Science.gov

Sample records for formation inhibitors synthesis

  1. Halofuginone--an inhibitor of collagen type I synthesis--prevents postoperative formation of abdominal adhesions.

    PubMed Central

    Nagler, A; Rivkind, A I; Raphael, J; Levi-Schaffer, F; Genina, O; Lavelin, I; Pines, M

    1998-01-01

    OBJECTIVE: To evaluate the effects of halofuginone, a specific inhibitor of collagen type I synthesis, on the postoperative formation of abdominal adhesions in rats. SUMMARY BACKGROUND DATA: Postoperative adhesions remain the leading cause of small bowel obstruction in the Western world. Surgical trauma causes the release of a serosanguineous exudate that forms a fibrinous bridge between two organs. This becomes ingrown with fibroblasts, and subsequent collagen deposition leads to the formation of a permanent adhesion. Most of the drugs used have been clinically ineffective, and none has been specific to a particular extracellular matrix molecule. Therefore, there are serious concerns about the toxic consequences of interfering with the biosynthesis of other collagens, other matrix proteins, or vital collagen-like molecules. METHODS: Adhesions were induced by scraping the cecum until capillary bleeding occurred. The adhesions were scored 21 days later. Halofuginone was either injected intraperitoneally (1 microg/25 g body weight) every day, starting on the day of operation, or added orally at concentrations of 5 or 10 mg/kg, starting 4 days before the operation. Collagen alpha1(I) gene expression was evaluated by in situ hybridization, total collagen was estimated by Sirius red staining, and collagen type III was detected by immunohistochemistry. RESULTS: The adhesions formed between the intestinal walls were composed of collagen and were populated with cells expressing the collagen alpha1(I) gene. Regardless of the administration procedure, halofuginone significantly reduced the number and severity of the adhesions. Halofuginone prevented the increase in collagen alpha1(I) gene expression observed in the operated rats, thus reducing collagen content to the control level. In fibroblasts derived from abdominal adhesions, halofuginone induced dose-dependent inhibition of collagen alpha1(I) gene expression and collagen synthesis. Collagen type III levels were not

  2. Synthesis of the proteinase inhibitor LEKTI domain 6 by the fragment condensation method and regioselective disulfide bond formation.

    PubMed

    Vasileiou, Zoe; Barlos, Kostas K; Gatos, Dimitrios; Adermann, Knut; Deraison, Celine; Barlos, Kleomenis

    2010-01-01

    Proteinase inhibitors are of high pharmaceutical interest and are drug candidates for a variety of indications. Specific kallikrein inhibitors are important for their antitumor activity and their potential application to the treatment of skin diseases. In this study we describe the synthesis of domain 6 of the kallikrein inhibitor Lympho-Epithilial Kazal-Type Inhibitor (LEKTI) by the fragment condensation method and site-directed cystine bridge formation. To obtain the linear LEKTI precursor, the condensation was best performed in solution, coupling the protected fragment 1-22 to 23-68. This method yielded LEKTI domain 6 of high purity and equipotent to the recombinantly produced peptide.

  3. Synthesis of Lysine Methyltransferase Inhibitors

    NASA Astrophysics Data System (ADS)

    Ye, Tao; Hui, Chunngai

    2015-07-01

    Lysine methyltransferase which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and has emerged as a promising target for the development of various human diseases, including cancer, inflammation, and psychiatric disorders. However, inhibiting Lysine methyltransferases selectively has presented many challenges to medicinal chemists. During the past decade, lysine methyltransferase inhibitors covering many different structural classes have been designed and developed. In this review, we describe the development of selective, small-molecule inhibitors of lysine methyltransferases with an emphasis on their discovery and chemical synthesis. We highlight the current state of lysine methyltransferase inhibitors and discuss future directions and opportunities for lysine methyltransferase inhibitor discovery.

  4. Synthesis of influenza neuraminidase inhibitors.

    PubMed

    Abdel-Magid, A F; Maryanoff, C A; Mehrman, S J

    2001-11-01

    Influenza neuraminidase inhibitors provide a means to combat flu, a potentially very serious disease. For the first time, there is a way to treat influenza by blocking the influenza enzyme neuraminidase to stop or slow the progression of infection. The diverse structures and synthesis of several influenza neuraminidase inhibitors are discussed. Contributions from chemical process development groups are highlighted for those compounds that have reached the market, such as zanamivir and oseltamivir phosphate.

  5. Synthesis of lysine methyltransferase inhibitors

    PubMed Central

    Hui, Chunngai; Ye, Tao

    2015-01-01

    Lysine methyltransferase which catalyze methylation of histone and non-histone proteins, play a crucial role in diverse biological processes and has emerged as a promising target for the development of various human diseases, including cancer, inflammation, and psychiatric disorders. However, inhibiting lysine methyltransferases selectively has presented many challenges to medicinal chemists. During the past decade, lysine methyltransferase inhibitors covering many different structural classes have been designed and developed. In this review, we describe the development of selective, small-molecule inhibitors of lysine methyltransferases with an emphasis on their discovery and chemical synthesis. We highlight the current state of lysine methyltransferase inhibitors and discuss future directions and opportunities for lysine methyltransferase inhibitor discovery. PMID:26258118

  6. Asymmetric Synthesis of Akt Kinase Inhibitor Ipatasertib.

    PubMed

    Han, Chong; Savage, Scott; Al-Sayah, Mohammad; Yajima, Herbert; Remarchuk, Travis; Reents, Reinhard; Wirz, Beat; Iding, Hans; Bachmann, Stephan; Fantasia, Serena M; Scalone, Michelangelo; Hell, André; Hidber, Pirmin; Gosselin, Francis

    2017-09-15

    A highly efficient asymmetric synthesis of the Akt kinase inhibitor ipatasertib (1) is reported. The bicyclic pyrimidine 2 starting material was prepared via a nitrilase biocatalytic resolution, halogen-metal exchange/anionic cyclization, and a highly diastereoselective biocatalytic ketone reduction as key steps. The route also features a halide activated, Ru-catalyzed asymmetric hydrogenation of a vinylogous carbamic acid to produce α-aryl-β-amino acid 3 in high yield and enantioselectivity. The API was assembled in a convergent manner through a late-stage amidation/deprotection/monohydrochloride salt formation sequence.

  7. Practical synthesis of a p38 MAP kinase inhibitor.

    PubMed

    Achmatowicz, Michał; Thiel, Oliver R; Wheeler, Philip; Bernard, Charles; Huang, Jinkun; Larsen, Robert D; Faul, Margaret M

    2009-01-16

    p38 MAP kinase inhibitors have attracted considerable interest as potential agents for the treatment of inflammatory diseases. Herein, we describe a concise and efficient synthesis of inhibitor 1 that is based on a phthalazine scaffold. Highlights of our approach include a practical synthesis of a 1,6-disubstituted phthalazine building block 24 as well as the one-pot formation of boronic acid 27. Significant synthetic work to understand the reactivity principles of the intermediates helped in selection of the final synthetic route. Subsequent optimization of the individual steps of the final sequence led to a practical synthesis of 1.

  8. An Inhibitor of PIDDosome Formation

    PubMed Central

    Thompson, Ruth; Shah, Richa B.; Liu, Peter H.; Gupta, Yogesh; Ando, Kiyohiro; Aggarwal, Aneel K.; Sidi, Samuel

    2015-01-01

    Summary The PIDDosome—PIDD-RAIDD-caspase-2 complex—is a proapoptotic caspase-activation platform of elusive significance. DNA damage can initiate complex assembly via ATM phosphorylation of the PIDD death domain (DD), which enables RAIDD recruitment to PIDD. In contrast, the mechanisms limiting PIDDosome formation have remained unclear. We identify the mitotic checkpoint factor, BubR1, as a direct PIDDosome inhibitor, acting in a noncanonical role independent of Mad2. Following its phosphorylation by ATM at DNA breaks, ‘primed’ PIDD relocates to kinetochores via a direct interaction with BubR1. BubR1 binds the PIDD DD, competes with RAIDD recruitment, and negates PIDDosome-mediated apoptosis after ionizing radiation. The PIDDosome thus sequentially integrates DNA damage and mitotic checkpoint signals to decide cell fate in response to genotoxic stress. We further show that by sequestering PIDD at the kinetochore, BubR1 acts to delay PIDDosome formation until the next cycle, defining a new mechanism by which cells evade apoptosis during mitosis. PMID:25936804

  9. The Emerging Pathogen Candida auris: Growth Phenotype, Virulence Factors, Activity of Antifungals, and Effect of SCY-078, a Novel Glucan Synthesis Inhibitor, on Growth Morphology and Biofilm Formation

    PubMed Central

    Larkin, Emily; Hager, Christopher; Chandra, Jyotsna; Mukherjee, Pranab K.; Retuerto, Mauricio; Salem, Iman; Long, Lisa; Isham, Nancy; Borroto-Esoda, Katyna; Wring, Steve; Angulo, David

    2017-01-01

    ABSTRACT Candida auris, a new multidrug-resistant Candida spp. which is associated with invasive infection and high rates of mortality, has recently emerged. Here, we determined the virulence factors (germination, adherence, biofilm formation, phospholipase and proteinase production) of 16 C. auris isolates and their susceptibilities to 11 drugs belonging to different antifungal classes, including a novel orally bioavailable 1,3-β-d-glucan synthesis inhibitor (SCY-078). We also examined the effect of SCY-078 on the growth, ultrastructure, and biofilm-forming abilities of C. auris. Our data showed that while the tested strains did not germinate, they did produce phospholipase and proteinase in a strain-dependent manner and had a significantly reduced ability to adhere and form biofilms compared to that of Candida albicans (P = 0.01). C. auris isolates demonstrated reduced susceptibility to fluconazole and amphotericin B, while, in general, they were susceptible to the remaining drugs tested. SCY-078 had an MIC90 of 1 mg/liter against C. auris and caused complete inhibition of the growth of C. auris and C. albicans. Scanning electron microscopy analysis showed that SCY-078 interrupted C. auris cell division, with the organism forming abnormal fused fungal cells. Additionally, SCY-078 possessed potent antibiofilm activity, wherein treated biofilms demonstrated significantly reduced metabolic activity and a significantly reduced thickness compared to the untreated control (P < 0.05 for both comparisons). Our study shows that C. auris expresses several virulence determinants (albeit to a lesser extent than C. albicans) and is resistant to fluconazole and amphotericin B. SCY-078, the new orally bioavailable antifungal, had potent antifungal/antibiofilm activity against C. auris, indicating that further evaluation of this antifungal is warranted. PMID:28223375

  10. The Emerging Pathogen Candida auris: Growth Phenotype, Virulence Factors, Activity of Antifungals, and Effect of SCY-078, a Novel Glucan Synthesis Inhibitor, on Growth Morphology and Biofilm Formation.

    PubMed

    Larkin, Emily; Hager, Christopher; Chandra, Jyotsna; Mukherjee, Pranab K; Retuerto, Mauricio; Salem, Iman; Long, Lisa; Isham, Nancy; Kovanda, Laura; Borroto-Esoda, Katyna; Wring, Steve; Angulo, David; Ghannoum, Mahmoud

    2017-05-01

    Candidaauris, a new multidrug-resistant Candida spp. which is associated with invasive infection and high rates of mortality, has recently emerged. Here, we determined the virulence factors (germination, adherence, biofilm formation, phospholipase and proteinase production) of 16 C. auris isolates and their susceptibilities to 11 drugs belonging to different antifungal classes, including a novel orally bioavailable 1,3-β-d-glucan synthesis inhibitor (SCY-078). We also examined the effect of SCY-078 on the growth, ultrastructure, and biofilm-forming abilities of C. auris Our data showed that while the tested strains did not germinate, they did produce phospholipase and proteinase in a strain-dependent manner and had a significantly reduced ability to adhere and form biofilms compared to that of Candida albicans (P = 0.01). C. auris isolates demonstrated reduced susceptibility to fluconazole and amphotericin B, while, in general, they were susceptible to the remaining drugs tested. SCY-078 had an MIC90 of 1 mg/liter against C. auris and caused complete inhibition of the growth of C. auris and C. albicans Scanning electron microscopy analysis showed that SCY-078 interrupted C. auris cell division, with the organism forming abnormal fused fungal cells. Additionally, SCY-078 possessed potent antibiofilm activity, wherein treated biofilms demonstrated significantly reduced metabolic activity and a significantly reduced thickness compared to the untreated control (P < 0.05 for both comparisons). Our study shows that C. auris expresses several virulence determinants (albeit to a lesser extent than C. albicans) and is resistant to fluconazole and amphotericin B. SCY-078, the new orally bioavailable antifungal, had potent antifungal/antibiofilm activity against C. auris, indicating that further evaluation of this antifungal is warranted. Copyright © 2017 Larkin et al.

  11. A novel crystallization-induced diastereomeric transformation based on a reversible carbon-sulfur bond formation. Application to the synthesis of a gamma-secretase inhibitor.

    PubMed

    Davies, Antony J; Scott, Jeremy P; Bishop, Brian C; Brands, Karel M J; Brewer, Sarah E; Dasilva, Jimmy O; Dormer, Peter G; Dolling, Ulf-H; Gibb, Andrew D; Hammond, Deborah C; Lieberman, David R; Palucki, Michael; Payack, Joseph F

    2007-06-22

    This paper describes a remarkably efficient process for the preparation of gamma-secretase inhibitor 1. The target is synthesized in only five steps with an overall yield of 58%. The key operation is a highly selective and practical, crystallization-driven transformation for the conversion of a mixture of tertiary benzylic alcohols into the desired sulfide diastereomer with 94:6 dr. This unprecedented process is based upon a reversible carbon-sulfur bond formation under acidic conditions.

  12. Protein synthesis inhibitor from potato tuber

    SciTech Connect

    Romaen, R. )

    1989-04-01

    A protein fraction capable of inhibit in vitro protein synthesis was found in potato tubers in fresh and wounded tissue. Inhibitor activity from fresh tissue decays with wounding. Inhibition activity was detected absorbed to ribsomal fraction and cytosol of potato tuber tissue by a partially reconstituted in vitro system from potato tuber and wheat germ. Adsorbed ribosomal fraction was more suitable of purification. This fraction was washed from ribosomes with 0.3M KCl, concentrated with ammonium sulfate precipitation and purified through sephadex G100 and sephadex G-75 columns chromatography. After 61 fold purification adsorbed protein fraction can inhibit germination of maize, wheat and sesame seeds, as well as {sup 3}H-leucine incorporation into protein by imbibed maize embryos. Inhibition activity was lost by temperature, alkali and protease-K hydrolysis. Preliminar analysis could not show presence of reductor sugars. Physiological role of this inhibitor in relation to rest and active tissue remains to be studied.

  13. Inhibitors of Angiogenesis in Cancer Therapy - Synthesis and Biological Activity.

    PubMed

    Gensicka, Monika; Głowacka, Agnieszka; Dzierzbicka, Krystyna; Cholewinski, Grzegorz

    2015-01-01

    Angiogenesis is the process of formation of new capillaries from preexisting blood vessels. Angiogenesis is involved in normal physiological processes, and plays an important role in tumor invasion and development of metastases. Vascular endothelial growth factor (VEGF) plays a key role in angiogenesis. VEGF is a mitogen for vascular endothelial cells and stimulates their proliferation. By inhibiting the biological activity of VEGF, and then signal cascades with neutralizing VEGF antibodies and signal inhibitors, may negatively regulate the growth and metastasis. Anti-angiogenesis therapy is less toxic than chemotherapy. Angiogenesis is a multistep and multifactorial process, and therefore, can be blocked at different levels. In this review article, the authors present the synthesis of novel inhibitors of angiogenesis, together with the results of biological tests in vitro, and in some cases, state trials.

  14. Inhibitors of polyhydroxyalkanoate (PHA) synthases: synthesis, molecular docking, and implications.

    PubMed

    Zhang, Wei; Chen, Chao; Cao, Ruikai; Maurmann, Leila; Li, Ping

    2015-01-02

    Polyhydroxyalkanoate (PHA) synthases (PhaCs) catalyze the formation of biodegradable PHAs that are considered to be ideal alternatives to non-biodegradable synthetic plastics. However, study of PhaCs has been challenging because the rate of PHA chain elongation is much faster than that of initiation. This difficulty, along with lack of a crystal structure, has become the main hurdle to understanding and engineering PhaCs for economical PHA production. Here we report the synthesis of two carbadethia CoA analogues--sT-CH2-CoA (26 a) and sTet-CH2-CoA (26 b)--as well as sT-aldehyde (saturated trimer aldehyde, 29), as new PhaC inhibitors. Study of these analogues with PhaECAv revealed that 26 a/b and 29 are competitive and mixed inhibitors, respectively. Both the CoA moiety and extension of PHA chain will increase binding affinity; this is consistent with our docking study. Estimation of the Kic values of 26 a and 26 b predicts that a CoA analogue incorporating an octameric hydroxybutanoate (HB) chain might facilitate the formation of a kinetically well-behaved synthase. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Melanostatin, a new melanin synthesis inhibitor. Production, isolation, chemical properties, structure and biological activity.

    PubMed

    Ishihara, Y; Oka, M; Tsunakawa, M; Tomita, K; Hatori, M; Yamamoto, H; Kamei, H; Miyaki, T; Konishi, M; Oki, T

    1991-01-01

    Melanostatin, a new antibiotic with melanin synthesis inhibitor activity, was isolated from the fermentation broth of Streptomyces clavifer No. N924-2. Its structure was determined by spectral analysis and degradation experiments. Melanostatin strongly inhibited melanin formation in Streptomyces bikiniensis NRRL B-1049 and B16 melanoma cells.

  16. Synthesis of Berberine–Efflux Pump Inhibitor Hybrid Antibacterials

    PubMed Central

    Bremner, John B.; Kelso, Michael J.

    2010-01-01

    This paper reports the compact synthesis of two isomeric dual-action hybrid antimicrobials where the 13-position of the antibacterial berberine has been linked via 3'- and 4'-methylene bridges to INF55 (5-nitro-2-phenylindole), an inhibitor of the bacterial NorA multidrug-resistance pump. PMID:21311737

  17. Synthesis of macrocyclic trypanosomal cysteine protease inhibitors.

    PubMed

    Chen, Yen Ting; Lira, Ricardo; Hansell, Elizabeth; McKerrow, James H; Roush, William R

    2008-11-15

    The importance of cysteine proteases in parasites, compounded with the lack of redundancy compared to their mammalian hosts makes proteases attractive targets for the development of new therapeutic agents. The binding mode of K11002 to cruzain, the major cysteine protease of Trypanosoma cruzi was used in the design of conformationally constrained inhibitors. Vinyl sulfone-containing macrocycles were synthesized via olefin ring-closing metathesis and evaluated against cruzain and the closely related cysteine protease, rhodesain.

  18. Screening of Zulu medicinal plants for prostaglandin-synthesis inhibitors.

    PubMed

    Jäger, A K; Hutchings, A; van Staden, J

    1996-06-01

    Aqueous and ethanolic extracts of 39 plants used in traditional Zulu medicine to treat headache or inflammatory diseases were screened for prostaglandin-synthesis inhibitors. Extracts were tested in an in vitro assay for cyclooxygenase inhibitors. In general, ethanolic extracts caused higher inhibition than aqueous extracts. Two-thirds of the plants screened had high inhibitory activity. The highest inhibition was obtained with ethanolic extracts of Bidens pilosa, Eucomis autumnalis, Harpephyllum caffrum, Helichrysum nudifolium, Leonotis intermedia, L. leonorus, Ocotea bullata, Rumex saggitatus, Solanum mauritianum, Synadenium cupulare and Trichilia dregeana.

  19. Structures of hydrocarbon hydrates during formation with and without inhibitors.

    PubMed

    Ohno, Hiroshi; Moudrakovski, Igor; Gordienko, Raimond; Ripmeester, John; Walker, Virginia K

    2012-02-09

    The formation of hydrates from a methane-ethane-propane mixture is more complex than with single gases. Using nuclear magnetic resonance (NMR) and high-pressure powder X-ray diffraction (PXRD), we have investigated the structural properties of natural gas hydrates crystallized in the presence of kinetic hydrate inhibitors (KHIs), two commercial inhibitors and two biological ice inhibitors, or antifreeze proteins (AFPs). NMR analyses indicated that hydrate cage occupancy was at near saturation for controls and most inhibitor types. Some exceptions were found in systems containing a new commercial KHI (HIW85281) and a recombinant plant AFP, suggesting that these two inhibitors could impact the kinetics of cavity formation. NMR analysis confirmed that the hydrate composition varies during crystal growth by kinetic effects. Strikingly, the coexistence of both structures I (sI) and II (sII) were observed in NMR spectra and PXRD profiles. It is suggested that sI phases may form more readily from liquid water. Real time PXRD monitoring showed that sI hydrates were less stable than sII crystals, and there was a conversion to the stable phase over time. Both commercial KHIs and AFPs had an impact on hydrate metastability, but transient sI PXRD intensity profiles indicated significantly different modes of interaction with the various inhibitors and the natural gas hydrate system.

  20. Tetrahydroisoquinolines: New Inhibitors of Neutrophil Extracellular Trap (NET) Formation.

    PubMed

    Martinez, Nancy E; Zimmermann, Tobias J; Goosmann, Christian; Alexander, Tobias; Hedberg, Christian; Ziegler, Slava; Zychlinsky, Arturo; Waldmann, Herbert

    2017-05-18

    Neutrophils are short-lived leukocytes that migrate to sites of infection as part of the acute immune response, where they phagocytose, degranulate, and form neutrophil extracellular traps (NETs). During NET formation, the nuclear lobules of neutrophils disappear and the chromatin expands and, accessorized with neutrophilic granule proteins, is expelled. NETs can be pathogenic in, for example, sepsis, cancer, and autoimmune and cardiovascular diseases. Therefore, the identification of inhibitors of NET formation is of great interest. Screening of a focused library of natural-product-inspired compounds by using a previously validated phenotypic NET assay identified a group of tetrahydroisoquinolines as new NET formation inhibitors. This compound class opens up new avenues for the study of cellular death through NET formation (NETosis) at different stages, and might inspire new medicinal chemistry programs aimed at NET-dependent diseases. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation

    PubMed Central

    Shih, Yu-Tzu; Hsueh, Yi-Ping

    2016-01-01

    Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders. PMID:26984393

  2. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation.

    PubMed

    Shih, Yu-Tzu; Hsueh, Yi-Ping

    2016-03-17

    Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders.

  3. Synthesis of the Pitstop family of clathrin inhibitors.

    PubMed

    Robertson, Mark J; Deane, Fiona M; Stahlschmidt, Wiebke; von Kleist, Lisa; Haucke, Volker; Robinson, Phillip J; McCluskey, Adam

    2014-07-01

    This protocol describes the synthesis of two classes of clathrin inhibitors, Pitstop 1 and Pitstop 2, along with two inactive analogs that can be used as negative controls (Pitstop inactive controls, Pitnot-2 and Pitnot-2-100). Pitstop-induced inhibition of clathrin TD function acutely interferes with clathrin-mediated endocytosis (CME), synaptic vesicle recycling and cellular entry of HIV, whereas clathrin-independent internalization pathways and secretory traffic proceed unperturbed; these reagents can, therefore, be used to investigate clathrin function, and they have potential pharmacological applications. Pitstop 1 is synthesized in two steps: sulfonation of 1,8-naphthalic anhydride and subsequent reaction with 4-amino(methyl)aniline. Pitnot-1 results from the reaction of 4-amino(methyl)aniline with commercially available 4-sulfo-1,8-naphthalic anhydride potassium salt. Reaction of 1-naphthalene sulfonyl chloride with pseudothiohydantoin followed by condensation with 4-bromobenzaldehyde yields Pitstop 2. The synthesis of the inactive control commences with the condensation of 4-bromobenzaldehyde with the rhodanine core. Thioketone methylation and displacement with 1-napthylamine affords the target compound. Although Pitstop 1-series compounds are not cell permeable, they can be used in biochemical assays or be introduced into cells via microinjection. The Pitstop 2-series compounds are cell permeable. The synthesis of these compounds does not require specialist equipment and can be completed in 3-4 d. Microwave irradiation can be used to reduce the synthesis time. The synthesis of the Pitstop 2 family is easily adaptable to enable the synthesis of related compounds such as Pitstop 2-100 and Pitnot-2-100. The procedures are also simple, efficient and amenable to scale-up, enabling cost-effective in-house synthesis for users of these inhibitor classes.

  4. New peptide deformylase inhibitors design, synthesis and pharmacokinetic assessment.

    PubMed

    Lv, Fengping; Chen, Chen; Tang, Yang; Wei, Jianhai; Zhu, Tong; Hu, Wenhao

    2016-08-01

    The docking approach for the screening of designed small molecule ligands, led to the identification of a critical arginine residue in peptide deformylase for spiro cyclopropyl PDF inhibitor's extra hydrophobic binding, providing us a useful tool for searching more efficient PDF inhibitors to fight for horrifying antibiotics resistance. Further synthetic modification was undertaken to optimize the potency of amide compounds. To lower metabolic susceptibility and in turn reduce unwanted metabolic toxicity that was observed clinically, while retaining desired antibacterial activity, the use of azoles as amide bioisosteres had also been investigated. After the completion of chemical synthesis, all the compounds were evaluated through in vitro antibacterial activity assay, some of which were further subject to in vivo rat pharmacokinetic assessment. Those findings in this letter showed that spiro cyclopropyl proline N-formyl hydroxylamines, and especially the bioisosteric azoles, can represent a promising class of PDF inhibitors.

  5. Formation of a catalyst for methanol synthesis

    SciTech Connect

    Plyasova, L.M.; Yur`eva, T.M.; Kriger, T.A.

    1995-05-01

    Formation of the structure in a copper-zinc catalyst for methanol synthesis is analyzed at each step of its preparation including hydrogen activation at which catalytically active species are formed. The necessary interaction of the catalyst components in fresh precipitates is provided by formation of mixed copper-zinc hydroxocarbonates. On low-temperature calcination, the interaction is preserved due to the formation of mixed copper-zinc oxides modified by OH{sup -} and CO{sub 3}{sup 2-} anions with copper ions distributed as clusters in a zinc oxide-type structure. The activation with hydrogen results in formation of a proton-stabilized system of zinc oxide with epitaxially bound metallic copper. Both the chemical bond cleavage and spatial phase segregation at any step of the catalyst preparation result in the loss of its catalytic activity.

  6. Stereocontrolled Synthesis of a Potential Transition-State Inhibitor of the Salicylate Synthase MbtI from Mycobacterium tuberculosis.

    PubMed

    Liu, Zheng; Liu, Feng; Aldrich, Courtney C

    2015-07-02

    Mycobactins are small-molecule iron chelators (siderophores) produced by Mycobacterium tuberculosis (Mtb) for iron mobilization. The bifunctional salicylate synthase MbtI catalyzes the first step of mycobactin biosynthesis through the conversion of the primary metabolite chorismate into salicylic acid via isochorismate. We report the design, synthesis, and biochemical evaluation of an inhibitor based on the putative transition state (TS) for the isochorismatase partial reaction of MbtI. The inhibitor mimics the hypothesized charge buildup at C-4 of chorismate in the TS as well as C-O bond formation at C-6. Another important design element of the inhibitor is replacement of the labile pyruvate side chain in chorismate with a stable C-linked propionate isostere. We developed a stereocontrolled synthesis of the highly functionalized cyclohexene inhibitor that features an asymmetric aldol reaction using a titanium enolate, diastereoselective Grignard addition to a tert-butanesulfinyl aldimine, and ring closing olefin metathesis as key steps.

  7. Enantioselective synthesis of new oxazolidinylthiazolidines as enzyme inhibitors.

    PubMed

    Saiz, Cecilia; Villamil, Valentina; González, Mariano M; Rossi, Ma Agustina; Martínez, Lorena; Suescun, Leopoldo; Vila, Alejandro J; Mahler, Graciela

    2017-01-15

    The synthesis of new oxazolidinylthiazolidines bicycles, oxygen analogues of bisthiazolidines, also known as metallo-β-lactamase inhibitors is described. The reaction of β-aminoalcohols and 2,5-dihydroxy-1,4-dithiane led to oxazolidinylthiazolidines and/or dithia-azabicycles as the main products. The distribution pattern depends mainly on the aminoalcohol substituents. In a one-pot reaction, four new bonds are formed in good yields and with high atom efficiency. When the oxazolidinylthiazolidines are formed, two stereogenic centres are generated with high enantiospecificity. The reaction mechanism is discussed based on crystallographic data and interconversion studies. Two oxazolidinylthiazolidines were evaluated as inhibitors of the potent lactamase NDM-1 and compound 4f displayed competitive inhibition with Ki = 1.6 ± 0.6 µM.

  8. Synthesis of antifungal glucan synthase inhibitors from enfumafungin.

    PubMed

    Zhong, Yong-Li; Gauthier, Donald R; Shi, Yao-Jun; McLaughlin, Mark; Chung, John Y L; Dagneau, Philippe; Marcune, Benjamin; Krska, Shane W; Ball, Richard G; Reamer, Robert A; Yasuda, Nobuyoshi

    2012-04-06

    An efficient, new, and scalable semisynthesis of glucan synthase inhibitors 1 and 2 from the fermentation product enfumafungin 3 is described. The highlights of the synthesis include a high-yielding ether bond-forming reaction between a bulky sulfamidate 17 and alcohol 4 and a remarkably chemoselective, improved palladium(II)-mediated Corey-Yu allylic oxidation at the highly congested C-12 position of the enfumafungin core. Multi-hundred gram quantities of the target drug candidates 1 and 2 were prepared, in 12 linear steps with 25% isolated yield and 13 linear steps with 22% isolated yield, respectively.

  9. Design, synthesis and in vitro evaluation of potent, novel, small molecule inhibitors of plasminogen activator inhibitor-1.

    PubMed

    Folkes, Adrian; Brown, S David; Canne, Lynne E; Chan, Jocelyn; Engelhardt, Erin; Epshteyn, Sergey; Faint, Richard; Golec, Julian; Hanel, Art; Kearney, Patrick; Leahy, James W; Mac, Morrison; Matthews, David; Prisbylla, Michael P; Sanderson, Jason; Simon, Reyna J; Tesfai, Zerom; Vicker, Nigel; Wang, Shouming; Webb, Robert R; Charlton, Peter

    2002-04-08

    We have synthesized and evaluated a series of tetramic acid-based and hydroxyquinolinone-based inhibitors of plasminogen activator inhibitor-1 (PAI-1). These studies resulted in the identification of several compounds which showed excellent potency against PAI-1. The design, synthesis and SAR of these compounds are described.

  10. Suppression of the biosynthesis of guanosine triphosphate by protein synthesis inhibitors

    SciTech Connect

    Volkin, E.; Boling, M.E.; Jones, M.H.; Lee, W.H.; Pike, L.M.

    1980-10-10

    In a prior report it was observed that CTP synthesis and concomitant incorporation of CMP into RNA and dCMP into DNA were markedly reduced in cells cultured in the presence of cycloheximide and puromycin. Experiments described here with Novikoff hepatoma cells reveal that the purine biosynthetic pathway is similarly affected. When the cells are subjected to cycloheximide (30 or 60 ..mu..g/ml) or puromycin (100 ..mu..g/ml), there is a substantial reduction in the bioconversion of hypoxanthine, adenosine, and deoxyadenosine into guanylate compared to untreated cultures. Whereas synthesis (counts per min/nmol) of pool ATP was 70 to 100% of controls, that of pool GTP was 20 to 35% of controls. Incorporation of AMP into RNA was 40 to 60% of controls, but that of GMP was only 10 to 25% of controls. Incorporation of dAMP into DNA averaged 10% of controls, but that of dGMP was only 4% of controls. Synthesis of guanylates from formate by the de novo pathway was similarly reduced, but incorporation of guanosine, which enters via kinase action alone, was not disproportionately lowered. These results suggest that protein synthesis inhibitors cause a severely reduced availability of newly synthesized GTP and CTP as well as their deoxy counterparts, dGTP and dCTP, the proximal precursors for the synthesis of RNA and DNA. However, the nanomolar levels of all nucleoside triphosphates remain high, probably as a result of recycling of nucleic acid breakdown products. Thus, reduced synthesis of these compounds may restrict nucleic acid synthesis only of some sort of compartmentation leads to a limitation of these precursors at the site(s) of nucleic acid synthesis.

  11. Review of synthesis, biological assay and QSAR studies of β-secretase inhibitors.

    PubMed

    Niño, Helena; García-Pintos, Isela; Rodríguez-Borges, José E; Escobar-Cubiella, Manolo; García-Mera, Xerardo; Prado-Prado, Francisco

    2011-12-01

    Alzheimer's disease (AD) is highly complex. While several pathologies characterize this disease, amyloid plaques, composed of the β-amyloid peptide, are hallmark neuropathological lesions in Alzheimer's disease brain. Indeed, a wealth of evidence suggests that β-amyloid is central to the pathophysiology of AD and is likely to play an early role in this intractable neurodegenerative disorder. The BACE-1 enzyme is essential for the generation of β-amyloid. BACE-1 knockout mice do not produce β-amyloid and are free from Alzheimer's associated pathologies, including neuronal loss and certain memory deficits. The fact that BACE-1 initiates the formation of β-amyloid, and the observation that BACE-1 levels are elevated in this disease provide direct and compelling reasons to develop therapies directed at BACE-1 inhibition, thus reducing β-amyloid and its associated toxicities. In this sense, quantitative structure-activity relationships (QSAR) could play an important role in studying these β-secretase inhibitors. QSAR models are necessary in order to guide the β-secretase synthesis. This work is aimed at reviewing different design and synthesis and computational studies for a very large and heterogeneous series of β-secretase inhibitors. First, we review design, synthesis, and Biological assay of β-secretase inhibitors. Next, we review 2D QSAR, 3D QSAR, CoMFA, CoMSIA and Docking with different compounds to find out the structural requirements. Next, we review QSAR studies using the method of Linear Discriminant Analysis (LDA) in order to understand the essential structural requirement for receptor binding for β- secretase inhibitors.

  12. Thromboxane synthesis inhibitors and postprandial jejunal capillary exchange capacity.

    PubMed

    Mangino, M J; Chou, C C

    1988-05-01

    The effects of thromboxane synthesis inhibitors (imidazole and U 63557A; Upjohn) and the cyclooxygenase inhibitor, mefenamic acid, on jejunal capillary filtration coefficients (Kfc) were determined in dogs before and during the presence of predigested food in the jejunal lumen. The jejunal Kfc increased significantly soon after the placement of a predigested test food containing all major constituents of diet. The Kfc remained elevated as long as the food was present in the lumen (15 min). Mefenamic acid (10 mg/kg iv) did not significantly alter resting jejunal Kfc or alter the food-induced increase in Kfc. Imidazole (5.0 mg/min ia) or U 63557A (5.0 mg/kg iv) per se significantly increased jejunal Kfc. Placement of digested food further increased the Kfc to levels significantly higher than those observed before administration of the two thromboxane synthase inhibitors. Production of thromboxane B2 by jejunal tissue was significantly reduced and 6-ketoprostaglandin F1 alpha (the stable hydrolysis product of prostacyclin) production was significantly increased after administration of U 63557A. Our study indicates that the relative production of endogenous thromboxanes and other prostanoids modulates jejunal capillary exchange capacity in the absence or presence of digested food in the jejunal lumen.

  13. Amnesia produced by altered release of neurotransmitters after intraamygdala injections of a protein synthesis inhibitor.

    PubMed

    Canal, Clinton E; Chang, Qing; Gold, Paul E

    2007-07-24

    Amnesia produced by protein synthesis inhibitors such as anisomycin provides major support for the prevalent view that the formation of long-lasting memories requires de novo protein synthesis. However, inhibition of protein synthesis might disrupt other neural functions to interfere with memory formation. Intraamygdala injections of anisomycin before inhibitory avoidance training impaired memory in rats tested 48 h later. Release of norepinephrine (NE), dopamine (DA), and serotonin, measured at the site of anisomycin infusions, increased quickly by approximately 1,000-17,000%, far above the levels seen under normal conditions. NE and DA release later decreased far below baseline for several hours before recovering at 48 h. Intraamygdala injections of a beta-adrenergic receptor antagonist or agonist, each timed to blunt effects of increases and decreases in NE release after anisomycin, attenuated anisomycin-induced amnesia. In addition, similar to the effects on memory seen with anisomycin, intraamygdala injections of a high dose of NE before training impaired memory tested at 48 h after training. These findings suggest that altered release of neurotransmitters may mediate amnesia produced by anisomycin and, further, raise important questions about the empirical bases for many molecular theories of memory formation.

  14. Amnesia produced by altered release of neurotransmitters after intraamygdala injections of a protein synthesis inhibitor

    PubMed Central

    Canal, Clinton E.; Chang, Qing; Gold, Paul E.

    2007-01-01

    Amnesia produced by protein synthesis inhibitors such as anisomycin provides major support for the prevalent view that the formation of long-lasting memories requires de novo protein synthesis. However, inhibition of protein synthesis might disrupt other neural functions to interfere with memory formation. Intraamygdala injections of anisomycin before inhibitory avoidance training impaired memory in rats tested 48 h later. Release of norepinephrine (NE), dopamine (DA), and serotonin, measured at the site of anisomycin infusions, increased quickly by ≈1,000–17,000%, far above the levels seen under normal conditions. NE and DA release later decreased far below baseline for several hours before recovering at 48 h. Intraamygdala injections of a β-adrenergic receptor antagonist or agonist, each timed to blunt effects of increases and decreases in NE release after anisomycin, attenuated anisomycin-induced amnesia. In addition, similar to the effects on memory seen with anisomycin, intraamygdala injections of a high dose of NE before training impaired memory tested at 48 h after training. These findings suggest that altered release of neurotransmitters may mediate amnesia produced by anisomycin and, further, raise important questions about the empirical bases for many molecular theories of memory formation. PMID:17640910

  15. Analogues of N-hydroxy-N'-phenylthiourea and N-hydroxy-N'-phenylurea as inhibitors of tyrosinase and melanin formation.

    PubMed

    Criton, Marc; Le Mellay-Hamon, Véronique

    2008-06-15

    A series of N-hydroxy-N'-phenylthiourea and N-hydroxy-N'-phenylurea analogues were prepared and evaluated as inhibitors of tyrosinase and melanin formation. The most active analogue 1 inhibited mushroom tyrosinase with an IC(50) of around 0.29 microM and also retained a substantial potency in cell culture by reducing pigment synthesis by 78%. Therefore, compound 1 could be considered as a promising candidate for preclinical drug development for skin hyperpigmentation application.

  16. Acetobixan, an inhibitor of cellulose synthesis identified by microbial bioprospecting.

    PubMed

    Xia, Ye; Lei, Lei; Brabham, Chad; Stork, Jozsef; Strickland, James; Ladak, Adam; Gu, Ying; Wallace, Ian; DeBolt, Seth

    2014-01-01

    In plants, cellulose biosynthesis is an essential process for anisotropic growth and therefore is an ideal target for inhibition. Based on the documented utility of small-molecule inhibitors to dissect complex cellular processes we identified a cellulose biosynthesis inhibitor (CBI), named acetobixan, by bio-prospecting among compounds secreted by endophytic microorganisms. Acetobixan was identified using a drug-gene interaction screen to sift through hundreds of endophytic microbial secretions for one that caused synergistic reduction in root expansion of the leaky AtcesA6prc1-1 mutant. We then mined this microbial secretion for compounds that were differentially abundant compared with Bacilli that failed to mimic CBI action to isolate a lead pharmacophore. Analogs of this lead compound were screened for CBI activity, and the most potent analog was named acetobixan. In living Arabidopsis cells visualized by confocal microscopy, acetobixan treatment caused CESA particles localized at the plasma membrane (PM) to rapidly re-localize to cytoplasmic vesicles. Acetobixan inhibited 14C-Glc uptake into crystalline cellulose. Moreover, cortical microtubule dynamics were not disrupted by acetobixan, suggesting specific activity towards cellulose synthesis. Previous CBI resistant mutants such as ixr1-2, ixr2-1 or aegeus were not cross resistant to acetobixan indicating that acetobixan targets a different aspect of cellulose biosynthesis.

  17. Acetobixan, an Inhibitor of Cellulose Synthesis Identified by Microbial Bioprospecting

    PubMed Central

    Xia, Ye; Lei, Lei; Brabham, Chad; Stork, Jozsef; Strickland, James; Ladak, Adam; Gu, Ying; Wallace, Ian; DeBolt, Seth

    2014-01-01

    In plants, cellulose biosynthesis is an essential process for anisotropic growth and therefore is an ideal target for inhibition. Based on the documented utility of small-molecule inhibitors to dissect complex cellular processes we identified a cellulose biosynthesis inhibitor (CBI), named acetobixan, by bio-prospecting among compounds secreted by endophytic microorganisms. Acetobixan was identified using a drug-gene interaction screen to sift through hundreds of endophytic microbial secretions for one that caused synergistic reduction in root expansion of the leaky AtcesA6prc1-1 mutant. We then mined this microbial secretion for compounds that were differentially abundant compared with Bacilli that failed to mimic CBI action to isolate a lead pharmacophore. Analogs of this lead compound were screened for CBI activity, and the most potent analog was named acetobixan. In living Arabidopsis cells visualized by confocal microscopy, acetobixan treatment caused CESA particles localized at the plasma membrane (PM) to rapidly re-localize to cytoplasmic vesicles. Acetobixan inhibited 14C-Glc uptake into crystalline cellulose. Moreover, cortical microtubule dynamics were not disrupted by acetobixan, suggesting specific activity towards cellulose synthesis. Previous CBI resistant mutants such as ixr1-2, ixr2-1 or aegeus were not cross resistant to acetobixan indicating that acetobixan targets a different aspect of cellulose biosynthesis. PMID:24748166

  18. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    PubMed

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types.

  19. Novel Inhibitors of Rad6 Ubiquitin Conjugating Enzyme: Design, Synthesis, Identification, and Functional Characterization

    PubMed Central

    Nangia-Makker, Pratima; Balan, Vitaly; Morelli, Matteo; Kothayer, Hend; Westwell, Andrew D.; Shekhar, Malathy P.V.

    2013-01-01

    Protein ubiquitination is important for cell signaling, DNA repair, and proteasomal degradation, and it is not surprising that alterations in ubiquitination occur frequently in cancer. Ubiquitin-conjugating enzymes (E2) mediate ubiquitination by selective interactions with ubiquitin-activating (E1) and ubiquitin ligase (E3) enzymes, and thus selective E2 small molecule inhibitor (SMI) will provide specificity unattainable with proteasome inhibitors. Here we describe synthesis and functional characterization of the first SMIs of human E2 Rad6B, a fundamental component of translesion synthesis DNA repair. A pharmacophore model for consensus E2 ubiquitin-binding sites was generated for virtual screening to identify E2 inhibitor candidates. Twelve triazine (TZ) analogs screened in silico by molecular docking to the Rad6B X-ray structure were verified by their effect on Rad6B ubiquitination of histone H2A. TZs #8 and 9 docked to the Rad6B catalytic site with highest complementarity. TZs #1, 2, 8, and 9 inhibited Rad6B-ubiquitin thioester formation and subsequent ubiquitin transfer to histone H2A. SMI #9 inhibition of Rad6 was selective as BCA2 ubiquitination by E2 UbcH5 was unaffected by SMI #9. SMI #9 more potently inhibited proliferation, colony formation, and migration than SMI #8, and induced MDA-MB-231 breast cancer cell G2–M arrest and apoptosis. Ubiquitination assays using Rad6 immunoprecipitated from SMI #8- or 9-treated cells confirmed inhibition of endogenous Rad6 activity. Consistent with our previous data showing Rad6B-mediated polyubiquitination stabilizes β-catenin, MDAMB-231 treatment with SMIs #8 or 9 decreased β-catenin protein levels. Together these results describe identification of the first Rad6 SMIs. PMID:23339190

  20. Novel inhibitors of Rad6 ubiquitin conjugating enzyme: design, synthesis, identification, and functional characterization.

