Estimate of subsurface formation temperature in the Tarim basin, northwest China
NASA Astrophysics Data System (ADS)
Liu, Shaowen; Lei, Xiao; Feng, Changge; Hao, Chunyan
2015-04-01
Subsurface formation temperature in the Tarim basin, the largest sedimentary basin in China, is significant for its hydrocarbon generation, preservation and geothermal energy potential assessment, but till now is not well understood, due to poor data coverage and a lack of highly accurate temperature data. Here, we combined recently acquired steady-state temperature logging data, drill stem test temperature data and measured rock thermal properties, to investigate the geothermal regime, and estimate the formation temperature at specific depths in the range 1000~5000 m in this basin. Results show that the heat flow of the Tarim basin ranges between 26.2 and 66.1 mW/m2, with a mean of 42.5±7.6 mW/m2; geothermal gradient at the depth of 3000 m varies from 14.9 to 30.2 °C/km, with a mean of 20.7±2.9 °C/km. Formation temperature at the depth of 1000 m is estimated to be between 29 °C and 41°C, with a mean of 35°C; whilst the temperature at 2000 m ranges from 46~71°C with an average of 59°C; 63~100°C is for that at the depth of 3000 m, and the mean is 82°C; the temperature at 4000 m varies from 80 to 130°C, with a mean of 105°C; 97~160°C is for the temperature at 5000 m depth. In addition, the general pattern of the subsurface formation temperatures at different depths is basically similar and is characterized by high temperatures in the uplift areas and low temperatures in the sags. Basement structure and lateral variations in thermal properties account for this pattern of the geo-temperature field in the Tarim basin.
NASA Astrophysics Data System (ADS)
Liu, Shaowen; Lei, Xiao; Feng, Changge; Hao, Chunyan
2016-07-01
Subsurface formation temperature in the Tarim Basin, northwest China, is vital for assessment of hydrocarbon generation and preservation, and of geothermal energy potential. However, it has not previously been well understood, due to poor data coverage and a lack of highly accurate temperature data. Here, we combined recently acquired steady-state temperature logging data with drill stem test temperature data and measured rock thermal properties, to investigate the geothermal regime and estimate the subsurface formation temperature at depth in the range of 1000-5000 m, together with temperatures at the lower boundary of each of four major Lower Paleozoic marine source rocks buried in this basin. Results show that heat flow of the Tarim Basin ranges between 26.2 and 66.1 mW/m2, with a mean of 42.5 ± 7.6 mW/m2; the geothermal gradient at depth of 3000 m varies from 14.9 to 30.2 °C/km, with a mean of 20.7 ± 2.9 °C/km. Formation temperature estimated at the depth of 1000 m is between 29 and 41 °C, with a mean of 35 °C, while 63-100 °C is for the temperature at the depth of 3000 m with a mean of 82 °C. Temperature at 5000 m ranges from 97 to 160 °C, with a mean of 129 °C. Generally spatial patterns of the subsurface formation temperature at depth are basically similar, characterized by higher temperatures in the uplift areas and lower temperatures in the sags, which indicates the influence of basement structure and lateral variations in thermal properties on the geotemperature field. Using temperature to identify the oil window in the source rocks, most of the uplifted areas in the basin are under favorable condition for oil generation and/or preservation, whereas the sags with thick sediments are favorable for gas generation and/or preservation. We conclude that relatively low present-day geothermal regime and large burial depth of the source rocks in the Tarim Basin are favorable for hydrocarbon generation and preservation. In addition, it is found that the oil and gas fields discovered in the Tarim Basin are usually associated with relatively high-temperature anomalies, and the upward migration and accumulation of hot geofluids along faults as conduit from below could explain this coincidence. Accordingly, this thermal anomaly could be indicative of hydrocarbon exploration targets in the basin.
NASA Astrophysics Data System (ADS)
Hartig, Caitlin M.
2018-01-01
Fracture-stimulated enhanced geothermal systems (EGS) can be developed in both crystalline rocks and sedimentary basins. The Red River Formation (Ordovician) is a viable site for development of a sedimentary EGS (SEGS) because the formation temperatures exceed 140 °C and the permeability is 0.1-38 mD; fracture stimulation can be utilized to improve permeability. The spatial variations of the properties of the Red River Formation were analyzed across the study area in order to understand the distribution of subsurface formation temperatures. Maps of the properties of the Red River Formation-including depth to the top of the formation, depth to the bottom of the formation, porosity, geothermal gradient, heat flow, and temperature-were produced by the Kriging interpolation method in ArcGIS. In the future, these results may be utilized to create a reservoir simulation model of an SEGS in the Red River Formation; the purpose of this model would be to ascertain the thermal response of the reservoir to fracture stimulation.
Nathenson, Manuel; Urban, Thomas C.; Covington, Harry R.
2014-01-01
For purposes of defining the thermal anomaly for the geothermal system, temperature gradients are calculated over long depth intervals on the basis of the appearance of reasonable linear segments on a temperature versus plot depth. Temperature versus depth data for some drill holes can be represented by a single gradient, whereas others require multiple gradients to match the data. Data for some drill holes clearly reflect vertical flows of water in the formation surrounding the drill holes, and water velocities are calculated for these drill holes. Within The Narrows area, temperature versus depth data show reversals at different depth in different drill holes. In the main thermal area, temperatures in intermediate-depth drill holes vary approximately linearly but with very high values of temperature gradient. Temperature gradients on a map of the area can be reasonable divided into a large area of regional gradients and smaller areas defining the thermal anomalies.
NASA Astrophysics Data System (ADS)
Maloof, Adam C.; Kellogg, James B.; Anders, Alison M.
2002-11-01
Thermal contraction cracking of permafrost produced sand-wedge polygons at sea level on the paleo-equator during late Neoproterozoic glacial episodes. These sand wedges have been used as evidence for high (≥54°) paleo-obliquity of the Earth's ecliptic, because cracks that form wedges are hypothesized to require deep seasonal cooling so the depth of the stressed layer in the ground reaches ≥1 m, similar to the measured depths of cracks that form wedges. To test the counter hypothesis that equatorial cracks opened under a climate characterized by a strong diurnal cycle and low mean annual temperature (snowball Earth conditions), we examine crack formation in frozen ground subject to periodic temperature variations. We derive analytical expressions relating the Newtonian viscosity to the potential crack depth, concluding that cracks will form only in frozen soils with viscosities greater than ˜10 14 Pa s. We also show numerical calculations of crack growth in frozen soils with stress- and temperature-dependent rheologies and find that fractures may propagate to depths 3-25 times the depth of the thermally stressed layer in equatorial permafrost during a snowball Earth because the mean annual temperature is low enough to keep the ground cold and brittle to relatively great depths.
Constraining the thermal structure beneath Lusi: insights from temperature record in erupted clasts
NASA Astrophysics Data System (ADS)
Malvoisin, Benjamin; Mazzini, Adriano; Miller, Stephen
2016-04-01
Sedimentary units beneath Lusi from surface to depth are the Pucangan formation, the Upper Kalibeng formation where shales and then volcanoclastic clasts are found, the Kujung-Propuh-Tuban formation composed of carbonates and the Ngimbang formation composed of shales. Water and gas geochemistry as well as surface deformation indicate that Lusi is a hydrothermal system rooted at >4 km depth. However, the thermal structure beneath Lusi is still poorly constrained whereas it has first-order impacts on the physical and chemical processes observed during the eruption. In the framework of the Lusi Lab project (ERC grant n° 308126) and of a project of the Swiss National Science Foundation (n°160050) we studied erupted clasts collected at the crater site to determine their source and temperature record. Three types of clasts were studied based on morphological and mineralogical basis. The first type is limestones mainly composed of Ca- and Fe-bearing carbonates. The clasts of the second type are light grey shales (LGS) containing carbonaceous matter, illite/smectite mixture, plagioclase and quartz. The third type is also a shale with a black colour containing hydrocarbons (black shales, BS) and with the additional presence of Na-rich plagioclase, biotite and chlorite. The presence of these latter minerals indicates hydrothermal activity at relatively high temperature. Better constraints on temperature were obtained by using both Raman spectroscopic carbonaceous material thermometry (RSCM) and chlorite geothermometry. Temperatures below 200°C were determined for the LGS with RSCM. BS recorded two temperatures. The first one, around 170°C, is rather consistent with an extrapolation of the geothermal gradient measured before the eruption up to 4,000 m depth. Combined with mineralogical observations, this suggests that BS originate from the Ngimbang formation. The second recorded higher temperature around 250°C indicates heating, probably through interaction with high temperature hydrothermal fluids. Calculations performed for such a heating indicate that associated clay dehydration is sufficient to provide the water released during the eruption and that heating-induced overpressure could favor fluid ascent. These results confirm the hydrothermal scenario in which Lusi eruption is fed by high temperature fluid circulation from the neighboring Arjuno-Welirang volcanic complex.
A Blind Hydrothermal System in an Ocean Island Environment: Humu'ula Saddle, Hawaii Island
NASA Astrophysics Data System (ADS)
Thomas, D. M.; Wallin, E.; Lautze, N. C.; Lienert, B. R.; Pierce, H. A.
2014-12-01
A recently drilled groundwater investigation borehole, drilled to a depth of 1760 m in the Humu'ula Saddle of Hawaii Island, encountered an unexpectedly high temperature gradient of more than 160 ̊C/km. Although prior MT surveys across the region identified conductive formations of modest extent in the region, there were few surface manifestations of geologic structures likely to host a geothermal system and no evidence of an active, extensive hydrothermal system. Cores recovered from the borehole showed the presence of intrusive formations and moderate hydrothermal alteration at depth with progressive infilling of fractures and vesicles with depth and temperature. Independent modeling of gravity data (Flinders et al., 2013) suggests the presence of a broad intrusive complex within the region that is consistent with the borehole's confirmation of a high-elevation (~1400 m amsl) regional water table. A subsequent MT survey covering much of the western Saddle region has confirmed the presence of highly conductive conditions, consistent with thermal activity, to depths of 4 km and greater. Light stable isotope data for the borehole fluids indicate that the regional water table is derived from recharge from the upper elevations of Mauna Kea; major element chemistry indicates that formation temperatures exceed 200 ̊C. A conceptual model of the hydrothermal system, along with isotopic and fluid chemistry of the thermal fluids will be presented.
NASA Astrophysics Data System (ADS)
Magic, Z.; Collet, R.; Hayek, W.; Asplund, M.
2013-12-01
Aims: We study the implications of averaging methods with different reference depth scales for 3D hydrodynamical model atmospheres computed with the Stagger-code. The temporally and spatially averaged (hereafter denoted as ⟨3D⟩) models are explored in the light of local thermodynamic equilibrium (LTE) spectral line formation by comparing spectrum calculations using full 3D atmosphere structures with those from ⟨3D⟩ averages. Methods: We explored methods for computing mean ⟨3D⟩ stratifications from the Stagger-grid time-dependent 3D radiative hydrodynamical atmosphere models by considering four different reference depth scales (geometrical depth, column-mass density, and two optical depth scales). Furthermore, we investigated the influence of alternative averages (logarithmic, enforced hydrostatic equilibrium, flux-weighted temperatures). For the line formation we computed curves of growth for Fe i and Fe ii lines in LTE. Results: The resulting ⟨3D⟩ stratifications for the four reference depth scales can be very different. We typically find that in the upper atmosphere and in the superadiabatic region just below the optical surface, where the temperature and density fluctuations are highest, the differences become considerable and increase for higher Teff, lower log g, and lower [Fe / H]. The differential comparison of spectral line formation shows distinctive differences depending on which ⟨3D⟩ model is applied. The averages over layers of constant column-mass density yield the best mean ⟨3D⟩ representation of the full 3D models for LTE line formation, while the averages on layers at constant geometrical height are the least appropriate. Unexpectedly, the usually preferred averages over layers of constant optical depth are prone to increasing interference by reversed granulation towards higher effective temperature, in particular at low metallicity. Appendix A is available in electronic form at http://www.aanda.orgMean ⟨3D⟩ models are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/560/A8 as well as at http://www.stagger-stars.net
Void formation in INCONEL MA-754 by high temperature oxidation
NASA Astrophysics Data System (ADS)
Rosenstein, Alan H.; Tien, John K.; Nix, William D.
1986-01-01
Subsurface void formation in oxide dispersion strengthened MA-754 caused by high temperature oxidation was investigated at temperatures of 1100, 1150, and 1200 °C for times of 1, 10, 50, and 100 hours. Material exposed at 1200 °C was examined using microprobe, SEM, and optical microscopy techniques. After exposure in air at 1200 °C for 100 hours, chromium depletion by as much as 10 wt pct was observed near the surface, and voids of various sizes up to 15 µm in diameter were found to depths of 300 µm. The fraction of voids increases with exposure time and, with the exception of anomalous values near the surface, decreases with depth. The maximum area fraction of voids observed was approximately 8 pct. Correlation of the void area fraction profile with the measured chromium depletion through a diffusion analysis shows that void formation is due to vacancy injection. Similar void formation in Ni-Cr alloys without oxide dispersions suggests that void formation is not dependent upon the presence of oxide dispersions. The diffusion coefficient for chromium in MA-754 at 1200 °C was computed from microprobe data to be 4 × 10-10 cm2 per second.
Petryshyn, V A; Lim, D; Laval, B L; Brady, A; Slater, G; Tripati, A K
2015-01-01
Quantitative tools for deciphering the environment of microbialite formation are relatively limited. For example, the oxygen isotope carbonate-water geothermometer requires assumptions about the isotopic composition of the water of formation. We explored the utility of using 'clumped' isotope thermometry as a tool to study the temperatures of microbialite formation. We studied microbialites recovered from water depths of 10-55 m in Pavilion Lake, and 10-25 m in Kelly Lake, spanning the thermocline in both lakes. We determined the temperature of carbonate growth and the (18)O/(16)O ratio of the waters that microbialites grew in. Results were then compared to current limnological data from the lakes to reconstruct the history of microbialite formation. Modern microbialites collected at shallow depths (11.7 m) in both lakes yield clumped isotope-based temperatures of formation that are within error of summer water temperatures, suggesting that clumped isotope analyses may be used to reconstruct past climates and to probe the environments in which microbialites formed. The deepest microbialites (21.7-55 m) were recovered from below the present-day thermoclines in both lakes and yield radioisotope ages indicating they primarily formed earlier in the Holocene. During this time, pollen data and our reconstructed water (18)O/(16)O ratios indicate a period of aridity, with lower lake levels. At present, there is a close association between both photosynthetic and heterotrophic communities, and carbonate precipitation/microbialite formation, with biosignatures of photosynthetic influences on carbonate detected in microbialites from the photic zone and above the thermocline (i.e., depths of generally <20 m). Given the deeper microbialites are receiving <1% of photosynthetically active radiation (PAR), it is likely these microbialites primarily formed when lower lake levels resulted in microbialites being located higher in the photic zone, in warm surface waters. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Huntington, K. W.; Peters, N.; Roe, G.; Hoke, G. D.; Eiler, J.
2010-12-01
Soil carbonates archive a potentially rich record of past climate, but rates of pedogenic carbonate formation, erosion, and deposition impact how the isotopic composition and formation temperature of carbonate-bearing paleosols reflect the local environmental conditions under which they form. We investigate these processes using conventional stable isotope (δ18O and δ13C) and clumped isotope thermometry data for Quaternary pedogenic carbonates from the southern Central Andes at ~33°S, Argentina. The study area spans over 2 km of relief in the Río Mendoza and Río de las Cuevas valleys, accessing a range of mean annual temperature conditions and vegetative cover and exhibiting large seasonal variations in temperature, precipitation, and soil moisture. Variations in soil conditions influence carbonate precipitation and dissolution reactions and the rate and depth of pedogenic carbonate formation. Because soil temperature varies predictably as a function of depth in the soil and seasonal and secular variations in air temperature, clumped isotope thermometry of samples collected in soil pits offers a direct way to estimate the seasonality of pedogenic carbonate formation and potential biases in the long-term climate record. We explore potential complications due to the effects of radiative solar heating on the relationship between air and soil temperatures by examining clumped isotope thermometry results in the context of site-to-site variations in vegetative cover. Temperature estimates from clumped isotope thermometry of pedogenic carbonate collected 5-110 cm below geomorphically stable soil surfaces from 1200-3400 m a.s.l. are compared to temperature profiles predicted by simple rule-based models of soil carbonate formation. The models use climate reanalysis daily diagnostic data (soil temperature, soil moisture, and latent heat flux as a proxy for evaporation) and weather station data as input to assess how varying rates of pedogenic carbonate formation integrated over millennial timescales might impact the geologic record of temperature and isotopic composition.
Smart textile plasmonic fiber dew sensors.
Esmaeilzadeh, Hamid; Rivard, Maxime; Arzi, Ezatollah; Légaré, François; Hassani, Alireza
2015-06-01
We propose a novel Surface Plasmon Resonance (SPR)-based sensor that detects dew formation in optical fiber-based smart textiles. The proposed SPR sensor facilitates the observation of two phenomena: condensation of moisture and evaporation of water molecules in air. This sensor detects dew formation in less than 0.25 s, and determines dew point temperature with an accuracy of 4%. It can be used to monitor water layer depth changes during dew formation and evaporation in the range of a plasmon depth probe, i.e., 250 nm, with a resolution of 7 nm. Further, it facilitates estimation of the relative humidity of a medium over a dynamic range of 30% to 70% by measuring the evaporation time via the plasmon depth probe.
Soda Lake Well Lithology Data and Geologic Cross-Sections
Faulds, James E.
2013-12-31
Comprehensive catalogue of drill‐hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. Plus, 13 cross‐sections in Adobe Illustrator format.
NASA Astrophysics Data System (ADS)
Jepson, Mark A. E.; Rowlett, Matthew; Higginson, Rebecca L.
2017-03-01
Although the formation of sigma phase in duplex stainless steels is reasonably well documented, the effect of surface finish on its formation rate in surface regions has not been previously noted. The growth of the sigma phase precipitated in the subsurface region (to a maximum depth of 120 μm) has been quantified after heat treatment of S32205 duplex stainless steel at 1073 K (800 °C) and 1173 K (900 °C) after preparation to two surface finishes. Here, results are presented that show that there is a change in the rate of sigma phase formation in the surface region of the material, with a coarser surface finish leading to a greater depth of precipitation at a given time and temperature of heat treatment. The growth rate and morphology of the precipitated sigma has been examined and explored in conjunction with thermodynamic equilibrium phase calculations.
Burke, Lauri
2010-01-01
This document serves as the repository for the unprocessed data used in the investigation of temperature and overpressure relations within the deep Tuscaloosa Formation in Judge Digby field. It is a compilation of all the publicly accessible wellbore temperature and pressure data for Judge Digby field, a prolific natural gas field producing from the Upper Cretaceous lower part of the Tuscaloosa Formation in the Gulf Coast region. This natural gas field is in Pointe Coupee Parish in the southern part of onshore Louisiana.
Evaluating the Sonic Layer Depth Relative to the Mixed Layer Depth
2008-07-24
upper ocean to trap acoustic energy in a surface duct while MLD characterizes upper ocean mixing. The SLD is computed from temperature and salinity...and compared over the annual cycle. The SLD characterizes the potential of the upper ocean to trap acoustic energy in a surface duct while MLD...exists a tropical cyclone formation [e.g., Mao et al., 2000], to Minimum acoustic Cutoff Frequency (MCF) above which phytoplankton bloom critical depth
Study of the geothermal production potential in the Williston Basin, North Dakota
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Min H.
1991-09-10
Preliminary studies of geothermal production potential for the North Dakota portion of the Williston Basin have been carried out. Reservoir data such as formation depth, subsurface temperatures, and water quality were reviewed for geothermal brine production predictions. This study, in addition, provides important information about net pay thickness, porosity, volume of geothermal water available, and productivity index for future geothermal direct-use development. Preliminary results show that the Inyan Kara Formation of the Dakota Group is the most favorable geothermal resource in terms of water quality and productivity. The Madison, Duperow, and Red River Formations are deeper formations but because ofmore » their low permeability and great depth, the potential flow rates from these three formations are considerably less than those of the Inyan Kara Formation. Also, poor water quality and low porosity will make those formations less favorable for geothermal direct-use development.« less
Sensitivity analysis of 1-D dynamical model for basin analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, S.
1987-01-01
Geological processes related to petroleum generation, migration and accumulation are very complicated in terms of time and variables involved, and it is very difficult to simulate these processes by laboratory experiments. For this reasons, many mathematic/computer models have been developed to simulate these geological processes based on geological, geophysical and geochemical principles. The sensitivity analysis in this study is a comprehensive examination on how geological, geophysical and geochemical parameters influence the reconstructions of geohistory, thermal history and hydrocarbon generation history using the 1-D fluid flow/compaction model developed in the Basin Modeling Group at the University of South Carolina. This studymore » shows the effects of some commonly used parameter such as depth, age, lithology, porosity, permeability, unconformity (eroded thickness and erosion time), temperature at sediment surface, bottom hole temperature, present day heat flow, thermal gradient, thermal conductivity and kerogen type and content on the evolutions of formation thickness, porosity, permeability, pressure with time and depth, heat flow with time, temperature with time and depth, vitrinite reflectance (Ro) and TTI with time and depth, and oil window in terms of time and depth, amount of hydrocarbons generated with time and depth. Lithology, present day heat flow and thermal conductivity are the most sensitive parameters in the reconstruction of temperature history.« less
Natural gas production and anomalous geothermal gradients of the deep Tuscaloosa Formation
Burke, Lauri
2011-01-01
For the largest producing natural gas fields in the onshore Gulf of Mexico Basin, the relation between temperature versus depth was investigated. Prolific natural gas reservoirs with the highest temperatures were found in the Upper Cretaceous downdip Tuscaloosa trend in Louisiana. Temperature and production trends from the deepest field, Judge Digby field, in Pointe Coupe Parish, Louisiana, were investigated to characterize the environment of natural gas in the downdip Tuscaloosa trend. The average production depth in the Judge Digby field is approximately 22,000 ft. Temperatures as high as 400 degrees F are typically found at depth in Judge Digby field and are anomalously low when compared to temperature trends extrapolated to similar depths regionally. At 22,000 ft, the minimum and maximum temperatures for all reservoirs in Gulf Coast producing gas fields are 330 and 550 degrees F, respectively; the average temperature is 430 degrees F. The relatively depressed geothermal gradients in the Judge Digby field may be due to high rates of sediment preservation, which may have delayed the thermal equilibration of the sediment package with respect to the surrounding rock. Analyzing burial history and thermal maturation indicates that the deep Tuscaloosa trend in the Judge Digby field is currently in the gas generation window. Using temperature trends as an exploration tool may have important implications for undiscovered hydrocarbons at greater depths in currently producing reservoirs, and for settings that are geologically analogous to the Judge Digby fiel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozcan, Ahmet S.; Wall, Donald; Jordan-Sweet, Jean
Using temperature controlled Si and C ion implantation, we studied the effects of pre-amorphization implantation on NiPt alloy silicide phase formation. In situ synchrotron x-ray diffraction and resistance measurements were used to monitor phase and morphology evolution in silicide films. Results show that substrate amorphization strongly modulate the nucleation of silicide phases, regardless of implant species. However, morphological stability of the thin films is mainly enhanced by C addition, independently of the amorphization depth.
NASA Astrophysics Data System (ADS)
Homuth, S.; Götz, A. E.; Sass, I.
2015-06-01
The Upper Jurassic carbonates of the southern German Molasse Basin are the target of numerous geothermal combined heat and power production projects since the year 2000. A production-orientated reservoir characterization is therefore of high economic interest. Outcrop analogue studies enable reservoir property prediction by determination and correlation of lithofacies-related thermo- and petrophysical parameters. A thermofacies classification of the carbonate formations serves to identify heterogeneities and production zones. The hydraulic conductivity is mainly controlled by tectonic structures and karstification, whilst the type and grade of karstification is facies related. The rock permeability has only a minor effect on the reservoir's sustainability. Physical parameters determined on oven-dried samples have to be corrected, applying reservoir transfer models to water-saturated reservoir conditions. To validate these calculated parameters, a Thermo-Triaxial-Cell simulating the temperature and pressure conditions of the reservoir is used and calorimetric and thermal conductivity measurements under elevated temperature conditions are performed. Additionally, core and cutting material from a 1600 m deep research drilling and a 4850 m (total vertical depth, measured depth: 6020 m) deep well is used to validate the reservoir property predictions. Under reservoir conditions a decrease in permeability of 2-3 magnitudes is observed due to the thermal expansion of the rock matrix. For tight carbonates the matrix permeability is temperature-controlled; the thermophysical matrix parameters are density-controlled. Density increases typically with depth and especially with higher dolomite content. Therefore, thermal conductivity increases; however the dominant factor temperature also decreases the thermal conductivity. Specific heat capacity typically increases with increasing depth and temperature. The lithofacies-related characterization and prediction of reservoir properties based on outcrop and drilling data demonstrates that this approach is a powerful tool for exploration and operation of geothermal reservoirs.
Formation mechanism and mechanics of dip-pen nanolithography using molecular dynamics.
Wu, Cheng-Da; Fang, Te-Hua; Lin, Jen-Fin
2010-03-02
Molecular dynamics simulations are used to investigate the mechanisms of molecular transference, pattern formation, and mechanical behavior in the dip-pen nanolithography (DPN) process. The effects of deposition temperature were studied using molecular trajectories, the meniscus characteristic, surface absorbed energy, and pattern formation analysis. At the first transferred stage (at the initial indentation depth), the conformation of SAM molecules lies almost on the substrate surface. The molecules start to stand on the substrate due to the pull and drag forces at the second transferred stage (after the tip is pulled up). According to the absorbed energy behavior, the second transferred stage has larger transferred amounts and the transfer rate is strongly related to temperature. When molecules were deposited at low temperature (e.g., room temperature), the pattern shape was more highly concentrated. The pattern shape at high temperatures expanded and the area increased because of good molecular diffusion.
Geochemical and modal data for igneous rocks associated with epithermal mineral deposits
du Bray, Edward A.
2014-01-01
The purposes of this report are to (1) present available geochemical and modal data for igneous rocks associated with epithermal mineral deposits and (2) to make those data widely and readily available for subsequent, more in-depth consideration and interpretation. Epithermal precious and base-metal deposits are commonly associated with subduction-related calc-alkaline to alkaline arc magmatism as well as back-arc continental rift magmatism. These deposits form in association with compositionally diverse extrusive and intrusive igneous rocks. Temperature and depth regimes prevailing during deposit formation are highly variable. The deposits form from hydrothermal fluids that range from acidic to near-neutral pH, and they occur in a variety of structural settings. The disparate temperature, pressure, fluid chemistry, and structural controls have resulted in deposits with wide ranging characteristics. Economic geologists have employed these characteristics to develop classification schemes for epithermal deposits and to constrain the important genetic processes responsible for their formation.
Rozen, Guy; Ptaszek, Leon; Zilberman, Israel; Cordaro, Kevin; Heist, E Kevin; Beeckler, Christopher; Altmann, Andres; Ying, Zhang; Liu, Zhenjiang; Ruskin, Jeremy N; Govari, Assaf; Mansour, Moussa
2017-02-01
Real-time radiofrequency (RF) ablation lesion assessment is a major unmet need in cardiac electrophysiology. The purpose of this study was to assess whether improved temperature measurement using a novel thermocoupling (TC) technology combined with information derived from impedance change, contact force (CF) sensing, and catheter orientation allows accurate real-time prediction of ablation lesion formation. RF ablation lesions were delivered in the ventricles of 15 swine using a novel externally irrigated-tip catheter containing 6 miniature TC sensors in addition to force sensing technology. Ablation duration, power, irrigation rate, impedance drop, CF, and temperature from each sensor were recorded. The catheter "orientation factor" was calculated using measurements from the different TC sensors. Information derived from all the sources was included in a mathematical model developed to predict lesion depth and validated against histologic measurements. A total of 143 ablation lesions were delivered to the left ventricle (n = 74) and right ventricle (n = 69). Mean CF applied during the ablations was 14.34 ± 3.55g, and mean impedance drop achieved during the ablations was 17.5 ± 6.41 Ω. Mean difference between predicted and measured ablation lesion depth was 0.72 ± 0.56 mm. In the majority of lesions (91.6%), the difference between estimated and measured depth was ≤1.5 mm. Accurate real-time prediction of RF lesion depth is feasible using a novel ablation catheter-based system in conjunction with a mathematical prediction model, combining elaborate temperature measurements with information derived from catheter orientation, CF sensing, impedance change, and additional ablation parameters. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Zhang, Yunlin; Wu, Zhixu; Liu, Mingliang; He, Jianbo; Shi, Kun; Zhou, Yongqiang; Wang, Mingzhu; Liu, Xiaohan
2015-05-15
From January 2010 to March 2014, detailed depth profiles of water temperature, dissolved oxygen (DO), and chromophoric dissolved organic matter (CDOM) were collected at three sites in Lake Qiandaohu, a large, deep subtropical reservoir in China. Additionally, we assessed the changes in DO stratification over the past 61 years (1953-2013) based on our empirical models and long-term air temperature and transparency data. The DO concentration never fell below 2 mg/L, the critical value for anoxia, and the DO depth profiles were closely linked to the water temperature depth profiles. In the stable stratification period in summer and autumn, the significant increase in CDOM in the metalimnion explained the decrease in DO due to the oxygen consumed by CDOM. Well-developed oxygen stratification was detected at the three sites in spring, summer and autumn and was associated with thermal stratification. Oxycline depth was significantly negatively correlated with daily air temperature and thermocline thickness but significantly positively correlated with thermocline depth during the stratification weakness period (July-February). However, there were no significant correlations among these parameters during the stratification formation period (March-June). The increase of 1.67 °C in yearly average daily air temperature between 1980 and 2013 and the decrease of 0.78 m in Secchi disk depth caused a decrease of 1.65 m and 2.78 m in oxycline depth, respectively, facilitating oxygen stratification and decreasing water quality. Therefore, climate warming has had a substantial effect on water quality through changing the DO regime in Lake Qiandaohu. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, S.; Lerche, I.
1988-01-01
Geological processes related to petroleum generation, migration, and accumulation are very complicated in terms of time and variables involved, and are very difficult to simulate by laboratory experiments. For this reason, many mathematic/computer models have been developed to simulate these geological processes based on geological, geophysical, and geochemical principles. Unfortunately, none of these models can exactly simulate these processes because of the assumptions and simplifications made in these models and the errors in the input for the models. The sensitivity analysis is a comprehensive examination on how geological, geophysical, and geochemical parameters affect the reconstructions of geohistory, thermal history, andmore » hydrocarbon generation history. In this study, a one-dimensional fluid flow/compaction model has been used to run the sensitivity analysis. The authors will show the effects of some commonly used parameters such as depth, age, lithology, porosity, permeability, unconformity (time and eroded thickness), temperature at sediment surface, bottom hole temperature, present day heat flow, thermal gradient, thermal conductivity and kerogen type, and content on the evolutions of formation thickness, porosity, permeability, pressure with time and depth, heat flow with time, temperature with time and depth, vitrinite reflectance (R/sub 0/) and TTI with time and depth, oil window in terms of time and depth, and amount of hydrocarbon generated with time and depth.« less
Aspects of wellbore heat transfer during two-phase flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, A.R.; Kabir, C.S.
1994-08-01
Wellbore fluid temperature is governed by the rate of heat loss from the wellbore to the surrounding formation, which in turn is a function of depth and production/injection time. The authors present an approach to estimate wellbore fluid temperature during steady-state two-phase flow. The method incorporates a new solution of the thermal diffusivity equation and the effect of both conductive and convective heat transport for the wellbore/formation system. For the multiphase flow in the wellbore, the Hasan-Kabir model has been adapted, although other mechanistic models may be used. A field example is used to illustrate the fluid temperature calculation proceduremore » and shows the importance of accounting for convection in the tubing/casing annulus. A sensitivity study shows that significant differences exist between the predicted wellhead temperature and the formation surface temperature and that the fluid temperature gradient is nonlinear. This study further shows that increased free gas lowers the wellhead temperature as a result of the Joule-Thompson effect. In such cases, the expression for fluid temperature developed earlier for single-phase flow should not be applied when multiphase flow is encountered. An appropriate expression is presented in this work for wellbores producing multiphase fluids.« less
Dynamic Scaling of Colloidal Gel Formation at Intermediate Concentrations
Zhang, Qingteng; Bahadur, Divya; Dufresne, Eric M.; ...
2017-10-25
Here, we have examined the formation and dissolution of gels composed of intermediate volume-fraction nanoparticles with temperature-dependent short-range attractions using small-angle x-ray scatter- ing (SAXS), x-ray photon correlation spectroscopy (XPCS), and rheology to obtain nanoscale and macroscale sensitivity to structure and dynamics. Gel formation after temperature quenches to the vicinity of the rheologically-determined gel temperature, T gel, was characterized via the slow-down of dynamics and changes in microstructure observed in the intensity autocorrelation functions and structure factor, respectively, as a function of quench depth (ΔT = T quench - T gel), wave vector, and formation time (t f). We findmore » similar patterns in the slow-down of dynamics that maps the wave-vector-dependent dynamics at a particular ΔT and t f to that at other ΔTs and t fs via an effective scaling temperature, Ts. A single Ts applies to a broad range of ΔT and tf but does depend on the particle size. The rate of formation implied by the scaling is a far stronger function of ΔT than that of the attraction strength between colloids. Finally, we interpret this strong temperature de- pendence in terms of changes in cooperative bonding required to form stable, energetically favored, local structures.« less
Dynamic Scaling of Colloidal Gel Formation at Intermediate Concentrations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qingteng; Bahadur, Divya; Dufresne, Eric M.
Here, we have examined the formation and dissolution of gels composed of intermediate volume-fraction nanoparticles with temperature-dependent short-range attractions using small-angle x-ray scatter- ing (SAXS), x-ray photon correlation spectroscopy (XPCS), and rheology to obtain nanoscale and macroscale sensitivity to structure and dynamics. Gel formation after temperature quenches to the vicinity of the rheologically-determined gel temperature, T gel, was characterized via the slow-down of dynamics and changes in microstructure observed in the intensity autocorrelation functions and structure factor, respectively, as a function of quench depth (ΔT = T quench - T gel), wave vector, and formation time (t f). We findmore » similar patterns in the slow-down of dynamics that maps the wave-vector-dependent dynamics at a particular ΔT and t f to that at other ΔTs and t fs via an effective scaling temperature, Ts. A single Ts applies to a broad range of ΔT and tf but does depend on the particle size. The rate of formation implied by the scaling is a far stronger function of ΔT than that of the attraction strength between colloids. Finally, we interpret this strong temperature de- pendence in terms of changes in cooperative bonding required to form stable, energetically favored, local structures.« less
Evolution of oil-generative window (OGW) in Niger delta basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ejedawe, J.E.; Coker, S.J.L.; Lambert-Aikhionbare, D.O.
1983-03-01
Assuming a simple model of delta development involving progradation and uniform subsidence to present depths (rate, 500 m/m.y.; 1640 ft/m.y.), oil-genesis nomographs derived from the TTI method were constructed for various geothermal gradients of the Niger delta (2.2., 2.5., 2.9, 3.6, 4.0, 4.4, and 4.7/sup 0/C/100 m) and utilized in mapping the positions (depth, temperature) of the top of the oil-generative window (OGW) at arbitrarily selected times (40 m.y.B.P., 30 m.y.B.P., 15 m.y.B.P., and the present). About 200 data points were evaluated. During the active subsidence phase, oil generation within any megastructure was initiated at a temperature of 140 tomore » 146/sup 0/C (284 to 294/sup 0/F) and depth of 3000 to 5200 m (9842 to 17,060 ft) within 7 to 11 m.y. after deposition of the potential source rocks. After cessation of subsidence, upward movement of the OGW by 800 to 1600 m (2624 to 5249 ft) was accompanied by a temperature lowering of 23 to 54/sup 0/C (73 to 129/sup 0/F). Lower temperatures produced correspondingly heavier crudes. In some parts of the delta oil generation and expulsion from the lower part of the Agbada Formation predates the cessation of subsidence and structural deformation, while in others it postdates those events. In most parts of the Niger delta, the upper and normally compacted part of the Akata Formation appears to constitute the major source rock.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oertel, M., E-mail: michael.oertel@uni-jena.de; Ronning, C.
2015-03-14
Phase reactions occurring during a low temperature selenization of thin In/Cu-multilayer stacks were investigated by ex-situ x-ray diffraction (XRD) and energy dispersive x-ray spectroscopy (EDS). Therefore, dc-sputtered In/Cu-multilayers onto molybdenum coated soda lime glass were selenized in a high vacuum system at temperatures between 260 and 340 °C with different dwell times and selenium supply. The combination of the results of the phase analysis by XRD and the measurements of the in-depth elemental distribution by EDS allowed a conclusion on the occurring reactions within the layer depth. We found two CuInSe{sub 2} formation processes depending on the applied temperature. Already, atmore » a heater temperature of 260 °C, the CuInSe{sub 2} formation can occur by the reaction of Cu{sub 2−x}Se with In{sub 4}Se{sub 3} and Se. At 340 °C, CuInSe{sub 2} is formed by the reaction of Cu{sub 2−x}Se with InSe and Se. Because both reactions need additional selenium, the selenium supply during the selenization can shift the reaction equilibria either to the metal binaries side or to the CuInSe{sub 2} side. Interestingly, a lower selenium supply shifts the equilibrium to the CuInSe{sub 2} side, because the amount of selenium incorporated into the metallic layer is higher for a lower selenium supply. Most likely, a larger number of grain boundaries are the reason for the stronger selenium incorporation. The results of the phase formation studies were used to design a two stage selenization process to get a defined structure of an indium selenide- and a copper selenide-layer at low temperatures as the origin for a controlled interdiffusion to form the CuInSe{sub 2}-absorber-layer at higher temperatures. The approach delivers a CuInSe{sub 2} absorber which reach total area efficiencies of 11.8% (13.0% active area) in a CuInSe{sub 2}-thin-film solar cell. A finished formation of CuInSe{sub 2} at low temperature was not observed in our experiments but is probably possible for longer dwell times.« less
Processing of thermal parameters for the assessment of geothermal potential of sedimentary basins
NASA Astrophysics Data System (ADS)
Pasquale, V.; Chiozzi, P.; Gola, G.; Verdoya, M.
2009-04-01
The growing interest on renewable energy sources is stimulating new efforts aimed at the assessment of geothermal potential in several countries, and new developments are expected in the near future. In this framework, a basic step forward is to focus geothermal investigations on geological environments which so far have been relatively neglected. Some intracontinental sedimentary basins could reveal important low enthalpy resources. The evaluation of the geothermal potential in such geological contexts involves the synergic use of geophysical and hydrogeological methodologies. In sedimentary basins a large amount of thermal and hydraulic data is generally available from petroleum wells. Unfortunately, borehole temperature data are often affected by a number of perturbations which make very difficult determination of the true geothermal gradient. In this paper we addressed the importance of the acquisition of thermal parameters (temperature, geothermal gradient, thermal properties of the rock) and the technical processing which is necessary to obtain reliable geothermal characterizations. In particular, techniques for corrections of bottom-hole temperature (BHT) data were reviewed. The objective was to create a working formula usable for computing the undisturbed formation temperature for specific sedimentary basins. As test areas, we analysed the sedimentary basins of northern Italy. Two classical techniques for processing temperature data from oil wells are customarily used: (i) the method by Horner, that requires two or more measurements of bottom-hole temperatures carried out at the same depth but at different shut-in times te and (ii) the technique by Cooper and Jones, in which several physical parameters of the mud and formation need to be known. We applied both methods to data from a number of petroleum explorative wells located in two areas of the Po Plain (Apenninic buried arc and South Piedmont Basin - Pedealpine homocline). From a set of about 40 wells having two or more temperature measurements at a single depth we selected 18 wells with BHTs recorded at te larger than 3.5 hours; the time span between two measurements varies from 1 to 21 hours. In total 71 couples of BHT-te data are available; the mud circulation time is lower or equal to 4.5 hours. Corrections require the knowledge of thermal parameters. We attempted to remedy the existing deficiency of thermal conductivity data of sedimentary rocks with a series of laboratory measurements on several core samples recovered from wells. Moreover, we developed a model for calculating the thermal conductivity of the rock matrix as a function of mineral composition based on the fabric theory and experimental thermal conductivity data. As the conductivity of clay minerals, which are present in most formations, is poorly defined, we applied an inverse approach, in which mineral conductivities are calculated one by one, on condition that the sample bulk thermal conductivity, the porosity and the amount of each mineral phase are known. Analyses show that formation equilibrium temperatures computed with the Horner method are consistent with those obtained by means of the Cooper and Jones method, which gives on average temperatures lower than 2 C only for shut-in times < 10 hours. The corrected temperatures compared with temperatures measured during drill-stem tests show that the proposed corrections are rather accurate. The two data sets give coherent results and the inferred average geothermal gradient is 21.5 mK/m in the Apenninic buried arc area and 25.2 mK/m in the South Piedmont Basin-Pedealpine homocline area. The problem with the Horner method is that it implicitly assumes no physical property contrast between circulating mud and formation, and that the borehole is infinitesimally thin, i.e. it acts as a line source. This has been criticized by many authors. The accuracy of the predicted temperatures depends on the reliability and accuracy of BHT, shut-in time and mud circulation time, and the error increases with the decrease of the shut-in time. On the other hand, the method by Cooper and Jones provides more reliable results, but requires physical parameters that are not always available. The Horner slope data as a function of depth were then fitted with a second order polynomial and depth-time correction equations were calibrated for the two test areas. The obtained depth-time correction equations allow for each area the correction for mud circulation when only one couple BHT-te is available. If the value of the time before circulation ceased is not included on the well log header, it is possible to formulate an empirical equation obtained from time data as a function of depth applicable to the whole investigated area.
Partitioning of Oxygen During Core Formation on Earth and Mars
NASA Astrophysics Data System (ADS)
Rubie, D. C.; Gessmann, C. K.; Frost, D. J.
2003-12-01
Core formation on Earth and Mars involved the physical separation of Fe-Ni metal alloy from silicate, most likely in deep magma oceans. Although core-formation models explain many aspects of mantle geochemistry, they do not account for large differences between the compositions of the mantles of Earth ( ˜8 wt% FeO) and Mars ( ˜18 wt% FeO) or the much smaller mass fraction of the Martian core. Here we explain these differences using new experimental results on the solubility of oxygen in liquid Fe-Ni alloy, which we have determined at 5-23 GPa, 2100-2700 K and variable oxygen fugacities using a multianvil apparatus. Oxygen solubility increases with increasing temperature and oxygen fugacity and decreases with increasing pressure. Thus, along a high temperature adiabat (e.g. after formation of a deep magma ocean on Earth), oxygen solubility is high at depths up to about 2000 km but decreases strongly at greater depths where the effect of high pressure dominates. For modeling oxygen partitioning during core formation, we assume that Earth and Mars both accreted from oxidized chondritic material with a silicate fraction initially containing around 18 wt% FeO. In a terrestrial magma ocean, 1200-2000 km deep, high temperatures resulted in the extraction of FeO from the silicate magma ocean, due to the high solubility of oxygen in the segregating metal, leaving the mantle with its present FeO content of ˜8 wt%. Lower temperatures of a Martian magma ocean resulted in little or no extraction of FeO from the mantle, which thus remained unchanged at about 18 wt%. The mass fractions of segregated metal are consistent with the mass fraction of the Martian core being small relative to that of the Earth. FeO extracted from the Earth's magma ocean by segregating core-forming liquid may have contributed to chemical heterogeneities in the lowermost mantle, a FeO-rich D'' layer and the light element budget of the core.
Geologic Map and Cross Sections of the McGinness Hills Geothermal Area - GIS Data
Faulds, James E.
2013-12-31
Geologic map data in shapefile format that includes faults, unit contacts, unit polygons, attitudes of strata and faults, and surficial geothermal features. 5 cross‐sections in Adobe Illustrator format. Comprehensive catalogue of drill‐hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. 3D model constructed with EarthVision using geologic map data, cross‐sections, drill‐hole data, and geophysics.
NASA Astrophysics Data System (ADS)
Burgener, L. K.; Huntington, K. W.; Hoke, G. D.; Schauer, A. J.; Ringham, M. C.; Latorre Hidalgo, C.; Díaz, F.
2015-12-01
The application of carbonate clumped isotope thermometry to soil carbonates has the potential to shed new light on questions regarding terrestrial paleoclimate. In order to better utilize this paleoclimate tool, outstanding questions regarding seasonal biases in soil carbonate formation and the relationship between soil carbonate formation temperatures (T(Δ47)) and surface temperatures must be resolved. We address these questions by comparing C, O, and clumped isotope data from Holocene/modern soil carbonates to modern meteorological data. The data were collected along a 170 km transect with >4 km of relief in central Chile (~30°S). Previous studies have suggested that soil carbonates should record a warm season bias and form in isotopic equilibrium with soil water and soil CO2. We identify two discrete climate zones separated by the local winter snow line (~3200 m). Below this boundary, precipitation falls as rain and soil carbonate T(Δ47) values at depths >40 cm resemble summer soil temperatures; at higher elevations, precipitation falls as snow and T(Δ47) values resemble mean annual soil temperatures. Soil carbonates from the highest sample site (4700 m), which is devoid of vegetation and located near perennial snow fields, yield anomalous δ18O, δ13C, and T(Δ47) values, indicative of kinetic isotope effects that we attribute to cryogenic carbonate formation. Our results suggest that soil carbonates from depths <40 cm are affected by large, high frequency variations in temperature and precipitation, and should not be used as paleotemperature proxies. These findings (1) highlight the role of soil moisture in modulating soil carbonate formation and the resulting T(Δ47) values, (2) underscore the importance of understanding past soil moisture conditions when attempting to reconstruct paleotemperatures using carbonate clumped isotope thermometry, and (3) suggest that soil carbonates from high elevation or high latitude sites may form under non-equilibrium conditions.
NASA Astrophysics Data System (ADS)
Ding, W.; Chen, Y.
2016-12-01
Eighteen calcium carbonate veins within the igneous basement recovered close to the fossil spreading ridge of the South China Sea during the Integrated Ocean Drilling Program (IODP) Expedition 349 were investigated. These carbonates are of primarily either calcite or aragonite, or some mixed aragonite and calcite, with rarely ankerite. The chemical (Ca, Mg, Sr, Mn, Fe) contents and isotopic (87Sr/86Sr, δ18O, δ18C) compositions of the veins were determined to study the evolving chemistry of hydrothermal fluids and to constrain the timing of vein formation. The carbonate δ18O values range from -5.0 to -0.2 ‰ PDB, indicating these are typical low temperature basement carbonates. Chemical analyses show distinct Mg/Ca and Sr/Ca ratios for aragonite and calcite. 87Sr/86Sr ratios show negative correlations with both the depth and δ18O-calculated formation temperature, and are independent of mineralogy with both aragonite and calcite, indicating more geochemically evolved carbonated have precipitated from warmer fluids. The hightest 87Sr/86Sr ratios of vein samples at each drill site are believed to reflect the contemporaneous seawater compositions when carbonates precipitated. No unambiguous precipitation ages can be constrained by correlating 87Sr/86Sr ratios with the global seawater Sr isotope evolution. However, based on correlations of vein chemical composition with depth and formation temperature, as well as the Neogene post-spreading magmatism, we hypothesize 10 Ma is a particular time favoring the formation of carbonate veins in our study area.
Molecular Dynamics Simulation of Hydrogen Trapping on Sigma 5 Tungsten Grain Boundaries
NASA Astrophysics Data System (ADS)
Al-Shalash, Aws Mohammed Taha
Tungsten as a plasma facing material is the predominant contender for future Tokamak reactor environments. The interaction between the plasma particles and tungsten is crucial to be studied for successful usage and design of tungsten in the plasma facing components ensuring the reliability and longevity of the fusion reactors. The bombardment of the sigma 5 polycrystalline tungsten was modeled using the molecular dynamics simulation through the large-scale atomic/molecular massively parallel simulator (LAMMPS) code and Tersoff type interatomic potential. By simulating the operational conditions of the Tokamak reactors, the hydrogen trapping rate, implantation distribution, and bubble formation was investigated at various temperatures (300-1200 K) and various hydrogen incident energy (20-100 eV). The substrate's temperature increases the deflected H atoms, and increases the penetration depth for the ones that go through. As well, the lower temperature tungsten substrates retain more H atoms. Increasing the bombarded hydrogen's energy increases the trapping and retention rate and the depth of penetration. Another experiments were conducted to determine whether the Sigma5 grain boundary's (GB) location affects the trapping profiles in H. The findings are ranges from small effect on deflection rates at low H energies to no effect at high H energies. However, there is a considerable effect on shifting the trapping depth profile upward toward the surface when raising the GB closer to the surface. Hydrogen atoms are highly mobile on tungsten substrate, yet no bubble formation was witnessed.
NASA Astrophysics Data System (ADS)
Hudson, A. M.; Paces, J. B.; Ruleman, C.
2017-12-01
Pedogenic carbonate horizons are abundant in semi-arid and arid regions worldwide and within the geologic record. They present a widely distributed archive of past environmental conditions, driven by global climate or tectonically-controlled elevation changes. Oxygen and carbon isotopes in calcite-rich nodules and clast rinds are widely-applied indicators of past soil water and CO2 composition linked to changing precipitation and plant communities. The temperature of carbonate formation, however, provides key constraint on past water/CO2 values and elucidate why they may have changed in the past. Clumped isotope thermometry can provide this constraint and additional climate information, given the carbonate forming system is well understood. We present preliminary clumped isotope (Δ47) temperatures for Holocene soil carbonates, constrained by 14C and U-Th disequilibrium dating, compared with two years of in situ soil temperature data to better understand the mechanism and seasonality of carbonate formation in the San Luis Valley region of the southern Rocky Mountains. Five temperature-monitoring sites ranging in elevation (1940-2450 m) and latitude (36.2-37.9°N) were installed in a variety of settings (range front, valley center, and canyon). The resulting records show indistinguishable seasonal temperature variations at >60 cm depth. This suggests Δ47 temperatures should be comparable at sites across the region. Temperatures based on Δ47 measurements of Holocene (>1.8 to 11.0 ka BP) carbonates at these sites yield consistent inter-site temperatures of 10±4°C, which are similar to modern springtime soil temperatures at depth. This seasonality matches previous results of isotopic modeling at sites further south along the Rio Grande corridor. Temperatures during March to May show multiple, abrupt warming and cooling cycles on weekly timescales caused by wetting and drying of the soil during spring precipitation events. This may drive carbonate precipitation under low pCO2 conditions before increased plant respiration increases soil pCO2 later in the season.
A one-dimensional Fickian model to predict the Ga depth profiles in three-stage Cu(In,Ga)Se{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez-Alvarez, H., E-mail: humberto.rodriguez@helmholtz-berlin.de; Helmholtz-Zentrum Berlin, Hahn-Meitner Platz 1, 14109 Berlin; Mainz, R.
2014-05-28
We present a one-dimensional Fickian model that predicts the formation of a double Ga gradient during the fabrication of Cu(In,Ga)Se{sub 2} thin films by three-stage thermal co-evaporation. The model is based on chemical reaction equations, structural data, and effective Ga diffusivities. In the model, the Cu(In,Ga)Se{sub 2} surface is depleted from Ga during the deposition of Cu-Se in the second deposition stage, leading to an accumulation of Ga near the back contact. During the third deposition stage, where In-Ga-Se is deposited at the surface, the atomic fluxes within the growing layer are inverted. This results in the formation of amore » double Ga gradient within the Cu(In,Ga)Se{sub 2} layer and reproduces experimentally observed Ga distributions. The final shape of the Ga depth profile strongly depends on the temperatures, times and deposition rates used. The model is used to evaluate possible paths to flatten the marked Ga depth profile that is obtained when depositing at low substrate temperatures. We conclude that inserting Ga during the second deposition stage is an effective way to achieve this.« less
The formation of microvoids in MgO by helium ion implantation and thermal annealing
NASA Astrophysics Data System (ADS)
van Veen, A.; Schut, H.; Fedorov, A. V.; Labohm, F.; Neeft, E. A. C.; Konings, R. J. M.
1999-01-01
The formation of microvoids in metal oxides by helium implantation and thermal annealing is observed under similar conditions as has been shown earlier for silicon. Cleaved MgO (1 0 0) single crystals were implanted with 30 keV 3He ions with doses varying from 10 15 to 10 16 cm -2 and subsequently thermally annealed from RT to 1500 K. Monitoring of the defect depth profile and the retained amount of helium was performed by positron beam analysis and neutron depth profiling, respectively. For a dose larger than 2 × 10 15 cm -2 annealing of the defects was observed in two stages: at 1000 K helium filled monovacancies dissociated, and other defects still retaining the helium were formed, and at 1300 K all helium left the sample while an increase of positron-valence-electron annihilations was observed, indicating an increase of the volume available in the defects. The voids of nm size were located at shallower depth than the implanted helium. At lower dose no voids were left after high temperature annealing. Voids can also be created, and even more effectively, by hydrogen or deuterium implantation. The voids are stable to temperatures of 1500 K. The use of the nanovoids as a precursor state for nanoprecipitates of metals or other species is discussed.
Paillet, Frederick L.; Hodges, Richard E.; Corland, Barbara S.
2002-01-01
This report presents and describes geophysical logs for six boreholes in Lariat Gulch, a topographic gulch at the former U.S. Air Force site PJKS in Jefferson County near Denver, Colorado. Geophysical logs include gamma, normal resistivity, fluid-column temperature and resistivity, caliper, televiewer, and heat-pulse flowmeter. These logs were run in two boreholes penetrating only the Fountain Formation of Pennsylvanian and Permian age (logged to depths of about 65 and 570 feet) and in four boreholes (logged to depths of about 342 to 742 feet) penetrating mostly the Fountain Formation and terminating in Precambrian crystalline rock, which underlies the Fountain Formation. Data from the logs were used to identify fractures and bedding planes and to locate the contact between the two formations. The logs indicated few fractures in the boreholes and gave no indication of higher transmissivity in the contact zone between the two formations. Transmissivities for all fractures in each borehole were estimated to be less than 2 feet squared per day.
NASA Astrophysics Data System (ADS)
Markus Schmalholz, Stefan; Jaquet, Yoann
2016-04-01
We study the formation of an orogenic wedge during lithospheric shortening with 2D numerical simulations. We consider a viscoelastoplastic rheology, thermo-mechanical coupling by shear heating and temperature-dependent viscosities, gravity and erosion. In the initial model configuration there is either a lateral temperature variation at the model base or a lateral variation in crustal thickness to generate slight stress variations during lithospheric shortening. These stress variations can trigger the formation of shear zones which are caused by thermal softening associated with shear heating. We do not apply any kind of strain softening, such as reduction of friction angle with progressive plastic strain. The first major shear zone that appears during shortening crosscuts the entire crust and initiates the asymmetric subduction/underthrusting of mainly the mechanically strong lower crust. After some deformation, the first shear zone in the upper crust is abandoned, the deformation propagates towards the foreland and a new shear zone forms only in the upper crust. The shear zone propagation occurs several times where new shear zones form in the upper crust and the mechanically strong top of the lower crust acts as detachment horizon. We calculate the magnitudes of the maximal and minimal principal stresses and of the mean stress (or dynamic pressure), and we record also the temperature for several marker points in the upper and lower crust. We analyse the evolution of stresses and temperature with burial depth and time. Deviatoric stresses (half the differential stress) in the upper crust are up to 200 MPa and associated shear heating in shear zones ranges between 40 - 80 °C. Lower crustal rocks remain either at the base of the orogenic wedge at depths of around 50 km or are subducted to depths of up to 120 km, depending on their position when the first shear zone formed. Largest deviatotric stresses in the strong part of the lower crust are about 1000 MPa and maximal shear heating in shear zones is approximately 200 °C. Marker points can migrate through the main shear zone in the lower crust which remains active throughout lithospheric shortening. Some pressure-temperature paths show an anti-clockwise evolution. The impact of various model parameters on the results is discussed as well as applications of the results to geological data.
High-temperature Au implantation into Ni-Be and Ni-Si alloys
NASA Astrophysics Data System (ADS)
James, M. R.; Lam, N. Q.; Rehn, L. E.; Baldo, P. M.; Funk, L.; Stubbins, J. F.
1992-12-01
Effects of implantation temperature and target composition on depth distribution of implanted species were investigated. Au+ ions were implanted at 300 keV into polycrystalline Ni-Be and Ni-Si alloys between 25 and 700C to a dose of 10(exp 16) cm(exp -2). Depth distributions of Au were analyzed with RBS using He+ at both 1.7 and 3.0 MeV, and those of the other alloying elements by SIMS. Theoretical modeling of compositional redistribution during implantation at elevated temperatures was also carried out with the aid of a comprehensive kinetic model. The analysis indicated that below approximately 250C, the primary controlling processes were preferential sputtering and displacement mixing, while between 250 and 600C radiation-induced segregation was dominant. Above 600C, thermal-diffusion effects were most important. Fitting of model calculations to experimental measurements provided values for various defect migration and formation parameters.
Wulferding, Dirk; Yang, Ilkyu; Yang, Jinho; ...
2015-07-31
We present a local probe study of the magnetic superconductor ErNi 2B 2C, using magnetic force microscopy at sub-Kelvin temperatures. ErNi 2B 2C is an ideal system to explore the effects of concomitant superconductivity and ferromagnetism. At 500 mK, far below the transition to a weakly ferromagnetic state, we directly observe a structured magnetic background on the micrometer scale. We determine spatially resolved absolute values of the magnetic penetration depth λ and study its temperature dependence as the system undergoes magnetic phase transitions from paramagnetic to antiferromagnetic, and to weak ferromagnetic, all within the superconducting regime. We estimate the absolutemore » pinning force of Abrikosov vortices, which shows a position dependence and temperature dependence as well, and discuss the possibility of the purported spontaneous vortex formation.« less
Model of convection mass transfer in titanium alloy at low energy high current electron beam action
NASA Astrophysics Data System (ADS)
Sarychev, V. D.; Granovskii, A. Yu; Nevskii, S. A.; Konovalov, S. V.; Gromov, V. E.
2017-01-01
The convection mixing model is proposed for low-energy high-current electron beam treatment of titanium alloys, pre-processed by heterogeneous plasma flows generated via explosion of carbon tape and powder TiB2. The model is based on the assumption vortices in the molten layer are formed due to the treatment by concentrated energy flows. These vortices evolve as the result of thermocapillary convection, arising because of the temperature gradient. The calculation of temperature gradient and penetration depth required solution of the heat problem with taking into account the surface evaporation. However, instead of the direct heat source the boundary conditions in phase transitions were changed in the thermal conductivity equation, assuming the evaporated material takes part in the heat exchange. The data on the penetration depth and temperature distribution are used for the thermocapillary model. The thermocapillary model embraces Navier-Stocks and convection heat transfer equations, as well as the boundary conditions with the outflow of evaporated material included. The solution of these equations by finite elements methods pointed at formation of a multi-vortices structure when electron-beam treatment and its expansion over new zones of material. As the result, strengthening particles are found at the depth exceeding manifold their penetration depth in terms of the diffusion mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, J.B.; Faure, G.
1997-03-01
We used geochemical data to examine the origin and preservation of organic matter contained in the lower part of the Huron Member of the Ohio Shale formation and the Rhinestreet Shale Member of the West Falls Formation (Devonian) in Kentucky, Ohio, West Virginia, and Virginia. The thermal history of the organic matter was determined by relating relative temperatures experienced by the organic matter to the geologic setting. The organic matter in these formations is predominantly marine in origin and was most probably derived largely from algal organisms. Although the rate of production of marine organic matter may have been uniformmore » within the basin, its preservation apparently was controlled by the existence of a set of fault-bounded anoxic subbasins associated with the Rome trough, a Cambrian structural complex. These subbasins apparently were anoxic because they limited oxygen recharge by circulating waters. Preservation of organic matter was also enhanced by periodic blooms of the alga Tasmanites and similar organisms in the waters above the subbasins during both early Huron and Rhinestreet deposition. A significant negative correlation was identified between the vitrinite reflectance peak temperature, and integrated measure of the thermal history of a rock, and the hydrogen index, a measure of the remaining hydrocarbon-generation potential of kerogen. Although peak temperatures were controlled by burial depth, excess heating occurred locally, perhaps by hot brines rising from depth through fractures associated with major structures in the study area.« less
Corrosion of 316 stainless steel in high temperature molten Li2BeF4 (FLiBe) salt
NASA Astrophysics Data System (ADS)
Zheng, Guiqiu; Kelleher, Brian; Cao, Guoping; Anderson, Mark; Allen, Todd; Sridharan, Kumar
2015-06-01
In support of structural material development for the fluoride-salt-cooled high-temperature reactor (FHR), corrosion tests of 316 stainless steel were performed in the potential primary coolant, molten Li2BeF4 (FLiBe) at 700 °C for an exposure duration up to 3000 h. Tests were performed in both 316 stainless steel and graphite capsules. Corrosion in both capsule materials occurred by the dissolution of chromium from the stainless steel into the salt which led to the depletion of chromium predominantly along the grain boundaries of the test samples. The samples tested in graphite capsules showed a factor of two greater depth of corrosion attack as measured in terms of chromium depletion, compared to those tested in 316 stainless steel capsules. The samples tested in graphite capsules showed the formation of Cr7C3 particulate phases throughout the depth of the corrosion layer. Samples tested in both types of capsule materials showed the formation of MoSi2 phase due to increased activity of Mo and Si as a result of Cr depletion, and furthermore corrosion promoted the formation of a α-ferrite phase in the near-surface regions of the 316 stainless steel. Based on the corrosion tests, the corrosion attack depth in FLiBe salt was predicted as 17.1 μm/year and 31.2 μm/year for 316 stainless steel tested in 316 stainless steel and in graphite capsules respectively. It is in an acceptable range compared to the Hastelloy-N corrosion in the Molten Salt Reactor Experiment (MSRE) fuel salt.
Formation of Nitrogen Bubbles During Solidification of Duplex Stainless Steels
NASA Astrophysics Data System (ADS)
Dai, Kaiju; Wang, Bo; Xue, Fei; Liu, Shanshan; Huang, Junkai; Zhang, Jieyu
2018-04-01
The nucleation and growth of nitrogen bubbles for duplex stainless steels are of great significance for the formation mechanism of bubbles during solidification. In the current study, numerical method and theoretical analysis of formula derivation were used to study the formation of nitrogen bubbles during solidification. The critical sizes of the bubble for homogeneous nucleation and heterogeneous nucleation at the solid-liquid interface during solidification were derived theoretically by the classical nucleation theory. The results show that the calculated values for the solubility of nitrogen in duplex stainless steel are in good agreement with the experimental values which are quoted by references: for example, when the temperature T = 1823 K and the nitrogen partial pressure P_{{N2 }} = 40P^{Θ} , the calculated value (0.8042 wt pct) for the solubility of Fe-12Cr alloy nitrogen in molten steel is close to the experimental value (0.780 wt pct). Moreover, the critical radii for homogeneous nucleation and heterogeneous nucleation are identical during solidification. On the one hand, with the increasing temperature or the melt depth, the critical nucleation radius of bubbles at the solid-liquid interface increases, but the bubble growth rate decreases. On the other hand, with the decreasing initial content of nitrogen or the cooling rate, the critical nucleation radius of bubbles at the solid-liquid interface increases, but the bubble growth rate decreases. Furthermore, when the melt depth is greater than the critical depth, which is determined by the technological conditions, the change in the Gibbs free energy for the nucleation is not conducive enough to form new bubbles.
Temperature limitation of methanogenesis in aquatic sediments.
Zeikus, J G; Winfrey, M R
1976-01-01
Microbial methanogenesis was examined in sediments collected from Lake Mendota, Wisconsin, at water depths of 5, 10, and 18 m. The rate of sediment methanogenesis was shown to vary with respect to sediment site and depth, sampling date, in situ temperature, and number of methanogens. Increased numbers of methanogenic bacteria and rates of methanogenesis correlated with increased sediment temperature during seasonal change. The greatest methanogenic activity was observed for 18-m sediments throughout the sampling year. As compared with shallower sediments, 18-m sediment was removed from oxygenation effects and contained higher amounts of ammonia, carbonate, and methanogenic bacteria, and the population density of methanogens fluctuated less during seasonal change. Rates of methanogenesis in 18-m sediment cores decreased with increasing sediment depth. The optimum temperature, 35 to 42 C, for sediment methanogenesis was considerably higher than the maximum observed in situ temperature of 23 C. The conversion of H2 and [14C]carbonate to [14C]methane displayed the same temperature optimum when these substrates were added to sediments. The predominant methanogenic population had simple nutritional requirements and were metabolically active at 4 to 45 C. Hydrogen oxidizers were the major nutritional type of sediment methanogens; formate and methanol fermentors were present, but acetate fermentors were not observed. Methanobacterium species were most abundant in sediments although Methanosarcina, Methanococcus, and Methanospirillum species were observed in enrichment cultures. A chemolithotropic species of Methanosarcina and Methanobacterium was isolated in pure culture that displayed temperature optima above 30 C and had simple nutritional requirements. PMID:821396
Thermal data from well GD-1, Gibson dome, Paradox Valley, Utah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sass, J.H.; Lachenbruch, A.H.; Smith, E.P.
Temperature data were obtained to a depth of approx. 1900 m (6300 ft) in well GD-1, W. longitude 109/sup 0/ 36.9', N. latitude 38/sup 0/ 09.8', elevation 1503 m at Gibson Dome in the Paradox Basin, southeastern Utah. Thermal conductivities were measured on 15 specimens representative of the major formations. With the possible exception of some minor perturbations within the Molas and Leadville Limestone formations near the bottom of the well, no evidence exists for vertical water movement with seepage velocities exceeding a few mm y/sup -1/ within the well or formation.
NASA Astrophysics Data System (ADS)
Shi, Y.; Jiang, G.; Hu, S.
2017-12-01
Daqing, as the largest oil field of China with more than 50 years of exploration and production history for oil and gas, its geothermal energy utilization was started in 2000, with a main focus on district heating and direct use. In our ongoing study, data from multiple sources are collected, including BHT, DST, steady state temperature measurements in deep wells and thermophysical properties of formations. Based on these measurements, an elaborate investigation of the temperature field of Daqing Oilfield is made. Moreover, through exploration for oil and gas, subsurface geometry, depth, thickness and properties of the stratigraphic layers have been extensively delineated by well logs and seismic profiles. A 3D model of the study area is developed incorporating the information of structure, stratigraphy, basal heat flow, and petrophysical and thermophysical properties of strata. Based on the model, a simulation of the temperature field of Daqing Oilfield is generated. A purely conductive regime is presumed, as demonstrated by measured temperature log in deep wells. Wells W1, W2 and SK2 are used as key wells for model calibration. Among them, SK2, as part of the International Continental Deep Drilling Program, has a designed depth of 6400m, the steady state temperature measurement in the borehole has reached the depth of 4000m. The results of temperature distribution generated from simulation and investigation are compared, in order to evaluate the potential of applying the method to other sedimentary basins with limited borehole temperature measurements but available structural, stratigraphic and thermal regime information.
Climate change for the last 1,000 years inferred from borehole temperatures
NASA Astrophysics Data System (ADS)
Kitaoka, K.; Arimoto, H.; Hamamoto, H.; Taniguchi, M.; Takeuchi, T.
2013-12-01
Subsurface temperatures are an archive of temperature changes occurred at the ground surface in the recent past (Lachenbruch and Marshall, 1986; Pollack, 1993). In order to investigate the local surface temperature histories in Osaka Plane, Japan, we observed subsurface temperatures in existing boreholes, using a thermometer logger. Many temperature-depth profiles within 200 m depth from the ground surface have been obtained, but they show considerable variability. The geological formations in the area consist of horizontally stratified sedimentary layers of about 1,000 m in thickness overlaid on bedrock of granite. There exists a vertical disordered structure in the formations, which may be relating to an active fault (Uemachi fault) in the bedrock (Takemura, et al, 2013). It is considered that groundwater in the horizontal layers cannot move vertically, but can move vertically along the vertical disordered zone. Various temperature profiles might be related to occurrence of vertical groundwater flow in the zone. Analytical models of subsurface temperature which include heat conduction and convection due to vertical groundwater flow in the zone have been constructed under the boundary conditions of prescribing time dependent surface temperature and uniform geothermal flux from greater depths. To solve as one-dimensional problem, heat transfer between the vertical zone and the surrounding medium of no groundwater flow is assumed. Prescribing surface temperatures were given as exponential and periodic functions of the time. Climate change can be considered to comprise both natural and artificial changes. Artificial change, which occurs by the increasing combustion of fossil fuels, is considered roughly to be an exponential increase of the ground surface temperature during the last 150 years. Natural change, which can correlate to solar activity (Lassen and Friis-Christensen, 1995), is assumed roughly to be periodic with the period of about 1200 y at the minimum time of 1620 AD for the last 2,000 years, based on the proxy data in literature (Kitagawa, 1995; Moberg, et al, 2005). Analytical solutions have been obtained by applying a superimpose method. Optimum values of parameters included in the model have been obtained by fitting the solutions to the data of temperature-depth profiles by a least-square method. As a result, the amplitude of natural oscillation in the area is about 0.8 degree in average, which is in agreement with the result of tree ring analysis of Yakushima cedar (Kitagawa, 1995). Greater upward groundwater flow rates (up to 1.0 m/y, Darcy flux) are seen along the vertical disordered structure. However, the increasing rate of ground surface temperature is greater than that in atmospheric temperature during the last 140 years at Osaka Meteorological Observatory, Japan Meteorological Agency. The high increasing rate of the ground surface temperature suggests that the change in atmospheric temperature is influenced by the change in long wave radiation from the ground surface.
25 CFR 226.32 - Well records and reports.
Code of Federal Regulations, 2010 CFR
2010-04-01
... LANDS FOR OIL AND GAS MINING Requirements of Lessees § 226.32 Well records and reports. (a) Lessee shall... and character of oil, gas, or water in each formation, and the kind, weight, size, landed depth and... pressure or fluid sample surveys, temperature surveys, directional surveys, and the like; the materials and...
Organic geochemistry of core samples from an ultradeep hot well (300°C, 7 km)
Price, Leigh C.
1982-01-01
Concepts prevelant among petroleum organic geochemists concerning the thermal fate of hydrocarbons, with subsequent graphite formation, and greenschist metamorphism, are in sharp contradiction to these data. Conventional concepts of the distribution of heavy hydrocarbons with increasing temperature and depth apparently require further review and revision.
Sensitivities of Earth's core and mantle compositions to accretion and differentiation processes
NASA Astrophysics Data System (ADS)
Fischer, Rebecca A.; Campbell, Andrew J.; Ciesla, Fred J.
2017-01-01
The Earth and other terrestrial planets formed through the accretion of smaller bodies, with their core and mantle compositions primarily set by metal-silicate interactions during accretion. The conditions of these interactions are poorly understood, but could provide insight into the mechanisms of planetary core formation and the composition of Earth's core. Here we present modeling of Earth's core formation, combining results of 100 N-body accretion simulations with high pressure-temperature metal-silicate partitioning experiments. We explored how various aspects of accretion and core formation influence the resulting core and mantle chemistry: depth of equilibration, amounts of metal and silicate that equilibrate, initial distribution of oxidation states in the disk, temperature distribution in the planet, and target:impactor ratio of equilibrating silicate. Virtually all sets of model parameters that are able to reproduce the Earth's mantle composition result in at least several weight percent of both silicon and oxygen in the core, with more silicon than oxygen. This implies that the core's light element budget may be dominated by these elements, and is consistent with ≤1-2 wt% of other light elements. Reproducing geochemical and geophysical constraints requires that Earth formed from reduced materials that equilibrated at temperatures near or slightly above the mantle liquidus during accretion. The results indicate a strong tradeoff between the compositional effects of the depth of equilibration and the amounts of metal and silicate that equilibrate, so these aspects should be targeted in future studies aiming to better understand core formation conditions. Over the range of allowed parameter space, core and mantle compositions are most sensitive to these factors as well as stochastic variations in what the planet accreted as a function of time, so tighter constraints on these parameters will lead to an improved understanding of Earth's core composition.
Heat flow, deep formation temperature and thermal structure of the Tarim Basin, northwest China
NASA Astrophysics Data System (ADS)
Liu, Shaowen; Lei, Xiao; Feng, Changge; Li, Xianglan
2016-04-01
Geothermal regime of a sedimentary basin not only provides constraint on understanding the basin formation and evolution, but also offers fundamental parameters for hydrocarbon resources assessment. As one of three Precambrian blocks in China, the Tarim craton is also a current hydrocarbon exploration target where the largest sedimentary basin (Tarim Basin) develops with great potential. Although considerable advancement of geothermal regime of this basin has been made during the past decades, nearly all the temperature data in previous studies are from the exploration borehole formation testing temperatures. Recently, we have conducted the steady-state temperature logging in the Tarim basin, and measured abundant rock thermal properties, enabling us to re-visit the thermal regime of this area with more confidence. Our results show that the present-day geothermal gradients for the Tarim Basin vary from 23 K/km to 27 K/km, with a mean of 22 K/km; the values of heat flow range from 40 mW/m2 to 49 mW/m2, with a mean of 43 mW/m2. These new data confirmed that the Tarim Basin has relatively low heat flow and shares similar geothermal regime with other Precambrian cratons in the world. In addition, the new temperatures from the steady-state logs are larger than the bottom hole temperatures (BHT) as 22 degree Celsius, indicating the thermal non-equilibrium for the BHTs used in previous studies. Spatial distribution of the estimated formation temperatures-at-depth of 1~5km within the basin is similar and mainly controlled by crystalline basement pattern. Generally, the temperatures at the depth of 1km range from 29 to 41 degree Celsius, with a mean of 35 degree Celsius; while the temperatures at 3km vary from 63 to 100 degree Celsius, and the mean is 82 degree Celsius; at 5km below the surface, the temperatures fall into a range between 90 and 160 degree Celsius, with a mean of 129 degree Celsius. We further proposed the long-term low geothermal background and large burial depth are the favorable conditions for hydrocarbon generation and preservation. As far as heat budget of the Tarim Basin is concerned, the radiogenic heat from the sedimentary cover accounts only for 20 percent of the surface heat flow (~9 mW/m2), while the mantle heat flow is estimated to be low as 6~15 mW/m2; this indicates the dominant contribution of crustal radiogenic heat to the observed heat flow. Any variations in surface heat flow for the Tarim Basin can be due only to changes in crustal heat production. Thermal contrast between the Tarim Basin and Tibet Plateau, represented by a difference in surface heat flow and deep crustal temperature, is remarkable. This inherited thermal contrast can be traced as far as before the India-Asia collision. Moreover, the lithosphere beneath the Tarim Basin is sufficiently strong to resist the gravitational potential energy difference and tectonic forces from Tibet. The observed thermal and rheological contrast accounts for the differential Cenozoic deformation in the Tarim Basin and adjacent areas.
NASA Astrophysics Data System (ADS)
Lagarrigue, S. C.; Elgueta, S.; Arancibia, G.; Morata, D.; Sanchez, J.; Rojas, L.
2017-12-01
Low enthalpy geothermal energy technologies are being developed around the world as part of policies to replace the use of conventional sources of energy by renewable ones. The reuse of abandoned oil and gas wells in sedimentary basins, whose reservoirs are saturated with water at temperatures above 120°C, is of increasing interest due to the low initial cost.In Chile, interest in applying this technology is focused on the Magallanes Basin (Austral Basin in Argentina) in the extreme south of the country, where important hydrocarbon deposits have been exploited for more than six decades with more than 3,500 wells drilled to depths of over 4,000m. Hydrocarbons have been extracted mainly from the Upper Jurassic to lowermost Cretaceous Springhill Formation, which includes sandstone lithofacies with porosities of 12% to 19% and permeability of 10mD and 1100mD. This formation has been drilled mainly at depths of 1500m to 3000m, the estimated geothermal gradient in the zone is 4.9 °C/100m with well bottom temperature measurements oscillating between 60° and 170°C, sufficient for district heating, and even, electricity generation by means of ORC technologies.To understand in detail the behavior and distribution of the different lithofacies of the Springhill Formation in the Sombrero Oil and Gas Field, sedimentological and geological 3D models have been generated from existing well logs and seismic data. To comprehend the quality of the reservoirs on the other hand, many petrophysical studies of drill core samples representative of the different lithofacies, complemented by electric well log interpretations, were carried out. Results confirm the existence of at least two quartz-rich sandstone lithofacies as potential geothermal reservoirs. In the principal settlement in this area, Cerro Sombrero township (1,800 population), the annual average temperature is 6.4°C, requiring constant domestic heating which, at present comes exclusively from natural gas. The study shows the feasibility of obtaining low enthalpy geothermal energy from currently abandoned oil wells that reach 2000 m depth.This work is a contribution to the FONDAP-CONICYT 15090013 Project.
NASA Astrophysics Data System (ADS)
Becker, K.; Davis, E.; Heesemann, M.; McGuire, J. J.; Collins, J. A.; O'Brien, J. K.; von der Heydt, K.
2017-12-01
We report the configuration of and initial results from a 24-thermistor cable installed to 268 m below seafloor (mbsf) in IODP Hole U1364A in the frontal accretionary prism of the Cascadia subduction zone. The thermistor array spans the gas hydrate stability zone and a clear bottom-simulating reflector at 225-230 mbsf. The thermistor string was deployed in July 2016 along with a seismic-strain observatory into the cased section of a pressure-monitoring Advanced CORK (ACORK) that had been installed in 2010 during IODP Expedition 328. Formation pressures are monitored via permeable screens on the outside of solid steel casing that is sealed at the bottom by a bridge plug and cement up to 302 mbsf. All three observatory systems were connected to the Ocean Networks Canada NEPTUNE cabled observatory Clayoquot Slope node in June of 2017, with the thermistor temperatures being logged by ONC every minute. The thermistor array was designed with concentrated vertical spacing around the BSR and two pressure-monitoring screens at 203 and 244 mbsf, with wider thermistor spacing elsewhere to document the geothermal state up to seafloor. The initial six weeks of data logged via the ONC connection show a generally linear temperature gradient, with temperatures of about 15.8°C at the BSR depth, consistent with methane hydrate stability at that depth and pressure. Sensor temperatures at most depths are quite stable over this period, with the exceptions of two sensors at 76 and 256 mbsf that show slowly rising temperatures; these could be due to cellular convection of borehole fluids, sensor degradation, or formation processes, but this requires a longer time series to resolve. We will report updated results after four more months of data recording through November 2017, along with any correlations to the pressure records. The data are freely available to all registered ONC users via the ONC data management and archiving system.
A gas sampling system for withdrawing humid gases from deep boreholes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousseau, J.P.; Thordarson, W.; Kurzmack, M.A.
A gas sampling system, designed to withdraw nearly vapor-saturated gases (93 to 100% relative humidity) from deep, unsaturated zone boreholes, was developed by the U.S. Geological Survey for use in the unsaturated zone borehole instrumentation and monitoring program at Yucca Mountain, Nye County, Nevada. This gas sampling system will be used to: (1) sample formation rock gases in support of the unsaturated zone hydrochemical characterization program; and (2) verify downhole, thermocouple psychrometer measurements of water potential in support of the unsaturated zone borehole instrumentation and monitoring program. Using this sampling system, nearly vapor-saturated formation rock-gases can be withdrawn from deepmore » boreholes without condensing water vapor in the sampling tubes, and fractionating heavy isotopes of oxygen, hydrogen, and carbon. The sampling system described in this paper uses a dry carrier-gas (nitrogen) to lower the dew point temperature of the formation rock-gas at its source. Mixing of the dry carrier gas with the source gas takes place inside a specially designed downhole instrument station apparatus (DISA). Nitrogen inflow is regulated in a manner that lowers the dew point temperature of the source gas to a temperature that is colder than the coldest temperature that the mixed gas will experience in moving from warmer, deeper depths, to colder, shallower depths near the land surface. A test of this gas sampling system was conducted in December, 1992, in a 12.2 meter deep borehole that was instrumented in October, 1991. The water potential calculated using this system reproduced in-situ measurements of water potential to within five percent of the average value, as recorded by two thermocouple psychrometers that had been in operation for over 12 months.« less
NASA Astrophysics Data System (ADS)
Hills, D. J.; Osborne, T. E.; McIntyre, M. R.; Pashin, J. C.
2011-12-01
The Geological Survey of Alabama (GSA) is expanding its efforts to collect, develop, maintain, and analyze statewide geothermal data and to make this information widely and easily accessible to the public through the National Geothermal Data System. The online availability of this data will aid in the effective development of geothermal energy applications and reduce the risks associated with the initial stages of geothermal project development. To this end, the GSA is participating in a collaborative project that the Arizona Geological Survey is coordinating in cooperation with the Association of American State Geologists and with the support of the U.S. Department of Energy as part of the American Reinvestment and Recovery Act. Wells drilled for the exploration and production of hydrocarbons are the primary sources of geothermal data in Alabama. To date, more than 1,200 wells in coalbed methane (CBM) fields in the Black Warrior Basin (BWB) have been examined, in addition to over 500 conventional wells in the basin. Pottsville Formation (Pennsylvanian) bottom-hole temperatures (BHTs) range from less than 80°F to more than 140°F in wells reaching total depth between 1,000 and 6,000 feet (ft). Temperature and depth correlate with a coefficient of determination (r2) of 0.72, reflecting significant variation of the modern geothermal gradient. Mapping and statistical analysis confirm that geothermal gradient in the CBM fairway is typically between 6 and 12°F/1,000 ft. BHTs in the conventional wells penetrating the BWB show even greater variation, with temperature and depth correlating with an r2 of only 0.27. This variability owes to numerous factors, including stratigraphy, lithology, thermal conductivity, and geothermal gradient. Indeed, these wells reach total depth between 500 and 12,000 ft in carbonate and siliciclastic formations ranging in age from Cambrian to Mississippian. The Cambrian section is dominated by low conductivity shale, whereas the Ordovician-Mississippian section contains mainly high-conductivity carbonate. The Upper Mississippian, by contrast, includes complexly interstratified carbonate and siliciclastic rock types with variable thermal conductivity. The Gulf Coast basin of southwest Alabama contains numerous wells penetrating a Mesozoic stratigraphic section that is between 12,000 and 22,000 ft thick. Most wells reach total depth in Jurassic carbonate and sandstone or in Upper Cretaceous sandstone, and the deepest wells have BHTs greater than 400°F. Temperature readings are available at multiple depths for numerous wells, due to multiple log runs. These wells are particularly valuable owing to the availability of data from formations that are not reservoirs. Geothermal gradient is affected by geopressure, which is typically present below 10,000 ft. Gradient is further affected by a thick evaporite section, which can include more than 3,000 ft of salt in the Jurassic section. Thermal data from these wells are invaluable for characterizing petroleum systems and for identifying zones of warm water that can be used as geothermal energy sources.
NASA Astrophysics Data System (ADS)
Tanikawa, W.; Tadai, O.; Morita, S.; Lin, W.; Yamada, Y.; Sanada, Y.; Moe, K.; Kubo, Y.; Inagaki, F.
2014-12-01
Heat transport properties such as thermal conductivity, heat capacity, and thermal diffusivity are significant parameters that influence on geothermal process in sedimentary basins at depth. We measured the thermal properties of sediment core samples at off-Shimokita basin obtained from the IODP Expedition 337 and Expedition CK06-06 in D/V Chikyu shakedown cruise. Overall, thermal conductivity and thermal diffusivity increased with depth and heat capacity decreased with depth, although the data was highly scattered at the depth of approximately 2000 meters below sea floor, where coal-layers were formed. The increase of thermal conductivity is mainly explained by the porosity reduction of sediment by the consolidation during sedimentation. The highly variation of the thermal conductivity at the same core section is probably caused by the various lithological rocks formed at the same section. Coal shows the lowest thermal conductivity of 0.4 Wm-1K-1, and the calcite cemented sandstone/siltstone shows highest conductivity around 3 Wm-1K-1. The thermal diffusivity and heat capacity are influenced by the porosity and lithological contrast as well. The relationship between thermal conductivity and porosity in this site is well explained by the mixed-law model of Maxwell or geometric mean. One dimensional temperature-depth profile at Site C0020 in Expedition 337 estimated from measured physical properties and radiative heat production data shows regression of thermal gradient with depth. Surface heat flow value was evaluated as 29~30 mWm-2, and the value is consistent with the heat flow data near this site. Our results suggest that increase of thermal conductivity with depth significantly controls on temperature profile at depth of basin. If we assume constant thermal conductivity or constant geothermal gradient, we might overestimate temperature at depth, which might cause big error to predict the heat transport or hydrocarbon formation in deepwater sedimentary basins.
Effect of evaporative surface cooling on thermographic assessment of burn depth
NASA Technical Reports Server (NTRS)
Anselmo, V. J.; Zawacki, B. E.
1977-01-01
Differences in surface temperature between evaporating and nonevaporating, partial- and full-thickness burn injuries were studied in 20 male, white guinea pigs. Evaporative cooling can disguise the temperature differential of the partial-thickness injury and lead to a false full-thickness diagnosis. A full-thickness burn with blister intact may retain enough heat to result in a false partial-thickness diagnosis. By the fourth postburn day, formation of a dry eschar may allow a surface temperature measurement without the complication of differential evaporation. For earlier use of thermographic information, evaporation effects must be accounted for or eliminated.
NASA Astrophysics Data System (ADS)
Santini, M. F.; Souza, R.; Wainer, I.; Muelbert, M.; Hindell, M.
2013-05-01
The use of marine mammals as autonomous platforms for collecting oceanographic data has revolutionized the understanding of physical properties of low or non-sampled regions of the polar oceans. The use of these animals became possible due to advancements in the development of electronic devices, sensors and batteries carried by them. Oceanographic data collected by two southern elephant seals (Mirounga leonina) during the Fall of 2008 were used to infer the sea-ice formation rate in the region adjacent to the Wilkins Ice Shelf, west of the Antarctic Peninsula at that period. The sea-ice formation rate was estimated from the salt balance equation for the upper (100 m) ocean at a daily frequency for the period between 13 February and 20 June 2008. The oceanographic data collected by the animals were also used to present the temporal variation of the water temperature and salinity from surface to 300 m depth in the study area. Sea ice formation rate ranged between 0,087 m/day in early April and 0,008 m/day in late June. Temperature and salinity ranged from -1.84°C to 1.60°C and 32.85 to 34.85, respectively, for the upper 300 m of the water column in the analyzed period. The sea-ice formation rate estimations do not consider water advection, only temporal changes of the vertical profile of salinity. This may cause underestimates of the real sea-ice formation rate. The intense reduction of sea ice rate formation from April to June 2008 may be related to the intrusion of the Circumpolar Depth Water (CDW) into the study region. As a consequence of that we believe that this process can be partly responsible for the disintegration of the Wilkins Ice Shelf during the winter of 2008. The data presented here are considered a new frontier in physical and biological oceanography, providing a new approach for monitoring sea ice changes and oceanographic conditions in polar oceans. This is especially valid for regions covered by sea ice where traditional instruments deployed by research vessels cannot be used.
Aerated drilling cutting transport analysis in geothermal well
NASA Astrophysics Data System (ADS)
Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar
2017-12-01
Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.
NASA Astrophysics Data System (ADS)
Passey, B. H.; Shenton, B.; Grossman, E. L.; Henkes, G. A.; Laya, J. C.; Perez-Huerta, A.
2014-12-01
Constraining the thermal histories of sedimentary basins is fundamental to a range of geologic applications including tectonics, petroleum system analysis, and the genesis of ore deposits. Carbonate rocks can serve as archives of basin thermal histories through solid-state reordering of their 13C-18O, or 'clumped isotope', bonds at elevated burial temperatures. Here we present one of the first applied studies of carbonate clumped isotope reordering to explore the diagenetic and thermal histories of exhumed brachiopods, crinoids, cements, and host rock in the Permian Palmarito Formation, Venezuela and the Carboniferous Bird Spring Formation, Nevada, USA. Carbonate components in the Palmarito Formation, buried to ~4 km depth, yield statistically indistinguishable clumped isotope temperatures (T(Δ47)) ranging from 86 to 122 °C. Clumped isotope temperatures of components in the more deeply buried Bird Spring Formation (>5 km), range from ~100 to 165 °C and differ by component type, with brachiopods and pore-filling cements yielding the highest T(Δ47) (mean = 153 and 141 °C, respectively) and crinoids and host rock yielding significantly cooler T(Δ47) (mean = 103 and 114 °C). New high-resolution thermal histories are coupled with kinetic models to predict the extent of solid-state C-O bond reordering during burial and exhumation for both sites. Application of these models suggests that brachiopods in the Palmarito Formation experienced partial bond reordering without complete equilibration of clumped isotopes at maximum burial temperature. In contrast, clumped isotope bonds of brachiopods from the Bird Spring Formation appear to have completely equilibrated at maximum burial temperature, and now reflect blocking temperatures 'locked-in' during cooling. The 40-50 °C cooler clumped isotope temperatures measured in Bird Spring Formation crinoids and host rock can be explained by both recrystallization and cementation during shallow burial and a greater inherent resistance to solid-state reordering than brachiopods.
Gas cluster ion beam assisted NiPt germano-silicide formation on SiGe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozcan, Ahmet S., E-mail: asozcan@us.ibm.com; Lavoie, Christian; Jordan-Sweet, Jean
We report the formation of very uniform and smooth Ni(Pt)Si on epitaxially grown SiGe using Si gas cluster ion beam treatment after metal-rich silicide formation. The gas cluster ion implantation process was optimized to infuse Si into the metal-rich silicide layer and lowered the NiSi nucleation temperature significantly according to in situ X-ray diffraction measurements. This novel method which leads to more uniform films can also be used to control silicide depth in ultra-shallow junctions, especially for high Ge containing devices, where silicidation is problematic as it leads to much rougher interfaces.
