechanical properties of lumbar vertebrae (LV) and femur in ovariectomized (OVX) rabbits. This study also evaluated the impact of discontinuing ODN on these parameters. Rabbits at 7.5months post-OVX were dosed for 16-months with ODN (7.5μM·h 0-24 , in food) or ALN (0.2mg/kg/wk, s.c.) and compared to vehicle-treated OVX- (OVX+Veh) or Sham-operated animals. After 8months, treatment was discontinued in half of the ODN group. ODN treatment increased in vivo LV aBMD and trabecular (Tb) vBMD until reaching plateau at month 12 by 16% and 23% vs. baseline, respectively, comparable levels to that in Sham and significantly above OVX+Veh. LV BMD was also higher in ALN that plateaued around month 8 to levels below that in ODN or Sham. ODN treatment resulted in higher BMD, structure and improved biomechanical strength of LV and central femur (CF) to levels similar to Sham. ALN generally showed less robust efficacy compared to ODN. Neither ODN nor ALN influenced material properties at these bone sites following ODN or ALN treatment for 7 remodeling cycles in rabbits. ODN and ALN persistently reduced the bone resorption marker urinary helical peptide over study duration. While ALN reduced the bone formation marker BSAP, ODN treatment did not affect this marker. ODN also preserved histomorphometry-based bone formation indices in LV trabecular, CF endocortical and intracortical surfaces, at the levels of OVX+Veh. Discontinuation of ODN returned bone mass, structure and strength parameters to the comparable respective levels in OVX+Veh. Together, these data demonstrate efficacy and bone safety profile of ODN and suggests the potential long-term benefits of this agent over ALN with respect to accrued bone mass without long-term effects on bone formation. Copyright © 2016 Elsevier Inc. All rights reserved.
Role of Cbl-PI3K Interaction during Skeletal Remodeling in a Murine Model of Bone Repair.
Scanlon, Vanessa; Soung, Do Yu; Adapala, Naga Suresh; Morgan, Elise; Hansen, Marc F; Drissi, Hicham; Sanjay, Archana
2015-01-01
Mice in which Cbl is unable to bind PI3K (YF mice) display increased bone volume due to enhanced bone formation and repressed bone resorption during normal bone homeostasis. We investigated the effects of disrupted Cbl-PI3K interaction on fracture healing to determine whether this interaction has an effect on bone repair. Mid-diaphyseal femoral fractures induced in wild type (WT) and YF mice were temporally evaluated via micro-computed tomography scans, biomechanical testing, histological and histomorphometric analyses. Imaging analyses revealed no change in soft callus formation, increased bony callus formation, and delayed callus remodeling in YF mice compared to WT mice. Histomorphometric analyses showed significantly increased osteoblast surface per bone surface and osteoclast numbers in the calluses of YF fractured mice, as well as increased incorporation of dynamic bone labels. Furthermore, using laser capture micro-dissection of the fracture callus we found that cells lacking Cbl-PI3K interaction have higher expression of Osterix, TRAP, and Cathepsin K. We also found increased expression of genes involved in propagating PI3K signaling in cells isolated from the YF fracture callus, suggesting that the lack of Cbl-PI3K interaction perhaps results in enhanced PI3K signaling, leading to increased bone formation, but delayed remodeling in the healing femora.
Natural Ca Isotope Composition of Urine as a Rapid Measure of Bone Mineral Balance
NASA Astrophysics Data System (ADS)
Skulan, J.; Gordon, G. W.; Morgan, J.; Romaniello, S. J.; Smith, S. M.; Anbar, A. D.
2011-12-01
Naturally occurring stable Ca isotope variations in urine are emerging as a powerful tool to detect changes in bone mineral balance. Bone formation depletes soft tissue of light Ca isotopes while bone resorption releases isotopically light Ca into soft tissue. Previously published work found that variations in Ca isotope composition could be detected at 4 weeks of bed rest in a 90-day bed rest study (data collected at 4, 8 and 12 weeks). A new 30-day bed rest study involved 12 patients on a controlled diet, monitored for 7 days prior to bed rest and 7 days post bed rest. Samples of urine, blood and food were collected throughout the study. Four times daily blood samples and per void urine samples were collected to monitor diurnal or high frequency variations. An improved chemical purification protocol, followed by measurement using multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) allowed accurate and precise determinations of mass-dependent Ca isotope variations in these biological samples to better than ±0.2% (δ44/42Ca) on <25 μg of Ca. Results from this new study show that Ca isotope ratios shift in a direction consistent with net bone loss after just 7 days, long before detectible changes in bone density by X-ray measurements occur. Consistent with this interpretation, the Ca isotope variations track changes observed in N-teleopeptide, a bone resorption biomarker. Bone-specific alkaline phosphatase, a bone formation biomarker, is unchanged over this period. Ca isotopes can in principle be used to quantify net changes in bone mass. Using a mass-balance model, our results indicate an average loss of 0.62 ± 0.16 % in bone mass over the course of this 30-day study. This is consistent with the rate of bone loss in longer-term studies as seen by X-ray measurements. This Ca isotope technique should accelerate the pace of discovery of new treatments for bone disease and provide novel insights into the dynamics of bone metabolism.