    PubMed

    Sanders, Matthew A; Brahemi, Ghali; Nangia-Makker, Pratima; Balan, Vitaly; Morelli, Matteo; Kothayer, Hend; Westwell, Andrew D; Shekhar, Malathy P V

    2013-04-01

    Protein ubiquitination is important for cell signaling, DNA repair, and proteasomal degradation, and it is not surprising that alterations in ubiquitination occur frequently in cancer. Ubiquitin-conjugating enzymes (E2) mediate ubiquitination by selective interactions with ubiquitin-activating (E1) and ubiquitin ligase (E3) enzymes, and thus selective E2 small molecule inhibitor (SMI) will provide specificity unattainable with proteasome inhibitors. Here we describe synthesis and functional characterization of the first SMIs of human E2 Rad6B, a fundamental component of translesion synthesis DNA repair. A pharmacophore model for consensus E2 ubiquitin-binding sites was generated for virtual screening to identify E2 inhibitor candidates. Twelve triazine (TZ) analogs screened in silico by molecular docking to the Rad6B X-ray structure were verified by their effect on Rad6B ubiquitination of histone H2A. TZs #8 and 9 docked to the Rad6B catalytic site with highest complementarity. TZs #1, 2, 8, and 9 inhibited Rad6B-ubiquitin thioester formation and subsequent ubiquitin transfer to histone H2A. SMI #9 inhibition of Rad6 was selective as BCA2 ubiquitination by E2 UbcH5 was unaffected by SMI #9. SMI #9 more potently inhibited proliferation, colony formation, and migration than SMI #8, and induced MDA-MB-231 breast cancer cell G2-M arrest and apoptosis. Ubiquitination assays using Rad6 immunoprecipitated from SMI #8- or 9-treated cells confirmed inhibition of endogenous Rad6 activity. Consistent with our previous data showing Rad6B-mediated polyubiquitination stabilizes β-catenin, MDA-MB-231 treatment with SMIs #8 or 9 decreased β-catenin protein levels. Together these results describe identification of the first Rad6 SMIs.

  1. The differential role of cortical protein synthesis in taste memory formation and persistence

    NASA Astrophysics Data System (ADS)

    Levitan, David; Gal-Ben-Ari, Shunit; Heise, Christopher; Rosenberg, Tali; Elkobi, Alina; Inberg, Sharon; Sala, Carlo; Rosenblum, Kobi

    2016-05-01

    The current dogma suggests that the formation of long-term memory (LTM) is dependent on protein synthesis but persistence of the memory trace is not. However, many of the studies examining the effect of protein synthesis inhibitors (PSIs) on LTM persistence were performed in the hippocampus, which is known to have a time-dependent role in memory storage, rather than the cortex, which is considered to be the main structure to store long-term memories. Here we studied the effect of PSIs on LTM formation and persistence in male Wistar Hola (n⩾5) rats by infusing the protein synthesis inhibitor, anisomycin (100 μg, 1 μl), into the gustatory cortex (GC) during LTM formation and persistence in conditioned taste aversion (CTA). We found that local anisomycin infusion to the GC before memory acquisition impaired LTM formation (P=8.9E-5), but had no effect on LTM persistence when infused 3 days post acquisition (P=0.94). However, when we extended the time interval between treatment with anisomycin and testing from 3 days to 14 days, LTM persistence was enhanced (P=0.01). The enhancement was on the background of stable and non-declining memory, and was not recapitulated by another amnesic agent, APV (10 μg, 1 μl), an N-methyl-D-aspartate receptor antagonist (P=0.54). In conclusion, CTA LTM remains sensitive to the action of PSIs in the GC even 3 days following memory acquisition. This sensitivity is differentially expressed between the formation and persistence of LTM, suggesting that increased cortical protein synthesis promotes LTM formation, whereas decreased protein synthesis promotes LTM persistence.

  2. The differential role of cortical protein synthesis in taste memory formation and persistence

    PubMed Central

    Levitan, David; Gal-Ben-Ari, Shunit; Heise, Christopher; Rosenberg, Tali; Elkobi, Alina; Inberg, Sharon; Sala, Carlo; Rosenblum, Kobi

    2016-01-01

    The current dogma suggests that the formation of long-term memory (LTM) is dependent on protein synthesis but persistence of the memory trace is not. However, many of the studies examining the effect of protein synthesis inhibitors (PSIs) on LTM persistence were performed in the hippocampus, which is known to have a time-dependent role in memory storage, rather than the cortex, which is considered to be the main structure to store long-term memories. Here we studied the effect of PSIs on LTM formation and persistence in male Wistar Hola (n ≥ 5) rats by infusing the protein synthesis inhibitor, anisomycin (100 μg, 1 μl), into the gustatory cortex (GC) during LTM formation and persistence in conditioned taste aversion (CTA). We found that local anisomycin infusion to the GC before memory acquisition impaired LTM formation (P = 8.9E − 5), but had no effect on LTM persistence when infused 3 days post acquisition (P = 0.94). However, when we extended the time interval between treatment with anisomycin and testing from 3 days to 14 days, LTM persistence was enhanced (P = 0.01). The enhancement was on the background of stable and non-declining memory, and was not recapitulated by another amnesic agent, APV (10 μg, 1 μl), an N-methyl-d-aspartate receptor antagonist (P = 0.54). In conclusion, CTA LTM remains sensitive to the action of PSIs in the GC even 3 days following memory acquisition. This sensitivity is differentially expressed between the formation and persistence of LTM, suggesting that increased cortical protein synthesis promotes LTM formation, whereas decreased protein synthesis promotes LTM persistence. PMID:27721985

  3. The proteasome inhibitor, PS-341, causes cytokeratin aggresome formation.

    PubMed

    Bardag-Gorce, Fawzia; Riley, Nora E; Nan, Li; Montgomery, Rosalyn O; Li, Jun; French, Barbara A; Lue, Yan H; French, Samuel W

    2004-02-01

    Mallory body (MB) experimental induction takes 10 weeks of drug ingestion. Therefore, it is difficult to study the dynamics and mechanisms involved in vivo. Consequently, an in vitro study was done using primary tissue culture of hepatocytes from drug-primed mice livers in which MBs had already formed. The hypothesis to be tested was that MBs are cytokeratin aggresomes, which form when hepatocytes have a defective ubiquitin-proteasome pathway by which turnover of cytokeratin proteins is prevented. To test this hypothesis, primary tissue cultures of the hepatocytes from normal and MB-forming livers were incubated with the proteasome inhibitor PS-341 and then the cytokeratin filaments and the filament connecting proteins, that is, beta-actin, and ZO1, were visualized by immunofluorescence microscopy. PS-341 caused detachment of the cytokeratins from the cell surface plasma membrane. The cytokeratin filaments retracted toward the nucleus and cytokeratin aggresomes formed. In human livers, MBs showed colocalization of cytokeratin-8 (CK-8) with ubiquitin but not with beta-actin or ZO1. Mouse hepatoma cell lines were studied using PS-341 to induce cytokeratin aggresome formation. In these cell lines, the cytokeratin filaments first retracted toward the nucleus then formed cytokeratin-ubiquitin aggresomes polarized at one side of the nucleus. At the same time, the cells became dissociated from each other, however. The results simulated MB formation. MBs differ from cytokeratin aggresomes both morphologically and in ultrastructure.

  4. Synthesis and metabolism of inhibitors of ribonucleotide reductase

    SciTech Connect

    Smith, F.T.

    1985-01-01

    In an effort to prepare more effective inhibitors of ribo-nucleotide reductase a series of 2-substituted-4,6-dihydroxypyrimidines was prepared via the appropriately substituted benzamidine. None of the compounds exhibited in vivo activity against L1210 leukemia. No further testing was performed. In order to investigate the metabolism of 3,4-dihydroxybenzohydroxamic acid, a known inhibitor of ribonucleotide reductase, radiolabeled 3,4-dihydroxybenzohydroxamic acid was synthesized by a modification of the procedure of Pichat and Tostain. /sup 14/C-3,4-Dihydroxybenzoic acid was converted to the methyl ester and subsequently reacted with hydroxylamine to give the hydroxamic acid. /sup 14/C-3,4-Dihydroxybenzohydroxamic acid was given i.p. to Sprague-Dawley rats. Excretion occurred mainly (72%) via the urine. HPLC coupled with GC/MS analyses showed that the compound was excreted mainly unchanged. The compound was metabolized to 3,4-dihydroxybenzamide, 4-methoxy-3-hydroxybenzohydroxamic acid, and 4-hydroxy-3-methoxybenzohydroxamic acid. HPLC analysis also showed the lack of formation of any glucuronide or sulfate conjugates through either the hydroxamic acid or catechol functionalities.

  5. Quinazolinethiones and quinazolinediones, novel inhibitors of inosine monophosphate dehydrogenase: synthesis and initial structure-activity relationships.

    PubMed

    Buckley, George M; Davies, Natasha; Dyke, Hazel J; Gilbert, Philip J; Hannah, Duncan R; Haughan, Alan F; Hunt, Caroline A; Pitt, William R; Profit, Rachael H; Ray, Nicholas C; Richard, Marianna D; Sharpe, Andrew; Taylor, Alicia J; Whitworth, Justine M; Williams, Sophie C

    2005-02-01

    The development of a series of novel quinazolinethiones and quinazolinediones as inhibitors of inosine monophosphate dehydrogenase (IMPDH) is described. The synthesis, in vitro inhibitory values for IMPDH II and in vitro inhibitory value for PBMC proliferation are discussed.

  6. Synthesis of 7-oxo-dihydrospiro[indazole-5,4'-piperidine] acetyl-CoA carboxylase inhibitors.

    PubMed

    Bagley, Scott W; Southers, James A; Cabral, Shawn; Rose, Colin R; Bernhardson, David J; Edmonds, David J; Polivkova, Jana; Yang, Xiaojing; Kung, Daniel W; Griffith, David A; Bader, Scott J

    2012-02-03

    Synthesis of oxo-dihydrospiroindazole-based acetyl-CoA carboxylase (ACC) inhibitors is reported. The dihydrospiroindazoles were assembled in a regioselective manner in six steps from substituted hydrazines and protected 4-formylpiperidine. Enhanced regioselectivity in the condensation between a keto enamine and substituted hydrazines was observed when using toluene as the solvent, leading to selective formation of 1-substituted spiroindazoles. The 2-substituted spiroindazoles were formed selectively from alkyl hydrazones by ring closure with Vilsmeier reagent. The key step in the elaboration to the final products is the conversion of an intermediate olefin to the desired ketone through elimination of HBr from an O-methyl bromohydrin. This methodology enabled the synthesis of each desired regioisomer on 50-75 g scale with minimal purification. Acylation of the resultant spirocyclic amines provided potent ACC inhibitors.

  7. Amino Compounds as Inhibitors of De Novo Synthesis of Chlorobenzenes

    PubMed Central

    Wang, Si-Jia; He, Pin-Jing; Lu, Wen-Tao; Shao, Li-Ming; Zhang, Hua

    2016-01-01

    The inhibitory effects of four amino compounds on the formation of chlorobenzenes (CBzs) - dioxin precursors and indicators, and the inhibitory mechanisms were explored. The results show NH4H2PO4 can decrease the total yields of CBzs (1,2di-CBz, 1,3di-CBz, 1,4di-CBz, penta-CBz and hexa-CBz) by 98.1%±1.6% and 96.1%±0.7% under air and nitrogen flow. The inhibitory effects indicated by the total yields of CBzs follow the order NH4H2PO4 > NH4HF2 > (NH4)2SO4 > NH4Br under air flow and NH4H2PO4 ≈ (NH4)2SO4 ≈ NH4HF2 >NH4Br under nitrogen flow. The inhibition mechanism revealed by thermal analysis that CuCl2 was converted to CuPO3 by reacting with NH4H2PO4 below 200 °C, which can block the transfer of chlorine and formation of C–Cl bonds at 350 °C. The effects of the other three inhibitors were weaker because their reactions with CuCl2, which form other copper compounds, and the reaction of CuCl2 with carbon, which forms C–Cl bonds, were almost simultaneous and competitive. Oxygen influenced the yield of CBzs obviously, and the total yield of five CBzs sharply increased with oxygen. Because of their high efficiency, low environmental impact, low cost, and availability, amino compounds - especially NH4H2PO4 - can be utilized as inhibitors of CBzs during incineration. PMID:27034259

  8. Amino Compounds as Inhibitors of De Novo Synthesis of Chlorobenzenes

    NASA Astrophysics Data System (ADS)

    Wang, Si-Jia; He, Pin-Jing; Lu, Wen-Tao; Shao, Li-Ming; Zhang, Hua

    2016-04-01

    The inhibitory effects of four amino compounds on the formation of chlorobenzenes (CBzs) - dioxin precursors and indicators, and the inhibitory mechanisms were explored. The results show NH4H2PO4 can decrease the total yields of CBzs (1,2di-CBz, 1,3di-CBz, 1,4di-CBz, penta-CBz and hexa-CBz) by 98.1%±1.6% and 96.1%±0.7% under air and nitrogen flow. The inhibitory effects indicated by the total yields of CBzs follow the order NH4H2PO4 > NH4HF2 > (NH4)2SO4 > NH4Br under air flow and NH4H2PO4 ≈ (NH4)2SO4 ≈ NH4HF2 >NH4Br under nitrogen flow. The inhibition mechanism revealed by thermal analysis that CuCl2 was converted to CuPO3 by reacting with NH4H2PO4 below 200 °C, which can block the transfer of chlorine and formation of C–Cl bonds at 350 °C. The effects of the other three inhibitors were weaker because their reactions with CuCl2, which form other copper compounds, and the reaction of CuCl2 with carbon, which forms C–Cl bonds, were almost simultaneous and competitive. Oxygen influenced the yield of CBzs obviously, and the total yield of five CBzs sharply increased with oxygen. Because of their high efficiency, low environmental impact, low cost, and availability, amino compounds - especially NH4H2PO4 - can be utilized as inhibitors of CBzs during incineration.

  9. Senescence in isolated carnation petals : effects of indoleacetic Acid and inhibitors of protein synthesis.

    PubMed

    Wulster, G; Sacalis, J; Janes, H W

    1982-10-01

    Indoleacetic acid induces senescence in isolated carnation (Dianthus caryophyllus, cv. White Sim) petals, increasing the duration and amount of ethylene production. This effect is inhibited by Actinomycin D, an inhibitor of RNA synthesis, and cycloheximide, a translational inhibitor of protein synthesis. The ability of petals to respond to indoleacetic acid appears to be a function of physiological age. Indoleacetic acid is capable of enhancing ethylene evolution and senescence only in specific portions of the petal.

  10. Metabolic basis for the differential susceptibility of Gram-positive pathogens to fatty acid synthesis inhibitors

    PubMed Central

    Parsons, Joshua B.; Frank, Matthew W.; Subramanian, Chitra; Saenkham, Panatda; Rock, Charles O.

    2011-01-01

    The rationale for the pursuit of bacterial type 2 fatty acid synthesis (FASII) as a target for antibacterial drug discovery in Gram-positive organisms is being debated vigorously based on their ability to incorporate extracellular fatty acids. The regulation of FASII by extracellular fatty acids was examined in Staphylococcus aureus and Streptococcus pneumoniae, representing two important groups of pathogens. Both bacteria use the same enzymatic tool kit for the conversion of extracellular fatty acids to acyl-acyl carrier protein, elongation, and incorporation into phospholipids. Exogenous fatty acids completely replace the endogenous fatty acids in S. pneumoniae but support only 50% of phospholipid synthesis in S. aureus. Fatty acids overcame FASII inhibition in S. pneumoniae but not in S. aureus. Extracellular fatty acids strongly suppress malonyl-CoA levels in S. pneumoniae but not in S. aureus, showing a feedback regulatory system in S. pneumoniae that is absent in S. aureus. Fatty acids overcame either a biochemical or a genetic block at acetyl-CoA carboxylase (ACC) in S. aureus, confirming that regulation at the ACC step is the key difference between these two species. Bacteria that possess a stringent biochemical feedback inhibition of ACC and malonyl-CoA formation triggered by environmental fatty acids are able to circumvent FASII inhibition. However, if exogenous fatty acids do not suppress malonyl-CoA formation, FASII inhibitors remain effective in the presence of fatty acid supplements. PMID:21876172

  11. Synthesis and characterization of Sant-75 derivatives as Hedgehog-pathway inhibitors.

    PubMed

    Che, Chao; Li, Song; Yang, Bo; Xin, Shengchang; Yu, Zhixiong; Shao, Taofeng; Tao, Chuanye; Lin, Shuo; Yang, Zhen

    2012-01-01

    Sant-75 is a newly identified potent inhibitor of the hedgehog pathway. We designed a diversity-oriented synthesis program, and synthesized a series of Sant-75 analogues, which lays the foundation for further investigation of the structure-activity relationship of this important class of hedgehog-pathway inhibitors.

  12. Targeting tumor-initiating cells: Eliminating anabolic cancer stem cells with inhibitors of protein synthesis or by mimicking caloric restriction

    PubMed Central

    Lamb, Rebecca; Harrison, Hannah; Smith, Duncan L.; Townsend, Paul A.; Jackson, Thomas; Ozsvari, Bela; Martinez-Outschoorn, Ubaldo E.; Pestell, Richard G.; Howell, Anthony; Lisanti, Michael P.; Sotgia, Federica

    2015-01-01

    We have used an unbiased proteomic profiling strategy to identify new potential therapeutic targets in tumor-initiating cells (TICs), a.k.a., cancer stem cells (CSCs). Towards this end, the proteomes of mammospheres from two breast cancer cell lines were directly compared to attached monolayer cells. This allowed us to identify proteins that were highly over-expressed in CSCs and/or progenitor cells. We focused on ribosomal proteins and protein folding chaperones, since they were markedly over-expressed in mammospheres. Overall, we identified >80 molecules specifically associated with protein synthesis that were commonly upregulated in mammospheres. Most of these proteins were also transcriptionally upregulated in human breast cancer cells in vivo, providing evidence for their potential clinical relevance. As such, increased mRNA translation could provide a novel mechanism for enhancing the proliferative clonal expansion of TICs. The proteomic findings were functionally validated using known inhibitors of protein synthesis, via three independent approaches. For example, puromycin (which mimics the structure of tRNAs and competitively inhibits protein synthesis) preferentially targeted CSCs in both mammospheres and monolayer cultures, and was ~10-fold more potent for eradicating TICs, than “bulk” cancer cells. In addition, rapamycin, which inhibits mTOR and hence protein synthesis, was very effective at reducing mammosphere formation, at nanomolar concentrations. Finally, mammosphere formation was also markedly inhibited by methionine restriction, which mimics the positive effects of caloric restriction in cultured cells. Remarkably, mammosphere formation was >18-fold more sensitive to methionine restriction and replacement, as directly compared to monolayer cell proliferation. Methionine is absolutely required for protein synthesis, since every protein sequence starts with a methionine residue. Thus, the proliferation and survival of CSCs is very sensitive to

  13. Regioselective Synthesis of a Family of β‐Lactams Bearing a Triazole Moiety as Potential Apoptosis Inhibitors

    PubMed Central

    Garrido, Maria; Corredor, Miriam; Orzáez, Mar; Alfonso, Ignacio

    2016-01-01

    Abstract Apoptosis is a biological process important to several human diseases; it is strongly regulated through protein–protein interactions and complex formation. We previously reported the synthesis of apoptosis inhibitors bearing an exocyclic triazole amide isoster by using an Ugi four‐component coupling reaction (Ugi‐4CC), followed by a base‐promoted intramolecular cyclization. Depending on the substitution patterns and the reaction conditions, this cyclization forms the six‐ or four‐membered ring. Two compounds bearing the β‐lactam scaffold turned out to be the most potent inhibitors. This encouraged us to optimize the modulation of the cyclization, and prepare a library of 15 β‐lactams with total regioselectivity. Moreover, we aimed to improve the bioavailability of these compounds through the introduction of diversity at different substitution positions. The activity of these compounds as apoptosis inhibitors in cellular extracts has been evaluated, showing an increase in their potency. PMID:27777842

  14. Regioselective Synthesis of a Family of β-Lactams Bearing a Triazole Moiety as Potential Apoptosis Inhibitors.

    PubMed

    Garrido, Maria; Corredor, Miriam; Orzáez, Mar; Alfonso, Ignacio; Messeguer, Angel

    2016-10-01

    Apoptosis is a biological process important to several human diseases; it is strongly regulated through protein-protein interactions and complex formation. We previously reported the synthesis of apoptosis inhibitors bearing an exocyclic triazole amide isoster by using an Ugi four-component coupling reaction (Ugi-4CC), followed by a base-promoted intramolecular cyclization. Depending on the substitution patterns and the reaction conditions, this cyclization forms the six- or four-membered ring. Two compounds bearing the β-lactam scaffold turned out to be the most potent inhibitors. This encouraged us to optimize the modulation of the cyclization, and prepare a library of 15 β-lactams with total regioselectivity. Moreover, we aimed to improve the bioavailability of these compounds through the introduction of diversity at different substitution positions. The activity of these compounds as apoptosis inhibitors in cellular extracts has been evaluated, showing an increase in their potency.

  15. Synthesis of antimicrobial glucosamides as bacterial quorum sensing mechanism inhibitors.

    PubMed

    Biswas, Nripendra N; Yu, Tsz Tin; Kimyon, Önder; Nizalapur, Shashidhar; Gardner, Christopher R; Manefield, Mike; Griffith, Renate; Black, David StC; Kumar, Naresh

    2017-02-01

    Bacteria communicate with one another and regulate their pathogenicity through a phenomenon known as quorum sensing (QS). When the bacterial colony reaches a threshold density, the QS system induces the production of virulence factors and the formation of biofilms, a powerful defence system against the host's immune responses. The glucosamine monomer has been shown to disrupt the bacterial QS system by inhibiting autoinducer (AI) signalling molecules such as the acyl-homoserine lactones (AHLs). In this study, the synthesis of acetoxy-glucosamides 8, hydroxy-glucosamides 9 and 3-oxo-glucosamides 12 was performed via the 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC·HCl) and N,N'-dicyclohexylcarbodiimide (DCC) coupling methods. All of the synthesized compounds were tested against two bacterial strains, P. aeruginosa MH602 (LasI/R-type QS) and E. coli MT102 (LuxI/R-type QS), for QS inhibitory activity. The most active compound 9b showed 79.1% QS inhibition against P. aeruginosa MH602 and 98.4% against E. coli MT102, while compound 12b showed 64.5% inhibition against P. aeruginosa MH602 and 88.1% against E. coli MT102 strain at 2mM concentration. The ability of the compounds to inhibit the production of the virulence factor pyocyanin and biofilm formation in the P. aeruginosa (PA14) strain was also examined. Finally, computational docking studies were performed with the LasR receptor protein.

  16. Developing Inhibitors of Translesion DNA Synthesis as Therapeutic Agents against Lung Cancer

    DTIC Science & Technology

    2015-12-01

    AWARD NUMBER: W81XWH-13-1-0238 TITLE: Developing Inhibitors of Translesion DNA Synthesis as Therapeutic Agents against Lung Cancer PRINCIPAL...of Translesion DNA Synthesis as Therapeutic Agents against Lung Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...Oxygen-rich environments can create pro-mutagenic DNA lesions such as 8-oxoguanine (8-oxo-G) that can be misreplicated during translesion DNA synthesis

  17. Concise and Practical Asymmetric Synthesis of a Challenging Atropisomeric HIV Integrase Inhibitor.

    PubMed

    Fandrick, Keith R; Li, Wenjie; Zhang, Yongda; Tang, Wenjun; Gao, Joe; Rodriguez, Sonia; Patel, Nitinchandra D; Reeves, Diana C; Wu, Jiang-Ping; Sanyal, Sanjit; Gonnella, Nina; Qu, Bo; Haddad, Nizar; Lorenz, Jon C; Sidhu, Kanwar; Wang, June; Ma, Shengli; Grinberg, Nelu; Lee, Heewon; Tsantrizos, Youla; Poupart, Marc-André; Busacca, Carl A; Yee, Nathan K; Lu, Bruce Z; Senanayake, Chris H

    2015-06-08

    A practical and efficient synthesis of a complex chiral atropisomeric HIV integrase inhibitor has been accomplished. The combination of a copper-catalyzed acylation along with the implementation of the BI-DIME ligands for a ligand-controlled Suzuki cross-coupling and an unprecedented bis(trifluoromethane)sulfonamide-catalyzed tert-butylation renders the synthesis of this complex molecule robust, safe, and economical. Furthermore, the overall synthesis was conducted in an asymmetric and diastereoselective fashion with respect to the imbedded atropisomer.

  18. Inhibiting corticosterone synthesis during fear memory formation exacerbates cued fear extinction memory deficits within the single prolonged stress model.

    PubMed

    Keller, Samantha M; Schreiber, William B; Stanfield, Briana R; Knox, Dayan

    2015-01-01

    Using the single prolonged stress (SPS) animal model of post-traumatic stress disorder (PTSD), previous studies suggest that enhanced glucocorticoid receptor (GR) expression leads to cued fear extinction retention deficits. However, it is unknown how the endogenous ligand of GRs, corticosterone (CORT), may contribute to extinction retention deficits in the SPS model. Given that CORT synthesis during fear learning is critical for fear memory consolidation and SPS enhances GR expression, CORT synthesis during fear memory formation could strengthen fear memory in SPS rats by enhancing GR activation during fear learning. In turn, this could lead to cued fear extinction retention deficits. We tested the hypothesis that CORT synthesis during fear learning leads to cued fear extinction retention deficits in SPS rats by administering the CORT synthesis inhibitor metyrapone to SPS and control rats prior to fear conditioning, and observed the effect this had on extinction memory. Inhibiting CORT synthesis during fear memory formation in control rats tended to decrease cued freezing, though this effect never reached statistical significance. Contrary to our hypothesis, inhibiting CORT synthesis during fear memory formation disrupted extinction retention in SPS rats. This finding suggests that even though SPS exposure leads to cued fear extinction memory deficits, CORT synthesis during fear memory formation enhances extinction retention in SPS rats. This suggests that stress-induced CORT synthesis in previously stressed rats can be beneficial.

  19. Synthesis and evaluation of transthyretin amyloidosis inhibitors containing carborane pharmacophores

    PubMed Central

    Julius, Richard L.; Farha, Omar K.; Chiang, Janet; Perry, L. Jeanne; Hawthorne, M. Frederick

    2007-01-01

    Carboranes represent a potentially rich but underutilized class of inorganic and catabolism-inert pharmacophores. The regioselectivity and ease of derivatization of carboranes allows for facile syntheses of a wide variety of novel structures. The steric bulk, rigidity, and ease of B- and C-derivatization and lack of π-interactions associated with hydrophobic carboranes may be exploited to enhance the selectivity of previously identified bioactive molecules. Transthyretin (TTR) is a thyroxine-transport protein found in the blood that has been implicated in a variety of amyloid related diseases. Previous investigations have identified a variety of nonsteroidal antiinflammatory drugs (NSAIDs) and structurally related derivatives that imbue kinetic stabilization to TTR, thus inhibiting its dissociative fragmentation and subsequent aggregation to form putative toxic amyloid fibrils. However, the cyclooxygenase (COX) activity associated with these pharmaceuticals may limit their potential as long-term therapeutic agents for TTR amyloid diseases. Here, we report the synthesis and evaluation of carborane-containing analogs of the promising NSAID pharmaceuticals previously identified. The replacement of a phenyl ring in the NSAIDs with a carborane moiety greatly decreases their COX activity with the retention of similar efficacy as an inhibitor of TTR dissociation. The most promising of these compounds, 1-carboxylic acid-7-[3-fluorophenyl]-1,7-dicarba-closo-dodecaborane, showed effectively no COX-1 or COX-2 inhibition at a concentration more than an order of magnitude larger than the concentration at which TTR dissociation is nearly completely inhibited. This specificity is indicative of the potential for the exploitation of the unique properties of carboranes as potent and selective pharmacophores. PMID:17360344

  20. Stereocontrolled Synthesis of a Potential Transition-State Inhibitor of the Salicylate Synthase MbtI from Mycobacterium tuberculosis

    PubMed Central

    Liu, Zheng; Liu, Feng; Aldrich, Courtney C.

    2015-01-01

    Mycobactins are small-molecule iron chelators (siderophores) produced by Mycobacterium tuberculosis (Mtb) for iron mobilization. The bifunctional salicylate synthase MbtI catalyzes the first step of mycobactin biosynthesis through the conversion of the primary metabolite chorismate into salicylic acid via isochorismate. We report the design, synthesis and biochemical evaluation of an inhibitor based on the putative transition-state (TS) for the isochorismatase partial reaction of MbtI. The inhibitor mimics the hypothesized charge build-up at C-4 of chorismate in the TS as well as C-O bond-formation at C-6. Another important design element of the inhibitor is replacement of the labile pyruvate side-chain in chorismate with a stable C-linked propionate isostere. We developed a stereocontrolled synthesis of the highly functionalized cyclohexene inhibitor that features an asymmetric aldol reaction using a titanium enolate, diastereoselective Grignard addition to a tert-butanesulfinyl aldimine, and ring closing olefin metathesis as key steps. PMID:26035083

  1. The Use of Ascorbate as an Oxidation Inhibitor in Prebiotic Amino Acid Synthesis: A Cautionary Note

    NASA Astrophysics Data System (ADS)

    Kuwahara, Hideharu; Eto, Midori; Kawamoto, Yukinori; Kurihara, Hironari; Kaneko, Takeo; Obayashi, Yumiko; Kobayashi, Kensei

    2012-12-01

    It is generally thought that the terrestrial atmosphere at the time of the origin of life was CO2-rich and that organic compounds such as amino acids would not have been efficiently formed abiotically under such conditions. It has been pointed out, however, that the previously reported low yields of amino acids may have been partially due to oxidation by nitrite/nitrate during acid hydrolysis. Specifically, the yield of amino acids was found to have increased significantly (by a factor of several hundred) after acid hydrolysis with ascorbic acid as an oxidation inhibitor. However, it has not been shown that CO2 was the carbon source for the formation of the amino acids detected after acid hydrolysis with ascorbic acid. We therefore reinvestigated the prebiotic synthesis of amino acids in a CO2-rich atmosphere using an isotope labeling experiment. Herein, we report that ascorbic acid does not behave as an appropriate oxidation inhibitor, because it contributes amino acid contaminants as a consequence of its reactions with the nitrogen containing species and formic acid produced during the spark discharge experiment. Thus, amino acids are not efficiently formed from a CO2-rich atmosphere under the conditions studied.

  2. The use of ascorbate as an oxidation inhibitor in prebiotic amino acid synthesis: a cautionary note.

    PubMed

    Kuwahara, Hideharu; Eto, Midori; Kawamoto, Yukinori; Kurihara, Hironari; Kaneko, Takeo; Obayashi, Yumiko; Kobayashi, Kensei

    2012-12-01

    It is generally thought that the terrestrial atmosphere at the time of the origin of life was CO(2)-rich and that organic compounds such as amino acids would not have been efficiently formed abiotically under such conditions. It has been pointed out, however, that the previously reported low yields of amino acids may have been partially due to oxidation by nitrite/nitrate during acid hydrolysis. Specifically, the yield of amino acids was found to have increased significantly (by a factor of several hundred) after acid hydrolysis with ascorbic acid as an oxidation inhibitor. However, it has not been shown that CO(2) was the carbon source for the formation of the amino acids detected after acid hydrolysis with ascorbic acid. We therefore reinvestigated the prebiotic synthesis of amino acids in a CO(2)-rich atmosphere using an isotope labeling experiment. Herein, we report that ascorbic acid does not behave as an appropriate oxidation inhibitor, because it contributes amino acid contaminants as a consequence of its reactions with the nitrogen containing species and formic acid produced during the spark discharge experiment. Thus, amino acids are not efficiently formed from a CO(2)-rich atmosphere under the conditions studied.

  3. Effect of mitochondrial inhibitors on metaphase-telophase progression and nuclear membrane formation in Chinese hamster cells.

    PubMed

    Chai, L S; Schumer, J M; Sandberg, A A

    1985-01-01

    Chinese hamster Don cells in log-phase were exposed to Colcemid during the G2 period with and without a combination of divalent cation chelators and mitochondrial inhibitors. Isolated metaphase cells were incubated as follows: (i) without Colcemid but with other agents and the progression was monitored from metaphase (M) to telophase (Tel) and to cell division; (ii) with Colcemid and other agents and the rate of micronuclei formation in the absence of anaphase was studied. Both EDTA and EGTA accelerated the progression from M to Tel, but did not affect the overall rate of cell division. Chloramphenicol (CAP), an inhibitor of mitochondrial protein synthesis, blocked the effect of the chelators and also retarded the progression. An inhibitor of mitochondrial respiration, Antimycin A (AA), also retarded the progression in the absence of the chelators and prevented the promoting effect of the chelators. A stimulator of ATPase for ATP breakdown. 2,4-dinitrophenol (DNP), accelerated the M to Tel progression. Chloramphenicol (CAP) and AA, as well as DNP, appeared to have little effect on the formation of micronuclei in the presence of Colcemid. EGTA, which affects cell surface Ca2+, stimulated the formation of micronuclei. This study indicates that Ca2+ ions and mitochondrial function are involved in the regulation of a certain segment of mitosis beyond metaphase, with Ca2+ sequestration in the mitochondria and chelation of Ca2+ by EGTA as dominant factors.

  4. Synthesis and inhibitory activity of glycosidase inhibitors, glycosylamino-oxazolines.

    PubMed

    Uchida, C; Ogawa, S

    1996-02-01

    In connection with structural modification of the trehalase inhibitor trehazolin (1), as a new-type of glycohydrolase inhibitor, some glycosylamino-oxazolines were designed and synthesized. Among three oxazolines beta-galacto (3), beta-gluco (5) and alpha-manno-types (6) obtained in stable form, the latter 6 has been shown to possess a moderate inhibitory activity against alpha-mannosidase.

  5. Synthesis and screening of 3-MA derivatives for autophagy inhibitors.

    PubMed

    Wu, Yanyang; Wang, Xin; Guo, Haijing; Zhang, Bo; Zhang, Xiao-Bo; Shi, Zhang-Jie; Yu, Li

    2013-04-01

    Autophagy is a conserved degradation process, which plays important pathophysiological roles. The lack of effective inhibitors of autophagy has been an obstacle in both basic research and understanding the physiological role of autophagy in disease manifestation. The most widely used inhibitor, 3-methyladenine (3-MA), is poorly soluble at room temperature and is effective only at high concentrations. In this study, we synthesized a library of small compounds by chemically modifying 3-MA and screened this library for autophagy inhibitors. Three 3-MA derivatives generated through this approach showed improved solubility and effectiveness in inhibiting autophagy. We demonstrated that chemical modification of an existing autophagy inhibitor is an effective method to generate improved autophagy inhibitors.

  6. Synthesis and evaluation of indazole based analog sensitive Akt inhibitors.

    PubMed

    Okuzumi, Tatsuya; Ducker, Gregory S; Zhang, Chao; Aizenstein, Brian; Hoffman, Randy; Shokat, Kevan M

    2010-08-01

    The kinase Akt is a key signaling node in regulating cellular growth and survival. It is implicated in cancer by mutation and its role in the downstream transmission of aberrant PI3K signaling. For these reasons, Akt has become an increasingly important target of drug development efforts and several inhibitors are now reaching clinical trials. Paradoxically it has been observed that active site kinase inhibitors of Akt lead to hyperphosphorylation of Akt itself. To investigate this phenomenon we here describe the application of a chemical genetics strategy that replaces native Akt with a mutant version containing an active site substitution that allows for the binding of an engineered inhibitor. This analog sensitive strategy allows for the selective inhibition of a single kinase. In order to create the inhibitor selective for the analog sensitive kinase, a diversity of synthetic approaches was required, finally resulting in the compound PrINZ, a 7-substituted version of the Abbott Labs Akt inhibitor A-443654.

  7. Scaffold oriented synthesis. Part 4: design, synthesis and biological evaluation of novel 5-substituted indazoles as potent and selective kinase inhibitors employing heterocycle forming and multicomponent reactions.

    PubMed

    Akritopoulou-Zanze, Irini; Wakefield, Brian D; Gasiecki, Alan; Kalvin, Douglas; Johnson, Eric F; Kovar, Peter; Djuric, Stevan W

    2011-03-01

    We report the synthesis and biological evaluation of 5-substituted indazoles as kinase inhibitors. The compounds were synthesized in a parallel synthesis fashion from readily available starting materials employing heterocycle forming and multicomponent reactions and were evaluated against a panel of kinase assays. Potent inhibitors were identified for Gsk3β, Rock2, and Egfr.

  8. Synthesis and biological evaluation of novel peptidomimetics as rhodesain inhibitors.

    PubMed

    Ettari, Roberta; Previti, Santo; Cosconati, Sandro; Kesselring, Jochen; Schirmeister, Tanja; Grasso, Silvana; Zappalà, Maria

    2016-12-01

    Novel rhodesain inhibitors were developed by combining an enantiomerically pure 3-bromoisoxazoline warhead with a 1,4-benzodiazepine scaffold as specific recognition moiety. All compounds were proven to inhibit rhodesain with Ki values in the low-micromolar range. Their activity towards rhodesain was found to be coupled to an in vitro antitrypanosomal activity, with IC50 values ranging from the mid-micromolar to a low-micromolar value for the most active rhodesain inhibitor (R,S,S)-3. All compounds showed a good selectivity against the target enzyme since all of them were proven to be poor inhibitors of human cathepsin L.

  9. Design and synthesis of a potent histone deacetylase inhibitor.

    PubMed

    Liu, Tao; Kapustin, Galina; Etzkorn, Felicia A

    2007-05-03

    Histone deacetylase (HDAC) inhibitors have potential for cancer therapy. An HDAC inhibitor based on a cyclic peptide mimic of known structure, linked by an aliphatic chain to a hydroxamic acid, was designed and synthesized. The chimeric compound showed potent competitive inhibition of nuclear HDACs, with an IC50 value of 46 nM and a Ki value of 13.7 nM. The designed inhibitor showed 4-fold selectivity for HDAC1 (57 nM) over HDAC8 (231 nM).

  10. Design, synthesis, and biological evaluation of novel histone deacetylase 1 inhibitors through click chemistry.

    PubMed

    Sun, Qiao; Yao, Yiwu; Liu, Chunping; Li, Hua; Yao, Hequan; Xue, Xiaowen; Liu, Jinsong; Tu, Zhengchao; Jiang, Sheng

    2013-06-01

    We report the design, synthesis, and biological evaluation of a new series of HDAC1 inhibitors using click chemistry. Compound 17 bearing a phenyl ring at meta-position was identified to show much better selectivity for HDAC1 over HDAC7 than SAHA. The compond 17 also showed better in vitro anticancer activities against several cancer cell lines than that of SAHA. This work could serve as a foundation for further exploration of selective HDAC inhibitors using the compound 17 molecular scaffold.

  11. Design, synthesis, and evaluation of aza inhibitors of chorismate mutase.

    PubMed

    Hediger, Mark E

    2004-09-15

    A series of aza inhibitors (4-9) of chorismate mutase (E.C. 5.4.99.5) was designed, prepared, and evaluated against the enzyme by monitoring the direct inhibition of the chorismate, 1, to prephenate, 2, conversion. None of these aza inhibitors displayed tighter binding to the enzyme than the native substrate chorismate or greater inhibitory action than the previously reported ether analogue, 3. Furthermore, no time-dependent loss of enzyme activity was observed in the presence of the two potentially reactive aza inhibitors (7 and 9). These results in conjunction with inhibition data from a broader series of chorismate mutase inhibitors allowed a novel proposal for the mechanistic role of chorismate mutase to be developed. This proposed mechanism was computationally verified and correlated with crystallographic studies of various chorismate mutases.

  12. Discovery and gram-scale synthesis of BMS-593214, a potent, selective FVIIa inhibitor

    SciTech Connect

    Priestley, E. Scott; De Lucca, Indawati; Zhou, Jinglan; Zhou, Jiacheng; Saiah, Eddine; Stanton, Robert; Robinson, Leslie; Luettgen, Joseph M.; Wei, Anzhi; Wen, Xiao; Knabb, Robert M.; Wong, Pancras C.; Wexler, Ruth R.

    2013-02-14

    A 6-amidinotetrahydroquinoline screening hit was driven to a structurally novel, potent, and selective FVIIa inhibitor through a combination of library synthesis and rational design. An efficient gram-scale synthesis of the active enantiomer BMS-593214 was developed, which required significant optimization of the key Povarov annulation. Importantly, BMS-593214 showed antithrombotic efficacy in a rabbit arterial thrombosis model. A crystal structure of BMS-593214 bound to FVIIa highlights key contacts with Asp 189, Lys 192, and the S2 pocket.

  13. Solid phase synthesis and biological evaluation of probestin as an angiogenesis inhibitor.

    PubMed

    Pathuri, Gopal; Thorpe, Jessica E; Disch, Bryan C; Bailey-Downs, Lora C; Ihnat, Michael A; Gali, Hariprasad

    2013-06-15

    Probestin is a potent aminopeptidase N (APN) inhibitor originally isolated from the bacterial culture broth. Here, we report probestin synthesis by solid phase peptide synthesis (SPPS) method and evaluated its activity to inhibit angiogenesis using a chicken embryo chorioallantoic membrane (CAM) assay and a CAM tumor xenograft model. Results from these studies demonstrate that probestin inhibits the angiogenic activity and tumor growth. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Inactivation of ribosomes by an inhibitor of protein synthesis from Salmonella enteritidis.

    PubMed

    Brigotti, M; Nanetti, A; Montanaro, L; Sperti, S

    1993-01-01

    Sonic extracts of Salmonella enteritidis contain a factor which inhibits protein synthesis in cell-free systems by irreversibly inactivating ribosomes. The extent of the inactivation of ribosomes depends on the system used to assay protein synthesis, natural mRNA translation being more strongly inhibited than poly(U) translation. The inhibitory power of the Salmonella factor is destroyed by trypsin and by 5% mercaptoethanol. Placental RNase inhibitor is unable to protect ribosomes from inactivation.

  15. Low temperature synthesis of methyl formate

    DOEpatents

    Mahajan, Devinder; Slegeir, William A.; Sapienza, Richard S.; O'Hare, Thomas E.

    1986-01-01

    A gas reaction process for the preferential production of methyl formate over the co-production of methanol wherein the reactant ratio of CO/H.sub.2 is upgraded and this reaction takes place at low temperatures of 50.degree.-150.degree. C. and moderate pressures of .gtoreq.100 psi.