Constraining the Depth of the Martian Magma Ocean during Core Formation using Element Partitioning
NASA Astrophysics Data System (ADS)
Wijbrans, Ineke; Tronche, Elodie; van Westrenen, Wim
2010-05-01
The depth of a planetary magma ocean places first order constraints on the thermal state of a young planet. For the Earth, the depth of the magma ocean is mostly constrained by the pressure-temperature conditions at which Fe-rich metal last equilibrated with the bulk silicate Earth (BSE). These equilibration conditions are thought to correspond to the conditions at the terrestrial magma ocean floor, as this is where the metal ponds before sinking to the core. This depth is estimated by combining the BSE contents of siderophile (iron-loving) elements with metal-silicate partition coefficients (D) at high temperatures and pressures [e.g. 1]. The extent and depth of a magma ocean on Mars are hotly debated. In the case of Mars, the sulphur content of the core is significantly higher than for Earth (10-16 wt% sulphur [2]). The presence of sulphur has been shown to have an effect on the metal-silicate partitioning of some siderophile elements [3], but the current data set is insufficient to be of use for direct application to Martian conditions. We have started an experimental programme to constrain siderophile element partition coefficients for Ni and Co between metal and silicate as a function of temperature, pressure and sulphur content in the metal-alloy. For the silicate composition we used a newly proposed bulk silicate Mars (BSM) [4]. We chose the above-mentioned siderophile elements because their BSM concentrations are reasonably known from studies of Martian meteorites. Our aim is to derive new constraints on the depth of the Martian magma ocean and the chemistry accompanying Martian core formation. Experimental methods: The starting material consisted of a 1:1 mixture of silicate glass + quench crystals in the FeO-CaO-MgO-Al2O3-SiO2 (FCMAS) system with a composition based on [4], and metal consisting of FeS, Fe, Ni, Co, FeP3. Four different metal compositions were used with sulphur contents of 0, 5, 15 and 25wt% respectively. Experiments were made in an end-loaded piston-cylinder using graphite-lined Pt capsules. Experiments were performed at 1, 2 and 3 GPa, and at temperatures of 1600 and 1650 °C, for 5hrs. Electron microprobe was used to determine the concentration of major and minor elements in each phase. Results: Preliminary results show that the sulfur content has an effect on the siderophile element partitioning, even within this small range of pressures and temperatures. With these experiments made with realistic conditions for a Martian magma ocean, we will present a new parameterization of metal-silicate D (Ni and Co) depending on pressure, temperature and sulfur content. References: [1] Righter (2003) Ann. Rev. Earth Planet. Sci. 31, 135-174 [2] Schubert (1990) JGR 95, 14095-14104. [3] Jana and Walker (1997) GCA 61, 5255-5277. [4] Khan and Connolly (2008) JGR, 113, E07003.
NASA Astrophysics Data System (ADS)
Parman, S. W.; Dann, J. C.; Grove, T. L.; de Wit, M. J.
1997-08-01
This paper provides new constraints on the crystallization conditions of the 3.49 Ga Barberton komatiites. The compositional evidence from igneous pyroxene in the olivine spinifex komatiite units indicates that the magma contained significant quantities of dissolved H2O. Estimates are made from comparisons of the compositions of pyroxene preserved in Barberton komatiites with pyroxene produced in laboratory experiments at 0.1 MPa (1 bar) under anhydrous conditions and at 100 and 200 MPa (1 and 2 kbar) under H2O-saturated conditions on an analog Barberton composition. Pyroxene thermobarometry on high-Ca clinopyroxene compositions from ten samples requires a range of minimum magmatic water contents of 6 wt.% or greater at the time of pyroxene crystallization and minimum emplacement pressures of 190 MPa (6 km depth). Since high-Ca pyroxene appears after 30% crystallization of olivine and spinel, the liquidus H2O contents could be 4 to 6 wt.% H2O. The liquidus temperature of the Barberton komatiite composition studied is between 1370 and 1400°C at 200 MPa under H2O-saturated conditions. When compared to the temperature-depth regime of modern melt generation environments, the komatiite mantle source temperatures are 200°C higher than the hydrous mantle melting temperatures inferred in modern subduction zone environments and 100°C higher than mean mantle melting temperatures estimated at mid-ocean ridges. When compared to previous estimates of komatiite liquidus temperatures, melting under hydrous conditions occurs at temperatures that are ˜ 250°C lower than previous estimates for anhydrous komatiite. Mantle melting by near-fractional, adiabatic decompression takes place in a melting column that spans ˜ 38 km depth range under hydrous conditions. This depth interval for melting is only slightly greater than that observed in modern mid-ocean ridge environments. In contrast, anhydrous fractional melting models of komatiite occur over a larger depth range (˜ 130 km) and place the base of the melting column into the transition zone.
NASA Astrophysics Data System (ADS)
Wang, Meng; Noelle, Daniel J.; Shi, Yang; Le, Anh V.; Qiao, Yu
2018-01-01
Formation of internal short circuit (ISC) may result in catastrophic thermal runaway of lithium-ion battery (LIB). Among LIB cell components, direct contact between cathode and anode current collectors is most critical to the ISC behavior, yet is still relatively uninvestigated. In the current study, we analyze the effect of heterogeneity of current collector on the temperature increase of LIB cells subjected to mechanical abuse. The cathode current collector is modified by surface notches, so that it becomes effectively brittle and the ISC site can be isolated. Results from impact tests on LIB cells with modified current collectors suggest that their temperature increase can be negligible. The critical parameters include the failure strain and the failure work of modified current collector, both of which are related to the notch depth.
NASA Astrophysics Data System (ADS)
Prante, M. R.; Evans, J. P.
2012-12-01
Description and identification of fault-related deformation products that are diagnostic of seismic slip have implications for the energy budget of earthquakes, fault strength, and fault-rock assemblages. We describe tectonic pseduotachylyte, cataclastic rocks, crystal-plastic deformation, and hydrothermal alteration form faults exhumed from seismogenic depths in the Volcanic Lakes area, in northern Sequoia and Kings Canyon National Park, CA, USA. Fault rock protoliths include Mesozoic granite and granodiorite plutonic and limited metasedimentary and metavolcanic rocks. These plutonic and metamorphic rocks are cross-cut by the E-W striking, steeply dipping, left-lateral strike-slip Granite Pass (GPF) and Glacier Lakes faults (GLF). Cross-cutting relationships and microstructural data suggest that the GPF is the oldest fault in the area and preserves evidence for coeval brittle and plastic crystal deformation, and hydrothermal fluid-flow. Tectonic pseudotachylyte from the area has been dated using the 40Ar/39Ar method at 76.6 ± 0.3 Ma; when placed into a thermochronologic framework for the plutonic host rock it can be inferred that the pseudotachylyte formed at depths between 2.4-6.0 km with ambient temperatures between 110-160°C. Exceptionally well preserved tectonic pseudotachylyte from the GLF and GPF contain evidence for a frictional melt origin including: 1) plagioclase spherulites and microlites, 2) injection vein morphology, 3) amygdules, 4) viscous flow banding and folds, and 5) embayed and corroded clasts. Pseudotachylyte from the GPF and GLF is associated with brittle and plastic deformation in the damage zone of the faults. Evidence for plastic deformation includes undulose extinction, deformation lamellae, subgrain development, and grain boundary bulging in quartz; and limited undulose extinction in feldspar. Additionally, abundant hydrothermal alteration and mineralization has been documented in the GPF and GLF fault zones, including, chlorite pseudomorphs after biotite and alteration of mafic phases to epidote, sericite and calcite alteration of albite, and calcite and chlorite filled veins. Cross-cutting calcite veins contain fine-grained calcite with abundant twins up to 20 μm-thick. Multiple pseudotachylyte injection veins and reworked pseudotachylyte in cataclastic rock suggest multiple earthquakes along the GPF and GLF at depths favorable to pseudotachylyte formation. Abundant hydrothermal alteration and cross-cutting calcite veins with thick (> 1 μm) twins is consistent with ambient temperatures between 170 and 200°C. These temperatures are generally consistent with the reported ambient temperature conditions during pseudotachylyte formation. Crystal-plastic deformation of quartz and feldspar in the GPF and GLF zones is consistent with deformation at temperatures between 200-400°C. Frictional melt and associated brittle and plastic deformation, and fluid alteration are presumed to have occurred at similar temperature conditions and may be coeval. These results have important implication for understanding energy sinks associated with seismic slip and the conditions of tectonic pseudotachylyte formation.
Origin of dolomite in Miocene Monterey Shale and related formations in the Temblor Range, California
Friedman, I.; Murata, K.J.
1979-01-01
Dolomites in thick sections of Miocene Monterey Shale and related formations in the Temblor Range of California acquired their isotopic compositions as they formed at shallow depth in the original sediment rich in organic matter, and retained the composition against the vicissitudes of burial diagenesis. The oxygen isotopes of dolomites of successive beds record changes in temperature of bottom water while the carbon isotopes of the same samples indicate changes in the kind of microbial activity (sulfate reduction vs carbohydrate fermentation) that prevailed at shallow depths in the sediment. In an auxiliary study, two samples of dolomite from sediments of Cariaco Basin off Venezuela (DSDP site 147) were found to have ??5C13 of -14.1 and -9.8 per ml PDB, although they occur in a heavy-carbon zone containing bicarbonate as heavy as +8.4 per ml. These dolomites probably originated at shallow depth in the light-carbon zone of microbial sulfate reducers and were buried under later sediments down into the heavy-carbon zone of microbial fermenters of carbohydrates without losing their original light-carbon composition. ?? 1979.
NASA Astrophysics Data System (ADS)
Buongiorno Nardelli, B.; Guinehut, S.; Verbrugge, N.; Cotroneo, Y.; Zambianchi, E.; Iudicone, D.
2017-12-01
The depth of the upper ocean mixed layer provides fundamental information on the amount of seawater that directly interacts with the atmosphere. Its space-time variability modulates water mass formation and carbon sequestration processes related to both the physical and biological pumps. These processes are particularly relevant in the Southern Ocean, where surface mixed-layer depth estimates are generally obtained either as climatological fields derived from in situ observations or through numerical simulations. Here we demonstrate that weekly observation-based reconstructions can be used to describe the variations of the mixed-layer depth in the upper ocean over a range of space and time scales. We compare and validate four different products obtained by combining satellite measurements of the sea surface temperature, salinity, and dynamic topography and in situ Argo profiles. We also compute an ensemble mean and use the corresponding spread to estimate mixed-layer depth uncertainties and to identify the more reliable products. The analysis points out the advantage of synergistic approaches that include in input the sea surface salinity observations obtained through a multivariate optimal interpolation. Corresponding data allow to assess mixed-layer depth seasonal and interannual variability. Specifically, the maximum correlations between mixed-layer anomalies and the Southern Annular Mode are found at different time lags, related to distinct summer/winter responses in the Antarctic Intermediate Water and Sub-Antarctic Mode Waters main formation areas.
Computer simulation of phase separation under a double temperature quench.
Podariu, Iulia; Chakrabarti, Amitabha
2007-04-21
The authors numerically study a two-step quench process in an asymmetric binary mixture. The mixture is first quenched to an unstable state in the two-phase region. After a large phase-separated structure is formed, the authors again quench the system deeper. The second quench induces the formation of small secondary droplets inside the large domains created by the first quench. The authors characterize this secondary droplet growth in terms of the temperature of the first quench as well as the depth of the second one.
Optical Properties of Silver Nanoparticulate Glasses
NASA Astrophysics Data System (ADS)
Evans, Rachel N.; Cannavino, Sarah A.; King, Christy A.; Lamartina, Joseph A.; Magruder, Robert H.; Ferrara, Davon W.
The ion exchange method of embedding metal nanoparticles (NPs) into float glass is an often used technique of fabricating colored glasses and graded-index waveguides. The depth and size of NP formation in the glass depends on the concentration and temperature of metal ions in the molten bath. In this study we explore the dichroic properties of silver metal ion exchange restricted to only one side of a glass microscope slide using reflection and transmission spectroscopy and its dependence on temperature, concentration of silver ions, and length of time in the molten bath.
Magma ocean formation due to giant impacts
NASA Technical Reports Server (NTRS)
Tonks, W. B.; Melosh, H. J.
1993-01-01
The thermal effects of giant impacts are studied by estimating the melt volume generated by the initial shock wave and corresponding magma ocean depths. Additionally, the effects of the planet's initial temperature on the generated melt volume are examined. The shock pressure required to completely melt the material is determined using the Hugoniot curve plotted in pressure-entropy space. Once the melting pressure is known, an impact melting model is used to estimate the radial distance melting occurred from the impact site. The melt region's geometry then determines the associated melt volume. The model is also used to estimate the partial melt volume. Magma ocean depths resulting from both excavated and retained melt are calculated, and the melt fraction not excavated during the formation of the crater is estimated. The fraction of a planet melted by the initial shock wave is also estimated using the model.
NASA Astrophysics Data System (ADS)
Nomeli, Mohammad; Riaz, Amir
2017-11-01
CO2 storage in geological formations is one of the most promising solutions for mitigating the amount of greenhouse gases released into the atmosphere. One of the important issues for CO2 storage in subsurface environments is the sealing efficiency of low-permeable cap-rocks overlying potential CO2 storage reservoirs. A novel model is proposed to find the IFT of the systems (CO2/brine-salt) in a range of temperatures (300-373 K), pressures (50-250 bar), and up to 6 molal salinity applicable to CO2 storage in geological formations through a machine learning-assisted modeling of experimental data. The IFT between mineral surfaces and CO2/brine-salt solutions determines the efficiency of enhanced oil or gas recovery operations as well as our ability to inject and store CO2 in geological formations. Finally, we use the new model to evaluate the effects of formation depth on the actual efficiency of CO2 storage. The results indicate that, in the case of CO2 storage in deep subsurface environments as a global-warming mitigation strategy, CO2 storage capacity are improved with reservoir depth.
Computing Temperatures in Optically Thick Protoplanetary Disks
NASA Technical Reports Server (NTRS)
Capuder, Lawrence F.. Jr.
2011-01-01
We worked with a Monte Carlo radiative transfer code to simulate the transfer of energy through protoplanetary disks, where planet formation occurs. The code tracks photons from the star into the disk, through scattering, absorption and re-emission, until they escape to infinity. High optical depths in the disk interior dominate the computation time because it takes the photon packet many interactions to get out of the region. High optical depths also receive few photons and therefore do not have well-estimated temperatures. We applied a modified random walk (MRW) approximation for treating high optical depths and to speed up the Monte Carlo calculations. The MRW is implemented by calculating the average number of interactions the photon packet will undergo in diffusing within a single cell of the spatial grid and then updating the packet position, packet frequencies, and local radiation absorption rate appropriately. The MRW approximation was then tested for accuracy and speed compared to the original code. We determined that MRW provides accurate answers to Monte Carlo Radiative transfer simulations. The speed gained from using MRW is shown to be proportional to the disk mass.
González-Suárez, Ana; Pérez, Juan J; Berjano, Enrique
2018-04-20
Although accurate modeling of the thermal performance of irrigated-tip electrodes in radiofrequency cardiac ablation requires the solution of a triple coupled problem involving simultaneous electrical conduction, heat transfer, and fluid dynamics, in certain cases it is difficult to combine the software with the expertise necessary to solve these coupled problems, so that reduced models have to be considered. We here focus on a reduced model which avoids the fluid dynamics problem by setting a constant temperature at the electrode tip. Our aim was to compare the reduced and full models in terms of predicting lesion dimensions and the temperatures reached in tissue and blood. The results showed that the reduced model overestimates the lesion surface width by up to 5 mm (i.e. 70%) for any electrode insertion depth and blood flow rate. Likewise, it drastically overestimates the maximum blood temperature by more than 15 °C in all cases. However, the reduced model is able to predict lesion depth reasonably well (within 0.1 mm of the full model), and also the maximum tissue temperature (difference always less than 3 °C). These results were valid throughout the entire ablation time (60 s) and regardless of blood flow rate and electrode insertion depth (ranging from 0.5 to 1.5 mm). The findings suggest that the reduced model is not able to predict either the lesion surface width or the maximum temperature reached in the blood, and so would not be suitable for the study of issues related to blood temperature, such as the incidence of thrombus formation during ablation. However, it could be used to study issues related to maximum tissue temperature, such as the steam pop phenomenon.
Characterization of clay scales forming in Philippine geothermal wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reyes, A.G.; Cardile, C.M.
1989-01-01
Smectite scales occur in 24 out of the 36 blocked wells located in Tongonan, Palinpinon and Bacon-Manito. These comprise 2-85% of the well scales and form at depths of 33-2620 m, where measured and fluid inclusion temperatures are 40-320{sup 0}C. Most, however, occur below the production casing show where temperatures are {ge}230{sup 0}C, often at depths coinciding with aquifers. The clay scales are compositionally and structurally different from the bentonite used in drilling, which is essentially sodium-rich montmorillonite. The clay deposits are expanding, generally disordered, and combine the characteristics of a montmorillonite, saponite and vermiculite in terms of reaction tomore » cationic exchange treatments, structure and composition. Six types of clay scales are identified, but the predominant one, comprising 60-100% of the clay deposits in a well, is Mg- and Fe-rich and referred to as a vermiculitic species. The crystallinity, degree of disorder, textures, optical characteristics, structure and relative amounts of structural Al, Mg and Fe vary with time, temperature and fluid composition, but not with depth and measured pressure. Despite its variance from bentonite characteristics, one of the dominant suggested mechanisms of clay scale formation uses the drilling mud in the well as a substrate, from which the Mg- and Fe-rich clay evolves.« less
Implantation of sodium ions into germanium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korol', V. M., E-mail: vkorol@ctsnet.ru; Kudriavtsev, Yu.
The donor properties of Na atoms introduced by ion implantation into p-Ge with the resistivity 20-40 {Omega} cm are established for the first time. Na profiles implanted into Ge (the energies 70 and 77 keV and the doses (0.8, 3, 30) Multiplication-Sign 10{sup 14} cm{sup -2}) are studied. The doses and annealing temperatures at which the thermoprobe detects n-type conductivity on the sample surface are established. After implantation, the profiles exhibit an extended tail. The depth of the concentration maximum is in good agreement with the calculated mean projected range of Na ions R{sub p}. Annealing for 30 min atmore » temperatures of 250-700 Degree-Sign C brings about a redistribution of Na atoms with the formation of segregation peaks at a depth, which is dependent on the ion dose, and is accompanied by the diffusion of Na atoms to the surface with subsequent evaporation. After annealing at 700 Degree-Sign C less than 7% of the implanted ions remain in the matrix. The shape of the profile tail portions measured after annealing at temperatures 300-400 Degree-Sign C is indicative of the diffusion of a small fraction of Na atoms into the depth of the sample.« less
Dust around the Cool Component of D-Type Symbiotic Binaries
NASA Astrophysics Data System (ADS)
Jurkic, Tomislav; Kotnik-Karuza, Dubravka
2018-04-01
D type symbiotic binaries are an excellent astrophysical laboratory for investigation of the dust properties and dust formation under the influence of theMira stellar wind and nova activity and of the mass loss and mass transfer between components in such a widely separated system. We present a study of the properties of circumstellar dust in symbiotic Miras by use of long-term near-IR photometry and colour indices. The published JHKL magnitudes of o Ceti, RX Pup, KM Vel, V366 Car, V835 Cen, RR Tel, HM Sge and R Aqr have been collected, analyzed and corrected for short-term variations caused by Mira pulsations. Assuming spherical temperature distribution of the dust in the close neighbourhood of the Mira, the DUSTY code was used to solve the radiative transfer in order to determine the dust temperature and its properties in each particular case. Common dust properties of the symbiotic Miras have been found, suggesting similar conditions in the condensation region of the studied symbiotic Miras. Silicate dust with the inner dust shell radius determined by the dust condensation and with the dust temperature of 900-1200 K can fully explain the observed colour indices. R Aqr is an exception and showed lower dust temperature of 650 K. Obscuration events visible in light curves can be explained by variable dust optical depth with minimal variations of other dust properties. More active symbioticMiras that underwent recent nova outbursts showed higher dust optical depths and larger maximum grain sizes of the order of μm, which means that the post-nova activity could stimulate the dust formation and the grain growth. Optically thicker dust shells and higher dust condensation temperatures have been found in symbiotic Miras compared to their single counterparts, suggesting different conditions for dust production.
NASA Astrophysics Data System (ADS)
Castro, A. E.; Spear, F. S.; Kohn, M. J.
2017-12-01
Recent work demonstrates that shear heating, which is required for explaining fore-arc heat flow, reconciles thermal models with pressure-temperature (P-T) conditions determined from exhumed metamorphic rocks, i.e. exhumed rocks are representative of normal subduction. However, the range of subduction conditions on Earth (age, angle and rate of subducting plate, character of overriding plate, coefficient of friction, etc.) implies a ≥250 °C range of corresponding temperatures at the depth of the seismic-aseismic transition (SAT), which is consistently observed at 40-60 km in subduction zones worldwide. Here we show that the predicted rheologies and mineral stabilities for 3 common rock types fail to explain the global consistency of the SAT depth, and we propose that mechanical removal of the weakest rocks is required. Using either realistic thermal models, or P-T conditions recorded by exhumed metamorphic rocks, a substantial subset of depths corresponding with any single petrologic or rheological process falls outside the relatively restricted 40-60 km depth of the SAT. For example, a thermal weakening mechanism (the brittle-ductile transition) implies a wide range of depths, regardless of proposed T (e.g. 20-30 km (300 °C), 25-60 km (400 °C), 35 to >85 km (500 °C), etc). Similarly, individual dehydration reactions span a larger range of depths than observed for the SAT; for example, chlorite-out (metapelites: 35 to >85 km; metabasalts: 40 to >85 km), brucite-out (35-75 km) and serpentine/talc-out (50 to >80 km). The failure of a single petrologic and rheological trigger for these characteristic rocks to produce a consistent SAT depth implies that these rocks do not control the SAT, and consequently must not be abundant at depths below the SAT. That is, these hydrated, weak, and buoyant rocks must be squeezed out of the subduction system, although subduction of discontinuous blobs or lenses to greater depth, e.g. to feed arc volcanoes, may occur. The SAT instead may represent progressive strengthening of the subduction interface through mechanical exclusion of weak rocks and formation of stiffer minerals with increasing temperature and depth. Ultimately, as the strengths of the slab and mantle wedge converge at c. 80 km depth, mechanical coupling occurs, driving mantle wedge convection.
[Study of New Micropore RF system on Lesion Formation and Complications].
Song, Yuwen; Xu, Xiulin; Cai, Yameng
2017-07-30
To study the safety and effectiveness of a new type of micropore ablation catheter in vitro ablation system, and to provide reference for clinical practice. To evaluate two kinds of catheter in cardiac tissue ablation depth, tissue temperature and thrombosis situation by the same RF system. The power set 25 W, There was no significant difference in ablation depth between the two groups, and no Pop and thrombosis occurred. When the power is more than 40 W, two groups occurred more Pop and thrombosis. When using high power for Cardiac RF ablation, doctors should pay more attention to complications and thrombosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchinson, Trevor M.; Hutchinson, Trevor M.; Awe, Thomas James
The first direct observation of the stratified electrothermal instability on the surface of thick metal is reported. Aluminum rods coated with 70 μm Parylene-N were driven to 1 MA in approximately 100 ns, with the metal thicker than the skin depth. The dielectric coating suppressed plasma formation, enabling persistent observation of discrete azimuthally-correlated stratified structures perpendicular to the current. Strata amplitudes grow rapidly, while their Fourier spectrum shifts toward longer wavelength. Assuming blackbody emission, radiometric calculations indicate strata are temperature perturbations that grow exponentially with rate γ = 0.04 ns -1 in 3000- 10,000 K aluminum.
Nitridation of silicon by nitrogen neutral beam
NASA Astrophysics Data System (ADS)
Hara, Yasuhiro; Shimizu, Tomohiro; Shingubara, Shoso
2016-02-01
Silicon nitridation was investigated at room temperature using a nitrogen neutral beam (NB) extracted at acceleration voltages of less than 100 V. X-ray photoelectron spectroscopy (XPS) analysis confirmed the formation of a Si3N4 layer on a Si (1 0 0) substrate when the acceleration voltage was higher than 20 V. The XPS depth profile indicated that nitrogen diffused to a depth of 36 nm for acceleration voltages of 60 V and higher. The thickness of the silicon nitrided layer increased with the acceleration voltages from 20 V to 60 V. Cross-sectional transmission electron microscopy (TEM) analysis indicated a Si3N4 layer thickness of 3.1 nm was obtained at an acceleration voltage of 100 V. Moreover, it was proved that the nitrided silicon layer formed by the nitrogen NB at room temperature was effective as the passivation film in the wet etching process.
NASA Astrophysics Data System (ADS)
Friðleifsson, Guðmundur Ó.; Elders, Wilfred A.; Zierenberg, Robert A.; Stefánsson, Ari; Fowler, Andrew P. G.; Weisenberger, Tobias B.; Harðarson, Björn S.; Mesfin, Kiflom G.
2017-11-01
The Iceland Deep Drilling Project research well RN-15/IDDP-2 at Reykjanes, Iceland, reached its target of supercritical conditions at a depth of 4.5 km in January 2017. After only 6 days of heating, the measured bottom hole temperature was 426 °C, and the fluid pressure was 34 MPa. The southern tip of the Reykjanes peninsula is the landward extension of the Mid-Atlantic Ridge in Iceland. Reykjanes is unique among Icelandic geothermal systems in that it is recharged by seawater, which has a critical point of 406 °C at 29.8 MPa. The geologic setting and fluid characteristics at Reykjanes provide a geochemical analog that allows us to investigate the roots of a mid-ocean ridge submarine black smoker hydrothermal system. Drilling began with deepening an existing 2.5 km deep vertical production well (RN-15) to 3 km depth, followed by inclined drilling directed towards the main upflow zone of the system, for a total slant depth of 4659 m ( ˜ 4.5 km vertical depth). Total circulation losses of drilling fluid were encountered below 2.5 km, which could not be cured using lost circulation blocking materials or multiple cement jobs. Accordingly, drilling continued to the total depth without return of drill cuttings. Thirteen spot coring attempts were made below 3 km depth. Rocks in the cores are basalts and dolerites with alteration ranging from upper greenschist facies to amphibolite facies, suggesting that formation temperatures at depth exceed 450 °C. High-permeability circulation-fluid loss zones (feed points or feed zones) were detected at multiple depth levels below 3 km depth to bottom. The largest circulation losses (most permeable zones) occurred between the bottom of the casing and 3.4 km depth. Permeable zones encountered below 3.4 km accepted less than 5 % of the injected water. Currently, the project is attempting soft stimulation to increase deep permeability. While it is too early to speculate on the energy potential of this well and its economics, the IDDP-2 is a milestone in the development of geothermal resources and the study of hydrothermal systems. It is the first well that successfully encountered supercritical hydrothermal conditions, with potential high-power output, and in which on-going hydrothermal metamorphism at amphibolite facies conditions can be observed. The next step will be to carry out flow testing and fluid sampling to determine the chemical and thermodynamic properties of the formation fluids.
Adiabatic shear mechanisms for the hard cutting process
NASA Astrophysics Data System (ADS)
Yue, Caixu; Wang, Bo; Liu, Xianli; Feng, Huize; Cai, Chunbin
2015-05-01
The most important consequence of adiabatic shear phenomenon is formation of sawtooth chip. Lots of scholars focused on the formation mechanism of sawtooth, and the research often depended on experimental approach. For the present, the mechanism of sawtooth chip formation still remains some ambiguous aspects. This study develops a combined numerical and experimental approach to get deeper understanding of sawtooth chip formation mechanism for Polycrystalline Cubic Boron Nitride (PCBN) tools orthogonal cutting hard steel GCr15. By adopting the Johnson-Cook material constitutive equations, the FEM simulation model established in this research effectively overcomes serious element distortions and cell singularity in high strain domain caused by large material deformation, and the adiabatic shear phenomenon is simulated successfully. Both the formation mechanism and process of sawtooth are simulated. Also, the change features regarding the cutting force as well as its effects on temperature are studied. More specifically, the contact of sawtooth formation frequency with cutting force fluctuation frequency is established. The cutting force and effect of cutting temperature on mechanism of adiabatic shear are investigated. Furthermore, the effects of the cutting condition on sawtooth chip formation are researched. The researching results show that cutting feed has the most important effect on sawtooth chip formation compared with cutting depth and speed. This research contributes a better understanding of mechanism, feature of chip formation in hard turning process, and supplies theoretical basis for the optimization of hard cutting process parameters.
NASA Astrophysics Data System (ADS)
Nielsen, Lars Henrik; Sparre Andersen, Morten; Balling, Niels; Boldreel, Lars Ole; Fuchs, Sven; Leth Hjuler, Morten; Kristensen, Lars; Mathiesen, Anders; Olivarius, Mette; Weibel, Rikke
2017-04-01
Knowledge of structural, hydraulic and thermal conditions of the subsurface is fundamental for the planning and use of hydrothermal energy. In the framework of a project under the Danish Research program 'Sustainable Energy and Environment' funded by the 'Danish Agency for Science, Technology and Innovation', fundamental geological and geophysical information of importance for the utilization of geothermal energy in Denmark was compiled, analyzed and re-interpreted. A 3D geological model was constructed and used as structural basis for the development of a national subsurface temperature model. In that frame, all available reflection seismic data were interpreted, quality controlled and integrated to improve the regional structural understanding. The analyses and interpretation of available relevant data (i.e. old and new seismic profiles, core and well-log data, literature data) and a new time-depth conversion allowed a consistent correlation of seismic surfaces for whole Denmark and across tectonic features. On this basis, new topologically consistent depth and thickness maps for 16 geological units from the top pre-Zechstein to the surface were drawn. A new 3D structural geological model was developed with special emphasis on potential geothermal reservoirs. The interpretation of petrophysical data (core data and well-logs) allows to evaluate the hydraulic and thermal properties of potential geothermal reservoirs and to develop a parameterized numerical 3D conductive subsurface temperature model. Reservoir properties and quality were estimated by integrating petrography and diagenesis studies with porosity-permeability data. Detailed interpretation of the reservoir quality of the geological formations was made by estimating net reservoir sandstone thickness based on well-log analysis, determination of mineralogy including sediment provenance analysis, and burial history data. New local surface heat-flow values (range: 64-84 mW/m2) were determined for the Danish Basin and predicted temperatures were calibrated and validated by borehole temperature observations. Finally, new temperature maps for major geological reservoir formations (Frederikshavn, Haldager Sand, Gassum and Bunter Sandstone/Skagerrak formations) and selected constant depth intervals (1 km, 2 km, etc.) were compiled. In the future, geothermal energy is likely to be a key component in Denmark's supply of energy and integrated into the district heating infrastructures. A new 3-year project (GEOTHERM) under the Innovation Fund Denmark will focus on addressing and removing remaining geological, technical and commercial obstacles. The presented 3D geothermal model will be an important component in more precise assessments of the geothermal resource, production capacity and thermal lifecycle.
NASA Astrophysics Data System (ADS)
Eijt, S. W. H.; Kind, R.; Singh, S.; Schut, H.; Legerstee, W. J.; Hendrikx, R. W. A.; Svetchnikov, V. L.; Westerwaal, R. J.; Dam, B.
2009-02-01
We report positron depth-profiling studies on the hydrogen sorption behavior and phase evolution of Mg-based thin films. We show that the main changes in the depth profiles resulting from the hydrogenation to the respective metal hydrides are related to a clear broadening in the observed electron momentum densities in both Mg and Mg2Ni films. This shows that positron annihilation methods are capable of monitoring these metal-to-insulator transitions, which form the basis for important applications of these types of films in switchable mirror devices and hydrogen sensors in a depth-sensitive manner. Besides, some of the positrons trap at the boundaries of columnar grains in the otherwise nearly vacancy-free Mg films. The combination of positron annihilation and x-ray diffraction further shows that hydrogen loading at elevated temperatures, in the range of 480-600 K, leads to a clear Pd-Mg alloy formation of the Pd catalyst cap layer. At the highest temperatures, the hydrogenation induces a partial delamination of the ˜5 nm thin capping layer, as sensitively monitored by positron depth profiling of the fraction of ortho-positronium formed at interface with the cap layer. The delamination effectively blocks the hydrogen cycling. In Mg-Si bilayers, we investigated the reactivity upon hydrogen loading and heat treatments near 480 K, which shows that Mg2Si formation is fast relative to MgH2. The combination of positron depth profiling and transmission electron microscopy shows that hydrogenation promotes a complete conversion to Mg2Si for this destabilized metal hydride system, while a partially unreacted, Mg-rich amorphous prelayer remains on top of Mg2Si after a single heat treatment in an inert gas environment. Thin film studies indicate that the difficulty of rehydrogenation of Mg2Si is not primarily the result from slow hydrogen dissociation at surfaces, but is likely hindered by the presence of a barrier for removal of Mg from the readily formed Mg2Si.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambers, C.P.
1993-03-01
Sphalerite is associated with very well crystallized kaolinite (VWCK) in geodes, siderite nodules and coal cleats in the Illinois Basin and allows estimation of the temperature of formation of the VWCK using fluid inclusions. The approximate depth of kaolinite growth and the relative timing of coal fracturing can then be ascertained. Sphalerite associated with VWCK was extracted from Mississippian geodes collected near Keokuk, Iowa, and from Pennsylvanian siderite nodules and coal collected in SW Indiana. Inclusions in the sphalerite consist of VWCK; large, negative crystal, two-phase fluid inclusions; small, fracture-related, two-phase fluid inclusions; and organic inclusions. Homogenization temperatures of 89more » C [+-] 10, 115 C [+-] 15, 89 C [+-] 5 were measured for the two-phase inclusions in sphalerite from the geodes, siderite nodules and coal, respectively. Freezing temperatures of the inclusions in the geode and siderite nodule sphalerite were measured at [minus]13.5 C [+-] 0.5 and [minus]9.4 C [+-] 0.2, indicating moderate salinity. Using a geothermal gradient range of 23--36 C/km and an average surface temperature of 20 C, kaolinite and sphalerite probably grew at depths of about 1.9 to 4.1 km. In SW Indiana, VWCK occurs in vertical, non-penetrative joints in vitrinite layers. Penetrative joint sets rarely contain VWCK. At nearly all of the 28 sites studied, two sets of barren cleats occur oriented N10W to NSE and N80E to N95E. The orientation of barren, penetrative cleats shows that the maximum horizontal stress rotated CW from the earlier stress field. Rare VWCK in the late cleats suggests they also formed at depth after the thermal maxima.« less
Superhot Drilling in Iceland, the Experience of the Iceland Deep Drilling Project.
NASA Astrophysics Data System (ADS)
Elders, W. A.; Friðleifsson, G. Ó.; Zierenberg, R. A.; Fowler, A. P.
2017-12-01
The Iceland Deep Drilling Project aims to improve geothermal economics by producing supercritical fluids (www.iddp.is). Supercritical wells could yield an order of magnitude more usable energy than that from conventional geothermal wells because of higher enthalpy and enhanced flow properties. In 2009, the IDDP-1 well failed to reach supercritical conditions in the Krafla caldera in NE Iceland, after encountering rhyolite magma at only 2.1 km depth. The completed geothermal well became the world's hottest and produced superheated steam with a wellhead temperature of 452°C and flow sufficient to generate 35 MWe. The IDDP next moved SW to the Reykjanes Peninsula, the landward extension of the Mid-Atlantic Ridge, where it is possible to study an analog of the roots of a black smoker. Reykjanes is unique among Icelandic geothermal systems in being recharged by seawater, which has a critical point of 406°C at 298 bars. Drilling began by deepening an existing 2.5 km deep production well to 3 km depth, and then angling it towards the main upflow zone of the system, for a total slant depth of 4,659 m. Total circulation losses were encountered below 3 km that could not be cured by lost circulation materials or by multiple cement jobs. Accordingly, drilling continued to total depth without return of drill cuttings. We attempted 13 core runs below 3 km depth, only half of which recovered core. The cores are basalts and dolerites with alteration ranging from lower greenschist facies to lower amphibolite facies, suggesting formation temperatures >450°C. After the end of drilling in January 2017, following only six days of heating, supercritical conditions (426°C at 340 bars) were measured in the well at a depth of 4.5 km. The well has not yet been allowed to equilibrate to full in situ temperature. A perforated liner was inserted to 4,570 m, depth to facilitate temperature cycling to enhance permeability at depth through thermal cracking. In 2018 this will be followed by a flow test and eventual production of the well. The project is co-funded by the DEEPEGS project (EU H2020), HS Orka (the field operator), Statoil, the IDDP consortium, and the ICDP. Planning is underway to drill IDDP-3 at Hellisheidi.
GIS Well Temperature Data from the Roosevelt Hot Springs, Utah FORGE Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gwynn, Mark; Hill, Jay; Allis, Rick
This is a GIS point feature shapefile representing wells, and their temperatures, that are located in the general Utah FORGE area near Milford, Utah. There are also fields that represent interpolated temperature values at depths of 200 m, 1000 m, 2000 m, 3000 m, and 4000 m. in degrees Fahrenheit. The temperature values at specific depths as mentioned above were derived as follows. In cases where the well reached a given depth (200 m and 1, 2, 3, or 4 km), the temperature is the measured temperature. For the shallower wells (and at deeper depths in the wells reaching onemore » or more of the target depths), temperatures were extrapolated from the temperature-depth profiles that appeared to have stable (re-equilibrated after drilling) and linear profiles within the conductive regime (i.e. below the water table or other convective influences such as shallow hydrothermal outflow from the Roosevelt Hydrothermal System). Measured temperatures/gradients from deeper wells (when available and reasonably close to a given well) were used to help constrain the extrapolation to greater depths. Most of the field names in the attribute table are intuitive, however HF = heat flow, intercept = the temperature at the surface (x-axis of the temperature-depth plots) based on the linear segment of the plot that was used to extrapolate the temperature profiles to greater depths, and depth_m is the total well depth. This information is also present in the shapefile metadata.« less
Polycrystalline silicon on tungsten substrates
NASA Technical Reports Server (NTRS)
Bevolo, A. J.; Schmidt, F. A.; Shanks, H. R.; Campisi, G. J.
1979-01-01
Thin films of electron-beam-vaporized silicon were deposited on fine-grained tungsten substrates under a pressure of about 1 x 10 to the -10th torr. Mass spectra from a quadrupole residual-gas analyzer were used to determine the partial pressure of 13 residual gases during each processing step. During separate silicon depositions, the atomically clean substrates were maintained at various temperatures between 400 and 780 C, and deposition rates were between 20 and 630 A min. Surface contamination and interdiffusion were monitored by in situ Auger electron spectrometry before and after cleaning, deposition, and annealing. Auger depth profiling, X-ray analysis, and SEM in the topographic and channeling modes were utilized to characterize the samples with respect to silicon-metal interface, interdiffusion, silicide formation, and grain size of silicon. The onset of silicide formation was found to occur at approximately 625 C. Above this temperature tungsten silicides were formed at a rate faster than the silicon deposition. Fine-grain silicon films were obtained at lower temperatures.
Comparison of artificial intelligence techniques for prediction of soil temperatures in Turkey
NASA Astrophysics Data System (ADS)
Citakoglu, Hatice
2017-10-01
Soil temperature is a meteorological data directly affecting the formation and development of plants of all kinds. Soil temperatures are usually estimated with various models including the artificial neural networks (ANNs), adaptive neuro-fuzzy inference system (ANFIS), and multiple linear regression (MLR) models. Soil temperatures along with other climate data are recorded by the Turkish State Meteorological Service (MGM) at specific locations all over Turkey. Soil temperatures are commonly measured at 5-, 10-, 20-, 50-, and 100-cm depths below the soil surface. In this study, the soil temperature data in monthly units measured at 261 stations in Turkey having records of at least 20 years were used to develop relevant models. Different input combinations were tested in the ANN and ANFIS models to estimate soil temperatures, and the best combination of significant explanatory variables turns out to be monthly minimum and maximum air temperatures, calendar month number, depth of soil, and monthly precipitation. Next, three standard error terms (mean absolute error (MAE, °C), root mean squared error (RMSE, °C), and determination coefficient ( R 2 )) were employed to check the reliability of the test data results obtained through the ANN, ANFIS, and MLR models. ANFIS (RMSE 1.99; MAE 1.09; R 2 0.98) is found to outperform both ANN and MLR (RMSE 5.80, 8.89; MAE 1.89, 2.36; R 2 0.93, 0.91) in estimating soil temperature in Turkey.
On the effectiveness of surface severe plastic deformation by shot peening at cryogenic temperature
NASA Astrophysics Data System (ADS)
Novelli, M.; Fundenberger, J.-J.; Bocher, P.; Grosdidier, T.
2016-12-01
The effect of cryogenic temperature (CT) on the graded microstructures obtained by severe shot peening using surface mechanical attrition treatment (SMAT) was investigated for two austenitic steels that used different mechanisms for assisting plastic deformation. For the metastable 304L steel, the depth of the hardened region increases because CT promotes the formation of strain induced martensite. Comparatively, for the 310S steel that remained austenitic, the size of the subsurface affected region decreases because of the improved strength of the material at CT but the fine twinned nanostructures results in significant top surface hardening.
NASA Astrophysics Data System (ADS)
Ahn, Hyeon-Seon; Sohn, Young Kwan; Lee, Jin-Young; Kim, Jin Cheul
2018-05-01
Paleomagnetic and rock magnetic investigations were performed on a 64-cm-thick section of nonmarine unconsolidated muddy sediment from the Gosan Formation on Jeju Island, Korea. This sediment was recently dated to have been deposited between 22 and 17 kyr BP calibrated, with a sedimentation rate of 13-25 cm/kyr, based on many radiocarbon ages. Interestingly, stepwise alternating field (AF) demagnetization revealed characteristic natural remanent magnetizations with anomalous directions, manifested by marked deviations from the direction of today's axial dipole field, for some separate depth levels. On the other hand, stepwise thermal (TH) demagnetization showed more complex behavior, resulting in the identification of multiple remanence components. For all TH-treated specimens, consistently two different components are predominant: a low-temperature component unblocked below 240-320 °C entirely having normal-polarity apparently within the secular variation range of the Brunhes Chron, and a high-temperature component with unblocking temperatures (Tubs) between 240-320 and 520-580 °C that have anomalous directions, concentrated in the 13-34-cm-depth interval ( 17-19 ka in inferred age) and possibly below 53 cm depth (before 20 ka). Rock magnetic results also infer the dominance of low-coercivity magnetic particles having 300 and 580 °C Curie temperature as remanence carriers, suggestive of (titano)maghemite and/or Ti-rich titanomagnetite and magnetite (or Ti-poor titanomagnetite), respectively. A noteworthy finding is that AF demagnetizations in this study often lead to incomplete separation of the two remanence components possibly due to their strongly overlapping AF spectra. The unusual directions do not appear to result from self-reversal remanences. Then, one interpretation is that the low-temperature components are attributable to post-depositional chemical remanences, associated possibly with the later formation of the mineral phase having Tub 300 °C, whereas the high-temperature components are of primary detrital origin that survived later chemical influence. Accordingly, the unusual directions might record geomagnetic instability within the 17-22 ka period manifested by multiple excursional swings, partly associated with the Tianchi/Hilina Pali excursion. However, further work is needed to verify this interpretation and distinguish it from alternative explanations that invoke rock magnetic complexities as the cause of the unusual directions.[Figure not available: see fulltext.
Hydrothermal Synthesis of Analcime from Kutingkeng Formation Mudstone
NASA Astrophysics Data System (ADS)
Hsiao, Yin-Hsiu; Chen, Kuan-Ting; Ray, Dah-Tong
2015-04-01
In southwest of Taiwan, the foothill located in Tainan-Kaohsiung city is the exposed area of Pliocene strata to early Pleistocene strata. The strata are about a depth of five thousand, named as Kutigkeng Formation. The outcrop of Kutigkeng Formation is typical badlands, specifically called 'Moon World.' It is commonly known as no important economic applications of agricultural land. The mineral compositions of Kutingkeng Formation are quartz, clay minerals and feldspar. The clay minerals consist of illite, clinochlore and swelling clays. To study how the phase and morphology of analcime formed by hydrothermal synthesis were affected, analcime was synthesized from the mudstone of Kutinkeng Formation with microwave hydrothermal reaction was investigated. The parameters of the experiment were the reaction temperature, the concentration of mineralizer, solids/liquid ratio and time. The sodium silicate (Na2SiO3) were used as mineralizer. The results showed that the analcime could be synthesized by hydrothermal reaction above 180° from Kutinkeng Formation mudstone samples. At the highest temperature (240°) of this study, the high purity analcime could be produced. When the concentration of Na2SiO3=3~6M, analcime could be synthesized at 240°. The best solids/liquid ratio was approximate 1 to 5. The hydrothermal reaction almost was completed after 4 hours.
3D video coding: an overview of present and upcoming standards
NASA Astrophysics Data System (ADS)
Merkle, Philipp; Müller, Karsten; Wiegand, Thomas
2010-07-01
An overview of existing and upcoming 3D video coding standards is given. Various different 3D video formats are available, each with individual pros and cons. The 3D video formats can be separated into two classes: video-only formats (such as stereo and multiview video) and depth-enhanced formats (such as video plus depth and multiview video plus depth). Since all these formats exist of at least two video sequences and possibly additional depth data, efficient compression is essential for the success of 3D video applications and technologies. For the video-only formats the H.264 family of coding standards already provides efficient and widely established compression algorithms: H.264/AVC simulcast, H.264/AVC stereo SEI message, and H.264/MVC. For the depth-enhanced formats standardized coding algorithms are currently being developed. New and specially adapted coding approaches are necessary, as the depth or disparity information included in these formats has significantly different characteristics than video and is not displayed directly, but used for rendering. Motivated by evolving market needs, MPEG has started an activity to develop a generic 3D video standard within the 3DVC ad-hoc group. Key features of the standard are efficient and flexible compression of depth-enhanced 3D video representations and decoupling of content creation and display requirements.
Mathematical model of mass transfer at electron beam treatment
NASA Astrophysics Data System (ADS)
Konovalov, Sergey V.; Sarychev, Vladimir D.; Nevskii, Sergey A.; Kobzareva, Tatyana Yu.; Gromov, Victor E.; Semin, Alexander P.
2017-01-01
The paper proposes a model of convective mass transfer at electron beam treatment with beams in titanium alloys subjected to electro-explosion alloying by titanium diboride powder. The proposed model is based on the concept that treatment with concentrated flows of energy results in the initiation of vortices in the melted layer. The formation mechanism of these vortices rooted in the idea that the availability of temperature drop leads to the initiation of the thermo-capillary convection. For the melted layer of metal the equations of the convective heat transfer and boundary conditions in terms of the evaporated material are written. The finite element solution of these equations showed that electron-beam treatment results in the formation of multi-vortex structure that in developing captures all new areas of material. It leads to the fact that the strengthening particles are observed at the depth increasing many times the depth of their penetration according to the diffusion mechanism. The distribution of micro-hardness at depth and the thickness of strengthening zone determined from these data supported the view that proposed model of the convective mass transfer describes adequately the processes going on in the treatment with low-energy high-current electron beam.
Lee, Dongkyoung; Mazumder, Jyotirmoy
2018-04-01
Material properties of copper and aluminum required for the numerical simulation are presented. Electrodes used for the (paper) are depicted. This study describes the procedures of how penetration depth, width, and absorptivity are obtained from the simulation. In addition, a file format extracted from the simulation to visualize 3D distribution of temperature, velocity, and melt pool geometry is presented.
Sub-glacial Origin of the Hot Springs Bay Valley hydrothermal System, Akutan, Alaska
NASA Astrophysics Data System (ADS)
Stelling, P. L.; Tobin, B.; Knapp, P.
2015-12-01
Exploration for geothermal energy in Hot Springs Bay Valley (HSBV) on Akutan Island, Alaska, has revealed a rich hydrothermal history, including what appears to be a stage of peak activity during a significant glacial period. Alteration mineralogy observed in 754 m of drill core recovered from the outflow zone is dominated by chlorite and includes minor smectite clays, a suite of zeolite species and several moderately high-temperature hydrothermal minerals (epidote/clinozoisite, prehnite, adularia and wairakite). The latter minerals each have minimum formation temperatures exceeding 200 oC, and fluid inclusion results in related calcite crystals indicate temperatures of formation to be as high as 275 oC, some 100 oC hotter than the modern boiling point with depth (BPD) curve at that depth (>62 m). In order to maintain liquid temperatures this high, the pressure during mineralization must have been substantially greater (~680 bar), a pressure change equivalent to erosion of ~280 m of rock (ρ=2.5 g/cm3). Although glacial erosion rates are too low (0.034 mm/yr; Bekele et al., 2003) for this amount of erosion to occur in a single glaciation, glacial melting and ablation are substantially more rapid (~100 mm/yr; Bekele et al., 2003; Person et al., 2012). Thus, a more probable scenario than pure erosion is that peak hydrothermal conditions occurred during a large glacial event, with the added pressure from the overlying ice allowing the high temperature minerals to form closer to the ground surface. Subsequent melting of the ice eroded upper tributary valleys and upper levels of the originally smectite-rich alteration assemblage, explaining the paucity of swelling clays in the region. We present mineralogical, fluid inclusion and geochronologic evidence to support these conclusions, and discuss the general implications of sub-glacial hydrothermal system formation and geothermal resource potential. References: Bekele, E., Rostron, B. and Person, M. (2003) Fluid pressure implications of erosional unloading, basin hydrodynamics and glaciation in the Alberta Basin, Western Canada. J. of Geochem. Exploration, 78-79, 143-7. Person, M., Bense, V., Cohen, D. and Banerjee, A, (2012). Models of ice-sheet hydrogeologic interactions: a review. Geofluids, 12, 58-78
Age and paleoenvironment of the imperial formation near San Gorgonio Pass, Southern California
McDougall, K.; Poore, R.Z.; Matti, J.
1999-01-01
Microfossiliferous marine sediments of the Imperial Formation exposed in the Whitewater and Cabazon areas, near San Gorgonio Pass, southern California, are late Miocene in age and were deposited at intertidal to outer neritic depths, and possibly upper bathyal depths. A late Miocene age of 7.4 to >6.04 Ma is based on the ranges of age-diagnostic benthic foraminifers (Cassidulina delicata and Uvigerina peregrina), planktic foraminifers (Globigerinoides obliquus, G. extremus, and Globigerina nepenthes; zones N17-N19), and calcareous nannoplankton (Discoaster brouweri, D. aff. D. surculus, Reticulofenestra pseudoumbilicata, Sphenolithus abies, and S. neoabies; zones CN9a-CN11) coupled with published K/Ar dates from the underlying Coachella Formation (10.1 ?? 1.2 Ma; Peterson, 1975) and overlying Painted Hill Formation (6.04 ?? 0.18 and 5.94 ?? 0.18 Ma; J. L. Morton in Matti and others, 1985 and Matti and Morton, 1993). Paleoecologic considerations (sea-level fluctuations and paleotemperature) restrict the age of the Imperial Formation to 6.5 through 6.3 Ma. Benthic foraminiferal assemblages indicate that the Imperial Formation in the Whitewater and Cabazon sections accumulated at inner neritic to outer neritic (0-152 m) and possibly upper bathyal (152-244 m) depths. Shallowing to inner neritic depths occurred as the upper part of the section was deposited. This sea-level fluctuation corresponds to a global highstand at 6.3 Ma (Haq and others, 1987). Planktic foraminifers suggest an increase in surface-water temperatures upsection. A similar increase in paleotemperatures is interpreted for the North Pacific from 6.5 to 6.3 Ma (warm interval W10 of Barron and Keller, 1983). Environmental contrasts between the Whitewater and Cabazon sections of the Imperial Formation provide evidence for right-lateral displacements on the Banning fault, a late Miocene strand of the San Andreas fault system. The Cabazon section lies south of the Banning fault, and has been displaced west relative to the Whitewater sections. The Cabazon section was deposited at greater depths, suggesting that it accumulated farther offshore than the Whitewater section. If the Salton Trough was a southward-opening, elongated northwest-southeast basin similar to the modern Gulf of California, the Cabazon sequence probably has been displaced right-laterally from a position farther southeast of the Whitewater sequence. This relation requires late Miocene displacements greater than the present 12 km cross-fault separation between the two Imperial sections in the San Gorgonio Pass area.
Treiman, Allan H
2003-01-01
Purported biogenic features of the ALH84001 Martian meteorite (the carbonate globules, their submicron magnetite grains, and organic matter) have reasonable inorganic origins, and a comprehensive hypothesis is offered here. The carbonate globules were deposited from hydrothermal water, without biological mediation. Thereafter, ALH84001 was affected by an impact shock event, which raised its temperature nearly instantaneously to 500-700K, and induced iron-rich carbonate in the globules to decompose to magnetite and other minerals. The rapidity of the temperature increase caused magnetite grains to nucleate in abundance; hence individual crystals were very small. Nucleation and growth of magnetite crystals were fastest along edges and faces of the precursor carbonate grains, forcing the magnetite grains to be platy or elongated, including the "truncated hexa-octahedra" shape. ALH84001 had formed at some depth within Mars where the lithostatic pressure was significantly above that of Mars' surface. Also, because the rock was at depth, the impact heat dissipated slowly. During this interval, magnetite crystals approached chemical equilibria with surrounding minerals and gas. Their composition, nearly pure Fe(3)O(4), reflects those of equilibria; elements that substitute into magnetite are either absent from iron-rich carbonate (e.g., Ti, Al, Cr), or partitioned into other minerals during magnetite formation (Mg, Mn). Many microstructural imperfections in the magnetite grains would have annealed out as the rock cooled. In this post-shock thermal regime, carbon-bearing gas from the decomposition of iron carbonates reacted with water in the rock (or from its surroundings) to produce organic matter via Fischer-Tropschlike reactions. Formation of such organic compounds like polycyclic aromatic hydrocarbons would have been catalyzed by the magnetite (formation of graphite, the thermochemically stable phase, would be kinetically hindered).
NASA Astrophysics Data System (ADS)
Liu, S.; Hao, C.; Li, X.; Xu, M.
2015-12-01
Temperature is one key parameter for hydrocarbon generation and preservation, also playing important role in geothermal energy assessment;however, accurate regional temperature pattern is still challenging, owing to a lack of data coverage and data quality as well. The Yangtze area, located in the South China, is considered as the most favorable target for shale gas resource exploration in China, and attracts more and more attention recently. Here we used the newly acquired steady-state temperature loggings, reliable Drilling Stem Test temperature data available and thermal properties, estimated the subsurface temperature-at-depth for the Yangtze area. Results show that the geothermal gradient ranges between 17 K/m and 74K/m, mainly falling into 20~30K/m, with a mean of 24 K/m; heat flow varies from 25 mW/m2 to 92 mW/m2, with a mean of 65 mW/m2. For the estimated temperature-at-depth, it is about 20~50 ℃ at the depth of 1000m, 50~80℃ for that at 2000m; while the highest temperature can be up to 110℃ at 3000m depth. Generally, the present-day geothermal regime of the Yangtze area is characterized by high in the northeast, low in the middle and localized high again in the southwest, and this pattern is well consistent with the tectono-thermal processes occurred in the area. Due to Cenozoic crustal extension in the northeastern Yangtze area, magmatism is prevailed, accounting for the high heat flow observed. Precambrian basement exists in the middle Yangtze area, such as the Xuefeng and Wuling Mountains, heat flow and subsurface temperature accordingly show relatively low as well. While for the southwestern Yangtze area, especially Yunnan and western Sichuan provinces, localized Cenozoic magmatism and tectonic activities are available, which is attributed to the high geothermal regime there. Considering the Paleozoic intensive tectonic deformation in the Yangtze area, tectonically stable area is prerequisite for shale gas preservation. Geothermal regime analysis presented here, indicates that the middle and northwestern Yangtze areas are favorable for shale gas preservation. In addition, the localized high temperature within the generally low geothermal background is also suggested here as a possible beneficial condition for shale gas generation.
NASA Astrophysics Data System (ADS)
van Veen, A.; van Huis, M. A.; Fedorov, A. V.; Schut, H.; Labohm, F.; Kooi, B. J.; De Hosson, J. Th. M.
2002-05-01
In studies on the controlled growth of metallic precipitates in MgO it is attempted to use nanometer size cavities as precursors for formation of metallic precipitates. In MgO nanocavities can easily be generated by light gas ion bombardment at room temperature with typically 30 keV ion energy to a dose of 10 16 cm -2, followed by annealing to 1300 K. It has been shown earlier by transmission electron microscopy (TEM) that the cavities (thickness 2-3 nm and length/width 5-10 nm) have a perfectly rectangular shape bounded by {1 0 0} faces. The majority of the gas has been released at this temperature and the cavities are stable until annealing at 1500 K. The depth location of the cavities and the implanted ions is monitored by positron beam analysis, neutron depth profiling, RBS/channeling and energy dispersive spectroscopy. The presence of metallic nanoprecipitates is detected by optical absorption measurements and by high-resolution XTEM. Surprisingly, all the metallic implants induce, in addition to metallic precipitates in a band at the mean ion range, small rectangular and cubic nanocavities. These are most clearly observed at a depth shallower than the precipitate band. In the case of gold the cavities are produced in close proximity to the crystal surface. The results indicate that in MgO vacancy clustering dominates over Frenkel-pair recombination. Results of molecular dynamics calculations will be used to discuss the observed defect recovery and clustering processes in MgO.
NASA Astrophysics Data System (ADS)
Sample, James C.; Torres, Marta E.; Fisher, Andrew; Hong, Wei-Li; Destrigneville, Christine; Defliese, William F.; Tripati, Aradhna E.
2017-02-01
Information about diagenetic processes and temperatures during burial of sediments entering the subduction zone is important for understanding changes in physical properties and seismic behavior during deformation. The geochemistry of authigenic carbonates from accretionary prisms can serve as proxies for conditions during carbonate cementation and resultant lithification. We report results from the Nankai accretionary prism recovered from Integrated Ocean Drilling Program (IODP) sites C0011 and C0012 and we document continued cementation of deep sediment sections prior to subduction. Elemental and isotope data provide evidence for complex mixing of different isotopic reservoirs in pore waters contributing to carbonate chemical signatures. Carbon stable isotope values exhibit a broad range (δ13CV-PDB = +0.1‰ to -22.5‰) that corresponds to different stages of cement formation during burial. Carbonate formation temperatures from carbonate-clumped isotope geochemistry range from 16 °C to 63 °C at Site C0011 and 8.7 °C to 68 °C at Site C0012. The correspondence between the clumped-isotope temperatures and extrapolations of measured in situ temperatures indicate the carbonate is continuing to form at present. Calculated water isotopic compositions are in some cases enriched in 18O relative to measured interstitial waters suggesting a component of inherited seawater or input from clay-bound water. Low oxygen isotope values and the observed Ba/Ca ratios are also consistent with carbonate cementation at depth. Strontium isotopes of interstitial waters (87Sr/86Sr of 0.7059-0.7069) and carbonates (87Sr/86Sr of 0.70715-0.70891) support formation of carbonates from a mixture of strontium reservoirs including current interstitial waters and relic seawater contemporaneous with deposition. Collectively our data reflect mixed sources of dissolved inorganic carbon and cations that include authigenic phases driven by organic carbon and volcanic alteration reactions. Physical properties of input sediments continue to undergo modification by carbonate cementation at present. Due to ongoing recrystallization, temperatures from carbonate-clumped isotopes reflect the modern geothermal gradient and may serve as useful measures of geothermal gradients in other siliciclastic basins where carbonate cementation occurs. We conclude that clumped-isotope signatures in authigenic carbonates from accretionary prisms are important proxies for the timing and conditions of cementation in active margins. Our results highlight the importance of using multi-proxy approaches to elucidate the history of carbonate cementation, particularly to establish carbonate precipitation at depth and its potential impact on the physical and mechanical properties of the sediment prior to subduction.
Seismic evidence for depth-dependent metasomatism in cratons
NASA Astrophysics Data System (ADS)
Eeken, Thomas; Goes, Saskia; Pedersen, Helle A.; Arndt, Nicholas T.; Bouilhol, Pierre
2018-06-01
The long-term stability of cratons has been attributed to low temperatures and depletion in iron and water, which decrease density and increase viscosity. However, steady-state thermal models based on heat flow and xenolith constraints systematically overpredict the seismic velocity-depth gradients in cratonic lithospheric mantle. Here we invert for the 1-D thermal structure and a depth distribution of metasomatic minerals that fit average Rayleigh-wave dispersion curves for the Archean Kaapvaal, Yilgarn and Slave cratons and the Proterozoic Baltic Shield below Finland. To match the seismic profiles, we need a significant amount of hydrous and/or carbonate minerals in the shallow lithospheric mantle, starting between the Moho and 70 km depth and extending down to at least 100-150 km. The metasomatic component can consist of 0.5-1 wt% water bound in amphibole, antigorite and chlorite, ∼0.2 wt% water plus potassium to form phlogopite, or ∼5 wt% CO2 plus Ca for carbonate, or a combination of these. Lithospheric temperatures that fit the seismic data are consistent with heat flow constraints, but most are lower than those inferred from xenolith geothermobarometry. The dispersion data require differences in Moho heat flux between individual cratons, and sublithospheric mantle temperatures that are 100-200 °C less beneath Yilgarn, Slave and Finland than beneath Kaapvaal. Significant upward-increasing metasomatism by water and CO2-rich fluids is not only a plausible mechanism to explain the average seismic structure of cratonic lithosphere but such metasomatism may also lead to the formation of mid-lithospheric discontinuities and would contribute to the positive chemical buoyancy of cratonic roots.
San Andreas fault zone drilling project: scientific objectives and technological challenges
Hickman, Stephen; Younker, Leland; Zobeck, Mark; Cooper, George; ,
1994-01-01
We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through an integrated program of coring, fluid sampling, in-situ and laboratory experimentation and long-term monitoring, we hope to provide fundamental constraints on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300??C; 2) continuous coring of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6 and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of seismicity and a broad range of physical and chemical properties over periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the regions of greatest scientific interest.
San Andreas fault zone drilling project: scientific objectives and technological challenges
Hickman, S.H.; Younker, L.W.; Zoback, M.D.
1995-01-01
We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through a comprehensive program of coring, fluid sampling, downhole measurements, laboratory experimentation, and long-term monitoring, we hope to obtain critical information on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300°C; 2) continuous coring and completion of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6, and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of earthquake activity, fluid pressure, deformation and other parameters for periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the region of greatest scientific interest.
The search for a source rock for the giant Tar Sand triangle accumulation, southeastern Utah
Huntoon, J.E.; Hansley, P.L.; Naeser, N.D.
1999-01-01
A large proportion (about 36%) of the world's oil resource is contained in accumulations of heavy oil or tar. In these large deposits of degraded oil, the oil in place represents only a fraction of what was present at the time of accumulation. In many of these deposits, the source of the oil is unknown, and the oil is thought to have migrated over long distances to the reservoirs. The Tar Sand triangle in southeastern Utah contains the largest tar sand accumulation in the United States, with 6.3 billion bbl of heavy oil estimated to be in place. The deposit is thought to have originally contained 13-16 billion bbl prior to the biodegradation, water washing, and erosion that have taken place since the middle - late Tertiary. The source of the oil is unknown. The tar is primarily contained within the Lower Permian White Rim Sandstone, but extends into permeable parts of overlying and underlying beds. Oil is interpreted to have migrated into the White Rim sometime during the Tertiary when the formation was at a depth of approximately 3500 m. This conclusion is based on integration of fluid inclusion analysis, time-temperature reconstruction, and apatite fission-track modeling for the White Rim Sandstone. Homogenization temperatures cluster around 85-90??C for primary fluid inclusions in authigenic, nonferroan dolomite in the White Rim. The fluid inclusions are associated with fluorescent oil-bearing inclusions, indicating that dolomite precipitation was coeval with oil migration. Burial reconstruction suggests that the White Rim Sandstone reached its maximum burial depth from 60 to 24 Ma, and that maximum burial was followed by unroofing from 24 to 0 Ma. Time-temperature modeling indicates that the formation experienced temperatures of 85-90??C from about 35 to 40 Ma during maximum burial. Maximum formation temperatures of about 105-110??C were reached at about 24 Ma, just prior to unroofing. Thermal modeling is used to examine the history of potential source rocks for the White Rim oil. The most attractive potential sources for White Rim oil include beds within one or more of the following formations: the Proterozoic Chuar Group, which is present in the subsurface southwest of the Tar Sand triangle; the Mississippian Delle Phosphatic Member of the Deseret Limestone and equivalent formations, the Permian Kaibab Limestone, the Sinbad Limestone Member of the Triassic Moenkopi Formation, and the Jurassic Arapien Shale, Twin Creek Limestone, and Carmel Formation, which are present west of the Tar Sand triangle; the Pennsylvanian Paradox Formation in the Paradox basin east of the Tar Sand triangle; and the Permian Park City Formation northwest of the Tar Sand triangle. Each formation has a high total organic carbon content and is distributed over a wide enough geographic area to have provided a huge volume of oil. Source beds in all of the formations reached thermal maturity at times prior to or during the time that migration into the White Rim is interpreted to have occurred. Based on all available data, the most likely source for the Tar Sand triangle appears to be the Mississippian Delle Phosphatic Member of the Deseret Limestone. Secondary migration out of the Delle is interpreted to have occurred during the Cretaceous, during Sevier thrusting. Subsequent tertiary migration into the Tar Sand triangle reservoir is interpreted to have occurred later, during middle Tertiary Laramide deformation.
NASA Astrophysics Data System (ADS)
Ceriotti, G.; Porta, G. M.; Geloni, C.; Dalla Rosa, M.; Guadagnini, A.
2017-09-01
We develop a methodological framework and mathematical formulation which yields estimates of the uncertainty associated with the amounts of CO2 generated by Carbonate-Clays Reactions (CCR) in large-scale subsurface systems to assist characterization of the main features of this geochemical process. Our approach couples a one-dimensional compaction model, providing the dynamics of the evolution of porosity, temperature and pressure along the vertical direction, with a chemical model able to quantify the partial pressure of CO2 resulting from minerals and pore water interaction. The modeling framework we propose allows (i) estimating the depth at which the source of gases is located and (ii) quantifying the amount of CO2 generated, based on the mineralogy of the sediments involved in the basin formation process. A distinctive objective of the study is the quantification of the way the uncertainty affecting chemical equilibrium constants propagates to model outputs, i.e., the flux of CO2. These parameters are considered as key sources of uncertainty in our modeling approach because temperature and pressure distributions associated with deep burial depths typically fall outside the range of validity of commonly employed geochemical databases and typically used geochemical software. We also analyze the impact of the relative abundancy of primary phases in the sediments on the activation of CCR processes. As a test bed, we consider a computational study where pressure and temperature conditions are representative of those observed in real sedimentary formation. Our results are conducive to the probabilistic assessment of (i) the characteristic pressure and temperature at which CCR leads to generation of CO2 in sedimentary systems, (ii) the order of magnitude of the CO2 generation rate that can be associated with CCR processes.
The expected interior and surface environment of CoRoT-7b
NASA Astrophysics Data System (ADS)
Ziethe, R.; Wurz, P.; Lammer, H.
2010-12-01
The discovery of extrasolar planets - planets that orbit stars other than our sun - has always been fascinating. Meanwhile more than 400 so--called exoplanets have been detected. However, most of the detected exoplanets so far are relatively large (beyond 10 Earth masses) and can be regarded as gaseous planets, but scientists have always seeked after smaller and rocky planets, which could be compared to Earth or other earth--like bodies. Recently, the COROT mission discovered an object, Corot-7b, with a radius of only 1.68 REarth corresponding to a mass of 4.8 +/- 0.8 MEarth. This first low-mass exoplanet -- a so-called Super-Earth -- can be considered to be solid. Corot-7b orbits its primary at a very close distance and is therefore tidally locked in an 1:1 spin-orbit resonance. This implies a very inhomogeneous energy input from the star into the planet. Since the dayside is constantly exposed to the star, there is a strong temperature gradient towards the nightside. The surface temperature on the illuminated side is estimated with 2700K, while the shadowed side is thought to be at 110K. The high temperatures on the dayside will cause the evaporation of volatiles, which gives rise to the formation of an atmosphere. We introduce a three dimensional thermal convection model by solving the pertaining dimensionless hydrodynamical equations, computing the temperature field and especially investigate the formation of partially molten regions due to the inhomogeneous energy input onto the surface. The temperature of the surface and subsurface regions is enormously important for the composition of the atmosphere fed from volatiles, which escaped from the planet. The atmosphere is the only part of this exoplanet, which can be observed with remote sensing methods. Henceforth, understanding the conditions for the formation of an atmosphere (i.e., surface temperature map) is an important step forward in understanding extrasolar planets. We found that the highest temperatures are of course reached below the sub-solar hotspot up to a depth of 2500km. The figure shows a slice through the planet perpendicular to the terminator region, the star would be on the right hand side. It can clearly be seen that the temperatures are generally higher below the sub-solar spot. This is also illustrated by the temperature isosurface of 4270K (centre of figure). The hot upwellings concentrate below the dayside. Directly below the subsolar spot the material would be molten up to 200km deep, while towards eastern or respectively western longitudes material freezes out in shallower depths (right side of figure). Left: temperature slice, Centre: temperature isosurface (red) of 4270K, Right: partial melt isosurface (green) of 50k above solidus temperature.
NASA Astrophysics Data System (ADS)
Brusa, Roberto S.; Karwasz, Grzegorz P.; Tiengo, Nadia; Zecca, Antonio; Corni, Federico; Tonini, Rita; Ottaviani, Gianpiero
2000-04-01
The depth profile of open volume defects has been measured in Si implanted with He at an energy of 20 keV, by means of a slow-positron beam and the Doppler broadening technique. The evolution of defect distributions has been studied as a function of isochronal annealing in two series of samples implanted at the fluence of 5×1015 and 2×1016 He cm-2. A fitting procedure has been applied to the experimental data to extract a positron parameter characterizing each open volume defect. The defects have been identified by comparing this parameter with recent theoretical calculations. In as-implanted samples the major part of vacancies and divacancies produced by implantation is passivated by the presence of He. The mean depth of defects as seen by the positron annihilation technique is about five times less than the helium projected range. During the successive isochronal annealing the number of positron traps decreases, then increases and finally, at the highest annealing temperatures, disappears only in the samples implanted at the lowest fluence. A minimum of open volume defects is reached at the annealing temperature of 250 °C in both series. The increase of open volume defects at temperatures higher than 250 °C is due to the appearance of vacancy clusters of increasing size, with a mean depth distribution that moves towards the He projected range. The appearance of vacancy clusters is strictly related to the out diffusion of He. In the samples implanted at 5×1015 cm-2 the vacancy clusters are mainly four vacancy agglomerates stabilized by He related defects. They disappear starting from an annealing temperature of 700 °C. In the samples implanted at 2×1016 cm-2 and annealed at 850-900 °C the vacancy clusters disappear and only a distribution of cavities centered around the He projected range remains. The role of vacancies in the formation of He clusters, which evolve in bubble and then in cavities, is discussed.
NASA Technical Reports Server (NTRS)
Pitari, G.; Palermi, S.; Visconti, G.; Prinn, R. G.
1992-01-01
A spectral 3D model of the stratosphere has been used to study the sensitivity of polar ozone with respect to a carbon dioxide increase. The lower stratospheric cooling associated with an imposed CO2 doubling may increase the probability of polar stratospheric cloud (PSC) formation and this affect ozone. The ozone perturbation obtained with the inclusion of a simple parameterization for heterogeneous chemistry on PSCs is compared to that relative to a pure homogeneous chemistry. In both cases the temperature perturbation is determined by a CO2 doubling, while the total chlorine content is kept at the present level. It is shown that the lower temperature may increase the depth and the extension of the ozone hole by extending the area amenable to PSC formation. It may be argued that this effect, coupled with an increasing amount of chlorine, may produce a positive feedback on the ozone destruction.
The Bergschrund Hypothesis Revisited
NASA Astrophysics Data System (ADS)
Sanders, J. W.; Cuffey, K. M.; MacGregor, K. R.
2009-12-01
After Willard Johnson descended into the Lyell Glacier bergschrund nearly 140 years ago, he proposed that the presence of the bergschrund modulated daily air temperature fluctuations and enhanced freeze-thaw processes. He posited that glaciers, through their ability to birth bergschrunds, are thus able to induce rapid cirque headwall retreat. In subsequent years, many researchers challenged the bergschrund hypothesis on grounds that freeze-thaw events did not occur at depth in bergschrunds. We propose a modified version of Johnson’s original hypothesis: that bergschrunds maintain subfreezing temperatures at values that encourage rock fracture via ice lensing because they act as a cold air trap in areas that would otherwise be held near zero by temperate glacial ice. In support of this claim we investigated three sections of the bergschrund at the West Washmawapta Glacier, British Columbia, Canada, which sits in an east-facing cirque. During our bergschrund reconnaissance we installed temperature sensors at multiple elevations, light sensors at depth in 2 of the 3 locations and painted two 1 m2 sections of the headwall. We first emphasize bergschrunds are not wanting for ice: verglas covers significant fractions of the headwall and icicles dangle from the base of bödens or overhanging rocks. If temperature, rather than water availability, is the limiting factor governing ice-lensing rates, our temperature records demonstrate that the bergschrund provides a suitable environment for considerable rock fracture. At the three sites (north, west, and south walls), the average temperature at depth from 9/3/2006 to 8/6/2007 was -3.6, -3.6, and -2.0 °C, respectively. During spring, when we observed vast amounts of snow melt trickle in to the bergschrund, temperatures averaged -3.7, -3.8, and -2.2 °C, respectively. Winter temperatures are even lower: -8.5, -7.3, and -2.4 °C, respectively. Values during the following year were similar. During the fall, diurnal temperature variation at depth is recognizable but stabilizes as light intensity falls to zero. Nevertheless, large amplitude dips in temperature are still noticeable at all elevations. Diurnal temperature swings do not reappear until July. Within the painted rock sections, only 1 x10-3 m3 of rock completely detached from the wall. In light of our observations and temperature records, we believe the bergschrund does play a major role in cirque formation. However, further efforts to record environmental variables necessary for ice lensing at the heads of glaciers are warranted, especially at locations below the bergschrund.
In situ study of emerging metallicity on ion-bombarded SrTiO3 surface
NASA Astrophysics Data System (ADS)
Gross, Heiko; Bansal, Namrata; Kim, Yong-Seung; Oh, Seongshik
2011-10-01
We report how argon bombardment induces metallic states on the surface of insulating SrTiO3 at different temperatures by combining in situ conductance measurements and model calculations. At cryogenic temperatures, ionic bombardment created a thin-but much thicker than the argon-penetration depth-steady-state oxygen-vacant layer, leading to a highly-concentric metallic state. Near room temperatures, however, significant thermal diffusion occurred and the metallic state continuously diffused into the bulk, leaving only low concentration of electron carriers on the surface. Analysis of the discrepancy between the experiments and the models also provided evidence for vacancy clustering, which seems to occur during any vacancy formation process and affects the observed conductance.
Burns, Erick R.; Williams, Colin F.; Tolan, Terry; Kaven, Joern Ole
2016-01-01
The successful development of a geothermal electric power generation facility relies on (1) the identification of sufficiently high temperatures at an economically viable depth and (2) the existence of or potential to create and maintain a permeable zone (permeability >10-14 m2) of sufficient size to allow efficient long-term extraction of heat from the reservoir host rock. If both occur at depth under the Columbia Plateau, development of geothermal resources there has the potential to expand both the magnitude and spatial extent of geothermal energy production. However, a number of scientific and technical issues must be resolved in order to evaluate the likelihood that the Columbia River Basalts, or deeper geologic units under the Columbia Plateau, are viable geothermal targets.Recent research has demonstrated that heat flow beneath the Columbia Plateau Regional Aquifer System may be higher than previously measured in relatively shallow (<600 m depth) wells, indicating that sufficient temperatures for electricity generation occur at depths 5 km. The remaining consideration is evaluating the likelihood that naturally high permeability exists, or that it is possible to replicate the high average permeability (approximately 10-14 to 10-12 m2) characteristic of natural hydrothermal reservoirs. From a hydraulic perspective, Columbia River Basalts are typically divided into dense, impermeable flow interiors and interflow zones comprising the top of one flow, the bottom of the overlying flow, and any sedimentary interbed. Interflow zones are highly variable in texture but, at depths <600 m, some of them form highly permeable regional aquifers with connectivity over many tens of kilometers. Below depths of ~600 m, permeability reduction occurs in many interflow zones, caused by the formation of low-temperature hydrothermal alteration minerals (corresponding to temperatures above ~35 °C). However, some high permeability (>10-14 m2) interflows are documented at depths up to ~1,400 m. If the elevated permeability in these zones persists to greater depths, they may provide natural permeability of sufficient magnitude to allow their exploitation as conventional geothermal reservoirs. Alternatively, if the permeability in these interflow zones is less than 10-14 m2 at depth, it may be possible to use hydraulic and thermal stimulation to enhance the permeability of both the interflow zones and the natural jointing within the low-permeability interior portions of individual basalt flows in order to develop Enhanced/Engineered Geothermal System (EGS) reservoirs. The key challenge for an improved Columbia Plateau geothermal assessment is acquiring and interpreting comprehensive field data that can provide quantitative constraints on the recovery of heat from the Columbia River Basalts at depths greater than those currently tested by deep boreholes.
NASA Astrophysics Data System (ADS)
Zolotov, Mikhail Yu.; Mironenko, Mikhail V.
2016-09-01
Numerical chemical models for water-basalt interaction have been used to constrain the formation of stratified mineralogical sequences of Noachian clay-bearing rocks exposed in the Mawrth Vallis region and in other places on cratered martian highlands. The numerical approaches are based on calculations of water-rock type chemical equilibria and models which include rates of mineral dissolution. Results show that the observed clay-bearing sequences could have formed through downward percolation and neutralization of acidic H2SO4-HCl solutions. A formation of weathering profiles by slightly acidic fluids equilibrated with current atmospheric CO2 requires large volumes of water and is inconsistent with observations. Weathering by solutions equilibrated with putative dense CO2 atmospheres leads to consumption of CO2 to abundant carbonates which are not observed in clay stratigraphies. Weathering by H2SO4-HCl solutions leads to formation of amorphous silica, Al-rich clays, ferric oxides/oxyhydroxides, and minor titanium oxide and alunite at the top of weathering profiles. Mg-Fe phyllosilicates, Ca sulfates, zeolites, and minor carbonates precipitate from neutral and alkaline solutions at depth. Acidic weathering causes leaching of Na, Mg, and Ca from upper layers and accumulation of Mg-Na-Ca sulfate-chloride solutions at depth. Neutral MgSO4 type solutions dominate in middle parts of weathering profiles and could occur in deeper layers owing to incomplete alteration of Ca minerals and a limited trapping of Ca to sulfates. Although salts are not abundant in the Noachian geological formations, the results suggest the formation of Noachian salty solutions and their accumulation at depth. A partial freezing and migration of alteration solutions could have separated sulfate-rich compositions from low-temperature chloride brines and contributed to the observed diversity of salt deposits. A Hesperian remobilization and release of subsurface MgSO4 type solutions into newly-formed depressions could account for formation of some massive layered sulfate deposits through freezing or evaporation. This scenario explains the observed deficiency of salts in Noachian formations, a paucity of Hesperian phyllosilicates, and the occurrence of sulfate deposits in Valles Marineris troughs, chaotic terrains, and some craters of the Hesperian age.
Indentation-induced solid-state dewetting of thin Au(Fe) films
NASA Astrophysics Data System (ADS)
Kosinova, Anna; Schwaiger, Ruth; Klinger, Leonid; Rabkin, Eugen
2017-07-01
We studied the effect of local plastic deformation on the thermal stability and solid-state dewetting of thin homogeneous Au(Fe) films deposited on sapphire substrates. The films with ordered square arrays of indents produced by nanoindentation were annealed at the temperature of 700 °C in a forming gas atmosphere. The behavior of the film in the region of shallow indents (reaching a depth up to one half of the film thickness) was very different from the one in the region of deep indents (with depths greater than one half of the film thickness). In the first case, the grain growth in indented and unperturbed regions of the film proceeded quite similarly, and nearly complete healing of the indents was observed. In the latter case, a recrystallization process in the vicinity of the indents resulted in the formation of small new grains with misorientation angles that were not present in the as-deposited film. The thermal grooving along the corresponding new high-energy grain boundaries caused an increase of the depth of the indents and the formation of the dewetting holes. The morphology of these holes and their size were different compared to the holes formed randomly in the unperturbed regions of the same films. In particular, the interaction between the individual indents of an array led to the preferential formation of holes at the periphery of the arrays. These findings shed a new light on the process of nucleation of the solid-state dewetting in thin films.
NASA Astrophysics Data System (ADS)
Jiang, Zhenjiao; Xu, Tianfu; Mariethoz, Gregoire
2018-04-01
Geothermal springs are some of the most obvious indicators of the existence of high-temperature geothermal resources in the subsurface. However, geothermal springs can also occur in areas of low average subsurface temperatures, which makes it difficult to assess exploitable zones. To address this problem, this study quantitatively analyzes the conditions associated with the formation of geothermal springs in fault zones, and numerically investigates the implications that outflow temperature and discharge rate from geothermal springs have on the geothermal background in the subsurface. It is concluded that the temperature of geothermal springs in fault zones is mainly controlled by the recharge rate from the country rock and the hydraulic conductivity in the fault damage zone. Importantly, the topography of the fault trace on the land surface plays an important role in determining the thermal temperature. In fault zones with a permeability higher than 1 mD and a lateral recharge rate from the country rock higher than 1 m3/day, convection plays a dominant role in the heat transport rather than thermal conduction. The geothermal springs do not necessarily occur in the place having an abnormal geothermal background (with the temperature at certain depth exceeding the temperature inferred by the global average continental geothermal gradient of 30 °C/km). Assuming a constant temperature (90 °C here, to represent a normal geothermal background in the subsurface at a depth of 3,000 m), the conditions required for the occurrence of geothermal springs were quantitatively determined.
Effects of Long Term Exposures on PM Disk Superalloys
NASA Technical Reports Server (NTRS)
Gabb, T. P.; Sudbrack, C. K.; Draper, S. L.; MacKay, R. A.; Telesman, J.
2013-01-01
Turbine disks in some advanced engine applications may be exposed to temperatures above 700 C for extended periods of time, approaching 1,000 h. These exposures could affect the near-surface composition and microstructure through formation of damaged and often embrittled layers. The creation of such damaged layers could significantly affect local mechanical properties. Powder metal disk superalloys LSHR and ME3 were exposed at temperatures of 704, 760, and 815 C for times up to 2,020 h, and the types and depths of environmental attacked were measured. Fatigue tests were performed for selected cases at 704 and 760 C, to determine the impact of these exposures on fatigue life. Fatigue resistance was reduced up to 98% in both superalloys for some exposure conditions. Tensile tests were also performed to help understand fatigue responses, and showed corresponding reductions in ductility. The changes in surface composition and phases, depths of these changed layers, failure responses, and failure initiation modes were compared.
Electromagnetic surveying of seafloor mounds in the northern Gulf of Mexico
Ellis, M.; Evans, R.L.; Hutchinson, D.; Hart, P.; Gardner, J.; Hagen, R.
2008-01-01
Seafloor controlled source electromagnetic data, probing the uppermost 30 m of seafloor sediments, have been collected with a towed magnetic dipole-dipole system across two seafloor mounds at approximately 1300 m water depth in the northern Gulf of Mexico. One of these mounds was the focus of??a recent gas hydrate research drilling program. Rather than the highly resistive response expected of massive gas hydrate within the confines of the mounds, the EM data are dominated by the effects of raised temperatures and pore fluid salinities that result in an electrically conductive seafloor. This structure suggests that fluid advection towards the seafloor is taking place beneath both mounds. Similar responses are seen at discrete locations away from the mounds in areas that might be associated with faults, further suggesting substantial shallow fluid circulation. Raised temperatures and salinities may inhibit gas hydrate formation at depth as has been suggested at other similar locations in the Gulf of Mexico.
Drew, A J; Pratt, F L; Lancaster, T; Blundell, S J; Baker, P J; Liu, R H; Wu, G; Chen, X H; Watanabe, I; Malik, V K; Dubroka, A; Kim, K W; Rössle, M; Bernhard, C
2008-08-29
Muon spin rotation experiments were performed on the pnictide high temperature superconductor SmFeAsO1-xFx with x=0.18 and 0.3. We observed an unusual enhancement of slow spin fluctuations in the vicinity of the superconducting transition which suggests that the spin fluctuations contribute to the formation of an unconventional superconducting state. An estimate of the in-plane penetration depth lambda ab(0)=190(5) nm was obtained, which confirms that the pnictide superconductors obey an Uemura-style relationship between Tc and lambda ab(0);(-2).
Spectral Behavior of Irradiated Sodium Chloride Crystals Under Europa-Like Conditions
NASA Astrophysics Data System (ADS)
Poston, Michael J.; Carlson, Robert W.; Hand, Kevin P.
2017-12-01
F- and M-color center formation (decay) was observed during (after) irradiation of sodium chloride crystal grains with 10 keV electrons as a function of temperature, radiation dose rate, and radiation dose. The F centers (peak center: 460 nm) were found to form and decay at a faster rate than the M centers (peak center: 720 nm). These effects were influenced by temperature and possibly by irradiation dose rate. Tracking the band depth ratio of the color center features during irradiation could enable age determination of geologically very young features on the surface of Europa and other icy ocean worlds.
An optical fiber expendable seawater temperature/depth profile sensor
NASA Astrophysics Data System (ADS)
Zhao, Qiang; Chen, Shizhe; Zhang, Keke; Yan, Xingkui; Yang, Xianglong; Bai, Xuejiao; Liu, Shixuan
2017-10-01
Marine expendable temperature/depth profiler (XBT) is a disposable measuring instrument which can obtain temperature/depth profile data quickly in large area waters and mainly used for marine surveys, scientific research, military application. The temperature measuring device is a thermistor in the conventional XBT probe (CXBT)and the depth data is only a calculated value by speed and time depth calculation formula which is not an accurate measurement result. Firstly, an optical fiber expendable temperature/depth sensor based on the FBG-LPG cascaded structure is proposed to solve the problems of the CXBT, namely the use of LPG and FBG were used to detect the water temperature and depth, respectively. Secondly, the fiber end reflective mirror is used to simplify optical cascade structure and optimize the system performance. Finally, the optical path is designed and optimized using the reflective optical fiber end mirror. The experimental results show that the sensitivity of temperature and depth sensing based on FBG-LPG cascade structure is about 0.0030C and 0.1%F.S. respectively, which can meet the requirements of the sea water temperature/depth observation. The reflectivity of reflection mirror is in the range from 48.8% to 72.5%, the resonant peak of FBG and LPG are reasonable and the whole spectrum are suitable for demodulation. Through research on the optical fiber XBT (FXBT), the direct measurement of deep-sea temperature/depth profile data can be obtained simultaneously, quickly and accurately. The FXBT is a new all-optical seawater temperature/depth sensor, which has important academic value and broad application prospect and is expected to replace the CXBT in the future.
PRISM3 DOT1 Atlantic Basin Reconstruction
Dowsett, Harry; Robinson, Marci; Dwyer, Gary S.; Chandler, Mark; Cronin, Thomas
2006-01-01
PRISM3 DOT1 (Pliocene Research, Interpretation and Synoptic Mapping 3, Deep Ocean Temperature 1) provides a three-dimensional temperature reconstruction for the mid-Pliocene Atlantic basin, the first of several regional data sets that will comprise a global mid-Pliocene reconstruction. DOT1 is an alteration of modern temperature values for the Atlantic Ocean in 4 degree x 5 degree cells in 13 depth layers for December 1 based on Mg/Ca-derived BWT estimates from seventeen DSDP and ODP Sites and SST estimates from the PRISM2 reconstruction (Dowsett et al., 1999). DOT1 reflects a vaguely modern circulation system, assuming similar processes of deep-water formation; however, North Atlantic Deep Water (NADW) production is increased, and Antarctic Bottom Water (AABW) production is decreased. Pliocene NADW was approximately 2 degreesC warmer than modern temperatures, and Pliocene AABW was approximately 0.3 degreesC warmer than modern temperatures.
Regional geothermal exploration in Egypt
NASA Technical Reports Server (NTRS)
Morgan, P.; Boulos, F. K.; Swanberg, C. A.
1983-01-01
A study is presented of the evaluation of the potential geothermal resources of Egypt using a thermal gradient/heat flow technique and a groundwater temperature/chemistry technique. Existing oil well bottom-hole temperature data, as well as subsurface temperature measurements in existing boreholes, were employed for the thermal gradient/heat flow investigation before special thermal gradient holes were drilled. The geographic range of the direct subsurface thermal measurements was extended by employing groundwater temperature and chemistry data. Results show the presence of a regional thermal high along the eastern margin of Egypt with a local thermal anomaly in this zone. It is suggested that the sandstones of the Nubian Formation may be a suitable reservoir for geothermal fluids. These findings indicate that temperatures of 150 C or higher may be found in this reservoir in the Gulf of Suez and Red Sea coastal zones where it lies at a depth of 4 km and deeper.
Blister formation at subcritical doses in tungsten irradiated by MeV protons
NASA Astrophysics Data System (ADS)
Gavish Segev, I.; Yahel, E.; Silverman, I.; Makov, G.
2017-12-01
The material response of tungsten to irradiation by MeV protons has been studied experimentally, in particular with respect to bubble and blister formation. Tungsten samples were irradiated by 2.2 MeV protons at the Soreq Applied Research Accelerator Facility (SARAF) to doses of the order of 1017 protons/cm2 which are below the reported critical threshold for blister formation derived from keV range irradiation studies. Large, well-developed blisters are observed indicating that for MeV range protons the critical threshold is at least an order of magnitude lower than the lowest value reported previously. The effects of fluence, flux, and corresponding temperature on the distribution and characteristics of the obtained blisters were studied. FIB cross sections of several blisters exposed their depth and structure.
Formation of a Structure II Hydrate by 1,4-Thioxane in Sea Water
NASA Astrophysics Data System (ADS)
Hester, K. C.; Mancillas, O.; Walz, P. M.; Peltzer, E. T.; Brewer, P. G.
