Heating systems for heating subsurface formations
Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX
2011-04-26
Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.
Power systems utilizing the heat of produced formation fluid
Lambirth, Gene Richard [Houston, TX
2011-01-11
Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method includes treating a hydrocarbon containing formation. The method may include providing heat to the formation; producing heated fluid from the formation; and generating electricity from at least a portion of the heated fluid using a Kalina cycle.
Low temperature barriers with heat interceptor wells for in situ processes
McKinzie, II, Billy John
2008-10-14
A system for reducing heat load applied to a frozen barrier by a heated formation is described. The system includes heat interceptor wells positioned between the heated formation and the frozen barrier. Fluid is positioned in the heat interceptor wells. Heat transfers from the formation to the fluid to reduce the heat load applied to the frozen barrier.
Heat stress enhances LTM formation in Lymnaea: role of HSPs and DNA methylation.
Sunada, Hiroshi; Riaz, Hamza; de Freitas, Emily; Lukowiak, Kai; Swinton, Cayley; Swinton, Erin; Protheroe, Amy; Shymansky, Tamila; Komatsuzaki, Yoshimasa; Lukowiak, Ken
2016-05-01
Environmentally relevant stressors alter the memory-forming process in Lymnaea following operant conditioning of aerial respiration. One such stressor is heat. Previously, we found that following a 1 h heat shock, long-term memory (LTM) formation was enhanced. We also had shown that the heat stressor activates at least two heat shock proteins (HSPs): HSP40 and HSP70. Here, we tested two hypotheses: (1) the production of HSPs is necessary for enhanced LTM formation; and (2) blocking DNA methylation prevents the heat stressor-induced enhancement of LTM formation. We show here that the enhancing effect of the heat stressor on LTM formation occurs even if snails experienced the stressor 3 days previously. We further show that a flavonoid, quercetin, which inhibits HSP activation, blocks the enhancing effect of the heat stressor on LTM formation. Finally, we show that injection of a DNA methylation blocker, 5-AZA, before snails experience the heat stressor prevents enhancement of memory formation. © 2016. Published by The Company of Biologists Ltd.
Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
Karanikas, John Michael; Vinegar, Harold J
2014-03-04
A method for treating a tar sands formation includes providing heat to at least part of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat is allowed to transfer from the heaters to at least a portion of the formation. A viscosity of one or more zones of the hydrocarbon layer is assessed. The heating rates in the zones are varied based on the assessed viscosities. The heating rate in a first zone of the formation is greater than the heating rate in a second zone of the formation if the viscosity in the first zone is greater than the viscosity in the second zone. Fluids are produced from the formation through the production wells.
Varying heating in dawsonite zones in hydrocarbon containing formations
Vinegar, Harold J [Bellaire, TX; Xie, Xueying [Houston, TX; Miller, David Scott [Katy, TX
2009-07-07
A method for treating an oil shale formation comprising dawsonite includes assessing a dawsonite composition of one or more zones in the formation. Heat from one or more heaters is provided to the formation such that different amounts of heat are provided to zones with different dawsonite compositions. The provided heat is allowed to transfer from the heaters to the formation. Fluids are produced from the formation.
Compositions produced using an in situ heat treatment process
Roes, Augustinus Wilhelmus Maria; Nair, Vijay; Munsterman, Erwin Hunh; Van Bergen, Petrus Franciscus; Van Den Berg, Franciscus Gondulfus Antonius
2013-05-28
Methods for treating a subsurface formation and compositions produced therefrom are described herein. At least one method for producing hydrocarbons from a subsurface formation includes providing heat to the subsurface formation using an in situ heat treatment process. One or more formation particles may be formed during heating of the subsurface formation. Fluid that includes hydrocarbons and the formation particles may be produced from the subsurface formation. The formation particles in the produced fluid may include cenospheres and have an average particle size of at least 0.5 micrometers.
Compositions produced using an in situ heat treatment process
Roes, Augustinus Wilhelmus Maria [Houston, TX; Nair, Vijay [Katy, TX; Munsterman, Erwin Henh [Amsterdam, NL; Van Bergen, Petrus Franciscus [Amsterdam, NL; Van Den Berg, Franciscus Gondulfus Antonius
2009-10-20
Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing hydrocarbons from a subsurface formation includes providing heat to the subsurface formation using an in situ heat treatment process. One or more formation particles may be formed during heating of the subsurface formation. Fluid that includes hydrocarbons and the formation particles may be produced from the subsurface formation. The formation particles in the produced fluid may include cenospheres and have an average particle size of at least 0.5 micrometers.
Prediction of Phase Formation in Nanoscale Sn-Ag-Cu Solder Alloy
NASA Astrophysics Data System (ADS)
Wu, Min; Lv, Bailin
2016-01-01
In a dynamic nonequilibrium process, the effective heat of formation allows the heat of formation to be calculated as a function of concentrations of the reacting atoms. In this work, we used the effective heat of formation rule to predict the formation and size of compound phases in a nanoscale Sn-Ag-Cu lead-free solder. We calculated the formation enthalpy and effective formation enthalpy of compounds in the Sn-Ag, Sn-Cu, and Ag-Cu systems by using the Miedema model and effective heat of formation. Our results show that, considering the surface effect of the nanoparticle, the effective heat of formation rule successfully predicts the phase formation and sizes of Ag3Sn and Cu6Sn5 compounds, which agrees well with experimental data.
Solution mining dawsonite from hydrocarbon containing formations with a chelating agent
Vinegar, Harold J [Bellaire, TX
2009-07-07
A method for treating an oil shale formation comprising dawsonite includes providing heat from one or more heaters to the formation to heat the formation. Hydrocarbon fluids are produced from the formation. At least some dawsonite in the formation is decomposed with the provided heat. A chelating agent is provided to the formation to dissolve at least some dawsonite decomposition products. The dissolved dawsonite decomposition products are produced from the formation.
Theoretical calculation of heat of formation and heat of combustion for several flammable gases.
Kondo, Shigeo; Takahashi, Akifumi; Tokuhashi, Kazuaki
2002-09-02
Heats of formation have been calculated by the Gaussian-2 (G2) and/or G2MP2 method for a number of flammable gases. As a result, it has been found that the calculated heat of formation for compounds containing, such atoms as fluorine and chlorine tends to deviate from the observed values more than calculations for other molecules do. A simple atom additivity correction (AAC) has been found effective to improve the quality of the heat of formation calculation from the G2 and G2MP2 theories for these molecules. The values of heat of formation thus obtained have been used to calculate the heat of combustion and related constants for evaluating the combustion hazard of flammable gases.
Molten salt as a heat transfer fluid for heating a subsurface formation
Nguyen, Scott Vinh; Vinegar, Harold J.
2010-11-16
A heating system for a subsurface formation includes a conduit located in an opening in the subsurface formation. An insulated conductor is located in the conduit. A material is in the conduit between a portion of the insulated conductor and a portion of the conduit. The material may be a salt. The material is a fluid at operating temperature of the heating system. Heat transfers from the insulated conductor to the fluid, from the fluid to the conduit, and from the conduit to the subsurface formation.
Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
Pieterson, Roelof; Boyles, Joseph Michael; Diebold, Peter Ulrich
2010-06-08
Methods of using geothermal energy to treat subsurface formations are described herein. Methods for using geothermal energy to treat a subsurface treatment area containing or proximate to hydrocarbons may include producing geothermally heated fluid from at least one subsurface region. Heat from at least a portion of the geothermally heated fluid may be transferred to the subsurface treatment area to heat the subsurface treatment area. At least some hydrocarbon fluids may be produced from the formation.
Heating subsurface formations by oxidizing fuel on a fuel carrier
Costello, Michael; Vinegar, Harold J.
2012-10-02
A method of heating a portion of a subsurface formation includes drawing fuel on a fuel carrier through an opening formed in the formation. Oxidant is supplied to the fuel at one or more locations in the opening. The fuel is combusted with the oxidant to provide heat to the formation.
In situ recovery from residually heated sections in a hydrocarbon containing formation
Vinegar, Harold J.; Karanikas, John Michael; Ryan, Robert Charles
2010-12-14
Methods of treating a tar sands formation is described herein. The methods may include providing heat to a first section of a hydrocarbon layer in the formation from a plurality of heaters located in the first section of the formation. Heat is transferred from the heaters so that at least a first section of the formation reaches a selected temperature. At least a portion of residual heat from the first section transfers from the first section to a second section of the formation. At least a portion of hydrocarbons in the second section are mobilized by providing a solvation fluid and/or a pressurizing fluid to the second section of the formation.
Methods for forming wellbores in heated formations
Guimerans, Rosalvina Ramona; Mansure, Arthur James
2012-09-25
A method for forming a wellbore in a heated formation includes flowing liquid cooling fluid to a bottom hole assembly in a wellbore in a heated formation. At least a portion of the liquid cooling fluid is vaporized at or near a region to be cooled. Vaporizing the liquid cooling fluid absorbs heat from the region to be cooled.
Heating hydrocarbon containing formations in a line drive staged process
Miller, David Scott [Katy, TX
2009-07-21
Method for treating a hydrocarbon containing formation are described herein. Methods may include providing heat to a first section of the formation with one or more first heaters in the first section. First hydrocarbons may be heated in the first section such that at least some of the first hydrocarbons are mobilized. At least some of the mobilized first hydrocarbons may be produced through a production well located in a second section of the formation. The second section may be located substantially adjacent to the first section. A portion of the second section may be provided some heat from the mobilized first hydrocarbons, but is not conductively heated by heat from the first heaters. Heat may be provided to the second section with one or more second heaters in the second section to further heat the second section.
In situ conversion process utilizing a closed loop heating system
Sandberg, Chester Ledlie [Palo Alto, CA; Fowler, Thomas David [Houston, TX; Vinegar, Harold J [Bellaire, TX; Schoeber, Willen Jan Antoon Henri
2009-08-18
An in situ conversion system for producing hydrocarbons from a subsurface formation is described. The system includes a plurality of u-shaped wellbores in the formation. Piping is positioned in at least two of the u-shaped wellbores. A fluid circulation system is coupled to the piping. The fluid circulation system is configured to circulate hot heat transfer fluid through at least a portion of the piping to form at least one heated portion of the formation. An electrical power supply is configured to provide electrical current to at least a portion of the piping located below an overburden in the formation to resistively heat at least a portion of the piping. Heat transfers from the piping to the formation.
Suppression of star formation in dwarf galaxies by photoelectric grain heating feedback.
Forbes, John C; Krumholz, Mark R; Goldbaum, Nathan J; Dekel, Avishai
2016-07-28
Photoelectric heating--heating of dust grains by far-ultraviolet photons--has long been recognized as the primary source of heating for the neutral interstellar medium. Simulations of spiral galaxies have shown some indication that photoelectric heating could suppress star formation; however, simulations that include photoelectric heating have typically shown that it has little effect on the rate of star formation in either spiral galaxies or dwarf galaxies, which suggests that supernovae are responsible for setting the gas depletion time in galaxies. This result is in contrast with recent work indicating that a star formation law that depends on galaxy metallicity--as is expected with photoelectric heating,but not with supernovae--reproduces the present-day galaxy population better than does a metallicity-independent one. Here we report a series of simulations of dwarf galaxies, the class of galaxy in which the effects of both photoelectric heating and supernovae are expected to be strongest. We simultaneously include space and time-dependent photoelectric heating in our simulations, and we resolve the energy-conserving phase of every supernova blast wave, which allows us to directly measure the relative importance of feedback by supernovae and photoelectric heating in suppressing star formation. We find that supernovae are unable to account for the observed large gas depletion times in dwarf galaxies. Instead, photoelectric heating is the dominant means by which dwarf galaxies regulate their star formation rate at any given time,suppressing the rate by more than an order of magnitude relative to simulations with only supernovae.
Gas injection to inhibit migration during an in situ heat treatment process
Kuhlman, Myron Ira; Vinegar; Harold J.; Baker, Ralph Sterman; Heron, Goren
2010-11-30
Methods of treating a subsurface formation are described herein. Methods for treating a subsurface treatment area in a formation may include introducing a fluid into the formation from a plurality of wells offset from a treatment area of an in situ heat treatment process to inhibit outward migration of formation fluid from the in situ heat treatment process.
Varying properties along lengths of temperature limited heaters
Vinegar, Harold J [Bellaire, TX; Xie, Xueying [Houston, TX; Miller, David Scott [Katy, TX; Ginestra, Jean Charles [Richmond, TX
2011-07-26
A system for heating a subsurface formation is described. The system includes an elongated heater in an opening in the formation. The elongated heater includes two or more portions along the length of the heater that have different power outputs. At least one portion of the elongated heater includes at least one temperature limited portion with at least one selected temperature at which the portion provides a reduced heat output. The heater is configured to provide heat to the formation with the different power outputs. The heater is configured so that the heater heats one or more portions of the formation at one or more selected heating rates.
In situ heat treatment process utilizing a closed loop heating system
Vinegar, Harold J.; Nguyen, Scott Vinh
2010-12-07
Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.
Hybrid joule heating/electro-osmosis process for extracting contaminants from soil layers
Carrigan, Charles R.; Nitao, John J.
2003-06-10
Joule (ohmic) heating and electro-osmosis are combined in a hybrid process for removal of both water-soluble contaminants and non-aqueous phase liquids from contaminated, low-permeability soil formations that are saturated. Central to this hybrid process is the partial desaturation of the formation or layer using electro-osmosis to remove a portion of the pore fluids by induction of a ground water flow to extraction wells. Joule heating is then performed on a partially desaturated formation. The joule heating and electro-osmosis operations can be carried out simultaneously or sequentially if the desaturation by electro-osmosis occurs initially. Joule heating of the desaturated formation results in a very effective transfer or partitioning of liquid state contaminants to the vapor phase. The heating also substantially increases the vapor phase pressure in the porous formation. As a result, the contaminant laden vapor phase is forced out into soil layers of a higher permeability where other conventional removal processes, such as steam stripping or ground water extraction can be used to capture the contaminants. This hybrid process is more energy efficient than joule heating or steam stripping for cleaning low permeability formations and can share electrodes to minimize facility costs.
Heating tar sands formations to visbreaking temperatures
Karanikas, John Michael [Houston, TX; Colmenares, Tulio Rafael [Houston, TX; Zhang, Etuan [Houston, TX; Marino, Marian [Houston, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX; Ryan, Robert Charles [Houston, TX; Beer, Gary Lee [Houston, TX; Dombrowski, Robert James [Houston, TX; Jaiswal, Namit [Houston, TX
2009-12-22
Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat may be controlled so that at least a majority of the section reaches an average temperature of between 200.degree. C. and 240.degree. C., which results in visbreaking of at least some hydrocarbons in the section. At least some visbroken hydrocarbon fluids may be produced from the formation.
Sour gas injection for use with in situ heat treatment
Fowler, Thomas David [Houston, TX
2009-11-03
Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for providing acidic gas to a subsurface formation is described herein. The method may include providing heat from one or more heaters to a portion of a subsurface formation; producing fluids that include one or more acidic gases from the formation using a heat treatment process. At least a portion of one of the acidic gases may be introduced into the formation, or into another formation, through one or more wellbores at a pressure below a lithostatic pressure of the formation in which the acidic gas is introduced.
Controlling and assessing pressure conditions during treatment of tar sands formations
Zhang, Etuan; Beer, Gary Lee
2015-11-10
A method for treating a tar sands formation includes providing heat to at least part of a hydrocarbon layer in the tar sands formation from a plurality of heaters located in the formation. Heat is allowed to transfer from the heaters to at least a portion of the formation. A pressure in the portion of the formation is controlled such that the pressure remains below a fracture pressure of the formation overburden while allowing the portion of the formation to heat to a selected average temperature of at least about 280.degree. C. and at most about 300.degree. C. The pressure in the portion of the formation is reduced to a selected pressure after the portion of the formation reaches the selected average temperature.
Systems and methods for producing hydrocarbons from tar sands formations
Li, Ruijian [Katy, TX; Karanikas, John Michael [Houston, TX
2009-07-21
A system for treating a tar sands formation is disclosed. A plurality of heaters are located in the formation. The heaters include at least partially horizontal heating sections at least partially in a hydrocarbon layer of the formation. The heating sections are at least partially arranged in a pattern in the hydrocarbon layer. The heaters are configured to provide heat to the hydrocarbon layer. The provided heat creates a plurality of drainage paths for mobilized fluids. At least two of the drainage paths converge. A production well is located to collect and produce mobilized fluids from at least one of the converged drainage paths in the hydrocarbon layer.
Al-Alfy, I M; Nabih, M A
2013-03-01
A 3D block of radiogenic heat production was constructed from the subsurface total gamma ray logs of Bahariya Formation, Western Desert, Egypt. The studied rocks possess a range of radiogenic heat production varying from 0.21 μWm(-3) to 2.2 μWm(-3). Sandstone rocks of Bahariya Formation have higher radiogenic heat production than the average for crustal sedimentary rocks. The high values of density log of Bahariya Formation indicate the presence of iron oxides which contribute the uranium radioactive ores that increase the radiogenic heat production of these rocks. The average radiogenic heat production produced from the study area is calculated as 6.3 kW. The histogram and cumulative frequency analyses illustrate that the range from 0.8 to 1.2 μWm(-3) is about 45.3% of radiogenic heat production values. The 3D slicing of the reservoir shows that the southeastern and northeastern parts of the study area have higher radiogenic heat production than other parts. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Detection of cocrystal formation based on binary phase diagrams using thermal analysis.
Yamashita, Hiroyuki; Hirakura, Yutaka; Yuda, Masamichi; Teramura, Toshio; Terada, Katsuhide
2013-01-01
Although a number of studies have reported that cocrystals can form by heating a physical mixture of two components, details surrounding heat-induced cocrystal formation remain unclear. Here, we attempted to clarify the thermal behavior of a physical mixture and cocrystal formation in reference to a binary phase diagram. Physical mixtures prepared using an agate mortar were heated at rates of 2, 5, 10, and 30 °C/min using differential scanning calorimetry (DSC). Some mixtures were further analyzed using X-ray DSC and polarization microscopy. When a physical mixture consisting of two components which was capable of cocrystal formation was heated using DSC, an exothermic peak associated with cocrystal formation was detected immediately after an endothermic peak. In some combinations, several endothermic peaks were detected and associated with metastable eutectic melting, eutectic melting, and cocrystal melting. In contrast, when a physical mixture of two components which is incapable of cocrystal formation was heated using DSC, only a single endothermic peak associated with eutectic melting was detected. These experimental observations demonstrated how the thermal events were attributed to phase transitions occurring in a binary mixture and clarified the relationship between exothermic peaks and cocrystal formation.
Zhang, Zhenhua; Zou, Yueyu; Wu, Taigang; Huang, Caihuan; Pei, Kehan; Zhang, Guangwen; Lin, Xiaohua; Bai, Weibin; Ou, Shiyi
2016-01-01
Chlorogenic acid (CGA) is a phenolic acid that ubiquitously exists in fruits. This work aims to investigate whether and how CGA influences HMF formation during heating fructose alone, or with an amino acid. The results showed that that CGA increased 5-hydroxymethylfurfural (HMF) formation. At pH 5.5 and 7.0, the addition of 5.0 μmol/ml CGA increased HMF formation by 49.4% and 25.2%, respectively when heating fructose alone, and by 9.0% and 16.7%, respectively when heating fructose with aspartic acid. CGA significantly increased HMF formation by promoting 3-deoxosone formation, and its conversion to HMF by inhibiting HMF elimination, especially in the Maillard reaction system. A comparison of the catalytic capacity of CGA with its six analogous compounds showed that both its di-hydroxyphenyl and carboxyl groups function in increasing HMF formation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Three-phase heaters with common overburden sections for heating subsurface formations
Vinegar, Harold J [Bellaire, TX
2012-02-14
A heating system for a subsurface formation is described. The heating system includes three substantially u-shaped heaters with first end portions of the heaters being electrically coupled to a single, three-phase wye transformer and second end portions of the heaters being electrically coupled to each other and/or to ground. The three heaters may enter the formation through a first common wellbore and exit the formation through a second common wellbore so that the magnetic fields of the three heaters at least partially cancel out in the common wellbores.
NASA Astrophysics Data System (ADS)
Böttger, B.; Eiken, J.; Apel, M.
2009-10-01
Performing microstructure simulation of technical casting processes suffers from the strong interdependency between latent heat release due to local microstructure formation and heat diffusion on the macroscopic scale: local microstructure formation depends on the macroscopic heat fluxes and, in turn, the macroscopic temperature solution depends on the latent heat release, and therefore on the microstructure formation, in all parts of the casting. A self-consistent homoenthalpic approximation to this micro-macro problem is proposed, based on the assumption of a common enthalpy-temperature relation for the whole casting which is used for the description of latent heat production on the macroscale. This enthalpy-temperature relation is iteratively obtained by phase-field simulations on the microscale, thus taking into account the specific morphological impact on the latent heat production. This new approach is discussed and compared to other approximations for the coupling of the macroscopic heat flux to complex microstructure models. Simulations are performed for the binary alloy Al-3at%Cu, using a multiphase-field solidification model which is coupled to a thermodynamic database. Microstructure formation is simulated for several positions in a simple model plate casting, using a one-dimensional macroscopic temperature solver which can be directly coupled to the microscopic phase-field simulation tool.
Method and apparatus for forming conformal SiN.sub.x films
Wang, Qi
2007-11-27
A silicon nitride film formation method includes: Heating a substrate to be subjected to film formation to a substrate temperature; heating a wire to a wire temperature; supplying silane, ammonia, and hydrogen gases to the heating member; and forming a silicon nitride film on the substrate.
Direct amide formation using radiofrequency heating.
Houlding, Thomas K; Tchabanenko, Kirill; Rahman, Md Taifur; Rebrov, Evgeny V
2013-07-07
We present a simple method for direct and solvent-free formation of amides from carboxylic acids and amines using radiofrequency heating. The direct energy coupling of the AC magnetic field via nickel ferrite magnetic nanoparticles enables fast and controllable heating, as well as enabling facile work-up via magnetic separation.
Treating nahcolite containing formations and saline zones
Vinegar, Harold J
2013-06-11
A method for treating a nahcolite containing subsurface formation includes removing water from a saline zone in or near the formation. The removed water is heated using a steam and electricity cogeneration facility. The heated water is provided to the nahcolite containing formation. A fluid is produced from the nahcolite containing formation. The fluid includes at least some dissolved nahcolite. At least some of the fluid is provided to the saline zone.
Heat of formation of petalite, LiAlSi4O10
NASA Astrophysics Data System (ADS)
Faßhauer, D. W.; Cemič, L.
The enthalpy of formation of petalite, LiAlSi4O10, has been measured using high-temperature solution calorimetry. The measurements were carried out in a Calvet-type twin micro calorimeter at 728°C. A 2PbO.B2O3 melt was used as a solvent. Tabulated heats of formation of the components and tabulated heat capacities of the reactants and the product (Robie and Hemingway 1995) were used to calculate the standard heat of formation of petalite from the measured heats of solution. The calculations yielded a mean value of ΔfHpet298.15=-4872+/-5.4 kJ mol-1. This value may be compared to the heat of formation of ΔfHpet298.15= -4886.5+/-6.3 kJ mol-1 determined by the HF solution calorimetry by Bennington etal. (1980). Faßhauer etal. (1998) combined thermodynamic data with phase-equilibrium results to obtain best-fit thermodynamic results using the Bayes method, in order to derive an internally consistent dataset for phases in the NaAlSiO4- LiAlSiO4-Al2O3-SiO2-H2O system. They determined -4865.6+/-0.8kJmol-1 as the enthalpy of formation of petalite, a value that is appreciably closer to the enthalpy found in this work.
Formation of the lunar crust - An electrical source of heating
NASA Technical Reports Server (NTRS)
Sonett, C. P.; Colburn, D. S.; Schwartz, K.
1975-01-01
A model for formation of the lunar crust based on heating by electrical induction is explored, while adherence is maintained to certain constraints associated with existing models of the solar system. The heating mechanism is based on eddy current induction from disordered magnetic fields swept outwards by an intense (T Tauri-like) plasma flow from the sun. The electrical theory is an alternative to intense short-period accretion as a source of heat for the evolution of lunar maria and highlands, provided that long-lived radioactives are not swept to the surface from too large a melt volume during the initial thermal episode. This formation of the lunar highlands does not intrinsically require rapid accretion, nor on this basis is the time of formation of the planets generally restricted to a very short time. The threshold temperature for eddy current heating is attained by either a solar nebula at 300-400 C during formation of the moon or a very low energy long-period accumulation of the moon, both leading to melting in ten to the fifth to ten to the seventh power years.
The heat of formation of gaseous PuO(2)2+ from relativistic density functional calculations.
Moskaleva, Lyudmila V; Matveev, Alexei V; Dengler, Joachim; Rösch, Notker
2006-08-28
Using a set of model reactions, we estimated the heat of formation of gaseous PuO2(2+) from quantum-chemical reaction enthalpies and experimental heats of formation of reference species. To this end, we carried out relativistic density functional calculations on the molecules PuO(2)2+, PuO2, PuF6, and PuF4. We used a revised variant (PBEN) of the Perdew-Burke-Ernzerhof gradient-corrected exchange-correlation functional, and we accounted for spin-orbit interaction in a self-consistent fashion. As open-shell Pu species with two or more unpaired 5f electrons are involved, spin-orbit interaction significantly affects the energies of the model reactions. Our theoretical estimate for the heat of formation DeltafH degree 0(PuO2(2+),g), 418+/-15 kcal mol-1, evaluated using plutonium fluorides as references, is in good agreement with a recent experimental result, 413+/-16 kcal mol-1. The theoretical value connected to the experimental heat of formation of PuO2(g) has a notably higher uncertainty and therefore was not included in the final result.
Twin solution calorimeter determines heats of formation of alloys at high temperatures
NASA Technical Reports Server (NTRS)
Darby, J. B., Jr.; Kleb, R.; Kleppa, O. J.
1968-01-01
Calvert-type, twin liquid metal solution calorimeter determines the heats of formation of transition metal alloys at high temperatures. The twin differential calorimeter measures the small heat effects generated over extended periods of time, has maximum operating temperature of 1073 degrees K and an automatic data recording system.
Wen, Yushi; Xue, Xianggui; Long, Xinping; Zhang, Chaoyang
2016-06-09
We carried out reactive molecular dynamics simulations by ReaxFF to study the initial events of an insensitive high explosive 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) against various thermal stimuli including constant-temperature heating, programmed heating, and adiabatic heating to simulate TATB suffering from accidental heating in reality. Cluster evolution at the early stage of the thermal decomposition of condensed TATB was the main focus as cluster formation primarily occurs when TATB is heated. The results show that cluster formation is the balance of the competition of intermolecular collision and molecular decomposition of TATB, that is, an appropriate temperature and certain duration are required for cluster formation and preservation. The temperature in the range of 2000-3000 K was found to be optimum for fast formation and a period of preservation. Besides, the intra- and intermolecular H transfers are always favorable, whereas the C-NO2 partition was favorable at high temperature. The simulation results are helpful to deepen the insight into the thermal properties of condensed TATB.
Land use planning and surface heat island formation: A parcel-based radiation flux approach
NASA Astrophysics Data System (ADS)
Stone, Brian; Norman, John M.
This article presents a study of residential parcel design and surface heat island formation in a major metropolitan region of the southeastern United States. Through the integration of high-resolution multispectral data (10 m) with property tax records for over 100,000 single-family residential parcels in the Atlanta, Georgia, metropolitan region, the influence of the size and material composition of residential land use on an indicator of surface heat island formation is reported. In contrast to previous work on the urban heat island, this study derives a parcel-based indicator of surface warming to permit the impact of land use planning regulations governing the density and design of development on the excess surface flux of heat energy to be measured. The results of this study suggest that the contribution of individual land parcels to regional surface heat island formation could be reduced by approximately 40% through the adoption of specific land use planning policies, such as zoning and subdivision regulations, and with no modifications to the size or albedo of the residential structure.
Schmid, Michael; Kulli, Sandra; Schneeberger, Kerstin; Naskova, Javorka; Knøchel, Susanne; Ahrens, Christian H.
2017-01-01
ABSTRACT We tested the biofilm formation potential of 30 heat-resistant and 6 heat-sensitive Escherichia coli dairy isolates. Production of curli and cellulose, static biofilm formation on polystyrene (PS) and stainless steel surfaces, biofilm formation under dynamic conditions (Bioflux), and initial adhesion rates (IAR) were evaluated. Biofilm formation varied greatly between strains, media, and assays. Our results highlight the importance of the experimental setup in determining biofilm formation under conditions of interest, as correlation between different assays was often not a given. The heat-resistant, multidrug-resistant (MDR) strain FAM21845 showed the strongest biofilm formation on PS and the highest IAR and was the only strain that formed significant biofilms on stainless steel under conditions relevant to the dairy industry, and it was therefore fully sequenced. Its chromosome is 4.9 Mb long, and it harbors a total of five plasmids (147.2, 54.2, 5.8, 2.5, and 1.9 kb). The strain carries a broad range of genes relevant to antimicrobial resistance and biofilm formation, including some on its two large conjugative plasmids, as demonstrated in plate mating assays. IMPORTANCE In biofilms, cells are embedded in an extracellular matrix that protects them from stresses, such as UV radiation, osmotic shock, desiccation, antibiotics, and predation. Biofilm formation is a major bacterial persistence factor of great concern in the clinic and the food industry. Many tested strains formed strong biofilms, and especially strains such as the heat-resistant, MDR strain FAM21845 may pose a serious issue for food production. Strong biofilm formation combined with diverse resistances (some encoded on conjugative plasmids) may allow for increased persistence, coselection, and possible transfer of these resistance factors. Horizontal gene transfer may conceivably occur in the food production setting or the gastrointestinal tract after consumption. PMID:28550056
Marti, Roger; Schmid, Michael; Kulli, Sandra; Schneeberger, Kerstin; Naskova, Javorka; Knøchel, Susanne; Ahrens, Christian H; Hummerjohann, Jörg
2017-08-01
We tested the biofilm formation potential of 30 heat-resistant and 6 heat-sensitive Escherichia coli dairy isolates. Production of curli and cellulose, static biofilm formation on polystyrene (PS) and stainless steel surfaces, biofilm formation under dynamic conditions (Bioflux), and initial adhesion rates (IAR) were evaluated. Biofilm formation varied greatly between strains, media, and assays. Our results highlight the importance of the experimental setup in determining biofilm formation under conditions of interest, as correlation between different assays was often not a given. The heat-resistant, multidrug-resistant (MDR) strain FAM21845 showed the strongest biofilm formation on PS and the highest IAR and was the only strain that formed significant biofilms on stainless steel under conditions relevant to the dairy industry, and it was therefore fully sequenced. Its chromosome is 4.9 Mb long, and it harbors a total of five plasmids (147.2, 54.2, 5.8, 2.5, and 1.9 kb). The strain carries a broad range of genes relevant to antimicrobial resistance and biofilm formation, including some on its two large conjugative plasmids, as demonstrated in plate mating assays. IMPORTANCE In biofilms, cells are embedded in an extracellular matrix that protects them from stresses, such as UV radiation, osmotic shock, desiccation, antibiotics, and predation. Biofilm formation is a major bacterial persistence factor of great concern in the clinic and the food industry. Many tested strains formed strong biofilms, and especially strains such as the heat-resistant, MDR strain FAM21845 may pose a serious issue for food production. Strong biofilm formation combined with diverse resistances (some encoded on conjugative plasmids) may allow for increased persistence, coselection, and possible transfer of these resistance factors. Horizontal gene transfer may conceivably occur in the food production setting or the gastrointestinal tract after consumption. Copyright © 2017 Marti et al.
Induction heaters used to heat subsurface formations
Nguyen, Scott Vinh [Houston, TX; Bass, Ronald M [Houston, TX
2012-04-24
A heating system for a subsurface formation includes an elongated electrical conductor located in the subsurface formation. The electrical conductor extends between at least a first electrical contact and a second electrical contact. A ferromagnetic conductor at least partially surrounds and at least partially extends lengthwise around the electrical conductor. The electrical conductor, when energized with time-varying electrical current, induces sufficient electrical current flow in the ferromagnetic conductor such that the ferromagnetic conductor resistively heats to a temperature of at least about 300.degree. C.
Heats of Formation for Cyclic C4Fn, n=4-8, and their Cations
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Ricca, Alessandra; Arnold, James (Technical Monitor)
2000-01-01
Heats of formation for cyclic C4F8 and C4F8+ are determined at the G3MP2 level. The several decomposition pathways are investigated. The calculations confirm that C4F8+ rearranges and its decomposition is responsible for both the C2F4+ and C3F5+ species observed in experiment. The heats of formation are presented for C4Fn and C4Fn+, n = 4-8.
Osteoinduction on Acid and Heat Treated Porous Ti Metal Samples in Canine Muscle
Kawai, Toshiyuki; Takemoto, Mitsuru; Fujibayashi, Shunsuke; Akiyama, Haruhiko; Tanaka, Masashi; Yamaguchi, Seiji; Pattanayak, Deepak K.; Doi, Kenji; Matsushita, Tomiharu; Nakamura, Takashi; Kokubo, Tadashi; Matsuda, Shuichi
2014-01-01
Samples of porous Ti metal were subjected to different acid and heat treatments. Ectopic bone formation on specimens embedded in dog muscle was compared with the surface characteristics of the specimen. Treatment of the specimens by H2SO4/HCl and heating at 600°C produced micrometer-scale roughness with surface layers composed of rutile phase of titanium dioxide. The acid- and heat-treated specimens induced ectopic bone formation within 6 months of implantation. A specimen treated using NaOH followed by HCl acid and then heat treatment produced nanometer-scale surface roughness with a surface layer composed of both rutile and anatase phases of titanium dioxide. These specimens also induced bone formation after 6 months of implantation. Both these specimens featured positive surface charge and good apatite-forming abilities in a simulated body fluid. The amount of the bone induced in the porous structure increased with apatite-forming ability and higher positive surface charge. Untreated porous Ti metal samples showed no bone formation even after 12 months. Specimens that were only heat treated featured a smooth surface composed of rutile. A mixed acid treatment produced specimens with micrometer-scale rough surfaces composed of titanium hydride. Both of them also showed no bone formation after 12 months. The specimens that showed no bone formation also featured almost zero surface charge and no apatite-forming ability. These results indicate that osteoinduction of these porous Ti metal samples is directly related to positive surface charge that facilitates formation of apatite on the metal surfaces in vitro. PMID:24520375
Method of condensing vaporized water in situ to treat tar sands formations
Hsu, Chia-Fu
2010-03-16
Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. Heat may be allowed to transfer from the heaters to at least a first portion of the formation. Conditions may be controlled in the formation so that water vaporized by the heaters in the first portion is selectively condensed in a second portion of the formation. At least some of the fluids may be produced from the formation.
Vetter, Walter; Bendig, Paul; Blumenstein, Marina; Hägele, Florian; Behnisch, Peter A; Brouwer, Abraham
2015-10-01
Fish is a major source for the intake of polybrominated diphenyl ethers (PBDEs). However, fish is scarcely consumed without being cooked, and previous studies showed that the heating of salmon fillet contaminated with BDE-209 for longer periods of time was accompanied with the partial transformation of this brominated flame retardant. In this study, we heated salmon fillet spiked with BDE-209 and verified that this process was linked with the formation of polybrominated dibenzofurans (PBDFs) in the fish. Each minute of heating 1 g salmon fillet spiked with 200 ng BDE-209 generated about 0.5 ‰ PBDFs relative to the initial amount of the pre-dioxin BDE-209. This result of the chemical analysis by gas chromatography with mass spectrometry (GC/MS) was verified by means of an effect-directed bio-assay (DR CALUX). While unheated salmon with BDE-209 and heated salmon without BDE-209 were tested nontoxic, the bioanalytical response of fish linearly increased upon heating. We also found that PBDF formation did neither occur with BDE-47 nor when BDE-209 was heated in edible oil instead of salmon fillet. Due to the formation of PBDFs in this process, the consumption of heated, BDE-209 contaminated fish may add to the uptake of dioxin-like compounds with our diet.
Influence of oil type on the amounts of acrylamide generated in a model system and in French fries.
Mestdagh, Frédéric J; De Meulenaer, Bruno; Van Poucke, Christof; Detavernier, Christ'l; Cromphout, Caroline; Van Peteghem, Carlos
2005-07-27
Acrylamide formation was studied by use of a new heating methodology, based on a closed stainless steel tubular reactor. Different artificial potato powder mixtures were homogenized and subsequently heated in the reactor. This procedure was first tested for its repeatability. By use of this experimental setup, it was possible to study the acrylamide formation mechanism in the different mixtures, eliminating some variable physical and chemical factors during the frying process, such as heat flux and water evaporation from and oil ingress into the food. As a first application of this optimized heating concept, the influence on acrylamide formation of the type of deep-frying oil was investigated. The results obtained from the experiments with the tubular reactor were compared with standardized French fry preparation tests. In both cases, no significant difference in acrylamide formation could be found between the various heating oils applied. Consequently, the origin of the deep-frying vegetable oils did not seem to affect the acrylamide formation in potatoes during frying. Surprisingly however, when artificial mixtures did not contain vegetable oil, significantly lower concentrations of acrylamide were detected, compared to oil-containing mixtures.
How the propagation of heat-flux modulations triggers E × B flow pattern formation.
Kosuga, Y; Diamond, P H; Gürcan, O D
2013-03-08
We propose a novel mechanism to describe E×B flow pattern formation based upon the dynamics of propagation of heat-flux modulations. The E × B flows of interest are staircases, which are quasiregular patterns of strong, localized shear layers and profile corrugations interspersed between regions of avalanching. An analogy of staircase formation to jam formation in traffic flow is used to develop an extended model of heat avalanche dynamics. The extension includes a flux response time, during which the instantaneous heat flux relaxes to the mean heat flux, determined by symmetry constraints. The response time introduced here is the counterpart of the drivers' response time in traffic, during which drivers adjust their speed to match the background traffic flow. The finite response time causes the growth of mesoscale temperature perturbations, which evolve to form profile corrugations. The length scale associated with the maximum growth rate scales as Δ(2) ~ (v(thi)/λT(i))ρ(i)sqrt[χ(neo)τ], where λT(i) is a typical heat pulse speed, χ(neo) is the neoclassical thermal diffusivity, and τ is the response time of the heat flux. The connection between the scale length Δ(2) and the staircase interstep scale is discussed.
Investigation of the Phase Formation of AlSi-Coatings for Hot Stamping of Boron Alloyed Steel
NASA Astrophysics Data System (ADS)
Veit, R.; Hofmann, H.; Kolleck, R.; Sikora, S.
2011-01-01
Hot stamping of boron alloyed steel is gaining more and more importance for the production of high strength automotive body parts. Within hot stamping of quenchenable steels the blank is heated up to austenitization temperature, transferred to the tool, formed rapidly and quenched in the cooled tool. To avoid scale formation during the heating process of the blank, the sheet metal can be coated with an aluminium-silicum alloy. The meltimg temperature of this coating is below the austenitization temperature of the base material. This means, that a diffusion process between base material and coating has to take place during heating, leading to a higher melting temperature of the coating. In conventional heating devices, like roller hearth furnaces, the diffusion process is reached by relatively low heating rates. New technologies, like induction heating, reach very high heating rates and offer great potentials for the application in hot stamping. Till now it is not proofed, that this technology can be used with aluminum-silicon coated materials. This paper will present the results of comparative heating tests with a conventional furnace and an induction heating device. For different time/temperature-conditions the phase formation within the coating will be described.
NASA Astrophysics Data System (ADS)
Heya, Akira; Matsuo, Naoto
2018-04-01
The guidelines for a bottom-up approach of nanographene formation from pentacene using heated tungsten were investigated using a novel method called hot mesh deposition (HMD). In this method, a heated W mesh was set between a pentacene source and a quartz substrate. Pentacene molecules were decomposed by the heated W mesh. The generated pentacene-based decomposed precursors were then deposited on the quartz substrate. The pentacene dimer (peripentacene) was obtained from pentacene by HMD using two heated catalysts. As expected from the calculation with the density functional theory in the literature, it was confirmed that the pentacene dimer can be formed by a reaction between pentacene and 6,13-dihydropentacene. This technique can be applied to the formation of novel nanographene on various substrates without metal catalysts.
Method of producing drive fluid in situ in tar sands formations
Mudunuri, Ramesh Raju; Jaiswal, Namit; Vinegar, Harold J.; Karanikas, John Michael
2010-03-23
Methods of treating a tar sands formation are described herein. Methods for treating a tar sands may include providing heat to at least part of a hydrocarbon layer in the formation from one or more heaters located in the formation. The heat may be allowed to transfer from the heaters to at least a portion of the formation such that a drive fluid is produced in situ in the formation. The drive fluid may move at least some mobilized, visbroken, and/or pyrolyzed hydrocarbons from a first portion of the formation to a second portion of the formation. At least some of the mobilized, visbroken, and/or pyrolyzed hydrocarbons may be produced from the formation.
Seto, K; Kaba, H; Saito, H; Edashige, N; Kawakami, M
1983-07-01
The effects of lesions in the basal medial hypothalamus and limbic structure upon the responses of adrenocorticoids formation in adrenal slices of rabbits to daily repeated heat exposures has been investigated. (1) The adrenocortical responses to heat exposure on the 1st day were decreased by lesions in the periventricular arcuate nucleus (ARC), ventromedial hypothalamus (VMH), stria terminalis (ST) and dorsal fornix (FX). (2) There were no effects of heat exposure on the 10th day upon the adrenocorticoid formation in either the sham-lesioned rabbits or the rabbits with the lesions of ARC, VMH and ST. (3) In rabbits with the FX lesions, the adrenocorticoids formation was significantly increased by heat exposure on the 10th day. (4) These results suggested that the basal medial hypothalamus, amygdala (AMYG)-ST system and dorsal hippocampus (HPC)-FX system participated in the mechanisms of adrenocortical responses to heat exposure on the 1st day, but only the HPC-FX system played some roles in complete disappearance process of adrenocortical responses to heat exposure by repetition of exposures.
Heating tar sands formations while controlling pressure
Stegemeier, George Leo [Houston, TX; Beer, Gary Lee [Houston, TX; Zhang, Etuan [Houston, TX
2010-01-12
Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. A pressure in the majority of the section may be maintained below a fracture pressure of the formation. The pressure in the majority of the section may be reduced to a selected pressure after the average temperature reaches a temperature that is above 240.degree. C. and is at or below pyrolysis temperatures of hydrocarbons in the section. At least some hydrocarbon fluids may be produced from the formation.
Subsurface heaters with low sulfidation rates
John, Randy Carl; Vinegar, Harold J
2013-12-10
A system for heating a hydrocarbon containing formation includes a heater having an elongated ferromagnetic metal heater section. The heater is located in an opening in a formation. The heater section is configured to heat the hydrocarbon containing formation. The exposed ferromagnetic metal has a sulfidation rate that goes down with increasing temperature of the heater, when the heater is in a selected temperature range.
Production from multiple zones of a tar sands formation
Karanikas, John Michael; Vinegar, Harold J
2013-02-26
A method for treating a tar sands formation includes providing heat to at least part of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat is allowed to transfer from the heaters to at least a portion of the formation. Fluids are produced from the formation through at least one production well that is located in at least two zones in the formation. The first zone has an initial permeability of at least 1 darcy. The second zone has an initial of at most 0.1 darcy. The two zones are separated by a substantially impermeable barrier.
In situ heat treatment from multiple layers of a tar sands formation
Vinegar, Harold J.
2010-11-30
A method for treating a tar sands formation is disclosed. The method includes providing a drive fluid to a first hydrocarbon containing layer of the formation to mobilize at least some hydrocarbons in the first layer. At least some of the mobilized hydrocarbons are allowed to flow into a second hydrocarbon containing layer of the formation. Heat is provided to the second layer from one or more heaters located in the second layer. At least some hydrocarbons are produced from the second layer of the formation.
In situ oxidation of subsurface formations
Beer, Gary Lee [Houston, TX; Mo, Weijian [Sugar Land, TX; Li, Busheng [Houston, TX; Shen, Chonghui [Calgary, CA
2011-01-11
Methods and systems for treating a hydrocarbon containing formation described herein include providing heat to a first portion of the formation from a plurality of heaters in the first portion, producing produced through one or more production wells in a second portion of the formation, reducing or turning off heat provided to the first portion after a selected time, providing an oxidizing fluid through one or more of the heater wells in the first portion, providing heat to the first portion and the second portion through oxidation of at least some hydrocarbons in the first portion, and producing fluids through at least one of the production wells in the second portion. The produced fluids may include at least some oxidized hydrocarbons produced in the first portion.
Acoustically enhanced boiling heat transfer on a heated surface containing open microchannels
NASA Astrophysics Data System (ADS)
Boziuk, Thomas R.; Smith, Marc K.; Glezer, Ari
2011-11-01
Acoustic actuation is used to enhance boiling heat transfer on a submerged heated surface containing an array of open microchannels by controlling the formation and evolution of vapor bubbles and inhibiting the instability that leads to film boiling at the critical heat flux. The effect of actuation at millimeter and micrometer scales is investigated with emphasis on the behavior of bubble nucleation, growth, contact-line motion, condensation, and detachment. The results show that microchannels control the location of boiling and reduce the mean surface superheat. In addition, acoustic actuation increases the heat flux at a given surface temperature and leads to a significant increase in the critical heat flux, a reduction of the vapor mass above the surface, and the breakup of low-frequency vapor slug formation. Supported by ONR.
The Heats of Formation of SiCl+n, for n=1-4
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Partridge, Harry; Arnold, James O. (Technical Monitor)
1997-01-01
The heats of formation of SiCl(sub n) and SiCl+(sub n), for n=1-4, have been determined using the G2(B3LYP/MP2/CC) approach. The results for the neutral systems are in very good agreement with previous work. High level calibration calculations show that ion results have about the same accuracy as the neutrals, and allow us to refine the G2(B3LYP/MP2/CC) values. The calculations show that the adiabatic IP of SiCl4 is about 7 kcal/mol smaller than the accepted value. Using a rigid rotor/harmonic oscillator approximation, the temperature dependence of the heat of formation, heat capacity, and entropy are computed for 300 to 4000 K and fit to a polynomial.
Torres, Isabel Celigueta; Nieto, Gema; Nylander, Tommy; Simonsen, Adam Cohen; Tolkach, Alexander; Ipsen, Richard
2017-05-01
The objective of the research presented in this paper was to investigate how different characteristics of whey protein microparticles (MWP) added to milk as fat replacers influence intermolecular interactions occurring with other milk proteins during homogenisation and heating. These interactions are responsible for the formation of heat-induced aggregates that influence the texture and sensory characteristics of the final product. The formation of heat-induced complexes was studied in non- and low-fat milk model systems, where microparticulated whey protein (MWP) was used as fat replacer. Five MWP types with different particle characteristics were utilised and three heat treatments used: 85 °C for 15 min, 90 °C for 5 min and 95 °C for 2 min. Surface characteristics of the protein aggregates were expressed as the number of available thiol groups and the surface net charge. Intermolecular interactions involved in the formation of protein aggregates were studied by polyacrylamide gel electrophoresis and the final complexes visualised by darkfield microscopy. Homogenisation of non-fat milk systems led to partial adsorption of caseins onto microparticles, independently of the type of microparticle. On the contrary, homogenisation of low-fat milk resulted in preferential adsorption of caseins onto fat globules, rather than onto microparticles. Further heating of the milk, led to the formation of heat induced complexes with different sizes and characteristics depending on the type of MWP and the presence or not of fat. The results highlight the importance of controlling homogenisation and heat processing in yoghurt manufacture in order to induce desired changes in the surface reactivity of the microparticles and thereby promote effective protein interactions.
Moving hydrocarbons through portions of tar sands formations with a fluid
Stegemeier, George Leo; Mudunuri, Ramesh Raju; Vinegar, Harold J.; Karanikas, John Michael; Jaiswal, Namit; Mo, Weijian
2010-05-18
A method for treating a tar sands formation is disclosed. The method includes heating a first portion of a hydrocarbon layer in the formation from one or more heaters located in the first portion. The heat is controlled to increase a fluid injectivity of the first portion. A drive fluid and/or an oxidizing fluid is injected and/or created in the first portion to cause at least some hydrocarbons to move from a second portion of the hydrocarbon layer to a third portion of the hydrocarbon layer. The second portion is between the first portion and the third portion. The first, second, and third portions are horizontally displaced from each other. The third portion is heated from one or more heaters located in the third portion. Hydrocarbons are produced from the third portion of the formation. The hydrocarbons include at least some hydrocarbons from the second portion of the formation.
ERIC Educational Resources Information Center
Stanfield, Carter; And Others
As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized units in the area of heating. The instructional units focus on electric heating systems, gas heating systems, and oil burning systems. Each unit follows a typical format that includes a unit…
In situ heat treatment of a tar sands formation after drive process treatment
Vinegar, Harold J.; Stanecki, John
2010-09-21
A method for treating a tar sands formation includes providing a drive fluid to a hydrocarbon containing layer of the tar sands formation to mobilize at least some hydrocarbons in the layer. At least some first hydrocarbons from the layer are produced. Heat is provided to the layer from one or more heaters located in the formation. At least some second hydrocarbons are produced from the layer of the formation. The second hydrocarbons include at least some hydrocarbons that are upgraded compared to the first hydrocarbons produced by using the drive fluid.
NASA Technical Reports Server (NTRS)
Theodorsen, Theodore; Clay, William C
1933-01-01
This investigation was conducted to study the practicability of employing heat as a means of preventing the formation of ice on airplane wings. The report relates essentially to technical problems regarding the extraction of heat from the exhaust gases and its proper distribution over the exposed surfaces. In this connection a separate study has been made to determine the variation of the coefficient of heat transmission along the chord of a Clark Y airfoil. Experiments on ice prevention both in the laboratory and in flight show conclusively that it is necessary to heat only the front portion of the wing surface to effect complete prevention. Experiments in flight show that a vapor-heating system which extracts heat from the exhaust and distributes it to the wings is an entirely practical and efficient method for preventing ice formation.
Role of curcumin in the conversion of asparagine into acrylamide during heating.
Hamzalıoğlu, Aytül; Mogol, Burçe A; Lumaga, Roberta Barone; Fogliano, Vincenzo; Gökmen, Vural
2013-06-01
This study aimed to investigate the ability of curcumin to convert asparagine into acrylamide during heating at different temperatures. Binary and ternary model systems of asparagine-curcumin and asparagine-curcumin-fructose were used to determine the role of curcumin on acrylamide formation in competitive and uncompetitive reaction conditions. The results indicated that curcumin could potentially contribute to acrylamide formation under long-term heating conditions as long as asparagine was present in the medium. The amount of acrylamide formed in the ternary system was slightly higher than in the binary system during heating (p < 0.05), because of the higher concentrations of carbonyl compounds initially available. The kinetic trends were similar in both model systems evidencing that fructose reacted with asparagine more rapidly than curcumin. The data reveal that acrylamide formation in the temperature range of 150-200°C obeys Arrhenius law with activation energy of 79.1 kJ/mole. Data of this work showed the possibility that antioxidants having a carbonyl compound can react directly with ASN leading to acrylamide. The addition of antioxidants to foods may increase the formation of acrylamide upon long-term heating if free sugar concentration is low and ASN concentration is relatively high.
The behavior of vapor bubbles during boiling enhanced with acoustics and open microchannels
NASA Astrophysics Data System (ADS)
Boziuk, Thomas; Smith, Marc K.; Glezer, Ari
2012-11-01
Boiling heat transfer on a submerged heated surface is enhanced by combining a grid of surface micromachined open channels and ultrasonic acoustic actuation to control the formation and evolution of vapor bubbles and to inhibit the instability that leads to film boiling at the critical heat flux (CHF). The microchannels provide nucleation sites for vapor bubble formation and enable the entrainment of bulk subcooled fluid to these sites for sustained evaporation. Acoustic actuation excites interfacial oscillations of the detached bubbles and leads to accelerated condensation in the bulk fluid, thereby limiting the formation of vapor columns that precede the CHF instability. The combined effects of microchannels and acoustic actuation are investigated experimentally with emphasis on bubble nucleation, growth, detachment, and condensation. It is shown that this hybrid approach leads to a significant increase in the critical heat flux, a reduction of the vapor mass above the surface, and the breakup of low-frequency vapor slug formation. A large-scale model of the microchannel grid reveals details of the flow near the nucleation site and shows that the presence of the microchannels decreases the surface superheat at a given heat flux. Supported by ONR.
Metallurgical features of the formation of a solid-phase metal joint upon electric-circuit heating
NASA Astrophysics Data System (ADS)
Latypov, R. A.; Bulychev, V. V.; Zybin, I. N.
2017-06-01
The thermodynamic conditions of formation of a joint between metals using the solid-phase methods of powder metallurgy, welding, and deposition of functional coatings upon electric-current heating of the surfaces to be joined are studied. Relations are obtained to quantitatively estimate the critical sizes of the circular and linear active centers that result in the formation of stable bonding zones.
In situ experimental formation and growth of Fe nanoparticles and vesicles in lunar soil
NASA Astrophysics Data System (ADS)
Thompson, Michelle S.; Zega, Thomas J.; Howe, Jane Y.
2017-03-01
We report the results of the first dynamic, in situ heating of lunar soils to simulate micrometeorite impacts on the lunar surface. We performed slow- and rapid-heating experiments inside the transmission electron microscope to understand the chemical and microstructural changes in surface soils resulting from space-weathering processes. Our slow-heating experiments show that the formation of Fe nanoparticles begins at 575 °C. These nanoparticles also form as a result of rapid-heating experiments, and electron energy-loss spectroscopy measurements indicate the Fe nanoparticles are composed entirely of Fe0, suggesting this simulation accurately mimics micrometeorite space-weathering processes occurring on airless body surfaces. In addition to Fe nanoparticles, rapid-heating experiments also formed vesiculated textures in the samples. Several grains were subjected to repeated thermal shocks, and the measured size distribution and number of Fe nanoparticles evolved with each subsequent heating event. These results provide insight into the formation and growth mechanisms for Fe nanoparticles in space-weathered soils and could provide a new methodology for relative age dating of individual soil grains from within a sample population.
Feller, David; Vasiliu, Monica; Grant, Daniel J; Dixon, David A
2011-12-29
Structures, vibrational frequencies, atomization energies at 0 K, and heats of formation at 0 and 298 K are predicted for the compounds As(2), AsH, AsH(2), AsH(3), AsF, AsF(2), and AsF(3) from frozen core coupled cluster theory calculations performed with large correlation consistent basis sets, up through augmented sextuple zeta quality. The coupled cluster calculations involved up through quadruple excitations. For As(2) and the hydrides, it was also possible to examine the impact of full configuration interaction on some of the properties. In addition, adjustments were incorporated to account for extrapolation to the frozen core complete basis set limit, core/valence correlation, scalar relativistic effects, the diagonal Born-Oppenheimer correction, and atomic spin orbit corrections. Based on our best theoretical D(0)(As(2)) and the experimental heat of formation of As(2), we propose a revised 0 K arsenic atomic heat of formation of 68.86 ± 0.8 kcal/mol. While generally good agreement was found between theory and experiment, the heat of formation of AsF(3) was an exception. Our best estimate is more than 7 kcal/mol more negative than the single available experimental value, which argues for a re-examination of that measurement. © 2011 American Chemical Society
Reaction pathway mechanism of thermally induced isomerization of 9,12-linoleic acid triacylglycerol.
Guo, Qin; Jiang, Fan; Deng, Zhaoxuan; Li, Qingpeng; Jin, Jing; Ha, Yiming; Wang, Feng
2017-04-01
To clarify the formation mechanism of trans linoleic acid isomers in edible oils during the heating process, trilinolein and trilinoelaidin, as representative oils, were placed in glass ampoules and sealed before heating at 180, 240 and 320 °C. The glass ampoules were removed at regular time intervals, and the contents were analyzed by infrared spectroscopy. The samples were then subjected to derivatization into their methyl esters for gas chromatographic analysis. Analysis results show that 9c,12c and 9t,12t fatty acids from trilinolein and trilinoelaidin molecules undergo chemical bond rotation, migration and degradation, leading to the formation of non-conjugated linoleic acids (NLAs), conjugated linoleic acids (CLAs) and aldehydes. The formation rate of isomers from the 9c,12c fatty acid is higher than that of the 9t,12t fatty acid. The production of aldehydes increases with heating temperature and time. The isomerization pathways involved in the formation of NLAs and CLAs during heating are clearly presented. These findings suggest possible pathways of NFA and CFA formation from heated trilinolein and trilinoelaidin, complement the mechanistic studies previously published in the literature, and provide a theoretical basis for future control of the quality and safety of fats and oils. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Combating Frosting with Joule-Heated Liquid-Infused Superhydrophobic Coatings.
Elsharkawy, Mohamed; Tortorella, Domenico; Kapatral, Shreyas; Megaridis, Constantine M
2016-05-03
Frost formation is omnipresent when suitable environmental conditions are met. A good portion of research on combating frost formation has revolved around the passive properties of superhydrophobic (SHPO) and slippery lubricant-impregnated porous (SLIP) surfaces. Despite much progress, the need for surfaces that can effectively combat frost formation over prolonged periods still remains. In this work, we report, for the first time, the use of electrically conductive SHPO/SLIP surfaces for active mitigation of frost formation. First, we demonstrate the failure of these surfaces to passively avert prolonged (several hours) frosting. Next, we make use of their electroconductive property for active Joule heating, which results in the removal of any formed frost. We study the role of the impregnating lubricant in the heat transfer across the interface, the surface, and the ambient. We show that, even though the thermal properties of the impregnating lubricant may vary drastically, the lubricant type does not noticeably affect the defrosting behavior of the surface. We attribute this outcome to the dominant thermal resistance of the thick frost layer formed on the cooled surface. We support this claim by drawing parallels between the present system and heat transfer through a one-dimensional (1D) composite medium, and solving the appropriate transient transport equations. Lastly, we propose periodic thermal defrosting for averting frost formation altogether. This methodology utilizes the coating's passive repellent capabilities, while eliminating the dominant effect of thick deposited frost layers. The periodic heating approach takes advantage of lubricants with higher thermal conductivities, which effectively enhance heat transfer through the porous multiphase surface that forms the first line of defense against frosting.
NASA Astrophysics Data System (ADS)
Ogle, S. E.; Tamsitt, V.; Josey, S. A.; Gille, S. T.; Cerovečki, I.; Talley, L. D.; Weller, R. A.
2018-05-01
The Ocean Observatories Initiative air-sea flux mooring deployed at 54.08°S, 89.67°W, in the southeast Pacific sector of the Southern Ocean, is the farthest south long-term open ocean flux mooring ever deployed. Mooring observations (February 2015 to August 2017) provide the first in situ quantification of annual net air-sea heat exchange from one of the prime Subantarctic Mode Water formation regions. Episodic turbulent heat loss events (reaching a daily mean net flux of -294 W/m2) generally occur when northeastward winds bring relatively cold, dry air to the mooring location, leading to large air-sea temperature and humidity differences. Wintertime heat loss events promote deep mixed layer formation that lead to Subantarctic Mode Water formation. However, these processes have strong interannual variability; a higher frequency of 2 σ and 3 σ turbulent heat loss events in winter 2015 led to deep mixed layers (>300 m), which were nonexistent in winter 2016.
Isotope-labeling studies on the formation pathway of acrolein during heat processing of oils.
Ewert, Alice; Granvogl, Michael; Schieberle, Peter
2014-08-20
Acrolein (2-propenal) is classified as a foodborne toxicant and was shown to be present in significant amounts in heated edible oils. Up to now, its formation was mainly suggested to be from the glycerol part of triacylglycerides, although a clear influence of the unsaturation of the fatty acid moiety was also obvious in previous studies. To unequivocally clarify the role of the glycerol and the fatty acid parts in acrolein formation, two series of labeled triacylglycerides were synthesized: [(13)C(3)]-triacylglycerides of stearic, oleic, linoleic, and linolenic acid and [(13)C(54)]-triacylglycerides with labeled stearic, oleic, and linoleic acid, but with unlabeled glycerol. Heating of each of the seven intermediates singly in silicon oil and measurement of the formed amounts of labeled and unlabeled acrolein clearly proved the fatty acid backbone as the key precursor structure. Enzymatically synthesized pure linoleic acid and linolenic acid hydroperoxides were shown to be the key intermediates in acrolein formation, thus allowing the discussion of a radical-induced reaction pathway leading to the formation of the aldehyde. Surprisingly, although several oils contained high amounts of acrolein after heating, deep-fried foods themselves, such as donuts or French fries, were low in the aldehyde.
Combuster. [low nitrogen oxide formation
NASA Technical Reports Server (NTRS)
Mckay, R. A. (Inventor)
1978-01-01
A combuster is provided for utilizing a combustible mixture containing fuel and air, to heat a load fluid such as water or air, in a manner that minimizes the formation of nitrogen oxide. The combustible mixture passes through a small diameter tube where the mixture is heated to its combustion temperature, while the load fluid flows past the outside of the tube to receive heat. The tube is of a diameter small enough that the combustible mixture cannot form a flame, and yet is not subject to wall quench, so that combustion occurs, but at a temperature less than under free flame conditions. Most of the heat required for heating the combustible mixture to its combustion temperature, is obtained from heat flow through the walls of the pipe to the mixture.
Formation, Heating And Chemical Enrichment Of The Intracluster Medium
NASA Astrophysics Data System (ADS)
Eckert, Dominique
2017-07-01
The intracluster medium (ICM) contains the majority of the baryons (80-90%) of galaxy clusters and groups. It has been progressively heated up by gravitational and non-gravitational processes since the cluster formation epoch (z 2-3) until it reaches the very high temperatures we see today, i.e. between 10 and 100 million degrees. The global properties of the ICM follow tight scaling laws with halo mass which are shaped both by gravitational and non-gravitational effects (in particular gas cooling and AGN feedback). Finally, we also know that the ICM is enriched in metals which have been ejected from cluster galaxies throughout the cluster formation history. I will give a review of what is currently known about the formation and evolution of the ICM, focusing on the heating processes (shocks, turbulence) and the metal enrichment history of the gas.
Concentration dependences of the physicochemical properties of a water-acetone system
NASA Astrophysics Data System (ADS)
Fedyaeva, O. A.; Poshelyuzhnaya, E. G.