  16. Thioredoxin Inhibitors Attenuate Platelet Function and Thrombus Formation.

    PubMed

    Metcalfe, Clive; Ramasubramoni, Anjana; Pula, Giordano; Harper, Matthew T; Mundell, Stuart J; Coxon, Carmen H

    2016-01-01

    Thioredoxin (Trx) is an oxidoreductase with important physiological function. Imbalances in the NADPH/thioredoxin reductase/thioredoxin system are associated with a number of pathologies, particularly cancer, and a number of clinical trials for thioredoxin and thioredoxin reductase inhibitors have been carried out or are underway. Due to the emerging role and importance of oxidoreductases for haemostasis and the current interest in developing inhibitors for clinical use, we thought it pertinent to assess whether inhibition of the NADPH/thioredoxin reductase/thioredoxin system affects platelet function and thrombosis. We used small molecule inhibitors of Trx (PMX 464 and PX-12) to determine whether Trx activity influences platelet function, as well as an unbiased proteomics approach to identify potential Trx substrates on the surface of platelets that might contribute to platelet reactivity and function. Using LC-MS/MS we found that PMX 464 and PX-12 affected the oxidation state of thiols in a number of cell surface proteins. Key surface receptors for platelet adhesion and activation were affected, including the collagen receptor GPVI and the von Willebrand factor receptor, GPIb. To experimentally validate these findings we assessed platelet function in the presence of PMX 464, PX-12, and rutin (a selective inhibitor of the related protein disulphide isomerase). In agreement with the proteomics data, small molecule inhibitors of thioredoxin selectively inhibited GPVI-mediated platelet activation, and attenuated ristocetin-induced GPIb-vWF-mediated platelet agglutination, thus validating the findings of the proteomics study. These data reveal a novel role for thioredoxin in regulating platelet reactivity via proteins required for early platelet responses at sites of vessel injury (GPVI and GPIb). This work also highlights a potential opportunity for repurposing of PMX 464 and PX-12 as antiplatelet agents.

  17. Inhibitors of biofilm formation by biofuel fermentation contaminants.

    PubMed

    Leathers, Timothy D; Bischoff, Kenneth M; Rich, Joseph O; Price, Neil P J; Manitchotpisit, Pennapa; Nunnally, Melinda S; Anderson, Amber M

    2014-10-01

    Biofuel fermentation contaminants such as Lactobacillus sp. may persist in production facilities by forming recalcitrant biofilms. In this study, biofilm-forming strains of Lactobacillus brevis, Lactobacillus fermentum, and Lactobacillus plantarum were isolated and characterized from a dry-grind fuel ethanol plant. A variety of potential biofilm inhibitors were tested, including microbial polysaccharides, commercial enzymes, ferric ammonium citrate, liamocins, phage endolysin, xylitol, and culture supernatants from Bacillus sp. A commercial enzyme mixture (Novozyme 188) and culture supernatants from Bacillus subtilis strains ALT3A and RPT-82412 were identified as the most promising biofilm inhibitors. In biofilm flow cells, these inhibitors reduced the density of viable biofilm cells by 0.8-0.9 log cfu/cm(2). Unlike B. subtilis strain RPT-82412, B. subtilis strain ALT3A and Novozyme 188 did not inhibit planktonic growth of Lactobacillus sp. MALDI-TOF mass spectra showed the production of surfactin-like molecules by both B. subtilis strains, and the coproduction of iturin-like molecules by strain RPT-82412.

  18. Design, Synthesis, and Biological Evaluation of PKD Inhibitors

    PubMed Central

    George, Kara M.; Frantz, Marie-Céline; Bravo-Altamirano, Karla; LaValle, Courtney R.; Tandon, Manuj; Leimgruber, Stephanie; Sharlow, Elizabeth R.; Lazo, John S.; Wang, Q. Jane; Wipf, Peter

    2011-01-01

    Protein kinase D (PKD) belongs to a family of serine/threonine kinases that play an important role in basic cellular processes and are implicated in the pathogenesis of several diseases. Progress in our understanding of the biological functions of PKD has been limited due to the lack of a PKD-specific inhibitor. The benzoxoloazepinolone CID755673 was recently reported as the first potent and kinase-selective inhibitor for this enzyme. For structure-activity analysis purposes, a series of analogs was prepared and their in vitro inhibitory potency evaluated. PMID:22267986

  19. Design, synthesis and biological evaluation of potent FAAH inhibitors.

    PubMed

    Tuo, Wei; Leleu-Chavain, Natascha; Barczyk, Amélie; Renault, Nicolas; Lemaire, Lucas; Chavatte, Philippe; Millet, Régis

    2016-06-01

    A new series of 3-carboxamido-5-aryl-isoxazoles was designed, synthesized and evaluated for their biological activity. Different pharmacomodulations have been explored and the lipophilicity of these compounds was assessed. Investigation of the in vitro biological activity led to the identification of 5 compounds as potent FAAH inhibitors, their good FAAH inhibition capacity is probably correlated with their suitable lipophilicity. Specifically, compound 25 showed similar inhibition potency against FAAH in comparison with URB597, one of the most potent FAAH inhibitor known to date.

  20. Asymmetric Synthesis of the Aminocyclitol Pactamycin, a Universal Translocation Inhibitor

    PubMed Central

    Sharpe, Robert J.; Malinowski, Justin T.; Johnson, Jeffrey S.

    2014-01-01

    An asymmetric total synthesis of the aminocyclopentitol pactamycin is described, which delivers the title compound in 15 steps from 2,4-pentanedione. Critical to this approach was the exploitation of a complex symmetry-breaking reduction strategy to assemble the C1, C2, and C7 relative stereochemistry within the first four steps of the synthesis. Multiple iterations of this reduction strategy are described, and a thorough analysis of stereochemical outcomes is detailed. In the final case, an asymmetric Mannich reaction was developed to install a protected amine directly at the C2 position. Symmetry-breaking reduction of this material gave way to a remarkable series of stereochemical outcomes leading to the title compound without recourse to non-strategic downstream manipulations. This synthesis is immediately accommodating to the facile preparation of structural analogs. PMID:24245656

  1. The synthesis and biological evaluation of a novel series of phthalazine PDE4 inhibitors I.

    PubMed

    Napoletano, M; Norcini, G; Pellacini, F; Marchini, F; Morazzoni, G; Ferlenga, P; Pradella, L

    2000-10-02

    This communication describes the synthesis and in vitro evaluation of a novel and potent series of phosphodiesterase type IV (PDE4) inhibitors. The compounds described represent conformationally constrained analogues of RP 73401, Piclamilast. Preliminary evidences of reduced side effects of II compared to standards are also reported.

  2. The Antibiotic Micrococcin Is a Potent Inhibitor of Growth and Protein Synthesis in the Malaria Parasite

    PubMed Central

    Rogers, M. John; Cundliffe, Eric; McCutchan, Thomas F.

    1998-01-01

    The antibiotic micrococcin is a potent growth inhibitor of the human malaria parasite Plasmodium falciparum, with a 50% inhibitory concentration of 35 nM. This is comparable to or less than the corresponding levels of commonly used antimalarial drugs. Micrococcin, like thiostrepton, putatively targets protein synthesis in the plastid-like organelle of the parasite. PMID:9517961

  3. Histone Deacetylase Inhibitors: Synthesis of Cyclic Tetrapeptides and their Triazole Analogues

    PubMed Central

    Singh, Erinprit K.; Nazarova, Lidia A.; Lapera, Stephanie A.; Alexander, Leslie D.

    2010-01-01

    Synthesis of nine macrocyclic peptide HDAC inhibitors and three triazole derivatives are described. HDAC inhibitory activity of these compounds against HeLa cell lysate is evaluated. The biological data demonstrates that incorporation of a triazole unit improves the HDAC inhibitory activity. PMID:20865132

  4. Synthesis of 5-ethynyl-2'-deoxyuridine-5'-boranomono phosphate as a potential thymidylate synthase inhibitor.

    PubMed

    Khan, Shoeb I; Dobrikov, Mikhail I; Shaw, Barbara Ramsay

    2005-01-01

    The 5-ethynyl-2'-deoxyuridine nucleoside and the 5'-boranomonophosphate nucleotide were synthesized as analogs of 5-fluoro-2'-deoxyuridine monophosphate (5-FdUMP), a widely used mechanism-based inhibitor of thymidylate synthase. Synthesis was carried out from protected 5-iodo-2'-deoxyuridine and trimethylsilylacetylene by Sonogashira palladium-catalyzed cross coupling reaction followed by selective phosphorylation and finally boronation.

  5. The antibiotic micrococcin is a potent inhibitor of growth and protein synthesis in the malaria parasite.

    PubMed

    Rogers, M J; Cundliffe, E; McCutchan, T F

    1998-03-01

    The antibiotic micrococcin is a potent growth inhibitor of the human malaria parasite Plasmodium falciparum, with a 50% inhibitory concentration of 35 nM. This is comparable to or less than the corresponding levels of commonly used antimalarial drugs. Micrococcin, like thiostrepton, putatively targets protein synthesis in the plastid-like organelle of the parasite.

  6. Discovery of protein phosphatase inhibitor classes by biology-oriented synthesis

    PubMed Central

    Nören-Müller, Andrea; Reis-Corrêa, Ivan; Prinz, Heino; Rosenbaum, Claudia; Saxena, Krishna; Schwalbe, Harald J.; Vestweber, Dietmar; Cagna, Guiseppe; Schunk, Stefan; Schwarz, Oliver; Schiewe, Hajo; Waldmann, Herbert

    2006-01-01

    Protein phosphatases have very recently emerged as important targets for chemical biology and medicinal chemistry research, and new phosphatase inhibitor classes are in high demand. The underlying frameworks of natural products represent the evolutionarily selected fractions of chemical space explored by nature so far and meet the criteria of relevance to nature and biological prevalidation most crucial to inhibitor development. We refer to synthesis efforts and compound collection development based on these criteria as biology-oriented synthesis. For the discovery of phosphatase inhibitor classes by means of this approach, four natural product-derived or -inspired medium-sized compound collections were synthesized and investigated for inhibition of the tyrosine phosphatases VE-PTP, Shp-2, PTP1B, MptpA, and MptpB and the dual-specificity phosphatases Cdc25A and VHR. The screen yielded four unprecedented and selective phosphatase inhibitor classes for four phosphatases with high hit rates. For VE-PTP and MptpB the first inhibitors were discovered. These results demonstrate that biology-oriented synthesis is an efficient approach to the discovery of new compound classes for medicinal chemistry and chemical biology research that opens up new opportunities for the study of phosphatases, which may lead to the development of new drug candidates. PMID:16809424

  7. Synthesis of a new class of HIV-1 inhibitors.

    PubMed

    Farese-Di Giorgio, A; Pairot, S; Patino, N; Condom, R; Di Giorgio, C; Aumelas, A; Aubertin, A M; Guedj, R

    1999-02-01

    A new family of molecules potentially inhibitors of the HIV-1 Tat-TAR complex was prepared. These compounds are constituted by dinucleotide analogs (PNA dimer) bound, through a linker, to an arginine residue. In this series, several molecules inhibit viral development in cell culture with a micromolar IC50 and without cellular toxicity until 200 microM concentration.

  8. Selective indole-based ECE inhibitors: synthesis and pharmacological evaluation.

    PubMed

    Brands, Michael; Ergüden, Jens-Kerim; Hashimoto, Kentaro; Heimbach, Dirk; Krahn, Thomas; Schröder, Christian; Siegel, Stephan; Stasch, Johannes-Peter; Tsujishita, Hideki; Weigand, Stefan; Yoshida, Nagahiro H

    2006-01-01

    Inhibition of the metalloprotease ECE-1 may be beneficial for the treatment of coronary heart disease, cancer, renal failure, and urological disorders. A novel class of indole-based ECE inhibitors was identified by high throughput screening. Optimization of the original screening lead structure 6 led to highly potent inhibitors such as 11, which bears a bisaryl amide moiety linked to the indole C2 position through an amide group. Docking of 11 into a model structure of ECE revealed a unique binding mode in which the Zn center of the enzyme is not directly addressed by the inhibitor, but key interactions are suggested for the central amide group. Testing of the lead compound 6 in hypertensive Dahl S rats resulted in a decrease in blood pressure after an initial period in which the blood pressure remained unchanged, most probably the result of ET-1 already present. Indole derivative 6 also displays a cardio-protective effect in a mouse model of acute myocardial infarction after oral administration. The more potent chloropyridine derivative 9 antagonizes big-ET-1-induced increase in blood pressure in rats at intravenous administration of 3 mg kg-1. All ECE inhibitors of the indole class showed high selectivity for ECE over related metalloproteases such as NEP and ACE. Therefore, these compounds might have further potential as drugs for the treatment of coronary heart diseases.

  9. Design, Synthesis and Inhibitory Activity of Photoswitchable RET Kinase Inhibitors

    PubMed Central

    Ferreira, Rubén; Nilsson, Jesper R.; Solano, Carlos; Andréasson, Joakim; Grøtli, Morten

    2015-01-01

    REarranged during Transfection (RET) is a transmembrane receptor tyrosine kinase required for normal development and maintenance of neurons of the central and peripheral nervous systems. Deregulation of RET and hyperactivity of the RET kinase is intimately connected to several types of human cancers, most notably thyroid cancers, making it an attractive therapeutic target for small-molecule kinase inhibitors. Novel approaches, allowing external control of the activity of RET, would be key additions to the signal transduction toolbox. In this work, photoswitchable RET kinase inhibitors based on azo-functionalized pyrazolopyrimidines were developed, enabling photonic control of RET activity. The most promising compound displays excellent switching properties and stability with good inhibitory effect towards RET in cell-free as well as live-cell assays and a significant difference in inhibitory activity between its two photoisomeric forms. As the first reported photoswitchable small-molecule kinase inhibitor, we consider the herein presented effector to be a significant step forward in the development of tools for kinase signal transduction studies with spatiotemporal control over inhibitor concentration in situ. PMID:25944708

  10. Design, Synthesis and Inhibitory Activity of Photoswitchable RET Kinase Inhibitors

    NASA Astrophysics Data System (ADS)

    Ferreira, Rubén; Nilsson, Jesper R.; Solano, Carlos; Andréasson, Joakim; Grøtli, Morten

    2015-05-01

    REarranged during Transfection (RET) is a transmembrane receptor tyrosine kinase required for normal development and maintenance of neurons of the central and peripheral nervous systems. Deregulation of RET and hyperactivity of the RET kinase is intimately connected to several types of human cancers, most notably thyroid cancers, making it an attractive therapeutic target for small-molecule kinase inhibitors. Novel approaches, allowing external control of the activity of RET, would be key additions to the signal transduction toolbox. In this work, photoswitchable RET kinase inhibitors based on azo-functionalized pyrazolopyrimidines were developed, enabling photonic control of RET activity. The most promising compound displays excellent switching properties and stability with good inhibitory effect towards RET in cell-free as well as live-cell assays and a significant difference in inhibitory activity between its two photoisomeric forms. As the first reported photoswitchable small-molecule kinase inhibitor, we consider the herein presented effector to be a significant step forward in the development of tools for kinase signal transduction studies with spatiotemporal control over inhibitor concentration in situ.

  11. Design and Synthesis of Novel Small-molecule Inhibitors of the Hypoxia Inducible Factor Pathway

    PubMed Central

    Mooring, Suazette Reid; Jin, Hui; Devi, Narra S.; Jabbar, Adnan A.; Kaluz, Stefan; Liu, Yuan; Van Meir, Erwin G.; Wang, Binghe

    2012-01-01

    Hypoxia, a reduction in partial oxygen pressure, is a salient property of solid tumors. Hypoxia drives malignant progression and metastasis in tumors and participates in tumor resistance to radio- and chemotherapies. Hypoxia activates the hypoxia-inducible factor (HIF) family of transcription factors, which induce target genes that regulate adaptive biological processes such as anaerobic metabolism, cell motility and angiogenesis. Clinical evidence has demonstrated that expression of HIF-1 is strongly associated with poor patient prognosis and activation of HIF-1 contributes to malignant behavior and therapeutic resistance. Consequently, HIF-1 has become an important therapeutic target for inhibition by small molecules. Herein, we describe the design and synthesis of small molecules that inhibit the HIF-1 signaling pathway. Many of these compounds exhibit inhibitory activity in the nanomolar range. Separate mechanistic studies indicate that these inhibitors do not alter HIF-1 levels, but interfere with the HIF-1α/HIF-1β/p300/CBP complex formation by interacting with p300 and CBP. PMID:22032632

  12. Protein synthesis inhibitors prevent both spontaneous and hormone-dependent maturation of isolated mouse oocytes

    SciTech Connect

    Downs, S.M. )

    1990-11-01

    The present study was carried out to examine the role of protein synthesis in mouse oocyte maturation in vitro. In the first part of this study, the effects of cycloheximide (CX) were tested on spontaneous meiotic maturation when oocytes were cultured in inhibitor-free medium. CX reversibly suppressed maturation of oocytes as long as maturation was either initially prevented by the phosphodiesterase inhibitor, 3-isobutyl-1-methyl-xanthine (IBMX), or delayed by follicle-stimulating hormone (FSH). In the second part of this study, the actions of protein synthesis inhibitors were tested on hormone-induced maturation. CEO were maintained in meiotic arrest for 21-22 h with hypoxanthine, and germinal vesicle breakdown (GVB) was induced with follicle-stimulating hormone (FSH). Three different protein synthesis inhibitors (CX, emetine (EM), and puromycin (PUR)) each prevented the stimulatory action of FSH on GVB in a dose-dependent fashion. This was accompanied by a dose-dependent suppression of 3H-leucine incorporation by oocyte-cumulus cell complexes. The action of these inhibitors on FSH- and epidermal growth factor (EGF)-induced GVB was next compared. All three drugs lowered the frequency of GVB in the FSH-treated groups, below even that of the controls (drug + hypoxanthine); the drugs maintained meiotic arrest at the control frequencies in the EGF-treated groups. Puromycin aminonucleoside, an analog of PUR with no inhibitory action on protein synthesis, had no effect. The three inhibitors also suppressed the stimulatory action of FSH on oocyte maturation when meiotic arrest was maintained with the cAMP analog, dbcAMP.

  13. Design, synthesis, and biological activity of urea derivatives as anaplastic lymphoma kinase inhibitors.

    PubMed

    af Gennäs, Gustav Boije; Mologni, Luca; Ahmed, Shaheen; Rajaratnam, Mohanathas; Marin, Oriano; Lindholm, Niko; Viltadi, Michela; Gambacorti-Passerini, Carlo; Scapozza, Leonardo; Yli-Kauhaluoma, Jari

    2011-09-05

    In anaplastic large-cell lymphomas, chromosomal translocations involving the kinase domain of anaplastic lymphoma kinase (ALK), generally fused to the 5' part of the nucleophosmin gene, produce highly oncogenic ALK fusion proteins that deregulate cell cycle, apoptosis, and differentiation in these cells. Other fusion oncoproteins involving ALK, such as echinoderm microtubule-associated protein-like 4-ALK, were recently found in patients with non-small-cell lung, breast, and colorectal cancers. Recent research has focused on the development of inhibitors for targeted therapy of these ALK-positive tumors. Because kinase inhibitors that target the inactive conformation are thought to be more specific than ATP-targeted inhibitors, we investigated the possibility of using two known inhibitors, doramapimod and sorafenib, which target inactive kinases, to design new urea derivatives as ALK inhibitors. We generated a homology model of ALK in its inactive conformation complexed with doramapimod or sorafenib in its active site. The results elucidated why doramapimod is a weak inhibitor and why sorafenib does not inhibit ALK. Virtual screening of commercially available compounds using the homology model of ALK yielded candidate inhibitors, which were tested using biochemical assays. Herein we present the design, synthesis, biological activity, and structure-activity relationships of a novel series of urea compounds as potent ALK inhibitors. Some compounds showed inhibition of purified ALK in the high nanomolar range and selective antiproliferative activity on ALK-positive cells.

  14. Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation

    SciTech Connect

    Sievers, Stuart A.; Karanicolas, John; Chang, Howard W.; Zhao, Anni; Jiang, Lin; Zirafi, Onofrio; Stevens, Jason T.; Münch, Jan; Baker, David; Eisenberg, David

    2011-09-20

    Many globular and natively disordered proteins can convert into amyloid fibrils. These fibrils are associated with numerous pathologies as well as with normal cellular functions, and frequently form during protein denaturation. Inhibitors of pathological amyloid fibril formation could be useful in the development of therapeutics, provided that the inhibitors were specific enough to avoid interfering with normal processes. Here we show that computer-aided, structure-based design can yield highly specific peptide inhibitors of amyloid formation. Using known atomic structures of segments of amyloid fibrils as templates, we have designed and characterized an all-D-amino-acid inhibitor of the fibril formation of the tau protein associated with Alzheimer's disease, and a non-natural L-amino-acid inhibitor of an amyloid fibril that enhances sexual transmission of human immunodeficiency virus. Our results indicate that peptides from structure-based designs can disrupt the fibril formation of full-length proteins, including those, such as tau protein, that lack fully ordered native structures. Because the inhibiting peptides have been designed on structures of dual-{beta}-sheet 'steric zippers', the successful inhibition of amyloid fibril formation strengthens the hypothesis that amyloid spines contain steric zippers.

  15. Synthesis of a selective HDAC6 inhibitor active in neuroblasts.

    PubMed

    Zwick, Vincent; Simões-Pires, Claudia A; Nurisso, Alessandra; Petit, Charlotte; Dos Santos Passos, Carolina; Randazzo, Giuseppe Marco; Martinet, Nadine; Bertrand, Philippe; Cuendet, Muriel

    2016-10-15

    In recent years, the role of HDAC6 in neurodegeneration has been partially elucidated, which led some authors to propose HDAC6 inhibitors as a therapeutic strategy to treat neurodegenerative diseases. In an effort to develop a selective HDAC6 inhibitor which can cross the blood brain barrier (BBB), a modified hydroxamate derivative (compound 3) was designed and synthetized. This compound was predicted to have potential for BBB penetration based on in silico and in vitro evaluation of passive permeability. When tested for its HDAC inhibitory activity, the IC50 value of compound 3 towards HDAC6 was in the nM range in both enzymatic and cell-based assays. Compound 3 showed a cell-based selectivity profile close to that of tubastatin A in SH-SY5Y human neuroblastoma cells, and a good BBB permeability profile.

  16. Bacterial transferase MraY inhibitors: synthesis and biological evaluation.

    PubMed

    Lecerclé, Delphine; Clouet, Anthony; Al-Dabbagh, Bayan; Crouvoisier, Muriel; Bouhss, Ahmed; Gravier-Pelletier, Christine; Le Merrer, Yves

    2010-06-15

    New inhibitors of the bacterial transferase MraY are described. Their structure is based on an aminoribosyl-O-uridine like scaffold, readily obtained in two key steps. The amino group can be coupled with proline or guanylated. Alternatively, these amino, prolinyl or guanidinyl groups can be introduced through a triazole linker. Biological evaluation of these compounds on MraY from Bacillus subtilis revealed interesting inhibitory activity for both amino compounds. Copyright 2010. Published by Elsevier Ltd.

  17. Inhibition of cholesterol synthesis by squalene synthase inhibitors does not induce myotoxicity in vitro.

    PubMed

    Flint, O P; Masters, B A; Gregg, R E; Durham, S K

    1997-07-01

    The cholesterol-lowering HMG CoA reductase inhibitors (HMGRI), pravastatin and lovastatin, have been associated with skeletal myopathy in humans and in rats. In a previous in vitro study, HMGRI-induced changes in neonatal rat skeletal muscle cells were characterized by reversible inhibition of protein synthesis and loss of differentiated myotubes at concentrations markedly lower than those inducing enzyme leakage. Myotoxicity was determined to be directly related to inhibition of HMG CoA reductase, since mevalonate, the immediate product of HMG CoA reductase metabolism, abrogated the drug-induced changes. Farnesol, geranylgeraniol, and squalene are metabolites of mevalonate. Squalene, formed from farnesol by squalene synthase, is the first metabolite solely committed to cholesterol synthesis. In contrast, geranylgeraniol, formed by the addition of an isoprene group to farnesol, is the first metabolite uncommitted to cholesterol synthesis. The objective of the present study was to determine the role of inhibition of cholesterol synthesis in HMGRI-induced in vitro myotoxicity. HMGRI-treated neonatal rat skeletal muscle cultures were supplemented with farnesol and geranylgeraniol, and in another study, muscle cultures were exposed to two squalene synthase inhibitors (SSI), BMS-187745 and its prodrug ester, BMS-188494. Endpoints evaluated for both studies included protein synthesis ([3H]leucine incorporation), total cellular protein (a measure of cell loss), intra- and extracellular lactate dehydrogenase activity (a measure of membrane integrity), cholesterol biosynthesis ([14C]acetate incorporation), and morphology. HMG CoA reductase inhibitor-induced morphologic changes and inhibition of protein synthesis were significantly ameliorated by supplementation with farnesol and geranylgeraniol. In contrast to HMGRI-induced in vitro myotoxicity, SSI induced an irreversible, minimal cytotoxicity at close to maximum soluble concentrations. These results indicate that

  18. Small molecule inhibitors of bacterial transcription complex formation.

    PubMed

    Wenholz, Daniel S; Zeng, Ming; Ma, Cong; Mielczarek, Marcin; Yang, Xiao; Bhadbhade, Mohan; Black, David St C; Lewis, Peter J; Griffith, Renate; Kumar, Naresh

    2017-09-15

    Knoevenagel condensation was employed to generate a set of molecules potentially capable of inhibiting the RNA polymerase-σ(70)/σ(A) interaction in bacteria. Synthesis was achieved via reactions between a variety of indole-7-carbaldehydes and rhodanine, N-allylrhodanine, barbituric acid or thiobarbituric acid. A library of structurally diverse compounds was examined by enzyme-linked immunosorbent assay (ELISA) to assess the inhibition of the targeted protein-protein interaction. Inhibition of bacterial growth was also evaluated using Bacillus subtilis and Escherichia coli cultures. The structure-activity relationship studies demonstrated the significance of particular structural features of the synthesized molecules for RNA polymerase-σ(70)/σ(A) interaction inhibition and antibacterial activity. Docking was investigated as an in silico method for the further development of the compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Synthesis, structure-activity relationship and crystallographic studies of 3-substituted indolin-2-one RET inhibitors.

    PubMed

    Mologni, Luca; Rostagno, Roberta; Brussolo, Stefania; Knowles, Phillip P; Kjaer, Svend; Murray-Rust, Judith; Rosso, Enrico; Zambon, Alfonso; Scapozza, Leonardo; McDonald, Neil Q; Lucchini, Vittorio; Gambacorti-Passerini, Carlo

    2010-02-15

    The synthesis, structure-activity relationships (SAR) and structural data of a series of indolin-2-one inhibitors of RET tyrosine kinase are described. These compounds were designed to explore the available space around the indolinone scaffold within RET active site. Several substitutions at different positions were tested and biochemical data were used to draw a molecular model of steric and electrostatic interactions, which can be applied to design more potent and selective RET inhibitors. The crystal structures of RET kinase domain in complex with three inhibitors were solved. All three compounds bound in the ATP pocket and formed two hydrogen bonds with the kinase hinge region. Crystallographic analysis confirmed predictions from molecular modelling and helped refine SAR results. These data provide important information for the development of indolinone inhibitors for the treatment of RET-driven cancers. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Mevalonolactone: an inhibitor of Staphylococcus epidermidis adherence and biofilm formation.

    PubMed

    Scopel, Marina; Abraham, Wolf-Rainer; Antunes, Ana Lúcia; Henriques, Amélia Terezinha; Macedo, Alexandre José

    2014-05-01

    Staphylococcus epidermidis, a commensal microorganism at the human skin and mucosae, is nowadays considered an important opportunistic pathogen related to nosocomial infections on indwelling medical devices due biofilm formation. Bacterial biofilms are the worst aspect in the treatment of infections and now efforts have been made in the search for new molecular entities to overcome this situation. In this work, a compound isolated from marine associated fungi was capable to interfere with the adherence and biofilm formation of S. epidermidis. This compound, identified as mevalonolactone, showed significant inhibition of S. epidermidis ATCC 35984 biofilm formation, without antibacterial activity, evaluated by crystal violet assay, turbidimetric assay and scanning electron microscopy. When assayed against 12 clinical isolates of S. epidermidis, this compound exhibited both biofilm inhibition and antimicrobial activity, but no activity against gram-negative bacteria was observed. Therefore, when this constitutive molecule is added in the antibiofilm and antibacterial assays, it might act as an important agent against this pathogen, contributing to the arsenal of antibiofilm compounds.

  1. A Novel Selective Prostaglandin E2 Synthesis Inhibitor Relieves Pyrexia and Chronic Inflammation in Rats.

    PubMed

    Sugita, Ryusuke; Kuwabara, Harumi; Sugimoto, Kotaro; Kubota, Kazufumi; Imamura, Yuichiro; Kiho, Toshihiro; Tengeiji, Atsushi; Kawakami, Katsuhiro; Shimada, Kohei

    2016-04-01

    Prostaglandin E2 (PGE2) is a terminal prostaglandin in the cyclooxygenase (COX) pathway. Inhibition of PGE2 production may relieve inflammatory symptoms such as fever, arthritis, and inflammatory pain. We report here the profile of a novel selective PGE2 synthesis inhibitor, compound A [N-[(1S,3S)-3-carbamoylcyclohexyl]-1-(6-methyl-3-phenylquinolin-2-yl)piperidine-4-carboxamide], in animal models of pyrexia and inflammation. The compound selectively suppressed the synthesis of PGE2 in human alveolar adenocarcinoma cell line A549 cells and rat macrophages. In the lipopolysaccharide-induced pyrexia model, this compound selectively reduced PGE2 production in cerebrospinal fluid and showed an anti-pyretic effect. In the adjuvant-induced arthritis model, compound A therapeutically decreased foot swelling in the established arthritis. Our data demonstrates that selective suppression of PGE2 synthesis shows anti-pyretic and anti-inflammatory effects, suggesting that selective PGE2 synthesis inhibitors can be applied as an alternative treatment to nonsteroidal, anti-inflammatory drugs (NSAIDs) or COX-2-selective inhibitors.

  2. Variable effects of DNA-synthesis inhibitors upon DNA methylation in mammalian cells.

    PubMed Central

    Nyce, J; Liu, L; Jones, P A

    1986-01-01

    Post-synthetic enzymatic hypermethylation of DNA was induced in hamster fibrosarcoma cells by the DNA synthesis inhibitors cytosine arabinoside, hydroxyurea and aphidicolin. This effect required direct inhibition of DNA polymerase alpha or reduction in deoxynucleotide pools and was not specific to a single cell type. At equivalently reduced levels of DNA synthesis, neither cycloheximide, actinomycin D nor serum deprivation affected DNA methylation in this way. The topoisomerase inhibitors nalidixic acid and novobiocin caused significant hypomethylation indicating that increased 5-mCyt content was not a necessary consequence of DNA synthesis inhibition. The induced hypermethylation occurred predominantly in that fraction of the DNA synthesized in the presence of inhibitor; was stable in the absence of drug; was most prominent in low molecular weight DNA representing sites of initiated but incomplete DNA synthesis; and occurred primarily within CpG dinucleotides, although other dinucleotides were overmethylated as well. Drug-induced CpG hypermethylation may be capable of silencing genes, an effect which may be relevant to the aberrantly expressed genes characteristic of neoplastic cells. PMID:3086840

  3. Recent developments in the synthesis of acetylcholinesterase inhibitors.

    PubMed

    Marco, José L; Carreiras, M Carmo

    2003-09-01

    The acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities of a series of pyrano[2,3-b]quinolines (2, 3), [1,8]naphthyridines (5, 6), 4-amino-2,3-diaryl-5,6,7,8-tetrahydrofuro[2,3-b]quinolines (11-13)/ 4-amino-6,7,8,9-tetrahydro-2,3-diphenyl-5H-cyclohepta[e]furo[2,3-b]pyridine (14), 4-amino-5,6,7,8-tetrahydro-2,3-diphenylthieno[2,3-b]quinoline (15)/ 4-amino-6,7,8,9-tetrahydro-2,3-diphenyl-5H-cyclohepta[e]thieno[2,3-b]pyridine (16) are described. These compounds are tacrine analogues that have been prepared from readily available polyfunctionalized ethyl [6-amino-5-cyano-4H-pyran]-3-carboxylates (9, 10), ethyl [6-amino-5-cyanopyridine]-3-carboxylates (7, 8), 2-amino-3-cyano-4,5-diarylfurans (17-19) and 2-amino-3-cyano-4,5-diphenylthiophene (20) via Friedländer condensation with selected ketones. These compounds are competitive and, in a few cases, non-competitive inhibitors for AChE, the most potent being compound (14), though three-fold less active than tacrine. The BuChE inhibitory activity is only significant in compounds 11 and 14, ten-fold less active than tacrine. Furthermore, the products 12 and 13 are selective and moderate AChE inhibitors.

  4. Design, synthesis, and evaluation of inhibitors of pyruvate phosphate dikinase.

    PubMed

    Wu, Chun; Dunaway-Mariano, Debra; Mariano, Patrick S

    2013-03-01

    Pyruvate phosphate dikinase (PPDK) catalyzes the phosphorylation reaction of pyruvate that forms phosphoenolpyruvate (PEP) via two partial reactions: PPDK + ATP + P(i) → PPDK-P + AMP + PP(i) and PPDK-P + pyruvate → PEP + PPDK. Based on its role in the metabolism of microbial human pathogens, PPDK is a potential drug target. A screen of substances that bind to the PPDK ATP-grasp domain active site revealed that flavone analogues are potent inhibitors of the Clostridium symbiosum PPDK. In silico modeling studies suggested that placement of a 3–6 carbon-tethered ammonium substituent at the 3′- or 4′-positions of 5,7-dihydroxyflavones would result in favorable electrostatic interactions with the PPDK Mg-ATP binding site. As a result, polymethylene-tethered amine derivatives of 5,7-dihydroxyflavones were prepared. Steady-state kinetic analysis of these substances demonstrates that the 4′-aminohexyl-5,7-dyhydroxyflavone 10 is a potent competitive PPDK inhibitor (K(i) = 1.6 ± 0.1 μM). Single turnover experiments were conducted using 4′-aminopropyl-5,7-dihydroxyflavone 7 to show that this flavone specifically targets the ATP binding site and inhibits catalysis of only the PPDK + ATP + P(i) → PPDK-P + AMP PP(i) partial reaction. Finally, the 4′-aminopbutyl-5,7-dihydroxyflavone 8 displays selectivity for inhibition of PPDK versus other enzymes that utilize ATP and NAD.

  5. Wild Mushroom Extracts as Inhibitors of Bacterial Biofilm Formation

    PubMed Central

    Alves, Maria José; Ferreira, Isabel C. F. R.; Lourenço, Inês; Costa, Eduardo; Martins, Anabela; Pintado, Manuela

    2014-01-01

    Microorganisms can colonize a wide variety of medical devices, putting patients in risk for local and systemic infectious complications, including local-site infections, catheter-related bloodstream infections, and endocarditis. These microorganisms are able to grow adhered to almost every surface, forming architecturally complex communities termed biofilms. The use of natural products has been extremely successful in the discovery of new medicine, and mushrooms could be a source of natural antimicrobials. The present study reports the capacity of wild mushroom extracts to inhibit in vitro biofilm formation by multi-resistant bacteria. Four Gram-negative bacteria biofilm producers (Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, and Acinetobacter baumannii) isolated from urine were used to verify the activity of Russula delica, Fistulina hepatica, Mycena rosea, Leucopaxilus giganteus, and Lepista nuda extracts. The results obtained showed that all tested mushroom extracts presented some extent of inhibition of biofilm production. Pseudomonas aeruginosa was the microorganism with the highest capacity of biofilm production, being also the most susceptible to the extracts inhibition capacity (equal or higher than 50%). Among the five tested extracts against E. coli, Leucopaxillus giganteus (47.8%) and Mycenas rosea (44.8%) presented the highest inhibition of biofilm formation. The extracts exhibiting the highest inhibitory effect upon P. mirabilis biofilm formation were Sarcodon imbricatus (45.4%) and Russula delica (53.1%). Acinetobacter baumannii was the microorganism with the lowest susceptibility to mushroom extracts inhibitory effect on biofilm production (highest inhibition—almost 29%, by Russula delica extract). This is a pioneer study since, as far as we know, there are no reports on the inhibition of biofilm production by the studied mushroom extracts and in particular against multi-resistant clinical isolates; nevertheless, other studies are

  6. Synthesis, biological characterization and molecular modeling insights of spirochromanes as potent HDAC inhibitors.

    PubMed

    Thaler, Florian; Moretti, Loris; Amici, Raffaella; Abate, Agnese; Colombo, Andrea; Carenzi, Giacomo; Fulco, Maria Carmela; Boggio, Roberto; Dondio, Giulio; Gagliardi, Stefania; Minucci, Saverio; Sartori, Luca; Varasi, Mario; Mercurio, Ciro

    2016-01-27

    In the last decades, inhibitors of histone deacetylases (HDAC) have become an important class of anti-cancer agents. In a previous study we described the synthesis of spiro[chromane-2,4'-piperidine]hydroxamic acid derivatives able to inhibit histone deacetylase enzymes. Herein, we present our exploration for new derivatives by replacing the piperidine moiety with various cycloamines. The goal was to obtain highly potent compounds with a good in vitro ADME profile. In addition, molecular modeling studies unravelled the binding mode of these inhibitors.

  7. Synthesis and biological evaluation of histone deacetylase inhibitors that are based on FR235222

    PubMed Central

    Singh, Erinprit K.; Ravula, Suchitra; Pan, Chung-Mao; Pan, Po-Shen; Vasko, Robert C.; Lapera, Stephanie A.; Weerasinghe, Sujith V. W.; Pflum, Mary Kay H.; McAlpine, Shelli R.

    2008-01-01

    We outline the synthesis of six novel derivatives that are based on a recently discovered HDAC inhibitor FR235222. Our work is the first report utilizing a novel binding element, guanidine, as metal coordinators in HDAC inhibitors. Further, we demonstrate that these compounds show cytotoxicity that parallels their ability to inhibit deacetylase activity, and that the most potent compounds maintain an l-Phe at position 1, and a d-Pro at position 4. Both inhibition of HDAC activity and cytotoxicity against the pancreatic cancer cell line BxPC3 are exhibited by these compounds, establishing that a guanidine unit can be utilized successfully to inhibit HDAC activity. PMID:18381239

  8. Synthesis and SAR of Benzisothiazole- and Indolizine-β-d-glucopyranoside Inhibitors of SGLT2

    PubMed Central

    2010-01-01

    A series of benzisothiazole- and indolizine-β-d-glucopyranoside inhibitors of human SGLT2 are described. The synthesis of the C-linked heterocyclic glucosides took advantage of a palladium-catalyzed cross-coupling reaction between a glucal boronate and the corresponding bromo heterocycle. The compounds have been evaluated for their human SGLT2 inhibition potential using cell-based functional transporter assays, and their structure−activity relationships have been described. Benzisothiazole-C-glucoside 16d was found to be an inhibitor of SGLT2 with an IC50 of 10 nM. PMID:24900169

  9. Synthesis and evaluation of aminopyridine derivatives as potential BACE1 inhibitors.

    PubMed

    Konno, Hiroyuki; Sato, Taki; Saito, Yugo; Sakamoto, Iori; Akaji, Kenichi

    2015-11-15

    To identify a new non-peptidyl BACE1 inhibitor, we focused on the aminopyridine structure, which binds to the active sites of BACE1. Synthesis of aminopyridine derivatives and evaluation of inhibitory activity against rBACE1 are described. The 2-aminopyridine moiety and/or 3-methoxybenzaldehyde could be converted to terminal acetylene derivatives by the Sonogashira method. Sonogashira or Glaser cross-coupling reactions with the corresponding derivatives followed by hydrogenation could derive the designed compounds. Although inhibitory activities of the synthetic compounds against rBACE1 were weak, the aminopyridine motif has potential as a BACE1 inhibitor.

  10. Design, synthesis, and evaluation of benzophenone derivatives as novel acetylcholinesterase inhibitors.

    PubMed

    Belluti, Federica; Piazzi, Lorna; Bisi, Alessandra; Gobbi, Silvia; Bartolini, Manuela; Cavalli, Andrea; Valenti, Piero; Rampa, Angela

    2009-03-01

    Starting from a structure-based drug design, new acetylcholinesterase inhibitors were designed and synthesized as analogues of donepezil. The compounds were composed by an aromatic function and a tertiary amino moiety connected by a suitable spacer. In particular, the benzophenone nucleus and the N,N-benzylmethylamine function were selected. The easily accessible three-step synthesis of these compounds resulted to be significantly less difficult and expensive than that of donepezil. Several compounds possess anti-cholinesterase activity in the order of micro and sub-micromolar. Particularly, compounds 1 and 10 were the most potent inhibitors of the series.

  11. Synthesis and SAR of Benzisothiazole- and Indolizine-β-d-glucopyranoside Inhibitors of SGLT2.

    PubMed

    Zhou, Huiqiang; Danger, Dana P; Dock, Steven T; Hawley, Lora; Roller, Shane G; Smith, Chari D; Handlon, Anthony L

    2010-04-08

    A series of benzisothiazole- and indolizine-β-d-glucopyranoside inhibitors of human SGLT2 are described. The synthesis of the C-linked heterocyclic glucosides took advantage of a palladium-catalyzed cross-coupling reaction between a glucal boronate and the corresponding bromo heterocycle. The compounds have been evaluated for their human SGLT2 inhibition potential using cell-based functional transporter assays, and their structure-activity relationships have been described. Benzisothiazole-C-glucoside 16d was found to be an inhibitor of SGLT2 with an IC50 of 10 nM.

  12. Risk Factors for Inhibitor Formation in Hemophilia: A Prevalent Case-Control Study

    PubMed Central

    Ragni, Margaret V.; Ojeifo, Oluseyi; Feng, Jinong; Yan, Jin; Hill, Kathleen A.; Sommer, Steve S.; Trucco, Massimo N.; Brambilla, Donald J.

    2009-01-01

    Background Inhibitor formation is a major complication of hemophilia treatment. Aim In a prevalent case-control study, we evaluated blood product exposure, genotype, and HLA type on hemophilia A inhibitor formation. Methods Product exposure was extracted from medical records. Genotype was determined on stored DNA samples by detection of virtually all mutations-SSCP (DOVAM-S) and subcycling PCR. HLA typing was performed by PCR amplification and exonuclease-released fluorescence. Results Cases experienced higher intensity factor, 455 vs. 200 U per exposure, p<0.005, more frequent central nervous system (CNS) bleeding, 7 of 20 (35.0%) vs. 1 of 57 (1.7%), p=0.001, and more commonly from inhibitor families, 7 of 20 (35.0%) vs. 0 of 57 (0%), p<0.001, and African-American, 12 of 63 (19.0%) vs. 6 of 117 (5.1%), p=0.015. Among the latter, CNS bleeding was more commonly the initial bleed, 60% vs. 0%, p<0.001, and survival was shorter, 14 vs. 38 yr, p=0.025. Inhibitor formation was uncommon in those with missense mutations, 2 of 65 (3.1%) vs. 31 of 119 (26.0%), p=0.008, and unrelated to factor VIII immunogenic epitope, p=0.388, or HLA type, p>0.100. Genotype was not associated with race. Time to immune tolerance was shorter for titers < 120 vs. ≥ 120 BU/ml, 6 vs. 16 months, p<0.01, but unaffected by tolerizing dose regimen, p>0.50. Conclusions Inhibitor formation is associated with high intensity product exposure, CNS bleeding, African-American race, and low frequency of missense mutations. The ideal time to initiate prophylaxis to reduce CNS bleeding and inhibitor formation will require prospective studies. PMID:19563499

  13. Synthesis of aminoalkyl-substituted coumarin derivatives as acetylcholinesterase inhibitors.

    PubMed

    Nam, Seung Ok; Park, Dong Hyun; Lee, Young Hun; Ryu, Jong Hoon; Lee, Yong Sup

    2014-02-15

    Alzheimer's disease, one of the most common forms of dementia, is a progressive neurodegenerative disorder symptomatically characterized by declines in memory and cognitive abilities. To date, the successful therapeutic strategy to treat AD is maintaining levels of acetylcholine by inhibiting acetylcholinesterase (AChE). In the present study, coumarin derivatives were designed and synthesized as AChE inhibitors based on the lead structure of scopoletin. Of those synthesized, pyrrolidine-substituted coumarins 3b and 3f showed ca. 160-fold higher AChE inhibitory activities than scopoletin. These compounds also ameliorated scopolamine-induced memory deficit in mice when administered orally at the dose of 1 and 2 mg/kg. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Design and Synthesis of Novel Macrocyclic Mer Tyrosine Kinase Inhibitors.