Diagnosis and Treatment of Bone Disease in Multiple Myeloma: Spotlight on Spinal Involvement
Tosi, Patrizia
2013-01-01
Bone disease is observed in almost 80% of newly diagnosed symptomatic multiple myeloma patients, and spine is the bone site that is more frequently affected by myeloma-induced osteoporosis, osteolyses, or compression fractures. In almost 20% of the cases, spinal cord compression may occur; diagnosis and treatment must be carried out rapidly in order to avoid a permanent sensitive or motor defect. Although whole body skeletal X-ray is considered mandatory for multiple myeloma staging, magnetic resonance imaging is presently considered the most appropriate diagnostic technique for the evaluation of vertebral alterations, as it allows to detect not only the exact morphology of the lesions, but also the pattern of bone marrow infiltration by the disease. Multiple treatment modalities can be used to manage multiple myeloma-related vertebral lesions. Surgery or radiotherapy is mainly employed in case of spinal cord compression, impending fractures, or intractable pain. Percutaneous vertebroplasty or balloon kyphoplasty can reduce local pain in a significant fraction of treated patients, without interfering with subsequent therapeutic programs. Systemic antimyeloma therapy with conventional chemotherapy or, more appropriately, with combinations of conventional chemotherapy and compounds acting on both neoplastic plasma cells and bone marrow microenvironment must be soon initiated in order to reduce bone resorption and, possibly, promote bone formation. Bisphosphonates should also be used in combination with antimyeloma therapy as they reduce bone resorption and prolong patients survival. A multidisciplinary approach is thus needed in order to properly manage spinal involvement in multiple myeloma. PMID:24381787
Andrews, Rebecca E; Shah, Karan M; Wilkinson, J Mark; Gartland, Alison
2011-10-01
Metal-on-metal hip replacement (MOMHR) using large diameter bearings has become a popular alternative to conventional total hip arthroplasty, but is associated with elevated local tissue and circulating levels of chromium (Cr) and cobalt (Co) ions that may affect bone health. We examined the effects of acute and chronic exposure to these metals on human osteoblast and osteoclast formation and function over a clinically relevant concentration range previously reported in serum and within hip synovial fluid in patients after MOMHR. SaOS-2 cells were cultured with Co(2+), Cr(3+) and Cr(6+) for 3 days after which an MTS assay was used to assess cell viability, for 13 days after which alkaline phosphatase and cell viability were assessed and for 21 days after which nodule formation was assessed. Monocytes were isolated from human peripheral blood and settled onto dentine disks then cultured with M-CSF and RANKL plus either Co(2+), Cr(3+) or Cr(6+) ions for 21 days from day 0 or between days 14 and 21. Cells were fixed and stained for TRAP and osteoclast number and amount of resorption per dentine disk determined. Co(2+) and Cr(3+) did not affect osteoblast survival or function over the clinically equivalent concentration range, whilst Cr(6+) reduced osteoblast survival and function at concentrations within the clinically equivalent serum range after MOMHR (IC(50) =2.2 μM). In contrast, osteoclasts were more sensitive to metal ions exposure. At serum levels a mild stimulatory effect on resorption in forming osteoclasts was found for Co(2+) and Cr(3+), whilst at higher serum and synovial equivalent concentrations, and with Cr(6+), a reduction in cell number and resorption was observed. Co(2+) and Cr(6+) within the clinical range reduced cell number and resorption in mature osteoclasts. Our data suggest that metal ions at equivalent concentrations to those found in MOMHR affect bone cell health and may contribute to the observed bone-related complications of these prostheses. Copyright © 2011 Elsevier Inc. All rights reserved.
Yamada, Hiroyuki; Ochi, Yasuo; Mori, Hiroshi; Nishikawa, Satoshi; Hashimoto, Yasuaki; Nakanishi, Yasutomo; Tanaka, Makoto; Bruce, Mark; Deacon, Steve; Kawabata, Kazuhito
2016-05-01
We examined the effects of ONO-5334, a cathepsin K inhibitor, on bone markers, BMD, strength and histomorphometry in ovariectomized (OVX) cynomolgus monkeys. ONO-5334 (1.2, 6 and 30mg/kg/day, p.o.), alendronate (0.05mg/kg/2weeks, i.v.), or vehicle was administered to OVX monkeys (all groups N=20) for 16months. A concurrent Sham group (N=20) was also treated with vehicle for 16months. OVX significantly increased bone resorption and formation markers and decreased BMD in lumbar vertebra, femoral neck, proximal tibia and distal radius. Alendronate suppressed these parameters to a level similar to that in the Sham-operated monkeys. ONO-5334 at doses 6 and 30mg/kg decreased bone resorption markers to a level roughly half of that in the Sham group, while keeping bone formation markers level above that in the Sham monkeys. Changes in DXA BMD confirmed that ONO-5334 at doses 6 and 30mg/kg increased BMD to a level greater than that in the Sham group in all examined sites. In the proximal tibia, in vivo pQCT analysis showed that ONO-5334 at doses 6 and 30mg/kg suppressed trabecular BMD loss to the sham level. However, ONO-5334 increased cortical BMD, cortical area and cortical thickness to a level greater than that in the Sham group, suggesting that ONO-5334 improves both cortical BMD and cortical geometry. Histomorphometric analysis revealed that ONO-5334 suppressed bone formation rate (BFR) at osteonal site in the midshaft femur but did not influence OVX-induced increase in BFR at either the periosteal or endocortical surfaces. Unlike alendronate, ONO-5334 increased osteoclasts surface (Oc.S/BS) and serum tartrate-resistant acid phosphatise 5b (TRAP5b) activity, highlighting the difference in the mode of action between these two drugs. Our results suggest that ONO-5334 has therapeutic potential not only in vertebral bones, but also in non-vertebral bones. Copyright © 2016 Elsevier Inc. All rights reserved.