2017-01-01
Concentration dependences of the UV spectrum, refractive index, specific electrical conductivity, boiling point, pH, surface tension, and heats of dissolution of a water-acetone system on the amount of acetone in the water are studied. It is found that the reversible protolytic interaction of the components occurs in all such solutions, resulting in the formation of hydroxyl and acetonium ions. It is shown that shifts of the equilibrium between the molecules and ions in the solution leads to extreme changes in their electrical properties. It is concluded that the formation of acetone solutions of water is accompanied by heat absorption, while the formation of aqueous solutions of acetone is accompanied by heat release.
Heat of formation determination of the ground and excited state of cyanomethylene (HCCN) radical
NASA Technical Reports Server (NTRS)
Francisco, Joseph S.
1994-01-01
Ab initio electronic structure theory has been used to characterize the structure of the ground triplet and lowest singlet excited states of cyanomethylene. The geometries, vibrational frequencies, and heats of formation have been determined using second-order Moller-Plesset perturbation, single and double excitation configuration interaction, and quadratic configuration interaction theory. The heat of formation is predicted with isodesmic reaction and Gaussian-2 theory (G2) for the ground triplet and first excited singlet states of cyanomethylene. For the ground state Delta-H(sub 0)(sup f,0) is 114.8+/-2 kcal/mol while for the excited single state it is 126.5+/-2 kcal/mol.
Heating and cooling of the neutral ISM in the NGC 4736 circumnuclear ring
NASA Astrophysics Data System (ADS)
van der Laan, T. P. R.; Armus, L.; Beirao, P.; Sandstrom, K.; Groves, B.; Schinnerer, E.; Draine, B. T.; Smith, J. D.; Galametz, M.; Wolfire, M.; Croxall, K.; Dale, D.; Herrera Camus, R.; Calzetti, D.; Kennicutt, R. C.
2015-03-01
The manner in which gas accretes and orbits within circumnuclear rings has direct implications for the star formation process. In particular, gas may be compressed and shocked at the inflow points, resulting in bursts of star formation at these locations. Afterwards the gas and young stars move together through the ring. In addition, star formation may occur throughout the ring, if and when the gas reaches sufficient density to collapse under gravity. These two scenarios for star formation in rings are often referred to as the "pearls-on-a-string" and "popcorn" paradigms. In this paper, we use new Herschel/PACS observations, obtained as part of the KINGFISH open time key program, along with archival Spitzer and ground-based observations from the SINGS Legacy project, to investigate the heating and cooling of the interstellar medium in the nearby star-forming ring galaxy, NGC 4736. By comparing spatially resolved estimates of the stellar far-ultraviolet flux available for heating, with the gas and dust cooling derived from the far-infrared continuum and line emission, we show that while star formation is indeed dominant at the inflow points in NGC 4736, additional star formation is needed to balance the gas heating and cooling throughout the ring. This additional component most likely arises from the general increase in gas density in the ring over its lifetime. Our data provide strong evidence, therefore, for a combination of the two paradigms for star formation in the ring in NGC 4736.
The Schladitz Fuel Injector: An Initial Performance Evaluation without Burning.
1982-03-01
same heating rate in the absence of the exit nozzle. Stated alternatively , the presence of the downstream nozzle reduced the required heat addition...rate by about one-third for formation of a spray having 50% or more mist content. It was further noted that this heating rate reduction was essentially...plot for Jet-A fuel suggests that the creation of a fine mist by the SFI in the absence of any downstream nozzle is accompanied by the formation of a
Energetics of formic acid conversion to adsorbed formates on Pt(111) by transient calorimetry.
Silbaugh, Trent L; Karp, Eric M; Campbell, Charles T
2014-03-12
Carboxylates adsorbed on solid surfaces are important in many technological applications, ranging from heterogeneous catalysis and surface organo-functionalization to medical implants. We report here the first experimentally determined enthalpy of formation of any surface bound carboxylate on any surface, formate on Pt(111). This was accomplished by studying the dissociative adsorption of formic acid on oxygen-presaturated (O-sat) Pt(111) to make adsorbed monodentate and bidentate formates using single-crystal adsorption calorimetry. The integral heat of molecular adsorption of formic acid on clean Pt(111) at 100 K is 62.5 kJ/mol at 0.25 monolayer (ML). On O-sat Pt(111), the integral heat of the dissociative adsorption of formic acid to make monodentate formate (HCOOmon,ad) plus the water-hydroxyl complex ((H2O-OH)ad) was found to be 76 kJ/mol at 3/8 ML and 100-150 K. Similarly, its integral heat of dissociative adsorption to make bidentate formate (HCOObi,ad) plus (H2O-OH)ad was 106 kJ/mol at 3/8 ML and 150 K. These heats give the standard enthalpies of formation of adsorbed monodentate and bidentate formate on Pt(111) to be -354 ± 5 and -384 ± 5 kJ/mol, respectively, and their net bond enthalpies to the Pt(111) surface to be 224 ± 13 and 254 ± 13 kJ/mol, respectively. Coverage-dependent enthalpies of formation were used to estimate the enthalpy of the elementary reaction HCOOHad → HCOObi,ad + Had to be -4 kJ/mol at zero coverage and +24 kJ/mol at 3/8 ML.
HEATS OF FORMATION OF GIBBSITE AND LIGHT ELEMENT DOUBLE OXIDES,
The heat of formation of gibbsite , from alpha-alumina and water, has been redetermined by solution calorimetry in hydrofluoric acid at 75C. A value...calorimetry in hydrofluoric acid at 75C. In the case of the double oxides that contained alumina, gibbsite was used as a reference compound. (Author)
The Heat of Formation of Na2SiF6.
ERIC Educational Resources Information Center
DeVore, T. C.; Gallaher, T. N.
1986-01-01
Describes a physical chemistry experiment which uses spectroscopy to measure the heat of formation of Na2SiF6. Discusses the opportunities for students to see the use of a familiar instrument in an unfamiliar application, emphasizing that there are often many ways to attack problems in science. (TW)
McKenzie, J.M.; Voss, C.I.; Siegel, D.I.
2007-01-01
In northern peatlands, subsurface ice formation is an important process that can control heat transport, groundwater flow, and biological activity. Temperature was measured over one and a half years in a vertical profile in the Red Lake Bog, Minnesota. To successfully simulate the transport of heat within the peat profile, the U.S. Geological Survey's SUTRA computer code was modified. The modified code simulates fully saturated, coupled porewater-energy transport, with freezing and melting porewater, and includes proportional heat capacity and thermal conductivity of water and ice, decreasing matrix permeability due to ice formation, and latent heat. The model is verified by correctly simulating the Lunardini analytical solution for ice formation in a porous medium with a mixed ice-water zone. The modified SUTRA model correctly simulates the temperature and ice distributions in the peat bog. Two possible benchmark problems for groundwater and energy transport with ice formation and melting are proposed that may be used by other researchers for code comparison. ?? 2006 Elsevier Ltd. All rights reserved.
Effect of heating/reheating of fats/oils, as used by Asian Indians, on trans fatty acid formation.
Bhardwaj, Swati; Passi, Santosh Jain; Misra, Anoop; Pant, Kamal K; Anwar, Khalid; Pandey, R M; Kardam, Vikas
2016-12-01
Heating/frying and reuse of edible fats/oils induces chemical changes such as formation of trans fatty acids (TFAs). The aim of this study was to investigate the effect of heating/frying on formation of TFAs in fats/oils. Using gas chromatography with flame ionisation detector, TFA was estimated in six commonly used fat/oils in India (refined soybean oil, groundnut oil, olive oil, rapeseed oil, clarified butter, partially hydrogenated vegetable oil), before and after subjecting them to heating/frying at 180°C and 220°C. All six fats/oils subjected to heating/frying demonstrated an increase in TFAs (p<0.001), saturated fatty acids (p<0.001) and decrease in cis-unsaturated fatty acids (p<0.001). The absolute increase in TFA content of edible oils (after subjecting to heating/reheating) ranged between 2.30±0.89g/100g and 4.5±1.43g/100g; amongst edible fats it ranged between 2.60±0.38g/100g and 5.96±1.94g/100g. There were no significant differences between the two treatment groups (heating and frying; p=0.892). Considering the undesirable health effects of TFA, appropriate guidelines for heating/re-frying of edible fats/oils by Asian Indians should be devised. Copyright © 2016 Elsevier Ltd. All rights reserved.
Globular cluster formation - The fossil record
NASA Technical Reports Server (NTRS)
Murray, Stephen D.; Lin, Douglas N. C.
1992-01-01
Properties of globular clusters which have remained unchanged since their formation are used to infer the internal pressures, cooling times, and dynamical times of the protocluster clouds immediately prior to the onset of star formation. For all globular clusters examined, it is found that the cooling times are much less than the dynamical times, implying that the protoclusters must have been maintained in thermal equilibrium by external heat sources, with fluxes consistent with those found in previous work, and giving the observed rho-T relation. Self-gravitating clouds cannot be stably heated, so that the Jeans mass forms an upper limit to the cluster masses. The observed dependence of protocluster pressure upon galactocentric position implies that the protocluster clouds were in hydrostatic equilibrium after their formation. The pressure dependence is well fitted by that expected for a quasi-statically evolving background hot gas, shock heated to its virial temperature. The observations and inferences are combined with previous theoretical work to construct a picture of globular cluster formation.
Sengupta, Arkajyoti; Ramabhadran, Raghunath O; Raghavachari, Krishnan
2014-08-14
In this study we have used the connectivity-based hierarchy (CBH) method to derive accurate heats of formation of a range of biomolecules, 18 amino acids and 10 barbituric acid/uracil derivatives. The hierarchy is based on the connectivity of the different atoms in a large molecule. It results in error-cancellation reaction schemes that are automated, general, and can be readily used for a broad range of organic molecules and biomolecules. Herein, we first locate stable conformational and tautomeric forms of these biomolecules using an accurate level of theory (viz. CCSD(T)/6-311++G(3df,2p)). Subsequently, the heats of formation of the amino acids are evaluated using the CBH-1 and CBH-2 schemes and routinely employed density functionals or wave function-based methods. The calculated heats of formation obtained herein using modest levels of theory and are in very good agreement with those obtained using more expensive W1-F12 and W2-F12 methods on amino acids and G3 results on barbituric acid derivatives. Overall, the present study (a) highlights the small effect of including multiple conformers in determining the heats of formation of biomolecules and (b) in concurrence with previous CBH studies, proves that use of the more effective error-cancelling isoatomic scheme (CBH-2) results in more accurate heats of formation with modestly sized basis sets along with common density functionals or wave function-based methods.
Formation mechanism of monodispersed spherical core-shell ceria/polymer hybrid nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izu, Noriya, E-mail: n-izu@aist.go.jp; Uchida, Toshio; Matsubara, Ichiro
2011-08-15
Graphical abstract: The formation mechanism for core-shell nanoparticles is considered to be as follows: nucleation and particle growth occur simultaneously (left square); very slow particle growth occurs (middle square). Highlights: {yields} The size of the resultant nanoparticles was strongly and complicatedly dependent on the set temperature used during reflux heating and the PVP molecular weight. {yields} The size of the nanoparticles increased by a 2-step process as the reflux heating time increased. {yields} The IR spectral changes with increasing reflux time indicated the increase in the number of cross-linked polymers in the shell. -- Abstract: Very unique core-shell ceria (ceriummore » oxide)/polymer hybrid nanoparticles that have monodispersed spherical structures and are easily dispersed in water or alcohol without the need for a dispersant were reported recently. The formation mechanism of the unique nanoparticles, however, was not clear. In order to clarify the formation mechanism, these nanoparticles were prepared using a polyol method (reflux heating) under varied conditions of temperature, time, and concentration and molecular weight of added polymer (poly(vinylpyrrolidone)). The size of the resultant nanoparticles was strongly and complicatedly dependent on the set temperature used during reflux heating and the poly(vinylpyrrolidone) molecular weight. Furthermore, the size of the nanoparticles increased by a 2-step process as the reflux heating time increased. The IR spectral changes with increasing reflux time indicated the increase in the number of cross-linked polymers in the shell. From these results, the formation mechanism was discussed and proposed.« less
Heats of NF(sub n) (n= 1-3) and NF(sub n)(+)(n = 1-3)
NASA Technical Reports Server (NTRS)
Ricca, Alessandra; Arnold, James (Technical Monitor)
1998-01-01
Accurate heats of formation are computed for NF(sub n) and NF(sub n)(+), for n = 1-3. The geometries and the vibrational frequencies are determined at the B3LYP level of theory. The energetics are determined at the CCSD(T) level of theory. Basis set limit values are obtained by extrapolation. In those cases where the CCSD(T) calculations become prohibitively large, the basis set extrapolation is performed at the MP2 level. The temperature dependence of the heat of formation, heat capacity, and entropy are computed for the temperature range 300 to 4000 K and fit to a polynomial.
Composition of pyrolysis gas from oil shale at various stages of heating
NASA Astrophysics Data System (ADS)
Martemyanov, S. M.; Bukharkin, A. A.; Koryashov, I. A.; Ivanov, A. A.
2017-05-01
Underground, the pyrolytic conversion of an oil shale in the nearest future may become an alternative source of a fuel gas and a synthetic oil. The main scientific problem in designing this technology is to provide a methodology for determination of the optimal mode of heating the subterranean formation. Such a methodology must allow predicting the composition of the pyrolysis products and the energy consumption at a given heating rate of the subterranean formation. The paper describes the results of heating of the oil shale fragments in conditions similar to the underground. The dynamics of composition of the gaseous products of pyrolysis are presented and analyzed.
Solution mining systems and methods for treating hydrocarbon containing formations
Vinegar, Harold J [Bellaire, TX; de Rouffignac, Eric Pierre [Rijswijk, NL; Schoeling, Lanny Gene [Katy, TX
2009-07-14
A method for treating an oil shale formation comprising nahcolite is disclosed. The method includes providing a first fluid to a portion of the formation through at least two injection wells. A second fluid is produced from the portion through at least one injection well until at least two injection wells are interconnected such that fluid can flow between the two injection wells. The second fluid includes at least some nahcolite dissolved in the first fluid. The first fluid is injected through one of the interconnected injection wells. The second fluid is produced from at least one of the interconnected injection wells. Heat is provided from one or more heaters to the formation to heat the formation. Hydrocarbon fluids are produced from the formation.
Formation of 2D nanoparticles with block structure in simultaneous electric explosion of conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kryzhevich, Dmitrij S., E-mail: kryzhev@ispms.ru, E-mail: kost@ispms.ru; Zolnikov, Konstantin P., E-mail: kryzhev@ispms.ru, E-mail: kost@ispms.ru; Abdrashitov, Andrei V.
2014-11-14
A molecular dynamics simulation of nanoparticle formation in simultaneous electric explosion of conductors is performed. Interatomic interaction is described using potentials calculated in the framework of the embedded atom method. High-rate heating results in failure of the conductors with the formation of nanoparticles. The influence of the heating rate, temperature distribution over the specimen cross-section and the distance between simultaneously exploded conductors on the structure of formed nanoparticles is studied. The calculation results show that the electric explosion of conductors allows the formation of nanoparticles with block structure.
NASA Astrophysics Data System (ADS)
Philippot, C.; Bellavoine, M.; Dumont, M.; Hoummada, K.; Drillet, J.; Hebert, V.; Maugis, P.
2018-01-01
Compared with other dual-phase (DP) steels, initial microstructures of cold-rolled martensite-ferrite have scarcely been investigated, even though they represent a promising industrial alternative to conventional ferrite-pearlite cold-rolled microstructures. In this study, the influence of the heating rate (over the range of 1 to 10 K/s) on the development of microstructures in a microalloyed DP steel is investigated; this includes the tempering of martensite, precipitation of microalloying elements, recrystallization, and austenite formation. This study points out the influence of the degree of ferrite recrystallization prior to the austenite formation, as well as the importance of the cementite distribution. A low heating rate giving a high degree of recrystallization, leads to the formation of coarse austenite grains that are homogenously distributed in the ferrite matrix. However, a high heating rate leading to a low recrystallization degree, results in a banded-like structure with small austenite grains surrounded by large ferrite grains. A combined approach, involving relevant multiscale microstructural characterization and modeling to rationalize the effect of the coupled processes, highlights the role of the cold-worked initial microstructure, here a martensite-ferrite mixture: recrystallization and austenite formation commence in the former martensite islands before extending in the rest of the material.
Temperature limited heater with a conduit substantially electrically isolated from the formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinegar, Harold J; Sandberg, Chester Ledlie
2009-07-14
A system for heating a hydrocarbon containing formation is described. A conduit may be located in an opening in the formation. The conduit includes ferromagnetic material. An electrical conductor is positioned inside the conduit, and is electrically coupled to the conduit at or near an end portion of the conduit so that the electrical conductor and the conduit are electrically coupled in series. Electrical current flows in the electrical conductor in a substantially opposite direction to electrical current flow in the conduit during application of electrical current to the system. The flow of electrons is substantially confined to the insidemore » of the conduit by the electromagnetic field generated from electrical current flow in the electrical conductor so that the outside surface of the conduit is at or near substantially zero potential at 25.degree. C. The conduit may generate heat and heat the formation during application of electrical current.« less
NASA Astrophysics Data System (ADS)
Jurčišinová, E.; Jurčišin, M.
2018-05-01
We investigate in detail the process of formation of the multipeak low-temperature structure in the behavior of the specific heat capacity in frustrated magnetic systems in the framework of the exactly solvable antiferromagnetic spin-1 /2 Ising model with the multisite interaction in the presence of the external magnetic field on the kagome-like Husimi lattice. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. It is shown that the multipeak structure in the behavior of the specific heat capacity is related to the formation of the multilevel hierarchical ordering in the system of all ground states of the model. Direct relation between the maximal number of peaks in the specific heat capacity behavior and the number of independent interactions in studied frustrated magnetic system is identified. The mechanism of the formation of the multipeak structure in the specific heat capacity is described and studied in detail, and it is generalized to frustrated magnetic systems with arbitrary numbers of independent interactions.
Using laser radiation for the formation of capillary structure in flat ceramic heat pipes
NASA Astrophysics Data System (ADS)
Nikolaenko, Yu. E.; Rotner, S. M.
2012-12-01
The possibility of using laser radiation with a wavelength of 1.064 μm for the formation of a capillary structure in the evaporation zone of flat ceramic heat pipes has been experimentally confirmed. Using a technological regime with established parameters, a capillary structure was formed in AlN and Al2O3 ceramic plates with a thickness of 1-2 mm and lateral dimensions of 48 × 60 and 100 × 100 mm, which ensured absorption of heat-transfer fluids (distilled water, ethyl alcohol, acetone) to a height of 100 mm against gravity forces. The thermal resistance of flat ceramic heat pipes with this capillary structure reaches 0.07°C/W, which is quite acceptable for their use as heat sinks in systems of thermal regime control for electronic components and as heat exchange plates for large-size thermoelectric conversion units.
Methods of hydrotreating a liquid stream to remove clogging compounds
Minderhoud, Johannes Kornelis [Amsterdam, NL; Nelson, Richard Gene [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX; Ryan, Robert Charles [Houston, TX; Nair, Vijay [Katy, TX
2009-09-22
A method includes producing formation fluid from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a gas stream. At least a portion of the liquid stream is provided to a hydrotreating unit. At least a portion of selected in situ heat treatment clogging compositions in the liquid stream are removed to produce a hydrotreated liquid stream by hydrotreating at least a portion of the liquid stream at conditions sufficient to remove the selected in situ heat treatment clogging compositions.
Evolution of radiation defect and radiation hardening in heat treated SA508 Gr3 steel
NASA Astrophysics Data System (ADS)
Jin, Hyung-Ha; Kwon, Junhyun; Shin, Chansun
2014-01-01
The formation of radiation defects and corresponding radiation hardening in heat-treated SA508 Gr3 steel after Fe ion irradiation were investigated by means of transmission electron microscopy and a nano-indentation technique. As the residual dislocation density is increased in the matrix, the formation of radiation defects is considerably weakened. Comparison between the characteristics of the radiation defect and an evaluation of radiation hardening indicates that a large dislocation loop contributes little to the radiation hardening in the heat-treated SA508 Gr3 steel.
NASA Astrophysics Data System (ADS)
Rodigast, Maria; Mutzel, Anke; Herrmann, Hartmut
2017-03-01
Methylglyoxal forms oligomeric compounds in the atmospheric aqueous particle phase, which could establish a significant contribution to the formation of aqueous secondary organic aerosol (aqSOA). Thus far, no suitable method for the quantification of methylglyoxal oligomers is available despite the great effort spent for structure elucidation. In the present study a simplified method was developed to quantify heat-decomposable methylglyoxal oligomers as a sum parameter. The method is based on the thermal decomposition of oligomers into methylglyoxal monomers. Formed methylglyoxal monomers were detected using PFBHA (o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride) derivatisation and gas chromatography-mass spectrometry (GC/MS) analysis. The method development was focused on the heating time (varied between 15 and 48 h), pH during the heating process (pH = 1-7), and heating temperature (50, 100 °C). The optimised values of these method parameters are presented. The developed method was applied to quantify heat-decomposable methylglyoxal oligomers formed during the OH-radical oxidation of 1,3,5-trimethylbenzene (TMB) in the Leipzig aerosol chamber (LEipziger AerosolKammer, LEAK). Oligomer formation was investigated as a function of seed particle acidity and relative humidity. A fraction of heat-decomposable methylglyoxal oligomers of up to 8 % in the produced organic particle mass was found, highlighting the importance of those oligomers formed solely by methylglyoxal for SOA formation. Overall, the present study provides a new and suitable method for quantification of heat-decomposable methylglyoxal oligomers in the aqueous particle phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, H. C.; Research and Development Division, SK Hynix Semiconductor Inc., Icheon 467-701; Jung, S. Y.
2014-03-15
The formation of secondary energetic electrons induced by an abnormal electron-heating mode in pulsed microwave-frequency atmospheric microplasmas was investigated using particle-in-cell simulation. We found that additional high electron heating only occurs during the first period of the ignition phase after the start of a second pulse at sub-millimeter dimensions. During this period, the electrons are unable to follow the abruptly retreating sheath through diffusion alone. Thus, a self-consistent electric field is induced to drive the electrons toward the electrode. These behaviors result in an abnormal electron-heating mode that produces high-energy electrons at the electrode with energies greater than 50 eV.
Thermochemical Studies of Epoxides and Related Compounds
Morgan, Kathleen M.; Ellis, Jamie A.; Lee, Joseph; Fulton, Ashley; Wilson, Shavonda L.; Dupart, Patrick S.; Dastoori, Rosanna
2013-01-01
Gas phase heats of formation for the our butene oxide isomers are reported. They were obtained by measuring the condensed-phase heat of reduction to the corresponding alcohol using reaction calorimetry. Heats of vaporization were determined, and allow gas-phase heats of formation to be obtained. The experimental measurements are compared to calculations obtained using a variety of computational methods. Overall, the G3 and CBS-APNO methods agree quite well with the experimental data. The influence of alkyl substituents on epoxide stability is discussed. Comparisons to alkenes, cyclopropanes, aziridines, thiiranes and phosphiranes are also made. Isodesmic-type reactions were used to determine strain energies of the epoxides and related compounds with various substituents. PMID:23551240
Dunn, J.C.; Hardee, H.C.; Striker, R.P.
1984-01-09
A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.
Dunn, James C.; Hardee, Harry C.; Striker, Richard P.
1985-01-01
A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packer-type seals are provided along the probe above and below the heater pads.
Yamamoto, Shoko; Matsushima, Yuta; Kanayama, Yoshitaka; Seki, Azusa; Honda, Haruya; Unuma, Hidero; Sakai, Yasuo
2017-03-01
Calcium phosphate cements (CPCs), consisting of a mixture of calcium phosphate powders and setting liquid, have been widely used in orthopedic applications. One of the drawbacks of CPCs is their poor resorbability in the living body, which hinders substitution with natural bones. One of the strategies to facilitate the resorption of CPCs is the incorporation of bioresorbable or water-soluble pore-generating particles (porogens), such as gelatin, in the CPC matrices. In spite of numerous reports, however, little is known about the effect of the dissolution/resorption rate of the porogens on concomitant bone regeneration. In the present study, we prepared preset CPCs dispersed with 10 mass% of low-endotoxin gelatin particles 200-500 μm in diameter having different heat-treatment histories, therefore exhibiting different dissolution rate, and then the obtained CPC/gelatin composites were evaluated for in vivo resorption and concomitant in vivo bone formation behaviors. As the results, the dispersion of gelatin particles markedly promoted in vivo resorption of CPC, and enhanced concomitant bone formation, connective tissue formation, osteoblast proliferation, and vascularization. The dissolution/resorption rate was able to be controlled by changing the up-front heat-treatment temperature. In particular, when CPC/gelatin composites were implanted in distal metaphysis of rabbits, the optimum dissolution/resorption was attained by heat-treating gelatin particles at 383 K for 24 h before dispersing in CPC. Quick resorption of calcium phosphate cement and concomitant bone formation by dispersing properly heat-treated with gelatin particles.
NASA Astrophysics Data System (ADS)
Ghosh, Amitabha
A finite element code has been developed to study the thermal history of asteroid 4 Vesta. This is the first attempt to model the thermal history of a differentiated asteroid, from accretion through core and crust formation and subsequent cooling until geochemical closure is attained. Previous thermal models were simpler formulations aimed at explaining metamorphism and aqueous alteration in unmelted asteroids. The results of the simulation are consistent with chronological measurements of cumulate and noncumulate eucrites, meteorites belonging to the HED suite, believed to have been derived from 4 Vesta. The work solves major problems with the hypothesis of heating by decay of 26Al, an extinct radionuclide, believed to be a plausible heat source in the early solar system. The simulation draws a model chronology of Vesta and predicts the time interval of accretion at 2.85 Myrs, the absolute times (with respect to CAI formation) of core formation at 4.58 Myrs, crust formation at 6.58 Myrs and geochemical closure on Vesta at ~100 Myrs. It is concluded that neither collisional heating nor heating due to the radioactive decay of 60Fe caused any perceptible difference in the whole-body thermal history of Vesta. Further, the thermal model suggested that the olivine-rich spot observed on Vesta may not be excavated mantle material, but may be unmelted near-surface material that escaped the asteroid's differentiation history.
Kinetics of silicide formation over a wide range of heating rates spanning six orders of magnitude
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molina-Ruiz, Manel; Lopeandía, Aitor F.; Gonzalez-Silveira, Marta
Kinetic processes involving intermediate phase formation are often assumed to follow an Arrhenius temperature dependence. This behavior is usually inferred from limited data over narrow temperature intervals, where the exponential dependence is generally fully satisfied. However, direct evidence over wide temperature intervals is experimentally challenging and data are scarce. Here, we report a study of silicide formation between a 12 nm film of palladium and 15 nm of amorphous silicon in a wide range of heating rates, spanning six orders of magnitude, from 0.1 to 10{sup 5 }K/s, or equivalently more than 300 K of variation in reaction temperature. The calorimetric traces exhibit severalmore » distinct exothermic events related to interdiffusion, nucleation of Pd{sub 2}Si, crystallization of amorphous silicon, and vertical growth of Pd{sub 2}Si. Interestingly, the thickness of the initial nucleation layer depends on the heating rate revealing enhanced mass diffusion at the fastest heating rates during the initial stages of the reaction. In spite of this, the formation of the silicide strictly follows an Arrhenius temperature dependence over the whole temperature interval explored. A kinetic model is used to fit the calorimetric data over the complete heating rate range. Calorimetry is complemented by structural analysis through transmission electron microscopy and both standard and in-situ synchrotron X-ray diffraction.« less
Singlet oxygen production in Chlamydomonas reinhardtii under heat stress.
Prasad, Ankush; Ferretti, Ursula; Sedlářová, Michaela; Pospíšil, Pavel
2016-02-01
In the current study, singlet oxygen formation by lipid peroxidation induced by heat stress (40 °C) was studied in vivo in unicellular green alga Chlamydomonas reinhardtii. Primary and secondary oxidation products of lipid peroxidation, hydroperoxide and malondialdehyde, were generated under heat stress as detected using swallow-tailed perylene derivative fluorescence monitored by confocal laser scanning microscopy and high performance liquid chromatography, respectively. Lipid peroxidation was initiated by enzymatic reaction as inhibition of lipoxygenase by catechol and caffeic acid prevented hydroperoxide formation. Ultra-weak photon emission showed formation of electronically excited species such as triplet excited carbonyl, which, upon transfer of excitation energy, leads to the formation of either singlet excited chlorophyll or singlet oxygen. Alternatively, singlet oxygen is formed by direct decomposition of hydroperoxide via Russell mechanisms. Formation of singlet oxygen was evidenced by the nitroxyl radical 2,2,6,6-tetramethylpiperidine-1-oxyl detected by electron paramagnetic resonance spin-trapping spectroscopy and the imaging of green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. Suppression of singlet oxygen formation by lipoxygenase inhibitors indicates that singlet oxygen may be formed via enzymatic lipid peroxidation initiated by lipoxygenase.
NASA Technical Reports Server (NTRS)
Sasaki, S.; Nagahara, H.; Kitagami, K.; Nakagawa, Y.
1994-01-01
In some Ca-Al-rich inclusion (CAI) grains, mass-dependent isotopic fractionations of Mg, Si, and O are observed and large Mg isotopic fractionation is interpreted to have been produced by cosmochemical processes such as evaporation and condensation. Mass-dependent Mg isotopic fractionation was found in olivine chondrules of Allende meteorites. Presented is an approximate formula for the temperature of the solar nebula that depends on heliocentric distance and the initial gas distribution. Shock heating during solar nebula formation can cause evaporative fractionation within interstellar grains involved in a gas at the inner zone (a less than 3 AU) of the disk. Alternatively collision of late-accreting gas blobs might cause similar heating if Sigma(sub s) and Sigma are large enough. Since the grain size is small, the solid/gas mass ratio is low and solar (low P(sub O2)), and the ambient gas pressure is low, this heating event could not produce chondrules themselves. Chondrule formation should proceed around the disk midplane after dust grains would grow and sediment to increase the solid/gas ratio there. The heating source there is uncertain, but transient rapid accretion through the disk could release a large amount of heat, which would be observed as FU Orionis events.
Antioxidants in heat-processed koji and the production mechanisms.
Okutsu, Kayu; Yoshizaki, Yumiko; Ikeda, Natsumi; Kusano, Tatsuro; Hashimoto, Fumio; Takamine, Kazunori
2015-11-15
We previously developed antioxidative heat-processed (HP)-koji via two-step heating (55 °C/2days → 75 °C/3 days) of white-koji. In this study, we isolated antioxidants in HP-koji and investigated their formation mechanisms. The antioxidants were identified to be 5-hydroxymethyl furfural (HMF) and 5-(α-D-glucopyranosyloxymethyl)-2-furfural (GMF) based on nuclear magnetic resonance spectral analysis. HMF and GMF were not present in intact koji, but were formed by heating at 75 °C. As production of these antioxidants was more effective by two-step heating than by constant heating at 55 °C or 75 °C, we presumed that the antioxidant precursors are derived enzymatically at 55°C and that the antioxidants are formed subsequently by thermal reaction at 75 °C. The heating assay of saccharide solutions revealed glucose and isomaltose as HMF and GMF precursors, respectively, and thus the novel finding of GMF formation from isomaltose. Finally, HMF and GMF were effectively formed by two-step heating from glucose and isomaltose present in koji. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Ziqing; Toloczko, Mychailo B.; Kruska, Karen
Long-term grain boundary (GB) damage evolution and stress corrosion crack initiation in alloy 690 are being investigated by constant load tensile testing in high-temperature, simulated PWR primary water. Six commercial alloy 690 heats are being tested in various cold work conditions loaded at their yield stress. This paper reviews the basic test approach and detailed characterizations performed on selected specimens after an exposure time of ~1 year. Intergranular crack nucleation was observed under constant stress in certain highly cold-worked (CW) alloy 690 heats and was found to be associated with the formation of GB cavities. Somewhat surprisingly, the heats mostmore » susceptible to cavity formation and crack nucleation were thermally treated materials with most uniform coverage of small GB carbides. Microstructure, % cold work and applied stress comparisons are made among the alloy 690 heats to better understand the factors influencing GB cavity formation and crack initiation.« less
Three-Dimensional Superhydrophobic Nanowire Networks for Enhancing Condensation Heat Transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ronggui; Wen, Rongfu; Xu, Shanshan
Spontaneous droplet jumping on nanostructured surfaces can potentially enhance condensation heat transfer by accelerating droplet removal. However, uncontrolled nucleation in the micro-defects of nanostructured superhydrophobic surfaces could lead to the formation of large pinned droplets, which greatly degrades the performance. Here, we experimentally demonstrate for the first time stable and efficient jumping droplet condensation on a superhydrophobic surface with three-dimensional (3D) copper nanowire networks. Due to the formation of interconnections among nanowires, the micro-defects are eliminated while the spacing between nanowires is reduced, which results in the formation of highly mobile droplets. By preventing flooding on 3D nanowire networks, wemore » experimentally demonstrate a 100% higher heat flux compared with that on the state-of-the-art hydrophobic surface over a wide range of subcooling (up to 28 K). The remarkable water repellency of 3D nanowire networks can be applied to a broad range of water-harvesting and phase-change heat transfer applications.« less
Detailed modeling analysis for soot formation and radiation in microgravity gas jet diffusion flames
NASA Technical Reports Server (NTRS)
Ku, Jerry C.; Tong, LI; Greenberg, Paul S.
1995-01-01
Radiation heat transfer in combustion systems has been receiving increasing interest. In the case of hydrocarbon fuels, a significant portion of the radiation comes from soot particles, justifying the need for detailed soot formation model and radiation transfer calculations. For laminar gas jet diffusion flames, results from this project (4/1/91 8/22/95) and another NASA study show that flame shape, soot concentration, and radiation heat fluxes are substantially different under microgravity conditions. Our emphasis is on including detailed soot transport models and a detailed solution for radiation heat transfer, and on coupling them with the flame structure calculations. In this paper, we will discuss the following three specific areas: (1) Comparing two existing soot formation models, and identifying possible improvements; (2) A simple yet reasonably accurate approach to calculating total radiative properties and/or fluxes over the spectral range; and (3) Investigating the convergence of iterations between the flame structure solver and the radiation heat transfer solver.
Effect of boundary heat flux on columnar formation in binary alloys: A phase-field study
NASA Astrophysics Data System (ADS)
Du, Lifei; Zhang, Peng; Yang, Shaomei; Chen, Jie; Du, Huiling
2018-02-01
A non-isothermal phase-field model was employed to simulate the columnar formation during rapid solidification in binary Ni-Cu alloy. Heat flux at different boundaries was applied to investigate the temperature gradient effect on the morphology, concentration and temperature distributions during directional solidifications. With the heat flux input/extraction from boundaries, coupling with latent heat release and initial temperature gradient, temperature distributions are significantly changed, leading to solute diffusion changes during the phase-transition. Thus, irregular columnar structures are formed during the directional solidification, and the concentration distribution in solid columnar arms could also be changed due to the different growing speeds and temperature distributions at the solid-liquid interfaces. Therefore, applying specific heat conditions at the solidifying boundaries could be an efficient way to control the microstructure during solidifications.
Magnetic reconnection as a chondrule heating mechanism
NASA Astrophysics Data System (ADS)
Lazerson, Samuel A.
2010-12-01
The origin of chondrules (sub-millimeter inclusions found in stony meteorites) remains today an open question despite over century of examination. The age of these proto-solar relics shows a well defined cutoff of around 4.5 billion years ago. This places them as the oldest solids in the solar system. Chemical examination indicates that they experienced heating events on the order of 5000 K/hr for periods of around 30 minutes, followed by extending periods of cooling. Additional examination indicates the presence of large magnetic fields during their formation. Most attempts to explain chondrule formation in the proto-solar nebula neglect the existence of a plasma environment, with even less mention of dust being a charge carrier (dusty plasma). Simulations of magnetic reconnection in a dusty plasma are forwarded as a mechanism for chondrule formation in the proto-solar nebula. Here large dust-neutral relative velocities are found in the reconnection region. These flows are associated with the dynamics of reconnection. The high Knudsen number of the dust particles allows for a direct calculation of frictional heating due to collisions with neutrals (allowing for the neglect of boundary layer formation around the particle). Test particle simulations produce heating equivalent to that recorded in the chondrule mineral record. It is shown that magnetic reconnection in a dusty plasma is of fundamental importance to the formation of the most primitive solids in the solar system.
NASA Astrophysics Data System (ADS)
Jones, F. W.; Majorowicz, J. A.
Radiogenic heat generation values for 381 basement samples from 229 sites in the western Canadian basin exhibit a lognormal frequency distribution. The mean value = 2.06 (S.D. = 1.22) µWm-3 is larger than the radiogenic heat generation values reported for the shield in the Superior (ca. 1.2 µWm-3, Jessop and Lewis, 1978) and Churchill (ca. 0.7 µWm-3, Drury, 1985) provinces. When equal Log A contour intervals are used to map the basement heat generation, three large zones of relatively high heat generation are found. One coincides with the Peace River Arch basement structure and one with the Athabasca axis (Darnley, 1981). There is no apparent indication of increased heat flow through the Paleozoic formations associated with these two zones. The third zone, in southwestern Saskatchewan, coincides with a high heat flow zone in the Swift Current area. The lack of correlation between heat flow and heat generation in Alberta may be due to the disturbance to the heat flow in the Paleozoic formations by water motion, or may indicate that the heat is from uranium, thorium and potassium isotope enrichment near the basement surface rather than enrichment throughout the entire upper crust.
Zilić, Slađana; Mogol, Burçe Ataç; Akıllıoğlu, Gül; Serpen, Arda; Delić, Nenad; Gökmen, Vural
2014-01-15
The Maillard reaction indicators furosine, hydroxymethylfurfural (HMF), acrylamide and color were determined to evaluate heat effects induced during extrusion, infrared and microwave heating of soybean. In addition, the present paper aimed to study changes in the phenolic compounds, as well as in the overall antioxidant properties of different soybean products in relation to heating at 45-140 °C during the processes. Soybean proteins were highly sensible to Maillard reaction and furosine was rapidly formed under slight heating conditions during extrusion and infrared heating. Microwave heating at lower temperatures for a longer time yielded lower acrylamide levels in the final soybean products, as a result of its partial degradation. However, during infrared heating, acrylamide formation greatly increased with decreasing moisture content. After a short time of extrusion and infrared heating at 140 °C and microwave heating at 135 °C for 5 min, concentrations of HMF increased to 11.34, 26.21 and 34.97 µg g(-1), respectively. The heating conditions caused formation of acrylamide, HMF and furosine in high concentration. The results indicate that the complex structure of soybeans provides protection of phenolic compounds from thermal degradation, and that Maillard reaction products improved the antioxidant properties of heat-treated soybean. © 2013 Society of Chemical Industry.
Effect of microwave heating on the quality characteristics of canola oil in presence of palm olein.
Ali, M Abbas; Nouruddeen, Zahrau Bamalli; Muhamad, Ida Idayu; Latip, Razam Abd; Othman, Noor Hidayu
2013-01-01
Microwave heating is one of the most attractive cooking methods for food preparation, commonly employed in households and especially in restaurants for its high speed and convenience. The chemical constituents of oils that degrade during microwave heating do so at rates that vary with heating temperature and time in a similar manner to other type of processing methods. The rate of quality characteristics of the oil depends on the fatty acid composition and the minor components during heating. Addition of oxidative-stable palm olein (PO) to heat sensitive canola oil (CO), may affect the quality characteristics of CO during microwave heating. The aim of this study was to evaluate how heat treatments by microwave oven affect the quality of CO in presence of PO. The blend was prepared in the volume ratio of 40:60 (PO:CO, PC). Microwave heating test was performed for different periods (2, 4, 8, 12, 16 and 20 min) at medium power setting for the samples of CO and PC. The changes in quality characteristics of the samples during heating were determined by analytical and instrumental methods. In this study, refractive index, free fatty acid content, peroxide value, p-anisidine value, TOTOX value, specific extinction, viscosity, polymer content, polar compounds and food oil sensor value of the oils all increased, whereas iodine value and C₁₈.₂ /C₁₆:₀ ratio decreased as microwave heating progressed. Based on the most oxidative stability criteria, PO addition led to a slower deterioration of CO at heating temperatures. The effect of microwave heating on the fatty acid composition of the samples was not remarkable. PO addition decelerated the formation of primary and secondary oxidation products in CO. However, effect of adding PO to CO on the formation of free fatty acids and polymers during microwave treatment was not significant (P < 0.05). No significant difference in food oil sensor value was detected between CO and PC throughout the heating periods. Microwave heating caused formation of comparatively lower amounts of some degradative products in PC compared to CO indicating a lower extent of oxidative degradation of PC.
Gas Hydrate Storage of Natural Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudy Rogers; John Etheridge
2006-03-31
Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5)more » rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.« less
Chai, Ryan C; Kouspou, Michelle M; Lang, Benjamin J; Nguyen, Chau H; van der Kraan, A Gabrielle J; Vieusseux, Jessica L; Lim, Reece C; Gillespie, Matthew T; Benjamin, Ivor J; Quinn, Julian M W; Price, John T
2014-05-09
Many anticancer therapeutic agents cause bone loss, which increases the risk of fractures that severely reduce quality of life. Thus, in drug development, it is critical to identify and understand such effects. Anticancer therapeutic and HSP90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) causes bone loss by increasing osteoclast formation, but the mechanism underlying this is not understood. 17-AAG activates heat shock factor 1 (Hsf1), the master transcriptional regulator of heat shock/cell stress responses, which may be involved in this negative action of 17-AAG upon bone. Using mouse bone marrow and RAW264.7 osteoclast differentiation models we found that HSP90 inhibitors that induced a heat shock response also enhanced osteoclast formation, whereas HSP90 inhibitors that did not (including coumermycin A1 and novobiocin) did not affect osteoclast formation. Pharmacological inhibition or shRNAmir knockdown of Hsf1 in RAW264.7 cells as well as the use of Hsf1 null mouse bone marrow cells demonstrated that 17-AAG-enhanced osteoclast formation was Hsf1-dependent. Moreover, ectopic overexpression of Hsf1 enhanced 17-AAG effects upon osteoclast formation. Consistent with these findings, protein levels of the essential osteoclast transcription factor microphthalmia-associated transcription factor were increased by 17-AAG in an Hsf1-dependent manner. In addition to HSP90 inhibitors, we also identified that other agents that induced cellular stress, such as ethanol, doxorubicin, and methotrexate, also directly increased osteoclast formation, potentially in an Hsf1-dependent manner. These results, therefore, indicate that cellular stress can enhance osteoclast differentiation via Hsf1-dependent mechanisms and may significantly contribute to pathological and therapeutic related bone loss.
Control of ITBs in Fusion Self-Heated Plasmas
NASA Astrophysics Data System (ADS)
Panta, Soma; Newman, David; Terry, Paul; Sanchez, Raul
2015-11-01
Simple dynamical models have been able to capture a remarkable amount of the dynamics of the transport barriers found in many devices, including the often disconnected nature of the electron thermal transport channel sometimes observed in the presence of a standard (``ion channel'') barrier. By including in this rich though simple dynamic transport model an evolution equation for electron fluctuations we have previously investigated the interaction between the formation of the standard ion channel barrier and the somewhat less common electron channel barrier. The electron channel formation and evolution is even more sensitive to the alignment of the various gradients making up the sheared radial electric field then the ion barrier is. Because of this sensitivity and coupling of the barrier dynamics, the dynamic evolution of the fusion self-heating profile can have a significant impact on the barrier location and dynamics. To investigate this, self-heating has been added this model and the impact of the self-heating on the formation and controllability of the various barriers is explored. It has been found that the evolution of the heating profiles can suppress or collapse the electron channel barrier. NBI and RF schemes will be investigated for profile/barrier control.
USDA-ARS?s Scientific Manuscript database
Meats need to be sufficiently heated to inactivate foodborne pathogens such as Escherichia coli O157:H7. High-temperature heat treatment used to prepare well-done meats could, however, increase the formation of potentially carcinogenic heterocyclic amines (HCAs). The objective of this study was to ...
Investigation of CO2 precursors in roasted coffee.
Wang, Xiuju; Lim, Loong-Tak
2017-03-15
Two CO 2 formation pathways (chlorogenic acid (CGA) degradation and Maillard reaction) during coffee roasting were investigated. CGA is shown not a major contributor to CO 2 formation, as heating of this compound under typical roasting conditions did not release a large quantity of CO 2 . However, heating of a CGA moiety, caffeic acid, resulted in high yield of CO 2 (>98%), suggesting that CGA hydrolysis could be the rate limiting step for CO 2 formation from CGA. A large amount of CO 2 was detected from glycine-sucrose model system under coffee roasting conditions, implying the importance of Maillard reactions in CO 2 formation. Further studies on the heating of various components isolated from green coffee beans showed that CO 2 was generated from various green coffee components, including water insoluble proteins and polysaccharides. Around 50% of CO 2 was formed from thermal reactions of lower molecular weight compounds that represent ∼25% by weight in green coffee. Copyright © 2016 Elsevier Ltd. All rights reserved.
High resolution imaging studies into the formation of laser-induced periodic surface structures.
Kerr, N C; Clark, S E; Emmony, D C
1989-09-01
We report the results of an investigation into the formation mechanism of laser-induced ripple structures based on obtaining direct images of a surface while the transient heating induced by a KrF excimer laser is still present. These images reveal transient but well-defined periodic heating patterns which, if enough subsequent excimer pulses are incident on the surface, become permanently induced ripple structures. It is evident from these transient images that the surface heating is confined to the induced structures, thus strongly supporting the idea that at low fluences the ripples are formed by localizing surface melting.
López-Frías, Guillermo; Martínez, Luz María; Ponce, Georgina; Cassab, Gladys I; Nieto-Sotelo, Jorge
2011-08-01
Nodal roots (NRs) constitute the prevalent root system of adult maize plants. NRs emerge from stem nodes located below or above ground, and little is known about their inducing factors. Here, it is shown that precocious development of NRs at the coleoptilar node (NRCNs) occurred in maize seedlings when: (i) dark grown and stimulated by the concurrent action of a single light shock of low intensity white light (2 μmol m(-2) s(-1)) and a single heat shock; (ii) grown under a photoperiod of low intensity light (0.1 μmol m(-2) s(-1)); or (iii) grown in the dark under a thermoperiod (28 °C/34 °C). The light shock effects were synergistic with heat shock and with the photoperiod, whereas the thermoperiodical and photoperiodical effects were additive. Dissection of the primary root or the root cap, to mimic the fatal consequences of severe heat shock, caused negligible effects on NRCN formation, indicating that the shoot is directly involved in perception of the heat shock-inducible signal that triggered NRCN formation. A comparison between hsp101-m5::Mu1/hsp101-m5::Mu1 and Hsp101/Hsp101 seedlings indicated that the heat shock protein 101 (HSP101) chaperone inhibited NRCN formation in the light and in the dark. Stimulation of precocious NRCN formation by light and heat shocks was affected by genetic background and by the stage of seedling development. HSP101 protein levels increased in the coleoptilar node of induced wild-type plants, particularly in the procambial region, where NRCN formation originated. The adaptive relevance of development of NRCNs in response to these environmental cues and hypothetical mechanisms of regulation by HSP101 are discussed. © 2011 The Author(s).
Begum, Shahanara; Nakaba, Satoshi; Yamagishi, Yusuke; Yamane, Kenichi; Islam, Md. Azharul; Oribe, Yuichiro; Ko, Jae-Heung; Jin, Hyun-O; Funada, Ryo
2012-01-01
Background and Aims Latewood formation in conifers occurs during the later part of the growing season, when the cell division activity of the cambium declines. Changes in temperature might be important for wood formation in trees. Therefore, the effects of a rapid decrease in temperature on cellular morphology of tracheids were investigated in localized heating-induced cambial reactivation in Cryptomeria japonica trees and in Abies firma seedlings. Methods Electric heating tape and heating ribbon were wrapped on the stems of C. japonica trees and A. firma seedlings. Heating was discontinued when 11 or 12 and eight or nine radial files of differentiating and differentiated tracheids had been produced in C. japonica and A. firma stems, respectively. Tracheid diameter, cell wall thickness, percentage of cell wall area and percentage of lumen area were determined by image analysis of transverse sections and scanning electron microscopy. Key Results Localized heating induced earlier cambial reactivation and xylem differentiation in stems of C. japonica and A. firma as compared with non-heated stems. One week after cessation of heating, there were no obvious changes in the dimensions of the differentiating tracheids in the samples from adult C. japonica. In contrast, tracheids with a smaller diameter were observed in A. firma seedlings after 1 week of cessation of heating. Two or three weeks after cessation of heating, tracheids with reduced diameters and thickened cell walls were found. The results showed that the rapid decrease in temperature produced slender tracheids with obvious thickening of cell walls that resembled latewood cells. Conclusions The results suggest that a localized decrease in temperature of stems induces changes in the diameter and cell wall thickness of differentiating tracheids, indicating that cambium and its derivatives can respond directly to changes in temperature. PMID:22843340
The expression and proangiogenic effect of nucleolin during the recovery of heat-denatured HUVECs.
Liang, Pengfei; Jiang, Bimei; Lv, Chunliu; Huang, Xu; Sun, Li; Zhang, Pihong; Huang, Xiaoyuan
2013-10-01
The present study aims to examine the expression patterns and roles of nucleolin during the recovery of heat-denatured human umbilical vein endothelial cells (HUVECs). Deep partial thickness burn model in Sprague-Dawley rats and the heat denatured cell model (52°C, 35s) were used. The expression of nucleolin was measured using Western blot analysis and real-time PCR. Angiogenesis was assessed using in vitro parameters including endothelial cell proliferation, transwell migration assay, and scratched wound healing. Gene transfection and RNA interference approaches were employed to investigate the roles of nucleolin. Nucleolin mRNA and protein expression showed a time-dependent increase during the recovery of heat-denatured dermis and HUVECs. Heat-denaturation time-dependently promoted cell growth, adhesion, migration, scratched wound healing and formation of tube-like structures in HUVECs. These effects of heat denaturation on endothelial wound healing and formation of tube-like structures were prevented by knockdown of nucleolin, whereas over-expression of nucleolin increased cell growth, migration, and formation of tube-like structures in cultured HUVEC endothelial cells. In addition, we found that the expression of vascular endothelial growth factor (VEGF) increased during the recovery of heat-denatured dermis and HUVECs, and nucleolin up-regulated VEGF in HUVECs. The present study reveals that the expression of nucleolin is up-regulated, and plays a pro-angiogenic role during the recovery of heat-denatured dermis and its mechanism is probably dependent on production of VEGF. We find a novel and important pro-angiogenic role of nucleolin during the recovery of heat-denatured dermis. Copyright © 2013 Elsevier B.V. All rights reserved.
Heat-directed tumor cell fusion.
Brade, Anthony M; Szmitko, Paul; Ngo, Duc; Liu, Fei-Fei; Klamut, Henry J
2003-03-20
In previous studies we demonstrated that a modified human HSP70b promoter (HSE.70b) directs high levels of gene expression to tumor cells after mild hyperthermia treatment in the range of 41.5-44 degrees C. This transcriptional targeting system exhibits low basal activity at 37 degrees C, is highly induced (950-fold) after mild heat treatment (43 degrees C/30 min), and returns to basal activity levels within 12-24 hours of activation. Here we describe heat-directed targeting of an activated form of the Gibbon ape leukemia virus env protein (GALV FMG) to tumor cells. GALV FMG mediates cell-cell fusion, and when expressed in tumor cells can produce bystander effects of up to 1:200. Transient transfection of a HSE70b.GALV FMG minigene caused extensive syncytia formation in HeLa and HT-1080 cells following mild heat treatment (44 degrees C/30 min). Stable transfection into HT-1080 cells produced a cell line (HG5) that exhibits massive syncytia formation and a 60% reduction in viability relative to a vector-only control (CI1) following heat treatment in vitro. Mild hyperthermia also resulted in syncytia formation, necrosis, and complete macroscopic regression of HG5 xenograft tumors grown in the footpads of mice with severe combined immunodeficiency disorders (SCID). Median survival increased from 12.5 (in heated CI1 controls) to 52 days after a single heat treatment. Heat-directed tumor cell fusion may prove to be a highly beneficial adjunct to existing cancer treatment strategies that take advantage of the synergistic interaction between mild hyperthermia and radiation or chemotherapeutic drugs.
The Role of Star Formation in Radio-Loud Galaxy Groups
NASA Astrophysics Data System (ADS)
Herbst, Hanna; Wilcots, E.; Hess, K.
2010-01-01
X-ray observations have shown that additional non-gravitational processes are required to explain the heating of the intergalactic medium in galaxy groups. The two most likely processes are galactic outflows from starbursts and feedback from AGN. Here, we look at star formation as a possible additional heating mechanism in X-ray luminous groups such as NGC 741, NGC 1052, NGC 524, and NGC 1587. We report on the results of optical imaging of these groups carried out using the WIYN 3.5m telescope with a specific emphasis on measuring the star formation rates of the resident galaxies in each group and estimating the impact of that star formation on the thermodynamics of the intragroup medium.
Ye, Aiqian; Cui, Jian; Dalgleish, Douglas; Singh, Harjinder
2017-01-01
The effects of homogenization and heat treatment on the formation and the breakdown of clots during gastric digestion of whole milk were investigated using a human gastric simulator. Homogenization and heat treatment led to formation of coagula with fragmented and crumbled structures compared with the coagulum formed from raw whole milk, but a larger fraction of the protein and more fat globules were incorporated into the coagula induced by action of the milk-clotting enzyme pepsin. The fat globules in the whole milk appeared to be embedded in the clots as they formed. After formation of the clot, the greater numbers of pores in the structures of the clots formed with homogenized milk and heated whole milk led to greater rates of protein hydrolysis by pepsin, which resulted in faster release of fat globules from the clots into the digesta. Coalescence of fat globules occurred both in the digesta and within the protein clots no matter whether they were in homogenized or heated milk samples. The formation of clots with different structures and hence the changes in the rates of protein hydrolysis and the release of milk fat into the digesta in the stomach provide important information for understanding the gastric emptying of milk and the potential to use this knowledge to manipulate the bioavailability of fat and other fat-soluble nutrients in dairy products. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Computational screening of oxetane monomers for novel hydroxy terminated polyethers.
Sarangapani, Radhakrishnan; Ghule, Vikas D; Sikder, Arun K
2014-06-01
Energetic hydroxy terminated polyether prepolymers find paramount importance in search of energetic binders for propellant applications. In the present study, density functional theory (DFT) has been employed to screen the various novel energetic oxetane derivatives, which usually construct the backbone for these energetic polymers. Molecular structures were investigated at the B3LYP/6-31G* level, and isodesmic reactions were designed for calculating the gas phase heats of formation. The condensed phase heats of formation for designed compounds were calculated by the Politzer approach using heats of sublimation. Among the designed oxetane derivatives, T4 and T5 possess condensed phase heat of formation above 210 kJ mol(-1). The crystal packing density of the designed oxetane derivatives varied from 1.2 to 1.6 g/cm(3). The detonation velocities and pressures were evaluated using the Kamlet-Jacobs equations, utilizing the predicted densities and HOFCond. It was found that most of the designed oxetane derivatives have detonation performance comparable to the monomers of benchmark energetic polymers viz., NIMMO, AMMO, and BAMO. The strain energy (SE) for the oxetane derivatives were calculated using homodesmotic reactions, while intramolecular group interactions were predicted through the disproportionation energies. The concept of chemical hardness is used to analyze the susceptibility of designed compounds to reactivity and chemical transformations. The heats of formation, density, and predicted performance imply that the designed molecules are expected to be candidates for polymer synthesis and potential molecules for energetic binders.
Effect of Heat Treatment on Commercial AlSi12Cu1(Fe) and AlSi12(b) Aluminum Alloy Die Castings
NASA Astrophysics Data System (ADS)
Battaglia, E.; Bonollo, F.; Ferro, P.; Fabrizi, A.
2018-03-01
High-pressure die castings (HPDCs) cannot normally be heat-treated at a high temperature because of the presence of inner air/gas- or shrinkage-porosity that may lead to the formation of undesired surface blisters. In this paper, an unconventional heat treatment is proposed. Two secondary Al-Si alloys, AlSi12(b) and AlSi12Cu1(Fe), were stabilization heat-treated at 624 K (350 °C) with soaking times ranging from 1 to 8 hours. Enhancement of both static and dynamic mechanical properties was found to be related to the fragmentation of interconnected eutectic Si particles and the smoothing of coarser crystals. Increased ductility after heat treatment was correlated with a decrease in hardness and Si particle roundness. The formation of Si precipitates within the α-Al matrix was also observed.
DAZL is essential for stress granule formation implicated in germ cell survival upon heat stress.
Kim, Byunghyuk; Cooke, Howard J; Rhee, Kunsoo
2012-02-01
Mammalian male germ cells should be maintained below body temperature for proper development. Here, we investigated how male germ cells respond to heat stress. A short exposure of mouse testes to core body temperature induced phosphorylation of eIF2α and the formation of stress granules (SGs) in male germ cells. We observed that DAZL, a germ cell-specific translational regulator, was translocated to SGs upon heat stress. Furthermore, SG assembly activity was significantly diminished in the early male germ cells of Dazl-knockout mice. The DAZL-containing SGs played a protective role against heat stress-induced apoptosis by the sequestration of specific signaling molecules, such as RACK1, and the subsequent blockage of the apoptotic MAPK pathway. Based on these results, we propose that DAZL is an essential component of the SGs, which prevent male germ cells from undergoing apoptosis upon heat stress.
NASA Astrophysics Data System (ADS)
Guan, S.; Reuter, G. W.
1996-08-01
Large oil refineries emit heat, vapor, and cloud condensation nuclei (CCN), all of which can affect the formation of cloud and precipitation. This study quantities the relative contributions of the three factors on cloud development in calm wind conditions using an axisymmetric cloud model. The factor separation technique is applied to isolate the net contributions of waste heat, vapor, and CCN on the rainfall of a cumulus developing in the industrial plume. The mutual-interactive contributions of two or three of the factors are also computed.The simulations for midlatitude and tropical conditions indicate that the sensible heat provides the major stimulus for cloud development and rain formation. The pure contribution of the industrial CCN is to enhance the condensation, causing an increase in the mass of total cloud water. The simulation results indicate that mutual interactions between waste heat and industrial CCN are large for both cases considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiechec, Maxwell; Baker, Brad; McNelley, Terry
In this research, several conditions of high power diode laser heated HY-80 steel were characterized to determine the viability of using such lasers as a preheating source before friction stir welding in order to reduce frictional forces thereby reducing tool wear and increasing welding speeds. Differences in microstructures within heat affected zones were identified at specific laser powers and traverse speeds. Vickers hardness values were recorded and analyzed to validate the formation of additional martensite in diode laser heated regions of HY-80 steel. Conditions that produced little to no additional martensite were identified and relationships among high power diode lasermore » power, traverse speed, and martensite formation were determined. The development of heat affected zones, change in grain structure, and creation of additional martensite in HY-80 can be prevented through the optimization of laser amperage and transverse speed.« less
Seasonal reversal at Miryang Eoreumgol (Ice Valley), Korea: observation and monitoring
NASA Astrophysics Data System (ADS)
Byun, Hi-Ryong; Tanaka, Hiroshi L.; Choi, Pom-Yong; Kim, Do-Woo
2011-12-01
We investigate an anomalous phenomenon evident in the Miryang Eoreumgol (Ice Valley), Korea: The wind and water are cold during summer and warm during winter, and ice formation does not occur in winter but in summer. We have initiated observations and investigations into the origin of heat sources particularly with regard to the mechanism of ice formation in summer. Previous theories, e.g., concerning underground gravity currents, water evaporation, diurnal and seasonal respirations of the talus, effects of ground heat, radiation and topography, etc., are considered. After a calculation of heat sources, we propose two new concepts—a repetitious heat separation mechanism and a positive feedback mechanism of cold air generation—to demonstrate that the heat mechanism of the seasonal reversal of the ice valley may be controlled by the use of the phase change between ice and water vapor with only a small amount of additional unknown energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, Joonoh, E-mail: mjo99@kims.re.kr; Ha, Heon-Young; Lee, Tae-Ho
2013-08-15
The pitting corrosion and interphase corrosion behaviors in high heat input welded heat-affected zone (HAZ) of a metastable high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel were explored through electrochemical tests. The HAZs were simulated using Gleeble simulator with high heat input welding condition of 300 kJ/cm and the peak temperature of the HAZs was changed from 1200 °C to 1350 °C, aiming to examine the effect of δ-ferrite formation on corrosion behavior. The electrochemical test results show that both pitting corrosion resistance and interphase corrosion resistance were seriously deteriorated by δ-ferrite formation in the HAZ and their aspects were different with increasingmore » δ-ferrite fraction. The pitting corrosion resistance was decreased by the formation of Cr-depleted zone along δ-ferrite/austenite (γ) interphase resulting from δ-ferrite formation; however it didn't depend on δ-ferrite fraction. The interphase corrosion resistance depends on the total amount of Cr-depleted zone as well as ferrite area and thus continuously decreased with increasing δ-ferrite fraction. The different effects of δ-ferrite fraction on pitting corrosion and interphase corrosion were carefully discussed in terms of alloying elements partitioning in the HAZ based on thermodynamic consideration. - Highlights: • Corrosion behavior in the weld HAZ of high-nitrogen austenitic alloy was studied. • Cr{sub 2}N particle was not precipitated in high heat input welded HAZ of tested alloy. • Pitting corrosion and interphase corrosion show a different behavior. • Pitting corrosion resistance was affected by whether or not δ-ferrite forms. • Interphase corrosion resistance was affected by the total amount of δ-ferrite.« less
NASA Astrophysics Data System (ADS)
Hordych, Illia; Rodman, Dmytro; Nürnberger, Florian; Schmidt, Hans Christian; Orive, Alejandro Gonzalez; Homberg, Werner; Grundmeier, Guido; Maier, Hans Jürgen
2018-05-01
In the present study, heat-treatment assisted bonding of galfan-coated low-carbon steel sheets was investigated. Steel sheets were bonded by cold rolling subsequently to a heat treatment in the temperature range from 400 °C to 550°C. The reduction ratio during cold rolling was varied in the range from 50% to 80%. Such high reduction ratios were achieved by splitting the bonding process into three stages. By employing heat-treatments, the mechanical properties of the bonds were improved. The heat-pretreatment allowed the formation of brittle intermetallic phases that were easily fractured in the rolling gap during the bonding process. Thus, juvenile non-oxidized surfaces were formed, which facilitated the bonding between the steel layers, and thus increased the bond strength. The intermetallic phases were actively formed at temperatures of 450 °C and above; however increasing temperatures resulted in decreasing mechanical properties due to oxidation processes. The local microstructure was analyzed by scanning electron microscopy in order to characterize the contact zone on the micro level with a focus on the formation of intermetallic phases. The mechanical properties were determined in tensile shear tests. Interestingly, it was found that the galfan coating allowed for bonding at room temperature, and the aluminum fraction was primarily responsible for the enhanced oxide formation during the heat-pretreatment.