    PubMed

    Wang, Xiaodong; Liu, Jing; Zhang, Weihe; Stashko, Michael A; Nichols, James; Miley, Michael J; Norris-Drouin, Jacqueline; Chen, Zhilong; Machius, Mischa; DeRyckere, Deborah; Wood, Edgar; Graham, Douglas K; Earp, H Shelton; Kireev, Dmitri; Frye, Stephen V

    2016-12-08

    Mer tyrosine kinase (MerTK) is aberrantly elevated in various tumor cells and has a normal anti-inflammatory role in the innate immune system. Inhibition of MerTK may provide dual effects against these MerTK-expressing tumors through reducing cancer cell survival and redirecting the innate immune response. Recently, we have designed novel and potent macrocyclic pyrrolopyrimidines as MerTK inhibitors using a structure-based approach. The most active macrocycles had an EC50 below 40 nM in a cell-based MerTK phosphor-protein ELISA assay. The X-ray structure of macrocyclic analogue 3 complexed with MerTK was also resolved and demonstrated macrocycles binding in the ATP binding pocket of the MerTK protein as anticipated. In addition, the lead compound 16 (UNC3133) had a 1.6 h half-life and 16% oral bioavailability in a mouse PK study.

  15. Scaffold oriented synthesis. Part 3: design, synthesis and biological evaluation of novel 5-substituted indazoles as potent and selective kinase inhibitors employing [2+3] cycloadditions.

    PubMed

    Akritopoulou-Zanze, Irini; Wakefield, Brian D; Gasiecki, Alan; Kalvin, Douglas; Johnson, Eric F; Kovar, Peter; Djuric, Stevan W

    2011-03-01

    We report the synthesis and biological evaluation of 5-substituted indazoles and amino indazoles as kinase inhibitors. The compounds were synthesized in a parallel synthesis fashion from readily available starting materials employing [2+3] cycloaddition reactions and were evaluated against a panel of kinase assays. Potent inhibitors were identified for numerous kinases such as Rock2, Gsk3β, Aurora2 and Jak2.

  16. Diversity-oriented synthesis yields novel multistage antimalarial inhibitors.

    PubMed

    Kato, Nobutaka; Comer, Eamon; Sakata-Kato, Tomoyo; Sharma, Arvind; Sharma, Manmohan; Maetani, Micah; Bastien, Jessica; Brancucci, Nicolas M; Bittker, Joshua A; Corey, Victoria; Clarke, David; Derbyshire, Emily R; Dornan, Gillian L; Duffy, Sandra; Eckley, Sean; Itoe, Maurice A; Koolen, Karin M J; Lewis, Timothy A; Lui, Ping S; Lukens, Amanda K; Lund, Emily; March, Sandra; Meibalan, Elamaran; Meier, Bennett C; McPhail, Jacob A; Mitasev, Branko; Moss, Eli L; Sayes, Morgane; Van Gessel, Yvonne; Wawer, Mathias J; Yoshinaga, Takashi; Zeeman, Anne-Marie; Avery, Vicky M; Bhatia, Sangeeta N; Burke, John E; Catteruccia, Flaminia; Clardy, Jon C; Clemons, Paul A; Dechering, Koen J; Duvall, Jeremy R; Foley, Michael A; Gusovsky, Fabian; Kocken, Clemens H M; Marti, Matthias; Morningstar, Marshall L; Munoz, Benito; Neafsey, Daniel E; Sharma, Amit; Winzeler, Elizabeth A; Wirth, Dyann F; Scherer, Christina A; Schreiber, Stuart L

    2016-10-20

    Antimalarial drugs have thus far been chiefly derived from two sources-natural products and synthetic drug-like compounds. Here we investigate whether antimalarial agents with novel mechanisms of action could be discovered using a diverse collection of synthetic compounds that have three-dimensional features reminiscent of natural products and are underrepresented in typical screening collections. We report the identification of such compounds with both previously reported and undescribed mechanisms of action, including a series of bicyclic azetidines that inhibit a new antimalarial target, phenylalanyl-tRNA synthetase. These molecules are curative in mice at a single, low dose and show activity against all parasite life stages in multiple in vivo efficacy models. Our findings identify bicyclic azetidines with the potential to both cure and prevent transmission of the disease as well as protect at-risk populations with a single oral dose, highlighting the strength of diversity-oriented synthesis in revealing promising therapeutic targets.

  17. Synthetic silvestrol analogues as potent and selective protein synthesis inhibitors.

    PubMed

    Liu, Tao; Nair, Somarajan J; Lescarbeau, André; Belani, Jitendra; Peluso, Stéphane; Conley, James; Tillotson, Bonnie; O'Hearn, Patrick; Smith, Sherri; Slocum, Kelly; West, Kip; Helble, Joseph; Douglas, Mark; Bahadoor, Adilah; Ali, Janid; McGovern, Karen; Fritz, Christian; Palombella, Vito J; Wylie, Andrew; Castro, Alfredo C; Tremblay, Martin R

    2012-10-25

    Misregulation of protein translation plays a critical role in human cancer pathogenesis at many levels. Silvestrol, a cyclopenta[b]benzofuran natural product, blocks translation at the initiation step by interfering with assembly of the eIF4F translation complex. Silvestrol has a complex chemical structure whose functional group requirements have not been systematically investigated. Moreover, silvestrol has limited development potential due to poor druglike properties. Herein, we sought to develop a practical synthesis of key intermediates of silvestrol and explore structure-activity relationships around the C6 position. The ability of silvestrol and analogues to selectively inhibit the translation of proteins with high requirement on the translation-initiation machinery (i.e., complex 5'-untranslated region UTR) relative to simple 5'UTR was determined by a cellular reporter assay. Simplified analogues of silvestrol such as compounds 74 and 76 were shown to have similar cytotoxic potency and better ADME characteristics relative to those of silvestrol.

  18. Facile synthesis of chrysin-derivatives with promising activities as aromatase inhibitors.

    PubMed

    Mohammed, Hamdoon A; Ba, Lalla A; Burkholz, Torsten; Schumann, Elena; Diesel, Britta; Zapp, Josef; Kiemer, Alexandra K; Ries, Christina; Hartmann, Rolf W; Hosny, Mohammed; Jacob, Claus

    2011-01-01

    Flavones such as chrysin show structural similarities to androgens, the substrates of human aromatase, which converts androgens to estrogens. Aromatase is a key target in the treatment of hormone-dependent tumors, including breast cancer. Flavone-based aromatase inhibitors are of growing interest, and chrysin in particular provides a (natural) lead structure. This paper reports multicomponent synthesis as a means for facile modification of the chrysin core structure in order to add functional elements. A Mannich-type reaction was used to synthesize a range of mono- and disubstituted chrysin derivatives, some of which are more effective aromatase inhibitors than the benchmark compound, aminoglutethimide. Similarly, the reaction of chrysin with various isonitriles and acetylene dicarboxylates results in a new class of flavone derivatives, tricyclic pyrano-flavones which also inhibit human aromatase. Multicomponent reactions involving flavones therefore enable the synthesis of a variety of derivatives, some of which may be useful as anticancer agents.

  19. A Protecting Group-Free Synthesis of Deazathiamine: A Step Toward Inhibitor Design

    PubMed Central

    Zhao, Hong; de Carvalho, Luiz Pedro S.; Nathan, Carl

    2010-01-01

    The discovery of 3-deazathiamine diphosphate (deazaThDP) as a potent inhibitor analog of the cofactor thiamine diphosphate (ThDP) has highlighted the need for an efficient and scalable synthesis of deazaThDP. Such a method would facilitate development of analogs with the ability to inhibit individual ThDP-dependent enzymes selectively. Toward the goal of developing selective inhibitors of the mycobacterial enzyme 2-hydroxy-3-oxoadipate synthase (HOAS), we report an improved synthesis of deazaThDP without use of protecting groups. Tribromo-3-methylthiophene served as a versatile starting material whose selective functionalization permitted access to deazaThDP in five steps, with potential to make other analogs accessible in substantial amounts. PMID:20943392

  20. Discovery of a Specific Inhibitor of Pyomelanin Synthesis in Legionella pneumophila.

    PubMed

    Aubi, Oscar; Flydal, Marte I; Zheng, Huaixin; Skjærven, Lars; Rekand, Illimar; Leiros, Hanna-Kirsti S; Haug, Bengt Erik; Cianciotto, Nicholas P; Martinez, Aurora; Underhaug, Jarl

    2015-11-12

    Phenylalanine hydroxylase catalyzes the first step in the synthesis of pyomelanin, a pigment that aids in the acquisition of essential iron in certain bacteria. In this work, we present the development and application of a drug discovery protocol by targeting this enzyme in Legionella pneumophila, the major causative agent of Legionnaires' disease. We employ a combination of high-throughput screening to identify small-molecule binders, enzymatic activity measurements to identify inhibitors in vitro, and the verification of the inhibitory effect in vivo. The most potent inhibitor shows an IC50 value in the low micromolar range and successfully abolishes the synthesis of pyomelanin in L. pneumophila cultures at 10 μM. Thus, this compound represents a novel and effective tool for investigating the role of pyomelanin in the biology and pathogenicity of this organism. Altogether, the results demonstrate a successful pathway for drug development focusing on binding specificity in the initial high-throughput screening steps.

  1. Formation of nanostructured fluorapatite via microwave assisted solution combustion synthesis.

    PubMed

    Nabiyouni, Maryam; Zhou, Huan; Luchini, Timothy J F; Bhaduri, Sarit B

    2014-04-01

    Fluorapatite (FA) has potential applications in dentistry and orthopedics, but its synthesis procedures are time consuming. The goal of the present study is to develop a quick microwave assisted solution combustion synthesis method (MASCS) for the production of FA particles. With this new processing, FA particles were successfully synthesized in minutes. Additionally, unique structures including nanotubes, hexagonal crystals, nanowhiskers, and plate agglomerates were prepared by controlling the solution composition and reaction time. In particular, the as-synthesized FA nanotubes presented a "Y" shape inner channel along the crystal axis. It is supposed that the channel formation is caused by the crystal growth and removal of water soluble salts during processing. The as-synthesized FA nanotubes showed good cytocompatibility, the cells cultured with a higher FA concentration demonstrated greater growth rate. With this new and easily applied MASCS processing application, FA nanoparticles have increased potential in dental and orthopedic applications.

  2. New aromatase inhibitors. Synthesis and biological activity of aryl-substituted pyrrolizine and indolizine derivatives.

    PubMed

    Sonnet, P; Dallemagne, P; Guillon, J; Enguehard, C; Stiebing, S; Tanguy, J; Bureau, R; Rault, S; Auvray, P; Moslemi, S; Sourdaine, P; Séralini, G E

    2000-05-01

    We report herein the design and the synthesis of some aryl-substituted pyrrolizine and indolizine derivatives, on the basis of a hypothetical pharmacophore structure designed to fit the catalytic site of the human cytochrome P450 aromatase. The in vitro biological evaluation of these compounds allowed us to point out two new potent non-steroidal aromatase inhibitors, MR 20494 and MR 20492, with IC50 values in the range of 0.1 microM.

  3. Novel leucine ureido derivatives as aminopeptidase N inhibitors. Design, synthesis and activity evaluation.

    PubMed

    Ma, Chunhua; Cao, Jiangying; Liang, Xuewu; Huang, Yongxue; Wu, Ping; Li, Yingxia; Xu, Wenfang; Zhang, Yingjie

    2016-01-27

    Aminopeptidase N (APN/CD13) over-expressed on tumor cells and tumor microenvironment, plays critical roles in tumor invasion, metastasis and angiogenesis. Here we described the design, synthesis and preliminary activity studies of novel leucine ureido derivatives as aminopeptidase N (APN/CD13) inhibitors. The results showed that compound 7a had the most potent inhibitory activity against APN with the IC50 value of 20 nM, which could be used for further anticancer agent research.

  4. DNA gyrase (GyrB)/topoisomerase IV (ParE) inhibitors: synthesis and antibacterial activity.

    PubMed

    East, Stephen P; White, Clara Bantry; Barker, Oliver; Barker, Stephanie; Bennett, James; Brown, David; Boyd, E Andrew; Brennan, Christopher; Chowdhury, Chandana; Collins, Ian; Convers-Reignier, Emmanuelle; Dymock, Brian W; Fletcher, Rowena; Haydon, David J; Gardiner, Mihaly; Hatcher, Stuart; Ingram, Peter; Lancett, Paul; Mortenson, Paul; Papadopoulos, Konstantinos; Smee, Carol; Thomaides-Brears, Helena B; Tye, Heather; Workman, James; Czaplewski, Lloyd G

    2009-02-01

    The synthesis and antibacterial activities of three chemotypes of DNA supercoiling inhibitors based on imidazolo[1,2-a]pyridine and [1,2,4]triazolo[1,5-a]pyridine scaffolds that target the ATPase subunits of DNA gyrase and topoisomerase IV (GyrB/ParE) is reported. The most potent scaffold was selected for optimization leading to a series with potent Gram-positive antibacterial activity and a low resistance frequency.

  5. Design and synthesis of new piperidone grafted acetylcholinesterase inhibitors.

    PubMed

    Basiri, Alireza; Xiao, Michelle; McCarthy, Alec; Dutta, Debashis; Byrareddy, Siddappa N; Conda-Sheridan, Martin

    2017-01-15

    Alzheimer's disease (AD) is a neurodegenerative disorder affecting 35million people worldwide. A common strategy to improve the well-being of AD patients consists on the inhibition of acetylcholinesterase with the concomitant increase of the neurotransmitter acetylcholine at cholinergic synapses. Two series of unreported N-benzylpiperidines 5(a-h) and thiazolopyrimidines 9(a-q) molecules were synthesized and evaluated in vitro for their acetylcholinesterase (AChE) inhibitory activities. Among the newly synthesized compounds, 5h, 9h, 9j, and 9p displayed higher AChE enzyme inhibitory activities than the standard drug, galantamine, with IC50 values of 0.83, 0.98, and 0.73μM, respectively. Cytotoxicity studies of 5h, 9h, 9j, 9n and 9p on human neuroblastoma cells SH-SY5Y, showed no toxicity up to 40μM concentration. Molecular docking simulations of the active compounds 5h and 9p disclosed the crucial role of π-π-stacking in their binding interaction to the active site AChE enzyme. The presented compounds have potential as AChE inhibitors and potential AD drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Synthesis of indole analogs as potent β-glucuronidase inhibitors.

    PubMed

    Baharudin, Mohd Syukri; Taha, Muhammad; Imran, Syahrul; Ismail, Nor Hadiani; Rahim, Fazal; Javid, Muhammad Tariq; Khan, Khalid Mohammed; Ali, Muhammad

    2017-06-01

    Natural products are the main source of motivation to design and synthesize new molecules for drug development. Designing new molecules against β-glucuronidase inhibitory is utmost essential. In this study indole analogs (1-35) were synthesized, characterized using various spectroscopic techniques including (1)H NMR and EI-MS and evaluated for their β-glucuronidase inhibitory activity. Most compounds were identified as potent inhibitors for the enzyme with IC50 values ranging between 0.50 and 53.40μM, with reference to standard d-saccharic acid 1,4-lactone (IC50=48.4±1.25μM). Structure-activity relationship had been also established. The results obtained from docking studies for the most active compound 10 showed that hydrogen bond donor features as well as hydrogen bonding with (Oε1) of nucleophilic residue Glu540 is believed to be the most importance interaction in the inhibition activity. It was also observed that hydroxyl at fourth position of benzylidene ring acts as a hydrogen bond donor and interacts with hydroxyl (OH) on the side chain of catalysis residue Tyr508. The enzyme-ligand complexed were being stabilized through electrostatic π-anion interaction with acid-base catalyst Glu451 (3.96Å) and thus preventing Glu451 from functioning as proton donor residue. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Design, synthesis and evaluation of semi-synthetic triazole-containing caffeic acid analogues as 5-lipoxygenase inhibitors.

    PubMed

    De Lucia, Daniela; Lucio, Oscar Méndez; Musio, Biagia; Bender, Andreas; Listing, Monika; Dennhardt, Sophie; Koeberle, Andreas; Garscha, Ulrike; Rizzo, Roberta; Manfredini, Stefano; Werz, Oliver; Ley, Steven V

    2015-08-28

    In this work the synthesis, structure-activity relationship (SAR) and biological evaluation of a novel series of triazole-containing 5-lipoxygenase (5-LO) inhibitors are described. The use of structure-guided drug design techniques provided compounds that demonstrated excellent 5-LO inhibition with IC50 of 0.2 and 3.2 μm in cell-based and cell-free assays, respectively. Optimization of binding and functional potencies resulted in the identification of compound 13d, which showed an enhanced activity compared to the parent bioactive compound caffeic acid 5 and the clinically approved zileuton 3. Compounds 15 and 16 were identified as lead compounds in inhibiting 5-LO products formation in neutrophils. Their interference with other targets on the arachidonic acid pathway was also assessed. Cytotoxicity tests were performed to exclude a relationship between cytotoxicity and the increased activity observed after structure optimization.

  8. Synthesis of quaternary α-amino acid-based arginase inhibitors via the Ugi reaction.

    PubMed

    Golebiowski, Adam; Whitehouse, Darren; Beckett, R Paul; Van Zandt, Michael; Ji, Min Koo; Ryder, Todd R; Jagdmann, Erik; Andreoli, Monica; Lee, Yung; Sheeler, Ryan; Conway, Bruce; Olczak, Jacek; Mazur, Marzena; Czestkowski, Wojciech; Piotrowska, Wieslawa; Cousido-Siah, Alexandra; Ruiz, Francesc X; Mitschler, Andre; Podjarny, Alberto; Schroeter, Hagen

    2013-09-01

    The Ugi reaction has been successfully applied to the synthesis of novel arginase inhibitors. In an effort to decrease conformational flexibility of the previously reported series of 2-amino-6-boronohexanoic acid (ABH) analogs 1, we designed and synthesized a series of compounds, 2, in which a piperidine ring is linked directly to a quaternary amino acid center. Further improvement of in vitro activity was achieved by adding two carbon bridge in the piperidine ring, that is, tropane analogs 11. These improvements in activity are rationalized by X-ray crystallography analysis, which show that the tropane ring nitrogen atom moves into direct contact with Asp202 (arginase II numbering). The synthetic routes described here enabled the design of novel arginase inhibitors with improved potency and markedly different physico-chemical properties compared to ABH. Compound 11c represents the most in vitro active arginase inhibitor reported to date.

  9. The synthesis and study of telechelic polyelectrolytes for hydrogel formation

    NASA Astrophysics Data System (ADS)

    Hunt, Jasmine N.

    Polymeric hydrogels comprised of oppositely charged ABA triblock copolymer polyelectrolytes based upon poly(allyl glycidyl ether-b-ethylene glycol-ballyl glycidyl ether), P(AGE-b-EG-b-AGE), with functionalized ionic 'A'-endblocks and a neutral, hydrophilic 'B'-block were synthesized. Aqueous solutions of poly-cations and -anions were mixed at room temperature, producing hydrogels through co-assembly driven by electrostatic interactions between the endblocks. Due the ease and modular nature of the synthesis and hydrogel formation, polymeric libraries differing in relative block lengths and ionic functionalization were created and the affects of polymer composition on the hydrogel's mechanical and structural properties were examined.

  10. I. Development of Metal-Mediated SPOT-Synthesis Methods for the Efficient Construction of Small-Molecule Macroarrays. II. Design and Synthesis of Novel Bacterial Biofilm Inhibitors

    NASA Astrophysics Data System (ADS)

    Frei, Reto

    biofilm inhibitors and dispersers in the opportunistic pathogen Pseudomonas aeruginosa. Studies of second-generation 2-aminobenzimidazoles revealed important structure-activity relationships that guided the design of yet more potent analogs. These compounds are amongst the most potent inhibitors of biofilm formation in wild-type P. aeruginosa to be reported. Mechanistic studies of the most active compounds suggest that QS inhibition is one pathway by which 2-aminobenzimidazoles modulate biofilm growth.

  11. Inhibitor of DNA synthesis is present in normal chicken serum

    SciTech Connect

    Franklin, R.A.; Davila, D.R.; Westly, H.J.; Kelley, K.W.

    1986-03-05

    The authors have found that heat-inactivated serum (57/sup 0/C for 1 hour) from normal chickens reduces the proliferation of mitogen-stimulated chicken and murine splenocytes as well as some transformed mammalian lymphoblastoid cell lines. Greater than a 50% reduction in /sup 3/H-thymidine incorporation was observed when concanavalin A (Con A)-activated chicken splenocytes that were cultured in the presence of 10% autologous or heterologous serum were compared to mitogen-stimulated cells cultured in the absence of serum. Normal chicken serum (10%) also caused greater than 95% suppression of /sup 3/H-thymidine incorporation by bovine (EBL-1 and BL-3) and gibbon ape (MLA 144) transformed lymphoblastoid cell lines. The only cell line tested that was not inhibited by chicken serum was an IL-2-dependent, murine cell line. Chicken serum also inhibited both /sup 3/H-thymidine incorporation and IL-2 synthesis by Con A-activated murine splenocytes. Suppression was caused by actions other than cytotoxicity because viability of chicken splenocytes was unaffected by increasing levels of chicken serum. Furthermore, dialyzed serum retained its activity, which suggested that thymidine in the serum was not inhibiting uptake of radiolabeled thymidine. Suppressive activity was not due to adrenal glucocorticoids circulating in plasma because neither physiologic nor pharmacologic doses of corticosterone had inhibitory effects on mitogen-stimulated chicken splenocytes. These data demonstrate that an endogenous factor that is found in normal chicken serum inhibits proliferation of T-cells from chickens and mice as well as some transformed mammalian lymphoblastoid cell lines.

  12. Influence of Various Promotors and Inhibitors of Soot Formation on the Production of Soot Nuclei

    NASA Astrophysics Data System (ADS)

    Agafonov, G. L.; Lyubimov, A. V.; Smirnov, V. N.; Sokolova, I. L.; Tereza, A. M.; Vlasov, P. A.

    Soot formation during pyrolysis and oxidation of rich mixtures of aliphatic hydrocarbons with single and multiple bonds in the presence of promotors (aromatic and metalorganic compounds) and inhibitors (hydrogen additives) of soot formation is experimentally studied behind reflected shock waves and simulated within the framework of a proposed kinetic mechanism. The influence of small additives of toluene to propane was demonstrated to substantially promote soot formation, whereas iron pentacarbonyl addition to propane and acetylene was shown to dramatically widen the temperature interval of soot formation both to higher and lower temperatures. Soot particles formed in the presence of iron pentacarbonyl gained magnetic properties due to the formation of an iron core inside the soot particle. The influence of acetone and propane additives to acetylene/argon mixtures was also studied. This is important to estimate the influence of impurities inherent to commercially manufactured acetylene. Hydrogen additives to acetylene/Ar mixtures were found to suppress the process of soot formation.

  13. Effect of a cyclooxygenase-2 inhibitor on postexercise muscle protein synthesis in humans

    PubMed Central

    Burd, Nicholas A.; Dickinson, Jared M.; LeMoine, Jennifer K.; Carroll, Chad C.; Sullivan, Bridget E.; Haus, Jacob M.; Jemiolo, Bozena; Trappe, Scott W.; Hughes, Gordon M.; Sanders, Charles E.

    2010-01-01

    Nonselective blockade of the cyclooxygenase (COX) enzymes in skeletal muscle eliminates the normal increase in muscle protein synthesis following resistance exercise. The current study tested the hypothesis that this COX-mediated increase in postexercise muscle protein synthesis is regulated specifically by the COX-2 isoform. Sixteen males (23 ± 1 yr) were randomly assigned to one of two groups that received three doses of either a selective COX-2 inhibitor (celecoxib; 200 mg/dose, 600 mg total) or a placebo in double-blind fashion during the 24 h following a single bout of knee extensor resistance exercise. At rest and 24 h postexercise, skeletal muscle protein fractional synthesis rate (FSR) was measured using a primed constant infusion of [2H5]phenylalanine coupled with muscle biopsies of the vastus lateralis, and measurements were made of mRNA and protein expression of COX-1 and COX-2. Mixed muscle protein FSR in response to exercise (P < 0.05) was not suppressed by the COX-2 inhibitor (0.056 ± 0.004 to 0.108 ± 0.014%/h) compared with placebo (0.074 ± 0.004 to 0.091 ± 0.005%/h), nor was there any difference (P > 0.05) between the placebo and COX-2 inhibitor postexercise when controlling for resting FSR. The COX-2 inhibitor did not influence COX-1 mRNA, COX-1 protein, or COX-2 protein levels, whereas it did increase (P < 0.05) COX-2 mRNA (3.0 ± 0.9-fold) compared with placebo (1.3 ± 0.3-fold). It appears that the elimination of the postexercise muscle protein synthesis response by nonselective COX inhibitors is not solely due to COX-2 isoform blockade. Furthermore, the current data suggest that the COX-1 enzyme is likely the main isoform responsible for the COX-mediated increase in muscle protein synthesis following resistance exercise in humans. PMID:19934404

  14. Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass.

    PubMed

    Baral, Nawa Raj; Shah, Ajay

    2014-11-01

    Biobutanol is a promising biofuel due to the close resemblance of its fuel properties to gasoline, and it is produced via acetone-butanol-ethanol (ABE) fermentation using Clostridium species. However, lignin in the crystalline structure of the lignin-cellulose-hemicellulose biomass complex is not readily consumed by the Clostridium; thus, pretreatment is required to degrade this complex. During pretreatment, some fractions of cellulose and hemicellulose are converted into fermentable sugars, which are further converted to ABE. However, a major setback resulting from common pretreatment processes is the formation of sugar and lignin degradation compounds, including weak acids, furan derivatives, and phenolic compounds, which have inhibitory effects on the Clostridium. In addition, butanol concentration above 13 g/L in the fermentation broth is itself toxic to most Clostridium strain(s). This review summarizes the current state-of-the-art knowledge on the formation of microbial inhibitors during the most common lignocellulosic biomass pretreatment processes. Metabolic effects of inhibitors and their impacts on ABE production, as well as potential solutions for reducing inhibitor formation, such as optimizing pretreatment process parameters, using inhibitor tolerant strain(s) with high butanol yield ability, continuously recovering butanol during ABE fermentation, and adopting consolidated bioprocessing, are also discussed.

  15. Formation kinetics of potential fermentation inhibitors in a steam explosion process of corn straw.

    PubMed

    Zhang, Yuzhen; Wang, Lan; Chen, Hongzhang

    2013-01-01

    The weak acids, furan derivatives, and phenolic compounds formed during lignocellulose pretreatment are potential inhibitors of subsequent enzymatic and microbial processes. In this work, the effects of the steam explosion process on the formation of weak acids, furan derivatives, and phenolic compounds were explored. The correlations of different steam explosion conditions and formation kinetics of degradation products showed that the formation of weak acids and furan derivatives was in the first-order reactions, which are expressed as [Formula: see text]. The formation of weak acids and furan derivatives increases with pretreatment temperature and time. On the other hand, the formation of phenolic compounds showed typical characteristics of continuous reaction, expressed as [Formula: see text]. The formation was affected by the active energies in two stages, temperature and time, and thus existed at extreme value. This work revealed the formation rules of weak acids, furan derivatives, and phenolic compounds in a steam explosion process and provided theoretical guidelines for improving the process and limiting the production of certain inhibitors.

  16. Cholesterol synthesis inhibitors protect against platelet-activating factor-induced neuronal damage

    PubMed Central

    Bate, Clive; Rumbold, Louis; Williams, Alun

    2007-01-01

    Background Platelet-activating factor (PAF) is implicated in the neuronal damage that accompanies ischemia, prion disease and Alzheimer's disease (AD). Since some epidemiological studies demonstrate that statins, drugs that reduce cholesterol synthesis, have a beneficial effect on mild AD, we examined the effects of two cholesterol synthesis inhibitors on neuronal responses to PAF. Methods Primary cortical neurons were treated with cholesterol synthesis inhibitors (simvastatin or squalestatin) prior to incubation with different neurotoxins. The effects of these drugs on neuronal cholesterol levels and neuronal survival were measured. Immunoblots were used to determine the effects of simvastatin or squalestatin on the distribution of the PAF receptor and an enzyme linked immunoassay was used to quantify the amounts of PAF receptor. Results PAF killed primary neurons in a dose-dependent manner. Pre-treatment with simvastatin or squalestatin reduced neuronal cholesterol and increased the survival of PAF-treated neurons. Neuronal survival was increased 50% by 100 nM simvastatin, or 20 nM squalestatin. The addition of mevalonate restored cholesterol levels, and reversed the protective effect of simvastatin. Simvastatin or squalestatin did not affect the amounts of the PAF receptor but did cause it to disperse from within lipid rafts. Conclusion Treatment of neurons with cholesterol synthesis inhibitors including simvastatin and squalestatin protected neurons against PAF. Treatment caused a percentage of the PAF receptors to disperse from cholesterol-sensitive domains. These results raise the possibility that the effects of statins on neurodegenerative disease are, at least in part, due to desensitisation of neurons to PAF. PMID:17233902

  17. Synthesis, cytotoxicity and molecular modelling studies of new phenylcinnamide derivatives as potent inhibitors of cholinesterases.

    PubMed

    Saeed, Aamer; Mahesar, Parvez Ali; Zaib, Sumera; Khan, Muhammad Siraj; Matin, Abdul; Shahid, Mohammad; Iqbal, Jamshed

    2014-05-06

    The present study reports the synthesis of cinnamide derivatives and their biological activity as inhibitors of both cholinesterases and anticancer agents. Controlled inhibition of brain acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) may slow neurodegeneration in Alzheimer's diseases (AD). The anticholinesterase activity of phenylcinnamide derivatives was determined against Electric Eel acetylcholinesterase (EeAChE) and horse serum butyrylcholinesterase (hBChE) and some of the compounds appeared as moderately potent inhibitors of EeAChE and hBChE. The compound 3-(2-(Benzyloxy)phenyl)-N-(3,4,5-trimethoxyphenyl)acrylamide (3i) showed maximum activity against EeAChE with an IC50 0.29 ± 0.21 μM whereas 3-(2-chloro-6-nitrophenyl)-N-(3,4,5-trimethoxyphenyl)acrylamide (3k) was proved to be the most potent inhibitor of hBChE having IC50 1.18 ± 1.31 μM. To better understand the enzyme-inhibitor interaction of the most active compounds toward cholinesterases, molecular modelling studies were carried out on high-resolution crystallographic structures. The anticancer effects of synthesized compounds were also evaluated against cancer cell line (lung carcinoma). The compounds may be useful leads for the design of a new class of anticancer drugs for the treatment of cancer and cholinesterase inhibitors for Alzheimer's disease (AD). Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Design, synthesis and characterization of a highly effective inhibitor for analog-sensitive (as) kinases.

    PubMed

    Klein, Michael; Morillas, Montse; Vendrell, Alexandre; Brive, Lars; Gebbia, Marinella; Wallace, Iain M; Giaever, Guri; Nislow, Corey; Posas, Francesc; Grøtli, Morten

    2011-01-01

    Highly selective, cell-permeable and fast-acting inhibitors of individual kinases are sought-after as tools for studying the cellular function of kinases in real time. A combination of small molecule synthesis and protein mutagenesis, identified a highly potent inhibitor (1-Isopropyl-3-(phenylethynyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine) of a rationally engineered Hog1 serine/threonine kinase (Hog1(T100G)). This inhibitor has been successfully used to study various aspects of Hog1 signaling, including a transient cell cycle arrest and gene expression changes mediated by Hog1 in response to stress. This study also underscores that the general applicability of this approach depends, in part, on the selectivity of the designed the inhibitor with respect to activity versus the engineered and wild type kinases. To explore this specificity in detail, we used a validated chemogenetic assay to assess the effect of this inhibitor on all gene products in yeast in parallel. The results from this screen emphasize the need for caution and for case-by-case assessment when using the Analog-Sensitive Kinase Allele technology to assess the physiological roles of kinases.

  19. Stage-dependent reduction in T colony formation in Hodgkin's disease. Coincidence with monocyte synthesis of prostaglandins.

    PubMed Central

    Bockman, R S

    1980-01-01

    Prostaglandin synthesis and T lymphocyte colony formation have been examined in previously untreated patients with Hodgkin's disease. Mononuclear cells have been isolated from peripheral blood and spleens of these patients. Significant augmentation in prostaglandin E levels were noted in the mononuclear cell cutures from Hodgkin's disease patients compared with controls (1.64 +/- 0.29 vs. 0.39 +/- 0.09 ng/10(6) cells, P < 0.005). Measured prostaglandin E levels increased with advancing stage of disease. Virtually all of the prostaglandins were synthesized by the adherent monocyte cell population. Prostaglandin E was the major product. Clonal expansion of a T lymphocyte precursor cell, which gives rise to colonies > 50 cells, was determined by a layered soft agar method. T colony formation was significantly reduced in patients with stage II, III, and IV disease. There were progressively reduced colony numbers seen with advancing stage of disease (609 +/- 209, 416 +/- 158, 207 +/- 58 compared with normals 2,274 +/- 360 colonies/10(6) cells plated; P < 0.005). The addition of inhibitors of endogenous prostaglandin synthesis resulted in significant augmentation of T colony number. However, a consistent relative decrease in T colony number was seen even when endogenous prostaglandin E synthesis was blocked. It would appear that both the prostaglandin-dependent and independent T colony precursor cells are lost with progressive stage of disease. A causative role of augmented prostaglandin synthesis in this stage-dependent reduction of T colony formation could not be established. PMID:6967491

  20. Inhibition of formation of filopodia after axotomy by inhibitors of protein tyrosine kinases.

    PubMed

    Goldberg, D J; Wu, D Y

    1995-08-01

    The activity of motile protrusions of the growth cone--filopodia, veils, and lamellipodia--is essential for directed growth of a neuronal process. The regulation of the formation of these protrusions is not well understood. Numerous filopodia and veils or lamellipodia form within minutes of transection of an Aplysia axon in culture, as the initial components of growth cones of regenerating neurites. Axotomy, therefore, provides a robust and reliable protocol for analyzing the formation of these protrusions. We evaluated the involvement of protein phosphorylation in the regulation of protrusive activity. Of the inhibitors of protein kinases assayed, only the inhibitors of protein tyrosine kinases--genistein, lavendustin A, herbimycin A, and erbstatin analogue--suppressed the formation of protrusions, as assessed by high magnification video microscopy. These drugs did not work by preventing resealing of the axon, as evident from visual inspection and by the unimpaired effectiveness of genistein or lavendustin in preventing formation of filopodia when applied after resealing. Inhibition of protein tyrosine kinases not only prevented the formation of actin-based protrusions, but also caused deterioration of the actin network underlying the protrusive area of preexisting growth cones. Consistent with an involvement of protein tyrosine phosphorylation in the generation of protrusive structures, immunocytochemistry revealed that aggregates of phosphotyrosine appeared at the margins of the axon, from which protrusions emerge shortly after axotomy. These results suggest a role for protein tyrosine phosphorylation in the formation and maintenance of actin-based protrusive structures.

  1. LP99: Discovery and Synthesis of the First Selective BRD7/9 Bromodomain Inhibitor.

    PubMed

    Clark, Peter G K; Vieira, Lucas C C; Tallant, Cynthia; Fedorov, Oleg; Singleton, Dean C; Rogers, Catherine M; Monteiro, Octovia P; Bennett, James M; Baronio, Roberta; Müller, Susanne; Daniels, Danette L; Méndez, Jacqui; Knapp, Stefan; Brennan, Paul E; Dixon, Darren J

    2015-05-18

    The bromodomain-containing proteins BRD9 and BRD7 are part of the human SWI/SNF chromatin-remodeling complexes BAF and PBAF. To date, no selective inhibitor for BRD7/9 has been reported despite its potential value as a biological tool or as a lead for future therapeutics. The quinolone-fused lactam LP99 is now reported as the first potent and selective inhibitor of the BRD7 and BRD9 bromodomains. Development of LP99 from a fragment hit was expedited through balancing structure-based inhibitor design and biophysical characterization against tractable chemical synthesis: Complexity-building nitro-Mannich/lactamization cascade processes allowed for early structure-activity relationship studies whereas an enantioselective organocatalytic nitro-Mannich reaction enabled the synthesis of the lead scaffold in enantioenriched form and on scale. This epigenetic probe was shown to inhibit the association of BRD7 and BRD9 to acetylated histones in vitro and in cells. Moreover, LP99 was used to demonstrate that BRD7/9 plays a role in regulating pro-inflammatory cytokine secretion.

  2. LP99: Discovery and Synthesis of the First Selective BRD7/9 Bromodomain Inhibitor.

    PubMed

    Clark, Peter G K; Vieira, Lucas C C; Tallant, Cynthia; Fedorov, Oleg; Singleton, Dean C; Rogers, Catherine M; Monteiro, Octovia P; Bennett, James M; Baronio, Roberta; Müller, Susanne; Daniels, Danette L; Méndez, Jacqui; Knapp, Stefan; Brennan, Paul E; Dixon, Darren J

    2015-05-18

    The bromodomain-containing proteins BRD9 and BRD7 are part of the human SWI/SNF chromatin-remodeling complexes BAF and PBAF. To date, no selective inhibitor for BRD7/9 has been reported despite its potential value as a biological tool or as a lead for future therapeutics. The quinolone-fused lactam LP99 is now reported as the first potent and selective inhibitor of the BRD7 and BRD9 bromodomains. Development of LP99 from a fragment hit was expedited through balancing structure-based inhibitor design and biophysical characterization against tractable chemical synthesis: Complexity-building nitro-Mannich/lactamization cascade processes allowed for early structure-activity relationship studies whereas an enantioselective organocatalytic nitro-Mannich reaction enabled the synthesis of the lead scaffold in enantioenriched form and on scale. This epigenetic probe was shown to inhibit the association of BRD7 and BRD9 to acetylated histones in vitro and in cells. Moreover, LP99 was used to demonstrate that BRD7/9 plays a role in regulating pro-inflammatory cytokine secretion. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  3. LP99: Discovery and Synthesis of the First Selective BRD7/9 Bromodomain Inhibitor**

    PubMed Central

    Clark, Peter G K; Vieira, Lucas C C; Tallant, Cynthia; Fedorov, Oleg; Singleton, Dean C; Rogers, Catherine M; Monteiro, Octovia P; Bennett, James M; Baronio, Roberta; Müller, Susanne; Daniels, Danette L; Méndez, Jacqui; Knapp, Stefan; Brennan, Paul E; Dixon, Darren J

    2015-01-01

    The bromodomain-containing proteins BRD9 and BRD7 are part of the human SWI/SNF chromatin-remodeling complexes BAF and PBAF. To date, no selective inhibitor for BRD7/9 has been reported despite its potential value as a biological tool or as a lead for future therapeutics. The quinolone-fused lactam LP99 is now reported as the first potent and selective inhibitor of the BRD7 and BRD9 bromodomains. Development of LP99 from a fragment hit was expedited through balancing structure-based inhibitor design and biophysical characterization against tractable chemical synthesis: Complexity-building nitro-Mannich/lactamization cascade processes allowed for early structure–activity relationship studies whereas an enantioselective organocatalytic nitro-Mannich reaction enabled the synthesis of the lead scaffold in enantioenriched form and on scale. This epigenetic probe was shown to inhibit the association of BRD7 and BRD9 to acetylated histones in vitro and in cells. Moreover, LP99 was used to demonstrate that BRD7/9 plays a role in regulating pro-inflammatory cytokine secretion. PMID:25864491

  4. The identification of translesion DNA synthesis regulators: Inhibitors in the spotlight.

    PubMed

    Bertolin, A P; Mansilla, S F; Gottifredi, V

    2015-08-01

    Over the past half-century, we have become increasingly aware of the ubiquity of DNA damage. Under the constant exposure to exogenous and endogenous genomic stress, cells must attempt to replicate damaged DNA. The encounter of replication forks with DNA lesions triggers several cellular responses, including the activation of translesion DNA synthesis (TLS), which largely depends upon specialized DNA polymerases with flexible active sites capable of accommodating bulky DNA lesions. A detrimental aspect of TLS is its intrinsic mutagenic nature, and thus the activity of the TLS polymerases must ideally be restricted to synthesis on damaged DNA templates. Despite their potential clinical importance in chemotherapy, TLS inhibitors have been difficult to identify since a direct assay designed to quantify genomic TLS events is still unavailable. Herein we discuss the methods that have been used to validate TLS inhibitors such as USP1, p21 and Spartan, highlighting research that has revealed their contribution to the control of DNA synthesis on damaged and undamaged templates. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The identification of translesion DNA synthesis regulators: inhibitors in the spotlight

    PubMed Central

    Bertolin, AP; Mansilla, SF; Gottifredi, V

    2015-01-01

    Over the past half-century, we have become increasingly aware of the ubiquity of DNA damage. Under the constant exposure to exogenous and endogenous genomic stress, cells must attempt to replicate damaged DNA. The encounter of replication forks with DNA lesions triggers several cellular responses, including the activation of translesion DNA synthesis (TLS), which largely depends upon specialized DNA polymerases with flexible active sites capable of accommodating bulky DNA lesions. A detrimental aspect of TLS is its intrinsic mutagenic nature, and thus the activity of the TLS polymerases must ideally be restricted to synthesis on damaged DNA templates. Despite their potential clinical importance in chemotherapy, TLS inhibitors have been difficult to identify since a direct assay designed to quantify genomic TLS events is still unavailable. Herein we discuss the methods that have been used to validate TLS inhibitors such as USP1, p21 and Spartan, highlighting research that has revealed their contribution to the control of DNA synthesis on damaged and undamaged templates. PMID:26002196

  6. Steroid synthesis by Taenia crassiceps WFU cysticerci is regulated by enzyme inhibitors.

    PubMed

    Aceves-Ramos, A; Valdez, R A; Gaona, B; Willms, K; Romano, M C

    2013-07-01

    Cysticerci and tapeworms from Taenia crassiceps WFU, ORF and Taenia solium synthesize sex-steroid hormones in vitro. Corticosteroids increase the 17β-estradiol synthesis by T. crassiceps cysticerci. T. crassiceps WFU cysticerci synthesize corticosteroids, mainly 11-deoxycorticosterone (DOC). The aim of this work was to investigate whether classical steroidogenic inhibitors modify the capacity of T. crassiceps WFU cysticerci to synthesize corticosteroids and sex steroid hormones. For this purpose, T. crassiceps WFU cysticerci were obtained from the abdominal cavity of mice, pre-cultured for 24h in DMEM+antibiotics/antimycotics and cultured in the presence of tritiated progesterone ((3)H-P4), androstendione ((3)H-A4), or dehydroepiandrosterone ((3)H-DHEA) plus different doses of the corresponding inhibitors, for different periods. Blanks with the culture media adding the tritiated precursors were simultaneously incubated. At the end of the incubation period, parasites were separated and media extracted with ether. The resulting steroids were separated by thin layer chromatography (TLC). Data were expressed as percent transformation of the tritiated precursors. Results showed that after 2h of exposure of the cysticerci to 100 μM formestane, the (3)H-17β-estradiol synthesis from tritiated androstenedione was significantly inhibited. The incubation of cysticerci in the presence of (3)H-DHEA and danazol (100 nM) resulted in (3)H-androstenediol accumulation and a significant reduction of the 17β-estradiol synthesis. The cysticerci (3)H-DOC synthesis was significantly inhibited when the parasites were cultured in the presence of different ketoconazole dosis. The drug treatments did not affect parasite's viability. The results of this study showed that corticosteroid and sex steroid synthesis in T. crassiceps WFU cysticerci can be modified by steroidogenic enzyme inhibitors. As was shown previously by our laboratory and others, parasite survival and development depends

  7. The lysis protein E of phi X174 is a specific inhibitor of the MraY-catalyzed step in peptidoglycan synthesis.

    PubMed

    Bernhardt, T G; Struck, D K; Young, R

    2001-03-02

    Coliphage phi X174 encodes a single lysis protein, E, a 91-amino acid membrane protein. Dominant mutations have been isolated in the host gene mraY that confer E resistance. mraY encodes translocase I, which catalyzes the formation of the first lipid intermediate in bacterial cell wall synthesis, suggesting a model in which E inhibits MraY and promotes cell lysis in a manner analogous to cell wall synthesis inhibitors like penicillin. To test this model biochemically, we monitored the effect of E on cell wall synthesis in vivo and in vitro. We find that expression of Emyc, encoding an epitope-tagged E protein, from a multicopy plasmid inhibits the incorporation of [(3)H]diaminopimelic acid into cell wall and leads to a profile of labeled precursors consistent with MraY inhibition. Moreover, we find that membranes isolated after Emyc expression are drastically reduced in MraY activity, whereas the activity of Rfe, an enzyme in the same superfamily, was unaffected. We therefore conclude that E is indeed a cell wall synthesis inhibitor and that this inhibition results from a specific block at the MraY-catalyzed step in the pathway.