2007-12-01
We have show that a sII clathrate hydrate containing 1,4-thioxane (TO) will form under the appropriate pressure and temperature conditions. The molecular size of TO poised it at the boundary between sII hydrate formation either as the sole cage occupant, or where a second help gas molecule is required to stabilize the small hydrate cages. In addition to its size, TO is chemical similar to cyclic ethers, such as tetrahydrofuran, which readily form clathrate hydrates. For the experimental temperatures in this study (all above 273.15 K), a pure TO hydrate was not observed to form. However, binary hydrates of TO and either CH4 and N2 were readily formed under moderate pressure conditions (33-158 bar). Both Raman spectroscopy and visual observations were used to verify that a solid hydrate formed and that TO was trapped in the cages. For TO + CH4, a pressure-temperature phase equilibria diagram was created. This showed that the addition of TO increased hydrate stability versus a pure CH4 system by approximately 10 degC, indicating that should CH4 gas be present a TO hydrate would readily form at shallow depths under typical oceanic temperature regimes. TO is of environmental interest as a breakdown product of mustard gas (1,1'-thiobis[2-chloroethane] as a result of hydrolysis in sea water, and has been shown to occur in seafloor chemical weapon disposal sites. In the years after World War II large quantities of chemical weapons were disposed of in the ocean at sites off the US east and west coasts, off Japan, in the Baltic and Adriatic Seas, and in the Russian Arctic, until the signing of the London Convention in 1972. Mustard gas represents the largest tonnage of weapons materiel and while the general scheme of breakdown by hydrolysis is known there is little information on the actual behavior of these breakdown products in marine sediments. This work illuminates such gaps in knowledge, and formation of a hydrate profoundly alters molecular mobility and diffusion away from a site. Simple calculations show that other help gases, such as H2S, should also form a mixed hydrate with TO with remarkable ease; thus, extending the range of possible hydrate formation with TO in anoxic marine sediments to shallow depths, if a second hydrate former is present.
NASA Astrophysics Data System (ADS)
Zainul, R.; Oktavia, B.; Dewata, I.; Efendi, J.
2018-04-01
This research aims to investigate the process of forming a multi-scale copper oxide semiconductor (CuO/Cu2O) through a process of calcining a copper plate. The changes that occur during the formation of the oxide are thermally and surface evaluated. Evaluation using Differential Thermal Analysis (DTA) obtained by surface change of copper plate happened at temperature 380°C. Calcination of oxide formation was carried out at temperature 380°C for 1 hour. Surface evaluation process by using Scanning Electron Microscope (SEM) surface and cross-section, to determine diffusion of oxide formation on copper plate. The material composition is monitored by XRF and XRD to explain the process of structural and physical changes of the copper oxide plate formed during the heating process. The thickness of Cu plates used is 200-250 μm. SEM analysis results, the oxygen atom interruption region is in the range of 20-30 μm, and diffuses deeper during thermal oxidation process. The maximum diffusion depth of oxygen atoms reaches 129 μm.
NASA Astrophysics Data System (ADS)
Iwase, Taku; Yokogawa, Kenetsu; Mori, Masahito
2018-06-01
The reaction mechanism during etching to fabricate deep holes in SiN/SiO2 stacks by using a HBr/N2/fluorocarbon-based gas plasma was investigated. To etch SiN and SiO2 films simultaneously, HBr/fluorocarbon gas mixture ratio was controlled to achieve etching selectivity closest to one. Deep holes were formed in the SiN/SiO2 stacks by one-step etching at several temperatures. The surface composition of the cross section of the holes was analyzed by time-of-flight secondary-ion mass spectrometry. It was found that bromine ions (considered to be derived from NH4Br) were detected throughout the holes in the case of low-temperature etching. It was also found that the dependence of hole depth on aspect ratio decreases as temperature decreases, and it becomes significantly weaker at a substrate temperature of 20 °C. It is therefore concluded that the formation of NH4Br supplies the SiN/SiO2 etchant to the bottom of the holes. Such a finding will make it possible to alleviate the decrease in etching rate due to a high aspect ratio.
Oxygen transport and pyrite oxidation in unsaturated coal-mine spoil
Guo, Weixing; Cravotta, Charles A.
1996-01-01
An understanding of the mechanisms of oxygen (02) transport in unsaturated mine spoil is necessary to design and implement effective measures to exclude 02 from pyritic materials and to control the formation of acidic mine drainage. Partial pressure of oxygen (Po2) in pore gas, chemistry of pore water, and temperature were measured at different depths in unsaturated spoil at two reclaimed surface coal mines in Pennsylvania. At mine 1, where spoil was loose, blocky sandstone, Po2 changed little with depth, decreasing from 21 volume percent (vol%) at the ground surface to a minimum of about 18 vol% at 10 m depth. At mine 2, where spoil was compacted, friable shale, Po2 decreased to less than 2 vol% at depth of about 10 m. Although pore-water chemistry and temperature data indicate that acid-forming reactions were active at both mines, the pore-gas data indicate that mechanisms for 0 2 transport were different at each mine. A numerical model was developed to simulate 02 transport and pyrite oxidation in unsaturated mine spoil. The results of the numerical simulations indicate that differences in 02 transport at the two mines can be explained by differences in the air permeability of spoil. Po2 changes little with depth if advective transport of 02 dominates as at mine 1, but decreases greatly with depth if diffusive transport of 02 dominates, as in mine 2. Model results also indicate that advective transport becomes significant if the air permeability of spoil is greater than 10-9 m2, which is expected for blocky sandstone spoil. In the advective-dominant system, thermally-induced convective air flow, as a consequence of the exothermic oxidation of pyrite, supplies the 02 to maintain high Po2 within the deep unsaturated zone.
Influence of number and depth of magnetic mirror on Alfvénic gap eigenmode
NASA Astrophysics Data System (ADS)
Chang, Lei; Hu, Ning; Yao, Jianyao
2016-10-01
Alfvénic gap eigenmode (AGE) can eject energetic particles from confinement and thereby threaten the success of magnetically controlled fusion. A low-temperature plasma cylinder is a promising candidate to study this eigenmode, due to easy diagnostic access and simple geometry, and the idea is to arrange a periodic array of magnetic mirrors along the plasma cylinder and introduce a local defect to break the field periodicity. The present work validates this idea by reproducing a clear AGE inside a spectral gap, and more importantly details the influence of the number and depth (or modulation factor) of magnetic mirror on the characteristics of AGE. Results show that AGE is suppressed by other modes inside the spectral gap when the number of magnetic mirrors is below a certain value, which leads to a weakened Bragg’s effect. The structure and frequency of AGE remain unchanged for a decreased number of magnetic mirrors, as long as this number is enough for the AGE formation. The width of spectral gap and decay constant (inverse of decay length) of AGE are linearly proportional to the depth of magnetic mirror, implying easier observation of AGE through a bigger mirror depth. The frequency of AGE shifts to a lower range with the depth increased, possibly due to the unfrozen plasma with field line and the invalidity of small-perturbation analysis. Nevertheless, it is exciting to find that the depth of field modulation can be increased to form AGE for a very limited number of magnetic mirrors. This is of particular interest for the experimental implementation of AGE on a low-temperature plasma cylinder with limited length. Project supported by the National Natural Science Foundation of China (Grant Nos. 11405271, 11372104, 75121543, 11332013, 11372363, and 11502037).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erofeev, E. V., E-mail: erofeev@micran.ru; Kazimirov, A. I.; Fedin, I. V.
The systematic features of the formation of the low-resistivity compound Cu{sub 3}Ge by low-temperature treatment of a Cu/Ge two-layer system in an atomic hydrogen flux are studied. The Cu/Ge two-layer system is deposited onto an i-GaAs substrate. Treatment of the Cu/Ge/i-GaAs system, in which the layer thicknesses are, correspondingly, 122 and 78 nm, in atomic hydrogen with a flux density of 10{sup 15} at cm{sup 2} s{sup –1} for 2.5–10 min at room temperature induces the interdiffusion of Cu and Ge, with the formation of a polycrystalline film containing the stoichiometric Cu{sub 3}Ge phase. The film consists of vertically orientedmore » grains 100–150 nm in size and exhibits a minimum resistivity of 4.5 µΩ cm. Variations in the time of treatment of the Cu/Ge/i-GaAs samples in atomic hydrogen affect the Cu and Ge depth distribution, the phase composition of the films, and their resistivity. Experimental observation of the synthesis of the Cu{sub 3}Ge compound at room temperature suggests that treatment in atomic hydrogen has a stimulating effect on both the diffusion of Cu and Ge and the chemical reaction of Cu{sub 3}Ge-compound formation. These processes can be activated by the energy released upon the recombination of hydrogen atoms adsorbed at the surface of the Cu/Ge/i-GaAs sample.« less
NASA Astrophysics Data System (ADS)
Childress, J. J.; Cowles, D. L.; Favuzzi, J. A.; Mickel, T. J.
1990-06-01
The oxygen consumption rates of 11 species of benthic deep-sea decapod crustaceans were measured at a variety of temperatures to test the hypothesis that the metabolic rates of benthic crustaceans decline with increasing depth of occurrence only to the extent explained by the decline in temperature with depth. The species were captured at depths between 150 and 2000m off Southern California using an epibenthic beam trawl equipped with a thermally protecting cod-end to bring the animals to the surface uncontaminated by sediment and at the depth temperature. The data, combined with those for six species of shallower-living crustaceans from California waters, showed a significant decline in oxygen consumption rate with increased species' depths of occurrence, when the measurements were made at temperatures appropriate to each species' depth range. There was no significant relation between wet weight and depth of occurrence in these species. When the data were adjusted to 10°C using a moderate temperature effect factor (corresponding to Q10 values of 2-2.3 depending on the species and temperature range), the significant relationship between oxygen consumption rate and depth was lost, indicating that the observed decline with depth was due to the decline in temperature with depth. When the relationship between metabolic rate and depth of occurrence for the most active (carideans and penaeid) species were compared (ANCOVA) with that for the rest of the species, the active species had significantly higher rates. By combining this data set with data from the literature for a wide variety of shallow-living benthic decapod crustaceans, it was possible to create a data set of 35 species in which the effects of temperature, minimum depth of occurrence and body mass could be separated by multiple linear regression. This demonstrated highly significant effects of size and temperature, but no significant effect of depth for the entire data set and for the data set excluding penaeids and carideans. In contrast, the carideans showed a significant effect of depth on metabolic rate. This is discussed in terms of the adaptive and selective factors responsible for the well-known decline in metabolic rates of midwater crustaceans and fishes, an effect which does exceed the effect of temperature. It is suggested that the typical pattern for deeper living animals may be that metabolic rates on average vary as a function of depth due primarily to variation in temperature, except for the visually orienting pelagic groups (cephalopods, crustaceans and fishes). For those benthic forms which are particularly visually oriented and/or partially pelagic some significant depth-related decline in metabolism beyond that due to the decline in temperature is expected.
Data services providing by the Ukrainian NODC (MHI NASU)
NASA Astrophysics Data System (ADS)
Eremeev, V.; Godin, E.; Khaliulin, A.; Ingerov, A.; Zhuk, E.
2009-04-01
At modern stage of the World Ocean study information support of investigation based on ad-vanced computer technologies becomes of particular importance. These abstracts are devoted to presentation of several data services developed in the Ukrainian NODC on the base of the Ma-rine Environmental and Information Technologies Department of MHI NASU. The Data Quality Control Service Using experience of international collaboration in the field of data collection and quality check we have developed the quality control (QC) software providing both preliminary(automatic) and expert(manual) data quality check procedures. The current version of the QC software works for the Mediterranean and Black seas and includes the climatic arrays for hydrological and few hydrochemical parameters based on such products as MEDAR/MEDATLAS II, Physical Oceanography of the Black Sea and Climatic Atlas of Oxygen and Hydrogen Sulfide in the Black sea. The data quality check procedure includes metadata control and hydrological and hydrochemical data control. Metadata control provides checking of duplicate cruises and pro-files, date and chronology, ship velocity, station location, sea depth and observation depth. Data QC procedure includes climatic (or range for parameters with small number of observations) data QC, density inversion check for hydrological data and searching for spikes. Using of cli-matic fields and profiles prepared by regional oceanography experts leads to more reliable results of data quality check procedure. The Data Access Services The Ukrainian NODC provides two products for data access - on-line software and data access module for the MHI NASU local net. This software allows select-ing data on rectangle area, on date, on months, on cruises. The result of query is metadata which are presented in the table and the visual presentation of stations on the map. It is possible to see both metadata and data. For this purpose it is necessary to select station in the table of metadata or on the map. There is also an opportunity to export data in ODV format. The product is avail-able on http://www.ocean.nodc.org.ua/DataAccess.php The local net version provides access to the oceanological database of the MHI NASU. The cur-rent version allows selecting data by spatial and temporal limits, depth, values of parameters, quality flags and works for the Mediterranean and Black seas. It provides visualization of meta-data and data, statistics of data selection, data export into several data formats. The Operational Data Management Services The collaborators of the MHI Experimental Branch developed a system of obtaining information on water pressure and temperature, as well as on atmospheric pressure. Sea level observations are also conducted. The obtained data are transferred online. The interface for operation data access was developed. It allows to select parameters (sea level, water temperature, atmospheric pressure, wind and wa-ter pressure) and time interval to see parameter graphics. The product is available on http://www.ocean.nodc.org.ua/Katsively.php . The Climatic products The current version of the Climatic Atlas includes maps on such pa-rameters as temperature, salinity, density, heat storage, dynamic heights, upper boundary of hy-drogen sulfide and lower boundary of oxygen for the Black sea basin. Maps for temperature, sa-linity, density were calculated on 19 standard depths and averaged monthly for depths 0 - 300 m and annually for lower depth values. The climatic maps of upper boundary of hydrogen sulfide and lower boundary of oxygen were averaged by decades from 20 till 90 of the XX century and by seasons. Two versions of climatic atlas viewer - on-line and desktop for presentation of the climatic maps were developed. They provide similar functions of selection and viewing maps by parameter, month and depth and saving maps in various formats. On-line version of atlas is available on http://www.ocean.nodc.org.ua/Main_Atlas.php .
NASA Astrophysics Data System (ADS)
Bhattacharya, Debarati; Basu, Saibal; Singh, Surendra; Roy, Sumalay; Dev, Bhupendra Nath
2012-12-01
Interdiffusion occurring across the interfaces in a Si/Ni/Si layered system during deposition at room temperature was probed using x-ray reflectivity (XRR) and polarized neutron reflectivity (PNR). Exploiting the complementarity of these techniques, both structural and magnetic characterization with nanometer depth resolution could be achieved. Suitable model fitting of the reflectivity profiles identified the formation of Ni-Si mixed alloy layers at the Si/Ni and Ni/Si interfaces. The physical parameters of the layered structure, including quantitative assessment of the stoichiometry of interfacial alloys, were obtained from the analyses of XRR and PNR patterns. In addition, PNR provided magnetic moment density profile as a function of depth in the stratified medium.
NASA Astrophysics Data System (ADS)
Gao, Wei; Wang, Zhenyan; Zhang, Kainan
2017-11-01
Based on the conductivity, temperature and depth (CTD) data collected at 93 hydrographic stations during a marine cruise and on contemporary satellite altimeter observations, a series of eddies have been observed passing over the stratified upper water of the Parece Vela Basin. The results from hydrographic measurements and in situ chlorophyll fluorescence measurements have revealed that these eddies exerted significant controlling effects on the thermohaline structure and chlorophyll distribution, especially on the prevalent subsurface chlorophyll maximum layer (SCML). Based on these observations and particulate beam attenuation coefficient (cp) data, the in situ phytoplankton bloom around the pycnocline can be largely attributable to the formation of a well-developed SCML in the studied system. The uplift of the cold subsurface water within the cyclone, shoaling the pycnocline to a shallower layer, resulted in a low-temperature anomaly and different salinity anomalies at different depths. This uplift in the cyclone further caused the SCML to appear at a shallower depth with a higher in situ chlorophyll concentration than that in the normal domain. Conversely, the sinking of the warm surface water to the subsurface layer within the anticyclone depressed the pycnocline to a deeper layer and generated a high-temperature anomaly and opposite salinity anomalies compared with the cyclone. The sinking of the pycnocline within the anticyclone considerably influenced the characteristics of the SCML, which had a deeper depth and a lower in situ chlorophyll concentration than that of the normal sea. This study contributes rare quasi-synchronous CTD observations capturing mesoscale eddies and provides valuable descriptions of the variations in the SCML under the influence of mesoscale eddies based on in situ optical measurements from the seldom-discussed western North Pacific.
Ultrafast eclogite formation via melting-induced overpressure
NASA Astrophysics Data System (ADS)
Chu, Xu; Ague, Jay J.; Podladchikov, Yury Y.; Tian, Meng
2017-12-01
The conventional wisdom holds that metamorphic reactions take place at pressures near-lithostatic so that the thermodynamic pressure, reflected by the mineral assemblage, is directly correlated with depth. On the other hand, recent field-based observations and geodynamic simulations suggest that heterogeneous stress and significant pressure deviations above lithostatic (overpressure) can occur in Earth's crust. Here we show that eclogite, normally interpreted to form at great depths in subduction zones and Earth's mantle, may form at much shallower depths via local overpressure generated in crustal shear zones. The eclogites studied crop out as lenses hosted by felsic paragneiss in a sheared thrust slice and represent a local pressure and temperature anomaly in the Taconic orogenic belt, southern New England. Sharply-defined chemical zones in garnet, which record ∼5 kbar pressure rise and fall accompanied by a temperature increase of 150-200 °C, demonstrate extremely short timescales of diffusion. This requires anomalously fast compression (∼500 yrs) and decompression. We use coupled phase equilibria and garnet diffusion forward modeling to fit the observed garnet profiles and test the likely P- T- t paths using a Monte Carlo-type approach, accounting for off-center sectioning of garnet. The simulation shows that a ∼5 kbar pressure increase after the temperature peak is necessary to reproduce the garnet zoning. Remarkably, this post-peak-T compression (from 9 kbar to 14 kbar) lasted only ∼500 yrs. If the compression was due to burial along a lithostatic pressure gradient, the descent speed would exceed 30 m yr-1, defying any observed or modeled subduction rates. Local overpressure in response to partial melting in a confined volume (Vrijmoed et al., 2009) caused by transient shear heating can explain the ultra-fast compression without necessitating burial to great depth.
Mineralogy and cooling history of magnesian lunar granulite 67415
NASA Technical Reports Server (NTRS)
Takeda, Hiroshi; Miyamoto, Masamichi
1993-01-01
Apollo granulite 67415 was investigated by mineralogical techniques to gain better understanding of cooling histories of lunar granulities. Cooling rates were estimated from chemical zoning of olivines in magnesian granulitic clasts by computer simulation of diffusion processes. The cooling rate of 10 deg C/yr obtained is compatible with a model of the granulite formation, in which the impact deposit was cooled from high temperature or annealed, at the depth of about 25 m beneath the surface.
Was Star Formation Suppressed in High-Redshift Minihalos?
NASA Astrophysics Data System (ADS)
Haiman, Zoltán; Bryan, Greg L.
2006-10-01
The primordial gas in the earliest dark matter halos, collapsing at redshifts z~20, with masses Mhalo~106 Msolar and virial temperatures Tvir<104 K, relied on the presence of molecules for cooling. Several theoretical studies have suggested that gas contraction and star formation in these minihalos was suppressed by radiative, chemical, thermal, and dynamical feedback processes. The recent measurement by the Wilkinson Microwave Anisotropy Probe (WMAP) of the optical depth to electron scattering, τ~0.09+/-0.03, provides the first empirical evidence for this suppression. The new WMAP result is consistent with vanilla models of reionization, in which ionizing sources populate cold dark matter halos down to a virial temperature of Tvir=104 K. On the other hand, we show that in order to avoid overproducing the optical depth, the efficiency for the production of ionizing photons in minihalos must have been about an order of magnitude lower than expected from massive metal-free stars and lower than the efficiency in large halos that can cool via atomic hydrogen (Tvir>104 K). This conclusion is insensitive to assumptions about the efficiency of ionizing photon production in the large halos, as long as reionization ends by z=6, as required by the spectra of bright quasars at z<~6. Our conclusion is strengthened if the clumping of the ionized gas evolves with redshift, as suggested by semianalytical predictions and three-dimensional numerical simulations.
Response of seasonal soil freeze depth to climate change across China
NASA Astrophysics Data System (ADS)
Peng, Xiaoqing; Zhang, Tingjun; Frauenfeld, Oliver W.; Wang, Kang; Cao, Bin; Zhong, Xinyue; Su, Hang; Mu, Cuicui
2017-05-01
The response of seasonal soil freeze depth to climate change has repercussions for the surface energy and water balance, ecosystems, the carbon cycle, and soil nutrient exchange. Despite its importance, the response of soil freeze depth to climate change is largely unknown. This study employs the Stefan solution and observations from 845 meteorological stations to investigate the response of variations in soil freeze depth to climate change across China. Observations include daily air temperatures, daily soil temperatures at various depths, mean monthly gridded air temperatures, and the normalized difference vegetation index. Results show that soil freeze depth decreased significantly at a rate of -0.18 ± 0.03 cm yr-1, resulting in a net decrease of 8.05 ± 1.5 cm over 1967-2012 across China. On the regional scale, soil freeze depth decreases varied between 0.0 and 0.4 cm yr-1 in most parts of China during 1950-2009. By investigating potential climatic and environmental driving factors of soil freeze depth variability, we find that mean annual air temperature and ground surface temperature, air thawing index, ground surface thawing index, and vegetation growth are all negatively associated with soil freeze depth. Changes in snow depth are not correlated with soil freeze depth. Air and ground surface freezing indices are positively correlated with soil freeze depth. Comparing these potential driving factors of soil freeze depth, we find that freezing index and vegetation growth are more strongly correlated with soil freeze depth, while snow depth is not significant. We conclude that air temperature increases are responsible for the decrease in seasonal freeze depth. These results are important for understanding the soil freeze-thaw dynamics and the impacts of soil freeze depth on ecosystem and hydrological process.
Yamano, Makoto; Goto, Shusaku; Miyakoshi, Akinobu; Hamamoto, Hideki; Lubis, Rachmat Fajar; Monyrath, Vuthy; Taniguchi, Makoto
2009-04-15
It is possible to estimate the ground surface temperature (GST) history of the past several hundred years from temperature profiles measured in boreholes because the temporal variation in GST propagates into the subsurface by thermal diffusion. This "geothermal method" of reconstructing GST histories can be applied to studies of thermal environment evolution in urban areas, including the development of "heat islands." Temperatures in boreholes were logged at 102 sites in Bangkok, Jakarta, Taipei, Seoul and their surrounding areas in 2004 to 2007. The effects of recent surface warming can be recognized in the shapes of most of the obtained temperature profiles. The preliminary results of reconstruction of GST histories through inversion analysis show that GST increased significantly in the last century. Existing temperature profile data for the areas in and around Tokyo and Osaka can also be used to reconstruct GST histories. Because most of these cities are located on alluvial plains in relatively humid areas, it is necessary to use a model with groundwater flow and a layered subsurface structure for reconstruction analysis. Long-term records of subsurface temperatures at multiple depths may demonstrate how the GST variation propagates downward through formations. Time series data provide information on the mechanism of heat transfer (conduction or advection) and the thermal diffusivity. Long-term temperature monitoring has been carried out in a borehole located on the coast of Lake Biwa, Japan. Temperatures at 30 and 40 m below the ground surface were measured for 4 years and 2 years, respectively, with a resolution of 1 mK. The obtained records indicate steady increases at both depths with different rates, which is probably the result of some recent thermal event(s) near the surface. Borehole temperatures have also been monitored at selected sites in Bangkok, Jakarta, and Taiwan.
Monzavi, Mona; Noumbissi, Sammy; Nowzari, Hessam
2017-04-01
Despite increased popularity of Zirconia dental implants, concerns have been raised regarding low temperature degradation (LTD) and its effect on micro-structural integrity. This study evaluated the effect of LTD on four types of Zirconia dental implants at 0, 30, and 60 years of artificial aging. The impact of aging on t-m transformation and micro crack formation was measured. Accelerated aging at 15 and 30 hours, approximating 30 and 60 years in vivo, aged 36 Zirconia dental implants: Z systems ® (A), Straumann ® (B), Ceraroot ® (C), and Zeramex ® (D). Focused ion beam-scanning electron microscopic analysis determined the micro structural features, phase transformation, and the formation of micro cracks. At 15 hours, type A implant presented with micro cracks and t-m transformation of 0.9 µm and 3.1 µm, respectively. At 30 hours, micro cracks remained shallow (1 µm). At 15 hours, type B implant presented micro cracks (0.7 µm) and grain transformation (1.2 µm). At 30 hours, these features remained superficial at 0.6 and 1.5 µm, respectively. Type C implant presented surface micro cracks of 0.3 µm at 15 hours. The depth of t-m transformation slightly increased to 1.4 µm. At 30 hours, number of micro cracks increased at the surface to an average depth of 1.5 µm. Depth of t-m transformation increased to an average of 2.5 µm. At 15 hours, micro cracks remained superficial (0.8 µm) for type D implant and depth of t-m transformation increased to 2.3 µm. At 30 hours, the depth of micro cracks increased to an average of 1.3 µm followed by increased t-m transformation to a depth of 4.1 µm. Depth of grain transformation remained within 1-4 µm from the surface. The effect of aging was minimal for all Zirconia implants. © 2016 Wiley Periodicals, Inc.
Phase Equilibrium Investigations of Planetary Materials
NASA Technical Reports Server (NTRS)
Grove, T. L.
2005-01-01
This grant provided funds to carry out phase equilibrium studies on the processes of chemical differentiation of the moon and the meteorite parent bodies, during their early evolutionary history. Several experimental studies examined processes that led to the formation of lunar ultramafic glasses. Phase equilibrium studies were carried out on selected low-Ti and high-Ti lunar ultramafic glass compositions to provide constraints on the depth range, temperature and processes of melt generation and/or assimilation. A second set of experiments examined the role of sulfide melts in core formation processes in the earth and terrestrial planets. The major results of each paper are discussed, and copies of the papers are attached as Appendix I.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, W; Zhou, Yunshen; Hou, Wenjia
Direct formation of graphene with controlled number of graphitic layers on dielectric surfaces is highly desired for practical applications. Despite significant progress achieved in understanding the formation of graphene on metallic surfaces through chemical vapor deposition (CVD) of hydrocarbons, very limited research is available elucidating the graphene formation process via rapid thermal processing (RTP) of solid-state amorphous carbon, through which graphene is formed directly on dielectric surfaces accompanied by autonomous nickel evaporation. It is suggested that a metastable hexagonal nickel carbide (Ni 3C) intermediate phase plays a critical role in transforming amorphous carbon to 2D crystalline graphene and contributing tomore » the autonomous Ni evaporation. Temperature resolved carbon and nickel evolution in the RTP process is investigated using Auger electron spectroscopic (AES) depth profiling and glancing-angle X-ray diffraction (GAXRD). Formation, migration and decomposition of the hexagonal Ni 3C are confirmed to be responsible for the formation of graphene and the evaporation of Ni at 1100 °C. The Ni 3C-assisted graphene formation mechanism expands the understanding of Ni-catalyzed graphene formation, and provides insightful guidance for controlled growth of graphene through the solid-state transformation process.« less
Comparison of formation mechanism of fresh-water and salt-water lacustrine organic-rich shale
NASA Astrophysics Data System (ADS)
Lin, Senhu
2017-04-01
Based on the core and thin section observation, major, trace and rare earth elements test, carbon and oxygen isotopes content analysis and other geochemical methods, a detailed study was performed on formation mechanism of lacustrine organic-rich shale by taking the middle Permian salt-water shale in Zhungaer Basin and upper Triassic fresh-water shale in Ordos Basin as the research target. The results show that, the middle Permian salt-water shale was overall deposited in hot and dry climate. Long-term reductive environment and high biological abundance due to elevated temperature provides favorable conditions for formation and preservation of organic-rich shale. Within certain limits, the hotter climate, the organic-richer shale formed. These organic-rich shale was typically distributed in the area where palaeosalinity is relatively high. However, during the upper Triassic at Ordos Basin, organic-rich shale was formed in warm and moist environment. What's more, if the temperature, salinity or water depth rises, the TOC in shale decreases. In other words, relatively low temperature and salinity, stable lake level and strong reducing conditions benefits organic-rich shale deposits in fresh water. In this sense, looking for high-TOC shale in lacustrine basin needs to follow different rules depends on the palaeoclimate and palaeoenvironment during sedimentary period. There is reason to believe that the some other factors can also have significant impact on formation mechanism of organic-rich shale, which increases the complexity of shale oil and gas prediction.
THE TEMPERATURE OF HOT GAS IN GALAXIES AND CLUSTERS: BARYONS DANCING TO THE TUNE OF DARK MATTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Steen H.; Maccio, Andrea V.; Romano-Diaz, Emilio
2011-06-10
The temperature profile of hot gas in galaxies and galaxy clusters is largely determined by the depth of the total gravitational potential and thereby by the dark matter (DM) distribution. We use high-resolution hydrodynamical simulations of galaxy formation to derive a surprisingly simple relation between the gas temperature and DM properties. We show that this relation holds not just for galaxy clusters but also for equilibrated and relaxed galaxies at radii beyond the central stellar-dominated region of typically a few kpc. It is then clarified how a measurement of the temperature and density of the hot gas component can leadmore » to an indirect measurement of the DM velocity anisotropy in galaxies. We also study the temperature relation for galaxy clusters in the presence of self-regulated, recurrent active galactic nuclei (AGNs), and demonstrate that this temperature relation even holds outside the inner region of {approx}30 kpc in clusters with an active AGN.« less
NASA Astrophysics Data System (ADS)
Kinoshita, M.; Kawamura, K.; Lin, W.
2015-12-01
During the Nankai Trough Seismogenic Zone Experiments (NanTroSEIZE) of the Integrated Ocean Drilling Program (IODP), the advanced piston corer temperature (APC-T) tool was used to determine in situ formation temperatures while piston coring down to ~200 m below sea floor. When the corer is fired into the formation, temperature around the shoe abruptly increases due to the frictional heating. The temperature rise due to the frictional heat at the time of penetration is 10 K or larger. We found that the frictional temperature rise (=maximum temperature) increases with increasing depth, and that its intersection at the seafloor seems non-zero. Frictional heat energy is proportional to the maximum temperature rise, which is confirmed by a FEM numerical simulation of 2D cylindrical system. Here we use the result of numerical simulation to convert the observed temperature rise into the frictional heat energy. The frictional heat energy is represented as the product of the shooting length D and the shear stress (τ) between the pipe and the sediment. Assuming a coulomb slip regime, the shear stress is shows as: τ= τ0 + μ*(Sv-Pp), where τ0 is the cohesive stress, μ the dynamic frictional coefficient between the pipe and the sediment, Sv the normal stress at the pipe, and Pp the pore pressure. This can explain the non-zero intersection as well as depth-dependent increase for the frictional heating observed in the APC-T data. Assuming a hydrostatic state and by using the downhole bulk density data, we estimated the friction coefficient for each APC-T measurement. For comparison, we used the vane-shear strength measured on core samples to estimate the friction coefficients. The frictional coefficients μ were estimated as ranging 0.01 - 0.06, anomalously lower than expected for shallow marine sediments. They were lower than those estimated from vane-shear data, which range 0.05 to 0.2. Still, both estimates exhibit a significant increase in the friction coefficient at Site C0012, which dominates in the hemipelagic sediment in the Shikoku Basin. The anomalously low values suggest either fluid injection between the pipe and the sediment during the measurement, or some other uncertainties in converting the observed temperature rise to the frictional heat generation.
Cold and warm atomic gas around the Perseus molecular cloud. I. Basic properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanimirović, Snežana; Murray, Claire E.; Miller, Jesse
2014-10-01
Using the Arecibo Observatory, we have obtained neutral hydrogen (HI) absorption and emission spectral pairs in the direction of 26 background radio continuum sources in the vicinity of the Perseus molecular cloud. Strong absorption lines were detected in all cases, allowing us to estimate spin temperature (T{sub s} ) and optical depth for 107 individual Gaussian components along these lines of sight. Basic properties of individual H I clouds (spin temperature, optical depth, and the column density of the cold and warm neutral medium (CNM and WNM), respectively) in and around Perseus are very similar to those found for randommore » interstellar lines of sight sampled by the Millennium H I survey. This suggests that the neutral gas found in and around molecular clouds is not atypical. However, lines of sight in the vicinity of Perseus have, on average, a higher total H I column density and the CNM fraction, suggesting an enhanced amount of cold H I relative to an average interstellar field. Our estimated optical depth and spin temperature are in stark contrast with the recent attempt at using Planck data to estimate properties of the optically thick H I. Only ∼15% of lines of sight in our study have a column density weighted average spin temperature lower than 50 K, in comparison with ≳ 85% of Planck's sky coverage. The observed CNM fraction is inversely proportional to the optical depth weighted average spin temperature, in excellent agreement with the recent numerical simulations by Kim et al. While the CNM fraction is, on average, higher around Perseus relative to a random interstellar field, it is generally low, between 10%-50%. This suggests that extended WNM envelopes around molecular clouds and/or significant mixing of CNM and WNM throughout molecular clouds are present and should be considered in the models of molecule and star formation. Our detailed comparison of H I absorption with CO emission spectra shows that only 3 of the 26 directions are clear candidates for probing the CO-dark gas as they have N(H I)>10{sup 21} cm{sup –2} yet no detectable CO emission.« less
AASG Wells Data for the EGS Test Site Planning and Analysis Task
Augustine, Chad
2013-10-09
AASG Wells Data for the EGS Test Site Planning and Analysis Task Temperature measurement data obtained from boreholes for the Association of American State Geologists (AASG) geothermal data project. Typically bottomhole temperatures are recorded from log headers, and this information is provided through a borehole temperature observation service for each state. Service includes header records, well logs, temperature measurements, and other information for each borehole. Information presented in Geothermal Prospector was derived from data aggregated from the borehole temperature observations for all states. For each observation, the given well location was recorded and the best available well identified (name), temperature and depth were chosen. The “Well Name Source,” “Temp. Type” and “Depth Type” attributes indicate the field used from the original service. This data was then cleaned and converted to consistent units. The accuracy of the observation’s location, name, temperature or depth was note assessed beyond that originally provided by the service. - AASG bottom hole temperature datasets were downloaded from repository.usgin.org between the dates of May 16th and May 24th, 2013. - Datasets were cleaned to remove “null” and non-real entries, and data converted into consistent units across all datasets - Methodology for selecting ”best” temperature and depth attributes from column headers in AASG BHT Data sets: • Temperature: • CorrectedTemperature – best • MeasuredTemperature – next best • Depth: • DepthOfMeasurement – best • TrueVerticalDepth – next best • DrillerTotalDepth – last option • Well Name/Identifier • APINo – best • WellName – next best • ObservationURI - last option. The column headers are as follows: • gid = internal unique ID • src_state = the state from which the well was downloaded (note: the low temperature wells in Idaho are coded as “ID_LowTemp”, while all other wells are simply the two character state abbreviation) • source_url = the url for the source WFS service or Excel file • temp_c = “best” temperature in Celsius • temp_type = indicates whether temp_c comes from the corrected or measured temperature header column in the source document • depth_m = “best” depth in meters • depth_type = indicates whether depth_m comes from the measured, true vertical, or driller total depth header column in the source document • well_name = “best” well name or ID • name_src = indicates whether well_name came from apino, wellname, or observationuri header column in the source document • lat_wgs84 = latitude in wgs84 • lon_wgs84 = longitude in wgs84 • state = state in which the point is located • county = county in which the point is located
Powell, C.L.
1998-01-01
Sedimentary rocks more than 1.6 kilometers thick are attributed to the upper Miocene to upper Pliocene Purisima Formation in the greater San Francisco Bay area. These rocks occur as scattered, discontinuous outcrops from Point Reyes National Seashore in the north to south of Santa Cruz. Lithologic divisions of the Formation appear to be of local extent and are of limited use in correlating over this broad area. The Purisima Formation occurs in several fault-bounded terranes which demonstrate different stratigraphic histories and may be found to represent more than a single depositional basin. The precise age and stratigraphic relationship of these scattered outcrops are unresolved and until they are put into a stratigraphic and paleogeographic context the tectonic significance of the Purisima Foramtion can only be surmised. This paper will attempt to resolve some of these problems. Mollusks and echinoderms are recorded from the literature and more than 70 USGS collections that have not previously been reported. With the exception of one locality, the faunas suggest deposition in normal marine conditions at water depths of less than 50 m and with water temperatures the same or slightly cooler than exist along the present coast of central California. The single exception is a fauna from outcrops between Seal Cove and Pillar Point, where both mollusks and foraminifers suggest water depths greater than 100 m. Three molluscan faunas, the La Honda, the Pillar Point, and the Santa Cruz, are recognized based on USGS collections and published literature for the Purisima Formation. These biostratigraphically distinct faunas aid in the correlation of the scattered Purisima Formation outcrops. The lowermost La Honda fauna suggests shallow-water depths and an age of late Miocene to early Pliocene. This age is at odds with a younger age determination from an ash bed in the lower Purisima Formation along the central San Mateo County coast. The Pillar Point fauna contains only a single age diagnostic taxon, Lituyapecten purisimaensis (Arnold), which is reported as Pliocene in age, but it only occurs in the Purisima Formation, so its age here is an example of circular reasoning. However, based on tentative lithologic correlations this fauna may represent the same period of time as the upper part of the La Honda fauna. This fauna differs from either the La Honda or Santa Cruz faunas in that it represent significantly deeper water. The uppermost Santa Cruz fauna also suggests shallow-water depths and a possible age range of early to late Pliocene. The bivalve molluscan taxon Lyonsia, and gastropod taxon Rictaxis sp., cf. R. punctocaelatus (Carpenter) are reported here for the first time from the Purisima Formation.
NASA Astrophysics Data System (ADS)
Santiago Ramos, D. P.; Higgins, J. A.
2015-12-01
Improvements in analytical precision on the latest generation multi-collector inductively coupled plasma mass spectrometers (MC-ICP-MS) have revealed a ~2‰ range in the ratios of stable potassium isotopes (41K/39K) in terrestrial materials (Morgan et al., in prep). Preliminary measurements of δ41K values indicate that seawater and silicate rocks are isotopically distinct reservoirs, with seawater having a δ41K value that is ~0.5‰ heavier than the silicate average (-0.5‰; Morgan et al., in prep). The heavy δ41K character of seawater might be related to 1) an isotopically enriched input flux (rivers and high-temperature hydrothermal reactions); or 2) a 41K-depleted sink associated with authigenic clay formation during low-temperature alteration of volcanic rocks. Here we present measurements of the δ41K values of pore-fluids from ODP site 1052 in order to constrain potassium isotope fractionation during secondary clay formation. We find that δ41K values and K concentrations both decline systematically with depth. Results from 1-D diffusion-advection-reaction modeling of potassium concentrations and isotopic compositions indicate that fractionation of K isotopes during diffusion (Bourg et al., 2010) can explain all of the change in δ41K values of the pore-fluid with depth. Although the size of the K sink at site 1052 is a trivial fraction of the global K sink in clay minerals, our results suggest that diffusive fractionation of K isotopes in shallow pore-fluids may be, in part, responsible for the elevated δ41K value of seawater.
NASA Astrophysics Data System (ADS)
Wang, Lijun; Zhang, Xiao; Huang, Xiaolong; Jia, Shenli
2017-11-01
In the process of vacuum arc breaking, the energy injected into the anode will cause anode melting, evaporation, and deformation, resulting in the formation of the anode melting pool. The anode activities have great influence on the arc behavior. When the arc current is large enough, even the influence of axial magnetic field is considered, the arc column still is in contraction state, which means the arc burns only on a part of the electrode. In this paper, the model of anode melting pool deformation and rotation is used, and the model includes anode melting and solidification module, magneto-hydro-dynamic module of the anode melting pool, the volume of fraction method, and the current continuity equation. In this paper, the diffuse arc area is selected as 100%, 75%, and 50%, respectively. The anode temperature and deformation, the anode melting layer thickness, and the rotational velocity of the anode melting pool are obtained. The results show that when the current is at 17.5 kA (rms) and the diffuse arc area is 100%, the anode's maximum temperature is 1477 K and the crater depth is 0.83 mm. But when the diffuse arc areas are 75% and 50%, the anode's maximum temperatures reach 1500 K and 1761 K, and the crater depths reach 1.2 mm and 3 mm, respectively. Arc contraction will lead to more serious anode deformation. A similar result is obtained when the simulation current is 12.5 kA. Under the similar situation, the simulation results in the crater depth, the residual melt layer thickness, the rotational speed of the melting pool, and the maximum temperature of the anode at current zero are in good agreement with the experimental results.
Mass and energy flow in prominences
NASA Technical Reports Server (NTRS)
Poland, Arthur I.
1990-01-01
Mass and energy flow in quiescent prominences is considered based on the hypothesis that active region prominences have a different structure and thus different mass and energy flow characteristics. Several important physical parameters have been plotted using the computational model, representing the evolutionary process after the prominence formation. The temperature, velocity, conductive flux, and enthalpy flux are plotted against distance from the highest point in the loop to the coolest part of the prominence. It is shown that the maximum velocity is only about 5 km/s. The model calculations indicate that the transition region of prominences is dominated by complex processes. It is necessary to take into account mass flow at temperatures below 200,000 K, and both mass flow and optical depth effects in hydrogen at temperatures below 30,000 K. Both of these effects lead to a less steep temperature gradient through the prominence corona interface than can be obtained from the conduction alone.
BOREAS RSS-17 Stem, Soil, and Air Temperature Data
NASA Technical Reports Server (NTRS)
Zimmerman, Reiner; McDonald, Kyle C.; Way, JoBea; Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Smith, David E. (Technical Monitor)
2000-01-01
The BOREAS RSS-17 team collected several data sets in support of its research in monitoring and analyzing environmental and phenological states using radar data. This data set consists of tree bole and soil temperature measurements from various BOREAS flux tower sites. Temperatures were measured with thermistors implanted in the hydroconductive tissue of the trunks of several trees at each site and at various depths in the soil. Data were stored on a data logger at intervals of either 1 or 2 hours. The majority of the data were acquired between early 1994 and early 1995. The primary product of this data set is the diurnal stem temperature measurements acquired for selected trees at five BOREAS tower sites. The data are provided in tabular ASCII format. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
NASA Technical Reports Server (NTRS)
Doerffer, R.; Fischer, J.; Stoessel, M.; Brockmann, C.; Grassl, H.
1989-01-01
Landsat 5 TM measurements are found suitable for study of small scale features in coastal waters; three independent factors, namely suspended matter concentration, atmospheric scattering, and sea-surface temperature, were extracted from all seven TM channels on the basis of factor analysis. The distribution of suspended matter in near-surface water layer and sea surface temperature is observable with a spatial resolution of at least 120 x 120 sq m. The high correlation between water depth and suspended matter distribution established by ship-gathered data supports the presently hypothesized control by bottom topography and wind-modified tidal currents of eddy and front formation.
NASA Astrophysics Data System (ADS)
Uxa, Tomáš; Křížek, Marek; Krause, David
2017-04-01
Many regions of the world host a number relict periglacial landforms that have been inherited from colder periods of the Quaternary. So far, these assemblages have been used to reconstruct former environmental conditions particularly in two basic manners. One is to search for a representative analogue in present-day periglacial environments. Second is based on present climatic context of active landforms (Ballantyne and Harris, 1994). Unfortunately, numerous problems arise with both approaches and therefore, the reconstructions are frequently considered as unreliable. Consequently, most periglacial phenomena have been widely accepted only as indicators of seasonally freezing or permafrost conditions and ground-ice presence, but this may also be dubious and rather tentative in some cases. On the other hand, many theoretical, physically-based studies have emerged in the last few decades that aimed to explain the formation of some periglacial landforms, such as patterned ground. The investigations focused on patterned-ground formation have shown that the length scale of the patterns is more-or-less of the same size as the length scale that initiates the patterns, i.e. the frost depth in seasonally frozen regions and the thaw depth in permafrost areas, respectively. Importantly, the diameter-to-sorting depth ratio of the resulting patterns is constant, of c. 3.1 to 3.8 under subaerial conditions (Ray et al., 1983; Gleason et al., 1986; Hallet and Prestrud, 1986), and of the same value regardless of the formation mechanism as well. These findings clearly indicate direct coupling between patterned-ground geometry and both ground and air temperature conditions at the time when the pattern first developed (Peterson and Krantz, 2008). Hence, if these genetic rules are adopted then the temperature attributes during the pattern initiation can be inferred via the sorting depth, which closely approximates former frost or thaw depth, respectively. In this contribution, we aim to infer the palaeo-temperature and palaeo-permafrost conditions associated with relict large-scale sorted nets in the Krkonoše Mts., Czech Republic. To achieve this, we employ a multi-disciplinary approach consisting of the Monte Carlo simulation based on a simple equilibrium thermal model, the Stefan equation, in an inverse form, driven by data obtained from remote sensing, geophysical soundings, and modern analogues from elsewhere. The results are subjected to a comprehensive uncertainty and sensitivity analysis. We introduce a robust, yet straightforward and easy-to-follow procedure to utilize these periglacial phenomena and other structures indicative of the base of palaeo-active layer to reconstruct former climate. Acknowledgement The research is supported by the Czech Science Foundation, project number 17-21612S. References Ballantyne, C. K., and Harris, C.: The Periglaciation of Great Britain, Cambridge University Press, Cambridge, UK, 1994. Gleason, K. J., Krantz, W. B., Caine, N., George, J. H., and Gunn, R. D.: Geometrical Aspects of Sorted Patterned Ground in Recurrently Frozen Soil, Science, 232, 216-220, doi: 10.1126/science.232.4747.216, 1986. Hallet, B., and Prestrud, S.: Dynamics of periglacial sorted circles in Western Spitsbergen, Quaternary Res., 26, 81-99, doi: 10.1016/0033-5894(86)90085-2, 1986. Ray, R. J., Krantz, W. B., Caine, T. N., and Gunn, R. D.: A model for sorted patterned-ground regularity, J. Glaciol., 29, 317-337, doi: 10.3198/1983JoG29-102-317-337, 1983. Peterson, R. A., and Krantz, W. B.: Differential frost heave model for patterned ground formation: Corroboration with observations along a North American arctic transect, J. Geophys. Res., 113, G03S04, doi: 10.1029/2007JG000559, 2008.
Sensitivity of Great Lakes Ice Cover to Air Temperature
NASA Astrophysics Data System (ADS)
Austin, J. A.; Titze, D.
2016-12-01
Ice cover is shown to exhibit a strong linear sensitivity to air temperature. Upwards of 70% of ice cover variability on all of the Great Lakes can be explained in terms of air temperature, alone, and nearly 90% of ice cover variability can be explained in some lakes. Ice cover sensitivity to air temperature is high, and a difference in seasonally-averaged (Dec-May) air temperature on the order of 1°C to 2°C can be the difference between a low-ice year and a moderate- to high- ice year. The total amount of seasonal ice cover is most influenced by air temperatures during the meteorological winter, contemporaneous with the time of ice formation. Air temperature conditions during the pre-winter conditioning period and during the spring melting period were found to have less of an impact on seasonal ice cover. This is likely due to the fact that there is a negative feedback mechanism when heat loss goes toward cooling the lake, but a positive feedback mechanism when heat loss goes toward ice formation. Ice cover sensitivity relationships were compared between shallow coastal regions of the Great Lakes and similarly shallow smaller, inland lakes. It was found that the sensitivity to air temperature is similar between these coastal regions and smaller lakes, but that the absolute amount of ice that forms varies significantly between small lakes and the Great Lakes, and amongst the Great Lakes themselves. The Lake Superior application of the ROMS three-dimensional hydrodynamic numerical model verifies a deterministic linear relationship between air temperature and ice cover, which is also strongest around the period of ice formation. When the Lake Superior bathymetry is experimentally adjusted by a constant vertical multiplier, average lake depth is shown to have a nonlinear relationship with seasonal ice cover, and this nonlinearity may be associated with a nonlinear increase in the lake-wide volume of the surface mixed layer.
NASA Astrophysics Data System (ADS)
Chen, F.; Coggon, R. M.; Teagle, D. A. H.; Turchyn, A. V.
2016-12-01
Calcium carbonate vein formation in the oceanic crust has been proposed as a climate-sensitive feedback mechanism that regulates the carbon cycle on million-year timescales. The suggestion has been that higher pCO2 levels may drive changes in ocean temperature and pH that increase seafloor alteration, releasing more calcium from oceanic basalt. This results in more removal of carbon from Earth's surface through calcium carbonate formation, which includes calcium carbonate vein formation in oceanic crust. The importance of this feedback mechanism remains enigmatic. Measurements of the δ44Ca of calcium carbonate veins in the oceanic crust may constrain the sources of calcium and timing of vein formation. Seawater and basalt are the only sources present shortly after crustal formation, whereas other sources, such as anhydrite dissolution and sedimentary carbonates become available when the crust ages, at which point carbonate veins may form far from the ridge axis. We report the calcium isotopic composition of 65 calcium carbonate veins, ranging from 108 to 1.2 million years old, in hydrothermally altered basalt from the Mid-Atlantic and Juan de Fuca ridges. We also present 43 δ44Ca measurements of 5.9 million year old basalts and dikes from the Costa Rica Rift that have undergone hydrothermal alteration over a range of conditions in upper crust. The δ44Ca of the calcium carbonate veins ranges from -1.59 to 1.01‰ (versus Bulk Silicate Earth), whereas the δ44Ca of altered basalts ranges from -0.18 to 0.28‰. Depth and temperature of formation seem to be major influences on calcium carbonate vein δ44Ca, with veins formed at cool, shallower depths having higher δ44Ca, closer to seawater. In contrast, we note no temporal variation in δ44Ca of calcium carbonate veins when comparing samples from older and younger crust. The majority of veins (54 out of 65) have δ44Ca between that of seawater and basalt, which implies that they may have formed quite soon after crustal formation before other sources of calcium became available. We conclude that calcium carbonate vein formation may derive a significant fraction of calcium from seafloor alteration of basalts. This may cause rates of carbonate vein formation to be sensitive to aspects of ocean chemistry that vary due to changing climate conditions.
Prediction of porosity of food materials during drying: Current challenges and directions.
Joardder, Mohammad U H; Kumar, C; Karim, M A
2017-07-18
Pore formation in food samples is a common physical phenomenon observed during dehydration processes. The pore evolution during drying significantly affects the physical properties and quality of dried foods. Therefore, it should be taken into consideration when predicting transport processes in the drying sample. Characteristics of pore formation depend on the drying process parameters, product properties and processing time. Understanding the physics of pore formation and evolution during drying will assist in accurately predicting the drying kinetics and quality of food materials. Researchers have been trying to develop mathematical models to describe the pore formation and evolution during drying. In this study, existing porosity models are critically analysed and limitations are identified. Better insight into the factors affecting porosity is provided, and suggestions are proposed to overcome the limitations. These include considerations of process parameters such as glass transition temperature, sample temperature, and variable material properties in the porosity models. Several researchers have proposed models for porosity prediction of food materials during drying. However, these models are either very simplistic or empirical in nature and failed to consider relevant significant factors that influence porosity. In-depth understanding of characteristics of the pore is required for developing a generic model of porosity. A micro-level analysis of pore formation is presented for better understanding, which will help in developing an accurate and generic porosity model.
Garnet lherzolites from Louwrensia, Namibia: Bulk composition and P/T relations
Boyd, F.R.; Pearson, D.G.; Hoal, Karin O.; Hoal, B.G.; Nixon, P.H.; Kingston, M.J.; Mertzman, S.A.
2004-01-01
Bulk, mineral and trace element analyses of garnet lherzolite xenoliths from the Louwrensia kimberlite pipe, south-central Namibia, together with previously published Re-Os isotopic data [Chem. Geol. (2004)], form the most extensive set of chemical data for off-craton suites from southern Africa. The Louwrensia suite is similar to those from the Kaapvaal craton in that it includes both predominantly coarse-grained, equant-textured peridotites characterised by equilibration temperatures 1200 ??C. Redepletion ages range back to 2.1 Gy, concordant with the age of the crustal basement and about 1 Gy younger than the older peridotites of the adjacent Kaapvaal craton root. The coarse, low-temperature Louwrensia peridotites have an average Mg number for olivine of 91.6 in comparison to 92.6 for low-temperature peridotites from the craton. Orthopyroxene content averages 24 wt.% with a range of 11-40 wt.% for Louwrensia low-temperature peridotites, in comparison to a mean of 31.5 wt.% and a range of 11-44 wt.% for low-temperature peridotites from the Kaapvaal craton. Other major, minor and trace element concentrations in minerals forming Louwrensia lherzolites are more similar to values in corresponding Kaapvaal peridotite minerals than to those in lithospheric peridotites of Phanerozoic age as represented by off-craton basalt-hosted xenoliths and orogenic peridotites. Proportions of clinopyroxene and garnet in both the Louwrensia and Kaapvaal lherzolites overlap in the range up to 10 wt.% forming a trend extending towards pyrolite composition. Disequilibrium element partitioning between clinopyroxene and garnet for some incompatible trace elements is evidence that some of the trend is caused by enrichment following depletion. The disequilibrium is interpreted to have been caused by relatively recent growth of diopside, as previously suggested for cratonic peridotites. Attempts to constrain the depth of melting required to produce the Louwrensia peridotites suggests formation at pressures 200 km). Temperature-depth plots for the high-temperature Louwrensia rocks, however, form pronounced, apparent higher-temperature thermal anomalies at depths of 140 km and above. These anomalies are believed to reflect regional igneous activity, perhaps associated with thermal erosion of an originally thicker lithosphere, a short time prior to eruption. ?? 2004 Elsevier B.V. All rights reserved.
Challenges in Implementing a Multi-Partnership Geothermal Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gosnold, Will; Mann, Michael; Salehfar, Hossein
The UND-CLR binary geothermal power plant project is a piggyback operation on a secondary-recovery water-flood project in the Cedar Hills oil field in the Williston Basin. Two open-hole horizontal wells at 2,300 m and 2,400 m depths with lateral lengths of 1,290 m and 860 m produce water at a combined flow of 51 l s -1 from the Lodgepole formation (Miss.) for injection into the Red River formation (Ordovician). The hydrostatic head for the Lodgepole is at ground surface and the pumps, which are set at 650 m depth, have run continuously since 2009. Water temperature at the wellheadmore » is 103 °C and CLR passes the water through two large air-cooled heat exchangers prior to injection. In all aspects, the CLR water flood project is ideal for demonstration of electrical power production from a low-temperature geothermal resource. However, implementation of the project from concept to power production was analogous to breaking trail in deep snow in an old growth forest. There were many hidden bumps, detours, and in some instances immoveable barriers. Problems with investors, cost share, contracts with CLR, resistance from local industry, cost of installation, delays by the ORC supplier, and the North Dakota climate all caused delays and setbacks. Determination and problem solving by the UND team eventually overcame most setbacks, and in April 2016, the site began generating power. Figure 1: Schematic of the water supply well at the UND CLR binary geothermal power plant REFERENCES Williams, Snyder, and Gosnold, 2016, Low Temperature Projects Evaluation and Lesson Learned, GRC Transactions, Vol. 40, 203-210 Gosnold, LeFever, Klenner, Mann, Salehfar, and Johnson, 2010, Geothermal Power from Coproduced Fluids in the Williston Basin, GRC Transactions, Vol. 34, 557-560« less
Residual heat generated during laser processing of CFRP with picosecond laser pulses
NASA Astrophysics Data System (ADS)
Freitag, Christian; Pauly, Leon; Förster, Daniel J.; Wiedenmann, Margit; Weber, Rudolf; Kononenko, Taras V.; Konov, Vitaly I.; Graf, Thomas
2018-05-01
One of the major reasons for the formation of a heat-affected zone during laser processing of carbon fiber-reinforced plastics (CFRP) with repetitive picosecond (ps) laser pulses is heat accumulation. A fraction of every laser pulse is left as what we termed residual heat in the material also after the completed ablation process and leads to a gradual temperature increase in the processed workpiece. If the time between two consecutive pulses is too short to allow for a sufficient cooling of the material in the interaction zone, the resulting temperature can finally exceed a critical temperature and lead to the formation of a heat-affected zone. This accumulation effect depends on the amount of energy per laser pulse that is left in the material as residual heat. Which fraction of the incident pulse energy is left as residual heat in the workpiece depends on the laser and process parameters, the material properties, and the geometry of the interaction zone, but the influence of the individual quantities at the present state of knowledge is not known precisely due to the lack of comprehensive theoretical models. With the present study, we, therefore, experimentally determined the amount of residual heat by means of calorimetry. We investigated the dependence of the residual heat on the fluence, the pulse overlap, and the depth of laser-generated grooves in CRFP. As expected, the residual heat was found to increase with increasing groove depth. This increase occurs due to an indirect heating of the kerf walls by the ablation plasma and the change in the absorbed laser fluence caused by the altered geometry of the generated structures.
The role of mass removal mechanisms in the onset of ns-laser induced plasma formation
NASA Astrophysics Data System (ADS)
Autrique, D.; Clair, G.; L'Hermite, D.; Alexiades, V.; Bogaerts, A.; Rethfeld, B.
2013-07-01
The present study focuses on the role of mass removal mechanisms in ns-laser ablation. A copper sample is placed in argon, initially set at standard pressure and temperature. Calculations are performed for a 6 ns laser pulse with a wavelength of 532 nm and laser fluences up to 10 J/cm2. The transient behavior in and above the copper target is described by a hydrodynamic model. Transmission profiles and ablation depths are compared with experimental results and similar trends are found. Our calculations reveal an interesting self-inhibiting mechanism: volumetric mass removal in the supercritical region triggers plasma shielding and therefore stops proceeding. This self-limiting process indicates that volumetric mass removal does not necessarily result in large ablation depths.
Precipitate resolution in an electron irradiated ni-si alloy
NASA Astrophysics Data System (ADS)
Watanabe, H.; Muroga, T.; Yoshida, N.; Kitajima, K.
1988-09-01
Precipitate resolution processes in a Ni-12.6 at% Si alloy under electron irradiation have been observed by means of HVEM. Above 400°C, growth and resolution of Ni 3Si precipitates were observed simultaneously. The detail stereoscopic observation showed that the precipitates close to free surfaces grew, while those in the middle of a specimen dissolved. The critical dose when the precipitates start to shrink increases with increasing the depth. This depth dependence of the precipitate behavior under irradiation has a close relation with the formation of surface precipitates and the growth of solute depleted zone beneath them. The temperature and dose dependence of the resolution rate showed that the precipitates in the solute depleted zone dissolved by the interface controlled process of radiation-enhanced diffusion.
Formation of metal and dielectric liners using a solution process for deep trench capacitors.
Ham, Yong-Hyun; Kim, Dong-Pyo; Baek, Kyu-Ha; Park, Kun-Sik; Kim, Moonkeun; Kwon, Kwang-Ho; Shin, Hong-Sik; Lee, Kijun; Do, Lee-Mi
2012-07-01
We demonstrated the feasibility of metal and dielectric liners using a solution process for deep trench capacitor application. The deep Si trench via with size of 10.3 microm and depth of 71 microm were fabricated by Bosch process in deep reactive ion etch (DRIE) system. The aspect ratio was about 7. Then, nano-Ag ink and poly(4-vinylphenol) (PVPh) were used to form metal and dielectric liners, respectively. The thicknesses of the Ag and PVPh liners were about 144 and 830 nm, respectively. When the curing temperature of Ag film increased from 120 to 150 degrees C, the sheet resistance decreased rapidly from 2.47 to 0.72 Omega/sq and then slightly decreased to 0.6 Omega/sq with further increasing the curing temperature beyond 150 degrees C. The proposed liner formation method using solution process is a simple and cost effective process for the high capacity of deep trench capacitor.
Effect of warm compress application on tissue temperature in healthy dogs.
Millard, Ralph P; Towle-Millard, Heather A; Rankin, David C; Roush, James K
2013-03-01
To measure the effect of warm compress application on tissue temperature in healthy dogs. 10 healthy mixed-breed dogs. Dogs were sedated with hydromorphone (0.1 mg/kg, IV) and diazepam (0.25 mg/kg, IV). Three 24-gauge thermocouple needles were inserted to a depth of 0.5 cm (superficial), 1.0 cm (middle), and 1.5 cm (deep) into a shaved, lumbar, epaxial region to measure tissue temperature. Warm (47°C) compresses were applied with gravity dependence for periods of 5, 10, and 20 minutes. Tissue temperature was recorded before compress application and at intervals for up to 80 minutes after application. Control data were collected while dogs received identical sedation but with no warm compress. Mean temperature associated with 5 minutes of heat application at the superficial, middle, and deep depths was significantly increased, compared with the control temperature. Application for 10 minutes significantly increased the temperature at all depths, compared with 5 minutes of application. Mean temperature associated with 20 minutes of application was not different at the superficial or middle depths, compared with 10 minutes of application. Temperature at the deep depth associated with 10 minutes of application was significantly higher, compared with 20 minutes of application, but all temperature increases at this depth were minimal. Results suggested that application of a warm compress should be performed for 10 minutes. Changes in temperature at a tissue depth of 1.5 cm were minimal or not detected. The optimal compress temperature to achieve therapeutic benefits was not determined.
Effective depth of spectral line formation in planetary atmospheres
NASA Technical Reports Server (NTRS)
Lestrade, J. P.; Chamberlain, J. W.
1980-01-01
The effective level of line formation for spectroscopic absorption lines has long been regarded as a useful parameter for determining average atmospheric values of the quantities involved in line formation. The identity of this parameter was recently disputed. The dependence of this parameter on the average depth where photons are absorbed in a semi-infinite atmosphere is established. It is shown that the mean depths derived by others are similar in nature and behavior.
Zhao, Yan-jun; Zhang, Hua; Liu, Cheng-lin; Liu, Bao-kun; Ma, Li-chun; Wang, Li-cheng
2014-01-01
Climate changes within Cenozoic extreme climate events such as the Paleocene–Eocene Thermal Maximum and the First Oligocene Glacial provide good opportunities to estimate the global climate trends in our present and future life. However, quantitative paleotemperatures data for Cenozoic climatic reconstruction are still lacking, hindering a better understanding of the past and future climate conditions. In this contribution, quantitative paleotemperatures were determined by fluid inclusion homogenization temperature (Th) data from continental halite of the first member of the Shahejie Formation (SF1; probably late Eocene to early Oligocene) in Bohai Bay Basin, North China. The primary textures of the SF1 halite typified by cumulate and chevron halite suggest halite deposited in a shallow saline water and halite Th can serve as an temperature proxy. In total, one-hundred-twenty-one Th data from primary and single-phase aqueous fluid inclusions with different depths were acquired by the cooling nucleation method. The results show that all Th range from 17.7°C to 50.7°C,with the maximum homogenization temperatures (ThMAX) of 50.5°C at the depth of 3028.04 m and 50.7°C at 3188.61 m, respectively. Both the ThMAX presented here are significantly higher than the highest temperature recorded in this region since 1954and agree with global temperature models for the year 2100 predicted by the Intergovernmental Panel on Climate Change. PMID:25047483
NASA Astrophysics Data System (ADS)
Han, Raehee; Hirose, Takehiro; Jeong, Gi Young; Ando, Jun-ichi; Mukoyoshi, Hideki
2014-08-01
Clayey gouges are common in fault slip zones at shallow depths. Thus, the fault zone processes and frictional behaviors of the gouges are critical to understanding seismic slip at these depths. We conducted rotary shear tests on clayey gouge (~41 wt % clay minerals) at a seismic slip rate of 1.3 m/s. Here we report that the gouge was melted at 5 MPa of normal stress and room humidity conditions. The initial local melting was followed by melt layer formation. Clay minerals (e.g., smectite and illite) and plagioclase were melted and quenched to glass with numerous vesicles. Both flash heating and bulk temperature increases appear to be responsible for the melting. This observation of clayey gouge melting is comparable to that of natural faults (e.g., Chelungpu fault, Taiwan). Due to heterogeneous fault zone properties (e.g., permeability), frictional melting may be one of the important processes in clayey slip zones at shallow depths.
NASA Astrophysics Data System (ADS)
Yu, Wen; Li, Xiongyao; Wei, Guangfei; Wang, Shijie
2016-03-01
Indications of buried lunar bedrock may help us to understand the tectonic evolution of the Moon and provide some clues for formation of lunar regolith. So far, the information on distribution and burial depth of lunar bedrock is far from sufficient. Due to good penetration ability, microwave radiation can be a potential tool to ameliorate this problem. Here, a novel method to estimate the burial depth of lunar bedrock is presented using microwave data from Chang'E-1 (CE-1) lunar satellite. The method is based on the spatial variation of differences in brightness temperatures between 19.35 GHz and 37.0 GHz (ΔTB). Large differences are found in some regions, such as the southwest edge of Oceanus Procellarum, the area between Mare Tranquillitatis and Mare Nectaris, and the highland east of Mare Smythii. Interestingly, a large change of elevation is found in the corresponding region, which might imply a shallow burial depth of lunar bedrock. To verify this deduction, a theoretical model is derived to calculate the ΔTB. Results show that ΔTB varies from 12.7 K to 15 K when the burial depth of bedrock changes from 1 m to 0.5 m in the equatorial region. Based on the available data at low lunar latitude (30°N-30°S), it is thus inferred that the southwest edge of Oceanus Procellarum, the area between Mare Tranquillitatis and Mare Nectaris, the highland located east of Mare Smythii, the edge of Pasteur and Chaplygin are the areas with shallow bedrock, the burial depth is estimated between 0.5 m and 1 m.
A Dynamic Mesh-Based Approach to Model Melting and Shape of an ESR Electrode
NASA Astrophysics Data System (ADS)
Karimi-Sibaki, E.; Kharicha, A.; Bohacek, J.; Wu, M.; Ludwig, A.
2015-10-01
This paper presents a numerical method to investigate the shape of tip and melt rate of an electrode during electroslag remelting process. The interactions between flow, temperature, and electromagnetic fields are taken into account. A dynamic mesh-based approach is employed to model the dynamic formation of the shape of electrode tip. The effect of slag properties such as thermal and electrical conductivities on the melt rate and electrode immersion depth is discussed. The thermal conductivity of slag has a dominant influence on the heat transfer in the system, hence on melt rate of electrode. The melt rate decreases with increasing thermal conductivity of slag. The electrical conductivity of slag governs the electric current path that in turn influences flow and temperature fields. The melting of electrode is a quite unstable process due to the complex interaction between the melt rate, immersion depth, and shape of electrode tip. Therefore, a numerical adaptation of electrode position in the slag has been implemented in order to achieve steady state melting. In fact, the melt rate, immersion depth, and shape of electrode tip are interdependent parameters of process. The generated power in the system is found to be dependent on both immersion depth and shape of electrode tip. In other words, the same amount of power was generated for the systems where the shapes of tip and immersion depth were different. Furthermore, it was observed that the shape of electrode tip is very similar for the systems running with the same ratio of power generation to melt rate. Comparison between simulations and experimental results was made to verify the numerical model.
Dynamics of Permafrost Associated Methane Hydrate in Response to Climate Change
NASA Astrophysics Data System (ADS)
You, K.; Flemings, P. B.
2014-12-01
The formation and melting of methane hydrate and ice are intertwined in permafrost regions. A shortage of methane supply leads to formation of hydrate only at depth, below the base of permafrost. We consider a system with the ground surface initially at 0 oC with neither ice nor hydrate present. We abruptly decrease the temperature from 0 to -10 oC to simulate the effect of marine regression/ global cooling. A low methane supply rate of 0.005 kg m-2 yr-1 from depth leads to distinct ice and hydrate layers: a 100 m continuous hydrate layer is present beneath 850 m at 80 k.y.. However, a high methane supply rate of 0.1 kg m-2 yr-1 leads to 50 m ice-bonded methane hydrate at the base of permafrost, and the hydrate layer distributes between the depth of 350 and 700 m at 80 k.y.. We apply our model to illuminate future melting of hydrate at Mallik, a known Arctic hydrate accumulation. We assume a 600 m thick ice saturated (average 90%) layer extending downward from the ground surface. We increase the surface temperature linearly from -6 to 0 oC for 300 yr and then keep the surface temperature at 0 oC to reflect future climate warming caused by doubling of CO2. Hydrate melting is initiated at the base of the hydrate layer after 15 k.y.. Methane gas starts to vent to the atmosphere at 38 k.y. with an average flux of ~ 0.35 g m-2 yr-1. If the 600 m thick average ice saturation is decreased to half (45%) (or to zero), methane gas starts to vent to the atmosphere at 29 k.y. (or at 20 k.y.) with the same average flux. These results are found by a newly-developed fully-coupled multiphase multicomponent fluid flow and heat transport model. Our thermodynamic equilibrium-based model emphasizes the role of salinity in both ice and hydrate dynamics.
Padma, Narayanan; Maheshwari, Priya; Bhattacharya, Debarati; Tokas, Raj B; Sen, Shashwati; Honda, Yoshihide; Basu, Saibal; Pujari, Pradeep Kumar; Rao, T V Chandrasekhar
2016-02-10
Influence of substrate temperature on growth modes of copper phthalocyanine (CuPc) thin films at the dielectric/semiconductor interface in organic field effect transistors (OFETs) is investigated. Atomic force microscopy (AFM) imaging at the interface reveals a change from 'layer+island' to "island" growth mode with increasing substrate temperatures, further confirmed by probing the buried interfaces using X-ray reflectivity (XRR) and positron annihilation spectroscopic (PAS) techniques. PAS depth profiling provides insight into the details of molecular ordering while positron lifetime measurements reveal the difference in packing modes of CuPc molecules at the interface. XRR measurements show systematic increase in interface width and electron density correlating well with the change from layer + island to coalesced huge 3D islands at higher substrate temperatures. Study demonstrates the usefulness of XRR and PAS techniques to study growth modes at buried interfaces and reveals the influence of growth modes of semiconductor at the interface on hole and electron trap concentrations individually, thereby affecting hysteresis and threshold voltage stability. Minimum hole trapping is correlated to near layer by layer formation close to the interface at 100 °C and maximum to the island formation with large voids between the grains at 225 °C.
Brewer, P.G.; Orr, F.M.; Friederich, G.; Kvenvolden, K.A.; Orange, D.L.
1998-01-01
We have utilized a remotely operated vehicle (ROV) to initiate a program of research into gas hydrate formation in the deep sea by controlled release of hydrocarbon gases and liquid CO2 into natural sea water and marine sediments. Our objectives were to investigate the formation rates and growth patterns of gas hydrates in natural systems and to assess the geochemical stability of the reaction products over time. The novel experimental procedures used the carrying capacity, imaging capability, and control mechanisms of the ROV to transport gas cylinders to depth and to open valves selectively under desired P-T conditions to release the gas either into contained natural sea water or into sediments. In experiments in Monterey Bay, California, at 910 m depth and 3.9??C water temperature we find hydrate formation to be nearly instantaneous for a variety of gases. In sediments the pattern of hydrate formation is dependent on the pore size, with flooding of the pore spaces in a coarse sand yielding a hydrate cemented mass, and gas channeling in a fine-grained mud creating a veined hydrate structure. In experiments with liquid CO2 the released globules appeared to form a hydrate skin as they slowly rose in the apparatus. An initial attempt to leave the experimental material on the sea floor for an extended period was partially successful; we observed an apparent complete dissolution of the liquid CO2 mass, and an apparent consolidation of the CH4 hydrate, over a period of about 85 days.
Low Temperature Ohmic Contact Formation of Ni2Si on N-type 4H-SiC and 6H-SiC
NASA Technical Reports Server (NTRS)
Elsamadicy, A. M.; Ila, D.; Zimmerman, R.; Muntele, C.; Evelyn, L.; Muntele, I.; Poker, D. B.; Hensley, D.; Hirvonen, J. K.; Demaree, J. D.;
2001-01-01
Nickel Silicide (Ni2Si) is investigated as possible ohmic contact to heavily nitrogen-doped N-type 4H-SiC and 6H-SiC. Nickel Silicide was deposited via electron gun with various thicknesses on both Si and C faces of the SiC substrates. The Ni2Si contacts were formed at room temperature as well as at elevated temperatures (400 to 1000 K). Contact resistivities and I-V characteristics were measured at temperatures between 100 and 700 C. To investigate the electric properties, I-V characteristics were studied and the Transmission Line Method (TLM) was used to determine the specific contact resistance for the samples at each annealing temperature. Both Rutherford Backscattering Spectroscopy (RBS) and Auger Electron Spectroscopy (AES) were used for depth profiling of the Ni2Si, Si, and C. X-ray Photoemission Spectroscopy (XPS) was used to study the chemical structure of the Ni2Si/SiC interface.
Potassium alum and aluminum sulfate micro-inclusions in polar ice from Dome Fuji, East Antarctica
NASA Astrophysics Data System (ADS)
Ohno, Hiroshi; Iizuka, Yoshinori; Horikawa, Shinichiro; Sakurai, Toshimitsu; Hondoh, Takeo; Motoyama, Hideaki
2014-03-01
Water-soluble trace constituents affect the physicochemical properties of polar ice. Their structural distribution provides important insights into the formation history of ice and inclusions. We report the first finding of KAl(SO4)2·12H2O (potassium alum) and Al2(SO4)3·nH2O (aluminum sulfate) micro-inclusions in the Dome Fuji ice core, East Antartica, using a micro-Raman technique. Eutectic temperatures of these water-soluble species determined using thermal analysis were -0.4 °C for potassium alum and -8.0 °C for aluminum sulfate. Although the formation process of the aluminum-bearing sulfates remains unclear, the occurrence of these salts largely depends on ice depth.
Toward a coherent model for the melting behavior of the deep Earth's mantle
NASA Astrophysics Data System (ADS)
Andrault, D.; Bolfan-Casanova, N.; Bouhifd, M. A.; Boujibar, A.; Garbarino, G.; Manthilake, G.; Mezouar, M.; Monteux, J.; Parisiades, P.; Pesce, G.
2017-04-01
Knowledge of melting properties is critical to predict the nature and the fate of melts produced in the deep mantle. Early in the Earth's history, melting properties controlled the magma ocean crystallization, which potentially induced chemical segregation in distinct reservoirs. Today, partial melting most probably occurs in the lowermost mantle as well as at mid upper-mantle depths, which control important aspects of mantle dynamics, including some types of volcanism. Unfortunately, despite major experimental and theoretical efforts, major controversies remain about several aspects of mantle melting. For example, the liquidus of the mantle was reported (for peridotitic or chondritic-type composition) with a temperature difference of ∼1000 K at high mantle depths. Also, the Fe partitioning coefficient (DFeBg/melt) between bridgmanite (Bg, the major lower mantle mineral) and a melt was reported between ∼0.1 and ∼0.5, for a mantle depth of ∼2000 km. Until now, these uncertainties had prevented the construction of a coherent picture of the melting behavior of the deep mantle. In this article, we perform a critical review of previous works and develop a coherent, semi-quantitative, model. We first address the melting curve of Bg with the help of original experimental measurements, which yields a constraint on the volume change upon melting (ΔVm). Secondly, we apply a basic thermodynamical approach to discuss the melting behavior of mineralogical assemblages made of fractions of Bg, CaSiO3-perovskite and (Mg,Fe)O-ferropericlase. Our analysis yields quantitative constraints on the SiO2-content in the pseudo-eutectic melt and the degree of partial melting (F) as a function of pressure, temperature and mantle composition; For examples, we find that F could be more than 40% at the solidus temperature, except if the presence of volatile elements induces incipient melting. We then discuss the melt buoyancy in a partial molten lower mantle as a function of pressure, F and DFeBg/melt. In the lower mantle, density inversions (i.e. sinking melts) appear to be restricted to low F values and highest mantle pressures. The coherent melting model has direct geophysical implications: (i) in the early Earth, the magma ocean crystallization could not occur for a core temperature higher than ∼5400 K at the core-mantle boundary (CMB). This temperature corresponds to the melting of pure Bg at 135 GPa. For a mantle composition more realistic than pure Bg, the right CMB temperature for magma ocean crystallization could have been as low as ∼4400 K. (ii) There are converging arguments for the formation of a relatively homogeneous mantle after magma ocean crystallization. In particular, we predict the bulk crystallization of a relatively large mantle fraction, when the temperature becomes lower than the pseudo-eutectic temperature. Some chemical segregation could still be possible as a result of some Bg segregation in the lowermost mantle during the first stage of the magma ocean crystallization, and due to a much later descent of very low F, Fe-enriched, melts toward the CMB. (iii) The descent of such melts could still take place today. There formation should to be related to incipient mantle melting due to the presence of volatile elements. Even though, these melts can only be denser than the mantle (at high mantle depths) if the controversial value of DFeBg/melt is indeed as low as suggested by some experimental studies. This type of melts could contribute to produce ultra-low seismic velocity anomalies in the lowermost mantle.
Increased depth-diameter ratios in the Medusae Fossae Formation deposits of Mars
NASA Technical Reports Server (NTRS)
Barlow, N. G.
1993-01-01
Depth to diameter ratios for fresh impact craters on Mars are commonly cited as approximately 0.2 for simple craters and 0.1 for complex craters. Recent computation of depth-diameter ratios in the Amazonis-Memnonia region of Mars indicates that craters within the Medusae Fossae Formation deposits found in this region display greater depth-diameter ratios than expected for both simple and complex craters. Photoclinometric and shadow length techniques have been used to obtain depths of craters within the Amazonis-Memnonia region. The 37 craters in the 2 to 29 km diameter range and displaying fresh impact morphologies were identified in the area of study. This region includes the Amazonian aged upper and middle members of the Medusae Fossae Formation and Noachian aged cratered and hilly units. The Medusae Fossae Formation is characterized by extensive, flat to gently undulating deposits of controversial origin. These deposits appear to vary from friable to indurated. Early analysis of crater degradation in the Medusae Fossae region suggested that simple craters excavated to greater depths than expected based on the general depth-diameter relationships derived for Mars. However, too few craters were available in the initial analysis to estimate the actual depth-diameter ratios within this region. Although the analysis is continuing, we are now beginning to see a convergence towards specific values for the depth-diameter ratio depending on geologic unit.
Carbon Dioxide Clouds at High Altitude in the Tropics and in an Early Dense Martian Atmosphere
NASA Technical Reports Server (NTRS)
Colaprete, Anthony; Toon, Owen B.
2001-01-01
We use a time dependent, microphysical cloud model to study the formation of carbon dioxide clouds in the Martian atmosphere. Laboratory studies by Glandor et al. show that high critical supersaturations are required for cloud particle nucleation and that surface kinetic growth is not limited. These conditions, which are similar to those for cirrus clouds on Earth, lead to the formation of carbon dioxide ice particles with radii greater than 500 micrometers and concentrations of less than 0.1 cm(exp -3) for typical atmospheric conditions. Within the current Martian atmosphere, CO2 cloud formation is possible at the poles during winter and at high altitudes in the tropics during periods of increased atmospheric dust loading. In both cases, temperature perturbations of several degrees below the CO2 saturation temperature are required to nucleate new cloud particles suggesting that dynamical processes are the most common initiators of carbon dioxide clouds rather than diabatic cooling. The microphysical cloud model, coupled to a two-stream radiative transfer model, is used to reexamine the impact of CO2 clouds on the surface temperature within a dense CO2 atmosphere. The formation of carbon dioxide clouds leads to a warmer surface than what would be expected for clear sky conditions. The amount of warming is sensitive to the presence of dust and water vapor in the atmosphere, both of which act to dampen cloud effects. The radiative warming associated with cloud formation, as well as latent heating, work to dissipate the clouds when present. Thus, clouds never last for periods much longer than several days, limiting their overall effectiveness for warming the surface. The time average cloud optical depth is approximately unity leading to a 5-10 K warming, depending on the surface pressure. However, the surface temperature does not rise about the freezing point of liquid water even for pressures as high as 5 bars, at a solar luminosity of 75% the current value.
Gradient Nanostructured Tantalum by Thermal-Mechanical Ultrasonic Impact Energy.
Chae, Jong-Min; Lee, Keun-Oh; Amanov, Auezhan
2018-03-20
Microstructural evolution and wear performance of Tantalum (Ta) treated by ultrasonic nanocrystalline surface modification (UNSM) at 25 and 1000 °C were reported. The UNSM treatment modified a surface along with subsurface layer with a thickness in the range of 20 to 150 µm, which depends on the UNSM treatment temperature, via the surface severe plastic deformation (S²PD) method. The cross-sectional microstructure of the specimens was observed by electron backscattered diffraction (EBSD) in order to confirm the microstructural alteration in terms of effective depth and refined grain size. The surface hardness measurement results, including depth profile, revealed that the hardness of the UNSM-treated specimens at both temperatures was increased in comparison with those of the untreated ones. The increase in UNSM treatment temperature led to a further increase in hardness. Moreover, both the UNSM-treated specimens with an increased hardness resulted in a higher resistance to wear in comparison with those of the untreated ones under dry conditions. The increase in hardness and induced compressive residual stress that depend on the formation of severe plastically deformed layer with the refined nano-grains are responsible for the enhancement in wear resistance. The findings of this study may be implemented in response to various industries that are related to strength improvement and wear enhancement issues of Ta.
Gradient Nanostructured Tantalum by Thermal-Mechanical Ultrasonic Impact Energy
Chae, Jong-Min; Lee, Keun-Oh; Amanov, Auezhan
2018-01-01
Microstructural evolution and wear performance of Tantalum (Ta) treated by ultrasonic nanocrystalline surface modification (UNSM) at 25 and 1000 °C were reported. The UNSM treatment modified a surface along with subsurface layer with a thickness in the range of 20 to 150 µm, which depends on the UNSM treatment temperature, via the surface severe plastic deformation (S2PD) method. The cross-sectional microstructure of the specimens was observed by electron backscattered diffraction (EBSD) in order to confirm the microstructural alteration in terms of effective depth and refined grain size. The surface hardness measurement results, including depth profile, revealed that the hardness of the UNSM-treated specimens at both temperatures was increased in comparison with those of the untreated ones. The increase in UNSM treatment temperature led to a further increase in hardness. Moreover, both the UNSM-treated specimens with an increased hardness resulted in a higher resistance to wear in comparison with those of the untreated ones under dry conditions. The increase in hardness and induced compressive residual stress that depend on the formation of severe plastically deformed layer with the refined nano-grains are responsible for the enhancement in wear resistance. The findings of this study may be implemented in response to various industries that are related to strength improvement and wear enhancement issues of Ta. PMID:29558402
Lopez Barrilao, Jennifer; Kuhn, Bernd; Wessel, Egbert
2018-05-01
In the present study a stainless, high strength, ferritic (non-martensitic) steel was analysed regarding microstructure and particle evolution. The preceding hot-rolling process of the steel results in the formation of sub-grain structures, which disappear over time at high temperature. Besides that the formation of particle-free zones was observed. The pronounced formation of these zones preferentially appears close to high angle grain boundaries and is considered to be responsible for long-term material failure under creep conditions. The reasons for this are lacking particle hardening and thus a concentration and accumulation of deformation in the particle free areas close to the grain boundaries. Accordingly in-depth investigations were performed by electron microscopy to analyse dislocation behaviour and its possible effect on the mechanical response of these weak areas. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fundamental role of arsenic flux in nanohole formation by Ga droplet etching on GaAs(001)
2014-01-01
Nanoholes with a depth in the range of tens of nanometers can be formed on GaAs(001) surfaces at a temperature of 500°C by local etching after Ga droplet formation. In this work, we demonstrate that the local etching or nanodrilling process starts when the Ga droplets are exposed to arsenic. The essential role of arsenic in nanohole formation is demonstrated sequentially, from the initial Ga droplets to the final stage consisting of nanoholes surrounded by ringlike structures at the surface and Ga droplets consumed. The kinetics of local etching depends on the arsenic flux intensity, while the ringlike structures are basically the same as those formed underneath the droplets in the absence of arsenic. These structures show motifs with well-defined crystalline facets that correspond to those expected from surface energy minimization. These experimental results are qualitatively analyzed for a better understanding of the nanohole formation underlying processes. PMID:24994962
Molecular diagnostics of Galactic star-formation regions
NASA Astrophysics Data System (ADS)
Loenen, Edo; Baan, Willem; Spaans, Marco
2007-10-01
We propose a sensitive spectral survey of Galactic star-formation regions. Using the broadband correlator at two different frequencies, we expect to detect the (1-0) transition of CO, CN, HNC, HCN, HCO+, and HCO and various of their isotopes lines, as well as the (12-11) and (10-9) transitions of HC3N. The purpose of these observations is to create a consistent (public) database of molecular emission from galactic star-formation regions. The data will be interpreted using extensive physical and chemical modeling of the whole ensemble of lines, in order to get an accurate description of the molecular environment of these regions. In particular, this diagnostic approach will describe the optical depths, the densities, and the radiation fields in the medium and will allow the establishment of dominant temperature gradients. These observations are part of a program to study molecular emission on all scales, going from individual Galactic star-formation regions, through resolved nearby galaxies, to unresolved extra-galactic emission.
NASA Astrophysics Data System (ADS)
Gureev, D. M.
1994-09-01
A study was made of the influence of ultrasonic vibrations on the processes of heat and mass transfer, and of structure formation during ultrafast crystallisation of laser melts of T1 high-speed tool steel. Acoustic flows which appeared in laser melts effectively smoothed out the temperature inhomogeneities and flattened the relief of the molten surface even when the laser radiation acted for just ~1 ms. The transformation of the mechanical energy of ultrasonic vibrations into heat increased the depth of the laser melt baths and suppressed crack formation. The observed changes in the structural and phase composition appeared as a change in the microhardness of the solidified laser melts. The geometry of coupling of ultrasound into a laser melt influenced the changes in the microhardness, suggesting a need for a more detailed analysis of the structure formation processes in the course of ultrafast crystallisation of laser melts in an ultrasonic field.
Estimation of subsurface thermal structure using sea surface height and sea surface temperature
NASA Technical Reports Server (NTRS)
Kang, Yong Q. (Inventor); Jo, Young-Heon (Inventor); Yan, Xiao-Hai (Inventor)
2012-01-01
A method of determining a subsurface temperature in a body of water is disclosed. The method includes obtaining surface temperature anomaly data and surface height anomaly data of the body of water for a region of interest, and also obtaining subsurface temperature anomaly data for the region of interest at a plurality of depths. The method further includes regressing the obtained surface temperature anomaly data and surface height anomaly data for the region of interest with the obtained subsurface temperature anomaly data for the plurality of depths to generate regression coefficients, estimating a subsurface temperature at one or more other depths for the region of interest based on the generated regression coefficients and outputting the estimated subsurface temperature at the one or more other depths. Using the estimated subsurface temperature, signal propagation times and trajectories of marine life in the body of water are determined.
Light and temperature sensing and signaling in induction of bud dormancy in woody plants.
Olsen, Jorunn E
2010-05-01
In woody species cycling between growth and dormancy must be precisely synchronized with the seasonal climatic variations. Cessation of apical growth, resulting from exposure to short photoperiod (SD) and altered light quality, is gating the chain of events resulting in bud dormancy and cold hardiness. The relative importance of these light parameters, sensed by phytochromes and possibly a blue light receptor, varies with latitude. Early in SD, changes in expression of light signaling components dominate. In Populus active shoot elongation is linked to high expression of FLOWERING LOCUS T (FT) resulting from coincidence of high levels of CONSTANS and light at the end of days longer than a critical one. In Picea, PaFT4 expression increases substantially in response to SD. Thus, in contrast to Populus-FT, PaFT4 appears to function in inhibition of shoot elongation or promotion of growth cessation. Accordingly, different FT-genes appear to have opposite effects in photoperiodic control of shoot elongation. Reduction in gibberellin under SD is involved in control of growth cessation and bud formation, but not further dormancy development. Coinciding with formation of a closed bud, abscisic acid activity increases and cell-proliferation genes are down-regulated. When dormancy is established very few changes in gene expression occur. Thus, maintenance of dormancy is not dependent on comprehensive transcriptional regulation. In some species low temperature induces growth cessation and dormancy, in others temperature affects photoperiod requirement. The temperature under SD affects both the rate of growth cessation, bud formation and depth of dormancy. As yet, information on the molecular basis of these responses to temperature is scarce.
Temperature Dependence of Molecular Line Strengths and Fei 1565 nm Zeeman Splitting in a Sunspot
NASA Astrophysics Data System (ADS)
Penn, M. J.; Walton, S.; Chapman, G.; Ceja, J.; Plick, W.
2003-03-01
Spectroscopic observations at 1565 nm were made in the eastern half of the main umbra of NOAA 9885 on 1 April 2002 using the National Solar Observatory McMath-Pierce Telescope at Kitt Peak with a tip-tilt image stabilization system and the California State University Northridge-National Solar Observatory infrared camera. The line depth of the OH blend at 1565.1 nm varies with the observed continuum temperature; the variation fits previous observations except that the continuum temperature is lower by 600 K. The equivalent width of the OH absorption line at 1565.2 nm shows a temperature dependence similar to previously published umbral molecular observations at 640 nm. A simple model of expected OH abundance based upon an ionization analogy to molecular dissociation is produced and agrees well with the temperature variation of the line equivalent width. A CN absorption line at 1564.6 nm shows a very different temperature dependence, likely due to complicated formation and destruction processes. Nonetheless a numerical fit of the temperature variation of the CN equivalent width is presented. Finally a comparison of the Zeeman splitting of the Fei 1564.8 nm line with the sunspot temperature derived from the continuum intensity shows an umbra somewhat cooler for a given magnetic field strength than previous comparisons using this infrared 1564.8 nm line, but consistent with these previous infrared measurements the umbra is hotter for a given magnetic field strength than magnetic and temperature measurements at 630.2 nm would suggest. Differences between the 630.2 nm and 1564.8 nm umbral temperature and magnetic field relations are explained with the different heights of formation of the lines and continua at these wavelengths.