Other factors to consider in the formation of chloropropandiol fatty esters in oil processes.
Ramli, Muhamad Roddy; Siew, Wai Lin; Ibrahim, Nuzul Amri; Kuntom, Ainie; Abd Razak, Raznim Arni
2015-01-01
This paper examines the processing steps of extracting palm oil from fresh fruit bunches in a way that may impact on the formation of chloropropandiol fatty esters (3-MCPD esters), particularly during refining. Diacylglycerols (DAGs) do not appear to be a critical factor when crude palm oils are extracted from various qualities of fruit bunches. Highly hydrolysed oils, in spite of the high free fatty acid (FFA) contents, did not show exceptionally high DAGs, and the oils did not display a higher formation of 3-MCPD esters upon heat treatment. However, acidity measured in terms of pH appears to have a strong impact on 3-MCPD ester formation in the crude oil when heated at high temperatures. The differences in the extraction process of crude palm oil from current commercial processes and that from a modified experimental process showed clearly the effect of acidity of the oil on the formation of 3-MCPD esters. This paper concludes that the washing or dilution step in palm oil mills removes the acidity of the vegetative materials and that a well-optimised dilution/washing step in the extraction process will play an important role in reducing formation of 3-MCPD esters in crude palm oil upon further heat processing.
A Preliminary Study of the Prevention of Ice on Aircraft by the Use of Engine-exhaust Heat
NASA Technical Reports Server (NTRS)
Rodert, Lewis A
1939-01-01
An investigation was made in the N.A.C.A. ice tunnel at air temperatures from 20 degrees to 28 degrees Fahrenheit and at a velocity of 80 miles per hour to determine whether ice formations on a model wing could be prevented by the use of the heat from the engine-exhaust gas. Various spanwise duct systems were tested in a 6-foot-chord N.A.C.A. 23012 wing model. The formation of ice over the entire wing chord was prevented by the direct heating of the forward 10 percent of the wing by hot air, which was passed through leading-edge ducts. Under dry conditions, enough heat to maintain the temperature of the forward 10 percent of the wing at about 200 degrees Fahrenheit above that of the ambient air was required for the prevention of ice formation. The air temperature in the ducts that was necessary to produce these skin temperatures varied from 360 degrees to 834 degrees Fahrenheit; the corresponding air velocities in the duct were 152 and 45 feet per second. Ice formations at the leading edge were locally prevented by air that passed over the interior of the wing surface at a velocity of 30 feet per second and a temperature of 122 degrees Fahrenheit.
Formation and dissolution of microbubbles on highly-ordered plasmonic nanopillar arrays
Liu, Xiumei; Bao, Lei; Dipalo, Michele; De Angelis, Francesco; Zhang, Xuehua
2015-01-01
Bubble formation from plasmonic heating of nanostructures is of great interest in many applications. In this work, we study experimentally the intrinsic effects of the number of three-dimensional plasmonic nanostructures on the dynamics of microbubbles, largely decoupled from the effects of dissolved air. The formation and dissolution of microbubbles is observed on exciting groups of 1, 4, and 9 nanopillars. Our results show that the power threshold for the bubble formation depends on the number density of the nanopillars in highly-ordered arrays. In the degassed water, both the growth rate and the maximal radius of the plasmonic microbubbles increase with an increase of the illuminated pillar number, due to the heat balance between the heat loss across the bubble and the collective heating generated from the nanopillars. Interestingly, our results show that the bubble dissolution is affected by the spatial arrangement of the underlying nanopillars, due to the pinning effect on the bubble boundary. The bubbles on nanopillar arrays dissolve in a jumping mode with step-wise features on the dissolution curves, prior to a smooth dissolution phase for the bubble pinned by a single pillar. The insight from this work may facilitate the design of nanostructures for efficient energy conversion. PMID:26687143
Optimum load distribution between heat sources based on the Cournot model
NASA Astrophysics Data System (ADS)
Penkovskii, A. V.; Stennikov, V. A.; Khamisov, O. V.
2015-08-01
One of the widespread models of the heat supply of consumers, which is represented in the "Single buyer" format, is considered. The methodological base proposed for its description and investigation presents the use of principles of the theory of games, basic propositions of microeconomics, and models and methods of the theory of hydraulic circuits. The original mathematical model of the heat supply system operating under conditions of the "Single buyer" organizational structure provides the derivation of a solution satisfying the market Nash equilibrium. The distinctive feature of the developed mathematical model is that, along with problems solved traditionally within the bounds of bilateral relations of heat energy sources-heat consumer, it considers a network component with its inherent physicotechnical properties of the heat network and business factors connected with costs of the production and transportation of heat energy. This approach gives the possibility to determine optimum levels of load of heat energy sources. These levels provide the given heat energy demand of consumers subject to the maximum profit earning of heat energy sources and the fulfillment of conditions for formation of minimum heat network costs for a specified time. The practical realization of the search of market equilibrium is considered by the example of a heat supply system with two heat energy sources operating on integrated heat networks. The mathematical approach to the solution search is represented in the graphical form and illustrates computations based on the stepwise iteration procedure for optimization of levels of loading of heat energy sources (groping procedure by Cournot) with the corresponding computation of the heat energy price for consumers.
Creating fluid injectivity in tar sands formations
Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan
2012-06-05
Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons including mobilized hydrocarbons are produced from the portion.
Creating fluid injectivity in tar sands formations
Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan
2010-06-08
Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons are produced from the portion.
Process feasibility study in support of silicon material task 1
NASA Technical Reports Server (NTRS)
Li, K. Y.; Hansen, K. C.; Yaws, C. L.
1978-01-01
Process system properties are analyzed for materials involved in the alternate processes under consideration for solar cell grade silicon. The following property data are reported for trichlorosilane: critical constants, vapor pressure, heat of vaporization, gas heat capacity, liquid heat capacity, density, surface tension, viscosity, thermal conductivity, heat of formation, and Gibb's free energy of formation. Work continued on the measurement of gas viscosity values of silicon source materials. Gas phase viscosity values for silicon tetrafluoride between 40 C and 200 C were experimentally determined. Major efforts were expended on completion of the preliminary economic analysis of the silane process. Cost, sensitivity and profitability analysis results are presented based on a preliminary process design of a plant to produce 1,000 metric tons/year of silicon by the revised process.
Treating tar sands formations with karsted zones
Vinegar, Harold J.; Karanikas, John Michael
2010-03-09
Methods for treating a tar sands formation are described herein. The tar sands formation may have one or more karsted zones. Methods may include providing heat from one or more heaters to one or more karsted zones of the tar sands formation to mobilize fluids in the formation. At least some of the mobilized fluids may be produced from the formation.
Anisotropic frictional heat dissipation in cyclotrimethylene trinitramine
NASA Astrophysics Data System (ADS)
Rajak, Pankaj; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya
Anisotropic frictional response and corresponding heat dissipation from different crystallographic planes of RDX crystal is studied using molecular dynamics simulations. The effect of frictional force on the nature of damage and system temperature is monitored along different directions on primary slip plane, (010), of RDX and on non-slip planes, (100) and (001). The correlation between the friction coefficient, deformation and the frictional heating in these system is determined. It is observed that friction coefficients on slip planes are smaller than those of non-slip planes. In response to friction on slip plane, RDX crystal deforms via dislocation formation and shows less heating. On non-slip planes due to the inability of the system to deform by dislocation formation, large temperature rise is observed in the system just below the contact area of two surfaces. Frictional sliding on non-slip planes also lead to the formation of damage zone just below the contact area of two surfaces due to the change in RDX ring conformation from chair to boat/half-boat. This research is supported by the AFOSR Grant: FA9550-16- 1-0042.
Ultrasonic effect on the bubble nucleation and heat transfer of oscillating nanofluid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Nannan; Fu, Benwei; Key Laboratory of Marine, Mechanical and Manufacturing Engineering of the Ministry of Transport, Dalian 116026
Ultrasonic sound effect on bubble nucleation, oscillating motion activated by bubble formation, and its heat transfer enhancement of nanofluid was experimentally investigated. Nanofluid consists of distilled water and dysprosium (III) oxide (Dy{sub 2}O{sub 3}) nanoparticles with an average size of 98 nm and a mass ratio of 0.5%. Visualization results demonstrate that when the nanoparticles are added in the fluid influenced by the ultrasonic sound, bubble nucleation can be significantly enhanced. The oscillating motion initiated by the bubble formation of nanofluid under the influence of ultrasonic sound can significantly enhance heat transfer of nanofluid in an interconnected capillary loop.
Honda, Yoshitomo; Takeda, Yoshihiro; Li, Peiqi; Huang, Anqi; Sasayama, Satoshi; Hara, Eiki; Uemura, Naoya; Ueda, Mamoru; Hashimoto, Masanori; Arita, Kenji; Matsumoto, Naoyuki; Hashimoto, Yoshiya; Baba, Shunsuke; Tanaka, Tomonari
2018-04-11
Chemical modification of gelatin using epigallocatechin gallate (EGCG) promotes bone formation in vivo. However, further improvements are required to increase the mechanical strength and bone-forming ability of fabricated EGCG-modified gelatin sponges (EGCG-GS) for practical applications in regenerative therapy. In the present study, we investigated whether vacuum heating-induced dehydrothermal cross-linking of EGCG-GS enhances bone formation in critical-sized rat calvarial defects. The bone-forming ability of vacuum-heated EGCG-GS (vhEGCG-GS) and other sponges was evaluated by micro-computed tomography and histological staining. The degradation of sponges was assessed using protein assays, and cell morphology and proliferation were verified by scanning electron microscopy and immunostaining using osteoblastic UMR106 cells in vitro. Four weeks after the implantation of sponges, greater bone formation was detected for vhEGCG-GS than for EGCG-GS or vacuum-heated gelatin sponges (dehydrothermal cross-linked sponges without EGCG). In vitro experiments revealed that the relatively low degradability of vhEGCG-GS supports cell attachment, proliferation, and cell-cell communication on the matrix. These findings suggest that vacuum heating enhanced the bone forming ability of EGCG-GS, possibly via the dehydrothermal cross-linking of EGCG-GS, which provides a scaffold for cells, and by maintaining the pharmacological effect of EGCG.
NASA Astrophysics Data System (ADS)
Zeng, Y. D.; Wang, F.
2018-02-01
In this paper, we propose an experimental model for forming an air gap at the casting/mold interface during the solidification process of the casting, with the size and formation time of the air gap able to be precisely and manually controlled. Based on this model, experiments of gravity casting were performed, and on the basis of the measured temperatures at different locations inside the casting and the mold, the inverse analysis method of heat transfer was applied to solve for the heat-transfer coefficient at the casting/mold interface during the solidification process. Furthermore, the impacts of the width and formation time of the air gap on the interface heat-transfer coefficient (IHTC) were analyzed. The results indicate that the experimental model succeeds in forming an air gap having a certain width at any moment during solidification of the casting, thus allowing us to conveniently and accurately study the impact of the air gap on IHTC using the model. In addition, the casting/mold IHTC is found to first rapidly decrease as the air gap forms and then slowly decrease as the solidification process continues. Moreover, as the width of the air gap and the formation time of the air gap increase, the IHTC decreases.
NASA Astrophysics Data System (ADS)
Alexandrov, S. V.; Vaganov, A. V.; Shalaev, V. I.
2016-10-01
Processes of vortex structures formation and they interactions with the boundary layer in the hypersonic flow over delta wing with blunted leading edges are analyzed on the base of experimental investigations and numerical solutions of Navier-Stokes equations. Physical mechanisms of longitudinal vortexes formation, appearance of abnormal zones with high heat fluxes and early laminar turbulent transition are studied. These phenomena were observed in many high-speed wind tunnel experiments; however they were understood only using the detailed analysis of numerical modeling results with the high resolution. Presented results allowed explaining experimental phenomena. ANSYS CFX code (the DAFE MIPT license) on the grid with 50 million nodes was used for the numerical modeling. The numerical method was verified by comparison calculated heat flux distributions on the wing surface with experimental data.
Jones, Owen G; McClements, David Julian
2011-09-14
Functional biopolymer nanoparticles or microparticles can be formed by heat treatment of globular protein-ionic polysaccharide electrostatic complexes under appropriate solution conditions. These biopolymer particles can be used as encapsulation and delivery systems, fat mimetics, lightening agents, or texture modifiers. This review highlights recent progress in the design and fabrication of biopolymer particles based on heating globular protein-ionic polysaccharide complexes above the thermal denaturation temperature of the proteins. The influence of biopolymer type, protein-polysaccharide ratio, pH, ionic strength, and thermal history on the characteristics of the biopolymer particles formed is reviewed. Our current understanding of the underlying physicochemical mechanisms of particle formation and properties is given. The information provided in this review should facilitate the rational design of biopolymer particles with specific physicochemical and functional attributes, as well as stimulate further research in identifying the physicochemical origin of particle formation. Copyright © 2010 Elsevier B.V. All rights reserved.
Huelgas-Morales, Gabriela; Silva-García, Carlos Giovanni; Salinas, Laura S; Greenstein, David; Navarro, Rosa E
2016-04-07
In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline-the immortal cell lineage required for sexual reproduction-protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures. Copyright © 2016 Huelgas-Morales et al.
Huelgas-Morales, Gabriela; Silva-García, Carlos Giovanni; Salinas, Laura S.; Greenstein, David; Navarro, Rosa E.
2016-01-01
In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline—the immortal cell lineage required for sexual reproduction—protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures. PMID:26865701
Evaporation of oil-water emulsion drops when heated at high temperature
NASA Astrophysics Data System (ADS)
Strizhak, P. A.; Piskunov, M. V.; Kuznetsov, G. V.; Voytkov, I. S.
2017-10-01
An experimental study on conditions and main characteristics for high-temperature (more than 700 K) evaporation of oil-water drops is presented. The high-temperature water purification from impurities can be the main practical application of research results. Thus, the heating of drops is implemented by the two typical schemes: on a massive substrate (the heating conditions are similar to those achieved in a heating chamber) and in a flow of the heated air. In the latter case, the heating conditions correspond to those attained while moving water drops with impurities in a counter high-temperature gaseous flow in the process of water purification. Evaporation time as function of heating temperature is presented. The influence of oil product concentration in an emulsion drop on evaporation characteristics is discussed. The conditions for intensive flash boiling of an emulsion drop and its explosive breakup with formation of the fine droplets cloud are pointed out. Heat fluxes required for intensive flash boiling and explosive breakup of a drop with further formation of the fine aerosol are determined in the boundary layer of a drop. The fundamental differences between flash boiling and explosive breakup of an emulsion drop when heated on a substrate and in a flow of the heated air are described. The main prospects for the development of the high-temperature water purification technology are detailed taking into account the fast emulsion drop breakup investigated in the paper.
Multi-scale forcing and the formation of subtropical desert and monsoon
NASA Astrophysics Data System (ADS)
Wu, G. X.; Liu, Y.; Zhu, X.; Li, W.; Ren, R.; Duan, A.; Liang, X.
2009-09-01
This study investigates three types of atmospheric forcing across the summertime subtropics that are shown to contribute in various ways to the occurrence of dry and wet climates in the subtropics. To explain the formation of desert over the western parts of continents and monsoon over the eastern parts, we propose a new mechanism of positive feedback between diabatic heating and vorticity generation that occurs via meridional advection of planetary vorticity and temperature. Monsoon and desert are demonstrated to coexist as twin features of multi-scale forcing, as follows. First, continent-scale heating over land and cooling over ocean induce the ascent of air over the eastern parts of continents and western parts of oceans, and descent over eastern parts of oceans and western parts of continents. Second, local-scale sea-breeze forcing along coastal regions enhances air descent over eastern parts of oceans and ascent over eastern parts of continents. This leads to the formation of the well-defined summertime subtropical LOSECOD quadruplet-heating pattern across each continent and adjacent oceans, with long-wave radiative cooling (LO) over eastern parts of oceans, sensible heating (SE) over western parts of continents, condensation heating (CO) over eastern parts of continents, and double dominant heating (D: LO+CO) over western parts of oceans. Such a quadruplet heating pattern corresponds to a dry climate over the western parts of continents and a wet climate over eastern parts. Third, regional-scale orographic-uplift-heating generates poleward ascending flow to the east of orography and equatorward descending flow to the west. The Tibetan Plateau (TP) is located over the eastern Eurasian continent. The TP-forced circulation pattern is in phase with that produced by continental-scale forcing, and the strongest monsoon and largest deserts are formed over the Afro-Eurasian Continent. In contrast, the Rockies and the Andes are located over the western parts of their respective continents, and orography-induced ascent is separated from ascent due to continental-scale forcing. Accordingly, the deserts and monsoon climate over these continents are not as strongly developed as those over the Eurasian Continent. A new mechanism of positive feedback between diabatic heating and vorticity generation, which occurs via meridional transfer of heat and planetary vorticity, is proposed as a means of explaining the formation of subtropical desert and monsoon. Strong low-level longwave radiative cooling over eastern parts of oceans and strong surface sensible heating on western parts of continents generate negative vorticity that is balanced by positive planetary vorticity advection from high latitudes. The equatorward flow generated over eastern parts of oceans produces cold sea-surface temperature and stable stratification, leading in turn to the formation of low stratus clouds and the maintenance of strong in situ longwave radiative cooling. The equatorward flow over western parts of continents carries cold, dry air, thereby enhancing local sensible heating as well as moisture release from the underlying soil. These factors result in a dry desert climate. Over the eastern parts of continents, condensation heating generates positive vorticity in the lower troposphere, which is balanced by negative planetary vorticity advection of the meridional flow from low latitudes. The flow brings warm and moist air, thereby enhancing local convective instability and condensation heating associated with rainfall. These factors produce a wet monsoonal climate. Overall, our results demonstrate that subtropical desert and monsoon coexist as a consequence of multi-scale forcing along the subtropics.
Rapid arsenic(V)-reduction by fire in schwertmannite-rich soil enhances arsenic mobilisation
NASA Astrophysics Data System (ADS)
Johnston, Scott G.; Bennett, William W.; Burton, Edward D.; Hockmann, Kerstin; Dawson, Nigel; Karimian, Niloofar
2018-04-01
Arsenic in acid sulfate soil (ASS) landscapes commonly associates with schwertmannite, a poorly crystalline Fe(III) mineral. Fires in ASS landscapes can thermally transform Fe(III) minerals to more crystalline phases, such as maghemite (γFe2O3). Although thermal genesis of maghemite requires electron transfer via organic matter pyrolysis, the possibility of fire causing concurrent transfer of electrons to schwertmannite-bound As(V) remains unexplored. Here, we subject an organic-rich soil with variable carbon content (∼9-44% organic C) mixed (4:1) with As(V)-bearing schwertmannite (total As of 4.7-5.4 μmol g-1), to various temperatures (200-800 °C) and heating durations (5-120 min). We explore the consequences for As and Fe via X-ray absorption spectroscopy, X-ray diffraction, 57Fe Mössbauer spectroscopy and selective extracts. Heating transforms schwertmannite to mainly maghemite and hematite at temperatures above 300-400 °C, with some transitory formation of magnetite, and electrons are readily transferred to both Fe(III) and As(V). As(V) reduction to As(III) is influenced by a combination of temperature, heating duration and carbon content and is significantly (P < 0.05) positively correlated with Fe(II) formation. During 2 h heating, higher carbon content favours greater As(III) and Fe(II) formation, while peak As(III) formation (∼44-70%) occurs at relatively modest temperatures (300 °C) and diminishes at higher temperatures. Kinetic heating experiments reveal fast maximum As(III) formation (∼90%) within 5-10 min at 400-600 °C, followed by partial re-oxidation to As(V) thereafter. In contrast, heating As(V)-schwertmannite in the absence of soil-organic matter did not cause reduction of As(V) or Fe(III), nor form maghemite; thus highlighting the critical role of organic matter as an electron donor. Importantly, combusted organic soil-schwertmannite mixtures display greatly enhanced mobilisation of As(III)aq species within 1 h of re-wetting with water. The magnitude of As(III)aq mobilisation is positively correlated with solid-phase As(III) formation. Overall, the results suggest that moderate fires in ASS landscapes, even of short duration, may generate considerable labile As(III) species and cause a pulse of As(III)aq mobilisation following initial re-wetting. Further research is warranted to examine if analogous As(III) formation occurs during combustion of organic-rich soil containing common As-bearing Fe(III) minerals such as ferrihydrite and goethite.
Streamer formation and transport for parameters characteristic of H-mode pedestals
NASA Astrophysics Data System (ADS)
Blackmon, Austin; Hatch, D. R.; Kotschenreuther, M.; Mahajan, S.; Hazeltine, R. D.
2017-10-01
We investigate, through gyrokinetic simulations, the formation of streamers as a consequence of electron temperature gradient driven, electron scale instabilities. We also study the interaction of velocity shear with streamers for parameters typical of H-mode pedestals, exploring both the higher as well as lower temperature gradient regions. Without ExB shear, the streamers form at the pedestal top causing large heat fluxes; the modes, however, did not saturate. When ExB shear was turned on, the streamers dissipated, and heat flux was lowered, though still of significant magnitude. In the middle of the pedestal, with high temperature gradient, heat flux was insignificant. There was no evidence of streamers in this region, leading to a conclusion that streamers have a strong influence on heat flux. Work supported by US DOE under DE-FG02-04ER54742.
Curvature induced phase stability of an intensely heated liquid
NASA Astrophysics Data System (ADS)
Sasikumar, Kiran; Liang, Zhi; Cahill, David G.; Keblinski, Pawel
2014-06-01
We use non-equilibrium molecular dynamics simulations to study the heat transfer around intensely heated solid nanoparticles immersed in a model Lennard-Jones fluid. We focus our studies on the role of the nanoparticle curvature on the liquid phase stability under steady-state heating. For small nanoparticles we observe a stable liquid phase near the nanoparticle surface, which can be at a temperature well above the boiling point. Furthermore, for particles with radius smaller than a critical radius of 2 nm we do not observe formation of vapor even above the critical temperature. Instead, we report the existence of a stable fluid region with a density much larger than that of the vapor phase. We explain the stability in terms of the Laplace pressure associated with the formation of a vapor nanocavity and the associated effect on the Gibbs free energy.
Modeling of Heat and Mass Transfer in a TEC-Driven Lyophilizer
NASA Technical Reports Server (NTRS)
Yuan, Zeng-Guang; Hegde, Uday; Litwiller, Eric; Flynn, Michael; Fisher, John
2006-01-01
Dewatering of wet waste during space exploration missions is important for crew safety as it stabilizes the waste. It may also be used to recover water and serve as a preconditioning step for waste compaction. A thermoelectric cooler (TEC)-driven lyophilizer is under development at NASA Ames Research Center for this purpose. It has three major components: (i) an evaporator section where water vapor sublimes from the frozen waste, (ii) a condenser section where this water vapor deposits as ice, and (iii) a TEC section which serves as a heat pump to transfer heat from the condenser to the evaporator. This paper analyses the heat and mass transfer processes in the lyophilizer in an effort to understand the ice formation behavior in the condenser. The analysis is supported by experimental observations of ice formation patterns in two different condenser units.
NASA Astrophysics Data System (ADS)
Speirs, David Carruthers; Eliasson, Bengt; Daldorff, Lars K. S.
2017-10-01
Ionospheric heating experiments using high-frequency ordinary (O)-mode electromagnetic waves have shown the induced formation of magnetic field-aligned density striations in the ionospheric F region, in association with lower hybrid (LH) and upper hybrid (UH) turbulence. In recent experiments using high-power transmitters, the creation of new plasma regions and the formation of descending artificial ionospheric layers (DAILs) have been observed. These are attributed to suprathermal electrons ionizing the neutral gas, so that the O-mode reflection point and associated turbulence is moving to a progressively lower altitude. We present the results of two-dimensional (2-D) Vlasov simulations used to study the mode conversion of an O-mode pump wave to trapped UH waves in a small-scale density striation of circular cross section. Subsequent multiwave parametric decays lead to UH and LH turbulence and to the excitation of electron Bernstein (EB) waves. Large-amplitude EB waves result in rapid stochastic electron heating when the wave amplitude exceeds a threshold value. For typical experimental parameters, the electron temperature is observed to rise from 1,500 K to about 8,000 K in a fraction of a millisecond, much faster than Ohmic heating due to collisions which occurs on a timescale of an order of a second. This initial heating could then lead to further acceleration due to Langmuir turbulence near the critical layer. Stochastic electron heating therefore represents an important potential mechanism for the formation of DAILs.
NASA Astrophysics Data System (ADS)
Andreev, A. O.; Bykovskiy, D. P.; Osintsev, A. V.; Petrovskiy, V. N.; Ryashko, I. I.; Blinova, E. N.; Libman, M. A.; Glezer, A. M.
2017-12-01
The possibility of producing gradient materials, i.e. materials with pre-set distribution of areas having fundamentally different physical and mechanical characteristics, with the help of laser heat treatment was investigated. Using as an example austenitic-martensitic alloys of iron-chromium-nickel, subjected to cold plastic deformation led to formation of martensite, we show that using laser at the temperature higher than the temperature of reverse martensite transformation leads to the formation of areas of high-strength austenite having predetermined form inside the martensite matrix. Influence of austenite areas geometry on mechanical properties of gradient material was studied.
Method of controlling scale in oil recovery operations
Krajicek, Richard W.
1981-01-01
Disclosed is a method of producing highly viscous minerals from a subterranean formation by injection of an acidic, thermal vapor stream without substantial scale buildup in downstream piping, pumps and well bore. The process comprises heating the formation by injection of heat, preferably in the form of a thermal vapor stream composed of combustion gases and steam and injecting an acidic compound simultaneously with the thermal vapor stream into the formation at a temperature above the dew point of the thermal vapor stream. The acidic, thermal vapor stream increases the solubility of metal ions in connate water and thus reduces scaling in the downstream equipment during the production of viscous hydrocarbons.
van Wijk, Esmee
2018-01-01
Strong heat loss and brine release during sea ice formation in coastal polynyas act to cool and salinify waters on the Antarctic continental shelf. Polynya activity thus both limits the ocean heat flux to the Antarctic Ice Sheet and promotes formation of Dense Shelf Water (DSW), the precursor to Antarctic Bottom Water. However, despite the presence of strong polynyas, DSW is not formed on the Sabrina Coast in East Antarctica and in the Amundsen Sea in West Antarctica. Using a simple ocean model driven by observed forcing, we show that freshwater input from basal melt of ice shelves partially offsets the salt flux by sea ice formation in polynyas found in both regions, preventing full-depth convection and formation of DSW. In the absence of deep convection, warm water that reaches the continental shelf in the bottom layer does not lose much heat to the atmosphere and is thus available to drive the rapid basal melt observed at the Totten Ice Shelf on the Sabrina Coast and at the Dotson and Getz ice shelves in the Amundsen Sea. Our results suggest that increased glacial meltwater input in a warming climate will both reduce Antarctic Bottom Water formation and trigger increased mass loss from the Antarctic Ice Sheet, with consequences for the global overturning circulation and sea level rise. PMID:29675467
Silvano, Alessandro; Rintoul, Stephen Rich; Peña-Molino, Beatriz; Hobbs, William Richard; van Wijk, Esmee; Aoki, Shigeru; Tamura, Takeshi; Williams, Guy Darvall
2018-04-01
Strong heat loss and brine release during sea ice formation in coastal polynyas act to cool and salinify waters on the Antarctic continental shelf. Polynya activity thus both limits the ocean heat flux to the Antarctic Ice Sheet and promotes formation of Dense Shelf Water (DSW), the precursor to Antarctic Bottom Water. However, despite the presence of strong polynyas, DSW is not formed on the Sabrina Coast in East Antarctica and in the Amundsen Sea in West Antarctica. Using a simple ocean model driven by observed forcing, we show that freshwater input from basal melt of ice shelves partially offsets the salt flux by sea ice formation in polynyas found in both regions, preventing full-depth convection and formation of DSW. In the absence of deep convection, warm water that reaches the continental shelf in the bottom layer does not lose much heat to the atmosphere and is thus available to drive the rapid basal melt observed at the Totten Ice Shelf on the Sabrina Coast and at the Dotson and Getz ice shelves in the Amundsen Sea. Our results suggest that increased glacial meltwater input in a warming climate will both reduce Antarctic Bottom Water formation and trigger increased mass loss from the Antarctic Ice Sheet, with consequences for the global overturning circulation and sea level rise.
1982-09-01
alloy , a number of minor phases have been reported (Thompson and Brooks, 1975). The precipitates expected after the heat treatments used in this study... precipitate or inclusion fracture, twin formation, martensite to create detectable acoustic emission. In alloy formation, dislocation motion, and... precipitate anticipated for each heat The nominal composition of 2219 is given in Table 2. It is treatment. essentially a binary aluminium- copper alloy
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Martin, Jan M. L.; Dateo, Christopher E.; Taylor, Peter R.
1995-01-01
The XCN and XNC (X = F, Cl) isomers have been investigated using the CCSD(T) method in conjunction with correlation consistent basis sets. Equilibrium geometries, harmonic frequencies, anharmonic constants, fundamental frequencies, and heats of formation have been evaluated. Agreement with experiment for the fundamental frequencies is very good, even for nu(sub 2), for CICN, which is subject to a strong Fermi resonance with 2nu(sub 3). It is also shown that a second-order perturbation theory approach to solving the nuclear Schroedinger equation gives results in excellent agreement with essentially exact variational calculations. This is true even for nu(sub 2) of ClCN, provided that near-singular terms are eliminated from the perturbation theory formulas and the appropriate Fermi interaction energy matrix is then diagonalized. A band at 615/cm, tentatively assigned as the Cl-N stretch in ClNC in matrix isolation experiments, is shown not to be due to ClNC. Accurate atomization energies are determined and are used to evaluate accurate heats of formation (3.1 +/- 1.5, 33.2 +/- 1.5, 72.6 +/- 1.5, and 75.9 +/- 1.5 kcal/mol for FCN, ClCN, FNC, and ClNC, respectively). It is expected that the theoretical heats of formation for FCN, FNC, and ClNC are the most accurate available.
NASA Astrophysics Data System (ADS)
Moon, Joonoh; Lee, Chang-Hoon; Lee, Tae-Ho; Kim, Hyoung Chan
2015-01-01
The phase transformation and mechanical properties in the weld heat-affected zone (HAZ) of a reduced activation ferritic/martensitic steel were explored. The samples for HAZs were prepared using a Gleeble simulator at different heat inputs. The base steel consisted of tempered martensite and carbides through quenching and tempering treatment, whereas the HAZs consisted of martensite, δ-ferrite, and a small volume of autotempered martensite. The prior austenite grain size, lath width of martensite, and δ-ferrite fraction in the HAZs increased with increase in the heat input. The mechanical properties were evaluated using Vickers hardness and Charpy V-notch impact test. The Vickers hardness in the HAZs was higher than that in the base steel but did not change noticeably with increase in the heat input. The HAZs showed poor impact property due to the formation of martensite and δ-ferrite as compared to the base steel. In addition, the impact property of the HAZs deteriorated more with the increase in the heat input. Post weld heat treatment contributed to improve the impact property of the HAZs through the formation of tempered martensite, but the impact property of the HAZs remained lower than that of base steel.
Intracellular hyperthermia: Nanobubbles and their biomedical applications.
Wen, Dongsheng
2009-11-01
Functionalised nanoparticles have been proposed as potential agents for non-invasive therapies where an external source such as a laser or an electro-magnetic wave is used to heat targeted particles for either drug release or malignant cell damage. It is desirable to have intracellular reactions to minimise the damage to health cells. However, it is still debatable from the thermal response point of view, whether intracellular hyperthermia is better than extracellular delivery due to conventional ideas of localisation of heat by nanoparticles. This work conducts an analytical study on the heating of a single nanoparticle by a pulsed laser and reveals the potential role of the formation of nanobubbles around heated particles. The rapid formation and contraction of bubbles around heated nanoparticles, associated with the propagation of pressure waves, could bring thermal-mechanical damage to surrounding cells at a dimension much larger than that of a nanoparticle. The challenges of the study of nanobubbles are highlighted and their potential healthcare implications are discussed.
Downhole steam generator using low pressure fuel and air supply
Fox, Ronald L.
1983-01-01
An apparatus for generation of steam in a borehole for penetration into an earth formation wherein a spiral, tubular heat exchanger is used in the combustion chamber to isolate the combustion process from the water being superheated for conversion into steam. The isolation allows combustion of a relatively low pressure oxidant and fuel mixture for generating high enthalpy steam. The fuel is preheated by feedback of combustion gases from the top of the combustion chamber through a fuel preheater chamber. The hot exhaust gases of combustion at the bottom of the combustion chamber, after flowing over the heat exchanger enter an exhaust passage and pipe. The exhaust pipe is mounted inside the water supply line heating the water flowing into the heat exchanger. After being superheated in the heat exchanger, the water is ejected through an expansion nozzle and converts into steam prior to penetration into the earth formation. Pressure responsive doors are provided at a steam outlet downstream of the nozzle and close when the steam pressure is lost due to flameout.
NASA Astrophysics Data System (ADS)
Tcherdyntsev, V. V.; Kaloshkin, S. D.; Shelekhov, E. V.; Principi, G.; Rodin, A. O.
2008-02-01
Al65Cu23Fe12 alloys were prepared by ball milling of the elemental powders mixture. Phase and structural transformations at heating of as-milled powders were investigated by X-ray diffraction analysis. Precision analysis of Mössbauer spectra was performed to check the adequacy of the fitting of X-ray diffraction patterns. The results were compared with the data of differential scanning and solution calorimetry, as well as with the thermodynamic literature data, in order to estimate the driving forces of redistribution of elements that preceded the formation of single-phase quasicrystalline structure. The heat of elements mixing, which is positive for Cu-Fe system and negative for Al-Fe and Al-Cu systems, was supposed to be a decisive factor for phase transformations during heating of the alloy. The correlation between sequence of phase transformations during heating and the thermodynamic data was discussed and the scheme describing phase transformations observed was proposed.
Method of coating an iron-based article
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magdefrau, Neal; Beals, James T.; Sun, Ellen Y.
A method of coating an iron-based article includes a first heating step of heating a substrate that includes an iron-based material in the presence of an aluminum source material and halide diffusion activator. The heating is conducted in a substantially non-oxidizing environment, to cause the formation of an aluminum-rich layer in the iron-based material. In a second heating step, the substrate that has the aluminum-rich layer is heated in an oxidizing environment to oxidize the aluminum in the aluminum-rich layer.
Microwave-induced formation of oligomeric amyloid aggregates.
Lee, Wonseok; Choi, Yeseong; Lee, Sang Won; Kim, Insu; Lee, Dongtak; Hong, Yoochan; Lee, Gyudo; Yoon, Dae Sung
2018-08-24
Amyloid aggregates have emerged as a significant hallmark of neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Although it has been recently reported that microwave heating induces amyloid aggregation compared with conventional heating methods, the mechanism of amyloid aggregate induction has remained unclear. In this study, we investigated the formation of oligomeric amyloid aggregates (OAAs) by microwave irradiation at microscale volumes of solution. Microwave irradiation of protein monomer solution triggered rapid formation of OAAs within 7 min. We characterized the formation of OAAs using atomic force microscopy, thioflavin T fluorescent assay and circular dichroism. In the microwave system, we also investigated the inhibitory effect on the formation of amyloid aggregates by L-ascorbic acid as well as enhanced amyloid aggregation by silver nanomaterials such as nanoparticles and nanowires. We believe that microwave technology has the potential to facilitate the study of amyloid aggregation in the presence of chemical agents or nanomaterials.
NASA Astrophysics Data System (ADS)
Liguori, Giovanni; Di Lorenzo, Emanuele; Cabos, William
2017-02-01
Changes in surface heat fluxes affect several climate processes controlling the Mediterranean climate. These include the winter formation of deep waters, which is the primary driver of the Mediterranean Sea overturning circulation. Previous studies that characterize the spatial and temporal variability of surface heat flux anomalies over the basin reveal the existence of two statistically dominant patterns of variability: a monopole of uniform sign and an east-west dipole of opposite signs. In this work, we use the 12 regional climate model ensemble from the EU-FP6 ENSEMBLES project to diagnose the large-scale atmospheric processes that control the variability of heat fluxes over the Mediterranean Sea from interannual to decadal timescales (here defined as timescales > 6 year). Our findings suggest that while the monopole structure captures variability in the winter-to-winter domain-average net heat flux, the dipole pattern tracks changes in the Mediterranean climate that are connected to the East Atlantic/Western Russia (EA/WR) atmospheric teleconnection pattern. Furthermore, while the monopole exhibits significant differences in the spatial structure across the multi-model ensemble, the dipole pattern is very robust and more clearly identifiable in the anomaly maps of individual years. A heat budget analysis of the dipole pattern reveals that changes in winds associated with the EA/WR pattern exert dominant control through both a direct effect on the latent heat flux (i.e., wind speed) and an indirect effect through specific humidity (e.g., wind advection). A simple reconstruction of the heat flux variability over the deep-water formation regions of the Gulf of Lion and the Aegean Sea reveals that the combination of the monopole and dipole time series explains over 90 % of the heat flux variance in these regions. Given the important role that surface heat flux anomalies play in deep-water formation and the regional climate, improving our knowledge on the dynamics controlling the leading modes of heat flux variability may enhance our predictability of the climate of the Mediterranean area.
Process Feasibility Study in Support of Silicon Material, Task 1
NASA Technical Reports Server (NTRS)
Li, K. Y.; Hansen, K. C.; Yaws, C. L.
1979-01-01
During this reporting period, major activies were devoted to process system properties, chemical engineering and economic analyses. Analyses of process system properties was continued for materials involved in the alternate processes under consideration for solar cell grade silicon. The following property data are reported for silicon tetrafluoride: critical constants, vapor pressure, heat of varporization, heat capacity, density, surface tension, viscosity, thermal conductivity, heat of formation and Gibb's free energy of formation. Chemical engineering analysis of the BCL process was continued with primary efforts being devoted to the preliminary process design. Status and progress are reported for base case conditions; process flow diagram; reaction chemistry; material and energy balances; and major process equipment design.
NASA Astrophysics Data System (ADS)
Poli, Francesca M.; Kessel, Charles E.
2013-05-01
Plasmas with internal transport barriers (ITBs) are a potential and attractive route to steady-state operation in ITER. These plasmas exhibit radially localized regions of improved confinement with steep pressure gradients in the plasma core, which drive large bootstrap current and generate hollow current profiles and negative magnetic shear. This work examines the formation and sustainment of ITBs in ITER with electron cyclotron heating and current drive. The time-dependent transport simulations indicate that, with a trade-off of the power delivered to the equatorial and to the upper launcher, the sustainment of steady-state ITBs can be demonstrated in ITER with the baseline heating configuration.
On the formation of granulites
Bohlen, S.R.
1991-01-01
The tectonic settings for the formation and evolution of regional granulite terranes and the lowermost continental crust can be deduced from pressure-temperature-time (P-T-time) paths and constrained by petrological and geophysical considerations. P-T conditions deduced for regional granulites require transient, average geothermal gradients of greater than 35??C km-1, implying minimum heat flow in excess of 100 mW m-2. Such high heat flow is probably caused by magmatic heating. Tectonic settings wherein such conditions are found include convergent plate margins, continental rifts, hot spots and at the margins of large, deep-seated batholiths. Cooling paths can be constrained by solid-solid and devolatilization equilibria and geophysical modelling. -from Author
Improvement of Mechanical Properties of Spheroidized 1045 Steel by Induction Heat Treatment
NASA Astrophysics Data System (ADS)
Kim, Minwook; Shin, Jung-Ho; Choi, Young; Lee, Seok-Jae
2016-04-01
The effects of induction heat treatment on the formation of carbide particles and mechanical properties of spheroidized 1045 steel were investigated by means of microstructural analysis and tensile testing. The induction spheroidization accelerated the formation of spherical cementite particles and effectively softened the steel. The volume fraction of cementite was found to be a key factor that affected the mechanical properties of spheroidized steels. Further tests showed that sequential spheroidization by induction and furnace heat treatments enhanced elongation within a short spheroidization time, resulting in better mechanical properties. This was due to the higher volume fraction of spherical cementite particles that had less diffusion time for particle coarsening.
Treating tar sands formations with dolomite
Vinegar, Harold J.; Karanikas, John Michael
2010-06-08
Methods for treating a tar sands formation are described herein. The tar sands formation may include dolomite and hydrocarbons. Methods may include providing heat at less than the decomposition temperature of dolomite from one or more heaters to at least a portion of the formation. At least some of the hydrocarbon fluids are mobilized in the formation. At least some of the hydrocarbon fluids may be produced from the formation.
Peplowski, Patrick N; Evans, Larry G; Hauck, Steven A; McCoy, Timothy J; Boynton, William V; Gillis-Davis, Jeffery J; Ebel, Denton S; Goldsten, John O; Hamara, David K; Lawrence, David J; McNutt, Ralph L; Nittler, Larry R; Solomon, Sean C; Rhodes, Edgar A; Sprague, Ann L; Starr, Richard D; Stockstill-Cahill, Karen R
2011-09-30
The MESSENGER Gamma-Ray Spectrometer measured the average surface abundances of the radioactive elements potassium (K, 1150 ± 220 parts per million), thorium (Th, 220 ± 60 parts per billion), and uranium (U, 90 ± 20 parts per billion) in Mercury's northern hemisphere. The abundance of the moderately volatile element K, relative to Th and U, is inconsistent with physical models for the formation of Mercury requiring extreme heating of the planet or its precursor materials, and supports formation from volatile-containing material comparable to chondritic meteorites. Abundances of K, Th, and U indicate that internal heat production has declined substantially since Mercury's formation, consistent with widespread volcanism shortly after the end of late heavy bombardment 3.8 billion years ago and limited, isolated volcanic activity since.
Impact basin relaxation on Rhea and Iapetus and relation to past heat flow
NASA Astrophysics Data System (ADS)
White, Oliver L.; Schenk, Paul M.; Dombard, Andrew J.
2013-04-01
Evidence for relaxation of impact crater topography has been observed on many icy satellites, including those of Saturn, and the magnitude of relaxation can be related to past heat flow (e.g. Moore, J.M., Schenk, P.M., Bruesch, L.S., Asphaug, E., McKinnon, W.B. [2004]. Icarus 171, 421-443; Dombard, A.J., McKinnon, W.B. [2006]. J. Geophys. Res. 111, E01001. http://dx.doi.org/10.1029/2005JE002445). We use new global digital elevation models of the surfaces of Rhea and Iapetus generated from Cassini data to obtain crater depth/diameter data for both satellites and topographic profiles of large basins on each. In addition to the factor of three lower amplitude of global topography on Rhea compared to Iapetus, we show that basins on Iapetus >100 km in diameter show little relaxation compared to similar sized basins on Rhea. Because of the similar gravities of Rhea and Iapetus, we show that Iapetus basin morphologies can be used to represent the initial, unrelaxed morphologies of the Rhea basins, and we use topographic profiles taken across selected basins to model heat flow on both satellites. We find that Iapetus has only experienced radiogenic heat flow since formation, whereas Rhea must have experienced heat flow reaching a few tens of mW m-2, although this heat flow need only be sustained for as little as several million years in order to achieve the observed relaxation magnitudes. Rhea experienced a different thermal history from Iapetus, which we consider to be primarily related to their different formation mechanisms and locations within the saturnian system. A recent model for the formation of Saturn's mid-sized icy satellites interior to and including Rhea (Charnoz, S. et al. [2011]. Icarus 216, 535-550) describes how Rhea's orbit would have expanded outwards after its accretion from a giant primordial ring, which would have instigated early heating through rapid despinning and tidal interaction with Saturn and other satellites. Rhea's basins would therefore be required to have formed within the first few tens of Myr of Rhea's formation in order to relax due of this heating, and if so may provide an important anchor point for Saturn system chronology. None of these heating mechanisms are viable for Iapetus in its isolated position far from Saturn, and as such it has remained dynamically inert since formation, confirming conclusions based on thermal modeling of Iapetus' interior. Rapid and complete relaxation and subsequent erosion by bombardment of a 'first generation' of large basins on Rhea is regarded as an explanation for the lower counts of large basins on Rhea relative to Iapetus, and the overall lower amplitude of topography on Rhea compared to Iapetus.
49 CFR 174.81 - Segregation of hazardous materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... known that the mixture of contents would not cause a fire or a dangerous evolution of heat or gas. (4... evolution of heat, evolution of flammable, poisonous, or asphyxiant gases, or formation of corrosive or...
49 CFR 174.81 - Segregation of hazardous materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... known that the mixture of contents would not cause a fire or a dangerous evolution of heat or gas. (4... evolution of heat, evolution of flammable, poisonous, or asphyxiant gases, or formation of corrosive or...
49 CFR 174.81 - Segregation of hazardous materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
... known that the mixture of contents would not cause a fire or a dangerous evolution of heat or gas. (4... evolution of heat, evolution of flammable, poisonous, or asphyxiant gases, or formation of corrosive or...
49 CFR 174.81 - Segregation of hazardous materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... known that the mixture of contents would not cause a fire or a dangerous evolution of heat or gas. (4... evolution of heat, evolution of flammable, poisonous, or asphyxiant gases, or formation of corrosive or...
Zhu, Junli; Li, Jianrong; Jia, Jia
2012-09-01
Trimethylamine oxide (TMAO) in squid is demethylated to dimethylamine (DMA) and formaldehyde (FA) during storage and processing. This study examined the effects of thermal processing and various chemical substances on FA and DMA formation in squid. The thermal conversion of TMAO was assessed by analysing four squid and four gadoid fish species, which revealed that FA, DMA and trimethylamine (TMA) were gradually produced in squid, whereas TMA increased and FA decreased in gadoid fish. A significant increase in both FA and DMA levels was observed in the supernatant of jumbo squid with increased heating temperature and extended heating time at pH 6-7. Ferrous chloride combined with cysteine and/or ascorbate had a significantly positive effect on FA formation in the heated supernatant of jumbo squid. No significant difference was observed in the levels of Cu and Fe in squid and gadoid fish. The capability of Fe(2+) to promote the formation of FA and DMA was not completely attributable to its reducing power in squid. Non-enzymatic decomposition of TMAO was a key pathway during the thermal processing of jumbo squid, and Fe(2+) was a crucial activator in the formation of FA and DMA. Copyright © 2012 Society of Chemical Industry.
Counterintuitive Constraints on Chaos Formation Set by Heat Flux through Europa's Ocean
NASA Astrophysics Data System (ADS)
Goodman, J. C.
2013-12-01
Models for the formation of disruptive chaos features on the icy surface of Europa fall into two broad categories: either chaos is formed when basal heating causes localized melting and thinning of the ice shell, or basal heating drives diapiric convection within the ice shell. We argue that in both of these cases, heating of the ice shell from below does not lead to chaos formation at the location of heating. If chaos is formed when a localized oceanic heat source, such as a hydrothermal plume, "melts through" the ice crust, we must consider what happens to the melted liquid. If Europa's ocean is salty, the melt will form a buoyant pool inside the melted cavity, leading to a stable interface between cold fresh meltwater and warm salty seawater. This stable interface acts like an ablative heat shield, protecting the ice from further damage. Some heat can be transferred across the stable layer by double diffusion, but this transfer is very inefficient. We calculate that local ocean heating cannot be balanced by local flux through the stable layer: instead, the warm ocean water must spread laterally until it is delivering heat to the ice base on a regional or global scale (a heating zone hundreds or thousands of km across, for conservative parameters.) If chaos is formed by diapiric solid-state convection within the ice shell, many investigators have assumed that diapirism and chaos should be most prevalent where the basal heat flux is strongest. We argue that this is not the case. In Rayleigh-Benard convection, increasing the heat flux will make convection more vigorous --- if and only if the convecting layer thickness does not change. We argue that increased basal heat flux will thin the ice shell, reducing its Rayleigh number and making convection less likely, not more. This insight allows us to reverse the logic of recent discussions of the relationship between ocean circulation and chaos (for instance, Soderlund et al, 2013 LPSC). We argue that global oceanic heat transport is governed by geostrophic quasi-two-dimensional convection, which delivers less heat to the tropics and more to the poles. By the argument above, this implies that the ice layer should be thicker in the tropics, and thus more prone to diapiric convection: thus, chaos should be more common there. Recent mapping efforts by other investigators have shown that this does appear to be the case.
Small scale changes of geochemistry and flow field due to transient heat storage in aquifers
NASA Astrophysics Data System (ADS)
Bauer, S.; Boockmeyer, A.; Li, D.; Beyer, C.
2013-12-01
Heat exchangers in the subsurface are increasingly installed for transient heat storage due to the need of heating or cooling of buildings as well as the interim storage of heat to compensate for the temporally fluctuating energy production by wind or solar energy. For heat storage to be efficient, high temperatures must be achieved in the subsurface. Significant temporal changes of the soil and groundwater temperatures however effect both the local flow field by temperature dependent fluid parameters as well as reactive mass transport through temperature dependent diffusion coefficients, geochemical reaction rates and mineral equilibria. As the use of heat storage will be concentrated in urban areas, the use of the subsurface for (drinking) water supply and heat storage will typically coincide and a reliable prognosis of the processes occurring is needed. In the present work, the effects of a temporal variation of the groundwater temperature, as induced by a local heat exchanger introduced into a groundwater aquifer, are studied. For this purpose, the coupled non-isothermal groundwater flow, heat transport and reactive mass transport is simulated in the near filed of such a heat exchanger. By explicitly discretizing and incorporating the borehole, the borehole cementation and the heat exchanger tubes, a realistic geometrical and process representation is obtained. The numerical simulation code OpenGeoSys is used in this work, which incorporates the required processes of coupled groundwater flow, heat and mass transport as well as temperature dependent geochemistry. Due to the use of a Finite Element Method, a close representation of the geometric effects can be achieved. Synthetic scenario simulations for typical settings of salt water formations in northern Germany are used to investigate the geochemical effects arising from a high temperature heat storage by quantifying changes in groundwater chemistry and overall reaction rates. This work presents the simulation approach used and results obtained for the synthetic scenarios. The model simulations show that locally in the direct vicinity of the borehole heat exchanger the flow field is changed, causing a ground water convergence and thus a mixing of water in the case of high temperatures. Also, geochemical reactions are induced due to shifting of temperature dependent mineral equilibria. Due to the moving groundwater, the changes are not reversible, and small impacts remain downstream of the borehole heat exchanger. However, the changes depend strongly on the mineral composition of the formation and the formation water present.
Nanoscale heat transfer and phase transformation surrounding intensely heated nanoparticles
NASA Astrophysics Data System (ADS)
Sasikumar, Kiran
Over the last decade there has been significant ongoing research to use nanoparticles for hyperthermia-based destruction of cancer cells. In this regard, the investigation of highly non-equilibrium thermal systems created by ultrafast laser excitation is a particularly challenging and important aspect of nanoscale heat transfer. It has been observed experimentally that noble metal nanoparticles, illuminated by radiation at the plasmon resonance wavelength, can act as localized heat sources at nanometer-length scales. Achieving biological response by delivering heat via nanoscale heat sources has also been demonstrated. However, an understanding of the thermal transport at these scales and associated phase transformations is lacking. A striking observation made in several laser-heating experiments is that embedded metal nanoparticles heated to extreme temperatures may even melt without an associated boiling of the surrounding fluid. This unusual phase stability is not well understood and designing experiments to understand the physics of this phenomenon is a challenging task. In this thesis, we will resort to molecular dynamics (MD) simulations, which offer a powerful tool to investigate this phenomenon, without assumptions underlying continuum-level model formulations. We present the results from a series of steady state and transient non-equilibrium MD simulations performed on an intensely heated nanoparticle immersed in a model liquid. For small nanoparticles (1-10 nm in diameter) we observe a stable liquid phase near the nanoparticle surface, which can be at a temperature well above the boiling point. Furthermore, we report the existence of a critical nanoparticle size (4 nm in diameter) below which we do not observe formation of vapor even when local fluid temperatures exceed the critical temperature. Instead, we report the existence of a stable fluid region with a density much larger than that of the vapor phase. We explain this stability in terms of the Laplace pressure associated with the formation of a vapor nanocavity and the associated effect on the Gibbs free energy. Separately, we also demonstrate the role of extreme temperature gradients (108-1010 K/m) in elevating the boiling point of liquids. We show that, assuming local thermal equilibrium, the observed elevation of the boiling point is associated with the interplay between the "bulk" driving force for the phase change and surface tension of the liquid-vapor interface that suppresses the transformation. In transient simulations that mimic laser-heating experiments we observe the formation and collapse of vapor bubbles around the nanoparticles beyond a threshold. Detailed analysis of the cavitation dynamics indicates adiabatic formation followed by an isothermal final stage of growth and isothermal collapse.
Solution mining and heating by oxidation for treating hydrocarbon containing formations
Vinegar, Harold J.; Stegemeier, George Leo
2009-06-23
A method for treating an oil shale formation comprising nahcolite includes providing a first fluid to a portion of the formation. A second fluid is produced from the portion. The second fluid includes at least some nahcolite dissolved in the first fluid. A controlled amount of oxidant is provided to the portion of the formation. Hydrocarbon fluids are produced from the formation.
14 CFR 25.1093 - Induction system icing protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... using— (1) Conventional venturi carburetors have a preheater that can provide a heat rise of 120 F. with... probability of ice formation has a preheater that can provide a heat rise of 100 °F. with the engine at 60... before it enters the carburetor, the heat rise in the air caused by that supercharging at any altitude...
Relaxation model of the heat production
NASA Astrophysics Data System (ADS)
Zimin, B. A.; Zorin, I. S.; Sventitskaya, V. E.
2018-05-01
The work is devoted to the study of the heat generation process in the problem of the dynamics of oscillations of a one-dimensional chain simulating heat formation in an elastic continuous medium under mechanical influences. Formulas for estimating the effect of thermoelasticity are obtained and an analogy is made with the energy of damped oscillations of an anharmonic oscillator.
USDA-ARS?s Scientific Manuscript database
In-situ determination of ice formation and thawing in soils is difficult despite its importance for many environmental processes. A sensible heat balance (SHB) method using a sequence of heat pulse probes has been shown to accurately measure water evaporation in subsurface soil, and it has the poten...
Kinetics and Mechanism of Chemical Marker Formation and Water-Activated Heat Generation
1994-05-01
activated chemical heaters. It has recently been discovered at the Army’s Natick, Massachusetts Research, Development & Engineering Center that certain...FUNDING NUMBERS 0 i Kinetics and Mechanism of Chemical Marker Formation and Water-Activated Heat Generation ~~ 3 6. AUTHOR(S) I-GZ05 Kenneth Kustin DI N...unlimited. rpIC Q.UA y uI sECTED 5 13. ABSTRACT (Maximum 200 words) n Research has been conducted on two projects: intrinsic chemical markers and water
The Heats of Formation of GaCl3 and its Fragments
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Arnold, James (Technical Monitor)
1998-01-01
The heats of formation of GaC13 and its fragments are computed. The geometries and frequencies are obtained at the B3LYP level. The CCSD(T) approach is used to solve the correlation problem. The effect of Ga 3d correlation is studied, and found to affect the bond energies by up to 1 kcal/mol. Both basis set extrapolation and bond functions are considered as ways to approach the basis set limit. Spin-orbit and scalar relativistic effects are also considered.
Creating and maintaining a gas cap in tar sands formations
Vinegar, Harold J.; Karanikas, John Michael; Dinkoruk, Deniz Sumnu; Wellington, Scott Lee
2010-03-16
Methods for treating a tar sands formation are disclosed herein. Methods for treating a tar sands formation may include providing heat to at least part of a hydrocarbon layer in the formation from one or more heaters located in the formation. Pressure may be allowed to increase in an upper portion of the formation to provide a gas cap in the upper portion. At least some hydrocarbons are produced from a lower portion of the formation.
NASA Astrophysics Data System (ADS)
Jha, Sourabh; Crittenden, Thomas; Glezer, Ari
2017-11-01
The limits of low Reynolds number forced convection heat transport within rectangular, mm-scale channels that model segments of air-cooled heat sinks are overcome by the deliberate formation of unsteady small-scale vortical motions that are induced by autonomous aero-elastic fluttering of cantilevered planar thin-film reeds. The coupled flow-structure interactions between the fluttering reeds and the embedding channel flow and the formation and evolution of the induced unsteady small-scale vortical motions are explored using video imaging and PIV. Concave/convex undulations of the reed's surface that are bounded by the channel's walls lead to the formation and advection of cells of vorticity concentration and ultimately to alternate shedding of spanwise CW and CCW vortices. These vortices scale with the channel height, and result in increased turbulent kinetic energy and enhanced dissipation that persist far downstream from the reed and are reminiscent of a turbulent flow at significantly higher Reynolds numbers (e.g., at Re = 800, TKE increases by 86% ,40 channel widths downstream of reed tip). These small-scale motions lead to strong enhancement in heat transfer that increases with Re (e.g., at Re = 1,000 and 14,000, Nu increases by 36% and 91%, respectively). The utility of this approach is demonstrated in improving the thermal performance of low-Re heat sinks in air-cooled condensers of thermoelectric power plants. NSF-EPRI.
In-situ synchrotron wide-angle X-ray diffraction as a rapid method for cocrystal/salt screening.
Dong, Pin; Lin, Ling; Li, Yongcheng; Huang, Zhengwei; Lang, Tianqun; Wu, Chuanbin; Lu, Ming
2015-12-30
The purpose of this work was to explore in-situ synchrotron wide-angle X-ray diffraction (WAXD) as a rapid and accurate tool to screen and monitor the formation of cocrystal/salts during heating. The active pharmaceutical ingredients (caffeine, carbamazepine and lamotrigine) were respectively mixed with the coformer (saccharin), and then heated by the hot stage. Real-time process monitoring was performed using synchrotron WAXD to assess cocrystal formation and subsequently compared to differential scanning calorimetry (DSC) measurements. The effect of heating rates and cocrystal growth behavior were investigated. Synchrotron WAXD was fast and sensitive to detect cocrystal formation with the appearance of characteristic diffraction rings, even at the heating rate of 30°C/min, while DSC curves showed overlapped peaks. Unlike the indirect characterization of DSC on endo/exothermic peaks, synchrotron WAXD can directly and qualitatively determine cocrystal by diffraction peaks. The diffraction intensity-temperature curves and the corresponding first-derivative curves clearly exhibited the growth behavior of cocrystal upon heating, providing useful information to optimize the process temperature of hot melt extrusion to continuously manufacture cocrystal. The study suggests that in-situ synchrotron WAXD could provide a one-step process to screen cocrystal at high efficiency and reveal the details of cocrystal/salts growth behavior. Copyright © 2015 Elsevier B.V. All rights reserved.
Heat capacity changes in carbohydrates and protein-carbohydrate complexes.
Chavelas, Eneas A; García-Hernández, Enrique
2009-05-13
Carbohydrates are crucial for living cells, playing myriads of functional roles that range from being structural or energy-storage devices to molecular labels that, through non-covalent interaction with proteins, impart exquisite selectivity in processes such as molecular trafficking and cellular recognition. The molecular bases that govern the recognition between carbohydrates and proteins have not been fully understood yet. In the present study, we have obtained a surface-area-based model for the formation heat capacity of protein-carbohydrate complexes, which includes separate terms for the contributions of the two molecular types. The carbohydrate model, which was calibrated using carbohydrate dissolution data, indicates that the heat capacity contribution of a given group surface depends on its position in the saccharide molecule, a picture that is consistent with previous experimental and theoretical studies showing that the high abundance of hydroxy groups in carbohydrates yields particular solvation properties. This model was used to estimate the carbohydrate's contribution in the formation of a protein-carbohydrate complex, which in turn was used to obtain the heat capacity change associated with the protein's binding site. The model is able to account for protein-carbohydrate complexes that cannot be explained using a previous model that only considered the overall contribution of polar and apolar groups, while allowing a more detailed dissection of the elementary contributions that give rise to the formation heat capacity effects of these adducts.
Haarmann-Stemmann, Thomas; Boege, Fritz; Krutmann, Jean
2013-04-01
In this issue, Matsuda et al. demonstrate the protective effect of mild heat preconditioning on UVB-induced photoaging in SKH-1 hairless mice. Mild heat exposure stimulates the upregulation of HSP70 chaperones, which inhibit the activities of matrix-degenerating enzymes, thereby avoiding wrinkle formation. This newly identified heat-mediated process of adaptation to UVB radiation exposure opens new opportunities to slow extrinsic skin aging.
Fluid insulation to prevent ice formation in heat exchangers
NASA Technical Reports Server (NTRS)
Coffinberry, G. A.
1973-01-01
Heat transfer surfaces were insulated to maintain air side surface temperature above freezing. Double wall tubes, with annular space between tubes, were filled with static liquid hydrogen. Low thermal conductivity of this hydrogen provided thermal resistance.
Arc ignition at heating of graphite by fixed current
NASA Astrophysics Data System (ADS)
Polistchook, V. P.; Samoylov, I. S.; Amirov, R. Kh; Kiselev, V. I.
2017-11-01
Arc ignition after the destruction of graphite samples under prolonged heating by electric current was described. Evidences of liquid film formation on the graphite surface at a temperature of 3.3 kK were presented.
Frost sensor for use in defrost controls for refrigeration
French, Patrick D.; Butz, James R.; Veatch, Bradley D.; O'Connor, Michael W.
2002-01-01
An apparatus and method for measuring the total thermal resistance to heat flow from the air to the evaporative cooler fins of a refrigeration system. The apparatus is a frost sensor that measures the reduction in heat flow due to the added thermal resistance of ice (reduced conduction) as well as the reduction in heat flow due to the blockage of airflow (reduced convection) from excessive ice formation. The sensor triggers a defrost cycle when needed, instead of on a timed interval. The invention is also a method for control of frost in a system that transfers heat from air to a refrigerant along a thermal path. The method involves measuring the thermal conductivity of the thermal path from the air to the refrigerant, recognizing a reduction in thermal conductivity due to the thermal insulation effect of the frost and due to the loss of airflow from excessive ice formation; and controlling the defrosting of the system.