  8. Unprecedented one-pot chemocontrolled entry to thioxoimidazolidinones and aminoimidazolones: synthesis of kinase inhibitor leucettamine B.

    PubMed

    Selvaraju, Manikandan; Sun, Chung-Ming

    2015-03-09

    A novel and highly chemoselective protocol for the construction of thioxoimidazolidinone and aminoimidazolone frameworks was explored, and the influence of the reaction conditions on product formation was studied to establish two distinct approaches for their selective formation. In this one-pot reaction, ambient temperature generally resulted in the formation of thioxoimidazolidinones, whereas microwave irradiation provided aminoimidazolones exclusively. An attempt to elucidate the observed chemoselectivity is described, and the products were confirmed by X-ray studies. One-pot synthesis toward Leucettamine B, a marine alkaloid, was achieved on the basis of this protocol.

  9. Design and synthesis of a series of serine derivatives as small molecule inhibitors of the SARS coronavirus 3CL protease.

    PubMed

    Konno, Hiroyuki; Wakabayashi, Masaki; Takanuma, Daiki; Saito, Yota; Akaji, Kenichi

    2016-03-15

    Synthesis of serine derivatives having the essential functional groups for the inhibitor of SARS 3CL protease and evaluation of their inhibitory activities using SARS 3CL R188I mutant protease are described. The lead compounds, functionalized serine derivatives, were designed based on the tetrapeptide aldehyde and Bai's cinnamoly inhibitor, and additionally performed with simulation on GOLD softwear. Structure activity relationship studies of the candidate compounds were given reasonable inhibitors ent-3 and ent-7k against SARS 3CL R188I mutant protease. These inhibitors showed protease selectivity and no cytotoxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The Bacterial Curli System Possesses a Potent and Selective Inhibitor of Amyloid Formation

    PubMed Central

    Evans, Margery L.; Chorell, Erik; Taylor, Jonathan D.; Åden, Jörgen; Göteson, Anna; Li, Fei; Koch, Marion; Sefer, Lea; Matthews, Steve J.; Wittung-Stafshede, Pernilla; Almqvist, Fredrik; Chapman, Matthew R.

    2014-01-01

    Summary Curli are extracellular functional amyloids that are assembled by enteric bacteria during biofilm formation and host colonization. An efficient secretion system and chaperone network ensures that the major curli fiber subunit, CsgA, does not form intracellular amyloid aggregates. We discovered that the periplasmic protein CsgC was a highly effective inhibitor of CsgA amyloid formation. In the absence of CsgC, CsgA formed toxic intracellular aggregates. In vitro, CsgC inhibited CsgA amyloid formation at substoichiometric concentrations and maintained CsgA in a non-β-sheet rich conformation. Interestingly, CsgC inhibited amyloid assembly of human α-synuclein, but not Aβ42, in vitro. We identified a common D-Q-Φ-X0,1-G-K-N-ζ-E motif in CsgC client proteins that is not found in Aβ42. CsgC is therefore both an efficient and selective amyloid inhibitor. Dedicated functional amyloid inhibitors may be a key feature that distinguishes functional amyloids from disease-associated amyloids. PMID:25620560

  11. Synthesis and Evaluation of Quinazolines as Inhibitors of the Bacterial Cell Division Protein FtsZ.

    PubMed

    Nepomuceno, Gabriella M; Chan, Katie M; Huynh, Valerie; Martin, Kevin S; Moore, Jared T; O'Brien, Terrence E; Pollo, Luiz A E; Sarabia, Francisco J; Tadeus, Clarissa; Yao, Zi; Anderson, David E; Ames, James B; Shaw, Jared T

    2015-03-12

    The bacterial cell division protein FtsZ is one of many potential targets for the development of novel antibiotics. Recently, zantrin Z3 was shown to be a cross-species inhibitor of FtsZ; however, its specific interactions with the protein are still unknown. Herein we report the synthesis of analogues that contain a more tractable core structure and an analogue with single-digit micromolar inhibition of FtsZ's GTPase activity, which represents the most potent inhibitor of Escherichia coli FtsZ reported to date. In addition, the zantrin Z3 core has been converted to two potential photo-cross-linking reagents for proteomic studies that could shed light on the molecular interactions between FtsZ and molecules related to zantrin Z3.

  12. Synthesis of Novel Tricyclic Chromenone-Based Inhibitors of IRE-1 RNase Activity

    PubMed Central

    2015-01-01

    Inositol-requiring enzyme 1 (IRE-1) is a kinase/RNase ER stress sensor that is activated in response to excessive accumulation of unfolded proteins, hypoxic conditions, calcium imbalance, and other stress stimuli. Activation of IRE-1 RNase function exerts a cytoprotective effect and has been implicated in the progression of cancer via increased expression of the transcription factor XBP-1s. Here, we describe the synthesis and biological evaluation of novel chromenone-based covalent inhibitors of IRE-1. Preparation of a family of 8-formyltetrahydrochromeno[3,4-c]pyridines was achieved via a Duff formylation that is attended by an unusual cyclization reaction. Biological evaluation in vitro and in whole cells led to the identification of 30 as a potent inhibitor of IRE-1 RNase activity and XBP-1s expression in wild type B cells and human mantle cell lymphoma cell lines. PMID:24749861

  13. Synthesis and Evaluation of Quinazolines as Inhibitors of the Bacterial Cell Division Protein FtsZ

    PubMed Central

    2015-01-01

    The bacterial cell division protein FtsZ is one of many potential targets for the development of novel antibiotics. Recently, zantrin Z3 was shown to be a cross-species inhibitor of FtsZ; however, its specific interactions with the protein are still unknown. Herein we report the synthesis of analogues that contain a more tractable core structure and an analogue with single-digit micromolar inhibition of FtsZ’s GTPase activity, which represents the most potent inhibitor of Escherichia coli FtsZ reported to date. In addition, the zantrin Z3 core has been converted to two potential photo-cross-linking reagents for proteomic studies that could shed light on the molecular interactions between FtsZ and molecules related to zantrin Z3. PMID:25815151

  14. Design, synthesis, and 3D QSAR of novel potent and selective aromatase inhibitors.

    PubMed

    Leonetti, Francesco; Favia, Angelo; Rao, Angela; Aliano, Rosaria; Paluszcak, Anja; Hartmann, Rolf W; Carotti, Angelo

    2004-12-30

    The design, synthesis, and biological evaluation of a series of new aromatase inhibitors bearing an imidazole or triazole ring linked to a fluorene (A), indenodiazine (B), or coumarin scaffold (C) are reported. Properly substituted coumarin derivatives displayed the highest aromatase inhibitory potency and selectivity over 17-alpha-hydroxylase/17-20 lyase. The modeling of the aromatase inhibition data by Comparative Molecular Field Analysis (CoMFA/GOLPE 3D QSAR approach) led to the development of a PLS model with good fitting and predictive powers (n = 22, ONC = 3, r(2) = 0.949, s = 0.216, and q(2) = 0.715). The relationship between aromatase inhibition and the steric and electrostatic fields generated by the examined azole inhibitors enables a clear understanding of the nature and spatial location of the main interactions modulating the aromatase inhibitory potency.

  15. Identification of polymerase and processivity inhibitors of vaccinia DNA synthesis using a stepwise screening approach

    PubMed Central

    Silverman, Janice Elaine Y.; Ciustea, Mihai; Shudofsky, Abigail M. Druck; Bender, Florent; Shoemaker, Robert H.; Ricciardi, Robert P.

    2008-01-01

    Nearly all DNA polymerases require processivity factors to ensure continuous incorporation of nucleotides. Processivity factors are specific for their cognate DNA polymerases. For this reason, the vaccinia DNA polymerase (E9) and the proteins associated with processivity (A20 and D4) are excellent therapeutic targets. In this study, we show the utility of stepwise rapid plate assays that i) screen for compounds that block vaccinia DNA synthesis, ii) eliminate trivial inhibitors, e.g. DNA intercalators, and iii) distinguish whether inhibitors are specific for blocking DNA polymerase activity or processivity. The sequential plate screening of 2,222 compounds from the NCI Diversity Set library yielded a DNA polymerase inhibitor (NSC 55636) and a processivity inhibitor (NSC 123526) that were capable of reducing vaccinia viral plaques with minimal cellular cytotoxicity. These compounds are predicted to block cellular infection by the smallpox virus, variola, based on the very high sequence identity between A20, D4 and E9 of vaccinia and the corresponding proteins of variola. PMID:18621425

  16. Synthesis and characterization of potent inhibitors of Trypanosoma cruzi dihydrofolate reductase

    SciTech Connect

    Schormann, Norbert; Velu, Sadanandan E.; Murugesan, Srinivasan; Senkovich, Olga; Walker, Kiera; Chenna, Bala C.; Shinkre, Bidhan; Desai, Amar; Chattopadhyay, Debasish

    2010-09-17

    Dihydrofolate reductase (DHFR) of the parasite Trypanosoma cruzi (T. cruzi) is a potential target for developing drugs to treat Chagas disease. We have undertaken a detailed structure-activity study of this enzyme. We report here synthesis and characterization of six potent inhibitors of the parasitic enzyme. Inhibitory activity of each compound was determined against T. cruzi and human DHFR. One of these compounds, ethyl 4-(5-[(2,4-diamino-6-quinazolinyl)methyl]amino-2-methoxyphenoxy)butanoate (6b) was co-crystallized with the bifunctional dihydrofolate reductase-thymidylate synthase enzyme of T. cruzi and the crystal structure of the ternary enzyme:cofactor:inhibitor complex was determined. Molecular docking was used to analyze the potential interactions of all inhibitors with T. cruzi DHFR and human DHFR. Inhibitory activities of these compounds are discussed in the light of enzyme-ligand interactions. Binding affinities of each inhibitor for the respective enzymes were calculated based on the experimental or docked binding mode. An estimated 60-70% of the total binding energy is contributed by the 2,4-diaminoquinazoline scaffold.

  17. Synthesis, in vitro and in vivo activity of thiamine antagonist transketolase inhibitors.

    PubMed

    Thomas, Allen A; Le Huerou, Y; De Meese, J; Gunawardana, Indrani; Kaplan, Tomas; Romoff, Todd T; Gonzales, Stephen S; Condroski, Kevin; Boyd, Steven A; Ballard, Josh; Bernat, Bryan; DeWolf, Walter; Han, May; Lee, Patrice; Lemieux, Christine; Pedersen, Robin; Pheneger, Jed; Poch, Greg; Smith, Darin; Sullivan, Francis; Weiler, Solly; Wright, S Kirk; Lin, Jie; Brandhuber, Barb; Vigers, Guy

    2008-03-15

    Tumor cells extensively utilize the pentose phosphate pathway for the synthesis of ribose. Transketolase is a key enzyme in this pathway and has been suggested as a target for inhibition in the treatment of cancer. In a pharmacodynamic study, nude mice with xenografted HCT-116 tumors were dosed with 1 ('N3'-pyridyl thiamine'; 3-(6-methyl-2-amino-pyridin-3-ylmethyl)-5-(2-hydroxy-ethyl)-4-methyl-thiazol-3-ium chloride hydrochloride), an analog of thiamine, the co-factor of transketolase. Transketolase activity was almost completely suppressed in blood, spleen, and tumor cells, but there was little effect on the activity of the other thiamine-utilizing enzymes alpha-ketoglutarate dehydrogenase or glucose-6-phosphate dehydrogenase. Synthesis and SAR of transketolase inhibitors is described.

  18. Enantioselective Synthesis and Profiling of Two Novel Diazabicyclooctanone β-Lactamase Inhibitors

    PubMed Central

    2014-01-01

    The enantioselective synthesis of two novel cyclopropane-fused diazabicyclooctanones is reported here. Starting from butadiene monoxide, the key enone intermediate 7 was prepared in six steps. Subsequent stereoselective introduction of the cyclopropane group and further transformation led to compounds 1a and 1b as their corresponding sodium salt. The great disparity regarding their hydrolytic stability was rationalized by the steric interaction between the cyclopropyl methylene and urea carbonyl. These two novel β-lactamase inhibitors were active against class A, C, and D enzymes. PMID:25313328

  19. Diels-Alder cycloaddition in the synthesis of 1-azafagomine, analogs, and derivatives as glycosidase inhibitors.

    PubMed

    Salgueiro, Daniela A L; Sousa, Cristina E A; Fortes, A Gil; Alves, M José

    2012-12-01

    This comprehensive review deals with the synthesis of 1-azafagomine, analogs, and derivatives having the Diels-Alder cycloaddition as the key step. Most of the compounds referred are racemic or have been resolved by lipase transesterification. There are two asymmetric cycloadditions leading to 1-azafagomine or to an analog. In one case both enantiomers of 1-azafagomine were prepared together with a pair of derivatives. The study comprises glycosidase inhibition studies of the target compounds to a set of glycosidic enzymes, and evidenced molecular features that enhance or diminish their activity as glycosidase inhibitors.

  20. Microwave assisted organic synthesis (MAOS) of small molecules as potential HIV-1 integrase inhibitors.

    PubMed

    Ferro, Stefania; Grazia, Sara De; De Luca, Laura; Gitto, Rosaria; Faliti, Caterina Elisa; Debyzer, Zeger; Chimirri, Alba

    2011-08-11

    Integrase (IN) represents a clinically validated target for the development of antivirals against human immunodeficiency virus (HIV). In recent years our research group has been engaged in the stucture-function study of this enzyme and in the development of some three-dimensional pharmacophore models which have led to the identification of a large series of potent HIV-1 integrase strand-transfer inhibitors (INSTIs) bearing an indole core. To gain a better understanding of the structure-activity relationships (SARs), herein we report the design and microwave-assisted synthesis of a novel series of 1-H-benzylindole derivatives.

  1. A practical total synthesis of the microbial alkaline proteinase inhibitor (MAPI).

    PubMed

    Haebich, Dieter; Hillisch, Alexander; El Sheikh, Sherif

    2009-12-01

    Diverse serine and cysteine proteases as well as alkaline proteinases and elastases play a crucial role in numerous biological processes. Natural peptide aldehydes such as the "microbial alkaline proteinase inhibitor" (MAPI, 1) are valuable tools to characterize novel enzymes and to study their function in nature. Within a drug discovery program we wanted to design and explore non-natural MAPI congeners with novel biological profiles. To that end we devised a simple, practical, and scalable synthesis of MAPI 1 from readily available amino acid building blocks. The modular nature of our approach allows convenient structural modification of the MAPI backbone.

  2. Chemical and functional properties of mutastein, an inhibitor of insoluble glucan synthesis by Streptococcus sobrinus.

    PubMed

    Hayashida, O; Hasumi, K; Endo, A

    1997-04-01

    Mutastein, a potent inhibitor of insoluble glucan synthesis by Streptococcus sobrinus, is a protein with a molecular weight of approximately 2 x 10(6). Amino acid and ELISA analyses suggested that mutastein is a mixture of heterogenous polymers of alpha-casein contained in the culture medium of the producing strain, Aspergillus terreus M3328. Mutastein strongly inhibited the primer-dependent insoluble glucan synthase of S. sobrinus B13. The primer-independent soluble glucan synthase was not affected by mutastein while primer-dependent soluble glucan synthase was slightly activated.

  3. Suppressing angiotensinogen synthesis attenuates kidney cyst formation in a Pkd1 mouse model

    PubMed Central

    Saigusa, Takamitsu; Dang, Yujing; Mullick, Adam E.; Yeh, Steve T.; Zile, Michael R.; Baicu, Catalin F.; Bell, P. Darwin

    2016-01-01

    Activation of the intrarenal renin angiotensin system (RAS) is believed to play an important role in the development of hypertension and cystogenesis in autosomal dominant polycystic kidney disease (ADPKD). Results of clinical studies testing RAS inhibitors in slowing the progression of cystic disease in ADPKD are inconclusive, and we hypothesized that current RAS inhibitors do not adequately suppress intrarenal RAS. For this study, we compared a novel Gen 2 antisense oligonucleotide (ASO) that inhibits angiotensinogen (Agt) synthesis to lisinopril in adult conditional Pkd1 systemic-knockout mice, a model of ADPKD. Six weeks after Pkd1 global gene knockout, the mice were treated with Agt-ASO (66 mg/kg/wk), lisinopril (100 mg/kg/d), PBS (control), or scrambled ASO (66 mg/kg/wk) for 10 wk, followed by tissue collection. Agt ASO resulted in significant reduction in plasma, liver, and kidney Agt, and increased kidney renin compared with control treatments. Kidneys from Agt-ASO-treated mice were not as enlarged and showed reduced cystic volume compared with lisinopril or control treatments. Blood pressure was better controlled with lisinopril than with Agt-ASO. Agt-ASO suppressed cell proliferation in both cystic and noncystic cells compared with lisinopril and control treatments. However, Agt-ASO did not reduce cell proliferation in liver, which indicates that Agt-ASO targets cell signaling pathways that specifically suppresses cystogenesis in the kidney. These data suggest that Agt-ASO effectively attenuates intrarenal RAS and therefore can be a novel and effective agent for treating ADPKD.—Saigusa, T., Dang, Y., Mullick, A. E., Yeh, S. T., Zile, M. R., Baicu, C. F., Bell, P. D. Suppressing angiotensinogen synthesis attenuates kidney cyst formation in a Pkd1 mouse model. PMID:26391272

  4. Synthesis and biological evaluation of urea derivatives as highly potent and selective rho kinase inhibitors.

    PubMed

    Yin, Yan; Lin, Li; Ruiz, Claudia; Khan, Susan; Cameron, Michael D; Grant, Wayne; Pocas, Jennifer; Eid, Nibal; Park, HaJeung; Schröter, Thomas; Lograsso, Philip V; Feng, Yangbo

    2013-05-09

    RhoA and its downstream effector ROCK mediate stress fiber formation and cell contraction through their effects on the phosphorylation of myosin light chain (MLC). Inhibition of the RhoA/ROCK pathway has proven to be a promising strategy for several indications such as cardiovascular disease, glaucoma, and inflammatory disease. In 2010, our group reported urea-based ROCK inhibitors as potential antiglaucoma agents. These compounds showed potent IC50 values in enzymatic and cell-based assays and significant intraocular pressure (IOP)-lowering effects in rats (∼7 mmHg). (22) To develop more advanced ROCK inhibitors targeting various potential applications (such as myocardial infarction, erectile dysfunction, multiple sclerosis, etc.) in addition to glaucoma, a thorough SAR for this urea-based scaffold was studied. The detailed optimization process, counter-screening, and in vitro and in vivo DMPK studies are discussed. Potent and selective ROCK inhibitors with various in vivo pharmacokinetic properties were discovered.

  5. Increased sensitivity to protein synthesis inhibitors in cells lacking tmRNA.

    PubMed Central

    de la Cruz, J; Vioque, A

    2001-01-01

    tmRNA (also known as SsrA or 10Sa RNA) is involved in a trans-translation reaction that contributes to the recycling of stalled ribosomes at the 3' end of an mRNA lacking a stop codon or at an internal mRNA cluster of rare codons. Inactivation of the ssrA gene in most bacteria results in viable cells bearing subtle phenotypes, such as temperature-sensitive growth. Herein, we report on the functional characterization of the ssrA gene in the cyanobacterium Synechocystis sp. strain PCC6803. Deletion of the ssrA gene in Synechocystis resulted in viable cells with a growth rate identical to wild-type cells. However, null ssrA cells (deltassrA) were not viable in the presence of the protein synthesis inhibitors chloramphenicol, lincomycin, spiramycin, tylosin, erythromycin, and spectinomycin at low doses that do not significantly affect the growth of wild-type cells. Sensitivity of deltassrA cells similar to wild-type cells was observed with kasugamycin, fusidic acid, thiostrepton, and puromycin. Antibiotics unrelated to protein synthesis, such as ampicillin or rifampicin, had no differential effect on the deltassrA strain. Furthermore, deletion of the ssrA gene is sufficient to impair global protein synthesis when chloramphenicol is added at sublethal concentrations for the wild-type strain. These results indicate that ribosomes stalled by some protein synthesis inhibitors can be recycled by tmRNA. In addition, this suggests that the first elongation cycle with tmRNA, which incorporates a noncoded alanine on the growing peptide chain, may have mechanistic differences with the normal elongation cycles that bypasses the block produced by these specific antibiotics. tmRNA inactivation could be an useful therapeutic target to increase the sensitivity of pathogenic bacteria against antibiotics. PMID:11780628

  6. Tissue inhibitor of metalloproteinase gene from pearl oyster Pinctada martensii participates in nacre formation.

    PubMed

    Yan, Fang; Jiao, Yu; Deng, Yuewen; Du, Xiaodong; Huang, Ronglian; Wang, Qingheng; Chen, Weiyao

    2014-07-18

    Tissue inhibitors of metalloproteinases (TIMPs) are nature inhibitors of matrix metalloproteinases and play a vital role in the regulation of extracellular matrix turnover, tissue remodeling and bone formation. In this study, the molecular characterization of TIMP and its potential function in nacre formation was described in pearl oyster Pinctada martensii. The cDNA of TIMP gene in P. martensii (Pm-TIMP) was 901 bp long, containing a 5' untranslated region (UTR) of 51 bp, a 3' UTR of 169 bp, and an open reading fragment (ORF) of 681 bp encoding 226 amino acids with an estimated molecular mass of 23.37 kDa and a theoretical isoelectric point of 5.42; The predicted amino acid sequence had a signal peptide, 13 cysteine residues, a N-terminal domain and a C-terminal domain, similar to that from other species. Amino acid multiple alignment showed Pm-TIMP had the highest (41%) identity to that from Crassostrea gigas. Tissue expression analysis indicated Pm-TIMP was highly expressed in nacre formation related-tissues, including mantle and pearl sac. After decreasing Pm-TIMP gene expression by RNA interference (RNAi) technology in the mantle pallium, the inner nacreous layer of the shells showed a disordered growth. These results indicated that the obtained Pm-TIMP in this study participated in nacre formation.

  7. Sorafenib, a multikinase inhibitor, induces formation of stress granules in hepatocarcinoma cells

    PubMed Central

    Adjibade, Pauline; St-Sauveur, Valérie Grenier; Huberdeau, Miguel Quevillon; Fournier, Marie-Josée; Savard, Andreanne; Coudert, Laetitia; Khandjian, Edouard W.; Mazroui, Rachid

    2015-01-01

    Stress granules (SGs) are cytoplasmic RNA multimeric bodies that form under stress conditions known to inhibit translation initiation. In most reported stress cases, the formation of SGs was associated with the cell recovery from stress and survival. In cells derived from cancer, SGs formation was shown to promote resistance to either proteasome inhibitors or 5-Fluorouracil used as chemotherapeutic agents. Despite these studies, the induction of SGs by chemotherapeutic drugs contributing to cancer cells resistance is still understudied. Here we identified sorafenib, a tyrosine kinase inhibitor used to treat hepatocarcinoma, as a potent chemotherapeutic inducer of SGs. The formation of SGs in sorafenib-treated hepatocarcionoma cells correlates with inhibition of translation initiation; both events requiring the phosphorylation of the translation initiation factor eIF2α. Further characterisation of the mechanism of sorafenib-induced SGs revealed PERK as the main eIF2α kinase responsible for SGs formation. Depletion experiments support the implication of PERK-eIF2α-SGs pathway in hepatocarcinoma cells resistance to sorafenib. This study also suggests the existence of an unexpected complex regulatory balance between SGs and phospho-eIF2α where SGs dampen the activation of the phospho-eIF2α-downstream ATF4 cell death pathway. PMID:26556863

  8. An inhibitor of the kinesin spindle protein activates the intrinsic apoptotic pathway independently of p53 and de novo protein synthesis.

    PubMed

    Tao, Weikang; South, Victoria J; Diehl, Ronald E; Davide, Joseph P; Sepp-Lorenzino, Laura; Fraley, Mark E; Arrington, Kenneth L; Lobell, Robert B

    2007-01-01

    The kinesin spindle protein (KSP), a microtubule motor protein, is essential for the formation of bipolar spindles during mitosis. Inhibition of KSP activates the spindle checkpoint and causes apoptosis. It was shown that prolonged inhibition of KSP activates Bax and caspase-3, which requires a competent spindle checkpoint and couples with mitotic slippage. Here we investigated how Bax is activated by KSP inhibition and the roles of Bax and p53 in KSP inhibitor-induced apoptosis. We demonstrate that small interfering RNA-mediated knockdown of Bax greatly attenuates KSP inhibitor-induced apoptosis and that Bax activation is upstream of caspase activation. This indicates that Bax mediates the lethality of KSP inhibitors and that KSP inhibition provokes apoptosis via the intrinsic apoptotic pathway where Bax activation is prior to caspase activation. Although the BH3-only protein Puma is induced after mitotic slippage, suppression of de novo protein synthesis that abrogates Puma induction does not block activation of Bax or caspase-3, indicating that Bax activation is triggered by a posttranslational event. Comparison of KSP inhibitor-induced apoptosis between matched cell lines containing either functional or deficient p53 reveals that inhibition of KSP induces apoptosis independently of p53 and that p53 is dispensable for spindle checkpoint function. Thus, KSP inhibitors should be active in p53-deficient tumors.

  9. Total synthesis of phorboxazole A via de novo oxazole formation: convergent total synthesis.

    PubMed

    Wang, Bo; Hansen, T Matthew; Weyer, Lynn; Wu, Dimao; Wang, Ting; Christmann, Mathias; Lu, Yingtao; Ying, Lu; Engler, Mary M; Cink, Russell D; Lee, Chi-Sing; Ahmed, Feryan; Forsyth, Craig J

    2011-02-09

    The phorboxazoles are mixed non-ribosomal peptide synthase/polyketide synthase biosynthetic products that embody polyketide domains joined via two serine-derived oxazole moieties. Total syntheses of phorboxazole A and analogues have been developed that rely upon the convergent coupling of three fragments via biomimetically inspired de novo oxazole formation. First, the macrolide-containing domain of phorboxazole A was assembled from C3-C17 and C18-C30 building blocks via formation of the C16-C18 oxazole, followed by macrolide ring closure involving an intramolecular Still-Genarri olefination at C2-C3. Alternatively, a ring-closing metathesis process was optimized to deliver the natural product's (2Z)-acrylate with remarkable geometrical selectivity. The C31-C46 side-chain domain was then appended to the macrolide by a second serine amide-derived oxazole assembly. Minimal deprotection then afforded phorboxazole A. This generally effective strategy was then dramatically abbreviated by employing a total synthesis approach wherein both of the natural product's oxazole moieties were installed simultaneously. A key bis-amide precursor to the bis-oxazole was formed in a chemoselective one-pot, bis-amidation sequence without the use of amino or carboxyl protecting groups. Thereafter, both oxazoles were formed from the key C18 and C31 bis-N-(1-hydroxyalkan-2-yl)amide in a simultaneous fashion, involving oxidation-cyclodehydrations. This synthetic strategy provides a total synthesis of phorboxazole A in 18% yield over nine steps from C3-C17 and C18-C30 synthetic fragments. It illustrates the utility of a synthetic design to form a mixed non-ribosomal peptide synthase/polyketide synthase biosynthetic product based upon biomimetic oxazole formation initiated by amide bond formation to join synthetic building blocks.

  10. Laboratory Evaluation of Five Chitin Synthesis Inhibitors Against the Colorado Potato Beetle, Leptinotarsa decemlineata

    PubMed Central

    Karimzadeh, R.; Hejazi, M. J.; Rahimzadeh Khoei, F.; Moghaddam, M.

    2007-01-01

    Results of laboratory experiments are reported that tested the effects of five chitin synthesis inhibitors, diflubenzuron, cyromazine, lufenuron, hexaflumuron and triflumuron. on second instars of the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Crysomelidae), originally collected from potato fields of Bostanabaad, a town 66 km southeast of Tabriz, Iran. In bioassays, the larvae were fed potato leaves dipped in aqueous solutions containing chitin synthesis inhibitors. The mortalities and abnormalities of the treated larvae were recorded 72 hours after treatments. LC50 values were 58.6, 69.6, 27.3, 0.79 and 81.4 mg ai/ L for diflubenzuron, cyromazine, lufenuron, hexaflumuron and triflumuron, respectively. Compared with phosalone, which is one of the common insecticides used for controlling this pest in Iran, lufenuron and hexaflumuron seem to be much more potent, and if they perform equally well in the field, they would be suitable candidates to be considered as reduced risk insecticides in management programs for L. decemlineata due to much wider margin of safety for mammals and considerably fewer undesirable environmental side effects. PMID:20345285

  11. Chitin synthesis inhibitor effect on Aedes aegypti populations susceptible and resistant to organophosphate temephos.

    PubMed

    Martins, Ademir Jesus; Belinato, Thiago Affonso; Lima, José Bento Pereira; Valle, Denise

    2008-06-01

    In Brazil, dengue vector control is hampered by the resistance of Aedes aegypti L. populations to organophosphates (OPs). Insect growth regulators (IGRs) are a promising alternative, as their mechanisms of action are different from those of conventional insecticides. The authors analysed the effect of the IGR triflumuron, a chitin synthesis inhibitor, on the Ae. aegypti insecticide-susceptible strain Rockefeller, as well as on field populations both susceptible (TemS) and resistant (TemR) to the OP temephos. Triflumuron arrested development and inhibited adult emergence of the Rockefeller strain in a dose-dependent way (EI(50) and EI(90) of 0.8 and 1.8 microg L(-1) respectively). A direct relationship between triflumuron concentration and the precocity of its effects was evident. TemS and TemR temephos resistance ratios (RR(90)) were 4.5 and 13.8, triflumuron RR(90) being 1.0 and 1.3 respectively. The IGR triflumuron exhibited a dose-dependent effect against the reference Ae. aegypti Rockefeller strain. It was also effective against two field populations, regardless of their OP resistance status. The present results are discussed in the context of utilization of chitin synthesis inhibitors as potential alternatives in the control of Ae. aegypti in Brazil. Copyright (c) 2008 Society of Chemical Industry.

  12. Laboratory evaluation of five chitin synthesis inhibitors against the colorado potato beetle, Leptinotarsa decemlineata.

    PubMed

    Karimzadeh, R; Hejazi, M J; Rahimzadeh Khoei, F; Moghaddam, M

    2007-01-01

    Results of laboratory experiments are reported that tested the effects of five chitin synthesis inhibitors, diflubenzuron, cyromazine, lufenuron, hexaflumuron and triflumuron. on second instars of the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Crysomelidae), originally collected from potato fields of Bostanabaad, a town 66 km southeast of Tabriz, Iran. In bioassays, the larvae were fed potato leaves dipped in aqueous solutions containing chitin synthesis inhibitors. The mortalities and abnormalities of the treated larvae were recorded 72 hours after treatments. LC(50) values were 58.6, 69.6, 27.3, 0.79 and 81.4 mg ai/ L for diflubenzuron, cyromazine, lufenuron, hexaflumuron and triflumuron, respectively. Compared with phosalone, which is one of the common insecticides used for controlling this pest in Iran, lufenuron and hexaflumuron seem to be much more potent, and if they perform equally well in the field, they would be suitable candidates to be considered as reduced risk insecticides in management programs for L. decemlineata due to much wider margin of safety for mammals and considerably fewer undesirable environmental side effects.

  13. Total synthesis and structure-activity relationship studies of a series of selective G protein inhibitors

    NASA Astrophysics Data System (ADS)

    Xiong, Xiao-Feng; Zhang, Hang; Underwood, Christina R.; Harpsøe, Kasper; Gardella, Thomas J.; Wöldike, Mie F.; Mannstadt, Michael; Gloriam, David E.; Bräuner-Osborne, Hans; Strømgaard, Kristian

    2016-11-01

    G proteins are key mediators of G protein-coupled receptor signalling, which facilitates a plethora of important physiological processes. The cyclic depsipeptides YM-254890 and FR900359 are the only known specific inhibitors of the Gq subfamily of G proteins; however, no synthetic route has been reported previously for these complex natural products and they are not easily isolated from natural sources. Here we report the first total synthesis of YM-254890 and FR900359, as well as of two known analogues, YM-385780 and YM-385781. The versatility of the synthetic approach also enabled the design and synthesis of ten analogues, which provided the first structure-activity relationship study for this class of compounds. Pharmacological characterization of all the compounds at Gq-, Gi- and Gs-mediated signalling provided succinct information on the structural requirements for inhibition, and demonstrated that both YM-254890 and FR900359 are highly potent inhibitors of Gq signalling, with FR900359 being the most potent. These natural products and their analogues represent unique tools for explorative studies of G protein inhibition.

  14. Protein synthesis inhibitors attenuate water flow in vasopressin-stimulated toad urinary bladder

    SciTech Connect

    Hoch, B.S.; Ast, M.B.; Fusco, M.J.; Jacoby, M.; Levine, S.D. )

    1988-01-01

    Vasopressin stimulates the introduction of aggregated particles, which may represent pathways for water flow, into the luminal membrane of toad urinary bladder. It is not known whether water transport pathways are degraded on removal from membrane or whether they are recycled. The authors examined the effect of the protein synthesis inhibitors cycloheximide and puromycin using repeated 30-min cycles of vasopressin followed by washout of vasopressin, all in the presence of an osmotic gradient, a protocol that maximizes aggregate turnover. High dose cycloheximide inhibited flow immediately. Low dose cycloheximide did not affect initial flow. In the absence of vasopressin, inhibition did not develop. Despite the inhibition of flow in vasopressin-treated tissues, the cAMP-dependent protein kinase ratio was elevated in cycloheximide-treated tissues, suggesting modulation at a distal site in the stimulatory cascade. ({sup 14}C)urea permeability was not inhibited by cycloheximide. Puromycin also inhibited water flow by the fourth challenge with vasopressin. The data suggest that protein synthesis inhibitors attenuate flow at a site that is distal to cAMP-dependent protein kinase. However, the reversal of inhibition in MIX-treated tissues suggests that the water pathway can be fully manifested given suitable stimulation. They conclude that either large stores of the transport system are available or that the transport system is extensively recycled on retrieval from the membrane.

  15. Protein synthesis inhibitors enhance the expression of mRNAs for early inducible inflammatory genes via mRNA stabilization.

    PubMed

    Yamazaki, Soh; Takeshige, Koichiro

    2008-02-01

    Expression of inflammatory genes is regulated at multiple steps, including transcriptional activation and mRNA stabilization. During an investigation into the requirement of de novo protein synthesis for the induction of inflammatory genes, it was revealed that protein synthesis inhibitors unexpectedly potentiated the induction of mRNAs for primary response genes, while the inhibitors suppressed the induction of secondary inducible genes as previously described. Stimulus-induced nuclear translocation and promoter recruitment of NF-kappaB, which is responsible for the transcriptional activation of many inflammatory genes, were largely unaffected by the inhibitors. Instead, these inhibitors prolonged the half-lives of all of the primary inducible mRNAs tested. Thus, these findings emphasize the important contribution of regulated mRNA longevity to gene expression induced by pro-inflammatory stimulation.

  16. The interrelationship between mucopeptide and ribitol teichoic acid formation as shown by the effect of inhibitors

    PubMed Central

    Rogers, H. J.; Garrett, A. J.

    1965-01-01

    1. The biosynthesis of teichoic acid in cell suspensions of two strains of Staphylococcus aureus is partially inhibited by the same low concentrations of penicillin that inhibit mucopeptide synthesis by 90–100%. Further increase in the concentration of the antibiotic by several hundred-fold still fails to cause any greater inhibition of teichoic acid synthesis. 2. Other conditions, such as amino acid deficiency or the presence of cycloserine or 5-fluorouracil, that inhibit mucopeptide synthesis also inhibit teichoic acid formation. 3. The degree of inhibition of teichoic acid synthesis caused by relatively high concentrations (10μg./ml.) of benzylpenicillin depends critically on the age of the culture from which the cell suspensions have been prepared. 4. No significant amounts of soluble teichoic acid have been found in the fluid from cells incubated in the presence of penicillin. 5. A high proportion of the teichoic acid formed in the presence of penicillin can be removed from wall preparations at room temperature by 0·1n-ammonia. This is not true of the teichoic acid formed in the absence of penicillin. 6. The teichoic acid extracted with ammonia from preparations of cell walls made from cells treated with penicillin is excluded from Sephadex G-25, has a low molar ratio of glucosamine to phosphorus and contains muramic acid, alanine, glutamic acid, glycine and lysine. 7. The implications of these results for the mechanism of action of penicillin are discussed. PMID:14343137

  17. Synthesis and structure-activity relationships of selective norepinephrine reuptake inhibitors (sNRI) with improved pharmaceutical characteristics.

    PubMed

    Pontillo, Joseph; Wu, Dongpei; Ching, Brett; Hudson, Sarah; Genicot, Marc J; Gao, Yinghong; Ewing, Todd; Fleck, Beth A; Gogas, Kathleen; Aparicio, Anna; Wang, Hua; Wen, Jenny; Wade, Warren S

    2008-12-01

    The design synthesis and SAR of a series of chiral ring-constrained norepinephrine reuptake inhibitors with improved physicochemical properties is described. Typical compounds are potent (IC(50)s<10 nM), selective against the other monoamine transporters, weak CYP2D6 inhibitors (IC(50)s>1 microM) and stable to oxidation by human liver microsomes. In addition, the compounds exhibit a favorable polarity profile.

  18. Synthesis of novel fluorocarbocyclic nucleosides and nucleotides as potential inhibitors of human immunodeficiency virus

    SciTech Connect

    Hilpert, H.

    1989-01-01

    3[prime]-Azido-3[prime]-deoxythymidine (AZT) and 2[prime], 3[prime]-dideoxycytidine (DDC) are potent in vivo inhibitors of human immunodeficiency virus. Due to their short half-life in the body and undesired side-effects compounds with improved bioavailability were designed. A feature of these analogues was the replacement of the heterocyclic oxygen atom by an isosteric CHF-group thus stabilizing the labile glycosidic bond against metabolic breakdown. A versatile and short synthesis, starting from ketone, serves to construct the highly functionalized and protected key intermediates. These ([alpha]- and [beta]-fluoro epimeric) intermediates were elaborated to eight fluorocarbocyclic nucleoside analogues linked with a thymine base, an adenine base, and a guanine base. An attempt was made to prepare analogues of the potent HIV inhibitor carbovir c. The unexpected oxidation of the double bond of compound d, instead of the desired Baeyer-Villiger ring-expansion, meant that the synthetic scheme was redundant. A second total synthesis involves the preparation of the three fluorocarbocyclic phosphonates. These analogues possess additionally a P-C linkage which should markedly enhance the stability of the side chain. To perform enzyme inhibition tests, three analogues were chemically activated to the biologically active triphosphates. Inhibition tests on HIV associated reverse transcriptase confirmed the high activity of one of the AZT triphosphates. The fluorocarbocyclic counterpart was two orders of magnitude less active. A fluorocarbocyclic phosphonate was twice as active as the AZT triphosphate. Neither the eight nucleoside analogues nor the three phosphonates displayed significant activity against HIV infected cells. Crystallographic data of two fluorocarbocyclic nucleosides, two potent HIV inhibitors, and some 20 examples of 2[prime]-deoxyribonucleosides have been compared.

  19. Cell-based assay of MGAT2-driven diacylglycerol synthesis for profiling inhibitors: use of a stable isotope-labeled substrate and high-resolution LC/MS.

    PubMed

    Onorato, Joelle M; Chu, Ching-Hsuen; Ma, Zhengping; Kopcho, Lisa M; Chao, Hannguang J; Lawrence, R Michael; Cheng, Dong

    2015-03-01

    To demonstrate monoacylglycerol acyltransferase 2 (MGAT2)-mediated enzyme activity in a cellular context, cells of the murine secretin tumor cell-1 line of enteroendocrine origin were used to construct human MGAT2-expressing recombinant cell lines. Low throughput and utilization of radiolabeled substrate in a traditional TLC technique were circumvented by development of a high-resolution LC/MS platform. Monitoring incorporation of stable isotope-labeled D31-palmitate into diacylglycerol (DAG) allowed selective tracing of the cellular DAG synthesis activity. This assay format dramatically reduced background interference and increased the sensitivity and the signal window compared with the TLC method. Using this assay, several MGAT2 inhibitors from different chemotypes were characterized. The described cell-based assay adds a new methodology for the development and evaluation of MGAT2 inhibitors for the treatment of obesity and type 2 diabetes. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  20. Effects of prostaglandins and prostaglandin synthesis inhibitors on sexual behavior in boars.

    PubMed

    Estienne, Mark J; Harper, Allen F; Beal, Wilfred E; Crawford, Russell J

    2007-07-01

    Experiments were conducted investigating the effects of prostaglandins and prostaglandin synthesis inhibitors on libido in boars. In Experiment 1, two prostaglandin products were compared with regard to expediting the training of boars for semen collection. On each of five consecutive days, boars received i.m. treatment with saline, dinoprost tromethamine or cloprostenol sodium (n=12/group). On each of day 1 (p=0.06), day 2 (p<0.05), and day 3 (p<0.05), but not on day 4 or 5 (p>0.1), the percentage of boars collected after dinoprost tromethamine, but not cloprostenol sodium, was greater than controls. In Experiments 2 and 3, libido in boars that were trained previously for semen collection was assessed after treatment with prostaglandin synthesis inhibitors, testing the hypothesis that endogenous release of prostaglandin is necessary for expression of sexual behaviors. In Experiment 2, boars treated with flunixin meglumine (n=12) had suppressed (p<0.01) levels of 15-ketodihydro-prostaglandin-F(2) (PGFM) in serum but characteristics of libido were similar (p>0.1) to controls (n=12). In Experiment 3, boars were administered indomethacin orally (n=12) or served as untreated controls (n=12). Indomethacin decreased (p<0.01) serum levels of PGFM, increased (p<0.05) the number of false mounts (mounting artificial sow but dismounting before an ejaculate was collected), and tended (p=0.09) to lengthen the interval between entering the collection pen and the start of ejaculation. These results suggest that prostaglandin synthesis and release is necessary for the complete display of normal sexual behaviors in boars.

  1. Synthesis of Bi-substrate State Mimics of Dihydropteroate Synthase as Potential Inhibitors and Molecular Probes

    PubMed Central

    Qi, Jianjun; Virga, Kristopher G.; Das, Sourav; Zhao, Ying; Yun, Mi-Kyung; White, Stephen W.; Lee, Richard E.