Macias, B R; Lima, F; Swift, J M; Shirazi-Fard, Y; Greene, E S; Allen, M R; Fluckey, J; Hogan, H A; Braby, L; Wang, Suojin; Bloomfield, S A
2016-09-01
Exploration missions to the Moon or Mars will expose astronauts to galactic cosmic radiation and low gravitational fields. Exposure to reduced weightbearing and radiation independently result in bone loss. However, no data exist regarding the skeletal consequences of combining low-dose, high-linear energy transfer (LET) radiation and partial weightbearing. We hypothesized that simulated galactic cosmic radiation would exacerbate bone loss in animals held at one-sixth body weight (G/6) without radiation exposure. Female BALB/cByJ four-month-old mice were randomly assigned to one of the following treatment groups: 1 gravity (1G) control; 1G with radiation; G/6 control; and G/6 with radiation. Mice were exposed to either silicon-28 or X-ray radiation. (28)Si radiation (300 MeV/nucleon) was administered at acute doses of 0 (sham), 0.17 and 0.5 Gy, or in three fractionated doses of 0.17 Gy each over seven days. X radiation (250 kV) was administered at acute doses of 0 (sham), 0.17, 0.5 and 1 Gy, or in three fractionated doses of 0.33 Gy each over 14 days. Bones were harvested 21 days after the first exposure. Acute 1 Gy X-ray irradiation during G/6, and acute or fractionated 0.5 Gy (28)Si irradiation during 1G resulted in significantly lower cancellous mass [percentage bone volume/total volume (%BV/TV), by microcomputed tomography]. In addition, G/6 significantly reduced %BV/TV compared to 1G controls. When acute X-ray irradiation was combined with G/6, distal femur %BV/TV was significantly lower compared to G/6 control. Fractionated X-ray irradiation during G/6 protected against radiation-induced losses in %BV/TV and trabecular number, while fractionated (28)Si irradiation during 1G exacerbated the effects compared to single-dose exposure. Impaired bone formation capacity, measured by percentage mineralizing surface, can partially explain the lower cortical bone thickness. Moreover, both partial weightbearing and (28)Si-ion exposure contribute to a higher proportion of sclerostin-positive osteocytes in cortical bone. Taken together, these data suggest that partial weightbearing and low-dose, high-LET radiation negatively impact maintenance of bone mass by lowering bone formation and increasing bone resorption. The impaired bone formation response is associated with sclerostin-induced suppression of Wnt signaling. Therefore, exposure to low-dose, high-LET radiation during long-duration spaceflight missions may reduce bone formation capacity, decrease cancellous bone mass and increase bone resorption. Future countermeasure strategies should aim to restore mechanical loads on bone to those experienced in one gravity. Moreover, low-doses of high-LET radiation during long-duration spaceflight should be limited or countermeasure strategies employed to mitigate bone loss.
Sodi, R; Hazell, M J; Durham, B H; Rees, C; Ranganath, L R; Fraser, W D
2009-09-01
There is increasing evidence suggesting that adiponectin plays a role in the regulation of bone metabolism. This was a cross-sectional study of 34 post-menopausal women with and 37 without osteoporosis. All subjects had body mass index (BMI), bone mineral density (BMD), total-, high molecular weight (HMW)-adiponectin and their ratio, osteoprotegerin (OPG), a marker of bone resorption (betaCTX) and formation (P1NP) measured. We observed a positive correlation between BMI and BMD (r=0.44, p<0.001). When normalised for BMI, total-, HMW-adiponectin concentrations and HMW/total-adiponectin ratio were significantly lower in obese compared to lean subjects but there was no difference between those with or without osteoporosis. There were significant negative correlations between HMW/total-adiponectin ratio and BMI (r=-0.27, p=0.030) and with OPG (r=-0.44, p<0.001). Our data suggests that there is no significant difference in the circulating concentration of fasting early morning total- or HMW-adiponectin in post-menopausal women with or without osteoporosis. The correlation between HMW/total-adiponectin ratio and OPG may indicate that adiponectin could influence bone metabolism by altering osteoblast production of OPG thereby affecting osteoclasts mediated bone resorption.
Harms, Christoph; Helms, Kai; Taschner, Tibor; Stratos, Ioannis; Ignatius, Anita; Gerber, Thomas; Lenz, Solvig; Rammelt, Stefan; Vollmar, Brigitte; Mittlmeier, Thomas
2012-01-01
The synthetic material Nanobone(®) (hydroxyapatite nanocrystallines embedded in a porous silica gel matrix) was examined in vivo using a standardized bone defect model in the ovine tibial metaphysis. A standardized 6 × 12 × 24-mm bone defect was created below the articular surface of the medial tibia condyles on both hind legs of 18 adult sheep. The defect on the right side was filled with Nanobone(®), while the defect on the contralateral side was left empty. The tibial heads of six sheep were analyzed after 6, 12, and 26 weeks each. The histological and radiological analysis of the defect on the control side did not reveal any bone formation after the total of 26 weeks. In contrast, the microcomputed tomography analysis of the defect filled with Nanobone(®) showed a 55%, 72%, and 74% volume fraction of structures with bone density after 6, 12, and 26 weeks, respectively. Quantitative histomorphological analysis after 6, and 12 weeks revealed an osteoneogenesis of 22%, and 36%, respectively. Hematoxylin and eosin sections demonstrated multinucleated giant cells on the surface of the biomaterial and resorption lacunae, indicating osteoclastic resorptive activity. Nanobone(®) appears to be a highly potent bone substitute material with osteoconductive properties in a loaded large animal defect model, supporting the potential use of Nanobone(®) also in humans.