Heat-shock protein 60 is required for blastema formation and maintenance during regeneration
Makino, Shinji; Whitehead, Geoffrey G.; Lien, Ching-Ling; Kim, Soo; Jhawar, Payal; Kono, Akane; Kawata, Yasushi; Keating, Mark T.
2005-01-01
Zebrafish fin regeneration requires the formation and maintenance of blastema cells. Blastema cells are not derived from stem cells but behave as such, because they are slow-cycling and are thought to provide rapidly proliferating daughter cells that drive regenerative outgrowth. The molecular basis of blastema formation is not understood. Here, we show that heat-shock protein 60 (hsp60) is required for blastema formation and maintenance. We used a chemical mutagenesis screen to identify no blastema (nbl), a zebrafish mutant with an early fin regeneration defect. Fin regeneration failed in nbl due to defective blastema formation. nbl also failed to regenerate hearts. Positional cloning and mutational analyses revealed that nbl results from a V324E missense mutation in hsp60. This mutation reduced hsp60 function in binding and refolding denatured proteins. hsp60 expression is increased during formation of blastema cells, and dysfunction leads to mitochondrial defects and apoptosis in these cells. These data indicate that hsp60 is required for the formation and maintenance of regenerating tissue. PMID:16204379
Boundary Waves on the Ice Surface Created by Currents
NASA Astrophysics Data System (ADS)
Naito, K.; Izumi, N.; Yokokawa, M.; Yamada, T.; de Lima, A. C.
2013-12-01
The formation of periodic boundary waves, e.g. antidunes and cyclic steps (Parker & Izumi 2000) has been known to be caused by instabilities between flow and bed (e.g. Engelund 1970), and are observed not only on river beds or ocean floors but also on ice surfaces, such as the surface of glaciers and underside of river ice (Carey 1966). In addition, owing to recent advancements of remote sensing technology, it has been found that the surfaces of the polar ice caps on Mars as well as on the Earth have step-like formations (Smith & Holt 2010) which are assumed to be boundary waves, because they are generated perpendicularly to the direction of the currents. These currents acting on the polar ice caps are density airflow, i.e. katabatic wind (Howard et al 2000). The comprehension of the formation process of the Martian polar ice caps may reveal climate changes which have occurred on Mars. Although the formation of boundary waves on river beds or ocean floors has been studied by a number of researchers, there are few works on their formation on ice surfaces. Yokokawa et al (2013) suggested that the temperature distribution of the ambient air, fluid and ice is a factor which determines the direction of migration of boundary waves formed on ice surfaces through their experiments. In this study, we propose a mathematical model in order to describe the formation process of the boundary waves and the direction of their migration. We consider that a liquid is flowing through a flume filled with a flat ice layer on the bottom. The flow is assumed to be turbulent and its temperature is assumed to merge with the ambient temperature at the flow surface and with the melting point of ice at the bottom (ice surface). The ice surface evolution is dependent on the unbalance between the interfacial heat flux of the liquid and ice, and we employ the Reynolds-averaged Navier-Stokes equation, the continuity equation, heat transfer equations for the liquid and ice, and a heat balance equation at the flow-ice interface. It is assumed that the interfacial heat fluxes of the liquid and ice are determined by the temperature profile, and the Reynolds stress and the turbulent heat flux are expressed by the eddy diffusivity of momentum and the eddy diffusivity of heat, respectively. In addition, the liquid can be divided into two layers; viscous sublayer and turbulent layer. In order to determine the velocity and temperature profile in the liquid, we employ the Prandtl-Taylor analogy which assumes that the velocity profile follows a linear law in the viscous sublayer and a logarithmic law in the turbulent layer, and the eddy diffusivity of heat is described by the eddy diffusivity of momentum and Prandtl number of the liquid. Finally, we obtain the temperature profiles (because the heat transfer equation for the ice reduces to the Laplace equation, the temperature profile in the ice can be easily estimated) and interfacial heat fluxes.
HEAT.PRO - THERMAL IMBALANCE FORCE SIMULATION AND ANALYSIS USING PDE2D
NASA Technical Reports Server (NTRS)
Vigue, Y.
1994-01-01
HEAT.PRO calculates the thermal imbalance force resulting from satellite surface heating. The heated body of a satellite re-radiates energy at a rate that is proportional to its temperature, losing the energy in the form of photons. By conservation of momentum, this momentum flux out of the body creates a reaction force against the radiation surface, and the net thermal force can be observed as a small perturbation that affects long term orbital behavior of the satellite. HEAT.PRO calculates this thermal imbalance force and then determines its effects on satellite orbits, especially where the Earth's shadowing of an orbiting satellite causes periodic changes in the spacecraft's thermal environment. HEAT.PRO implements a finite element method routine called PDE2D which incorporates material properties to determine the solar panel surface temperatures. The nodal temperatures are computed at specified time steps and are used to determine the magnitude and direction of the thermal force on the spacecraft. These calculations are based on the solar panel orientation and satellite's position with respect to the earth and sun. It is necessary to have accurate, current knowledge of surface emissivity, thermal conductivity, heat capacity, and material density. These parameters, which may change due to degradation of materials in the environment of space, influence the nodal temperatures that are computed and thus the thermal force calculations. HEAT.PRO was written in FORTRAN 77 for Cray series computers running UNICOS. The source code contains directives for and is used as input to the required partial differential equation solver, PDE2D. HEAT.PRO is available on a 9-track 1600 BPI magnetic tape in UNIX tar format (standard distribution medium) or a .25 inch streaming magnetic tape cartridge in UNIX tar format. An electronic copy of the documentation in Macintosh Microsoft Word format is included on the distribution tape. HEAT.PRO was developed in 1991. Cray and UNICOS are registered trademarks of Cray Research, Inc. UNIX is a trademark of AT&T Bell Laboratories. PDE2D is available from Granville Sewell, Mathematics Dept., University of Texas at El Paso, El Paso, Texas 79968.
NASA Astrophysics Data System (ADS)
Johnson, Torrence V.; Castillo-Rogez, Julie C.; Matson, Dennis L.
2008-04-01
Recent observations of Saturn's satellite system from the Cassini/Huygens mission present serious challenges to understanding the current dynamical states and thermal histories of these icy bodies using conventional thermal models that use long lived radioactive isotopes (LLRI) as the primary heat sources. In particular, the most distant of the regular satellites, Iapetus, is in synchronous rotation about Saturn, implying relatively high levels of dissipation of tidal energy. However, it retains a highly non-equilibrium, oblate spheroid, shape, implying a thick, cold, mechanically rigid outer layer or lithosphere. Thermal history models of Iapetus that successfully explain these apparently contradictory characteristics require significant heating early in the satellite's history from short lived radioactive isotopes (SRLI), particularly Al, implying a formation time for Iapetus of between 2.5 and 5 Myr after the formation of Calcium26 Aluminum Inclusions (CAIs) [l]. The characteristics of the other icy satellites in the system are consistent with this formation time, and the current thermal geyser activity on the more silicate-rich satellite Enceladus may be related to such an early heating event. A consequence of these early formation time models is that the early crust of Iapetus is too thin and weak to retain large impact basin topography until about 100 Myr after formation, and despinning to synchronous rotation might have occurred from 200-900 Myr after formation. This chronology is consistent with the formation of the large impact basins observed on Iapetus' surface by the `late heavy bombardment' or `lunar cataclysm' event recorded in the dating of samples from the Moon at 3900 Ma.
Radiative Hydrodynamic Simulations of In Situ Star Formation in the Galactic Center
NASA Astrophysics Data System (ADS)
Frazer, Chris; Heitsch, Fabian
2018-01-01
Many stars observed in the Galactic Center (GC) orbit the supermassive black hole (SMBH), Sagittarius A*, in a region where the extreme gravitational field is expected to inhibit star formation. Yet, many of these stars are young which favors an in situ formation scenario. Previous numerical work on this topic has focused on two possible solutions. First, the tidal capture of a > 10^4 Msun infalling molecular cloud by an SMBH may result in the formation of a surrounding gas disk which then rapidly cools and forms stars. This process results in stellar populations that are consistent with the observed stellar disk in the GC. Second, dense gas clumps of approximately 100 Msun on highly eccentric orbits about an SMBH can experience sparks of star formation via orbital compressions occurring during pericenter passage. In my dissertation, I build upon these models using a series of grid-based radiative hydrodynamic simulations, including the effects of both ionizing ultraviolet light from existing stars as well as X-ray radiation emanating from the central black hole. Radiation is treated with an adaptive ray-tracing routine, including appropriate heating and cooling for both neutral and ionized gas. These models show that ultraviolet radiation is sufficiently strong to heat low mass gas clouds, thus suppressing star formation from clump compression. Gas disks that form from cloud capture become sufficiently dense to provide shielding from the radiation of existing central stars, thus allowing star formation to continue. Conversely, X-rays easily penetrate and heat the potentially star forming gas. For sufficiently high radiation fields, this provides a mechanism to disrupt star formation for both scenarios considered above.
Bioactive Titanate Layers Formed on Titanium and Its Alloys by Simple Chemical and Heat Treatments
Kokubo, Tadashi; Yamaguchi, Seiji
2015-01-01
To reveal general principles for obtaining bone-bonding bioactive metallic titanium, Ti metal was heat-treated after exposure to a solution with different pH. The material formed an apatite layer at its surface in simulated body fluid when heat-treated after exposure to a strong acid or alkali solution, because it formed a positively charged titanium oxide and negatively charged sodium titanate film on its surface, respectively. Such treated these Ti metals tightly bonded to living bone. Porous Ti metal heat-treated after exposure to an acidic solution exhibited not only osteoconductive, but also osteoinductive behavior. Porous Ti metal exposed to an alkaline solution also exhibits osteoconductivity as well as osteoinductivity, if it was subsequently subjected to acid and heat treatments. These acid and heat treatments were not effective for most Ti-based alloys. However, even those alloys exhibited apatite formation when they were subjected to acid and heat treatment after a NaOH treatment, since the alloying elements were removed from the surface by the latter. The NaOH and heat treatments were also not effective for Ti-Zr-Nb-Ta alloys. These alloys displayed apatite formation when subjected to CaCl2 treatment after NaOH treatment, forming Ca-deficient calcium titanate at their surfaces after subsequent heat and hot water treatments. The bioactive Ti metal subjected to NaOH and heat treatments has been clinically used as an artificial hip joint material in Japan since 2007. A porous Ti metal subjected to NaOH, HCl and heat treatments has successfully undergone clinical trials as a spinal fusion device. PMID:25893014
Rongeat, Carine; Llamas-Jansa, Isabel; Doppiu, Stefania; Deledda, Stefano; Borgschulte, Andreas; Schultz, Ludwig; Gutfleisch, Oliver
2007-11-22
Among the thermodynamic properties of novel materials for solid-state hydrogen storage, the heat of formation/decomposition of hydrides is the most important parameter to evaluate the stability of the compound and its temperature and pressure of operation. In this work, the desorption and absorption behaviors of three different classes of hydrides are investigated under different hydrogen pressures using high-pressure differential scanning calorimetry (HP-DSC). The HP-DSC technique is used to estimate the equilibrium pressures as a function of temperature, from which the heat of formation is derived. The relevance of this procedure is demonstrated for (i) magnesium-based compounds (Ni-doped MgH2), (ii) Mg-Co-based ternary hydrides (Mg-CoHx) and (iii) Alanate complex hydrides (Ti-doped NaAlH4). From these results, it can be concluded that HP-DSC is a powerful tool to obtain a good approximation of the thermodynamic properties of hydride compounds by a simple and fast study of desorption and absorption properties under different pressures.
Kjellerup, B V; Kjeldsen, K U; Lopes, F; Abildgaard, L; Ingvorsen, K; Frølund, B; Sowers, K R; Nielsen, P H
2009-11-01
Severe biofilm formation and biocorrosion have been observed in heating systems even when the water quality complied with existing standards. The coupling between water chemistry, biofilm formation, species composition, and biocorrosion in a heating system was investigated by adding low concentrations of nutrients and oxygen under continuous and alternating dosing regimes. Molecular analysis of 16S rRNA gene fragments demonstrated that the amendments did not cause changes in the overall bacterial community composition. The combined alternating dosing of nutrients and oxygen caused increased rates of pitting (bio-) corrosion. Detection of bacteria involved in sulfide production and oxidation by retrieval of the functional dsrAB and apsA genes revealed the presence of Gram-positive sulfate- and sulfite-reducers and an unknown sulfur-oxidizer. Therefore, to control biocorrosion, sources of oxygen and nutrients must be limited, since the effect of the alternating operational conditions apparently is more important than the presence of potentially corrosive biofilm bacteria.
The Formation of Coronal Loops by Thermal Instability in Three Dimensions
NASA Technical Reports Server (NTRS)
Mok, Yung; Mikic, Zoran; Lionello, Roberto; Linker, Jon A.
2008-01-01
Plasma loops in solar active regions have been observed in EUV and soft X-rays for decades. Their formation mechanism and properties, however, are still not fully understood. Predictions by early models, based on 1D hydrostatic equilibria with uniform plasma heating, are not consistent with high-resolution measurements. In this Letter, we demonstrate, via 3D simulations, that a class of heating models can lead to the dynamic formation of plasma loops provided the plasma is heated sufficiently to match SXT soft X-ray measurements. We show that individual flux tubes in a 3D magnetic structure tend to stand out against their neighbors. The loops have large aspect ratios and nearly uniform cross sections in the corona, similar to those observed by EIT and TRACE. The coronal EUV emission from these thermally unstable solutions is roughly consistent with EIT measurements. The solution oscillates in time through a large-amplitude, nonlinear cycle, leading to repeated brightening and fading of the loops.
Heat-induced formation of myosin oligomer-soluble filament complex in high-salt solution.
Shimada, Masato; Takai, Eisuke; Ejima, Daisuke; Arakawa, Tsutomu; Shiraki, Kentaro
2015-02-01
Heat-induced aggregation of myosin into an elastic gel plays an important role in the water-holding capacity and texture of meat products. Here, we investigated thermal aggregation of porcine myosin in high-salt solution over a wide temperature range by dynamic light scattering experiments. The myosin samples were readily dissolved in 1.0 M NaCl at 25 °C followed by dilution into various salt concentrations. The diluted solutions consistently contained both myosin monomers and soluble filaments. The filament size decreased with increasing salt concentration and temperature. High temperatures above Tm led to at least partial dissociation of soluble filaments and thermal unfolding, resulting in the formation of soluble oligomers and binding to the persistently present soluble filaments. Such a complex formation between the oligomers and filaments has never been observed. Our results provide new insight into the heat-induced myosin gelation in high-salt solution. Copyright © 2014 Elsevier B.V. All rights reserved.
Robertson, Eric P
2011-05-24
A method for oil recovery whereby an exothermic water reactant (EWR) encapsulated in a water soluble coating is placed in water and pumped into one or more oil wells in contact with an oil bearing formation. After the water carries the EWR to the bottom of the injection well, the water soluble coating dissolves and the EWR reacts with the water to produce heat, an alkali solution, and hydrogen. The heat from the EWR reaction generates steam, which is forced into the oil bearing formation where it condenses and transfers heat to the oil, elevating its temperature and decreasing the viscosity of the oil. The aqueous alkali solution mixes with the oil in the oil bearing formation and forms a surfactant that reduces the interfacial tension between the oil and water. The hydrogen may be used to react with the oil at these elevated temperatures to form lighter molecules, thus upgrading to a certain extent the oil in situ. As a result, the oil can flow more efficiently and easily through the oil bearing formation towards and into one or more production wells.
Preliminary results report: Conasauga near-surface heater experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krumhansl, J.L.
From November 1977 to August 1978, two near-surface heater experiments were operated in two somewhat different stratigraphic sequences within the Conasauga formation which consist predominantly of shale. Specific phenomena investigated were the thermal and mechanical responses of the formation to an applied heat load, as well as the mineralogical changes induced by heating. Objective was to provide a minimal integrated field and laboratory study that would supply a data base which could be used in planning more expensive and complex vault-type experiments in other localities. The experiments were operated with heater power levels of between 6 and 8 kW formore » heater mid-plane temperatures of 385/sup 0/C. The temperature fields within the shale were measured and analysis is in progress. Steady state conditions were achieved within 90 days. Conduction appears to be the principal mechanism of heat transport through the formation. Limited mechanical response measurements consisting of vertical displacement and stress data indicate general agreement with predictions. Posttest data, collection of which await experiment shutdown and cooling of the formation, include the mineralogy of posttest cores, posttest transmissivity measurements and corrosion data on metallurgical samples.« less
Effects of thermal treatment on halogenated disinfection by-products in drinking water.
Wu, W W; Benjamin, M M; Korshin, G V
2001-10-01
The influence of heating or boiling on the formation and behavior of disinfection by-products (DBPs) was investigated in DBP-spiked reagent water, municipal tap water, and synthetic water containing chlorinated aquatic humic substances. Thermal cleavage of larger halogenated species leads to both formation of smaller chlorinated molecules (including THMs and HAAs) and dechlorination of organics. In parallel with their formation from larger molecules, THMs can be volatilized, and this latter process dominates the change in their concentration when water is boiled. HAAs are not volatile, but they can be destroyed by chemical reactions at elevated temperatures, with the net effect being loss of trihalogenated HAAs and either formation or loss of less chlorinated HAAs. Although other identifiable DBPs can be generated at slightly elevated temperatures, in most cases their concentrations decline dramatically when the solution is heated.
Linking lowermost mantle structure, core-mantle boundary heat flux and mantle plume formation
NASA Astrophysics Data System (ADS)
Li, Mingming; Zhong, Shijie; Olson, Peter
2018-04-01
The dynamics of Earth's lowermost mantle exert significant control on the formation of mantle plumes and the core-mantle boundary (CMB) heat flux. However, it is not clear if and how the variation of CMB heat flux and mantle plume activity are related. Here, we perform geodynamic model experiments that show how temporal variations in CMB heat flux and pulses of mantle plumes are related to morphologic changes of the thermochemical piles of large-scale compositional heterogeneities in Earth's lowermost mantle, represented by the large low shear velocity provinces (LLSVPs). We find good correlation between the morphologic changes of the thermochemical piles and the time variation of CMB heat flux. The morphology of the thermochemical piles is significantly altered during the initiation and ascent of strong mantle plumes, and the changes in pile morphology cause variations in the local and the total CMB heat flux. Our modeling results indicate that plume-induced episodic variations of CMB heat flux link geomagnetic superchrons to pulses of surface volcanism, although the relative timing of these two phenomena remains problematic. We also find that the density distribution in thermochemical piles is heterogeneous, and that the piles are denser on average than the surrounding mantle when both thermal and chemical effects are included.
Does the Chemothermal Instability Have Any Role in the Fragmentation of Primordial Gas
NASA Astrophysics Data System (ADS)
Dutta, Jayanta
2015-10-01
The collapse of the primordial gas in the density regime ˜108-1010 cm-3 is controlled by the three-body H2 formation process, in which the gas can cool faster than free-fall time—a condition proposed as the chemothermal instability. We investigate how the heating and cooling rates are affected during the rapid transformation of atomic to molecular hydrogen. With a detailed study of the heating and cooling balance in a 3D simulation of Pop III collapse, we follow the chemical and thermal evolution of the primordial gas in two dark matter minihalos. The inclusion of sink particles in modified Gadget-2 smoothed particle hydrodynamics code allows us to investigate the long-term evolution of the disk that fragments into several clumps. We find that the sum of all the cooling rates is less than the total heating rate after including the contribution from the compressional heating (pdV). The increasing cooling rate during the rapid increase of the molecular fraction is offset by the unavoidable heating due to gas contraction. We conclude that fragmentation occurs because H2 cooling, the heating due to H2 formation and compressional heating together set a density and temperature structure in the disk that favors fragmentation, not the chemothermal instability.
Bertani, R; Biasin, A; Canu, P; Della Zassa, M; Refosco, D; Simionato, F; Zerlottin, M
2016-03-15
Similarly to many powders of solids, dried sludge originated from tannery wastewater may result in a self-heating process, under given circumstances. In most cases, it causes a moderate heating (reaching 70-90°C), but larger, off-design residence times in the drier, in a suboxic atmosphere, extremely reactive solids can be produced. Tannery waste contains several chemicals that mostly end up in the wastewater treatment sludge. Unexpected and uncontrolled self heating could lead to a combustion and even to environmental problems. Elaborating on previous studies, with the addition of several analytical determinations, before and after the self-heating, we attempted to formulate a mechanism for the onset of heating. We demonstrated that the system Fe/S/O has been involved in the process. We proved that the formation of small quantities of pyrophoric iron sulfides is the key. They are converted to sulfated by reaction with water and oxygen with exothermic processes. The pyrite/pyrrhotite production depends on the sludge drying process. The oxidation of sulfides to oxides and sulfates through exothermic steps, reasonably catalyzed by metals in the sludge, occurs preferentially in a moist environment. The mechanism has been proved by reproducing in the laboratory prolonged heating under anoxic/suboxic atmosphere. Copyright © 2015 Elsevier B.V. All rights reserved.
Water Based Phase Change Material Heat Exchanger Development
NASA Technical Reports Server (NTRS)
Hansen, Scott W.; Sheth, Ribik B.; Atwell, Matt; Cheek, Ann; Agarwal, Muskan; Hong, Steven; Patel, Aashini,; Nguyen, Lisa; Posada, Luciano
2014-01-01
In a cyclical heat load environment such as low Lunar orbit, a spacecraft’s radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a “topper” to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. Studies conducted in this paper investigate utilizing water’s high latent heat of formation as a PCM, as opposed to traditional waxes, and corresponding complications surrounding freezing water in an enclosed volume. Work highlighted in this study is primarily visual and includes understanding ice formation, freeze front propagation, and the solidification process of water/ice. Various test coupons were constructed of copper to emulate the interstitial pin configuration (to aid in conduction) of the proposed water PCM HX design. Construction of a prototypic HX was also completed in which a flexible bladder material and interstitial pin configurations were tested. Additionally, a microgravity flight was conducted where three copper test articles were frozen continuously during microgravity and 2-g periods and individual water droplets were frozen during microgravity.
NASA Astrophysics Data System (ADS)
Stone, B.
2003-12-01
The return of record breaking heat waves to North American and European cities in 2003 highlights the growing need for urban planners to develop heat mitigation strategies for large metropolitan regions. Long associated with public health through its effects on human heat stress and heat related mortality, rising urban temperatures also hold important implications for regional air quality. This presentation will outline the results of a study focused on the relationship between regional temperatures and annual tropospheric ozone exceedances in the fifty largest (by population) metropolitan regions in the United States. With the aid of data from the EPA's National Emissions Inventory and NASA's Earth Observing System Data and Information System, this study examines trends in metropolitan emissions of nitrogen oxides, volatile organic compounds, mean regional temperatures, and annual ozone exceedances in U.S. metropolitan regions for the years 1990 through 1999. The intent of this work is to better establish connections between recent trends urban climate and ozone formation and to explore policy approaches to mitigating urban temperatures through physical planning. The results of this research indicate that annual violations of the national ozone standard during the decade of the 1990s were more closely associated with regional temperatures than with the emissions of regulated ozone precursors from mobile and stationary sources. Based on the results of this analysis, I argue that the air quality management strategies outlined in the Clean Air Act may be proving insufficient to control ozone formation due to ongoing and unanticipated changes in global and regional climate. I further argue that the emergence of urban heat as a significant threat to human health demands a strategic response from the fields of urban planning and public health. The presentation will conclude with a discussion of the linkages between urban form and ambient heat and will outline a set of policy approaches that have proven successful in mitigating urban heat production.
Local heating of the universe by the Higgs field
NASA Astrophysics Data System (ADS)
Belotsky, K. M.; Grobov, A. V.; Rubin, S. G.
It is shown that the creation of primordial massive black holes is accompanied by a local heating of the matter. The developed mechanism is based on the interaction of the Higgs field and a scalar field responsible for black hole formation. We also consider dynamical behavior of parameters such as a scale and chemical composition of such heating regions.
Electromagnetic tornadoes in space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, T.; Crew, G.B.; Retterer, J.M.
1988-01-01
The exotic phenomenon of energetic-ion conic formation by plasma waves in the magnetosphere is considered. Two particular transverse heating mechanisms are reviewed in detail; lower-hybrid energization of ions in the boundary layer of the plasma sheet and electromagnetic ion cyclotron resonance heating in the central region of the plasma sheet. Mean particle calculations, plasma simulations and analytical treatments of the heating processes are described.
Evaluation of commercially-available spacecraft-type heat pipes
NASA Technical Reports Server (NTRS)
Kaufman, W. B.; Tower, L. K.
1978-01-01
As part of an effort to develop reliable, cost effective spacecraft thermal control heat pipes, life tests on 30 commercially available heat pipes in 10 groups of different design and material combinations were conducted. Results for seven groups were reported herein. Materials are aluminum and stainless steel, and working fluids are methanol and ammonia. The formation of noncondensible gas was observed for times exceeding 11,000 hours. The heat transport capacities of the pipes were also determined.
Numerical simulation of formation and preservation of Ningwu ice cave, Shanxi, China
NASA Astrophysics Data System (ADS)
Yang, S.; Shi, Y.
2015-10-01
Ice caves exist in locations where annual average air temperature is higher than 0 °C. An example is Ningwu ice cave, Shanxi Province, the largest ice cave in China. In order to quantitatively investigate the mechanism of formation and preservation of the ice cave, we use the finite-element method to simulate the heat transfer process at this ice cave. There are two major control factors. First, there is the seasonal asymmetric heat transfer. Heat is transferred into the ice cave from outside very inefficiently by conduction in spring, summer and fall. In winter, thermal convection occurs that transfers heat very efficiently out of the ice cave, thus cooling it down. Secondly, ice-water phase change provides a heat barrier for heat transfer into the cave in summer. The calculation also helps to evaluate effects of global warming, tourists, colored lights, climatic conditions, etc. for sustainable development of the ice cave as a tourism resource. In some other ice caves in China, managers have installed airtight doors at these ice caves' entrances with the intention of "protecting" these caves, but this in fact prevents cooling in winter and these cave ices will entirely melt within tens of years.
Numerical simulation of formation and preservation of Ningwu ice cave, Shanxi, China
NASA Astrophysics Data System (ADS)
Yang, S.; Shi, Y.
2015-04-01
Ice caves exist in locations where annual average temperature in higher than 0 °C. An example is Ningwu ice cave, Shanxi Province, the largest ice cave in China. In order to quantitatively explain the mechanism of formation and preservation of the ice cave, we use Finite Element Method to simulate the heat transfer process at this ice cave. There are two major control factors. First, there is the seasonal asymmetric heat transfer. Heat is transferred into the ice cave from outside, very inefficiently by conduction in spring, summer and fall. In winter, thermal convection occurs that transfers heat very efficiently out of the ice cave, thus cooling it down. Secondly, ice-water phase change provides a heat barrier for heat transfer into the cave in summer. The calculation also helps to evaluate effects of global warming, tourists, etc. for sustainable development of ice cave as tourism resource. In some other ice caves in China, managers installed air-tight doors at these ice caves entrance intending to "protect" these caves, but this prevent cooling down these caves in winters and these cave ices will entirely melt within tens of years.
Nikitina, E A; Kaminskaya, A N; Molotkov, D A; Popov, A V; Savvateeva-Popova, E V
2014-01-01
In this paper we present results of a comprehensive analysis of the effect of heat shock at different stages of ontogenesis (adult stage, development of the mushroom bodies and the central complex) on courtship behavior (latency, duration and efficacy of courtship), sound production (pulse interval, dispersion of interpulse interval, the percentage of distorted pulses, the mean duration of the pulse parcels), learning and memory formation compared with the content of isoforms LIMK1 in Drosophila melanogaster male with altered structure of the limk1 gene. The heat shock is shown to affect the behavior parameters and LIMK1 content in analyzed strains of Drosophila. The most pronounced effect of the heat shock was observed at the stage of development of the central complex (CC). Heat shock at CC and adult restores the ability of learning and memory formation in the mutant strain agn(ts3), which normally is not able to learn and form memory. Correlations between changes of content of isoforms LIMK1 and behavioral parameters due to heat shock have not been established.
Multi-Species Test of Ion Cyclotron Resonance Heating at High Altitudes
NASA Technical Reports Server (NTRS)
Persoon, A. M.; Peterson, W. K.; Andre, M.; Chang, T.; Gurnett, D. A.; Retterer, J. M.; Crew, G. B.
1997-01-01
Observations of ion distributions and plasma waves obtained by the Dynamics Explorer 1 satellite in the high-altitude, nightside auroral zone are used to study ion energization for three ion species. A number of theoretical models have been proposed to account for the transverse heating of these ion populations. One of these, the ion cyclotron resonance heating (ICRH) mechanism, explains ion conic formation through ion cyclotron resonance with broadband electromagnetic wave turbulence in the vicinity of the characteristic ion cyclotron frequency. The cyclotron resonant heating of the ions by low- frequency electromagnetic waves is an important energy source for the transport of ions from the ionosphere to the magnetosphere. In this paper we test the applicability of the ICRH mechanism to three simultaneously heated and accelerated ion species by modelling the ion conic formation in terms of a resonant wave-particle interaction in which the ions extract energy from the portion of the broadband electromagnetic wave spectrum which includes the ion cyclotron frequency. Using a Monte Carlo technique we evaluate the ion heating produced by the electromagnetic turbulence at low frequencies and find that the wave amplitudes near the ion cyclotron frequencies are sufficient to explain the observed ion energies.
Multi-Species Test of Ion Cyclotron Resonance Heating at High Altitudes
NASA Technical Reports Server (NTRS)
Persoon, A. M.; Peterson, W. K.; Andre, M.; Chang, T.; Gurnett, D. A.; Retterer, J. M.; Crew, G. B.
1997-01-01
Observations of ion distributions and plasma waves obtained by the Dynamics Explorer 1 satellite in the high-altitude, nightside auroral zone are used to study ion energization for three ion species. A number of theoretical models have been proposed to account for the transverse heating of these ion populations. One of these, the ion cyclotron resonance heating (ICRH) mechanism, explains ion conic formation through ion cyclotron resonance with broadband electromagnetic wave turbulence in the vicinity of the characteristic ion cyclotron frequency. The cyclotron resonant heating of the ions by low-frequency electromagnetic waves is an important energy source for the transport of ions from the ionosphere to the magnetosphere. In this paper we test the applicability of the ICRH mechanism to three simultaneously heated and accelerated ion species by modelling the ion conic formation in terms of a resonant wave-particle interaction in which the ions extract energy from the portion of the broadband electromagnetic wave spectrum which includes the ion cyclotron frequency. Using a Monte Carlo technique we evaluate the ion heating produced by the electromagnetic turbulence at low frequencies and find that the wave amplitudes near the ion cyclotron frequencies are sufficient to explain the observed ion energies.
NASA Astrophysics Data System (ADS)
Levashov, V. Yu; Kamenov, P. K.
2017-10-01
The paper is devoted to research of the heat and mass transfer processes on the vapor-liquid interface. These processes can be realized for example at metal tempering, accidents at nuclear power stations, followed by the release of the corium into the heat carrier, getting hot magma into the water during volcanic eruptions and other. In all these examples the vapor film can arise on the heated body surface. In this paper the vapor film formation process will be considered with help of molecular dynamics simulation methods. The main attention during this process modeling will be focused on the subject of the fluid and vapor interactions with the heater surface. Another direction of this work is to study of the processes inside the droplet that may take place as result of impact of the high-power laser radiation. Such impact can lead to intensive evaporation and explosive destruction of the droplet. At that the duration of heat and mass transfer processes in droplet substance is tens of femtoseconds. Thus, the methods of molecular dynamics simulation can give the possibilities describe the heat and mass transfer processes in the droplet and the vapor phase formation.
NASA Astrophysics Data System (ADS)
Jha, Sourabh; Crittenden, Thomas; Glezer, Ari
2016-11-01
Heat transport within high aspect ratio, rectangular mm-scale channels that model segments of a high-performance, air-cooled heat sink is enhanced by the formation of unsteady small-scale vortical motions induced by autonomous, aeroelastic fluttering of cantilevered planar thin-film reeds. The flow mechanisms and scaling of the interactions between the reed and the channel flow are explored to overcome the limits of forced convection heat transport from air-side heat exchangers. High-resolution PIV measurements in a testbed model show that undulations of the reed's surface lead to formation and advection of vorticity concentrations, and to alternate shedding of spanwise CW and CCW vortices. These vortices scale with the reed motion amplitude, and ultimately result in motions of decreasing scales and enhanced dissipation that are reminiscent of a turbulent flow. The vorticity shedding lead to strong enhancement in heat transfer that increases with the Reynolds number of the base flow (e.g., the channel's thermal coefficient of performance is enhanced by 2.4-fold and 9-fold for base flow Re = 4,000 and 17,400, respectively, with corresponding decreases of 50 and 77% in the required channel flow rates). This is demonstrated in heat sinks for improving the thermal performance of low-Re thermoelectric power plant air-cooled condensers, where the global air-side pressure losses can be significantly reduced by lowering the required air volume flow rate at a given heat flux and surface temperature. AFOSR and NSF-EPRI.
Impacts of convection on high-temperature aquifer thermal energy storage
NASA Astrophysics Data System (ADS)
Beyer, Christof; Hintze, Meike; Bauer, Sebastian
2016-04-01
Seasonal subsurface heat storage is increasingly used in order to overcome the temporal disparities between heat production from renewable sources like solar thermal installations or from industrial surplus heat and the heat demand for building climatisation or hot water supply. In this context, high-temperature aquifer thermal energy storage (ATES) is a technology to efficiently store and retrieve large amounts of heat using groundwater wells in an aquifer to inject or withdraw hot or cold water. Depending on the local hydrogeology and temperature amplitudes during high-temperature ATES, density differences between the injected hot water and the ambient groundwater may induce significant convective flow components in the groundwater flow field. As a consequence, stored heat may accumulate at the top of the storage aquifer which reduces the heat recovery efficiency of the ATES system. Also, an accumulation of heat at the aquifer top will induce increased emissions of heat to overlying formations with potential impacts on groundwater quality outside of the storage. This work investigates the impacts of convective heat transport on the storage efficiency of a hypothetical high-temperature ATES system for seasonal heat storage as well as heat emissions to neighboring formations by numerical scenario simulations. The coupled groundwater flow and heat transport code OpenGeoSys is used to simulate a medium scale ATES system operating in a sandy aquifer of 20 m thickness with an average groundwater temperature of 10°C and confining aquicludes at top and bottom. Seasonal heat storage by a well doublet (i.e. one fully screened "hot" and "cold" well, respectively) is simulated over a period of 10 years with biannual injection / withdrawal cycles at pumping rates of 15 m³/h and for different scenarios of the temperature of the injected water (20, 35, 60 and 90 °C). Simulation results show, that for the simulated system significant convective heat transport sets in when injection temperatures exceed 35°C. Convection results in an accumulation of heat below the upper confining layer. The consequential increase of the heat plume contact area with this formation results in increased conductive heat transfer. Also, thermal gradients between the heat plume and the ambient groundwater increase with injection temperature, which increases heat conduction within the aquifer. Both effects reduce the thermal recovery of the ATES system. At the end of the 10th injection / withdrawal cycle the efficiency of thermal recovery thus reaches about 76 % for the 20°C scenario, 74% for 35°C, 71 % for 60°C and 66 % for the 90 °C scenario. Sensitivity analysis indicates that permeability in horizontal and vertical directions are controlling factors for the extent of convective heat displacement. Also, heat plume dimensions are influenced by permeability, and to a lesser extent by heat capacity and porosity of the aquifer. The planning of high-temperature ATES at a specific site hence requires a careful investigation of hydraulic and heat transport properties. Acknowledgments: This work is part of the ANGUS+ project (www.angusplus.de) and funded by the German Federal Ministry of Education and Research (BMBF) as part of the energy storage initiative "Energiespeicher".
Heat exchanger life extension via in-situ reconditioning
Holcomb, David E.; Muralidharan, Govindarajan
2016-06-28
A method of in-situ reconditioning a heat exchanger includes the steps of: providing an in-service heat exchanger comprising a precipitate-strengthened alloy wherein at least one mechanical property of the heat exchanger is degraded by coarsening of the precipitate, the in-service heat exchanger containing a molten salt working heat exchange fluid; deactivating the heat exchanger from service in-situ; in a solution-annealing step, in-situ heating the heat exchanger and molten salt working heat exchange fluid contained therein to a temperature and for a time period sufficient to dissolve the coarsened precipitate; in a quenching step, flowing the molten salt working heat-exchange fluid through the heat exchanger in-situ to cool the alloy and retain a supersaturated solid solution while preventing formation of large precipitates; and in an aging step, further varying the temperature of the flowing molten salt working heat-exchange fluid to re-precipitate the dissolved precipitate.
NASA Astrophysics Data System (ADS)
Gurevich, L. M.; Arisova, V. N.; Trykov, Yu. P.; Ponomareva, I. A.; Trudov, A. F.
2016-07-01
The effect of bending deformation and subsequent heat treatment on the variation of microhardness and structure of explosion-welded magnesium-aluminum layered composite material MA2-1 - AD1 is studied.
Hung, Pham Van; Vien, Ngo Lam; Lan Phi, Nguyen Thi
2016-01-15
The effects of a combination of acid and heat-moisture treatment on formation of resistant starch (RS) and characteristics of high-amylose, normal and waxy rice starches were investigated in this study. The degrees of polymerization of the rice starches treated with citric acid, lactic acid or acetic acid were significantly reduced as compared to the native starches. The RS contents of acid and heat-moisture treated rice starches were in a range of 30.1-39.0%, significantly higher than those of native rice starches (6.3-10.2%) and those of heat-moisture treated rice starches (18.5-23.9%). The acid and heat-moisture treatments reduced swelling power and viscosity, but increased solubility of the starches, while the crystalline structure did not change. Among the organic acids used, citric acid had the most impact on starch characteristics and RS formation, followed by lactic acid and acetic acid. The results are useful in production of RS for functional food application. Copyright © 2015 Elsevier Ltd. All rights reserved.
2015-06-01
the procedures used to generate this information, as well as Cheetah calculations using the predicted crystalline density and heat of formation. 15...overlay ...............6 List of Tables Table Cheetah -predicted properties of the 3,7-dinitro-[1,2,4]triazolo[5,1- c][1,2,4]triazin-4-amine molecule...script, initially written for the ARL DSRC. Dr Rice is acknowledged for running the Cheetah calculations. All computations were performed at the ARL
Limit regimes of ice formation in turbulent supercooled water.
De Santi, Francesca; Olla, Piero
2017-10-01
A study of ice formation in stationary turbulent conditions is carried out in various limit regimes of crystal growth, supercooling, and ice entrainment at the water surface. Analytical expressions for the temperature, salinity, and ice concentration mean profiles are provided, and the role of fluctuations in ice production is numerically quantified. Lower bounds on the ratio of sensible heat flux to latent heat flux to the atmosphere are derived and their dependence on key parameters such as salt rejection in freezing and ice entrainment in the water column is elucidated.
Nucleation of fcc Ta when heating thin films
Janish, Matthew T.; Mook, William M.; Carter, C. Barry
2014-10-25
Thin tantalum films have been studied during in-situ heating in a transmission electron microscope. Diffraction patterns from the as-deposited films were typical of amorphous materials. Crystalline grains were observed to form when the specimen was annealed in-situ at 450°C. Particular attention was addressed to the formation and growth of grains with the face-centered cubic (fcc) crystal structure. As a result, these observations are discussed in relation to prior work on the formation of fcc Ta by deformation and during thin film deposition.
Liquid metal heat exchanger for efficient heating of soils and geologic formations
DeVault, Robert C [Knoxville, TN; Wesolowski, David J [Kingston, TN
2010-02-23
Apparatus for efficient heating of subterranean earth includes a well-casing that has an inner wall and an outer wall. A heater is disposed within the inner wall and is operable within a preselected operating temperature range. A heat transfer metal is disposed within the outer wall and without the inner wall, and is characterized by a melting point temperature lower than the preselected operating temperature range and a boiling point temperature higher than the preselected operating temperature range.
NASA Technical Reports Server (NTRS)
Guimond, Stephen R.; Bourassa, mark A.; Reasor, Paul D.
2011-01-01
The release of latent heat in clouds is an essential part of the formation and I intensification ohurricanes. The community knows very little about the intensity and structure of latent heating due largely to inadequate observations. In this paper, a new method for retrieving the latent heating field in hurricanes from airborne Dopple radar is presented and fields from rapidly intensifying Hurricane Guillermo (1997) are shown.
Chen, Shih-Cheng; Liu, Hui-Wen; Lee, Kung-Ta; Yamakawa, Takashi
2007-01-01
The chimerical gene, Arabidopsis thaliana sHSP18.2 promoter fused to E. coli gusA gene, was Agrobacterium rhizogenes-mediated transformed into Nicotiana tabacum as a heat-regulatable model, and the thermo-inducible expression of GUS activity in N. tabacum transgenic hairy roots was profiled. An activation of A. rhizogenes with acetosyringone (AS) before cocultured with tobacco's leaf disc strongly promoted transgenic hairy roots formation. Transgenic hairy roots formation efficiency of A. rhizogenes precultured with 200 microM AS supplementation was 3.1-fold and 7.5-fold, respectively, compared to the formation efficiency obtained with and without AS supplementation in coculture. Transgenic hairy roots transformed with different AS concentration exhibited a similar pattern of thermo-inducibility after 10 min to 3 h heat treatments detected by GUS expression. The peak of expressed GUS specific activity, 399,530 pmol MUG per mg total protein per min, of the transgenic hairy roots was observed at 48 h after 3 h of 42 degrees C heat treatment, and the expressed GUS specific activity was 7-26 times more than that reported in A. thaliana, tobacco BY-2 cells and Nicotiana plumbaginifolia. Interference caused by AS supplementation on the growth of transgenic hairy roots, time-course of GUS expression and its expression level were not observed.
USDA-ARS?s Scientific Manuscript database
Meats need to be sufficiently heated to inactivate foodborne pathogens such as Escherichia coli O157:H7. High-temperature heat treatment used to prepare well-done meats could, however, increase the formation of potentially carcinogenic heterocyclic amines (HCAs). The objective of this study was to d...
Cermet Coatings for Solar Stirling Space Power
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.; Raack, Taylor
2004-01-01
Cermet coatings, molecular mixtures of metal and ceramic are being considered for the heat inlet surface of a solar Stirling space power converter. This paper will discuss the solar absorption characteristics of as-deposited cermet coatings as well as the solar absorption characteristics of the coatings after heating. The role of diffusion and island formation, during the deposition process and during heating will also be discussed.
Mandla A. Tshabalala; James D. McSweeny; Roger M. Rowell
2012-01-01
Furan monomers are produced when wood is heated at high temperatures. To understand the process conditions for production of furfural (FF) and hydroxymethylfurfural (HMF) from wood, samples of milled aspen wood were subjected to autohydrolyzis by microwave heating in a sealed Teflon reactor. The experiments were designed to simulate temperature and pressure variables...
Oilfield geothermal exploitation in China-A case study from the Liaohe oilfield in Bohai Bay Basin
NASA Astrophysics Data System (ADS)
Wang, Shejiao; Yao, Yanhua; Fan, Xianli; Yan, Jiahong
2017-04-01
The clean geothermal energy can play a huge role in solving the problem of severe smog in China as it can replace large coal-fired heating in winter. Chinese government has paid close attention on the development and utilization of geothermal energy. In the "13th Five-Year" plan, the geothermal development is included into the national plan for the first time. China is very rich in the medium and low-temperature geothermal resources, ranking first in the geothermal direct use in the world for a long time. The geothermal resources are mainly concentrated in sedimentary basins, especially in petroliferous basins distributed in North China (in North China, heating is needed in winter). These basins are usually close to the large- and medium-sized cities. Therefore, tapping oilfield geothermal energy have attracted a great attention in the last few years as the watercut achieved above 90% in most oilfields and significant progress has been made. In this paper, taking the Liaohe Oilfield in the Bohai Bay Basin as an example, we discussed the distribution and potential of the geothermal resources, discussed how to use the existed technology to harness geothermal energy more effectively, and forecasted the development prospect of the oilfield geothermal energy. By using the volumetric method, we calculated the geothermal resources of the Guantao Formation, Dongying Formation, Shahejie Formation and basement rock in the Liaohe depression. We tested the geothermal energy utilization efficiency in different conditions by applying different pump technologies and utilizing geothermal energy in different depth, such as shallow geothermal energy (0-200m), middle-deep depth geothermal energy (200-4000m), and oilfield sewage heat produced with oil production. For the heat pump systems, we tested the conventional heat pump system, high-temperature heat pump system, super high-temperature heat pump system, and gas heat pump system. Finally, based on the analysis of national policy, the heat demands of oilfield, and the exploration and development technologies, we discussed the potential of the oilfield geothermal energy development for the industrial and the civil applications in the future.
A Parametric Study of Slag Skin Formation in Electroslag Remelting
NASA Astrophysics Data System (ADS)
Yanke, Jeff; Krane, Matthew John M.
In electroslag remelting (ESR), the slag generates heat, chemically refines the melting electrode material, and forms frozen skin on the mold. An axisymmetric model is used to simulate fluid flow, heat transfer, solidification, and electromagnetics and their interaction with slag skin formation in ESR. A volume of fluid (VOF) method is used to track the slag/metal interface, allowing simulation of slag freezing to the mold. Mold diameter and applied current are varied to determine how these parameters affect melt rate and formation of slag skin during ESR. Variations in the slag skin thickness within the slag cap are found to have a significant impact on melt rate and depth of metal sump. Changes in slag cap volume resulted in small changes in melt rate.
THE FORMATION OF INORGANIC PARTICLES DURING SUSPENSION HEATING OF SIMULATED WASTES
Measurements of metal partitioning between the fine condensation aerosol and the larger particles produced during rapid heating of aqueous and organic solutions containing metal additives with widely varying volatilities were made in a laboratory-scale furnace operated over a ran...
Effects of bending and heat on the ductility and fracture toughness of flange plate.
DOT National Transportation Integrated Search
2012-05-01
Bridge fabricators for the Texas Department of Transportation (TxDOT) have occasionally experienced the : formation of cracks in flange plate during bending operations, particularly when heat is applied. Bending the : flange plate is necessary for ce...
Residual heat generated during laser processing of CFRP with picosecond laser pulses
NASA Astrophysics Data System (ADS)
Freitag, Christian; Pauly, Leon; Förster, Daniel J.; Wiedenmann, Margit; Weber, Rudolf; Kononenko, Taras V.; Konov, Vitaly I.; Graf, Thomas
2018-05-01
One of the major reasons for the formation of a heat-affected zone during laser processing of carbon fiber-reinforced plastics (CFRP) with repetitive picosecond (ps) laser pulses is heat accumulation. A fraction of every laser pulse is left as what we termed residual heat in the material also after the completed ablation process and leads to a gradual temperature increase in the processed workpiece. If the time between two consecutive pulses is too short to allow for a sufficient cooling of the material in the interaction zone, the resulting temperature can finally exceed a critical temperature and lead to the formation of a heat-affected zone. This accumulation effect depends on the amount of energy per laser pulse that is left in the material as residual heat. Which fraction of the incident pulse energy is left as residual heat in the workpiece depends on the laser and process parameters, the material properties, and the geometry of the interaction zone, but the influence of the individual quantities at the present state of knowledge is not known precisely due to the lack of comprehensive theoretical models. With the present study, we, therefore, experimentally determined the amount of residual heat by means of calorimetry. We investigated the dependence of the residual heat on the fluence, the pulse overlap, and the depth of laser-generated grooves in CRFP. As expected, the residual heat was found to increase with increasing groove depth. This increase occurs due to an indirect heating of the kerf walls by the ablation plasma and the change in the absorbed laser fluence caused by the altered geometry of the generated structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, T., E-mail: tao.chen@fysik.su.se, E-mail: henning@fysik.su.se; Gatchell, M.; Stockett, M. H.
2015-04-14
We have investigated the effectiveness of molecular hydrogen (H{sub 2}) formation from Polycyclic Aromatic Hydrocarbons (PAHs) which are internally heated by collisions with keV ions. The present and earlier experimental results are analyzed in view of molecular structure calculations and a simple collision model. We estimate that H{sub 2} formation becomes important for internal PAH temperatures exceeding about 2200 K, regardless of the PAH size and the excitation agent. This suggests that keV ions may effectively induce such reactions, while they are unlikely due to, e.g., absorption of single photons with energies below the Lyman limit. The present analysis alsomore » suggests that H{sub 2} emission is correlated with multi-fragmentation processes, which means that the [PAH-2H]{sup +} peak intensities in the mass spectra may not be used for estimating H{sub 2}-formation rates.« less
NASA Astrophysics Data System (ADS)
Bhattacharjee, Subham; Maiti, Bappa; Bhattacharya, Santanu
2016-05-01
The remarkable ability of a charge-transfer (CT) complex prepared from a pyrene-based donor (Py-D) and a naphthalenediimide-based acceptor (NDI-A) led to the formation of a deep-violet in color, transparent hydrogel at room temperature (RT-gel). Simultaneously, the RT-gel was diluted beyond its critical gelator concentration (CGC) to obtain a transparent sol. Very interestingly, the resultant sol, on heating above 70 °C, transformed into a heat-set gel instantaneously with a hitherto unknown CGC value. Detailed studies revealed the smaller globular aggregates of the RT-gels fuse to form giant globules upon heating, which, in turn, resulted in heat-set gelation through further aggregation. The thermoresponsive property of Py-D alone and 1 : 1 Py-D : NDI-A CT complex was investigated in detail which revealed the hydrophobic collapse of the oxyethylene chains of the CT complex upon heating was mainly responsible for heat-set gelation. Thixotropy, injectability, as well as stimuli responsiveness of the RT-gels were also addressed. In contrast, heat-set gel did not show thixotropic behavior. The X-ray diffraction (XRD) patterns of the xerogel depicted lamellar packing of the CT stacks in the gel phase. Single crystal XRD studies further evidenced the 1 : 1 mixed CT stack formation in the lamellae and also ruled out orthogonal hydrogen bonding possibilities among the hydrazide unit in the CT gel although such interaction was observed in a single crystal of NDI-A alone. In addition, a Ag+-ion triggered metallogelation of NDI-A and nematic liquid-crystalline property of Py-D were also observed.The remarkable ability of a charge-transfer (CT) complex prepared from a pyrene-based donor (Py-D) and a naphthalenediimide-based acceptor (NDI-A) led to the formation of a deep-violet in color, transparent hydrogel at room temperature (RT-gel). Simultaneously, the RT-gel was diluted beyond its critical gelator concentration (CGC) to obtain a transparent sol. Very interestingly, the resultant sol, on heating above 70 °C, transformed into a heat-set gel instantaneously with a hitherto unknown CGC value. Detailed studies revealed the smaller globular aggregates of the RT-gels fuse to form giant globules upon heating, which, in turn, resulted in heat-set gelation through further aggregation. The thermoresponsive property of Py-D alone and 1 : 1 Py-D : NDI-A CT complex was investigated in detail which revealed the hydrophobic collapse of the oxyethylene chains of the CT complex upon heating was mainly responsible for heat-set gelation. Thixotropy, injectability, as well as stimuli responsiveness of the RT-gels were also addressed. In contrast, heat-set gel did not show thixotropic behavior. The X-ray diffraction (XRD) patterns of the xerogel depicted lamellar packing of the CT stacks in the gel phase. Single crystal XRD studies further evidenced the 1 : 1 mixed CT stack formation in the lamellae and also ruled out orthogonal hydrogen bonding possibilities among the hydrazide unit in the CT gel although such interaction was observed in a single crystal of NDI-A alone. In addition, a Ag+-ion triggered metallogelation of NDI-A and nematic liquid-crystalline property of Py-D were also observed. Electronic supplementary information (ESI) available: General experimental section, synthesis and characterization, single crystal X-ray data including CIF files and additional experimental results. See DOI: 10.1039/c6nr01128d
Reis, M; Farage, M; de Souza, A C; de Meis, L
2001-11-16
The sarcoplasmic reticulum Ca(2+)-ATPase transports Ca(2+) using the chemical energy derived from ATP hydrolysis. Part of the chemical energy is used to translocate Ca(2+) through the membrane (work) and part is dissipated as heat. The amount of heat produced during catalysis increases after formation of the Ca(2+) gradient across the vesicle membrane. In the absence of gradient (leaky vesicles) the amount of heat produced/mol of ATP cleaved is half of that measured in the presence of the gradient. After formation of the gradient, part of the ATPase activity is not coupled to Ca(2+) transport. We now show that NaF can impair the uncoupled ATPase activity with discrete effect on the ATPase activity coupled to Ca(2+) transport. For the control vesicles not treated with NaF, after formation of the gradient only 20% of the ATP cleaved is coupled to Ca(2+) transport, and the caloric yield of the total ATPase activity (coupled plus uncoupled) is 22.8 kcal released/mol of ATP cleaved. In contrast, the vesicles treated with NaF consume only the ATP needed to maintain the gradient, and the caloric yield of ATP hydrolysis is 3.1 kcal/mol of ATP. The slow ATPase activity measured in vesicles treated with NaF has the same Ca(2+) dependence as the control vesicles. This demonstrates unambiguously that the uncoupled activity is an actual pathway of the Ca(2+)-ATPase rather than a contaminating phosphatase. We conclude that when ATP hydrolysis occurs without coupled biological work most of the chemical energy is dissipated as heat. Thus, uncoupled ATPase activity appears to be the mechanistic feature underlying the ability of the Ca(2+)-ATPase to modulated heat production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arendt, Paul N.; DePaula, Ramond F.; Zhu, Yuntian T.
An array of carbon nanotubes is prepared by exposing a catalyst structure to a carbon nanotube precursor. Embodiment catalyst structures include one or more trenches, channels, or a combination of trenches and channels. A system for preparing the array includes a heated surface for heating the catalyst structure and a cooling portion that cools gas above the catalyst structure. The system heats the catalyst structure so that the interaction between the precursor and the catalyst structure results in the formation of an array of carbon nanotubes on the catalyst structure, and cools the gas near the catalyst structure and alsomore » cools any carbon nanotubes that form on the catalyst structure to prevent or at least minimize the formation of amorphous carbon. Arrays thus formed may be used for spinning fibers of carbon nanotubes.« less
Polar low formation: ambient environments and the role of moisture
NASA Astrophysics Data System (ADS)
Terpstra, Annick; Spengler, Thomas; Michel, Clio; Moore, Richard
2016-04-01
Polar lows are maritime cyclones occurring during cold air outbreaks in high latitudes. Previous studies have shown that wind shear, baroclinicity, latent heat release, and surface fluxes are important factors during formation and intensification, yet their relative contributions and importance are still not fully understood. We use the ambient atmospheric conditions during polar low genesis to provide dynamical insights to the intensification and formation mechanisms for polar lows. We identify the characteristics of the ambient pre-polar low environment utilising an existing polar low database and ERA-Interim reanalysis data. Classification of these environments is based on the the direction between the thermal wind and the mean flow in the lower troposphere, where environments are classified as 'reverse shear' if the thermal wind and mean flow are in opposing directions and 'forward shear' if they are in the same direction. The two types of pre-polar low environments exhibit distinctly different features in terms of synoptic scale patterns, baroclinicity, configuration of the sea-surface temperature, as well as depth and stratification of the troposphere. These clear-cut differences hint at different dynamical pathways for the formation and intensification of polar lows for different shear environments. We also explore the role of latent heating during polar low formation utilising an idealised baroclinic channel model. The experimental design resembles a typical forward-shear moist-baroclinic environment at high-latitudes. Cyclogenesis is triggered by a weak, low-level thermal perturbation in hydrostatic and geostrophic balance. Our experiments show that significant disturbance growth is possible in absence of upper level forcing, surface fluxes, and radiation. The relative importance of diabatic versus baroclinic processes for the generation of eddy available potential energy is used to differentiate between the dynamical processes contributing to disturbance growth. The experiments indicate that sufficient latent heat release in the north-eastern quadrant of the cyclone is crucial for rapid disturbance intensification, where environmental relative humidity, baroclinicity, and static stability modulate the relative importance of latent heat release. Furthermore, the relative shallowness of the perturbation at high-latitudes increases the effectiveness of latent heat release on cyclone amplification.
Passive ice freezing-releasing heat pipe
Gorski, Anthony J.; Schertz, William W.
1982-01-01
A heat pipe device has been developed which permits completely passive ice formation and periodic release of ice without requiring the ambient temperature to rise above the melting point of water. This passive design enables the maximum amount of cooling capacity to be stored in the tank.
Scanning electron microscopy of heat treated TiO2 nanotubes arrays obtained by anodic oxidation
NASA Astrophysics Data System (ADS)
Naranjo, D. I.; García-Vergara, S. J.; Blanco, S.
2017-12-01
Scanning electron microscopy was used to investigate the anatase-rutile transformation of self-organized TiO2 nanotubes obtained on titanium foil by anodizing and subsequent heat treatment. The anodizing was carried out at 20V in an 1% v/v HF acid and ethylene glycol:water (50:50) electrolyte at room temperature. The anodized samples were initially pre-heat treated at 450°C for 4 hours to modify the amorphous structure of TiO2 nanotubes into anatase structure. Then, the samples were heated between 600 to 800°C for different times, in order to promote the transformation to rutile structure. The formation of TiO2 nanotubes is evident by SEM images. Notably, when the samples are treated at high temperature, the formation of rutile crystals starts to become evident at the nanotubes located on the originally grain boundaries of the titanium. Thus, the anatase - rutile transformation has a close relationship with the microstructure of the titanium, more exactly with grain boundaries.
Core formation, wet early mantle, and H2O degassing on early Mars
NASA Technical Reports Server (NTRS)
Kuramoto, K.; Matsui, T.
1993-01-01
Geophysical and geochemical observations strongly suggest a 'hot origin of Mars,' i.e., the early formation of both the core and the crust-mantle system either during or just after planetary accretion. To consider the behavior of H2O in the planetary interior it is specifically important to determine by what mechanism the planet is heated enough to cause melting. For Mars, the main heat source is probably accretional heating. Because Mars is small, the accretion energy needs to be effectively retained in its interior. Therefore, the three candidates of heat retention mechanism are discussed first: (1) the blanketing effect of the primordial H2-He atmosphere; (2) the blanketing effect of the impact-induced H2O-CO2 atmosphere; and (3) the higher deposition efficiency of impact energy due to larger impacts. It was concluded that (3) the is the most plausible mechanism for Mars. Then, its possible consequence on how wet the early martian mantle was is discussed.
Code of Federal Regulations, 2011 CFR
2011-10-01
... benefit and not selling energy to another entity. Commercial production means production of geothermal... formations; (3) Heat or other associated energy found in geothermal formations; and (4) Any byproducts. Gross... OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Geothermal Resource Leasing...
NASA Astrophysics Data System (ADS)
Wismogroho, A. S.; Sudiro, T.; Didik, A.; Ciswandi
2018-03-01
In present work, Cr-Al coatings containing 0, 1, 2, 3, and 5% W have been prepared on the surface of low carbon steel by mechanical alloying technique. The composition of each powder was milled for 2 hour in a stainless steel crucible with a ball to powder ratio of 10:1. Afterward, the Cr-Al-W powder and substrate were mechanically alloyed in air for 1 hour. The heat treatment of coated samples was carried out at 800 °C in a vacuum furnace for 2 hour. In order to characterize the phase composition and microstructure of the coating before and after heat treatment, XRD and SEM-EDX were used. The analysis results reveal that the ball milling process induces the formation of homogeneous Cr-Al-W coating structure with a thickness of about 80 μm. The phase observation shows individual peaks of each starting elements, along with the occurrence of powder refinement and solid solution formation. After heat treatment, AlCr2 and Al8Cr5 phases were formed. The addition of W accelerates the formation of AlCr2, but inhibits the formation of Al8Cr5. The detail of the results was presented in this paper.
A computer program for condensing heat exchanger performance in the presence of noncondensable gases
NASA Technical Reports Server (NTRS)
Yendler, Boris
1994-01-01
A computer model has been developed which evaluates the performance of a heat exchanger. This model is general enough to be used to evaluate many heat exchanger geometries and a number of different operating conditions. The film approach is used to describe condensation in the presence of noncondensables. The model is also easily expanded to include other effects like fog formation or suction.
Multi-step heater deployment in a subsurface formation
Mason, Stanley Leroy [Allen, TX
2012-04-03
A method for installing a horizontal or inclined subsurface heater includes placing a heating section of a heater in a horizontal or inclined section of a wellbore with an installation tool. The tool is uncoupled from the heating section. A lead in section is mechanically and electrically coupled to the heating section of the heater. The lead-in section is located in an angled or vertical section of the wellbore.
The Structural Formation and Physical Behaviour of Cross-Linked Epoxy Resins
1981-04-01
analysis , at which the heat evolution reaches a maximum, may be used for purposes of characterisation. Aliphatic polyamines react mere quickly than the...DTA, DSC), thermomechanical analysis (TMA), torsional vibration analysis (TVA), deter- mination of the dimensional stability under heat (eq ISO R 75 or...obtained by thermomechanical analysis , taking the temperature of maximum velocity of penetration of a loaded probe (rate of heating - 10°C/min
Depriming of arterial heat pipes: An investigation of CTS thermal excursions
NASA Technical Reports Server (NTRS)
Antoniuk, D.; Edwards, D. K.
1980-01-01
Four thermal excursions of the Transmitter Experiment Package (TEP) were the result of the depriming of the arteries in all three heat pipes in the Variable Conductance Heat Pipe System which cooled the TEP. The determined cause of the depriming of the heat pipes was the formation of bubbles of the nitrogen/helium control gas mixture in the arteries during the thaw portion of a freeze/thaw cycle of the inactive region of the condenser section of the heat pipe. Conditions such as suction freezeout or heat pipe turn-on, which moved these bubbles into the active region of the heat pipe, contributed to the depriming mechanism. Methods for precluding, or reducing the probability of, this type of failure mechanism in future applications of arterial heat pipes are included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crane, Matthew J.; Smith, Bennett E.; Meisenheimer, Peter B.