    2010-01-01

    The increasing emergence of resistant bacteria drives us to design and develop new antimicrobial agents. Pursuant to that goal, a new targeting approach of the dihydropteroate synthase enzyme, which serves as the site of action for the sulfonamide class of antimicrobial agents, is being explored. Using structural information, a new class of transition state mimics has been designed and synthesized that have the capacity to bind to the pterin, phosphate and para-amino binding sites. The design, synthesis and evaluation of these compounds as inhibitors of Bacillus anthracis dihydropteroate synthase is described herein. Outcomes from this work have identified the first trivalent inhibitors of dihydropteroate synthase whose activity displayed slow binding inhibition. The most active compounds in this series contained an oxidized pterin ring. The binding of these inhibitors was modeled into the dihydropteroate synthase active site and demonstrated a good correlation with the observed bioassay data, as well as provided important insight for the future design of higher affinity transition state mimics. PMID:21216602

  2. Design, Synthesis, and Protein Crystallography of Biaryltriazoles as Potent Tautomerase Inhibitors of Macrophage Migration Inhibitory Factor

    PubMed Central

    Dziedzic, Pawel; Cisneros, José A.; Robertson, Michael J.; Hare, Alissa A.; Danford, Nadia E.; Baxter, Richard H. G.; Jorgensen, William L.

    2015-01-01

    Optimization is reported for biaryltriazoles as inhibitors of the tautomerase activity of human macrophage migration inhibitory factor (MIF), a proinflammatory cytokine associated with numerous inflammatory diseases and cancer. A combined approach was taken featuring organic synthesis, enzymatic assaying, crystallography, and modeling including free-energy perturbation (FEP) calculations. X-ray crystal structures for 3a and 3b bound to MIF are reported and provided a basis for the modeling efforts. The accommodation of the inhibitors in the binding site is striking with multiple hydrogen bonds and aryl–aryl interactions. Additional modeling encouraged pursuit of 5-phenoxyquinolinyl analogues, which led to the very potent compound 3s. Activity was further enhanced by addition of a fluorine atom adjacent to the phenolic hydroxyl group as in 3w, 3z, 3aa, and 3bb to strengthen a key hydrogen bond. It is also shown that physical properties of the compounds can be modulated by variation of solvent-exposed substituents. Several of the compounds are likely the most potent known MIF tautomerase inhibitors; the most active ones are more than 1000-fold more active than the well-studied (R)-ISO-1 and more than 200-fold more active than the chromen-4-one Orita-13. PMID:25697265

  3. Design, Synthesis, and Protein Crystallography of Biaryltriazoles as Potent Tautomerase Inhibitors of Macrophage Migration Inhibitory Factor

    SciTech Connect

    Dziedzic, Pawel; Cisneros, José A.; Robertson, Michael J.; Hare, Alissa A.; Danford, Nadia E.; Baxter, Richard H. G.; Jorgensen, William L.

    2015-02-20

    Optimization is reported for biaryltriazoles as inhibitors of the tautomerase activity of human macrophage migration inhibitory factor (MIF), a proinflammatory cytokine associated with numerous inflammatory diseases and cancer. A combined approach was taken featuring organic synthesis, enzymatic assaying, crystallography, and modeling including free-energy perturbation (FEP) calculations. X-ray crystal structures for 3a and 3b bound to MIF are reported and provided a basis for the modeling efforts. The accommodation of the inhibitors in the binding site is striking with multiple hydrogen bonds and aryl–aryl interactions. Additional modeling encouraged pursuit of 5-phenoxyquinolinyl analogues, which led to the very potent compound 3s. Activity was further enhanced by addition of a fluorine atom adjacent to the phenolic hydroxyl group as in 3w, 3z, 3aa, and 3bb to strengthen a key hydrogen bond. We also show that physical properties of the compounds can be modulated by variation of solvent-exposed substituents. Several of the compounds are likely the most potent known MIF tautomerase inhibitors; the most active ones are more than 1000-fold more active than the well-studied (R)-ISO-1 and more than 200-fold more active than the chromen-4-one Orita-13.

  4. Design, Synthesis, and Protein Crystallography of Biaryltriazoles as Potent Tautomerase Inhibitors of Macrophage Migration Inhibitory Factor

    DOE PAGES

    Dziedzic, Pawel; Cisneros, José A.; Robertson, Michael J.; ...

    2015-02-20

    Optimization is reported for biaryltriazoles as inhibitors of the tautomerase activity of human macrophage migration inhibitory factor (MIF), a proinflammatory cytokine associated with numerous inflammatory diseases and cancer. A combined approach was taken featuring organic synthesis, enzymatic assaying, crystallography, and modeling including free-energy perturbation (FEP) calculations. X-ray crystal structures for 3a and 3b bound to MIF are reported and provided a basis for the modeling efforts. The accommodation of the inhibitors in the binding site is striking with multiple hydrogen bonds and aryl–aryl interactions. Additional modeling encouraged pursuit of 5-phenoxyquinolinyl analogues, which led to the very potent compound 3s. Activitymore » was further enhanced by addition of a fluorine atom adjacent to the phenolic hydroxyl group as in 3w, 3z, 3aa, and 3bb to strengthen a key hydrogen bond. We also show that physical properties of the compounds can be modulated by variation of solvent-exposed substituents. Several of the compounds are likely the most potent known MIF tautomerase inhibitors; the most active ones are more than 1000-fold more active than the well-studied (R)-ISO-1 and more than 200-fold more active than the chromen-4-one Orita-13.« less

  5. The Design, Synthesis and Structure-Activity Relationship of Mixed Serotonin, Norepinephrine and Dopamine Uptake Inhibitors

    NASA Astrophysics Data System (ADS)

    Chen, Zhengming; Yang, Ji; Skolnick, Phil

    The evolution of antidepressants over the past four decades has involved the replacement of drugs with a multiplicity of effects (e.g., TCAs) by those with selective actions (i.e., SSRIs). This strategy was employed to reduce the adverse effects of TCAs, largely by eliminating interactions with certain neurotransmitters or receptors. Although these more selective compounds may be better tolerated by patients, selective drugs, specifically SSRIs, are not superior to older drugs in treating depressed patients as measured by response and remission rates. It may be an advantage to increase synaptic levels of both serotonin and norepinephrine, as in the case of dual uptake inhibitors like duloxetine and venlafaxine. An important recent development has been the emergence of the triple-uptake inhibitors (TUIs/SNDRIs), which inhibit the uptake of the three neurotransmitters most closely linked to depression: serotonin, norepinephrine, and dopamine. Preclinical studies and clinical trials indicate that a drug inhibiting the reuptake of all three of these neurotransmitters could produce more rapid onset of action and greater efficacy than traditional antidepressants. This review will detail the medicinal chemistry involved in the design, synthesis and discovery of mixed serotonin, norepinephrine and dopamine transporter uptake inhibitors.

  6. Inhibitors of Copi and Copii Do Not Block PEX3-Mediated Peroxisome Synthesis

    PubMed Central

    South, Sarah T.; Sacksteder, Katherine A.; Li, Xiaoling; Liu, Yifei; Gould, Stephen J.

    2000-01-01

    In humans, defects in peroxisome biogenesis are the cause of lethal diseases typified by Zellweger syndrome. Here, we show that inactivating mutations in human PEX3 cause Zellweger syndrome, abrogate peroxisome membrane synthesis, and result in reduced abundance of peroxisomal membrane proteins (PMPs) and/or mislocalization of PMPs to the mitochondria. Previous studies have suggested that PEX3 may traffic through the ER en route to the peroxisome, that the COPI inhibitor, brefeldin A, leads to accumulation of PEX3 in the ER, and that PEX3 overexpression alters the morphology of the ER. However, we were unable to detect PEX3 in the ER at early times after expression. Furthermore, we find that inhibition of COPI function by brefeldin A has no effect on trafficking of PEX3 to peroxisomes and does not inhibit PEX3-mediated peroxisome biogenesis. We also find that inhibition of COPII-dependent membrane traffic by a dominant negative SAR1 mutant fails to block PEX3 transport to peroxisomes and PEX3-mediated peroxisome synthesis. Based on these results, we propose that PEX3 targeting to peroxisomes and PEX3-mediated peroxisome membrane synthesis may occur independently of COPI- and COPII-dependent membrane traffic. PMID:10871277

  7. Looking for a generic inhibitor of amyloid-like fibril formation among flavone derivatives

    PubMed Central

    Šneideris, Tomas; Baranauskienė, Lina; Cannon, Jonathan G.; Rutkienė, Rasa; Meškys, Rolandas

    2015-01-01

    A range of diseases is associated with amyloid fibril formation. Despite different proteins being responsible for each disease, all of them share similar features including beta-sheet-rich secondary structure and fibril-like protein aggregates. A number of proteins can form amyloid-like fibrils in vitro, resembling structural features of disease-related amyloids. Given these generic structural properties of amyloid and amyloid-like fibrils, generic inhibitors of fibril formation would be of interest for treatment of amyloid diseases. Recently, we identified five outstanding inhibitors of insulin amyloid-like fibril formation among the pool of 265 commercially available flavone derivatives. Here we report testing of these five compounds and of epi-gallocatechine-3-gallate (EGCG) on aggregation of alpha-synuclein and beta-amyloid. We used a Thioflavin T (ThT) fluorescence assay, relying on halftimes of aggregation as the measure of inhibition. This method avoids large numbers of false positive results. Our data indicate that four of the five flavones and EGCG inhibit alpha-synuclein aggregation in a concentration-dependent manner. However none of these derivatives were able to increase halftimes of aggregation of beta-amyloid. PMID:26421240

  8. Synthesis and evaluation of tripeptidic plasmin inhibitors with nitrile as warhead.

    PubMed

    Teno, Naoki; Otsubo, Tadamune; Gohda, Keigo; Wanaka, Keiko; Sueda, Takuya; Ikeda, Kiyoshi; Hijikata-Okunomiya, Akiko; Tsuda, Yuko

    2012-10-01

    Plasmin is best known as the key molecule in the fibrinolytic system, which is critical for clot lysis and can initiate matrix metalloproteinase (MMP) activation cascade. Along with MMP, plasmin is suggested to be involved in physiological processes that are linked to the risk of carcinoma formation. Plasmin inhibitors could be perceived as a promising new principle in the treatment of diseases triggered by plasmin. On the basis of the peptidic sequence derived from the synthetic plasmin substrate, a series of peptidic plasmin inhibitors possessing nitrile as warhead were prepared and evaluated for their inhibitory activities against plasmin and other serine proteases, plasma kallikrein and urokinase. The most potent peptidic inhibitors with the nitrile warhead exhibit the potency toward plasmin (IC(50)  = 7.7-11 μM) and are characterized by their selectivity profile against plasma kallikrein and urokinase. The results and molecular modeling of the peptidic inhibitor complexed with plasmin reveal that the P2 residue makes favorable contacts with the open binding pocket comprising the S2 and S3 subsites of plasmin.

  9. The design and synthesis of novel N-hydroxyformamide inhibitors of ADAM-TS4 for the treatment of osteoarthritis.

    PubMed

    De Savi, Chris; Pape, Andrew; Cumming, John G; Ting, Attilla; Smith, Peter D; Burrows, Jeremy N; Mills, Mark; Davies, Chris; Lamont, Scott; Milne, David; Cook, Calum; Moore, Peter; Sawyer, Yvonne; Gerhardt, Stefan

    2011-03-01

    Two series of N-hydroxyformamide inhibitors of ADAM-TS4 were identified from screening compounds previously synthesised as inhibitors of matrix metalloproteinase-13 (collagenase-3). Understanding of the binding mode of this class of compound using ADAM-TS1 as a structural surrogate has led to the discovery of potent and very selective inhibitors with favourable DMPK properties. Synthesis, structure-activity relationships, and strategies to improve selectivity and lower in vivo metabolic clearance are described. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Image-Guided Synthesis Reveals Potent Blood-Brain Barrier Permeable Histone Deacetylase Inhibitors

    PubMed Central

    2014-01-01

    Recent studies have revealed that several histone deacetylase (HDAC) inhibitors, which are used to study/treat brain diseases, show low blood-brain barrier (BBB) penetration. In addition to low HDAC potency and selectivity observed, poor brain penetrance may account for the high doses needed to achieve therapeutic efficacy. Here we report the development and evaluation of highly potent and blood-brain barrier permeable HDAC inhibitors for CNS applications based on an image-guided approach involving the parallel synthesis and radiolabeling of a series of compounds based on the benzamide HDAC inhibitor, MS-275 as a template. BBB penetration was optimized by rapid carbon-11 labeling and PET imaging in the baboon model and using the imaging derived data on BBB penetration from each compound to feed back into the design process. A total of 17 compounds were evaluated, revealing molecules with both high binding affinity and BBB permeability. A key element conferring BBB penetration in this benzamide series was a basic benzylic amine. These derivatives exhibited 1–100 nM inhibitory activity against recombinant human HDAC1 and HDAC2. Three of the carbon-11 labeled aminomethyl benzamide derivatives showed high BBB penetration (∼0.015%ID/cc) and regional binding heterogeneity in the brain (high in thalamus and cerebellum). Taken together this approach has afforded a strategy and a predictive model for developing highly potent and BBB permeable HDAC inhibitors for CNS applications and for the discovery of novel candidate molecules for small molecule probes and drugs. PMID:24780082

  11. Synthesis of stable and selective inhibitors of human galectins-1 and -3.

    PubMed

    Giguère, Denis; Bonin, Marc-André; Cloutier, Philipe; Patnam, Ramesh; St-Pierre, Christian; Sato, Sachiko; Roy, René

    2008-08-15

    The syntheses of glycolytically stable galactosides and lactosides have been made toward the selective inhibition of human galectins-1 and -3. Transition metal-catalyzed cross-coupling reactions were used to create carbon-carbon bond formation (Sonogashira, Suzuki, Heck, Glaser). Additionally, Hantzsch condensation was used to create novel 2-aminothiazoles which reacted with a panel of acylating and sulfonylating reagents. Moreover, dimeric galactosides and lactosides bearing triazoles, regiospecifically prepared using copper-catalyzed Huisgen azide-alkyne [1,3]-dipolar cycloaddition, provided efficient galectins-1 and -3 inhibitors. Best monovalent inhibitor among the tested series was (E)-methyl 2-phenyl-4-(beta-D-galactopyranosyl)-but-2-enoate 15 with inhibitory potency of 313 microM against galectin-1 and best dimers were bis-lactoside 68 and 75 having both inhibitory properties of 160 microM against Galectin-3.

  12. In vitro synthesis of pre-proteins of vacuolar compartmented proteinase inhibitors that accumulate in leaves of wounded tomato plants.

    PubMed

    Nelson, C E; Ryan, C A

    1980-04-01

    Two proteinase inhibitor proteins that are compartmented in leaf vacuoles (lysosomes) were synthesized in vitro. mRNA was isolated from 17-day-old expanding tomato leaves by extraction with chaotropic buffers followed by chromatography on oligo(dT)-cellulose and was translated with a rabbit reticulocyte lysate system. Preparations of mRNA from leaves of both wounded plants and unwounded plants directed the incorporation of equivalent amounts of label into trichloroacetic acid-precipitable proteins. Only mRNA from leaves of wounded plants directed label into proteins that could be immunoprecipitated with rabbit IgG specific for either inhibitor I or inhibitor II. These results indicate that the wound-induced accumulation of proteinase inhibitors I and II in leaf vacuoles is a result of the presence of translatable mRNA species not present in leaves of unwounded plants. Gel electrophoresis of the immunoprecipitates in NaDodSO(4)/urea/polyacrylamide gels revealed that inhibitors I and II were translated in vitro as precursors about 2000 daltons larger than the inhibitors found in leaves. The presence of the additional polypeptide sequences in the newly synthesized inhibitors indicates that the inhibitors are processed either during or after synthesis, and the presequences may be signal peptides that are part of the process of inhibitor transport into the vacuolar compartments of tomato leaf cells.

  13. Infusion of protein synthesis inhibitors in the entorhinal cortex blocks consolidation but not reconsolidation of object recognition memory.

    PubMed

    Lima, Ramón H; Rossato, Janine I; Furini, Cristiane R; Bevilaqua, Lia R; Izquierdo, Iván; Cammarota, Martín

    2009-05-01

    Memory consolidation and reconsolidation require the induction of protein synthesis in some areas of the brain. Here, we show that infusion of the protein synthesis inhibitors anisomycin, emetine and cycloheximide in the entorhinal cortex immediately but not 180 min or 360 min after training in an object recognition learning task hinders long-term memory retention without affecting short-term memory or behavioral performance. Inhibition of protein synthesis in the entorhinal cortex after memory reactivation involving either a combination of familiar and novel objects or two familiar objects does not affect retention. Our data suggest that protein synthesis in the entorhinal cortex is necessary early after training for consolidation of object recognition memory. However, inhibition of protein synthesis in this cortical region after memory retrieval does not seem to affect the stability of the recognition trace.

  14. Phthalazine PDE4 inhibitors. Part 3: the synthesis and in vitro evaluation of derivatives with a hydrogen bond acceptor.

    PubMed

    Napoletano, Mauro; Norcini, Gabriele; Pellacini, Franco; Marchini, Francesco; Morazzoni, Gabriele; Fattori, Raimondo; Ferlenga, Pierpaolo; Pradella, Lorenzo

    2002-01-07

    This communication describes the synthesis and in vitro evaluation of a novel and potent series of phthalazine phosphodiesterase type (IV) (PDE4) inhibitors. The interaction with two distinct polar binding sites allowed us to eliminate the cyclopentyloxy substitution from rolipram-like analogues.

  15. Phthalazine PDE4 inhibitors. Part 2: the synthesis and biological evaluation of 6-methoxy-1,4-disubstituted derivatives.

    PubMed

    Napoletano, M; Norcini, G; Pellacini, F; Marchini, F; Morazzoni, G; Ferlenga, P; Pradella, L

    2001-01-08

    This communication describes the synthesis and in vitro evaluation of a novel and potent series of phosphodiesterase type IV (PDE4) inhibitors. The compounds described present substituents in position 4 of the phthalazine ring to replace the commonly observed cyclopentyloxy moiety of rolipram analogues. Preliminary evidences of reduced side effects compared to standards and improved pharmacokinetic properties for selected derivatives are also reported.

  16. Effects of a Number of Classes of 50S Inhibitors on Stop Codon Readthrough during Protein Synthesis

    PubMed Central

    Thompson, Jill; Pratt, Catherine A.; Dahlberg, Albert E.

    2004-01-01

    The effect of a number of antibiotics on stop codon readthrough during protein synthesis in Escherichia coli was examined. Inhibitors which bind close to the entrance of the peptide exit tunnel on the 50S ribosomal subunit promote substantial levels of readthrough, presumably by disrupting the mechanism of peptide release. PMID:15561874

  17. WRN protects against topo I but not topo II inhibitors by preventing DNA break formation

    PubMed Central

    Christmann, Markus; Tomicic, Maja T.; Gestrich, Christopher; Roos, Wynand P.; Bohr, Vilhelm A.; Kaina, Bernd

    2008-01-01

    The Werner syndrome helicase/3′-exonuclease (WRN) is a major component of the DNA repair and replication machinery. To analyze whether WRN is involved in the repair of topoisomerase-induced DNA damage we utilized U2-OS cells, in which WRN is stably down-regulated (wrn-kd), and the corresponding wild-type cells (wrn-wt). We show that cells not expressing WRN are hypersensitive to the toxic effect of the topoisomerase I inhibitor topotecan, but not to the topoisomerase II inhibitor etoposide. This was shown by mass survival assays, colony formation and induction of apoptosis. Upon topotecan treatment WRN deficient cells showed enhanced DNA replication inhibition and S-phase arrest, whereas after treatment with etoposide they showed the same cell cycle response as the wild-type. A considerable difference between WRN and wild-type cells was also observed for DNA single-and double-strand break formation in response to topotecan. Topotecan induced most DNA single-strand breaks 6 h after treatment. In both wrn-wt and wrn-kd cells these breaks were repaired at similar kinetics. However, in wrn-kd but not wrn-wt cells they were converted into DNA double-strand breaks (DSBs) at high frequency, as shown by neutral comet assay and phosphorylation of H2AX. Our data provide evidence that WRN is involved in the repair of topoisomerase I, but not topoisomerase II-induced DNA damage, most likely via preventing the conversion of DNA single-strand breaks into DSBs during the resolution of stalled replication forks at topo I–DNA complexes. We suggest that the WRN status of tumor cells impacts anticancer therapy with topoisomerase I, but not topoisomerase II inhibitors. PMID:18805512

  18. Total synthesis of albicidin: a lead structure from Xanthomonas albilineans for potent antibacterial gyrase inhibitors.

    PubMed

    Kretz, Julian; Kerwat, Dennis; Schubert, Vivien; Grätz, Stefan; Pesic, Alexander; Semsary, Siamak; Cociancich, Stéphane; Royer, Monique; Süssmuth, Roderich D

    2015-02-02

    The peptide antibiotic albicidin, which is synthesized by the plant pathogenic bacterium Xanthomonas albilineans, displays remarkable antibacterial activity against various Gram-positive and Gram-negative microorganisms. The low amounts of albicidin obtainable from the producing organism or through heterologous expression are limiting factors in providing sufficient material for bioactivity profiling and structure-activity studies. Therefore, we developed a convergent total synthesis route toward albicidin. The unexpectedly difficult formation of amide bonds between the aromatic amino acids was achieved through a triphosgene-mediated coupling strategy. The herein presented synthesis of albicidin confirms the previously determined chemical structure and underlines the extraordinary antibacterial activity of this compound. The synthetic protocol will provide multigram amounts of albicidin for further profiling of its drug properties. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Larvicidal Activity of Novaluron, a Chitin Synthesis Inhibitor, Against the Housefly, Musca domestica

    PubMed Central

    Cetin, Huseyin; Erler, Fedai; Yanikoglu, Atila

    2006-01-01

    A chitin synthesis inhibitor, novaluron, was evaluated under laboratory conditions for its larvicidal activity against a field population of the housefly, Musca domestica L. (Diptera: Muscidae), by feeding and dipping methods. The concentrations used were 1, 2.5, 5, 10 and 20 mg a.i./kg in both methods. The product caused >80% larval mortality at 10 and 20 mg a.i./kg. Of the two methods, feeding was more effective for larvicidal activity at doses above 2.5 mg a.i./kg. After 72 hours, the LC50 and LC90 values were 1.66 and 8.25 mg a.i./kg, respectively, with the feeding method; and 2.72 and 17.88 mg a.i./kg, respectively, using the dipping method. The results showed that the product provided good control of housefly larvae and would greatly reduce adult emergence.

  20. An inhibitor of chondroitin sulfate proteoglycan synthesis promotes central nervous system remyelination

    PubMed Central

    Keough, Michael B.; Rogers, James A.; Zhang, Ping; Jensen, Samuel K.; Stephenson, Erin L.; Chen, Tieyu; Hurlbert, Mitchel G.; Lau, Lorraine W.; Rawji, Khalil S.; Plemel, Jason R.; Koch, Marcus; Ling, Chang-Chun; Yong, V. Wee

    2016-01-01

    Remyelination is the generation of new myelin sheaths after injury facilitated by processes of differentiating oligodendrocyte precursor cells (OPCs). Although this repair phenomenon occurs in lesions of multiple sclerosis patients, many lesions fail to completely remyelinate. A number of factors have been identified that contribute to remyelination failure, including the upregulated chondroitin sulfate proteoglycans (CSPGs) that comprise part of the astrogliotic scar. We show that in vitro, OPCs have dramatically reduced process outgrowth in the presence of CSPGs, and a medication library that includes a number of recently reported OPC differentiation drugs failed to rescue this inhibitory phenotype on CSPGs. We introduce a novel CSPG synthesis inhibitor to reduce CSPG content and find rescued process outgrowth from OPCs in vitro and accelerated remyelination following focal demyelination in mice. Preventing CSPG deposition into the lesion microenvironment may be a useful strategy to promote repair in multiple sclerosis and other neurological disorders. PMID:27115988

  1. Novel peptidomimetics as BACE-1 inhibitors: synthesis, molecular modeling, and biological studies.

    PubMed

    Butini, Stefania; Gabellieri, Emanuele; Brindisi, Margherita; Casagni, Alice; Guarino, Egeria; Huleatt, Paul B; Relitti, Nicola; La Pietra, Valeria; Marinelli, Luciana; Giustiniano, Mariateresa; Novellino, Ettore; Campiani, Giuseppe; Gemma, Sandra

    2013-01-01

    Aiming at identifying new scaffolds for BACE-1 inhibition devoid of the pharmacokinetic drawbacks of peptide-like structures, we investigated a series of novel peptidomimetics based on a 1,4-benzodiazepine (BDZ) core 1a-h and their seco-analogues 2a-d. We herein discuss synthesis, molecular modeling and in vitro studies which, starting from 1a, led to the seco-analogues (R)-2c and (S)-2d endowed with BACE-1 inhibition properties in the micromolar range both on the isolated enzyme and in cellular studies. These data can encourage to pursue these analogues as hits for the development of a new series of BACE-1 inhibitors active on whole-cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Synthesis, kinetic studies and molecular modeling of novel tacrine dimers as cholinesterase inhibitors.

    PubMed

    de Aquino, Roney Anderson Nascimento; Modolo, Luzia Valentina; Alves, Rosemeire Brondi; de Fátima, Ângelo

    2013-12-28

    This study presents the synthesis of 15 new tacrine dimers as well as the Ki and IC50 results, studies of the kinetic mechanism, and molecular docking analysis of the dimers in relation to the cholinesterases hAChE, hBChE, EeAChE and eqBChE. In addition to spectroscopic characterization, X-ray structure determination was performed for two of the new compounds. These new dimers were found to be mixed nanomolar inhibitors of the evaluated targets with a broad and significant selectivity profile, and these properties are dependent on both the type of the linker and the volume of the hydroacridine alicyclic ring. The results indicate that the aromatic linkers play a significant role in generating specific interactions with the half-gorge region of the catalytic center. Thus, these types of linkers can positively modulate the electronic properties of the tacrine dimers studied with an improvement of their cholinesterase inhibition activity.

  3. Synthesis and evaluation of fluorobenzoylated di- and tripeptides as inhibitors of cyclooxygenase-2 (COX-2).

    PubMed

    Sharma, Sai Kiran; Al-Hourani, Baker Jawabrah; Wuest, Melinda; Mane, Jonathan Y; Tuszynski, Jack; Baracos, Vickie; Suresh, Mavanur; Wuest, Frank

    2012-04-01

    A series of fluorobenzoylated di- and tripeptides as potential leads for the development of molecular probes for imaging of COX-2 expression was prepared according to standard Fmoc-based solid-phase peptide synthesis. All peptides were assessed for their COX-2 inhibitory potency and selectivity profile in a fluorescence-based COX binding assay. Within the series of 15 peptides tested, cysteine-containing peptides numbered 7, 8, 11 and 12, respectively, were the most potent COX-2 inhibitors possessing IC(50) values ranging from 5 to 85 μM. Fluorobenzoylated tripeptides 7 and 8 displayed some COX-2 selectivity (COX-2 selectivity index 2.1 and 1.6), whereas fluorobenzoylated dipeptides 11 and 12 were shown not to be COX-2 selective. Fluorbenzoylated tripeptide FB-Phe-Cys-Ser-OH was further used in molecular modeling docking studies to determine the binding mode within the active site of the COX-2 enzyme.

  4. Synthesis and structural characterisation of selective non-carbohydrate-based inhibitors of bacterial sialidases.

    PubMed

    Brear, Paul; Telford, Judith; Taylor, Garry L; Westwood, Nicholas J

    2012-11-05

    The major human pathogen Streptococcus pneumoniae plays a key role in several disease states including septicaemia, meningitis and community-acquired pneumonia. Although vaccines against S. pneumoniae are available as prophylactics, there remains a need to identify and characterise novel chemical entities that can treat the diseases caused by this pathogen. S. pneumoniae expresses three sialidases, enzymes that cleave sialic acid from carbohydrate-based surface molecules. Two of these enzymes, NanA and NanB, have been implicated in the pathogenesis of S. pneumoniae and are considered to be validated drug targets. Here we report our studies on the synthesis and structural characterisation of novel NanB-selective inhibitors that are inspired by the β-amino-sulfonic acid family of buffers.

  5. Synthesis and Characterisation of Substrate-Based Peptides as Inhibitors of Histone Demethylase KDM4C.

    PubMed

    Nielsen, Simon D; Leurs, Ulrike; Bergner, Magnus; Barris, Silvia A; Devkota, Kanchan; Meyer, Kamilla; Iaria, Daniella; McCaughan, Jack; Lohse, Brian; Kristensen, Jesper L; Clausen, Rasmus P

    2016-01-01

    The design and synthesis of modified pentapeptides based on a truncated version of the substrate for KDM4C, a histone lysine demethylase (KDM), and investigation of their inhibitory activity at KDM4C is reported. By modifying the lysine residue corresponding to lysine 9 at histone 3 (H3K9), three different series of peptides were designed and synthesized. One series contained N-acylated H3K9 and two series introduced triazoles in this position via click chemistry to enable facile variation of headgroups. The click reaction is compatible with free amino acids and this was performed on an azido containing deprotected pentapeptide demonstrating a highly facile and convergent synthetic strategy for making substrate-based inhibitors. One of the 14 peptides showed inhibitory activity at KDM4C demonstrating the need for an iron chelator in the pentapeptide series.

  6. Action of protein synthesis inhibitors in blocking electrogenic H/sup +/ efflux from corn roots

    SciTech Connect

    Chastain, C.J.; LaFayette, P.R.; Hanson, J.B.

    1981-04-01

    The block in the electrogenic H/sup +/ efflux produced by protein synthesis inhibitors in corn root tissue can be released or by-passed by addition of fusicoccin or nigericin. The inhibition also lowers cell potential, and the release repolarizes. Associated with the inhibition of H/sup +/ efflux is inhibition of K/sup +/ influx and the growth of the root tip; fusicoccin partially relieves these inhibitions, but nigericin does not. The inhibition of H/sup +/ efflux which arises from blocking the proton channel of the ATPase by oligomycin or N,N'-dicyclohexylcarbodiimide can also be partially relieved by fusicoccin, but not by nigericin; the inhibition produced by diethylstilbestrol is not relieved by fusicoccin. The results are discussed in terms of the presumed mode of action of fusicoccin on the plasmalemma ATPase.

  7. Cell-Based High-Throughput Screening Identifies Rifapentine as an Inhibitor of Amyloid and Biofilm Formation in Escherichia coli.

    PubMed

    Maher, Marie C; Lim, Ji Youn; Gunawan, Cheston; Cegelski, Lynette

    2015-10-09

    Escherichia coli assemble functional amyloid fibers termed curli that contribute to bacterial adhesion, biofilm formation, and host pathogenesis. We developed a cell-based high-throughput screen to identify inhibitors of curli-mediated adhesion in the laboratory strain MC4100 and curli-associated biofilm formation in the uropathogenic E. coli clinical isolate UTI89. Inhibitors of biofilm formation can operate through many mechanisms, and such inhibitors could hold therapeutic value in preventing and treating urinary tract infections. The curli-specific screen allows the identification of compounds that inhibit either curli expression, curli biogenesis, or adhesion by normally produced curli. In screening the NIH Clinical Collection of 446 compounds, we identified rifapentine as a potent inhibitor in both of these screens. Rifapentine is an antibiotic used to treat tuberculosis that targets RNA polymerase, but prevents curli-dependent adhesion and biofilm formation in E. coli at concentrations below those that affect viability. Rifapentine inhibits curli production and prevents biofilm formation on plastic, on agar, and at the air-liquid interface by inhibiting curli gene transcription. Comparisons with a cephalosporin antibiotic further revealed that curli production is not affected by standard antibiotic treatment and cell killing pressure. Thus, we reveal a new role independent of killing activity for rifapentine as an inhibitor of curli and curli-mediated biofilm formation.

  8. Induction of human choriogonadotropin in HeLa-cell cultures by aliphatic monocarboxylates and inhibitors of deoxyribonucleic acid synthesis

    PubMed Central

    Ghosh, Nimai K.; Rukenstein, Adriana; Cox, Rody P.

    1977-01-01

    The ectopic production of the glycopeptide hormone human placental choriogonadotropin by HeLa65 cells was measured by radioimmunoassay with antiserum against the β-subunit of choriogonadotropin and with the 125I-labelled β-subunit as a tracer antigen. Choriogonadotropin synthesis was markedly (500-fold) stimulated by sodium butyrate. Kinetic studies and the use of an inhibitor of protein synthesis, cycloheximide, indicated that protein synthesis was required for this induction. Investigation of the efficiency of 22 aliphatic short-chain fatty acids and derivatives in causing increased choriogonadotropin synthesis by HeLa cells showed stringent structural requirements. Induction of choriogonadotropin synthesis in HeLa cells was not restricted to butyrate. Other aliphatic acids (propionate, isobutyrate, valerate and hexanoate) were also capable of inducing choriogonadotropin synthesis at 10–50% of the efficiency of butyrate. Hydroxy derivatives of monocarboxylate inducers, related mono- and di-carboxylic acids, alcohols, amines, ketones, esters and sulphoxide were ineffective in increasing choriogonadotropin production by HeLa cells. A saturated C4 straight-chain acid without substituent hydroxyl groups but with a methyl group at one end and a carboxyl moiety at the other appeared to be most efficient in activating choriogonadotropin production. A second clonal line of HeLa cells, HeLa71, showed a higher constitutive synthesis of choriogonadotropin than HeLa65 cells, which was also markedly increased by butyrate. Butyrate and other aliphatic monocarboxylate inducers of choriogonadotropin synthesis inhibited HeLa-cell growth and DNA synthesis. This inhibition of DNA replication may be related to the mechanism of choriogonadotropin synthesis, since two well-characterized anti-neoplastic inhibitors of DNA synthesis, hydroxyurea and 1-β-d-arabinofuranosylcytosine, also stimulated a 300-fold increase in choriogonadotropin synthesis in HeLa cells and were synergistic

  9. Insecticidal benzoylphenyl ureas: structure-activity relationships as chitin synthesis inhibitors.

    PubMed

    Hajjar, N P; Casida, J E

    1978-06-30

    The 1-benzoyl-3-phenylurea insecticide diflubenzuron is a potent inhibitor for the conversion of (14)C-labeled glucose to (14)C-labeled chitin in isolated abdomens of newly emerged adult milkweed bugs (Oncopeltus fasciatus Dallas). The inhibitory activity of 24 diflubenzuron analogs in this in vitro chitin-synthesizing system is in good agreement with their toxicity to fifth instar nymphs of this species. These insecticides act quickly and directly within the integument to ultimately block the terminal polymerization step in chitin formation.

  10. Behavioral and histological changes in the Formosan subterranean termite (Isoptera: Rhinotermitidae) induced by the chitin synthesis inhibitor noviflumuron.

    PubMed

    Xing, Lin; Chouvenc, Thomas; Su, Nan-Yao

    2014-04-01

    This study describes the behavioral and histological changes of the molting process in Coptotermes formosanus Shiraki caused by the chitin synthesis inhibitor noviflumuron. Termites exposed to noviflumuron initiated ecdysis as untreated individuals did; however, peristalsis contractions were weak and the expansion of the dorsal breach of the exoskeleton did not occur. Treated termites could not complete their molting process and died after the initiation of the ecdysis. Histological observations showed that the process of voiding the gut protozoa during premolting was not affected by the noviflumuron treatment. However, the formation of the new cuticle was disrupted resulting in the loss of integrity of the cuticle. The alteration of the cuticle was visible in the gizzard (foregut), the thoracic pleurons, and most of the exoskeleton. Muscles were partially able to reattach to the incompletely formed new cuticle, and muscle contractions resulted in tearing off the cuticle. Because the integrity of the newly formed cuticle was compromised by the noviflumuron treatment, we concluded that termites' death was caused primarily by the loss of hemolymph as a result of the damage done by the muscle contractions on the exoskeleton during the peristalsis. As the physiological homeostasis was disrupted, termites were too weak to shed their old cuticle, ultimately resulting in termite dying during the molting process.

  11. Interferon γ and plasminogen activator inhibitor 1 regulate adhesion formation after partial hepatectomy.

    PubMed

    Ohashi, K; Yoshimoto, T; Kosaka, H; Hirano, T; Iimuro, Y; Nakanishi, K; Fujimoto, J

    2014-03-01

    The pathophysiology of intra-abdominal adhesions has not been studied extensively. The aim of this study was to elucidate the molecular mechanisms underlying adhesion formation in a murine model and in patients undergoing hepatectomy. Partial hepatectomy was performed using bipolar forceps in mice. Wild-type mice, antibodies to CD4 and interferon (IFN) γ, IFN-γ, natural killer T (NKT) cells and plasminogen activator inhibitor (PAI) 1 knockout (KO) mice were used. Recombinant hepatocyte growth factor (HGF) was tested for its ability to prevent adhesions. Liver specimens were obtained during surgery from patients undergoing hepatectomy. Adhesion formation was evaluated using a scoring system that ranged from 0 (no adhesions) to 5 (severe adhesions). Levels of IFN-γ and PAI-1 mRNA, and protein concentration of PAI-I were measured, and fluorescence immunostaining was performed. Adhesion formation depended on IFN-γ produced by NKT cells, and NKT KO mice developed few adhesions (mean(s.d.) 1·7(0·3) versus 4·6(0·4) in wild-type mice; P = 0·037). In wild-type mice, the level of PAI-1 mRNA increased after hepatectomy, followed by a decrease in the tissue plasminogen activator (tPA) mRNA level. Adhesion formation was inhibited completely in PAI-1 KO mice (0(0) versus 4·1(0·8) in wild-type mice; P = 0·002). HGF inhibited formation of abdominal adhesions after hepatectomy by reducing IFN-γ and PAI-1 levels, and increasing tPA levels compared with those in mice treated with phosphate-buffered saline (P < 0·001, P = 0·002 and P = 0·035 respectively). In human liver specimens, NKT cells accumulated in the liver after hepatectomy, and PAI-1 expression was increased 5·25-fold (P = 0·030). IFN-γ is a key molecule for abdominal adhesion formation after hepatectomy, acting via the reciprocal balance of PAI-1 and tPA. This molecular mechanism may also regulate adhesion formation in patients following hepatectomy. HGF inhibited formation of

  12. Synthesis and biological evaluation of geminal disulfones as HIV-1 integrase inhibitors.

    PubMed

    Meadows, D Christopher; Mathews, Timothy B; North, Thomas W; Hadd, Michael J; Kuo, Chih Lin; Neamati, Nouri; Gervay-Hague, Jacquelyn

    2005-07-14

    Integration of HIV-1 viral DNA into the host genome is carried out by HIV-integrase (IN) and is a critical step in viral replication. Although several classes of compounds have been reported to inhibit IN in enzymatic assays, inhibition is not always correlated with antiviral activity. Moreover, potent antiviral IN inhibitors such as the chicoric acids do not act upon the intended enzymatic target but behave as entry inhibitors instead. The charged nature of the chicoric acids contributes to poor cellular uptake, and these compounds are further plagued by rapid ester hydrolysis in vivo. To address these critical deficiencies, we designed neutral, nonhydrolyzable analogues of the chicoric acids. Herein, we report the synthesis, enzyme inhibition studies, and cellular antiviral data for a series of geminal disulfones. Of the 10 compounds evaluated, 8 showed moderate to high inhibition of IN in purified enzyme assays. The purified enzyme data correlated with antiviral assays for all but two compounds, suggesting alternative modes of inhibition. Time-of-addition studies were performed on these analogues, and the results indicate that they inhibit an early stage in the replication process, perhaps entry. In contrast, the most potent member of the correlative group shows behavior consistent with IN being the cellular target.

  13. Synthesis and evaluation of inhibitors of bacterial drug efflux pumps of the major facilitator superfamily.

    PubMed

    Okandeji, Babajide O; Greenwald, Daniel M; Wroten, Jessica; Sello, Jason K

    2011-12-15

    Inhibitors of drug efflux pumps have great potential as pharmacological agents that restore the drug susceptibility of multidrug resistant bacterial pathogens. Most attention has been focused on the discovery of small molecules that inhibit the resistance nodulation division (RND) family drug efflux pumps in Gram-negative bacteria. The prototypical inhibitor of RND-family efflux pumps in Gram-negative bacteria is MC-207,110 (Phe-Arg-β-naphthylamide), a C-capped dipeptide. Here, we report that C-capped dipeptides inhibit two chloramphenicol-specific efflux pumps in Streptomyces coelicolor, a Gram-positive bacterium that is a relative of the human pathogen Mycobacterium tuberculosis. Diversity-oriented synthesis of a library of structurally related C-capped dipeptides via an Ugi four component reaction and screening of the resulting compounds resulted in the discovery of a compound that is threefold more potent as a suppressor of chloramphenicol resistance in S. coelicolor than MC-207,110. Since chloramphenicol resistance in S. coelicolor is mediated by major facilitator superfamily drug efflux pumps, our findings provide the first evidence that C-capped dipeptides can inhibit drug efflux pumps outside of the RND superfamily.

  14. Synthesis and biological evaluation of di-aryl urea derivatives as c-Kit inhibitors.

    PubMed

    Ravez, Séverine; Arsenlis, Stéphane; Barczyk, Amélie; Dupont, Anthony; Frédérick, Raphaël; Hesse, Stéphanie; Kirsch, Gilbert; Depreux, Patrick; Goossens, Laurence

    2015-11-15

    Inhibition of receptor tyrosine kinases (RTKs) continued to be a successful approach for the treatment of many types of human cancers and many potent small molecules kinase inhibitors have been discovered the last decade. In the present study, we describe the synthesis of thienopyrimidine derivatives and their pharmacological evaluation against nine kinases (EGFR, PDGFR-ß, c-Kit, c-Met, Src, Raf, VEGFR-1, -2 and -3). Most of the synthesized compounds showed from moderate to potent activities against c-Kit with IC50 values in the nanomolar range. Among them, 4-anilino(urea)thienopyrimidine analogs showed selectivity and potent c-Kit inhibition with IC50 values less than 6 nM. Docking simulation was performed for the most promising compound 9 into the c-Kit active site to determine the potential binding mode. This study reveal that the 4-anilino(urea)thienopyrimidine is an interesting scaffold to design novel potent and selective c-Kit inhibitors which may make promising candidates for cancers where c-Kit receptors are overexpressed.

  15. Review of synthesis, assay, and prediction of β and γ-secretase inhibitors.

    PubMed

    Niño, Helena; Rodríguez-Borges, José Enrique; García-Mera, Xerardo; Prado-Prado, Francisco

    2012-01-01

    Alzheimer's disease (AD) is characterize with several pathologies this disease, amyloid plaques, composed of the β-amyloid peptide and β-amyloid peptide are hallmark neuropathological lesions in Alzheimer's disease brain. Indeed, a wealth of evidence suggests that β-amyloid is central to the pathophysiology of AD and is likely to play an early role in this intractable neurodegenerative disorder. AD is the most prevalent form of dementia, and current indications show that twenty-nine million people live with AD worldwide, a figure expected rise exponentially over the coming decades. Clearly, blocking disease progression or, in the best-case scenario, preventing AD altogether would be of benefit in both social and economic terms. However, current AD therapies are merely palliative and only temporarily slow cognitive decline, and treatments that address the underlying pathologic mechanisms of AD are completely lacking. While familial AD (FAD) is caused by autosomal dominant mutations in either amyloid precursor protein (APP) or the presenilin (PS1, PS2) genes. First, we revised Desing, synthesis, and Biological assay of β and γ-secretase inhibitors. Next, we review 2D QSAR, 3D QSAR, CoMFA, CoMSIA and Docking with different compound to find out the structural requirements. Next, we revised QSAR studies using method of Artificial Neural Network (ANN) in order to understand the essential structural requirement for binding with receptor for β and γ-secretase inhibitors.