Wang, Zhuoran; Elouatik, Samir; Demopoulos, George P
2016-10-26
Kesterite, a highly promising photo-absorbing crystalline form of Cu 2 ZnSnS 4 (CZTS), has been prepared via various routes. However, the lack of in-depth understanding of the dynamic phase formation process of kesterite leads to difficulties in optimizing its annealing conditions, hence its light harvesting performance. In this paper, in situ Raman monitored-annealing is applied to study the phase formation kinetics of nano-crystalline kesterite from a precursor deposited on a TiO 2 mesoscopic scaffold. By performing in situ Raman annealing under different experimental conditions and wavelengths, several facts have been discovered: kesterite crystallization starts at as low as 170 °C, but after short time annealing at 300 °C followed by cooling, the initially formed kesterite is found to decompose. Annealing at 400 °C or higher is proven to be sufficient for stabilizing the kesterite phase. Annealing at the higher temperature of 500 °C is necessary though to promote a complete reaction and thus eliminate the parasitic copper tin sulfide (CTS) impurity intermediates identified at lower annealing temperatures. More importantly, the real-time temperature dependence of Raman peak intensity enhancement, shift and broadening for CZTS is established experimentally at 500 °C for 1 h, providing a valuable reference in future CZTS research. This work demonstrates the significance of using in situ Raman spectroscopy in elucidating the kesterite phase formation kinetics, a critical step towards full crystal phase control - a prerequisite for developing fully functional CZTS-based optoelectronic devices.
NASA Astrophysics Data System (ADS)
Liu, Xunchen; Zhang, Guoyong; Huang, Yan; Wang, Yizun; Qi, Fei
2018-04-01
We present a multi-line flame thermometry technique based on mid-infrared direct absorption spectroscopy of carbon dioxide at its v_3 fundamental around 4.2 μm that is particularly suitable for sooting flames. Temperature and concentration profiles of gas phase molecules in a flame are important characteristics to understand its flame structure and combustion chemistry. One of the standard laboratory flames to analyze polycyclic aromatic hydrocarbons (PAH) and soot formation is laminar non-premixed co-flow flame, but PAH and soot introduce artifact to most non-contact optical measurements. Here we report an accurate diagnostic method of the temperature and concentration profiles of CO2 in ethylene diffusion flames by measuring its v_3 vibrational fundamental. An interband cascade laser was used to probe the R-branch bandhead at 4.2 μm, which is highly sensitive to temperature change, free from soot interference and ambient background. Calibration measurement was carried out both in a low-pressure Herriott cell and an atmospheric pressure tube furnace up to 1550 K to obtain spectroscopic parameters for high-temperature spectra. In our co-flow flame measurement, two-dimensional line-of-sight optical depth of an ethylene/N2 laminar sooting flame was recorded by dual-beam absorption scheme. The axially symmetrical attenuation coefficient profile of CO2 in the co-flow flame was reconstructed from the optical depth by Abel inversion. Spatially resolved flame temperature and in situ CO2 volume fraction profiles were derived from the calibrated CO2 spectroscopic parameters and compared with temperature profiles measured by two-line atomic fluorescence.
Huang, Yuanyuan; Jiang, Jiang; Ma, Shuang; ...
2017-08-18
We report that accurate simulation of soil thermal dynamics is essential for realistic prediction of soil biogeochemical responses to climate change. To facilitate ecological forecasting at the Spruce and Peatland Responses Under Climatic and Environmental change site, we incorporated a soil temperature module into a Terrestrial ECOsystem (TECO) model by accounting for surface energy budget, snow dynamics, and heat transfer among soil layers and during freeze-thaw events. We conditioned TECO with detailed soil temperature and snow depth observations through data assimilation before the model was used for forecasting. The constrained model reproduced variations in observed temperature from different soil layers,more » the magnitude of snow depth, the timing of snowfall and snowmelt, and the range of frozen depth. The conditioned TECO forecasted probabilistic distributions of soil temperature dynamics in six soil layers, snow, and frozen depths under temperature treatments of +0.0, +2.25, +4.5, +6.75, and +9.0°C. Air warming caused stronger elevation in soil temperature during summer than winter due to winter snow and ice. And soil temperature increased more in shallow soil layers in summer in response to air warming. Whole ecosystem warming (peat + air warmings) generally reduced snow and frozen depths. The accuracy of forecasted snow and frozen depths relied on the precision of weather forcing. Uncertainty is smaller for forecasting soil temperature but large for snow and frozen depths. Lastly, timely and effective soil thermal forecast, constrained through data assimilation that combines process-based understanding and detailed observations, provides boundary conditions for better predictions of future biogeochemical cycles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yuanyuan; Jiang, Jiang; Ma, Shuang
We report that accurate simulation of soil thermal dynamics is essential for realistic prediction of soil biogeochemical responses to climate change. To facilitate ecological forecasting at the Spruce and Peatland Responses Under Climatic and Environmental change site, we incorporated a soil temperature module into a Terrestrial ECOsystem (TECO) model by accounting for surface energy budget, snow dynamics, and heat transfer among soil layers and during freeze-thaw events. We conditioned TECO with detailed soil temperature and snow depth observations through data assimilation before the model was used for forecasting. The constrained model reproduced variations in observed temperature from different soil layers,more » the magnitude of snow depth, the timing of snowfall and snowmelt, and the range of frozen depth. The conditioned TECO forecasted probabilistic distributions of soil temperature dynamics in six soil layers, snow, and frozen depths under temperature treatments of +0.0, +2.25, +4.5, +6.75, and +9.0°C. Air warming caused stronger elevation in soil temperature during summer than winter due to winter snow and ice. And soil temperature increased more in shallow soil layers in summer in response to air warming. Whole ecosystem warming (peat + air warmings) generally reduced snow and frozen depths. The accuracy of forecasted snow and frozen depths relied on the precision of weather forcing. Uncertainty is smaller for forecasting soil temperature but large for snow and frozen depths. Lastly, timely and effective soil thermal forecast, constrained through data assimilation that combines process-based understanding and detailed observations, provides boundary conditions for better predictions of future biogeochemical cycles.« less
Zhong, Xinyan; Shang, Ruishu; Huang, Lihong
2016-01-01
Carbonate cements, such as calcite, dolomite, ferrocalcite and ankerite, play important roles in the formation of pores in sandstones: precipitation of carbonate cements modifies pores and inhibits compaction, while dissolution creates secondary pores. This work proposed a precipitation-dissolution model for carbonate cements-CO2-H2O system by means of ion equilibrium concentration ([M2+], M = Ca, Mg, Fe or Mn) with different factors, such as temperature, depth, pH, PCO2, variable rock composition and overpressure. Precipitation-dissolution reaction routes were also analyzed by minimization of the total Gibbs free energy (ΔG). Δ[M2+], the variation of [Ca2+], [Fe2+], [Mg2+] or [Mn2+] for every 100 m of burial depths, is used to predict precipitation or dissolution. The calculation results indicate that the increasing temperature results in decrease of equilibrium constant of reactions, while the increasing pressure results in a relatively smaller increase of equilibrium constant; As a result, with increasing burial depth, which brings about increase of both temperature and pressure, carbonate cements dissolve firstly and produces the maximal dissolved amounts, and then precipitation happens with further increasing depth; For example, calcite is dissolving from 0.0 km to 3.0 km with a maximal value of [Ca2+] at depth of 0.8 km, and then precipitates with depth deeper than 3.0 km. Meanwhile, with an increasing CO2 mole fraction in the gaseous phase from 0.1% to 10.0% in carbonate systems, the aqueous concentration of metal ions increases, e.g., dissolved amount of CaFe0.7Mg0.3(CO3)2 increases and reaches maximum of 1.78 mmol·L-1 and 8.26 mmol·L-1 at burial depth of 0.7 km with CO2 mole fraction of 0.1% and 10.0%, respectively. For the influence of overpressure in the calcite system, with overpressure ranging from 36 MPa to 83 MPa, pH reaches a minimum of 6.8 at overpressure of 51 MPa; meanwhile, Δ[Ca2+] increases slightly from -2.24 mmol·L-1 to -2.17 mmol·L-1 and remains negative, indicating it is also a precipitation process at burial depth of 3.9 km where overpressure generated. The method used in this study can be applied in assessing burial precipitation-dissolution processes and predicting possible pores in reservoirs with carbonate cement-water-carbon dioxide. PMID:27907043
Duan, Yiping; Feng, Mingshi; Zhong, Xinyan; Shang, Ruishu; Huang, Lihong
2016-01-01
Carbonate cements, such as calcite, dolomite, ferrocalcite and ankerite, play important roles in the formation of pores in sandstones: precipitation of carbonate cements modifies pores and inhibits compaction, while dissolution creates secondary pores. This work proposed a precipitation-dissolution model for carbonate cements-CO2-H2O system by means of ion equilibrium concentration ([M2+], M = Ca, Mg, Fe or Mn) with different factors, such as temperature, depth, pH, [Formula: see text], variable rock composition and overpressure. Precipitation-dissolution reaction routes were also analyzed by minimization of the total Gibbs free energy (ΔG). Δ[M2+], the variation of [Ca2+], [Fe2+], [Mg2+] or [Mn2+] for every 100 m of burial depths, is used to predict precipitation or dissolution. The calculation results indicate that the increasing temperature results in decrease of equilibrium constant of reactions, while the increasing pressure results in a relatively smaller increase of equilibrium constant; As a result, with increasing burial depth, which brings about increase of both temperature and pressure, carbonate cements dissolve firstly and produces the maximal dissolved amounts, and then precipitation happens with further increasing depth; For example, calcite is dissolving from 0.0 km to 3.0 km with a maximal value of [Ca2+] at depth of 0.8 km, and then precipitates with depth deeper than 3.0 km. Meanwhile, with an increasing CO2 mole fraction in the gaseous phase from 0.1% to 10.0% in carbonate systems, the aqueous concentration of metal ions increases, e.g., dissolved amount of CaFe0.7Mg0.3(CO3)2 increases and reaches maximum of 1.78 mmol·L-1 and 8.26 mmol·L-1 at burial depth of 0.7 km with CO2 mole fraction of 0.1% and 10.0%, respectively. For the influence of overpressure in the calcite system, with overpressure ranging from 36 MPa to 83 MPa, pH reaches a minimum of 6.8 at overpressure of 51 MPa; meanwhile, Δ[Ca2+] increases slightly from -2.24 mmol·L-1 to -2.17 mmol·L-1 and remains negative, indicating it is also a precipitation process at burial depth of 3.9 km where overpressure generated. The method used in this study can be applied in assessing burial precipitation-dissolution processes and predicting possible pores in reservoirs with carbonate cement-water-carbon dioxide.
Seasonally frozen layer in natural and drained peatlands at the South of West Siberia, Russia
NASA Astrophysics Data System (ADS)
Dyukarev, Egor; Kiselev, Maxim; Voropay, Nadezhda; Preis, Yulia
2017-04-01
The temperature regime of soils in natural and drained peatlands at Bakchar bog located in the South Taiga zone of West Siberia is studied. Soil temperature for depths up to 320 cm was registered using autonomous temperature profile recorder during the period from August 2010 to September 2016. Maximal and minimal temperatures were registered at surface in July and February, consequently. Extreme soil temperatures at 320 cm depth shifts to December (maximum) and July (minimum) reducing absolute values. Annual peat soil temperature amplitude decrease with depth from 21,8 °C on surface to 1,1 °C at 320 cm. The analysis of daily, month and annual mean data of temperature in peat soil has shown that seasonally frozen layer was registered up to 20-60 cm depth. The duration of seasonally freeze layer existence varies from 130 to 180 days. Drained peatlands with the lowest water table have highest freeze depth. Soil at water-logged sedge-sphagnum fen in winter is warmer than soil in ryam ecosystem and mineral soil at upland. Maximal freezing depth in peatlands is up to 3 times lower than at drain areas.
Deep Arctic Ocean warming during the last glacial cycle
Cronin, T. M.; Dwyer, G.S.; Farmer, J.; Bauch, H.A.; Spielhagen, R.F.; Jakobsson, M.; Nilsson, J.; Briggs, W.M.; Stepanova, A.
2012-01-01
In the Arctic Ocean, the cold and relatively fresh water beneath the sea ice is separated from the underlying warmer and saltier Atlantic Layer by a halocline. Ongoing sea ice loss and warming in the Arctic Ocean have demonstrated the instability of the halocline, with implications for further sea ice loss. The stability of the halocline through past climate variations is unclear. Here we estimate intermediate water temperatures over the past 50,000 years from the Mg/Ca and Sr/Ca values of ostracods from 31 Arctic sediment cores. From about 50 to 11 kyr ago, the central Arctic Basin from 1,000 to 2,500 m was occupied by a water mass we call Glacial Arctic Intermediate Water. This water mass was 1–2 °C warmer than modern Arctic Intermediate Water, with temperatures peaking during or just before millennial-scale Heinrich cold events and the Younger Dryas cold interval. We use numerical modelling to show that the intermediate depth warming could result from the expected decrease in the flux of fresh water to the Arctic Ocean during glacial conditions, which would cause the halocline to deepen and push the warm Atlantic Layer into intermediate depths. Although not modelled, the reduced formation of cold, deep waters due to the exposure of the Arctic continental shelf could also contribute to the intermediate depth warming.
Geology and habitat of oil in Ras Budran field, Gulf of Suez, Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhary, L.R.; Taha, S.
1987-10-01
The Ras Budran structure at the deepest mappable seismic reflector, the top of the Kareem Formation (middle Miocene), is a broad northeast-southwest-trending anticlinal feature with an anomalous strike nearly at right angles to the main Gulf of Suez trend. Oil is produced from three units of Nubian Formation sandstone from a depth of 11,000-12,000 ft (3352-3657 m). The lower unit of Paleozoic age averages 10% porosity and has up to 200 md in-situ permeability. Wells completed in this unit produce up to 2000 BOPD. In contrast, the sands to the upper two units of the Early Cretaceous have 15-20% porositymore » and up to 700 md permeability. Wells completed in this unit produce 6000-8000 BOPD. The Ras Budran structure was formed primarily during an intra-Rudeis tectonic phase (lower Miocene). Oil migration for accumulation in the structure started in the late Miocene or Pliocene when the Santonian Brown Limestone and the Eocene Thebes Formation, the main source beds in the Gulf of Suez, reached the threshold of oil generation at a burial depth of approximately 10,000 ft (3048 m). At this depth, the organic matter in the source beds had a high transformation ratio (0.10 to 0.15), high yields of C/sub 15+/ soluble organic matter and C/sub 15+/ saturated hydrocarbons, vitrinite reflectance (R/sub 0/) of 0.62%, and a time-temperature index (TTI) value of 15. Oil migration from mature source beds in adjoining lows into low-potential Nubian reservoirs is easily explained by fault planes that acted as conduits for oil migration. 16 figures, 3 tables.« less
Depth of artificial Burrowing Owl burrows affects thermal suitability and occupancy
Nadeau, Christopher P.; Conway, Courtney J.; Rathbun, Nathan
2015-01-01
Many organizations have installed artificial burrows to help bolster local Burrowing Owl (Athene cunicularia) populations. However, occupancy probability and reproductive success in artificial burrows varies within and among burrow installations. We evaluated the possibility that depth below ground might explain differences in occupancy probability and reproductive success by affecting the temperature of artificial burrows. We measured burrow temperatures from March to July 2010 in 27 artificial burrows in southern California that were buried 15–76 cm below the surface (measured between the surface and the top of the burrow chamber). Burrow depth was one of several characteristics that affected burrow temperature. Burrow temperature decreased by 0.03°C per cm of soil on top of the burrow. The percentage of time that artificial burrows provided a thermal refuge from above-ground temperature decreased with burrow depth and ranged between 50% and 58% among burrows. The percentage of time that burrow temperature was optimal for incubating females also decreased with burrow depth and ranged between 27% and 100% among burrows. However, the percentage of time that burrow temperature was optimal for unattended eggs increased with burrow depth and ranged between 11% and 95% among burrows. We found no effect of burrow depth on reproductive success across 21 nesting attempts. However, occupancy probability had a non-linear relationship with burrow depth. The shallowest burrows (15 cm) had a moderate probability of being occupied (0.46), burrows between 28 and 40 cm had the highest probability of being occupied (>0.80), and burrows >53 cm had the lowest probability of being occupied (<0.43). Burrowing Owls may prefer burrows at moderate depths because these burrows provide a thermal refuge from above-ground temperatures, and are often cool enough to allow females to leave eggs unattended before the onset of full-time incubation, but not too cool for incubating females that spend most of their time in the burrow during incubation. Our results suggest that depth is an important consideration when installing artificial burrows for Burrowing Owls. However, additional study is needed to determine the possible effects of burrow depth on reproductive success and on possible tradeoffs between the effects of burrow depth on optimal temperature and other factors, such as minimizing the risk of nest predation.
Characterizing flow pathways in a sandstone aquifer at multiple depths
NASA Astrophysics Data System (ADS)
Medici, Giacomo; West, Jared; Mountney, Nigel
2017-04-01
Sandstone aquifers are commonly assumed to represent porous media characterized by a permeable matrix. However, such aquifers may be heavily fractured where rock properties and timing of deformation favour brittle failure and crack opening. In many aquifer types, fractures associated with faults, bedding planes and stratabound joints represent preferential pathways for fluids and contaminants. This presentation reports well-test results and outcrop-scale studies that reveal how strongly lithified siliciclastic rocks may be entirely dominated by fracture flow at shallow depths (≤ 150 m), similar to limestone and crystalline aquifers. The Triassic St Bees Sandstone Formation of the UK East Irish Sea Basin represents an optimum succession for study of the influence of both sedimentary and tectonic aquifer heterogeneities in a strongly lithified sandstone aquifer-type. This sedimentary succession of fluvial origin accumulated in rapidly subsiding basins, which typically favour preservation of complete depositional cycles, including fine-grained mudstone and silty sandstone layers of floodplain origin interbedded with sandstone-dominated fluvial channel deposits. Vertical joints in the St Bees Sandstone Formation form a pervasive stratabound system whereby joints terminate at bedding-parallel discontinuities. Additionally, normal faults are present through the succession and record development of open-fractures in their damage zones. Here, the shallow aquifer (depth ≤150 m BGL) was characterized in outcrop and well tests. Fluid temperature, conductivity and flow-velocity logs record inflows and outflows from normal faults, as well as from pervasive bed-parallel fractures. Quantitative flow logging analyses in boreholes that cut fault planes indicate that zones of fault-related open fractures typically represent ˜ 50% of well transmissivity. The remaining flow component is dominated by bed-parallel fractures. However, such sub-horizontal fractures become the principal flow conduits in wells that penetrate the exterior parts of fault damage zones, as well as in non-faulted areas. Optical televiewer logs show development of karst-like conduits in correspondence of bedding fractures and faults up to 150 m below the ground surface, where recharge water containing dissolved carbonic acid enlarges fractures; these features may be responsible for the relatively high field-scale permeability (K˜0.1-1 m/day) of the phreatic zone at these depths. Below this 'karstifed' zone, field-scale permeability progressively decreases from K˜10-2 to 10-4 m/day from 150 m to 1100 m depth. Notably, differences between plug and field-scale permeability, and frequency of well in-flows seen in temperature and conductivity logs, also decrease between intermediate (150 to 450 m) and elevated (450 to 1100 m) depths. This confirms how fracture closure leads to a progressively more important matrix contribution to flow with increasing lithostatic stress, leading to intergranular flow dominance at ˜ 1 km depth.
NASA Technical Reports Server (NTRS)
Stulen, R. H.; Boehme, D. R.; Clift, W. M.; McCarty, K. F.
1990-01-01
Materials used for radiation-cooled rocket thrusters must be capable of surviving under extreme conditions of high-temperatures and oxidizing environments. While combustion efficiency is optimized at high temperatures, many refractory metals are unsuitable for thruster applications due to rapid material loss from the formation of volatile oxides. This process occurs during thruster operation by reaction of the combustion products with the material surface. Aerojet Technical Systems has developed a thruster cone chamber constructed of Re coated with Ir on the inside surface where exposure to the rocket exhaust occurs. Re maintains its structural integrity at high temperature and the Ir coating is applied as an oxidation barrier. Ir also forms volatile oxide species (IrO2 and IrO3) but at a considerably slower rate than Re. In order to understand the performance limits of Ir-coated Re thrusters, we are investigating the interdiffusion and oxidation kinetics of Ir/Re. The formation of iridium and rhenium oxides has been monitored in situ by Raman spectroscopy during high temperature exposure to oxygen. For pure Ir, the growth of oxide films as thin as approximately 200 A could be easily detected and the formation of IrO2 was observed at temperatures as low as 600 C. Ir/Re diffusion test specimens were prepared by magnetron sputtering of Ir on Re substrates. Concentration profiles were determined by sputter Auger depth profiles of the heat treated specimens. Significant interdiffusion was observed at temperatures as low as 1000 C. Measurements of the activation energy suggest that below 1350 C, the dominant diffusion path is along defects, most likely grain boundaries, rather than bulk diffusion through the grains. The phases that form during interdiffusion have been examined by x ray diffraction. Analysis of heated test specimens indicates that the Ir-Re reaction produces a solid solution phase of Ir dissolved in the HCP structure of Re.
Formation of magmatic brine lenses via focussed fluid-flow beneath volcanoes
NASA Astrophysics Data System (ADS)
Afanasyev, Andrey; Blundy, Jon; Melnik, Oleg; Sparks, Steve
2018-03-01
Many active or dormant volcanoes show regions of high electrical conductivity at depths of a few kilometres beneath the edifice. We explore the possibility that these regions represent lenses of high-salinity brine separated from a single-phase magmatic fluid containing H2O and NaCl. Since chloride-bearing fluids are highly conductive and have an exceptional capacity to transport metals, these regions can be an indication of an active hydrothermal ore-formation beneath volcanoes. To investigate this possibility we have performed hydrodynamic simulations of magma degassing into permeable rock. In our models the magma source is located at 7 km depth and the fluid salinity approximates that expected for fluids released from typical arc magmas. Our model differs from previous models of a similar process because it is (a) axisymmetric and (b) includes a static high-permeability pathway that links the magma source to the surface. This pathway simulates the presence of a volcanic conduit and/or plexus of feeder dykes that are typical of most volcanic systems. The presence of the conduit leads to a number of important hydrodynamic consequences, not observed in previous models. Importantly, we show that an annular brine lens capped by crystallised halite is likely to form above an actively degassing sub-volcanic magma body and can persist for more than 250 kyr after degassing ceases. Parametric analysis shows that brine lenses are more prevalent when the fluid is released at temperatures above the wet granite solidus, when magmatic fluid salinity is high, and when the high-permeability pathway is narrow. The calculated depth, form and electrical conductivity of our modelled system shares many features with published magnetotelluric images of volcano subsurfaces. The formation and persistence of sub-volcanic brine lenses has implications for geothermal systems and hydrothermal ore formation, although these features are not explored in the presented model.
Bonetti, Sara; Manoli, Gabriele; Domec, Jean-Christophe; ...
2015-03-16
Here, we report a mechanistic model for the soil-plant system is coupled to a conventional slab representation of the atmospheric boundary layer (ABL) to explore the role of groundwater table (WT) variations and free atmospheric (FA) states on convective rainfall predisposition (CRP) at a Loblolly pine plantation site situated in the lower coastal plain of North Carolina. Predisposition is quantified using the crossing between modeled lifting condensation level (LCL) and convectively grown ABL depth. The LCL-ABL depth crossing is necessary for air saturation but not sufficient for cloud formation and subsequent convective rainfall occurrence. However, such crossing forms the mainmore » template for which all subsequent dynamical processes regulating the formation (or suppression) of convective rainfall operate on. If the feedback between surface fluxes and FA conditions is neglected, a reduction in latent heat flux associated with reduced WT levels is shown to enhance the ABL-LCL crossing probability. When the soil-plant system is fully coupled with ABL dynamics thereby allowing feedback with ABL temperature and humidity, FA states remain the leading control on CRP. However, vegetation water stress plays a role in controlling ABL-LCL crossing when the humidity supply by the FA is within an intermediate range of values. When FA humidity supply is low, cloud formation is suppressed independent of surface latent heat flux. Similarly, when FA moisture supply is high, cloud formation can occur independent of surface latent heat flux. In an intermediate regime of FA moisture supply, the surface latent heat flux controlled by soil water availability can supplement (or suppress) the necessary water vapor leading to reduced LCL and subsequent ABL-LCL crossing. Lastly, it is shown that this intermediate state corresponds to FA values around the mode in observed humidity lapse rates γ w (between -2.5 × 10 -6 and -1.5 × 10 -6 kg kg -1m -1), suggesting that vegetation water uptake may be controlling CRP at the study site.« less
Simultaneous Independent Control of Tool Axial Force and Temperature in Friction Stir Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Kenneth A.; Grant, Glenn J.; Darsell, Jens T.
Maintaining consistent tool depth relative to the part surface is a critical requirement for many Friction stir processing (FSP) applications. Force control is often used with the goal of obtaining a constant weld depth. When force control is used, if weld temperature decreases, flow stress increases and the tool is pushed up. If weld temperature increases, flow stress decreases and the tool dives. These variations in tool depth and weld temperature cause various types of weld defects. Robust temperature control for FSP maintains a commanded temperature through control of the spindle axis only. Robust temperature control and force control aremore » completely decoupled in control logic and machine motion. This results in stable temperature, force and tool depth despite the presence of geometric and thermal disturbances. Performance of this control method is presented for various weld paths and alloy systems.« less
NASA Astrophysics Data System (ADS)
Nowamooz, A.; Therrien, R.; Molson, J. W. H.; Gosselin, L.; Mathieu-Potvin, F.; Raymond, J.; Malo, M.; Comeau, F. A.; Bedard, K.
2017-12-01
An enhanced geothermal system (EGS) consists of injecting water into deep sedimentary or basement rocks, which have been hydraulically stimulated, and withdrawing this water for heat extraction. In this work, the geothermal potential of the St. Lawrence Lowlands Basin (SLLB), Quebec, Canada, is evaluated using numerical heat transport simulations. A 3D conceptual model was first developed based on a detailed geological model of the basin and using realistic ranges of hydrothermal properties of the geological formations. The basin thermal regime under natural conditions was simulated with the HydroGeoSphere model assuming non-isothermal single-phase flow, while the hydrothermal properties of the formations were predicted using the PEST parameter estimation package. The simulated basin temperatures were consistent with the measured bottom-hole temperatures (RMSE = 9%). The calibrated model revealed that the areas in the basin with EGS potential, where temperature exceeds 120 °C, are located at depths ranging from 3.5 to 5.5 km. In the second step of the work, the favorable areas are investigated in detail by conducting simulations in a discrete fracture network similar to the one proposed in the literature for the Rosemanowes geothermal site, UK. Simulations consider 4 main horizontal fractures having each an extent of 1000 m × 180 m, and 10 vertical fractures having each an extent of 1000 m × 45 m. The fracture spacing and aperture are uniform and equal to 15 m and 250 μm, respectively. Simulations showed that a commercial project in the SLLB, with conditions similar to those of the Rosemanowes site, would not feasible. However, sensitivity analyses have demonstrated that it would be possible to extract sufficient heat for a period of at least 20 years from a fractured reservoir in this basin under the following conditions: (1) a flow circulation rate below the desired target value (10 L/s instead of 50 L/s), which would require a flexible power plant; (2) an area of contact of at least 1 km2 between the geofluid and the rock matrix, which would require horizontal and multilateral drilling with hydraulic stimulation, and (3) an initial temperature of at least 150 °C in a conductive geological formation, which would require drilling to depths of 6500 m.
NASA Astrophysics Data System (ADS)
Karatutlu, Ali; Istengir, Sumeyra; Cosgun, Sedat; Seker, Isa; Unal, Bayram
2017-11-01
In this research paper, light emitting porous silicon (Lep-Si) samples were fabricated by a surfactant-mediated chemical stain etching solution in order to form homogenous luminescent nanostructures at room temperature. As an industrially important solvent, decalin (decahydronaphtalene) was used as a surfactant in the HF/HNO3 solutions in order to control the etching process. Morphological, surface and optical properties of the Lep-Si samples were examined using atomic force microscopy, X-ray photoelectron spectroscopy, photoluminescence (PL) spectroscopy, and laser scanning confocal microscopy (LSCM) techniques. These characterization techniques were correlated with the various etching times including depth dependent luminescence profiles for the first time. We report the optimum conditions for production of the most efficient Lep-Si using decalin (decahydronaphtalene) and possible structural origins of light emission using the depth dependent luminescence measurements.
NASA Astrophysics Data System (ADS)
Kelkar, S.; Dempsey, D.; Hickman, S. H.; Davatzes, N. C.; Moos, D.; Zemach, E.
2013-12-01
High-temperature rock formations at moderate depths with low permeability are candidates for Enhanced Geothermal Systems (EGS) projects. Hydraulic stimulation can be employed in such systems to create flow paths with low hydraulic impedance while maintaining significant heat transfer area to avoid premature cooling of the formation and the creation of short-circuit flow paths. Here we present results from a coupled thermal-hydrological-mechanical numerical model of a successful EGS stimulation in well 27-15 at the Desert Peak Geothermal Field, Nevada. This stimulation was carried out over two different depth intervals and multiple injection pressures, beginning in September 2010. The subject of this study is the initial shear stimulation phase, which was carried out at depths of 0.9 to 1.1 km over a period of about 100 days. The reservoir temperature at these depths is ~182 to 195° C. This treatment consisted of injection of 20 to 30° C water at wellhead pressures (WHP) of 1.5, 2.2, 3.1 and 3.7 MPa followed by periods of shut-in. To avoid hydraulic fracturing, these pressure steps were intentionally selected to stay below the minimum principal stress measured in the well. The injectivity did not change at WHP steps of 1.5 and 2.2 MPa, but improved significantly during injection at 3.1 MPa, from about 0.1 to 1.5 kg s-1 MPa-1. This improvement was attributed to self-propping shear failure of pre-existing natural fractures. The model incorporates physical processes thought to be important during this low-pressure shear stimulation phase. The relatively long periods of injection of water that was significantly cooler than the ambient formation temperature required incorporating in the model both thermo-mechanical and poroelastic effects, which were coupled to fluid flow via Mohr-Coulomb failure and shear-induced increases in fracture permeability. This model resulted in a good match to the wellhead injection data recorded during the stimulation. This numerical model was also used to separate the thermo-mechanical and poroelastic effects, compare their spatial and temporal evolution and carry out sensitivity analyses. To varying degrees, model results depended on variations in permeability anisotropy, elastic and thermal rock properties, Mohr-Coulomb parameters of static and dynamic friction and cohesion, shear-dilatation parameters, injection pressure and length of the injection zone. The thermoelastic and poroelastic effects are realized over different time scales, and their magnitudes are governed by different material properties; in general, model results show greater sensitivity to variations in the coefficient of thermal expansion than in the Biot poroelastic factor. Both thermal and poroelastic contributions to stressing of fractures significantly impact the onset as well as the magnitude of shear-induced permeability gains realized during this low-pressure stimulation.
Xiong, W; Zhou, Yunshen; Hou, Wenjia; ...
2015-11-10
Direct formation of graphene with controlled number of graphitic layers on dielectric surfaces is highly desired for practical applications. Despite significant progress achieved in understanding the formation of graphene on metallic surfaces through chemical vapor deposition (CVD) of hydrocarbons, very limited research is available elucidating the graphene formation process via rapid thermal processing (RTP) of solid-state amorphous carbon, through which graphene is formed directly on dielectric surfaces accompanied by autonomous nickel evaporation. It is suggested that a metastable hexagonal nickel carbide (Ni 3C) intermediate phase plays a critical role in transforming amorphous carbon to 2D crystalline graphene and contributing tomore » the autonomous Ni evaporation. Temperature resolved carbon and nickel evolution in the RTP process is investigated using Auger electron spectroscopic (AES) depth profiling and glancing-angle X-ray diffraction (GAXRD). Formation, migration and decomposition of the hexagonal Ni 3C are confirmed to be responsible for the formation of graphene and the evaporation of Ni at 1100 °C. The Ni 3C-assisted graphene formation mechanism expands the understanding of Ni-catalyzed graphene formation, and provides insightful guidance for controlled growth of graphene through the solid-state transformation process.« less
Oilfield geothermal exploitation in China-A case study from the Liaohe oilfield in Bohai Bay Basin
NASA Astrophysics Data System (ADS)
Wang, Shejiao; Yao, Yanhua; Fan, Xianli; Yan, Jiahong
2017-04-01
The clean geothermal energy can play a huge role in solving the problem of severe smog in China as it can replace large coal-fired heating in winter. Chinese government has paid close attention on the development and utilization of geothermal energy. In the "13th Five-Year" plan, the geothermal development is included into the national plan for the first time. China is very rich in the medium and low-temperature geothermal resources, ranking first in the geothermal direct use in the world for a long time. The geothermal resources are mainly concentrated in sedimentary basins, especially in petroliferous basins distributed in North China (in North China, heating is needed in winter). These basins are usually close to the large- and medium-sized cities. Therefore, tapping oilfield geothermal energy have attracted a great attention in the last few years as the watercut achieved above 90% in most oilfields and significant progress has been made. In this paper, taking the Liaohe Oilfield in the Bohai Bay Basin as an example, we discussed the distribution and potential of the geothermal resources, discussed how to use the existed technology to harness geothermal energy more effectively, and forecasted the development prospect of the oilfield geothermal energy. By using the volumetric method, we calculated the geothermal resources of the Guantao Formation, Dongying Formation, Shahejie Formation and basement rock in the Liaohe depression. We tested the geothermal energy utilization efficiency in different conditions by applying different pump technologies and utilizing geothermal energy in different depth, such as shallow geothermal energy (0-200m), middle-deep depth geothermal energy (200-4000m), and oilfield sewage heat produced with oil production. For the heat pump systems, we tested the conventional heat pump system, high-temperature heat pump system, super high-temperature heat pump system, and gas heat pump system. Finally, based on the analysis of national policy, the heat demands of oilfield, and the exploration and development technologies, we discussed the potential of the oilfield geothermal energy development for the industrial and the civil applications in the future.
Continental emergence and growth on a cooling earth
NASA Astrophysics Data System (ADS)
Vlaar, N. J.
2000-07-01
Isostasy considerations are connected to a 1-D model of mantle differentiation due to pressure release partial melting to obtain a model for the evolution of the relative sea level with respect to the continent during the earth secular cooling. In this context, a new mechanism is derived for the selective exhumation of exposed ancient cratons. The model results in a quantitative scenario for sea-level fall due to the changing thicknesses of the oceanic basaltic crust and its harzburgite residual layer as a function of falling mantle temperature. It is also shown that the buoyancy of the harzburgite root of a stabilized continental craton has an important effect on sea-level and on the isostatic readjustment and exhumation of exposed continental surface during the earth's secular cooling. The model does not depend on the usual assumption of constant continental freeboard and crustal thickness and its application is not restricted to the post-Archaean. It predicts large-scale continental emergence near the end of the Archaean and the early Proterozoic. This provides an explanation for reported late Archaean emergence and the subsequent formation of late Archaean cratonic platforms and early Proterozoic sedimentary basins. For a period of secular cooling of 3.8 Ga, corresponding to the length of the geological record, the model predicts a fall of the ocean floor of some 4 km or more. For a constant ocean depth, this implies a sea-level fall of the same magnitude. A formula is derived that allows for an increasing ocean depth due to either the changing ratio of continental with respect to oceanic area, or to a possible increase of the oceanic volume during the geological history. Increasing ocean depth results in a later emergence of submarine ancient geological formations compared to the case when ocean depth is constant. Selective exhumation is studied for the case of constant ocean depth. It is shown that for this case, early exposed continental crust can be exhumed to a lower crustal depth, which explains the relative vertical displacement of low-grade- with respect to high-grade terrain. Increasing ocean depth is not expected to result in diminished exhumation.
The stability of anhydrous phase B, Mg14Si5O24, at mantle transition zone conditions
NASA Astrophysics Data System (ADS)
Yuan, Liang; Ohtani, Eiji; Shibazaki, Yuki; Ozawa, Shin; Jin, Zhenmin; Suzuki, Akio; Frost, Daniel J.
2018-06-01
The stability of anhydrous phase B, Mg14Si5O24, has been determined in the pressure range of 14-21 GPa and the temperature range of 1100-1700 °C with both normal and reversal experiments using multi-anvil apparatus. Our results demonstrate that anhydrous phase B is stable at pressure-temperature conditions corresponding to the shallow depth region of the mantle's transition zone and it decomposes into periclase and wadsleyite at greater depths. The decomposition boundary of anhydrous phase B into wadsleyite and periclase has a positive phase transition slope and can be expressed by the following equation: P(GPa) = 7.5 + 6.6 × 10-3 T (°C). This result is consistent with a recent result on the decomposition boundary of anhydrous phase B (Kojitani et al., Am Miner 102:2032-2044, 2017). However, our phase boundary deviates significantly from this previous study at temperatures < 1400 °C. Subducting carbonates may be reduced at depths > 250 km, which could contribute ferropericlase (Mg, Fe)O or magnesiowustite (Fe, Mg)O into the deep mantle. Incongruent melting of hydrous peridotite may also produce MgO-rich compounds. Anh-B could form in these conditions due to reactions between Mg-rich oxides and silicates. Anh-B might provide a new interpretation for the origin of diamonds containing ferropericlase-olivine inclusions and chromitites which have been found to have ultrahigh-pressure characteristics. We propose that directly touching ferropericlase-olivine inclusions found in natural diamonds might be the retrogressive products of anhydrous phase B decomposing via the reaction (Mg,Fe)14Si5O24 (Anh-B) = (Mg,Fe)2SiO4 (olivine) + (Mg,Fe)O (periclase). This decomposition may occur during the transportation of the host diamonds from their formation depths of < 500 km in the upper part of the mantle transition zone to the surface.
The stability of anhydrous phase B, Mg14Si5O24, at mantle transition zone conditions
NASA Astrophysics Data System (ADS)
Yuan, Liang; Ohtani, Eiji; Shibazaki, Yuki; Ozawa, Shin; Jin, Zhenmin; Suzuki, Akio; Frost, Daniel J.
2017-12-01
The stability of anhydrous phase B, Mg14Si5O24, has been determined in the pressure range of 14-21 GPa and the temperature range of 1100-1700 °C with both normal and reversal experiments using multi-anvil apparatus. Our results demonstrate that anhydrous phase B is stable at pressure-temperature conditions corresponding to the shallow depth region of the mantle's transition zone and it decomposes into periclase and wadsleyite at greater depths. The decomposition boundary of anhydrous phase B into wadsleyite and periclase has a positive phase transition slope and can be expressed by the following equation: P(GPa) = 7.5 + 6.6 × 10-3 T (°C). This result is consistent with a recent result on the decomposition boundary of anhydrous phase B (Kojitani et al., Am Miner 102:2032-2044, 2017). However, our phase boundary deviates significantly from this previous study at temperatures < 1400 °C. Subducting carbonates may be reduced at depths > 250 km, which could contribute ferropericlase (Mg, Fe)O or magnesiowustite (Fe, Mg)O into the deep mantle. Incongruent melting of hydrous peridotite may also produce MgO-rich compounds. Anh-B could form in these conditions due to reactions between Mg-rich oxides and silicates. Anh-B might provide a new interpretation for the origin of diamonds containing ferropericlase-olivine inclusions and chromitites which have been found to have ultrahigh-pressure characteristics. We propose that directly touching ferropericlase-olivine inclusions found in natural diamonds might be the retrogressive products of anhydrous phase B decomposing via the reaction (Mg,Fe)14Si5O24 (Anh-B) = (Mg,Fe)2SiO4 (olivine) + (Mg,Fe)O (periclase). This decomposition may occur during the transportation of the host diamonds from their formation depths of < 500 km in the upper part of the mantle transition zone to the surface.
NASA Astrophysics Data System (ADS)
Blaes, Carly
In the continuous casting of steel, many complex phenomena in the meniscus region of the mold are responsible for the formation of oscillation marks. Oscillation marks are depressions found around the perimeter of continuously cast steel slabs, which if too large can lead to cracking in steel slabs. Therefore, knowledge on how to minimize the size of oscillation marks is very valuable. A computational model was created of the meniscus region, which includes transient multiphase fluid flow of slag and steel, with low-Reynolds turbulence, heat transfer in the mold, slag, and steel, steel shell solidification, mold oscillation, and temperature-dependent properties. This model was first validated using previous experimental and plant data. The model was then used to study the impact of varying casting parameters, including oscillation frequency, stroke, modification ratio, casting speed, molten steel level fluctuations, and temperature-dependent slag properties and surface tension on the oscillation mark shape, and other aspects of thermal-flow behavior during each oscillation cycle, including heat flux profile, slag consumption and mold friction. The first half of oscillation marks were formed during negative strip time as the slag rim pushed molten steel away from the mold wall and that the second half of oscillation marks were formed during positive strip time as the molten steel is drawn near the mold wall due to the upstroke of the mold. Oscillation mark depth was found to decrease with increasing frequency, modification ratio, casting speed, and slag viscosity, while oscillation mark depth was found to increase with increasing stroke. Oscillation mark width was only found to increase due to increases in pitch, which can be contributed to decreasing frequency or increasing casting speed. While many observations were made in this study, in general, oscillation mark depth and total slag consumption increase with increasing negative strip time, while the average heat flux and average mold friction decrease with increasing negative strip time.
NASA Astrophysics Data System (ADS)
Aretz, Achim; Bär, Kristian; Götz, Annette E.; Sass, Ingo
2016-07-01
The Permocarboniferous siliciclastic formations represent the largest hydrothermal reservoir in the northern Upper Rhine Graben in SW Germany and have so far been investigated in large-scale studies only. The Cenozoic Upper Rhine Graben crosses the Permocarboniferous Saar-Nahe Basin, a Variscan intramontane molasse basin. Due to the subsidence in this graben structure, the top of the up to 2-km-thick Permocarboniferous is located at a depth of 600-2900 m and is overlain by Tertiary and Quaternary sediments. At this depth, the reservoir temperatures exceed 150 °C, which are sufficient for geothermal electricity generation with binary power plants. To further assess the potential of this geothermal reservoir, detailed information on thermophysical and hydraulic properties of the different lithostratigraphical units and their depositional environment is essential. Here, we present an integrated study of outcrop analogues and drill core material. In total, 850 outcrop samples were analyzed, measuring porosity, permeability, thermal conductivity and thermal diffusivity. Furthermore, 62 plugs were taken from drillings that encountered or intersected the Permocarboniferous at depths between 1800 and 2900 m. Petrographic analysis of 155 thin sections of outcrop samples and samples taken from reservoir depth was conducted to quantify the mineral composition, sorting and rounding of grains and the kind of cementation. Its influence on porosity, permeability, the degree of compaction and illitization was quantified. Three parameters influencing the reservoir properties of the Permocarboniferous were detected. The strongest and most destructive influence on reservoir quality is related to late diagenetic processes. An illitic and kaolinitic cementation and impregnation of bitumina document CO2- and CH4-rich acidic pore water conditions, which are interpreted as fluids that migrated along a hydraulic contact from an underlying Carboniferous hydrocarbon source rock. Migrating oil and acidic waters led to the dissolution of haematite cements in the lower Permocarboniferous formations. During the Eocene, subsidence of the Upper Rhine Graben porosities and permeabilities of the sandstones of these formations were strongly reduced to 2.5 % and 3.2 × 10-18 m2. The second important influence on reservoir quality is the distinct depositional environment and its influence on early diagenetic processes. In early stage diagenesis, the best influence on reservoir properties exhibits a haematite cementation. It typically occurs in eolian sandstones of the Kreuznach Formation (Upper Permocarboniferous) and is characterized by grain covering haematite coatings, which are interpreted to inhibit cementation, compaction and illitization of pore space during burial. Eolian sandstones taken from outcrops and reservoir depths exhibit the highest porosities (16.4; 12.3 %) and permeabilities (2.0 × 10-15; 8.4 × 10-16 m2). A third important influence on reservoir quality is the general mineral composition and the quartz content which is the highest in the Kreuznach Formation with 73.8 %. Based on the integrated study of depositional environments and diagenetic processes, reservoir properties of the different Permocarboniferous formations within the northern Upper Rhine Graben and their changes with burial depth can be predicted with satisfactory accuracy. This leads to a better understanding of the reservoir quality and enables an appropriate well design for exploration and exploitation of these geothermal resources.
Modelling of sea floor spreading initiation and rifted continental margin formation
NASA Astrophysics Data System (ADS)
Tymms, V. J.; Isimm Team
2003-04-01
Recent observations of depth dependent (heterogeneous) stretching where upper crustal extension is much less than that of the lower crust and lithospheric mantle at both non-volcanic and volcanic margins plus the discovery of broad domains of exhumed continental mantle at non-volcanic rifted margins are not predicted by existing quantitative models of rifted margin formation which are usually based on intra-continental rift models subjected to very large stretching factors. New conceptual and quantitative models of rifted margin formation are required. Observations and continuum mechanics suggest that the dominant process responsible for rifted continental margin formation is sea-floor spreading of the young ocean ridge, rather than pre-breakup intra-continental rifting. Simple fluid flow models of ocean ridge processes using analytical iso-viscous corner-flow demonstrate that the divergent motion of the upwelling mantle beneath the ocean ridge, when viewed in the reference frame of the young continental margin, shows oceanward flow of the lower continental crust and lithospheric mantle of the young rifted margin giving rise to depth dependent stretching as observed. Single-phase fluid-models have been developed to model the initiation of sea-floor spreading and the thermal, stretching and thinning evolution of the young rifted continental margin. Finite element fluid-flow modelling incorporating the evolving temperature dependent viscosity field on the fluid flow also show depth dependent stretching of the young continental margin. Two-phase flow models of ocean ridges incorporating the transport of both solid matrix and melt fluid (Spiegelman &Reynolds 1999) predict the divergent motion of the asthenosphere and lithosphere matrix, and the focusing of basaltic melt into the narrow axial zone spreading centre at ocean ridges. We are adapting two-phase flow models for application to the initiation of sea-floor spreading and rifted continental margin formation. iSIMM investigators are V Tymms, NJ Kusznir, RS White, AM Roberts, PAF Christie, N Hurst, Z Lunnon, CJ Parkin, AW Roberts, LK Smith, R Spitzer, A. Davies and A. Surendra, with funding from NERC, DTI, Agip UK, BP, Amerada Hess Ltd., Anadarko, Conoco, Phillips, Shell, Statoil, and WesternGeco.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Daniel J.
The Newark Basin is a Triassic-aged rift basin underlying densely populated, industrialized sections of New York, New Jersey and Pennsylvania. The Basin is an elongate half-graben encompassing an area of more than 7,510 square-kilometers (2,900 square-miles), and could represent a key storage component for commercial scale management of carbon dioxide emissions via geologic sequestration. The project team first acquired published reports, surface and subsurface maps, and seismic data, which formed the basis for a three-dimensional model framework for the northern end of the Basin incorporating stratigraphic, hydrologic, and water quality data. Field investigations included drilling, coring, and logging of two stratigraphic test borings in Clarkstown, NY (Exit 14 Tandem Lot Well No. 1), drilled to a depth of 2,099 meters (6,885 feet); and Palisades, NY (Lamont-Doherty Earth Observatory Test Well No. 4) drilled to a depth of 549 meters (1,802 feet). Two two-dimensional seismic reflection data lines arrayed perpendicularly were acquired by Schlumberger/WesternGeco to help characterize the structure and stratigraphy and as part of pre-drilling field screening activities for the deep stratigraphic borehole. A total of 47 meters (155 feet) of continuous whole core was recovered from the Tandem Lot boring from depths of 1,393 meters (4,570 feet) to 1,486 meters (4,877 feet). Twenty-five horizontal rotary cores were collected in mudstones and sandstones in the surface casing hole and fifty-two cores were taken in various lithologies in the deep borehole. Rotary core plugs were analyzed by Weatherford Laboratories for routine and advanced testing. Rotary core plug trim end thin sections were evaluated by the New York State Museum for mineralogical analysis and porosity estimation. Using core samples, Lawrence Berkley National Laboratory designed and completed laboratory experiments and numerical modeling analyses to characterize the dissolution and reaction of carbon dioxide with formation brine and minerals, and resulting effects on injection rate, pressure, effective storage volume, and carbon dioxide migration within a prospective sandstone reservoir.more » $$Three potential porous and permeable sandstone units were identified in the Passaic Formation at the New York State Thruway Exit 14 location. Potential Flow Unit 1, at a depth of 643 meters (2,110 feet) to 751 meters (2,465 feet); Potential Flow Unit 2 at a depth of 853 meters (2,798 feet) to 1,000 meters (3,280 feet); and Potential Flow Unit 3, at a depth of 1,114 meters (3,655 feet) to 1,294 meters (4,250 feet). Reactive transport simulations of interactions between carbon dioxide, brine and formation minerals were carried out to evaluate changes in formation water chemistry, mineral precipitation and dissolution reactions, and any potential resulting effects on formation permeability. The experimental and modeling analyses suggest that mineral precipitation and dissolution reactions (within the target formation) are not expected to lead to significant changes to the underground hydrologic system over time frames (~30 years) typically relevant for carbon dioxide injection operations. Key findings of this basin characterization study include an estimate of carbon dioxide storage capacity in the Newark Basin. Assuming an average porosity of twelve percent and an aquifer volume of 6.1E+12 meters3, calculated ranges of likely storage capacity range from 1.9 – 20.2 gigatonnes under high temperature (low carbon dioxide density) conditions; and 2.9 – 30.2 gigatonnes under low temperature (low carbon dioxide density) conditions. Intra-basin faulting, geometry of the Palisades Sill, and the presence of altered meta-sediments above and below the Sill, increase potential compartmentalization within the basin. A structural/stratigraphic trap type may occur where porous/permeable sediments are cross-cut by the Palisades Sill. Potential injection intervals are present within the Stockton Formation of the Newark Basin. Additional porous/permeable intervals may be present within sandstones of the Passaic Formation, increasing projected storage capacity. Deeper wedges of strata are likely present in the deeper portions of the basin in southern New York and into northern New Jersey. Abundant mudstones are present in the Passaic, Lockatong, and Stockton Formations. These intervals have the requisite petrophysical properties to form effective primary and secondary containment intervals to industrial-scale sequestration of carbon dioxide in the Newark Basin. Hydro-thermally altered meta-sediments in the region immediately surrounding the top and base of the Palisades Sill is devoid of porosity/permeability and forms an additional effective lateral/vertical sealing cap rock.« less
NASA Astrophysics Data System (ADS)
Jaques, Luís; Pascal, Christophe
2017-09-01
Paleostress tensor restoration methods are traditionally limited to reconstructing geometrical parameters and are unable to resolve stress magnitudes. Based on previous studies we further developed a methodology to restore full paleostress tensors. We concentrated on inversion of Mode I fractures and acquired data in Panasqueira Mine, Portugal, where optimal exposures of mineralized quartz veins can be found. To carry out full paleostress restoration we needed to determine (1) pore (paleo)pressure and (2) vein attitudes. The present contribution focuses specifically on the determination of pore pressure. To these aims we conducted an extensive fluid inclusion study to derive fluid isochores from the quartz of the studied veins. To constrain P-T conditions, we combined these isochores with crystallisation temperatures derived from geochemical analyses of coeval arsenopyrite. We also applied the sphalerite geobarometer and considered two other independent pressure indicators. Our results point to pore pressures of ∼300 MPa and formation depths of ∼10 km. Such formation depths are in good agreement with the regional geological evolution. The obtained pore pressure will be merged with vein inversion results, in order to achieve full paleostress tensor restoration, in a forthcoming companion paper.
Modeling an exhumed basin: A method for estimating eroded overburden
Poelchau, H.S.
2001-01-01
The Alberta Deep Basin in western Canada has undergone a large amount of erosion following deep burial in the Eocene. Basin modeling and simulation of burial and temperature history require estimates of maximum overburden for each gridpoint in the basin model. Erosion can be estimated using shale compaction trends. For instance, the widely used Magara method attempts to establish a sonic log gradient for shales and uses the extrapolation to a theoretical uncompacted shale value as a first indication of overcompaction and estimation of the amount of erosion. Because such gradients are difficult to establish in many wells, an extension of this method was devised to help map erosion over a large area. Sonic A; values of one suitable shale formation are calibrated with maximum depth of burial estimates from sonic log extrapolation for several wells. This resulting regression equation then can be used to estimate and map maximum depth of burial or amount of erosion for all wells in which this formation has been logged. The example from the Alberta Deep Basin shows that the magnitude of erosion calculated by this method is conservative and comparable to independent estimates using vitrinite reflectance gradient methods. ?? 2001 International Association for Mathematical Geology.
Pliocene three-dimensional global ocean temperature reconstruction
Dowsett, H.J.; Robinson, M.M.; Foley, K.M.
2009-01-01
The thermal structure of the mid-Piacenzian ocean is obtained by combining the Pliocene Research, Interpretation and Synoptic Mapping Project (PRISM3) multiproxy sea-surface temperature (SST) reconstruction with bottom water temperature estimates from 27 locations produced using Mg/Ca paleothermometry based upon the ostracod genus Krithe. Deep water temperature estimates are skewed toward the Atlantic Basin (63% of the locations) and represent depths from 1000m to 4500 m. This reconstruction, meant to serve as a validation data set as well as an initialization for coupled numerical climate models, assumes a Pliocene water mass framework similar to that which exists today, with several important modifications. The area of formation of present day North Atlantic Deep Water (NADW) was expanded and extended further north toward the Arctic Ocean during the mid-Piacenzian relative to today. This, combined with a deeper Greenland-Scotland Ridge, allowed a greater volume of warmer NADW to enter the Atlantic Ocean. In the Southern Ocean, the Polar Front Zone was expanded relative to present day, but shifted closer to the Antarctic continent. This, combined with at least seasonal reduction in sea ice extent, resulted in decreased Antarctic Bottom Water (AABW) production (relative to present day) as well as possible changes in the depth of intermediate waters. The reconstructed mid-Piacenzian three-dimensional ocean was warmer overall than today, and the hypothesized aerial extent of water masses appears to fit the limited stable isotopic data available for this time period. ?? Author(s) 2009.
Interpreting Repeated Temperature-Depth Profiles for Groundwater Flow
NASA Astrophysics Data System (ADS)
Bense, Victor F.; Kurylyk, Barret L.; van Daal, Jonathan; van der Ploeg, Martine J.; Carey, Sean K.
2017-10-01
Temperature can be used to trace groundwater flows due to thermal disturbances of subsurface advection. Prior hydrogeological studies that have used temperature-depth profiles to estimate vertical groundwater fluxes have either ignored the influence of climate change by employing steady-state analytical solutions or applied transient techniques to study temperature-depth profiles recorded at only a single point in time. Transient analyses of a single profile are predicated on the accurate determination of an unknown profile at some time in the past to form the initial condition. In this study, we use both analytical solutions and a numerical model to demonstrate that boreholes with temperature-depth profiles recorded at multiple times can be analyzed to either overcome the uncertainty associated with estimating unknown initial conditions or to form an additional check for the profile fitting. We further illustrate that the common approach of assuming a linear initial temperature-depth profile can result in significant errors for groundwater flux estimates. Profiles obtained from a borehole in the Veluwe area, Netherlands in both 1978 and 2016 are analyzed for an illustrative example. Since many temperature-depth profiles were collected in the late 1970s and 1980s, these previously profiled boreholes represent a significant and underexploited opportunity to obtain repeat measurements that can be used for similar analyses at other sites around the world.
A passive microwave snow depth algorithm with a proxy for snow metamorphism
Josberger, E.G.; Mognard, N.M.
2002-01-01
Passive microwave brightness temperatures of snowpacks depend not only on the snow depth, but also on the internal snowpack properties, particularly the grain size, which changes through the winter. Algorithms that assume a constant grain size can yield erroneous estimates of snow depth or water equivalent. For snowpacks that are subject to temperatures well below freezing, the bulk temperature gradient through the snowpack controls the metamorphosis of the snow grains. This study used National Weather Service (NWS) station measurements of snow depth and air temperature from the Northern US Great Plains to determine temporal and spatial variability of the snow depth and bulk snowpack temperature gradient. This region is well suited for this study because it consists primarily of open farmland or prairie, has little relief, is subject to very cold temperatures, and has more than 280 reporting stations. A geostatistical technique called Kriging was used to grid the randomly spaced snow depth measurements. The resulting snow depth maps were then compared with the passive microwave observations from the Special Sensor Microwave Imager (SSM/I). Two snow seasons were examined: 1988-89, a typical snow year, and 1996-97, a record year for snow that was responsible for extensive flooding in the Red River Basin. Inspection of the time series of snow depth and microwave spectral gradient (the difference between the 19 and 37 GHz bands) showed that while the snowpack was constant, the spectral gradient continued to increase. However, there was a strong correlation (0.6 < R2 < 0.9) between the spectral gradient and the cumulative bulk temperature gradient through the snowpack (TGI). Hence, TGI is an index of grain size metamorphism that has occurred within the snowpack. TGI time series from 21 representative sites across the region and the corresponding SSM/I observations were used to develop an algorithm for snow depth that requires daily air temperatures. Copyright ?? 2002 John Wiley & Sons, Ltd.
Stable Isotope Evidence for North Pacific Deep Water Formation during the mid-Pliocene Warm Period
NASA Astrophysics Data System (ADS)
Ford, H. L.; Burls, N.; Hodell, D. A.
2017-12-01
Only intermediate water forms in the North Pacific today because of a strong halocline. A recent climate modeling study suggests that conditions during the mid-Pliocene warm period ( 3 Ma), a time interval used as pseudo-analogue for future climate change, could have supported a Pacific Meridional Overturning Circulation (PMOC) in the North Pacific. This modeled PMOC is of comparable strength to the modern Atlantic Meridional Overturning Circulation. To investigate the possibility of a mid-Pliocene PMOC, we studied a depth transect of sites between 2400 to 3400 m water depth on Shatsky Rise by measuring δ18O and δ13C of Cibicidoides wuellerstorfi and comparing these new results with previously published records. Today, the vertical δ13C gradient has lower values at mid-depths because of the presence of aged water at the "end of the ocean conveyor belt." We find that the vertical δ13C gradient was reduced, and slightly reversed during the Pliocene interval on Shatsky Rise relative to modern. This δ13C data supports the modeling results that there was deep water formation in the North Pacific. On the Shatsky Rise, the mid-depth δ18O values are high relative to the deep site and other high-resolution records in the Equatorial Pacific. This suggests the PMOC water mass was colder and/or had a more enriched seawater δ18O than the surrounding waters. Planned future work includes minor and trace element analyses to determine the temperature and ΔCO32- characteristics of the PMOC water mass. Our results suggest a ventilated North Pacific during the globally warm mid-Pliocene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutton, S.P.
1997-01-01
Integrated petrographic and burial-history studies of Fall River sandstones from outcrop and the subsurface provide insight into the timing of compaction and quartz cementation, the two main porosity-reducing processes in quartzose sandstones. Petrographic study of 95 thin sections of Fall River fluvial valley-fill sandstones from outcrop, Donkey Creek field at 2 km burial depth, and Buck Draw field at 3.8 km indicates that reservoir quality differs significantly in these three areas. Fall River sandstones at the surface contain an average of 31% intergranular volume (IGV) and 2% quartz cement. In both Donkey Creek and Buck Draw fields, the sandstones averagemore » 22% IGV, but quartz-cement volume averages 8% in the shallower field and 12% in the deeper. Geometric mean permeability at the surface is 4,700 md, compared with 42 md at 2 km and 2 md at 3.8 km. Burial history of the Fall River sandstone differs greatly in the three areas. The outcropping sandstones were buried to 2 km and had reached 80 C by the end of the Cretaceous. They were then uplifted and have remained at near-surface temperatures since the Paleocene; the calculated time-temperature index (TTI) of these sandstones is 1. Fall River sandstones at Donkey Creek were also buried to 2 km and had reached 80 C by the end of the Cretaceous but remained at that depth during the Tertiary; TTI is 14. In Buck Draw field, Fall River sandstones were buried to 2.5 km during the Cretaceous and then continued to subside during the Tertiary, reaching depths of 4 km and temperatures of 140 C; TTI is 512.« less
Mid-depth temperature maximum in an estuarine lake
NASA Astrophysics Data System (ADS)
Stepanenko, V. M.; Repina, I. A.; Artamonov, A. Yu; Gorin, S. L.; Lykossov, V. N.; Kulyamin, D. V.
2018-03-01
The mid-depth temperature maximum (TeM) was measured in an estuarine Bol’shoi Vilyui Lake (Kamchatka peninsula, Russia) in summer 2015. We applied 1D k-ɛ model LAKE to the case, and found it successfully simulating the phenomenon. We argue that the main prerequisite for mid-depth TeM development is a salinity increase below the freshwater mixed layer, sharp enough in order to increase the temperature with depth not to cause convective mixing and double diffusion there. Given that this condition is satisfied, the TeM magnitude is controlled by physical factors which we identified as: radiation absorption below the mixed layer, mixed-layer temperature dynamics, vertical heat conduction and water-sediments heat exchange. In addition to these, we formulate the mechanism of temperature maximum ‘pumping’, resulting from the phase shift between diurnal cycles of mixed-layer depth and temperature maximum magnitude. Based on the LAKE model results we quantify the contribution of the above listed mechanisms and find their individual significance highly sensitive to water turbidity. Relying on physical mechanisms identified we define environmental conditions favouring the summertime TeM development in salinity-stratified lakes as: small-mixed layer depth (roughly, ~< 2 m), transparent water, daytime maximum of wind and cloudless weather. We exemplify the effect of mixed-layer depth on TeM by a set of selected lakes.
Dose dependence of helium bubble formation in nano-engineered SiC at 700 °C
Chen, Chien -Hung; Zhang, Yanwen; Wang, Yongqiang; ...
2016-02-03
Knowledge of radiation-induced helium bubble nucleation and growth in SiC is essential for applications in fusion and fission environments. Here we report the evolution of microstructure in nano-engineered (NE) 3C SiC, pre-implanted with helium, under heavy ion irradiation at 700 °C up to doses of 30 displacements per atom (dpa). Elastic recoil detection analysis confirms that the as-implanted helium depth profile does not change under irradiation to 30 dpa at 700 °C. While the helium bubble size distribution becomes narrower with increasing dose, the average size of bubbles remains unchanged and the density of bubbles increases somewhat with dose. Thesemore » results are consistent with a long helium bubble incubation process under continued irradiation at 700 °C up to 30 dpa, similar to that reported under dual and triple beam irradiation at much higher temperatures. The formation of bubbles at this low temperature is enhanced by the nano-layered stacking fault structure in the NE SiC, which enhances point defect mobility parallel to the stacking faults. Here, this stacking fault structure is stable at 700 °C up to 30 dpa and suppresses the formation of dislocation loops normally observed under these irradiation conditions.« less
Solution-based electrical doping of semiconducting polymer films over a limited depth
NASA Astrophysics Data System (ADS)
Kolesov, Vladimir A.; Fuentes-Hernandez, Canek; Chou, Wen-Fang; Aizawa, Naoya; Larrain, Felipe A.; Wang, Ming; Perrotta, Alberto; Choi, Sangmoo; Graham, Samuel; Bazan, Guillermo C.; Nguyen, Thuc-Quyen; Marder, Seth R.; Kippelen, Bernard
2017-04-01
Solution-based electrical doping protocols may allow more versatility in the design of organic electronic devices; yet, controlling the diffusion of dopants in organic semiconductors and their stability has proven challenging. Here we present a solution-based approach for electrical p-doping of films of donor conjugated organic semiconductors and their blends with acceptors over a limited depth with a decay constant of 10-20 nm by post-process immersion into a polyoxometalate solution (phosphomolybdic acid, PMA) in nitromethane. PMA-doped films show increased electrical conductivity and work function, reduced solubility in the processing solvent, and improved photo-oxidative stability in air. This approach is applicable to a variety of organic semiconductors used in photovoltaics and field-effect transistors. PMA doping over a limited depth of bulk heterojunction polymeric films, in which amine-containing polymers were mixed in the solution used for film formation, enables single-layer organic photovoltaic devices, processed at room temperature, with power conversion efficiencies up to 5.9 +/- 0.2% and stable performance on shelf-lifetime studies at 60 °C for at least 280 h.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollastro, R.M.; Schenk, C.J.
Eolian dune sandstones are the principal reservoir rocks in the Permian upper part of the Minnelusa Formation, Powder River basin, Wyoming. These sandstones formed as shorelines retreated and dunes migrated across siliciclastic sabkhas. Sandstones are mainly quartzarenites; on average, clay minerals constitute about 5 wt.% the whole rock. Although present in minor amounts, clay minerals play an important role in the diagenetic evolution of these sandstones. Allogenic clay minerals are present in shaly rock fragments and laminae. Early infiltration of clays into porous sabkha sands commonly form characteristic menisei or bridges between framework grains or, when more extensive, form coatingsmore » or rims on grain surfaces. Authigenic clays include nearly pure smectite, mixed-layer illite/smectite (I/S), and late diagenetic illite and corrensite; these clay minerals are present as pore-lining cements. In addition to the deposition and neoformation of clay minerals throughout sandstone paragenesis, the conversion of smectite to illite occurred as temperatures increased with progressive burial. A temperature of 103C is calculated at a present depth of 3,200 m using a geothermal gradient of 30C/km and a mean annual surface temperature of 7C. After correction for uplift and erosion (250 m), the maximum calculated temperature for the conversion of all random I/S to ordered I/S is 100C. This calculated temperature is in excellent agreement with temperatures of 100-110C implied from I/S geothermometry.« less
In-Situ RBS Channelling Studies Of Ion Implanted Semiconductors And Insulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendler, E.
2011-06-01
The experimental set-up at the ion beam facility in Jena allows the performance of Rutherford backscattering spectrometry (RBS) in channeling configuration at any temperature between 15 K and room temperature without changing the environment or the temperature of the sample. Doing RBS channeling studies at 15 K increases the sensitivity to defects, because the influence of lattice vibrations is reduced. Thus, the very early processes of ion induced damage formation can be studied and the cross section of damage formation per ion in virgin material, P, can be determined. At 15 K ion-beam induced damage formation itself can be investigated,more » because the occurrence of thermal effects can be widely excluded. In AlAs, GaN, and ZnO the cross section P measured at 15 K can be used to estimate the displacement energy for the heavier component, which is in reasonable agreement with other experiments or theoretical calculations. For a given ion species (here Ar ions) the measured cross section P exhibits a quadratic dependence P{proportional_to}P{sub SRIM}{sup 2} with P{sub SRIM} being the value calculated with SRIM using established displacement energies from other sources. From these results the displacement energy of AlN can be estimated to about 40 eV. Applying the computer code DICADA to calculate the depth distribution of displaced lattice atoms from the channeling spectra, indirect information about the type of defects produced during ion implantation at 15 K can be obtained. In some materials like GaN or ZnO the results indicate the formation of extended defects most probably dislocation loops and thus suggest an athermal mobility of defect at 15 K.« less
Evolution of oil-generative window and oil and gas occurrence in Tertiary Niger delta basin/sup 1/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ejedawe, J.E.; Adoh, F.O.; Alofe, K.B.
1984-11-01
Assuming a simple model of delta development involving progradation and uniform burial at 500 m/m.y. (1,640 ft/m.y.) to present depths, oil-genesis nomographs derived from the time-temperature index (TTI) method were constructed for geothermal gradients ranging from 2.2/sup 0/ to 5.1/sup 0/ C/100 m (1.2/sup 0/-2.8/sup 0/ F/100 ft) of the Niger delta and used in mapping the positions (depth, temperature) of the top of the oil-generative window (OGW) at various times between 40 m.y.B.P. and the present. During the active subsidence phase, oil generation within any megasedimentary unit was initiated at a temperature of 140/sup 0/-146/sup 0/C (284/sup 0/-294.8/sup 0/F)more » and depth of 3,000-5,200 m (9,843-17,060 ft) within 7-11 m.y. after deposition of the potential source rocks. After cessation of subsidence, vertical upward movement of the OGW by 800-1,600 m (2,625-5,249 ft) was accompanied by a temperature lowering of 23/sup 0/-54/sup 0/C (41/sup 0/-97/sup 0/F), producing correspondingly heavier crudes. In a central belt of the delta, hydrocarbon generation and expulsion from the lower part of the Agbada Formation predate the cessation of subsidence and structural deformation, whereas, in other areas, it postdates the cessation of subsidence and structural deformation. In this central belt, the Agbada is the major oil source, with the Akata serving as a gas source. In the other areas, both the Agbada and Akata constitute oil sources, which implies that the thermal conditions rather than the kerogen type influence the oil/gas mix in the Niger delta basin.« less
Are ``Hot Spots'' Hot? - An Overview
NASA Astrophysics Data System (ADS)
Foulger, G. R.
2010-12-01
The term “hot spot” is taken variously to imply a) the presence of excessive volcanism, or b) that the melt formed in an unusually hot source. Case b) is intrinsic to the plume hypothesis. Temperature anomalies of 200-300 degrees Celsius are expected, though there is widespread downward-revision of this where observations do not support it. It is not self-evident that “hot spots” are hot in the sense of case b), despite the fact that this is widely assumed. Furthermore, a hot source is not strongly supported by observations, and is at odds with many data. The temperature of the mantle has been studied using many different methods. Global oceanic heat flow values were recently assessed, but reveal no evidence for elevated temperatures around proposed plume localities. Mapping surface heat flow is only sensitive to anomalies at the level of 100 degrees Celsius, however. Seismological methods include correlating velocity with crustal thickness at LIPs, measuring transition zone thickness, and mapping velocity, e.g., using tomography. The first of these does not find evidence for elevated temperatures. The latter two are both sensitive to the presence of partial melt and variations in rock composition, in addition to temperature, which is the weakest potential effect. They thus cannot be used as thermometers. In particular, it cannot be assumed that red = hot and blue = cold in tomographic cross sections. Petrological and geochemical approaches include the “global systematics”. This has now been shown to not work for estimating temperature and its application should be discontinued. Mineralogical phase relationships are applied by comparing data from laboratory melting experiments to observations. Olivine control-line analysis has been extensively used in attempts to measure the differences in melt-formation temperature between mid-ocean ridges and melting anomalies. Difficulties arise in choosing the correct olivine geothermometer and because picrite glass is lacking from any melting anomaly except Hawaii. The results must be compared with a measure of the temperature of “normal mantle”. This is usually taken to be the temperature of melt formation beneath mid-ocean ridges, but the correct choice is controversial. Furthermore, this cannot be assumed to represent the potential temperature of the mantle in general. The surface conduction layer may extend much deeper than the depth of extraction of MORB, so melt extracted from greater depths, e.g., from beneath the base of the lithosphere in old parts of the ocean basins, may form at higher temperatures. It is easier to assume that the mantle beneath “hot spots” is hot than it is to show unequivocally that it is true. This endeavor is perhaps the most direct way of testing the plume hypothesis, but it is also one of the most challenging.
NASA Technical Reports Server (NTRS)
Weizer, V. G.; Broder, J. D.; Brandhorst, H. W., Jr.; Forestieri, A. F.
1982-01-01
A model is presented that explains the "flat-spot" (FS) power loss phenomenon observed in silicon solar cells operating deep space (low temperature, low intensity) conditions. Evidence is presented suggesting that the effect is due to localized metallurgical interactions between the silicon substrate and the contact metallization. These reactions are shown to result in localized regions in which the PN junction is destroyed and replaced with a metal-semiconductor-like interface. The effects of thermal treatment, crystallographic orientation, junction depth, and metallurization are presented along with a method of preventing the effect through the suppression of vacancy formation at the free surface of the contact metallization. Preliminary data indicating the effectiveness of a TiN diffusion barrier in preventing the effect are also given.
Effect of cold compress application on tissue temperature in healthy dogs.
Millard, Ralph P; Towle-Millard, Heather A; Rankin, David C; Roush, James K
2013-03-01
To measure the effect of cold compress application on tissue temperature in healthy dogs. 10 healthy mixed-breed dogs. Dogs were sedated with hydromorphone (0.1 mg/kg, IV) and diazepam (0.25 mg/kg, IV). Three 24-gauge thermocouple needles were inserted to a depth of 0.5 (superficial), 1.0 (middle), and 1.5 (deep) cm into a shaved, lumbar, epaxial region to measure tissue temperature. Cold (-16.8°C) compresses were applied with gravity dependence for periods of 5, 10, and 20 minutes. Tissue temperature was recorded before compress application and at intervals for up to 80 minutes after application. Control data were collected while dogs received identical sedation but with no cold compress. Mean temperature associated with 5 minutes of application at the superficial depth was significantly decreased, compared with control temperatures. Application for 10 and 20 minutes significantly reduced the temperature at all depths, compared with controls and 5 minutes of application. Twenty minutes of application significantly decreased temperature at only the middle depth, compared with 10 minutes of application. With this method of cold treatment, increasing application time from 10 to 20 minutes caused a further significant temperature change at only the middle tissue depth; however, for maximal cooling, the minimum time of application should be 20 minutes. Possible changes in tissue temperature and adverse effects of application > 20 minutes require further evaluation.
Method and apparatus to measure the depth of skin burns
Dickey, Fred M.; Holswade, Scott C.
2002-01-01
A new device for measuring the depth of surface tissue burns based on the rate at which the skin temperature responds to a sudden differential temperature stimulus. This technique can be performed without physical contact with the burned tissue. In one implementation, time-dependent surface temperature data is taken from subsequent frames of a video signal from an infrared-sensitive video camera. When a thermal transient is created, e.g., by turning off a heat lamp directed at the skin surface, the following time-dependent surface temperature data can be used to determine the skin burn depth. Imaging and non-imaging versions of this device can be implemented, thereby enabling laboratory-quality skin burn depth imagers for hospitals as well as hand-held skin burn depth sensors the size of a small pocket flashlight for field use and triage.
Evaluation of the Sparton tight-tolerance AXBT
NASA Technical Reports Server (NTRS)
Boyd, Janice D.; Linzell, Robert S.
1993-01-01
Forty-six near-simultaneous pairs of conductivity - temperature - depth (CTD) and Sparton 'tight tolerance' air expendable bathythermograph (AXBT) temperature profiles were obtained in summer 1991 from a location in the Sargasso Sea. The data were analyzed to assess the temperature and depth accuracies of the Sparton AXBTs. The tight-tolerance criterion was not achieved using the manufacturer's equations but may have been achieved using customized equations computed from the CTD data. The temperature data from the customized equations had a one standard deviation error of 0.13 C. A customized elapsed fall time-to-depth conversion equation was found to be z = 1.620t - 2.2384 x 10(exp -4) t(exp 2) + 1.291 x 10(exp -7) t(exp 3), with z the depth in meters and t the elapsed fall time after probe release in seconds. The standard deviation of the depth error was about 5 m; a rule of thumb for estimating maximum bounds on the depth error below 100 m could be expressed as +/-2% of depth or +/- 10 m, whichever is greater. This equation gave greater depth accuracy than either the manufacturer's supplied equation or the navy standard equation.
The temperature characteristics of biological active period of the peat soils of Bakchar swamp
NASA Astrophysics Data System (ADS)
Kiselev, M. V.; Dyukarev, E. A.; Voropay, N. N.
2018-01-01
The results of the study of the peculiarities of the temperature regime in the five basic ecosystems of oligotrophic bogs in the south taiga zone of Western Siberia in 2011-2016 are presented. The soil temperature regime was studied using the atmospheric-soil measuring complex at different depths from surface to 240 cm. All sites were divided into two groups according the bog water level: flooded sites (hollow and open fen) and drained sites (ridge, tall and low ryam). Waterlogged sites are better warmed in the summer period, and slowly freeze in the winter period. The analysis of the annual cycle of temperature showed that the maximum surface temperature is observed in July. The minimum temperature on the surface observed in February or January. The greatest temperature gradient was recorded in the upper 2 cm layer. The gradient at the open fen was -2 °C·cm-1 in February and 1.1 °C·cm-1 in October. The peak of formation of the seasonally frozen layer occurs at the end of autumn, beginning of winter. The degradation of the seasonally frozen layer was observed both from top and bottom, but degradation from the top is faster.
UNDERSTANDING THE STRUCTURE OF THE HOT INTERSTELLAR MEDIUM IN NORMAL EARLY-TYPE GALAXIES.
NASA Astrophysics Data System (ADS)
Traynor, Liam; Kim, Dong-Woo; Chandra Galaxy Atlas
2018-01-01
The hot interstellar medium (ISM) of early-type galaxies (ETG's) provides crucial insight into the understanding of their formation and evolution. Mechanisms such as type Ia supernovae heating, AGN feedback, deepening potential depth through dark matter assembly and ramp-pressure stripping are known to affect the structure of the ISM. By using temperature maps and radial temperature profiles of the hot ISM from ~70 ETG's with archival Chandra data, it is possible to classify the galaxy's ISM into common structural types. This is extended by using 3D fitting of the radial temperature profile in order to provide models that further constrain the structural types. Five structural types are present, negative (temperature decreases with radii), positive (temperature increases with radii), hybrid-dip (temperature decreases at small radii and increases at large radii), hybrid-bump (inverse of hybrid-dip) and quasi-isothermal (temperature is constant at all radii). This work will be continued by 1) determining which mechanisms are present in which galaxies and 2) analysing the model parameters between galaxies within each structural type to determine whether each type can be described by a single set of model parameters, indicating that the same physical processes are responsible for creating that structural type.
Ultrasound Thermal Imaging and its application to Rayleigh-Bénard convection in mercury
NASA Astrophysics Data System (ADS)
Xu, Hongzhou; Andereck, C. David
2003-11-01
We have developed Ultrasound Thermal Imaging (UTI), a non-intrusive ultrasound technique for internal temperature measurement of opaque fluids, and have applied UTI to low Rayleigh number buoyancy driven convection in mercury. UTI relies upon the variation of sound speed with temperature of the fluid. An array of ultrasound transducers scanned electronically along the sidewall of a convection cell with aspect ratio of 6 yields a map of the thermal field over the chamber. The chamber has stainless steel sidewalls and molybdenum covered copper plates at the top and bottom. As the Rayleigh number increases slowly from zero, the data reveal the formation of a roll cell pattern and transitions between different cellular states. Based on standard deviation distributions of the temperature profile at the cell's mid-depth, the critical temperature difference agrees well with the theoretically predicted value. The heat flux through the horizontal mercury layer was determined by thermistors mounted at the exit and entrance of the internal channel in each copper plate through which flows warm/cool constant temperature water. Nusselt numbers and other experimental results will also be presented.
Laser nitriding of iron: Nitrogen profiles and phases
NASA Astrophysics Data System (ADS)
Illgner, C.; Schaaf, P.; Lieb, K. P.; Schubert, E.; Queitsch, R.; Bergmann, H.-W.
1995-07-01
Armco iron samples were surface nitrided by irradiating them with pulses of an excimer laser in a nitrogen atmosphere. The resulting nitrogen depth profiles measured by Resonant Nuclear Reaction Analysis (RNRA) and the phase formation determined by Conversion Electron Mössbauer Spectroscopy (CEMS) were investigated as functions of energy density and the number of pulses. The nitrogen content of the samples was found to be independent of the number of pulses in a layer of 50 nm from the surface and to increase in depths exceeding 150 nm. The phase composition did not change with the number of pulses. The nitrogen content can be related to an enhanced nitrogen solubility based on high temperatures and high pressures due to the laser-induced plasma above the sample. With increasing pulse energy density, the phase composition changes towards phases with higher nitrogen contents. Nitrogen diffusion seems to be the limiting factor for the nitriding process.
Planck and the reionization of the universe
NASA Astrophysics Data System (ADS)
Crill, Brendan
2016-03-01
Planck is the third-generation satellite aimed at measuring the cosmic microwave background, a relic of the hot big bang. Planck's temperature and polarization maps of the millimeter-wave sky have constrained parameters of the standard lambda-CDM model of cosmology to incredible precision, and have provided constraints on inflation in the very early universe. Planck's all-sky survey of polarization in seven frequency bands can remove contamination from nearby Galactic emission and constrain the optical depth of the reionized Universe, giving insight into the properties of the earliest star formation. The final 2016 data release from Planck will include a refined optical depth measurement using the full sensitivity of both the High Frequency and Low Frequency instruments. I present the status of the reionization measurement and discuss future prospects for further measurements of the early Universe with the CMB from Planck and future space and suborbital platforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, J. P.; Wang, Y. D.; Hao, Y. L.
Two main explanations exist for the deformation mechanisms in Ti-Nb-based gum metals, i.e. the formation of reversible nanodisturbance and reversible stress-induced martensitic transformation. In this work, we used the in situ synchrotron-based high-energy X-ray diffuse-scattering technique to reveal the existence of a specific deformation mechanism, i.e. deformation-induced spatially confined martensitic transformations, in Ti-24Nb-4Zr-8Sn-0.10O single crystals with cubic 13 parent phase, which explains well some anomalous mechanical properties of the alloy such as low elastic modulus and nonlinear superelasticity. Two kinds of nanosized martensites with different crystal structures were found during uniaxial tensile loading along the [11 0](beta) axis at roommore » temperature and 190 K, respectively. The detailed changes in the martensitic phase transformation characteristics and the transformation kinetics were experimentally observed at different temperatures. The domain switch from non-modulated martensite to a modulated one occurred at 190 K, with its physical origin attributed to the heterogeneity of local phonon softening depending on temperature and inhomogeneous composition in the parent phase. An in-depth understanding of the formation of stress-induced spatially confined nanosized martensites with a large gradient in chemical composition may benefit designs of high-strength and high-ductility alloys. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.« less
Slater, Lee D.; Ntarlagiannis, Dimitrios; Day-Lewis, Frederick D.; Mwakanyamale, Kisa; Versteeg, Roelof J.; Ward, Andy; Strickland, Christopher; Johnson, Carole D.; Lane, John W.
2010-01-01
We explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber‐optic distributed temperature sensor (FO‐DTS) monitoring, to improve the conceptual model for uranium transport within the Columbia River corridor at the Hanford 300 Area, Washington. We first inverted resistivity and induced polarization CWEI data sets for distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units was reconstructed. Variations in the depth to the interface between the overlying coarse‐grained, high‐permeability Hanford Formation and the underlying finer‐grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, were resolved along ∼3 km of the river corridor centered on the 300 Area. Polarizability images were translated into lithologic images using established relationships between polarizability and surface area normalized to pore volume (Spor). The FO‐DTS data recorded along 1.5 km of cable with a 1 m spatial resolution and 5 min sampling interval revealed subreaches showing (1) temperature anomalies (relatively warm in winter and cool in summer) and (2) a strong correlation between temperature and river stage (negative in winter and positive in summer), both indicative of reaches of enhanced surface water–groundwater exchange. The FO‐DTS data sets confirm the hydrologic significance of the variability identified in the CWEI and reveal a pattern of highly focused exchange, concentrated at springs where the Hanford Formation is thickest. Our findings illustrate how the combination of CWEI and FO‐DTS technologies can characterize surface water–groundwater exchange in a complex, coupled river‐aquifer system.
Closed loop control of penetration depth during CO₂ laser lap welding processes.
Sibillano, Teresa; Rizzi, Domenico; Mezzapesa, Francesco P; Lugarà, Pietro Mario; Konuk, Ali Riza; Aarts, Ronald; Veld, Bert Huis In 't; Ancona, Antonio
2012-01-01
In this paper we describe a novel spectroscopic closed loop control system capable of stabilizing the penetration depth during laser welding processes by controlling the laser power. Our novel approach is to analyze the optical emission from the laser generated plasma plume above the keyhole, to calculate its electron temperature as a process-monitoring signal. Laser power has been controlled by using a quantitative relationship between the penetration depth and the plasma electron temperature. The sensor is able to correlate in real time the difference between the measured electron temperature and its reference value for the requested penetration depth. Accordingly the closed loop system adjusts the power, thus maintaining the penetration depth.
Closed Loop Control of Penetration Depth during CO2 Laser Lap Welding Processes
Sibillano, Teresa; Rizzi, Domenico; Mezzapesa, Francesco P.; Lugarà, Pietro Mario; Konuk, Ali Riza; Aarts, Ronald; Veld, Bert Huis in 't; Ancona, Antonio
2012-01-01
In this paper we describe a novel spectroscopic closed loop control system capable of stabilizing the penetration depth during laser welding processes by controlling the laser power. Our novel approach is to analyze the optical emission from the laser generated plasma plume above the keyhole, to calculate its electron temperature as a process-monitoring signal. Laser power has been controlled by using a quantitative relationship between the penetration depth and the plasma electron temperature. The sensor is able to correlate in real time the difference between the measured electron temperature and its reference value for the requested penetration depth. Accordingly the closed loop system adjusts the power, thus maintaining the penetration depth. PMID:23112646
Depth-Selective Diagnostics of Thermal Barrier Coatings Incorporating Thermographic Phosphors
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.; Bencic, Timothy J.; Allison, Stephen W.; Beshears, David L.
2003-01-01
Thermographic phosphors have been previously demonstrated to provide effective non-contact, emissivity-independent surface temperature measurements. Because of the translucent nature of thermal barrier coatings (TBCs), thermographic-phosphor-based temperature measurements can be extended beyond the surface to provide depth-selective temperature measurements by incorporating the thermographic phosphor layer at the depth where the temperature measurement is desired. In this paper, thermographic phosphor (Y2O3:Eu) fluorescence decay time measurements are demonstrated for the first time to provide through-the-coating-thickness temperature readings up to 1000 C with the phosphor layer residing beneath a 100-Fm-thick TBC (plasma-sprayed 8wt% yttria-stabilized zirconia). With an appropriately chosen excitation wavelength and detection configuration, it is shown that sufficient phosphor emission is generated to provide effective temperature measurements, despite the attenuation of both the excitation and emission intensities by the overlying TBC. This depth-selective temperature measurement capability should prove particularly useful for TBC diagnostics, where a large thermal gradient is typically present across the TBC thickness.
Depth-Selective Diagnostics of Thermal Barrier Coatings Incorporating Thermographic Phosphors
NASA Technical Reports Server (NTRS)
Eldridge, J. I.; Bencic, T. J.; Allison, S. W.; Beshears, D. L.
2003-01-01
Thermographic phosphors have been previously demonstrated to provide effective non- contact, emissivity-independent surface temperature measurements. Because of the translucent nature of thermal barrier coatings (TBCs), thermographic-phosphor-based temperature measurements can be extended beyond the surface to provide depth-selective temperature measurements by incorporating the thermographic phosphor layer at the depth where the temperature measurement is desired. In this paper, the use of thermographic phosphor (Y2O3:Eu) luminescence decay time measurements is demonstrated for the first time for through-the-thickness temperature readings up to 1000 C with the phosphor placed beneath a 100-micron-thick TBC (plasma-sprayed 8wt% yttria-stabilized zirconia). With an appropriately chosen excitation wavelength and detection configuration, it is shown that sufficient phosphor emission is generated to provide effective temperature measurements, despite the attenuation of both the excitation and emission intensities by the overlying TBC. This depth-selective temperature measurement capability should prove particularly useful for TBC diagnostics, where a large thermal gradient is typically present across the TBC thickness.
Percolation transport theory and relevance to soil formation, vegetation growth, and productivity
NASA Astrophysics Data System (ADS)
Hunt, A. G.; Ghanbarian, B.
2016-12-01
Scaling laws of percolation theory have been applied to generate the time dependence of vegetation growth rates (both intensively managed and natural) and soil formation rates. The soil depth is thus equal to the solute vertical transport distance, the soil production function, chemical weathering rates, and C and N storage rates are all given by the time derivative of the soil depth. Approximate numerical coefficients based on the maximum flow rates in soils have been proposed, leading to a broad understanding of such processes. What is now required is an accurate understanding of the variability of the coefficients in the scaling relationships. The present abstract focuses on the scaling relationship for solute transport and soil formation. A soil formation rate relates length, x, and time, t, scales, meaning that the missing coefficient must include information about fundamental space and time scales, x0 and t0. x0 is proposed to be a fundamental mineral heterogeneity scale, i.e. a median particle diameter. to is then found from the ratio of x0 and a fundamental flow rate, v0, which is identified with the net infiltration rate. The net infiltration rate is equal to precipitation P less evapotranspiration, ET, plus run-on less run-off. Using this hypothesis, it is possible to predict soil depths and formation rates as functions of time and P - ET, and the formation rate as a function of depth, soil calcic and gypsic horizon depths as functions of P-ET. It is also possible to determine when soils are in equilibrium, and predict relationships of erosion rates and soil formation rates.
Study of silicon doped with zinc ions and annealed in oxygen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Privezentsev, V. V., E-mail: v.privezentsev@mail.ru; Kirilenko, E. P.; Goryachev, A. N.
2017-02-15
The results of studies of the surface layer of silicon and the formation of precipitates in Czochralski n-Si (100) samples implanted with {sup 64}Zn{sup +} ions with an energy of 50 keV and a dose of 5 × 10{sup 16} cm{sup –2} at room temperature and then oxidized at temperatures from 400 to 900°C are reported. The surface is visualized using an electron microscope, while visualization of the surface layer is conducted via profiling in depth by elemental mapping using Auger electron spectroscopy. The distribution of impurity ions in silicon is analyzed using a time-of-flight secondary-ion mass spectrometer. Using X-raymore » photoelectron spectroscopy, the chemical state of atoms of the silicon matrix and zinc and oxygen impurity atoms is studied, and the phase composition of the implanted and annealed samples is refined. After the implantation of zinc, two maxima of the zinc concentration, one at the wafer surface and the other at a depth of 70 nm, are observed. In this case, nanoparticles of the Zn metal phase and ZnO phase, about 10 nm in dimensions, are formed at the surface and in the surface layer. After annealing in oxygen, the ZnO · Zn{sub 2}SiO{sub 4} and Zn · ZnO phases are detected near the surface and at a depth of 50 nm, respectively.« less
High-speed blanking of copper alloy sheets: Material modeling and simulation
NASA Astrophysics Data System (ADS)
Husson, Ch.; Ahzi, S.; Daridon, L.
2006-08-01
To optimize the blanking process of thin copper sheets ( ≈ 1. mm thickness), it is necessary to study the influence of the process parameters such as the punch-die clearance and the wear of the punch and the die. For high stroke rates, the strain rate developed in the work-piece can be very high. Therefore, the material modeling must include the dynamic effects.For the modeling part, we propose an elastic-viscoplastic material model combined with a non-linear isotropic damage evolution law based on the theory of the continuum damage mechanics. Our proposed modeling is valid for a wide range of strain rates and temperatures. Finite Element simulations, using the commercial code ABAQUS/Explicit, of the blanking process are then conducted and the results are compared to the experimental investigations. The predicted cut edge of the blanked part and the punch-force displacement curves are discussed as function of the process parameters. The evolution of the shape errors (roll-over depth, fracture depth, shearing depth, and burr formation) as function of the punch-die clearance, the punch and the die wear, and the contact punch/die/blank-holder are presented. A discussion on the different stages of the blanking process as function of the processing parameters is given. The predicted results of the blanking dependence on strain-rate and temperature using our modeling are presented (for the plasticity and damage). The comparison our model results with the experimental ones shows a good agreement.