Harms, Christoph; Helms, Kai; Taschner, Tibor; Stratos, Ioannis; Ignatius, Anita; Gerber, Thomas; Lenz, Solvig; Rammelt, Stefan; Vollmar, Brigitte; Mittlmeier, Thomas
2012-01-01
The synthetic material Nanobone® (hydroxyapatite nanocrystallines embedded in a porous silica gel matrix) was examined in vivo using a standardized bone defect model in the ovine tibial metaphysis. A standardized 6 × 12 × 24-mm bone defect was created below the articular surface of the medial tibia condyles on both hind legs of 18 adult sheep. The defect on the right side was filled with Nanobone®, while the defect on the contralateral side was left empty. The tibial heads of six sheep were analyzed after 6, 12, and 26 weeks each. The histological and radiological analysis of the defect on the control side did not reveal any bone formation after the total of 26 weeks. In contrast, the microcomputed tomography analysis of the defect filled with Nanobone® showed a 55%, 72%, and 74% volume fraction of structures with bone density after 6, 12, and 26 weeks, respectively. Quantitative histomorphological analysis after 6, and 12 weeks revealed an osteoneogenesis of 22%, and 36%, respectively. Hematoxylin and eosin sections demonstrated multinucleated giant cells on the surface of the biomaterial and resorption lacunae, indicating osteoclastic resorptive activity. Nanobone® appears to be a highly potent bone substitute material with osteoconductive properties in a loaded large animal defect model, supporting the potential use of Nanobone® also in humans. PMID:22745551
The osteocyte: key player in regulating bone turnover
Goldring, Steven R
2015-01-01
Osteocytes are the most abundant cell type in bone and are distributed throughout the mineralised bone matrix forming an interconnected network that ideally positions them to sense and to respond to local biomechanical and systemic stimuli to regulate bone remodelling and adaptation. The adaptive process is dependent on the coordinated activity of osteoclasts and osteoblasts that form a so called bone multicellular unit that remodels cortical and trabecular bone through a process of osteoclast-mediated bone resorption, followed by a phase of bone formation mediated by osteoblasts. Osteocytes mediate their effects on bone remodelling via both cell–cell interactions with osteoclasts and osteoblasts, but also via signaling through the release of soluble mediators. The remodelling process provides a mechanism for adapting the skeleton to local biomechanical factors and systemic hormonal influences and for replacing bone that has undergone damage from repetitive mechanical loading. PMID:26557372
Nagaie, Maya; Nishiura, Aki; Honda, Yoshitomo; Fujiwara, Shin-Ichi; Matsumoto, Naoyuki
2014-01-01
Tobacco smoke is a complex mixture of numerous components. Nevertheless, most experiments have examined the effects of individual chemicals in tobacco smoke. The comprehensive effects of components on tooth movement and bone resorption remain unexplored. Here, we have shown that a comprehensive mixture of tobacco smoke components (TSCs) attenuated bone resorption through osteoclastogenesis inhibition, thereby retarding experimental tooth movement in a rat model. An elastic power chain (PC) inserted between the first and second maxillary molars robustly yielded experimental tooth movement within 10 days. TSC administration effectively retarded tooth movement since day 4. Histological evaluation disclosed that tooth movement induced bone resorption at two sites: in the bone marrow and the peripheral bone near the root. TSC administration significantly reduced the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclastic cells in the bone marrow cavity of the PC-treated dentition. An in vitro study indicated that the inhibitory effects of TSCs on osteoclastogenesis seemed directed more toward preosteoclasts than osteoblasts. These results indicate that the comprehensive mixture of TSCs might be a useful tool for detailed verification of the adverse effects of tobacco smoke, possibly contributing to the development of reliable treatments in various fields associated with bone resorption. PMID:25322153
Mishina, Yuji; Starbuck, Michael W; Gentile, Michael A; Fukuda, Tomokazu; Kasparcova, Viera; Seedor, J Gregory; Hanks, Mark C; Amling, Michael; Pinero, Gerald J; Harada, Shun-ichi; Behringer, Richard R
2004-06-25
Bone morphogenetic proteins (BMPs) function during various aspects of embryonic development including skeletogenesis. However, their biological functions after birth are less understood. To investigate the role of BMPs during bone remodeling, we generated a postnatal osteoblast-specific disruption of Bmpr1a that encodes the type IA receptor for BMPs in mice. Mutant mice were smaller than controls up to 6 months after birth. Irregular calcification and low bone mass were observed, but there were normal numbers of osteoblasts. The ability of the mutant osteoblasts to form mineralized nodules in culture was severely reduced. Interestingly, bone mass was increased in aged mutant mice due to reduced bone resorption evidenced by reduced bone turnover. The mutant mice lost more bone after ovariectomy likely resulting from decreased osteoblast function which could not overcome ovariectomy-induced bone resorption. In organ culture of bones from aged mice, ablation of the Bmpr1a gene by adenoviral Cre recombinase abolished the stimulatory effects of BMP4 on the expression of lysosomal enzymes essential for osteoclastic bone resorption. These results demonstrate essential and age-dependent roles for BMP signaling mediated by BMPRIA (a type IA receptor for BMP) in osteoblasts for bone remodeling.
Liao, Zhipeng; Yoda, Nobuhiro; Chen, Junning; Zheng, Keke; Sasaki, Keiichi; Swain, Michael V; Li, Qing
2017-04-01
This paper aimed to develop a clinically validated bone remodeling algorithm by integrating bone's dynamic properties in a multi-stage fashion based on a four-year clinical follow-up of implant treatment. The configurational effects of fixed partial dentures (FPDs) were explored using a multi-stage remodeling rule. Three-dimensional real-time occlusal loads during maximum voluntary clenching were measured with a piezoelectric force transducer and were incorporated into a computerized tomography-based finite element mandibular model. Virtual X-ray images were generated based on simulation and statistically correlated with clinical data using linear regressions. The strain energy density-driven remodeling parameters were regulated over the time frame considered. A linear single-stage bone remodeling algorithm, with a single set of constant remodeling parameters, was found to poorly fit with clinical data through linear regression (low [Formula: see text] and R), whereas a time-dependent multi-stage algorithm better simulated the remodeling process (high [Formula: see text] and R) against the clinical results. The three-implant-supported and distally cantilevered FPDs presented noticeable and continuous bone apposition, mainly adjacent to the cervical and apical regions. The bridged and mesially cantilevered FPDs showed bone resorption or no visible bone formation in some areas. Time-dependent variation of bone remodeling parameters is recommended to better correlate remodeling simulation with clinical follow-up. The position of FPD pontics plays a critical role in mechanobiological functionality and bone remodeling. Caution should be exercised when selecting the cantilever FPD due to the risk of overloading bone resorption.