  16. Microwave-assisted synthesis of novel purine nucleosides as selective cholinesterase inhibitors.

    PubMed

    Schwarz, S; Csuk, R; Rauter, A P

    2014-04-21

    Alzheimer's disease (AD), the most common form of senile dementia, is characterized by high butyrylcholinesterase (BChE) levels in the brain in later AD stages, for which no treatment is available. Pursuing our studies on selective BChE inhibitors, that may contribute to understand the role of this enzyme in disease progression, we present now microwave-assisted synthesis and anticholinesterase activity of a new nucleoside series embodying 6-chloropurine or 2-acetamido-6-chloropurine linked to D-glucosyl, D-galactosyl and D-mannosyl residues. It was designed to assess the contribution of sugar stereochemistry, purine structure and linkage to the sugar for cholinesterase inhibition efficiency and selectivity. Compounds were subjected to Ellman's assay and their inhibition constants determined. The α-anomers were the most active compounds, while selectivity for BChE or acetylcholinesterase (AChE) inhibition could be tuned by the purine base, by the glycosyl moiety and by N(7)-ligation. Some of the nucleosides were far more potent than the drug galantamine, and the most promising competitive and selective BChE inhibitor, the N(7)-linked 2-acetamido-α-D-mannosylpurine, showed a Ki of 50 nM and a selectivity factor of 340 fold for BChE over AChE.

  17. Synthesis and characterization of phosphocitric acid, a potent inhibitor of hydroxylapatite crystal growth.

    PubMed

    Tew, W P; Mahle, C; Benavides, J; Howard, J E; Lehninger, A L

    1980-04-29

    Human urine and extracts of rat liver mitochondria contain apparently identical agents capable of inhibiting the precipitation or crystallization of calcium phosphate. Its general properties, as well as 1H NMR and mass spectra, have suggested that the agent is phosphocitric acid. This paper reports the synthesis of phosphocitric acid via the phosphorylation of triethyl citrate with o-phenylene phosphochloridate, hydrogenolysis of the product to yield triethyl phosphocitrate, hydrolytic removal of the blocking ethyl groups and also chromatographic purification. An enzymatic assay of phosphocitrate is described. Synthetic phosphocitrate was found to be an exceedingly potent inhibitor of the growth of hydroxylapatite seed crystals in a medium supersaturated with respect to Ca2+ and phosphate. Comparative assays showed phosphocitrate to be much more potent than the most active precipitation-crystallization inhibitors previously reported, which include pyrophosphate and ATP. 14C-Labeled phosphocitrate was bound very tightly to hydroxylapatite crystals. Such binding appeared to be essential for its inhibitory activity on crystal growth. Citrate added before but not after, phosphocitrate greatly enhanced the inhibitory potency of the latter. This enhancement effect was not given by other tricarboxylic acids. The monoethyl ester of phosphocitrate had no inhibitory effect on hydroxylapatite crystal growth.

  18. Design, synthesis, and structure-activity relationship studies of a potent PACE4 inhibitor.

    PubMed

    Kwiatkowska, Anna; Couture, Frédéric; Levesque, Christine; Ly, Kévin; Desjardins, Roxane; Beauchemin, Sophie; Prahl, Adam; Lammek, Bernard; Neugebauer, Witold; Dory, Yves L; Day, Robert

    2014-01-09

    PACE4 plays an important role in the progression of prostate cancer and is an attractive target for the development of novel inhibitor-based tumor therapies. We previously reported the design and synthesis of a novel, potent, and relatively selective PACE4 inhibitor known as a Multi-Leu (ML) peptide. In the present work, we examined the ML peptide through detailed structure-activity relationship studies. A variety of ML-peptide analogues modified at the P8-P5 positions with leucine isomers (Nle, DLeu, and DNle) or substituted at the P1 position with arginine mimetics were tested for their inhibitory activity, specificity, stability, and antiproliferative effect. By incorporating d isomers at the P8 position or a decarboxylated arginine mimetic, we obtained analogues with an improved stability profile and excellent antiproliferative properties. The DLeu or DNle residue also has improved specificity toward PACE4, whereas specificity was reduced for a peptide modified with the arginine mimetic, such as 4-amidinobenzylamide.

  19. Synthesis of novel polybrominated benzimidazole derivatives-potential CK2 inhibitors with anticancer and proapoptotic activity.

    PubMed

    Łukowska-Chojnacka, Edyta; Wińska, Patrycja; Wielechowska, Monika; Poprzeczko, Martyna; Bretner, Maria

    2016-02-15

    The efficient method for the synthesis of novel cell permeable inhibitors of protein kinase CK2 with anticancer and proapoptotic activity has been developed. A series of polybrominated benzimiadazole derivatives substituted by various cyanoalkyl groups have been synthesized. Cyanoethyl derivatives were obtained by Michael type addition of 4,5,6,7-tetrabromo-1H-benzimidazole (TBBi) and 4,5,6,7-tetrabromo-2-methyl-1H-benzimidazole to acrylonitrile, whilst cyanomethyl, cyanopropyl and cyanobutyl analogs by N-alkylation of 4,5,6,7-tetrabromo-1H-benzimidazole and 4,5,6,7-tetrabromo-2-methyl-1H-benzimidazole with appropriate cyanoalkyl halides. The inhibitory activity against protein kinase rhCK2α catalytic subunit and cytotoxicity against two human cancer cell lines: acute lymphocytic leukemia (CCRF-CEM) and breast (MCF-7) were evaluated for all newly synthesized compounds. Additionally, the proapoptotic activity toward leukemia cells and intracellular inhibition of CK2 for the most cytotoxic derivatives have been performed, demonstrating 4,5,6,7-tetrabromo-2-methyl-1H-benzimidazole as a new selective inhibitor of rhCK2 with twenty-fold better proapoptotic activity than parental compound (TBBi).

  20. Design, synthesis, in vitro Evaluation and docking studies on dihydropyrimidine-based urease inhibitors.

    PubMed

    Iftikhar, Fatima; Ali, Yousaf; Ahmad Kiani, Farooq; Fahad Hassan, Syed; Fatima, Tabeer; Khan, Ajmal; Niaz, Basit; Hassan, Abbas; Latif Ansari, Farzana; Rashid, Umer

    2017-10-01

    In our previous report, we have identified 3,4-dihydropyrimidine scaffold as promising class of urease inhibitor in a structure based virtual screen (SBVS) experiment. In present study, we attempted to optimize the scaffold by varying C-5 substituent. The elongation of the C-5 chain was achieved by the reaction of C-5 ester with hydrazine leading to C-5 carbohydrazides which were further used as building blocks for the synthesis of fifteen new compounds having diverse moieties. A significantly higher in vitro urease inhibitory activity with IC50 values in submicromolar range was observed for semithiocarbazide derivatives (4a-c, 0.58-0.79µM) and isatin Schiff base derivative 5a (0.23µM). Docking analysis suggests that the synthesized compounds were anchored well in the catalytic site and extending to the entrance of binding pocket and thus restrict the mobility of the flap by interacting with its key amino acid residues. The overall results of urease inhibition have shown that these compounds can be further optimized and developed as lead urease inhibitors. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Rational design of nitrofuran derivatives: Synthesis and valuation as inhibitors of Trypanosoma cruzi trypanothione reductase.

    PubMed

    Arias, D G; Herrera, F E; Garay, A S; Rodrigues, D; Forastieri, P S; Luna, L E; Bürgi, M D L M; Prieto, C; Iglesias, A A; Cravero, R M; Guerrero, S A

    2017-01-05

    The rational design and synthesis of a series of 5-nitro-2-furoic acid analogues are presented. The trypanocidal activity against epimastigote forms of Trypanosoma cruzi and the toxic effects on human HeLa cells were tested. Between all synthetic compounds, three of thirteen had an IC50 value in the range of Nfx, but compound 13 exhibited an improved effect with an IC50 of 1.0 ± 0.1 μM and a selective index of 70 in its toxicity against HeLa cells. We analyzed the activity of compounds 8, 12 and 13 to interfere in the central redox metabolic pathway in trypanosomatids, which is dependent of reduced trypanothione as the major pivotal thiol. The three compounds behaved as better inhibitors of trypanothione reductase than Nfx (Ki values of 118 μM, 61 μM and 68 μM for 8, 12 and 13, respectively, compared with 245 μM for Nfx), all following an uncompetitive enzyme inhibition pattern. Docking analysis predicted a binding of inhibitors to the enzyme-substrate complex with binding energy calculated in-silico that supports such molecular interaction.

  2. Stimulators and inhibitors of lymphocyte DNA synthesis in supernatants from human lymphoid cell lines.

    PubMed

    Vesole, D H; Goust, J M; Fett, J W; Fudenberg, H H

    1979-09-01

    Some T and B lymphoid cell lines (LCL) were found to secrete into their supernatants a substance able to stimulate lymphocyte proliferation. This substance produced an increase in [3H]thymidine uptake by mononuclear cells when added to unstimulated cultures (mitogenic effect) or when added to cultures stimulated with phytohemagglutinin (PHA) or pokeweed mitogen (PWM) (potentiating effect). When complete supernatants were used, the potentiating effect was sometimes masked by an inhibitor of DNA synthesis. Fractionation on Sephadex G-100 separated these two activities. The stimulatory substance eluted at a m.w. range of 15,000 to 30,000, and the inhibitor eluted with the albumin peak. B cells with or without monocytes were the most sensitive to the mitogenic effect, whereas T cells were unaffected. Responses to PHA and PWM were potentiated when T cells were present, but the maximum effect was observed when the proportion of T cells was less than 50%. The stimulatory material may be similar to lymphocyte mitogenic factor and may function as a T cell-replacing factor in B cell stimulation.

  3. Facile dimethyl amino group triggered cyclic sulfonamides synthesis and evaluation as alkaline phosphatase inhibitors.

    PubMed

    Bhatti, Huma Aslam; Khatoon, Memoona; Al-Rashida, Mariya; Bano, Huma; Iqbal, Nafees; Zaib-Un-Nisa; Yousuf, Sammer; Khan, Khalid Mohammed; Hameed, Abdul; Iqbal, Jamshed

    2017-04-01

    Owing to the biological importance of cyclic sulfonamides (sultams), herein we report a new, facile and cost-effective method for the synthesis of sultams that makes use of a reaction between dansyl amide and easily accessible benzaldehydes under mildly acidic conditions. All compounds were obtained in good yields (69-96%). Consequently a series of cyclic sulfonamides (7a-7n) was synthesized and characterized using FTIR, MS and NMR spectroscopy, crystal structure of compound 7b has also been determined. All compounds were evaluated for their potential to inhibit alkaline phosphatase (bTNAP and bIAP). All compounds were found to be excellent inhibitors of bTNAP with IC50 values in lower micro-molar range (0.11-6.63μM). Most of the compounds were selective inhibitors of bTNAP over bIAP. Only six compounds were found to be active against bIAP (IC50 values in the range 0.38-3.48μM). Molecular docking studies were carried out to identify and rationalize the structural elements necessary for efficient AP inhibition. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Design, Synthesis and Evaluation of Marinopyrrole Derivatives as Selective Inhibitors of Mcl-1 Binding to Pro-apoptotic Bim and Dual Mcl-1/Bcl-xL Inhibitors

    PubMed Central

    Li, Rongshi; Daniel, Kenyon G.; Li, Jerry; Qin, Yong; Gavathiotis, Evripidis; Sebti, Said M.

    2015-01-01

    Inhibition of anti-apoptotic Mcl-1 is a promising anticancer strategy to overcome the survival and chemoresistance of a broad spectrum of human cancers. We previously reported on the identification of a natural product marinopyrrole A (1) that induces apoptosis in Mcl-1-dependent cells through Mcl-1 degradation. Here, we report the design and synthesis of novel marinopyrrole-based analogues and their evaluation as selective inhibitors of Mcl-1 as well as dual Mcl-1/Bcl-xL inhibitors. The most selective Mcl-1 antagonists were 34, 36 and 37 with 16-, 13- and 9-fold more selectivity for disrupting Mcl-1/Bim over Bcl-xL/Bim binding, respectively. Among the most potent dual inhibitors is 42 which inhibited Mcl-1/Bim and Bcl-xL/Bim binding 15-fold (IC50 = 600 nM) and 33-fold (500 nM) more potently than (±)-marinopyrrole A (1), respectively. Fluorescence quenching, NMR analysis and molecular docking indicated binding of marinopyrroles to the BH3 binding site of Mcl-1. Several marinopyrroles potently decreased Mcl-1 cellular levels and induced caspase 3 activation in human breast cancer cells. Our studies provide novel “lead” marinopyrroles for further optimization as selective Mcl-1 inhibitors and dual Mcl-1 and Bcl-xL inhibitors. PMID:25437618

  5. Altered Protein Synthesis is a Trigger for Long-term Memory Formation

    PubMed Central

    Klann, Eric; Sweatt, J. David

    2008-01-01

    Summary There is ongoing debate concerning whether new protein synthesis is necessary for, or even contributes to, memory formation and storage. This review summarizes a contemporary model proposing a role for altered protein synthesis in memory formation and its subsequent stabilization. One defining aspect of the model is that altered protein synthesis serves as a trigger for memory consolidation. Thus, we propose that specific alterations in the pattern of neuronal protein translation serve as an initial event in long-term memory formation. These specific alterations in protein read-out result in the formation of a protein complex that then serves as a nidus for subsequent perpetuating reinforcement by a positive feedback mechanism. The model proposes this scenario as a minimal but requisite component for long-term memory formation. Our description specifies three aspects of prevailing scenarios for the role of altered protein synthesis in memory that we feel will help clarify what, precisely, is typically proposed as the role for protein translation in memory formation. First, that a relatively short initial time window exists wherein specific alterations in the pattern of proteins translated (not overall protein synthesis) is involved in initializing the engram. Second, that a self-perpetuating positive feedback mechanism maintains the altered pattern of protein expression (synthesis or recruitment) locally. Third, that other than the formation and subsequent perpetuation of the unique initializing proteins, ongoing constitutive protein synthesis is all that is minimally necessary for formation and maintenance of the engram. We feel that a clear delineation of these three principles will assist in interpreting the available experimental data, and propose that the available data are consistent with a role for protein synthesis in memory. PMID:17919940

  6. D-Galactose as an autoinducer 2 inhibitor to control the biofilm formation of periodontopathogens.

    PubMed

    Ryu, Eun-Ju; Sim, Jaehyun; Sim, Jun; Lee, Julian; Choi, Bong-Kyu

    2016-09-01

    Autoinducer 2 (AI-2) is a quorum sensing molecule to which bacteria respond to regulate various phenotypes, including virulence and biofilm formation. AI-2 plays an important role in the formation of a subgingival biofilm composed mostly of Gram-negative anaerobes, by which periodontitis is initiated. The aim of this study was to evaluate D-galactose as an inhibitor of AI-2 activity and thus of the biofilm formation of periodontopathogens. In a search for an AI-2 receptor of Fusobacterium nucleatum, D-galactose binding protein (Gbp, Gene ID FN1165) showed high sequence similarity with the ribose binding protein (RbsB), a known AI-2 receptor of Aggregatibacter actinomycetemcomitans. D-Galactose was evaluated for its inhibitory effect on the AI-2 activity of Vibrio harveyi BB152 and F. nucleatum, the major coaggregation bridge organism, which connects early colonizing commensals and late pathogenic colonizers in dental biofilms. The inhibitory effect of D-galactose on the biofilm formation of periodontopathogens was assessed by crystal violet staining and confocal laser scanning microscopy in the absence or presence of AI-2 and secreted molecules of F. nucleatum. D-Galactose significantly inhibited the AI-2 activity of V. harveyi and F. nucleatum. In addition, D-galactose markedly inhibited the biofilm formation of F. nucleatum, Porphyromonas gingivalis, and Tannerella forsythia induced by the AI-2 of F. nucleatum without affecting bacterial growth. Our results demonstrate that the Gbp may function as an AI-2 receptor and that galactose may be used for prevention of the biofilm formation of periodontopathogens by targeting AI-2 activity.

  7. First-In-Class Inhibitor of Ribosomal RNA Synthesis with Antimicrobial Activity against Staphylococcus aureus.

    PubMed

    Yang, Xiao; Luo, Ming Jing; Yeung, Apple C M; Lewis, Peter J; Chan, Paul K S; Ip, Margaret; Ma, Cong

    2017-09-26

    We report the discovery of the first bacterial ribosomal RNA (rRNA) synthesis inhibitor that has specific antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA). A pharmacophore model was constructed on the basis of the protein-protein interaction between essential bacterial rRNA transcription factors NusB and NusE and employed for an in silico screen to identify potential leads. One compound, (E)-2-{[(3-ethynylphenyl)imino]methyl}-4-nitrophenol (MC4), demonstrated antimicrobial activity against a panel of S. aureus strains, including MRSA, without significant toxicity to mammalian cells. MC4 resulted in a decrease in the rRNA level in bacteria, and the target specificity of MC4 was confirmed at the molecular level. Results obtained from this work validated the bacterial rRNA transcription machinery as a novel antimicrobial target. This approach may be extended to other factors in rRNA transcription, and MC4 could be applied as a chemical probe to dissect the relationship among MRSA infection, MRSA growth rate, and rRNA synthesis, in addition to its therapeutic potential.

  8. The NADPH oxidase inhibitor apocynin induces nitric oxide synthesis via oxidative stress

    SciTech Connect

    Riganti, Chiara

    2008-05-01

    We have recently shown that apocynin elicits an oxidative stress in N11 mouse glial cells and other cell types. Here we report that apocynin increased the accumulation of nitrite, the stable derivative of nitric oxide (NO), in the extracellular medium of N11 cell cultures, and the NO synthase (NOS) activity in cell lysates. The increased synthesis of NO was associated with increased expression of inducible NOS (iNOS) mRNA, increased nuclear translocation of the redox-sensitive transcription factor NF-{kappa}B and decreased intracellular level of its inhibitor IkB{alpha}. These effects, accompanied by increased production of H{sub 2}O{sub 2}, were very similar to those observed after incubation with bacterial lipopolysaccharide (LPS) and were inhibited by catalase. These results suggest that apocynin, similarly to LPS, induces increased NO synthesis by eliciting a generation of reactive oxygen species (ROS), which in turn causes NF-{kappa}B activation and increased expression of iNOS. Therefore, the increased bioavailability of NO reported in the literature after in vivo or in vitro treatments with apocynin might depend, at least partly, on the drug-elicited induction of iNOS, and not only on the inhibition of NADPH oxidase and the subsequent decreased scavenging of NO by oxidase-derived ROS, as it is often supposed.

  9. Synthesis and NMR structure of p41icf, a potent inhibitor of human cathepsin L.

    PubMed

    Chiva, Cristina; Barthe, Philippe; Codina, Anna; Gairí, Margarida; Molina, Franck; Granier, Claude; Pugnière, Martine; Inui, Tatsuya; Nishio, Hideki; Nishiuchi, Yuji; Kimura, Terutoshi; Sakakibara, Shumpei; Albericio, Fernando; Giralt, Ernest

    2003-02-12

    The total synthesis and structural characterization of the MHCII-associated p41 invariant chain fragment (P41icf) is described. P41icf plays a crucial role in the maturation of MHC class II molecules and antigen processing, acting as a highly selective cathepsin L inhibitor. P41icf synthesis was achieved using a combined solid-phase/solution approach. The entire molecule (65 residues, 7246 Da unprotected) was assembled in solution from fully protected peptides in the size range of 10 residues. After deprotection, oxidative folding in carefully adjusted experimental conditions led to the completely folded and functional P41icf with a disulfide pairing identical to that of native P41icf. CD, NMR, and surface plasmon resonance (SPR) were used for the structural and functional characterization of synthetic P41icf. CD thermal denaturation showed clear cooperative behavior. Tight cathepsin L binding was demonstrated by SPR. (1)H NMR spectroscopy at 800 MHz of unlabeled P41icf was used to solve the three-dimensional structure of the molecule. P41icf behaves as a well-folded protein domain with a topology very close to the crystallographic cathepsin L-bound form.

  10. Design and synthesis of novel distamycin-modified nucleoside analogues as HIV-1 reverse transcriptase inhibitors.

    PubMed

    Li, Chao; Ma, Chunying; Zhang, Jin; Qian, Ning; Ding, Jingjing; Qiao, Renzhong; Zhao, Yufen

    2014-02-01

    Design and synthesis of nucleoside analogues have persistently attracted extensive interest because of their potential application in the field of antiviral therapy, and its study also receives additional impetus for improvement in the ProTide technology. Previous studies have made great strides in the design and discovery of monophosphorylated nucleoside analogues as potential kinase-independent antiretrovirals. In this work, a series of nucleoside phosphoramidates modified by distamycin analogues was synthesized and evaluated as nucleoside reverse transcriptase inhibitors (NRTIs) in HIV-1-infected MT-4 and CEM cells, including variations in nucleoside, alkyl moiety, and the structure of distamycin analogues. These compounds exhibited modest potency with the EC50 value in the range of 1.3- to 6.5-fold lower than their corresponding parent drugs in MT-4 cells, which may be attributed to increasing intracellular availability due to the existence of distamycin analogue with favorable hydrophilic-lipophilic equilibrium. Meanwhile, the length of distamycin analogue was considered and assessed as an important factor that could affect antiviral activity and cytotoxicity. Enzymatic and metabolic stability studies have been performed in order to better understand the antiviral behavior of these compounds. The present work revealed the compounds to have a favorable and selective anti-HIV-1 activity in MT-4 and CEM cells, and helped to develop strategies for design and synthesis of effective monophosphorylated nucleoside analogues, which may be applied to antiretroviral research as NRTIs. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Relaxin secretion by porcine large luteal cells: effect of protein synthesis inhibitors.

    PubMed

    Taylor, M J; Clark, C L

    1993-02-01

    The purpose of the experiments reported herein was to investigate the relative importance of new hormone synthesis to basal and prostaglandin E2-stimulated rates of relaxin release. A relaxin-reverse hemolytic plaque assay was used to monitor relaxin release from individual large luteal cells (LLC) in which new protein synthesis was inhibited by cycloheximide or actinomycin D. These treatments significantly decreased the rate of relaxin release. In addition, cycloheximide reduced the total fraction of LLC possessing the ability to form plaques by about 10%, suggesting complete suppression of relaxin from this subset of cells. Exposure of inhibitor-treated LLC to prostaglandin E2 (a relaxin stimulatory secretagogue) enhanced relaxin release, and restored suppressed LLC back into the secretory population. Taken overall, these results demonstrate that the majority of relaxin-releasing LLC exploit a mixture of newly synthesized and older, stored hormone to achieve basal secretion. A minority of relaxin-releasing LLC, however, appear to depend wholly on newly synthesized hormone for basal secretion. The differential activity (and interaction) of these pathways in individual LLC may provide a potential explanation for the markedly heterogenous manner of hormone release observed in this (and other) cell types, and for the action of relaxin secretagogues.

  12. New MKLP-2 inhibitors in the paprotrain series: Design, synthesis and biological evaluations.

    PubMed

    Labrière, Christophe; Talapatra, Sandeep K; Thoret, Sylviane; Bougeret, Cécile; Kozielski, Frank; Guillou, Catherine

    2016-02-15

    Members of the kinesin superfamily are involved in key functions during intracellular transport and cell division. Their involvement in cell division makes certain kinesins potential targets for drug development in cancer chemotherapy. The two most advanced kinesin targets are Eg5 and CENP-E with inhibitors in clinical trials. Other mitotic kinesins are also being investigated for their potential as prospective drug targets. One recently identified novel potential cancer therapeutic target is the Mitotic kinesin-like protein 2 (MKLP-2), a member of the kinesin-6 family, which plays an essential role during cytokinesis. Previous studies have shown that inhibition of MKLP-2 leads to binucleated cells due to failure of cytokinesis. We have previously identified compound 1 (paprotrain) as the first selective inhibitor of MKLP-2. Herein we describe the synthesis and biological evaluation of new analogs of 1. Our structure-activity relationship (SAR) study reveals the key chemical elements in the paprotrain family necessary for MKLP-2 inhibition. We have successfully identified one MKLP-2 inhibitor 9a that is more potent than paprotrain. In addition, in vitro analysis of a panel of kinesins revealed that this compound is selective for MKLP-2 compared to other kinesins tested and also does not have an effect on microtubule dynamics. Upon testing in different cancer cell lines, we find that the more potent paprotrain analog is also more active than paprotrain in 10 different cancer cell lines. Increased selectivity and higher potency is therefore a step forward toward establishing MKLP-2 as a potential cancer drug target. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Modulation of eotaxin formation and eosinophil migration by selective inhibitors of phosphodiesterase type 4 isoenzyme

    PubMed Central

    Silva, Patrícia M R; Alves, Alessandra C; Serra, Magda F; Pires, Ana Lucia A; Silva, Juliane P; Barreto, Emiliano O; Cordeiro, Renato S B; Jose, Peter J; Teixeira, Mauro M; Lagente, Vincent; Martins, Marco A

    2001-01-01

    infiltration only the former prevents eotaxin formation, indicating that PDE 4 inhibitors impair eosinophil accumulation by mechanisms independent of eotaxin production blockade. PMID:11564646

  14. Recent advances in inhibitors of bacterial fatty acid synthesis type II (FASII) system enzymes as potential antibacterial agents.

    PubMed

    Wang, Yi; Ma, Shutao

    2013-10-01

    Bacterial infections are a constant and serious threat to human health. With the increase of multidrug resistance of clinically pathogenic bacteria, common antibiotic therapies have been less effective. Fatty acid synthesis type II (FASII) system enzymes are essential for bacterial membrane lipid biosynthesis and represent increasingly promising targets for the discovery of antibacterial agents with new mechanisms of action. This review highlights recent advances in inhibitors of bacterial FASII as potential antibacterial agents, paying special attention to the activities, mechanisms, and structure-activity relationships of those inhibitors that mainly target β-ketoacyl-ACP synthase, β-ketoacyl-ACP reductase, β-hydroxyacyl-ACP dehydratase, and enoyl-ACP reductase. Although inhibitors with low nanomolar and selective activity against various bacterial FASII have entered clinical trials, further research is needed to expand upon both available and yet unknown scaffolds to identify new FASII inhibitors that may have antibacterial potential, particularly against resistant bacterial strains.

  15. Rational Design Synthesis and Evaluation of New Selective Inhibitors of Microbial Class II (Zinc Dependent) Fructose Bis-phosphate Aldolases

    SciTech Connect

    R Daher; M Coincon; M Fonvielle; P Gest; M Guerin; M Jackson; J Sygusch; M Therisod

    2011-12-31

    We report the synthesis and biochemical evaluation of several selective inhibitors of class II (zinc dependent) fructose bis-phosphate aldolases (Fba). The products were designed as transition-state analogues of the catalyzed reaction, structurally related to the substrate fructose bis-phosphate (or sedoheptulose bis-phosphate) and based on an N-substituted hydroxamic acid, as a chelator of the zinc ion present in active site. The compounds synthesized were tested on class II Fbas from various pathogenic microorganisms and, by comparison, on a mammalian class I Fba. The best inhibitor shows Ki against class II Fbas from various pathogens in the nM range, with very high selectivity (up to 105). Structural analyses of inhibitors in complex with aldolases rationalize and corroborate the enzymatic kinetics results. These inhibitors represent lead compounds for the preparation of new synthetic antibiotics, notably for tuberculosis prophylaxis.

  16. Design, synthesis, molecular docking studies and in vitro screening of ethyl 4-(3-benzoylthioureido) benzoates as urease inhibitors.

    PubMed

    Saeed, Aamer; Khan, Muhammad Siraj; Rafique, Hummera; Shahid, Mohammad; Iqbal, Jamshed

    2014-02-01

    Thioureas are exceptionally versatile building blocks towards the synthesis of wide variety of heterocyclic systems, which also possess extensive range of pharmacological activities. The substituted benzoic acids were converted into corresponding acid chlorides, these acid chlorides were then treated with potassium thiocyanate in acetone and then the reaction mixture was refluxed for 1-2h afford ethyl 4-(3-benzoylthioureido)benzoates thioureas in good yields. All the newly synthesized compounds were evaluated for their urease inhibitory activities and were found to be potent inhibitors of urease enzyme. Compounds 1f and 1g were identified as the most potent urease inhibitors (IC50 0.21 and 0.13 μM, respectively), and was 100-fold more potent than the standard inhibitors. Further molecular docking studies were carried out using the crystal structure of urease to find out the binding mode of the inhibitors with the enzyme.

  17. Synthesis and biological evaluation of novel acyclic and cyclic glyoxamide based derivatives as bacterial quorum sensing and biofilm inhibitors.

    PubMed

    Nizalapur, Shashidhar; Kimyon, Onder; Yee, Eugene; Bhadbhade, Mohan M; Manefield, Mike; Willcox, Mark; Black, David StC; Kumar, Naresh

    2017-07-21

    Bacteria regulate the expression of various virulence factors and processes such as biofilm formation through a chemically-mediated communication mechanism called quorum sensing. Bacterial biofilms contribute to antimicrobial resistance as they can protect bacteria embedded in their matrix from the effects of antibiotics. Thus, developing novel quorum sensing inhibitors, which can inhibit biofilm formation, is a viable strategy to combat antimicrobial resistance. We report herein the synthesis of novel acyclic and cyclic glyoxamide derivatives via ring-opening reactions of N-acylisatins. These compounds were evaluated for their quorum sensing inhibition activity against P. aeruginosa MH602 and E. coli MT102. Compounds 20, 21 and 30 displayed the greatest quorum sensing inhibition activity against P. aeruginosa MH602, with 71.5%, 71.5%, and 74% inhibition, respectively, at 250 μM. Compounds 18, 20 and 21 exhibited the greatest QSI activity against E. coli MT102, with 71.5%, 72.1% and 73.5% quorum sensing inhibition activity, respectively. In addition, the biofilm inhibition activity was also investigated against P. aeruginosa and E. coli at 250 μM. The glyoxamide compounds 16, 18 and 19 exhibited 71.2%, 66.9%, and 66.5% inhibition of P. aeruginosa biofilms, respectively; whereas compounds 12, 20, and 22 showed the greatest inhibitory activity against E. coli biofilms with 87.9%, 90.8% and 89.5%, respectively. Finally, the determination of the in vitro toxicity against human MRC-5 lung fibroblast cells revealed that these novel glyoxamide compounds are non-toxic to human cells.

  18. Computational study on the antifreeze glycoproteins as inhibitors of clathrate-hydrate formation.

    PubMed

    Cruz-Torres, Armando; Romero-Martínez, Ascención; Galano, Annia

    2008-08-04

    The ability of antifreeze glycoproteins to inhibit clathrate-hydrate formation is studied using DFT. A 5(12) cavity, dodecahedral (H(2)O)(20), and the AATA peptide are used to model the inhibitor-clathrate interaction. The presence of AATA in the vicinity of the water cavities not only leads to the formation of complexes, with different peptide/cavity ratios, but also to the deformation of the cavity and to the elongation of several of the hydrogen bonds responsible for keeping the dodecahedral (H(2)O)(20) together. The complexes are formed through hydrogen bonding between the peptides and the water cavities. The glycoproteins are expected to anchor onto the clathrate surface, blocking the access of new water molecules and preventing the incipient crystals from growing. They are also expected to weaken the clathrate structure. Amide IR bands are associated with the complexes' formation. They are significantly red-shifted in the hydrogen-bonded systems compared to isolated AATA. The amide A band is the most sensitive to hydrogen bonding. In addition a distinctive band around 3100 cm(-1) is proposed for the identification of clathrate-peptide hydrogen-bonded complexes.

  19. Discovery of Novel Oral Protein Synthesis Inhibitors of Mycobacterium tuberculosis That Target Leucyl-tRNA Synthetase

    PubMed Central

    Palencia, Andrés; Li, Xianfeng; Bu, Wei; Choi, Wai; Ding, Charles Z.; Easom, Eric E.; Feng, Lisa; Hernandez, Vincent; Houston, Paul; Liu, Liang; Meewan, Maliwan; Mohan, Manisha; Rock, Fernando L.; Sexton, Holly; Zhang, Suoming; Zhou, Yasheen; Wan, Baojie; Wang, Yuehong; Franzblau, Scott G.; Woolhiser, Lisa; Gruppo, Veronica; Lenaerts, Anne J.; O'Malley, Theresa; Parish, Tanya; Cooper, Christopher B.; Waters, M. Gerard; Ma, Zhenkun; Ioerger, Thomas R.; Sacchettini, James C.; Rullas, Joaquín; Angulo-Barturen, Iñigo; Pérez-Herrán, Esther; Mendoza, Alfonso; Barros, David; Cusack, Stephen; Plattner, Jacob J.

    2016-01-01

    The recent development and spread of extensively drug-resistant and totally drug-resistant resistant (TDR) strains of Mycobacterium tuberculosis highlight the need for new antitubercular drugs. Protein synthesis inhibitors have played an important role in the treatment of tuberculosis (TB) starting with the inclusion of streptomycin in the first combination therapies. Although parenteral aminoglycosides are a key component of therapy for multidrug-resistant TB, the oxazolidinone linezolid is the only orally available protein synthesis inhibitor that is effective against TB. Here, we show that small-molecule inhibitors of aminoacyl-tRNA synthetases (AARSs), which are known to be excellent antibacterial protein synthesis targets, are orally bioavailable and effective against M. tuberculosis in TB mouse infection models. We applied the oxaborole tRNA-trapping (OBORT) mechanism, which was first developed to target fungal cytoplasmic leucyl-tRNA synthetase (LeuRS), to M. tuberculosis LeuRS. X-ray crystallography was used to guide the design of LeuRS inhibitors that have good biochemical potency and excellent whole-cell activity against M. tuberculosis. Importantly, their good oral bioavailability translates into in vivo efficacy in both the acute and chronic mouse models of TB with potency comparable to that of the frontline drug isoniazid. PMID:27503647

  20. Serine protease inhibitor attenuates intracerebral hemorrhage-induced brain injury and edema formation in rat.

    PubMed

    Nakamura, Takehiro; Kuroda, Yasuhiro; Hosomi, Naohisa; Okabe, Naohiko; Kawai, Nobuyuki; Tamiya, Takashi; Xi, Guohua; Keep, Richard F; Itano, Toshifumi

    2010-01-01

    Our previous studies have demonstrated that thrombin plays an important role in intracerebral hemorrhage (ICH)-induced brain injury and edema formation. We, therefore, examined whether nafamostat mesilate (FUT), a serine protease inhibitor, can reduce ICH-induced brain injury. Anesthetized male Sprague-Dawley rats received an infusion of autologous whole blood (100 microL), thrombin (5U/50 microL) or type VII collagenase (0.4 U/2 microL) into the right basal ganglia, the three ICH models used in the present study. FUT (10 mg/kg) or vehicle was administered intraperitoneally 6 h after ICH (or immediately after thrombin infusion) and then at 12-h intervals (six treatments in total, n = 5 in each group). All rats were sacrificed 72 h later. We also examined whether FUT promotes rebleeding in a model in which ICH was induced by intracerebral injection of collagenase. Systemic administration of FUT starting 6 h after ICH reduced brain water content in the ipsilateral basal ganglia 72 h after ICH compared with vehicle. FUT attenuated ICH-induced changes in 8-OHdG and thrombin-reduced brain edema. FUT did not increase collagenase-induced hematoma volume. FUT attenuates ICH-induced brain edema and DNA injury suggesting that serine protease inhibitor may be potential therapeutic agent for ICH.

  1. Gene therapy for haemophilia: prospects and challenges to prevent or reverse inhibitor formation.

    PubMed

    Scott, David W; Lozier, Jay N

    2012-02-01

    Monogenic hereditary diseases, such as haemophilia A and B, are ideal targets for gene therapeutic approaches. While these diseases can be treated with protein therapeutics, such as factor VIII (FVIII) or IX (FIX), the notion that permanent transfer of the genes encoding these factors can cure haemophilia is very attractive. An underlying problem with a gene therapy approach, however, is the patient's immune response to the therapeutic protein (as well as to the transmission vector), leading to the formation of inhibitory antibodies. Even more daunting is reversing an existing immune response in patients with pre-existing inhibitors. In this review, we will describe the laboratory and clinical progress, and the challenges met thus far, in achieving the goal of gene therapy efficacy, with a focus on the goal of tolerance induction.

  2. Tolerogenic nanoparticles to induce immunologic tolerance: Prevention and reversal of FVIII inhibitor formation.

    PubMed

    Zhang, Ai-Hong; Rossi, Robert J; Yoon, Jeongheon; Wang, Hong; Scott, David W

    2016-03-01

    The immune response of hemophilia A patients to administered FVIII is a major complication that obviates this very therapy. We have recently described the use of synthetic, biodegradable nanoparticles carrying rapamycin and FVIII peptide antigens, to induce antigen-specific tolerance. Herein we test the tolerogenicity of nanoparticles that contains full length FVIII protein in hemophilia A mice, focusing on anti-FVIII humoral immune response. As expected, recipients of tolerogenic nanoparticles remained unresponsive to FVIII despite multiple challenges for up to 6 months. Furthermore, therapeutic treatments in FVIII-immunized mice with pre-existing anti-FVIII antibodies resulted in diminished antibody titers, albeit efficacy required longer therapy with the tolerogenic nanoparticles. Interestingly, durable FVIII-specific tolerance was also achieved in animals co-administered with FVIII admixed with nanoparticles encapsulating rapamycin alone. These results suggest that nanoparticles carrying rapamycin and FVIII can be employed to induce specific tolerance to prevent and even reverse inhibitor formation.

  3. Hydrophobic amino acids as a new class of kinetic inhibitors for gas hydrate formation

    PubMed Central

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Lee, Bo Ram; Park, Da-Hye; Han, Kunwoo; Lee, Kun-Hong

    2013-01-01

    As the foundation of energy industry moves towards gas, flow assurance technology preventing pipelines from hydrate blockages becomes increasingly significant. However, the principle of hydrate inhibition is still poorly understood. Here, we examined natural hydrophobic amino acids as novel kinetic hydrate inhibitors (KHIs), and investigated hydrate inhibition phenomena by using them as a model system. Amino acids with lower hydrophobicity were found to be better KHIs to delay nucleation and retard growth, working by disrupting the water hydrogen bond network, while those with higher hydrophobicity strengthened the local water structure. It was found that perturbation of the water structure around KHIs plays a critical role in hydrate inhibition. This suggestion of a new class of KHIs will aid development of KHIs with enhanced biodegradability, and the present findings will accelerate the improved control of hydrate formation for natural gas exploitation and the utilization of hydrates as next-generation gas capture media. PMID:23938301

  4. Resveratrol--a potential inhibitor of biofilm formation in Vibrio cholerae.

    PubMed

    Augustine, Nimmy; Goel, A K; Sivakumar, K C; Kumar, R Ajay; Thomas, Sabu

    2014-02-15

    Resveratrol, a phytochemical commonly found in the skin of grapes and berries, was tested for its biofilm inhibitory activity against Vibrio cholerae. Biofilm inhibition was assessed using crystal violet assay. MTT assay was performed to check the viability of the treated bacterial cells and the biofilm architecture was analysed using confocal laser scanning microscopy. The possible target of the compound was determined by docking analysis. Results showed that subinhibitory concentrations of the compound could significantly inhibit biofilm formation in V. cholerae in a concentration-dependent manner. AphB was found to be the putative target of resveratrol using docking analysis. The results generated in this study proved that resveratrol is a potent biofilm inhibitor of V. cholerae and can be used as a novel therapeutic agent against cholera. To our knowledge, this is the first report of resveratrol showing antibiofilm activity against V. cholerae.

  5. Effects of protein synthesis inhibitors during reactivation of associative memory in the common snail induces reversible and irreversible amnesia.

    PubMed

    Solntseva, S V; Nikitin, V P; Kozyrev, S A; Shevelkin, A V; Lagutin, A V; Sherstnev, V V

    2007-11-01

    The effects of protein synthesis inhibitors on the reactivation of an associative skill consisting of refusing a particular food by common snails were studied. Animals were given single injections of a protein synthesis inhibitor (cycloheximide at 0.6 mg/snail or anisomycin at 0.4 mg) 24 h after three days of training, and were then presented with a "reminding" stimulus (the "conditioned reflex" food-banana) and tested for retention of the skill. Observations revealed an impairment of reproduction of the acquired skill 2.5 h after the "reminder," with spontaneous restoration at 4.5-5.5 h. Other snails were given single 1.8-mg doses of cycloheximide or three 0.6-mg doses with intervals of 2 h. "Reminders" were presented after each injection. In these conditions, impairment of reproduction of the conditioned reflex also appeared 2.5 h after the first "reminder," though amnesia lasted at least 30 days and repeat training of the animals produced only partial recovery of the skill. Thus, we have provided the first demonstration that recovery of a long-term memory "trace" on exposure to relatively low doses of protein synthesis inhibitors produces transient and short-lived amnesia, lasting 2-3 h, while long-term, irreversible amnesia occurs after longer-lasting or more profound suppression of protein synthesis. These results suggest that the "reminding" process induces reconsolidation of the " initial" memory, suppression of which by protein synthesis inhibitors leads to "erasure" of the memory "trace" and impairs consolidation on repeat training.

  6. Inhibition of lipopolysaccharide-induced osteoclast formation and bone resorption in vitro and in vivo by cysteine proteinase inhibitors.

    PubMed

    Strålberg, Fredrik; Kassem, Ali; Kasprzykowski, Franciszek; Abrahamson, Magnus; Grubb, Anders; Lindholm, Catharina; Lerner, Ulf H

    2017-05-01

    Inflammation-induced bone destruction is a major treatment target in many inflammatory skeletal diseases. The aim of this study was to investigate if the cysteine proteinase inhibitors cystatin C, fungal cysteine proteinase inhibitor (E-64), and N-benzyloxycarbonyl-arginyl-leucyl-valyl-glycyl-diazomethane acetate (Z-RLVG-CHN2) can inhibit LPS-induced osteoclast formation. Mouse bone marrow macrophages (BMMs) were isolated and primed with receptor activator of NF-κB ligand (RANKL) for 24 h, followed by stimulation with LPS, with and without inhibitors. Adult mice were injected locally with LPS and then treated with E-64 and osteoclast formation assessed by the number of cathepsin K(+) multinucleated cells. Cystatin C inhibited LPS-induced osteoclast formation time and concentration dependently (IC50 = 0.3 μM). The effect was associated with decreased mRNA and protein expression of tartrate-resistant acid phosphatase (TRAP) and cathepsin K and of the osteoclastogenic transcription factors c-Fos and NFATc1. LPS-induced osteoclast formation on bone slices was also inhibited by cystatin C, resulting in decreased pit formation and release of bone matrix proteins. Similar data were obtained with E-64 and Z-RLVG-CHN2 Cystatin C was internalized in BMMs stimulated by LPS but not in unstimulated BMMs. Osteoclast formation induced by LPS was dependent on TNF-α, and the 3 inhibitors abolished LPS-induced TNF superfamily 2 (gene encoding TNF-α; Tnfsf2) mRNA expression without affecting Il1b, Il6, or oncostatin M (Osm) expression. Formation of osteoclasts in the skull bones after local LPS stimulation was inhibited by E-64. It is concluded that cysteine proteinase inhibitors effectively inhibit LPS-induced osteoclast formation in vivo and in vitro by inhibition of TNF-α expression. The targeting of cysteine proteinases might represent a novel treatment modality for prevention of inflammatory bone loss. © Society for Leukocyte Biology.

  7. Nanocrystal synthesis and thin film formation for earth abundant photovoltaics

    NASA Astrophysics Data System (ADS)

    Carter, Nathaniel J.