NASA Astrophysics Data System (ADS)
Yoon, S.; Chang, K. I.; Kim, K. R.; Lobanov, V. B.
2016-02-01
The semi-enclosed East Sea (ES) is called a miniature ocean with its own thermohaline circulation characterized by the formation of deep and intermediate water masses in the Japan Basin, southward discharge of those subsurface water masses towards the Ulleung and Yamato basins, and northward heat transport by the Tsushima Warm Current in the upper layer. Reports have been given of rapid changes of physical and biogeochemical properties associated with its ventilation system. We present results on upper ocean heat content variations and changes in water mass structure and properties from the analysis of historical and most recent hydrographic data. The analysis of non-seasonal heat content (HCA) variations in the upper 500 m from 1976 to 2007 highlights the 2-year lagged in-phase decadal-scale HCA variations in the eastern and western ES until 1995 followed by uncorrelated variations between two regions thereafter with pronounced interannual variations. Long-term trend of HCA in the entire ES shows an increasing trend, but with a large increase in the eastern part and relatively weaker but statistically significant decrease in the western part. The thickness variation of water warmer than 10°C mainly contributes to the HCA variation. Analyses of upper circulation in conjunction with climate indices suggest the importance of the wind-stress curl pattern represented by the Western Pacific index in the western ES and the influence of the Siberian High in the eastern ES. The thickness and temperature variation of 1-5°C representing the East Sea Intermediate Water (ESIW) is relatively minor contributor to the HCA variation in the upper 500 m. However, the thickness (temperature) of the ESIW has been increased (decreased) in the entire ES since 1992, which implies that the formation of the ESIW has been activated in recent decades. To investigate water mass changes in deeper than 500 m, we use full-depth CTD data obtained from CREAMS expeditions from 1993 to 2015. Temperature deeper than 1000 m has been increased about 0.03°C during 20 years and the depth of deep salinity minimum depth which is the lower (upper) limit of the East Sea Central Water (Deep Water) has been deepened. Other characteristics of water mass structure and property changes will be presented.
Newell, K.D.; Goldstein, R.H.
1999-01-01
This research illustrates a new approach for paleobarometry employing heterogeneously entrapped fluid inclusions to determine timing and depth of diagenesis. Heterogeneously entrapped fluid inclusions (gas + water) in vug-filling quartz from the Upper Ordovician Viola Formation in the Midcontinent of the United States were analyzed for their internal pressure with a fluid-inclusion crushing stage. The free gas in fluid inclusions was entrapped at near-surface temperature, as indicated by the presence of all-liquid fluid inclusions and fluid inclusions with low homogenization temperatures ( <40??C). Crushing the crystal and measuring the change in bubble size determines the pressure of entrapment directly. Heterogeneous trapping is indicated by widely varying L:V ratios, from all-liquid to vapor-rich. Gas bubbles in most fluid inclusions analyzed expanded upon release to atmospheric pressure, but some collapsed. A mode of 1.5 to 2.0 atm internal pressure was indicated by the crushing runs, but pressures up to 42.9 atm were recorded. Quartz precipitation and associated fluid-inclusion entrapment therefore occurred over a wide depth-range, but principally at depths of approximately 10 m. Crushing runs done in kerosene confirmed the presence of hydrocarbon gases in most of these inclusions, and bulk analyses of gases in the quartz by quadrupole mass spectrometer revealed methane, ethane, and atmospheric gases. The hydrocarbon gases may have originated in deeper thermogenically mature sedimentary strata, and then leaked to the near-surface where they were entrapped in the precipitating quartz cement. Freezing data indicate an event of quartz precipitation from fluids of marine-fresh water intermediate salinity and other events of precipitation from more saline fluids. Considering the determined pressures, the precipitating fluids probably originated at surfaces of subaerial exposure (unconformities) and surfaces of evaporite precipitation in the overlying Silurian strata. Thus, saline inclusions most likely originated from sinking of saline surface waters during Silurian time. Lower-salinity fluids record fluxes of meteoric water during development of unconformities in the Silurian. This type of paleobarometric study may have application in many other sedimentary systems, provided low-temperature and heterogeneous entrapment of an immiscible gas phase can be demonstrated for the fluid-inclusion assemblages studied.
Past Peatland Distribution as an Indicator of Hydroclimate and Temperature
NASA Astrophysics Data System (ADS)
Treat, C. C.; Jones, M.; Lacourse, T.; Payne, R.; Peteet, D. M.; Sannel, B.; Stelling, J.; Talbot, J.; Williams, C. J.; Kleinen, T.; Grosse, G.; Yu, Z.; Finkelstein, S. A.; Broothaerts, N.; Dommain, R.; Kuhry, P.; Lähteenoja, O.; Dalton, A.; Notebaert, B.; Swindles, G. T.; Tarnocai, C.; Verstraeten, G.; Xia, Z.; Brovkin, V.
2016-12-01
Peatlands, wetlands with > 30 cm of organic sediment, cover more than 3 x 106 km2 of the earth surface and have been accumulating carbon and sediments throughout the Holocene. The location of peatland formation and accumulation has been dynamic over time, as peat formation in areas like Alaska and the West Siberian Lowlands preceded peat formation in Fennoscandia and Eastern North America due to more favorable climate for peat formation. Using the geographic distribution of peatlands in the past can indicate general climatic conditions, including hydroclimate, given that the underlying geology is well understood. Peatlands form under a variety of climatic conditions and landscape positions but do not persist under arid conditions, instead requiring either humid conditions or cold temperatures. However, peatlands may have existed in the past in areas not currently suitable for peatland formation and persistence, but where peats can be found at depth within the sediment column. Here we map the locations of histic paleosols, relict peat, and buried peats since the Last Glacial Maximum using a compilation of sites from previous studies. We compare these records of past peatland distribution to present-day peatland distribution. We evaluate regional differences in timing of peatland development in these buried peatlands to the development of extant peatlands. Finally, we compare the timing of past peatland extent to the to modeled paleoclimate during the Quaternary. In addition to implications for paleoclimate, these past peatlands are not well accounted for in present-day soil carbon stocks but could be an important component of deep soil carbon pools.
NASA Astrophysics Data System (ADS)
Ómar Friðleifsson, Guðmundur; Elders, Wilfred A.; Zierenberg, Robert; Steafánsson, Ari; Sigurðsson, Ómar; Gíslason, Þór; Weisenberger, Tobias B.; Harðarson, Björn S.; Mesfin, Kiflom G.
2017-04-01
The Iceland Deep Drilling Project (IDDP) is exploring the technical and economic feasibility of producing supercritical geothermal resources. The IDDP-2 well is located in the Reykjanes saline geothermal system in SW Iceland, on the landward extension of the Mid-Atlantic Ridge, where we are probing the analog of the root zone of a black smoker. In 2009, Phase 1 of the IDDP was unsuccessful in reaching supercritical conditions in the Krafla volcanic caldera in NE Iceland, when the IDDP-1 drill hole unexpectedly encountered 900°C rhyolite magma at only 2.1 km depth. The completed well produced superheated steam with a well head temperature of 453°C with an enthalpy and flow rate sufficient to generate 35 MWe. Drilling the IDDP-2 began by deepening an existing 2.5 km deep production well (RN-15) to 3 km depth, casing it to 2941m depth and drilling it to 4626m. Total circulation losses which were encountered below 3 km depth, could not be cured by LCM and multiple cement jobs. Accordingly, drilling continued "blind" to total depth, without return of drill cuttings. We attempted 12 core runs below 3 km depth, half of which recovered some core. The cores are basalts and dolerites with alteration ranging from upper greenschist facies to amphibolite facies, suggesting formation temperatures >450°C. After a final report from the on-site science team, expected mid-year 2017, detailed petrological, petrophysical, and geochemical analyses of cores will be undertaken by the IDDP science team and collaborators and published in a special issue of a main-stream scientific journal. The drilling of the IDDP-2 was funded by the field operator HS Orka, and by Statoil, and the IDDP industry consortium. The coring was funded by ICDP and the science program of the IDDP. Deepening the RN-15 began 11th August 2016, and was completed to 4626m, 17th December 2016. A perforated liner was inserted to 4,571m and the well subsequently logged for temperature, pressure and injectivity, after 6 days partial heating-up. The injectivity index proved to be 1.7 (kg/s)/bar. Supercritical conditions were measured at the bottom, 427°C at 340 bar pressure. The T-log showed the main permeable zones to be at around 3360m, 4200m, 4370m and 4550m depth. Estimates suggest that 30% of 40 L/s injected into the well are received by the three deepest feed zones. This can possibly be enhanced by massive soft stimulation, which is a part of the DEEPEGS plan to be executed later this year. The DEEPEGS project is a demonstration project, supported by the European Commission, Horizon 2020. The goal is to demonstrate the feasibility of enhanced geothermal systems (EGS) for delivering energy from renewable resources in Europe. It is a four-year project coordinated by HS Orka, Iceland, in cooperation with partners from Iceland, France, Germany, Italy, and Norway. The project will demonstrate advanced technologies in three types of geothermal reservoirs, (i) in high enthalpy resource beneath existing hydrothermal field at Reykjanes with temperature up to 550°C, and (ii) in two very deep hydrothermal reservoirs in France with temperatures up to 220°C.
Systematics of Alkali Metals in Pore Fluids from Serpentinite Mud Volcanoes: IODP Expedition 366
NASA Astrophysics Data System (ADS)
Wheat, C. G.; Ryan, J.; Menzies, C. D.; Price, R. E.; Sissmann, O.
2017-12-01
IODP Expedition 366 focused, in part, on the study of geochemical cycling, matrix alteration, material and fluid transport, and deep biosphere processes within the subduction channel in the Mariana forearc. This was accomplished through integrated sampling of summit and flank regions of three active serpentinite mud volcanoes (Yinazao (Blue Moon), Asùt Tesoro (Big Blue), and Fantangisña (Celestial) Seamounts). These edifices present a transect of depths to the Pacific Plate, allowing one to characterize thermal, pressure and compositional effects on processes that are associated with the formation of serpentinite mud volcanoes and continued activity below and within them. Previous coring on ODP Legs 125 and 195 at two other serpentinite mud volcanoes (Conical and South Chamorro Seamounts) and piston, gravity, and push cores from several other Mariana serpentinite mud volcanoes add to this transect of sites where deep-sourced material is discharged at the seafloor. Pore waters (149 samples) were squeezed from serpentinite materials to determine the composition of deep-sourced fluid and to assess the character, extent, and effect of diagenetic reactions and mixing with seawater on the flanks of the seamounts as the serpentinite matrix weathers. In addition two Water Sampler Temperature Tool (WSTP) fluid samples were collected within two of the cased boreholes, each with at least 30 m of screened casing that allows formations fluids to discharge into the borehole. Shipboard results for Na and K record marked seamount-to-seamount differences in upwelling summit fluids, and complex systematics in fluids obtained from flank sites. Here we report new shore-based Rb and Cs measurements, two elements that have been used to constrain the temperature of the deep-sourced fluid. Data are consistent with earlier coring and drilling expeditions, resulting in systematic changes with depth (and by inference temperature) to the subduction channel.
Gamma-radiation monitoring in post-tectonic biotitic granites at Celorico da Beira
NASA Astrophysics Data System (ADS)
Domingos, Filipa; Barbosa, Susana; Pereira, Alcides; Neves, Luís
2017-04-01
Despite its obvious relevance, the effect of meteorological variables such as temperature, pressure, wind, rainfall and particularly humidity on the temporal variability of natural radiation is complex and still not fully understood. Moreover, the nature of their influence with increasing depth is also poorly understood. Thereby, two boreholes were set 3 m apart in the region of Celorico da Beira within post-tectonic biotitic granites of the Beiras Batolith. Continuous measurements were obtained with identical gamma-ray scintillometers deployed at depths of 1 and 6 m during a 6 month period in the years of 2014 and 2015. Temperature, relative humidity, pressure, rainfall, wind speed and direction were measured at the site, as well as temperature and relative humidity inside the boreholes, with the aim of assessing the influence of meteorological parameters on the temporal variability of gamma radiation at two distinct depths. Both time series display a complex temporal structure including multiyear, seasonal and daily variability. At 1 m depth, a daily periodicity on the gamma ray counts time series was noticed with daily maxima occurring most frequently from 8 to 12 p.m. and daily minima between 8 and 12 a.m.. At 6 m depth, maximum and minimum daily means occurred with approximately a 10 h lag from the above. Gamma radiation data exhibited fairly strong correlations with temperature and relative humidity, however, varying with depth. Gamma radiation counts increased with increasing temperature and decreasing relative humidity at 1 m depth, while at a 6 m depth the opposite was recorded, with counts increasing with relative humidity and decreasing with temperature. Wind speed was shown to be inversely related with counts at 6 m depth, while positively correlated at 1 m depth. Pressure and rainfall had minor effects on both short-term and long-term gamma radiation counts.
Temperature dependent mechanical property of PZT film: an investigation by nanoindentation.
Li, Yingwei; Feng, Shangming; Wu, Wenping; Li, Faxin
2015-01-01
Load-depth curves of an unpoled Lead Zirconate Titanate (PZT) film composite as a function of temperature were measured by nanoindentation technique. Its reduce modulus and hardness were calculated by the typical Oliver-Pharr method. Then the true modulus and hardness of the PZT film were assessed by decoupling the influence of substrate using methods proposed by Zhou et al. and Korsunsky et al., respectively. Results show that the indentation depth and modulus increase, but the hardness decreases at elevated temperature. The increasing of indentation depth and the decreasing of hardness are thought to be caused by the decreasing of the critical stress needed to excite dislocation initiation at high temperature. The increasing of true modulus is attributed to the reducing of recoverable indentation depth induced by back-switched domains. The influence of residual stress on the indentation behavior of PZT film composite was also investigated by measuring its load-depth curves with pre-load strains.
Tuohy, Robin M; Wallace, Paul J.; Loewen, Matthew W; Swanson, Don; Kent, Adam J R
2016-01-01
Concentrations of H2O and CO2 in olivine-hosted melt inclusions can be used to estimate crystallization depths for the olivine host. However, the original dissolved CO2concentration of melt inclusions at the time of trapping can be difficult to measure directly because in many cases substantial CO2 is transferred to shrinkage bubbles that form during post-entrapment cooling and crystallization. To investigate this problem, we heated olivine from the 1959 Kīlauea Iki and 1960 Kapoho (Hawai‘i) eruptions in a 1-atm furnace to temperatures above the melt inclusion trapping temperature to redissolve the CO2 in shrinkage bubbles. The measured CO2 concentrations of the experimentally rehomogenized inclusions (⩽590 ppm for Kīlauea Iki [n=10]; ⩽880 ppm for Kapoho, with one inclusion at 1863 ppm [n=38]) overlap with values for naturally quenched inclusions from the same samples, but experimentally rehomogenized inclusions have higher within-sample median CO2 values than naturally quenched inclusions, indicating at least partial dissolution of CO2 from the vapor bubble during heating. Comparison of our data with predictions from modeling of vapor bubble formation and published Raman data on the density of CO2 in the vapor bubbles suggests that 55-85% of the dissolved CO2 in the melt inclusions at the time of trapping was lost to post-entrapment shrinkage bubbles. Our results combined with the Raman data demonstrate that olivine from the early part of the Kīlauea Iki eruption crystallized at <6 km depth, with the majority of olivine in the 1-3 km depth range. These depths are consistent with the interpretation that the Kīlauea Iki magma was supplied from Kīlauea’s summit magma reservoir (∼2-5 km depth). In contrast, olivine from Kapoho, which was the rift zone extension of the Kīlauea Iki eruption, crystallized over a much wider range of depths (∼1-16 km). The wider depth range requires magma transport during the Kapoho eruption from deep beneath the summit region and/or from deep beneath Kīlauea’s east rift zone. The deeply derived olivine crystals and their host magma mixed with stored, more evolved magma in the rift zone, and the mixture was later erupted at Kapoho.
NASA Astrophysics Data System (ADS)
Tuohy, Robin M.; Wallace, Paul J.; Loewen, Matthew W.; Swanson, Donald A.; Kent, Adam J. R.
2016-07-01
Concentrations of H2O and CO2 in olivine-hosted melt inclusions can be used to estimate crystallization depths for the olivine host. However, the original dissolved CO2 concentration of melt inclusions at the time of trapping can be difficult to measure directly because in many cases substantial CO2 is transferred to shrinkage bubbles that form during post-entrapment cooling and crystallization. To investigate this problem, we heated olivine from the 1959 Kīlauea Iki and 1960 Kapoho (Hawai'i) eruptions in a 1-atm furnace to temperatures above the melt inclusion trapping temperature to redissolve the CO2 in shrinkage bubbles. The measured CO2 concentrations of the experimentally rehomogenized inclusions (⩽590 ppm for Kīlauea Iki [n = 10]; ⩽880 ppm for Kapoho, with one inclusion at 1863 ppm [n = 38]) overlap with values for naturally quenched inclusions from the same samples, but experimentally rehomogenized inclusions have higher within-sample median CO2 values than naturally quenched inclusions, indicating at least partial dissolution of CO2 from the vapor bubble during heating. Comparison of our data with predictions from modeling of vapor bubble formation and published Raman data on the density of CO2 in the vapor bubbles suggests that 55-85% of the dissolved CO2 in the melt inclusions at the time of trapping was lost to post-entrapment shrinkage bubbles. Our results combined with the Raman data demonstrate that olivine from the early part of the Kīlauea Iki eruption crystallized at <6 km depth, with the majority of olivine in the 1-3 km depth range. These depths are consistent with the interpretation that the Kīlauea Iki magma was supplied from Kīlauea's summit magma reservoir (∼2-5 km depth). In contrast, olivine from Kapoho, which was the rift zone extension of the Kīlauea Iki eruption, crystallized over a much wider range of depths (∼1-16 km). The wider depth range requires magma transport during the Kapoho eruption from deep beneath the summit region and/or from deep beneath Kīlauea's east rift zone. The deeply derived olivine crystals and their host magma mixed with stored, more evolved magma in the rift zone, and the mixture was later erupted at Kapoho.
Documentation of the U.S. Geological Survey Oceanographic Time-Series Measurement Database
Montgomery, Ellyn T.; Martini, Marinna A.; Lightsom, Frances L.; Butman, Bradford
2008-01-02
This report describes the instrumentation and platforms used to make the measurements; the methods used to process, apply quality-control criteria, and archive the data; the data storage format, and how the data are released and distributed. The report also includes instructions on how to access the data from the online database at http://stellwagen.er.usgs.gov/. As of 2016, the database contains about 5,000 files, which may include observations of current velocity, wave statistics, ocean temperature, conductivity, pressure, and light transmission at one or more depths over some duration of time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, Garry J.; Birkby, Jeff
Tribal lands owned by Assiniboine and Sioux Tribes on the Fort Peck Indian Reservation, located in Northeastern Montana, overlie large volumes of deep, hot, saline water. Our study area included all the Fort Peck Reservation occupying roughly 1,456 sq miles. The geothermal water present in the Fort Peck Reservation is located in the western part of the Williston Basin in the Madison Group complex ranging in depths of 5500 to 7500 feet. Although no surface hot springs exist on the Reservation, water temperatures within oil wells that intercept these geothermal resources in the Madison Formation range from 150 to 278more » degrees F.« less
The Green Bank Ammonia Survey: Unveiling the Dynamics of the Barnard 59 Star-forming Clump
NASA Astrophysics Data System (ADS)
Redaelli, E.; Alves, F. O.; Caselli, P.; Pineda, J. E.; Friesen, R. K.; Chacón-Tanarro, A.; Matzner, C. D.; Ginsburg, A.; Rosolowsky, E.; Keown, J.; Offner, S. S. R.; Di Francesco, J.; Kirk, H.; Myers, P. C.; Hacar, A.; Cimatti, A.; Chen, H. H.; Chen, M. C.; Lee, K. I.; Seo, Y. M.
2017-12-01
Understanding the early stages of star formation is a research field of ongoing development, both theoretically and observationally. In this context, molecular data have been continuously providing observational constraints on the gas dynamics at different excitation conditions and depths in the sources. We have investigated the Barnard 59 core, the only active site of star formation in the Pipe Nebula, to achieve a comprehensive view of the kinematic properties of the source. This information was derived by simultaneously fitting ammonia inversion transition lines (1, 1) and (2, 2). Our analysis unveils the imprint of protostellar feedback, such as increasing line widths, temperature, and turbulent motions in our molecular data. Combined with complementary observations of dust thermal emission, we estimate that the core is gravitationally bound following a virial analysis. If the core is not contracting, another source of internal pressure, most likely the magnetic field, is supporting it against gravitational collapse and limits its star formation efficiency.
Reduced oxygenation at intermediate depths of the southwest Pacific during the last glacial maximum
NASA Astrophysics Data System (ADS)
Durand, Axel; Chase, Zanna; Noble, Taryn L.; Bostock, Helen; Jaccard, Samuel L.; Townsend, Ashley T.; Bindoff, Nathaniel L.; Neil, Helen; Jacobsen, Geraldine
2018-06-01
To investigate changes in oxygenation at intermediate depths in the southwest Pacific between the Last Glacial Maximum (LGM) and the Holocene, redox sensitive elements uranium and rhenium were measured in 12 sediment cores located on the Campbell and Challenger plateaux offshore from New Zealand. The core sites are currently bathed by Subantarctic Mode Water (SAMW), Antarctic Intermediate Water (AAIW) and Upper Circumpolar Deep Water (UCDW). The sedimentary distributions of authigenic uranium and rhenium reveal reduced oxygen content at intermediate depths (800-1500 m) during the LGM compared to the Holocene. In contrast, data from deeper waters (≥1500 m) indicate higher oxygen content during the LGM compared to the Holocene. These data, together with variations in benthic foraminiferal δ13C, are consistent with a shallower AAIW-UCDW boundary over the Campbell Plateau during the LGM. Whilst AAIW continued to bathe the intermediate depths (≤1500 m) of the Challenger Plateau during the LGM, the data suggest that the AAIW at these core sites contained less oxygen compared to the Holocene. These results are at odds with the general notion that AAIW was better oxygenated and expanded deeper during the LGM due to stronger westerlies and colder temperatures. These findings may be explained by an important change in AAIW formation and circulation.
Maine Geological Survey Borehole Temperature Profiles
Marvinney, Robert
2013-11-06
This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.
Junwei, Zhang; Jinping, Li; Xiaojuan, Quan
2013-01-01
The permafrost degradation is the fundamental cause generating embankment diseases and pavement diseases in permafrost region while the permafrost degradation is related with temperature. Based on the field monitoring results of ground temperature along G214 Highway in high temperature permafrost regions, both the ground temperatures in superficial layer and the annual average temperatures under the embankment were discussed, respectively, for concrete pavements and asphalt pavements. The maximum depth of temperature field under the embankment for concrete pavements and asphalt pavements was also studied by using the finite element method. The results of numerical analysis indicate that there were remarkable seasonal differences of the ground temperatures in superficial layer between asphalt pavement and concrete pavement. The maximum influencing depth of temperature field under the permafrost embankment for every pavement was under the depth of 8 m. The thawed cores under both embankments have close relation with the maximum thawed depth, the embankment height, and the service time. The effective measurements will be proposed to keep the thermal stabilities of highway embankment by the results.
Jinping, Li; Xiaojuan, Quan
2013-01-01
The permafrost degradation is the fundamental cause generating embankment diseases and pavement diseases in permafrost region while the permafrost degradation is related with temperature. Based on the field monitoring results of ground temperature along G214 Highway in high temperature permafrost regions, both the ground temperatures in superficial layer and the annual average temperatures under the embankment were discussed, respectively, for concrete pavements and asphalt pavements. The maximum depth of temperature field under the embankment for concrete pavements and asphalt pavements was also studied by using the finite element method. The results of numerical analysis indicate that there were remarkable seasonal differences of the ground temperatures in superficial layer between asphalt pavement and concrete pavement. The maximum influencing depth of temperature field under the permafrost embankment for every pavement was under the depth of 8 m. The thawed cores under both embankments have close relation with the maximum thawed depth, the embankment height, and the service time. The effective measurements will be proposed to keep the thermal stabilities of highway embankment by the results. PMID:24027444
Modeling of Composite Scenes Using Wires, Plates and Dielectric Parallelized (WIPL-DP)
2006-06-01
formation and solves the data communications problem. The ability to perform subsurface imaging to depths of 200’ have already been demonstrated by...perform subsurface imaging to depths of 200’ have already been demonstrated by Brown in [3] and presented in Figure 3 above. Furthermore, reference [3...transmitter platform for use in image formation and solves the data communications problem. The ability to perform subsurface imaging to depths of 200
NASA Astrophysics Data System (ADS)
El-Bialy, Mohammed Z.; Ali, Kamal A.; Abu El-Enen, Mahrous M.; Ahmed, Ahmed H.
2015-12-01
The Malhaq and Um Zariq formations occupy the northern part of the Neoproterozoic Kid metamorphic complex of SE Sinai, NE Arabian-Nubian Shield. This study presents new mineral chemistry data and LA-ICP-MS analyses of the trace element concentrations on zircons separated from metapelites from these formations. The detrital zircons of Um Zariq Formation are more enriched in ΣREE, whereas Malhaq Formation zircons are markedly HREE-enriched with strongly fractionated HREE patterns. The quite differences in the overall slope and size of the Eu and Ce anomalies between REE patterns of the two zircon suites provide a robust indication of different sources. The Ti-in-zircon thermometer has revealed that the zircons separated from Malhaq Formation were crystallized within the 916-1018 °C range, while those from Um Zariq Formation exhibit higher range of crystallization temperatures (1084-1154 °C). The detrital zircons of Malhaq Formation were derived mainly from mafic source rocks (basalt and dolerite), whereas Um Zariq Formation zircons have varied and more evolved parent rocks. Most of the investigated zircons from both formations are concluded to be unaltered magmatic that were lately crystallized from a high LREE/HREE melt. All the studied detrital zircon grains show typical trace elements features of crustal-derived zircons. All of the Um Zariq Formation and most of Malhaq Formation detrital zircons are geochemically discriminated as continental zircons. Both formation metapelites record similar, overlapping peak metamorphic temperatures (537-602 °C and 550-579 °C, respectively), and pressures (3.83-4.93 kbar and 3.69-4.07 kbar, respectively). The geothermal gradient, at the peak metamorphic conditions, was quite high (37-41 °C/km) corresponding to metamorphism at burial depth of 14-16 km. The peak regional metamorphism of Um Zariq and Malhaq formations is concluded to be generated during extensional regime and thinning of the lithosphere in an island arc setting with heat flow from the underlying arc granitoids.
NASA Astrophysics Data System (ADS)
Ramm, D. J.
2015-06-01
We explore the possibly that either star-spots or pulsations are the cause of a periodic radial velocity (RV) signal (P ˜ 400 d) from the K-giant binary ν Octantis (P ˜ 1050 d, e ˜ 0.25), alternatively conjectured to have a retrograde planet. Our study is based on temperatures derived from 22 line-depth ratios (LDRs) for ν Oct and 20 calibration stars. Empirical evidence and stability modelling provide unexpected support for the planet since other standard explanations (star-spots, pulsations and additional stellar masses) each have credibility problems. However, the proposed system presents formidable challenges to planet formation and stability theories: it has by far the smallest stellar separation of any claimed planet-harbouring binary (a_{_bin} ˜ 2.6 au) and an equally unbelievable separation ratio (a_{_pl}/a_{_bin} ˜ 0.5), hence the necessity that the circumstellar orbit be retrograde. The LDR analysis of 215 ν Oct spectra acquired between 2001 and 2007, from which the RV perturbation was first revealed, have no significant periodicity at any frequency. The LDRs recover the original 21 stellar temperatures with an average accuracy of 45 ± 25 K. The 215 ν Oct temperatures have a standard deviation of only 4.2 K. Assuming the host primary is not pulsating, the temperatures converted to magnitude differences strikingly mimic the very stable photometric Hipparcos observations 15 years previously, implying the long-term stability of the star and demonstrating a novel use of LDRs as a photometric gauge. Our results provide substantial new evidence that conventional star-spots and pulsations are unlikely causes of the RV perturbation. The controversial system deserves continued attention, including with higher resolving-power spectra for bisector and LDR analyses.
NASA Astrophysics Data System (ADS)
Yan, Li-Tang; Xie, Xu-Ming
2007-02-01
Focusing on the off-critical condition, the quench depth dependence of surface-directed phase separation in the polymer binary mixture is numerically investigated by combination of the Cahn-Hilliard-Cook theory and the Flory-Huggins-de Gennes theory. Two distinct situations, i.e., for the wetting, the minority component is preferred by the surface and the majority component is preferred by the surface, are discussed in detail. The simulated results show that the formation mechanism of the wetting layer is affected by both the quench depth and the off-critical extent. Moreover, a diagram, illustrating the formation mechanisms of the wetting layer with various quench depths and compositions, is obtained on the basis of the simulated results. It is found that, when the minority component is preferred by the surface, the growth of the wetting layer can exhibit pure diffusion limited growth law, logarithmic growth law, and Lifshitz-Slyozov growth law. However, when the majority component is preferred by the surface, the wetting layer always grows logarithmically, regardless of the quench depth and the off-critical extent. It is interesting that the surface-induced nucleation can be observed in this case. The simulated results demonstrate that the surface-induced nucleation only occurs below a certain value of the quench depth, and a detailed range about it is calculated and indicated. Furthermore, the formation mechanisms of the wetting layer are theoretically analyzed in depth by the chemical potential gradient.
A Water Temperature Simulation Model for Rice Paddies With Variable Water Depths
NASA Astrophysics Data System (ADS)
Maruyama, Atsushi; Nemoto, Manabu; Hamasaki, Takahiro; Ishida, Sachinobu; Kuwagata, Tsuneo
2017-12-01
A water temperature simulation model was developed to estimate the effects of water management on the thermal environment in rice paddies. The model was based on two energy balance equations: for the ground and for the vegetation, and considered the water layer and changes in the aerodynamic properties of its surface with water depth. The model was examined with field experiments for water depths of 0 mm (drained conditions) and 100 mm (flooded condition) at two locations. Daily mean water temperatures in the flooded condition were mostly higher than in the drained condition in both locations, and the maximum difference reached 2.6°C. This difference was mainly caused by the difference in surface roughness of the ground. Heat exchange by free convection played an important role in determining water temperature. From the model simulation, the temperature difference between drained and flooded conditions was more apparent under low air temperature and small leaf area index conditions; the maximum difference reached 3°C. Most of this difference occurred when the range of water depth was lower than 50 mm. The season-long variation in modeled water temperature showed good agreement with an observation data set from rice paddies with various rice-growing seasons, for a diverse range of water depths (root mean square error of 0.8-1.0°C). The proposed model can estimate water temperature for a given water depth, irrigation, and drainage conditions, which will improve our understanding of the effect of water management on plant growth and greenhouse gas emissions through the thermal environment of rice paddies.
NASA Astrophysics Data System (ADS)
Ling, Y.; Lin, L.; Wang, P.; Sun, C.
2009-12-01
In subsurface environments, the mineralization of organic carbon involves complex interactions among geological and microbial processes. As the most reduced form and the shortest hydrocarbon chain, methane, is the final product of both microbial degradation and thermal-cracking of organic matter, it serves as the connection of carbon cycles between different reservoirs. Of various mechanisms for methane formation, microbial methane constitutes 85% of the total methane inventory investigated by far. However, the mechanisms and resultant carbon isotope fingerprints of methanogenesis in environments still remained largely unknown. The types of precursors and temperature might be the most critical factors governing methanogenesis. Lots of studies have been investigating the mechanisms responsible for methanogenesis by pure cultures, but it still remains obscure with regard to which precursors are predominantly utilized by methanogens in natural settings. The effect of temperature is especially prominent for anoxic sediments within which the temperature increases with depth in accordance with the local geotherm. Commonly observed temperatures for methanogenesis span from ambient temperature to 90OC, a temperature range for most diagenetic reactions. In order to address how different precursors would be activated for microbially catalytic methane formation upon different temperatures, we incubated the sediments collected from Kuan-Tzu-Ling hot spring at temperatures up to 90OC. Five precursors including acetate, formate, methanol, methylamine, and hydrogen were added with the inocula to stimulate methanogenesis and inhibit fermentation, and were monitored together with methane production through time. Results of this experiments indicated that methanogenesis was positive at temperatures from room temperature to 80OC and precursors investigated despite substantial variations in the maximum rates and yields. In the experiment supplied with hydrogen and formate, methanogenic rates were rapid at all temperatures. Maximum methane production rates occurred at 40~50OC for incubations with methanol, 40~60OC for incubation with acetate, and 50OC for those with methylamine. The patterns of carbon isotopic compositions on methane were either consistent with the prediction of the Rayleigh fractionation in a closed system, trending toward more depleted through time or invariant through time, suggesting variable physiological responses and microbial assemblages to precursor additions. The obtained ɛ values were 0~-12‰ for incubations with acetate, -16~-45‰ for incubations with hydrogen, -50~-80‰ for incubations with methanol, and -87~-115‰ for incubations with methylamine. Acetoclastic methanogenesis appears to fractionate carbon isotopes at the smallest magnitude. This when combined with the results from positive controls and the field observation suggests that acetoclastic methanogenesis produced methane with isotopic signatures comparable with those with thermogenic in origin and contributed significantly to the total methane inventory in the Kuan-Tzu-Ling hotspring area.
NASA Astrophysics Data System (ADS)
McDermott, Jill M.; Sylva, Sean P.; Ono, Shuhei; German, Christopher R.; Seewald, Jeffrey S.
2018-05-01
Hosted in basaltic substrate on the ultra-slow spreading Mid-Cayman Rise, the Piccard hydrothermal field is the deepest currently known seafloor hot-spring (4957-4987 m). Due to its great depth, the Piccard site is an excellent natural system for investigating the influence of extreme pressure on the formation of submarine vent fluids. To investigate the role of rock composition and deep circulation conditions on fluid chemistry, the abundance and isotopic composition of organic, inorganic, and dissolved volatile species in high temperature vent fluids at Piccard were examined in samples collected in 2012 and 2013. Fluids from the Beebe Vents and Beebe Woods black smokers vent at a maximum temperature of 398 °C at the seafloor, however several lines of evidence derived from inorganic chemistry (Cl, SiO2, Ca, Br, Fe, Cu, Mn) support fluid formation at much higher temperatures in the subsurface. These high temperatures, potentially in excess of 500 °C, are attainable due to the great depth of the system. Our data indicate that a single deep-rooted source fluid feeds high temperature vents across the entire Piccard field. High temperature Piccard fluid H2 abundances (19.9 mM) are even higher than those observed in many ultramafic-influenced systems, such as the Rainbow (16 mM) and the Von Damm hydrothermal fields (18.2 mM). In the case of Piccard, however, these extremely high H2 abundances can be generated from fluid-basalt reaction occurring at very high temperatures. Magmatic and thermogenic sources of carbon in the high temperature black smoker vents are described. Dissolved ΣCO2 is likely of magmatic origin, CH4 may originate from a combination of thermogenic sources and leaching of abiotic CH4 from mineral-hosted fluid inclusions, and CO abundances are at equilibrium with the water-gas shift reaction. Longer-chained n-alkanes (C2H6, C3H8, n-C4H10, i-C4H10) may derive from thermal alteration of dissolved and particulate organic carbon sourced from the original seawater source, entrainment of microbial ecosystems peripheral to high temperature venting, and/or abiotic mantle sources. Dissolved ΣHCOOH in the Beebe Woods fluid is consistent with thermodynamic equilibrium for abiotic production via ΣCO2 reduction with H2 at 354 °C measured temperature. A lack of ΣHCOOH in the relatively higher temperature 398 °C Beebe Vent fluids demonstrates the temperature sensitivity of this equilibrium. Abundant basaltic seafloor outcrops and the axial location of the vent field, along with multiple lines of geochemical evidence, support extremely high temperature fluid-rock reaction with mafic substrate as the dominant control on Piccard fluid chemistry. These results expand the known diversity of vent fluid composition, with implications for supporting microbiological life in both the modern and ancient ocean.
Characterization of Hydrologic and Thermal Properties at Brady Geothermal Field, NV
NASA Astrophysics Data System (ADS)
Patterson, J.; Cardiff, M. A.; Lim, D.; Coleman, T.; Wang, H. F.; Feigl, K. L.
2017-12-01
Understanding and predicting the temperature evolution of geothermal reservoirs is a primary focus for geothermal power plant operators ensuring continued financial sustainability of the resource. Characterization of reservoir properties - such as thermal diffusivity and hydraulic conductivity - facilitates modeling efforts to develop a better understanding of temperature evolution. As part of the integrated "PoroTomo" experiment, borehole pressure measurements were collected in three monitoring wells of various depths under varying operational conditions at the Brady Geothermal Field near Reno, NV. During normal operational conditions, a vertical profile of borehole temperature to 330 m depth was collected using distributed temperature sensing (DTS) for a period of 5 days. Borehole pressure data indicates 2D flow and shows rapid responses to changes in pumping /injection rates, likely indicating fault-dominated flow. The temperature data show that borehole temperature recovery following cold water slug injection is variable with depth. Late time vertical temperature profiles show the borehole following a shallow geotherm to a depth of approximately 275 meters, below which the temperature declines until a depth of approximately 320 meters, with a stable zone of cold water forming below this, possibly indicating production-related thermal drawdown. A validated heat transfer model is used in conjunction with the temperature data to determine depth-dependent reservoir thermal properties. Hydraulic reservoir properties are determined through inversion of the collected pressure data using MODFLOW. These estimated thermal and hydraulic properties are synthesized with existing structural and stratigraphic datasets at Brady. The work presented herein was funded in part by the Office of Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy, under Award Number DE-EE0006760.
NASA Astrophysics Data System (ADS)
Sagawa, T.; Saito, T.; Irino, T.
2017-12-01
Multi-species approach of planktonic foraminiferal Mg/Ca thermometry has been applied to marine sediments to reconstruct past change of the upper ocean thermal structure. Depth of thermocline and thickness of mixed layer depth in the western equatorial Pacific are of particular interest in terms of the relationship between global climate and ocean heat content in that region. One of questions arising from this approach is which species and calibration are suitable for reconstructing thermocline temperature variations in the past. Knowledge about depth habitat and response of shell Mg/Ca to temperature change is essential to answer this question. Sediment trap experiment has great advantages that allow evaluating seasonal and inter-annual variation of depth habitat of planktonic foraminifera in natural environment. In this study, we analyzed stable isotopes and Mg/Ca of Pulleniatina obliquiloculata collected by two sediment traps moored on the equator in the western and central Pacific during 1999-2002. We estimated habitat depth by comparing the calcification temperature, which is calculated from oxygen isotope, and instrumental data collected by moored buoys in the studied region. The estimated habitat depth of P. obliquiloculata is 100-150 m, which corresponds to the upper thermocline in this region. The habitat depth in western site (175E) is slightly deeper than central Pacific site (160W), probably reflecting thicker mixed layer and deeper thermocline in the western site. Although relationship between Mg/Ca and δ18O-derived calcification temperature is not statistically significant, Mg/Ca values give reasonable temperatures for the upper thermocline when calculated using calibration of Anand et al. (2003). The results of this study confirms the potential of P. obliquiloculata Mg/Ca as a thermocline temperature proxy.
Temperature measurements at IODP 337 Expedition, off Shimokita, NE Japan.
NASA Astrophysics Data System (ADS)
Yamada, Y.; Sanada, Y.; Moe, K.; Kubo, Y.; Inagaki, F.
2014-12-01
Precise estimation of underground temperature is a challenging issue, since direct measurements require drill holes that disturb the original underground environment. During IODP 337 expedition, we have obtained in-situ temperature datasets for several times by using geophysical logging tools. A common procedure to estimate the undisturbed maximum underground temperature is by approximating that the 'build-up' pattern of measured values in the borehole should reach to the equilibrium temperature. At the Shimokita site, this was 63.7 oC at a depth of 2466 m. We have much more measurement dataset and all of these were used to analyze detailed in-site temperatures at various depths. The result shows a non-linear temperature profile to the depth and this may be reflected by the thermal properties of the surrounding rocks.
NASA Astrophysics Data System (ADS)
Kim, Bong-Guk; Cho, Yang-Ki; Kim, Bong-Gwan; Kim, Young-Gi; Jung, Ji-Hoon
2015-04-01
Subsurface temperature plays an important role in determining heat contents in the upper ocean which are crucial in long-term and short-term weather systems. Furthermore, subsurface temperature affects significantly ocean ecology. In this study, a simple and practical algorithm has proposed. If we assume that subsurface temperature changes are proportional to surface heating or cooling, subsurface temperature at each depth (Sub_temp) can be estimated as follows PIC whereiis depth index, Clm_temp is temperature from climatology, dif0 is temperature difference between satellite and climatology in the surface, and ratio is ratio of temperature variability in each depth to surface temperature variability. Subsurface temperatures using this algorithm from climatology (WOA2013) and satellite SST (OSTIA) where calculated in the sea around Korean peninsula. Validation result with in-situ observation data show good agreement in the upper 50 m layer with RMSE (root mean square error) less than 2 K. The RMSE is smallest with less than 1 K in winter when surface mixed layer is thick, and largest with about 2~3 K in summer when surface mixed layer is shallow. The strong thermocline and large variability of the mixed layer depth might result in large RMSE in summer. Applying of mixed layer depth information for the algorithm may improve subsurface temperature estimation in summer. Spatial-temporal details on the improvement and its causes will be discussed.
The clumped isotope geothermometer in soil and paleosol carbonate
NASA Astrophysics Data System (ADS)
Quade, J.; Eiler, J.; Daëron, M.; Achyuthan, H.
2013-03-01
We studied both modern soils and buried paleosols in order to understand the relationship of temperature (T°C(47)) estimated from clumped isotope compositions (Δ47) of soil carbonates to actual surface and burial temperatures. Carbonates from modern soils with differing rainfall seasonality were sampled from Arizona, Nevada, Tibet, Pakistan, and India. T°C(47) obtained from these soils shows that soil carbonate forms in the warmest months of the year, in the late morning to afternoon, and probably in response to intense soil dewatering. T°C(47) obtained from modern soil carbonate ranges from 10.8 to 39.5 °C. On average, T°C(47) exceeds mean annual temperature by 10-15 °C due to summertime bias in soil carbonate formation, and to summertime ground heating by incident solar radiation. Secondary controls on T°C(47) are soil depth and shading. Site mean annual air temperature (MAAT) across a broad range (0-30 °C) of site temperatures is highly correlated with T°C(47) from soils, following the equation: MAAT(°C)=1.20(T°C(47)0)-21.72(r2=0.92) where T°C(47)0 is the effective air temperature at the site estimated from T°C(47). The effective air temperature represents the air temperature required to account for the T°C(47) at each site, after consideration of variations in T°C(47) with soil depth and ground heating. The highly correlated relationship in this equation should now permit mean annual temperature in the past to be reconstructed from T°C(47) in paleosol carbonate, assuming one is studying paleosols that formed in environments generally similar in seasonality and ground cover to our calibration sites. T°C(47)0 decreases systematically with elevation gain in the Himalaya, following the equation: elevation(m)=-229(T°C(47)0)+9300(r2=0.95) Assuming that temperature varied similarly with elevation in the past, this equation can be used to reconstruct paleoelevation from clumped isotope analysis of ancient soil carbonates. We also measured T°C(47) from long sequences of deeply buried (⩽5 km) paleosol carbonate in the Himalayan foreland in order to evaluate potential diagenetic resetting of clumped isotope composition. We found that paleosol carbonate faithfully records plausible soil T°C(47) down to 2.5-4 km burial depth, or ˜90-125 °C. Deeper than this and above this temperature, T°C(47) in paleosol carbonate is reset to temperatures >40 °C. We observe ˜40 °C as the upper limit for T°C(47) in modern soils from soil depths >25 cm, and therefore that T°C(47) >40 °C obtained from ancient soil carbonate indicates substantially warmer climate regimes compared to the present, or non-primary temperatures produced by resetting during diagenesis. If representative, this limits the use of T°C(47) to reconstruct ancient surface temperature to modestly buried (<3-4 km) paleosol carbonates. Despite diagenetic resetting of Δ47 values, δ18O and δ13C values of the same deeply buried paleosol carbonate appear unaltered. We conclude that solid-state reordering or recrystallization of clumping of carbon and oxygen isotopes can occur in the absence of open-system exchange of paleosol carbonate with significant quantities of water or other phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler, A.L.; Bullen, E.A.; Jacobs, H.R.
The leached zone of the Parachute Creek member of the Piceance Basin in the Green River Formation has a unique natural porosity that makes it a likely source for in-situ production of oil from oil shale by injection of superheated steam. The Equity Oil Co. of Salt Lake City, in cooperation with the U. S. Department of Energy, carried out field tests using surface generated steam. Difficulties in delivering steam of sufficiently high temperature to the formation resulted in an experiment which was only marginally successful yielding less than 1 percent of the estimated 300,000 barrels of oil in place.more » In 1981, personnel at Sandia National Laboratory suggested that a downhole steam generator which could produce steam at temperatures in excess of 1000/sup 0/F (538/sup 0/C) at depth could well solve the temperature problem. In order to evaluate the effects of combustion gases which would be injected along with steam, should a downhole steam generator be used, laboratory studies have been completed using steam diluted with CO/sub 2/ and with CO/sub 2/ and N/sub 2/ as the heating medium. Results of experiments in an autoclave reactor and in a laboratory retort are reported. The temperature, residence time, and partial pressure of steam are the parameters which effect oil yield and oil quality. Oil properties are reported for several experimental conditions and include oil yield, boiling point distributions, pour points, gravity, and elemental and hydrocarbon-type analyses. Both the autoclave and laboratory retort experiments indicate that CO/sub 2/ and N/sub 2/ do not take a reactive part in the formation of oils except as they dilute the steam. However, the presence of CO/sub 2/ in the gaseous atmosphere during retorting does promote a low-temperature transformation of dolomite to calcite in the inorganic matrix of the oil shale.« less
Basin-Wide Temperature Constraints On Gas Hydrate Stability In The Gulf Of Mexico
NASA Astrophysics Data System (ADS)
MacDonald, I. R.; Reagan, M. T.; Guinasso, N. L.; Garcia-Pineda, O. G.
2012-12-01
Gas hydrate deposits commonly occur at the seafloor-water interface on marine margins. They are especially prevalent in the Gulf of Mexico where they are associated with natural oil seeps. The stability of these deposits is potentially challenged by fluctuations in bottom water temperature, on an annual time-scale, and under the long-term influence of climate change. We mapped the locations of natural oil seeps where shallow gas hydrate deposits are known to occur across the entire Gulf of Mexico basin based on a comprehensive review of synthetic aperture radar (SAR) data (~200 images). We prepared a bottom water temperature map based on the archive of CTD casts from the Gulf (~6000 records). Comparing the distribution of gas hydrate deposits with predicted bottom water temperature, we find that a broad area of the upper slope lies above the theoretical stability horizon for structure 1 gas hydrate, while all sites where gas hydrate deposits occur are within the stability horizon for structure 2 gas hydrate. This is consistent with analytical results that structure 2 gas hydrates predominate on the upper slope (Klapp et al., 2010), where bottom water temperatures fluctuate over a 7 to 10 C range (approx. 600 m depth), while pure structure 1 hydrates are found at greater depths (approx. 3000 m). Where higher hydrocarbon gases are available, formation of structure 2 gas hydrate should significantly increase the resistance of shallow gas hydrate deposits to destabilizing effects variable or increasing bottom water temperature. Klapp, S.A., Bohrmann, G., Kuhs, W.F., Murshed, M.M., Pape, T., Klein, H., Techmer, K.S., Heeschen, K.U., and Abegg, F., 2010, Microstructures of structure I and II gas hydrates from the Gulf of Mexico: Marine and Petroleum Geology, v. 27, p. 116-125.Bottom temperature and pressure for Gulf of Mexico gas hydrate outcrops and stability horizons for sI and sII hydrate.
NASA Astrophysics Data System (ADS)
Keller, K.; Cronin, T. M.; Dwyer, G. S.; Farmer, J. R.; Poirier, R. K.; Schaller, M. F.
2017-12-01
Orbital-scale climate variability is often amplified in the polar region, for example in changes in seawater temperature, sea-ice cover, deep-water formation, ecosystems, heat storage and carbon cycling. Yet, the relationship between the Arctic Ocean and global climate remains poorly understood due largely to limited orbital-scale paleoclimate records, the complicated nature of sea-ice response to climate and limited abundance of deep sea biological proxies. Here we reconstruct central Arctic Ocean bottom temperatures over the last 600 kyr using ostracode Mg/Ca ratios (genus Krithe) and benthic foraminiferal oxygen isotope ratios (δ18Obf - I. teretis, O. tener, P. bulloides, C. reniforme, C. wuellerstorfi) in six sediment cores recovered from the Mendeleev and Northwind Ridges (700- 2726 m water depth). We examined glacial-interglacial cycles in Arctic seawater temperatures and Arctic δ18Obf chronostratigraphy to reconcile effects of changing bottom water temperature, ice volume and regional hydrography on δ18Obf records. Results show lower ( 10-12 mmol/mol) interglacial and higher ( 16-23 mmol/mol) glacial Mg/Ca ratios, signifying intermediate depth ocean warming during glacials of up to 2 ºC. These temperature maxima are likely related to a deepening of the halocline and the corresponding deeper influence of warm Atlantic water. Glacial-interglacial δ18Obf ranges are smaller in the Arctic ( 0.8-1‰ VPDB) than in the global ocean ( 1.8 ‰). However, when the distinct glacial-interglacial temperature histories of the Arctic (glacial warming) and global ocean (glacial cooling) are accounted for, both Arctic and global ocean seawater δ18O values (δ18Osw) exhibit similar 1.2-1.3 ‰ glacial-interglacial ranges. Thus, Arctic δ18Obf confirms glacial Arctic warming inferred from ostracode Mg/Ca. This study will discuss the strengths and limitations of applying paired Mg/Ca and oxygen isotope proxies in reconstructing more robust paleoceanographic changes in the Arctic Ocean.
Thermal-depth matching in dynamic scene based on affine projection and feature registration
NASA Astrophysics Data System (ADS)
Wang, Hongyu; Jia, Tong; Wu, Chengdong; Li, Yongqiang
2018-03-01
This paper aims to study the construction of 3D temperature distribution reconstruction system based on depth and thermal infrared information. Initially, a traditional calibration method cannot be directly used, because the depth and thermal infrared camera is not sensitive to the color calibration board. Therefore, this paper aims to design a depth and thermal infrared camera calibration board to complete the calibration of the depth and thermal infrared camera. Meanwhile a local feature descriptors in thermal and depth images is proposed. The belief propagation matching algorithm is also investigated based on the space affine transformation matching and local feature matching. The 3D temperature distribution model is built based on the matching of 3D point cloud and 2D thermal infrared information. Experimental results show that the method can accurately construct the 3D temperature distribution model, and has strong robustness.
Effect of snow cover on soil frost penetration
NASA Astrophysics Data System (ADS)
Rožnovský, Jaroslav; Brzezina, Jáchym
2017-12-01
Snow cover occurrence affects wintering and lives of organisms because it has a significant effect on soil frost penetration. An analysis of the dependence of soil frost penetration and snow depth between November and March was performed using data from 12 automated climatological stations located in Southern Moravia, with a minimum period of measurement of 5 years since 2001, which belong to the Czech Hydrometeorological institute. The soil temperatures at 5 cm depth fluctuate much less in the presence of snow cover. In contrast, the effect of snow cover on the air temperature at 2 m height is only very small. During clear sky conditions and no snow cover, soil can warm up substantially and the soil temperature range can be even higher than the range of air temperature at 2 m height. The actual height of snow is also important - increased snow depth means lower soil temperature range. However, even just 1 cm snow depth substantially lowers the soil temperature range and it can therefore be clearly seen that snow acts as an insulator and has a major effect on soil frost penetration and soil temperature range.
NASA Astrophysics Data System (ADS)
Rahman, Habibur M.; Kennedy, Martin; Löhr, Stefan; Dewhurst, David N.; Sherwood, Neil; Yang, Shengyu; Horsfield, Brian
2018-01-01
Accurately assessing the temperature and hence the depth and timing of hydrocarbon generation is a critical step in the characterization of a petroleum system. Clay catalysis is a potentially significant modifier of hydrocarbon generation temperature, but experimental studies of clay catalysis show inconsistent or contradictory results. This study tests the hypothesis that source rock fabric itself is an influence on clay mineral catalysis as it controls the extent to which organic matter and clay minerals are physically associated. Two endmember clay-organic fabrics distinguish the source rocks studied: (1) a particulate fabric where organic matter is present as discrete, >5 μm particles and (2) a nanocomposite fabric in which amorphous organic matter is associated with clay mineral surfaces at sub-micron scale. High-resolution electron imaging and bulk geochemical characterisation confirm that samples of the Miocene Monterey Formation (California) are representative of the nanocomposite source rock endmember, whereas samples from the Permian Stuart Range Formation (South Australia) represent the particulate source rock endmember. Kinetic experiments are performed on paired whole rock and kerogen isolate samples from these two formations using open system, non-isothermal pyrolysis at three different heating rates (0.7, 2 and 5 K/min) to determine the effects of the different shale fabrics on hydrocarbon generation kinetics. Extrapolation to a modelled geological heating rate shows a 20 °C reduction in the onset temperature of hydrocarbon generation in Monterey Formation whole rock samples relative to paired kerogen isolates. This result is consistent with the Monterey Formations's nanocomposite fabric where clay catalysis can proceed because reactive clay minerals are intimately associated with organic matter. By contrast, there is no significant difference in the modelled hydrocarbon generation temperature of paired whole rock and kerogen isolates from the Stuart Range Formation. This is consistent with its particulate fabric, where relatively large, discrete organic particles have limited contact with the mineral matrix and the clay minerals are mainly diagenetic and physically segregated within pores. While heating rate may have a control on mineral matrix effects, this result shows that the extent to which organic matter and clay minerals are physically associated could have a significant effect on the timing of hydrocarbon generation, and is a function of the depositional environment and detrital vs diagenetic origin of clay minerals in source rocks.
Segregation Phenomena in Size-Selected Bimetallic CuNi Nanoparticle Catalysts
Pielsticker, Lukas; Zegkinoglou, Ioannis; Divins, Nuria J.; ...
2017-10-25
Surface segregation, restructuring, and sintering phenomena in size-selected copper–nickel nanoparticles (NPs) supported on silicon dioxide substrates were systematically investigated as a function of temperature, chemical state, and reactive gas environment. Using near-ambient pressure (NAP-XPS) and ultrahigh vacuum X-ray photoelectron spectroscopy (XPS), we showed that nickel tends to segregate to the surface of the NPs at elevated temperatures in oxygen- or hydrogen-containing atmospheres. It was found that the NP pretreatment, gaseous environment, and oxide formation free energy are the main driving forces of the restructuring and segregation trends observed, overshadowing the role of the surface free energy. The depth profile ofmore » the elemental composition of the particles was determined under operando CO 2 hydrogenation conditions by varying the energy of the X-ray beam. The temperature dependence of the chemical state of the two metals was systematically studied, revealing the high stability of nickel oxides on the NPs and the important role of high valence oxidation states in the segregation behavior. Atomic force microscopy (AFM) studies revealed a remarkable stability of the NPs against sintering at temperatures as high as 700 °C. The results provide new insights into the complex interplay of the various factors which affect alloy formation and segregation phenomena in bimetallic NP systems, often in ways different from those previously known for their bulk counterparts. In conclusion, this leads to new routes for tuning the surface composition of nanocatalysts, for example, through plasma and annealing pretreatments.« less
Temperature and petroleum generation history of the Wilcox Formation, Louisiana
Pitman, Janet K.; Rowan, Elisabeth Rowan
2012-01-01
A one-dimensional petroleum system modeling study of Paleogene source rocks in Louisiana was undertaken in order to characterize their thermal history and to establish the timing and extent of petroleum generation. The focus of the modeling study was the Paleocene and Eocene Wilcox Formation, which contains the youngest source rock interval in the Gulf Coast Province. Stratigraphic input to the models included thicknesses and ages of deposition, lithologies, amounts and ages of erosion, and ages for periods of nondeposition. Oil-generation potential of the Wilcox Formation was modeled using an initial total organic carbon of 2 weight percent and an initial hydrogen index of 261 milligrams of hydrocarbon per grams of total organic carbon. Isothermal, hydrous-pyrolysis kinetics determined experimentally was used to simulate oil generation from coal, which is the primary source of oil in Eocene rocks. Model simulations indicate that generation of oil commenced in the Wilcox Formation during a fairly wide age range, from 37 million years ago to the present day. Differences in maturity with respect to oil generation occur across the Lower Cretaceous shelf edge. Source rocks that are thermally immature and have not generated oil (depths less than about 5,000 feet) lie updip and north of the shelf edge; source rocks that have generated all of their oil and are overmature (depths greater than about 13,000 feet) are present downdip and south of the shelf edge. High rates of sediment deposition coupled with increased accommodation space at the Cretaceous shelf margin led to deep burial of Cretaceous and Tertiary source rocks and, in turn, rapid generation of petroleum and, ultimately, cracking of oil to gas.
Inexistence of permafrost at the top of the Veleta peak (Sierra Nevada)
NASA Astrophysics Data System (ADS)
Gómez-Ortiz, Antonio; Salvador-Franch, Ferran; Salvà-Catarineu, Montserrat; Oliva, Marc; Palacios, David; Tanarro, Luis Miguel; Schulte, Lothar
2014-05-01
Several deep drillings wew carried out along a latitudinal transect from Svalbard (78°N) to Sierra Nevada (37°N, Spain) within the project Permafrost and Climate Change in Europe (PACE). In this abstract we discuss the data corresponding to the drilling existing at the top of the Veleta peak, at an altitude of 3380 m. This drilling reach a depth of 114.5 m depth, although we analyze here the data of the first 60 m depth. UTL-1 loggers were installed at depths of 0.2, 0.6, 1.2, 2.6, 4, 7, 10, 13, 15, 20 and 60 m. The observation period spans from 2002 to 2013 with data being taken every 2 h. The most surficial loggersrecorded the largest annual temperature oscillations, reaching 22.6°C at 20 cm. Down to 10 m depth the annual temperature amplitude is still remarkable and seasonal temperature changes are even observed at depths of 15 to 20 m. Below this level the temperature remains constant. The logger installed at 60 m depth recorded small temperature changes between 2006 and 2009, oscillating between 2.38 and 2.61ºC. Since January 2010 the temperatures stabilized at 2.61°C. However, this slight temperature increase must be framed within the margin of instrumentation error of the devices. Data shows evidence of the inexistence ofpermanent negative temperatures at depth. In contrast to what happens in the nearby Veleta cirque floor (3100 m), where marginal permafrost conditions have been recorded, in the Veleta peak (3380 m) data points to the absence of a permafrost regime. This may be due to several factors: a) The existence of permafrost in the Veletacirque is directly related to the presence of fossil glacier ice corresponding to a glacier that existed there during the Little Ice Age. b ) The early melting of snow cover in the Veleta peak due to wind effect and incidence of solar radiation condition the absence of permafrost conditions at the summitin contrast to the Veleta cirquefloor, where the longer persistence of snow favours the presence of continuous negative temperatures. c) The topographical setting of the Veleta peak favours a major incidence of radiation through therock walls,conditioning higher temperatures.
SIMS studies of oxide growth on beta-NiAl
NASA Technical Reports Server (NTRS)
Mitchell, D. F.; Prescott, R.; Graham, M. J.; Doychak, J.
1992-01-01
This paper reports on a study of the growth of aluminum oxide on beta-NiAl at temperatures up to 1200 C. The scales have been formed in two-stage experiments using O2-16 and O2-18 gases, and the various isotopic species have been located by direct imaging using SIMS. Supplementary information on oxide morphologies and structures has been obtained by SEM. SIMS images and depth profiles indicate where oxidation has taken place predominantly by cation or anion diffusion at different stages of the growth process. The way in which the presence of small amounts of reactive elements can affect scale growth is also considered. These results help to provide an improved understanding of the mechanism of alumina scale formation, which is of benefit in the development of oxidation-resistant alloys and intermetallics for service at high temperatures.
Depth profiling of hydrogen passivation of boron in Si(100)
NASA Astrophysics Data System (ADS)
Huang, L. J.; Lau, W. M.; Simpson, P. J.; Schultz, P. J.
1992-08-01
The properties of SiO2/p-Si were studied using variable-energy positron-annihilation spectroscopy and Raman spectroscopy. The oxide film was formed by ozone oxidation in the presence of ultraviolet radiation at room temperature. Both the positron-annihilation and Raman analyses show that chemical cleaning of boron-doped p-type Si(100) using concentrated hydrofluoric acid prior to the oxide formation leads to hydrogen incorporation in the semiconductor. The incorporated hydrogen passivates the boron dopant by forming a B-H complex, the presence of which increases the broadening of the line shape in the positron-annihilation analysis, and narrows the linewidth of the Raman peak. Annealing of the SiO2/Si sample at a moderate temperature of 220 °C in vacuum was found sufficient to dissociate the complex and reactivate the boron dopant.
NASA Astrophysics Data System (ADS)
Ranaldi, Massimo; Lelli, Matteo; Tarchini, Luca; Carapezza, Maria Luisa; Patera, Antonio
2016-04-01
High-enthalpy geothermal fields of Central Italy are hosted in deeply fractured carbonate reservoirs occurring in thermally anomalous and seismically active zones. However, the Mts. Sabatini volcanic district, located north of Rome, has an interesting deep temperatures (T), but it is characterized by low to very low seismicity and permeability in the reservoir rocks (mostly because of hydrothermal self-sealing processes). Low PCO2 facilitates the complete sealing of the reservoir fractures, preventing hot fluids rising and, determining a low CO2 flux at the surface. Conversely, high CO2 flux generally reflects a high pressure of CO2, suggesting that an active geothermal reservoir is present at depth. In Mts. Sabatini district, the Caldara of Manziana (CM) is the only zone characterized by a very high CO2 flux (188 tons/day) from a surface of 0.15 km2) considering both the diffuse and viscous CO2 emission. This suggests the likely presence of an actively degassing geothermal reservoir at depth. Emitted gas is dominated by CO2 (>97 vol.%). Triangular irregular networks (TINs) have been used to represent the morphology of the bottom of the surficial volcanic deposits, the thickness of the impervious formation and the top of the geothermal reservoir. The TINs, integrated by T-gradient and deep well data, allowed to estimate the depth and the temperature of the top of the geothermal reservoir, respectively to ~-1000 m from the surface and to ~130°C. These estimations are fairly in agreement with those obtained by gas chemistry (818
Three-dimensional shear wave velocity structure in the Atlantic upper mantle
NASA Astrophysics Data System (ADS)
James, Esther Kezia Candace
Oceanic lithosphere constitutes the upper boundary layer of the Earth's convecting mantle. Its structure and evolution provide a vital window on the dynamics of the mantle and important clues to how the motions of Earth's surface plates are coupled to convection in the mantle below. The three-dimensional shear-velocity structure of the upper mantle beneath the Atlantic Ocean is investigated to gain insight into processes that drive formation of oceanic lithosphere. Travel times are measured for approximately 10,000 fundamental-mode Rayleigh waves, in the period range 30-130 seconds, traversing the Atlantic basin. Paths with >30% of their length through continental upper mantle are excluded to maximize sensitivity to the oceanic upper mantle. The lateral distribution of Rayleigh wave phase velocity in the Atlantic upper mantle is explored with two approaches. One, phase velocity is allowed to vary only as a function of seafloor age. Two, a general two-dimensional parameterization is utilized in order to capture perturbations to age-dependent structure. Phase velocity shows a strong dependence on seafloor age, and removing age-dependent velocity from the 2-D maps highlights areas of anomalously low velocity, almost all of which are proximal to locations of hotspot volcanism. Depth-dependent variations in vertically-polarized shear velocity (Vsv) are determined with two sets of 3-D models: a layered model that requires constant VSV in each depth layer, and a splined model that allows VSV to vary continuously with depth. At shallow depths (˜75 km) the seismic structure shows the expected dependence on seafloor age. At greater depths (˜200 km) high-velocity lithosphere is found only beneath the oldest seafloor; velocity variations beneath younger seafloor may result from temperature or compositional variations within the asthenosphere. The age-dependent phase velocities are used to constrain temperature in the mantle and show that, in contrast to previous results for the Pacific, phase velocities for the Atlantic are not consistent with a half-space cooling model but are best explained by a plate-cooling model with thickness of 75 km and mantle temperature of 1400°C. Comparison with data such as basalt chemistry and seafloor elevation helps to separate thermal and compositional effects on shear velocity.
Global Paleoclimatic Data for 6000 Yr B.P. (1985) (NDP-011)
Webb, III, T. [Department of Geological Sciences, Brown University, Providence, Rhode Island (USA)
2012-01-01
To determine regional and global climatic variations during the past 6000 years, pollen, lake level, and marine plankton data from 797 stations were compiled to form a global data set. Radiocarbon dating and dated tephras were used to determine the ages of the specimens. The data available for the pollen data are site number, site name, latitude, longitude, elevation, and percentages of various taxa. For lake-level data, the data are site number, site name, latitude, longitude, and lake-level status. And for marine plankton, the data are site number, site name, latitude, longitude, water depth, date, dating control code, depth of sample, interpolated age of sample, estimated winter and summer sea-surface temperatures, and percentages of various taxa. The data are in 55 files: 5 files for each of 9 geographic regions and 10 supplemental files. The files for each region include (1) a FORMAT file describing the format and contents of the data for that region, (2) an INDEX file containing descriptive information about each site and its data, (3) a DATA file containing the data and available climatic estimates, (4) a PUBINDEX file indexing the bibliographic references associated with each site, and (5) a REFERENCE file containing the bibliographic references. The files range in size from 2 to 66 kB.
Formation of fast-spreading lower oceanic crust as revealed by a new Mg-REE coupled geospeedometer
NASA Astrophysics Data System (ADS)
Sun, Chenguang; Lissenberg, C. Johan
2018-04-01
A new geospeedometer is developed based on the differential closures of Mg and rare earth element (REE) bulk-diffusion between coexisting plagioclase and clinopyroxene. By coupling the two elements with distinct bulk closure temperatures, this speedometer can numerically solve the initial temperatures and cooling rates for individual rock samples. As the existing Mg-exchange thermometer was calibrated for a narrow temperature range and strongly relies on model-dependent silica activities, a new thermometer is developed using literature experimental data. When the bulk closure temperatures of Mg and REE are determined, respectively, using this new Mg-exchange thermometer and the existing REE-exchange thermometer, this speedometer can be implemented for a wide range of compositions, mineral modes, and grain sizes. Applications of this new geospeedometer to oceanic gabbros from the fast-spreading East Pacific Rise at Hess Deep reveal that the lower oceanic crust crystallized at temperatures of 998-1353 °C with cooling rates of 0.003-10.2 °C/yr. Stratigraphic variations of the cooling rates and crystallization temperatures support deep hydrothermal circulations and in situ solidification of various replenished magma bodies. Together with existing petrological, geochemical and geophysical evidence, results from this new speedometry suggest that the lower crust formation at fast-spreading mid-ocean ridges involves emplacement of primary mantle melts in the deep section of the crystal mush zone coupled with efficient heat removal by crustal-scale hydrothermal circulations. The replenished melts become chemically and thermally evolved, accumulate as small magma bodies at various depths, feed the shallow axial magma chamber, and may also escape from the mush zone to generate off-axial magma lenses.
Oceanic Residual Depth Anomalies Maintained by a Shallow Asthenospheric Channel
NASA Astrophysics Data System (ADS)
Richards, F. D.; Hoggard, M.; White, N.
2016-12-01
Oceanic residual depth anomalies vary on wavelengths of 800-2,000 km and have amplitudesof ±1 km. There is also evidence from glacio-isostatic adjustment, plate motions and seismicanisotropy studies for the existence of a low-viscosity asthenospheric channel immediately beneaththe lithospheric plates. Here, we investigate whether global residual depth anomalies are consistentwith temperature variations within a sub-plate channel. For a given channel thickness, we convertresidual depth anomalies into temperature anomalies, assuming thermal isostasy alone (i.e. no mantle flow). Using aparameterisation that is calibrated against stacked oceanic shear wave velocity profiles, we convertthese temperature anomalies into velocity variations. We then compare the inferred velocity vari-ations with published seismic tomographic models. We find that thermal anomalies of ±100 °Cwithin a 150 ± 50 km thick channel yield a good match to > 95% of global residual depth anoma-lies. These temperature variations are consistent with geochemical evidence from mid-oceanic ridgebasalts and oceanic crustal thicknesses. The apparent success of this simple isostatic approach sup-ports the existence of a low-viscosity asthenospheric channel that plays a key role in controllingresidual depth anomalies. Far from subduction zones and from plume conduits, dynamic topog-raphy in the oceanic realm appears to be primarily controlled by temperature-induced buoyancyvariations within this channel.
Geophysical evaluation of sandstone aquifers in the Reconcavo-Tucano Basin, Bahia -- Brazil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lima, O.A.L. de
1993-11-01
The upper clastic sediments in the Reconcavo-Tucano basin comprise a multilayer aquifer system of Jurassic age. Its groundwater is normally fresh down to depths of more than 1,000 m. Locally, however, there are zones producing high salinity or sulfur geothermal water. Analysis of electrical logs of more than 150 wells enabled the identification of the most typical sedimentary structures and the gross geometries for the sandstone units in selected areas of the basin. Based on this information, the thick sands are interpreted as coalescent point bars and the shales as flood plain deposits of a large fluvial environment. The resistivitymore » logs and core laboratory data are combined to develop empirical equations relating aquifer porosity and permeability to log-derived parameters such as formation factor and cementation exponent. Temperature logs of 15 wells were useful to quantify the water leakage through semiconfining shales. The groundwater quality was inferred from spontaneous potential (SP) log deflections under control of chemical analysis of water samples. An empirical chart is developed that relates the SP-derived water resistivity to the true water resistivity within the formations. The patterns of salinity variation with depth inferred from SP logs were helpful in identifying subsurface flows along major fault zones, where extensive mixing of water is taking place. A total of 49 vertical Schlumberger resistivity soundings aid in defining aquifer structures and in extrapolating the log derived results. Transition zones between fresh and saline waters have also been detected based on a combination of logging and surface sounding data. Ionic filtering by water leakage across regional shales, local convection and mixing along major faults and hydrodynamic dispersion away from lateral permeability contrasts are the main mechanisms controlling the observed distributions of salinity and temperature within the basin.« less
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.; Bencic, Timothy J..; Allison, Stephen W.; Beshears, David L.
2003-01-01
Thermographic phosphors have been previously demonstrated to provide effective non-contact, emissivity-independent surface temperature measurements. Because of the translucent nature of thermal barrier coatings (TBCs), thermographic phosphor-based temperature measurements can be extended beyond the surface to provide depth-selective temperature measurements by incorporating the thermographic phosphor layer at the depth where the temperature measurement is desired. In this paper, thermographic phosphor (Y2O3:Eu) fluorescence decay time measurements are demonstrated to provide through-the-coating thickness temperature readings up to 1100 C with the phosphor layer residing beneath a 100 micron thick TBC (plasma-sprayed 8wt% yttria-stabilized zirconia). With an appropriately chosen excitation wavelength and detection configuration, it is shown that sufficient phosphor emission is generated to provide effective temperature measurements, despite the attenuation of both the excitation and emission intensities by the overlying TBC. This depth-penetrating temperature measurement capability should prove particularly useful for TBC diagnostics where a large thermal gradient is typically present across the TBC thickness. The fluorescence decay from the Y2O3:Eu layer exhibited both an initial short-term exponential rise and a longer-term exponential decay. The rise time constant was demonstrated to provide better temperature indication below 500 C while the decay time constant was a better indicator at higher temperatures.
Soil temperature, soil moisture and thaw depth, Barrow, Alaska, Ver. 1
Sloan, V.L.; J.A. Liebig; M.S. Hahn; J.B. Curtis; J.D. Brooks; A. Rogers; C.M. Iversen; R.J. Norby
2014-01-10
This dataset consists of field measurements of soil properties made during 2012 and 2013 in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) weekly measurements of thaw depth, soil moisture, presence and depth of standing water, and soil temperature made during the 2012 and 2013 growing seasons (June - September) and ii) half-hourly measurements of soil temperature logged continuously during the period June 2012 to September 2013.
1982-09-01
experiment were: isothermal layer depth 36 ft depressed channel axis 66 ft surface water temperature 59.4 F sea state 2 Discussion The propagation loss...experiments were: isothermal layer depths 56 ft surface water temperature 59.7 0F - sea state 1 Discussion The propagation loss measurements are summarized...number of observations 1854 isothermal layer depth 33 ft surface water temperature 59.9°F sea state 2 Discussion The propagation loss measurements
NASA Astrophysics Data System (ADS)
Kim, Joo-Hyung; Ignatova, Velislava A.; Heitmann, Johannes; Oberbeck, Lars
2008-09-01
The electrical characteristics, i.e. leakage current and capacitance, of ZrO2 based metal-insulator-metal structures, grown at 225, 250 and 275 °C by atomic layer deposition, were studied. The lowest leakage current was obtained at 250 °C deposition temperature, while the highest dielectric constant (k ~ 43) was measured for the samples grown at 275 °C, most probably due to the formation of tetragonal/cubic phases in the ZrO2 layer. We have shown that the main leakage current of these ZrO2 capacitors is governed by the Poole-Frenkel conduction mechanism. It was observed by x-ray photoelectron spectroscopy depth profiling that at 275 °C deposition temperature the oxygen content at and beyond the ZrO2/TiN interface is higher than at lower deposition temperatures, most probably due to oxygen inter-diffusion towards the electrode layer, forming a mixed TiN-TiOxNy interface layer. At and above 275 °C the ZrO2 layer changes its structure and becomes crystalline as proven by XRD analysis.
Electronic and Interfacial Properties of PD/6H-SiC Schottky Diode Gas Sensors
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Bansal, Gaurav; Petit, Jeremy B.; Knight, Dak; Liu, Chung-Chiun; Wu, Qinghai
1996-01-01
Pd/SiC Schottky diodes detect hydrogen and hydrocarbons with high sensitivity. Variation of the diode temperature from 100 C to 200 C shows that the diode sensitivity to propylene is temperature dependent. Long-term heat treating at 425 C up to 140 hours is carried out to determine the effect of extended heat treating on the diode properties and gas sensitivity. The heat treating significantly affects the diode's capacitive characteristics, but the diode's current carrying characteristics are much more stable with a large response to hydrogen. Scanning Electron Microscopy and X-ray Spectrometry studies of the Pd surface after the heating show cluster formation and background regions with grain structure observed in both regions. The Pd and Si concentrations vary between grains. Auger Electron Spectroscopy depth profiles revealed that the heat treating promoted interdiffusion and reaction between the Pd and SiC dw broadened the interface region. This work shows that Pd/SiC Schottky diodes have significant potential as high temperature gas sensors, but stabilization of the structure is necessary to insure their repeatability in long-term, high temperature applications.
NASA Technical Reports Server (NTRS)
Suemoto, S. H.; Mathias, K. E.
1974-01-01
The Bureau of Reclamation has erected at its Geothermal Resource Development site two experimental test vehicles for the purpose of desalting hot fluids of geothermal origin. Both plants have as a feed source geothermal well Mesa 6-1 drilled to a total depth of 8,030 feet and having a bottom hole temperature of 400 F. Formation fluid collected at the surface contained 24,800 mg/1 total dissolved solids. The dissolved solids consist mainly of sodium chloride. A multistage distillation (3-stage) plant has been operated intermittently for one year with no operational problems. Functioning at steady-state conditions with a liquid feed rate of 70 g/m and a temperature of 221 F, the final brine blowdown temperature was 169 F. Product water was produced at a rate of about 2 g/m; average total dissolved solids content of the product was 170 mg/1. A product quality of 27.5 mg/1 at a pH of 9.5 was produced from the first stage.
Local variation of fragility and glass transition temperature of ultra-thin supported polymer films.
Hanakata, Paul Z; Douglas, Jack F; Starr, Francis W
2012-12-28
Despite extensive efforts, a definitive picture of the glass transition of ultra-thin polymer films has yet to emerge. The effect of film thickness h on the glass transition temperature T(g) has been widely examined, but this characterization does not account for the fragility of glass-formation, which quantifies how rapidly relaxation times vary with temperature T. Accordingly, we simulate supported polymer films of a bead-spring model and determine both T(g) and fragility, both as a function of h and film depth. We contrast changes in the relaxation dynamics with density ρ and demonstrate the limitations of the commonly invoked free-volume layer model. As opposed to bulk polymer materials, we find that the fragility and T(g) do not generally vary proportionately. Consequently, the determination of the fragility profile--both locally and for the film as a whole--is essential for the characterization of changes in film dynamics with confinement.
NASA Astrophysics Data System (ADS)
Hu, Jianbo; Zhang, Hang; Sun, Yi; Misochko, Oleg V.; Nakamura, Kazutaka G.
2018-04-01
The coupling between longitudinal optical (LO) phonons and plasmons plays a fundamental role in determining the performance of doped semiconductor devices. In this work, we report a comparative investigation into the dependence of the coupling on temperature and doping in n - and p -type GaAs by using ultrafast coherent phonon spectroscopy. A suppression of coherent oscillations has been observed in p -type GaAs at lower temperature, strikingly different from n -type GaAs and other materials in which coherent oscillations are strongly enhanced by cooling. We attribute this unexpected observation to a cooling-induced elongation of the depth of the depletion layer which effectively increases the screening time of the surface field due to a slow diffusion of photoexcited carriers in p -type GaAs. Such an increase breaks the requirement for the generation of coherent LO phonons and, in turn, LO phonon-plasmon coupled modes because of their delayed formation in time.
Annual Soil Temperature Wave at Four Depths in Southwestern Wisconsin
Richard S. Sartz
1967-01-01
Soil temperature was measured for a year on a southeast-facing slope of 25 percent, latitude 43 degrees 50 minutes N. The spring-summer cover was unmowed alfalfa-bluegrass meadow, the fall-winter cover, meadow stubble. Snow cover was light or absent. The soil was Fayette silt loam, valley phase. The annual temperature wave at all depths followed the air temperature...
Wright, Serena; Hull, Tom; Sivyer, David B.; Pearce, David; Pinnegar, John K.; Sayer, Martin D. J.; Mogg, Andrew O. M.; Azzopardi, Elaine; Gontarek, Steve; Hyder, Kieran
2016-01-01
Monitoring temperature of aquatic waters is of great importance, with modelled, satellite and in-situ data providing invaluable insights into long-term environmental change. However, there is often a lack of depth-resolved temperature measurements. Recreational dive computers routinely record temperature and depth, so could provide an alternate and highly novel source of oceanographic information to fill this data gap. In this study, a citizen science approach was used to obtain over 7,000 scuba diver temperature profiles. The accuracy, offset and lag of temperature records was assessed by comparing dive computers with scientific conductivity-temperature-depth instruments and existing surface temperature data. Our results show that, with processing, dive computers can provide a useful and novel tool with which to augment existing monitoring systems all over the globe, but especially in under-sampled or highly changeable coastal environments. PMID:27445104
Detecting overpressure using the Eaton and Equivalent Depth methods in Offshore Nova Scotia, Canada
NASA Astrophysics Data System (ADS)
Ernanda; Primasty, A. Q. T.; Akbar, K. A.
2018-03-01
Overpressure is an abnormal high subsurface pressure of any fluids which exceeds the hydrostatic pressure of column of water or formation brine. In Offshore Nova Scotia Canada, the values and depth of overpressure zone are determined using the eaton and equivalent depth method, based on well data and the normal compaction trend analysis. Since equivalent depth method is using effective vertical stress principle and Eaton method considers physical property ratio (velocity). In this research, pressure evaluation only applicable on Penobscot L-30 well. An abnormal pressure is detected at depth 11804 feet as possibly overpressure zone, based on pressure gradient curve and calculation between the Eaton method (7241.3 psi) and Equivalent Depth method (6619.4 psi). Shales within Abenaki formation especially Baccaro Member is estimated as possible overpressure zone due to hydrocarbon generation mechanism.
Potential for deep basin-centered gas accumulation in Hanna Basin, Wyoming
Wilson, Michael S.; Dyman, Thaddeus S.; Nuccio, Vito F.
2001-01-01
The potential for a continuous-type basin-centered gas accumulation in the Hanna Basin in Carbon County, Wyoming, is evaluated using geologic and production data including mud-weight, hydrocarbon-show, formation-test, bottom-hole-temperature, and vitrinite reflectance data from 29 exploratory wells. This limited data set supports the presence of a hypothetical basin-centered gas play in the Hanna Basin. Two generalized structural cross sections illustrate our interpretations of possible abnormally pressured compartments. Data indicate that a gas-charged, overpressured interval may occur within the Cretaceous Mowry, Frontier, and Niobrara Formations at depths below 10,000 ft along the southern and western margins of the basin. Overpressuring may also occur near the basin center within the Steele Shale and lower Mesaverde Group section at depths below 18,000 to 20,000 ft. However, the deepest wells drilled to date (12,000 to 15,300 ft) have not encountered over-pressure in the basin center. This overpressured zone is likely to be relatively small (probably 20 to 25 miles in diameter) and is probably depleted of gas near major basement reverse faults and outcrops where gas may have escaped. Water may have invaded reservoirs through outcrops and fracture zones along the basin margins, creating an extensive normally pressured zone. A zone of subnormal pressure also may exist below the water-saturated, normal-pressure zone and above the central zone of overpressure. Subnormal pressures have been interpreted in the center of the Hanna Basin at depths ranging from 10,000 to 25,000 ft based on indirect evidence including lost-circulation zones. Three wells on the south side of the basin, where the top of the subnormally pressured zone is interpreted to cut across stratigraphic boundaries, tested the Niobrara Formation and recovered gas and oil shows with very low shut-in pressures.
An Optical Fibre Depth (Pressure) Sensor for Remote Operated Vehicles in Underwater Applications
Duraibabu, Dinesh Babu; Poeggel, Sven; Omerdic, Edin; Capocci, Romano; Lewis, Elfed; Newe, Thomas; Leen, Gabriel; Toal, Daniel; Dooly, Gerard
2017-01-01
A miniature sensor for accurate measurement of pressure (depth) with temperature compensation in the ocean environment is described. The sensor is based on an optical fibre Extrinsic Fabry-Perot interferometer (EFPI) combined with a Fibre Bragg Grating (FBG). The EFPI provides pressure measurements while the Fibre Bragg Grating (FBG) provides temperature measurements. The sensor is mechanically robust, corrosion-resistant and suitable for use in underwater applications. The combined pressure and temperature sensor system was mounted on-board a mini remotely operated underwater vehicle (ROV) in order to monitor the pressure changes at various depths. The reflected optical spectrum from the sensor was monitored online and a pressure or temperature change caused a corresponding observable shift in the received optical spectrum. The sensor exhibited excellent stability when measured over a 2 h period underwater and its performance is compared with a commercially available reference sensor also mounted on the ROV. The measurements illustrates that the EFPI/FBG sensor is more accurate for depth measurements (depth of ~0.020 m). PMID:28218727
Temperature Dependent Mechanical Property of PZT Film: An Investigation by Nanoindentation
Li, Yingwei; Feng, Shangming; Wu, Wenping; Li, Faxin
2015-01-01
Load-depth curves of an unpoled Lead Zirconate Titanate (PZT) film composite as a function of temperature were measured by nanoindentation technique. Its reduce modulus and hardness were calculated by the typical Oliver-Pharr method. Then the true modulus and hardness of the PZT film were assessed by decoupling the influence of substrate using methods proposed by Zhou et al. and Korsunsky et al., respectively. Results show that the indentation depth and modulus increase, but the hardness decreases at elevated temperature. The increasing of indentation depth and the decreasing of hardness are thought to be caused by the decreasing of the critical stress needed to excite dislocation initiation at high temperature. The increasing of true modulus is attributed to the reducing of recoverable indentation depth induced by back-switched domains. The influence of residual stress on the indentation behavior of PZT film composite was also investigated by measuring its load-depth curves with pre-load strains. PMID:25768957
Observational analysis of air-sea fluxes and sea water temperature offshore South China Sea
NASA Astrophysics Data System (ADS)
Bi, X.; Huang, J.; Gao, Z.; Liu, Y.
2017-12-01
This paper investigates the air-sea fluxes (momentum flux, sensible heat flux and latent heat flux) from eddy covariance method based on data collected at an offshore observation tower in the South China Sea from January 2009 to December 2016 and sea water temperature (SWT) on six different levels based on data collected from November 2011 to June 2013. The depth of water at the tower over the sea averages about 15 m. This study presents the in-situ measurements of continuous air-sea fluxes and SWT at different depths. Seasonal and diurnal variations in air-sea fluxes and SWT on different depths are examined. Results show that air-sea fluxes and all SWT changed seasonally; sea-land breeze circulation appears all the year round. Unlike winters where SWT on different depths are fairly consistent, the difference between sea surface temperature (SST) and sea temperature at 10 m water depth fluctuates dramatically and the maximum value reaches 7 °C during summer.
The deep chlorophyll layer in Lake Ontario: Extent, mechanisms of formation, and abiotic predictors
Scofield, Anne E.; Watkins, James M.; Weidel, Brian C.; Luckey, Frederick J.; Rudstam, Lars G.
2017-01-01
Epilimnetic production has declined in Lake Ontario, but increased production in metalimnetic deep chlorophyll layers (DCLs) may compensate for these losses. We investigated the spatial and temporal extent of DCLs, the mechanisms driving DCL formation, and the use of physical variables for predicting the depth and concentration of the deep chlorophyll maximum (DCM) during April–September 2013. A DCL with DCM concentrations 2 to 3 times greater than those in the epilimnion was present when the euphotic depth extended below the epilimnion, which occurred primarily from late June through mid-August. In situ growth was important for DCL formation in June and July, but settling and photoadaptation likely also contributed to the later-season DCL. Supporting evidence includes: phytoplankton biovolume was 2.4 × greater in the DCL than in the epilimnion during July, the DCL phytoplankton community of July was different from that of May and the July epilimnion (p = 0.004), and there were concurrences of DCM with maxima in fine particle concentration and dissolved oxygen saturation. Higher nutrient levels in the metalimnion may also be a necessary condition for DCL formation because July metalimnetic concentrations were 1.5 × (nitrate) and 3.5 × (silica) greater than in the epilimnion. Thermal structure variables including epilimnion depth, thermocline depth, and thermocline steepness were useful for predicting DCM depth; the inclusion of euphotic depth only marginally improved these predictions. However, euphotic depth was critical for predicting DCM concentrations. The DCL is a productive and predictable feature of the Lake Ontario ecosystem during the stratified period.
Model for the formation of the earth's core
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCammon, C.A.; Ringwood, A.E.; Jackson, I.
1983-02-15
The recent discovery of a phase transformation in Fe/sub 0.94/O by Jeanloz and Ahrens has allowed a more detailed development of a model for core formation involving oxygen as the principal light alloying element in the core. It is predicted, based on calculations, that an increasing pressure in the system FeO-MgO will result in a gradual exsolution of an almost pure high-pressure phase FeO(hpp), leaving an iron-depleted (Fe,Mg)O rocksalt (B1) phase. We also predict that FeO(hhp) will form a low-melting point alloy with Fe at high temperature and high pressure. On the basis of our interpretations, we have constructed amore » model for core segregation. Assuming the earth to have accreted from the primordial solar nebula as a relatively homogeneous mixture of metallic iron and silicate-oxide phases, core segregation involving oxygen would commence at a depth where pressure is sufficiently high to cause exsolution of FeO(hpp) from the rocksalt phase, and temperature is sufficiently high to allow formation of an Fe-FeO(hpp) melt. A gravitational instability arises, leading to vertical differentiation of the earth as molten blobs of the metal sink downwards to form the core and the residual depleted silicate material coalesces to form large bodies which rise diapirically upwards to form the mantle.« less
NASA Astrophysics Data System (ADS)
Boss, Alan P.
2009-03-01
The disk instability mechanism for giant planet formation is based on the formation of clumps in a marginally gravitationally unstable protoplanetary disk, which must lose thermal energy through a combination of convection and radiative cooling if they are to survive and contract to become giant protoplanets. While there is good observational support for forming at least some giant planets by disk instability, the mechanism has become theoretically contentious, with different three-dimensional radiative hydrodynamics codes often yielding different results. Rigorous code testing is required to make further progress. Here we present two new analytical solutions for radiative transfer in spherical coordinates, suitable for testing the code employed in all of the Boss disk instability calculations. The testing shows that the Boss code radiative transfer routines do an excellent job of relaxing to and maintaining the analytical results for the radial temperature and radiative flux profiles for a spherical cloud with high or moderate optical depths, including the transition from optically thick to optically thin regions. These radial test results are independent of whether the Eddington approximation, diffusion approximation, or flux-limited diffusion approximation routines are employed. The Boss code does an equally excellent job of relaxing to and maintaining the analytical results for the vertical (θ) temperature and radiative flux profiles for a disk with a height proportional to the radial distance. These tests strongly support the disk instability mechanism for forming giant planets.
Methane rising from the Deep: Hydrates, Bubbles, Oil Spills, and Global Warming
NASA Astrophysics Data System (ADS)
Leifer, I.; Rehder, G. J.; Solomon, E. A.; Kastner, M.; Asper, V. L.; Joye, S. B.