NASA Technical Reports Server (NTRS)
Lane, Helen; Stein, T. P.
1999-01-01
Nutrition deficiencies affect multiple systems including muscle, bone, cardiovascular, renal, and gastrointestinal. Humans require many nutrients, ranging from the macronutrients (water, protein, energy sources) to micronutrients (minerals, vitamins). The ability to withstand shortfalls in intake of individual nutrients ranges from one or two days (e.g., water) to weeks (energy, protein, potassium) and months (some vitamins, minerals). In addition to putting humans at risk for nutrition deficiencies, space flight may also change the absorption, hence the pharmacodynamics, of several important medications. Papers given in this session dealt with all of these nutritional and pharmacological factors related to space flight: (1) Protein metabolism and muscle formation. (2) Pharmacodynamics. (3) Calcium metabolism and bone formation/resorption. and (4) Fluid and electrolytes.
NASA Technical Reports Server (NTRS)
Ke, Hua Zhu; Jee, Webster S.S.; Zeng, Qing Qiang; Li, Mei; Lin, Bai Yun
1993-01-01
To investigate the effects of ovariectomy and the simultaneous administration of prostaglandin E2 (PGE2) on rat tibial shaft cortical bone histomorphometry, thirty-five 3 month-old female Sprague-Dawley rats were either ovariectomized (OVX), or sham ovariectomy (sham-OVX). The OVX rats were divided into three groups and treated with 0, 1 and 6 mg PGE2/kg/day for 90 days. The double fluorescent labeled undecalcified tibial shaft cross sections (proximal to the tibiofibular junction) of all the subjects were used for histomorphometry analysis. No differences in cross-sectional area and cortical bone area were found between sham-OVX and OVX controls, but OVX increased marrow area, intracortical porosity area and endocortical eroded perimeter. Periosteal and endocortical bone formation rates decreased with aging yet OVX prevented these changes. These OVX-induced increases in marrow area and endocortical eroded perimeter were prevented by 1 mg PGE2/kg/day treatment and added bone to periosteal and endocortical surfaces and to the marrow cavity. At the 6 mg/kg/day dose level, PGE2-treated OVX rats increased total tissue area, cortical bone area, marrow trabmular bone area, minimal cortical width and intracortical porosity area, and decreased marrow area compared to basal, sham-OVX and OVX controls. In addition, periosteal bone formation was elevated in the 6 mg PGE2/kg/day-treated OVX rats compared to OVX controls. Endocortical eroded perimeter increased from basal and sham-OVX control levels, but decreased from OVX control levels in the 6 mg PGE2/kg/day-treated OVX rats. Our study confirmed that ovariectomy does not cause osteopenia in tibial shaft cortical bone in rats, but it does stimulate endocortical bone resorption and enlarges marrow area. The new findings from the present study demonstrate that PGE2 prevents the OVX-induced increases in endocortical bone resorption and marrow area and adds additional bone to periosteal and endocortical surfaces and to marrow cavity to increase total bone mass in the tibial shaft of OVX rats when given immediately following ovafiectomy.
The cell biology and role of resorptive cells in diseases: A review.
Babaji, Prashant; Devanna, Raghu; Jagtap, Kiran; Chaurasia, Vishwajit Rampratap; Jerry, Jeethu John; Choudhury, Basanta Kumar; Duhan, Dinesh
2017-01-01
Resorptive cells are responsible for the resorption of mineralized matrix of hard tissues. Bone-resorbing cells are called osteoclasts; however, they can resorb mineralized dental tissues or calcified cartilage and then they are called odontoclasts and chondroclasts, respectively. Resorptive cells form when mononuclear precursors derived from a monocyte-macrophage cell lineage are attracted to certain mineralized surfaces and subsequently fuse and adhere onto them for exerting their resorbing activity. These cells are responsible for degradation of calcified extracellular matrix composed of organic molecules and hydroxyapatite. The activity of these cells can be observed in both physiological and pathological processes throughout life and their activity is mainly required in bone turnover and growth, spontaneous and induced (orthodontic) tooth movement, tooth eruption, and bone fracture healing, as well as in pathological conditions such as osteoporosis, osteoarthritis, and bone metastasis. In addition, they are responsible for daily control of calcium homeostasis. Clastic cells also resorb the primary teeth for shedding before the permanent teeth erupt into the oral cavity.
Zwart, Sara R; Hargens, Alan R; Lee, Stuart M C; Macias, Brandon R; Watenpaugh, Donald E; Tse, Kevin; Smith, Scott M
2007-02-01
Supine weight-bearing exercise within lower body negative pressure (LBNP) alleviates some of the skeletal deconditioning induced by simulated weightlessness in men. We examined this potential beneficial effect in women. Because dietary acid load affected the degree of bone resorption in men during bed rest, we also investigated this variable in women. Subjects were 7 pairs of female identical twins assigned at random to 2 groups, sedentary bed rest (control) or bed rest with supine treadmill exercise within LBNP. Dietary intake was controlled and monitored. Urinary calcium and markers of bone resorption were measured before bed rest and on bed rest days 5/6, 12/13, 19/20, and 26/27. Bone mineral content was assessed by dual-energy X-ray absorptiometry before and after bed rest. Data were analyzed by repeated-measures two-way analysis of variance. Pearson correlation coefficients were used to define the relationships between diet and markers of bone metabolism and to estimate heritability of markers. During bed rest, all markers of bone resorption and urinary calcium and phosphorus increased (P<0.001); parathyroid hormone (P=0.06), bone-specific alkaline phosphatase (P=0.06), and 1,25-dihydroxyvitamin D (P=0.09) tended to decrease. LBNP exercise tended to mitigate bone density loss. The ratio of dietary animal protein to potassium was positively correlated with urinary calcium excretion for all weeks of bed rest in the control group, but only during weeks 1 and 3 in the exercise group. Pre-bed rest data suggested that many markers of bone metabolism have strong genetic determinants. Treadmill exercise within LBNP had less of a protective effect on bone resorption during bed rest in women than previously published results had shown for its effect in men, but the same trends were observed for both sexes. Dietary acid load of these female subjects was significantly correlated with calcium excretion but not with other bone resorption markers.