Nanodiamonds have emerged as promising materials for quantum computing, biolabeling, and sensing due to their ability to host color centers with remarkable photostability and long spin-coherence times at room temperature. Recently, a bottom-up, high-pressure, high-temperature (HPHT) approach was demonstrated for growing nanodiamonds with color centers from amorphous carbon precursors in a laser-heated diamond anvil cell (LH-DAC) that was supported by a near-hydrostatic noble gas pressure medium. However, a detailed understanding of the photothermal heating and its effect on diamond growth, including the phase conversion conditions and the temperature-dependence of color center formation, has not been reported. In this work, wemore » measure blackbody radiation during LH-DAC synthesis of nanodiamond from carbon aerogel to examine these temperature-dependent effects. Blackbody temperature measurements suggest that nanodiamond growth can occur at 16.3 GPa and 1800 K. We use Mie theory and analytical heat transport to develop a predictive photothermal heating model. This model demonstrates that melting the noble gas pressure medium during laser heating decreases the local thermal conductivity to drive a high spatial resolution of phase conversion to diamond. In conclusion, we observe a temperature-dependent formation of nitrogen vacancy centers and interpret this phenomenon in the context of HPHT carbon vacancy diffusion.« less
Grell, Tsehai A.J.; Alabanza, Anginelle M.; Gaskell, Karen; Aslan, Kadir
2013-01-01
A rapid surface modification technique for the formation of self-assembled monolayers (SAMs) of alkanethiols on gold thin films using microwave heating in less than 10 min is reported. In this regard, SAMs of two model alkanethiols, 11-mercaptoundecanoic acid (11-MUDA, to generate a hydrophilic surface) and undecanethiol (UDET, a hydrophobic surface), were successfully formed on gold thin films using selective microwave heating in 1) a semi-continuous and 2) a continuous fashion and at room temperature (24 hours, control experiment, no microwave heating). The formation of SAMs of 11-MUDA and UDET were confirmed by contact angle measurements, Fourier–transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The contact angles for water on SAMs formed by the selective microwave heating and conventional room temperature incubation technique (24 hours) were measured to be similar for 11-MUDA and UDET. FT-IR spectroscopy results confirmed that the internal structure of SAMs prepared using both microwave heating and at room temperature were similar. XPS results revealed that the organic and sulfate contaminants found on bare gold thin films were replaced by SAMs after the surface modification process was carried out using both microwave heating and at room temperature. PMID:24083414
Crane, Matthew J.; Smith, Bennett E.; Meisenheimer, Peter B.; ...
2018-05-17
Nanodiamonds have emerged as promising materials for quantum computing, biolabeling, and sensing due to their ability to host color centers with remarkable photostability and long spin-coherence times at room temperature. Recently, a bottom-up, high-pressure, high-temperature (HPHT) approach was demonstrated for growing nanodiamonds with color centers from amorphous carbon precursors in a laser-heated diamond anvil cell (LH-DAC) that was supported by a near-hydrostatic noble gas pressure medium. However, a detailed understanding of the photothermal heating and its effect on diamond growth, including the phase conversion conditions and the temperature-dependence of color center formation, has not been reported. In this work, wemore » measure blackbody radiation during LH-DAC synthesis of nanodiamond from carbon aerogel to examine these temperature-dependent effects. Blackbody temperature measurements suggest that nanodiamond growth can occur at 16.3 GPa and 1800 K. We use Mie theory and analytical heat transport to develop a predictive photothermal heating model. This model demonstrates that melting the noble gas pressure medium during laser heating decreases the local thermal conductivity to drive a high spatial resolution of phase conversion to diamond. In conclusion, we observe a temperature-dependent formation of nitrogen vacancy centers and interpret this phenomenon in the context of HPHT carbon vacancy diffusion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gafner, Yu. Ya., E-mail: ygafner@khsu.ru; Gafner, S. L.; Chepkasov, I. V.
2010-10-15
The condensation of 85000 Cu or Ni atoms from the high-temperature gas phase has been simulated by molecular dynamics with the tight binding potential. The efect of the subsequent thermal treatment on the shape and structure of synthesized particles was studied by simulating their gradual heating in a range of 100-1200 K. Some tendencies are revealed that are characteristic of the influence of heat treatment on the nanoparticles synthesized from the gas phase. It is concluded that short-term heating leads to significant ordering of the internal structure in 70% of agglomerated nanoparticles with the predominant formation of spherical shapes. Inmore » order to explain this result, the main mechanisms of cluster formation from the gas phase have been analyzed and it is found that the agglomeration temperature plays the main role in the formation of clusters with unified shape and structure. This opens the fundamental possibility of obtaining Cu and Ni nanoclusters with preset size, shape, and structure and, hence, predictable physical properties.« less
Evaluation of rock/fracture interactions during steam injection through vertical hydrofractures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovscek, A.R.; Johnston, R.M.; Patzek, T.W.
1995-12-31
This paper illustrates the design and results of Shell`s Phase 2 steam drive pilot in the South Belridge Diatomite, Kern County, California. Steam drive on 5/8 acre spacing appears to be an economically viable alternative to waterflooding in the Diatomite; hence, it is being explored as a secondary recovery process. The purpose of the Phase 2 pilot was to demonstrate that steam could be injected across the full Diatomite interval and to quantify reservoir heating and volumetric sweep by steam. In this pilot, two separate, noncommunicating hydrofractures that span the entire Diatomite column (1,110--1,910 ft) are used for injection. Tomore » interpret quantitatively steam drive results the authors propose a computationally simple, high resolution model that captures formation heating due to both steam/hot condensate convection and heat conduction, evolution of formation permeability, and changes in the size and shape of the injection hydrofractures. From this model they obtain formation pressure, temperature, the cumulative steam injection, the dynamics of hydrofractures while they undergo steam injection, and, thus, a history match for the pilot.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blandin, J.J.; Varloteaux, A.; Suery, M.
Superplastic deformation of aluminium alloys induces cavity formation throughout the material, so that superplastic forming usually requires to be carried out under superimposed gas pressure to minimize strain-induced damage. This paper deals with the beneficial effects of heat treatment at high temperature for several hours before deformation on cavitation behavior of a superplastically deformed 7475 alloy. Transmission electron microscopy observations show that several microstructural transformations are induced by superplastic deformation and affected by the heat treatment. At first, the generation of dispersoid free zones at the periphery of the grains is observed, the composition of which depends on the priormore » history of the specimen. Secondly, the formation of long thin fibers extending in the cavities in the as received specimens, these fibers being no longer present in the heat-treated conditions. A TEM characterization of the fibers is presented and a mechanism of their formation is discussed. Such a reduction of the cavitation level for a given strain is interesting in view of superplastic forming of aluminium alloys under atmospheric pressure.« less
Efficient numerical simulation of heat storage in subsurface georeservoirs
NASA Astrophysics Data System (ADS)
Boockmeyer, A.; Bauer, S.
2015-12-01
The transition of the German energy market towards renewable energy sources, e.g. wind or solar power, requires energy storage technologies to compensate for their fluctuating production. Large amounts of energy could be stored in georeservoirs such as porous formations in the subsurface. One possibility here is to store heat with high temperatures of up to 90°C through borehole heat exchangers (BHEs) since more than 80 % of the total energy consumption in German households are used for heating and hot water supply. Within the ANGUS+ project potential environmental impacts of such heat storages are assessed and quantified. Numerical simulations are performed to predict storage capacities, storage cycle times, and induced effects. For simulation of these highly dynamic storage sites, detailed high-resolution models are required. We set up a model that accounts for all components of the BHE and verified it using experimental data. The model ensures accurate simulation results but also leads to large numerical meshes and thus high simulation times. In this work, we therefore present a numerical model for each type of BHE (single U, double U and coaxial) that reduces the number of elements and the simulation time significantly for use in larger scale simulations. The numerical model includes all BHE components and represents the temporal and spatial temperature distribution with an accuracy of less than 2% deviation from the fully discretized model. By changing the BHE geometry and using equivalent parameters, the simulation time is reduced by a factor of ~10 for single U-tube BHEs, ~20 for double U-tube BHEs and ~150 for coaxial BHEs. Results of a sensitivity study that quantify the effects of different design and storage formation parameters on temperature distribution and storage efficiency for heat storage using multiple BHEs are then shown. It is found that storage efficiency strongly depends on the number of BHEs composing the storage site, their distance and the cycle time. The temperature distribution is most sensitive to thermal conductivity of both borehole grouting and storage formation while storage efficiency is mainly controlled by the thermal conductivity of the storage formation.
NASA Astrophysics Data System (ADS)
Shmeleva, O. P.
The flare transition layer exists as a relatively steady formation even during impulsive heating. It is maintained by a heat flow from the high-temperature plasma, where the major part of the electron beam energy is absorbed. The lifetime of this plasma is much greater than the impulsive heating time. Intensities of resonance UV lines are calculated using both the model of impulsive nonthermal heating by energetic electrons and the model of continuous thermal heating. The calculated line intensity is almost constant during a long time. The line Doppler shifts predicted by the former model match observations. This suggests that the model represents sufficiently well the actual dynamics of the flare plasma. The flare transition layer is a thin formation, its thickness being Δξ = 1021m-2. It is therefore described adequately within the p = const approximation though the picture of hydrodynamic response of the solar atmosphere to the impulsive heating by energy flows is rather complicated and nonsteady, of course. The intensities of the C IV λλ154.8, 155.1 nm and O VI λλ103.2, 103.8 nm lines are calculated within the scope of the model of continuous thermal heating, in which the conductive heating of the flare transition layer is balanced by radiative cooling. The line intensities are proportional to the pressure in the layer, which permits the pressure to be found from the observed line intensities. The analysis reveals that both heating models adequately represent the actual structure and dynamics of plasma in a flare. In the flare transition layer, the classical heat conduction always does work.
MECHANISMS OF INORGANIC PARTICLE FORMATION DURING SUSPENSION HEATING OF SIMULATED AQEOUS WASTES
The paper gives results of measurements of metal partitioning between the fine condensation aerosol and the larger particles produced during rapid heating of polydisperse droplet streams of aqueous solutions containing nitrates of Cd, Pb, and Ni in a laboratory scale furnace. rim...
Passive ice freezing-releasing heat pipe. [Patent application
Gorski, A.J.; Schertz, W.W.
1980-09-29
A heat pipe device has been developed which permits completely passive ice formation and periodic release of ice without requiring the ambient temperature to rise above the melting point of water. This passive design enables the maximum amount of cooling capacity to be stored in the tank.
Bridging the Gap: Formation of Voluminous Pseudotachylitic Rocks in Tectonic and Impact Settings
NASA Astrophysics Data System (ADS)
Vogt, B.; Shipton, Z. K.; Reimold, W. U.
2015-09-01
Pseudotachylitic breccias (PTBs) from the Outer Hebrides Fault Zone, Scotland, show structural similarities to impact PTBs. In both impact and tectonic settings, processes additional to friction heat melting are requisite for the formation of PTBs.
Anticorrosive Microbial Polysaccharides: Structure-Function Relationships
USDA-ARS?s Scientific Manuscript database
Water-soluble microbial polysaccharides are often implicated in biofilm formation and are believed to mediate cell-cell aggregation and adhesion to surfaces. Generally, biofilm formation is considered harmful or undesirable, as it leads to increased drag, plugging of pores, dimished heat transfer, ...
Heat flow, deep formation temperature and thermal structure of the Tarim Basin, northwest China
NASA Astrophysics Data System (ADS)
Liu, Shaowen; Lei, Xiao; Feng, Changge; Li, Xianglan
2016-04-01
Geothermal regime of a sedimentary basin not only provides constraint on understanding the basin formation and evolution, but also offers fundamental parameters for hydrocarbon resources assessment. As one of three Precambrian blocks in China, the Tarim craton is also a current hydrocarbon exploration target where the largest sedimentary basin (Tarim Basin) develops with great potential. Although considerable advancement of geothermal regime of this basin has been made during the past decades, nearly all the temperature data in previous studies are from the exploration borehole formation testing temperatures. Recently, we have conducted the steady-state temperature logging in the Tarim basin, and measured abundant rock thermal properties, enabling us to re-visit the thermal regime of this area with more confidence. Our results show that the present-day geothermal gradients for the Tarim Basin vary from 23 K/km to 27 K/km, with a mean of 22 K/km; the values of heat flow range from 40 mW/m2 to 49 mW/m2, with a mean of 43 mW/m2. These new data confirmed that the Tarim Basin has relatively low heat flow and shares similar geothermal regime with other Precambrian cratons in the world. In addition, the new temperatures from the steady-state logs are larger than the bottom hole temperatures (BHT) as 22 degree Celsius, indicating the thermal non-equilibrium for the BHTs used in previous studies. Spatial distribution of the estimated formation temperatures-at-depth of 1~5km within the basin is similar and mainly controlled by crystalline basement pattern. Generally, the temperatures at the depth of 1km range from 29 to 41 degree Celsius, with a mean of 35 degree Celsius; while the temperatures at 3km vary from 63 to 100 degree Celsius, and the mean is 82 degree Celsius; at 5km below the surface, the temperatures fall into a range between 90 and 160 degree Celsius, with a mean of 129 degree Celsius. We further proposed the long-term low geothermal background and large burial depth are the favorable conditions for hydrocarbon generation and preservation. As far as heat budget of the Tarim Basin is concerned, the radiogenic heat from the sedimentary cover accounts only for 20 percent of the surface heat flow (~9 mW/m2), while the mantle heat flow is estimated to be low as 6~15 mW/m2; this indicates the dominant contribution of crustal radiogenic heat to the observed heat flow. Any variations in surface heat flow for the Tarim Basin can be due only to changes in crustal heat production. Thermal contrast between the Tarim Basin and Tibet Plateau, represented by a difference in surface heat flow and deep crustal temperature, is remarkable. This inherited thermal contrast can be traced as far as before the India-Asia collision. Moreover, the lithosphere beneath the Tarim Basin is sufficiently strong to resist the gravitational potential energy difference and tectonic forces from Tibet. The observed thermal and rheological contrast accounts for the differential Cenozoic deformation in the Tarim Basin and adjacent areas.
Formation of metastable phases during heat treatment of multilayers in the Al-Pt system
NASA Astrophysics Data System (ADS)
Lábár, János L.; Kovács, András; Barna, Péter B.; Gas, Patrick
2001-12-01
This communication reports that several metastable phases form subsequently during heat treatment (up to 500 °C) of Al-rich Al-Pt multilayers. Besides the known a(amorphous)-Al2Pt, formation of two metastable phases with a composition close to Al5Pt was also observed in a transmission electron microscope. One of them corresponds to a phase given by space group P4 in Pearson's collection of intermetallic compounds. The other, a hexagonal phase (a=12.4 Å and c=26.2 Å) is the one that was observed in rapidly solidified Al-Pt alloys [L. Ma, R. Wang, and K. H. Kuo, J. Less-Common Met. 163, 37 (1990)]. Formation of these phases under different conditions is reported here.
Molina-Ruiz, Manel; Ferrando-Villalba, Pablo; Rodríguez-Tinoco, Cristian; Garcia, Gemma; Rodríguez-Viejo, Javier; Peral, Inma; Lopeandía, Aitor F
2015-05-01
The use of a membrane-based chip nanocalorimeter in a powder diffraction beamline is described. Simultaneous wide-angle X-ray scattering and scanning nanocalorimetric measurements are performed on a thin-film stack of palladium/amorphous silicon (Pd/a-Si) at heating rates from 0.1 to 10 K s(-1). The nanocalorimeter works under a power-compensation scheme previously developed by the authors. Kinetic and structural information of the consumed and created phases can be obtained from the combined techniques. The formation of Pd2Si produces a broad calorimetric peak that contains overlapping individual processes. It is shown that Pd consumption precedes the formation of the crystalline Pd2Si phase and that the crystallite size depends on the heating rate of the experiment.
Treating tar sands formations with dolomite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinegar, Harold J.; Karanikas, John Michael
A method for treating a karsted formation containing heavy hydrocarbons and dolomite includes providing heat to at least part of one or more karsted layers in the formation from one or more heaters located in the karsted layers. A temperature in at least one of the karsted layers is allowed to reach a decomposition temperature of dolomite in the formation. The dolomite is allowed to decompose and at least some hydrocarbons are produced from at least one of the karsted layers of the formation.
Heating of the corona by magnetic singularities
NASA Technical Reports Server (NTRS)
Antiochos, Spiro K.
1990-01-01
Theoretical models of current-sheet formation and magnetic heating in the solar corona are examined analytically. The role of photospheric connectivity in determining the topology of the coronal magnetic field and its equilibrium properties is explored; nonequilibrium models of current-sheet formation (assuming an initially well connected field) are described; and particular attention is given to models with discontinuous connectivity, where magnetic singularities arise from smooth footpoint motions. It is shown that current sheets arise from connectivities in which the photospheric flux structure is complex, with three or more polarity regions and a magnetic null point within the corona.
Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
Roes, Augustinus Wilhelmus Maria [Houston, TX; Mo, Weijian [Sugar Land, TX; Muylle, Michel Serge Marie [Houston, TX; Mandema, Remco Hugo [Houston, TX; Nair, Vijay [Katy, TX
2009-09-01
A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation.
Vinegar, Harold J.; Coit, William George; Griffin, Peter Terry; Hamilton, Paul Taylor; Hsu, Chia-Fu; Mason, Stanley Leroy; Samuel, Allan James; Watkins, Ronnie Wade
2010-11-09
A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.
Vinegar, Harold J [Bellaire, TX; Coit, William George [Bellaire, TX; Griffin, Peter Terry [Brixham, GB; Hamilton, Paul Taylor [Houston, TX; Hsu, Chia-Fu [Granada Hills, CA; Mason, Stanley Leroy [Allen, TX; Samuel, Allan James [Kular Lumpar, ML; Watkins, Ronnie Wade [Cypress, TX
2012-07-31
A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.
NASA Astrophysics Data System (ADS)
Hu, Chia-Yu; Naab, Thorsten; Glover, Simon C. O.; Walch, Stefanie; Clark, Paul C.
2017-10-01
We present high-resolution hydrodynamical simulations of isolated dwarf galaxies including self-gravity, non-equilibrium cooling and chemistry, interstellar radiation fields (ISRF) and shielding, star formation, and stellar feedback. This includes spatially and temporally varying photoelectric (PE) heating, photoionization, resolved supernova (SN) blast waves and metal enrichment. A new flexible method to sample the stellar initial mass function allows us to follow the contribution to the ISRF, the metal output and the SN delay times of individual massive stars. We find that SNe play the dominant role in regulating the global star formation rate, shaping the multiphase interstellar medium (ISM) and driving galactic outflows. Outflow rates (with mass-loading factors of a few) and hot gas fractions of the ISM increase with the number of SNe exploding in low-density environments where radiative energy losses are low. While PE heating alone can suppress star formation as efficiently as SNe alone can do, it is unable to drive outflows and reproduce the multiphase ISM that emerges naturally whenever SNe are included. We discuss the potential origins for the discrepancy between our results and another recent study that claimed that PE heating dominates over SNe. In the absence of SNe and photoionization (mechanisms to disperse dense clouds), the impact of PE heating is highly overestimated owing to the (unrealistic) proximity of dense gas to the radiation sources. This leads to a substantial boost of the infrared continuum emission from the UV-irradiated dust and a far-infrared line-to-continuum ratio too low compared to observations.
NASA Astrophysics Data System (ADS)
Solanki, Neha; Jotania, Rajshree B.
2017-05-01
M-type strontium hexaferrite powder samples were synthesized using a green synthesis route with and without presence of Aloe vera and Neem leaves extract. The dry brownish precursors of strontium hexaferrite were recovered from a mixed solution of metal salts and leaves extract, heated at 100 °C. The obtained precursors were pre-heated at 500 °C for 4 hrs. followed by final heating at 950 °C for 4 hrs. in a muffle furnace to obtain SrFe12O19 hexaferrite powder. The obtained SrFe12O19 hexaferrite powder samples characterized at room temperature in order to check phase purity and structural properties. XRD analysis confirms that samples prepared without and with Aloe vera leaves extract (heated at 950 °C for 4 hrs.) show formation of α-Fe2O3 and M-phase; while the sample prepared in presence of Neem leaves extract (heated at 950 °C for 4 hrs.) show formation of mono phase of strontium hexaferrite. Lattice parameter (a) and cell volume (V) are found to increase in the samples prepared in presence of Aloe vera and Neem leaves extract.
NASA Astrophysics Data System (ADS)
Cassanelli, James P.; Head, James W.
2016-06-01
Recent modeling studies of the early Mars climate predict a predominantly cold climate, characterized by the formation of regional ice sheets across the highland areas of Mars. Formation of the predicted "icy highlands" ice sheets is coincident with a peak in the volcanic flux of Mars involving the emplacement of the Late Noachian - Early Hesperian ridged plains unit. We explore the relationship between the predicted early Mars "icy highlands" ice sheets, and the extensive early flood volcanism to gain insight into the surface conditions prevalent during the Late Noachian to Early Hesperian transition period. Using Hesperia Planum as a type area, we develop an ice sheet lava heating and loading model. We quantitatively assess the thermal and melting processes involved in the lava heating and loading process following the chronological sequence of lava emplacement. We test a broad range of parameters to thoroughly constrain the lava heating and loading process and outline predictions for the formation of resulting geological features. We apply the theoretical model to a study area within the Hesperia Planum region and assess the observed geology against predictions derived from the ice sheet lava heating and loading model. Due to the highly cratered nature of the Noachian highlands terrain onto which the volcanic plains were emplaced, we predict highly asymmetrical lava loading conditions. Crater interiors are predicted to accumulate greater thicknesses of lava over more rapid timescales, while in the intercrater plains, lava accumulation occurs over longer timescales and does not reach great thicknesses. We find that top-down melting due to conductive heat transfer from supraglacial lava flows is generally limited when the emplaced lava flows are less than ∼10 m thick, but is very significant at lava flow thicknesses of ∼100 m or greater. We find that bottom-up cryosphere and ice sheet melting is most likely to occur within crater interiors where lavas accumulate to a sufficient thickness to raise the ice-melting isotherm to the base of the superposed lavas. In these locations, if lava accumulation occurs rapidly, bottom-up melting of the ice sheet can continue, or begin, after lava accumulation has completed in a process we term "deferred melting". Subsurface mass loss through melting of the buried ice sheets is predicted to cause substantial subsidence in the superposed lavas, leading to the formation of associated collapse features including fracture systems, depressions, surface faulting and folding, wrinkle-ridge formation, and chaos terrain. In addition, if meltwater generated from the lava heating and loading process becomes trapped at the lava flow margins due to the presence of impermeable confining units, large highly pressurized episodic flooding events could occur. Examination of the study area reveals geological features which are generally consistent with those predicted to form as a result of the ice sheet lava heating and loading process, suggesting the presence of surface snow and ice during the Late Noachian to Early Hesperian period.
HAARP-Induced Ionospheric Ducts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milikh, Gennady; Vartanyan, Aram
2011-01-04
It is well known that strong electron heating by a powerful HF-facility can lead to the formation of electron and ion density perturbations that stretch along the magnetic field line. Those density perturbations can serve as ducts for ELF waves, both of natural and artificial origin. This paper presents observations of the plasma density perturbations caused by the HF-heating of the ionosphere by the HAARP facility. The low orbit satellite DEMETER was used as a diagnostic tool to measure the electron and ion temperature and density along the satellite orbit overflying close to the magnetic zenith of the HF-heater. Thosemore » observations will be then checked against the theoretical model of duct formation due to HF-heating of the ionosphere. The model is based on the modified SAMI2 code, and is validated by comparison with well documented experiments.« less
Supercritical water gasification of biomass: Thermodynamic constraints.
Castello, Daniele; Fiori, Luca
2011-08-01
In the present work, the supercritical water gasification (SCWG) of biomass is analyzed with a view to outlining the possible thermodynamic constraints that must be taken into account to develop this new process. In particular, issues concerning the formation of solid carbon and the process heat duty are discussed. The analysis is conducted by means of a two-phase non-stoichiometric thermodynamic model, based on Gibbs free energy minimization. Results show that char formation at equilibrium only occurs at high biomass concentrations, with a strong dependence on biomass composition. As regards the process heat duty, SCWG is mostly endothermic when biomass concentration is low, although a very small amount of oxidizing agent is able to make the process exothermic, with only a small loss in the heating value of the syngas produced. Copyright © 2011 Elsevier Ltd. All rights reserved.
Acrylamide formation in vegetable oils and animal fats during heat treatment.
Daniali, G; Jinap, S; Hajeb, P; Sanny, M; Tan, C P
2016-12-01
The method of liquid chromatographic tandem mass spectrometry was utilized and modified to confirm and quantify acrylamide in heating cooking oil and animal fat. Heating asparagine with various cooking oils and animal fat at 180°C produced varying amounts of acrylamide. The acrylamide in the different cooking oils and animal fat using a constant amount of asparagine was measured. Cooking oils were also examined for peroxide, anisidine and iodine values (or oxidation values). A direct correlation was observed between oxidation values and acrylamide formation in different cooking oils. Significantly less acrylamide was produced in saturated animal fat than in unsaturated cooking oil, with 366ng/g in lard and 211ng/g in ghee versus 2447ng/g in soy oil, followed by palm olein with 1442ng/g. Copyright © 2016. Published by Elsevier Ltd.
Vinegar, Harold J.; Sandberg, Chester Ledlie
2010-11-09
A heating system for a subsurface formation is described. The heating system includes a first heater, a second heater, and a third heater placed in an opening in the subsurface formation. Each heater includes: an electrical conductor; an insulation layer at least partially surrounding the electrical conductor; and an electrically conductive sheath at least partially surrounding the insulation layer. The electrical conductor is electrically coupled to the sheath at a lower end portion of the heater. The lower end portion is the portion of the heater distal from a surface of the opening. The first heater, the second heater, and the third heater are electrically coupled at the lower end portions of the heaters. The first heater, the second heater, and the third heater are configured to be electrically coupled in a three-phase wye configuration.
A recipe to create nano-grains on dolomite
NASA Astrophysics Data System (ADS)
Røyne, Anja; Pluymakers, Anne
2017-04-01
Advances in imaging techniques in recent years have allowed for easy microstructure visualization at nano-resolution, and many studies have observed nano-grains in different materials, including rocks. An important example in geological systems is their seemingly ubiquitous occurrence on so-called mirror-like slip surfaces, produced in natural and experimental earthquakes of both carbonate and silicate rocks. It is, however, not yet clear whether these nano-grains can indeed be used as a reliable indicator of seismic slip. Since carbonates are prone to decarbonation at temperatures exceeding 550 - 600 °C, nano-grain formation may be formed due to heating rather than shear. In this study, we have investigated the effect of elevated temperatures on carbonate fault rocks. We used hand-polished mirror-like dolomite protolith, as well as natural fault mirror surfaces, obtained from the Foiana Fault Zone from the Southern Alps in Italy. The samples were heated to 200 to 800 degC in a 5 hour heating cycle, followed by slow cooling ( 12 h) to room temperature. Subsequently, we imaged the samples using SEM and AFM. Nano-grain formation on the surfaces of hand-polished samples starts around 400 ° C, and is pervasive at and above 600 ° C. Fault mirror samples are initially coated with naturally formed nano-grains and only very local patches on these surfaces display obvious morphological changes due to heating. Exposing both types of sample heated to 600 °C to DI water under the AFM shows rapid recrystallization and the formation of a more porous and blade-like crystal layer on the entire surface. This happens both in hand-polished and naturally polished surfaces. Fault mirror samples that have not been heated do not change when exposed to water. We have shown that nano-grains can form as a result of heating without shear, but that samples that have experienced high shear strain have a water- and heat-resistant coating composed of otherwise morphologically indistinguishable nano-grains. These results show that caution is needed when interpreting laboratory and field microstructures, since there is more than one way to cook up a nano-grain.
Method and apparatus for producing thermal vapor stream
Cradeur, Robert R.; Sperry, John S.; Krajicek, Richard W.
1979-01-01
Method and apparatus for producing a thermal vapor stream for injecting into a subterranean formation for the recovery of liquefiable minerals therefrom, including a pressure vessel containing a high pressure combustion chamber for producing a heating gas for introduction into a heating gas injector. The heating gas injector is partly immersed in a steam generating section of the pressure vessel such that the heating gas is passed through the steam generating section to produce steam and combustion products which are directed between the pressure vessel and the combustion chamber for simultaneously cooling of the combustion chamber by further heating of the steam and combustion gases.
NASA Astrophysics Data System (ADS)
Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.; Glover, B. B.; Duque, A. L. Higginbotham; Perry, W. L.; Patterson, B. M.; Dalvit, D. A. R.; Moore, D. S.
2016-04-01
Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. We analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.
Ko, Jae Hac; Wang, Jingchen; Xu, Qiyong
2018-05-21
Polycyclic aromatic hydrocarbons (PAHs) not only present a risk to human health when released into the air, but also can be precursors to form particulate matter (PM) during sewage sludge pyrolysis. In this study, 16 EPA PAHs in PM (ΣPAH PM ) during sewage sludge pyrolysis were investigated with increasing temperature (200 o C-1000 °C) and holding time under different operation conditions [inert gas flow rate (IGFR) (200-800 mL/min) and heating rate (5-20 °C/min)]. ΣPAH PM varied with temperature, IGFR, and heating rate, and ranged from 597 (±41) μg/g to 3240 (±868) μg/g. ΣPAH PM decreased with increasing IGFR but increased with rapid heating rate. Among PAHs species in PM, naphthalene (Nap) was commonly detected at low temperature ranges in all tested conditions. Chrysene (CHR), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), indeno[1,2,3-cd] pyrene (IND), and benzo[g,h,i]perylene (BghiP) in PM became abundant at high temperature with a low IGFR. At high temperature ranges with high volatile conditions (rapid heating rate and low IGFR), PAH formation and growth reactions were considerable, resulting in the formation of heavy PAHs in PM. Copyright © 2018 Elsevier Ltd. All rights reserved.
Deposit formation and heat transfer in hydrocarbon rocket fuels
NASA Technical Reports Server (NTRS)
Giovanetti, A. J.; Spadaccini, L. J.; Szetela, E. J.
1983-01-01
An experimental research program was undertaken to investigate the thermal stability and heat transfer characteristics of several hydrocarbon fuels under conditions that simulate high-pressure, rocket engine cooling systems. The rates of carbon deposition in heated copper and nickel-plated copper tubes were determined for RP-1, propane, and natural gas using a continuous flow test apparatus which permitted independent variation and evaluation of the effect on deposit formation of wall temperature, fuel pressure, and fuel velocity. In addition, the effects of fuel additives and contaminants, cryogenic fuel temperatures, and extended duration testing with intermittent operation were examined. Parametric tests to map the thermal stability characteristics of RP-1, commercial-grade propane, and natural gas were conducted at pressures of 6.9 to 13.8 MPa, bulk fuel velocities of 30 to 90 m/s, and tube wall temperatures in the range of 230 to 810 K. Also, tests were run in which propane and natural gas fuels were chilled to 230 and 160 K, respectively. Corrosion of the copper tube surface was detected for all fuels tested. Plating the inside of the copper tubes with nickel reduced deposit formation and eliminated tube corrosion in most cases. The lowest rates of carbon deposition were obtained for natural gas, and the highest rates were obtained for propane. For all fuels tested, the forced-convection heat transfer film coefficients were satisfactorily correlated using a Nusselt-Reynolds-Prandtl number equation.
NASA Astrophysics Data System (ADS)
Lassiter, J. C.
2005-12-01
Thermal and chemical interaction between the core and mantle has played a critical role in the thermal and chemical evolution of the Earth's interior. Outer core convection is driven by core cooling and inner core crystallization. Core/mantle heat transfer also buffers mantle potential temperature, resulting in slower rates of mantle cooling (~50-100 K/Ga) than would be predicted from the discrepancy between current rates of surface heat loss (~44 TW) and internal radioactive heat production (~20 TW). Core/mantle heat transfer may also generate thermal mantle plumes responsible for ocean island volcanic chains such as the Hawaiian Islands. Several studies suggest that mantle plumes, in addition to transporting heat from the core/mantle boundary, also carry a chemical signature of core/mantle interaction. Elevated 186Os/188Os ratios in lavas from Hawaii, Gorgona, and in the 2.8 Ga Kostomuksha komatiites have been interpreted as reflecting incorporation of an outer core component with high time-integrated Pt/Os and Re/Os ( Brandon et al., 1999, 2003; Puchtel et al., 2005). Preferential partitioning of Os relative to Re and Pt into the inner core during inner core growth may generate elevated Re/Os and Pt/Os ratios in the residual outer core. Because of the long half-life of 190Pt (the parent of 186Os, t1/2 = 489 Ga), an elevated 186Os/188Os outer core signature in plume lavas requires that inner core crystallization began early in Earth history, most likely prior to 3.5 Ga. This in turn requires low time-averaged core/mantle heat flow (<~2.5 TW) or large quantities of heat-producing elements in the core. Core/mantle heat flow may be estimated using boundary-layer theory, by measuring the heat transported in mantle plumes, by estimating the heat transported along the outer core adiabat, or by comparing the rates of heat production, surface heat loss, and secular cooling of the mantle. All of these independent methods suggest time-averaged core/mantle heat flow of ~5-14 TW. In the absence of heat-producing elements in the core, such high heat flow rates require an inner core younger than ~1 Ga and preclude the development of significant 186Os enrichment in the outer core. Experimental studies suggest that potassium may partition into Fe-S-O liquids during core formation. Radioactive decay of potassium in the core could provide an additional heat source and reconcile geophysical evidence for high core/mantle heat flow with apparent geochemical evidence for an ancient inner core. However, high concentrations of chalcophile elements such as Cu in the mantle are inconsistent with significant segregation of a S-rich liquid during core formation, precluding K partitioning into the core by this mechanism. Furthermore, core formation scenarios that would lead to high K content in the core (e.g., core formation prior to terrestrial volatile depletion) also result in high core Pb concentrations. Core/mantle interaction would then produce strong negative correlations between 186Os/188Os and 207Pb/204Pb ratios, but such correlations are not observed. In summary, elevated 186Os/188Os ratios in some plume-derived lavas are unlikely to reflect core/mantle interaction because the inner core is too young for this isotopic signature to have developed in the outer core. Melt generation from pyroxenite or fractionation of PGEs between sulfide melts and monosulfide solid solutions provide alternative mechanisms for generating ancient mantle reservoirs with elevated Pt/Os and 186Os/188Os.
NASA Astrophysics Data System (ADS)
Braunstein, G.; Paz-Pujalt, G. R.; Mason, M. G.; Blanton, T.; Barnes, C. L.; Margevich, D.
1993-01-01
The processes of formation and crystallization of thin films of SrTiO3 prepared by the method of metallo-organic decomposition have been studied with particular emphasis on the relationship between the thermal decomposition of the metallo-organic precursors and the eventual epitaxial alignment of the crystallized films. The films are deposited by spin coating onto single-crystalline silicon and SrTiO3 substrates, pyrolyzed on a hot plate at temperatures ranging from 200 to 450 °C, and subsequently heat treated in a quartz tube furnace at temperatures ranging from 300 to 1200 °C. Heat treatment at temperatures up to 450-500 °C results in the evaporation of solvents and other organic addenda, thermal decomposition of the metallo-organic (primarily metal-carboxylates) precursors, and formation of a carbonate species. This carbonate appears to be an intermediate phase in the reaction of SrCO3 and TiO2 to form SrTiO3. Relevant to this work is the fact that the carbonate species exhibits diffraction lines, indicating the formation of grains that can serve as seeds for the nucleation and growth of randomly oriented SrTiO3 crystallites, thereby leading to a polycrystalline film. Deposition on silicon substrates indeed results in the formation of polycrystalline SrTiO3. However, when the precursor solution is deposited on single-crystalline SrTiO3 substrates, the crystallization process involves a competition between two mechanisms: the random nucleation and growth of crystallites just described, and layer-by-layer solid phase epitaxy. Epitaxial alignment on SrTiO3 substrates can be achieved when the samples are heat treated at temperatures of 1100-1200 °C or at temperatures as low as 600-650 °C when the substrate is heated to about 1100 °C before spin coating.
STAR FORMATION IN DISK GALAXIES. III. DOES STELLAR FEEDBACK RESULT IN CLOUD DEATH?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tasker, Elizabeth J.; Wadsley, James; Pudritz, Ralph
2015-03-01
Stellar feedback, star formation, and gravitational interactions are major controlling forces in the evolution of giant molecular clouds (GMCs). To explore their relative roles, we examine the properties and evolution of GMCs forming in an isolated galactic disk simulation that includes both localized thermal feedback and photoelectric heating. The results are compared with the three previous simulations in this series, which consists of a model with no star formation, star formation but no form of feedback, and star formation with photoelectric heating in a set with steadily increasing physical effects. We find that the addition of localized thermal feedback greatlymore » suppresses star formation but does not destroy the surrounding GMC, giving cloud properties closely resembling the run in which no stellar physics is included. The outflows from the feedback reduce the mass of the cloud but do not destroy it, allowing the cloud to survive its stellar children. This suggests that weak thermal feedback such as the lower bound expected for a supernova may play a relatively minor role in the galactic structure of quiescent Milky-Way-type galaxies, compared to gravitational interactions and disk shear.« less
NASA Astrophysics Data System (ADS)
Lebouteiller, V.; Péquignot, D.; Cormier, D.; Madden, S.; Pakull, M. W.; Kunth, D.; Galliano, F.; Chevance, M.; Heap, S. R.; Lee, M.-Y.; Polles, F. L.
2017-06-01
Context. The neutral interstellar medium of galaxies acts as a reservoir to fuel star formation. The dominant heating and cooling mechanisms in this phase are uncertain in extremely metal-poor star-forming galaxies. The low dust-to-gas mass ratio and low polycyclic aromatic hydrocarbon abundance in such objects suggest that the traditional photoelectric effect heating may not be effective. Aims: Our objective is to identify the dominant thermal mechanisms in one such galaxy, I Zw 18 (1/30Z⊙), assess the diagnostic value of fine-structure cooling lines, and estimate the molecular gas content. Even though molecular gas is an important catalyst and tracer of star formation, constraints on the molecular gas mass remain elusive in the most metal-poor galaxies. Methods: Building on a previous photoionization model describing the giant H II region of I Zw 18-NW within a multi-sector topology, we provide additional constraints using, in particular, the [C II] 157 μm and [O I] 63 μm lines and the dust mass recently measured with the Herschel Space Telescope. Results: The heating of the H I region appears to be mainly due to photoionization by radiation from a bright X-ray binary source, while the photoelectric effect is negligible. Significant cosmic ray heating is not excluded. Inasmuch as X-ray heating dominates in the H I gas, the infrared fine-structure lines provide an average X-ray luminosity of order 4 × 1040 erg s-1 over the last few 104 yr in the galaxy. The upper limits to the [Ne v] lines provide strong constraints on the soft X-ray flux arising from the binary. A negligible mass of H2 is predicted. Nonetheless, up to 107 M⊙ of H2 may be hidden in a few sufficiently dense clouds of order ≲5 pc (≲0.05'') in size. Regardless of the presence of significant amounts of H2 gas, [C II] and [O I] do not trace the so-called "CO-dark gas", but they trace the almost purely atomic medium. Although the [C II]+[O I] to total infrared ratio in I Zw 18 is similar to values in more metal-rich sources ( 1%), it cannot be safely used as a photoelectric heating efficiency proxy. This ratio seems to be kept stable owing to a correlation between the X-ray luminosity and the star formation rate. Conclusions: X-ray heating could be an important process in extremely metal-poor sources. The lack of photoelectric heating due to the low dust-to-gas ratio tends to be compensated for by the larger occurrence and power of X-ray binaries in low-metallicity galaxies. We speculate that X-ray heating may quench star formation. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Formation of Ganymede's Grooved Terrain by Convection-Driven Resurfacing
NASA Astrophysics Data System (ADS)
Hammond, N. P.; Barr, A. C.
2013-12-01
Over half the surface of Ganymede, Jupiter's largest icy moon, is covered in grooved terrain, which is composed of 10-100 km wide swaths of sub-parallel ridges and troughs [1]. Convection in Ganymede's ice shell was originally suggested as a driving mechanism for grooved terrain formation [2] but subsequent work has argued that convective stresses were too weak to deform the surface [3] and that Ganymede's ice shell was thin and conductive during groove terrain formation [4]. However, the heat flow [5] and strain rate [6] inferred for grooved terrain formation resemble the conditions observed at the active Enceladus South Polar Terrain (SPT), where 'sluggish lid' convection may be occurring [7]. During 'sluggish lid' convection, thermal buoyancy stresses exceed the lithospheric yield stress, allowing convection to reach the surface and drive deformation [8]. Previous work shows that the heat flows and strain rates associated with sluggish lid convection are consistent with the observed heat flow and surface age of the Enceladus SPT [7, 9]. Here we use numerical models of convection in Ganymede's ice shell to show that convection can provide the heat flow and strain rate inferred for grooved terrain formation. We use the finite element model CITCOM [10] to model convection for a wide range of ice shell conditions. We use a newtonian temperature-dependent viscosity consistent with deformation by volume diffusion [11]. We impose a limited viscosity contrast between the surface and base of the ice shell to mimic the effect of an upper surface whose yield stress is less than the critical stress for sluggish lid convection [7, 12] due to impact fracturing [13], tidal flexing, and/or shallow tidal heating. We find that ice shells 10 to 80 km thick are consistent with the heat flow and strain rate inferred for grooved terrain formation. Regions above convective upwellings are consistent with conditions inferred at groove lanes. Regions above downwellings are consistent with heat flow estimates for dark terrain [14] and conditions which favor the formation of long-wavelength, low-amplitude compressional folds [15], similar to those observed on Europa [16]. Such folds may be detectable by the upcoming Jupiter-Icy-Moon-Explorer Mission. Acknowledgements: This work is supported by NASA PG&G #NNX12AI76G References: [1] Collins G. et al., (1998) GRL 25, 3, 233-236 [2] Lucchitta B. (1980) Icarus 44, 481-501 [3] Squyres S. & Croft S. (1986) Satellites 293-341 [4] Showman A. P. et al., (1997) Icarus 129, 367-383 [5] Nimmo F. et al. (2002) GRL 29, 62-65 [6] Bland M. & Showman A. (2007), Icarus 189, 439-456. [7] Barr A. C. (2008) JGR 113, E07009 14 [8] Solomatov V. (2004) JGR 109, B01412 [9] O'Neill C. & Nimmo F. (2010) Nat. Geo. 3 v2 88-91 [10] Moresi L. & Solomatov V. (1995) Phys. Fluids 7, 2154-2162 [11] Goldsby D. & Kohlstedt D. (2001) JGR 106, B6 11017-11030 [12] Solomatov V. (2004) JGR 109, B01412 [13] Nimmo F. & Schenk P. (2006) J. Struc. Geol. 28, 2194-2203 [14] Nimmo F. & Pappalardo R. (2004) GRL 31, L19701 [15] Bland M. & McKinnon W. (2012) Icarus 221, 2, 694-709 [16] Prockter L. & Pappalardo R. (2000) Science 289, 5481, 941-944
Joo, Hyoe-Jin; Park, Saeram; Kim, Kwang-Youl; Kim, Mun-Young; Kim, Heekyeong; Park, Donha; Paik, Young-Ki
2016-03-15
The nematode worm Caenorhabditis elegans survives by adapting to environmental stresses such as temperature extremes by increasing the concentrations of ascaroside pheromones, termed ascarosides or daumones, which signal early C. elegans larvae to enter a non-aging dauer state for long-term survival. It is well known that production of ascarosides is stimulated by heat stress, resulting in enhanced dauer formation by which worms can adapt to environmental insults. However, the molecular mechanism by which ascaroside pheromone biosynthesis is stimulated by heat stress remains largely unknown. In the present study, we show that the heat-shock transcription factor HSF-1 can mediate enhanced ascaroside pheromone biosynthesis in response to heat stress by activating the peroxisomal fatty acid β-oxidation genes in C. elegans. To explore the potential molecular mechanisms, we examined the four major genes involved in the ascaroside biosynthesis pathway and then quantified the changes in both the expression of these genes and ascaroside production under heat-stress conditions. The transcriptional activation of ascaroside pheromone biosynthesis genes by HSF-1 was quite notable, which is not only supported by chromatin immunoprecipitation assays, but also accompanied by the enhanced production of chemically detectable major ascarosides (e.g. daumones 1 and 3). Consequently, the dauer formation rate was significantly increased by the ascaroside pheromone extracts from N2 wild-type but not from hsf-1(sy441) mutant animals grown under heat-stress conditions. Hence heat-stress-enhanced ascaroside production appears to be mediated at least in part by HSF-1, which seems to be important in adaptation strategies for coping with heat stress in this nematode. © 2016 Authors; published by Portland Press Limited.
Cosmic ray heating of intergalactic medium: patchy or uniform?
NASA Astrophysics Data System (ADS)
Jana, Ranita; Nath, Biman B.
2018-06-01
We study the heating of the intergalactic medium (IGM) surrounding high redshift star forming galaxies due to cosmic rays (CR). We take into account the diffusion of low energy cosmic rays and study the patchiness of the resulting heating. We discuss the case of IGM heating around a high redshift minihalo (z ˜ 10-20, M˜105-107 M⊙),and put an upper limit on the diffusion coefficient D ≤ 1 × 1026 cm2 s-1 for the heating to be inhomogeneous at z ˜ 10 and D ≤ 5-6 × 1026 cm2 s-1 at z ˜ 20. For typical values of D, our results suggest uniform heating by CR at high redshift, although there are uncertainties in magnetic field and other CR parameters. We also discuss two cases with continuous star formation, one in which the star formation rate (SFR) of a galaxy is high enough to make the IGM in the vicinity photoionized, and another in which the SFR is low enough to keep it neutral but high enough to cause significant heating by cosmic ray protons. In the neutral case (low SFR), we find that the resulting heating can make the gas hotter than the cosmic microwave background (CMB) radiation for D < 1030 cm2 s-1, within a few kpc of the galaxy, and unlikely to be probed by near future radio observations. In the case of photoionized IGM (high SFR), the resulting heating of the gas in the vicinity of high redshift (z ˜ 4) galaxies of mass ≥1012 M⊙ can suppress gas infall into the galaxy. At lower redshifts (z ˜ 0), an SFR of ˜1 M⊙ yr-1 can suppress the infall into galaxies of mass ≤1010 M⊙.
A radiogenic heating evolution model for cosmochemically Earth-like exoplanets
NASA Astrophysics Data System (ADS)
Frank, Elizabeth A.; Meyer, Bradley S.; Mojzsis, Stephen J.
2014-11-01
Discoveries of rocky worlds around other stars have inspired diverse geophysical models of their plausible structures and tectonic regimes. Severe limitations of observable properties require many inexact assumptions about key geophysical characteristics of these planets. We present the output of an analytical galactic chemical evolution (GCE) model that quantitatively constrains one of those key properties: radiogenic heating. Earth's radiogenic heat generation has evolved since its formation, and the same will apply to exoplanets. We have fit simulations of the chemical evolution of the interstellar medium in the solar annulus to the chemistry of our Solar System at the time of its formation and then applied the carbonaceous chondrite/Earth's mantle ratio to determine the chemical composition of what we term ;cosmochemically Earth-like; exoplanets. Through this approach, predictions of exoplanet radiogenic heat productions as a function of age have been derived. The results show that the later a planet forms in galactic history, the less radiogenic heat it begins with; however, due to radioactive decay, today, old planets have lower heat outputs per unit mass than newly formed worlds. The long half-life of 232Th allows it to continue providing a small amount of heat in even the most ancient planets, while 40K dominates heating in young worlds. Through constraining the age-dependent heat production in exoplanets, we can infer that younger, hotter rocky planets are more likely to be geologically active and therefore able to sustain the crustal recycling (e.g. plate tectonics) that may be a requirement for long-term biosphere habitability. In the search for Earth-like planets, the focus should be made on stars within a billion years or so of the Sun's age.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Zongtang; Both, Johan; Li, Shenggang
The heats of formation and the normalized clustering energies (NCEs) for the group 4 and group 6 transition metal oxide (TMO) trimers and tetramers have been calculated by the Feller-Peterson-Dixon (FPD) method. The heats of formation predicted by the FPD method do not differ much from those previously derived from the NCEs at the CCSD(T)/aT level except for the CrO3 nanoclusters. New and improved heats of formation for Cr3O9 and Cr4O12 were obtained using PW91 orbitals instead of Hartree-Fock (HF) orbitals. Diffuse functions are necessary to predict accurate heats of formation. The fluoride affinities (FAs) are calculated with the CCSD(T)more » method. The relative energies (REs) of different isomers, NCEs, electron affinities (EAs), and FAs of (MO2)n ( M = Ti, Zr, Hf, n = 1 – 4 ) and (MO3)n ( M = Cr, Mo, W, n = 1 – 3) clusters have been benchmarked with 55 exchange-correlation DFT functionals including both pure and hybrid types. The absolute errors of the DFT results are mostly less than ±10 kcal/mol for the NCEs and the EAs, and less than ±15 kcal/mol for the FAs. Hybrid functionals usually perform better than the pure functionals for the REs and NCEs. The performance of the two types of functionals in predicting EAs and FAs is comparable. The B1B95 and PBE1PBE functionals provide reliable energetic properties for most isomers. Long range corrected pure functionals usually give poor FAs. The standard deviation of the absolute error is always close to the mean errors and the probability distributions of the DFT errors are often not Gaussian (normal). The breadth of the distribution of errors and the maximum probability are dependent on the energy property and the isomer.« less
Standing shocks in a two-fluid solar wind
NASA Technical Reports Server (NTRS)
Habbal, Shadia R.; Hu, You Qiu; Esser, Ruth
1994-01-01
We present a numerical study of the formation of standing shocks in the solar wind using a two-fluid time-dependent model in the presence of Alfven waves. Included in this model is the adiabatic cooling and thermal conduction of both electrons and protons. In this study, standing shocks develop in the flow when additional critical points form as a result of either localized momentum addition or rapid expansion of the flow tube below the existing sonic point. While the flow speed and density exhibit the same characteristics as found in earlier studies of the formation of standing shocks, the inclusion of electron and proton heat conduction produces different signatures in the electron and proton temperature profiles across the shock layer. Owing to the strong heat conduction, the electron temperature is nearly continuous across the shock, but its gradient has a negative jump across it, thus producing a net heat flux out of the shock layer. The proton temperature exhibits the same characteristics for shocks produced by momentum addition but behaves differently when the shock is formed by the rapid divergence of the flow tube. The adiabatic cooling in a rapidly diverging flow tube reduces the proton temperature so substantially that the proton heat conduction becomes negligible in the vicinity of the shock. As a result, protons experience a positive jump in temperature across the shock. While Alfven waves do not affect the formation of standing shocks, they contribute to the change of the mmomentum and energy balance across them. We also find that for this solar wind model the inclusion of thermal conduction and adiabatic cooling for the elctrons and protons increases significantly the range of parameters characterizing the formation of standing shocks over those previously found for isothermal and polytropic models.
Impact of Radiogenic Heating on the Formation Conditions of Comet 67P/Churyumov–Gerasimenko
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mousis, O.; Drouard, A.; Vernazza, P.
2017-04-10
Because of the high fraction of refractory material present in comets, the heat produced by the radiogenic decay of elements such as aluminum and iron can be high enough to induce the loss of ultravolatile species such as nitrogen, argon, or carbon monoxide during their accretion phase in the protosolar nebula (PSN). Here, we investigate how heat generated by the radioactive decay of {sup 26}Al and {sup 60}Fe influences the formation of comet 67P/Churyumov–Gerasimenko, as a function of its accretion time and the size of its parent body. We use an existing thermal evolution model that includes various phase transitions,more » heat transfer in the ice-dust matrix, and gas diffusion throughout the porous material, based on thermodynamic parameters derived from Rosetta observations. Two possibilities are considered: either, to account for its bilobate shape, 67P/Churyumov–Gerasimenko was assembled from two primordial ∼2 km sized planetesimals, or it resulted from the disruption of a larger parent body with a size corresponding to that of comet Hale–Bopp (∼70 km). To fully preserve its volatile content, we find that either 67P/Churyumov–Gerasimenko’s formation was delayed between ∼2.2 and 7.7 Myr after that of Ca–Al-rich Inclusions in the PSN or the comet’s accretion phase took place over the entire time interval, depending on the primordial size of its parent body and the composition of the icy material considered. Our calculations suggest that the formation of 67P/Churyumov–Gerasimenko is consistent with both its accretion from primordial building blocks formed in the nebula or from debris issued from the disruption of a Hale–Bopp-like body.« less
NASA Astrophysics Data System (ADS)
Salomatov, V. V.; Kuznetsov, G. V.; Syrodoy, S. V.
2017-11-01
The results of the numerical simulation of heat transfer from the combustion products of coal and coal-water fuels (CWF) to the internal environment. The mathematical simulation has been carried out on the sample of the pipe surfaces of the combustion chamber of the boiler unit. The change in the characteristics of heat transfer (change of thermochemical characteristics) in the conditions of formation of the ash deposits have been taken into account. According to the results of the numerical simulation, the comparative analysis of the efficiency of heat transfer has been carried out from the furnace environment to the inside pipe coolant (water, air, or water vapor) from the combustion of coal and coal-water fuels. It has been established that, in the initial period of the boiler unit operation during coal fuel combustion the efficiency of heat transfer from the combustion products of the internal environment is higher than when using CWF. The efficiency of heat transfer in CWF combustion conditions is more at large times (τ≥1.5 hours) of the boiler unit. A significant decrease in heat flux from the combustion products to the inside pipe coolant in the case of coal combustion compared to CWF has been found. It has been proved that this is due primarily to the fact that massive and strong ash deposits are formed during coal combustion.
NASA Astrophysics Data System (ADS)
Ono, Y.; Tanabe, H.; Yamada, T.; Inomoto, M.; T, Ii; Inoue, S.; Gi, K.; Watanabe, T.; Gryaznevich, M.; Scannell, R.; Michael, C.; Cheng, C. Z.
2012-12-01
Recently, the TS-3 and TS-4 tokamak merging experiments revealed significant plasma heating during magnetic reconnection. A key question is how and where ions and electrons are heated during magnetic reconnection. Two-dimensional measurements of ion and electron temperatures and plasma flow made clear that electrons are heated inside the current sheet mainly by the Ohmic heating and ions are heated in the downstream areas mainly by the reconnection outflows. The outflow kinetic energy is thermalized by the fast shock formation and viscous damping. The magnetic reconnection converts the reconnecting magnetic field energy mostly to the ion thermal energy in the outflow region whose size is much larger than the current sheet size for electron heating. The ion heating energy is proportional to the square of the reconnection magnetic field component B_p^2 . This scaling of reconnection heating indicates the significant ion heating effect of magnetic reconnection, which leads to a new high-field reconnection heating experiment for fusion plasmas.
Kavousi, Parviz; Mirhosseini, Hamed; Ghazali, Hasanah; Ariffin, Abdul Azis
2015-09-01
5-Hydroxymethylfurfural (HMF) is formed during heat treatment of carbohydrate-containing foods, especially in a deep-fat frying process. This study aimed to investigate the effect of amino acids on the formation and reduction of HMF from glucose, fructose and sucrose at frying temperature in model systems containing binary mixtures of an amino acid and a sugar in equal concentrations (0.3M). The results revealed that the formation of HMF from sugars accelerated in the presence of acidic amino acids (i.e. glutamic and aspartic acids). Conversely, the presence of basic amino acids (i.e. lysine, arginine and histidine) led to reduced concentrations of HMF to non-detectable levels in model systems. The results showed that both pH and heating time significantly affected the formation of HMF from fructose in the presence of glutamic acid. In this regard, a higher amount of HMF was formed at lower pH. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kocadağlı, Tolgahan; Gökmen, Vural
2016-11-15
The study describes the kinetics of the formation and degradation of α-dicarbonyl compounds in glucose/wheat flour system heated under low moisture conditions. Changes in the concentrations of glucose, fructose, individual free amino acids, lysine and arginine residues, glucosone, 1-deoxyglucosone, 3-deoxyglucosone, 3,4-dideoxyglucosone, 5-hydroxymethyl-2-furfural, glyoxal, methylglyoxal and diacetyl concentrations were determined to form a multiresponse kinetic model for isomerisation and degradation reactions of glucose. Degradation of Amadori product mainly produced 1-deoxyglucosone. Formation of 3-deoxyglucosone proceeded directly from glucose and also Amadori product degradation. Glyoxal formation was predominant from glucosone while methylglyoxal and diacetyl originated from 1-deoxyglucosone. Formation of 5-hydroxymethyl-2-furfural from fructose was found to be a key step. Multi-response kinetic modelling of Maillard reaction and caramelisation simultaneously indicated quantitatively predominant parallel and consecutive pathways and rate limiting steps by estimating the reaction rate constants. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gureev, D. M.
1994-09-01
A study was made of the influence of ultrasonic vibrations on the processes of heat and mass transfer, and of structure formation during ultrafast crystallisation of laser melts of T1 high-speed tool steel. Acoustic flows which appeared in laser melts effectively smoothed out the temperature inhomogeneities and flattened the relief of the molten surface even when the laser radiation acted for just ~1 ms. The transformation of the mechanical energy of ultrasonic vibrations into heat increased the depth of the laser melt baths and suppressed crack formation. The observed changes in the structural and phase composition appeared as a change in the microhardness of the solidified laser melts. The geometry of coupling of ultrasound into a laser melt influenced the changes in the microhardness, suggesting a need for a more detailed analysis of the structure formation processes in the course of ultrafast crystallisation of laser melts in an ultrasonic field.
Kawashita, Masakazu; Endo, Naoko; Watanabe, Tomoaki; Miyazaki, Toshiki; Furuya, Maiko; Yokota, Kotoe; Abiko, Yuki; Kanetaka, Hiroyasu; Takahashi, Nobuhiro
2016-09-01
Titanium (Ti) treated with NaOH and hot water, and heated in an ammmonia (NH3) gas atmosphere for 1 or 3h exhibited in vitro apatite formation within 7days when soaked in simulated body fluid (SBF). Moreover, the treated Ti decomposed methylene blue and showed excellent bactericidal activity against Escherichia coli under visible light irradiation. The surface treatment resulted in the formation of a fine network of N-doped anatase-type titania (TiO2-xNx) on the Ti surface, which was responsible for both the apatite formation in SBF and the visible light-induced antibacterial activity. These preliminary results highlight the efficacy of our simple method for producing novel bioactive Ti with visible light-induced antibacterial activity, which could be applied to orthopaedic and dental implants without the risk of infection. Copyright © 2016 Elsevier B.V. All rights reserved.
Advanced Glycation End Products in Foods and a Practical Guide to Their Reduction in the Diet
URIBARRI, JAIME; WOODRUFF, SANDRA; GOODMAN, SUSAN; CAI, WEIJING; CHEN, XUE; PYZIK, RENATA; YONG, ANGIE; STRIKER, GARY E.; VLASSARA, HELEN
2013-01-01
Modern diets are largely heat-processed and as a result contain high levels of advanced glycation end products (AGEs). Dietary advanced glycation end products (dAGEs) are known to contribute to increased oxidant stress and inflammation, which are linked to the recent epidemics of diabetes and cardiovascular disease. This report significantly expands the available dAGE database, validates the dAGE testing methodology, compares cooking procedures and inhibitory agents on new dAGE formation, and introduces practical approaches for reducing dAGE consumption in daily life. Based on the findings, dry heat promotes new dAGE formation by >10- to 100-fold above the uncooked state across food categories. Animal-derived foods that are high in fat and protein are generally AGE-rich and prone to new AGE formation during cooking. In contrast, carbohydrate-rich foods such as vegetables, fruits, whole grains, and milk contain relatively few AGEs, even after cooking. The formation of new dAGEs during cooking was prevented by the AGE inhibitory compound aminoguanidine and significantly reduced by cooking with moist heat, using shorter cooking times, cooking at lower temperatures, and by use of acidic ingredients such as lemon juice or vinegar. The new dAGE database provides a valuable instrument for estimating dAGE intake and for guiding food choices to reduce dAGE intake. PMID:20497781
Huang, Hsiang-Ting; Maruyama, Jun-ichi; Kitamoto, Katsuhiko
2013-01-01
Stress granules are a type of cytoplasmic messenger ribonucleoprotein (mRNP) granule formed in response to the inhibition of translation initiation, which typically occurs when cells are exposed to stress. Stress granules are conserved in eukaryotes; however, in filamentous fungi, including Aspergillus oryzae, stress granules have not yet been defined. For this reason, here we investigated the formation and localization of stress granules in A. oryzae cells exposed to various stresses using an EGFP fusion protein of AoPab1, a homolog of Saccharomyces cerevisiae Pab1p, as a stress granule marker. Localization analysis showed that AoPab1 was evenly distributed throughout the cytoplasm under normal growth conditions, and accumulated as cytoplasmic foci mainly at the hyphal tip in response to stress. AoSO, a homolog of Neurospora crassa SO, which is necessary for hyphal fusion, colocalized with stress granules in cells exposed to heat stress. The formation of cytoplasmic foci of AoSO was blocked by treatment with cycloheximide, a known inhibitor of stress granule formation. Deletion of the Aoso gene had effects on the formation and localization of stress granules in response to heat stress. Our results suggest that AoSO is a novel component of stress granules specific to filamentous fungi. The authors would specially like to thank Hiroyuki Nakano and Kei Saeki for generously providing experimental and insightful opinions.
Self-defrosting recuperative air-to-air heat exchanger
Drake, Richard L.
1993-01-01
A heat exchanger includes a stationary spirally or concentrically wound heat exchanger core with rotating baffles on upper and lower ends thereof. The rotating baffles include rotating inlets and outlets which are in communication with respective fixed inlets and outlets via annuli. The rotation of the baffles causes a concurrent rotation of the temperature distribution within the stationary exchanger core, thereby preventing frost build-up in some applications and preventing the formation of hot spots in other applications.
Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.; ...
2016-04-01
Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. In conclusion, we analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.
Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. In conclusion, we analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.
Nanoparticle enhanced ionic liquid heat transfer fluids
Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.
2014-08-12
A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.
FRAGMENTATION AND EVOLUTION OF MOLECULAR CLOUDS. II. THE EFFECT OF DUST HEATING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urban, Andrea; Evans, Neal J.; Martel, Hugo
2010-02-20
We investigate the effect of heating by luminosity sources in a simulation of clustered star formation. Our heating method involves a simplified continuum radiative transfer method that calculates the dust temperature. The gas temperature is set by the dust temperature. We present the results of four simulations; two simulations assume an isothermal equation of state and the two other simulations include dust heating. We investigate two mass regimes, i.e., 84 M{sub sun} and 671 M{sub sun}, using these two different energetics algorithms. The mass functions for the isothermal simulations and simulations that include dust heating are drastically different. In themore » isothermal simulation, we do not form any objects with masses above 1 M{sub sun}. However, the simulation with dust heating, while missing some of the low-mass objects, forms high-mass objects ({approx}20 M{sub sun}) which have a distribution similar to the Salpeter initial mass function. The envelope density profiles around the stars formed in our simulation match observed values around isolated, low-mass star-forming cores. We find the accretion rates to be highly variable and, on average, increasing with final stellar mass. By including radiative feedback from stars in a cluster-scale simulation, we have determined that it is a very important effect which drastically affects the mass function and yields important insights into the formation of massive stars.« less
Formation of metallic silver and copper in non-aqueous media by ultrasonic radiation.