2011-12-01
Elevated methane concentrations in near-surface waters and the atmosphere have been reported for seepage from depths of nearly 1 km at the Gulf of Mexico hydrate observatory (MC118), suggesting that for some methane sources, deepsea methane is not trapped and can contribute to atmospheric greenhouse gas budgets. Ebullition is key with important sensitivity to the formation of hydrate skins and oil coatings, high-pressure solubility, bubble size and bubble plume processes. Bubble ROV tracking studies showed survival to near thermocline depths. Studies with a numerical bubble propagation model demonstrated that consideration of structure I hydrate skins transported most methane only to mid-water column depths. Instead, consideration of structure II hydrates, which are stable to far shallower depths and appropriate for natural gas mixtures, allows bubbles to survive to far shallower depths. Moreover, model predictions of vertical methane and alkane profiles and bubble size evolution were in better agreement with observations after consideration of structure II hydrate properties as well as an improved implementation of plume properties, such as currents. These results demonstrate the importance of correctly incorporating bubble hydrate processes in efforts to predict the impact of deepsea seepage as well as to understand the fate of bubble-transported oil and methane from deepsea pipeline leaks and well blowouts. Application to the DWH spill demonstrated the importance of deepsea processes to the fate of spilled subsurface oil. Because several of these parameters vary temporally (bubble flux, currents, temperature), sensitivity studies indicate the importance of real-time monitoring data.
NASA Astrophysics Data System (ADS)
Thompson, Matt A. T.
The behaviour of helium in tungsten is an important concern for the fusion materials community. Under helium plasma exposure, small nano-scale bubbles form beneath the material surface as helium precipitates from the tungsten matrix. Under certain conditions this can lead to the subsequent formation of a surface "nano-fuzz", though the mechanisms of this process are not presently understood. For sub-surface nano-bubble formation transmission electron microscopy (TEM) has been the most widely used technique. While certainly a powerful technique, TEM suffers from a number of significant drawbacks: sample preparation is difficult and destructive, and there are sampling limitations as nano-structures must be located and characterised individually. This makes quantitative characterisation of nano-scale modification in tungsten challenging, which in turn makes it difficult to perform systematic studies on the effects of factors such as temperature and plasma composition on nano-scale modification. Here, Grazing Incidence Small Angle X-ray Scattering (GISAXS) is presented as a powerful addition to the field of fusion materials. With GISAXS, one can measure the X-ray scattering from nano-scale features throughout a relatively large volume, allowing information about full nano-bubble size distributions to be obtained from a simple, non-destructive measurement. Where it typically takes days or weeks to prepare a sample and study it under TEM, GISAXS measurements can be performed in a matter of minutes, and the data analysis performed autonomously by a computer in hours. This thesis describes the work establishing GISAXS as a viable technique for fusion materials. A GISAXS pattern fitting model was first developed, and then validated via comparison between GISAXS and TEM measurements of helium induced nano-bubble formation in tungsten exposed to a helium discharge in the large helical device. Under these conditions, nano-bubbles were found to follow an approximately exponential diameter distribution, with a mean nano-bubble diameters mu=0.596+/-0.001 nm and mu=0.68+/-0.04 nm computed for GISAXS and TEM, respectively. Depth distributions were also approximately exponential, with average bubble depths estimated at tau=9.1+/-0.4 nm and tau=8.4+/-0.5 for GISAXS and TEM, respectively. GISAXS was then applied to study the effects of plasma fluence, sample temperature and large transient heat and particle loads on nano-bubble formation. Nano-bubble sizes were found to saturate with increasing fluence at fluences less than 2.7x10. 24 He/m. 2 at 473 K. At higher temperatures larger nano-bubblesare able to form, suggesting a shift in the growth mechanisms, possibly from vacancy capture to bubble coalescence. Evidence is also presented which indicates that nano-bubble size distributions are qualitatively different for tungsten exposed to transient heat and particle loads due edge localised modes (ELMs) in the DIII-D tokamak, with a relatively large population of smaller (0.5-1 nm) nano-bubbles forming in this case. This is posited to be a consequence of rapid precipitation due to either extremely high helium concentrations during the ELM, or rapid cooling after it. Finally, synergistic effects between plasma composition and sample temperature are explored to determine which factors are most relevant for hydrogen and helium retention. Here, evidence has been found that helium ions from the plasma require a minimum energy of 9.0+/-1.4 eV in order to be implanted into tungsten. This was the dominant factor governing helium retention in this experiment. On the other hand, sample temperature is the dominant factor for hydrogen retention.
40 CFR 147.2555 - Aquifer exemptions since January 1, 1999.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 1, 1999 Formation Approximate depth (feet belowground surface) Location Powder River Basin, only approximately 0.4 square miles of the Lance Formation which is less than 0.005% of the Basin at indicated depths... Christensen respectively, and radius of 1,320 feet. Both wells are located in the Christensen Ranch, in...
40 CFR 147.2555 - Aquifer exemptions since January 1, 1999.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 1, 1999 Formation Approximate depth (feet belowground surface) Location Powder River Basin, only approximately 0.4 square miles of the Lance Formation which is less than 0.005% of the Basin at indicated depths... Christensen respectively, and radius of 1,320 feet. Both wells are located in the Christensen Ranch, in...
40 CFR 147.2555 - Aquifer exemptions since January 1, 1999.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 1, 1999 Formation Approximate depth (feet belowground surface) Location Powder River Basin, only approximately 0.4 square miles of the Lance Formation which is less than 0.005% of the Basin at indicated depths... Christensen respectively, and radius of 1,320 feet. Both wells are located in the Christensen Ranch, in...
30 CFR 250.244 - What geological and geophysical (G&G) information must accompany the DPP or DOCD?
Code of Federal Regulations, 2011 CFR
2011-07-01
... MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR... depths of expected productive formations and the locations of proposed wells. (c) Two dimensional (2-D...-sections showing the depths of expected productive formations. (e) Shallow hazards report. A shallow...
NASA Astrophysics Data System (ADS)
Zahid, Khandaker M.; Uddin, Ashraf
2005-06-01
Interpretation of sonic log data of anticlinal structures from eastern Bangladesh reveals significant variations of acoustic velocity of subsurface strata. The amount of variation in velocity is 32% from Miocene to Pliocene stratigraphic units in Titas and Bakhrabad structure, whereas 21% in Rashidpur structure. Velocity fluctuations are influenced by the presence of gas-bearing horizons, with velocities of gas-producing strata 3-7% lower than laterally equivalent strata at similar depth. Average velocities of Miocene Boka Bil and Bhuban formations are, respectively, 2630 and 3480 m/s at Titas structure; 2820 and 3750 m/s at Bakhrabad; and 3430 and 3843 m/s at the Rashidpur structure. From the overall velocity-depth distribution for a common depth range of 915-3000 m, the Titas, Bakhrabad and Rashidpur structures show a gradual increase in velocity with depth. In contrast, the Sitakund anticline in SE Bangladesh reveals a decrease in velocity with depth from 3000 to 4000 m, probably due to the presence of overpressured mudrocks of the Bhuban Formation. Tectonic compression, associated with the Indo-Burmese plate convergence likely contributed the most toward formation of subsurface overpressure in the Sitakund structure situated in the Chittagong-Tripura Fold Belt of the eastern Bengal basin, Bangladesh.
NASA Astrophysics Data System (ADS)
Kiselev, M. V.; Dyukarev, E. A.; Voropay, N. N.
2018-03-01
The work presents the results of the study of the peculiarities of the temperature regime in the five basic ecosystems of oligotrophic bogs in the south taiga zone of Western Siberia in 2011-2016. The soil temperature regime was studied using the atmospheric-soil measuring complex at different depths from surface down to 240 cm. All sites were divided into two groups according to the bog water level: flooded sites (hollow and open fen) and drained sites (ridge, tall and low ryam). The waterlogged sites are better warmed in the summer period and slowly freeze in the winter period. The analysis of the annual cycle of temperature showed that the maximum surface temperature is in July. The minimum temperature on the surface is observed in February or January. The greatest temperature gradient was recorded in the upper 2 cm layer. The gradient at the open fen was -2 °C/cm in February and 1.1 °C/cm in October. The peak of formation of the seasonally frozen layer occurs at the end of autumn or in the beginning of winter. The degradation of the seasonally frozen layer was observed both from top and bottom, but the degradation rate from the top is faster.
Mirages and the nature of Pluto's atmosphere
NASA Technical Reports Server (NTRS)
Stansberry, J. A.; Lunine, J. I.; Hubbard, W. B.; Yelle, R. V.; Hunten, D. M.
1994-01-01
We present model occultation lightcurves demonstrating that a strong thermal inversion layer at the base of Pluto's stratosphere can reproduce the minimum flux measured by the Kuiper Airborne Observatory (KAO) during the 1988 occultation of a star by Pluto. The inversion layer also forms the occultation equivalent of a mirage at a radius of 1198 km, which is capable of hiding tropospheres of significant depth. Pluto's surface lies below 1198 km, its radius depending on the depth of the troposphere. We begin by computing plausible temperature structures for Pluto's lower atmosphere, constrained by a calculation of the temperature of the atmosphere near the surface. We then trace rays from the occulted star through the model atmosphere, computing the resultant bending of the ray. Model light curves are obtained by summing the contribution of individual rays within the shadow of Pluto on Earth. We find that we can reproduce the KAO lightcurve using model atmospheres with a temperature inversion and no haze. We have explored models with tropospheres as deep as 40 km (implying a Pluto radius of 1158 km) that reproduce the suite of occultation data. Deeper tropospheres can be fitted to the data, but the mutual event radius of 1150 km probably provides a lower bound. If Pluto has a shallow or nonexistent troposphere, its density is consistent with formation in the solar nebula with modest water loss due to impact ejection. If the troposhere is relatively deep, implying a smaller radius and larger density, significant amounts of water loss are required.
NASA Astrophysics Data System (ADS)
Hwang, Seho; Shin, Jehyun
2010-05-01
Jeju located in the southern extremity of Korea is volcanic island, one of best-known tourist attractions in Korea. Jeju Province operates the monitoring boreholes for the evaluation of groundwater resources in coastal area. Major rock types identified from drill cores are trachybasalt, acicular basalt, scoria, hyalocastite, tuff, unconsolidated U formation, and seoguipo formation and so on. Various conventional geophysical well loggings including radioactive logs (natural gamma log, dual neutron log, and gamma-gamma log), electrical log (or electromagnetic induction log), caliper log, fluid temperature/ conductivity log, and televiewer logs have been conducted to identify basalt sequences and permeable zone, and verify seawater intrusion in monitoring boreholes. The conductivity logs clearly show the fresh water-saline water boundaries, but we find it hard to identify the permeable zones because of the mixed groundwater within the boreholes. Temperature gradient logs are mostly related with lithologic boundaries and permeable zones intersected by boreholes of eastern coasts. The wide range of periodic electrical conductivity logging in the deeper depth of monitoring boreholes indicates the possibility of submarine groundwater discharge. However we did not clearly understand the origin of seawater intrusion in the eastern coast until now. So we analysis the electrical conductivity profiles, record of sea-level change and 40Ar/39Ar absolute ages of volcanic rock cores from twenty boreholes in east coast. From comparing absolute ages of volcanic rock cores and sea-level of their ages, we find that the almost ages of depth showing high salinity groundwater are about 100 Ka, and from 130Ka to about 180Ka. The former is after the interglacial period and the latter is illinoian. These results indicate that the abrupt raising of sea level after illinoian formed the regional coast, and the zone of present seawater intrusion also are above the depth of illinoin period. So we conclude that the origin of seawater intrusion in eastern coast is caused mainly by the sea-level change.
NASA Astrophysics Data System (ADS)
Schulte-Pelkum, V.; Condit, C.; Brownlee, S. J.; Mahan, K. H.; Raju, A.
2016-12-01
We investigate shear zone-related deformation fabric from field samples, its dependence on conditions during fabric formation, and its detection in situ using seismic data. We present a compilation of published rock elasticity tensors measured in the lab or calculated from middle and deep crustal samples and compare the strength and symmetry of seismic anisotropy as a function of location within a shear zone, pressure-temperature conditions during formation, and composition. Common strengths of seismic anisotropy range from a few to 10 percent. Apart from the typically considered fabric in mica, amphibole and quartz also display fabrics that induce seismic anisotropy, although the interaction between different minerals can result in destructive interference in the total measured anisotropy. The availability of full elasticity tensors enables us to predict the seismic signal from rock fabric at depth. A method particularly sensitive to anisotropy of a few percent in localized zones of strain at depth is the analysis of azimuthally dependent amplitude and polarity variations in teleseismic receiver functions. We present seismic results from California and Colorado. In California, strikes of seismically detected fabric show a strong alignment with current strike-slip motion between the Pacific and North American plates, with high signal strength near faults and from depths below the brittle-ductile transition. These results suggest that the faults have roots in the ductile crust; determining the degree of localization, i.e., the width of the fault-associated shear zones, would require an analysis with denser station coverage, which now exists in some areas. In Colorado, strikes of seismically detected fabric show a broad NW-SE to NNW-SSE alignment that may be related to Proterozoic fabric developed at high temperatures, but locally may also show isotropic dipping contrasts associated with Laramide faulting. The broad trend is punctuated with NE-SW-trending strikes parallel to exhumed and highly localized structures such as the Idaho Springs-Ralston and Black Canyon shear zones. In either case, denser seismic studies should elucidate the width of the deep seismic expression of the shear zones.
Ups and Downs in the Ocean: Effects of Biofouling on Vertical Transport of Microplastics.
Kooi, Merel; Nes, Egbert H van; Scheffer, Marten; Koelmans, Albert A
2017-07-18
Recent studies suggest size-selective removal of small plastic particles from the ocean surface, an observation that remains unexplained. We studied one of the hypotheses regarding this size-selective removal: the formation of a biofilm on the microplastics (biofouling). We developed the first theoretical model that is capable of simulating the effect of biofouling on the fate of microplastic. The model is based on settling, biofilm growth, and ocean depth profiles for light, water density, temperature, salinity, and viscosity. Using realistic parameters, the model simulates the vertical transport of small microplastic particles over time, and predicts that the particles either float, sink to the ocean floor, or oscillate vertically, depending on the size and density of the particle. The predicted size-dependent vertical movement of microplastic particles results in a maximum concentration at intermediate depths. Consequently, relatively low abundances of small particles are predicted at the ocean surface, while at the same time these small particles may never reach the ocean floor. Our results hint at the fate of "lost" plastic in the ocean, and provide a start for predicting risks of exposure to microplastics for potentially vulnerable species living at these depths.
NASA Technical Reports Server (NTRS)
Pearl, J. C.; Smith, M. D.; Conrath, B. J.; Bandfield, J. L.; Christensen, P. R.
1999-01-01
Successful operation of the Mars Global Surveyor spacecraft beginning in September 1997, has permitted extensive infrared observations of condensation clouds during the martian southern summer and fall seasons (184 deg
Beristain Guevara, C I; Vázquez Luna, A; Cortés García, R
1990-03-01
A whole flour potato obtention process was developed which could be used in semirural areas. The potato without peeling was previously washed and ground adding 100 p.p.m. of sodium bisulphite, then it was dehydrated in a cabinet tray dryer with an air flow circulation set at 70 degrees C using three different deep beds (10, 20 and 25 mm). Finally it was milled, sieved and packed in polyethylene Kraft bags and stored for 10 months at room temperature. Results showed that drying time increased less rapidly when the bed depth was increased, so that the overall dryer productivity increased when increasing bed depth. Nevertheless, a better-quality product was obtained, as well as a greater process efficiency when a 10 mm bed depth was used. The whole flour had a particle size of 80 mesh and a moisture and protein content of 7 and 6.7%, respectively. No brown color formation or mold growth occurred during storage. "Tamales de dulce" and chocolate cookies were made with the flour obtained. These were subjected to an acceptability test at community level, and the test revealed that for both products, such acceptability was higher than 90%.
Method and apparatus for efficient injection of CO2 in oceans
West, Olivia R.; Tsouris, Constantinos; Liang, Liyuan
2003-07-29
A liquid CO.sub.2 injection system produces a negatively buoyant consolidated stream of liquid CO.sub.2, CO.sub.2 hydrate, and water that sinks upon release at ocean depths in the range of 700-1500 m. In this approach, seawater at a predetermined ocean depth is mixed with the liquid CO.sub.2 stream before release into the ocean. Because mixing is conducted at depths where pressures and temperatures are suitable for CO.sub.2 hydrate formation, the consolidated stream issuing from the injector is negatively buoyant, and comprises mixed CO.sub.2 -hydrate/CO.sub.2 -liquid/water phases. The "sinking" characteristic of the produced stream will prolong the metastability of CO.sub.2 ocean sequestration by reducing the CO.sub.2 dissolution rate into water. Furthermore, the deeper the CO.sub.2 hydrate stream sinks after injection, the more stable it becomes internally, the deeper it is dissolved, and the more dispersed is the resulting CO.sub.2 plume. These factors increase efficiency, increase the residence time of CO2 in the ocean, and decrease the cost of CO.sub.2 sequestration while reducing deleterious impacts of free CO.sub.2 gas in ocean water.
Basal accretion, a major mechanism for mountain building in Taiwan revealed in rock thermal history
NASA Astrophysics Data System (ADS)
Chen, Chih-Tung; Chan, Yu-Chang; Lo, Ching-Hua; Malavieille, Jacques; Lu, Chia-Yu; Tang, Jui-Ting; Lee, Yuan-Hsi
2018-02-01
Deep tectonic processes are key integral components in the evolution of mountain belts, while observations of their temporal development are generally obscured by thermal resetting, retrograde alteration and structural overprinting. Here we recorded an integrated rock time-temperature history for the first time in the pro-wedge part of the active Taiwan arc-continent collision starting from sedimentation through cleavage-forming state to its final exhumation. The integrated thermal and age results from the Raman Spectroscopy of Carbonaceous Material (RSCM) method, zircon U-Pb laser ablation dating, and in-situ40Ar/39Ar laser microprobe dating suggest that the basal accretion process was crucial to the development of the Taiwanese orogenic wedge. The basal accretion process commenced early in the mountain building history (∼6 Ma) and gradually migrated to greater depths, as constrained by persistent plate convergence and cleavage formation under nearly isothermal state at similar depths until ∼ 2.5 Ma recorded in the early-accreted units. Such development essentially contributed to mountain root growth by the increased depth of the wedge detachment and the downward wedge thickening during the incipient to full collision stages in the Taiwan mountain belt.
NASA Astrophysics Data System (ADS)
Habibi, Tahereh
2016-11-01
In this research larger benthic foraminiferal distribution and their paleoenvironmental characteristics are used to introduce biostratigraphic zonation, paleoenvironmental reconstruction and paleoecological interpretation of the Oligocene Asmari Formation in Fars Province. Two stratigraphic successions were examined for these purposes. The first (Khollar Section) is Rupelian in age and the second (Siakh Section) is of Chattian age. Recognized assemblage zones are: 1-Nummulites vascus-Nummulites fichteli and 2- Archaias asmaricus/hensoni-Miogypsinoides complanatus. Four microfacies types are identified according to the occurrence of the main biogenic components. They were arranged along the inner part of a carbonate platform. A shallowing upward trend in microfacies arrangement from Rupelian to Chattian times is considered according to the occurrence of larger benthic foraminifera. Two foraminiferal associations are recognized in the investigated sections. The identified foraminiferal associations represent a salinity value of 40-50 psu and a depth range of lower than 40 m, warm tropical and subtropical waters with temperature of 18-25 °C at Rupelian time. More restricted conditions through Chattian Stage has resulted in a shallower depth and higher salinity of more than 50 psu, with water temperature being higher than 20 °C in the oligotrophic to mesotrophic conditions. Restricted conditions in marine circulation is suggested to have controlled these associations.
Initial stages of organic film growth characterized by thermal desorption spectroscopy
Winkler, Adolf
2015-01-01
In the wake of the increasing importance of organic electronics, a more in-depth understanding of the early stages of organic film growth is indispensable. In this review a survey of several rod-like and plate-like organic molecules (p-quaterphenyl, p-sexiphenyl, hexaazatriphenylene-hexacarbonitrile (HATCN), rubicene, indigo) deposited on various application relevant substrates (gold, silver, mica, silicon dioxide) is given. The focus is particularly put on the application of thermal desorption spectroscopy to shed light on the kinetics and energetics of the molecule-substrate interaction. While each adsorption system reveals a manifold of features that are specific for the individual system, one can draw some general statements on the early stages of organic film formation from the available datasets. Among the important issues in this context is the formation of wetting layers and the dewetting as a function of the substrate surface conditions, organic film thickness and temperature. PMID:26778860
Mechanical and microstructural changes in tungsten due to irradiation damage
NASA Astrophysics Data System (ADS)
Uytdenhouwen, I.; Schwarz-Selinger, T.; Coenen, J. W.; Wirtz, M.
2016-02-01
Stress-relieved pure tungsten received three damage levels (0.10, 0.25 and 0.50 dpa) by self-tungsten ion beam irradiation at room temperature. Positron annihilation spectroscopy showed the formation of mono-vacancies and vacancy clusters after ion beam exposure. In the first irradiation step (0-0.10 dpa) some splitting up of large vacancy clusters occurred which became more numerous. For increasing dose to 0.25 dpa, growth of the vacancy clusters was seen. At 0.50 dpa a change in the defect formation seems to occur leading to a saturation in the lifetime signal obtained from the positrons. Nano-indentation on the cross-sections showed a flat damage depth distribution profile. The nano-indentation hardness increased for increasing damage dose without any saturation up to 0.50 dpa. This means that other defects such as dislocation loops and large sized voids seem to contribute.
An ikaite record of late Holocene climate at the Antarctic Peninsula
NASA Astrophysics Data System (ADS)
Lu, Zunli; Rickaby, Rosalind E. M.; Kennedy, Hilary; Kennedy, Paul; Pancost, Richard D.; Shaw, Samuel; Lennie, Alistair; Wellner, Julia; Anderson, John B.
2012-04-01
Calcium carbonate can crystallize in a hydrated form as ikaite at low temperatures. The hydration water in ikaite grown in laboratory experiments records the δ18O of ambient water, a feature potentially useful for reconstructing δ18O of local seawater. We report the first downcore δ18O record of natural ikaite hydration waters and crystals collected from the Antarctic Peninsula (AP), a region sensitive to climate fluctuations. We are able to establish the zone of ikaite formation within shallow sediments, based on porewater chemical and isotopic data. Having constrained the depth of ikaite formation and δ18O of ikaite crystals and hydration waters, we are able to infer local changes in fjord δ18O versus time during the late Holocene. This ikaite record qualitatively supports that both the Medieval Warm Period and Little Ice Age extended to the Antarctic Peninsula.
Glacigenic sedimentation pulses triggered post-glacial gas hydrate dissociation.
Karstens, Jens; Haflidason, Haflidi; Becker, Lukas W M; Berndt, Christian; Rüpke, Lars; Planke, Sverre; Liebetrau, Volker; Schmidt, Mark; Mienert, Jürgen
2018-02-12
Large amounts of methane are stored in continental margins as gas hydrates. They are stable under high pressure and low, but react sensitively to environmental changes. Bottom water temperature and sea level changes were considered as main contributors to gas hydrate dynamics after the last glaciation. However, here we show with numerical simulations that pulses of increased sedimentation dominantly controlled hydrate stability during the end of the last glaciation offshore mid-Norway. Sedimentation pulses triggered widespread gas hydrate dissociation and explains the formation of ubiquitous blowout pipes in water depths of 600 to 800 m. Maximum gas hydrate dissociation correlates spatially and temporally with the formation or reactivation of pockmarks, which is constrained by radiocarbon dating of Isorropodon nyeggaensis bivalve shells. Our results highlight that rapid changes of sedimentation can have a strong impact on gas hydrate systems affecting fluid flow and gas seepage activity, slope stability and the carbon cycle.
NASA Technical Reports Server (NTRS)
Welker, Jean Edward
1991-01-01
Since the invention of maximum and minimum thermometers in the 18th century, diurnal temperature extrema have been taken for air worldwide. At some stations, these extrema temperatures were collected at various soil depths also, and the behavior of these temperatures at a 10-cm depth at the Tifton Experimental Station in Georgia is presented. After a precipitation cooling event, the diurnal temperature maxima drop to a minimum value and then start a recovery to higher values (similar to thermal inertia). This recovery represents a measure of response to heating as a function of soil moisture and soil property. Eight different curves were fitted to a wide variety of data sets for different stations and years, and both power and exponential curves were fitted to a wide variety of data sets for different stations and years. Both power and exponential curve fits were consistently found to be statistically accurate least-square fit representations of the raw data recovery values. The predictive procedures used here were multivariate regression analyses, which are applicable to soils at a variety of depths besides the 10-cm depth presented.
NASA Technical Reports Server (NTRS)
Dyal, P.; Parkin, C. W.; Daily, W. D.
1974-01-01
Magnetometers were deployed at four Apollo sites on the moon to measure remanent and induced lunar magnetic fields. Measurements from this network of instruments were used to calculate the electrical conductivity, temperature, magnetic permeability, and iron abundance of the lunar interior. Global lunar fields due to eddy currents, induced in the lunar interior by magnetic transients in the geomagnetic tail field, were analyzed to calculate an electrical conductivity profile for the moon: the conductivity increases rapidly with depth from 10 to the minus 9 power mhos/meter at the lunar surface to .0001 mhos/meter at 200 km depth, then less rapidly to .02 mhos/meter at 1000 km depth. A temperature profile is calculated from conductivity: temperature rises rapidly with depth to 1100 K at 200 km depth, then less rapidly to 1800 K at 1000 km depth. Velocities and thicknesses of the earth's magnetopause and bow shock are estimated from simultaneous magnetometer measurements. Average speeds are determined to be about 50 km/sec for the magnetopause and 70 km/sec for the bow shock, although there are large variations in the measurements for any particular boundary crossing.
NASA Astrophysics Data System (ADS)
Rubie, D. C.; Gessmann, C. K.; Frost, D. J.
2003-04-01
Knowledge of the solubility of oxygen in liquid iron enables the partitioning of oxygen between metal and silicates and the oxidation state of residual silicates to be constrained during core formation in planetary bodies. We have determined oxygen solubility experimentally at 5--23 GPa, 2100--2700 K and oxygen fugacities 1--4 log units below the iron-wüstite buffer in samples of liquid Ni-Fe alloy contained in magnesiowüstite capsules using a multianvil apparatus. Results show that oxygen solubility increases with increasing temperature but decreases slightly with increasing pressure over the range of experimental conditions, at constant oxygen fugacity. Using an extrapolation of the results to higher pressures and temperatures, we have modeled the geochemical consequences of metal-silicate separation in magma oceans in order to explain the contrasting FeO contents of the mantles of Earth and Mars. We assume that both Earth and Mars accreted originally from material with a chondritic composition; because the initial oxidation state is uncertain, we vary this parameter by defining the initial oxygen content. Two metal-silicate fractionation models are considered: (1) Metal and silicate are allowed to equilibrate at fictive conditions that approximate the pressure and temperature at the base of a magma ocean. (2) The effect of settling Fe droplets in a magma ocean is determined using a simple polybaric metal-silicate fractionation model. We assume that the temperature at the base of a magma ocean is close to the peridotite liquidus. In the case of Earth, high temperatures in a magma ocean with a depth >1200 km would have resulted in significant quantities of oxygen dissolving in the liquid metal with the consequent extraction of FeO from the residual silicate. In contrast, on Mars, even if the magma ocean extended to the depth of the current core-mantle boundary, temperatures would not have been sufficiently high for oxygen solubility in liquid metal to be significant. The results show that Earth and Mars could have accreted from similar material, with an initial FeO content around 18 wt%. On Earth, oxygen was extracted from silicates by the segregating metal during core formation, leaving the mantle with its present FeO content of ˜8 wt%. On Mars, in contrast, the segregating metal extracted little or no oxygen and left the FeO content unaltered at ˜18 wt%. A consequence of this model is that oxygen should be an important light element in the Earth's core but not in the Martian core.
Flow pathways in the Slapton Wood catchment using temperature as a tracer
NASA Astrophysics Data System (ADS)
Birkinshaw, Stephen J.; Webb, Bruce
2010-03-01
SummaryThis study investigates the potential of temperature as a tracer to provide insights into flow pathways. The approach couples fieldwork and modelling experiments for the Eastergrounds Hollow within the Slapton Wood catchment, South Devon, UK. Measurements in the Eastergrounds Hollow were carried out for soil temperature, spring temperature, and the stream temperature and use was made of an existing 1989-1991 data set for the entire Slapton Wood catchment. The predominant flow in this hollow is a result of subsurface stormflow, and previous work has suggested that the water flows vertically down through the soil and then subsurface stormflow occurs at the soil/bedrock interface where the water is deflected laterally. The depth of the subsurface stormflow was previously thought to be around 2.2 m. However, analysis of the new spring, stream and soil temperature data suggests a deeper pathway for the subsurface stormflow. Modelling of water flow and heat transport was carried out using SHETRAN and this was calibrated to reproduce the water flow in the entire Slapton Wood catchment and soil temperatures in the Eastergrounds Hollow. The model was tested for the entire Eastergrounds Hollow with two different soil depths. A depth of 2.2 m, based on previous knowledge, was unable to reproduce the Eastergrounds spring temperature. A depth of 3.7 m produced an excellent comparison between measured and simulated stream and spring temperatures in the Eastergrounds Hollow. This work suggests that the depth of the flow pathways that produce the subsurface stormflow are deeper than previously thought. It also provides a demonstration on the use of temperature as a tracer to understand flow pathways.
NASA Astrophysics Data System (ADS)
Mather, Caroline C.; Skrzypek, Grzegorz; Dogramaci, Shawan; Grierson, Pauline F.
2018-04-01
Groundwater dolocrete occurring within the Fortescue Marsh, a large inland wetland in the Pilbara region of northwest Australia, has been investigated to provide paleoenvironmental and paleohydrological records and further the understanding of low temperature dolomite formation in terrestrial settings over the Quaternary Period. Two major phases of groundwater dolocrete formation are apparent from the presence of two distinct units of dolocrete, based on differences in depth, δ18O values and mineral composition. Group 1 (G1) occurs at depth 20-65 m b.g.l. (below ground level) and contains stoichiometric dolomite with δ18O values of -4.02-0.71‰. Group 2 (G2) is shallower (0-23 m b.g.l.), occurring close to the current groundwater level, and contains Ca-rich dolomite ± secondary calcite with a comparatively lower range of δ18O values (-7.74 and -6.03‰). Modelled δ18O values of paleogroundwater from which older G1 dolomite precipitated indicated highly saline source water, which had similar stable oxygen isotope compositions to relatively old brine groundwater within the Marsh, developed under a different hydroclimatic regime. The higher δ18O values suggest highly evaporitic conditions occurred at the Marsh, which may have been a playa lake to saline mud flat environment. In contrast, G2 dolomite precipitated from comparatively fresher water, and modelled δ18O values suggested formation from mixing between inflowing fresher groundwater with saline-brine groundwater within the Marsh. The δ18O values of the calcite indicates formation from brackish to saline groundwater, which suggests this process may be associated with coeval gypsum dissolution. In contrast to the modern hydrology of the Marsh, which is surface water dependent and driven by a flood and drought regime, past conditions conducive to dolomite precipitation suggest a groundwater dependent system, where shallow groundwaters were influenced by intensive evaporation.
NASA Astrophysics Data System (ADS)
Lim, H. S.; Lee, J. Y.; Yoon, H.
2016-12-01
Soil temperatures, water temperatures, and weather parameters were monitored at a variety of locations in the vicinity of King Sejong station, King George Island, Antarctica, during summer 2010-2011. Thermal characteristics of soil and water were analysed using time-series analyses, apparent thermal diffusivity (ATD), and active layer thickness. The temperatures of pond water and nearby seawater showed the distinctive diurnal variations and correlated strongly with solar radiation (r = 0.411-0.797). Soil temperature (0.1-0.3 m depth) also showed diurnal fluctuations that decreased with depth and were directly linked to air temperature (r = 0.513-0.783) rather than to solar radiation; correlation decreased with depth and the time lag in the response increased by 2-3 hours per 0.1 m of soil depth. Owing to the lack of snow cover, summertime soil temperature was not decoupled from air temperature. Estimated ATD was between 0.022 and 29.209 mm2/sec, showed temporal and spatial variations, and correlated strongly with soil moisture content. The maximum estimated active layer thickness in the study area was a 41-70 cm, which is consistent with values reported in the previous work.
1980-09-01
METHOD OF COLLECTION AND ANALYSIS OF SAMPLES 2 3.1 Temperature 2 3.2 Thermometric Depth 2 3.3 Salinity 2 3.4 Dissolved Oxygen 3 3.5 Chlorinity 3 3.6 pH...or -40 to 600C) being used. The accuracZ of the temperature measurements has been quoted to be within the range ±0.03 C. 3.2 Thermometric Depth jp...Depths were calculated from temperature measurements by the method described by Pollack [91 using computer programs written at MRL. These thermometric
Nonlinear metallogeny and the depths of the earth
NASA Astrophysics Data System (ADS)
Shcheglov, A. D.; Govorov, I. N.
This book is concerned with the basic relations regarding a new approach in the field of knowledge of metallogenesis, taking into account the complex character of the mutual dependence between ore deposits, the structure of the earth's crust, and depth relations. The principles of nonlinear metallogeny are examined, giving attention to the development of the metallogenic science during the past few years, the formation of the concept 'nonlinear metallogeny', the main aspects of nonlinear metallogeny, the origin of the ore deposits and the characteristics of ore formations in the mantle, the parallel manifestation of ore-forming processes in the crust, sedimentary-hydrothermal ore formations and their place in nonlinear metallogeny, and various types of rock and ore formations. The structure, composition, and metalliferous characteristics found at various depth zones of the tectonosphere are discussed along with the geochemical and metallogenic heterogeneity in the mantle. General questions of nonlinear metallogeny are also investigated.
Formation temperatures of thermogenic and biogenic methane
Stolper, D.A.; Lawson, M.; Davis, C.L.; Ferreira, A.A.; Santos Neto, E. V.; Ellis, G.S.; Lewan, M.D.; Martini, Anna M.; Tang, Y.; Schoell, M.; Sessions, A.L.; Eiler, J.M.
2014-01-01
Methane is an important greenhouse gas and energy resource generated dominantly by methanogens at low temperatures and through the breakdown of organic molecules at high temperatures. However, methane-formation temperatures in nature are often poorly constrained. We measured formation temperatures of thermogenic and biogenic methane using a “clumped isotope” technique. Thermogenic gases yield formation temperatures between 157° and 221°C, within the nominal gas window, and biogenic gases yield formation temperatures consistent with their comparatively lower-temperature formational environments (<50°C). In systems where gases have migrated and other proxies for gas-generation temperature yield ambiguous results, methane clumped-isotope temperatures distinguish among and allow for independent tests of possible gas-formation models.
NASA Astrophysics Data System (ADS)
Myers, Paul G.; Kulan, Nilgun
2010-05-01
Based on an isopyncal analysis of historical data, 3-year overlapping triad fields of objectively analysed temperature and salinity are produced for the Labrador Sea, covering 1949-1999. These fields are then used to spectrally nudge an eddy-permitting ocean general circulation model of the sub-polar gyre, otherwise forced by inter annually varying surface forcing based upon the Coordinated Ocean Reference Experiment (CORE). High frequency output from the reanalysis is used to examine Labrador Sea Water formation and its export. A number of different apprpoaches are used to estimate Labrador Sea Water formation, including an instanteous kinematic approach to calculate the annual rate of water mass subduction at a given density range. Historical transports are computed along sections at 53 and 56N for several different water masses for comparison with recent observations, showing a decline in the stength of the deep western boundary current with time. The variability of the strength of the meridional overturning circulation (MOC) from the reanalysis is also examined in both depth and density space. Linkages between MOC variability and water mass formation variability is considered.
Alligator ridge district, East-Central Nevada: Carlin-type gold mineralization at shallow depths
Nutt, C.J.; Hofstra, A.H.
2003-01-01
Carlin-type deposits in the Alligator Ridge mining district are present sporadically for 40 km along the north-striking Mooney Basin fault system but are restricted to a 250-m interval of Devonian to Mississippian strata. Their age is bracketed between silicified ca. 45 Ma sedimentary rocks and unaltered 36.5 to 34 Ma volcanic rocks. The silicification is linked to the deposits by its continuity with ore-grade silicification in Devonian-Mississippian strata and by its similar ??18O values (_e1???17???) and trace element signature (As, Sb, Tl, Hg). Eocene reconstruction indicates that the deposits formed at depths of ???300 to 800 m. In comparison to most Carlin-type gold deposits, they have lower Au/Ag, Au grades, and contained Au, more abundant jasperoid, and textural evidence from deposition of an amorphous silica precursor in jasperoid. These differences most likely result from their shallow depth of formation. The peak fluid temperature (_e1???230??C) and large ??18OH2O value shift from the meteroric water line (_e1???20???) suggest that ore fluids were derived from depths of 8 km or more. A magnetotelluric survey indicates that the Mooney Basin fault system penetrates to mid-crustal depths. Deep circulation of meteoric water along the Mooney Basin fault system may have been in response to initial uplift of the East Humboldt-Ruby Mountains metamorphic core complex; convection also may have been promoted by increased heat flow associated with large magnitude extension in the core complex and regional magmatism. Ore fluids ascended along the fault system until they encountered impermeable Devonian and Mississippian shales, at which point they moved laterally through permeable strata in the Devonian Guilmette Formation, Devonian-Mississippian Pilot Shale, Mississippian Joana Limestone, and Mississippian Chainman Shale toward erosional windows where they ascended into Eocene fluvial conglomerates and lake sediments. Most gold precipitated by sulfidation of host-rock Fe and mixing with local ground water in zones of lateral fluid flow in reactive strata, such as the Lower Devonian-Mississippian Pilot Shale.
Marković, Aleksa; Mišić, Tijana; Miličić, Biljana; Calvo-Guirado, Jose Luis; Aleksić, Zoran; Ðinić, Ana
2013-07-01
The study aimed to investigate the effect of surgical technique, implant macrodesign and insertion torque on bone temperature changes during implant placement. In the in vitro study, 144 self-tapping (blueSKY(®) 4 × 10 mm; Bredent) and 144 non-self-tapping (Standard implant(®) 4.1 × 10 mm; Straumann) were placed in osteotomies prepared in pig ribs by lateral bone condensing or bone drilling techniques. The maximum insertion torque values of 30, 35 and 40 Ncm were used. Real-time bone temperature measurement during implant placement was performed by three thermocouples positioned vertically, in tripod configuration around every osteotomy, at a distance of 5 mm from it and at depths of 1, 5 and 10 mm. Data were analysed using Kruskal-Wallis, Mann-Whitney U-tests and Regression analysis. Significant predictor of bone temperature at the osteotomy depth of 1 mm was insertion torque (P = 0.003) and at the depth of 10-mm implant macrodesign (P = 0.029), while no significant predictor at depth of 5 mm was identified (P > 0.05). Higher insertion torque values as well as non-self-tapping implant macrodesign were related to higher temperatures. Implant placement in sites prepared by bone drilling induced significantly higher temperature increase (P = 0.021) compared with bone condensing sites at the depth of 5 mm, while no significant difference was recorded at other depths. Compared with 30 Ncm, insertion torque values of 35 and 40 Ncm produced significantly higher temperature increase (P = 0.005; P = 0.003, respectively) at the depth of 1 mm. There was no significant difference in temperature change induced by 35 and 40 Ncm, neither by implant macrodesign at all investigated depths (P > 0.05). Placement of self-tapping implants with low insertion torque into sites prepared by lateral bone condensing technique might be advantageous in terms of thermal effect on bone. © 2012 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Han, Peng-Fei; Wang, Xu-Sheng; Jin, Xiaomei; Hu, Bill X.
2018-06-01
Accurate quantification of evaporation (E0) from open water is vital in arid regions for water resource management and planning, especially for lakes in the desert. The scintillometers are increasingly recognized by researchers for their ability to determine sensible (H) and latent heat fluxes (LE) accurately over distances of hundreds of meters to several kilometers, though scintillometers are mainly used to monitor the land surface processes. In this paper, it is installed on both sides of the shore over a lake. Compared to the data of evaporationpan, the scintillometer was successfully applied to Sumu Barun Jaran in Badain Jaran Desert using the classical method and the proposed linearized β method. Due to the difficulty in measuring water surface temperature and the easiness to monitor the water temperature at different depths, it is worth thinking that if is feasible to utilize the shallow water temperature instead of the water surface temperature and how much errors it will cause. Water temperature at 10 and 20 cm depths were used to replace the lakewater surface temperature in the two methods to analyze the changes of sensible and latent heat fluxes in hot and cold seasons at halfhour time scales. Based on the classical method, the values of H were almost barely affected, and the average value of LE using water temperature at 20 cm depth is 0.8-9.5 % smaller than that at 10 cm depth in cold seasons. In hot seasons, compared to the results at 10 cm depth, the average value of H increased by 20-30 %, and LE decreased by about 20 % at 20 cm depth. In the proposed linearized β method of scintillometer, only the slope of the saturation pressure curve (Δ) is related to the water surface temperature, which was estimated using available equations of saturated vapor pressure versus temperature of the air. Compared to the values of estimated by the air temperature, while the water surface temperature are replaced by water temperature at 10 and 20 cm depths, in different seasons, the errors of 2-25 % in Δ were caused. Thus was calculated by the original equation in the proposed linearized β method of scintillometer. Interestingly, the water temperature at 10 and 20 cm depths had little effect on H, LE (E0) in different seasons. The reason is that the drying power of the air (EA) accounted for about 85 % of the evaporation (i.e. the changes of Δ have only about 3 % impact on evaporation), which indicated that the driving force from unsaturated to saturated vapor pressure at 2 m height (i.e. the aerodynamic portion) has the main role on evaporation. Therefore, the proposed linearized β method of scintillometer is recommended to quantify the H, LE (E0) over open water, especially when the water surface temperature cannot be accurately measured.
Gas hydrates of the ocean floor - cause of ecological and technological disasters
NASA Astrophysics Data System (ADS)
Balanyuk, Inna; Dmitrievsky, Anatoly; Chaikina, Olga; Akivis, Tatyana
2010-05-01
In recent time, an intensive development of the shelf zone in relation with hydrocarbons production and underwater pipelining is in progress. Engineering works in non-consolidated sediment is placed on the agenda. Developers and engineers face completely new challenges due to necessity of reliable functioning of underwater constructions. Wide spread of gas hydrates in bed sediments of seas and oceans gives possible increase of hydrocarbons reserves but in the same time poses crucial industrial and ecological problem. The most complicated engineering problems are operation of underwater fields, oil platforms construction and pipelining under gas hydrate deposits instability condition. Gasmen faced this problem while construction of "Russia-Turkey" pipeline. Gas hydrates production in nowadays rather problematic and relates to technologies of the future because of instability and specific character of their bedding. Nevertheless, due to scantiness of total world hydrocarbon reserves, gas hydrates attract more and more attention. There exists an opinion that total amount of gas hydrates is enormous and one-two orders higher than assured oil and gas resources all over the world. Thermodynamic conditions over a quarter of the land and nine tenth of the World ocean are favorable for accumulation and reservation of natural gas hydrates. There are sufficiently high pressure and low temperature on the sea bottom at depths exceeding 1000 m which is necessary for gas hydrate formation. Average water temperature on the bottom at a depth of 1 km does not exceed 5°С, and at a depth of 2 km and more - 2°С; and in the polar zones the temperature is permanently near 0°С. In tropic regions gas hydrates can appear and accumulate from the depth of 300 m while in polar area - from the depth of only 100 m. When gas hydrate grows warm it "melts" and decomposes into free gas and water. A drilling of gas hydrate deposits is dangerous because gas hydrate can be melted by heat released by an auger, and as a result, huge amounts of gas and energy released can cause an explosion. One of the possible reasons is global warming engendered by greenhouse effect intensification, because the specific absorption of the Earth thermal radiation by methane (radiation activity) is about 21 times higher than that by carbon dioxide. Decomposition of the total gas hydrate reserves for the short time interval could have extremely catastrophic consequences. But even decomposition of relatively minor part of modern gas hydrate reserves could seriously affect the climate. Recent paleoclimate reseach showed that about 55 millions years ago nearly 1200 g/t of gas hydrate (about 1/10 of modern reserves and probably the total reserves of the period) decomposed in the course of several thousands. As a result a temperature of the World Ocean water increased sharply by 8°С in the surface and by 5°С in the depths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lupu, R. E.; Scott, K. S.; Aguirre, J. E.
2012-10-01
We present new observations from Z-Spec, a broadband 185-305 GHz spectrometer, of five submillimeter bright lensed sources selected from the Herschel-Astrophysical Terahertz Large Area Survey science demonstration phase catalog. We construct a redshift-finding algorithm using combinations of the signal to noise of all the lines falling in the Z-Spec bandpass to determine redshifts with high confidence, even in cases where the signal to noise in individual lines is low. We measure the dust continuum in all sources and secure CO redshifts for four out of five (z {approx} 1.5-3). In one source, SDP.17, we tentatively identify two independent redshifts andmore » a water line, confirmed at z = 2.308. Our sources have properties characteristic of dusty starburst galaxies, with magnification-corrected star formation rates of 10{sup 2-3} M{sub Sun} yr{sup -1}. Lower limits for the dust masses ({approx} a few 10{sup 8} M{sub Sun }) and spatial extents ({approx}1 kpc equivalent radius) are derived from the continuum spectral energy distributions, corresponding to dust temperatures between 54 and 69 K. In the local thermodynamic equilibrium (LTE) approximation, we derive relatively low CO excitation temperatures ({approx}< 100 K) and optical depths ({tau} {approx}< 1). Performing a non-LTE excitation analysis using RADEX, we find that the CO lines measured by Z-Spec (from J = 4 {yields} 3 to 10 {yields} 9, depending on the galaxy) localize the best solutions to either a high-temperature/low-density region or a low/temperature/high-density region near the LTE solution, with the optical depth varying accordingly. Observations of additional CO lines, CO(1-0) in particular, are needed to constrain the non-LTE models.« less
NASA Astrophysics Data System (ADS)
Lim, D. S.; Laval, B.; Slater, G.; Andersen, D.; Airo, A.; Mullins, G.; Schulze-Makuch, D.; Cady, S.; McKay, C.
2005-12-01
Pavilion Lake, B. C., Canada has become the first target site of an on-going NASA effort to investigate the Mars analogue potential of terrestrial lacustrine carbonates. A combination of hypothesis and exploration driven research activities are underway to study the unusual freshwater microbialite structures found in this lake. These structures are of interest in terms of models of Precambrian reefs and may also be relevant to carbonate formation in ancient lakes on Mars. Laval et al. (2000) provides an overview of the morphological characteristics of the microbialites, and explores the physical limnology of Pavilion Lake. Several key hypotheses and questions related to the role of biology in the formation of the microbialites, and the effect of varying light levels on the microbialite morphologies have since resulted from Laval et al., but to date remain unanswered. In August 2004, the Pavilion Lake Research Project (PLRP) was established to commence a new round of investigations into Pavilion Lake, to test hypotheses concerning the factors controlling carbonate formation, and to collect further exploration data related to understanding the lake's limnology and development. Laval et al. classified the differing microbialite structures into four depth categories: shallow to intermediate (5-10m), intermediate (~20m), intermediate to deep (20-30m), and deep facies (30-35m). There is a variation of the morphology and mechanical strength of the structures with depth, which may reflect a change in the relative role of biotic and non-biotic precipitation with lowering light levels. Recent field investigations (August 2005) revealed carbonate structures at depths beyond what was reported in Laval et al. (2000). These new structures appear at 46-55m, and are morphologically distinct from the previously described microbialites. Here we present our current research activities at Pavilion Lake, along with recent data collection results. Excursions to the lake have included the use of SCUBA to sample collect and to install a variety of sensors including a thermistor chain and a Licor light meter. Seepage meters have also been placed in strategic regions of the lake to collect incoming lake groundwater for future chemical limnological analyses and hydrological mapping of the area. In addition, conventional Conductivity/Temperature/Depth (CTD) profiles and water sampling has been conducted during a winter and summer period, and will be presented here. Microbialite samples recovered from each of the discernible morphological depth transects have been investigated for relative variations in d13C isotopic signatures, and the results will presented here.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-21
... depth, swim speed, ambient temperature, and light levels, stomach temperature, heat flux and skin temperature. An additional stroke frequency sensor is glued to the base of the tail. These tests and... photogrammetric models and infrared analysis and ultrasound measurements of blubber depth, collect blood samples...
Chaves, D A; Lyra, G B; Francelino, M R; Silva, Ldb; Thomazini, A; Schaefer, Cegr
2017-04-15
Permafrost and active layer studies are important to understand and predict regional climate changes. The objectives of this work were: i) to characterize the soil thermal regime (active layer thickness and permafrost formation) and its interannual variability and ii) to evaluate the influence of different climate variability modes to the observed soil thermal regime in a patterned ground soil in Maritime Antarctica. The study was carried out at Keller Peninsula, King George Island, Maritime Antarctica. Six soil temperatures probes were installed at different depths (10, 30 and 80cm) in the polygon center (Tc) and border (Tb) of a patterned ground soil. We applied cross-correlation analysis and standardized series were related to the Antarctic Oscillation Index (AAO). The estimated active layer thickness was approximately 0.75cm in the polygon border and 0.64cm in the center, indicating the presence of permafrost (within 80cm). Results indicate that summer and winter temperatures are becoming colder and warmer, respectively. Considering similar active layer thickness, the polygon border presented greater thawing days, resulting in greater vulnerability to warming, cooling faster than the center, due to its lower volumetric heat capacity (Cs). Cross-correlation analysis indicated statistically significant delay of 1day (at 10cm depth) in the polygon center, and 5days (at 80cm depth) for the thermal response between atmosphere and soil. Air temperature showed a delay of 5months with the climate variability models. The influence of southern winds from high latitudes, in the south facing slopes, favored freeze in the upper soil layers, and also contributed to keep permafrost closer to the surface. The observed cooling trend is linked to the regional climate variability modes influenced by atmospheric circulation, although longer monitoring period is required to reach a more precise scenario. Copyright © 2017 Elsevier B.V. All rights reserved.
Johnson, Michael J.; Mayers, C. Justin; Garcia, C. Amanda; Andraski, Brian J.
2007-01-01
Selected micrometeorological and soil-moisture data were collected at the Amargosa Desert Research Site adjacent to a low-level radio-active waste and hazardous chemical waste facility near Beatty, Nevada, 2001-05. Evapotranspiration data were collected from February 2002 through the end of December 2005. Data were col-lected in support of ongoing research to improve the understanding of hydrologic and contaminant-transport processes in arid environments. Micrometeorological data include solar radiation, net radiation, air temperature, relative humidity, saturated and ambient vapor pressure, wind speed and direction, barometric pressure, precipitation, near-surface soil temperature, soil-heat flux and soil-water content. All micrometeorological data were collected using a 10-second sampling interval by data loggers that output daily and hourly mean values. Daily maximum and minimum values are based on hourly mean values. Precipitation data output includes daily and hourly totals. Selected soil-moisture profiles at depth include periodic measurements of soil volumetric water-content measurements at nine neutron-probe access tubes to depths ranging from 5.25 to 29.25 meters. Evapotranspiration data include measurement of daily evapotranspiration and 15-minute fluxes of the four principal energy budget components of latent-heat flux, sensible-heat flux, soil-heat flux, and net radiation. Other data collected and used in equations to determine evapotranspiration include temperature and water content of soil, temperature and vapor pressure of air, and covariance values. Evapotranspiration and flux estimates during 15-minute intervals were calculated at a 0.1-second execution interval using the eddy covariance method. Data files included in this report contain the complete micrometeorological, soil-moisture, and evapotranspiration field data sets. These data files are presented in tabular Excel spreadsheet format. This report highlights selected data contained in the computer generated data files using figures, tables, and brief discussions. Instrumentation used for data collection also is described. Water-content profiles are shown to demonstrate variability of water content with depth. Time-series data are plotted to illustrate temporal variations in micrometeorological, soil-water content, and evapotranspiration data.
The effects of Venus' thermal structure on buoyant magma ascent
NASA Technical Reports Server (NTRS)
Sakimoto, S. E. H.; Zuber, M. T.
1992-01-01
The recent Magellan images have revealed a broad spatial distribution of surface volcanism on Venus. Previous work in modeling the ascent of magma on both Venus and Earth has indicated that the planetary thermal structure significantly influences the magmatic cooling rates and thus the amount of magma that can be transported to the surface before solidification. In order to understand which aspects of the thermal structure have the greatest influence on the cooling of ascending magma, we have constructed magma cooling curves for both plutonic and crack buoyant ascent mechanisms, and evaluated the curves for variations in the planetary mantle temperature, thermal gradient curvature with depth, surface temperature gradient, and surface temperature. The planetary thermal structure is modeled as T/T(sub 0) = 1-tau(1-Z/Z(sub 0)(exp n), where T is the temperature, T(sub 0) is the source depth temperature, tau = 1-(T(sub s)/T(sub 0)) where T(sub s) is the planetary surface temperature, Z is the depth, Z(sub 0) is the source depth, and n is a constant that controls thermal gradient curvature with depth. The equation is used both for mathematical convenience and flexibility, as well as its fit to the thermal gradients predicted by the cooling half-space models. We assume a constant velocity buoyant ascent, body-averaged magma temperatures and properties, an initially crystal-free magma, and the same liquidus and solidus for both Venus and Earth.
A new look on anomalous thermal gradient values obtained in South Portugal
NASA Astrophysics Data System (ADS)
Duque, M. R.; Malico, I.
2012-04-01
A NEW LOOK ON THE ANOMALOUS THERMAL GRADIENT VALUES OBTAINED IN SOUTH PORTUGAL Duque, M. R. and Malico, I. M. Physics Department, University of Évora, Rua Romão Ramalho, 59,7000-671, Évora, Portugal It is well known that soil temperatures can be altered by water circulation. In this paper, we study numerically this effect by simulating some aquifers occurring in South Portugal. At this location, the thermal gradient values obtained in boreholes with depths less than 200 m, range between 22 and 30 °C km-1. However, there, it is easy to find places where temperatures are around 30 °C, at depths of 100 m. The obtained thermal gradient values show an increase one day after raining and a decrease during the dry season. Additionally, the curve of temperature as function of depth showed no hot water inlet in the hole. The region studied shows a smooth topography due to intensive erosion, but it was affected by alpine and hercinian orogenies. As a result, a high topography in depth, with folds and wrinkles is present. The space between adjacent folds is now filled by small sedimentary basins. Aquifers existing in this region can reach considerable depths and return to depths near the surface, but hot springs in the area are scarce. Water temperature rises in depth, and when the speed is high enough high temperatures near the surface, due to water circulation, can be found. The ability of the fluid to flow through the system depends on topography relief, rock permeability and basal heat flow. In this study, the steady-state fluid flow and heat transfer by conduction and advection are modeled. Fractures in the medium are simulated by an equivalent porous medium saturated with liquid. Thermal conductivity values for the water and the rocks can vary in space .Porosities used have high values in the region of the aquifer, low values in the lower region of the model and intermediate values in the upper regions. The results obtained show that temperature anomaly values depend on water ascending velocity, permeability values and depth of the aquifer. Comparing the results of our model with the measured values we can obtain information about aquifer depth and temperature.
Burke, Lauri A.; Kinney, Scott A.; Kola-Kehinde, Temidayo B.
2011-01-01
This document provides the digital archive of in-situ temperature and drilling mud weight pressure data that were compiled from several historical sources. The data coverage includes the states of Texas and Louisiana in the Gulf of Mexico basin. Data are also provided graphically, for both Texas and Louisiana, as plots of temperature as a function of depth and pressure as a function of depth. The minimum, arithmetic average, and maximum values are tabulated for each 1,000-foot depth increment for temperature as well as pressure in the Texas and Louisiana data.
Kim, Jinok; Yoo, Gwangwe; Park, Jin; Park, Jin-Hong
2018-09-01
We investigated the effect of an electric field-based post exposure bake (EF-PEB) process on photoacid diffusion and pattern formation. To investigate the control of photoacid diffusion experimentally, the EF-PEB processes was performed at various temperatures. Cross sectional images of various EF-PEB processed samples were obtained by scanning electron microscopy (SEM) after ion beam milling. In addition, we conducted a numerical analysis of photoacid distribution and diffusion with following Fick's second law and compared the experimental results with our theoretical model. The drift distance was theoretically predicted by multiplying drift velocity and EF-PEB time, and the experimental values were obtained by finding the difference in pattern depths of PEB/EFPEB samples. Finally, an EF-PEB temperature of 85 °C was confirmed as the optimum condition to maximize photoacid drift distance using the electric field.
A comprehensive review of milk fouling on heated surfaces.
Sadeghinezhad, E; Kazi, S N; Dahari, M; Safaei, Mohammad Reza; Sadri, Rad; Badarudin, A
2015-01-01
Heat exchanger performance degrades rapidly during operation due to formation of deposits on heat transfer surfaces which ultimately reduces service life of the equipment. Due to scaling, product deteriorates which causes lack of proper heating. Chemistry of milk scaling is qualitatively understood and the mathematical models for fouling at low temperatures have been produced but the behavior of systems at ultra high temperature processing has to be studied further to understand in depth. In diversified field, the effect of whey protein fouling along with pressure drop in heat exchangers were conducted by many researchers. Adding additives, treatment of heat exchanger surfaces and changing of heat exchanger configurations are notable areas of investigation in milk fouling. The present review highlighted information about previous work on fouling, influencing parameters of fouling and its mitigation approach and ends up with recommendations for retardation of milk fouling and necessary measures to perform the task.
NASA Technical Reports Server (NTRS)
Righter, K.; Chabot, N.L.
2009-01-01
Mars accretion is known to be fast compared to Earth. Basaltic samples provide a probe into the interior and allow reconstruction of siderophile element contents of the mantle. These estimates can be used to estimate conditions of core formation, as for Earth. Although many assume that Mars went through a magma ocean stage, and possibly even complete melting, the siderophile element content of Mars mantle is consistent with relatively low pressure and temperature (PT) conditions, implying only shallow melting, near 7 GPa and 2073 K. This is a pressure range where some have proposed a change in siderophile element partitioning behavior. We will examine the databases used for parameterization and split them into a low and higher pressure regime to see if the methods used to reach this conclusion agree for the two sets of data.
NASA Astrophysics Data System (ADS)
Hrbáček, Filip; Kňažková, Michaela; Nývlt, Daniel; Láska, Kamil; Mueller, Carsten W.; Ondruch, Jakub
2017-04-01
Active layer thickness and its dynamic are considered one of the key parameters of permafrost-affected ground. They variability are very sensitive to specific local conditions, especially climate, vegetation, snow cover or soil texture and moisture. To better understand the local variability of active layer thickness in Antarctica, the original Circumpolar Active Layer Monitoring protocol (CALM) was adapted as its southern form (CALM-S) with respect to specific conditions of Antarctica. To date, almost 40 CALM-S sites were registered across the Antarctic continent with the highest density on western Antarctic Peninsula (South Shetlands) and Victoria Land in East Antarctica (McMurdo region). On James Ross Island, CALM-S site was established in February 2014 as the first CALM-S in the eastern Antarctic Peninsula region. The CALM-S site is located near the Johann Gregor Mendel Station on the northern coast of James Ross Island. The area delimited to 80 × 70 m is elevated at 8 to 11 m asl. Geologically it consists of a Holocene marine terrace ( 80% of CALM-S area) with typical sandy material and passes to lithified to poorly disintegrated sedimentary rocks of Cretaceous Whisky Bay Formation ( 20% of CALM-S area) with a more muddy material and a typical bimodal composition. For both geologically different parts of CALM-S site, ground temperature was measured at two profiles at several levels up to 200 cm depth using resistance thermometers Pt100/8 (accuracy ± 0.15 °C). The air temperature at 2 m above surface was monitored at the automatic weather station near Johann Gregor Mendel Station using resistance thermometer Pt100/A (accuracy ± 0.15 °C). Data used in this study were obtained during the period from 1 March 2013 to 6 February 2016. Mechanical probing of active layer depth was performed in 72 grid points at the end of January, or beginning of February in 2014 to 2016. During the whole study period, mean annual air temperature varied between -7.0 °C (2013) and -6.7 °C (2015), while the mean annual ground temperature at 5 cm ranged from -5.6 °C (2013) to -5.3 °C (2014). Thawing season started in mid-November between 17th (2013/14) and 24th (2014/15) and ended at the end of February (22nd in 2014/15) and beginning of March (7th in 2013/14). The maximum active layer thickness determined from 0°C isotherm varied from 86 to 87 cm at profile 1, while it reached only 51 to 65 cm at profile 2. The mean probed active layer depth varied between 66 cm (2013/4) and 78 cm (2014/15). The maximum probed active layer depth increased from 100 cm in 2014 to 113 cm in 2016. High variability of active layer depth across CALM-S site was caused by different ground thermal properties of Holocene marine terrace sand and Cretaceous clayey sandstones. These results differ significantly from another CALM-S sites in Antarctica, where the main factors affecting thawing depth variability were snow cover and topography. These results confirmed previous observation from James Ross Island, where variability of active layer depth was related primarily to different ground properties (texture, moisture, physical characteristic) then local climate or snow cover.
Passivated contact formation using ion implantation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, David L.; Stradins, Pauls; Nemeth, William
2018-05-29
Methods for forming passivated contacts include implanting compound-forming ions into a substrate to about a first depth below a surface of the substrate, and implanting dopant ions into the substrate to about a second depth below the surface. The second depth may be shallower than the first depth. The methods also include annealing the substrate.
Bouligand, C.; Glen, J.M.G.; Blakely, R.J.
2009-01-01
We have revisited the problem of mapping depth to the Curie temperature isotherm from magnetic anomalies in an attempt to provide a measure of crustal temperatures in the western United States. Such methods are based on the estimation of the depth to the bottom of magnetic sources, which is assumed to correspond to the temperature at which rocks lose their spontaneous magnetization. In this study, we test and apply a method based on the spectral analysis of magnetic anomalies. Early spectral analysis methods assumed that crustal magnetization is a completely uncorrelated function of position. Our method incorporates a more realistic representation where magnetization has a fractal distribution defined by three independent parameters: the depths to the top and bottom of magnetic sources and a fractal parameter related to the geology. The predictions of this model are compatible with radial power spectra obtained from aeromagnetic data in the western United States. Model parameters are mapped by estimating their value within a sliding window swept over the study area. The method works well on synthetic data sets when one of the three parameters is specified in advance. The application of this method to western United States magnetic compilations, assuming a constant fractal parameter, allowed us to detect robust long-wavelength variations in the depth to the bottom of magnetic sources. Depending on the geologic and geophysical context, these features may result from variations in depth to the Curie temperature isotherm, depth to the mantle, depth to the base of volcanic rocks, or geologic settings that affect the value of the fractal parameter. Depth to the bottom of magnetic sources shows several features correlated with prominent heat flow anomalies. It also shows some features absent in the map of heat flow. Independent geophysical and geologic data sets are examined to determine their origin, thereby providing new insights on the thermal and geologic crustal structure of the western United States.
Lake Energy Budget and Temperature Profiles Under Future Greenhouse Gas Scenarios
NASA Astrophysics Data System (ADS)
Lofgren, B. M.; Xiao, C.
2017-12-01
Future climates under higher concentrations of greenhouse gases are expected to feature higher air and water temperatures, and shifts in surface heat fluxes. We investigate in greater detail the evolution of this in terms of the annual cycle of lake temperature profiles, stratification, and ice formation. Other work has found that, although shallower water promotes more rapid changes in surface water temperature within a season, change in surface water temperature across decades is more prominent in locations with greater water depth. Our simulations using the Weather Research and Forecasting (WRF) model and its lake module, WRF-Lake, show a trend toward longer periods of summer stratification, both through earlier onset in the spring and later decay of stratification in the fall. They also show a general increase in temperature throughout the water column, but most pronounced near the surface during the summer. Likewise, ice duration is much shorter and more restricted to shallow embayments. High latent and sensible heat flux during the fall and winter are less intense but longer lasting under the future scenario. Sources of uncertainty are cumulative—actual future greenhouse gas concentrations, global sensitivity of climate change, cloud feedbacks, the combined formulation of the regional climate model (WRF) and its global driving model, and more.
Controlled Formation of Radial Core-Shell Si/Metal Silicide Crystalline Heterostructures.
Kosloff, Alon; Granot, Eran; Barkay, Zahava; Patolsky, Fernando
2018-01-10
The highly controlled formation of "radial" silicon/NiSi core-shell nanowire heterostructures has been demonstrated for the first time. Here, we investigated the "radial" diffusion of nickel atoms into crystalline nanoscale silicon pillar 11 cores, followed by nickel silicide phase formation and the creation of a well-defined shell structure. The described approach is based on a two-step thermal process, which involves metal diffusion at low temperatures in the range of 200-400 °C, followed by a thermal curing step at a higher temperature of 400 °C. In-depth crystallographic analysis was performed by nanosectioning the resulting silicide-shelled silicon nanopillar heterostructures, giving us the ability to study in detail the newly formed silicide shells. Remarkably, it was observed that the resulting silicide shell thickness has a self-limiting behavior, and can be tightly controlled by the modulation of the initial diffusion-step temperature. In addition, electrical measurements of the core-shell structures revealed that the resulting shells can serve as an embedded conductive layer in future optoelectronic applications. This research provides a broad insight into the Ni silicide "radial" diffusion process at the nanoscale regime, and offers a simple approach to form thickness-controlled metal silicide shells in the range of 5-100 nm around semiconductor nanowire core structures, regardless the diameter of the nanowire cores. These high quality Si/NiSi core-shell nanowire structures will be applied in the near future as building blocks for the creation of utrathin highly conductive optically transparent top electrodes, over vertical nanopillars-based solar cell devices, which may subsequently lead to significant performance improvements of these devices in terms of charge collection and reduced recombination.
Seasonality of Red Sea Mixed-Layer Depth and Density Budget
NASA Astrophysics Data System (ADS)
Kartadikaria, A. R.; Cerovecki, I.; Krokos, G.; Hoteit, I.
2016-02-01
The Red Sea is an active area of water mass formation. Dense water initially formed in the northern Red Sea, in the Gulf of Aqaba and the Gulf of Suez, spreads southward and finally flows to the open ocean through the Gulf of Aden via the narrow strait of Bab Al Mandeb. The signature of this outflow can be traced until the southern Indian Ocean, and is characterized by potential density of σθ ≈ 27.4. This water mass is important because it represents a significant source of heat and salt for the Indian Ocean. Using a high-resolution 1km regional MITgcm ocean model for the period 1992-2001 configured for the Red Sea, we examine the spatio-temporal characteristics of water mass formation inside the basin by analyzing closed and complete temperature and salinity budgets. The deepest mixed-layers (MLD) always develop in the northern part of the basin where surface ocean buoyancy loss leads to the Red Sea Intermediate and Deep Water formation. As this water is advected south, it is strongly modified by diapycnal mixing of heat and salt.
Flores, Romeo M.; Stricker, Gary D.; Decker, Paul L.; Myers, Mark D.
2007-01-01
The Sentinel Hill Core Test 1 well penetrated an intertonguing sequence of (1) the marine Schrader Bluff Formation in the depth intervals 950?1,180 ft and 690?751 ft, which consists of shoreface and offshore deposits that accumulated along a storm-dominated, barred shoreline; and (2) the nonmarine Prince Creek Formation in the depth intervals 751?950 ft and surface to 690 ft, which consists of fluvial channel, crevasse splay, backswamp, and ash fall deposits. The strata range in age from early Campanian to early Maastrichtian. An erosional contact at a depth of 690 ft at the base of the upper unit of the Prince Creek Formation is interpreted as a major regional sequence boundary, and the overlying conglomeratic fluvial channel deposits are interpreted to have accumulated in a paleovalley. In its more proximal reaches along the Colville River, channels of this paleovalley cut down 75 ft into the lowermost Prince Creek Formation and the uppermost Schrader Bluff Formation. Farther offshore, the equivalent surface to the aforementioned paleovalley appears to be a subtle discontinuity between middle and lower Schrader Bluff Formation shelfal marine strata. Still farther offshore, the equivalent paleovalley surface is interpreted as a marine mass-wasting surface that locally cuts through the lowermost Schrader Bluff Formation and into the underlying Seabee Formation.
NASA Astrophysics Data System (ADS)
Staudigel, Philip T.; Murray, Sean; Dunham, Daniel P.; Frank, Tracy D.; Fielding, Christopher R.; Swart, Peter K.
2018-03-01
The isotopic analyses (δ13C, δ18O, and Δ47) of carbonate phases recovered from a core in McMurdo Sound by ANtarctic geologic DRILLing (ANDRILL-2A) indicate that the majority of secondary carbonate mineral formation occurred at cooler temperatures than the modern burial temperature, and in the presence of fluids with δ18Owater values ranging between -11 and -6‰ VSMOW. These fluids are interpreted as being derived from a cryogenic brine formed during the freezing of seawater. The Δ47 values were converted to temperature using an in-house calibration presented in this paper. Measurements of the Δ47 values in the cements indicate increasingly warmer crystallization temperatures with depth and, while roughly parallel to the observed geothermal gradient, consistently translate to temperatures that are cooler than the current burial temperature. The difference in temperature suggests that cements formed when they were ∼260 ± 100 m shallower than at the present day. This depth range corresponds to a period of minimal sediment accumulation from 3 to 11 Myr; it is therefore interpreted that the majority of cements formed during this time. This behavior is also predicted by time-integrated modeling of cementation at this site. If this cementation had occurred in the presence of these fluids, then the cryogenic brines have been a longstanding feature in the Victoria Land Basin. Brines such as those found at this site have been described in numerous modern high-latitude settings, and analogous fluids could have played a role in the diagenetic history of other ice-proximal sediments and basins during glacial intervals throughout geologic history. The agreement between the calculated δ18Owater value and the measured values in the pore fluids shows how the Δ47 proxy can be used to identify the origin of negative δ18O values in carbonate rocks and that extremely negative values do not necessarily need to be a result of the influence of meteoric fluids or reaction at high temperature.
NASA Astrophysics Data System (ADS)
Rasmussen, Laura Helene; Zhang, Wenxin; Hollesen, Jørgen; Cable, Stefanie; Hvidtfeldt Christiansen, Hanne; Jansson, Per-Erik; Elberling, Bo
2017-04-01
Permafrost affected areas in Greenland are expected to experience a marked temperature increase within decades. Most studies have considered near-surface permafrost sensitivity, whereas permafrost temperatures below the depths of zero annual amplitude is less studied despite being closely related to changes in near-surface conditions, such as changes in active layer thermal properties, soil moisture and snow depth. In this study, we measured the sensitivity of thermal conductivity (TC) to gravimetric water content (GWC) in frozen and thawed permafrost sediments from fine-sandy and gravelly deltaic and fine-sandy alluvial deposits in the Zackenberg valley, NE Greenland. We further calibrated a coupled heat and water transfer model, the "CoupModel", for one central delta sediment site with average snow depth and further forced it with meteorology from a nearby delta sediment site with a topographic snow accumulation. With the calibrated model, we simulated deep permafrost thermal dynamics in four 20-year scenarios with changes in surface temperature and active layer (AL) soil moisture: a) 3 °C warming and AL water table at 0.5 m depth; b) 3 °C warming and AL water table at 0.1 m depth; c) 6 °C warming and AL water table at 0.5 m depth and d) 6 °C warming and AL water table at 0.1 m depth. Our results indicate that frozen sediments have higher TC than thawed sediments. All sediments show a positive linear relation between TC and soil moisture when frozen, and a logarithmic one when thawed. Gravelly delta sediments were highly sensitive, but never reached above 12 % GWC, indicating a field effect of water retention capacity. Alluvial sediments are less sensitive to soil moisture than deltaic (fine and coarse) sediments, indicating the importance of unfrozen water in frozen sediment. The deltaic site with snow accumulation had 1 °C higher mean annual ground temperature than the average snow depth site. Permafrost temperature at the depth of 18 m increased with 1.5 °C and 3.5 °C in the scenarios with 3 °C and 6 °C warming, respectively. Increasing the soil moisture had no important additional effect to warming, although an increase in thermal offset was indicated. We conclude that below-ground sediment properties affect the sensitivity of TC to GWC, that surface temperature changes can influence the deep permafrost within a short time scale, and that differences in snow depth affect surface temperatures. Sediment type and the type of precipitation should thus be considered when estimating future High Arctic deep permafrost sensitivity.
NASA Technical Reports Server (NTRS)
Holmes, Thomas; Owe, Manfred; deJeu, Richard
2007-01-01
Two data sets of experimental field observations with a range of meteorological conditions are used to investigate the possibility of modeling near-surface soil temperature profiles in a bare soil. It is shown that commonly used heat flow methods that assume a constant ground heat flux can not be used to model the extreme variations in temperature that occur near the surface. This paper proposes a simple approach for modeling the surface soil temperature profiles from a single depth observation. This approach consists of two parts: 1) modeling an instantaneous ground flux profile based on net radiation and the ground heat flux at 5cm depth; 2) using this ground heat flux profile to extrapolate a single temperature observation to a continuous near surface temperature profile. The new model is validated with an independent data set from a different soil and under a range of meteorological conditions.
Nonextensive statistics and skin depth of transverse wave in collisional plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashemzadeh, M., E-mail: hashemzade@gmail.com
Skin depth of transverse wave in a collisional plasma is studied taking into account the nonextensive electron distribution function. Considering the kinetic theory for charge particles and using the Bhatnagar-Gross-Krook collision model, a generalized transverse dielectric permittivity is obtained. The transverse dispersion relation in different frequency ranges is investigated. Obtaining the imaginary part of the wave vector from the dispersion relation, the skin depth for these frequency ranges is also achieved. Profiles of the skin depth show that by increasing the q parameter, the penetration depth decreases. In addition, the skin depth increases by increasing the electron temperature. Finally, itmore » is found that in the high frequency range and high electron temperature, the penetration depth decreases by increasing the collision frequency. In contrast, by increasing the collision frequency in a highly collisional frequency range, the skin depth of transverse wave increases.« less
Characterization of the Paleoenvironmental Evolution of the Mallik Area From Gas Geochemistry Data
NASA Astrophysics Data System (ADS)
Wiersberg, T.; Erzinger, J.
2007-12-01
During drilling of the JAPEX/JNOC/GCS et al. Mallik Gas Hydrate Production Research wells (NWT, Canada), up to 35 vol-% CH4 were found in drill mud gas at 106 m depth within the permafrost. The carbon isotope composition of CH4 implies that this gas is of microbial origin (δ13C from -75‰ to - 77‰ PDB). Surprisingly, noble gas data suggest that at least some of this gas could be trapped in gas hydrates, at a depth distinctly shallower than the predicted gas hydrate stability field. Although microbes are capable of some metabolic activities at subzero temperatures, it is unlikely that production of methane under permafrost conditions can account for that amount of natural gas at this depth. Therefore, we suggest that the formation of this gas must have occurred under non-permafrost conditions. Furthermore, this gas reservoir was sealed from mixing with thermogenic gas, migrating from depth, which could be identified at the base of the permafrost at approx. 620m depth (δ13C=-42.5‰). We interpret the observed features by partially thawing of existing permafrost at least down to 106 m depth during a period of warming where the area was covered by a lake or by the ocean through inundation of the shoreline. Once the lake was drained or the shoreline was uplifted, the surface became again exposed to air and permafrost again developed on top of the unfrozen ground. As the permafrost gradually advanced downward, the water below was pressurized due to freezing and expansion of the newly formed ice, leading to pressure conditions that stabilize gas hydrates.
The Effect of Oil Spills on Marine Microbes: The Importance of Where, When, and How
NASA Astrophysics Data System (ADS)
Brock, M. L.; Ederington-Hagy, M.; Richardson, R. L.; Snyder, R.; Jeffrey, W. H.
2016-02-01
While much recent attention has been paid to the Deepwater Horizon oil spill in the Gulf of Mexico and biodegradation by microbial communities, it is important to remember that numerous factors may determine the types of environmental effects that may result from oil spills. Not all oil spills (e.g., crude, refined, weathered, fuels, use of dispersants) are created equal, and it is likely that the characteristics of different environments will affect ecosystem response to oil. Temperature, salinity, and solar radiation are three potentially important factors related to location and seasonality. The effects of some of these environmental factors on the formation of Water Accommodated Fractions (WAFs) developed from Deepwater Horizon oils and the subsequent effects on microbial growth is being investigated. WAFs were generated under varying solar but controlled temperature conditions, various temperatures and salinities, as well as from burned and weathered oil. After all WAFs were collected, each was added to a coastal seawater sample and their effects on bacterial production or phytoplankton photosynthesis determined. Results from both assays demonstrated that WAFs produced in the dark had minimal effects on growth while inhibition was proportional to the amount of solar exposure. Burning oil prior to formation of WAFs increased inhibition of production independent of subsequent solar treatment. Preliminary data suggests that temperature plays a minimal role. The results imply that the ecological effects caused by oil spills are very light dependent and thus could vary by season, location, and may occur to significant depths in the ocean.
Layer Formation On Metal Surfaces In Lead-Bismuth At High Temperatures In Presence Of Zirconium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loewen, Eric Paul; Yount, Hannah J.; Volk, Kevin
If the operating temperature lead–bismuth cooled fission reactor could be extended to 800 °C, they could produce hydrogen directly from water. A key issue for the deployment of this technology at these temperatures is the corrosion of the fuel cladding and structural materials by the lead–bismuth. Corrosion studies of several metals were performed to correlate the interaction layer formation rate as a function of time, temperature, and alloy compositions. The interaction layer is defined as the narrow band between the alloy substrate and the solidified lead–bismuth eutectic on the surface. Coupons of HT-9, 410, 316L, and F22 were tested atmore » 550 and 650 °C for 1000 h inside a zirconium corrosion cell. The oxygen potential ranged from approximately 10-22 to 10-19 Pa. Analyses were performed on the coupons to determine the depth of the interaction layer and the composition, at each time step (100, 300, and 1000 h). The thickness of the interaction layer on F22 at 550 °C was 25.3 µm, the highest of all the alloys tested, whereas at 650 °C, the layer thickness was only 5.6 µm, the lowest of all the alloys tested. The growth of the interaction layer on F22 at 650 °C was suppressed, owing to the presence of Zr (at 1500 wppm) in the LBE. In the case of 316L, the interaction layers of 4.9 and 10.6 µm were formed at 550 and 650 °C, respectively.« less
Phase formation in selected surface-roughened plasma-nitrided 304 austenite stainless steel.
Singh, Gajendra Prasad; Joseph, Alphonsa; Raole, Prakash Manohar; Barhai, Prema Kanta; Mukherjee, Subroto
2008-04-01
Direct current (DC) glow discharge plasma nitriding was carried out on three selected surface-roughened AISI 304 stainless steel samples at 833 K under 4 mbar pressures for 24 h in the presence of N 2 :H 2 gas mixtures of 50 : 50 ratios. After plasma nitriding, the phase formation, case depth, surface roughness, and microhardness of a plasma-nitrided layer were evaluated by glancing angle x-ray diffractogram, optical microscope, stylus profilometer, and Vickers microhardness tester techniques. The case depth, surface hardness, and phase formation variations were observed with a variation in initial surface roughness. The diffraction patterns of the plasma-nitrided samples showed the modified intensities of the α and γ phases along with those of the CrN, Fe 4 N, and Fe 3 N phases. Hardness and case depth variations were observed with a variation in surface roughness. A maximum hardness of 1058 Hv and a case depth of 95 μm were achieved in least surface-roughened samples.
NASA Astrophysics Data System (ADS)
Nomeli, Mohammad A.; Riaz, Amir
2017-09-01
Carbon dioxide (CO2) storage in depleted hydrocarbon reservoirs and deep saline aquifers is one of the most promising solutions for decreasing CO2 concentration in the atmosphere. One of the important issues for CO2 storage in subsurface environments is the sealing efficiency of low-permeable cap-rocks overlying potential CO2 storage reservoirs. Though we focus on the effect of IFT in this study as a factor influencing sealing efficiency or storage capacity, other factors such as interfacial interactions, wettability, pore radius and interfacial mass transfer also affect the mobility and storage capacity of CO2 phase in the pore space. The study of the variation of IFT is however important because the pressure needed to penetrate a pore depends on both the pore size and the interfacial tension. Hence small variations in IFT can affect flow across a large population of pores. A novel model is proposed to find the IFT of the ternary systems (CO2/brine-salt) in a range of temperatures (300-373 K), pressures (50-250 bar), and up to 6 molal salinity applicable to CO2 storage in geological formations through a multi-variant non-linear regression of experimental data. The method uses a general empirical model for the quaternary system CO2/brine-salts that can be made to coincide with experimental data for a variety of solutions. We introduce correction parameters into the model, which compensates for uncertainties, and enforce agreement with experimental data. The results for IFT show a strong dependence on temperature, pressure, and salinity. The model has been found to describe the experimental data in the appropriate parameter space with reasonable precision. Finally, we use the new model to evaluate the effects of formation depth on the actual efficiency of CO2 storage. The results indicate that, in the case of CO2 storage in deep subsurface environments as a global-warming mitigation strategy, CO2 storage capacity increases with reservoir depth.
NASA Astrophysics Data System (ADS)
Liang, J. H.; Wang, S. C.
2007-08-01
The influence of substrate temperature on both the implantation and post-annealing characteristics of molecular-ion-implanted 5 × 1014 cm-2 77 keV BSi in silicon was investigated in terms of boron depth profiles and damage microstructures. The substrate temperatures under investigation consisted of room temperature (RT) and liquid nitrogen temperature (LT). Post-annealing treatments were performed using rapid thermal annealing (RTA) at 1050 °C for 25 s. Boron depth profiles and damage microstructures in both the as-implanted and as-annealed specimens were determined using secondary ion mass spectrometry (SIMS) and transmission electron microscopy (TEM), respectively. The as-implanted results revealed that, compared to the RT specimen, the LT specimen yields a shallower boron depth profile with a reduced tail into the bulk. An amorphous layer containing a smooth amorphous-to-crystalline (a/c) interface is evident in the LT specimen while just the opposite is true in the as-implanted RT one. The as-annealed results illustrated that the extension of the boron depth profile into the bulk via transient-enhanced diffusion (TED) in the LT specimen is less than it is in the RT one. Only residual defects are visible in the LT specimen while two clear bands of dislocation loops appear in the RT one.
Slab temperature controls on the Tonga double seismic zone and slab mantle dehydration
Wei, S. Shawn; Wiens, Douglas A.; van Keken, Peter E.; Cai, Chen
2017-01-01
Double seismic zones are two-layered distributions of intermediate-depth earthquakes that provide insight into the thermomechanical state of subducting slabs. We present new precise hypocenters of intermediate-depth earthquakes in the Tonga subduction zone obtained using data from local island–based, ocean-bottom, and global seismographs. The results show a downdip compressional upper plane and a downdip tensional lower plane with a separation of about 30 km. The double seismic zone in Tonga extends to a depth of about 300 km, deeper than in any other subduction system. This is due to the lower slab temperatures resulting from faster subduction, as indicated by a global trend toward deeper double seismic zones in colder slabs. In addition, a line of high seismicity in the upper plane is observed at a depth of 160 to 280 km, which shallows southward as the convergence rate decreases. Thermal modeling shows that the earthquakes in this “seismic belt” occur at various pressures but at a nearly constant temperature, highlighting the important role of temperature in triggering intermediate-depth earthquakes. This seismic belt may correspond to regions where the subducting mantle first reaches a temperature of ~500°C, implying that metamorphic dehydration of mantle minerals in the slab provides water to enhance faulting. PMID:28097220
Global seismic data reveal little water in the mantle transition zone
NASA Astrophysics Data System (ADS)
Houser, C.
2016-08-01
Knowledge of the Earth's present water content is necessary to constrain the amount of water and other volatiles the Earth acquired during its formation and the amount that is cycled back into the interior from the surface. This study compares 410 and 660 km discontinuity depth with shear wave tomography within the mantle transition zone to identify regions with seismic signals consistent with water. The depth of the 410 and 660 km discontinuities is determined from a large updated dataset of SS-S410S and SS-S660S differential travel times, known as SS precursors. The discontinuity depths measured from binning and stacking the SS precursor data are then compared to the shear velocity model HMSL-S06 in the transition zone. Mapping all the possible combinations, very few locations match the predictions from mineral physics for the effects of water on discontinuity depth and shear velocity. The predictions, although not yet measured at actual transition zone temperatures and pressures, are a shallow 410 km discontinuity, a deep 660 km discontinuity, and a slow shear velocity. Only 8% of the bins with high-quality data are consistent with these predictions, and the calculated average water content within these bins is around 0.6 wt.%. A few isolated locations have patterns of velocity/topography that are consistent with water, while there are large regional-scale patterns consistent with cold/hot temperature anomalies. Combining this global analysis of long period seismic data and the current mineral physics predictions for water in transition zone minerals, I find that the mantle transition zone is generally dry, containing less than one Earth ocean of water. Although subduction zones could be locally hydrated, the combined discontinuity and velocity data show no evidence that wadsleyite or ringwoodite have been globally hydrated by subduction or initial Earth conditions.
Johnson, Michael J.; Mayers, Charles J.; Andraski, Brian J.
2002-01-01
Selected micrometeorological and soil-moisture data were collected at the Amargosa Desert Research Site adjacent to a low-level radioactive waste and hazardous chemical waste facility near Beatty, Nev., 1998-2000. Data were collected in support of ongoing research studies to improve the understanding of hydrologic and contaminant-transport processes in arid environments. Micrometeorological data include precipitation, air temperature, solar radiation, net radiation, relative humidity, ambient vapor pressure, wind speed and direction, barometric pressure, soil temperature, and soil-heat flux. All micrometeorological data were collected using a 10-second sampling interval by data loggers that output daily mean, maximum, and minimum values, and hourly mean values. For precipitation, data output consisted of daily, hourly, and 5-minute totals. Soil-moisture data included periodic measurements of soil-water content at nine neutron-probe access tubes with measurable depths ranging from 5.25 to 29.75 meters. The computer data files included in this report contain the complete micrometeorological and soil-moisture data sets. The computer data consists of seven files with about 14 megabytes of information. The seven files are in tabular format: (1) one file lists daily mean, maximum, and minimum micrometeorological data and daily total precipitation; (2) three files list hourly mean micrometeorological data and hourly precipitation for each year (1998-2000); (3) one file lists 5-minute precipitation data; (4) one file lists mean soil-water content by date and depth at four experimental sites; and (5) one file lists soil-water content by date and depth for each neutron-probe access tube. This report highlights selected data contained in the computer data files using figures, tables, and brief discussions. Instrumentation used for data collection also is described. Water-content profiles are shown to demonstrate variability of water content with depth. Time-series data are plotted to illustrate temporal variations in micrometeorological and soil-water content data. Substantial precipitation at the end of an El Ni?o cycle in early 1998 resulted in measurable water penetration to a depth of 1.25 meters at one of the four experimental soil-monitoring sites.
Inverse geothermal modelling applied to Danish sedimentary basins
NASA Astrophysics Data System (ADS)
Poulsen, Søren E.; Balling, Niels; Bording, Thue S.; Mathiesen, Anders; Nielsen, Søren B.
2017-10-01
This paper presents a numerical procedure for predicting subsurface temperatures and heat-flow distribution in 3-D using inverse calibration methodology. The procedure is based on a modified version of the groundwater code MODFLOW by taking advantage of the mathematical similarity between confined groundwater flow (Darcy's law) and heat conduction (Fourier's law). Thermal conductivity, heat production and exponential porosity-depth relations are specified separately for the individual geological units of the model domain. The steady-state temperature model includes a model-based transient correction for the long-term palaeoclimatic thermal disturbance of the subsurface temperature regime. Variable model parameters are estimated by inversion of measured borehole temperatures with uncertainties reflecting their quality. The procedure facilitates uncertainty estimation for temperature predictions. The modelling procedure is applied to Danish onshore areas containing deep sedimentary basins. A 3-D voxel-based model, with 14 lithological units from surface to 5000 m depth, was built from digital geological maps derived from combined analyses of reflection seismic lines and borehole information. Matrix thermal conductivity of model lithologies was estimated by inversion of all available deep borehole temperature data and applied together with prescribed background heat flow to derive the 3-D subsurface temperature distribution. Modelled temperatures are found to agree very well with observations. The numerical model was utilized for predicting and contouring temperatures at 2000 and 3000 m depths and for two main geothermal reservoir units, the Gassum (Lower Jurassic-Upper Triassic) and Bunter/Skagerrak (Triassic) reservoirs, both currently utilized for geothermal energy production. Temperature gradients to depths of 2000-3000 m are generally around 25-30 °C km-1, locally up to about 35 °C km-1. Large regions have geothermal reservoirs with characteristic temperatures ranging from ca. 40-50 °C, at 1000-1500 m depth, to ca. 80-110 °C, at 2500-3500 m, however, at the deeper parts, most likely, with too low permeability for non-stimulated production.
NASA Technical Reports Server (NTRS)
Rosenberger, Franz
1993-01-01
A scintillation method was developed for determinations of the temperature dependence of the solubility, and of nucleation induction times of proteins, in 50-100 mu(l) volumes of solution. Solubility data for lysozyme and horse serum albumin were obtained for various combinations of pH and precipitant concentrations. These data and the nucleation induction information were used for dynamic crystallization control, that is, for the controlled separation of nucleation and growth stages. Individual lysozyme and horse serum albumin crystals were grown in 15-20 mu(l) solution volumes contained in x-ray capillaries. The morphology and kinetics of the growth and dissolution of lysozyme in aqueous solutions with 2.5 percent NaCl and at pH = 4.5 was studied in situ with a depth resolution of 300 A (4 unit cells) by high resolution optical microscopy and digital image processing. The bulk super- or under saturation, sigma, of the solution inside a closed growth cell was controlled by temperature. The growth habit was bound by (110) and (101) faces that grew through layer spreading, although with different growth rate dependencies on supersaturation/temperature. At sigma less than 10 (obtained at higher temperatures) growth was purely kinetic ally controlled, with impurity effects (macrostep formation and kinetic hindrance) becoming significant for sigma less than 2. At sigma greater than 10 (lower temperatures), anisotropies in the interfacial kinetics were more pronounced, with interfacial kinetics and bulk transport becoming equally important to the growth morphology. Growth rates were growth history dependent. The formation of striations (layers of irregularly incorporated solution) was unambiguously correlated with growth temperature variations. Etching exposed dislocations and various high-index faces whose growth morphologies were studied during return to the steady state growth form. Growth steps were observed to originate from two-dimensional nuclei or from outcrops of growth striations, and from dislocations that preferentially formed in growth sector boundaries.