Zwart, Sara R.; Hargens, Alan R.; Lee, Stuart M. C.; Macias, Brandon R.; Watenpaugh, Donald E.; Tse, Kevin; Smith, Scott M.
2007-01-01
Supine weight-bearing exercise within lower body negative pressure (LBNP) alleviates some of the skeletal deconditioning induced by simulated weightlessness in men. We examined the potential beneficial effect in women. Because dietary acid load affected the degree of bone resorption in men during bed rest, we also investigated this variable in women. Subjects were 7 pairs of female identical twins assigned at random to 2 groups, sedentary bed rest (control) or bed rest with supine treadmill exercise within LBNP. Dietary intake was controlled and monitored. Urinary calcium and markers of bone resorption were measured before bed rest (BR) and on BR days 5/6, 12/13, 19/20, and 26/27. Bone mineral content was assessed by dual-energy X-ray absorptiometry before and after bed rest. Data were analyzed by repeated measures two-way analysis of variance. Pearson correlation coefficients were used to define the relationships between diet and markers of bone metabolism, and to estimate heritability of markers. During bed rest, all markers of bone resorption and urinary calcium and phosphorus increased (P < 0.001); parathyroid hormone (P = 0.06), bone-specific alkaline phosphatase (P = 0.06), and 1,25-dihydroxyvitamin D (P = 0.09) tended to decrease. LBNP exercise tended to mitigate bone density loss. The ratio of dietary animal protein to potassium was positively correlated with urinary calcium excretion for all weeks of bed rest in the control group, but only during weeks 1 and 3 for the exercise group. Pre-bed rest data suggested that many markers of bone metabolism have strong genetic determinants. Treadmill exercise within LBNP had less of a protective effect on bone resorption during bed rest in women than previously-published results had shown for its effect in men, but the same trends were observed for both sexes. Dietary acid load of these female subjects was significantly correlated with calcium excretion but not with other bone resorption markers. PMID:17070743
van't Hof, R. J.; Armour, K. J.; Smith, L. M.; Armour, K. E.; Wei, X. Q.; Liew, F. Y.; Ralston, S. H.
2000-01-01
Nitric oxide has been suggested to be involved in the regulation of bone turnover, especially in pathological conditions characterized by release of bone-resorbing cytokines. The cytokine IL-1 is thought to act as a mediator of periarticular bone loss and tissue damage in inflammatory diseases such as rheumatoid arthritis. IL-1 is a potent stimulator of both osteoclastic bone resorption and expression of inducible nitric oxide synthase (iNOS) in bone cells and other cell types. In this study, we investigated the role that the iNOS pathway plays in mediating the bone-resorbing effects of IL-1 by studying mice with targeted disruption of the iNOS gene. Studies in vitro and in vivo showed that iNOS-deficient mice exhibited profound defects of IL-1-induced osteoclastic bone resorption but responded normally to calciotropic hormones such as 1,25 dihydroxyvitamin D3 and parathyroid hormone. Immunohistochemical studies and electrophoretic mobility shift assays performed on bone marrow cocultures from iNOS-deficient mice showed abnormalities in IL-1-induced nuclear translocation of the p65 component of NFκB and in NFκB-DNA binding, which were reversed by treatment with the NO donor S-nitroso-acetyl penicillamine. These results show that the iNOS pathway is essential for IL-1-induced bone resorption and suggest that the effects of NO may be mediated by modulating IL-1-induced nuclear activation of NFκB in osteoclast precursors. PMID:10869429
Histomorphological evaluation of Compound bone of Granulated Ricinus in bone regeneration in rabbits
NASA Astrophysics Data System (ADS)
Pavan Mateus, Christiano; Orivaldo Chierice, Gilberto; Okamoto, Tetuo
2011-09-01
Histological evaluation is an effective method in the behavioral description of the qualitative and quantitative implanted materials. The research validated the performance of Compound bone of Granulated Ricinus on bone regeneration with the histomorphological analysis results. Were selected 30 rabbits, females, divided into 3 groups of 10 animals (G1, G2, G3) with a postoperative time of 45, 70 and 120 days respectively. Each animal is undergone 2 bone lesions in the ilium, one implemented in the material: Compound bone of Granulated Ricinus and the other for control. After the euthanasia, the iliac bone was removed, identified and subjected to histological procedure. The evaluation histological, histomorphological results were interpreted and described by quantitative and qualitative analysis based facts verified in the three experimental groups evaluating the rate of absorption of the material in the tissue regeneration, based on the neo-bone formation. The histomorphologic results classified as a material biocompatible and biologically active. Action in regeneration by bone resorption occurs slowly and gradually. Knowing the time and rate of absorption and neo-formation bone biomaterial, which can be determined in the bone segment applicable in the clinical surgical area.
Destructive discovertebral degenerative disease of the lumbar spine.