Pilloni, Martina; Kumar, Vijay Bhooshan; Ennas, Guido; Porat, Ze'ev; Scano, Alessandra; Cabras, Valentina; Gedanken, Aharon
2018-10-01
Concentrated suspensions of silver and copper salts in silicone oil were heated to 200 °C and irradiated with ultrasonic energy for different time durations. Characterization of the products was done using X-ray powder diffraction. In most cases, metallic Ag or Cu were obtained, together with their oxide forms Ag 2 O and Cu 2 O. The salts, used as precursors, do not dissolve in silicone oil but rather form a heterogeneous system, and we assume that local heating, caused by the acoustic cavitation, enhanced their thermal decomposition and the formation of metallic particles. It was found that the presence of silver particles enhances the formation of metallic copper. This phenomenon was observed in the experiment with the acetate salts mixture. Copyright © 2018. Published by Elsevier B.V.
Mechanical and thermal characterization of a ceramic/glass composite seal for solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Dev, Bodhayan; Walter, Mark E.; Arkenberg, Gene B.; Swartz, Scott L.
2014-01-01
Solid oxide fuel cells (SOFCs) require seals that can function in harsh, elevated temperature environments. Comprehensive characterization and understanding of seals is needed for commercially viable SOFCs. The present research focuses on a novel ceramic/glass composite seal that is produced by roller compaction or tape casting of glass and ceramic powders and an organic binder. Upon heat treatment, micro-voids and surface anomalies are formed. Increased heating and cooling rates during the heat treatment resulted in more and larger voids. The first goal of the current research is to suggest an appropriate heating and cooling rate to minimize the formation of microstructural defects. After identifying an appropriate cure cycle, seals were thermally cycled and then characterized with laser dilatometry, X-ray diffraction, and sonic resonance. From these experiments the crystalline phases, thermal expansion, and elastic properties were determined. Subsequently compression testing with an acoustic emission (AE) sensor and post-test microstructural analysis were used to identify the formation of damage. By fully understanding the characteristics of this ceramic/glass composite seal, next generation seals can be fabricated for improved performance.
Waite, W.F.; Stern, L.A.; Kirby, S.H.; Winters, W.J.; Mason, D.H.
2007-01-01
Thermal conductivity, thermal diffusivity and specific heat of sI methane hydrate were measured as functions of temperature and pressure using a needle probe technique. The temperature dependence was measured between −20°C and 17°C at 31.5 MPa. The pressure dependence was measured between 31.5 and 102 MPa at 14.4°C. Only weak temperature and pressure dependencies were observed. Methane hydrate thermal conductivity differs from that of water by less than 10 per cent, too little to provide a sensitive measure of hydrate content in water-saturated systems. Thermal diffusivity of methane hydrate is more than twice that of water, however, and its specific heat is about half that of water. Thus, when drilling into or through hydrate-rich sediment, heat from the borehole can raise the formation temperature more than 20 per cent faster than if the formation's pore space contains only water. Thermal properties of methane hydrate should be considered in safety and economic assessments of hydrate-bearing sediment.
Akıllıoğlu, H Gül; Çelikbıçak, Ömür; Salih, Bekir; Gökmen, Vural
2017-02-15
In this study electrospray ionization quadrupole time-of-flight (ESI-Q-TOF) mass spectrometry was used to investigate protein glycation. The glycated species of cytochrome C, lysozyme, and β-casein formed during glycation with d-glucose were identified and monitored in binary systems heated at 70°C under dry and aqueous conditions. Cytochrome C had multiple charges in non-glycated state, primarily changing from +13 to +17 positive charges, whereas β-casein had charge states up to +30. Upon heating with glucose at 70°C in aqueous state, attachment of one glucose molecule onto proteins was observed in each charge state. However, heating in dry state caused much more glucose attachment, leading to the formation of multiple glycoforms of proteins. By using ESI-QTOF-MS technique, formation of glycated cytochrome C containing up to 12 glucose moieties were observed, while glycated species containing 6 and 8 glucose moieties were observed for lysozyme and β-casein, respectively in various heating conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Numerical Study on the Thermal Stress and its Formation Mechanism of a Thermoelectric Device
NASA Astrophysics Data System (ADS)
Pan, Tao; Gong, Tingrui; Yang, Wei; Wu, Yongjia
2018-06-01
The strong thermo-mechanical stress is one of the most critical failure mechanisms that affect the durability of thermoelectric devices. In this study, numerical simulations on the formation mechanism of the maximum thermal stress inside the thermoelectric device have been performed by using finite element method. The influences of the material properties and the thermal radiation on the thermal stress have been examined. The results indicate that the maximum thermal stress was located at the contact position between the two materials and occurred due to differential thermal expansions and displacement constraints of the materials. The difference in the calculated thermal stress value between the constant and the variable material properties was between 3% and 4%. At a heat flux of 1 W·cm-2 and an emissivity of 0.5, the influence of the radiation heat transfer on the thermal stress was only about 5%; however, when the heat flux was 20 W·cm-2 and the emissivity was 0.7, the influence of the radiation heat transfer was more than 30%.
NASA Astrophysics Data System (ADS)
Karthikeyan, R.; Saravanan, M.; Singaravel, B.; Sathiya, P.
This paper investigates the impact of heat input and post-weld aging behavior at different temperatures on the laser paper welded maraging steel grade 250. Three different levels of heat inputs were chosen and CO2 laser welding was performed. Aging was done at six different temperatures: 360∘C, 400∘C, 440∘C, 480∘C, 520∘C and 560∘C. The macrostructure and microstructure of the fusion zone were obtained using optical microscope. The microhardness test was performed on the weld zone. Tensile tests and impact tests were carried out for the weld samples and different age-treated weld samples. Fracture surfaces were investigated by scanning electron microscopy (SEM). Microhardness values of the fusion zone increased with increasing aging temperature, while the base metal microhardness value decreased. Tensile properties increased with aging temperature up to 480∘C and reduced for 520∘C and 560∘C. This was mainly due to the formation of reverted austenite beyond 500∘C. XRD analysis confirmed the formation of reverted austenite.
Barcoding heat shock proteins to human diseases: looking beyond the heat shock response.
Kakkar, Vaishali; Meister-Broekema, Melanie; Minoia, Melania; Carra, Serena; Kampinga, Harm H
2014-04-01
There are numerous human diseases that are associated with protein misfolding and the formation of toxic protein aggregates. Activating the heat shock response (HSR)--and thus generally restoring the disturbed protein homeostasis associated with such diseases--has often been suggested as a therapeutic strategy. However, most data on activating the HSR or its downstream targets in mouse models of diseases associated with aggregate formation have been rather disappointing. The human chaperonome consists of many more heat shock proteins (HSPs) that are not regulated by the HSR, however, and researchers are now focusing on these as potential therapeutic targets. In this Review, we summarize the existing literature on a set of aggregation diseases and propose that each of them can be characterized or 'barcoded' by a different set of HSPs that can rescue specific types of aggregation. Some of these 'non-canonical' HSPs have demonstrated effectiveness in vivo, in mouse models of protein-aggregation disease. Interestingly, several of these HSPs also cause diseases when mutated--so-called chaperonopathies--which are also discussed in this Review.
Barcoding heat shock proteins to human diseases: looking beyond the heat shock response
Kakkar, Vaishali; Meister-Broekema, Melanie; Minoia, Melania; Carra, Serena; Kampinga, Harm H.
2014-01-01
There are numerous human diseases that are associated with protein misfolding and the formation of toxic protein aggregates. Activating the heat shock response (HSR) – and thus generally restoring the disturbed protein homeostasis associated with such diseases – has often been suggested as a therapeutic strategy. However, most data on activating the HSR or its downstream targets in mouse models of diseases associated with aggregate formation have been rather disappointing. The human chaperonome consists of many more heat shock proteins (HSPs) that are not regulated by the HSR, however, and researchers are now focusing on these as potential therapeutic targets. In this Review, we summarize the existing literature on a set of aggregation diseases and propose that each of them can be characterized or ‘barcoded’ by a different set of HSPs that can rescue specific types of aggregation. Some of these ‘non-canonical’ HSPs have demonstrated effectiveness in vivo, in mouse models of protein-aggregation disease. Interestingly, several of these HSPs also cause diseases when mutated – so-called chaperonopathies – which are also discussed in this Review. PMID:24719117
Physics of the inner heliosphere: Mechanisms, models and observational signatures
NASA Technical Reports Server (NTRS)
Withbroe, G. L.
1985-01-01
The physics of the solar wind acceleration phenomena (e.g. effect of transient momentum deposition on the temporal and spatial variation of the temperature, density and flow speed of the solar wind, formation of shocks, etc.) and the resultant effects on observational signatures, particularly spectroscopic signature are studied. Phenomena under study include: (1) wave motions, particularly spectroscopic signatures are studied. Phenomena under study include:(1) wave motions, particularly Alfven and fast mode waves, (2) the formation of standing shocks in the inner heliosphere as a result of momentum and/or heat addition to the wind and (3) coronal transient phenomena where momentum and/or heat are deposited in the corona to produce transient plasma heating and/or mass ejections. Also included are the theoretical investigation of spectroscopic plasma diagnostics for the inner heliosphere and the analysis of existing Skylab and other relevant data.
Process Feasibility Study in Support of Silicon Material Task 1
NASA Technical Reports Server (NTRS)
Li, K. Y.; Hansen, K. C.; Yaws, C. L.
1979-01-01
Analysis of process system properties was continued for silicon source materials under consideration for producing silicon. The following property data are reported for dichlorosilane which is involved in processing operations for silicon: critical constants, vapor pressure, heat of vaporization, heat capacity, density, surface tension, thermal conductivity, heat of formation and Gibb's free energy of formation. The properties are reported as a function of temperature to permit rapid engineering usage. The preliminary economic analysis of the process is described. Cost analysis results for the process (case A-two deposition reactors and six electrolysis cells) are presented based on a preliminary process design of a plant to produce 1,000 metric tons/year of silicon. Fixed capital investment estimate for the plant is $12.47 million (1975 dollars) ($17.47 million, 1980 dollars). Product cost without profit is 8.63 $/kg of silicon (1975 dollars)(12.1 $/kg, 1980 dollars).
Increase in the energy absorption of pulsed plasma by the formation of tungsten nanostructure
NASA Astrophysics Data System (ADS)
Sato, D.; Ohno, N.; Domon, F.; Kajita, S.; Kikuchi, Y.; Sakuma, I.
2017-06-01
The synergistic effects of steady-state and pulsed plasma irradiation to material have been investigated in the device NAGDIS-PG (NAGoya DIvertor Simulator with Plasma Gun). The duration of the pulsed plasma was ~0.25 ms. To investigate the pulsed plasma heat load on the materials, we developed a temperature measurement system using radiation from the sample in a high time resolution. The heat deposited in response to the transient plasma on a tungsten surface was revealed by using this system. When the nanostructures were formed by helium plasma irradiation, the temperature increase on the bulk sample was enhanced. The result suggested that the amount of absorbed energy on the surface was increased by the formation of nanostructures. The possible mechanisms causing the phenomena are discussed with the calculation of a sample temperature in response to the transient heat load.
Preliminary considerations for extraction of thermal effect from magma
NASA Astrophysics Data System (ADS)
Hickox, C. E.; Dunn, J. C.
Simplified mathematical models are developed to describe the extraction of thermal energy from magma based on the concept of a counter-flow heat exchanger inserted into the magma body. Analytical solutions are used to investigate influence of the basic variables on electric power production. Calculations confirm that the proper heat exchanger flow path is down the annulus with hot fluid returning to the surface through the central core. The core must be insulated from the annulus to achieve acceptable wellhead temperatures, but this insulation thickness can be quite small. The insulation is effective in maintaining the colder annular flow below expected formation temperatures so that a net beat gain from the formation above a magma body is predicted. The analynes show that optimum flow rates exist that maximize electric power production. These optimum flow rates are functions of the heat transfer coefficients that describe magma energy extraction.
A Procedure for the Design of Air-Heated Ice-Prevention Systems
NASA Technical Reports Server (NTRS)
Neel, C. B.
1954-01-01
A procedure proposed for use in the design of air-heated systems for the continuous prevention of ice formation on airplane components is set forth. Required heat-transfer and air-pressure-loss equations are presented, and methods of selecting appropriate meteorological conditions for flight over specified geographical areas and for the calculation of water-drop-impingement characteristics are suggested. In order to facilitate the design, a simple electrical analogue was devised which solves the complex heat-transfer relationships existing in the thermal-system analysis. The analogue is described and an illustration of its application to design is given.
Flooded Underground Coal Mines: A Significant Source of Inexpensive Geothermal Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watzlaf, G.R.; Ackman, T.E.
2007-04-01
Many mining regions in the United States contain extensive areas of flooded underground mines. The water within these mines represents a significant and widespread opportunity for extracting low-grade, geothermal energy. Based on current energy prices, geothermal heat pump systems using mine water could reduce the annual costs for heating to over 70 percent compared to conventional heating methods (natural gas or heating oil). These same systems could reduce annual cooling costs by up to 50 percent over standard air conditioning in many areas of the country. (Formatted full-text version is released by permission of publisher)
NASA Technical Reports Server (NTRS)
Kantrowitz, Arthur
1940-01-01
Two topics of interest to persons attempting to apply the heat method of preventing ice formation on aircraft are considered. Surfaces moving through air at high speed are shown, both theoretically and experimentally, to be subject to important aerodynamic heating effects that will materially reduce the heat required to prevent ice. Numerical calculations of the path of water drops in an air stream around a circular cylinder are given. From these calculations, information is obtained on the percentage of the swept area cleared of drops.
Thermally induced coloration of KBr at high pressures
NASA Astrophysics Data System (ADS)
Arveson, Sarah M.; Kiefer, Boris; Deng, Jie; Liu, Zhenxian; Lee, Kanani K. M.
2018-03-01
Laser-heated diamond-anvil cell (LHDAC) experiments reveal electronic changes in KBr at pressures between ˜13 -81 GPa when heated to high temperatures that cause runaway heating to temperatures in excess of ˜5000 K . The drastic changes in absorption behavior of KBr are interpreted as rapid formation of high-pressure F-center defects. The defects are localized to the heated region and thus do not change the long-range crystalline order of KBr. The results have significant consequences for temperature measurements in LHDAC experiments and extend the persistence of F centers in alkali halides to at least 81 GPa.
The Calculation of the Heat Required for Wing Thermal Ice Prevention in Specified Icing Conditions
NASA Technical Reports Server (NTRS)
Bergrun, Norman R.; Jukoff, David; Schlaff, Bernard A.; Neel, Carr B., Jr.
1947-01-01
Flight tests were made in natural icing conditions with two 8-ft-chord heated airfoils of different sections. Measurements of meteorological variables conducive to ice formation were made simultaneously with the procurement of airfoil thermal data. The extent of knowledge on the meteorology of icing, the impingement of water drops on airfoil surfaces, and the processes of heat transfer and evaporation from a wetted airfoil surface have been increased to a point where the design of heated wings on a fundamental, wet-air basis now can be undertaken with reasonable certainty.
NASA Astrophysics Data System (ADS)
Stepanov, A. I.; Belikov, S. V.; Musikhin, S. A.; Burmasov, S. P.; Popov, A. A.
2017-03-01
Special features of formation of structure and properties of seamless pipes from medium-carbon low-alloy steel for oil and gas applications are considered and associated with chemical inhomogeneity of the metal of the pipes.
Code of Federal Regulations, 2014 CFR
2014-01-01
... records. Overhead expenses, such as the cost of space, heating, and lighting, are not included. (3... in paper, electronic, or other format. The Board shall honor a requestor's preference for format if... scholarly research. For a request to be in this category, a requestor must show that the request is...
Code of Federal Regulations, 2012 CFR
2012-01-01
... records. Overhead expenses, such as the cost of space, heating, and lighting, are not included. (3... in paper, electronic, or other format. The Board shall honor a requestor's preference for format if... scholarly research. For a request to be in this category, a requestor must show that the request is...
Code of Federal Regulations, 2011 CFR
2011-01-01
... records. Overhead expenses, such as the cost of space, heating, and lighting, are not included. (3... in paper, electronic, or other format. The Board shall honor a requestor's preference for format if... scholarly research. For a request to be in this category, a requestor must show that the request is...
Code of Federal Regulations, 2013 CFR
2013-01-01
... records. Overhead expenses, such as the cost of space, heating, and lighting, are not included. (3... in paper, electronic, or other format. The Board shall honor a requestor's preference for format if... scholarly research. For a request to be in this category, a requestor must show that the request is...
Origin and thermal evolution of Mars
NASA Technical Reports Server (NTRS)
Schubert, G.; Solomon, Sean C.; Turcotte, D. L.; Drake, M. J.; Sleep, N. H.
1993-01-01
The thermal evolution of Mars is governed by subsolidus mantle convection beneath a thick lithosphere. Models of the interior evolution are developed by parameterizing mantle convective heat transport in terms of mantle viscosity, the superadiabatic temperature rise across the mantle and mantle heat production. Geological, geophysical, and geochemical observations of the composition and structure of the interior and of the timing of major events in Martian evolution, such as global differentiation, atmospheric outgassing and the formation of the hemispherical dichotomy and Tharsis, are used to constrain the model computations. Isotope systematics of SNC meteorites suggest core formation essentially contemporaneously with the completion of accretion. Other aspects of this investigation are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourham, Mohamed A.; Gilligan, John G.
Safety considerations in large future fusion reactors like ITER are important before licensing the reactor. Several scenarios are considered hazardous, which include safety of plasma-facing components during hard disruptions, high heat fluxes and thermal stresses during normal operation, accidental energy release, and aerosol formation and transport. Disruption events, in large tokamaks like ITER, are expected to produce local heat fluxes on plasma-facing components, which may exceed 100 GW/m{sup 2} over a period of about 0.1 ms. As a result, the surface temperature dramatically increases, which results in surface melting and vaporization, and produces thermal stresses and surface erosion. Plasma-facing componentsmore » safety issues extends to cover a wide range of possible scenarios, including disruption severity and the impact of plasma-facing components on disruption parameters, accidental energy release and short/long term LOCA's, and formation of airborne particles by convective current transport during a LOVA (water/air ingress disruption) accident scenario. Study, and evaluation of, disruption-induced aerosol generation and mobilization is essential to characterize database on particulate formation and distribution for large future fusion tokamak reactor like ITER. In order to provide database relevant to ITER, the SIRENS electrothermal plasma facility at NCSU has been modified to closely simulate heat fluxes expected in ITER.« less
Zein/caseinate/pectin complex nanoparticles: Formation and characterization.
Chang, Chao; Wang, Taoran; Hu, Qiaobin; Luo, Yangchao
2017-11-01
In this study, pectin was used as coating material to form zein/caseinate/pectin complex nanoparticles through pH adjustment and heating treatment for potential oral delivery applications. The preparation conditions were studied by applying heating treatment at different pHs, either the isoelectric point of zein (pH 6.2) or caseinate (pH 4.6), or consecutively at both pHs. The particulate characteristics, including particle size, polydispersity index, and zeta potential were monitored for complex nanoparticles formed under different preparation conditions. The complex nanoparticles generally exhibited particle size smaller than 200nm with narrow distribution, spherical shape, and strong negative charge. Fourier transform infrared and fluorescence spectroscopy revealed that hydrophobic interactions and hydrogen bonds were involved in the formation of complex nanoparticles, in addition to electrostatic interactions. Fresh colloidal dispersion and freeze-dried powders varied in their morphology, depending on their preparation conditions. Our results suggested that heating pH and sequence significantly affected the morphology of complex nanoparticles, and pectin coating exerted stabilization effect under simulated gastrointestinal conditions. The present study provides insight into the formation of protein/polysaccharide complex nanoparticles under different preparation conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Aspects of wellbore heat transfer during two-phase flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, A.R.; Kabir, C.S.
1994-08-01
Wellbore fluid temperature is governed by the rate of heat loss from the wellbore to the surrounding formation, which in turn is a function of depth and production/injection time. The authors present an approach to estimate wellbore fluid temperature during steady-state two-phase flow. The method incorporates a new solution of the thermal diffusivity equation and the effect of both conductive and convective heat transport for the wellbore/formation system. For the multiphase flow in the wellbore, the Hasan-Kabir model has been adapted, although other mechanistic models may be used. A field example is used to illustrate the fluid temperature calculation proceduremore » and shows the importance of accounting for convection in the tubing/casing annulus. A sensitivity study shows that significant differences exist between the predicted wellhead temperature and the formation surface temperature and that the fluid temperature gradient is nonlinear. This study further shows that increased free gas lowers the wellhead temperature as a result of the Joule-Thompson effect. In such cases, the expression for fluid temperature developed earlier for single-phase flow should not be applied when multiphase flow is encountered. An appropriate expression is presented in this work for wellbores producing multiphase fluids.« less
Influence of deep-frying using various commercial oils on acrylamide formation in French fries.
Zhang, Hao; Zhang, Hui; Cheng, Lilin; Wang, Li; Qian, Haifeng
2015-01-01
This study investigated the effect of different types of commercial oils (rice bran oil, shortening oil, high-oleic rapeseed oil, low-erucic acid rapeseed oil, blend oil A and blend oil B) and frying cycles on acrylamide formation during the preparation of French fries by deep-frying. Frying was carried out in intermittent mode (two batches each for 12 min without any time lag) and repeated for 600 frying cycles. Results indicated that the French fries that were fried in oils having lower heat transfer coefficients contained lower acrylamide concentrations (913 µg kg(-1)), whereas those fried with oils having higher heat transfer coefficients contained higher acrylamide concentrations (1219 µg kg(-1)). Unlike the peroxide value, acrylamide levels in French fries did not change significantly with an increase in the number of frying cycles when tested for 600 frying cycles for every type of oil. This study clearly indicates that the contribution of frying oils to the formation of acrylamide should not be neglected due to their different heat transfer coefficients. On the other hand, continuous use of frying oil does not lead to a higher acrylamide concentration in French fries.
Poisson, Patrick; Sinclair, Colin S; Tallentire, Alan
2006-01-01
Controlled challenges with air dispersed microorganisms having widely different resistances to dry heat, carried out on 624 BFS machine processing growth medium, have shown that higher the heat resistance, the greater the extent of vial contamination. Differences in heat resistance affected also the extent of vial contamination when parison and vial formation were knowingly manipulated through changes made to each of three process variables, provision of ballooning air, mould vacuum delay, and parison extrusion rate. The findings demonstrate that, in this investigational system, exposure of challenge micoorganisms to heat inherent in the process has a controlling influence on vial contamination, an influence that could also control microbiological risk in production environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buongiorno, J; Cahill, DG; Hidrovo, CH
2014-07-23
In this opinion piece, we discuss recent advances in experimental methods for characterizing phase change heat transfer. We begin with a survey of techniques for high-resolution measurements of temperature and heat flux at the solid surface and in the working fluid. Next, we focus on diagnostic tools for boiling heat transfer and describe techniques for visualizing the temperature and velocity fields, as well as measurements at the single bubble level. Finally, we discuss techniques to probe the kinetics of vapor formation within a few molecular layers of the interface. We conclude with our outlook for future progress in experimental methodsmore » for phase change heat transfer.« less
Thermal reaction of sonochemically prepared amorphous Fe/C
NASA Astrophysics Data System (ADS)
Miyatani, R.; Kobayashi, Y.; Yamada, Y.
2017-11-01
An amorphous iron/carbon mixture was prepared by sonolysis of ferrocene in diphenylmethane. Heating of the amorphous mixture at 900 or 1200 °C produced nanoparticles, which were then analyzed using Mössbauer spectroscopy, X-ray diffraction, and transmission electron microscopy. The nanoparticles obtained after heating were spherical with diameters of about 50 nm. The sample obtained after heating at 900 °C consisted of α-Fe and Fe 3C, whereas the sample obtained after heating at 1200 °C consisted of α-Fe and γ-Fe. The reaction of the mixture during the heating process was accompanied by the formation of carbon nanotubes catalyzed by the iron or iron carbide nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N.D. Francis
The objective of this calculation is to develop a time dependent in-drift effective thermal conductivity parameter that will approximate heat conduction, thermal radiation, and natural convection heat transfer using a single mode of heat transfer (heat conduction). In order to reduce the physical and numerical complexity of the heat transfer processes that occur (and must be modeled) as a result of the emplacement of heat generating wastes, a single parameter will be developed that approximates all forms of heat transfer from the waste package surface to the drift wall (or from one surface exchanging heat with another). Subsequently, with thismore » single parameter, one heat transfer mechanism (e.g., conduction heat transfer) can be used in the models. The resulting parameter is to be used as input in the drift-scale process-level models applied in total system performance assessments for the site recommendation (TSPA-SR). The format of this parameter will be a time-dependent table for direct input into the thermal-hydrologic (TH) and the thermal-hydrologic-chemical (THC) models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jagannadham, K., E-mail: jag-kasichainula@ncsu.edu
2014-09-01
Graphene film was deposited by microwave plasma assisted deposition on polished oxygen free high conductivity copper foils. Tungsten–graphene layered film was formed by deposition of tungsten film by magnetron sputtering on the graphene covered copper foils. Tungsten film was also deposited directly on copper foil without graphene as the intermediate film. The tungsten–graphene–copper samples were heated at different temperatures up to 900 °C in argon atmosphere to form an interfacial tungsten carbide film. Tungsten film deposited on thicker graphene platelets dispersed on silicon wafer was also heated at 900 °C to identify the formation of tungsten carbide film by reaction of tungstenmore » with graphene platelets. The films were characterized by scanning electron microscopy, Raman spectroscopy, and x-ray diffraction. It was found that tungsten carbide film formed at the interface upon heating only above 650 °C. Transient thermoreflectance signal from the tungsten film surface on the samples was collected and modeled using one-dimensional heat equation. The experimental and modeled results showed that the presence of graphene at the interface reduced the cross-plane effective thermal conductivity and the interfacial thermal conductance of the layer structure. Heating at 650 and 900 °C in argon further reduced the cross-plane thermal conductivity and interface thermal conductance as a result of formation nanocrystalline tungsten carbide at the interface leading to separation and formation of voids. The present results emphasize that interfacial interactions between graphene and carbide forming bcc and hcp elements will reduce the cross-plane effective thermal conductivity in composites.« less
Ghodbane, Ouassim; Pascal, Jean-Louis; Fraisse, Bernard; Favier, Frédéric
2010-12-01
The thermal behavior of a series of MnO2 materials was investigated toward MnO2 microstructures under inert atmospheres. The byproduct formed during MnO2 heat treatments from the room temperature to 800 °C were characterized by in situ X-ray diffraction analyses. It was found that annealing spinel and ramsdellite phases caused the formation of MnO2 pyrolusite at 200 °C, Mn2O3, at 400 °C, and then Mn3O4 at higher temperatures. In the case of cryptomelane and birnessite phases, the heating process resulted in the formation of K0.51Mn0.93O2 at 600 °C, while Mn3O4 was also formed and still present up to 800 °C. Heat-treating Ni-todorokite and OMS-5 up to about 450 °C led to the formation of NiMn2O4 and NaxMnO2, respectively, and again Mn3O4 at higher temperatures. All of these structural transformations were correlated to resulting weight losses of MnO2 powders, measured by thermogravimetric analyses, during the heating process. Cyclic voltammetry measurements were performed in the presence of 0.5 M K2SO4 aqueous solution for annealed cryptomelane, K0.51Mn0.93O2, and Mn3O4-based electrodes. It was found that MnO2 cryptomelane is electrochemically stable upon heating. The long-term charge/discharge voltammetric cycling revealed that the specific capacitance of Mn3O4-based electrode is significantly improved from 14 F·g(-1) (after 20 cycles) to 123 F·g(-1) (after 500 cycles).
Optimal formation and enhanced superconductivity of Tl-1212 phase (Tl0.6Pb0.4)(Ba,Sr)CaCu2O7
NASA Astrophysics Data System (ADS)
Ranjbar, M. G.; Ghoranneviss, Mahmood; Abd-Shukor, R.
2018-06-01
The effect of heating temperature on the formation of Tl-1212 phase with nominal starting composition (Tl0.6Pb0.4)(Ba,Sr)CaCu2O7 (Tl-1212) is reported. The Ba-bearing Tl-1212 phase is normally prepared at around 900 °C while with Sr-bearing sample is prepared at a much higher temperature of around 1000 °C. This work was conducted to determine the optimal temperature to synthesis the Tl-1212 phase when the sample contains Ba and Sr with 1:1 ratio. (Tl0.6Pb0.4)(Ba,Sr)CaCu2O7 samples were prepared using the solid-state reaction method via the precursor route. In the final preparation stage, the samples were heated at 850, 870, 900, 920, 950, 970 and 1000 °C in oxygen flow. X-Ray diffraction patterns showed that most samples consisted of a mixed (Tl0.6Pb0.4)(Ba,Sr)Ca2Cu3O9 (Tl-1223) and Tl-1212 phase except for the sample heated at 970 °C which showed a single Tl-1212 phase and the sample heated at 850 °C which showed the Tl-1223 phase. The transition temperature measured by four-probe method showed that the sample heated at 970 °C exhibited the highest onset temperature of 118 K and zero-resistance temperature of 100 K. This transition temperature is higher than the usually reported value for the Tl-1212 phase. AC susceptibility measurements also showed the 970 °C heated sample with the highest transition temperature T c χ' = 109 K. The interplay of ionic radius (Ba2+ and Sr2+) decreases of the unit cell volume and changes in the internal lattice strain enhanced the transition temperature and the formation of the Tl-1212 phase.
Plasma Formation and Evolution on Cu, Al, Ti, and Ni Surfaces Driven by a Mega-Ampere Current Pulse
NASA Astrophysics Data System (ADS)
Yates, Kevin C.
Metal alloy mm-diameter rods have been driven by a 1-MA, 100-ns current pulse from the Zebra z-pinch. The intense current produces megagauss surface magnetic fields that diffuse into the load, ohmically heating the metal until plasma forms. Because the radius is much thicker than the skin depth, the magnetic field reaches a much higher value than around a thin-wire load. With the "barbell" load design, plasma formation in the region of interest due to contact arcing or electron avalanche is avoided, allowing for the study of ohmically heated loads. Work presented here will show first evidence of a magnetic field threshold for plasma formation in copper 101, copper 145, titanium, and nickel, and compare with previous work done with aluminum. Copper alloys 101 and 145, titanium grade II, and nickel alloy 200 form plasma when the surface magnetic field reaches 3.5, 3.0, 2.2, and 2.6 megagauss, respectively. Varying the element metal, as well as the alloy, changes multiple physical properties of the load and affects the evolution of the surface material through the multiple phase changes. Similarities and differences between these metals will be presented, giving motivation for continued work with different material loads. During the current rise, the metal is heated to temperatures that cause multiple phase changes. When the surface magnetic field reaches a threshold, the metal ionizes and the plasma becomes pinched against the underlying cooler, dense material. Diagnostics fielded have included visible light radiometry, two-frame shadowgraphy (266 and 532 nm wavelengths), time-gated EUV spectroscopy, single-frame/2ns gated imaging, and multi-frame/4ns gated imaging with an intensified CCD camera (ICCD). Surface temperature, expansion speeds, instability growth, time of plasma formation, and plasma uniformity are determined from the data. The time-period of potential plasma formation is scrutinized to understand if and when plasma forms on the surface of a heated conductor. When photodiode signals of visible light surface emission reach values indicating temperatures consistent with plasma formation, a sharp increase in signal is observed, which can be interpreted as related to an abrupt increase in conductivity when plasma forms, as has been observed experimentally as well as in Quantum Molecular Dynamic simulations. The increase in conductivity, in the context of an overall rising current, causes an abrupt increase in current density in the plasma-forming layer, leading to an increase in temperature that reinforces the increase in conductivity. Laser shadowgaphy images allow for the observation of expansion as well as the development and evolution of surface instabilities. The sudden expansion of the surface of a heated conductor is not sufficient to claim plasma formation. The development of late-time surface instabilities does indicate surface plasma formed, although it does not pinpoint the moment of plasma formation. The self-emission images captured by ICCD cameras provide a third indicator of plasma formation. The images first show non-uniform dots begin to glow, then show bright filaments in the direction of current flow, and eventually show a uniform surface emission. The early dots are believed to be plasma; however, the filamentation occurs near the time of the abrupt increase in the visible diode signal. The filaments are likely caused by electrothermal instabilities a formation attributed to a plasma. The interplay between an ohmically heated conductor and a magnetic field is important for the field of Magnetized Target Fusion (MTF). MTF compresses a magnetized fuel by imploding a flux-conserving metal liner. During compression, fields reach several megagauss, with a fraction of the flux diffusing into the metal liner. The magnetic field induces eddy currents in the metal, leading to ionization and potential mixing of metal contaminant into the fusion fuel.
NASA Technical Reports Server (NTRS)
Herman, Cila; Iacona, Estelle; Acquaviva, Tom; Coho, Bill; Grant, Nechelle; Nahra, Henry; Sankaran, Subramanian; Taylor, Al; Julian, Ed; Robinson, Dale;
2001-01-01
The BCOEL project focuses on improving pool boiling heat transfer and bubble control in microgravity by exposing the fluid to electric fields. The electric fields induce a body force that can replace gravity in the low gravity environment, and enhance bubble removal from thc heated surface. A better understanding of microgravity effects on boiling with and without electric fields is critical to the proper design of the phase-change-heat-removal equipment for use in space-based applications. The microgravity experiments will focus on the visualization of bubble formation and shape during boiling. Heat fluxes on the boiling surface will be measured, and, together with the measured driving temperature differences, used to plot boiling curvcs for different electric field magnitudes. Bubble formation and boiling processes were found to be extremely sensitive to g-jitter. The duration of the experimental run is critical in order to achieve steady state in microgravity experiments. The International Space Station provides conditions suitable for such experiments. The experimental appararus to be used in the study is described in the paper. The apparatus will be tested in the KC-135 first, and microgravity experiments will be conducted on board of the International Space Station using the Microgravity Science Glovebox as the experimental platform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokhansanj, Shahabaddine; Mani, Sudhagar; Togore, Sam
2010-01-01
Supply of corn stover to produce heat and power for a typical 170 dam3 dry mill ethanol plant is proposed. The corn ethanol plant requires 5.6 MW of electricity and 52.3 MW of process heat, which creates the annual stover demand of as much as 140 Gg. The corn stover supply system consists of collection, preprocessing, transportation and on-site fuel storage and preparation to produce heat and power for the ethanol plant. Economics of the entire supply system was conducted using the Integrated Biomass Supply Analysis and Logistics (IBSAL) simulation model. Corn stover was delivered in three formats (square bales,more » dry chops and pellets) to the combined heat and power plant. Delivered cost of biomass ready to be burned was calculated at 73 $ Mg-1 for bales, 86 $ Mg-1 for pellets and 84 $ Mg-1 for field chopped biomass. Among the three formats of stover supply systems, delivered cost of pelleted biomass was the highest due to high pelleting cost. Bulk transport of biomass in the form of chops and pellets can provide a promising future biomass supply logistic system in the US, if the costs of pelleting and transport are minimized.« less
Cui, Xinyu; Kim, Hyun-Min; Kawashita, Masakazu; Wang, Longbao; Xiong, Tianying; Kokubo, Tadashi; Nakamura, Takashi
2008-04-01
Titanium and its alloys have been widely used for orthopedic implants because of their good biocompatibility. We have previously shown that the crystalline titania layers formed on the surface of titanium metal via anodic oxidation can induce apatite formation in simulated body fluid, whereas amorphous titania layers do not possess apatite-forming ability. In this study, hot water and heat treatments were applied to transform the titania layers from an amorphous structure into a crystalline structure after titanium metal had been anodized in acetic acid solution. The apatite-forming ability of titania layers subjected to the above treatments in simulated body fluid was investigated. The XRD and SEM results indicated hot water and/or heat treatment could greatly transform the crystal structure of titania layers from an amorphous structure into anatase, or a mixture of anatase and rutile. The abundance of Ti-OH groups formed by hot water treatment could contribute to apatite formation on the surface of titanium metals, and subsequent heat treatment would enhance the bond strength between the apatite layers and the titanium substrates. Thus, bioactive titanium metals could be prepared via anodic oxidation and subsequent hot water and heat treatment that would be suitable for applications under load-bearing conditions.
NASA Technical Reports Server (NTRS)
Herman, Cila; Iacona, Estelle; Acquaviva, Tom; Coho, Bill; Grant, Nechelle; Nahra, Henry; Taylor, Al; Julian, Ed; Robinson, Dale; VanZandt, Dave
2001-01-01
The BCOEL project focuses on improving pool boiling heat transfer and bubble control in microgravity by exposing the fluid to electric fields. The electric fields induce a body force that can replace gravity in the low gravity environment, and enhance bubble removal from the heated surface. A better understanding of microgravity effects on boiling with and without electric fields is critical to the proper design of the phase-change-heat-removal equipment for use in spacebased applications. The microgravity experiments will focus on the visualization of bubble formation and shape during boiling. Heat fluxes on the boiling surface will be measured, and, together with the measured driving temperature differences, used to plot boiling curves for different electric field magnitudes. Bubble formation and boiling processes were found to be extremely sensitive to g-jitter. The duration of the experimental run is critical in order to achieve steady state in microgravity experiments. The International Space Station provides conditions suitable for such experiments. The experimental apparatus to be used in the study is described in the paper. The apparatus will be tested in the KC-135 first, and microgravity experiments will be conducted on board of the International Space Station using the Microgravity Science Glovebox as the experimental platform.
Structural transformations and properties of titanium-aluminum composite during heat treatment
NASA Astrophysics Data System (ADS)
Pervukhin, L. B.; Kryukov, D. B.; Krivenkov, A. O.; Chugunov, S. N.
2017-08-01
The link between the parameters of heat treatment of a layered titanium-aluminum composite material obtained by explosive welding with the formation of intermetallic compounds in it has been analyzed. The results of measurements of the microhardness of the composite and the thickness of the interlayer of the intermetallic phase obtained using different regimes of heat treatment have been discussed. Special attention has been paid to estimating the composition of the intermetallic phase in the composite prepared by explosive welding.
Solid-gas phase equilibria and thermodynamic properties of cadmium selenide.
NASA Technical Reports Server (NTRS)
Sigai, A. G.; Wiedemeier, H.
1972-01-01
Accurate vapor pressures are determined through direct weight loss measurements using the Knudsen effusion technique. The experimental data are evaluated by establishing the mode of vaporization and determining the heat capacity of cadmium selenide at elevated temperatures. Additional information is obtained through a second- and third-law evaluation of data, namely, the heat of formation and the absolute entropy of cadmium selenide. A preferential loss of selenium during the initial heating of CdSe is observed, which leads to a deviation in stoichiometry.
Evolution of Micro-Pores in a Single-Crystal Nickel-Based Superalloy During Solution Heat Treatment
NASA Astrophysics Data System (ADS)
Li, Xiangwei; Wang, Li; Dong, Jiasheng; Lou, Langhong; Zhang, Jian
2017-06-01
Evolution of micro-pores in a third-generation single-crystal nickel-based superalloy during solution heat treatment at 1603 K (1330 °C) was investigated by X-ray computed tomography. 3D information including morphology, size, number, and volume fraction of micro-pores formed during solidification (S-pores) and solution (H-pores) was analyzed. The growth behaviors of both S-pores and H-pores can be related to the vacancy formation and diffusion during heat treatment.
Self-defrosting recuperative air-to-air heat exchanger
Drake, R.L.
1993-12-28
A heat exchanger is described which includes a stationary spirally or concentrically wound heat exchanger core with rotating baffles on upper and lower ends thereof. The rotating baffles include rotating inlets and outlets which are in communication with respective fixed inlets and outlets via annuli. The rotation of the baffles causes a concurrent rotation of the temperature distribution within the stationary exchanger core, thereby preventing frost build-up in some applications and preventing the formation of hot spots in other applications. 3 figures.
Experimental Study of the Oxidation, Ignition, and Soot Formation Characteristics of Jet Fuel
2010-09-29
section and controls the heat flux applied to six heated zones along the 4.11 m long driven section, and 2.5 cm thick mineral wool insulation that...The mixing manifold was insulated with 1.1 cm thick silicon foam rubber insulation, and the mixing vessel was insulated with 2.5 cm- thick mineral ... wool insulation. Experimental work for a number of compounds with variation in manifold and tank heating showed no observable difference in measured
NASA Astrophysics Data System (ADS)
Matrosov, M. Yu; Martynov, P. G.; Goroshko, T. V.; Zvereva, M. I.; Mitrofanov, A. V.; Barabash, K. Yu
2017-12-01
The results of the study of influence of heat treatment modes on microstructure, size and shape of grains, mechanical properties of high-strength flat products from low-alloyed C-Mn-Cr-Si-Mo steel microalloyed by boron are presented. Heat treatment modes, which provide a combination of high impact viscosity at negative temperatures and guaranteed hardness, are determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, T.; Crew, G.B.; Retterer, J.M.
1988-01-01
The exotic phenomenon of energetic ion-conic formation by plasma waves in the magnetosphere is considered. Two particular transverse heating mechanisms are reviewed in detail: lower-hybrid energization of ions in the boundary layer of the plasma sheet, and electromagnetic ion cyclotron resonance heating in the central region of the plasma sheet. Mean particle calculations, plasma simulations, and analytical treatments of the heating processes are described.
Geothermal energy production with supercritical fluids
Brown, Donald W.
2003-12-30
There has been invented a method for producing geothermal energy using supercritical fluids for creation of the underground reservoir, production of the geothermal energy, and for heat transport. Underground reservoirs are created by pumping a supercritical fluid such as carbon dioxide into a formation to fracture the rock. Once the reservoir is formed, the same supercritical fluid is allowed to heat up and expand, then is pumped out of the reservoir to transfer the heat to a surface power generating plant or other application.
Anodic Oxidative Modification of Egg White for Heat Treatment.
Takahashi, Masahito; Handa, Akihiro; Yamaguchi, Yusuke; Kodama, Risa; Chiba, Kazuhiro
2016-08-31
A new functionalization of egg white was achieved by an electrochemical reaction. The method involves electron transfer from thiol groups of egg white protein to form disulfide bonds. The oxidized egg white produced less hydrogen sulfide during heat treatment; with sufficient application of electricity, almost no hydrogen sulfide was produced. In addition, gels formed by heating electrochemically oxidized egg white exhibited unique properties, such as a lower gelation temperature and a softened texture, presumably due to protein aggregation and electrochemically mediated intramolecular disulfide bond formation.
NASA Technical Reports Server (NTRS)
Hohl, F.; Gary, S. P.
1974-01-01
Ion acceleration and heating in a plasma focus were investigated by the numerical integration of the three-dimensional equations of motion. The electric and magnetic fields given were derived from experimental data. The results obtained show that during the collapse phase of focus formation, ions are efficiently heated to temperatures of several keV. During the phase of rapid current reduction, ions are accelerated to large velocities in the axial direction. The results obtained with the model are in general agreement with experimental results.
POLYCYCLIC AROMATIC HYDROCARBON FORMATION IN OPPOSED FLOW DIFFUSION FLAMES OF ETHANE. (R825412)
The effect of fuel-side carbon density on the levels of polycyclic aromatic hydrocarbon (PAH) formation in atmospheric pressure, opposed flow, ethane diffusion flames has been studied using heated micro-probe sampling and gas chromatography/mass spectrometry (...
30 CFR 1206.351 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... of electricity for sale or to convert geothermal energy into electrical energy for sale. Contract... energy of the geothermal resource for direct use purposes. Electrical facility means a power plant or... formations; (3) Heat or other associated energy found in geothermal formations; and (4) Any byproducts. Gross...
Formation, structure, and orientation of gold silicide on gold surfaces
NASA Technical Reports Server (NTRS)
Green, A. K.; Bauer, E.
1976-01-01
The formation of gold silicide on Au films evaporated onto Si(111) surfaces is studied by Auger electron spectroscopy (AES) and low-energy electron diffraction (LEED). Surface condition, film thickness, deposition temperature, annealing temperature, and heating rate during annealing are varied. Several oriented crystalline silicide layers are observed.
Influence of biofilm formation on corrosion and scaling in geothermal plants
NASA Astrophysics Data System (ADS)
Kleyböcker, Anne; Lerm, Stephanie; Monika, Kasina; Tobias, Lienen; Florian, Eichinger; Andrea, Seibt; Markus, Wolfgramm; Hilke, Würdemann
2017-04-01
Process failures may occur due to corrosion and scaling processes in open loop geothermal systems. Especially after heat extraction, sulfate reducing bacteria (SRB) contribute to corrosion processes due to a more favorable temperature for their growth. In biofilms containing FeS scales, corrosion processes are enhanced. Furthermore, scales can lead to reduced pipe profiles, to a diminished heat transfer and a decrease in the wellbore injectivity. Inhibitors are frequently applied to minimize scaling in technical systems. A prerequisite for the application of inhibitors in geothermal plants located in the Molasse basin is their degradability under reservoir conditions, e. g. in a reduced environment. In order to determine the effects of scale-inhibitors on the subsurface and microbial processes, laboratory experiments were performed focusing on the microbial inhibitor degradation. First results indicate that the inhibitor degradation under anaerobic conditions is possible. Besides the inhibitor application also other techniques are investigated to economically reduce corrosion and scaling in geothermal plants. In a mobile bypass system, the influence of biofilm formation on corrosion and scaling was investigated. The bypass system was tested at a geothermal heat store in the North German Basin. The plant is operated with highly saline fluid (salinity 130 g/L) and known to be affected by SRB. The SRB contributed to corrosion damages especially at the pump in the well on the cold side. Heat shocks were successfully used in the bypass system to reduce biofilm formation as well as corrosion and scaling processes.
NASA Astrophysics Data System (ADS)
Tournier, Robert F.
2014-12-01
An undercooled liquid is unstable. The driving force of the glass transition at Tg is a change of the undercooled-liquid Gibbs free energy. The classical Gibbs free energy change for a crystal formation is completed including an enthalpy saving. The crystal growth critical nucleus is used as a probe to observe the Laplace pressure change Δp accompanying the enthalpy change -Vm×Δp at Tg where Vm is the molar volume. A stable glass-liquid transition model predicts the specific heat jump of fragile liquids at T≤Tg, the Kauzmann temperature TK where the liquid entropy excess with regard to crystal goes to zero, the equilibrium enthalpy between TK and Tg, the maximum nucleation rate at TK of superclusters containing magic atom numbers, and the equilibrium latent heats at Tg and TK. Strong-to-fragile and strong-to-strong liquid transitions at Tg are also described and all their thermodynamic parameters are determined from their specific heat jumps. The existence of fragile liquids quenched in the amorphous state, which do not undergo liquid-liquid transition during heating preceding their crystallization, is predicted. Long ageing times leading to the formation at TK of a stable glass composed of superclusters containing up to 147 atom, touching and interpenetrating, are evaluated from nucleation rates. A fragile-to-fragile liquid transition occurs at Tg without stable-glass formation while a strong glass is stable after transition.
NASA Astrophysics Data System (ADS)
Poston, Michael J.; Mahjoub, Ahmed; Ehlmann, Bethany L.; Blacksberg, Jordana; Brown, Michael E.; Carlson, Robert W.; Eiler, John M.; Hand, Kevin P.; Hodyss, Robert; Wong, Ian
2018-04-01
Understanding the history of Kuiper Belt Objects and Jupiter Trojans will help to constrain models of solar system formation and dynamical evolution. Laboratory simulations of a possible thermal and irradiation history of these bodies were conducted on ice mixtures while monitoring their spectral properties. These simulations tested the hypothesis that the presence or absence of sulfur explains the two distinct visible near-infrared spectral groups observed in each population and that Trojans and KBOs share a common formation location. Mixed ices consisting of water, methanol, and ammonia, in mixtures both with and without hydrogen sulfide, were deposited and irradiated with 10 keV electrons. Deposition and initial irradiation were performed at 50 K to simulate formation at 20 au in the early solar system, then heated to Trojan-like temperatures and irradiated further. Finally, irradiation was concluded and resulting samples were observed during heating to room temperature. Results indicated that the presence of sulfur resulted in steeper spectral slopes. Heating through the 140–200 K range decreased the slopes and total reflectance for both mixtures. In addition, absorption features at 410, 620, and 900 nm appeared under irradiation, but only in the H2S-containing mixture. These features were lost with heating once irradiation was concluded. While the results reported here are consistent with the hypothesis, additional work is needed to address uncertainties and to simulate conditions not included in the present work.
Howe, Jane Y.; Allard, Jr., Lawrence Frederick; Demers, Hendrix; ...
2014-11-14
In situ heating study via a simultaneous secondary electron (SE) and transmitted electron (TE) microscopy is extremely insightful because information from the surface (SE) and bulk (TE) can be readily obtained. The leached Au/Fe 2O 3 catalyst has voids on the surface of Fe 2O 3. Upon heating to 500 °C, voids shrank and disappeared, while internal Au species diffused to the surface to form new nanoparticles. Heating in vacuum reduced Fe 2O 3 to Fe 3O 4. Heating at 700 °C caused coalescence and growth of Au particles and formation of faceted Fe 3O 4 surfaces. We achieved 1.1more » nm resolution in SE imaging during in situ heating.« less
Development of a Direct Contact Heat Exchanger, Phase 1 Study Report
NASA Technical Reports Server (NTRS)
Manvi, R.
1978-01-01
Electric power generation from geothermal brine requires, first, bringing the hot brine to the surface and then converting the heat to electric power. Binary conversion schemes were proposed, with the heat transfer between the brine and the working organic fluid taking place in a conventional tube and shell heat exchanger. If the brine is heavily laden with dissolved solids, however, solids buildup on the heat exchanger surfaces leads to a considerable degree of fouling and an accompanying drop in performance is experienced. A possible solution to this problem is the use of a direct contact exchanger with the secondary fluid power cycle. The proposed concept involves the formation of fluid sheets and bells as heat angles. Results of a study concerning the fluid mechanics of such surfaces are given.
Chondrules and the Protoplanetary Disk
NASA Astrophysics Data System (ADS)
Hewins, R. H.; Jones, Rhian; Scott, Ed
2011-03-01
Part I. Introduction: 1. Chondrules and the protoplanetary disk: An overview R. H. Hewins; Part. II. Chonrules, Ca-Al-Rich Inclusions and Protoplanetary Disks: 2. Astronomical observations of phenomena in protostellar disks L. Hartmann; 3. Overview of models of the solar nebula: potential chondrule-forming environments P. Cassen; 4. Large scale processes in the solar nebula A. P. Boss; 5. Turbulence, chondrules and planetisimals J. N. Cuzzi, A. R. Dobrovolskis and R. C. Hogan; 6. Chondrule formation: energetics and length scales J. T. Wasson; 7. Unresolved issues in the formation of chondrules and chondrites J. A. Wood; 8. Thermal processing in the solar nebula: constraints from refractory inclusions A. M. Davis and G. J. MacPherson; 9. Formation times of chondrules and Ca-Al-Rich inclusions: constraints from short-lived radionuclides T. D. Swindle, A. M. Davis, C. M. Hohenberg, G. J. MacPherson and L. E. Nyquist; 10. Formation of chondrules and chondrites in the protoplanetary nebula E. R. D. Scott, S. G. Love and A. N. Krot; Part III. Chondrule precursors and multiple melting: 11. Origin of refractory precursor components of chondrules K. Misawa and N. Nakamura; 12. Mass-independent isotopic effects in chondrites: the role of chemical processes M. H. Thiemens; 13. Agglomeratic chondrules: implications for the nature of chondrule precursors and formation by incomplete melting M. K. Weisberg and M. Prinz; 14. Constraints on chondrule precursors from experimental Data H. C. Connolly Jr. and R. H. Hewins; 15. Nature of matrix in unequilibrated chondrites and its possible relationship to chondrules A. J. Brearly; 16. Constraints on chondrite agglomeration from fine-grained chondrule Rims K. Metzler and A. Bischoff; 17. Relict grains in chondrules: evidence for chondrule recycling R. H. Jones; 18. Multiple heating of chondrules A. E. Rubin and A. N. Krot; 19. Microchondrule-bearing chondrule rims: constraints on chondrule formation A. N. Krot and A. E. Rubin; Part IV. Heating, Cooling and Volatiles: 20. A dynamic crystallization model for chondrule melts G. E. Lofgren; 21. Peak temperatures of flash-melted chondrules R. H. Hewins and H. C. Connolly Jr.; 22. Congruent melting kinetics: constraints on chondrule formation J. P. Greenwood and P. C. Hess; 23. Sodium and sulfur in chondrules: heating time and cooling curves Y. Yu, R. H. Hewins and B. Zanda; 24. Open-system behaviour during chondrule formation D. W. G. Sears, S. Huang and P. H. Benoit; 25. Recycling and volatile loss in chondrule formation C. M. O'D. Alexander; 26. Chemical fractionations of chondrites: signatures of events before chondrule formation J. N. Grossmann; Part V. Models of Chondrule Formation: 27. A concise guide to chondrule formation models A. P. Boss; 28. Models for multiple heating mechanisms L. L. Hood and D. A. Kring; 29. Chondrule formation in the accretional shock T. V. Ruzmaikina and W. H. Ip; 30. The protostellar jet model of chondrule formation K. Liffman and M. Brown; 31. Chondrule formation in lightning discharges: status of theory and experiments M. Horanyi and S. Robertson; 32. Chondrules and their associates in ordinary chondrites: a planetary connection? R. Hutchinson; 33. Collision of icy and slightly differentiated bodies as an origin for unequilibriated ordinary chondrites M. Kitamura and A. Tsuchiyama; 34. A chondrule-forming scenario involving molten planetisimals I. S. Sanders.
Minia, Igor; Merce, Clementine; Terrao, Monica; Clayton, Christine
2016-09-01
African trypanosome procyclic forms multiply in the midgut of tsetse flies, and are routinely cultured at 27°C. Heat shocks of 37°C and above result in general inhibition of translation, and severe heat shock (41°C) results in sequestration of mRNA in granules. The mRNAs that are bound by the zinc-finger protein ZC3H11, including those encoding refolding chaperones, escape heat-induced translation inhibition. At 27°C, ZC3H11 mRNA is predominantly present as an untranslated cytosolic messenger ribonucleoprotein particle, but after heat shocks of 37°C-41°C, the ZC3H11 mRNA moves into the polysomal fraction. To investigate the scope and specificities of heat-shock translational regulation and granule formation, we analysed the distributions of mRNAs on polysomes at 27°C and after 1 hour at 39°C, and the mRNA content of 41°C heat shock granules. We found that mRNAs that bind to ZC3H11 remained in polysomes at 39°C and were protected from sequestration in granules at 41°C. As previously seen for starvation stress granules, the mRNAs that encode ribosomal proteins were excluded from heat-shock granules. 70 mRNAs moved towards the polysomal fraction after the 39°C heat shock, and 260 increased in relative abundance. Surprisingly, many of these mRNAs are also increased when trypanosomes migrate to the tsetse salivary glands. It therefore seems possible that in the wild, temperature changes due to diurnal variations and periodic intake of warm blood might influence the efficiency with which procyclic forms develop into mammalian-infective forms.
Lateral diffusion study of the Pt-Al system using the NAC nuclear microprobe.
NASA Astrophysics Data System (ADS)
de Waal, H.; Pretorius, R.
1999-10-01
In this study a nuclear microprobe (NMP) was used to analyse phase formation during reaction in Pt-Al lateral diffusion couples. Phase identification was done by Rutherford backscattering spectroscopy. These results were compared with phase formation during conventional thin film Pt-Al interactions. The co-existence of multiple phases in lateral diffusion couples is discussed with reference to the effective heat of formation (EHF) model.
Modelling of crater formation on anode surface by high-current vacuum arcs
NASA Astrophysics Data System (ADS)
Tian, Yunbo; Wang, Zhenxing; Jiang, Yanjun; Ma, Hui; Liu, Zhiyuan; Geng, Yingsan; Wang, Jianhua; Nordlund, Kai; Djurabekova, Flyura
2016-11-01
Anode melting and crater formation significantly affect interruption of high-current vacuum arcs. The primary objective of this paper is to theoretically investigate the mechanism of anode surface crater formation, caused by the combined effect of surface heating during the vacuum arc and pressure exerted on the molten surface by ions and electrons from the arc plasma. A model of fluid flow and heat transfer in the arc anode is developed and combined with a magnetohydrodynamics model of the vacuum arc plasma. Crater formation is observed in simulation for a peak arcing current higher than 15 kA on 40 mm diam. Cu electrodes spaced 10 mm apart. The flow of liquid metal starts after 4 or 5 ms of arcing, and the maximum velocities are 0.95 m/s and 1.39 m/s for 20 kA and 25 kA arcs, respectively. This flow redistributes thermal energy, and the maximum temperature of the anode surface does not remain in the center. Moreover, the condition for the liquid droplet formation on the anode surfaces is developed. The solidification process after current zero is also analyzed. The solidification time has been found to be more than 3 ms after 25 kA arcing. The long solidification time and sharp features on crater rims induce Taylor cone formation.
Heat capacity mapping radiometer for AEM spacecraft
NASA Technical Reports Server (NTRS)
Sonnek, G. E.
1977-01-01
The operation, maintenance, and integration of the applications explorer mission heat capacity mapping radiometer is illustrated in block diagrams and detail schematics of circuit functions. Data format and logic timing diagrams are included along with radiometric and electronic calibration data. Mechanical and electrical configuration is presented to provide interface details for integration of the HCMR instrument to AEM spacecraft.
The role of boron in flame-retardant treatments
S. L. LeVan; H. C. Tran
1990-01-01
Flame retardants for wood alter the combustion properties of wood to reduce surface flame spread. Flame retardant chemicals cause acid catalyzed dehydration reactions in wood to facilitate the formation of char and reduce the effective heat of combustion, resulting in lower heat release and flame spread. Boron compounds can also form glassy fiis that may inhibit mass...
Solar Heating and Cooling of Residential Buildings: Design of Systems.
ERIC Educational Resources Information Center
Colorado State Univ., Ft. Collins. Solar Energy Applications Lab.
This is the second of two training courses designed to develop the capability of practitioners in the home building industry to design solar heating and cooling systems. The course is organized in 23 modules to separate selected topics and to facilitate learning. Although a compact schedule of one week is shown, a variety of formats can be…
ERIC Educational Resources Information Center
DeFrancesco, Heather; Dudley, Joshua; Coca, Adiel
2018-01-01
An undergraduate experiment for the organic laboratory is described that utilizes microwave heating to prepare 5- substituted 1H-tetrazole derivatives through a (3 + 2) cycloaddition between aryl nitriles and sodium azide. The reaction mixture is analyzed by thin layer chromatography. The products are purified through an acid-base extraction and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potapenko, M. M., E-mail: mmp@bochvar.ru; Chernov, V. M.; Drobyshev, V. A.
2015-12-15
The regularities of the formation of a heterophase structure and mechanical properties of V–4Ti–4Cr alloy as a function of thermomechanical and chemical heat treatments are studied. The regimes of thermomechanical treatment which provide the formation of a heterophase structure with a homogeneous volume distribution of oxycarbonitride nanoparticles with a size of about 10 nm and an increase in the volume content and thermal stability of this phase and which provide an increase in the temperature of alloy recrystallization are developed. The formation of the heterophase structure results in a substantial (up to 70%) increase in the short-term high-temperature strength ofmore » the alloy at T = 800°C. The increase in the strength is achieved while keeping a rather high level of plasticity.« less
North Atlantic variability and its links to European climate over the last 3000 years.
Moffa-Sánchez, Paola; Hall, Ian R
2017-11-23
The subpolar North Atlantic is a key location for the Earth's climate system. In the Labrador Sea, intense winter air-sea heat exchange drives the formation of deep waters and the surface circulation of warm waters around the subpolar gyre. This process therefore has the ability to modulate the oceanic northward heat transport. Recent studies reveal decadal variability in the formation of Labrador Sea Water. Yet, crucially, its longer-term history and links with European climate remain limited. Here we present new decadally resolved marine proxy reconstructions, which suggest weakened Labrador Sea Water formation and gyre strength with similar timing to the centennial cold periods recorded in terrestrial climate archives and historical records over the last 3000 years. These new data support that subpolar North Atlantic circulation changes, likely forced by increased southward flow of Arctic waters, contributed to modulating the climate of Europe with important societal impacts as revealed in European history.
NASA Astrophysics Data System (ADS)
Jepson, Mark A. E.; Rowlett, Matthew; Higginson, Rebecca L.
2017-03-01
Although the formation of sigma phase in duplex stainless steels is reasonably well documented, the effect of surface finish on its formation rate in surface regions has not been previously noted. The growth of the sigma phase precipitated in the subsurface region (to a maximum depth of 120 μm) has been quantified after heat treatment of S32205 duplex stainless steel at 1073 K (800 °C) and 1173 K (900 °C) after preparation to two surface finishes. Here, results are presented that show that there is a change in the rate of sigma phase formation in the surface region of the material, with a coarser surface finish leading to a greater depth of precipitation at a given time and temperature of heat treatment. The growth rate and morphology of the precipitated sigma has been examined and explored in conjunction with thermodynamic equilibrium phase calculations.
NASA Astrophysics Data System (ADS)
Kurban, Mustafa; Erkoç, Şakir
2017-04-01
Surface and core formation, thermal and electronic properties of ternary cubic CdZnTe clusters are investigated by using classical molecular dynamics (MD) simulations and density functional theory (DFT) calculations. In this work, MD simulations of the CdZnTe clusters are performed by means of LAMMPS by using bond order potential (BOP). MD simulations are carried out at different temperatures to study the segregation phenomena of Cd, Zn and Te atoms, and deviation of clusters and heat capacity. After that, using optimized geometries obtained, excess charge on atoms, dipole moments, highest occupied molecular orbitals, lowest unoccupied molecular orbitals, HOMO-LUMO gaps (Eg) , total energies, spin density and the density of states (DOS) have been calculated with DFT. Simulation results such as heat capacity and segregation formation are compared with experimental bulk and theoretical results.