NASA Astrophysics Data System (ADS)
Feng, Qiang; She, Jia; Xiang, Yong; Wu, Xianyun; Wang, Chengxi; Jiang, Chuanhai
The depth profiles of residual stresses and lattice parameters in the surface layers of shot peened duplex stainless steel at elevated temperature were investigated utilizing X-ray diffraction analysis. At each deformation depth, residual stress distributions in both ferrite and austenite were studied by X-ray diffraction stress analysis which is performed on the basis of the sin2ψ method and the lattice parameters were explored by Rietveld method. The results reveal that difference changes of depth residual compressive stress profiles between ferrite and austenite under the same annealing condition are resulted from the diverse coefficient of thermal expansion, dislocation density, etc. for different phases in duplex stainless steel. The relaxations of depth residual stresses in austenite are more obvious than those in ferrite. The lattice parameters decrease in the surface layer with the extending of annealing time, however, they increase along the depth after annealing for 16min. The change of the depth lattice parameters can be ascribed to both thermal expansion and the relaxation of residual stress. The different changes of microstructure at elevated temperature between ferrite and austenite are discussed.
NASA Astrophysics Data System (ADS)
Wang, Qingfeng; Jin, Huijun; Zhang, Tingjun; Cao, Bin; Peng, Xiaoqing; Wang, Kang; Xiao, Xiongxin; Guo, Hong; Mu, Cuicui; Li, Lili
2017-09-01
Observation data of the hydrothermal processes in the active layer are vital for the verification of permafrost formation and evolution, eco-hydrology, ground-atmosphere interactions, and climate models at various time and spatial scales. Based on measurements of ground temperatures in boreholes, of temperatures and moisture contents of soils in the active layer, and of the mean annual air temperatures at the Qilian, Yeniugou and Tuole meteorological stations in the upper Heihe River Basin (UHRB) and the adjacent areas, a series of observations were made concerning changes in the lower limit of permafrost (LLP) and the related hydrothermal dynamics of soils in the active layer. Because of the thermal diode effect of peat soils, the LLP (at 3600 m) was lower on the northern slope of the Eboling Mountains at the eastern branch of the UHRB than that (at 3650-3700 m) on the alluvial plain at the western branch of the UHRB. The mean temperature of soils at depths of 5 to 77 cm in the active layer on peatlands was higher during periods with subzero temperatures and lower during periods with above-zero temperatures in the vicinity of the LLP on the northern slope of the Eboling Mountains than those at the LLP at the western branch of the UHRB. The thawing and downward freezing rates of soils in the active layer near the LLP on the northern slope of the Eboling Mountains were 0.2 and 1.6 times those found at the LLP at the western branch of the UHRB. From early May to late August, the soil water contents at the depths of 20 to 60 cm in the active layer near the LLP on the northern slope of the Eboling Mountains were significantly lower than those found at the LLP at the western branch of the UHRB. The annual ranges of soil temperatures (ARSTs), mean annual soil temperatures (MASTs) in the active layer on peatlands, and the mean annual ground temperature (MAGT) at a depth of 14 m of the underlying permafrost were all significantly lower near the LLP on the northern slope of the Eboling Mountains. Moreover, the thermophysical properties of peat soils and high moisture contents in the active layer on peatlands resulted in the lower soil temperatures in the active layer close to the LLP on the northern slope of the Eboling Mountains than those found at the LLP at the western branch of the UHRB in the warm season, especially at the deeper depths (20-77 cm). They also resulted in the smaller freezing index (FI) and thawing index (TI) and larger FI/TI ratios of soils at the depths of 5 to 77 cm in the active layer near the LLP on the northern slope of the Eboling Mountains. In short, peatlands have unique thermophysical properties for reducing heat absorption in the warm season and for limiting heat release in the cold season as well. However, the permafrost zone has shrunk by 10-20 km along the major highways at the western branch of the UHRB since 1985, and a medium-scale retrogressive slump has occurred on the peatlands on the northern slope of the Eboling Mountains in recent decades. The results can provide basic data for further studies of the hydrological functions of different landscapes in alpine permafrost regions. Such studies can also enable evaluations and forecasts the hydrological impacts of changing frozen ground in the UHRB and of other alpine mountain regions in West China.
Snowpack monitoring in North America and Eurasia using passive microwave satellite data
NASA Technical Reports Server (NTRS)
Foster, J. L.; Rango, A.; Hall, D. K.; Chang, A. T. C.; Allison, L. J.; Diesen, B. C., III
1980-01-01
Areas of the Canadian high plains, the Montana and North Dakota high plains, and the steppes of central Russia have been studied in an effort to determine the utility of spaceborne microwave radiometers for monitoring snow depths in different geographic areas. Significant regression relationships between snow depth and microwave brightness temperatures were developed for each of these homogeneous areas. In each of the study areas investigated in this paper, Nimbus-6 (0.81 cm) ESMR data produced higher correlations than Nimbus-5 (1.55 cm) ESMR data in relating microwave brightness temperature to snow depth. It is difficult to extrapolate relationships between microwave brightness temperature and snow depth from one area to another because different geographic areas are likely to have different snowpack conditions.
Variability of the subtropical mode water in the Southwest Pacific
NASA Astrophysics Data System (ADS)
Fernandez, Denise; Sutton, Philip; Bowen, Melissa
2017-09-01
The variability of Subtropical Mode Water (STMW) in the Southwest Pacific is investigated using a 28 year-long time series (1986-2014) of high-resolution expendable bathythermograph data north of New Zealand (PX06) and a shorter time series, the Roemmich-Gilson monthly Argo optimal interpolation for the 2004-2014 period. The variability in STMW inventories is compared to the variability in air-sea heat fluxes, mixed layer depths and transport of the East Auckland Current (EAUC) to assess both the atmospheric and oceanic roles influencing the formation and decay of STMW. The STMW north of New Zealand has a short lifespan with little persistence of the water mass from 1 year to the next one. Deeper mixed layers and negative anomalies in surface heat fluxes are correlated with increased formation of STMW. The heat content of the STMW layer is anticorrelated with inventories, particularly during the El Niño years. This suggests that large volumes of STMW are coincident with cooler conditions in the prior winter and less oceanic heat storage. There is significant seasonal and interannual variability in STMW inventories, however there are no trends in STMW properties, including its core layer temperature over the last decade. The variability of the winter EAUC transport is highly correlated with the STMW inventories and thermocline depth in the following spring, suggesting ocean dynamics deepen the thermocline and precondition for deeper mixed layers.
New constrains on the thermal history of the Miocene Jarando basin (Southern Serbia)
NASA Astrophysics Data System (ADS)
Andrić, Nevena; Životić, Dragana; Fügenschuh, Bernhard; Cvetković, Vladica
2013-04-01
The Jarando basin, located in the internal Dinarides, formed in the course of the Miocene extension affecting the whole Alpine-Carpathian-Dinaride system (Schmid et al., 2008). In the study area Miocene extension led to the formation of a core-complex in the Kopaonik area (Schefer et al., 2011) with the Jarando basin located in the hanging wall of the detachment fault. The Jarando basin is characterized by the presence of bituminous coals, whereas in the other intramontane basins in Serbia coalification did not exceed the subbituminous stage within the same stratigraphic level. Furthermore, the basin hosts boron mineralizations (borates and howlite) and a magnesite deposit, which again implies elevated temperatures. This thermal overprint is possibly due to post-magmatic activity related to the emplacement of Oligocene I-type Kopaonik and Miocene S-type Polumir granitoid (Schefer et al., 2011.). This research project is aimed at providing new information about the thermal history of the Jarando basin. Fifteen core samples from three boreholes and 10 samples from the surrounding outcrops were processed for apatite fission-track analysis. Additionally, vitrinite reflectance was measured for 11 core samples of shales from one borehole and 5 samples of coal from an underground mine. VR data of Early to Middle Miocene sediments reveal a strong post-depositional overprint. Values increase with the depth from 0.66-0.79% to 0.83-0.90%. Thus organic matter reached the bituminous stage and experienced temperatures of around 110-120˚C (Barker and Pawlewicz, 1994). FT single grain ages for apatite scatter between 45 Ma to 10 Ma with a general trend towards younger ages with depth. Both, the spread in single grain ages together with the bimodal track lengths distribution clearly point to partial annealing of the detrital apatites. With the temperature given from the VR values the partial annealing points to a rather short-lived thermal event. This is assisted by thermal modelling of our fission track data indicating that maximum temperatures of <120°C around 15-12 Ma. We correlate the thermal event with the extension and core-complex formation followed by the syn-extensional intrusion of the Polumir granite. Later cooling from 10 Ma onwards is related to basin inversion and erosion.
Formation Timescales of Amosphous Rims on Lunar Grains Derived from ARTEMIS Observations
NASA Technical Reports Server (NTRS)
Poppe, A. R.; Farrell, W. M.; Halekas, Jasper S.
2018-01-01
The weathering of airless bodies exposed to space is a fundamental process in the formation and evolution of planetary surfaces. At the Moon, space weathering induces a variety of physical, chemical, and optical changes including the formation of nanometer-sized amorphous rims on individual lunar grains. These rims are formed by vapor redeposition from micrometeoroid impacts and ion irradiation-induced amorphization of the crystalline matrix. For ion irradiation-induced rims, however, laboratory experiments of the depth and formation timescales of these rims stand in stark disagreement with observations of lunar soil grains. We use observations by the Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) spacecraft in orbit around the Moon to compute the mean ion flux to the lunar surface between 10 eV and 5 MeV and convolve this flux with ion irradiation-induced vacancy production rates as a function of depth calculated using the Stopping Range of Ions in Matter model. By combining these results with laboratory measurements of the critical fluence for charged-particle amorphization in olivine, we can predict the formation timescale of amorphous rims as a function of depth in olivinic grains. This analysis resolves two outstanding issues: (1) the provenance of >100 nm amorphous rims on lunar grains and (2) the nature of the depth-age relationship for amorphous rims on lunar grains.
Formation Timescales of Amorphous Rims on Lunar Grains Derived From ARTEMIS Observations
NASA Astrophysics Data System (ADS)
Poppe, A. R.; Farrell, W. M.; Halekas, J. S.
2018-01-01
The weathering of airless bodies exposed to space is a fundamental process in the formation and evolution of planetary surfaces. At the Moon, space weathering induces a variety of physical, chemical, and optical changes including the formation of nanometer-sized amorphous rims on individual lunar grains. These rims are formed by vapor redeposition from micrometeoroid impacts and ion irradiation-induced amorphization of the crystalline matrix. For ion irradiation-induced rims, however, laboratory experiments of the depth and formation timescales of these rims stand in stark disagreement with observations of lunar soil grains. We use observations by the Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) spacecraft in orbit around the Moon to compute the mean ion flux to the lunar surface between 10 eV and 5 MeV and convolve this flux with ion irradiation-induced vacancy production rates as a function of depth calculated using the Stopping Range of Ions in Matter model. By combining these results with laboratory measurements of the critical fluence for charged-particle amorphization in olivine, we can predict the formation timescale of amorphous rims as a function of depth in olivinic grains. This analysis resolves two outstanding issues: (1) the provenance of >100 nm amorphous rims on lunar grains and (2) the nature of the depth-age relationship for amorphous rims on lunar grains.
NASA Technical Reports Server (NTRS)
Eagleman, J. R.; Pogge, E. C.; Moore, R. K. (Principal Investigator); Hardy, N.; Lin, W.; League, L.
1974-01-01
The author has identified the following significant results. Skylab 2 data for June 5, 1973 (Texas site) relates favorably with previously calculated aircraft data when correlating brightness temperature to soil moisture. However, more detailed work is needed to determine the corrected surface temperature. In addition, correlations between the S194 antenna temperature and soil moisture have been obtained for five sets of Skylab data. The best correlations were obtained for the surface to one inch depth in four cases and for surface to two inches depth for the fifth case. Correlation coefficients for the surface to one inch depth were -0.98, -0.95, -0.90, -0.82, and -0.80.
An assessment on CO2 geosequestration in deep saline formations in the Taihsi Basin, central Taiwan
NASA Astrophysics Data System (ADS)
Cai, Mo-Si; Lin, Andrew T.; Fan, Jhen-Huei
2015-04-01
Geological storage of carbon dioxide (CO2) is to inject and store a large amount of anthropogenic CO2 in deep and sealed porous rocks in order to mitigate the aggravated threat of global climate changes. Borehole and reflection seismic data are used to understand the spatial distribution of suitable CO2 reservoirs and cap rocks in the Taihsi Basin, central Taiwan, where the level of seismicity is low. The Taihsi Basin was a rift basin during the Paleocene to Eocene, followed by a phase of post-rift subsidence during late Oligocene to late Miocene. The loading of the Taiwan mountain belt since late Miocene has turned the Taihsi Basin into a peripheral foreland basin, with strata gently dipping toward the mountain belts in the east. The coastal plain in central Taiwan (Changhua and Yunlin Counties) and its adjacent offshore areas are close to major CO2 emission sources and no active geological structures are found in these areas, making the study area a favorable CO2 storage site. Spatial distribution of formation thickness and depth for CO2 reservoirs and cap rocks indicates three CO2 storage systems existed in the study area. They are: (1) late Miocene to Pliocene Nanchuang Formation and Kueichulin Formation (reservoirs)-Chinshui Shale (seals) system (hereafter abbreviated as NK-C system), (2) early to middle Miocene Shihti Formation and Peiliao Formation (reservoirs)-Talu Shale (seals) system (SP-T system), (3) early Miocene Mushan Formation (reservoirs)-Piling Shale (seals) system (M-P system). The NK-C system contains multiple layers of porous sandstones from Nanchuang and Kueichulin formations, with total thickness around 210-280 m. In the vicinity of the northern bank of the Jhuoshuei River, reservoir top reaches a depth around 1850 m, with 60 m thick seal formation, the Chinshui Shale. However, the Chinshui Shale becomes sand-prone in the Changhua coastal and nearshore areas due to facies changes. The SP-T system consists of two porous sandstone layers from the Peiliao Formation and the underlying Shihti Formation, with thickness spanning in the range of 30-60 m and 40-60 m, respectively. Reservoir top reaches a depth around 2200 m, with average 150 m thick seal formation, the Talu Shale, in the vicinity of the northern bank of the Jhuoshuei River. The M-P system contains multiple layers of porous sandstones from Mushan Formation, with total thickness around 150-300 m. In the vicinity of the northern bank of the Jhuoshuei River and the southern bank of the Wu River, reservoir top reaches a depth around 2700 m and over 3000 m respectively, with 80-150 m thick seal formation, the Piling Shale. However, Mushan Formation thins southwardly toward the Peikang High and is locally absent in the vicinity of the southern bank of the Jhuoshuei River. For the NK-C system, although it contains thick reservoirs the seal formation (i.e. the Chinshui Shale) becomes sand-prone due to facies changes, leading to a higher risk of sealing capability. For the SP-T and M-P systems, both reservoirs and seals are all thick enough to contain injected CO2, excluding a local area in the vicinity of southern bank of the Jhuoshuei River, where reservoir is absent for the M-P system. In addition, north of the study area and close to the Wu River, reservoirs for the M-P system reach a depth more than 3000 m, a depth too deep for storing CO2 economically. Our results indicate that the SP-T system is the most prominent option for CO2 geosequestration in terms of depths and formation thicknesses, with M-P and NK-C systems as alternative ones, respectively.
NASA Astrophysics Data System (ADS)
Duarte, L. C.; Hartmann, L. A.; Vasconcellos, M. A. Z.; Medeiros, J. T. N.; Theye, T.
2009-07-01
Giant geodes (up to 4 m long) in the massive central portions of altered basalt lavas from the Paraná Magmatic Province, southern Brazil and Uruguay, form a world-class source of amethyst and agate. Although the origin of the cavities has been ascribed to degassing of the lava at > 1150 °C, field evidence is conclusive that the giant amethyst-agate-filled geodes were formed by hydrothermal processes at low temperatures. We propose an epigenetic and hydrothermal model for the origin of giant geodes. This model includes hydrothermal brecciation during an early brittle stage and the late formation of the cavities (geodes). In the brittle stage an overpressured aqueous fluid affected the basalt in a P, T field delimited by temperatures between 100 and 150 °C and vapor pressures between 1.2 and 5.5 bar. The fluids were capable of lifting the roof and fracturing the host rock along new subhorizontal and subvertical fractures and breccias in the massive lava. The formation of these structures occurred at shallow depths, unit-by-unit. To open the cavities, dissolution of the now altered basalt to clay minerals is necessary. The process is closely linked to the highest alteration grade of mineralized lavas in Los Catalanes gemological district. Dissolution processes are observed in micrometer-scale in the studied basalts. The primary mineralogy, consisting of labradorite (± andesine) +augite + pigeonite + mesostasis (K-rich), was altered during the interaction of large volumes of hot aqueous fluid with the rock. The alteration of pigeonite and its replacement by smectite is observed around the cavities, followed by the precipitation of amorphous silica and microcrystalline quartz in clay-rich sites. Associated zeolites (heulandite + clinoptilolite) fill the newly formed cavities in progressive stages of hydrothermal alteration. Our data indicate that the temperatures were less than 200 °C and probably less than 150 °C; cavity formation occurred after alteration of the basalt to more than 60 vol.% clay minerals. We thus suggest that cavities related to geode formation are of epigenetic origin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leenaarts, J.; Pereira, T. M. D.; Carlsson, M.
NASA's Interface Region Imaging Spectrograph (IRIS) small explorer mission will study how the solar atmosphere is energized. IRIS contains an imaging spectrograph that covers the Mg II h and k lines as well as a slit-jaw imager centered at Mg II k. Understanding the observations requires forward modeling of Mg II h and k line formation from three-dimensional (3D) radiation-magnetohydrodynamic (RMHD) models. This paper is the second in a series where we undertake this modeling. We compute the vertically emergent h and k intensity from a snapshot of a dynamic 3D RMHD model of the solar atmosphere, and investigate whichmore » diagnostic information about the atmosphere is contained in the synthetic line profiles. We find that the Doppler shift of the central line depression correlates strongly with the vertical velocity at optical depth unity, which is typically located less than 200 km below the transition region (TR). By combining the Doppler shifts of the h and k lines we can retrieve the sign of the velocity gradient just below the TR. The intensity in the central line depression is anti-correlated with the formation height, especially in subfields of a few square Mm. This intensity could thus be used to measure the spatial variation of the height of the TR. The intensity in the line-core emission peaks correlates with the temperature at its formation height, especially for strong emission peaks. The peaks can thus be exploited as a temperature diagnostic. The wavelength difference between the blue and red peaks provides a diagnostic of the velocity gradients in the upper chromosphere. The intensity ratio of the blue and red peaks correlates strongly with the average velocity in the upper chromosphere. We conclude that the Mg II h and k lines are excellent probes of the very upper chromosphere just below the TR, a height regime that is impossible to probe with other spectral lines. They also provide decent temperature and velocity diagnostics of the middle chromosphere.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobson, Patrick; Houseworth, James
2013-11-22
The objective of this report is to build upon previous compilations of shale formations within many of the major sedimentary basins in the US by developing GIS data delineating isopach and structural depth maps for many of these units. These data are being incorporated into the LANL digital GIS database being developed for determining host rock distribution and depth/thickness parameters consistent with repository design. Methods were developed to assess hydrological and geomechanical properties and conditions for shale formations based on sonic velocity measurements.
ICOADS: A Foundational Database with a new Release
NASA Astrophysics Data System (ADS)
Angel, W.; Freeman, E.; Woodruff, S. D.; Worley, S. J.; Brohan, P.; Dumenil-Gates, L.; Kent, E. C.; Smith, S. R.
2016-02-01
The International Comprehensive Ocean-Atmosphere Data Set (ICOADS) offers surface marine data spanning the past three centuries and is the world's largest collection of marine surface in situ observations with approximately 300 million unique records from 1662 to the present in a common International Maritime Meteorological Archive (IMMA) format. Simple gridded monthly summary products (including netCDF) for 2° latitude x 2° longitude boxes back to 1800 and 1° x 1° boxes since 1960 are computed for each month. ICOADS observations made available in the IMMA format are taken primarily from ships (merchant, ocean research, fishing, navy, etc.) and moored and drifting buoys. Each report contains individual observations of meteorological and oceanographic variables, such as sea surface and air temperatures, winds, pressure, humidity, wet bulb, dew point, ocean waves and cloudiness. A monthly summary for an area box includes ten statistics (e.g. mean, median, standard deviation, etc.) for 22 observed and computed variables (e.g. sea surface and air temperature, wind, pressure, humidity, cloudiness, etc.). ICOADS is the most complete and heterogeneous collection of surface marine data in existence. A major new historical update, Release 3.0 (R3.0), now in production (with availability anticipated in mid-2016) will contain a variety of important updates. These updates will include unique IDs (UIDs), new IMMA attachments, ICOADS Value-Added Database (IVAD), and numerous new or improved historical and contemporary data sources. UIDs are assigned to each individual marine report, which will greatly facilitate interaction between users and data developers, and affords record traceability. A new Near-Surface Oceanographic (Nocn) attachment has been developed to include oceanographic profile elements, such as sea surface salinity, sea surface temperatures, and their associated measurement depths. Additionally, IVAD allows a feedback mechanism of data adjustments which can be stored within each IMMA report. R3.0 includes near-surface ocean profile measurements from sources such as the World Ocean Database (WOD), Shipboard Automated Meteorological and Oceanographic System (SAMOS), as well as many others. An in-depth look at the improvements and the data inputs planned for R3.0 will be further discussed.
NASA Astrophysics Data System (ADS)
Cleroux, C.; deMenocal, P.; Arbuszewski, J.; Linsley, B.
2012-04-01
The subtropical cells are shallow meridional overturning circulations driven by the atmospheric circulation and the deep thermohaline circulation. They connect the mid-latitude and the tropic, release latten heat to the atmosphere and impact climate on decadal to longer time scale. The upper water column temperature and salinity structures of the ocean reflect this circulation. We present proxies to study these past structures. We performed stable oxygen isotope (δ18O) and trace element ratio measurements on one surface-dwelling (G. ruber)1 and six deep-dwelling planktonic foraminifera species (N. dutertrei, G. inflata, G. tumida, G. truncatulinoides, G. hirsuta and G. crassaformis) on 66 coretops spanning from 35°N to 20°S along the Mid-Atlantic ridge. Comparison between measured δ18O and predicted δ18O (using water column temperature and seawater δ18O), shows that N. dutertrei, G. tumida, G. hirsuta and G. crassaformis keep the same apparent calcification depth along the transect (respectively: 125m, 150m, 700m and 800m). Calcification at two depth levels was also tested. For the six deep-dwelling species, we establish Mg/Ca-temperature calibrations with both atlas temperature at the calcification depth and isotopic temperature. We present Mg/Ca-temperature equations for species previously very poorly calibrated. The δ18O and temperature (Mg/Ca derived) on the six planktonic foraminifera species faithfully reproduce the modern water column structure of the upper 800 m depth, establishing promising proxies for past subsurface reconstruction. 1 Arbuszewski, J. J., P. B. deMenocal, A. Kaplan, and C. E. Farmer (2010), On the fidelity of shell-derived δ18Oseawater estimates, Earth and Planetary Science Letters, 300(3-4), 185-196.
NASA Astrophysics Data System (ADS)
Dupuy, John L.; Lewis, Steven P.; Stancil, P. C.
2016-11-01
Gas-grain and gas-phase reactions dominate the formation of molecules in the interstellar medium (ISM). Gas-grain reactions require a substrate (e.g., a dust or ice grain) on which the reaction is able to occur. The formation of molecular hydrogen (H2) in the ISM is the prototypical example of a gas-grain reaction. In these reactions, an atom of hydrogen will strike a surface, stick to it, and diffuse across it. When it encounters another adsorbed hydrogen atom, the two can react to form molecular hydrogen and then be ejected from the surface by the energy released in the reaction. We perform in-depth classical molecular dynamics simulations of hydrogen atoms interacting with an amorphous water-ice surface. This study focuses on the first step in the formation process; the sticking of the hydrogen atom to the substrate. We find that careful attention must be paid in dealing with the ambiguities in defining a sticking event. The technical definition of a sticking event will affect the computed sticking probabilities and coefficients. Here, using our new definition of a sticking event, we report sticking probabilities and sticking coefficients for nine different incident kinetic energies of hydrogen atoms [5-400 K] across seven different temperatures of dust grains [10-70 K]. We find that probabilities and coefficients vary both as a function of grain temperature and incident kinetic energy over the range of 0.99-0.22.
Super-deep diamond genesis at Redox conditions of slab-mantle boundary
NASA Astrophysics Data System (ADS)
Gao, J.; Chen, B.; Wu, X.
2017-12-01
Diamond genesis is an intriguing issue for diamond resources and the deep carbon cycle of the Earth's interiors. Super-deep diamonds, representing only 6% of the global diamond population, often host inclusions with phase assemblages requiring a sublithospheric origin (>300 km). Being the windows for probing the deep Earth, super-deep diamonds with their distinctive micro-inclusions not only record a history of oceanic lithosphere subduction and upward transport at a depth of >250 km to even 1000 km, but indicate their genesis pertinent to mantle-carbonate melts in a Fe0-bufferred reduced condition. Our pilot experiments have evidenced the formation of diamonds from MgCO3-Fe0 system in a diamond anvil cell device at 25 GPa and 1800 K. Detailed experimental investigations of redox mechanism of MgCO3-Fe0 and CaCO3-Fe0 coupling have been conducted using multi-anvil apparatus. The conditions are set along the oceanic lithosphere subduction paths in the pressure-temperature range of 10-24 GPa and 1200-2000 K, covering the formation region of most super-deep diamonds. The clear reaction zones strongly support the redox reaction between carbonatitic slab and Fe0-bearing metals under mantle conditions. Our study has experimentally documented the possibility of super-deep diamond genesis at redox conditions of carbonateitic slab and Fe0-bearings. The kinetics of diamond formation as a function of pressure-temperature conditions are also discussed.
Penetration depth of MgB2 measured using Josephson junctions and SQUIDs
NASA Astrophysics Data System (ADS)
Cunnane, Daniel; Zhuang, Chenggang; Chen, Ke; Xi, X. X.; Yong, Jie; Lemberger, T. R.
2013-02-01
The penetration depth of MgB2 was measured using two methods of different mechanisms. The first method used MgB2 Josephson junctions and the magnetic field dependence of the junction critical current. The second method deduced the penetration depth from the inductance of a MgB2 microstrip used to modulate the voltage of a MgB2 DC SQUID. The two methods showed a consistent value of the low-temperature penetration depth for MgB2 to be about 40 nm. Both the small penetration depth value and its temperature dependence are in agreement with a microscopic theory for MgB2 in the clean limit.
NASA Astrophysics Data System (ADS)
Karan, S.; Sebok, E.; Engesgaard, P. K.
2016-12-01
For identifying groundwater seepage locations in small streams within a headwater catchment, we present a method expanding on the linear regression of air and stream temperatures. Thus, by measuring the temperatures in dual-depth; in the stream column and at the streambed-water interface (SWI), we apply metrics from linear regression analysis of temperatures between air/stream and air/SWI (linear regression slope, intercept and coefficient of determination), and the daily mean temperatures (temperature variance and the average difference between the minimum and maximum daily temperatures). Our study show that using metrics from single-depth stream temperature measurements only are not sufficient to identify substantial groundwater seepage locations within a headwater stream. Conversely, comparing the metrics from dual-depth temperatures show significant differences so that at groundwater seepage locations, temperatures at the SWI, merely explain 43-75 % of the variation opposed to ≥91 % at the corresponding stream column temperatures. The figure showing a box-plot of the variation in daily mean temperature depict that at several locations there is great variation in the range the upper and lower loggers due to groundwater seepage. In general, the linear regression show that at these locations at the SWI, the slopes (<0.25) and intercepts (>6.5oC) are substantially lower and higher, while the mean diel amplitudes (<0.98oC) are decreased compared to remaining locations. The dual-depth approach was applied in a post-glacial fluvial setting, where metrics analyses overall corresponded to field measurements of groundwater fluxes deduced from vertical streambed temperatures and stream flow accretions. Thus, we propose a method reliably identifying groundwater seepage locations along streambed in such settings.
NASA Astrophysics Data System (ADS)
Ebbs, L. M.; Taneva, L.; Sullivan, P.; Welker, J. M.
2009-12-01
Changes in the precipitation and temperature regimes in Northern Alaska are manifesting themselves through shifts in sea ice, vegetation traits, animal migration timing and hydrologic dynamics. Changes in precipitation and soil temperature result in changes in plant mineral nutrition, soil nutrient availability, trace gas exchanges and differential nutrient acquisition strategies by arctic plants. In this study, we report on the extent to which long-term increases in snow depth, along with reductions in snow depth alter the magnitudes and pattern of CO2 exchange, soil properties and vegetation traits. A doubling of snow depth (from ~0.5 to ~1.0m) results in a delay of the growing season by ~ 2 weeks, however, by peak season, the rates of CO2 exchange are 50% higher in areas which had experienced deeper snow depth levels. To the contrary, long-term reductions in snow depth results in accelerated rates of plant phenology, however CO2 exchange rates at peak season are 30% less than those areas under ambient snow cover in the preceding winter. Reduced snow depth areas had the coldest winter soil temperatures while the deeper areas had the warmest winter soil temperatures, which may partially explain the summer CO2 fluxes indirectly via different rates of winter N mineralization and differences in leaf N properties. Our results indicate that shifting fall, winter and spring when snow is the primary form of precipitation, may have profound effects on tussock tundra systems.
NASA Astrophysics Data System (ADS)
Korkin, S.; Talyneva, O.; Kail, E.
2018-03-01
In the presented work we consider mire landscapes in the context of temperature monitoring. The mire landscapes in engineering development of the territory are very sensitive to anthropogenic impact that leads to a change in surface conditions, changes in natural succession and, as a rule, to changes in soil temperature and properties, which in turn may develop a complex of hostile geodynamic processes. For this study we used recording systems for field measurement of peat and subsoil temperatures. The measurements were made in two key areas: the territory of the north-taiga landscapes of Western Siberia (the Siberian Ridges), and the territory of the middle-taiga landscapes of Western Siberia (the Ob middle-river lowland). The paper analyses the data obtained from five observation sites (3, 5, 5a, 6 and 8) referred to hydromorphic landscapes. For the territory of the Siberian Ridges the 5-year average soil temperature was 3°C. For the Ob middle-river lowland the 6-year average soil temperature was 4.2°C. The annual soil temperature in the period 2015-2016 for Site 5a (man-disturbed area) was 8.3°C at all depths, which is 3.8°C higher than in a natural bog (Site 5 was a control area).
In situ determination of heat flow in unconsolidated sediments
Sass, J.H.; Kennelly, J.P.; Wendt, W.E.; Moses, T.H.; Ziagos, J.P.
1979-01-01
Subsurface thermal measurements are the most effective, least ambiguous tools for identifying and delineating possible geothernml resources. Measurements of thermal gradient in the upper few tens of meters generally are sufficient to outline the major anomalies, but it is always desirable to combine these gradients with reliable estimates of thermal conductivity to provide data on the energy flux and to constrain models for the heat sources responsible for the observed, near-surface thermal anomalies. The major problems associated with heat-flow measurements in the geothermal exploration mode are concerned with the economics of casing and/or grouting holes, the repeated site visits necessary to obtain equilibrium temperature values, the possible legal liability associated with the disturbance of underground aquifers, the surface hazards presented by pipes protruding from the ground, and the security problems associated with leaving cased holes open for periods of weeks to months. We have developed a technique which provides reliable 'real-time' determinations of temperature, thermal conductivity, and hence, of heat flow during the drilling operation in unconsolidated sediments. A combined temperature, gradient, and thermal conductivity experiment can be carried out, by driving a thin probe through the bit about 1.5 meters into the formation in the time that would otherwise be required for a coring trip. Two or three such experiments over the depth range of, say, 50 to 150 meters provide a high-quality heat-flow determination at costs comparable to those associated with a standard cased 'gradient hole' to comparable depths. The hole can be backfilled and abandoned upon cessation of drilling, thereby eliminating the need for casing, grouting, or repeated site visits.
NASA Astrophysics Data System (ADS)
Dong, Shenfu; Volkov, Denis; Goni, Gustavo; Lumpkin, Rick; Foltz, Gregory R.
2017-07-01
Three surface drifters equipped with temperature and salinity sensors at 0.2 and 5 m depths were deployed in April/May 2015 in the subtropical South Pacific with the objective of measuring near-surface salinity differences seen by satellite and in situ sensors and examining the causes of these differences. Measurements from these drifters indicate that water at a depth of 0.2 m is about 0.013 psu fresher than at 5 m and about 0.024°C warmer. Events with large temperature and salinity differences between the two depths are caused by anomalies in surface freshwater and heat fluxes, modulated by wind. While surface freshening and cooling occurs during rainfall events, surface salinification is generally observed under weak wind conditions (≤4 m/s). Further examination of the drifter measurements demonstrates that (i) the amount of surface freshening and strength of the vertical salinity gradient heavily depend on wind speed during rain events, (ii) salinity differences between 0.2 and 5 m are positively correlated with the corresponding temperature differences for cases with surface salinification, and (iii) temperature exhibits a diurnal cycle at both depths, whereas the diurnal cycle of salinity is observed only at 0.2 m when the wind speed is less than 6 m/s. The amplitudes of the diurnal cycles of temperature at both depths decrease with increasing wind speed. The mean diurnal cycle of surface salinity is dominated by events with winds less than 2 m/s.
NASA Astrophysics Data System (ADS)
Dong, S.; Volkov, D.; Goni, G. J.; Lumpkin, R.; Foltz, G. R.
2017-12-01
Three surface drifters equipped with temperature and salinity sensors at 0.2 m and 5 m depths were deployed in April/May 2015 in the subtropical South Pacific with the objective of measuring near-surface salinity differences seen by satellite and in situ sensors and examining the causes of these differences. Measurements from these drifters indicate that water at a depth of 0.2 m is about 0.013 psu fresher than at 5 m and about 0.024°C warmer. Events with large temperature and salinity differences between the two depths are caused by anomalies in surface freshwater and heat fluxes, modulated by wind. While surface freshening and cooling occurs during rainfall events, surface salinification is generally observed under weak wind conditions (≤4 m/s). Further examination of the drifter measurements demonstrates that (i) the amount of surface freshening and strength of the vertical salinity gradient heavily depend on wind speed during rain events, (ii) salinity differences between 0.2 m and 5 m are positively correlated with the corresponding temperature differences for cases with surface salinification, and (iii) temperature exhibits a diurnal cycle at both depths, whereas the diurnal cycle of salinity is observed only at 0.2 m when the wind speed is less than 6 m/s. The amplitudes of the diurnal cycles of temperature at both depths decrease with increasing wind speed. The mean diurnal cycle of surface salinity is dominated by events with winds less than 2 m/s.
Gravity, depth to consolidated rock, and soil temperature in the Elko area, northeastern Nevada
Schaefer, Donald H.
1988-01-01
Soil Temperature measurements, made at a depth of 6.6 feet (2 meeters) at 35 locations in the study area, indicate a major thermal anomaly (66 degrees Celsius) southwest of Elko, an area of known hot-spring activity.
Acoustic waves in the solar atmosphere. VII - Non-grey, non-LTE H(-) models
NASA Technical Reports Server (NTRS)
Schmitz, F.; Ulmschneider, P.; Kalkofen, W.
1985-01-01
The propagation and shock formation of radiatively damped acoustic waves in the solar chromosphere are studied under the assumption that H(-) is the only absorber; the opacity is non-grey. Deviations from local thermodynamic equilibrium (LTE) are permitted. The results of numerical simulations show the depth dependence of the heating by the acoustic waves to be insensitive to the mean state of the atmosphere. After the waves have developed into shocks, their energy flux decays exponentially with a constant damping length of about 1.4 times the pressure scale height, independent of initial flux and wave period. Departures from LTE have a strong influence on the mean temperature structure in dynamical chromosphere models; this is even more pronounced in models with reduced particle density - simulating conditions in magnetic flux tubes - which show significantly increased temperatures in response to mechanical heating. When the energy dissipation of the waves is sufficiently large to dissociate most of the H(-) ions, a strong temperature rise is found that is reminiscent of the temperature structure in the transition zone between chromosphere and corona; the energy flux remaining in the waves then drives mass motions.
González-Suárez, Ana; Berjano, Enrique; Guerra, Jose M.; Gerardo-Giorda, Luca
2016-01-01
Radiofrequency catheter ablation (RFCA) is a routine treatment for cardiac arrhythmias. During RFCA, the electrode-tissue interface temperature should be kept below 80°C to avoid thrombus formation. Open-irrigated electrodes facilitate power delivery while keeping low temperatures around the catheter. No computational model of an open-irrigated electrode in endocardial RFCA accounting for both the saline irrigation flow and the blood motion in the cardiac chamber has been proposed yet. We present the first computational model including both effects at once. The model has been validated against existing experimental results. Computational results showed that the surface lesion width and blood temperature are affected by both the electrode design and the irrigation flow rate. Smaller surface lesion widths and blood temperatures are obtained with higher irrigation flow rate, while the lesion depth is not affected by changing the irrigation flow rate. Larger lesions are obtained with increasing power and the electrode-tissue contact. Also, larger lesions are obtained when electrode is placed horizontally. Overall, the computational findings are in close agreement with previous experimental results providing an excellent tool for future catheter research. PMID:26938638
Hammond, Karl D.; Wirth, Brian D.
2014-10-09
Here, we present atomistic simulations that show the effect of surface orientation on helium depth distributions and surface feature formation as a result of low-energy helium plasma exposure. We find a pronounced effect of surface orientation on the initial depth of implanted helium ions, as well as a difference in reflection and helium retention across different surface orientations. Our results indicate that single helium interstitials are sufficient to induce the formation of adatom/substitutional helium pairs under certain highly corrugated tungsten surfaces, such as {1 1 1}-orientations, leading to the formation of a relatively concentrated layer of immobile helium immediately belowmore » the surface. The energies involved for helium-induced adatom formation on {1 1 1} and {2 1 1} surfaces are exoergic for even a single adatom very close to the surface, while {0 0 1} and {0 1 1} surfaces require two or even three helium atoms in a cluster before a substitutional helium cluster and adatom will form with reasonable probability. This phenomenon results in much higher initial helium retention during helium plasma exposure to {1 1 1} and {2 1 1} tungsten surfaces than is observed for {0 0 1} or {0 1 1} surfaces and is much higher than can be attributed to differences in the initial depth distributions alone. Lastly, the layer thus formed may serve as nucleation sites for further bubble formation and growth or as a source of material embrittlement or fatigue, which may have implications for the formation of tungsten “fuzz” in plasma-facing divertors for magnetic-confinement nuclear fusion reactors and/or the lifetime of such divertors.« less
Spatial distribution of eclogite in the Slave cratonic mantle: The role of subduction
NASA Astrophysics Data System (ADS)
Kopylova, Maya G.; Beausoleil, Yvette; Goncharov, Alexey; Burgess, Jennifer; Strand, Pamela
2016-03-01
We reconstructed the spatial distribution of eclogites in the cratonic mantle based on thermobarometry for 240 xenoliths in 4 kimberlite pipes from different parts of the Slave craton (Canada). The accuracy of depth estimates is ensured by the use of a recently calibrated thermometer, projection of temperatures onto well-constrained local peridotitic geotherms, petrological screening for unrealistic temperature estimates, and internal consistency of all data. The depth estimates are based on new data on mineral chemistry and petrography of 148 eclogite xenoliths from the Jericho and Muskox kimberlites of the northern Slave craton and previously reported analyses of 95 eclogites from Diavik and Ekati kimberlites (Central Slave). The majority of Northern Slave eclogites of the crustal, subduction origin occurs at 110-170 km, shallower than in the majority of the Central Slave crustal eclogites (120-210 km). The identical geochronological history of these eclogite populations and the absence of steep suture boundaries between the central and northern Slave craton suggest the lateral continuity of the mantle layer relatively rich in eclogites. We explain the distribution of eclogites by partial preservation of an imbricated and plastically dispersed oceanic slab formed by easterly dipping Proterozoic subduction. The depths of eclogite localization do not correlate with geophysically mapped discontinuities. The base of the depleted lithosphere of the Slave craton constrained by thermobarometry of peridotite xenoliths coincides with the base of the thickened lithospheric slab, which supports contribution of the recycled oceanic lithosphere to formation of the cratonic root. Its architecture may have been protected by circum-cratonic subduction and shielding of the shallow Archean lithosphere from the destructive asthenospheric metasomatism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Renzo, Valeria; Wohletz, Kenneth; Civetta, Lucia
In this paper, we illustrate a quantitative conductive/convective thermal model incorporating a wide range of geophysical, petrological, geological, geochemical and isotopical observations that constrain the thermal evolution and present state of the Campi Flegrei caldera (CFc) magmatic system. The proposed model has been computed on the basis of the current knowledge of: (1) the volcanic and magmatic history of the volcano over the last 44 ka, (2) its underlying crustal structure, and (3) the physical properties of the erupted magmas. 3D numerical simulations of heat conduction and convection within heterogeneous rock/magma materials with evolving heat sources and boundary conditions thatmore » simulate magma rise from a deep (≥ 8 km depth) to shallow (2–6 km) reservoirs, magma chamber formation, magma extrusion, caldera collapse, and intra-caldera hydrothermal convection, have been carried out. The evolution of the CFc magmatic system through time has been simulated through different steps related to its changes in terms of depth, location and size of magma reservoirs and their replenishment. The thermal modeling results show that both heat conduction and convection have played an important role in the CFc thermal evolution, although with different timing. Finally, the simulated present heat distribution is in agreement with the measured geothermal profiles (Agip, 1987), reproduces the thermal gradient peaks at the CFc margins in correspondence to the anomalies in surface gradients (Corrado et al., 1998), and suggests temperatures of 700 °C at depth of 4 km in the central portion of the caldera, in agreement with the estimated temperature for the brittle-ductile transition (Hill, 1992).« less
Di Renzo, Valeria; Wohletz, Kenneth; Civetta, Lucia; ...
2016-11-11
In this paper, we illustrate a quantitative conductive/convective thermal model incorporating a wide range of geophysical, petrological, geological, geochemical and isotopical observations that constrain the thermal evolution and present state of the Campi Flegrei caldera (CFc) magmatic system. The proposed model has been computed on the basis of the current knowledge of: (1) the volcanic and magmatic history of the volcano over the last 44 ka, (2) its underlying crustal structure, and (3) the physical properties of the erupted magmas. 3D numerical simulations of heat conduction and convection within heterogeneous rock/magma materials with evolving heat sources and boundary conditions thatmore » simulate magma rise from a deep (≥ 8 km depth) to shallow (2–6 km) reservoirs, magma chamber formation, magma extrusion, caldera collapse, and intra-caldera hydrothermal convection, have been carried out. The evolution of the CFc magmatic system through time has been simulated through different steps related to its changes in terms of depth, location and size of magma reservoirs and their replenishment. The thermal modeling results show that both heat conduction and convection have played an important role in the CFc thermal evolution, although with different timing. Finally, the simulated present heat distribution is in agreement with the measured geothermal profiles (Agip, 1987), reproduces the thermal gradient peaks at the CFc margins in correspondence to the anomalies in surface gradients (Corrado et al., 1998), and suggests temperatures of 700 °C at depth of 4 km in the central portion of the caldera, in agreement with the estimated temperature for the brittle-ductile transition (Hill, 1992).« less
NASA Astrophysics Data System (ADS)
Houpert, Loïc; Testor, Pierre; Durrieu de Madron, Xavier; Somot, Samuel; D'Ortenzio, Fabrizio; Estournel, Claude; Lavigne, Héloïse
2014-05-01
We present a relatively high resolution Mediterranean climatology (0.5°x0.5°x12 months) of the seasonal thermocline based on a comprehensive collection of temperature profiles of the last 44 years (1969-2012). The database includes more than 190,000 profiles, merging CTD, XBT, profiling floats, and gliders observations. This data set is first used to describe the seasonal cycle of the mixed layer depth and of the seasonal thermocline and on the whole Mediterranean on a monthly climatological basis. Our analysis discriminates several regions with coherent behaviors, in particular the deep water formation sites, characterized by significant differences in the winter mixing intensity. Heat Storage Rate (HSR) is calculated as the time rate of change of the heat content due to variations in the temperature integrated from the surface down to the base of the seasonal thermocline. Heat Entrainment Rate (HER) is calculated as the time rate of change of the heat content due to the deepening of thermocline base. We propose a new independent estimate of the seasonal cycle of the Net surface Heat Flux, calculated on average over the Mediterranean Sea for the 1979-2011 period, based only on in-situ observations. We used our new climatologies of HSR and of HER, combined to existing climatology of the horizontal heat flux at Gibraltar Strait. Although there is a good agreement between our estimation of NHF, from observations, with modeled NHF, some differences may be noticed during specific periods. A part of these differences may be explained by the high temporal and spatial variability of the Mixed Layer Depth and of the seasonal thermocline, responsible for very localized heat transfer in the ocean.
Radar attenuation and temperature within the Greenland Ice Sheet
MacGregor, Joseph A; Li, Jilu; Paden, John D; Catania, Ginny A; Clow, Gary D.; Fahnestock, Mark A; Gogineni, Prasad S.; Grimm, Robert E.; Morlighem, Mathieu; Nandi, Soumyaroop; Seroussi, Helene; Stillman, David E
2015-01-01
The flow of ice is temperature-dependent, but direct measurements of englacial temperature are sparse. The dielectric attenuation of radio waves through ice is also temperature-dependent, and radar sounding of ice sheets is sensitive to this attenuation. Here we estimate depth-averaged radar-attenuation rates within the Greenland Ice Sheet from airborne radar-sounding data and its associated radiostratigraphy. Using existing empirical relationships between temperature, chemistry, and radar attenuation, we then infer the depth-averaged englacial temperature. The dated radiostratigraphy permits a correction for the confounding effect of spatially varying ice chemistry. Where radar transects intersect boreholes, radar-inferred temperature is consistently higher than that measured directly. We attribute this discrepancy to the poorly recognized frequency dependence of the radar-attenuation rate and correct for this effect empirically, resulting in a robust relationship between radar-inferred and borehole-measured depth-averaged temperature. Radar-inferred englacial temperature is often lower than modern surface temperature and that of a steady state ice-sheet model, particularly in southern Greenland. This pattern suggests that past changes in surface boundary conditions (temperature and accumulation rate) affect the ice sheet's present temperature structure over a much larger area than previously recognized. This radar-inferred temperature structure provides a new constraint for thermomechanical models of the Greenland Ice Sheet.
Hamilton, Jill A; El Kayal, Walid; Hart, Ashley T; Runcie, Daniel E; Arango-Velez, Adriana; Cooke, Janice E K
2016-11-01
Timely responses to environmental cues enable the synchronization of phenological life-history transitions essential for the health and survival of north-temperate and boreal tree species. While photoperiodic cues will remain persistent under climate change, temperature cues may vary, contributing to possible asynchrony in signals influencing developmental and physiological transitions essential to forest health. Understanding the relative contribution of photoperiod and temperature as determinants of the transition from active growth to dormancy is important for informing adaptive forest management decisions that consider future climates. Using a combination of photoperiod (long = 20 h or short = 8 h day lengths) and temperature (warm = 22 °C/16 °C and cool = 8 °C/4 °C day/night, respectively) treatments, we used microscopy, physiology and modeling to comprehensively examine hallmark traits of the growth-dormancy transition-including bud formation, growth cessation, cold hardiness and gas exchange-within two provenances of white spruce [Picea glauca (Moench) Voss] spanning a broad latitude in Alberta, Canada. Following exposure to experimental treatments, seedlings were transferred to favorable conditions, and the depth of dormancy was assessed by determining the timing and ability of spruce seedlings to resume growth. Short photoperiods promoted bud development and growth cessation, whereas longer photoperiods extended the growing season through the induction of lammas growth. In contrast, cool temperatures under both photoperiodic conditions delayed bud development. Photoperiod strongly predicted the development of cold hardiness, whereas temperature predicted photosynthetic rates associated with active growth. White spruce was capable of attaining endodormancy, but its release was environmentally determined. Dormancy depth varied substantially across experimental treatments suggesting that environmental cues experienced within one season could affect growth in the following season, which is particularly important for a determinate species such as white spruce. The joint influence of these environmental cues points toward the importance of including local constant photoperiod and shifting temperature cues into predictive models that consider how climate change may affect northern forests. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Bhowmick, R.; Trepanier, J. C.
2017-12-01
Australia's northern and eastern coasts are highly affected by tropical cyclones (TC) occurring over the southeast Indian Ocean (SEIO) and southwest Pacific Ocean (SWPO) each year from October to May. TC prediction along the Australian coast is difficult because of the unpredictable nature of the TC tracks. TCs over this region are dependent on many climatological conditions, especially sea surface temperatures (SST) and upper ocean heat content (UOHC). TCs over the SWPO and SEIO are also sensitive to the El Niño Southern Oscillation, which causes seasonal, annual and decadal SST variations and variation in TC formation and strength. The SWPO and SEIO have experienced increasing temperatures in recent decades, and the trend may be related to a variety of atmospheric/oceanic changes, including changes to SST variability induced by changes in atmospheric aerosols. The aim of this paper is to study the influence of aerosol loading, defined by aerosol optical depth (AOD), on infrared SST (IRSST) anomalies, UOHC, and the number of days with named TCs (events with maximum sustained winds at least 17 m s-1) occurring over the SWPO and SEIO from 1985 - 2015.Granger causality is used to study the predictive capacity of ocean temperature variables and AOD for named TC days. Monthly satellite and meteorological data are examined to find spatial and temporal patterns of TC days with the different independent variables. Preliminary results show a positive relationship between AOD and TC days. Other sources of variability besides AOD over a longer time period are included here to provide a robust scenario of SWPO and SEIO's response to aerosol loading ultimately influencing TC formation. This study furthers the understanding of how TC incidence varies as a function of ocean temperature variability due to AOD variability in the SWPO and SEIO regions. This information is useful for the advancement of seasonal TC forecasting and hazard assessment and risk management strategies by incorporating aerosol as a cause for TC variability.
Parameterizing the interstellar dust temperature
NASA Astrophysics Data System (ADS)
Hocuk, S.; Szűcs, L.; Caselli, P.; Cazaux, S.; Spaans, M.; Esplugues, G. B.
2017-08-01
The temperature of interstellar dust particles is of great importance to astronomers. It plays a crucial role in the thermodynamics of interstellar clouds, because of the gas-dust collisional coupling. It is also a key parameter in astrochemical studies that governs the rate at which molecules form on dust. In 3D (magneto)hydrodynamic simulations often a simple expression for the dust temperature is adopted, because of computational constraints, while astrochemical modelers tend to keep the dust temperature constant over a large range of parameter space. Our aim is to provide an easy-to-use parametric expression for the dust temperature as a function of visual extinction (AV) and to shed light on the critical dependencies of the dust temperature on the grain composition. We obtain an expression for the dust temperature by semi-analytically solving the dust thermal balance for different types of grains and compare to a collection of recent observational measurements. We also explore the effect of ices on the dust temperature. Our results show that a mixed carbonaceous-silicate type dust with a high carbon volume fraction matches the observations best. We find that ice formation allows the dust to be warmer by up to 15% at high optical depths (AV> 20 mag) in the interstellar medium. Our parametric expression for the dust temperature is presented as Td = [ 11 + 5.7 × tanh(0.61 - log 10(AV) ]χuv1/5.9, where χuv is in units of the Draine (1978, ApJS, 36, 595) UV field.
Magnetic field penetration in niobium- and vanadium-based Josephson junctions
NASA Astrophysics Data System (ADS)
Cucolo, A. M.; Pace, S.; Vaglio, R.; di Chiara, A.; Peluso, G.; Russo, M.
1983-02-01
Measurements on the temperature dependence of the magnetic field penetration in Nb-NbxOy-Pb and V-VxOy-Pb Josephson junctions have been performed. Results on the zero-temperature penetration depth in niobium films are far above the bulk values although consistent with other measurements on junctions reported in the literature. For vanadium junctions anomalously large penetration depth values are obtained at low temperatures. Nevertheless, the temperature dependence is in reasonable agreement with the local dirty limit model.
Updates to Enhanced Geothermal System Resource Potential Estimate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augustine, Chad
The deep EGS electricity generation resource potential estimate maintained by the National Renewable Energy Laboratory was updated using the most recent temperature-at-depth maps available from the Southern Methodist University Geothermal Laboratory. The previous study dates back to 2011 and was developed using the original temperature-at-depth maps showcased in the 2006 MIT Future of Geothermal Energy report. The methodology used to update the deep EGS resource potential is the same as in the previous study and is summarized in the paper. The updated deep EGS resource potential estimate was calculated for depths between 3 and 7 km and is binned inmore » 25 degrees C increments. The updated deep EGS electricity generation resource potential estimate is 4,349 GWe. A comparison of the estimates from the previous and updated studies shows a net increase of 117 GWe in the 3-7 km depth range, due mainly to increases in the underlying temperature-at-depth estimates from the updated maps.« less
Modeling intracavitary heating of the uterus by means of a balloon catheter
NASA Astrophysics Data System (ADS)
Olsrud, Johan; Friberg, Britt; Rioseco, Juan; Ahlgren, Mats; Persson, Bertil R. R.
1999-01-01
Balloon thermal endometrial destruction (TED) is a recently developed method to treat heavy menstrual bleeding (menorrhagia). Numerical simulations of this treatment by use of the finite element method were performed. The mechanical deformation and the resulting stress distribution when a balloon catheter is expanded within the uterine cavity was estimated from structural analysis. Thermal analysis was then performed to estimate the depth of tissue coagulation (temperature > 55 degree(s)C) in the uterus during TED. The estimated depth of coagulation, after 30 min heating with an intracavity temperature of 75 degree(s)C, was approximately 9 mm when blood flow was disregarded. With uniform normal blood flow, the depth of coagulation decreased to 3 - 4 mm. Simulations with varying intracavity temperatures and blood flow rates showed that both parameters should be of major importance to the depth of coagulation. The influence of blood flow was less when the pressure due to the balloon was also considered (5 - 6 mm coagulation depth with normal blood flow).
Thermal Analysis of the Fastrac Chamber/Nozzle
NASA Technical Reports Server (NTRS)
Davis, Darrell
2001-01-01
This paper will describe the thermal analysis techniques used to predict temperatures in the film-cooled ablative rocket nozzle used on the Fastrac 60K rocket engine. A model was developed that predicts char and pyrolysis depths, liner thermal gradients, and temperatures of the bondline between the overwrap and liner. Correlation of the model was accomplished by thermal analog tests performed at Southern Research, and specially instrumented hot fire tests at the Marshall Space Flight Center. Infrared thermography was instrumental in defining nozzle hot wall surface temperatures. In-depth and outboard thermocouple data was used to correlate the kinetic decomposition routine used to predict char and pyrolysis depths. These depths were anchored with measured char and pyrolysis depths from cross-sectioned hot-fire nozzles. For the X-34 flight analysis, the model includes the ablative Thermal Protection System (TPS) material that protects the overwrap from the recirculating plume. Results from model correlation, hot-fire testing, and flight predictions will be discussed.
Update to Enhanced Geothermal System Resource Potential Estimate: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augustine, Chad
2016-10-01
The deep EGS electricity generation resource potential estimate maintained by the National Renewable Energy Laboratory was updated using the most recent temperature-at-depth maps available from the Southern Methodist University Geothermal Laboratory. The previous study dates back to 2011 and was developed using the original temperature-at-depth maps showcased in the 2006 MIT Future of Geothermal Energy report. The methodology used to update the deep EGS resource potential is the same as in the previous study and is summarized in the paper. The updated deep EGS resource potential estimate was calculated for depths between 3 and 7 km and is binned inmore » 25 degrees C increments. The updated deep EGS electricity generation resource potential estimate is 4,349 GWe. A comparison of the estimates from the previous and updated studies shows a net increase of 117 GWe in the 3-7 km depth range, due mainly to increases in the underlying temperature-at-depth estimates from the updated maps.« less
Thermal Analysis of the MC-1 Chamber/Nozzle
NASA Technical Reports Server (NTRS)
Davis, Darrell W.; Phelps, Lisa H. (Technical Monitor)
2001-01-01
This paper will describe the thermal analysis techniques used to predict temperatures in the film-cooled ablative rocket nozzle used on the MC-1 60K rocket engine. A model was developed that predicts char and pyrolysis depths, liner thermal gradients, and temperatures of the bondline between the overwrap and liner. Correlation of the model was accomplished by thermal analog tests performed at Southern Research, and specially instrumented hot fire tests at the Marshall Space Flight Center. Infrared thermography was instrumental in defining nozzle hot wall surface temperatures. In-depth and outboard thermocouple data was used to correlate the kinetic decomposition routine used to predict char and pyrolysis depths. These depths were anchored with measured char and pyrolysis depths from cross-sectioned hot-fire nozzles. For the X-34 flight analysis, the model includes the ablative Thermal Protection System (TPS) material that protects the overwrap from the recirculating plume. Results from model correlation, hot-fire testing, and flight predictions will be discussed.
Thermophysical properties of lunar media. II - Heat transfer within the lunar surface layer
NASA Technical Reports Server (NTRS)
Cremers, C. J.
1974-01-01
Heat transfer within the lunar surface layer depends on several thermophysical properties of the lunar regolith, including the thermal conductivity, the specific heat, the thermal diffusivity, and the thermal parameter. Results of property measurements on simulated lunar materials are presented where appropriate as well as measurements made on the actual samples themselves. The variation of temperature on the moon with depth is considered, taking into account various times of the lunar day. The daily variation in temperature drops to about 1 deg at a depth of only 0.172 meters. The steady temperature on the moon below this depth is 225 K.
NASA interdisciplinary collaboration in tribology. A review of oxidational wear
NASA Technical Reports Server (NTRS)
Quinn, T. F. J.
1983-01-01
An in-depth review of oxidational wear of metals is presented. Special emphasis is given to a description of the concept of oxidational wear and the formulation of an Oxidational Wear Theory. The parallelism between the formation of an oxide film for dry contact conditions and the formation of other surface films for a lubricated contact is discussed. The description of oxidational wear is prefaced with a unification of wear modes into two major classes of mild and severe wear including both lubricated and dry contacts. Oxidational wear of metals is a class of mild wear where protective oxide films are formed at real areas of contact and during the time of contact at temperataure T sub c. When the oxide reaches a critical thickness, frequently in the range of 1 to 3 microns, the oxide breaks up and eventually appears as a wear particle. These oxides are preferentially formed on plateaux which alternately carry the load as they reach their critical thickness and are removed. If the system is operated at elevated temperatures, thick oxides can form both out of contact and between the plateaux. Temperature is important in determining the structure of the oxide film present. Spinel oxide (Fe3O4) which forms above 300 C is more protective than the lower temperature rhomobohedral (alpha-Fe2O3) oxide which is abrasive. An Oxidational Wear Theory is derived using a modified Archard wear law expressed in terms of activation energy (Qp) and Arrhenius constant (Ap).
NASA Astrophysics Data System (ADS)
Zhong, Weicheng; Mouche, Peter A.; Han, Xiaochun; Heuser, Brent J.; Mandapaka, Kiran K.; Was, Gary S.
2016-03-01
Iron-chromium-aluminum (FeCrAl) coatings deposited on Zircaloy 2 (Zy2) and yttria-stabilized zirconia (YSZ) by magnetron sputtering have been tested with respect to oxidation weight gain in high-temperature steam. In addition, autoclave testing of FeCrAl-coated Zy2 coupons under pressure-temperature-dissolved oxygen coolant conditions representative of a boiling water reactor (BWR) environment has been performed. Four different FeCrAl compositions have been tested in 700 °C steam; compositions that promote alumina formation inhibited oxidation of the underlying Zy2. Parabolic growth kinetics of alumina on FeCrAl-coated Zy2 is quantified via elemental depth profiling. Autoclave testing under normal BWR operating conditions (288 °C, 9.5 MPa with normal water chemistry) up to 20 days demonstrates observable weight gain over uncoated Zy2 simultaneously exposed to the same environment. However, no FeCrAl film degradation was observed. The 900 °C eutectic in binary Fe-Zr is addressed with the FeCrAl-YSZ system.
NASA Astrophysics Data System (ADS)
Dumańska-Słowik, Magdalena; Toboła, Tomasz; Jarmołowicz-Szulc, Katarzyna; Naglik, Beata; Dyląg, Joanna; Szczerba, Jacek
2017-12-01
Amethyst from Boudi with characteristic hourglass colour zoning hosts numerous pseudo-secondary fluid and mineral inclusions. Measured values of temperature homogenization (Th) for selected fluid inclusion assemblages (FIA) in colourless and violet regions of the crystal range from 154 to 330 °C. The higher temperatures values are characteristic for violet zones than colourless regions of the crystal. The brine content and concentration vary from 5.71 to 13.94 wt% NaCl eq. Raman spectra of selected fluid inclusions revealed they are mainly composed of H2O (3500-3000 cm- 1) and subordinately CO2 both gaseous and liquid (1386 cm- 1 and 1281 cm- 1). Mineral inclusions are mainly represented by hematite with marker bands at 1321, 413, 293 and 227 cm- 1, subordinately quartz. Amethyst crystallized from medium- to low-temperature silica fluids (191-445 °C, 64-131 MPa) containing some amounts of CO2 and Fe at hydrothermal stage of post magmatic activity in Boudi (Morocco). Its possible depth of formation was calculated to be ca. 2.8-5.7 km.
NASA Astrophysics Data System (ADS)
Fokin, Vladimir B.; Povarnitsyn, Mikhail E.; Levashov, Pavel R.
2017-02-01
We elaborated two numerical methods, two-temperature hydrodynamics and hybrid two-temperature molecular dynamics, which take into account basic mechanisms of a metal target response to ultrashort laser irradiation. The model used for the description of the electronic subsystem is identical for both approaches, while the ionic part is defined by an equation of state in hydrodynamics and by an interatomic potential in molecular dynamics. Since the phase diagram of the equation of state and corresponding potential match reasonably well, the dynamics of laser ablation obtained by both methods is quite similar. This correspondence can be considered as a first step towards the development of a self-consistent combined model. Two important processes are highlighted in simulations of double-pulse ablation: (1) the crater depth decrease as a result of recoil flux formation in the nascent plume when the delay between the pulses increases; (2) the plume reheating by the second pulse that gives rise to two- three-fold growth of the electron temperature with the delay varying from 0 to 200 ps.
Breuer, Tobias; Witte, Gregor
2013-10-09
A variety of low dimensional C60 structures has been grown on supporting pentacene multilayers. By choice of substrate temperature during growth the effective diffusion length of evaporated fullerenes and their nucleation at terraces or step edges can be precisely controlled. AFM and SEM measurements show that this enables the fabrication of either 2D adlayers or solely 1D chains decorating substrate steps, while at elevated growth temperature continuous wetting of step edges is prohibited and instead the formation of separated C60 clusters pinned at the pentacene step edges occurs. Remarkably, all structures remain thermally stable at room temperature once they are formed. In addition the various fullerene structures have been overgrown by an additional pentacene capping layer. Utilizing the different probe depth of XRD and NEXAFS, we found that no contiguous pentacene film is formed on the 2D C60 structure, whereas an encapsulation of the 1D and 0D structures with uniformly upright oriented pentacene is achieved, hence allowing the fabrication of low dimensional buried organic heterostructures.
Linking varve-formation processes to climate and lake conditions at Tiefer See (NE Germany)
NASA Astrophysics Data System (ADS)
Dräger, Nadine; Kienel, Ulrike; Plessen, Birgit; Ott, Florian; Brademann, Brian; Pinkerneil, Sylvia; Brauer, Achim
2017-04-01
Annually laminated (varved) lake sediments represent unique archives in continental areas providing both, precise chronologies and seasonally resolving proxy data. Monitoring of physical, chemical and biological processes influencing lake sediment formation are a suitable approach for detailed proxy understanding of varved sediment records. Lake Tiefer See (NE Germany) indicates deposition of varved sediments today as well as millennia ago (Dräger et al., 2016; Kienel et al., 2013). Therefore, the lake provides the possibility to trace current seasonal layer formation in the lake and to pair these data to climate and lake conditions (Kienel et al., 2016). Lake Tiefer See was formed during the last glaciation and is part of the Klocksin Lake Chain, a subglacial channel system that crosses the Pomeranian terminal moraine. The lake is a mesotrophic hard water lake with a maximum depth of 63 m and a surface area of 0.75 km2. During four consecutive years (2012-2015) the particulate matter deposition was trapped at bi-weekly to monthly resolution at three different water depths (5, 12 and 50 m). The sediment trap material was analysed for sediment flux and organic matter and calcite content. In addition, we monitored limnological parameters (e.g. temperature, pH, conductivity, oxygen content) as well as the meteorological conditions (e.g. temperature, wind speed and direction, precipitation) with a monitoring and climate station installed on the lake. These data describe strength and duration of lake mixing and lake stagnation phases. Our results show distinct seasonal peaks in sediment formation, which correspond to the spring and summer productivity phases comprising of diatom blooms and calcite precipitation. This observation is in line with microfacies results from surface sediment cores. The content of biogenic calcite content decreases in the trapped material with increasing water depth indicating dissolution processes. However, the strength of calcite dissolution varies between seasons and years. We will discuss the depositional processes in relation to conditions in the water column and to meteorological data. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis -ICLEA- of the Helmholtz Association; grant number VH-VI-415. Dräger N, Brauer A, Theuerkauf M, Szeroczyńska K, Tjallingii R, Plessen B, Kienel U and Brauer A (2016) A varve micro-facies and varve preservation record of climate change and human impact for the last 6000 years at Lake Tiefer See (NE Germany). The Holocene online first. Kienel U, Dulski P, Ott F, Lorenz S and Brauer A (2013) Recently induced anoxia leading to the preservation of seasonal laminae in two NE-German lakes. Journal of paleolimnology 50 (4): 535-544. Kienel U, Kirillin G, Brademann B, Plessen B, Lampe R and Brauer A (2016) Effects of spring warming and mixing duration on diatom deposition in deep Tiefer See, NE Germany. Journal of paleolimnology 57 (1): 37-49.
Al-Ameri, T. K.; Pitman, Janet K.; Naser, M.E.; Zumberge, J.; Al-Haydari, H. A.
2011-01-01
1D petroleum system modeling was performed on wells in each of four oil fields in South Iraq, Zubair (well Zb-47), Nahr Umr (well NR-9), West Qurna (well WQ-15 and 23), and Majnoon (well Mj-8). In each of these fields, deposition of the Zubair Formation was followed by continuous burial, reaching maximum temperatures of 100°C (equivalent to 0.70%Ro) at depths of 3,344–3,750 m of well Zb-47 and 3,081.5–3,420 m of well WQ-15, 120°C (equivalent to 0.78%Ro) at depths of 3,353–3,645 m of well NR-9, and 3,391–3,691.5 m of well Mj-8. Generation of petroleum in the Zubair Formation began in the late Tertiary, 10 million years ago. At present day, modeled transformation ratios (TR) indicate that 65% TR of its generation potential has been reached in well Zb-47, 75% TR in well NR-9 and 55-85% TR in West Qurna oil field (wells WQ-15 and WQ-23) and up to 95% TR in well Mj-8, In contrast, younger source rocks are immature to early mature (<20% TR), whereas older source rocks are mature to overmature (100% TR). Comparison of these basin modeling results, in Basrah region, are performed with Kifle oil field in Hilla region of western Euphrates River whereas the Zubair Formation is immature within temperature range of 65–70°C (0.50%Ro equivalent) with up to 12% (TR = 12%) hydrocarbon generation efficiency and hence poor generation could be assessed in this last location. The Zubair Formation was deposited in a deltaic environment and consists of interbedded shales and porous and permeable sandstones. In Basrah region, the shales have total organic carbon of 0.5–7.0 wt%, Tmax 430–470°C and hydrogen indices of up to 466 with S2 = 0.4–9.4 of kerogen type II & III and petroleum potential of 0.4–9.98 of good hydrocarbon generation, which is consistent with 55–95% hydrocarbon efficiency. These generated hydrocarbons had charged (in part) the Cretaceous and Tertiary reservoirs, especially the Zubair Formation itself, in the traps formed by Alpine collision that closed the Tethys Ocean between Arabian and Euracian Plates and developed folds in Mesopotamian Basin 15–10 million years ago. These traps are mainly stratigraphic facies of sandstones with the shale that formed during the deposition of the Zubair Formation in transgression and regression phases within the main structural folds of the Zubair, Nahr Umr, West Qurna and Majnoon Oil fields. Oil biomarkers of the Zubair Formation Reservoirs are showing source affinity with mixed oil from the Upper Jurassic and Lower Cretaceous strata, including Zubair Formation organic matters, based on presentation of GC and GC-MS results on diagrams of global petroleum systems.
NASA Astrophysics Data System (ADS)
Cawood, T. K.; Platt, J. P.
2017-12-01
A widely-accepted model for the rheology of crustal-scale shear zones states that they comprise distributed strain at depth, in wide, high-temperature shear zones, which narrow to more localized, high-strain zones at lower temperature and shallower crustal levels. We test and quantify this model by investigating how the width, stress, temperature and deformation mechanisms change with depth in the Simplon Shear Zone (SSZ). The SSZ marks a major tectonic boundary in the central Alps, where normal-sense motion and rapid exhumation of the footwall have preserved evidence of older, deeper deformation in rocks progressively further into the currently-exposed footwall. As such, microstructures further from the brittle fault (which represents the most localized, most recently-active part of the SSZ) represent earlier, higher- temperature deformation from deeper crustal levels, while rocks closer to the fault have been overprinted by successively later, cooler deformation at shallower depths. This study uses field mapping and microstructural studies to identify zones representing deformation at various crustal levels, and characterize each in terms of zone width (representing width of the shear zone at that time and depth) and dominant deformation mechanism. In addition, quartz- (by Electron Backscatter Diffraction, EBSD) and feldspar grain size (measured optically) piezometry are used to calculate the flow stress for each zone, while the Ti-in-quartz thermometer (TitaniQ) is used to calculate the corresponding temperature of deformation. We document the presence of a broad zone in which quartz is recrystallized by the Grain Boundary Migration (GBM) mechanism and feldspar by Subgrain Rotation (SGR), which represents the broad, deep zone of deformation occurring at relatively high temperatures and low stresses. In map view, this transitions to successively narrower zones, respectively characterized by quartz SGR and feldspar Bulge Nucleation (BLG); quartz BLG and brittle deformation of feldspar; and finally, a zone of generally brittle deformation. These zones represent deformation in progressively narrower regions at shallower depths, under lower temperatures and higher stresses.
NASA Astrophysics Data System (ADS)
Tymms, V. J.; Kusznir, N. J.
2004-12-01
The effect of temperature dependent rheology has been examined for a model of continental lithosphere thinning by an upwelling divergent flow field within continental lithosphere and asthenosphere leading to continental breakup and rifted continental margin formation. The model uses a coupled FE fluid flow and thermal solution and is kinematically driven using a half divergence rate Vx and upwelling velocity Vz. Viscosity structure is modified by the evolving temperature field of the model through the temperature dependent Newtonian rheology. Continental lithosphere and asthenosphere material are advected by the fluid-flow field in order to predict crustal and mantle lithosphere thinning leading to rifted continental margin formation. The results of the temperature dependent rheology model are compared with those of a simple isoviscous model. The temperature dependent rheology model predicts continental lithosphere thinning and depth dependent stretching, similar to that predicted by the uniform viscosity model. However compared with the uniform viscosity model the temperature dependent rheology predicts greater amounts of thinning of the continental crust and lithospheric mantle than the isoviscous solutions. An important parameter within the kinematic model of continental lithosphere breakup and rifted continental margin development is the velocity ratio Vz/Vx. For non-volcanic margins, Vz/Vx is thought to be around unity. Applying a velocity ratio Vz/Vx of unity gives a diffuse ocean-continent transition and exhumation of continental lithospheric mantle. For volcanic margins, Vz/Vx is of order 10, falling to unity with a half-life of order 10 Ma, leading to a more sharply defined ocean-continent transition. While Vx during continental breakup may be estimated, Vz can only be inferred. FE fluid flow solutions, in which Vz is not imposed and without an initial buoyancy driven flow component, predict a velocity ratio Vz/Vx of around unity for both temperature dependent rheology and isovisous fluid-flow solutions. The effect of incorporating a lithology dependent continental lithosphere rheology (quartz-feldspar crust, olivine mantle) with temperature dependence is also being investigated. The work forms part of the Integrated Seismic Imaging and Modelling of Margins (iSIMM*) project. This work forms part of the NERC Margins iSIMM project. iSIMM investigators are from Liverpool and Cambridge Universities, Schlumberger Cambridge Research & Badley Geoscience, supported by the NERC, the DTI, Agip UK, BP, Amerada Hess Ltd, Anadarko, Conoco-Phillips, Shell, Statoil and WesternGeco. The iSIMM team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, R Spitzer, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, V Tymms & D. Healy.
NASA Astrophysics Data System (ADS)
Mokeddem, Zohra; McManus, Jerry F.
2017-11-01
Foraminifera abundance and stable isotope records from ODP Site 984 (61.25°N, 24.04°W, 1648 m) in the North Atlantic are used to reconstruct surface circulation variations and the relative strength of the North Atlantic Deep Water (NADW) formation over the period spanning the peak warmth of Marine Interglacial Stage (MIS) 9e ( 324-336 ka). This interval includes the preceding deglaciation, Termination 4 (T4), and the subsequent glacial inception of MIS 9d. The records indicate a greatly reduced contribution of NADW during T4, as observed in more recent deglaciations. In contrast with the most recent deglaciation, the lack of a significant NADW signal extended from T4 well into the peak interglacial MIS 9e and persisted nearly until the transition to the subsequent glacial stage MIS 9d. Although NADW formation resumed during MIS 9e, only depths greater than 2000 m appear to have been ventilated. The poorly ventilated intermediate depth of Site 984 (<2000 m) may have resulted on one hand from a general reduction of deep water ventilation by NADW during the study interval or, on the other hand, from different pathways of the spread of newly formed NADW that bypassed the study location. The intermediate depths may have also been invaded by southern-sourced waters as the formation of intermediate depth NADW weakened. The absence of any significant NADW signal at the water depth of Site 984 during the climatic optimum contrasts sharply with subsequent interglacial peaks (MIS 5e and the Holocene). Despite the perturbed intermediate depth circulation, oceanic heat transport northeastward was not interrupted and may have contributed to the relatively mild interglacial conditions of MIS 9e.
NOHRSC Interactive Snow Information
-present) RFC Basin Other (non-RFC) Basin State NSA region (Discussion) NSA subregion (Disc.) Basins by None Snow Water Equivalent Snow Depth Shallow SWE Shallow Snow Depth Snow Temperature Snow Density Snow Melt Snow Precipitation Non-Snow Precipitation Air Temperature Solar Radiation Relative Humidity
Explosive change in crater properties during high power nanosecond laser ablation of silicon
NASA Astrophysics Data System (ADS)
Yoo, J. H.; Jeong, S. H.; Greif, R.; Russo, R. E.
2000-08-01
Mass removed from single crystal silicon samples by high irradiance (1×109 to 1×1011W/cm2) single pulse laser ablation was studied by measuring the resulting crater morphology with a white light interferometric microscope. The craters show a strong nonlinear change in both the volume and depth when the laser irradiance is less than or greater than ≈2.2×1010W/cm2. Time-resolved shadowgraph images of the ablated silicon plume were obtained over this irradiance range. The images show that the increase in crater volume and depth at the threshold of 2.2×1010W/cm2 is accompanied by large size droplets leaving the silicon surface, with a time delay ˜300 ns. A numerical model was used to estimate the thickness of the layer heated to approximately the critical temperature. The model includes transformation of liquid metal into liquid dielectric near the critical state (i.e., induced transparency). In this case, the estimated thickness of the superheated layer at a delay time of 200-300 ns shows a close agreement with measured crater depths. Induced transparency is demonstrated to play an important role in the formation of a deep superheated liquid layer, with subsequent explosive boiling responsible for large-particulate ejection.
NASA Technical Reports Server (NTRS)
Pearl, J. C.; Smith, M. D.; Conrath, B. J.; Bandfield, J. L.; Christensen, P. R.
1999-01-01
Successful operation of the Mars Global Surveyor spacecraft, beginning in September 1997, has permitted extensive infrared observations of condensation clouds during the martian southern summer and fall seasons (184 deg less than L(sub s) less than 28 deg). Initially, thin (normal optical depth less than 0.06 at 825/ cm) ice clouds and hazes were widespread, showing a latitudinal gradient. With the onset of a regional dust storm at L(sub s) = 224 deg, ice clouds essentially vanished in the southern hemisphere, to reappear gradually after the decay of the storm. The thickest clouds (optical depth approx. 0.6) were associated with major volcanic features. At L(exp s) = 318 deg, the cloud at Ascraeus Mons was observed to disappear between 21:30 and 09:30, consistent with historically recorded diurnal behavior for clouds of this type. Limb observations showed extended optically thin (depth less than 0.04) stratiform clouds at altitudes up to 55 km. A water ice haze was present in the north polar night at altitudes up to 40 km; this probably provided heterogeneous nucleation sites for the formation of CO2 clouds at altitudes below the 1 mbar pressure level, where atmospheric temperatures dropped to the condensation point of CO2.
A portable borehole temperature logging system using the four-wire resistance method
NASA Astrophysics Data System (ADS)
Erkan, Kamil; Akkoyunlu, Bülent; Balkan, Elif; Tayanç, Mete
2017-12-01
High-quality temperature-depth information from boreholes with a depth of 100 m or more is used in geothermal studies and in studies of climate change. Electrical wireline tools with thermistor sensors are capable of measuring borehole temperatures with millikelvin resolution. The use of a surface readout mode allows analysis of the thermally conductive state of a borehole, which is especially important for climatic and regional heat flow studies. In this study we describe the design of a portable temperature logging tool that uses the four-wire resistance measurement method. The four-wire method enables the elimination of cable resistance effects, thus allowing millikelvin resolution of temperature data at depth. A preliminary two-wire model of the system is also described. The portability of the tool enables one to collect data from boreholes down to 300 m, even in locations with limited accessibility.
Milford, Utah FORGE Temperature Contours at 200 m
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joe Moore
The individual shapefiles in this dataset delineate estimated temperature contours (20, 40, 60, and 80) at a depth of 200 m in the Milford, Utah FORGE area. Contours were derived from 86 geothermal, gradient, and other wells drilled in the area since the mid-1970s with depths greater than 50 m. Conductive temperature profiles for wells less than 200 m were extrapolated to determine the temperature at the desired depth. Because 11 wells in the eastern section of the study area (in and around the Mineral Mountains) are at higher elevations compared to those closer to the center of the basin,more » temperature profiles were extrapolated to a constant elevation of 200 m below the 1830 m (6000 ft) a.s.l. datum (approximate elevation of alluvial fans at the base of the Mineral Mountains) to smooth the contours across the ridges and valleys.« less
Edwards, Ryland B; Lu, Yan; Rodriguez, Edwin; Markel, Mark D
2002-04-01
To compare cartilage matrix temperatures between monopolar radiofrequency energy (mRFE) and bipolar RFE (bRFE) at 3 depths under the articular surface during thermal chondroplasty. We hypothesized that cartilage temperatures would be higher at all cartilage depths for the bRFE device than for the mRFE device. Randomized trial using bovine cartilage. Sixty osteochondral sections from the femoropatellar joint of 15 adult cattle were used for this study. Using a custom jig, fluoroptic thermometry probes were placed at one of the following depths under the articular surface: 200 microm, 500 microm, or 2,000 microm. RF treatment was performed either with fluid flow (F) (120 mL/min) or without fluid flow (NF) (n = 5/depth/RFE device/flow; total specimens, 60). Irrigation fluid temperature was room temperature (22 degrees C). Thermometry data were acquired at 4 Hz for 5 seconds with the RF probe off, for 20 seconds with the RF probe on, and then for 15 seconds with the RF probe off. During RF treatment, a 0.79-cm2 area (1.0-cm diameter) of the articular surface centered over the thermometry probe was treated in a paintbrush manner in noncontact (bRFE) or light contact (mRFE). Thermal chondroplasty with bRFE resulted in higher cartilage matrix temperatures compared with mRFE for all depths and regardless of fluid flow. Bipolar RFE resulted in temperatures of 95 degrees C to 100 degrees C at 200 microm and 500 microm under the surface, with temperatures of 75 degrees C to 78 degrees C at 2,000 microm. Fluid flow during bRFE application had no effect at 200 microm. Monopolar RFE resulted in temperatures of 61 degrees C to 68 degrees C at 200 microm, 54 degrees C to 70 degrees C at 500 microm under the surface, and 28 degrees C to 30 degrees C at 2,000 microm below the surface. A significant effect of fluid flow during mRFE application occurred at 200 microm (NF, 61 degrees C; F, 63 degrees C) and 500 microm (NF, 53 degrees C; F, 68 degrees C). In this study, we found significant differences between bRFE and a temperature-controlled mRFE device with regard to depth of thermal heating of cartilage in vitro. Bipolar RFE resulted in matrix temperatures high enough (>70 degrees C) to kill cells as deep as 2,000 microm under the articular surface. Fluid flow during thermal chondroplasty had the effect of significantly increasing cartilage matrix temperatures at 200 and 500 microm with the mRFE device. During thermal chondroplasty, bRFE creates greater matrix temperature elevations at equivalent depths and treatment duration than does mRFE. Excessive temperatures generated deep within the cartilage matrix could cause full-thickness chondrocyte death, in vivo.
NASA Astrophysics Data System (ADS)
Dehghan, A.; Mariani, Z.; Gascon, G.; Bélair, S.; Milbrandt, J.; Joe, P. I.; Crawford, R.; Melo, S.
2017-12-01
Environment and Climate Change Canada (ECCC) is implementing a 2.5-km resolution version of the Global Environmental Multiscale (GEM) model over the Canadian Arctic. Radiosonde observations were used to evaluate the numerical representation of surface-based temperature inversion which is a major feature in the Arctic region. Arctic surface-based inversions are often created by imbalance between radiative cooling processes at surface and warm air advection above. This can have a significant effect on vertical mixing of pollutants and moisture, and ultimately, on cloud formation. It is therefore important to correctly predict the existence of surface inversions along with their characteristics (i.e., intensity and depth). Previous climatological studies showed that the frequency and intensity of surface-based inversions are larger during colder months in the Arctic. Therefore, surface-based inversions were estimated using radiosonde measurements during winter (December 2015 to February 2016) at Iqaluit (Nunavut, Canada). Results show that the inversion intensity can exceed 10 K with depths as large as 1 km. Preliminary evaluation of GEM outputs reveals that the model tends to underestimate the intensity of near-surface inversions, and in some cases, the model failed to predict an inversion. This study presents the factors contributing to this bias including surface temperature and snow cover.
Impact Crater Morphology and the Structure of Europa's Ice Shell
NASA Astrophysics Data System (ADS)
Silber, Elizabeth A.; Johnson, Brandon C.
2017-12-01
We performed numerical simulations of impact crater formation on Europa to infer the thickness and structure of its ice shell. The simulations were performed using iSALE to test both the conductive ice shell over ocean and the conductive lid over warm convective ice scenarios for a variety of conditions. The modeled crater depth-diameter is strongly dependent on the thermal gradient and temperature of the warm convective ice. Our results indicate that both a fully conductive (thin) shell and a conductive-convective (thick) shell can reproduce the observed crater depth-diameter and morphologies. For the conductive ice shell over ocean, the best fit is an approximately 8 km thick conductive ice shell. Depending on the temperature (255-265 K) and therefore strength of warm convective ice, the thickness of the conductive ice lid is estimated at 5-7 km. If central features within the crater, such as pits and domes, form during crater collapse, our simulations are in better agreement with the fully conductive shell (thin shell). If central features form well after the impact, however, our simulations suggest that a conductive-convective shell (thick shell) is more likely. Although our study does not provide a firm conclusion regarding the thickness of Europa's ice shell, our work indicates that Valhalla class multiring basins on Europa may provide robust constraints on the thickness of Europa's ice shell.
Depth, Salinity and Temperature Variability in the Maryland Coastal Lagoons
NASA Astrophysics Data System (ADS)
Chigbu, P.; Malagon, H.; Doctor, S.
2016-02-01
Alterations in temperature, precipitation, and sea level associated with global climate change will likely affect the hydrology and bathymetry of Maryland Coastal Bays (MCBs). This will in turn have effects on the abundance, distribution and diversity of the inhabiting biota, as well as the biogeochemistry and food web dynamics of the system. Depth, salinity and temperature data collected monthly (April to October) each year (1990 to 2012) from 20 sites in the MCBs were analyzed. Mean depth at most sites increased significantly with year (p<0.02). The rate of change in depth ranged from -0.02m/yr to 0.043m/yr (mean = 0.021m/yr), which is about seven times higher than the global rate of sea level rise. At the predicted mean rate of change in depth, the MCBs would have risen by 0.78m by the year 2050. Salinity varied between years of below average (e.g. 1990, 2003 and 2009), and above average (e.g. 1991, 1999, 2002 and 2007) levels. Inter-annual variability in salinity at most sites was significantly accounted for by variations in freshwater discharge, although the strength of the relationship decreased with proximity of the sites to the inlets. Measurements taken in April of each year since 1990 showed that temperature has increased significantly in the northern bays (Assawoman and Isle of Wight) and Chincoteague Bay, but not in Sinepuxent and Newport Bays. The observed changes in depth, salinity and temperature have important implications with regard to the functioning of the MCBs, and serve as a basis for evaluating future responses of the lagoons to climatic changes.
NASA Astrophysics Data System (ADS)
Steinweg, J. M.; Kostka, J. E.; Hanson, P. J.; Schadt, C. W.
2017-12-01
Northern peatlands have large amounts of soil organic matter due to reduced decomposition. Breakdown of organic matter is initially mediated by extracellular enzymes, the activity of which may be controlled by temperature, moisture, and substrate availability, all of which vary seasonally throughout the year and with depth. In typical soils the majority of the microbial biomass and decomposition occurs within the top 30cm due to reduced organic matter inputs in the subsurface however peatlands by their very nature contain large amounts of organic matter throughout their depth profile. We hypothesized that potential enzyme activity would be greatest at the surface of the peat due to a larger microbial biomass compared to 40cm and 175cm below the surface and that temperature sensitivity would be greatest at the surface during winter but lowest during the summer due to high temperatures and enzyme efficiency. Peat samples were collected in February, July, and August 2012 from the DOE Spruce and Peatland Responses Under Climatic and Environmental Change project at Marcell Experimental Forest S1 bog. We measured potential activity of hydrolytic enzymes involved in three different nutrient cycles: beta-glucosidase (carbon), leucine amino peptidase (nitrogen), and phosphatase (phosphorus) at 15 temperature points ranging from 3°C to 65°C. Enzyme activity decreased with depth as expected but there was no concurrent change in activation energy (Ea). The reduction in enzyme activity with depth indicates a smaller pool which coincided with a decreased microbial biomass. Differences in enzyme activity with depth also mirrored the changes in peat composition from the acrotelm to the catotelm. Season did play a role in temperature sensitivity with Ea of β-glucosidase and phosphatase being the lowest in August as expected but leucine amino peptidase (a nitrogen acquiring enzyme) Ea was not influenced by season. As temperatures rise, especially in winter months, enzymatic carbon and phosphorus acquisition in the Marcell bog may increase whereas nitrogen acquisition would remain unchanged. The lack of temperature response for leucine amino peptidase has been measured in other systems but may be less of a concern in the Marcell bog due to low microbial biomass and enzymatic activity at depth and relatively low peat C:N ratios.
Fort Bliss Geothermal Area Data: Temperature profile, logs, schematic model and cross section
Adam Brandt
2015-11-15
This dataset contains a variety of data about the Fort Bliss geothermal area, part of the southern portion of the Tularosa Basin, New Mexico. The dataset contains schematic models for the McGregor Geothermal System, a shallow temperature survey of the Fort Bliss geothermal area. The dataset also contains Century OH logs, a full temperature profile, and complete logs from well RMI 56-5, including resistivity and porosity data, drill logs with drill rate, depth, lithology, mineralogy, fractures, temperature, pit total, gases, and descriptions among other measurements as well as CDL, CNL, DIL, GR Caliper and Temperature files. A shallow (2 meter depth) temperature survey of the Fort Bliss geothermal area with 63 data points is also included. Two cross sections through the Fort Bliss area, also included, show well position and depth. The surface map included shows faults and well spatial distribution. Inferred and observed fault distributions from gravity surveys around the Fort Bliss geothermal area.
a Borehole Seismic System for Active and Passive Seimsic Studies to 3 KM at Ptrc's Aquistore Project
NASA Astrophysics Data System (ADS)
Schmitt, D. R.; Nixon, C.; Kofman, R.; White, D. J.; Worth, K.