Charran, A K; Tony, G; Lalam, R; Tyrrell, P N M; Tins, B; Singh, J; Eisenstein, S M; Balain, B; Trivedi, J M; Cassar-Pullicino, V N
2012-09-01
The uncommon variant of degenerative hip joint disease, termed rapidly progressive osteoarthritis, and highlighted by severe joint space loss and osteochondral disintegration, is well established. We present a similar unusual subset in the lumbar spine termed destructive discovertebral degenerative disease (DDDD) with radiological features of vertebral malalignment, severe disc resorption, and "bone sand" formation secondary to vertebral fragmentation. Co-existing metabolic bone disease is likely to promote the development of DDDD of the lumbar spine, which presents with back pain and sciatica due to nerve root compression by the "bone sand" in the epidural space. MRI and CT play a complimentary role in making the diagnosis.
The skeletal endocannabinoid system: clinical and experimental insights.
Raphael, Bitya; Gabet, Yankel
2016-05-01
Recently, there has been a rapidly growing interest in the role of cannabinoids in the regulation of skeletal remodeling and bone mass, addressed in basic, translational and clinical research. Since the first publications in 2005, there are more than 1000 publications addressing the skeletal endocannabinoid system. This review focuses on the roles of the endocannabinoid system in skeletal biology via the cannabinoid receptors CB1, CB2 and others. Endocannabinoids play important roles in bone formation, bone resorption and skeletal growth, and are sometimes age, gender, species and strain dependent. Controversies in the literature and potential therapeutic approaches targeting the endocannabinoid system in skeletal disorders are also discussed.
Effect of cisplatin on bone transport osteogenesis in dogs.
Ehrhart, Nicole; Eurell, Jo Ann C; Tommasini, Matteo; Constable, Peter D; Johnson, Ann L; Feretti, Antonio
2002-05-01
To document effects of cisplatin on regenerate bone formation during the distraction and consolidation phases of bone transport osteogenesis. 10 skeletally mature hounds. Bone transport osteogenesis was performed to reconstruct a 3-cm defect in the radius of each dog. Five dogs were randomly selected to receive cisplatin (70 mg/m2, IV, q 21 d for 4 cycles), and 5 were administered saline (0.9% NaCl) solution. Bone mineral density was measured by use of dual-energy x-ray absorptiometry (DEXA) on days 24, 55, and 90 after surgery. Dogs were euthanatized 90 days after surgery. Histomorphometry was performed on nondecalcified sections of regenerate bone. Bone mineral density and histomorphometric indices of newly formed bone were compared between groups. Densitometric differences in regenerate bone mineral density were not detected between groups at any time period. Cisplatin-treated dogs had decreased mineralized bone volume, decreased percentage of woven bone volume, decreased percentage of osteoblast-covered bone, increased porosity, and increased percentage of osteoblast-covered surfaces, compared with values for control dogs. Lamellar bone volume and osteoid volume did not differ significantly between groups. Regenerate bone will form and remodel during administration of cisplatin. Results of histomorphometric analysis suggest that bone formation and resorption may be uncoupled in cisplatin-treated regenerate bone as a result of increased osteoclast activity or delayed secondary bone formation during remodeling. These histomorphometric differences were modest in magnitude and did not result in clinically observable complications or decreased bone mineral density as measured by use of DEXA.
2011-01-01
Background and purpose The remodeling of morselized bone grafts in revision surgery can be enhanced by an anabolic substance such as a bone morphogenetic protein (BMP). On the other hand, BMPs boost catabolism and might cause a premature resorption, both of the graft and of the new-formed bone. Bisphosphonates inactivate osteoclasts and can be used to control the resorption. We studied a combination of both drugs as a local admix to a cancellous allograft. Methods Cancellous bone allografts were harvested and freeze-dried. Either saline, BMP-7, the bisphosphonate zoledronate, or a combination of BMP-7 and zoledronate were added in solution. The grafts were placed in bone conduction chambers and implanted in the proximal tibia of 34 rats. The grafts were harvested after 6 weeks and evaluated by histomorphometry. Results Bone volume/total volume (BV/TV) was 50% in the grafts treated with the combination of BMP-7 and zoledronate and 16% in the saline controls (p < 0.001). In the zoledronate group BV/TV was 56%, and in the BMP group it was 14%. The ingrowth distance of new bone into the graft was 3.5 mm for the combination of BMP-7 and zoledronate and 2.6 mm in the saline control (p = 0.002). The net amount of retained remodeled bone was more than 4 times higher when BMP-7 and zoledronate were combined than in the controls. Interpretation An anabolic drug like BMP-7 can be combined with an anti-catabolic bisphosphonate as local bone graft adjunct, and the combination increases the amount of remaining bone after remodeling is complete. PMID:21434769
Tavella, Sara; Ruggiu, Alessandra; Giuliani, Alessandra; Brun, Francesco; Canciani, Barbara; Manescu, Adrian; Marozzi, Katia; Cilli, Michele; Costa, Delfina; Liu, Yi; Piccardi, Federica; Tasso, Roberta; Tromba, Giuliana; Rustichelli, Franco; Cancedda, Ranieri
2012-01-01
Bone is a complex dynamic tissue undergoing a continuous remodeling process. Gravity is a physical force playing a role in the remodeling and contributing to the maintenance of bone integrity. This article reports an investigation on the alterations of the bone microarchitecture that occurred in wild type (Wt) and pleiotrophin-transgenic (PTN-Tg) mice exposed to a near-zero gravity on the International Space Station (ISS) during the Mice Drawer System (MDS) mission, to date, the longest mice permanence (91 days) in space. The transgenic mouse strain over-expressing pleiotrophin (PTN) in bone was selected because of the PTN positive effects on bone turnover. Wt and PTN-Tg control animals were maintained on Earth either in a MDS payload or in a standard vivarium cage. This study revealed a bone loss during spaceflight in the weight-bearing bones of both strains. For both Tg and Wt a decrease of the trabecular number as well as an increase of the mean trabecular separation was observed after flight, whereas trabecular thickness did not show any significant change. Non weight-bearing bones were not affected. The PTN-Tg mice exposed to normal gravity presented a poorer trabecular organization than Wt mice, but interestingly, the expression of the PTN transgene during the flight resulted in some protection against microgravity's negative effects. Moreover, osteocytes of the Wt mice, but not of Tg mice, acquired a round shape, thus showing for the first time osteocyte space-related morphological alterations in vivo. The analysis of specific bone formation and resorption marker expression suggested that the microgravity-induced bone loss was due to both an increased bone resorption and a decreased bone deposition. Apparently, the PTN transgene protection was the result of a higher osteoblast activity in the flight mice.