Crack Formation in Powder Metallurgy Carbon Nanotube (CNT)/Al Composites During Post Heat-Treatment
NASA Astrophysics Data System (ADS)
Chen, Biao; Imai, Hisashi; Li, Shufeng; Jia, Lei; Umeda, Junko; Kondoh, Katsuyoshi
2015-12-01
After the post heat-treatment (PHT) process of powder metallurgy carbon nanotubes (CNT)/Al composites, micro-cracks were observed in the composites, leading to greatly degraded mechanical properties. To understand and suppress the crack formation, an in situ observation of CNT/Al composites was performed at elevated temperatures. PHT was also applied to various bulk pure Al and CNT/Al composites fabricated under different processes. It was observed that the composites consolidated by hot-extrusion might form micro-cracks, but those consolidated by spark plasma sintering (SPS) showed no crack after PHT. A high-temperature SPS process before hot-extrusion was effective to prevent crack formation. The release of residual stress in severe plastic deformed (SPD) materials was responsible for the cracking phenomena during the PHT process. Furthermore, a good particle bonding was essential and effective to suppress cracks for SPD materials in the PHT process.
The Influence of Galactic Outflows on the Formation of Nearby Dwarf Galaxies.
Scannapieco; Ferrara; Broadhurst
2000-06-10
We show that the gas in growing density perturbations is vulnerable to the influence of winds outflowing from nearby collapsed galaxies that have already formed stars. This suggests that the formation of nearby galaxies with masses less, similar10(9) M( middle dot in circle) is likely to be suppressed, irrespective of the details of galaxy formation. An impinging wind may shock-heat the gas of a nearby perturbation to above the virial temperature, thereby mechanically evaporating the gas, or the baryons may be stripped from the perturbation entirely if they are accelerated to above the escape velocity. We show that baryonic stripping is the most effective of these two processes, because shock-heated clouds that are too large to be stripped are able to radiatively cool within a sound crossing time, limiting evaporation. The intergalactic medium temperatures and star formation rates required for outflows to have a significant influence on the formation of low-mass galaxies are consistent with current observations, but may soon be examined directly via associated distortions in the cosmic microwave background and with near-infrared observations from the Next Generation Space Telescope, which may detect the supernovae from early-forming stars.
Piekarska, B; Konieczny, L; Rybarska, J; Stopa, B; Zemanek, G; Szneler, E; Król, M; Nowak, M; Roterman, I
2001-11-01
Moderate heating (40-50 degrees C) of immunoglobulins makes them accessible for binding with Congo Red and some related highly associated dyes. The binding is specific and involves supramolecular dye ligands presenting ribbon-like micellar bodies. The L chain lambda dimer, which upon heating disclosed the same binding requirement with respect to supramolecular dye ligands, was used in this work to identify the site of their attachment. Two clearly defined dye-protein (L lambda chain) complexes arise upon heating, here called complex I and complex II. The first is formed at low temperatures (up to 40-45 degrees C) and hence by a still native protein, while the formation of the second one is associated with domain melting above 55 degrees C. They contain 4 and 8 dye molecules bound per L chain monomer, respectively. Complex I also forms efficiently at high dye concentration even at ambient temperature. Complex I and its formation was the object of the present studies. Three structural events that could make the protein accessible to penetration by the large dye ligand were considered to occur in L chains upon heating: local polypeptide chain destabilization, VL-VL domain incoherence, and protein melting. Of these three possibilities, local low-energy structural alteration was found to correlate best with the formation of complex I. It was identified as decreased packing stability of the N-terminal polypeptide chain fragment, which as a result made the V domain accessible for dye penetration. The 19-amino acid N-terminal fragment becomes susceptible to proteolytic cleavage after being replaced by the dye at its packing locus. Its splitting from the dye-protein complex was proved by amino acid sequence analysis. The emptied packing locus, which becomes the site that holds the dye, is bordered by strands of amino acids numbered 74-80 and 105-110, as shown by model analysis. The character of the temperature-induced local polypeptide chain destabilization and its possible role in intramolecular antibody signaling is discussed. Copyright 2001 John Wiley & Sons, Inc.
Formation of stimulated electromagnetic emission of the ionosphere: laboratory modeling
NASA Astrophysics Data System (ADS)
Starodubtsev, Mikhail; Kostrov, Alexander; Nazarov, Vladimir
Laboratory modeling of some physical processes involved in generation of the stimulated elec-tromagnetic emission (SEE) is presented. SEE is a noise component observed in the spectrum of the pump electromagnetic wave reflected from the heated ionosphere during the ionospheric heating experiments. In our laboratory experiments, main attention has been paid to the experimental investigation of generation of the most pronounced SEE components connected to the small-scale filamentation of the heated area of the ionosphere. It has been shown that the main physical mechanism of thermal magnetoplasma nonlinearity in this frequency range is due to thermal self-channeling of the Langmuir waves. This mechanism has the minimal threshold and should appear when both laboratory and ionospheric plasmas are heated by high-power radiowaves. Thermal self-channeling of Langmuir waves is connected with the fact that Langmuir waves are trapped in the area of depleted plasma density. As a result, wave amplitude significantly increases in these depleted ragion, which lead to the local plasma heating and, consequently, to the deepening of the plasma density depletion due to plasma thermo-diffusion. As the result, narrow, magnetic-field-aligned plasma density irregularities are formed in a magnetoplasma. Self-channelled Langmuir waves exhibit well-pronoused spectral satellites shifted by 1-2 MHz from the fundamental frequency (about 700 MHz in our experimental conditions). It has been found that there exist two main mechanisms of satellite formation. First mechanism (dynamic) has been observed during the formation of the small-scale irregularity, when its longitudinal size increases fastly. During this process, spectrum of the trapped wave characterizes by one low-frequency satellite. Physical mechanism, which lead to the formation of this satellite is connected to Doppler shift of the frequency of Langmuir waves trapped in the non-stationar plasma irregularity. Second mechanism (stationary) has been observed in the case of the devel-oped irregularity, i.e. when its shape is close to the cylindrical one. In this regime, spectrum of the trapped wave is characterized by two symmetric (Stokes and anti-Stokes) spectral satellites. It has been proposed that generation of these satellites is connected with scattering of trapped Langmuir waves on the drift oscillations of the irregularity.
Corrosion behavior of heat-treated intermetallic titanium-nickel in hydrochloric acid solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starosvetsky, D.; Khaselev, O.; Yahalom, J.
1998-07-01
Samples of 45% Ti-55% Ni alloy (Ti-Ni) were heat-treated in air at 450 C, and their anodic behavior in 0.3 M, 1 M, 2 M, and 4 M hydrochloric acid (HCl) solutions was studied. In 0.3 M HCl, heat-treated Ti-Ni was passive, and very low anodic currents were observed. In 1 M and 2 M HCl, heat-treated Ti-Ni was dissolved actively, while heat-treated and surface-ground Ti-Ni became passive. The effect was explained by selective oxidation of Ti-Ni and formation of a layered structure on its surface with discontinuous titanium oxide and a nickel-enriched zone underneath. The latter was dissolved inmore » the HCl solutions, thus accelerating failure of the Ti-Ni samples. In 4 M HCl, heat-treated and heat-treated/ground samples were dissolved readily.« less
A comprehensive review of milk fouling on heated surfaces.
Sadeghinezhad, E; Kazi, S N; Dahari, M; Safaei, Mohammad Reza; Sadri, Rad; Badarudin, A
2015-01-01
Heat exchanger performance degrades rapidly during operation due to formation of deposits on heat transfer surfaces which ultimately reduces service life of the equipment. Due to scaling, product deteriorates which causes lack of proper heating. Chemistry of milk scaling is qualitatively understood and the mathematical models for fouling at low temperatures have been produced but the behavior of systems at ultra high temperature processing has to be studied further to understand in depth. In diversified field, the effect of whey protein fouling along with pressure drop in heat exchangers were conducted by many researchers. Adding additives, treatment of heat exchanger surfaces and changing of heat exchanger configurations are notable areas of investigation in milk fouling. The present review highlighted information about previous work on fouling, influencing parameters of fouling and its mitigation approach and ends up with recommendations for retardation of milk fouling and necessary measures to perform the task.
NASA Astrophysics Data System (ADS)
Valiallah Mousavi, S.; Barzegar Gerdroodbary, M.; Sheikholeslami, Mohsen; Ganji, D. D.
2016-09-01
In this study, two dimensional numerical simulations are performed to investigate the influence of the magnetic field on the nanofluid flow inside a sinusoidal channel. This work reveals the influence of variable magnetic field in the heat transfer of heat exchanger while the mixture is in a single phase. In this heat exchanger, the inner tube is sinusoidal and the outer tube is considered smooth. The magnetic field is applied orthogonal to the axis of the sinusoidal tube. In our study, the ferrofluid (water with 4 vol% nanoparticles (Fe3O4)) flows in a channel with sinusoidal bottom. The finite volume method with the SIMPLEC algorithm is used for handling the pressure-velocity coupling. The numerical results present validated data with experimentally measured data and show good agreement with measurement. The influence of different parameters, like the intensity of magnetic field and Reynolds number, on the heat transfer is investigated. According to the obtained results, the sinusoidal formation of the internal tube significantly increases the Nusselt number inside the channel. Our findings show that the magnetic field increases the probability of eddy formation inside the cavities and consequently enhances the heat transfer (more than 200%) in the vicinity of the magnetic field at low Reynolds number ( Re=50). In addition, the variation of the skin friction shows that the magnetic field increases the skin friction (more than 600%) inside the sinusoidal channel.
Wu, Chao; Cui, Kehui; Wang, Wencheng; Li, Qian; Fahad, Shah; Hu, Qiuqian; Huang, Jianliang; Nie, Lixiao; Peng, Shaobing
2016-01-01
Heat stress causes morphological and physiological changes and reduces crop yield in rice (Oryza sativa). To investigate changes in phytohormones and their relationships with yield and other attributes under heat stress, four rice varieties (Nagina22, Huanghuazhan, Liangyoupeijiu, and Shanyou 63) were grown in pots and subjected to three high temperature treatments plus control in temperature-controlled greenhouses for 15 d during the early reproductive phase. Yield reductions in Nagina22, Huanghuazhan, and Liangyoupeijiu were attributed to reductions in spikelet fertility, spikelets per panicle, and grain weight. The adverse effects of high temperature were alleviated by application of exogenous 6-benzylaminopurine (6-BA) in the heat-susceptible Liangyoupeijiu. High temperature stress reduced active cytokinins, gibberellin A1 (GA1), and indole-3-acetic acid (IAA), but increased abscisic acid (ABA) and bound cytokinins in young panicles. Correlation analyses and application of exogenous 6-BA revealed that high temperature-induced cytokinin changes may regulate yield components by modulating the differentiation and degradation of branches and spikelets, panicle exsertion, pollen vigor, anther dehiscence, and grain size. Heat-tolerant Shanyou 63 displayed minor changes in phytohormones, panicle formation, and grain yield under high temperature compared with those of the other three varieties. These results suggest that phytohormone changes are closely associated with yield formation, and a small reduction or stability in phytohormone content is required to avoid large yield losses under heat stress. PMID:27713528
Surface properties of heat-induced soluble soy protein aggregates of different molecular masses.
Guo, Fengxian; Xiong, Youling L; Qin, Fang; Jian, Huajun; Huang, Xiaolin; Chen, Jie
2015-02-01
Suspensions (2% and 5%, w/v) of soy protein isolate (SPI) were heated at 80, 90, or 100 °C for different time periods to produce soluble aggregates of different molecular sizes to investigate the relationship between particle size and surface properties (emulsions and foams). Soluble aggregates generated in these model systems were characterized by gel permeation chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Heat treatment increased surface hydrophobicity, induced SPI aggregation via hydrophobic interaction and disulfide bonds, and formed soluble aggregates of different sizes. Heating of 5% SPI always promoted large-size aggregate (LA; >1000 kDa) formation irrespective of temperature, whereas the aggregate size distribution in 2% SPI was temperature dependent: the LA fraction progressively rose with temperature (80→90→100 °C), corresponding to the attenuation of medium-size aggregates (MA; 670 to 1000 kDa) initially abundant at 80 °C. Heated SPI with abundant LA (>50%) promoted foam stability. LA also exhibited excellent emulsifying activity and stabilized emulsions by promoting the formation of small oil droplets covered with a thick interfacial protein layer. However, despite a similar influence on emulsion stability, MA enhanced foaming capacity but were less capable of stabilizing emulsions than LA. The functionality variation between heated SPI samples is clearly related to the distribution of aggregates that differ in molecular size and surface activity. The findings may encourage further research to develop functional SPI aggregates for various commercial applications. © 2015 Institute of Food Technologists®
Method of manufacturing a niobium-aluminum-germanium superconductive material
Wang, J.L.F.; Pickus, M.R.; Douglas, K.E.
A method for manufacturing flexible Nb/sub 3/ (Al,Ge) multifilamentary superconductive material in which a sintered porous Nb compact is infiltrated with an Al-Ge alloy. It is deformed and heat treated in a series of steps at successively higher temperatures preferably below 1000/sup 0/C during the heat treatment, cladding material such as copper can be applied to facilitate a deformation step preceding the heat treatment and can remain in place through the heat treatment to serve as a temperature stabilizer for the superconductive material produced. These lower heat treatment temperatures favor formation of filaments with reduced grain size and with more grain boundaries which in turn increase the current-carrying capacity of the superconductive material.
On post-weld heat treatment cracking in tig welded superalloy ATI 718Plus
NASA Astrophysics Data System (ADS)
Asala, G.; Ojo, O. A.
The susceptibility of heat affected zone (HAZ) to cracking in Tungsten Inert Gas (TIG) welded Allvac 718Plus superalloy during post-weld heat treatment (PWHT) was studied. Contrary to the previously reported case of low heat input electron beam welded Allvac 718Plus, where HAZ cracking occurred during PWHT, the TIG welded alloy is crack-free after PWHT, notwithstanding the presence of similar micro-constituents that caused cracking in the low input weld. Accordingly, the formation of brittle HAZ intergranular micro-constituents may not be a sufficient factor to determine cracking propensity, the extent of heat input during welding may be another major factor that influences HAZ cracking during PWHT of the aerospace superalloy Allvac 718Plus.
Thorogood, Robert M.
1986-01-01
A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.
Thorogood, Robert M.
1983-01-01
A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.
Thorogood, R.M.
1983-12-27
A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation. 14 figs.
Increasing the thermal conductivity of silicone based fluids using carbon nanofibers
NASA Astrophysics Data System (ADS)
Vales-Pinzon, C.; Vega-Flick, A.; Pech-May, N. W.; Alvarado-Gil, J. J.; Medina-Esquivel, R. A.; Zambrano-Arjona, M. A.; Mendez-Gamboa, J. A.
2016-11-01
Heat transfer in silicone fluids loaded with high thermal conductivity carbon nanofibers was studied using photoacoustics and thermal wave resonator cavity. It is shown that heat transport depends strongly on volume fraction of carbon nanofibers; in particular, a low loading percentage is enough to obtain significant changes in thermal conductivity. Theoretical models were used to determine how heat transfer is affected by structural formations in the composite, such as packing fraction and aspect ratio (form factor) of carbon nanofiber agglomerates in the high viscosity fluid matrix. Our results may find practical applications in systems, in which the carbon nanofibers can facilitate heat dissipation in the electronic devices.
Heat-pump cool storage in a clathrate of freon
NASA Astrophysics Data System (ADS)
Tomlinson, J. J.
Presented are the analytical description and assessment of a unique heat pump/storage system in which the conventional evaporator of the vapor compression cycle is replaced by a highly efficient direct contract crystallizer. The thermal storage technique requires the formation of a refrigerant gas hydrate (a clathrate) and exploits an enthalpy of reaction comparable to the heat of fusion of ice. Additional system operational benefits include cool storage at the favorable temperatures of 4 to 7 C (40 to 45 F), and highly efficient heat transfer ates afforded by he direct contact mechanism. In addition, the experimental approach underway at ORNL to study such a system is discussed.
Antioxidants Inhibit Formation of 3-Monochloropropane-1,2-diol Esters in Model Reactions.
Li, Chang; Jia, Hanbing; Shen, Mingyue; Wang, Yuting; Nie, Shaoping; Chen, Yi; Zhou, Yongqiang; Wang, Yuanxing; Xie, Mingyong
2015-11-11
The capacities of six antioxidants to inhibit the formation of 3-monochloropropane-1,2 diol (3-MCPD) esters were examined in this study. Inhibitory capacities of the antioxidants were investigated both in chemical models containing the precursors (tripalmitoyl glycerol, 1,2-dipalmitoyl-sn-glycerol, monopalmitoyl glycerol, and sodium chloride) of 3-MCPD esters and in oil models (rapeseed oil and sodium chloride). Six antioxidants, butylated hydroxytoluene (BHT), butylated hydroxy anisole (BHA), tert-butyl hydroquinone (TBHQ), propyl gallate (PG), L-ascorbyl palmitate (AP), and α-tocopherol (VE), were found to exhibit inhibiting capacities on 3-MCPD ester formation both in chemical models and in oil models. TBHQ provided the highest inhibitory capacity both in chemical models and in oil models; 44% of 3-MCPD ester formation was inhibited in the presence of TBHQ (66 mg/kg of oil) after heating of rapeseed oil at 230 °C for 30 min, followed by PG and AP. BHT, BHA, and VE appeared to have weaker inhibitory abilities in both models. VE exhibited the lowest inhibition rate; 22% of 3-MCPD esters were inhibited in the presence of VE (172 mg/kg of oil) after heating of rapeseed oil at 230 °C for 30 min. In addition, the inhibition rates of PG and VE decreased dramatically with an increase in temperature or heating time. The results suggested that some antioxidants, such as TBHQ, PG, and AP, could be the potential inhibitors of 3-MCPD esters in practice.
Bio-Heat Is a Key Environmental Driver Shaping the Microbial Community of Medium-Temperature Daqu.
Xiao, Chen; Lu, Zhen-Ming; Zhang, Xiao-Juan; Wang, Song-Tao; Ao, Ling; Shen, Cai-Hong; Shi, Jin-Song; Xu, Zheng-Hong
2017-12-01
"Daqu" is a saccharifying and fermenting agent commonly used in the traditional solid-state fermentation industry (e.g., baijiu and vinegar). The patterns of microbial community succession and flavor formation are highly similar among batches, yet the mechanisms promoting temporal succession in the Daqu microbial ecology remain unclear. Here, we first correlated temporal profiles of microbial community succession with environmental variables (temperature, moisture, and titratable acidity) in medium temperature Daqu (MT-Daqu) throughout fermentation. Temperature dynamics significantly correlated ( P < 0.05) with the quick succession of MT-Daqu microbiota in the first 12 d of fermentation, while the community structure was relatively stable after 12 d. Then, we explored the effect of temperature on the MT-Daqu community assembly. In the first 4 d of fermentation, the rapid propagation of most bacterial taxa and several fungal taxa, including Candida , Wickerhamomyces , and unclassified Dipodascaceae and Saccharomycetales species, significantly increased MT-Daqu temperature to 55°C. Subsequently, sustained bio-heat generated by microbial metabolism (53 to 56°C) within MT-Daqu inhibited the growth of most microbes from day 4 to day 12, while thermotolerant taxa, including Bacillus , unclassified Streptophyta , Weissella , Thermoactinomyces , Thermoascus , and Thermomyces survived or kept on growing. Furthermore, temperature as a major driving force on the shaping of MT-Daqu microbiota was validated. Lowering the fermentation temperature by placing the MT-Daqu in a 37°C incubator resulted in decreased relative abundances of thermotolerant taxa, including Bacillus , Thermoactinomyces , and Thermoascus , in the MT-Daqu microbiota. This study revealed that bio-heat functioned as a primary endogenous driver promoting the formation of functional MT-Daqu microbiota. IMPORTANCE Humans have mastered the Daqu preparation technique of cultivating functional microbiota on starchy grains over thousands of years, and it is well known that the metabolic activity of these microbes is key to the flavor production of Chinese baijiu. The pattern of microbial community succession and flavor formation remains highly similar between batches, yet mechanistic insight into these patterns and into microbial population fidelity to specific environmental conditions remains unclear. Our study revealed that bio-heat was generated within Daqu bricks in the first 4 d of fermentation, concomitant with rapid microbial propagation and metabolism. The sustained bio-heat may then function as a major endogenous driving force promoting the formation of the MT-Daqu microbiota from day 4 to day 12. The bio-heat-driven growth of thermotolerant microorganisms might contribute to the formation of flavor metabolites. This study provides useful information for the temperature-based modulation of microbiota function during the fermentation of Daqu. Copyright © 2017 American Society for Microbiology.
Ciandrini, E; Campana, R; Baffone, W
2017-06-01
This research investigates the ability of live and heat-killed (HK) Lactic Acid Bacteria (LAB) to interfere with Streptococcus mutans ATCC 25175 and Streptococcus oralis ATCC 9811 during biofilm formation. Eight Lactobacillus spp. and two oral colonizers, pathogenic Streptococcus mutans and resident Streptococcus oralis, were characterized for their aggregation abilities, cell surface properties and biofilm formation ability on titanium surface. Then, the interference activity of selected live and HK Lactobacillus spp. during S. mutans and S. oralis biofilm development were performed. The cell-free culture supernatants (CFCS) anti-biofilm activity was also determined. LAB possess good abilities of auto-aggregation (from 14.19 to 28.97%) and of co-aggregation with S. oralis. The cell-surfaces characteristics were most pronounced in S. mutans and S. oralis, while the highest affinities to xylene and chloroform were observed in Lactobacillus rhamnosus ATCC 53103 (56.37%) and Lactobacillus paracasei B21060 (43.83%). S. mutans and S. oralis developed a biofilm on titanium surface, while LAB showed a limited or no ability to create biofilm. Live and HK L. rhamnosus ATCC 53103 and L. paracasei B21060 inhibited streptococci biofilm formation by competition and displacement mechanisms with no substantial differences. The CFCSs of both LAB strains, particularly the undiluted one of L. paracasei B21060, decreased S. mutans and S. oralis biofilm formation. This study evidenced the association of LAB aggregation abilities and cell-surface properties with the LAB-mediated inhibition of S. mutans and S. oralis biofilm formation. Lactobacilli showed different mechanisms of action and peculiar strain-specific characteristics, maintained also in the heat-killed LAB. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rongsirikul, Narumol; Hongsprabhas, Parichat
2016-01-01
Commercial whey protein concentrate (WPC) was modified by heating the acidified protein suspensions (pH 2.0) at 80 °C for 30 min and treating with pepsin at 37 °C for 60 min. Prior to spray-drying, such modification did not change the molecular weights (MWs) of whey proteins determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). After spray-drying the modified whey protein concentrate with trehalose excipient (MWPC-TH), it was found that the α-lactalbumin (α-La) was the major protein that was further hydrolyzed the most. The reconstituted MWPC-TH contained β-lactoglobulin (β-Lg) as the major protein and small molecular weight (MW) peptides of less than 6.5 kDa. The reconstituted MWPC-TH had higher NH2 group, Trolox equivalent antioxidant capacity (TEAC), lower exposed aromatic ring and thiol (SH) contents than did the commercial WPC. Kinetic studies revealed that the addition of MWPC-TH in fructose-glycine solution was able to reduce brown pigment formation in the mixtures heated at 80 to 95 °C by increasing the activation energy (Ea) of brown pigment formation due to the retardation of fluoresced advanced glycation end product (AGEs) formation. The addition of MWPC to reducing sugar-glycine/commercial WPC was also able to lower brown pigment formation in the sterilized (121 °C, 15 min) mixed suspensions containing 0.1 M reducing sugar and 0.5-1.0 % glycine and/or commercial (P < 0.05). It was demonstrated that the modification investigated in this study selectively hydrolyzed α-La and retained β-Lg for the production of antibrowning whey protein concentrate.
NASA Astrophysics Data System (ADS)
Chatthong, B.; Onjun, T.
2016-01-01
A set of heat and particle transport equations with the inclusion of E × B flow and magnetic shear is used to understand the formation and behaviors of edge transport barriers (ETBs) and internal transport barriers (ITBs) in tokamak plasmas based on two-field bifurcation concept. A simple model that can describe the E × B flow shear and magnetic shear effect in tokamak plasma is used for anomalous transport suppression with the effect of bootstrap current included. Consequently, conditions and formations of ETB and ITB can be visualized and studied. It can be seen that the ETB formation depends sensitively on the E × B flow shear suppression with small dependence on the magnetic shear suppression. However, the ITB formation depends sensitively on the magnetic shear suppression with a small dependence on the E × B flow shear suppression. Once the H-mode is achieved, the s-curve bifurcation diagram is modified due to an increase of bootstrap current at the plasma edge, resulting in reductions of both L-H and H-L transition thresholds with stronger hysteresis effects. It is also found that both ITB and ETB widths appear to be governed by heat or particle sources and the location of the current peaking. In addition, at a marginal flux just below the L-H threshold, a small perturbation in terms of heat or density fluctuation can result in a transition, which can remain after the perturbation is removed due to the hysteresis effect.
Approximate analysis of the formation of a buoyant solid sphere in a supercooled melt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, A.D.; Wilson, D.G.; Alexiades, V.
1986-03-01
A mathematical model is presented for the idealized formation and development of a buoyant sphere solidifying in an infinite pool of supercooled liquid. The solid and liquid are of the same pure material and the solid is less dense than the liquid. Initially the liquid is at a uniform temperature that is below its equilibrium freezing temperature, T/sub cr/, but above the so called hypercooled temperature, T/sub cr/ - H/c/sub L/. Here H and c/sub L/ are the latent heat of solidification and the specific heat of the liquid, respectively. An approximate solution is derived based on the Megerlin approximationmore » method. 11 refs.« less
Apparatus and process to enhance the uniform formation of hollow glass microspheres
Schumacher, Ray F
2013-10-01
A process and apparatus is provided for enhancing the formation of a uniform population of hollow glass microspheres. A burner head is used which directs incoming glass particles away from the cooler perimeter of the flame cone of the gas burner and distributes the glass particles in a uniform manner throughout the more evenly heated portions of the flame zone. As a result, as the glass particles are softened and expand by a released nucleating gas so as to form a hollow glass microsphere, the resulting hollow glass microspheres have a more uniform size and property distribution as a result of experiencing a more homogenous heat treatment process.
A study of the vortex structures around circular cylinder mounted on vertical heated plate
NASA Astrophysics Data System (ADS)
Malah, Hamid; Chumakov, Yurii S.; Levchenya, Alexander M.
2018-05-01
In recent years, studies of natural convection boundary layer interacting with obstacles draw much of attention, because of its practical applications. Pressure gradient resulting from this interaction leads to separation of the boundary layer. The formation of vortex structure around obstacle is characteristic to any kind of convection flow. In this paper, we describe the formation of three-dimensional vortex structure for the case of natural convection flow around the circular cylinder mounted on vertical heated plate. Navier-Stokes equations were used for numerical computations. The results proved the presence of a horseshoe vortex system in the case of natural convection flow as in the forced convection flow.
NASA Astrophysics Data System (ADS)
Razzaq, Javaria; Haque, Q.; Khan, Majid; Bhatti, Adnan Mehmood; Kamran, M.; Mirza, Arshad M.
2018-02-01
Nonlinear structure formation in ion-temperature-gradient (ITG) driven waves is investigated in pair-ion plasma comprising ions and nonthermal electrons (kappa, Cairns). By using the transport equations of the Braginskii model, a new set of nonlinear equations are derived. A linear dispersion relation is obtained and discussed analytically as well as numerically. It is shown that the nonthermal population of electrons affects both the linear and nonlinear characteristics of the ITG mode in pair-ion plasma. This work will be useful in tokamaks and stellarators where non-Maxwellian population of electrons may exist due to resonant frequency heating, electron cyclotron heating, runaway electrons, etc.
Drabik-Markiewicz, G; Dejaegher, B; De Mey, E; Kowalska, T; Paelinck, H; Vander Heyden, Y
2011-06-15
The influence of biogenic amines (i.e. putrescine, cadaverine, spermidine and spermine) on the N-nitrosamine formation in heated cured lean meat was studied in the presence or absence of sodium nitrite and at different meat processing temperatures. Experimental evidence was produced using gas chromatography with thermal energy analysis detection (GC-TEA). Concentration of N-nitrosamines was modelled as a function of the temperature and the nitrite concentration for two situations, i.e. presence or absence of added biogenic amines to the meat. The significance of the influence of the changing parameters was evaluated by ANOVA (Analysis of Variance). It was found that higher processing temperatures and higher added amounts of sodium nitrite increase the yields of N-nitrosodimethylamine (NDMA) and N-nitrosopiperidine (NPIP). Spermidine and putrescine amplify the formation of NDMA, but spermine and cadeverine do not influence the formation of this N-nitrosamine. Spermidine and cadeverine cause a significant increase of NPIP. Beside N-nitrosopyrrolidine (NPYR) in some rare cases, no other volatile N-nitrosamines are detected. Copyright © 2010 Elsevier Ltd. All rights reserved.
Microstructural Evolution of Secondary Phases in the Cast Duplex Stainless Steels CD3MN and CD3MWCuN
NASA Astrophysics Data System (ADS)
Kim, Yoon-Jun; Ugurlu, Ozan; Jiang, Chao; Gleeson, Brian; Chumbley, L. Scott
2007-02-01
The isothermal formation behavior of secondary phases in two types of duplex stainless steels (DSS), CD3MN and CD3MWCuN, was characterized. Samples were heat treated from 1 minute to 30 days at temperatures from 700°C to 900°C. Small carbide (M23C6) and nitride (Cr2N) precipitates, together with the intermetallic phases sigma and chi, were observed using scanning electron microscopy (SEM) and confirmed by transmission electron microscopy (TEM) analyses. Based on SEM analysis, time-temperature-transformation (TTT) curves for the sigma and chi phases were determined by measuring their volume fractions from backscattered electron micrographs of heat-treated and quenched sample cross sections. Resulting TTT curves showed that the maximum formation temperature for chi is lower than that for sigma, while the time to reach 1 vol pct formation is much less for sigma than it is for chi. The thermodynamic driving forces associated with the sigma and chi formation were assessed using Thermo-Calc.
Using micro-patterned surfaces to inhibit settlement and biofilm formation by Bacillus subtilis.
Chang, Siyuan; Chen, Xiaodong; Jiang, Shuo; Chen, Jinchun; Shi, Lin
2017-07-01
Biofilm is a biological complex caused by bacteria attachment to the substrates and their subsequent reproduction and secretion. This phenomenon reduces heat transfer efficiency and causes significant losses in treated sewage heat-recovering systems. This paper describes a physical approach to inhibit bacteria settlement and biofilm formation by Bacillus subtilis, which is the dominant species in treated sewage. Here, micro-patterned surfaces with different characteristics (stripe and cube) and dimensions (1-100 μm) were fabricated as surfaces of interest. Model sewage was prepared and a rotating coupon device was used to form the biofilms. Precision balance, scanning electron microscopy, and confocal laser scanning microscopy (CLSM) were employed to investigate the inhibitory effects and the mechanisms of the biofilm-surface interactions. The results have shown that surfaces with small pattern sizes (1 and 2 μm) all reduced biofilm formation significantly. Interestingly, the CLSM images showed that the surfaces do not play a role in "killing" the bacteria. These findings are useful for future development of new process surfaces on which bacteria settlement and biofilm formation can be inhibited or minimized.
Graphene heat dissipating structure
Washburn, Cody M.; Lambert, Timothy N.; Wheeler, David R.; Rodenbeck, Christopher T.; Railkar, Tarak A.
2017-08-01
Various technologies presented herein relate to forming one or more heat dissipating structures (e.g., heat spreaders and/or heat sinks) on a substrate, wherein the substrate forms part of an electronic component. The heat dissipating structures are formed from graphene, with advantage being taken of the high thermal conductivity of graphene. The graphene (e.g., in flake form) is attached to a diazonium molecule, and further, the diazonium molecule is utilized to attach the graphene to material forming the substrate. A surface of the substrate is treated to comprise oxide-containing regions and also oxide-free regions having underlying silicon exposed. The diazonium molecule attaches to the oxide-free regions, wherein the diazonium molecule bonds (e.g., covalently) to the exposed silicon. Attachment of the diazonium plus graphene molecule is optionally repeated to enable formation of a heat dissipating structure of a required height.
Heat transport through atomic contacts.
Mosso, Nico; Drechsler, Ute; Menges, Fabian; Nirmalraj, Peter; Karg, Siegfried; Riel, Heike; Gotsmann, Bernd
2017-05-01
Heat transport and dissipation at the nanoscale severely limit the scaling of high-performance electronic devices and circuits. Metallic atomic junctions serve as model systems to probe electrical and thermal transport down to the atomic level as well as quantum effects that occur in one-dimensional (1D) systems. Whereas charge transport in atomic junctions has been studied intensively in the past two decades, heat transport remains poorly characterized because it requires the combination of a high sensitivity to small heat fluxes and the formation of stable atomic contacts. Here we report heat-transfer measurements through atomic junctions and analyse the thermal conductance of single-atom gold contacts at room temperature. Simultaneous measurements of charge and heat transport reveal the proportionality of electrical and thermal conductance, quantized with the respective conductance quanta. This constitutes a verification of the Wiedemann-Franz law at the atomic scale.
Mach 14 Flow Restrictor Thermal Stress Analysis
1984-08-01
tranfer analysis, thermal stress analysis, results translation from ABAQUS to PATRAN-G, and the method used to determine the heat transfer film...G, model translation into ABAQUS format, transient heat transfer analysis and thermal stress analysis input decks, results translation from ABAQUS ...TRANSLATION FROM PATRAN-G TO ABAQUS 3 ABAQUS CONSIDERATIONS 8 MATERIAL PROPERTIES OF COLUMBIUM C-103 10 USER SUBROUTINE FILM 11 TRANSIENT
Liu, Shyh-Jiun; Huang, Chia-Hung; Huang, Chun-Kai; Hwang, Weng-Sing
2009-08-28
Iron complexes were supported on commercial carbon black and heat treated to create FeO(x)/C catalysts that showed a larger normalized current density and normalized power density than commercial Pt/C catalysts; the coordination number of the iron complexes used affected the formation of the active site for oxygen reduction in PEMFC.
Thermal analysis of turbulent flow of a supercritical fluid
NASA Technical Reports Server (NTRS)
Yamane, E.
1979-01-01
The influence of the large variation of thermodynamics and transport properties near the pseudocritical temperature on the heat transfer coefficient of supercritical fluid in turbulent flow was studied. The formation of the characteristics peak in the heat transfer coefficient vs. bulk temperature curve is described, and the necessity of the fluid element at pseudocritical temperature located in the buffer layer is discussed.
ERIC Educational Resources Information Center
Celik, Harun
2016-01-01
In science teaching, metaphors are important tools for understanding meaningful learning and conceptual formation by the help of daily life language. This study aims to evaluate how the concepts of heat, temperature and energy are perceived by students in secondary school science classes and how the perceptions of these concepts vary in terms of…
Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency
Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; ...
2018-04-25
Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatmentmore » line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. Furthermore, this work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.« less
Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency
NASA Astrophysics Data System (ADS)
Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; Kesler, Michael S.; Weiss, David; Ott, Ryan T.; Meng, Fanqiang; Kassoumeh, Sam; Evangelista, James; Begley, Gerald; Rios, Orlando
2018-06-01
Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatment line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. This work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.
Wong, Fai-Chu; Chai, Tsun-Thai; Xiao, Jianbo
2018-05-22
In our diets, many of the consumed foods are subjected to various forms of heating and thermal processing. Besides enhancing the taste, texture, and aroma of the foods, heating helps to sterilize and facilitate food storage. On the other hand, heating and thermal processing are frequently reported during the preparation of various traditional herbal medicines. In this review, we intend to highlight works by various research groups which reported on changes in phytochemicals and bioactivities, following thermal processing of selected plant-derived foods and herbal medicines. Relevant cases from plant-derived foods (garlic, coffee, cocoa, barley) and traditional herbal medicines (Panax ginseng, Polygonum multiforum, Aconitum carmichaelii Debeaux, Angelica sinensis Radix) will be presented in this review. Additionally, related works using pure phytochemical compounds will also be highlighted. In some of these cases, the amazing formation of new compounds were being reported. Maillard reaction could be concluded as the predominant pathway leading to the formation of new conjugates, along with other possibilities being suggested (degradation, transglycosylation, deglycosylation and dehydration). With collective efforts from all researchers, it is hoped that more details will be revealed and lead to the possible discovery of new, heat-mediated phytochemical conjugates.
Superconducting ceramics in the Bi1.5SrCaCu2O sub x system by melt quenching technique
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Deguire, Mark R.
1989-01-01
Bi sub 1.5 SrCaCu sub 2 O sub x has been prepared in the glassy state by rapid quenching of the melt. The kinetics of crystallization of various phases in the glass have been evaluated by a variable heating rate differential scanning calorimetry method. The formation various phases on thermal treatments of the glass has been investigated by powder X-ray diffraction and electrical resistivity measurements. Heating at 450 C formed Bi sub 2 Sr sub 2 CuO sub 6, which disappeared on further heating at 765 C, where Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8 formed. Prolonged heating at 845 C resulted in the formation of a small amount of a phase with T sub c onset of approx. 108 K, believed to be Bi sub 2 Sr sub 2 Ca sub 2 Cu sub 3 O sub 10. This specimen showed zero resistivity at 54 K. The glass ceramic approach could offer several advantages in the fabrication of the high-T sub c superconductors in desired practical shapes such as continuous fibers, wires, tapes, etc.
Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency
NASA Astrophysics Data System (ADS)
Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; Kesler, Michael S.; Weiss, David; Ott, Ryan T.; Meng, Fanqiang; Kassoumeh, Sam; Evangelista, James; Begley, Gerald; Rios, Orlando
2018-04-01
Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatment line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. This work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.
Structure formation in grade 20 steel during equal-channel angular pressing and subsequent heating
NASA Astrophysics Data System (ADS)
Dobatkin, S. V.; Odesskii, P. D.; Raab, G. I.; Tyutin, M. R.; Rybalchenko, O. V.
2016-11-01
The structure formation and the mechanical properties of quenched and tempered grade 20 steel after equal-channel angular pressing (ECAP) at various true strains and 400°C are studied. Electron microscopy analysis after ECAP shows a partially submicrocrystalline and partially subgrain structure with a structural element size of 340-375 nm. The structural element size depends on the region in which the elements are formed (polyhedral ferrite, needle-shaped ferrite, tempered martensite, and pearlite). Heating of the steel after ECAP at 400 and 450°C increases the fraction of high-angle boundaries and the structural ferrite element size to 360-450 nm. The fragmentation and spheroidization of cementite lamellae of pearlite and subgrain coalescence in the regions of needle-shaped ferrite and tempered martensite take place at a high ECAP true strain and heating temperature. Structural refinement ensures considerable strengthening, namely, UTS 742-871 MPa at EL 11-15.3%. The strength slightly increases, whereas the plasticity slightly decreases when the true strain increases during ECAP. After ECAP and heating, the strength and plastic properties of the grade 20 steel remain almost the same.
Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.
Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatmentmore » line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. Furthermore, this work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.« less
Development of ternary alloy cathode catalysts for phosphoric acid fuel cells: Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jalan, V.; Kosek, J.; Giner, J.
The overall objective of the program was the identification development and incorporation of high activity platinum ternary alloys on corrosion resistant supports, for use in advanced phosphoric acid fuel cells. Two high activity ternary alloys, Pr-Cr-Ce and Pt-Ni-Co, both supported on Vulcan XC-72, were identified during the course of the program. The Pr-Ni-Co system was selected for optimization, including preparation and evaluation on corrosion resistant supports such as 2700/degree/C heat-treated Vulcan XC-72 and 2700/degree/ heat-treated Black Pearls 2000. A series of tests identified optimum metal ratios, heat-treatment temperatures and heat-treatment atmospheres for the Pr-Ni-Co system. During characterization testing, it wasmore » discovered that approximately 50% of the nickel and cobalt present in the starting material could be removed, subsequent to alloy formation, without degrading performance. Extremely stable full cell performance was observed for the Pt-Ni-Co system during a 10,000 hour atmosphere pressure life test. Several theories are proposed to explain the enhancement in activity due to alloy formation. Recommendations are made for future research in this area. 62 refs., 23 figs., 27 tabs.« less
Isolation and identification of oxidation products of syringol from brines and heated meat matrix.
Bölicke, Sarah-Maria; Ternes, Waldemar
2016-08-01
In this study we developed new extraction and detection methods (using HPLC-UV and LC-MS), making it possible to analyze the smoke phenol syringol and its oxidation products nitrososyringol, nitrosyringol, and the syringol dimer 3,3',5,5'-tetramethoxy-1,1'-biphenyl-4,4'-diol, which were identified in heated meat for the first time. Preliminary brine experiments performed with different concentrations of ascorbic acid showed that high amounts of this antioxidant also resulted in almost complete degradation of syringol and to formation of the oxidation products when the brines were heated at low pH values. Heat treatment (80°C) and subsequent simulated digestion applied to meat samples containing syringol, ascorbic acid and different concentrations of sodium nitrite produced 3,3',5,5'-tetramethoxy-1,1'-biphenyl-4,4'-diol even at a low nitrite level in the meat matrix, while nitroso- and nitrosyringol were isolated only after the digestion experiments. Increasing amounts of oxygen in the meat matrix decreased the syringol concentration and enhanced the formation of the reaction products in comparison to the samples without added oxygen. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Foley, B. J.
2017-12-01
Grain-size reduction is thought to play an important role in shear localization within the lithosphere, as mylonites are commonly seen in regions that have undergone intense deformation. However, flow in lithospheric shear zones can also cause heating due to the energy dissipated by deformation. As grain growth is strongly enhanced by warmer temperatures, shear heating may impede grainsize reduction and the formation of mylonite zones. I use models of simple shear, with length-scales representative of lithospheric shear zones and plate boundaries, including shear heating and grainsize evolution. Grain-damage theory is used to represent the evolution of grainsize. The models are used to determine conditions where grainsize reduction dominates versus those where shear heating dominates; if grainsize reduction dominates, then heating is held in check by the drop in viscosity brought about by small grains. On the other hand, if heating dominates then grain-reduction is prevented by fast grain-growth rates. From the numerical models, simple scaling laws are developed that give the stready-state grainsize and temperature rise as a function of strain-rate, background temperature, and parameters for grain-growth and grain-reduction. I find that for parameter ranges constrained by field observations of shear zones and rock deformation experiments, grainsize reduction dominated over shear heating. Very high strain-rates or driving stresses, above what is typically expected in natural shear zones, are needed for shear heating to dominate over grainsize reduction. Also explored is the timescale to reach steady-state grainsize and temperature conditions in a shear zone. For realistic driving stress or strain-rate, timescales to reach steady-state are often very long, on the order of hundreds of millions of years or longer. This might indicate that natural shear zones do not reach steady-state, or that additional processes are important in initiating lithospheric shear localization.
Enhanced thermophysical properties via PAO superstructure
NASA Astrophysics Data System (ADS)
Pournorouz, Zahra; Mostafavi, Amirhossein; Pinto, Aditya; Bokka, Apparao; Jeon, Junha; Shin, Donghyun
2017-01-01
For the last few years, molten salt nanomaterials have attracted many scientists for their enhanced specific heat by doping a minute concentration of nanoparticles (up to 1% by weight). Likewise, enhancing the specific heat of liquid media is important in many aspects of engineering such as engine oil, coolant, and lubricant. However, such enhancement in specific heat was only observed for molten salts, yet other engineering fluids such as water, ethylene glycol, and oil have shown a decrease of specific heat with doped nanoparticles. Recent studies have shown that the observed specific heat enhancement resulted from unique nanostructures that were formed by molten salt molecules when interacting with nanoparticles. Thus, such enhancement in specific heat is only possible for molten salts because other fluids may not naturally form such nanostructures. In this study, we hypothesized such nanostructures can be mimicked through in situ formation of fabricated nano-additives, which are putative nanoparticles coated with useful organic materials (e.g., polar-group-ended organic molecules) leading to superstructures, and thus can be directly used for other engineering fluids. We first applied this approach to polyalphaolefin (PAO). A differential scanning calorimeter (DSC), a rheometer, and a customized setup were employed to characterize the heat capacity, viscosity, and thermal conductivity of PAO and PAO with fabricated nano-additives. Results showed 44.5% enhanced heat capacity and 19.8 and 22.98% enhancement for thermal conductivity and viscosity, respectively, by an addition of only 2% of fabricated nanostructures in comparison with pure PAO. Moreover, a partial melting of the polar-group-ended organic molecules was observed in the first thermal cycle and the peak disappeared in the following cycles. This indicates that the in situ formation of fabricated nano-additives spontaneously occurs in the thermal cycle to form nanostructures. Figure of merit analyses have been performed for the PAO superstructure to evaluate its performance for heat storage and transfer media.
Enhanced thermophysical properties via PAO superstructure.
Pournorouz, Zahra; Mostafavi, Amirhossein; Pinto, Aditya; Bokka, Apparao; Jeon, Junha; Shin, Donghyun
2017-12-01
For the last few years, molten salt nanomaterials have attracted many scientists for their enhanced specific heat by doping a minute concentration of nanoparticles (up to 1% by weight). Likewise, enhancing the specific heat of liquid media is important in many aspects of engineering such as engine oil, coolant, and lubricant. However, such enhancement in specific heat was only observed for molten salts, yet other engineering fluids such as water, ethylene glycol, and oil have shown a decrease of specific heat with doped nanoparticles. Recent studies have shown that the observed specific heat enhancement resulted from unique nanostructures that were formed by molten salt molecules when interacting with nanoparticles. Thus, such enhancement in specific heat is only possible for molten salts because other fluids may not naturally form such nanostructures. In this study, we hypothesized such nanostructures can be mimicked through in situ formation of fabricated nano-additives, which are putative nanoparticles coated with useful organic materials (e.g., polar-group-ended organic molecules) leading to superstructures, and thus can be directly used for other engineering fluids. We first applied this approach to polyalphaolefin (PAO). A differential scanning calorimeter (DSC), a rheometer, and a customized setup were employed to characterize the heat capacity, viscosity, and thermal conductivity of PAO and PAO with fabricated nano-additives. Results showed 44.5% enhanced heat capacity and 19.8 and 22.98% enhancement for thermal conductivity and viscosity, respectively, by an addition of only 2% of fabricated nanostructures in comparison with pure PAO. Moreover, a partial melting of the polar-group-ended organic molecules was observed in the first thermal cycle and the peak disappeared in the following cycles. This indicates that the in situ formation of fabricated nano-additives spontaneously occurs in the thermal cycle to form nanostructures. Figure of merit analyses have been performed for the PAO superstructure to evaluate its performance for heat storage and transfer media.
NASA Technical Reports Server (NTRS)
Collins, Jack R.; Loew, Gilda H.; Luke, Brian T.; White, David H.
1988-01-01
Molecular orbital calculations are used to study amino acid activation by anhydride formation in neutral phosphates and in tetrahedral silicate and aluminate sites on clay edges. The results agree with previous ab initio studies of Luke et al. (1984) on the reactant species. Relative heats of formation of the anhydrides indicate the extent of anhydride formation to be the greatest for Al and the least for phosphate, which is the same order as the stability of hydrolysis.
NASA Astrophysics Data System (ADS)
Taniguchi, Y.; Okuno, A.; Kato, M.
2010-03-01
Pressure can retrain the heat-induced aggregation and dissociate the heat-induced aggregates. We observed the aggregation-preventing pressure effect and the aggregates-dissociating pressure effect to characterize the heat-induced aggregation of equine serum albumin (ESA) by FT-IR spectroscopy. The results suggest the α-helical structure collapses at the beginning of heat-induced aggregation through the swollen structure, and then the rearrangement of structure to the intermolecular β-sheet takes place through partially unfolded structure. We determined the activation volume for the heat-induced aggregation (ΔV# = +93 ml/mol) and the partial molar volume difference between native state and heat-induced aggregates (ΔV=+32 ml/mol). This positive partial molar volume difference suggests that the heat-induced aggregates have larger internal voids than the native structure. Moreover, the positive volume change implies that the formation of the intermolecular β-sheet is unfavorable under high pressure.
Han, Haoxue; Mérabia, Samy; Müller-Plathe, Florian
2017-05-04
The integration of three-dimensional microelectronics is hampered by overheating issues inherent to state-of-the-art integrated circuits. Fundamental understanding of heat transfer across soft-solid interfaces is important for developing efficient heat dissipation capabilities. At the microscopic scale, the formation of a dense liquid layer at the solid-liquid interface decreases the interfacial heat resistance. We show through molecular dynamics simulations of n-perfluorohexane on a generic wettable surface that enhancement of the liquid structure beyond a single adsorbed layer drastically enhances interfacial heat conductance. Pressure is used to control the extent of the liquid layer structure. The interfacial thermal conductance increases with pressure values up to 16.2 MPa at room temperature. Furthermore, it is shown that liquid structuring enhances the heat-transfer rate of high-energy lattice waves by broadening the transmission peaks in the heat flux spectrum. Our results show that pressure is an important external parameter that may be used to control interfacial heat conductance at solid-soft interfaces.
ASHRAE's new Chiller Heat Recovery Application Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorgan, C.B.; Dorgan, C.E.
2000-07-01
The new Chiller Heat Recovery Application Guide, published by the American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE), provides a comprehensive reference manual on the options available for chiller heat recovery. The information in the guide will assist engineers, owners, and system operators in evaluating the potential of integrating chiller heat recovery into their cooling and heating systems. The primary focus is on new construction and applications where a chiller is being replaced due to inefficiency, high operating and maintenance (O and M) costs, or elimination of refrigerants containing ozone-depleting chemicals known as CFC/HCFCs. While chiller systems for commercialmore » buildings are the primary focus of the guide, the information and procedures also apply to industrial heat pumps. The function of this paper is to highlight key information contained in the guide, including the major benefits of chiller heat recovery, primary candidates, and application procedures. A description of the guide's general format and contents is also provided.« less
A transient analysis of frost formation on a parallel plate evaporator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Frias, J.; Aceves, S.M.; Hernandez-Guerrero, A.
1996-12-31
This paper presents the development of a transient model for evaluating frost formation on a parallel plate evaporator for heat pump applications. The model treats the frost layer as a porous substance, and applies the equations of conservation of mass, momentum and energy to calculate the growth and densification of the frost layer. Empirical correlations for thermal conductivity and tortuosity as a function of density are incorporated from previous studies. Frost growth is calculated as a function of time, Reynolds number, longitudinal location, plate temperature, and ambient air temperature and humidity. The main assumptions are: ideal gas behavior for airmore » and water vapor, uniform frost density and thermal conductivity across the thickness of the frost layer; and quasi-steady conditions during the whole process. The mathematical model is validated by comparing the predicted values of frost thickness and frost density with results obtained in recent experimental studies. A good agreement was obtained in the comparison. The frost formation model calculates pressure drop and heat transfer resistance that result from the existence of the frost layer, and it can therefore be incorporated into a heat pump model to evaluate performance losses due to frosting as a function of weather conditions and time of operation since the last evaporator defrost.« less
Constraints on Nubular Electromagnetic Pulses
NASA Astrophysics Data System (ADS)
Eisenhour, D. D.; Buseck, P. R.
1993-07-01
Chondritic meteorites contain an abundance of silicate minerals with opaque inclusions of oxides, sulfides, and metals. These host silicates interact differently from their enclosed opaques to electromagnetic (EM) radiation; specifically, silicates are inefficient at absorbing EM energy in the visible and near infrared while metals, sulfides, and Fe oxides absorb strongly in this frequency range. In the presence of a strong electromagnetic pulse (EMP), this preferential absorption leads to the selective heating of the opaque inclusions and can produce unique textures ("dirty snowballs": intimate, ~spherical intergrowths of silicate and opaque minerals with radii of < 1 to 10 micrometers) that record the passage of the EMP. Many chondrules, CAIs, and isolated silicate grains within chondritic meteorites exhibit these unique features, suggesting that strong EMPs were common in the early solar nebula [1]. Here we discuss new constraints on nebular EMPs obtained from both experimental simulations and calculations of radiative heat transport. To test the feasibility of producing "dirty snowball" textures by EMP heating, olivines and pyroxenes containing metal and sulfide inclusions were heated with a 10 watt, argon-ion, CW laser operated at 514 nm. Comparisons between meteoritic "dirty snowball" textures and experimentally produced textures confirm the ability to produce the meteoritic textures by EMP heating and suggest heating times and fluxes of 0.25 to 10 seconds and 10^9 to 10^10 ergs cm^-2 sec^-1. Fluxes less than 10^9 ergs cm^-2 sec^-1 were insufficient to melt metal and sulfide inclusions, while fluxes greater than 10^10 ergs cm^-2 sec^-1 resulted in complete melting of metal, sulfide, and silicates. The experimentally determined heating time scales suggest that radiative equilibrium was reached in the "dirty snowball" formation process, indicating that the range of observed textures is controlled by cooling rates. Calculations of radiative absorption and emission allow further constraints to be placed on the EMPs responsible for "dirty snowball" formation. The absorption and emission efficiencies of grains in a blackbody radiation field were determined by calculating Planck mean cross sections for olivine, pyroxene, and iron as a function of grain size [2,3]. This information was combined with conductive heat flow calculations to determine the behavior of olivine and pyroxene grains with small inclusions of metal. Results indicate that "dirty snowball" formation results only over a narrow flux range for a given multiphase assemblage, with higher fluxes required for smaller, more transparent, or more refractory grains. For a 100-mm olivine chondrule containing a 10-micrometer "dirty snowball," the required flux is ~9 +- 1 x 10^8 ergs cm^-2 sec^-1, with a minimum pulse duration of 4 seconds (assuming an initial grain temperature of 500 K prior to heating). These values are in good agreement with experimentally determined values. The results show that pulses energetic enough to create "dirty snowballs" are also capable of producing the total melting required for chondrule formation with only slight increases in flux, or with only marginally different grain properties (e.g., more opaque inclusions, lower melting points, higher absorption cross sections). Because of the temperature and grain size dependence of the Planck mean cross sections of silicates, an EMP of the type described above will selectively melt larger aggregates and individual grains (>100 micrometer) while leaving smaller aggregates and grains unmelted. Therefore, natural products of EMP heating are: 1) the formation of chondrules in a sustained dusty environment, 2) a paucity of small chondrules, and 3) residual grains relatively unaffected by the EMPs. References: [1] Eisenhour D. D. and Buseck P. R. (1993) LPSC XXIV, 435-436. [2] Falk S. W. and Scalo J. M. (1975) Ap. J., 202, 690-695. [3] Gilman R. C. (1974) Ap. J. Supp., 268, 28, 397-403.
Ruggera, P S; Fahy, G M
1990-10-01
Devitrification (ice formation during warming) is one of the primary obstacles to successful organ vitrification (solidification without ice formation). The only feasible approach to overcoming either devitrification or its damaging effects in a large organ appears at present to be the use of some form of electromagnetic heating (EH) to achieve the required high heating rates. One complication of EH in this application is the need for warming within a steel pressure vessel. We have previously reported that resonant radiofrequency (RF) helical coils provide very uniform heating at ambient temperatures and low heating rates and can be modified for coaxial power transmission, which is necessary if only one cable is to penetrate through the wall of the pressure vessel. We now report our initial studies using a modified helical coil, high RF input power, and cryogenic aqueous cryoprotectant solutions [60% (w/v) solution of 4.37 M dimethylsulfoxide and 4.37 M acetamide in water and 50% (w/w) 1,2-propanediol]. We also describe the electronic equipment required for this type of research. Temperatures were monitored during high-power conditions with Luxtron fiberoptic probes. Thermometry was complicated by the use of catheters needed for probe insertion and guidance. The highest heating rates we observed using catheters occurred at temperatures ranging from about -70 to -40 degrees C, the temperature zone where devitrification usually appears in unstable solutions during slow warming. We find that in this range we can achieve measured heating rates of approximately 300 degrees C/min in 30- to 130-ml samples using 200 to 700 W of RF power without overheating the sample at any point. However, energy conservation calculations imply that our measured peak heating rates may be considerably higher than the true heating rates occurring in the bulk of our solutions. We were able to estimate the overall true heating rates, obtaining an average value of about 20 degrees C/min/100 W/100 ml, which implies a heating efficiency close to 100%. It appears that it should be possible to warm vitrified rabbit kidneys rapidly enough under high-pressure conditions to protect them from devitrification.
Solar heating and cooling technical data and systems analysis
NASA Technical Reports Server (NTRS)
Christensen, D. L.
1976-01-01
The accomplishments of a project to study solar heating and air conditioning are outlined. Presentation materials (data packages, slides, charts, and visual aids) were developed. Bibliographies and source materials on materials and coatings, solar water heaters, systems analysis computer models, solar collectors and solar projects were developed. Detailed MIRADS computer formats for primary data parameters were developed and updated. The following data were included: climatic, architectural, topography, heating and cooling equipment, thermal loads, and economics. Data sources in each of these areas were identified as well as solar radiation data stations and instruments.
Chemical, thermal and impact processing of asteroids
NASA Technical Reports Server (NTRS)
Scott, E. R. D.; Taylor, G. J.; Newsom, H. E.; Herbert, F.; Zolensky, M.
1989-01-01
The geological effects of impacts, heating, melting, core formation, and aqueous alteration on asteroids are reviewed. A review of possible heat sources appears to favor an important role for electrical induction heating. The effects of each geologic process acting individually and in combination with others, are considered; it is concluded that there is much evidence for impacts during alteration, metamorphism and melting. These interactions vastly increased the geologic diversity of the asteroid belt. Subsequent impacts of cool asteroids did not reduce this diversity. Instead new rock types were created by mixing, brecciation and minor melting.
Heat-Induced Soluble Protein Aggregates from Mixed Pea Globulins and β-Lactoglobulin.
Chihi, Mohamed-Lazhar; Mession, Jean-luc; Sok, Nicolas; Saurel, Rémi
2016-04-06
The present work investigates the formation of protein aggregates (85 °C, 60 min incubation) upon heat treatment of β-lactoglobulin (βlg)-pea globulins (Glob) mixtures at pH 7.2 and 5 mM NaCl from laboratory-prepared protein isolates. Various βlg/Glob weight ratios were applied, for a total protein concentration of 2 wt % in admixture. Different analytical methods were used to determine the aggregation behavior of "mixed" aggregates, that is, surface hydrophobicity and also sulfhydryl content, protein interactions by means of SDS-PAGE electrophoresis, and molecule size distribution by DLS and gel filtration. The production of "mixed" thermal aggregates would involve both the formation of new disulfide bonds and noncovalent interactions between the denatured βlg and Glob subunits. The majority of "mixed" soluble aggregates displayed higher molecular weight and smaller diameter than those for Glob heated in isolation. The development of pea-whey protein "mixed" aggregates may help to design new ingredients for the control of innovative food textures.
Formation of the Aerosol of Space Origin in Earth's Atmosphere
NASA Technical Reports Server (NTRS)
Kozak, P. M.; Kruchynenko, V. G.
2011-01-01
The problem of formation of the aerosol of space origin in Earth s atmosphere is examined. Meteoroids of the mass range of 10-18-10-8 g are considered as a source of its origin. The lower bound of the mass range is chosen according to the data presented in literature, the upper bound is determined in accordance with the theory of Whipple s micrometeorites. Basing on the classical equations of deceleration and heating for small meteor bodies we have determined the maximal temperatures of the particles, and altitudes at which they reach critically low velocities, which can be called as velocities of stopping . As a condition for the transformation of a space particle into an aerosol one we have used the condition of non-reaching melting temperature of the meteoroid. The simplified equation of deceleration without earth gravity and barometric formula for the atmosphere density are used. In the equation of heat balance the energy loss for heating is neglected. The analytical solution of the simplified equations is used for the analysis.
Jayabalan, Rasu; Marimuthu, Subbaiya; Thangaraj, Periyasamy; Sathishkumar, Muthuswamy; Binupriya, Arthur Raj; Swaminathan, Krishnaswami; Yun, Sei Eok
2008-10-08
Kombucha tea is sugared black tea fermented with a consortium of acetic acid bacteria and yeasts (tea fungus) for 14 days. The tea tastes slightly sweet and acidic. The formation of tea fungal biofilms during storage is a big problem when kombucha tea is being stored and commercialized. Various thermal treatments have been tried for long-term storage of kombucha tea. The present study revealed the influence of heat on the biochemical constituents and the free radical scavenging properties of kombucha tea. Heat treatment at 60, 65, and 68 degrees C for 1 min controlled biofilm formation in kombucha tea without changing its clarity, taste, and flavor. However, tea polyphenols and black tea quality parameters showed varying stability during the storage period. A decrease in free radical scavenging properties was also found during the storage period. Because the biological activities of kombucha tea depended on the biochemical constituents, it was concluded that heat treatment was not a suitable method for kombucha tea preservation.
Formation Of Nano Layered Lamellar Structure In a Processed γ-TiAl Based Alloy
NASA Astrophysics Data System (ADS)
Heshmati-Manesh, S.; Shakoorian, H.; Armaki, H. Ghassemi; Ahmadabadi, M. Nili
2009-06-01
In this research, microstructures of an intermetallic alloy based on γ-TiAl has been investigated by optical and transmission electron microscopy. Samples of Ti-47Al-2Cr alloy were subjected to either a cyclic heat treatment or thermomechanical treatment with the aim of microstructural refinement. In both cases it was found that very fine lamellar structure with an interlamellar spacing in the nano scale is formed. Upon cyclic heat treatment, nano layers of α2 and γ ordered intermetallic phases were either formed during rapid cooling cycle in competition with massive structure formation, or formed as secondary lamellar structure during final stages of cyclic heat treatment. Also, TEM observations in hot forged specimens with initial lamellar structure revealed that micro twins form during the deformation within lamellar structure with twinning plates parallel to lamellar interfaces. Concurrent dynamic recrystallisation results in a nano layered structure with an interlamellar spacing of less than 100 nm.
Wang, Grace C; Farnham, Mark; Jeffery, Elizabeth H
2012-07-11
In broccoli, sulforaphane forms when the glucosinolate glucoraphanin is hydrolyzed by the endogenous plant thiohydrolase myrosinase. A myrosinase cofactor directs hydrolysis away from the formation of bioactive sulforaphane and toward an inactive product, sulforaphane nitrile. The cofactor is more heat sensitive than myrosinase, presenting an opportunity to preferentially direct hydrolysis toward sulforaphane formation through regulation of thermal processing. Four broccoli cultivars were microwave heated, boiled, or steamed for various lengths of time. Production of nitrile during hydrolysis of unheated broccoli varied among cultivars from 91 to 52% of hydrolysis products (Pinnacle > Marathon > Patriot > Brigadier). Boiling and microwave heating caused an initial loss of nitrile, with a concomitant increase in sulforaphane, followed by loss of sulforaphane, all within 1 min. In contrast, steaming enhanced sulforaphane yield between 1.0 and 3.0 min in all but Brigadier. These data are proof of concept that steaming for 1.0-3.0 min provides less nitrile and more sulforaphane yield from a broccoli meal.