2015-12-01
We have constructed a downhole seismic recording system for application to depths of nearly 3 km and temperatures up to 135 °C at Aquistore, an independent research and monitoring project in which liquid CO2 is being stored in a brine and sandstone water formation. The key component to this system is a set of commercially available slim-hole 3-C sondes carrying 15 Hz geophones deployable in open and cased boreholes with diameters as small as 57 mm. The system is currently hosted on a 4-conductor wireline with digital information streamed to the surface recording unit. We have further incorporated these sondes into a mobile passive monitoring unit that includes a number of redundancies such as a multiple Tbyte network accessible RAID hard-drive system (NAS) and a self-designed uninterruptible power supply. The system can be remotely controlled via the internet. The system is currently deployed covering a range of depths from 2850 m to 2910 m. Ambient temperatures at this depth are approximately 110 °C with onboard tool temperatures running at 115 °C. Data is continuously streamed to the NAS for archiving, approximately 11 GBytes of data is recorded per day at the sampling period of 0.5 ms. The lack of noise at this depth allows short data snippets to be flagged with a simple amplitude threshold criteria. The greatly reduced data volume of the snippets allows for ready access via the internet to the system for ongoing quality control. Spurious events, mostly small amplitude tube waves originating at or near the surface, are readily discounted. Active seismic measurements are carried out simultaneously but these require that an appropriately accurate independent GPS based time synchronization be used. Various experiences with event detection, orientation of sondes using both explosives and seismic vibrator, potential overheating of the surface electronics, and issues related to loss of shore power provide for a detailed case study. Aquistore, managed by the Petroleum Technology Research Centre, is Canada's first dedicated CO2 storage project, and is an integral component of SaskPower's Boundary Dam Integrated Carbon Capture and Storage (CCS) Demonstration project - the world's first fully integrated CCS demonstration project from a coal-fired power plant.
Ammonia as a Temperature Tracer in the Ultraluminous Galaxy Merger Arp 220
NASA Astrophysics Data System (ADS)
Ott, Jürgen; Henkel, Christian; Braatz, James A.; Weiß, Axel
2011-12-01
We present Australia Telescope Compact Array (ATCA) and Robert C. Byrd Green Bank Telescope (GBT) observations of ammonia (NH3) and the 1.2 cm radio continuum toward the ultraluminous infrared galaxy merger Arp 220. We detect the NH3(1,1), (2,2), (3,3), (4,4), (5,5), and (6,6) inversion lines in absorption against the unresolved, (62 ± 9) mJy continuum source at 1.2 cm. The peak apparent optical depths of the ammonia lines range from ~0.05 to 0.18. The absorption lines are well described by single-component Gaussians with central velocities in between the velocities of the eastern and western cores of Arp 220. Therefore, the ammonia likely traces gas that encompasses both cores. The absorption depth of the NH3(1,1) line is significantly shallower than expected based on the depths of the other transitions. The shallow (1,1) profile may be caused by contamination from emission by a hypothetical, cold (lsim 20 K) gas layer with an estimated column density of <~ 2 × 1014 cm-2. This layer would have to be located behind or away from the radio continuum sources to produce the contaminating emission. The widths of the ammonia absorption lines are ~120-430 km s-1, in agreement with those of other molecular tracers. We cannot confirm the extremely large line widths of up to ~1800 km s-1 previously reported for this galaxy. Using all of the ATCA detections except for the shallow (1,1) line, we determine a rotational temperature of (124 ± 19) K, corresponding to a kinetic temperature of T kin = (186 ± 55) K. Ammonia column densities depend on the excitation temperature. For excitation temperatures of 10 K and 50 K, we estimate N(NH3) = (1.7 ± 0.1) × 1016 cm-2 and (8.4 ± 0.5) × 1016 cm-2, respectively. The relation scales linearly for possible higher excitation temperatures. Our observations are consistent with an ortho-to-para-ammonia ratio of unity, implying that the ammonia formation temperature exceeds ~30 K. In the context of a model with a molecular ring that connects the two nuclei in Arp 220, we estimate the H2 gas density to be ~f -0.5 V × (1-4) × 103, where f V is the volume filling factor of the molecular gas. In addition to ammonia, our ATCA data show an absorption feature adjacent in frequency to the NH3(3,3) line. The line does not appear in the GBT spectrum. If we interpret the line to be from the OH 2Π3/2 J = 9/2 F = 4-4 transition, it would have a line width, systemic velocity, and apparent optical depth similar to what we detect in the ammonia lines. Comparing the new line to the previously detected 6 GHz OH 2Π3/2 J = 5/2 F = 2-2 transition, we determine a rotational OH temperature of ~245 K, about two times the rotational temperature of ammonia. If this association with OH is correct, it marks the first detection of the highly excited (~511 K above ground state) 2Π3/2 J = 9/2 F = 4-4 OH line in an extragalactic object.
Houser, J.N.
2006-01-01
The effects of water color on lake stratification, mean epilimnetic irradiance, and lake temperature dynamics were examined in small, north-temperate lakes that differed widely in water color (1.5-19.8 m -1). Among these lakes, colored lakes differed from clear lakes in the following ways: (i) the epilimnia were shallower and colder, and mean epilimnetic irradiance was reduced; (ii) the diel temperature cycles were more pronounced; (iii) whole-lake heat accumulation during stratification was reduced. The depth of the epilimnion ranged from 2.5 m in the clearest lake to 0.75 m in the most colored lake, and 91% of the variation in epilimnetic depth was explained by water color. Summer mean morning epilimnetic temperature was ???2??C cooler in the most colored lake compared with the clearest lake. In clear lakes, the diel temperature range (1.4 ?? 0.7??C) was significantly (p = 0.01) less than that in the most colored lake (2.1 ?? 1.0??C). Change in whole-lake heat content was negatively correlated with water color. Increasing water color decreased light penetration more than thermocline depth, leading to reduced mean epilimnetic irradiance in the colored lakes. Thus, in these small lakes, water color significantly affected temperature, thermocline depth, and light climate. ?? 2006 NRC.
Laser measure of sea salinity, temperature and turbidity in depth
NASA Technical Reports Server (NTRS)
Hirschberg, J. G.; Wouters, A. W.; Byrne, J. D.
1974-01-01
A method is described in which a pulsed laser is used to probe the sea. Backscattered light is analyzed in time, intensity and wavelength. Tyndall, Raman and Brillouin scattering are used to obtain the backscatter turbidity, sound velocity, salinity, and the temperature as a function of depth.
Brown, Alastair; Thatje, Sven
2014-05-01
Bathymetric biodiversity patterns of marine benthic invertebrates and demersal fishes have been identified in the extant fauna of the deep continental margins. Depth zonation is widespread and evident through a transition between shelf and slope fauna from the shelf break to 1000 m, and a transition between slope and abyssal fauna from 2000 to 3000 m; these transitions are characterised by high species turnover. A unimodal pattern of diversity with depth peaks between 1000 and 3000 m, despite the relatively low area represented by these depths. Zonation is thought to result from the colonisation of the deep sea by shallow-water organisms following multiple mass extinction events throughout the Phanerozoic. The effects of low temperature and high pressure act across hierarchical levels of biological organisation and appear sufficient to limit the distributions of such shallow-water species. Hydrostatic pressures of bathyal depths have consistently been identified experimentally as the maximum tolerated by shallow-water and upper bathyal benthic invertebrates at in situ temperatures, and adaptation appears required for passage to deeper water in both benthic invertebrates and demersal fishes. Together, this suggests that a hyperbaric and thermal physiological bottleneck at bathyal depths contributes to bathymetric zonation. The peak of the unimodal diversity-depth pattern typically occurs at these depths even though the area represented by these depths is relatively low. Although it is recognised that, over long evolutionary time scales, shallow-water diversity patterns are driven by speciation, little consideration has been given to the potential implications for species distribution patterns with depth. Molecular and morphological evidence indicates that cool bathyal waters are the primary site of adaptive radiation in the deep sea, and we hypothesise that bathymetric variation in speciation rates could drive the unimodal diversity-depth pattern over time. Thermal effects on metabolic-rate-dependent mutation and on generation times have been proposed to drive differences in speciation rates, which result in modern latitudinal biodiversity patterns over time. Clearly, this thermal mechanism alone cannot explain bathymetric patterns since temperature generally decreases with depth. We hypothesise that demonstrated physiological effects of high hydrostatic pressure and low temperature at bathyal depths, acting on shallow-water taxa invading the deep sea, may invoke a stress-evolution mechanism by increasing mutagenic activity in germ cells, by inactivating canalisation during embryonic or larval development, by releasing hidden variation or mutagenic activity, or by activating or releasing transposable elements in larvae or adults. In this scenario, increased variation at a physiological bottleneck at bathyal depths results in elevated speciation rate. Adaptation that increases tolerance to high hydrostatic pressure and low temperature allows colonisation of abyssal depths and reduces the stress-evolution response, consequently returning speciation of deeper taxa to the background rate. Over time this mechanism could contribute to the unimodal diversity-depth pattern. © 2013 Natural Environment Research Council. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
Brown, Alastair; Thatje, Sven
2014-01-01
Bathymetric biodiversity patterns of marine benthic invertebrates and demersal fishes have been identified in the extant fauna of the deep continental margins. Depth zonation is widespread and evident through a transition between shelf and slope fauna from the shelf break to 1000 m, and a transition between slope and abyssal fauna from 2000 to 3000 m; these transitions are characterised by high species turnover. A unimodal pattern of diversity with depth peaks between 1000 and 3000 m, despite the relatively low area represented by these depths. Zonation is thought to result from the colonisation of the deep sea by shallow-water organisms following multiple mass extinction events throughout the Phanerozoic. The effects of low temperature and high pressure act across hierarchical levels of biological organisation and appear sufficient to limit the distributions of such shallow-water species. Hydrostatic pressures of bathyal depths have consistently been identified experimentally as the maximum tolerated by shallow-water and upper bathyal benthic invertebrates at in situ temperatures, and adaptation appears required for passage to deeper water in both benthic invertebrates and demersal fishes. Together, this suggests that a hyperbaric and thermal physiological bottleneck at bathyal depths contributes to bathymetric zonation. The peak of the unimodal diversity–depth pattern typically occurs at these depths even though the area represented by these depths is relatively low. Although it is recognised that, over long evolutionary time scales, shallow-water diversity patterns are driven by speciation, little consideration has been given to the potential implications for species distribution patterns with depth. Molecular and morphological evidence indicates that cool bathyal waters are the primary site of adaptive radiation in the deep sea, and we hypothesise that bathymetric variation in speciation rates could drive the unimodal diversity–depth pattern over time. Thermal effects on metabolic-rate-dependent mutation and on generation times have been proposed to drive differences in speciation rates, which result in modern latitudinal biodiversity patterns over time. Clearly, this thermal mechanism alone cannot explain bathymetric patterns since temperature generally decreases with depth. We hypothesise that demonstrated physiological effects of high hydrostatic pressure and low temperature at bathyal depths, acting on shallow-water taxa invading the deep sea, may invoke a stress–evolution mechanism by increasing mutagenic activity in germ cells, by inactivating canalisation during embryonic or larval development, by releasing hidden variation or mutagenic activity, or by activating or releasing transposable elements in larvae or adults. In this scenario, increased variation at a physiological bottleneck at bathyal depths results in elevated speciation rate. Adaptation that increases tolerance to high hydrostatic pressure and low temperature allows colonisation of abyssal depths and reduces the stress–evolution response, consequently returning speciation of deeper taxa to the background rate. Over time this mechanism could contribute to the unimodal diversity–depth pattern. PMID:24118851
An, Seong Jin; Li, Jianlin; Daniel, Claus; ...
2016-04-09
An in-depth review is presented on the science of lithium-ion battery (LIB) solid electrolyte interphase (SEI) formation on the graphite anode, including structure, morphology, chemical composition, electrochemistry, formation mechanism, and LIB formation cycling. During initial operation of LIBs, the SEI layer forms on the graphite surfaces, the most commonly used anode material, due to side reactions with the electrolyte solvent/salt at low electro-reduction potentials. It is accepted that the SEI layer is essential to the long-term performance of LIBs, and it also has an impact on its initial capacity loss, self-discharge characteristics, cycle life, rate capability, and safety. While themore » presence of the anode SEI layer is vital, it is difficult to control its formation and growth, as the chemical composition, morphology, and stability depend on several factors. These factors include the type of graphite, electrolyte composition, electrochemical conditions, and cell temperature. Thus, SEI layer formation and electrochemical stability over long-term operation should be a primary topic of future investigation in the development of LIB technology. We review the progression of knowledge gained about the anode SEI, from its discovery in 1979 to the current state of understanding, and covers its formation process, differences in the chemical and structural makeup when cell materials and components are varied, methods of characterization, and associated reactions with the liquid electrolyte phase. It also discusses the relationship of the SEI layer to the LIB formation step, which involves both electrolyte wetting and subsequent slow charge-discharge cycles to grow the SEI.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sibbett, B.S.; Blackett, R.E.
1982-02-01
Lithologies penetrated throughout the upper 732 to 838 m (2400 to 2750 ft) within the Stillwater prospect area are terrigenous sediments of Pleistocene to Recent age. A sill of dacite to andesite composition with a thickness variable between 122 to 208 m (400 to 680 ft) is present below the terrigenous sediments. Between the base of the sill and the top of the Bunejug Formation are intercalated volcanic and sedimentary rocks. All formations overlying the Bunejug Formation are probably of Pleistocene age. The basalt and basaltic-andesite flows and ash below the depth of approximately 1128 m (3700 ft) are hereinmore » assigned to the Bunejug Formation (Morrison, 1964) of Pliocene and possibly early Pleistocene age. The Bunejug Formation is a thick sequence of basalt to andesite flows and hyaloclastite exposed in the mountains surrounding the south half of the Carson Desert. The De Braga No. 2 well bottomed in Bunejug volcanics at a depth of 2109 m (6920 ft). The Richard Weishaupt No. 1 well penetrated the entire Bunejug sequence and entered felsic volcanics and tuffaceous sediments, which possibly represent part of the Truckee Formation, at a depth of approximately 2412 m (7915 ft).« less
Monitoring Mountain Meteorology without Much Money (Invited)
NASA Astrophysics Data System (ADS)
Lundquist, J. D.
2009-12-01
Mountains are the water towers of the world, storing winter precipitation in the form of snow until summer, when it can be used for agriculture and cities. However, mountain weather is highly variable, and measurements are sparsely distributed. In order adequately sample snow and climate variables in complex terrain, we need as many measurements as possible. This means that instruments must be inexpensive and relatively simple to deploy. Here, we demonstrate how dime-sized temperature sensors developed for the refrigeration industry can be used to monitor air temperature (using evergreen trees as radiation shields) and snow cover duration (using the diurnal cycle in near-surface soil temperature). Together, these measurements can be used to recreate accumulated snow water equivalent over the prior year. We also demonstrate how buckets of water may be placed under networked acoustic snow depth sensors to provide an index of daily evaporation rates at SNOTEL stations. (a) Temperature sensor sealed for deployment in the soil. (b) Launching a temperature sensor into a tree. (c) Pulley system to keep sensor above the snow. (a) Photo of bucket underneath acoustic snow depth sensor. (b) Water depth in the bucket as calculated by the snow depth sensor and by a pressure sensor inside the bucket.
Opposed-Flow Flame Spread Across Propanol Pools: Effect of Liquid Fuel Depth
NASA Technical Reports Server (NTRS)
Kim, Inchul; Sirignano, William A.
1999-01-01
This computational study examines the effect of liquid fuel depth on flame spread across propanol pools with and without forced, opposed air flow. The initial pool temperature is below its closed- cup flash point temperature T(sub cc); so the liquid fuel must be heated sufficiently to create a combustible mixture of fuel vapor before ignition and flame spread can occur. Furthermore, in order for the flame to spread, an approximate rule is that the liquid fuel surface temperature ahead of the flame must be heated above T(sub cc) so that a flammable mixture just above the lean limit exists ahead of the flame. The depth of a liquid fuel pool would affect the heating of the liquid fuel pool and thus the liquid fuel surface temperature ahead of the flame. It has been observed experimentally and numerically that, at normal gravity without forced gas-phase flow and with the initial pool temperature T(sub 0) in a range well below T(sub cc), the flame periodically accelerates and decelerates (pulsates) as it propagates. The depth of a liquid fuel pool would change this range of T(sub 0) since it would affect the heating of the pool.
Depth and temperature of permafrost on the Alaskan Arctic Slope; preliminary results
Lachenbruch, Arthur H.; Sass, J.H.; Lawver, L.A.; Brewer, M.C.; Moses, T.H.
1982-01-01
As permafrost is defined by its temperature, the only way to determine its depth is to monitor the return to equilibrium of temperatures in boreholes that penetrate permafrost. Such measurements are under way in 25 wells on the Alaskan Arctic Slope; 21 are in Naval Petroleum Reserve Alaska (NPRA), and 4 are in the foothills to the east. Near-equilibrium results indicate that permafrost thickness in NPRA generally ranges between 200 and 400 m (compared to 600+ m at Prudhoe Bay); there are large local variations and no conspicuous regional trends. By contrast the long-term mean temperature of the ground surface (one factor determining permafrost depth) varies systematically from north to south in a pattern modified by the regional topography. The observed variation in permafrost temperature and depth cannot result primarily from effects of surface bodies of water or regional variations in heat flow; they are consistent, however, with expectable variations in the thermal conductivity of the sediments. It remains to be determined (with conductivity measurements) whether certain sites with anomalously high local gradients have anomalously high heat flow; if they do, they might indicate upwelling of interstitial fluids in the underlying basin sediments.
Physical controls and depth of emplacement of igneous bodies: A review
NASA Astrophysics Data System (ADS)
Menand, Thierry
2011-03-01
The formation and growth of magma bodies are now recognised as involving the amalgamation of successive, discrete pulses such as sills. Sills would thus represent the building blocks of larger plutons ( sensu lato). Mechanical and thermal considerations on the incremental development of these plutons raise the issue of the crustal levels at which magma can stall and accumulate as sills. Reviewing the mechanisms that could a priori explain sill formation, it is shown that principal physical controls include: rigidity contrast, where sills form at the interface between soft strata overlaid by comparatively stiffer strata; rheology anisotropy, where sills form within the weakest ductile zones; and rotation of deviatoric stress, where sills form when the minimum compressive stress becomes vertical. Comparatively, the concept of neutral buoyancy is unlikely to play a leading control in the emplacement of sills, although it could assist their formation. These different controls on sill formation, however, do not necessarily operate on the same length scale. The length scale associated with the presence of interfaces separating upper stiffer layers from lower softer ones determines the depth at which rigidity-controlled sills will form. On another hand, the emplacement depths for rheology-controlled sills are likely to be determined by the distribution of the weakest ductile zones. Whereas the emplacement depth of stress-controlled sills is determined by a balance between the horizontal maximum compressive stress, which favours sill formation, and the buoyancy of their feeder dykes, which drives magma vertically. Ultimately, the depth at which a sill forms depends on whether crustal anisotropy or stress rotation is the dominant control, i.e. which of these processes operates at the smallest length scale. Using dimensional analysis, it is shown that sill formation controlled by remote stress rotation would occur on length scales of hundreds of meters or greater. This therefore suggests that crustal heterogeneities and their associated anisotropy are likely to play a larger role than remote stress rotation in controlling sill emplacement, unless these heterogeneities are several hundred meters or more apart. This also reinforces the role of local stress barriers, owing to interactions between deviatoric stress and crustal heterogeneities, in the formation of sills.
An Empirical Estimation of Underground Thermal Performance for Malaysian Climate
NASA Astrophysics Data System (ADS)
Mukhtar, Azfarizal; Zamri Yusoff, Mohd; Khai Ching, Ng
2017-12-01
In this study, the soil temperature profile was computed based on the harmonic heat transfer equations at various depths. The meteorological data ranging from January, 1st 2016 to December, 31st 2016 measured by local weather stations were employed. The findings indicted that as the soil depth increases, the temperature changes are negligible and the soil temperature is nearly equal to the mean annual air temperature. Likewise, the results have been compared with those reported by other researchers. Overall, the predicted soil temperature can be readily adopted in various engineering applications in Malaysia.
NASA Astrophysics Data System (ADS)
Reichow, M. K.; Brewer, T. S.; Marvin, L. G.; Lee, S. V.
2008-12-01
Little information presently exists on the heterogeneity of hydrothermal alteration in the oceanic crust or the variability of the associated thermal, fluid, and chemical fluxes. Formation porosities are important controls on these fluxes and porosity measurements are routinely collected during wireline logging operations. These estimates on the formation porosity are measures of the moderating power of the formation in response to bombardment by neutrons. The neutron absorption macroscopic cross-section (Σ = σρ) is a representation of the ability of the rock to slow down neutrons, and as such can be used to invert the porosity of a sample. Boron, lithium and other trace elements are important controls on σ-values, and the distribution of these is influenced by secondary low-temperature alteration processes. Consequently, computed σ-values may be used to discriminate between various basalt types and to identify areas of secondary alteration. Critical in this analysis is the degree of alteration, since elements such as B and Li can dramatically affect the sigma value and leading to erroneous porosity values. We analysed over 150 'pool-samples' for S, Li, Be and B element concentrations to estimate their contribution to the measured neutron porosity. These chemical analyses allow the calculation of the model sigma values for individual samples. Using a range of variably altered samples recovered during IODP Expeditions 309 and 312 we provide bulk estimates of alteration within the drilled section using the measured neutron porosity. B concentration in Hole 1256D increases with depth, with sharp rises at 959 and 1139 mbsf. Elevated wireline neutron porosities cannot always be directly linked with high B content. However, our preliminary results imply that increased neutron porosity (~15) at depths below 1100 mbsf may reflect hydrothermal alteration rather than formation porosity. This interpretation is supported when compared with generally lower computed porosity estimates derived from resistivity measurements for the same intervals.
NASA Astrophysics Data System (ADS)
Tseng, Y.; Lin, S.; Hsieh, I. C.; Lien, K. L.
2016-12-01
Tsanyao mud volcano is a 400 meters high, 5 kilometers in diameter, a center crater of 50 meters width activing venting mud diapir. The gigantic size of mud volcano indicate massive transportation of material, i.e., gas, fluid, and breccia from deep to the sea floor in building up the mud volcano. The mud volcano is located at the upper slope of the accretionary wedge with a surrounding water depth of about xx m, offshore Southwestern Taiwan. On shore, a series of active mud volcanos also exist in a trend similar to those found offshore. In order to understand sources of gas, fluid, solid materials and the effect of gas migration and associate authigenic mineral formation, we have obtained multibeam bathymetry, water column echo sounding, together with sediment XRD and SEM and pore water composition of methane, sulfide, sulfate, chloride, potassium, lithium, boron, and water O-18 at the study mud volcano. We have observed more than 30 flares around the main cone within a perimeter of 10 square miles. δ13C values of methane in the pore water ranged from -30 to -50 ‰. The lower C13 ratios, together with high C2+/C1 ratios demonstrated that vent gas is mostly thermogenic in origin. Higher thermal gradient and water temperature indicated that cone top is unfavorable for gas-hydrate formation, however, gas hydrate may exist at a deeper part of the mud volcano system. High concentration of sulfide presence right near the sulfate-methane interface, a result of anoxic methane oxidation. However, low concentrations of pyrite in sediments indicated that AOM did not favor pyrite formation at depth. In addition, abundant siderite were found in the sediments collected in the mud volcano cone. Rapid consumption of sulfate through AOM reaction generated a condition favor the siderite fomation, instead of the typical pyrite formation commonly observed.
[INVITED] On the mechanisms of single-pulse laser-induced backside wet etching
NASA Astrophysics Data System (ADS)
Tsvetkov, M. Yu.; Yusupov, V. I.; Minaev, N. V.; Akovantseva, A. A.; Timashev, P. S.; Golant, K. M.; Chichkov, B. N.; Bagratashvili, V. N.
2017-02-01
Laser-induced backside wet etching (LIBWE) of a silicate glass surface at interface with a strongly absorbing aqueous dye solution is studied. The process of crater formation and the generated optoacoustic signals under the action of single 5 ns laser pulses at the wavelength of 527 nm are investigated. The single-pulse mode is used to avoid effects of incubation and saturation of the etched depth. Significant differences in the mechanisms of crater formation in the ;soft; mode of laser action (at laser fluencies smaller than 150-170 J/cm2) and in the ;hard; mode (at higher laser fluencies) are observed. In the ;soft; single-pulse mode, LIBWE produces accurate craters with the depth of several hundred nanometers, good shape reproducibility and smooth walls. Estimates of temperature and pressure of the dye solution heated by a single laser pulse indicate that these parameters can significantly exceed the corresponding critical values for water. We consider that chemical etching of glass surface (or molten glass) by supercritical water, produced by laser heating of the aqueous dye solution, is the dominant mechanism responsible for the formation of crater in the ;soft; mode. In the ;hard; mode, the produced craters have ragged shape and poor pulse-to-pulse reproducibility. Outside the laser exposed area, cracks and splits are formed, which provide evidence for the shock induced glass fracture. By measuring the amplitude and spectrum of the generated optoacoustic signals it is possible to conclude that in the ;hard; mode of laser action, intense hydrodynamic processes induced by the formation and cavitation collapse of vapor-gas bubbles at solid-liquid interface are leading to the mechanical fracture of glass. The LIBWE material processing in the ;soft; mode, based on chemical etching in supercritical fluids (in particular, supercritical water) is very promising for structuring of optical materials.
Observational Evidence of Changes in Soil Temperatures across Eurasian Continent
NASA Astrophysics Data System (ADS)
Zhang, T.
2015-12-01
Soil temperature is one of the key climate change indicators and plays an important role in plant growth, agriculture, carbon cycle and ecosystems as a whole. In this study, variability and changes in ground surface and soil temperatures up to 3.20 m were investigated based on data and information obtained from hydrometeorological stations across Eurasian continent since the early 1950s. Ground surface and soil temperatures were measured daily by using the same standard method and by the trained professionals across Eurasian continent, which makes the dataset unique and comparable over a large study region. Using the daily soil temperature profiles, soil seasonal freeze depth was also obtained through linear interpolation. Preliminary results show that soil temperatures at various depths have increased dramatically, almost twice as much as air temperature increase over the same period. Regionally, soil temperature increase was more dramatically in high northern latitudes than mid/lower latitude regions. Air temperature changes alone may not be able to fully explain the magnitude of changes in soil temperatures. Further study indicates that snow cover establishment started later in autumn and snow cover disappearance occurred earlier in spring, while winter snow depth became thicker with a decreasing trend of snow density. Changes in snow cover conditions may play an important role in changes of soil temperatures over the Eurasian continent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, S. K.; Mohan, S.; Bysakh, S.
The formation of surface oxide layer as well as compositional changes along the thickness for NiTi shape memory alloy thin films deposited by direct current magnetron sputtering at substrate temperature of 300 °C in the as-deposited condition as well as in the postannealed (at 600 °C) condition have been thoroughly studied by using secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, and scanning transmission electron microscopy-energy dispersive x-ray spectroscopy techniques. Formation of titanium oxide (predominantly titanium dioxide) layer was observed in both as-deposited and postannealed NiTi films, although the oxide layer was much thinner (8 nm) in as-deposited condition. The depletionmore » of Ti and enrichment of Ni below the oxide layer in postannealed films also resulted in the formation of a graded microstructure consisting of titanium oxide, Ni{sub 3}Ti, and B2 NiTi. A uniform composition of B2 NiTi was obtained in the postannealed film only below a depth of 200–250 nm from the surface. Postannealed film also exhibited formation of a ternary silicide (Ni{sub x}Ti{sub y}Si) at the film–substrate interface, whereas no silicide was seen in the as-deposited film. The formation of silicide also caused a depletion of Ni in the film in a region ∼250–300 nm just above the film substrate interface.« less
Lin, Qianxin; Mendelssohn, Irving A; Bryner, Nelson P; Walton, William D
2005-03-15
In-situ burning of oiled wetlands potentially provides a cleanup technique that is generally consistent with present wetland management procedures. The effects of water depth (+10, +2, and -2 cm), oil type (crude and diesel), and oil penetration of sediment before the burn on the relationship between vegetation recovery and soil temperature for three coastal marsh types were investigated. The water depth over the soil surface during in-situ burning was a key factor controlling marsh plant recovery. Both the 10- and 2-cm water depths were sufficient to protect marsh vegetation from burning impacts, with surface soil temperatures of <35 and 48 degrees C, respectively. Plant survival rate and growth responses at these water depth burns were not significantly different from the unburned control. In contrast, a water table 2 cm below the soil surface during the burn resulted in high soil temperatures, with 90-200 degrees C at 0-0.5 cm soil depth and 55-75 degrees C at 1-2 cm soil depth. The 2-cm soil exposure to fire significantly impeded the post-burn recovery of Spartina alterniflora and Sagittaria lancifolia but did not detrimentally affect the recovery of Spartina patens and Distichlis spicata. Oil type (crude vs diesel) and oil applied to the marsh soil surface (0.5 L x m(-2)) before the burn did not significantly affect plant recovery. Thus, recovery is species-specific when no surface water exists. Even water at the soil surface will most likely protect wetland plants from burning impact.
Zhang, Qian; Visser, Eric J. W.; de Kroon, Hans; Huber, Heidrun
2015-01-01
Background and Aims Flooding can occur at any stage of the life cycle of a plant, but often adaptive responses of plants are only studied at a single developmental stage. It may be anticipated that juvenile plants may respond differently from mature plants, as the amount of stored resources may differ and morphological changes can be constrained. Moreover, different water depths may require different strategies to cope with the flooding stress, the expression of which may also depend on developmental stage. This study investigated whether flooding-induced adventitious root formation and plant growth were affected by flooding depth in Solanum dulcamara plants at different developmental stages. Methods Juvenile plants without pre-formed adventitious root primordia and mature plants with primordia were subjected to shallow flooding or deep flooding for 5 weeks. Plant growth and the timing of adventitious root formation were monitored during the flooding treatments. Key Results Adventitious root formation in response to shallow flooding was significantly constrained in juvenile S. dulcamara plants compared with mature plants, and was delayed by deep flooding compared with shallow flooding. Complete submergence suppressed adventitious root formation until up to 2 weeks after shoots restored contact with the atmosphere. Independent of developmental stage, a strong positive correlation was found between adventitious root formation and total biomass accumulation during shallow flooding. Conclusions The potential to deploy an escape strategy (i.e. adventitious root formation) may change throughout a plant’s life cycle, and is largely dependent on flooding depth. Adaptive responses at a given stage of the life cycle thus do not necessarily predict how the plant responds to flooding in another growth stage. As variation in adventitious root formation also correlates with finally attained biomass, this variation may form the basis for variation in resistance to shallow flooding among plants. PMID:26105188
Zhang, Qian; Visser, Eric J W; de Kroon, Hans; Huber, Heidrun
2015-08-01
Flooding can occur at any stage of the life cycle of a plant, but often adaptive responses of plants are only studied at a single developmental stage. It may be anticipated that juvenile plants may respond differently from mature plants, as the amount of stored resources may differ and morphological changes can be constrained. Moreover, different water depths may require different strategies to cope with the flooding stress, the expression of which may also depend on developmental stage. This study investigated whether flooding-induced adventitious root formation and plant growth were affected by flooding depth in Solanum dulcamara plants at different developmental stages. Juvenile plants without pre-formed adventitious root primordia and mature plants with primordia were subjected to shallow flooding or deep flooding for 5 weeks. Plant growth and the timing of adventitious root formation were monitored during the flooding treatments. Adventitious root formation in response to shallow flooding was significantly constrained in juvenile S. dulcamara plants compared with mature plants, and was delayed by deep flooding compared with shallow flooding. Complete submergence suppressed adventitious root formation until up to 2 weeks after shoots restored contact with the atmosphere. Independent of developmental stage, a strong positive correlation was found between adventitious root formation and total biomass accumulation during shallow flooding. The potential to deploy an escape strategy (i.e. adventitious root formation) may change throughout a plant's life cycle, and is largely dependent on flooding depth. Adaptive responses at a given stage of the life cycle thus do not necessarily predict how the plant responds to flooding in another growth stage. As variation in adventitious root formation also correlates with finally attained biomass, this variation may form the basis for variation in resistance to shallow flooding among plants. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Permeability in fractured rocks from deep geothermal boreholes in the Upper Rhine Graben
NASA Astrophysics Data System (ADS)
Vidal, Jeanne; Whitechurch, Hubert; Genter, Albert; Schmittbuhl, Jean; Baujard, Clément
2015-04-01
Permeability in fractured rocks from deep geothermal boreholes in the Upper Rhine Graben Vidal J.1, Whitechurch H.1, Genter A.2, Schmittbuhl J.1, Baujard C.2 1 EOST, Université de Strasbourg 2 ES-Géothermie, Strasbourg The thermal regime of the Upper Rhine Graben (URG) is characterized by a series of geothermal anomalies on its French part near Soultz-sous-Forêts, Rittershoffen and in the surrounding area of Strasbourg. Sedimentary formations of these areas host oil field widely exploited in the past which exhibit exceptionally high temperature gradients. Thus, geothermal anomalies are superimposed to the oil fields which are interpreted as natural brine advection occurring inside a nearly vertical multi-scale fracture system cross-cutting both deep-seated Triassic sediments and Paleozoic crystalline basement. The sediments-basement interface is therefore very challenging for geothermal industry because most of the geothermal resource is trapped there within natural fractures. Several deep geothermal projects exploit local geothermal energy to use the heat or produce electricity and thus target permeable fractured rocks at this interface. In 1980, a geothermal exploration well was drilled close to Strasbourg down to the Permian sediments at 3220 m depth. Bottom hole temperature was estimated to 148°C but the natural flow rate was too low for an economic profitability (<7 L/s). Petrophysics and reservoir investigations based on core analysis revealed a low matrix porosity with fracture zones spatially isolated and sealed in the sandstone formations. Any stimulation operation was planned and the project was abandoned. The Soultz-sous-Forêts project, initiated in 1986, explored during more than 30 years the experimental geothermal site by drilling five boreholes, three of which extend to 5 km depth. They identified a temperature of 200° C at 5 km depth in the granitic basement but with a variable flow rate. Hydraulic and chemical stimulation operations were applied in order to increase the initial low permeability by reactivating and dissolving sealed fractures in basement. The productivity was considerably improved and allows geothermal exploitation at 165° C and 20 L/s. Recent studies revealed the occurrences of permeable fractures in the limestones of Muschelkalk and the sandstones of Buntsandstein also. For the ongoing project at Rittershoffen, two deep boreholes, drilled down to 2.7 km depth target a reservoir in the sandstones of Buntsandstein and in the granitic basement interface. The thermal, hydraulic and chemical stimulations of the first well lead the project to an economic profitability with a temperature of 170° C and an industrial flow rate of 70 L/s. The deep sedimentary cover and the top of the granitic basement are the main target of the geothermal project in the URG. Permeability of fractured rocks after drilling operations or stimulation operations demonstrates the viability of French industrial deep geothermal projects in the URG was also confirmed by several geothermal projects in Germany that target the similar sediments-basement interface (Landau and Insheim) or the deep Triassic sediments (Bruchsal and Brühl). In France, future geothermal projects are planned in particular in Strasbourg suburb to exploit the permeability of deep-seated fractured sediment-basement interface.
Analyzed DTS Data, Guelph, ON Canada
Coleman, Thomas
2015-07-01
Analyzed DTS datasets from active heat injection experiments in Guelph, ON Canada is included. A .pdf file of images including borehole temperature distributions, temperature difference distributions, temperature profiles, and flow interpretations is included as the primary analyzed dataset. Analyzed data used to create the .pdf images are included as a matlab data file that contains the following 5 types of data: 1) Borehole Temperature (matrix of temperature data collected in the borehole), 2) Borehole Temperature Difference (matrix of temperature difference above ambient for each test), 3) Borehole Time (time in both min and sec since the start of a DTS test), 4) Borehole Depth (channel depth locations for the DTS measurements), 5) Temperature Profiles (ambient, active, active off early time, active off late time, and injection).
NASA Astrophysics Data System (ADS)
Collins, M. S.; Hertzberg, J. E.; Mekik, F.; Schmidt, M. W.
2017-12-01
Based on the thermodynamics of solid-solution substitution of Mg for Ca in biogenic calcite, magnesium to calcium ratios in planktonic foraminifera have been proposed as a means by which variations in habitat water temperatures can be reconstructed. Doing this accurately has been a problem, however, as we demonstrate that various calibration equations provide disparate temperature estimates from the same Mg/Ca dataset. We examined both new and published data to derive a globally applicable temperature-Mg/Ca relationship and from this relationship to accurately predict habitat depth for Neogloboquadrina dutertrei - a deep chlorophyll maximum dweller. N. dutertrei samples collected from Atlantic core tops were analyzed for trace element compositions at Texas A&M University, and the measured Mg/Ca ratios were used to predict habitat temperatures using multiple pre-existing calibration equations. When combining Atlantic and previously published Pacific Mg/Ca datasets for N. dutertrei, a notable dissolution effect was evident. To overcome this issue, we used the G. menardii Fragmentation Index (MFI) to account for dissolution and generated a multi-basin temperature equation using multiple linear regression to predict habitat temperature. However, the correlations between Mg/Ca and temperature, as well as the calculated MFI percent dissolved, suggest that N. dutertrei Mg/Ca ratios are affected equally by both variables. While correcting for dissolution makes habitat depth estimation more accurate, the lack of a definitively strong correlation between Mg/Ca and temperature is likely an effect of variable habitat depth for this species because most calibration equations have assumed a uniform habitat depth for this taxon.
Event-based stormwater management pond runoff temperature model
NASA Astrophysics Data System (ADS)
Sabouri, F.; Gharabaghi, B.; Sattar, A. M. A.; Thompson, A. M.
2016-09-01
Stormwater management wet ponds are generally very shallow and hence can significantly increase (about 5.4 °C on average in this study) runoff temperatures in summer months, which adversely affects receiving urban stream ecosystems. This study uses gene expression programming (GEP) and artificial neural networks (ANN) modeling techniques to advance our knowledge of the key factors governing thermal enrichment effects of stormwater ponds. The models developed in this study build upon and compliment the ANN model developed by Sabouri et al. (2013) that predicts the catchment event mean runoff temperature entering the pond as a function of event climatic and catchment characteristic parameters. The key factors that control pond outlet runoff temperature, include: (1) Upland Catchment Parameters (catchment drainage area and event mean runoff temperature inflow to the pond); (2) Climatic Parameters (rainfall depth, event mean air temperature, and pond initial water temperature); and (3) Pond Design Parameters (pond length-to-width ratio, pond surface area, pond average depth, and pond outlet depth). We used monitoring data for three summers from 2009 to 2011 in four stormwater management ponds, located in the cities of Guelph and Kitchener, Ontario, Canada to develop the models. The prediction uncertainties of the developed ANN and GEP models for the case study sites are around 0.4% and 1.7% of the median value. Sensitivity analysis of the trained models indicates that the thermal enrichment of the pond outlet runoff is inversely proportional to pond length-to-width ratio, pond outlet depth, and directly proportional to event runoff volume, event mean pond inflow runoff temperature, and pond initial water temperature.
NASA Astrophysics Data System (ADS)
Khomutov, Artem; Leibman, Marina; Dvornikov, Yury; Aref'ev, Stanislav
2017-04-01
Deep craters in the North of West Siberia are specific objects in permafrost zone first observed in 2014 and later detected on satellite images to form in 2013. Their origin is under discussion yet. Authors hypothesize their formation from gas accumulation and later sudden emission. Scientific community was informed of Antipayutinskiy gas-emission crater (AntGEC) soon after first Yamal crater was found in 2014. Despite this knowledge, a real opportunity to visit AntGEC with true coordinates and logistic support appeared only in 2016 field campaign. Our field study of AntGEC included a description of the surrounding area and visible geological section, GPS-survey of GEC settings and related surface disturbances, measuring the depth of seasonal thaw, the internal lake bathymetry and water sampling from internal lake and other "knocked out" ponds. We also looked for traces of the initial mound preceding the GEC formation. We collected the willow branches for tree-ring dating of the events preceding the "eruption" using a specially developed technique, tested on willows, collected from Yamal gas-emission crater (GEC-1). Based on measurements of the depth, bathymetric map of AntGEC was compiled. The maximum measured depth at the crater center was 3.6 meters. Depth distribution was uniform in plan. The estimated volume of lake water was 1642.6 m3. Water samples were taken at different depths. The water temperature at the time of measurement was 8.8˚ C near the surface and 7.8˚ C at a depth of 3 meters. Preliminary dendrochronological analysis of AntGEC willow from the ejected block with turf showed the age of about 90 years. Annual growth rate of willow on AntGEC location was low (˜0.1 mm) in 1918-1947. An elevated growth rate (0.45 mm) is registered in 1948. This increase is chronologically correlated with previously defined increase of willow growth rate on first Yamal crater location. A significant difference between Gydan AntGEC and 3 known Yamal GEC is observed. While Yamal GECs are located on gentle concave slopes, overgrown with a more or less dense willow thickets, predominantly in loamy soils, the AntGEC is located almost on the watershed, although near the drainage hollow, in mostly sandy deposits, one of the walls exposes a hilltop sandy section, with windblown sandy depressions. Shrubs even in the bottom of the hollow form separate groups. Only tabular ground ice close to the surface unites Yamal and Gydan GECs. With these new data we need to adjust our understanding of landscape indicators of terrains potentially dangerous in relation to the GEC formation so far based on Yamal GEC study. This research is supported by Russian Science Foundation Grant 16-17-10203.
Lai, Yu-Chi; Choy, Young Bin; Haemmerich, Dieter; Vorperian, Vicken R; Webster, John G
2004-10-01
Finite element method (FEM) analysis has become a common method to analyze the lesion formation during temperature-controlled radiofrequency (RF) cardiac ablation. We present a process of FEM modeling a system including blood, myocardium, and an ablation catheter with a thermistor embedded at the tip. The simulation used a simple proportional-integral (PI) controller to control the entire process operated in temperature-controlled mode. Several factors affect the lesion size such as target temperature, blood flow rate, and application time. We simulated the time response of RF ablation at different locations by using different target temperatures. The applied sites were divided into two groups each with a different convective heat transfer coefficient. The first group was high-flow such as the atrioventricular (AV) node and the atrial aspect of the AV annulus, and the other was low-flow such as beneath the valve or inside the coronary sinus. Results showed the change of lesion depth and lesion width with time, under different conditions. We collected data for all conditions and used it to create a database. We implemented a user-interface, the lesion size estimator, where the user enters set temperature and location. Based on the database, the software estimated lesion dimensions during different applied durations. This software could be used as a first-step predictor to help the electrophysiologist choose treatment parameters.
Wells, J.G.; Drellack, S.L.
1983-01-01
The H-10 borehole complex, a group of three closely spaced boreholes, is located 3 1/2 miles southeast of the proposed Waste Isolation Pilot Plant site in west-central Lea County, New Mexico. The geological data presented in this report are part of a site-characterization study for the possible storage of defense-associated radioactive wastes within salt beds of the Salado Formation of Permian age. Each borehole was designated to penetrate a distinct water-bearing zone: H-10a (total depth 1 ,318 feet) was completed just below the Magenta Dolomite Member of the Rustler Formation of Permian age; H-10b (total depth 1 ,398 feet) was completed just below the Culebra Dolomite Member of the Rustler Formation; and H-10c (total depth 1,538 feet) was completed below the Rustler Formation-Salado Formation contact. The geologic units penetrated in borehole H-10c are surficial alluvium and eolian sand of Holocene age (0-5 feet); the Mescalero caliche (5-9 feet) and the Gatuna Formation (9-90 feet) of Pleistocene age; formation in the Dockum Group (Chinle Formation, 90-482 feet and Santa Rosa Sandstone, 482-658 feet) of Late Triassic age; and the Dewey Lake Red Beds (658-1,204 feet), the Rustler Formation (1,204-1,501 feet), and part of the Salado Formation (1,501-1,538 feet), all of Permian age. The sections of the Rustler and Salado Formations penetrated by borehole H-10c are complete and contain little or no evidence of dissolution of halite and associated rocks, indicating that the eastward-moving dissolution on top of the Salado, found just to the west of the WIPP site, has not reached the H-10 site. (USGS)
Bailey, Z.C.; Hanchar, D.W.
1988-01-01
Twenty-four wells were constructed at nine sites at Bear Creek Valley to provide geologic and hydrologic information. Lithologic samples and suits of geophysical logs were obtained from the deepest boreholes at six of the sites. Two of these boreholes at the base of Chestnut Ridge were completed in the Maynardville Limestone and two were completed in the Nolichucky Shale. Two boreholes along Pine Ridge were completed in the Rome Formation. Zones of similar lithology within a borehole were delineated from rock cutting refined by examination of geophysical logs. The contact between the Maynardville Limestone and Nolichucky Shale was identified in two of the boreholes. Fractures and cavities were readily identifiable on the acoustic-televiewer and caliper logs. Distinct water-bearing intervals were also identified from the temperature, fluid resistance, and resistivity logs. Depths at which the drilling encounterd a thrust were identified in two boreholes in the Rome Formation from both rock cutting and geophysical logs. (USGS)
Bunte Breccia of the Ries - Continuous deposits of large impact craters
NASA Technical Reports Server (NTRS)
Horz, F.; Ostertag, R.; Rainey, D. A.
1983-01-01
The 26-km-diameter Ries impact crater in south Germany and the mechanism of ejection and emplacement associated with its formation about 15 Myr ago are discussed in detail, and the implications of the findings for models of crater formation on earth, moon, and planets are considered. Field observations and laboratory tests on 560-m core materials from nine locations are reported. The continuous deposits (Bunte Breccia) are found to be a chaotic mixture resulting from deposition at ambient temperatures in a highly turbulent environment, probably in the ballistic scenario proposed by Oberbeck et al. (1975), with an emplacement time of only about 5 min. Further impact parameters are estimated using the 'Z model' of Maxwell (1977): initial radius = 6.5 km, excavation depth = 1650 m, excavation volume = 136 cu km, and transient cavity volume = 230 cu km. The interpretation of lunar and planetary remote-sensing and in situ evidence from impact craters is reviewed in the light of the Ries findings. Numerous photographs, maps, diagrams, and tables illustrate the investigation.
Directed Assembly of Molecules on Graphene/Ru(0001)
NASA Astrophysics Data System (ADS)
Zhang, L. Z.; Zhang, H. G.; Sun, J. T.; Pan, Y.; Liu, Q.; Mao, J. H.; Zhou, H. T.; Low, T.; Guo, H. M.; Du, S. X.; Gao, H.-J.
2012-02-01
Recently, the graphene monolayers have been seen to adopt a superstructure - moir'e pattern - on Ru(0001). By using low temperature scanning tunneling spectroscopy, we identified the laterally localized electronic states on this system. The individual states are separated by 3 nm and comprise regions of about 90 carbon atoms. This constitutes a highly regular quantum dot-array with molecular precision. It is evidenced by quantum well resonances with energies that relate to the corrugation of the graphene layer. By using scanning tunneling microscopy/spectroscopy, we demonstrate the selective adsorption and formation of ordered molecular arrays of FePc and pentacene molecules on the graphene/Ru(0001) templates. With in-depth investigations of the molecular adsorption and assembly processes we reveal the existence lateral electric dipoles in the epitaxial graphene monolayers and the capability of the dipoles in directing and driving the molecular adsorption and assembly. When increasing the molecular coverage, we observed the formation of regular Kagome lattices that duplicate the lattice of the moir'e pattern of monolayer graphene.
NASA Astrophysics Data System (ADS)
Akulichev, V. A.; Burenin, A. V.; Ladychenko, S. Yu.; Lobanov, V. B.; Morgunov, Yu. N.
2017-08-01
The paper discusses the results of an experiment conducted in the Sea of Japan in March 2016 on an acoustic track 194 km long in winter hydrological conditions. The most complex case of propagation of pseudorandom pulse signals from the shelf to deep water in the presence of gyre formation on the acoustic track. An analysis of the experimentally obtained pulse characteristics show that at all points, a maximum, in terms of amplitude, first arrival of acoustic energy is recorded. This is evidence that at a given depth horizon, pulses that have passed the shortest distance through a near-surface sound channel at small angles close to zero are received first. The calculation method of mean sound velocity on the track, based on the satellite data of surface temperature monitoring, is proposed. We expect that the results obtained with this method can be successfully used for the purposes of acoustic range finding and navigation.
NASA Astrophysics Data System (ADS)
Gehrz, R. D.; Evans, A.; Woodward, C. E.; Helton, L. A.; Banerjee, D. P. K.; Srivastava, M. K.; Ashok, N. M.; Joshi, V.; Eyres, S. P. S.; Krautter, Joachim; Kuin, N. P. M.; Page, K. L.; Osborne, J. P.; Schwarz, G. J.; Shenoy, D. P.; Shore, S. N.; Starrfield, S. G.; Wagner, R. M.
2018-05-01
We present 5–28 μm SOFIA FORECAST spectroscopy complemented by panchromatic X-ray through infrared observations of the CO nova V5668 Sgr documenting the formation and destruction of dust during ∼500 days following outburst. Dust condensation commenced by 82 days after outburst at a temperature of ∼1090 K. The condensation temperature indicates that the condensate was amorphous carbon. There was a gradual decrease of the grain size and dust mass during the recovery phase. Absolute parameter values given here are for an assumed distance of 1.2 kpc. We conclude that the maximum mass of dust produced was 1.2 × 10‑7 M ⊙ if the dust was amorphous carbon. The average grain radius grew to a maximum of ∼2.9 μm at a temperature of ∼720 K around day 113 when the shell visual optical depth was τ v ∼ 5.4. Maximum grain growth was followed by a period of grain destruction. X-rays were detected with Swift from day 95 to beyond day 500. The Swift X-ray count rate due to the hot white dwarf peaked around day 220, when its spectrum was that of a kT = 35 eV blackbody. The temperature, together with the supersoft X-ray turn-on and turn-off times, suggests a white dwarf mass of ∼1.1 M ⊙. We show that the X-ray fluence was sufficient to destroy the dust. Our data show that the post-dust event X-ray brightening is not due to dust destruction, which certainly occurred, as the dust is optically thin to X-rays.
A resolved mantle anomaly as the cause of the Australian-Antarctic Discordance
NASA Astrophysics Data System (ADS)
Ritzwoller, M. H.; Shapiro, N. M.; Leahy, G. M.
2003-12-01
We present evidence for the existence of an Australian-Antarctic Mantle Anomaly (AAMA), which trends northwest-southeast (NW-SE) through the Australian-Antarctic Discordance (AAD) on the Southeast Indian Ridge (SEIR), is confined to the upper 120 km of the mantle beneath the AAD, and dips shallowly to the west so that it extends to a depth of about 150 km west of the AAD. Average temperatures within the AAMA are depressed about 100°C relative to surrounding lithosphere and suggest very rapid cooling of newly formed lithosphere at the AAD to an effective thermal age between 20 and 30 Ma. A convective down welling beneath the AAD is not consistent with the confinement of the AAMA in the uppermost mantle. In substantial agreement with the model of [1998], we argue that the AAMA is the suspended remnant of a slab that subducted at the Gondwanaland-Pacific convergent margin more than 100 Myr ago, foundered in the deeper mantle, and then ascended into the shallow mantle within the past 30 Myr, cutting any ties to deeper roots. The stability of the AAMA and its poor correlation with residual topography and gravity imply that it is approximately neutrally buoyant. The thermally induced density anomaly can be balanced by bulk iron depletion of less than 0.8%, consistent with the warmer conditions of formation for the Pacific than Indian lithosphere. We hypothesize that the low temperatures in the AAMA inhibit crustal formation and the AAD depth anomaly is formed at the intersection of the SEIR and the AAMA. The northward migration of the SEIR overriding the cold NW-SE trending AAMA therefore presents a simple kinematic explanation for both the V-shaped residual depth anomaly in the southeast Indian Ocean and the western migration of the AAD along the SEIR. Neither explanation requires the Pacific asthenospheric mantle to push westward and displace Indian asthenosphere. The AAMA may also act as a barrier to large-scale flows in the shallow asthenosphere and may therefore define a boundary for mantle convection and between the Indian and Pacific isotopic provinces. The westward dip of the AAMA would also favor along-axis flow from the Indian Ocean asthenosphere to the AAD that may contribute to the penetration of Indian Ocean mid-ocean ridge basalts into the AAD.
Long-term trends and changes of soil temperature of recent decade in the permafrost zone of Russia
NASA Astrophysics Data System (ADS)
Sherstiukov, A.
2013-12-01
The northern regions of Russia have rich natural resources (oil, gas). In recent years in these areas are increasingly built engineering structure for oil and gas production and their transportation. Current global warming has a great influence on soil condition in the permafrost zone. This can lead to negative effects on buildings and infrastructure which are built on frozen soils. Changes of the soil state in area of permafrost demand serious studying. Next steps have been done for research of this problem: Part 1. a) The daily data set of soil temperature under natural surface at depths up to 320 cm at the Russian meteorological stations has been prepared. The earliest year of data set is 1963, the current version is ending in 2011 (660 stations of Russia). Quality control of original data was performed in creating this data set. b) The data set of computed depth of soil seasonal thawing at the Russian meteorological stations till 2011 has been prepared (107 stations with yearly depth of thawing). Part 2. Changes of soils' condition for the last five decades have been researched based on the prepared data sets. The change of mean annual soil temperature at depths has been researched and soil warming in the vast area for 1963 - 2010 has been shown, the great trends (0,2 ÷ 0,4°C /10 years) increase at 320 cm have been found in Western and Eastern Siberia, and the greatest trends (0,4 ÷ 0,5°C/10 years) are found in their south part. This creates favorable conditions for increase of seasonal thawing depth in a permafrost zone, especially in its south part. The map of average depth of soil seasonal thawing for the same period (1963-2010) was made. It showed that the greatest depths of thawing 300-400 cm were observed near the border of permafrost and the smallest depths 50-250 cm predominate in the area of continuous permafrost. Part 3. Global warming of climate was slowed down from the beginning of the XXI century as it is known from publications. Additional researches of soil temperature change in recent decade showed that positive trends of soil temperature for this decade were changed on negative trends (-0,2 ÷ -0,6°C/10 years) in the South and the southeast of Western Siberia. The most intensive decrease of soil temperature in this region is observed since 2007. Trends of the thawing depth for permafrost soils were obtained for 2001-2011. Greatest significant positive trends of thawing depth have been obtained in Eastern Siberia (3÷5 cm/year). However, spots with significant negative trends are obtained in central Yakutia, and also to the south of Lake Baikal and near the Kolyma River mouth. Conclusions: 1. Using the Russian daily data set of soil temperature at depths up to 320 cm for last 40-50 years, soil warming is shown over the vast territory of the Russia. Maximum trends at the 320 cm depth are found in the south part of Western and Eastern Siberia. 2. One of the impacts of the current climate changes is the general tendency for the increase in the seasonal thawing depth on the vast territory of Western and Eastern Siberia. 3. In recent decade the tendency of soil temperature decrease has been appeared in south part of Western Siberia near south border of permafrost also decrease of seasonal thawing depth has been appeared in some regions. The work was done with the financial support of RFBR (project 11-05-00691).
Snow depth evolution on sea ice from Snow Buoy measurement
NASA Astrophysics Data System (ADS)
Nicolaus, M.; Arndt, S.; Hendricks, S.; Hoppmann, M.; Katlein, C.; König-Langlo, G.; Nicolaus, A.; Rossmann, H. L.; Schiller, M.; Schwegmann, S.; Langevin, D.
2016-12-01
Snow cover is an Essential Climate Variable. On sea ice, snow dominates the energy and momentum exchanges across the atmosphere-ice-ocean interfaces, and actively contributes to sea ice mass balance. Yet, snow depth on sea ice is one of the least known and most difficult to observe parameters of the Arctic and Antarctic; mainly due to its exceptionally high spatial and temporal variability. In this study; we present a unique time series dataset of snow depth and air temperature evolution on Arctic and Antarctic sea ice recorded by autonomous instruments. Snow Buoys record snow depth with four independent ultrasonic sensors, increasing the reliability of the measurements and allowing for additional analyses. Auxiliary measurements include surface and air temperature, barometric pressure and GPS position. 39 deployments of such Snow Buoys were achieved over the last three years either on drifting pack ice, on landfast sea ice or on an ice shelf. Here we highlight results from two pairs of Snow Buoys installed on drifting pack ice in the Weddell Sea. The data reveals large regional differences in the annual cycle of snow depth. Almost no reduction in snow depth (snow melt) was observed in the inner and southern part of the Weddell Sea, allowing a net snow accumulation of 0.2 to 0.9 m per year. In contrast, summer snow melt close to the ice edge resulted in a decrease of about 0.5 m during the summer 2015/16. Another array of eight Snow Buoys was installed on central Arctic sea ice in September 2015. Their air temperature record revealed exceptionally high air temperatures in the subsequent winter, even exceeding the melting point but with almost no impact on snow depth at that time. Future applications of Snow Buoys on Arctic and Antarctic sea ice will allow additional inter-annual studies of snow depth and snow processes, e.g. to support the development of snow depth data products from airborne and satellite data or though assimilation in numerical models.
Sahlstedt, Elina; Karhu, Juha A; Pitkanen, Petteri
2010-09-01
In paleohydrogeological studies, the geochemical and isotope geochemical composition of fracture calcites can be utilised to gain information about the evolution of the composition of deep groundwaters in crystalline bedrock. The aim of our study was to investigate the latest hydrogeochemical evolution of groundwaters in the crystalline bedrock at Olkiluoto, which is the planned site for deep geological disposal of spent nuclear fuel. Samples were collected from drill cores intercepting water-conducting fractures at the upper ~500 m of the bedrock. The latest fracture calcite generations were identified using optical microscopy and electron microprobe. They occur as thin ~10-200 μm crusts or small euhedral crystals on open fracture surfaces. These latest calcite fillings were carefully sampled and analysed for the isotopic composition on carbon and oxygen. In addition, fluid inclusion homogenisation temperatures were determined on selected calcite samples. Fluid inclusion data indicated a low temperature of formation for the latest fracture calcite fillings. The δ(18)O values of calcite in these fracture fillings vary only slightly, from-7.3 to-11.5 ‰ (Vienna Pee Dee Belemnite, VPDB), whereas the δ(13)C values fluctuate widely, from-30 to+31 ‰ (VPDB). The δ(13)C values of latest calcite fillings show a systematic pattern with depth, with high and variable δ(13)C values below 50 m. The high δ(13)C values indicate active methanogenesis during the formation of the latest calcite fillings. In contrast, the present-day methanic redox environment is restricted to depths below 200-300 m. It is possible that the shift in the redox environment at Olkiluoto has occurred during infiltration of SO2-(4)-rich marine waters, the latest of such events being the infiltration of brackish waters of the Littorina Sea stage of the Baltic Sea at ~8000-3000 BP.
NASA Astrophysics Data System (ADS)
Wassmann, Sara; Stöckhert, Bernhard
2012-09-01
Exhumed high pressure-low temperature metamorphic mélanges of tectonic origin are believed to reflect high strain accumulated in large scale interplate shear zones during subduction. Rigid blocks of widely varying size are embedded in a weak matrix, which takes up the deformation and controls the rheology of the composite. The microfabrics of a highly deformed jadeite-blueschist from the Franciscan Complex, California, are investigated to help understand deformation mechanisms at depth. The specimen shows a transposed foliation with dismembered fold hinges and boudinage structures. Several generations of open fractures have been sealed to become veins at high-pressure metamorphic conditions. The shape of these veins, frequently restricted to specific layers, indicates distributed host rock deformation during and after sealing. Small cracks in jadeite and lawsonite are healed, with tiny quartz inclusions aligned along the former fracture surface. Large jadeite porphyroblasts show strain caps and strain shadows. Open fractures are sealed by quartz and new jadeite epitactically grown on the broken host. Monophase glaucophane aggregates consist of undeformed needles with a diameter between 0.1 and 2 μm, grown after formation of isoclinal folds. Only quartz microfabrics indicate some stage of crystal-plastic deformation, followed by annealing and grain growth. Aragonite in the latest vein generation shows retrogression to calcite along its rims. The entire deformation happened under HP-LT metamorphic conditions in the stability field of jadeite and quartz, at temperatures between 300 and 450 °C and pressures exceeding 1-1.4 GPa. The microfabrics indicate that dissolution precipitation creep was the predominant deformation mechanism, accompanied by brittle failure and vein formation at quasi-lithostatic pore fluid pressure. This indicates low flow strength and, combined with high strain rates expected for localized deformation between the plates, a very low viscosity of material in the interplate shear zone at a depth > 30-45 km.
Predefined Redundant Dictionary for Effective Depth Maps Representation
NASA Astrophysics Data System (ADS)
Sebai, Dorsaf; Chaieb, Faten; Ghorbel, Faouzi
2016-01-01
The multi-view video plus depth (MVD) video format consists of two components: texture and depth map, where a combination of these components enables a receiver to generate arbitrary virtual views. However, MVD presents a very voluminous video format that requires a compression process for storage and especially for transmission. Conventional codecs are perfectly efficient for texture images compression but not for intrinsic depth maps properties. Depth images indeed are characterized by areas of smoothly varying grey levels separated by sharp discontinuities at the position of object boundaries. Preserving these characteristics is important to enable high quality view synthesis at the receiver side. In this paper, sparse representation of depth maps is discussed. It is shown that a significant gain in sparsity is achieved when particular mixed dictionaries are used for approximating these types of images with greedy selection strategies. Experiments are conducted to confirm the effectiveness at producing sparse representations, and competitiveness, with respect to candidate state-of-art dictionaries. Finally, the resulting method is shown to be effective for depth maps compression and represents an advantage over the ongoing 3D high efficiency video coding compression standard, particularly at medium and high bitrates.
Leaf fall, humus depth, and soil frost in a northern hardwood forest
George Hart; Raymond E. Leonard; Robert S. Pierce
1962-01-01
In the mound-and-depression microtopography of the northern hardwood forest, leaves are blown off the mounds and collect in the depressions. This influence of microtopography on leaf accumulation is responsible for much of the variation in humus depth; and this, in turn, affects the formation and depth of soil frost.
The origin of jarosite associated with a gossan on Archean gneiss in Southwest Greenland
NASA Astrophysics Data System (ADS)
Peng, Y.; Pratt, L. M.; Young, S. A.; Cadieux, S. B.; White, J. R.
2013-12-01
The mineral Jarosite [KFe3(SO4)2(OH)6] since its discovery, by Opportunity rover at Meridiani Planum on Mars, has been the subject of intense geochemical and environmental study over the last 5-10 years. Jarosite requires highly acidic, K-enriched, and oxidizing aqueous conditions for formation. Stable isotopes of O, H, and S of jarosite have the ability to record the temperatures of formation, environments of deposition, fluids, and fluid/atmospheric interactions. Therefore, the origin of jarosite is important for understanding present and past environmental conditions on Mars. Unfortunately, the origin of jarosite on Mars remains unclear. Jarosite is commonly found on Earth in the weathering zones of pyrite-bearing ore deposits, near-surface playa sediments in acid-saline lakes, or epithermal environments and hot springs. Here, we report the occurrence of jarosite in association with a gossan overlying weathered Archean gneiss and Paleoproterozoic mafic dikes at the ice-free margin of southwestern Greenland. In our 2012 field campaign, we excavated soil pits to a depth of 40 cm with a high vertical sampling resolution. No visible pyrite was found in the nearby outcroppings of gneiss in the field. XRD data show that all samples were composed of anorthite, quartz, albite, jarosite, muscovite, and microcline. Jarosite was the only sulfur-bearing mineral identified by XRD, with abundance of jarosite increasing with depth (up to 8.4 wt. %) in the soil pits. Water soluble and acid soluble sulfate were sequentially extracted using 10% NaCl and 2N HCl solutions, respectively. Pyrite was then subsequently extracted from insoluble residues by a chromium reduction method. The average abundance of water soluble sulfate, acid soluble sulfate, and pyrite were 100 ppm, 7 wt. %, and 10 ppm, respectively. The δ34S values of water soluble sulfate, acid soluble sulfate, and pyrite range from -0.7‰ to 3.1‰ (average= 1.5‰), -1.2 to 1.5‰ (average= 0.7‰), and 0.3‰ to 6.7‰ (average= 2.6‰) respectively. δ34S values of all water soluble sulfate and pyrite, were higher than acid soluble sulfate. δ34S values of pyrite were higher than all water soluble sulfate except the surficial sample (0-10 cm depth). The δ34S values of water soluble sulfate and acid soluble sulfate did not change with depth while δ34S values of pyrite increased with depth from 2.4‰ to 6.7 ‰ (peak at 10-15 cm) and dropped to 2.0‰. Preliminary data indicate that the acid soluble sulfate was dominated by jarosite while the water soluble sulfate fraction may have been a mixture of leached jarosite and other sulfate sources, such as atmospheric sulfate. Jarosite formation may result from the oxidative weathering of pyrite inferred to originate from localized, stratiform, hydrothermal mineralization. To constrain the origin of jarosite, a new profile containing soil, permafrost, and bedrock was collected at the same location during the summer 2013 field campaign by drilling ~ 1.0 meter into the permafrost zone. We will employ multiple sulfur isotope and triple oxygen isotope of sulfate and pyrite, which can define the source of sulfur and oxygen. A greater understanding of the formation of jarosite on this ice-free margin of Greenland will provide an insightful potential analogue for jarosite formation and on Mars.
NASA Astrophysics Data System (ADS)
Tomac, I.; Caulk, R.
2016-12-01
The current study explored the feasibility of heat recovery through the installation of heat exchangers in abandoned oil and gas wells. Finite Element Methods (FEM) were employed to determine the effects of various site specific parameters on production fluid temperature. Specifically, the study parameterized depth of well, subsurface temperature gradient, sedimentary rock conductivity, and flow rate. Results show that greater well depth is associated with greater heat flow, with the greatest returns occurring between depths of 1.5 km and 7 km. Beyond 7 km, the rate of return decreases due to a non-linear increase of heat flow combined with a continued linear increase of pumping cost. One cause for the drop of heat flow was the loss of heat as the fluid travels from depth to the surface. Further analyses demonstrated the benefit of an alternative heat exchanger configuration characterized by thermally insulated sections of the upward heat exchanger. These simulations predict production fluid temperature gains between 5 - 10 oC, which may be suitable for geothermal heat pump applications.
Solar radiative heating of fiber-optic cables used to monitor temperatures in water
NASA Astrophysics Data System (ADS)
Neilson, Bethany T.; Hatch, Christine E.; Ban, Heng; Tyler, Scott W.
2010-08-01
In recent years, applications of distributed temperature sensing (DTS) have increased in number and diversity. Because fiber-optic cables used for DTS are typically sheathed in dark UV-resistant materials, the question arises as to how shortwave solar radiation penetrating a water column influences the accuracy of absolute DTS-derived temperatures in aquatic applications. To quantify these effects, we completed a modeling effort that accounts for the effects of radiation and convection on a submersed cable to predict when solar heating may be important. Results indicate that for cables installed at shallow depths in clear, low-velocity water bodies, measurable heating of the cable is likely during peak solar radiation. However, at higher velocities, increased turbidity and/or greater depths, the effects of solar heating are immeasurable. A field study illustrated the effects of solar radiation by installing two types of fiber-optic cable at multiple water depths (from 0.05 to 0.8 m) in the center and along the sidewall of a trapezoidal canal. Thermistors were installed at similar depths and shielded from solar radiation to record absolute water temperatures. During peak radiation, thermistor data showed small temperature differences (˜0.003°C-0.04°C) between depths suggesting minor thermal stratification in the canal center. DTS data from cables at these same depths show differences of 0.01°C-0.17°C. The DTS differences cannot be explained by stratification alone and are likely evidence of additional heating from solar radiation. Sidewall thermistor strings also recorded stratification. However, corresponding DTS data suggested that bed conduction overwhelmed the effects of solar radiation.
Evaluating the Effect of Ground Temperature on Phreatic Evaporation in Bare Soil Area
NASA Astrophysics Data System (ADS)
Manting, S.; Wang, B.; Liu, P.
2017-12-01
Phreatic water evaporation is an important link in water conversion, and it is also the main discharge of shallow groundwater. The influencing factors of phreatic evaporation intensity include meteorological elements, soil lithology, ground temperature, water table depth and plant growth status, etc. However, the effect of ground temperature on phreatic evaporation is neglected in the traditional phreatic evaporation study, while from the principle of water vapor conversion, the ground temperature is the main energy controlling the process. Taking the homogeneous sand in bare soil area for example, the effect of different temperature difference between ground temperature and air temperature on phreatic evaporation was studied by constructing soil column experiment and Hydrus numerical simulation model. Based on analysis of the process and trend of soil water content in different depths, the influence mechanism of ground temperature on phreatic evaporation was discussed quantitatively. The experimental results show that the change trend of daily evaporation is basically the same. But considering the effect of ground temperature the evaporation amount is significantly larger than that of without considering the temperature. When the temperature (-2.3 ° 13.6 °) is lower than the ground temperature (20 °), the average value of evaporation increased by about 33.7%; When the temperature (22 ° -33.2 °) is higher than the ground temperature (20 °), the average increase of evaporation is about 10.08%. The effect of ground temperature on the evaporation is very significant in winter and summer. Soil water content increased with the increase of water table depth, while the soil water content at the same depth was different due to the temperature difference, and the soil water content was also different. The larger the temperature difference, the greater the difference of soil water content. The slope of the trend line of the phreatic evaporation is also increased accordingly. That is, under the influence of ground temperature, water vapor conversion rate increased, resulting in increased soil moisture and increased phreatic evaporation. Therefore, considering the ground temperature, it has important theoretical and practical value for scientific understanding and revealing the phreatic evaporation process.
Heat flow and thermal history of the Anadarko basin, Oklahoma
Carter, L.S.; Kelley, S.A.; Blackwell, D.D.; Naeser, N.D.
1998-01-01
New heat-flow values for seven sites in the Anadarko basin, Oklahoma, were determined using high-precision temperature logs and thermal conductivity measurements from nearly 300 core plugs. Three of the sites are on the northern shelf, three sites are in the deep basin, and one site is in the frontal fault zone of the northern Wichita Mountains. The heat flow decreased from 55 to 64 mW/m2 in the north, and from 39 to 54 mW/m2 in the south, due to a decrease in heat generation in the underlying basement rock toward the south. Lateral lithologic changes in the basin, combined with the change in heat flow across the basin, resulted in an unusual pattern of thermal maturity. The vitrinite reflectance values of the Upper Devonian-Lower Mississippian Woodford formation are highest 30-40 km north-northwest of the deepest part of the basin. The offset in highest reflectance values is due to the contrast in thermal conductivity between the Pennsylvanian "granite wash" section adjacent to the Wichita uplift and the Pennsylvanian shale section to the north. The geothermal gradient in the low-conductivity shale section is elevated relative to the geothermal gradient in the high-conductivity "granite wash" section, thus displacing the highest temperatures to the north of the deepest part of the basin. Apatite fission-track, vitrinite reflectance, and heat-flow data were used to constrain regional aspects of the burial history of the Anadarko basin. By combining these data sets, we infer that at least 1.5 km of denudation has occurred at two sites in the deep Anadarko basin since the early to middle Cenozoic (40 ?? 10 m.y.). The timing of the onset of denudation in the southern Anadarko basin coincides with the period of late Eocene erosion observed in the southern Rocky Mountains and in the northern Great Plains. Burial history models for two wells from the deep Anadarko basin predict that shales of the Woodford formation passed through the hydrocarbon maturity window by the end of the Permian section in the deep basin moved into the hydrocarbon maturity window during Mesozoic burial of the region. Presently, the depth interval of the main zone of oil maturation (% Ro = 0.7-0.9) is approximately 2800-3800 m in the eastern deep basin basin and 2200-3000 m in the western deep basin. The greater depth to the top of the oil maturity zone and larger depth range of the zone in the eastern part of the deep basin are due to the lower heat flow associated with more mafic basement toward the east. The burial history model for the northern shelf indicates that the Woodford formation has been in the early oil maturity zone since the Early Permian.
Geological model of supercritical geothermal reservoir related to subduction system
NASA Astrophysics Data System (ADS)
Tsuchiya, Noriyoshi
2017-04-01
Following the Great East Japan Earthquake and the accident at the Fukushima Daiichi Nuclear power station on 3.11 (11th March) 2011, geothermal energy came to be considered one of the most promising sources of renewable energy for the future in Japan. The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. Supercritical geothermal resources could be evaluated in terms of present volcanic activities, thermal structure, dimension of hydrothermal circulation, properties of fracture system, depth of heat source, depth of brittle factures zone, dimension of geothermal reservoir. On the basis of the GIS, potential of supercritical geothermal resources could be characterized into the following four categories. 1. Promising: surface manifestation d shallow high temperature, 2 Probability: high geothermal gradient, 3 Possibility: Aseismic zone which indicates an existence of melt, 4 Potential : low velocity zone which indicates magma input. Base on geophysical data for geothermal reservoirs, we have propose adequate tectonic model of development of the supercritical geothermal reservoirs. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550 °C under lithostatic pressures, and then pressures dropped drastically. The solubility of silica also dropped, resulting in formation of quartz veins under a hydrostatic pressure regime. Connections between the lithostatic and hydrostatic pressure regimes were key to the formation of the hydrothermal breccia veins, and the granite-porphyry system provides useful information for creation of fracture clouds in supercritical geothermal reservoirs. A granite-porphyry system, associated with hydrothermal activity and mineralization, provides a suitable natural analog for studying a deep-seated geothermal reservoir where stockwork fracture systems are created in the presence of supercritical geothermal fluids. I describe fracture networks and their formation mechanisms using petrology and fluid inclusion studies in order to understand this "beyond brittle" supercritical geothermal reservoir, and a geological model for "Beyond Brittle" and "Supercritical" geothermal reservoir in the subduction zone were was revealed.
Orthogonal cutting of cancellous bone with application to the harvesting of bone autograft.
Malak, Sharif F F; Anderson, Iain A
2008-07-01
Autogenous bone graft harvesting results in cell death within the graft and trauma at the donor site. The latter can be mitigated by using minimally invasive tools and techniques, while cell morbidity may be reduced by improving cutter design and cutting parameters. We have performed orthogonal cutting experiments on bovine cancellous bone samples, to gain a basic understanding of the cutting mechanism and to determine design guidelines for tooling. Measurements were performed at cutting speeds from 11.2 to 5000 mm/min, with tool rake angles of 23 degrees, 45 degrees and 60 degrees, and depths of cut in the range of 0.1-3.0 mm. Horizontal and vertical cutting forces were measured, and the chip formation process video recorded. Continuous chip formation was observed for rake angles of 45 degrees and 60 degrees , and depths of cut greater than 0.8 mm. Chip formation for depths of cut greater than 1.0 mm was accompanied by bone marrow extruding out of the free surfaces and away from the rake face. Specific cutting energies decreased with increasing rake angle, increasing depth of cut and increasing cutting speed. Our orthogonal cutting experiments showed that a rake angle of 60 degrees and a depth of cut of 1mm, will avoid excessive fragmentation, keep specific cutting energy low and promote bone marrow extrusion, which may be beneficial for cell survival. We demonstrate how drill bit clearance angle and feed rate can be calculated facilitating a 1mm depth of cut.
NASA Astrophysics Data System (ADS)
Neilson, B. T.; Hatch, C. E.; Bingham, Q. G.; Tyler, S. W.
2008-12-01
In recent years, distributed temperature sensing (DTS) has enjoyed steady increases in the number and diversity of applications. Because fiber optic cables used for DTS are typically sheathed in dark materials resistant to UV deterioration, the question arises of how shortwave solar radiation penetrating a water column influences the accuracy of absolute DTS-derived temperatures. Initial calculations of these affects considered: shortwave radiation as a function of time of day, water depth, and water clarity; fiber optic cable dimensions; and fluid velocity. These indicate that for clear waterbodies with low velocities and shallow depths, some heating on the cable is likely during peak daily solar radiation. Given higher water velocities, substantial increases in turbidity, and/or deeper water, there should be negligible solar heating on the cable. To confirm these calculations, a field study was conducted to test the effects of solar radiation by installing two types of fiber optic cable at multiple, uniform depths in a trapezoidal canal with constant flow determined by a controlled release from Porcupine Dam near Paradise, Utah. Cables were installed in water depths from 0.05 to 0.79 m in locations of faster (center of canal) and slower (sidewall) water velocities. Thermister strings were installed at the same depths, but shielded from solar radiation and designed to record absolute water temperatures. Calculations predict that at peak solar radiation, in combination with shallow depths and slow velocities, typical fiber-optic cable is likely to experience heating greater than the ambient water column. In this study, DTS data show differences of 0.1-0.2°C in temperatures as seen by cables separated vertically by 0.31 m on the sidewall and center of the channel. Corresponding thermister data showed smaller vertical differences (~0.03-0.1°C) suggesting thermal stratification was also present in the canal. However, the magnitude of the DTS differences could not be fully explained by stratification alone. Additional information from cables installed in a shallow, near-zero velocity pool showed significantly higher temperature differences with cable depth when compared to the cable in the higher-velocity canal flows. This indicates a higher potential for heating of fiber-optic cable in stagnant, shallow waters. With sufficient water velocities and depths, the effect of shortwave solar radiation on DTS measurement accuracy via heating of the fiber- optic cable is negligible. Particular care in experimental design is recommended in shallow or low-velocity systems, including consideration of solar radiation, and independent quantification of (or calibration for) absolute temperatures.
Temperature Inversions and Nighttime Convection in the Martian Tropics
NASA Astrophysics Data System (ADS)
Hinson, D. P.; Spiga, A.; Lewis, S.; Tellmann, S.; Paetzold, M.; Asmar, S. W.; Häusler, B.
2013-12-01
We are using radio occultation measurements from Mars Express, Mars Reconnaissance Orbiter, and Mars Global Surveyor to characterize the diurnal cycle in the lowest scale height above the surface. We focus on northern spring and summer, using observations from 4 Martian years at local times of 4-5 and 15-17 h. We supplement the observations with results obtained from large-eddy simulations and through data assimilation by the UK spectral version of the LMD Mars Global Circulation Model. We previously investigated the depth of the daytime convective boundary layer (CBL) and its variations with surface elevation and surface properties. We are now examining unusual aspects of the temperature structure observed at night. Most important, predawn profiles in the Tharsis region contain an unexpected layer of neutral static stability at pressures of 200-300 Pa with a depth of 4-5 km. The mixed layer is bounded above by a midlevel temperature inversion and below by another strong inversion adjacent to the surface. The sharp temperature minimum at the base of the midlevel inversion suggests the presence of a thin water ice cloud layer, with the further implication that radiative cooling at cloud level can induce convective activity at lower altitudes. Conversely, nighttime profiles in Amazonis show no sign of a midlevel inversion or a detached mixed layer. These regional variations in the nighttime temperature structure appear to arise in part from large-scale variations in topography, which have several notable effects. First, the CBL is much deeper in the Tharsis region than in Amazonis, owing to a roughly 6-km difference in surface elevation. Second, large-eddy simulations show that daytime convection is not only deeper above Tharsis but also considerably more intense than it is in Amazonis. Finally, the daytime surface temperatures are comparable in the two regions, so that Tharsis acts as an elevated heat source throughout the CBL. These topographic effects are expected to enhance the vertical mixing of water vapor above elevated terrain, which might lead to the formation and regional confinement of nighttime clouds.
NASA Technical Reports Server (NTRS)
Oshida, Y.; Liu, H. W.
1988-01-01
The effects of preoxidation on subsequent fatigue life were studied. Surface oxidation and grain boundary oxidation of a nickel-base superalloy (TAZ-8A) were studied at 600 to 1000 C for 10 to 1000 hours in air. Surface oxides were identified and the kinetics of surface oxidation was discussed. Grain boundary oxide penetration and morphology were studied. Pancake type grain boundary oxide penetrates deeper and its size is larger, therefore, it is more detrimental to fatigue life than cone-type grain boundary oxide. Oxide penetration depth, a (sub m), is related to oxidation temperature, T, and exposure time, t, by an empirical relation of the Arrhenius type. Effects of T and t on statistical variation of a (sub m) were analyzed according to the Weibull distribution function. Once the oxide is cracked, it serves as a fatigue crack nucleus. Statistical variation of the remaining fatigue life, after the formation of an oxide crack of a critical length, is related directly to the statistical variation of grain boundary oxide penetration depth.
Verma, M.K.; Bird, K.J.
2005-01-01
The geology and reservoir-engineering data were integrated in the 2002 U.S. Geological Survey assessment of the National Petroleum Reserve in Alaska (NPRA). VVhereas geology defined the analog pools and fields and provided the basic information on sizes and numbers of hypothesized petroleum accumulations, reservoir engineering helped develop necessary equations and correlations, which allowed the determination of reservoir parameters for better quantification of in-place petroleum volumes and recoverable reserves. Seismic- and sequence-stratigraphic study of the NPRA resulted in identification of 24 plays. Depth ranges in these 24 plays, however, were typically greater than depth ranges of analog plays for which there were available data, necessitating the need for establishing correlations. The basic parameters required were pressure, temperature, oil and gas formation volume factors, liquid/gas ratios for the associated and nonassociated gas, and recovery factors. Finally, the re sults of U.S. Geological Survey deposit simulation were used in carrying out an economic evaluation, which has been separately published. Copyright ?? 2005. The American Association of Petroleum Geologists. All rights reserved.
Grain boundary oxidation and an analysis of the effects of pre-oxidation on subsequent fatigue life
NASA Technical Reports Server (NTRS)
Oshida, Y.; Liu, H. W.
1986-01-01
The effects of preoxidation on subsequent fatigue life were studied. Surface oxidation and grain boundary oxidation of a nickel-base superalloy (TAZ-8A) were studied at 600 to 1000 C for 10 to 1000 hours in air. Surface oxides were identified and the kinetics of surface oxidation was discussed. Grain boundary oxide penetration and morphology were studied. Pancake type grain boundary oxide penetrates deeper and its size is larger, therefore, it is more detrimental to fatigue life than cone-type grain boundary oxide. Oxide penetration depth, a (sub m), is related to oxidation temperature, T, and exposure time, t, by an empirical relation of the Arrhenius type. Effects of T and t on statistical variation of a (sub m) were analyzed according to the Weibull distribution function. Once the oxide is cracked, it serves as a fatigue crack nucleus. Statistical variation of the remaining fatigue life, after the formation of an oxide crack of a critical length, is related directly to the statistical variation of grain boundary oxide penetration depth.
NASA Astrophysics Data System (ADS)
Dong, Shenfu; Goni, Gustavo; Volkov, Denis; Lumpkin, Rick; Foltz, Gregory
2017-04-01
Three surface drifters equipped with temperature and salinity sensors at 0.2 m and 5 m depths were deployed in April/May 2015 in the subtropical South Pacific Ocean with the objective of measuring near-surface salinity differences seen by satellite and in situ sensors and examining the causes of the differences. Measurements from these drifters indicate that, on average, water at a depth of 0.2 m is about 0.013 psu fresher than at 5 m and about 0.024°C warmer. Events with large temperature and salinity differences between the two depths often occur when surface winds are weak. In addition to the expected surface freshening and cooling during rainfall events, surface salinification occurs under weak wind conditions when there is strong surface warming that enhances evaporation and upper ocean stratification. Further examination of the drifter measurements demonstrate that (i) the amount of surface freshening and vertical salinity gradient heavily depend on wind speed during rain events, (ii) salinity differences between 0.2 m and 5 m are positively correlated with the corresponding temperature differences, and (iii) temperature exhibits a diurnal cycle at both depths, whereas the diurnal cycle of salinity is observed only at 0.2 m when the wind speed is less than 4 m/s. Its phase is consistent with diurnal changes in surface temperature-induced evaporation. Below a wind speed of 6 m/s, the amplitudes of the diurnal cycles of temperature at both depths decrease with increasing wind speed. Wind speed also affects the phasing of the diurnal cycle of T5m with the time of maximum T5m increasing gradually with decreasing wind speed. Wind speed does not affect the phasing of the diurnal cycle of T0.2m. At 0.2 m and 5 m, the diurnal cycle of temperature also depends on surface solar radiation, with the amplitude and time of diurnal maximum increasing as solar radiation increases.
Yang, Sheng Long; Wu, Yu Mei; Zhang, Bian Bian; Zhang, Yu; Fan, Wei; Jin, Shao Fei; Dai, Yang
2017-01-01
A thermocline characteristics contour on a spatial overlay map was plotted using data collected on a monthly basis from Argo buoys and data of monthly CPUE (catch per unit effort) bigeye tuna (Thunnus obesus) long-lines fishery from the Western and Central Pacific Fisheries Commission (WCPFC) to evaluate the relationship between fishing grounds temporal-spatial distribution of bigeye tuna and thermocline characteristics in the Western and Central Pacific Ocean (WCPO). In addition, Numerical methods were used to calculate the optimum ranges of thermocline characteristics of the central fishing grounds. The results showed that the central fishing grounds were mainly distributed between 10° N and 10° S. Seasonal fishing grounds in the south of equator were related to the seasonal variations in the upper boundary temperature, depth and thickness of thermocline. The fishing grounds were observed in areas where the upper boundary depth of thermocline was deep (70-100 m) and the thermocline thickness was more than 60 m. The CPUE tended to be low in area where the thermocline thickness was less than 40 m. The optimum upper boundary temperature range for distribution was 26-29 ℃, and the CPUE was mostly lower than the threshold value (Q3) of central fishing grounds when the temperature was higher than 29 ℃ or lower than 26 ℃. The temporal and spatial distribution of the fishing grounds was influenced by the seasonal variations in upper boundary depth and thermocline thickness. The central fishing grounds in the south of equator disappeared when the upper boundary depth of thermocline decreased and thermocline thickness became thinner. The lower boundary temperature and depth of thermocline and thermocline strength has little variation, but were strongly linked to the location of fishing grounds. The fishing grounds were mainly located between the two high-value zones of the lower boundary depth of thermocline, where the temperature was lower than 13 ℃ and the strength was high. When the depth was more than 300 m or less than 150 m, the lower boundary temperature was more than 17 ℃, or the strength was low, the CPUE tended to be low. The optimum range of thermocline characteristics was calculated using frequency analysis and empirical cumulative distribution function. The results showed that the optimum ranges for upper boundary thermocline temperature and depth were 26-29 ℃ and 70-110 m, the optimum lower boundary thermocline temperature and depth ranges were 11-13 ℃ and 200-280 m, the optimum ranges for thermocline thickness and thermocline strength were 50-90 m and 0.1-0.16 ℃·m -1 , respectively. The paper documented the distribution interval of thermocline characteristics for central fishing ground of the bigeye tuna in WCPO. The results provided a reference for improving the efficiency of pelagic bigeye tuna fishing operation and tuna resource management in WCPO.
Salt Plug Formation Caused by Decreased River Discharge in a Multi-channel Estuary
Shaha, Dinesh Chandra; Cho, Yang-Ki
2016-01-01
Freshwater input to estuaries may be greatly altered by the river barrages required to meet human needs for drinking water and irrigation and prevent salt water intrusion. Prior studies have examined the salt plugs associated with evaporation and salt outwelling from tidal salt flats in single-channel estuaries. In this work, we discovered a new type of salt plug formation in the multi-channel Pasur River Estuary (PRE) caused by decreasing river discharges resulting from an upstream barrage. The formation of a salt plug in response to changes in river discharge was investigated using a conductivity-temperature-depth (CTD) recorder during spring and neap tides in the dry and wet seasons in 2014. An exportation of saline water from the Shibsa River Estuary (SRE) to the PRE through the Chunkhuri Channel occurred during the dry season, and a salt plug was created and persisted from December to June near Chalna in the PRE. A discharge-induced, relatively high water level in the PRE during the wet season exerted hydrostatic pressure towards the SRE from the PRE and thereby prevented the intrusion of salt water from the SRE to the PRE. PMID:27255892
Ultimate Eocene (Priabonian) Chondrichthyans (Holocephali, Elasmobranchii) of Antarctica
Kriwet, Jürgen; Engelbrecht, Andrea; Mörs, Thomas; Reguero, Marcelo; Pfaff, Cathrin
2017-01-01
The Eocene La Meseta Formation on Seymour Island, Antarctic Peninsula, is known for its remarkable wealth of fossil remains of chondrichthyans and teleosts. Chondrichthyans seemingly were dominant elements in the Antarctic Paleogene fish fauna, but decreased in abundance from middle to late Eocene, during which time remains of bony fishes increase. This decline of chondrichthyans at the end of the Eocene generally is related to sudden cooling of seawater, reduction in shelf area, and increasing shelf depth due to the onset of the Antarctic thermal isolation. The last chondrichthyan records known so far include a chimeroid tooth plate from TELM 6 (Lutetian) and a single pristiophorid rostral spine from TELM 7 (Priabonian). Here, we present new chondrichthyan records of Squalus, Squatina, Pristiophorus, Striatolamia, Palaeohypotodus, Carcharocles, and Ischyodus from the upper parts of TELM 7 (Priabonian), including the first record of Carcharocles sokolovi from Antarctica. This assemblage suggests that chondrichthyans persisted much longer in Antarctic waters despite rather cool sea surface temperatures of approximately 5°C. The final disappearance of chondrichthyans at the Eocene–Oligocene boundary concurs with abrupt ice sheet formation in Antarctica. Diversity patterns of chondrichthyans throughout the La Meseta Formation appear to be related to climatic conditions rather than plate tectonics. PMID:28298806
Ultimate Eocene (Priabonian) Chondrichthyans (Holocephali, Elasmobranchii) of Antarctica.
Kriwet, Jürgen; Engelbrecht, Andrea; Mörs, Thomas; Reguero, Marcelo; Pfaff, Cathrin
2016-01-01
The Eocene La Meseta Formation on Seymour Island, Antarctic Peninsula, is known for its remarkable wealth of fossil remains of chondrichthyans and teleosts. Chondrichthyans seemingly were dominant elements in the Antarctic Paleogene fish fauna, but decreased in abundance from middle to late Eocene, during which time remains of bony fishes increase. This decline of chondrichthyans at the end of the Eocene generally is related to sudden cooling of seawater, reduction in shelf area, and increasing shelf depth due to the onset of the Antarctic thermal isolation. The last chondrichthyan records known so far include a chimeroid tooth plate from TELM 6 (Lutetian) and a single pristiophorid rostral spine from TELM 7 (Priabonian). Here, we present new chondrichthyan records of Squalus , Squatina , Pristiophorus , Striatolamia , Palaeohypotodus , Carcharocles , and Ischyodus from the upper parts of TELM 7 (Priabonian), including the first record of Carcharocles sokolovi from Antarctica. This assemblage suggests that chondrichthyans persisted much longer in Antarctic waters despite rather cool sea surface temperatures of approximately 5°C. The final disappearance of chondrichthyans at the Eocene-Oligocene boundary concurs with abrupt ice sheet formation in Antarctica. Diversity patterns of chondrichthyans throughout the La Meseta Formation appear to be related to climatic conditions rather than plate tectonics.