IL-20 bone diseases involvement and therapeutic target potential.
Wang, Hsiao-Hsuan; Hsu, Yu-Hsiang; Chang, Ming-Shi
2018-04-24
Millions of people around the world suffer from bone disorders, likes osteoporosis, rheumatoid arthritis (RA), and cancer-induced osteolysis. In general, the bone remodeling balance is determined by osteoclasts and osteoblasts, respectively responsible for bone resorption and bone formation. Excessive inflammation disturbs the activities of these two kinds of cells, typically resulting in the bone loss. IL-20 is emerging as a potent angiogenic, chemotactic, and proinflammatory cytokine related to several chronic inflammatory disorders likes psoriasis, atherosclerosis, cancer, liver fibrosis, and RA. IL-20 has an important role in the regulation of osteoclastogenesis and osteoblastogenesis and is upregulated in several bone-related diseases. The anti-IL-20 monoclonal antibody treatment has a therapeutic potential in several experimental disease models including ovariectomy-induced osteoporosis, cancer-induced osteolysis, and bone fracture. This review article provides an overview describing the IL-20's biological functions in the common bone disorders and thus providing a novel therapeutic strategy in the future.
Short-term variability in biomarkers of bone metabolism in sheep.
Sousa, Cristina P; de Azevedo, Jorge T; Reis, Rui L; Gomes, Manuela E; Dias, Isabel R
2014-01-01
Changes in bone remodeling during pathological states and during their treatment can be assessed noninvasively by measuring biomarkers of bone metabolism. Their application is limited, however, by the potential biological variability in the levels of these biomarkers over time. To determine the short-term variability in biomarkers of bone metabolism in adult sheep, the authors measured serum levels of alkaline phosphatase (ALP), bone-specific alkaline phosphatase (BALP), osteocalcin (OC), N-terminal propeptide of type-III procollagen (PIIINP), deoxypyridinoline (DPD), tartrate-resistant acid phosphatase (TRAP), calcium and phosphorus intermittently over a 12-week period. There were significant differences in mean ALP activity and in phosphorus concentrations over time, but all other biomarkers showed no significant short-term variability. The results suggest that biomarkers of bone metabolism in sheep, especially the bone resorption marker DPD and the bone formation marker BALP, can be used reliably to detect changes in bone cellular activity.
Prevention of disuse osteoporosis: Effect of sodium fluoride during five weeks of bed rest
NASA Technical Reports Server (NTRS)
Schneider, Victor S.
1987-01-01
An attempt was made to modify factors which promote disuse osteoporosis and thereby prevent it from occurring. Since fluoride is currently used to enhance bone formation in the treatment of low turnover osteoporosis, it was hypothesized that if the fluoride ion was available over a long period of time that it would slow the demonstrated loss of calcium by inhibiting bone resorption and enhancing bone formation. This study was used to determine whether oral medication with sodium F will modify or prevent 5 weeks of bed rest induced disuse osteoporosis, to determine the longitudinal effects of 5 weeks of bed rest on PTH, CT and calcitriol, to measure muscle volume changes and metabolic activity by magnetic resonance imaging and magnetic resonance spectroscopy during prolonged bed rest, to measure changes in peak muscle strength and fatigability, and to measure bone turnover in bone biopsies. Subjects were studied during 1 week of equilibration, 4 weeks of control ambulation, 5 weeks of bed rest, and 1 week of reambulation.
Decreased bone formation and increased osteoclastogenesis cause bone loss in mucolipidosis II
Kollmann, Katrin; Pestka, Jan Malte; Kühn, Sonja Christin; Schöne, Elisabeth; Schweizer, Michaela; Karkmann, Kathrin; Otomo, Takanobu; Catala-Lehnen, Philip; Failla, Antonio Virgilio; Marshall, Robert Percy; Krause, Matthias; Santer, Rene; Amling, Michael; Braulke, Thomas; Schinke, Thorsten
2013-01-01
Mucolipidosis type II (MLII) is a severe multi-systemic genetic disorder caused by missorting of lysosomal proteins and the subsequent lysosomal storage of undegraded macromolecules. Although affected children develop disabling skeletal abnormalities, their pathogenesis is not understood. Here we report that MLII knock-in mice, recapitulating the human storage disease, are runted with accompanying growth plate widening, low trabecular bone mass and cortical porosity. Intralysosomal deficiency of numerous acid hydrolases results in accumulation of storage material in chondrocytes and osteoblasts, and impaired bone formation. In osteoclasts, no morphological or functional abnormalities are detected whereas osteoclastogenesis is dramatically increased in MLII mice. The high number of osteoclasts in MLII is associated with enhanced osteoblastic expression of the pro-osteoclastogenic cytokine interleukin-6, and pharmacological inhibition of bone resorption prevented the osteoporotic phenotype of MLII mice. Our findings show that progressive bone loss in MLII is due to the presence of dysfunctional osteoblasts combined with excessive osteoclastogenesis. They further underscore the importance of a deep skeletal phenotyping approach for other lysosomal diseases in which bone loss is a prominent feature. PMID:24127423