Core Collapse: The Race Between Stellar Evolution and Binary Heating
NASA Astrophysics Data System (ADS)
Converse, Joseph M.; Chandar, R.
2012-01-01
The dynamical formation of binary stars can dramatically affect the evolution of their host star clusters. In relatively small clusters (M < 6000 Msun) the most massive stars rapidly form binaries, heating the cluster and preventing any significant contraction of the core. The situation in much larger globular clusters (M 105 Msun) is quite different, with many showing collapsed cores, implying that binary formation did not affect them as severely as lower mass clusters. More massive clusters, however, should take longer to form their binaries, allowing stellar evolution more time to prevent the heating by causing the larger stars to die off. Here, we simulate the evolution of clusters between those of open and globular clusters in order to find at what size a star cluster is able to experience true core collapse. Our simulations make use of a new GPU-based computing cluster recently purchased at the University of Toledo. We also present some benchmarks of this new computational resource.
Schütte, Katrin; Boeing, Heiner; Hart, Andy; Heeschen, Walther; Reimerdes, Ernst H; Santare, Dace; Skog, Kerstin; Chiodini, Alessandro
2012-11-01
The aim of the European Funded Project BRAFO (benefit-risk analysis of foods) project was to develop a framework that allows quantitative comparison of human health risks and benefits of foods based on a common scale of measurement. This publication describes the application of the BRAFO methodology to three different case studies: the formation of acrylamide in potato and cereal based products, the formation of benzo(a)pyrene through smoking and grilling of meat and fish and the heat-treatment of milk. Reference, alternative scenario and target population represented the basic structure to test the tiers of the framework. Various intervention methods intended to reduce acrylamide in potato and cereal products were evaluated against the historical production methods. In conclusion the benefits of the acrylamide-reducing measures were considered prevailing. For benzo(a)pyrene, three illustrated alternative scenarios were evaluated against the most common smoking practice. The alternative scenarios were assessed as delivering benefits, introducing only minimal potential risks. Similar considerations were made for heat treatment of milk where the comparison of the microbiological effects of heat treatment, physico-chemical changes of milk constituents with positive and negative health effects was assessed. In general, based on data available, benefits of the heat treatment were outweighing any risks. Copyright © 2012 ILSI Europe. Published by Elsevier Ltd.. All rights reserved.
Barriobero-Vila, Pere; Gussone, Joachim; Haubrich, Jan; Sandlöbes, Stefanie; Da Silva, Julio Cesar; Cloetens, Peter; Schell, Norbert; Requena, Guillermo
2017-01-01
Selective laser melting is a promising powder-bed-based additive manufacturing technique for titanium alloys: near net-shaped metallic components can be produced with high resource-efficiency and cost savings. For the most commercialized titanium alloy, namely Ti-6Al-4V, the complicated thermal profile of selective laser melting manufacturing (sharp cycles of steep heating and cooling rates) usually hinders manufacturing of components in a one-step process owing to the formation of brittle martensitic microstructures unsuitable for structural applications. In this work, an intensified intrinsic heat treatment is applied during selective laser melting of Ti-6Al-4V powder using a scanning strategy that combines porosity-optimized processing with a very tight hatch distance. Extensive martensite decomposition providing a uniform, fine lamellar α + β microstructure is obtained along the building direction. Moreover, structural evidence of the formation of the intermetallic α2-Ti3Al phase is provided. Variations in the lattice parameter of β serve as an indicator of the microstructural degree of stabilization. Interconnected 3D networks of β are generated in regions highly affected by the intensified intrinsic heat treatment applied. The results obtained reflect a contribution towards simultaneous selective laser melting-manufacturing and heat treatment for fabrication of Ti-6Al-4V parts. PMID:28772630
Ahmed, Ali Abdurehim; Pedersen, Carsten; Schultz-Larsen, Torsten; Kwaaitaal, Mark; Jørgensen, Hans Jørgen Lyngs; Thordal-Christensen, Hans
2015-01-01
Pathogens secrete effector proteins to establish a successful interaction with their host. Here, we describe two barley (Hordeum vulgare) powdery mildew candidate secreted effector proteins, CSEP0105 and CSEP0162, which contribute to pathogen success and appear to be required during or after haustorial formation. Silencing of either CSEP using host-induced gene silencing significantly reduced the fungal haustorial formation rate. Interestingly, both CSEPs interact with the barley small heat shock proteins, Hsp16.9 and Hsp17.5, in a yeast two-hybrid assay. Small heat shock proteins are known to stabilize several intracellular proteins, including defense-related signaling components, through their chaperone activity. CSEP0105 and CSEP0162 localized to the cytosol and the nucleus of barley epidermal cells, whereas Hsp16.9 and Hsp17.5 are cytosolic. Intriguingly, only those specific CSEPs changed localization and became restricted to the cytosol when coexpressed with Hsp16.9 and Hsp17.5, confirming the CSEP-small heat shock protein interaction. As predicted, Hsp16.9 showed chaperone activity, as it could prevent the aggregation of Escherichia coli proteins during thermal stress. Remarkably, CSEP0105 compromised this activity. These data suggest that CSEP0105 promotes virulence by interfering with the chaperone activity of a barley small heat shock protein essential for defense and stress responses. PMID:25770154
Observations and Numerical Models of Solar Coronal Heating Associated with Spicules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pontieu, B. De; Martinez-Sykora, J.; Moortel, I. De
Spicules have been proposed as significant contributors to the mass and energy balance of the corona. While previous observations have provided a glimpse of short-lived transient brightenings in the corona that are associated with spicules, these observations have been contested and are the subject of a vigorous debate both on the modeling and the observational side. Therefore, it remains unclear whether plasma is heated to coronal temperatures in association with spicules. We use high-resolution observations of the chromosphere and transition region (TR) with the Interface Region Imaging Spectrograph and of the corona with the Atmospheric Imaging Assembly on board themore » Solar Dynamics Observatory to show evidence of the formation of coronal structures associated with spicular mass ejections and heating of plasma to TR and coronal temperatures. Our observations suggest that a significant fraction of the highly dynamic loop fan environment associated with plage regions may be the result of the formation of such new coronal strands, a process that previously had been interpreted as the propagation of transient propagating coronal disturbances. Our observations are supported by 2.5D radiative MHD simulations that show heating to coronal temperatures in association with spicules. Our results suggest that heating and strong flows play an important role in maintaining the substructure of loop fans, in addition to the waves that permeate this low coronal environment.« less
Modelling ultrafast laser ablation
NASA Astrophysics Data System (ADS)
Rethfeld, Baerbel; Ivanov, Dmitriy S.; E Garcia, Martin; Anisimov, Sergei I.
2017-05-01
This review is devoted to the study of ultrafast laser ablation of solids and liquids. The ablation of condensed matter under exposure to subpicosecond laser pulses has a number of peculiar properties which distinguish this process from ablation induced by nanosecond and longer laser pulses. The process of ultrafast ablation includes light absorption by electrons in the skin layer, energy transfer from the skin layer to target interior by nonlinear electronic heat conduction, relaxation of the electron and ion temperatures, ultrafast melting, hydrodynamic expansion of heated matter accompanied by the formation of metastable states and subsequent formation of breaks in condensed matter. In case of ultrashort laser excitation, these processes are temporally separated and can thus be studied separately. As for energy absorption, we consider peculiarities of the case of metal irradiation in contrast to dielectrics and semiconductors. We discuss the energy dissipation processes of electronic thermal wave and lattice heating. Different types of phase transitions after ultrashort laser pulse irradiation as melting, vaporization or transitions to warm dense matter are discussed. Also nonthermal phase transitions, directly caused by the electronic excitation before considerable lattice heating, are considered. The final material removal occurs from the physical point of view as expansion of heated matter; here we discuss approaches of hydrodynamics, as well as molecular dynamic simulations directly following the atomic movements. Hybrid approaches tracing the dynamics of excited electrons, energy dissipation and structural dynamics in a combined simulation are reviewed as well.
NASA Astrophysics Data System (ADS)
Zhang, Lin-wei; Lu, Lei; Wang, Lu; Ning, Xian-jin; Wang, Quan-sheng; Wang, Ri-xin
2017-10-01
CoNiCrAlY coatings were deposited by low-pressure cold spraying and subsequently heat-treated at 1050 °C for 4 h in a vacuum environment. The microstructural characteristics and oxidation behavior of CoNiCrAlY coatings were investigated. The as-sprayed coating exhibited low porosity and oxygen content. The high plastic deformation of the sprayed particles led to significant refinement of γ-matrix and dissolution of β-(Ni,Co)Al phase in the as-sprayed coating. After heat treatment, the single phase (γ) in the as-sprayed coating was converted into a γ/β microstructure, and a continuous single α-Al2O3 scale was formed on the coating surface. Vacuum heat treatment can postpone the formation of spinel oxides within 100 h. After being oxidized at 1050 °C for 400 h, the heat-treated coating exhibited better oxidation resistance than the as-sprayed coating. The reduced growth rate of the oxide scale and the suppression of the formation of spinel oxides can be attributed to the vacuum heat treatment, as well as the intrinsic microstructure of the cold-sprayed coating. Finally, the effects of the microstructural changes induced during the cold spraying process on the growth of the thermally grown oxide and the oxidation mechanisms of the CoNiCrAlY coatings were discussed.
Performance Analysis and Modeling of Thermally Sprayed Resistive Heaters
NASA Astrophysics Data System (ADS)
Lamarre, Jean-Michel; Marcoux, Pierre; Perrault, Michel; Abbott, Richard C.; Legoux, Jean-Gabriel
2013-08-01
Many processes and systems require hot surfaces. These are usually heated using electrical elements located in their vicinity. However, this solution is subject to intrinsic limitations associated with heating element geometry and physical location. Thermally spraying electrical elements directly on surfaces can overcome these limitations by tailoring the geometry of the heating element to the application. Moreover, the element heat transfer is maximized by minimizing the distance between the heater and the surface to be heated. This article is aimed at modeling and characterizing resistive heaters sprayed on metallic substrates. Heaters were fabricated by using a plasma-sprayed alumina dielectric insulator and a wire flame-sprayed iron-based alloy resistive element. Samples were energized and kept at a constant temperature of 425 °C for up to 4 months. SEM cross-sectional observations revealed the formation of cracks at very specific locations in the alumina layer after thermal use. Finite-element modeling shows that these cracks originate from high local thermal stresses and can be predicted according to the considered geometry. The simulation model was refined using experimental parameters obtained by several techniques such as emissivity and time-dependent temperature profile (infra-red camera), resistivity (four-probe technique), thermal diffusivity (laser flash method), and mechanical properties (micro and nanoindentation). The influence of the alumina thickness and the substrate material on crack formation was evaluated.
Molecular dynamics simulations of bubble nucleation in dark matter detectors.
Denzel, Philipp; Diemand, Jürg; Angélil, Raymond
2016-01-01
Bubble chambers and droplet detectors used in dosimetry and dark matter particle search experiments use a superheated metastable liquid in which nuclear recoils trigger bubble nucleation. This process is described by the classical heat spike model of F. Seitz [Phys. Fluids (1958-1988) 1, 2 (1958)PFLDAS0031-917110.1063/1.1724333], which uses classical nucleation theory to estimate the amount and the localization of the deposited energy required for bubble formation. Here we report on direct molecular dynamics simulations of heat-spike-induced bubble formation. They allow us to test the nanoscale process described in the classical heat spike model. 40 simulations were performed, each containing about 20 million atoms, which interact by a truncated force-shifted Lennard-Jones potential. We find that the energy per length unit needed for bubble nucleation agrees quite well with theoretical predictions, but the allowed spike length and the required total energy are about twice as large as predicted. This could be explained by the rapid energy diffusion measured in the simulation: contrary to the assumption in the classical model, we observe significantly faster heat diffusion than the bubble formation time scale. Finally we examine α-particle tracks, which are much longer than those of neutrons and potential dark matter particles. Empirically, α events were recently found to result in louder acoustic signals than neutron events. This distinction is crucial for the background rejection in dark matter searches. We show that a large number of individual bubbles can form along an α track, which explains the observed larger acoustic amplitudes.
OXIDIZING PROTO-ATMOSPHERE ON TITAN: CONSTRAINT FROM N{sub 2} FORMATION BY IMPACT SHOCK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishimaru, Ryo; Matsui, Takafumi; Sekine, Yasuhito
2011-11-01
Titan is the only satellite that possesses a thick atmosphere, composed mainly of N{sub 2} and CH{sub 4}. However, its origin and evolution remain largely unknown. Knowledge of the acquirement of a N{sub 2} atmosphere on Titan would provide insights into nitrogen evolution in planetary atmospheres as well as the formation of satellite systems around gas giants. Previous studies have proposed that the atmospheric N{sub 2} would have been converted from NH{sub 3} via shock heating by accreting satellitesimals in the highly reducing proto-atmosphere composed of NH{sub 3} and CH{sub 4}. Nevertheless, the validity of this mechanism strongly depends onmore » both the composition of the proto-atmosphere and kinetics of shock chemistry. Here, we show that a CO{sub 2}-rich oxidizing proto-atmosphere is necessary to form N{sub 2} from NH{sub 3} efficiently by atmospheric shock heating. Efficient shock production of N{sub 2} is inhibited in a reducing proto-atmosphere composed of NH{sub 3} and CH{sub 4}, because CH{sub 4} plays as the coolant gas owing to its large heat capacity. Our calculations show that the amount of N{sub 2} produced in a CO{sub 2}-rich proto-atmosphere could have reached {approx}20 times that on the present Titan. Although further quantitative analysis are required (especially, the occurrence of catalytic reactions), our results imply that the chemical composition of satellitesimals that formed the Saturnian system is required to be oxidizing if the current atmospheric N{sub 2} is derived from the shock heating in the proto-atmosphere during accretion. This supports the formation of regular satellites in an actively supplied circumplanetary disk using CO{sub 2}-rich materials originated from the solar nebula at the final stage of gas giant formation.« less
Bonetti, Sara; Manoli, Gabriele; Domec, Jean-Christophe; ...
2015-03-16
Here, we report a mechanistic model for the soil-plant system is coupled to a conventional slab representation of the atmospheric boundary layer (ABL) to explore the role of groundwater table (WT) variations and free atmospheric (FA) states on convective rainfall predisposition (CRP) at a Loblolly pine plantation site situated in the lower coastal plain of North Carolina. Predisposition is quantified using the crossing between modeled lifting condensation level (LCL) and convectively grown ABL depth. The LCL-ABL depth crossing is necessary for air saturation but not sufficient for cloud formation and subsequent convective rainfall occurrence. However, such crossing forms the mainmore » template for which all subsequent dynamical processes regulating the formation (or suppression) of convective rainfall operate on. If the feedback between surface fluxes and FA conditions is neglected, a reduction in latent heat flux associated with reduced WT levels is shown to enhance the ABL-LCL crossing probability. When the soil-plant system is fully coupled with ABL dynamics thereby allowing feedback with ABL temperature and humidity, FA states remain the leading control on CRP. However, vegetation water stress plays a role in controlling ABL-LCL crossing when the humidity supply by the FA is within an intermediate range of values. When FA humidity supply is low, cloud formation is suppressed independent of surface latent heat flux. Similarly, when FA moisture supply is high, cloud formation can occur independent of surface latent heat flux. In an intermediate regime of FA moisture supply, the surface latent heat flux controlled by soil water availability can supplement (or suppress) the necessary water vapor leading to reduced LCL and subsequent ABL-LCL crossing. Lastly, it is shown that this intermediate state corresponds to FA values around the mode in observed humidity lapse rates γ w (between -2.5 × 10 -6 and -1.5 × 10 -6 kg kg -1m -1), suggesting that vegetation water uptake may be controlling CRP at the study site.« less
Chan, Bun; Kawashima, Yukio; Katouda, Michio; Nakajima, Takahito; Hirao, Kimihiko
2016-02-03
We have carried out large-scale computational quantum chemistry calculations on the K computer to obtain heats of formation for C60 and some higher fullerenes with the DSD-PBE-PBE/cc-pVQZ double-hybrid density functional theory method. Our best estimated values are 2520.0 ± 20.7 (C60), 2683.4 ± 17.7 (C70), 2862.0 ± 18.5 (C76), 2878.8 ± 13.3 (C78), 2946.4 ± 14.5 (C84), 3067.3 ± 15.4 (C90), 3156.6 ± 16.2 (C96), 3967.7 ± 33.4 (C180), 4364 (C240) and 5415 (C320) kJ mol(-1). In our assessment, we also find that the B3-PW91-D3BJ and BMK-D3(BJ) functionals perform reasonably well. Using the convergence behavior for the calculated per-atom heats of formation, we obtained the formula ΔfH per carbon = 722n(-0.72) + 5.2 kJ mol(-1) (n = the number of carbon atoms), which enables an estimation of ΔfH for higher fullerenes more generally. A slow convergence to the graphene limit is observed, which we attribute to the relatively small proportion of fullerene carbons that are in "low-strain" regions. We further propose that it would take tens, if not hundreds, of thousands of carbons for a fullerene to roughly approach the limit. Such a distinction may be a contributing factor to the discrete properties between the two types of nanomaterials. During the course of our study, we also observe a fairly reliable means for the theoretical calculation of heats of formation for medium-sized fullerenes. This involves the use of isodesmic-type reactions with fullerenes of similar sizes to provide a good balance of the chemistry and to minimize the use of accompanying species.
Temperature-Triggered Protein Adsorption on Polymer-Coated Nanoparticles in Serum.
Koshkina, Olga; Lang, Thomas; Thiermann, Raphael; Docter, Dominic; Stauber, Roland H; Secker, Christian; Schlaad, Helmut; Weidner, Steffen; Mohr, Benjamin; Maskos, Michael; Bertin, Annabelle
2015-08-18
The protein corona, which forms on the nanoparticle's surface in most biological media, determines the nanoparticle's physicochemical characteristics. The formation of the protein corona has a significant impact on the biodistribution and clearance of nanoparticles in vivo. Therefore, the ability to influence the formation of the protein corona is essential to most biomedical applications, including drug delivery and imaging. In this study, we investigate the protein adsorption on nanoparticles with a hydrodynamic radius of 30 nm and a coating of thermoresponsive poly(2-isopropyl-2-oxazoline) in serum. Using multiangle dynamic light scattering (DLS) we demonstrate that heating of the nanoparticles above their phase separation temperature induces the formation of agglomerates, with a hydrodynamic radius of 1 μm. In serum, noticeably stronger agglomeration occurs at lower temperatures compared to serum-free conditions. Cryogenic transmission electron microscopy (cryo-TEM) revealed a high packing density of agglomerates when serum was not present. In contrast, in the presence of serum, agglomerated nanoparticles were loosely packed, indicating that proteins are intercalated between them. Moreover, an increase in protein content is observed upon heating, confirming that protein adsorption is induced by the alteration of the surface during phase separation. After cooling and switching the surface back, most of the agglomerates were dissolved and the main fraction returned to the original size of approximately 30 nm as shown by asymmetrical flow-field flow fractionation (AF-FFF) and DLS. Furthermore, the amounts of adsorbed proteins are similar before and after heating the nanoparticles to above their phase-separation temperature. Overall, our results demonstrate that the thermoresponsivity of the polymer coating enables turning the corona formation on nanoparticles on and off in situ. As the local heating of body areas can be easily done in vivo, the thermoresponsive coating could potentially be used to induce the agglomeration of nanoparticles and proteins and the accumulation of nanoparticles in a targeted body region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, C. S.; Arber, T. D., E-mail: c.s.brady@warwick.ac.uk
2016-10-01
Two of the central problems in our understanding of the solar chromosphere are how the upper chromosphere is heated and what drives spicules. Estimates of the required chromospheric heating, based on radiative and conductive losses, suggest a rate of ∼0.1 erg cm{sup −3} s{sup −1} in the lower chromosphere and drops to ∼10{sup −3} erg cm{sup −3} s{sup −1} in the upper chromosphere. The chromosphere is also permeated by spicules, higher density plasma from the lower atmosphere propelled upwards at speeds of ∼10–20 km s{sup −1}, for so-called Type I spicules, which reach heights of ∼3000–5000 km above the photosphere.more » A clearer understanding of chromospheric dynamics, its heating, and the formation of spicules is thus of central importance to solar atmospheric science. For over 30 years it has been proposed that photospheric driving of MHD waves may be responsible for both heating and spicule formation. This paper presents results from a high-resolution MHD treatment of photospheric driven Alfvén and kink waves propagating upwards into an expanding flux tube embedded in a model chromospheric atmosphere. We show that the ponderomotive coupling from Alfvén and kink waves into slow modes generates shocks, which both heat the upper chromosphere and drive spicules. These simulations show that wave driving of the solar chromosphere can give a local heating rate that matches observations and drive spicules consistent with Type I observations all within a single coherent model.« less
HEATING MECHANISMS IN THE LOW SOLAR ATMOSPHERE THROUGH MAGNETIC RECONNECTION IN CURRENT SHEETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ni, Lei; Lin, Jun; Roussev, Ilia I.
2016-12-01
We simulate several magnetic reconnection processes in the low solar chromosphere/photosphere; the radiation cooling, heat conduction and ambipolar diffusion are all included. Our numerical results indicate that both the high temperature (≳8 × 10{sup 4} K) and low temperature (∼10{sup 4} K) magnetic reconnection events can happen in the low solar atmosphere (100–600 km above the solar surface). The plasma β controlled by plasma density and magnetic fields is one important factor to decide how much the plasma can be heated up. The low temperature event is formed in a high β magnetic reconnection process, Joule heating is the mainmore » mechanism to heat plasma and the maximum temperature increase is only several thousand Kelvin. The high temperature explosions can be generated in a low β magnetic reconnection process, slow and fast-mode shocks attached at the edges of the well developed plasmoids are the main physical mechanisms to heat the plasma from several thousand Kelvin to over 8 × 10{sup 4} K. Gravity in the low chromosphere can strongly hinder the plasmoid instability and the formation of slow-mode shocks in a vertical current sheet. Only small secondary islands are formed; these islands, however, are not as well developed as those in the horizontal current sheets. This work can be applied to understand the heating mechanism in the low solar atmosphere and could possibly be extended to explain the formation of common low temperature Ellerman bombs (∼10{sup 4} K) and the high temperature Interface Region Imaging Spectrograph (IRIS) bombs (≳8 × 10{sup 4}) in the future.« less
Knol, Diny; Trautwein, Elke A.
2016-01-01
1 To evaluate the content of phytosterol oxidation products (POP) of foods with added phytosterols, in total 14 studies measuring POP contents of foods with added phytosterols were systematically reviewed. In non‐heated or stored foods, POP contents were low, ranging from (medians) 0.03–3.6 mg/100 g with corresponding oxidation rates of phytosterols (ORP) of 0.03–0.06%. In fat‐based foods with 8% of added free plant sterols (FPS), plant sterol esters (PSE) or plant stanol esters (PAE) pan‐fried at 160–200°C for 5–10 min, median POP contents were 72.0, 38.1, and 4.9 mg/100 g, respectively, with a median ORP of 0.90, 0.48, and 0.06%. Hence resistance to thermal oxidation was in the order of PAE > PSE > FPS. POP formation was highest in enriched butter followed by margarine and rapeseed oil. In margarines with 7.5–10.5% added PSE oven‐heated at 140–200°C for 5–30 min, median POP content was 0.3 mg/100 g. Further heating under same temperature conditions but for 60–120 min markedly increased POP formation to 384.3 mg/100 g. Estimated daily upper POP intake was 47.7 mg/d (equivalent to 0.69 mg/kg BW/d) for foods with added PSE and 78.3 mg/d (equivalent to 1.12 mg/kg BW/d) for foods with added FPS as calculated by multiplying the advised upper daily phytosterol intake of 3 g/d with the 90% quantile values of ORP. In conclusion, heating temperature and time, chemical form of phytosterols added and the food matrix are determinants of POP formation in foods with added phytosterols, leading to an increase in POP contents. Practical applications: Phytosterol oxidation products (POP) are formed in foods containing phytosterols especially when exposed to heat treatment. This review summarising POP contents in foods with added phytosterols in their free and esterified forms reveals that heating temperature and time, the chemical form of phytosterols added and the food matrix itself are determinants of POP formation with heating temperature and time having the biggest impact. The estimated upper daily intakes of POP is 78.3 mg/d for fat‐based products with added free plant sterols and 47.7 mg/d for fat‐based products with added plant sterol esters. Phytosterols in foods are susceptible to oxidation to form phytosterol oxidation products (POP). This review summarizes literature data regarding POP contents of foods with added phytosterols that were exposed to storage and heat treatments. PMID:27812313
Effect of garlic powder on acrylamide formation in a low-moisture model system and bread baking.
Li, Jinwang; Zuo, Jie; Qiao, Xuguang; Zhang, Yongju; Xu, Zhixiang
2016-02-01
Acrylamide (AA) is of concern worldwide because of its neurotoxicity, genotoxicity and reproductive/developmental toxicity. Consequently, methods for minimizing AA formation during food processing are vital. In this study, the formation and elimination of AA in an asparagine/glucose low-moisture model system were investigated by response surface methodology. The effect of garlic powder on the kinetics of AA formation/elimination was also evaluated. The AA content reached a maximum level (674.0 nmol) with 1.2 mmol of glucose and 1.2 mmol of asparagine after heating at 200 °C for 6 min. The AA content was greatly reduced with the addition of garlic powder. Compared to without garlic powder, an AA reduction rate of 43% was obtained with addition of garlic powder at a mass fraction of 0.05 g. Garlic powder inhibited AA formation during the generation-predominant kinetic stage and had no effect on the degradation-predominant kinetic stage. The effect of garlic powder on AA formation in bread and bread quality was also investigated. Adding a garlic powder mass fraction of 15 g to 500 g of dough significantly (P < 0.05) reduced the formation of AA (reduction rate of 46%) and had no obvious effect on the sensory qualities of the bread. This study provides a possible method for reducing the AA content in bread and other heat-treated starch-rich foods. © 2015 Society of Chemical Industry.
Effects of Mead Wort Heat Treatment on the Mead Fermentation Process and Antioxidant Activity.
Czabaj, Sławomir; Kawa-Rygielska, Joanna; Kucharska, Alicja Z; Kliks, Jarosław
2017-05-14
The effects of mead wort heat treatment on the mead fermentation process and antioxidant activity were tested. The experiment was conducted with the use of two different honeys (multiflorous and honeydew) collected from the Lower Silesia region (Poland). Heat treatment was performed with the use of a traditional technique (gently boiling), the more commonly used pasteurization, and without heat treatment (control). During the experiment fermentation dynamics were monitored using high performance liquid chromatography with refractive index detection (HPLC-RID). Total antioxidant capacity (TAC) and total phenolic content (TPC) were estimated for worts and meads using UV/Vis spectrophotometric analysis. The formation of 5-hydroxymethylfurfural (HMF) was monitored by HPLC analyses. Heat treatment had a great impact on the final antioxidant capacity of meads.
Heat-resistant agent used for control sand of steam huff and puff heavy oil well
NASA Astrophysics Data System (ADS)
Zhang, F. S.; Liu, G. L.; Lu, Y. J.; Xiong, X. C.; Ma, J. H.; Su, H. M.
2018-01-01
Heat-resistant agent containing hydroxymethyl group was synthesized from coal tar, which has similar structure with phenolic resin and could improve the heat resistance of phenolic resin sand control agent. The results showed that the heat resistance of the sand control agent was improved by adding 10% to 30% heat-resistant agent, after 280°C high temperature treatment for 7d, the compressive strength of consolidated core was increased to more than 5MPa. The compressive strength of consolidation core was not decreased after immersion in formation water, crude oil, acid or alkaline medium, which showed good resistance to medium immersion. The sand control agent had small core damage and the core permeability damage ratio of sand control agent consolidation was only 18.7%.
NASA Astrophysics Data System (ADS)
Fastook, J. L.; Head, J. W.; Marchant, D. R.; Forget, F.; Madeleine, J.-B.
2012-05-01
Eskers in the Dorsa Argentea Formation imply the presence of an ice sheet with a wet bed. With an ice sheet model, we examine a range of geothermal heat fluxes and warmer climates to determine what conditions could produce such an ice sheet.
Formation of non-wettable soils...involves heat transfer mechanism
Leonardo F. Debano
1966-01-01
After a wiIdfire, some brushland soils in southern California have been found to include a non-wettable layer. This formation may be the result of hydrophobic material volatilizing and later condensing. In burning experiments, hydrophobic substances from ceanothus litter and non-wettable soil were moved downward into an underlying wettable sand by temperature gradients...
Fluidized bed heating process and apparatus
NASA Technical Reports Server (NTRS)
McHale, Edward J. (Inventor)
1981-01-01
Capacitive electrical heating of a fluidized bed enables the individual solid particles within the bed to constitute the hottest portion thereof. This effect is achieved by applying an A. C. voltage potential between dielectric coated electrodes, one of which is advantageously the wall of the fluidized bed rejection zone, sufficient to create electrical currents in said particles so as to dissipate heat therein. In the decomposition of silane or halosilanes in a fluidized bed reaction zone, such heating enhances the desired deposition of silicon product on the surface of the seed particles within the fluidized bed and minimizes undesired coating of silicon on the wall of the reaction zone and the homogeneous formation of fine silicon powder within said zone.
Subsystem design package for Mod 2 site data acquisition system: Solar heating and cooling
NASA Technical Reports Server (NTRS)
1977-01-01
The Mod II Site Data Acquisition Subsystem (SDAS) is designed to collect data from sensors located on residential or commercial buildings using a solar heating and/or cooling system. The SDAS takes the data obtained from sensors located on the solar heating and/or cooling system, processes the data into a suitable format, stores the data for a period of time, and provides the capability for both telephone retrieval by the Central Data Processing System (CDPS) and manual retrieval of the data for transfer to the central site. The unit is designed so it will not degrade the operation of the solar heating/cooling system which it is monitoring.
NASA Astrophysics Data System (ADS)
Zaitsev, D. V.; Tkachenko, E. M.; Bykovskaya, E. F.
2017-11-01
Intensive evaporation of a thin liquid film, moving in a flat micro-/minichannel under the action of gas flow is very promising for the use in cooling systems of modern semiconductor devices with localized heat sources of high intensity. In this work, using the high-speed visualization, the effect of the formation of dry spots on heat transfer in a locally heated liquid film shear-driven in a channel was investigated. It was found that the maximum intensity of heat removal from the heater is achieved in the mode, when the film flow continuity is broken. During the experiment the total area of dry spots increases with increasing heat flux and heater temperature, but when the heater reaches a certain temperature (≈100°C), the total area begins to decrease. However, the length of contact line increases with increasing heat flux and reaches a maximum in the pre-crisis regime. Intensive evaporation in the region of the contact line may explain the achievement of high heat fluxes in the shear-driven liquid film.
Formation of volatile compounds during heating of spice paprika (Capsicum annuum) powder.
Cremer, D R; Eichner, K
2000-06-01
Spice paprika (red pepper; Capsicum annuum) is the most cultivated spice worldwide and is used mainly for its color and pungency. However, current research is also focusing on the flavor as an important parameter. This paper deals with the kinetics of the formation of those volatiles that indicate a decrease in spice paprika quality due to Maillard reaction, hydrolytic reactions, and oxidative degradation reactions of lipids such as fatty acids and carotenoids. Spice paprika volatiles were quantitatively analyzed by means of headspace gas chromatography (HS-GC) and solid-phase microextraction (SPME) followed by gas chromatography-mass spectrometry (GC-MS). The kinetics of their formation were investigated, and the respective activation energies determined. Strecker aldehyde, acetone, and methanol formation followed a pseudo-zero-order reaction kinetic, and formation of dimethyl sulfide (DMS) was characterized by a first-order kinetic. The activation energies determined were between 86.3 and 101.8 for the Strecker aldehydes acetaldehyde (AA), 2-methylpropanal (2-MP), 3-methylbutanal (3-MB), and 2-methylbutanal (2-MB), 130.7 for acetone, 114.2 for methanol, and 109.7 kJ/mol for DMS. The amounts of Strecker aldehydes formed were correlated to the concentrations of the corresponding free amino acids present in the samples. The formation of hexanal and 6-methyl-5-hepten-2-one in Capsicum annuum during processing was confirmed, and the formation of beta-ionone was probably described for the first time. During heating, the concentration of hexanal increased rapidly. The formation of 6-methyl-5-hepten-2-one confirms that Capsicum annuum fruits contain lycopene.
Delta Clipper-Experimental In-Ground Effect on Base-Heating Environment
NASA Technical Reports Server (NTRS)
Wang, Ten-See
1998-01-01
A quasitransient in-ground effect method is developed to study the effect of vertical landing on a launch vehicle base-heating environment. This computational methodology is based on a three-dimensional, pressure-based, viscous flow, chemically reacting, computational fluid dynamics formulation. Important in-ground base-flow physics such as the fountain-jet formation, plume growth, air entrainment, and plume afterburning are captured with the present methodology. Convective and radiative base-heat fluxes are computed for comparison with those of a flight test. The influence of the laminar Prandtl number on the convective heat flux is included in this study. A radiative direction-dependency test is conducted using both the discrete ordinate and finite volume methods. Treatment of the plume afterburning is found to be very important for accurate prediction of the base-heat fluxes. Convective and radiative base-heat fluxes predicted by the model using a finite rate chemistry option compared reasonably well with flight-test data.
Heat transfer from nanoparticles: a corresponding state analysis.
Merabia, Samy; Shenogin, Sergei; Joly, Laurent; Keblinski, Pawel; Barrat, Jean-Louis
2009-09-08
In this contribution, we study situations in which nanoparticles in a fluid are strongly heated, generating high heat fluxes. This situation is relevant to experiments in which a fluid is locally heated by using selective absorption of radiation by solid particles. We first study this situation for different types of molecular interactions, using models for gold particles suspended in octane and in water. As already reported in experiments, very high heat fluxes and temperature elevations (leading eventually to particle destruction) can be observed in such situations. We show that a very simple modeling based on Lennard-Jones (LJ) interactions captures the essential features of such experiments and that the results for various liquids can be mapped onto the LJ case, provided a physically justified (corresponding state) choice of parameters is made. Physically, the possibility of sustaining very high heat fluxes is related to the strong curvature of the interface that inhibits the formation of an insulating vapor film.
NASA Astrophysics Data System (ADS)
Elkhoury, J. E.; Detwiler, R. L.; Serajian, V.; Bruno, M. S.
2012-12-01
Geothermal energy resources are more widespread than previously thought and have the potential for providing a significant amount of sustainable clean energy worldwide. In particular, hot permeable sedimentary formations provide many advantages over traditional geothermal recovery and enhanced geothermal systems in low permeability crystalline formations. These include: (1) eliminating the need for hydraulic fracturing, (2) significant reduction in risk for induced seismicity, (3) reducing the need for surface wastewater disposal, (4) contributing to decreases in greenhouse gases, and (5) potential use for CO2 sequestration. Advances in horizontal drilling, completion, and production technology from the oil and gas industry can now be applied to unlock these geothermal resources. Here, we present experimental results from a laboratory scale circulation system and numerical simulations aimed at quantifying the heat transfer capacity of sedimentary rocks. Our experiments consist of fluid flow through a saturated and pressurized sedimentary disc of 23-cm diameter and 3.8-cm thickness heated along its circumference at a constant temperature. Injection and production ports are 7.6-cm apart in the center of the disc. We used DI de-aired water and mineral oil as working fluids and explored temperatures from 20 to 150 oC and flow rates from 2 to 30 ml/min. We performed experiments on sandstone samples (Castlegate and Kirby) with different porosity, permeability and thermal conductivity to evaluate the effect of hydraulic and thermal properties on the heat transfer capacity of sediments. The producing fluid temperature followed an exponential form with time scale transients between 15 and 45 min. Steady state outflow temperatures varied between 60% and 95% of the set boundary temperature, higher percentages were observed for lower temperatures and flow rates. We used the flow and heat transport simulator TOUGH2 to develop a numerical model of our laboratory setting. Given the remarkable match between our observations and numerical results, we extended our model to explore a wider range of thermal and hydrological parameters beyond the experimental conditions. Our results prove the capability of heat transfer in sedimentary formations for geothermal energy production.) Sandstone sample with two thermally insulating Teflon caps (white discs). In and out arrows indicate the flow direction while the sample is heated along its circumference (heater not shown). B) Example of a 2D temperature distribution during injection. White x shows the location of the flow ports, inlet (left) and outlet (right). Red is the set boundary temperature and blue is the fluid temperature at the inlet.
Use of Biomarkers to Optimize Heat Acclimation in Women
1996-10-01
that synthesis of HSP72 was induced in lymphocytes, spleen cells and soleus muscle after 20 min of exercise while rectal temperature elevated above 40...lethal temperatures for death due to nonexertionally and exertionally induced heat exhaustion, respectively (15). Upon completion of the exercise ...During exercise , interstitial fluid levels are reduced due to sweat formation and fluid shifts which tend to induce hypovolemia, compromising
CONTROLLED NUCLEAR FUSION REACTOR
Tuck, J.L.; Kruskal, M.; Colgate, S.A.; Rosenbluth, M.N.
1962-01-01
A plasma generating and heating device is described which comprises a ceramic torus with exterior layers of a thick metal membrane and a metallic coil. In operation, the coil generates a B/sub z/ field prior to the formation of an enclosing plasma sheath. Diffusion of the trapped magnetic field outward through the plasma sheath causes enhanced heating, particularly after the sheath has been pinched. (D.L.C.)
Microscopic Modeling of Tribological Phenomena
1990-02-28
37,4132 (1988). cohesive energy and lattice constant of nickel (t, -3.54 X 10- erg, ’This interface orientation was chosen in view ofour previous...such as lattice constants, heats of sublimation, elastic constants, vacancy-formation energies and heats of solution (47]. Following equilibration of...of the tip and 10 substrate materials to optimize their embedding energies (which are density dependent, deriving froam the tails of the atomic
Recovery and regeneration of spent MHD seed material by the formate process
Sheth, A.C.; Holt, J.K.; Rasnake, D.G.; Solomon, R.L.; Wilson, G.L.; Herrigel, H.R.
1991-10-15
The specification discloses a spent seed recovery and regeneration process for an MHD power plant employing an alkali metal salt seed material such as potassium salt wherein the spent potassium seed in the form of potassium sulfate is collected from the flue gas and reacted with calcium hydroxide and carbon monoxide in an aqueous solution to cause the formation of calcium sulfate and potassium formate. The pH of the solution is adjusted to suppress formation of formic acid and to promote precipitation of any dissolved calcium salts. The solution containing potassium formate is then employed to provide the potassium salt in the form of potassium formate or, optionally, by heating the potassium formate under oxidizing conditions to convert the potassium formate to potassium carbonate. 5 figures.
Recovery and regeneration of spent MHD seed material by the formate process
Sheth, Atul C.; Holt, Jeffrey K.; Rasnake, Darryll G.; Solomon, Robert L.; Wilson, Gregory L.; Herrigel, Howard R.
1991-01-01
The specification discloses a spent seed recovery and regeneration process for an MHM power plant employing an alkali metal salt seed material such as potassium salt wherein the spent potassium seed in the form of potassium sulfate is collected from the flue gas and reacted with calcium hydroxide and carbon monoxide in an aqueous solution to cause the formation of calcium sulfate and potassium formate. The pH of the solution is adjusted to supress formation of formic acid and to promote precipitation of any dissolved calcium salts. The solution containing potassium formate is then employed to provide the potassium salt in the form of potassium formate or, optionally, by heating the potassium formate under oxidizing conditions to convert the potassium formate to potassium carbonate.
Plume-ridge interaction: Shaping the geometry of mid-ocean ridges
NASA Astrophysics Data System (ADS)
Mittelstaedt, Eric L.
Manifestations of plume-ridge interaction are found across the ocean basins. Currently there are interactions between at least 21 hot spots and nearby ridges along 15--20% of the global mid-ocean ridge network. These interactions produce a number of anomalies including the presence of elevated topography, negative gravity anomalies, and anomalous crustal production. One form of anomalous crustal production is the formation of volcanic lineaments between hotspots and nearby mid-ocean ridges. In addition, observations indicate that mantle plumes tend to "capture" nearby mid-ocean ridges through asymmetric spreading, increased ridge propagation, and discrete shifts of the ridge axis, or ridge jumps. The initiation of ridge jumps and the formation of off-axis volcanic lineaments likely involve similar processes and may be closely related. In the following work, I use theoretical and numerical models to quantify the processes that control the formation of volcanic lineaments (Chapter 2), the initiation of mid-ocean ridge jumps associated with lithospheric heating due to magma passing through the plate (Chapter 3), and the initiation of jumps due to an upwelling mantle plume and magmatic heating governed by melt migration (Chapter 4). Results indicate that lineaments and ridge jumps associated with plume-ridge interaction are most likely to occur on young lithosphere. The shape of lineaments on the seafloor is predicted to be controlled by the pattern of lithospheric stresses associated with a laterally spreading, near-ridge mantle plume. Ridge jumps are likely to occur due to magmatic heating alone only in lithosphere ˜1Myr old, because the heating rate required to jump increases with spreading rate and plate age. The added effect of an upwelling plume introduces competing effects that both promote and inhibit ridge jumps. For models where magmatic heating is controlled by melt migration, repeat ridge jumps are predicted to occur as the plume and ridge separate, but only for restricted values of spreading rate, ridge migration rate, and heating rate. Overall, the results suggest that the combined effect of stresses and magmatism associated with plume-ridge interaction can significantly alter plate geometry over time.
Accretion of Planetesimals and the Formation of Rocky Planets
NASA Astrophysics Data System (ADS)
Chambers, John E.; O'Brien, David P.; Davis, Andrew M.
2010-02-01
Here we describe the formation of rocky planets and asteroids in the context of the planetesimal hypothesis. Small dust grains in protoplanetary disks readily stick together forming mm-to-cm-sized aggregates, many of which experience brief heating episodes causing melting. Growth to km-sized planetesimals might proceed via continued pairwise sticking, turbulent concentration, or gravitational instability of a thin particle layer. Gravitational interactions between planetesimals lead to rapid runaway and oligarchic growth forming lunar-to-Mars-sized protoplanets in 10^5 to 10^6 years. Giant impacts between protoplanets form Earth-mass planets in 10^7 to 10^8 years, and occasionally lead to the formation of large satellites. Protoplanets may migrate far from their formation locations due to tidal interactions with the surrounding disk. Radioactive decay and impact heating cause melting and differentiation of planetesimals and protoplanets, forming iron-rich cores and silicate mantles, and leading to some loss of volatiles. Dynamical perturbations from giant planets eject most planetesimals and protoplanets from regions near orbital resonances, leading to asteroid-belt formation. Some of this scattered material will collide with growing terrestrial planets, altering their composition as a result. Numerical simulations and radioisotope dating indicate that the terrestrial planets of the Solar System were essentially fully formed in 100-200 million years.
Jeong, K; Choo, Y S; Hong, H J; Yoon, Y S; Song, M H
2015-03-01
Vast size hydrate formation reactors with fast conversion rate are required for the economic implementation of seawater desalination utilizing gas hydrate technology. The commercial target production rate is order of thousand tons of potable water per day per train. Various heat and mass transfer enhancement schemes including agitation, spraying, and bubbling have been examined to maximize the production capacities in scaled up design of hydrate formation reactors. The present experimental study focused on acquiring basic knowledge needed to design variable volume reactors to produce tetrafluoroethane hydrate slurry. Test vessel was composed of main cavity with fixed volume of 140 ml and auxiliary cavity with variable volume of 0 ∼ 64 ml. Temperatures at multiple locations within vessel and pressure were monitored while visual access was made through front window. Alternating evaporation and condensation induced by cyclic volume change provided agitation due to density differences among water and vapor, liquid and hydrate R134a as well as extended interface area, which improved hydrate formation kinetics coupled with latent heat release and absorption. Influences of coolant temperature, piston stroke/speed, and volume change period on hydrate formation kinetics were investigated. Suggestions of reactor design improvement for future experimental study are also made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, K.; Choo, Y. S.; Hong, H. J.
Vast size hydrate formation reactors with fast conversion rate are required for the economic implementation of seawater desalination utilizing gas hydrate technology. The commercial target production rate is order of thousand tons of potable water per day per train. Various heat and mass transfer enhancement schemes including agitation, spraying, and bubbling have been examined to maximize the production capacities in scaled up design of hydrate formation reactors. The present experimental study focused on acquiring basic knowledge needed to design variable volume reactors to produce tetrafluoroethane hydrate slurry. Test vessel was composed of main cavity with fixed volume of 140 mlmore » and auxiliary cavity with variable volume of 0 ∼ 64 ml. Temperatures at multiple locations within vessel and pressure were monitored while visual access was made through front window. Alternating evaporation and condensation induced by cyclic volume change provided agitation due to density differences among water and vapor, liquid and hydrate R134a as well as extended interface area, which improved hydrate formation kinetics coupled with latent heat release and absorption. Influences of coolant temperature, piston stroke/speed, and volume change period on hydrate formation kinetics were investigated. Suggestions of reactor design improvement for future experimental study are also made.« less
Tansel, Berrin; Lunn, Griffin; Monje, Oscar
2018-03-01
Struvite (MgNH 4 PO 4 ·6H 2 O) forms in aqueous systems with high ammonia and phosphate concentrations. However, conditions that result into struvite formation are highly dependent on the ionic compositions, temperature, pH, and ion speciation characteristics. The primary ions involved in struvite formation have complex interactions and can form different crystals depending on the ionic levels, pH and temperature. Struvite as well as struvite analogues (with substitution of monovalent cations for NH 4 + or divalent cations for Mg 2+ ) as well as other crystals can form simultaneously and result in changes in crystal morphology during crystal growth. This review provides the results from experimental and theoretical studies on struvite formation and decomposition studies. Characteristics of NH 4 + or divalent cations for Mg 2+ were evaluated in comparison to monovalent and divalent ions for formation of struvite and its analogues. Struvite crystals forming in wastewater systems are likely to contain crystals other than struvite due to ionic interactions, pH changes, temperature effects and clustering of ions during nucleation and crystal growth. Decomposition of struvite occurs following a series of reactions depending on the rate of heating, temperature and availability of water during heating. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wildfire, Christina; Sabolsky, Edward M.; Spencer, Michael J.
The rapid synthesis of yttrium aluminum garnet (Y 3Al 15O 12, YAG) powder was investigated through the use of microwave irradiation of the oxide precursor system. For this investigation, an external hybrid heating source was not used. Instead, the rapid heating of the precursor materials (yttria and alumina powders, which are typically transparent to 2.45 GHz microwaves) was initiated by mixing an intrinsic absorbing material (carbon) into the original oxide precursors. The effect of the carbon characteristics, such as carbon source, concentration, particle size, and agglomerate microstructure were evaluated on the efficiency of coupling and resultant oxide reaction. The microwavemore » power was varied to optimize the YAG conversion and eliminate intermediate phase formation. Interactions between the conductive carbon particles and the dielectric oxides within the microwave exposure produced local arching and micro-plasma formation within the powder bed, resulting in the rapid formation of the refractory YAG composition. This optimal conduction led to temperatures of 1000°C that could be achieved in less than 5 min resulting in the formation of > 90 vol% YAG. The understanding of a conductor/dielectric particulate system here, provided insight into possible application of similar systems where microwave irradiation could be used for enhanced solid-state formation, local melting events, and gas phase reactions with a composite powder media.« less
A wind-driven, hybrid latent and sensible heat coastal polynya off Barrow, Alaska
NASA Astrophysics Data System (ADS)
Hirano, Daisuke; Fukamachi, Yasushi; Watanabe, Eiji; Ohshima, Kay I.; Iwamoto, Katsushi; Mahoney, Andrew R.; Eicken, Hajo; Simizu, Daisuke; Tamura, Takeshi
2016-01-01
The nature of the Barrow Coastal Polynya (BCP), which forms episodically off the Alaska coast in winter, is examined using mooring data, atmospheric reanalysis data, and satellite-derived sea-ice concentration and production data. We focus on oceanographic conditions such as water mass distribution and ocean current structure beneath the BCP. Two moorings were deployed off Barrow, Alaska in the northeastern Chukchi Sea from August 2009 to July 2010. For sea-ice season from December to May, a characteristic sequence of five events associated with the BCP has been identified; (1) dominant northeasterly wind parallel to the Barrow Canyon, with an offshore component off Barrow, (2) high sea-ice production, (3) upwelling of warm and saline Atlantic Water beneath the BCP, (4) strong up-canyon shear flow associated with displaced density surfaces due to the upwelling, and (5) sudden suppression of ice growth. A baroclinic current structure, established after the upwelling, caused enhanced vertical shear and corresponding vertical mixing. The mixing event and open water formation occurred simultaneously, once sea-ice production had stopped. Thus, mixing events accompanied by ocean heat flux from the upwelled warm water into the surface layer played an important role in formation/maintenance of the open water area (i.e., sensible heat polynya). The transition from a latent to a sensible heat polynya is well reproduced by a high-resolution pan-Arctic ice-ocean model. We propose that the BCP, previously considered to be a latent heat polynya, is a wind-driven hybrid latent and sensible heat polynya, with both features caused by the same northeasterly wind.
NASA Astrophysics Data System (ADS)
Povarova, K. B.; Valitov, V. A.; Drozdov, A. A.; Bazyleva, O. A.; Galieva, E. V.; Arginbaeva, E. G.
2018-01-01
The possibility of formation of a high-quality solid-phase joint of an Ni3Al-based single-crystal intermetallic VKNA-25 blade alloy with a high-temperature deformable EP975 disk alloy by pressure welding is studied to create high-performance one-piece blisk unit for the next-generation aviation gas turbine engines and to decrease the unit mass. The influence of the conditions of thermodiffusion pressure welding under the hightemperature superplasticity of the disk alloy and the influence of heat treatment of welded joints on the gradient structures in the welded joint zone and the structure at the periphery of the welded samples are investigated.
Effect of T6 heat treatment on the microstructural and mechanical properties of Al-Si-Cu-Mg alloys
NASA Astrophysics Data System (ADS)
Patel, Dhruv; Davda, Chintan; Solanki, P. S.; Keshvani, M. J.
2016-05-01
In this communication, it is aimed to optimize the conditions for T6 heat treatment of permanent die cast Al-Si-Cu-Mg alloys. Various solutionizing temperatures, aging treatments and soaking times were used to improve / modify the mechanical properties of presently studied alloys. Formation mechanism of the particles was understood by carrying out optical microscopy and energy dispersive X-ray (EDX) spectroscopy measurements. Spherical particles of alloys were studied for their microstructural properties using scanning electron microscopy (SEM). Microhardness test was performed to investigate their mechanical properties. Dependence of cluster formation and microhardness of the alloys on the adequate solutionizing temperature, aging treatment and soaking time has been discussed in detail.
Bi12TiO20 crystallization in a Bi2O3-TiO2-SiO2-Nd2O3 system
NASA Astrophysics Data System (ADS)
Slavov, S.; Jiao, Z.
2018-03-01
Polycrystalline mono-phase bismuth titanate was produced by free cooling from melts heated to 1170 °C. The control over the initial amounts in the starting compositions in the system Bi2O3/TiO2/SiO2/Nd2O3 and over the thermal gradient of the heat process resulted in the formation of specific structures and microstructures of monophase sillenite ceramics. The main phase Bi12TiO20 belongs to the amorphous network groups based on oxides of silicon, bismuth and titanium. In this work, we demonstrated a way to control the crystalline and amorphous phase formation in bulk poly-crystalline materials in the selected system.
Plasma ignition and steady state simulations of the Linac4 H- ion source
NASA Astrophysics Data System (ADS)
Mattei, S.; Ohta, M.; Yasumoto, M.; Hatayama, A.; Lettry, J.; Grudiev, A.
2014-02-01
The RF heating of the plasma in the Linac4 H- ion source has been simulated using a particle-in-cell Monte Carlo collision method. This model is applied to investigate the plasma formation starting from an initial low electron density of 1012 m-3 and its stabilization at 1018 m-3. The plasma discharge at low electron density is driven by the capacitive coupling with the electric field generated by the antenna, and as the electron density increases the capacitive electric field is shielded by the plasma and induction drives the plasma heating process. Plasma properties such as e-/ion densities and energies, sheath formation, and shielding effect are presented and provide insight to the plasma properties of the hydrogen plasma.
Analysis of the beam halo in negative ion sources by using 3D3V PIC code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyamoto, K., E-mail: kmiyamot@naruto-u.ac.jp; Nishioka, S.; Goto, I.
The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with thosemore » for the 2D PIC simulation result.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jianjun, E-mail: zhangjianjun7110@163.com; Chen, Jun; Li, Qiang
2015-03-15
Graphical abstract: Chalcopyrite structured CuInS{sub 2} nanorods were synthesized by an environmentally friendly microwave heating method in deep eutectic solvent. Results show that microwave heating time plays an important role in the formation of CuInS{sub 2} nanostructure phase. The SEM results indicated that the obtained CuInS{sub 2} nanostructures display rod-like morphology with diameters of about 40 nm and lengths of about 400 nm. The UV–vis spectrum results indicated that the CuInS{sub 2} nanorods exhibit strong absorption from the entire visible light region to the near-infrared region beyond 1100 nm. The possible growth mechanism of CuInS{sub 2} nanorods was discussed. -more » Abstract: Chalcopyrite structured CuInS{sub 2} nanorods were synthesized by an environmentally friendly microwave heating method in deep eutectic solvent. The as-synthesized CuInS{sub 2} nanorods were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), respectively. The results indicated that the obtained CuInS{sub 2} nanostructures display rod-like morphology with diameters of about 40 nm and lengths of about 400 nm. The influences of microwave heating time on the formation of CuInS{sub 2} phase were discussed. Ultraviolet–visible (UV–vis) and photoluminescence (PL) spectra were utilized to investigate the optical properties of CuInS{sub 2} nanorods. The results showed that the as-synthesized CuInS{sub 2} nanorods exhibit strong absorption from the entire visible light region to the near-infrared region beyond 1100 nm. PL spectrum of the as-synthesized CuInS{sub 2} nanorods displays an emission peak centered at 580 nm under excitation wavelength of 366 nm at room temperature. The possible growth mechanism of CuInS{sub 2} nanorods was discussed.« less
The structural significance of HAZ sigma phase formation in welded 25%Cr super duplex pipework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiesner, C.S.; Garwood, S.J.; Bowden, P.L.
1993-12-31
The welding of 25%Cr duplex stainless steel can lead to the formation of sigma phase in both weld metal and heat affected zone (HAZ) regions. It has generally been accepted that this can be avoided by the adoption of appropriate welding procedure controls, generally aimed at reducing heat input and promoting rapid cooling rates. However, experience during pipe spool fabrication for the Marathon East Brae Project has shown that it is extremely difficult to satisfy a welding specification requiring sigma free HAZs. This has proved a particular problem with thin wall pipe welds made in the 2G/5G or 6G fixedmore » positions, where the joint geometry reduces heat flow away from the weld and welding conditions tend to result in the use of higher heat inputs. This paper examines the effect of sigma phase on the fracture toughness of 25%Cr super duplex steel (UNS S32760). It is shown that the CTOD toughness at {minus}20 C decreases as soon as any sigma phase is present and continues to decrease with increasing sigma levels. The toughness of the sigmatized specimens produced by heat treatment was shown to be conservative compared to the toughness measured in the HAZ of 14.2mm and 7.1mm thick pipe weldments, made with welding parameters chosen to enhance HAZ sigma phase formation. Based on the CTOD versus percent sigma level relationship derived from the laboratory specimens, fracture assessment calculations of tolerable flaw sizes were performed. These demonstrated that under the severest design conditions, assuming the maximum flaw sizes which could remain undetected in the pipework, sigma levels up to 2.5% can be tolerated safely. The conservatism of the fracture assessments for predicting the performance of weldments was demonstrated by full scale tensile testing of 2 inch nominal bore x 2.77 mm wall thickness pipe butt welds containing through-thickness circumferential fatigue cracks located in the sigmatized HAZ.« less
Molecular diagnostics of FUV and accretion-related heating in protoplanetary disks
NASA Astrophysics Data System (ADS)
Adamkovics, Mate; Najita, Joan R.
2017-10-01
Emission lines from the terrestrial planet forming regions of disks are diagnostic of both the physical processes that heat the gas and the chemistry that determines the inventory of nebular material available during the epoch of planet formation. Interpreting emission spectra is informed by models of radiative, thermal, physical, and chemical processes, such as: (i) the radiation transfer of X-rays and FUV --- both continuum and Ly-alpha, (ii) direct and indirect heating processes such as the photoelectric effect and photochemical heating, (iii) heating related to turbulent processes and viscous dissipation, and (iv) gas phase chemical reaction kinetics. Many of these processes depend on a the spatial distribution of dust grains and their properties, which temporally evolve during the lifetime of the disk and the formation of planets. Studies of disks atmospheres often predict a layered structure of hot (a few thousand K) atomic gas overlying warm (a few hundred K) molecular gas, which is generally consistent with the isothermal slab emission models that are used to interpret emission spectra. However, detailed comparison between observed spectra and models (e.g., comparing the total columns and the radial extent of warm emitting species) is rare.We present results including the implementation of Ly-alpha scattering, which is an important part of the photochemical heating and FUV heating radiation budget. By including these processes we find a new component of the disk atmosphere; hot molecular gas at ~2000K within radial distances of ~0.5AU, which is consistent with observations of UV-fluorescent H2 emission (Ádámkovics, Najita & Glassgold, 2016). Constraining the most optimistic contribution of radiative heating mechanisms via X-rays and FUV together with a favorable comparison to observations, allows us to explore and evaluate additional heating mechanisms. We find that the total columns of warm (90-400K) emitting molecules such as CO, arising directly below the irradiated molecular layer, are diagnostic of the role of turbulent (viscous) mechanical heating. We discuss how the total columns of warm molecules in this layer may be diagnostic of the magnetorotational instability (Najita & Ádámkovics, 2017).
Ahn, Ho Seon; Kim, Jin Man; Kim, TaeJoo; Park, Su Cheong; Kim, Ji Min; Park, Youngjae; Yu, Dong In; Hwang, Kyoung Won; Jo, HangJin; Park, Hyun Sun; Kim, Hyungdae; Kim, Moo Hwan
2014-01-01
Boiling heat transfer (BHT) is a particularly efficient heat transport method because of the latent heat associated with the process. However, the efficiency of BHT decreases significantly with increasing wall temperature when the critical heat flux (CHF) is reached. Graphene has received much recent research attention for applications in thermal engineering due to its large thermal conductivity. In this study, graphene films of various thicknesses were deposited on a heated surface, and enhancements of BHT and CHF were investigated via pool-boiling experiments. In contrast to the well-known surface effects, including improved wettability and liquid spreading due to micron- and nanometer-scale structures, nanometer-scale folded edges of graphene films provided a clue of BHT improvement and only the thermal conductivity of the graphene layer could explain the dependence of the CHF on the thickness. The large thermal conductivity of the graphene films inhibited the formation of hot spots, thereby increasing the CHF. Finally, the provided empirical model could be suitable for prediction of CHF. PMID:25182076
Anomalous Behavior of Electronic Heat Capacity of Strongly Correlated Iron Monosilicide
NASA Astrophysics Data System (ADS)
Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.
2018-04-01
The paper deals with the electronic heat capacity of iron monosilicide FeSi subjected to semiconductor-metal thermal transition during which the formation of its spintronic properties is observed. The proposed model which considers pd-hybridization of strongly correlated d-electrons with non-correlated p-electrons, demonstrates a connection of their contribution to heat capacity in the insulator phase with paramagnon effects and fluctuations of occupation numbers for p- and d-states. In a slitless state, the temperature curve of heat capacity is characterized by a maximum appeared due to normalization of the electron density of states using fluctuating exchange fields. At higher temperatures, a linear growth in heat capacity occurs due to paramagnon effects. The correlation between the model parameters and the first-principles calculation provides the electron contribution to heat capacity, which is obtained from the experimental results on phonon heat capacity. Anharmonicity of phonons is connected merely with the thermal expansion of the crystal lattice.
NASA Astrophysics Data System (ADS)
Guervilly, C.; Cardin, P.
2017-12-01
Convection is the main heat transport process in the liquid cores of planets. The convective flows are thought to be turbulent and constrained by rotation (corresponding to high Reynolds numbers Re and low Rossby numbers Ro). Under these conditions, and in the absence of magnetic fields, the convective flows can produce coherent Reynolds stresses that drive persistent large-scale zonal flows. The formation of large-scale flows has crucial implications for the thermal evolution of planets and the generation of large-scale magnetic fields. In this work, we explore this problem with numerical simulations using a quasi-geostrophic approximation to model convective and zonal flows at Re 104 and Ro 10-4 for Prandtl numbers relevant for liquid metals (Pr 0.1). The formation of intense multiple zonal jets strongly affects the convective heat transport, leading to the formation of a mean temperature staircase. We also study the generation of magnetic fields by the quasi-geostrophic flows at low magnetic Prandtl numbers.
Humidity influence on atomic force microscopy electrostatic nanolithography
NASA Astrophysics Data System (ADS)
Lyuksyutov, Sergei; Juhl, Shane; Vaia, Richard
2006-03-01
The formation and sustainability of water menisci and bridges between solid dielectric surface and nano-asperity under external electrostatic potential is a mystery, which must be adequately explained. The goal of our study is twofold: (i) To address the influence of an ambient humidity through the water meniscus formation on the nanostructure formation in soften polymeric surfaces; (ii) Estimate an electric charge generation and transport inside the water meniscus in vicinity of nanoscale asperity taking into consideration an induced water ionization in strong non-uniform electric field of magnitude up to 10^10 Vm-1. It is suspected that strong electric field inside a polymer matrix activates the hoping mechanism of conductivity. The electrons are supplied by tunneling of conductive tip, and also through water ionization. Electric current associated with these free carriers produces Jule heating of a small volume of polymer film heating it above the glass transition temperature. Nanostructures are created by mass transport of visco-elastic polymer melt enabling high structure densities on polymer film.