    Providing access to on-demand energy at the global scale is a grand challenge of our time. The fabrication of solar cells from nanocrystal inks comprising earth abundant elements represents a scalable and sustainable photovoltaic technology with the potential to meet the global demand for electricity. Solar cells with Cu2ZnSn(S,Se)4 (CZTSSe) absorber layers are of particular interest due to the high absorption coefficient of CZTSSe, its band gap in the ideal range for efficient photovoltaic power conversion, and the relative abundance of its constituent elements in the earth's crust. Despite the promise of this material system, CZTSSe solar cell efficiencies reported throughout literature have failed to exceed 12.6%, principally due to the low open-circuit voltage (VOC) achieved in these devices compared to the absorber band gap. The work presented herein primarily aims to address the low VOC problem. First, the fundamental cause for such low VOC's is investigated. Interparticle compositional inhomogeneities identified in the synthesized CZTS nanocrystals and their effect on the absorber layer formation and device performance are characterized. Real-time energy-dispersive x-ray diffraction (EDXRD) elucidates the role of these inhomogeneities in the mechanism by which a film of CZTS nanocrystals converts into a dense absorber layer comprising micron-sized CZTSSe grains upon annealing in a selenium atmosphere (selenization). Additionally, a direct correlation between the nanocrystal inhomogeneities and the VOC in completed devices is observed. Detailed characterization of CZTSSe solar cells identifies electrical potential fluctuations in the CZTSSe absorber - due to spatial composition variations not unlike those observed in the nanocrystals - as a primary V OC inhibitor. Additional causes for low VOC's in CZTSSe solar cells proposed in the literature involve recombination at the interface between the CZTSSe absorber and: (1) the n-type, CdS buffer layer, or (2) the

  8. Design, synthesis, functional and structural characterization of an inhibitor of N-acetylneuraminate-9-phosphate phosphatase: observation of extensive dynamics in an enzyme/inhibitor complex.

    PubMed

    Kim, Soong-Hoon; Constantine, Keith L; Duke, Gerald J; Goldfarb, Valentina; Hunt, John T; Johnson, Stephen; Kish, Kevin; Klei, Herbert E; McDonnell, Patricia A; Metzler, William J; Mueller, Luciano; Poss, Michael A; Fairchild, Craig R; Bhide, Rajeev S

    2013-07-15

    The design, synthesis and characterization of a phosphonate inhibitor of N-acetylneuraminate-9-phosphate phosphatase (HDHD4) is described. Compound 3, where the substrate C-9 oxygen was replaced with a nonlabile CH2 group, inhibits HDHD4 with a binding affinity (IC50 11μM) in the range of the native substrate Neu5Ac-9-P (compound 1, Km 47μM). Combined SAR, modeling and NMR studies are consistent with the phosphonate group in inhibitor 3 forming a stable complex with native Mg(2+). In addition to this key interaction, the C-1 carboxylate of the sugar interacts with a cluster of basic residues, K141, R104 and R72. Comparative NMR studies of compounds 3 and 1 with Ca(2+) and Mg(2+) are indicative of a highly dynamic process in the active site for the HDHD4/Mg(2+)/3 complex. Possible explanations for this observation are discussed.

  9. Novel 2-oxoimidazolidine-4-carboxylic acid derivatives as Hepatitis C virus NS3-4A serine protease inhibitors: synthesis, activity, and X-ray crystal structure of an enzyme inhibitor complex

    SciTech Connect

    Arasappan, Ashok; Njoroge, F. George; Parekh, Tejal N.; Yang, Xiaozheng; Pichardo, John; Butkiewicz, Nancy; Prongay, Andrew; Yao, Nanhua; Girijavallabhan, Viyyoor

    2008-06-30

    Synthesis and HCV NS3 serine protease inhibitory activity of some novel 2-oxoimidazolidine-4-carboxylic acid derivatives are reported. Inhibitors derived from this new P2 core exhibited activity in the low {micro}M range. X-ray structure of an inhibitor, 15c bound to the protease is presented.

  10. Structure-Based Design, Synthesis, and Biological Evaluation of Dihydroquinazoline-Derived Potent β-Secretase Inhibitors

    PubMed Central

    Ghosh, Arun K.; Pandey, Satyendra; Gangarajula, Sudhakar; Kulkarni, Sarang; Xu, Xiaoming; Rao, Kalapala Venkateswara; Huang, Xiangping; Tang, Jordan

    2012-01-01

    Structure-based design, synthesis, and biological evaluation of a series of dihydroquinazoline-derived β-secretase inhibitors incorporating thiazole and pyrazole-derived P2-ligands are described. We have identified inhibitor 4f which has shown potent enzyme inhibitory (Ki = 13 nM) and cellular (IC50 = 21 nM in neuroblastoma cells) assays. A model of 4f was created based upon the X-ray structure of 3a-bound β-Secretase. The model revealed critical interactions in the active site. PMID:22863204

  11. Design, Synthesis, and Evaluation of Donepezil-Like Compounds as AChE and BACE-1 Inhibitors

    PubMed Central

    2016-01-01

    An ecofriendly synthetic pathway for the synthesis of donepezil precursors is described. Alternative energy sources were used for the total synthesis in order to improve yields, regioselectively, and rate of each synthetic step and to reduce the coproduction of waste at the same time. For all products, characterized by an improved structural rigidity respect to donepezil, the inhibitor activity on AChE, the selectivity vs BuChE, the side-activity on BACE-1, and the effect on SHSY-5Y neuroblastoma cells viability were tested. Two potential new lead compounds for a dual therapeutic strategy against Alzheimer’s disease were envisaged. PMID:27190595

  12. Design, Synthesis, and Evaluation of Donepezil-Like Compounds as AChE and BACE-1 Inhibitors.

    PubMed

    Costanzo, Paola; Cariati, Luca; Desiderio, Doriana; Sgammato, Roberta; Lamberti, Anna; Arcone, Rosaria; Salerno, Raffaele; Nardi, Monica; Masullo, Mariorosario; Oliverio, Manuela

    2016-05-12

    An ecofriendly synthetic pathway for the synthesis of donepezil precursors is described. Alternative energy sources were used for the total synthesis in order to improve yields, regioselectively, and rate of each synthetic step and to reduce the coproduction of waste at the same time. For all products, characterized by an improved structural rigidity respect to donepezil, the inhibitor activity on AChE, the selectivity vs BuChE, the side-activity on BACE-1, and the effect on SHSY-5Y neuroblastoma cells viability were tested. Two potential new lead compounds for a dual therapeutic strategy against Alzheimer's disease were envisaged.

  13. Synthesis, Pharmacological Profile and Docking Studies of New Sulfonamides Designed as Phosphodiesterase-4 Inhibitors

    PubMed Central

    Cardozo, Suzana Vanessa S.; Carvalho, Vinicius de Frias; Romeiro, Nelilma Correia; Silva, Patrícia Machado Rodrigues e; Martins, Marco Aurélio; Barreiro, Eliezer J.; Lima, Lídia Moreira

    2016-01-01

    Prior investigations showed that increased levels of cyclic AMP down-regulate lung inflammatory changes, stimulating the interest in phosphodiesterase (PDE)4 as therapeutic target. Here, we described the synthesis, pharmacological profile and docking properties of a novel sulfonamide series (5 and 6a-k) designed as PDE4 inhibitors. Compounds were screened for their selectivity against the four isoforms of human PDE4 using an IMAP fluorescence polarized protocol. The effect on allergen- or LPS-induced lung inflammation and airway hyper-reactivity (AHR) was studied in A/J mice, while the xylazine/ketamine-induced anesthesia test was employed as a behavioral correlate of emesis in rodents. As compared to rolipram, the most promising screened compound, 6a (LASSBio-448) presented a better inhibitory index concerning PDE4D/PDE4A or PDE4D/PDE4B. Accordingly, docking analyses of the putative interactions of LASSBio-448 revealed similar poses in the active site of PDE4A and PDE4C, but slight unlike orientations in PDE4B and PDE4D. LASSBio-448 (100 mg/kg, oral), 1 h before provocation, inhibited allergen-induced eosinophil accumulation in BAL fluid and lung tissue samples. Under an interventional approach, LASSBio-448 reversed ongoing lung eosinophilic infiltration, mucus exacerbation, peribronchiolar fibrosis and AHR by allergen provocation, in a mechanism clearly associated with blockade of pro-inflammatory mediators such as IL-4, IL-5, IL-13 and eotaxin-2. LASSBio-448 (2.5 and 10 mg/kg) also prevented inflammation and AHR induced by LPS. Finally, the sulfonamide derivative was shown to be less pro-emetic than rolipram and cilomilast in the assay employed. These findings suggest that LASSBio-448 is a new PDE4 inhibitor with marked potential to prevent and reverse pivotal pathological features of diseases characterized by lung inflammation, such as asthma. PMID:27695125

  14. Synthesis of 2-arylindole derivatives and evaluation as nitric oxide synthase and NFκB inhibitors.

    PubMed

    Yu, Xufen; Park, Eun-Jung; Kondratyuk, Tamara P; Pezzuto, John M; Sun, Dianqing

    2012-11-28

    Development of small molecule drug-like inhibitors blocking both nitric oxide synthase and NFκB could offer a synergistic therapeutic approach in the prevention and treatment of inflammation and cancer. During the course of evaluating the biological potential of a commercial compound library, 2-phenylindole (1) displayed inhibitory activity against nitrite production and NFκB with IC(50) values of 38.1 ± 1.8 and 25.4 ± 2.1 μM, respectively. Based on this lead, synthesis and systematic optimization have been undertaken in an effort to find novel and more potent nitric oxide synthase and NFκB inhibitors with antiinflammatory and cancer preventive potential. First, chemical derivatizations of 1 and 2-phenylindole-3-carboxaldehyde (4) were performed to generate a panel of N-alkylated indoles and 3-oxime derivatives 2–7. Second, a series of diversified 2-arylindole derivatives (10) were synthesized from an array of substituted 2-iodoanilines (8) and terminal alkynes (9) by applying a one-pot palladium catalyzed Sonogashira-type alkynylation and base-assisted cycloaddition. Subsequent biological evaluations revealed 3-carboxaldehyde oxime and cyano substituted 2-phenylindoles 5 and 7 exhibited the strongest nitrite inhibitory activities (IC(50) = 4.4 ± 0.5 and 4.8 ± 0.4 μM, respectively); as well as NFκB inhibition (IC(50) = 6.9 ± 0.8 and 8.5 ± 2.0 μM, respectively). In addition, the 6′-MeO-naphthalen-2′-yl indole derivative 10at displayed excellent inhibitory activity against NFκB with an IC(50) value of 0.6 ± 0.2 μM.

  15. ANTITUMOR ACTIVITY OF HYALURONIC ACID SYNTHESIS INHIBITOR 4-METHYLUMBELLIFERONE IN PROSTATE CANCER CELLS

    PubMed Central

    Lokeshwar, Vinata B.; Lopez, Luis E.; Munoz, Daniel; Chi, Andrew; Shirodkar, Samir P.; Lokeshwar, Soum D.; Escudero, Diogo O.; Dhir, Neetika; Altman, Norman

    2010-01-01

    4-methylumbelliferone (4-MU) is a hyaluronic acid (HA) synthesis inhibitor with anticancer properties; the mechanism of its anticancer effects is unknown. We evaluated the effects of 4-MU on prostate cancer cells. 4-MU inhibited proliferation, motility and invasion of DU145, PC3-ML, LNCaP, C4-2B and/or LAPC-4 cells. At IC50 for HA synthesis (0.4 mM), 4-MU induced > 3-fold apoptosis in prostate cancer cells, which could be prevented by HA addition. 4-MU induced caspase-8, -9 and -3 activation, PARP cleavage, up-regulation of Fas-L, Fas, FADD and DR4 and down regulation of bcl-2, phospho-bad, bcl-XL, phospho-Akt, phospho-IKB, phospho-ErbB2 and phospho-EGFR. At IC50, 4-MU also caused > 90% inhibition of NFkB reporter activity which was prevented partially by HA addition. With the exception of caveolin-1, HA prevented the 4-MU induced down regulation of HA receptors (CD44, RHAMM), matrix-degrading enzymes (MMP-2, MMP-9), IL-8, and chemokine receptors (CXCR1, CXCR4, CXCR7) at protein and mRNA levels. Expression of myristoylated-Akt rescued 4-MU induced apoptosis and inhibition of cell growth and IL-8, RHAMM, HAS2, CD44 and MMP-9 expression. Oral administration of 4-MU significantly decreased PC3-ML tumor growth (> 3-fold), when treatment was started either on the day of tumor cell injection or after the tumors became palpable, without organ toxicity, changes in serum chemistry or body weight. Tumors from 4-MU treated animals showed reduced microvessel density (~ 3-fold) and HA expression but increased TUNEL positive cells and expression of apoptosis-related molecules. Therefore, anticancer effects of 4-MU, an orally bioavailable and relatively non-toxic agent, are primarily mediated by inhibition of HA signaling. PMID:20332231

  16. Carbimazole is an inhibitor of protein synthesis and protects from neuronal hypoxic damage in vitro.

    PubMed

    Lehane, Cornelius; Guelzow, Timo; Zenker, Simone; Erxleben, Anika; Schwer, Christian I; Heimrich, Bernd; Buerkle, Hartmut; Humar, Matjaz

    2013-12-01

    Oxygen deprivation during ischemic or hemorrhagic stroke results in ATP depletion, loss of ion homeostasis, membrane depolarization, and excitotoxicity. Pharmacologic restoration of cellular energy supply may offer a promising concept to reduce hypoxic cell injury. In this study, we investigated whether carbimazole, a thionamide used to treat hyperthyroidism, reduces neuronal cell damage in oxygen-deprived human SK-N-SH cells or primary cortical neurons. Our results revealed that carbimazole induces an inhibitory phosphorylation of eukaryotic elongation factor 2 (eEF2) that was associated with a marked inhibition of global protein synthesis. Translational inhibition resulted in significant bioenergetic savings, preserving intracellular ATP content in oxygen-deprived neuronal cells and diminishing hypoxic cellular damage. Phosphorylation of eEF2 was mediated by AMP-activated protein kinase and eEF2 kinase. Carbimazole also induced a moderate calcium influx and a transient cAMP increase. To test whether translational inhibition generally diminishes hypoxic cell damage when ATP availability is limiting, the translational repressors cycloheximide and anisomycin were used. Cycloheximide and anisomycin also preserved ATP content in hypoxic SK-N-SH cells and significantly reduced hypoxic neuronal cell damage. Taken together, these data support a causal relation between the pharmacologic inhibition of global protein synthesis and efficient protection of neurons from ischemic damage by preservation of high-energy metabolites in oxygen-deprived cells. Furthermore, our results indicate that carbimazole or other translational inhibitors may be interesting candidates for the development of new organ-protective compounds. Their chemical structure may be used for computer-assisted drug design or screening of compounds to find new agents with the potential to diminish neuronal damage under ATP-limited conditions.

  17. Structure-based Design and In-Parallel Synthesis of Inhibitors of AmpC b-lactamase

    SciTech Connect

    Tondi, D.; Powers, R.A.; Negri, M.C.; Caselli, M.C.; Blazquez, J.; Costi, M.P.; Shoichet, B.K.

    2010-03-08

    Group I {beta}-lactamases are a major cause of antibiotic resistance to {beta}-lactams such as penicillins and cephalosporins. These enzymes are only modestly affected by classic {beta}-lactam-based inhibitors, such as clavulanic acid. Conversely, small arylboronic acids inhibit these enzymes at sub-micromolar concentrations. Structural studies suggest these inhibitors bind to a well-defined cleft in the group I {beta}-lactamase AmpC; this cleft binds the ubiquitous R1 side chain of {beta}-lactams. Intriguingly, much of this cleft is left unoccupied by the small arylboronic acids. To investigate if larger boronic acids might take advantage of this cleft, structure-guided in-parallel synthesis was used to explore new inhibitors of AmpC. Twenty-eight derivatives of the lead compound, 3-aminophenylboronic acid, led to an inhibitor with 80-fold better binding (2; K{sub i} 83 nM). Molecular docking suggested orientations for this compound in the R1 cleft. Based on the docking results, 12 derivatives of 2 were synthesized, leading to inhibitors with K{sub i} values of 60 nM and with improved solubility. Several of these inhibitors reversed the resistance of nosocomial Gram-positive bacteria, though they showed little activity against Gram-negative bacteria. The X-ray crystal structure of compound 2 in complex with AmpC was subsequently determined to 2.1 {angstrom} resolution. The placement of the proximal two-thirds of the inhibitor in the experimental structure corresponds with the docked structure, but a bond rotation leads to a distinctly different placement of the distal part of the inhibitor. In the experimental structure, the inhibitor interacts with conserved residues in the R1 cleft whose role in recognition has not been previously explored. Combining structure-based design with in-parallel synthesis allowed for the rapid exploration of inhibitor functionality in the R1 cleft of AmpC. The resulting inhibitors differ considerably from {beta}-lactams but

  18. CLK-dependent exon recognition and conjoined gene formation revealed with a novel small molecule inhibitor.

    PubMed

    Funnell, Tyler; Tasaki, Shinya; Oloumi, Arusha; Araki, Shinsuke; Kong, Esther; Yap, Damian; Nakayama, Yusuke; Hughes, Christopher S; Cheng, S-W Grace; Tozaki, Hirokazu; Iwatani, Misa; Sasaki, Satoshi; Ohashi, Tomohiro; Miyazaki, Tohru; Morishita, Nao; Morishita, Daisuke; Ogasawara-Shimizu, Mari; Ohori, Momoko; Nakao, Shoichi; Karashima, Masatoshi; Sano, Masaya; Murai, Aiko; Nomura, Toshiyuki; Uchiyama, Noriko; Kawamoto, Tomohiro; Hara, Ryujiro; Nakanishi, Osamu; Shumansky, Karey; Rosner, Jamie; Wan, Adrian; McKinney, Steven; Morin, Gregg B; Nakanishi, Atsushi; Shah, Sohrab; Toyoshiba, Hiroyoshi; Aparicio, Samuel

    2017-12-01

    CDC-like kinase phosphorylation of serine/arginine-rich proteins is central to RNA splicing reactions. Yet, the genomic network of CDC-like kinase-dependent RNA processing events remains poorly defined. Here, we explore the connectivity of genomic CDC-like kinase splicing functions by applying graduated, short-exposure, pharmacological CDC-like kinase inhibition using a novel small molecule (T3) with very high potency, selectivity, and cell-based stability. Using RNA-Seq, we define CDC-like kinase-responsive alternative splicing events, the large majority of which monotonically increase or decrease with increasing CDC-like kinase inhibition. We show that distinct RNA-binding motifs are associated with T3 response in skipped exons. Unexpectedly, we observe dose-dependent conjoined gene transcription, which is associated with motif enrichment in the last and second exons of upstream and downstream partners, respectively. siRNA knockdown of CLK2-associated genes significantly increases conjoined gene formation. Collectively, our results reveal an unexpected role for CDC-like kinase in conjoined gene formation, via regulation of 3'-end processing and associated splicing factors.The phosphorylation of serine/arginine-rich proteins by CDC-like kinase is a central regulatory mechanism for RNA splicing reactions. Here, the authors synthesize a novel small molecule CLK inhibitor and map CLK-responsive alternative splicing events and discover an effect on conjoined gene transcription.

  19. Environmental fate and effects of novel quorum sensing inhibitors that can control biofilm formation.

    PubMed

    Lillicrap, Adam; Macken, Ailbhe; Wennberg, Aina Charlotte; Grung, Merete; Rundberget, Jan Thomas; Fredriksen, Lene; Scheie, Anne Aamdal; Benneche, Tore; d'Auriac, Marc Anglès

    2016-12-01

    The formation of bacterial biofilms can have negative impacts on industrial processes and are typically difficult to control. The increase of antibiotic resistance, in combination with the requirement for more environmentally focused approaches, has placed pressure on industry and the scientific community to reassess biofilm control strategies. The discovery of bacterial quorum sensing, as an important mechanism in biofilm formation, has led to the development of new substances (such as halogenated thiophenones) to inhibit the quorum sensing process. However, there are currently limited data regarding the biodegradability or ecotoxicity of these substances. To assess the environmental fate and effects of thiophenones capable of quorum sensing inhibition, candidate substances were first identified that have potentially high biodegradability and low ecotoxicity using quantitative structure activity relationships. Subsequent confirmatory hazard assessment of these substances, using a marine alga and a marine crustacean, indicated that these estimates were significantly under predicted with acute toxicity values more than three orders of magnitude lower than anticipated combined with limited biodegradability. Therefore, although these quorum sensing inhibitors appear a promising approach to control biofilms, they may also have environmental impacts on certain aquatic organisms.

  20. Cysteine protease inhibitor (AcStefin) is required for complete cyst formation of Acanthamoeba.

    PubMed

    Lee, Jung-Yub; Song, Su-Min; Moon, Eun-Kyung; Lee, Yu-Ran; Jha, Bijay Kumar; Danne, Dinzouna-Boutamba Sylvatrie; Cha, Hee-Jae; Yu, Hak Sun; Kong, Hyun-Hee; Chung, Dong-Il; Hong, Yeonchul

    2013-04-01

    The encystation of Acanthamoeba leads to the formation of resilient cysts from vegetative trophozoites. This process is essential for parasite survival under unfavorable conditions, such as those associated with starvation, low temperatures, and biocides. Furthermore, cysteine proteases have been implicated in the massive turnover of intracellular components required for encystation. Thus, strict modulation of the activities of cysteine proteases is required to protect Acanthamoeba from intracellular damage. However, mechanisms underlying the control of protease activity during encystation have not been established in Acanthamoeba. In the present study, we identified and characterized Acanthamoeba cysteine protease inhibitor (AcStefin), which was found to be highly expressed during encystation and to be associated with lysosomes by fluorescence microscopy. Recombinant AcStefin inhibited various cysteine proteases, including human cathepsin B, human cathepsin L, and papain. Transfection with small interfering RNA against AcStefin increased cysteine protease activity during encystation and resulted in incomplete cyst formation, reduced excystation efficiency, and a significant reduction in cytoplasmic area. Taken together, these results indicate that AcStefin is involved in the modulation of cysteine proteases and that it plays an essential role during the encystation of Acanthamoeba.

  1. Cysteine Protease Inhibitor (AcStefin) Is Required for Complete Cyst Formation of Acanthamoeba

    PubMed Central

    Lee, Jung-Yub; Song, Su-Min; Moon, Eun-Kyung; Lee, Yu-Ran; Jha, Bijay Kumar; Danne, Dinzouna-Boutamba Sylvatrie; Cha, Hee-Jae; Yu, Hak Sun; Kong, Hyun-Hee; Chung, Dong-Il

    2013-01-01

    The encystation of Acanthamoeba leads to the formation of resilient cysts from vegetative trophozoites. This process is essential for parasite survival under unfavorable conditions, such as those associated with starvation, low temperatures, and biocides. Furthermore, cysteine proteases have been implicated in the massive turnover of intracellular components required for encystation. Thus, strict modulation of the activities of cysteine proteases is required to protect Acanthamoeba from intracellular damage. However, mechanisms underlying the control of protease activity during encystation have not been established in Acanthamoeba. In the present study, we identified and characterized Acanthamoeba cysteine protease inhibitor (AcStefin), which was found to be highly expressed during encystation and to be associated with lysosomes by fluorescence microscopy. Recombinant AcStefin inhibited various cysteine proteases, including human cathepsin B, human cathepsin L, and papain. Transfection with small interfering RNA against AcStefin increased cysteine protease activity during encystation and resulted in incomplete cyst formation, reduced excystation efficiency, and a significant reduction in cytoplasmic area. Taken together, these results indicate that AcStefin is involved in the modulation of cysteine proteases and that it plays an essential role during the encystation of Acanthamoeba. PMID:23397569

  2. Complex formation between human prostate-specific antigen and protease inhibitors in mouse plasma.

    PubMed

    Hekim, Can; Riipi, Tero; Zhu, Lei; Laakkonen, Pirjo; Stenman, Ulf-Håkan; Koistinen, Hannu

    2010-04-01

    When secreted from the prostate, most of prostate-specific antigen (PSA) is free and enzymatically active. Upon reaching circulation, active PSA is inactivated by complex formation with protease inhibitors. To justify the use of mouse models for evaluation of the function of PSA and for studies on therapeutic modalities based on modulation of PSA activity, it is important to know whether PSA complexation is similar in mouse and man. To characterize the circulating forms of PSA in mouse, we used subcutaneous LNCaP and 22RV1 human prostate cancer cell xenograft tumor models. We also added PSA directly to mouse serum. Free and total PSA were measured by immunoassay, and PSA complexes were extracted by immunopurification followed by SDS-PAGE, in-gel trypsin digestion and identification of signature peptides by mass spectrometry. In mice bearing xenograft tumors, 68% of the immunoreactive PSA occurred in complex, and when added to mouse serum, over 70% of PSA forms complexes that comprises alpha(2)-macroglobulin and members of the alpha(1)-antitrypsin (AAT) family. In mouse plasma, PSA forms complexes similar to those in man, but the major immunoreactive complex contains AAT rather than alpha(1)-antichymotrypsin, which is the main complex forming serpin in man. The complex formation of PSA produced by xenograft tumor models in mice is similar to that of human prostate tumors with respect to the complexation of PSA. (c) 2009 Wiley-Liss, Inc.

  3. Histone deacetylase inhibitors facilitate partner preference formation in female prairie voles

    PubMed Central

    Wang, Hui; Duclot, Florian; Liu, Yan; Wang, Zuoxin; Kabbaj, Mohamed

    2013-01-01

    In the socially monogamous prairie vole (Microtus ochrogaster), mating induces enduring pair-bonds initiated by partner preference formation and regulated by a variety of neurotransmitters including oxytocin, vasopressin, and dopamine. Here we examined potential epigenetic mechanisms mediating pair-bond regulation. We show that the histone deacetylase inhibitors sodium butyrate and TrichoStatin A (TSA) facilitate partner preference formation in female prairie voles in the absence of mating. This was associated with a specific up-regulation of oxytocin (OTR) and vasopressin V1a receptors (V1aR) in the nucleus accumbens, through an increase in histone acetylation at their respective promoter. Furthermore, TSA-facilitated partner preference was prevented by OTR or V1aR blockade in the nucleus accumbens. Importantly, mating-induced partner preference triggered the same epigenetic regulation of OTR and V1aR gene promoters as TSA. These observations thus indicate that TSA and mating facilitate partner preference through epigenetic events, providing the first direct evidence for an epigenetic regulation of pair-bonding. PMID:23727821

  4. The HIF-1 inhibitor YC-1 decreases reactive astrocyte formation in a rodent ischemia model

    PubMed Central

    Na, Jong-In; Na, Joo-Young; Choi, Woo-Young; Lee, Min-Cheol; Park, Man-Seok; Choi, Kang-Ho; Lee, Jeong-Kil; Kim, Kyung-Tae; Park, Jong-Tae; Kim, Hyung-Seok

    2015-01-01

    Astrocytes become reactive after central nervous system injury, re-expressing glial fibrillary acidic protein (GFAP), vascular endothelial growth factor (VEGF), and nestin. Hypoxia-inducible transcription factor alpha (HIF-1α) is an important transcription factor for several genes including the VEGF and nestin genes, the expression of which generate reactive astrocytes and cause gliosis after cerebral ischemia. To evaluate the role of HIF-1α in reactive astrocyte formation, we applied the potent HIF-1α inhibitor YC-1 to a focal cerebral ischemia model and analyzed the expression of HIF-1α, VEGF, nestin, and GFAP. Quantitative real-time reverse transcription polymerase chain reaction and western blot analyses demonstrated that the expression of HIF-1α and its downstream genes (VEGF and nestin) were markedly attenuated in the YC-1-treated group versus the control group (HIF-1α, VEGF: p < 0.01; nestin: p < 0.05). GFAP expression was also effectively inhibited in the YC-1-treated group (p < 0.05). Immunohistochemical evaluations showed that GFAP-positive (GFAP+) cells in the YC-1-treated group were sparse in the peri-infarct area, while an immunofluorescence assay revealed that the number of VEGF+/GFAP+ and nestin+/GFAP+ reactive astrocytes were decreased in the YC-1-treated group (p < 0.05). These results demonstrate that HIF-1α suppression decreases the formation of reactive astrocytes and gliosis that occur following focal ischemia. PMID:26064442

  5. An integrated approach for discovery of highly potent and selective Mnk inhibitors: Screening, synthesis and SAR analysis.

    PubMed

    Teo, Theodosia; Yang, Yuchao; Yu, Mingfeng; Basnet, Sunita K C; Gillam, Todd; Hou, Jinqiang; Schmid, Raffaella M; Kumarasiri, Malika; Diab, Sarah; Albrecht, Hugo; Sykes, Matthew J; Wang, Shudong

    2015-10-20

    Deregulation of protein synthesis is a common event in cancer. As MAPK-interacting kinases (Mnks) play critical roles in regulation of protein synthesis, they have emerged as novel anti-cancer targets. Mnks phosphorylate eukaryotic initiation factor 4E (eIF4E) and promote eIF4E-mediated oncogenic activity. Given that the kinase activity of Mnks is essential for oncogenesis but is dispensable for normal development, the discovery of potent and selective pharmacological Mnk inhibitors provides pharmacological target validation and offers a new strategy for cancer treatment. Herein, comprehensive in silico screening approaches were deployed, and three thieno[2,3-d]pyrimidine and pyrazolo[3,4-d]pyrimidine derivatives were identified as hit compounds. Further chemical modification of thieno[2,3-d]pyrimidine derivative 3 has given rise to a series of highly potent Mnk2 inhibitors that could be potential leads for the treatment of acute myeloid leukemia.

  6. Design and Synthesis of Coumarin Derivatives as Novel PI3K Inhibitors.

    PubMed

    Chen-Chen, Ma; Liu, Zhao-Peng

    2016-02-23

    A variety of coumarin derivatives possessing the pyridinylurea units were designed to increase their potency and isoform selectivity against PI3Ks. These novel coumarins 4a-m were prepared from 5-methyl-pyridin-2-ylamine in a straightforward way via the protection of the amino by Boc groups, benzyl bromination, ethyl acetoacetate alkylation with the generated bromomethyl pyridine, Pechmann coumarin core construction, and ureas formation by the coupling of amine 3 with a variety of aryl isocyanates. When the alkylated acetoacetate 2 was reacted with resorcinol in concentrated sulfuric acid, a cascade reaction occurred that included the Pechmann cyclization to form the coumarin core, removal of the N-Boc protective groups to generate a tert-butyl carbocation, and the Friedel-Crafts tert-butylation of the phenol ring. In general, these coumarin analogs exhibited good in vitro growth inhibitory activities against tumor K562, Hela, A549 and MCF-7 cells. Some of them showed comparable or better potency than BENC-511. Compounds 4b and 4h were found to be much more potent PI3K (~10-fold) inhibitors than S14161 or BENC-511. In addition, coumarin 4b was more selective to PI3Kα/β over PI3Kδ/γ, while analog 4h was a selective PI3Kα/β/δ inhibitor. Moreover, compound 4h suppressed the phosphorylation of Akt, increased the cleaved caspase 3 and PARP, and induced K562 cell apoptosis.

  7. Development of the Large-Scale Synthesis of Tetrahydropyran Glycine, a Precursor to the HCV NS5A Inhibitor BMS-986097.

    PubMed

    Mathur, Arvind; Wang, Bei; Smith, Daniel; Li, Jianqing; Pawluczyk, Joseph; Sun, Jung-Hui; Wong, Michael Kwok; Krishnananthan, Subramaniam; Wu, Dauh-Rurng; Sun, Dawn; Li, Peng; Yip, Shiuhang; Chen, Bang-Chi; Baran, Phil S; Chen, Qi; Lopez, Omar D; Yong, Zhong; Bender, John A; Nguyen, Van N; Romine, Jeffrey L; Laurent, Denis R St; Wang, Gan; Kadow, John F; Meanwell, Nicholas A; Belema, Makonen; Zhao, Rulin

    2017-09-14

    An efficient large-scale synthesis of acid 1, a penultimate precursor to the HCV NS5A inhibitor BMS-986097, along with the final API step are described. Three routes were devised for the synthesis of 1 at the various stages of the program. The third generation route, the one that proved scalable and is the main subject of this paper, features a one-step Michael addition of t-butyl 2-((diphenylmethylene)amino)acetate (24) to (E)-benzyl 4-(1-hydroxycyclopropyl)but-2-enoate (28) followed by cyclization and chiral separation to form 27c, the core skeleton of cap piece 1. The epimerization and chiral resolution of 27c followed by further synthetic manipulations involving the carbamate formation, lactone reduction and cyclization, afforded cyclopropyl pyran 1. A detailed study of diphenylmethane deprotection via acid hydrolysis as well as a key lactone to tetrahydropyran conversion, in order to avoid a side reaction that afforded an alternative cyclization product, are discussed. This synthesis was applied to the preparation of more than 100 g of the final API BMS-986097 for toxicology studies.

  8. An Asymmetric Synthesis of L-694,458, a Human Leukocyte Elastase Inhibitor, via Novel Enzyme Resolution of beta-Lactam Esters.

    PubMed

    Cvetovich, Raymond J.; Chartrain, Michel; Hartner, Frederick W.; Roberge, Christopher; Amato, Joseph S.; Grabowski, Edward J. J.

    1996-09-20

    A convergent synthesis of [S-(R,S)]-2-[4-[(4-methylpiperazin-1-yl)carbonyl]phenoxy]-3,3-diethyl-N-[1-[3,4-(methylenedioxy)phenyl]butyl]-4-oxo-1-azetidinecarboxamide (L-694,458, 1), a potent human leukocyte elastase inhibitor, was achieved via chiral synthesis of key intermediates: (S)-3,3-diethyl-4-[4'-[(N-methylpiperazin-1-yl)carbonylphenoxy]-2-azetidinone (2) and (R)-alpha-propylpiperonyl isocyanate (3). Synthesis of beta-lactam 2 was achieved by a novel enantioselective lipase hydrolysis of ester 5 to produce (S)-3,3-diethyl-4-(4'-carboxyphenoxy)-2-azetidinone (6) (60% yield, three cycles, 93% ee) with isolation, epimerization, and recycling of the undesired (R)-ester 5. Isocyanate 3 was prepared by chiral addition of Zn(n-Pr)(2) to piperonal (98% yield, 99.2% ee), azide displacement and reduction to (R)-alpha-propylpiperonylamine (11) (58% yield, 85% ee), crystallization as the D-pyroglutamic acid salt (92% yield, 98.2% ee), and isocyanate formation (98% yield) with phosgene.

  9. Synthesis and evaluation of 4-substituted coumarins as novel acetylcholinesterase inhibitors.

    PubMed

    Razavi, Seyyede Faeze; Khoobi, Mehdi; Nadri, Hamid; Sakhteman, Amirhossein; Moradi, Alireza; Emami, Saeed; Foroumadi, Alireza; Shafiee, Abbas

    2013-06-01

    A series of 4-hydroxycoumarin derivatives were designed and synthesized as new acetylcholinesterase (AChE) inhibitors which could be considered for Alzheimer's disease therapeutics. Among the 19 coumarin-derived compounds tested toward Electrophorus electricus acetylcholinesterase (eelAChE) and horse serum butyrylcholinesterase (eqBChE), N-(1-benzylpiperidin-4-yl)acetamide derivative 4m displayed highest AChE inhibitory activity (IC50 = 1.2 μM) and good selectivity (37 times). The docking study of the most potent compound 4m, indicated that Phe330 is responsible for ligand recognition and trafficking by forming π-cation interaction with benzylpiperidine moiety. Furthermore, the formation of an additional π-π interaction between coumarin moiety and Trp279 of peripheral anionic site could stabilize the ligand in the active site resulting in more potent inhibition of the enzyme. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. Design and synthesis of orally bioavailable serum and glucocorticoid-regulated kinase 1 (SGK1) inhibitors

    SciTech Connect

    Hammond, Marlys; Washburn, David G.; Hoang, Tram H.; Manns, Sharada; Frazee, James S.; Nakamura, Hiroko; Patterson, Jaclyn R.; Trizna, Walter; Wu, Charlene; Azzarano, Leonard M.; Nagilla, Rakesh; Nord, Melanie; Trejo, Rebecca; Head, Martha S.; Zhao, Baoguang; Smallwood, Angela M.; Hightower, Kendra; Laping, Nicholas J.; Schnackenberg, Christine G.; Thompson, Scott K.

    2010-09-27

    The lead serum and glucocorticoid-related kinase 1 (SGK1) inhibitors 4-(5-phenyl-1H-pyrrolo[2,3-b]pyridin-3-yl)benzoic acid (1) and {l_brace}4-[5-(2-naphthalenyl)-1H-pyrrolo[2,3-b]pyridin-3-yl]phenyl{r_brace}acetic acid (2) suffer from low DNAUC values in rat, due in part to formation and excretion of glucuronic acid conjugates. These PK/glucuronidation issues were addressed either by incorporating a substituent on the 3-phenyl ring ortho to the key carboxylate functionality of 1 or by substituting on the group in between the carboxylate and phenyl ring of 2. Three of these analogs have been identified as having good SGK1 inhibition potency and have DNAUC values suitable for in vivo testing.

  11. Synthesis and biological evaluation of novel alkyl diamine linked bivalent β-carbolines as angiogenesis inhibitors.

    PubMed

    Chen, Wei; Zhang, Guoxian; Guo, Liang; Fan, Wenxi; Ma, Qin; Zhang, Xiaodong; Du, Runlei; Cao, Rihui

    2016-11-29

    We have synthesized and evaluated a series of novel alkyl diamine linked bivalent β-carbolines as potent angiogenesis inhibitors. The results demonstrated that most bivalent β-carbolines exhibited significant antiproliferative effects against human umbilical vein cell lines EA.HY926. Compound 4m was found to be the most potent antiproliferative agent with IC50 value of 2.16 μM against EA.HY926 cell lines. Mechanism investigations revealed that compound 4m could significantly inhibit EA.HY926 cells migration and tube formation in a dose-dependent manner. Moreover, compound 4m also showed obvious angiogenesis inhibitory effects in CAM assay, and the antiangiogenetic potency was more potent than the reference drug Endostar. The bivalent β-carbolines might be served as candidates for the development of vascular targeting antitumor drugs. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Peptidylarginine Deiminase Inhibitor Suppresses Neutrophil Extracellular Trap Formation and MPO-ANCA Production

    PubMed Central

    Kusunoki, Yoshihiro; Nakazawa, Daigo; Shida, Haruki; Hattanda, Fumihiko; Miyoshi, Arina; Masuda, Sakiko; Nishio, Saori; Tomaru, Utano; Atsumi, Tatsuya; Ishizu, Akihiro

    2016-01-01

    Myeloperoxidase-antineutrophil cytoplasmic antibody (MPO-ANCA)-associated vasculitis is a systemic small-vessel vasculitis, wherein, MPO-ANCA plays a critical role in the pathogenesis. Neutrophil extracellular traps (NETs) released from activated neutrophils are composed of extracellular web-like DNA and antimicrobial proteins, including MPO. Diverse stimuli, such as phorbol myristate acetate (PMA) and ligands of toll-like receptors (TLR), induce NETs. Although TLR-mediated NET formation can occur with preservation of living neutrophilic functions (called vital NETosis), PMA-stimulated neutrophils undergo cell death with NET formation (called suicidal NETosis). In the process of suicidal NETosis, histones are citrullinated by peptidylarginine deiminase 4 (PAD4). Since this step is necessary for decondensation of DNA, PAD4 plays a pivotal role in suicidal NETosis. Although NETs are essential for elimination of microorganisms, excessive formation of NETs has been suggested to be implicated in MPO-ANCA production. This study aimed to determine if pan-PAD inhibitors could suppress MPO-ANCA production in vivo. At first, NETs were induced in peripheral blood neutrophils derived from healthy donors (1 × 106/ml) by stimulation with 20 nM PMA with or without 20 μM propylthiouracil (PTU), an anti-thyroid drug. We then determined that the in vitro NET formation was inhibited completely by 200 μM Cl-amidine, a pan-PAD inhibitor. Next, we established mouse models with MPO-ANCA production. BALB/c mice were given intraperitoneal (i.p.) injection of PMA (50 ng at days 0 and 7) and oral PTU (2.5 mg/day) for 2 weeks. These mice were divided into two groups; the first group was given daily i.p. injection of PBS (200 μl/day) (n = 13) and the other group with daily i.p. injection of Cl-amidine (0.3 mg/200 μl PBS/day) (n = 7). Two weeks later, citrullination as an indicator of NET formation in the peritoneum and serum MPO-ANCA titer was compared

  13. Selective inhibition of cholesterol synthesis in liver versus extrahepatic tissues by HMG-CoA reductase inhibitors.

    PubMed

    Parker, R A; Clark, R W; Sit, S Y; Lanier, T L; Grosso, R A; Wright, J J

    1990-07-01

    Hepatic specificity of inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase may be achieved by efficient first-pass liver extraction resulting in low circulating drug levels, as with lovastatin, or by lower cellular uptake in peripheral tissues, seen with pravastatin. BMY-21950 and its lactone form BMY-22089, new synthetic inhibitors of HMG-CoA reductase, were compared with the major reference agent lovastatin and with the synthetic inhibitor fluindostatin in several in vitro and in vivo models of potency and tissue selectivity. The kinetic mechanism and the potency of BMY-21950 as a competitive inhibitor of isolated HMG-CoA reductase were comparable to the reference agents. The inhibitory potency (cholesterol synthesis assayed by 3H2O or [14C]acetate incorporation) of BMY-21950 in rat hepatocytes (IC50 = 21 nM) and dog liver slices (IC50 = 23 nM) equalled or exceeded the potencies of the reference agents. Hepatic cholesterol synthesis in vivo in rats was effectively inhibited by BMY-21950 and its lactone form BMY-22089 (ED50 = 0.1 mg/kg p.o.), but oral doses (20 mg/kg) that suppressed liver synthesis by 83-95% inhibited sterol synthesis by only 17-24% in the ileum. In contrast, equivalent doses of lovastatin markedly inhibited cholesterol synthesis in both organs. In tissue slices from rat ileum, cell dispersions from testes, adrenal, and spleen, and in bovine ocular lens epithelial cells, BMY-21950 inhibited sterol synthesis weakly in vitro with IC50 values 76- and 188-times higher than in hepatocytes; similar effects were seen for BMY-22089. However, the IC50 ratios (tissue/hepatocyte) for lovastatin and fluindostatin were near unity in these models. Thus, BMY-21950 and BMY-22089 are the first potent synthetic HMG-CoA reductase inhibitors that possess a very high degree of liver selectivity based upon differential inhibition sensitivities in tissues. This cellular uptake-based property of hepatic specificity of BMY-21950 and BMY-22089, also

  14. Towards inhibitors of glycosyltransferases: A novel approach to the synthesis of 3-acetamido-3-deoxy-D-psicofuranose derivatives

    PubMed Central

    Koóš, Miroslav; Lin, Chun-Hung

    2015-01-01

    Summary A novel synthetic strategy leading to 3-acetamido-3-deoxy-D-psicofuranose 9 is presented. The latter compound, after some manipulations, was transformed into fully protected 3-acetamido-3-deoxy-D-psicofuranose 11 as a potential substrate for the synthesis of N-acetylglucosaminyltransferase inhibitors designed by computational methods. After the attempted thioglycosylation of 11 with EtSH in the presence of BF3·OEt2, 2-methyloxazoline derivatives 13 and 14 were isolated. PMID:26425214

  15. Design and synthesis of non-hydrolyzable homoisoprenoid α-monofluorophosphonate inhibitors of PPAPDC family integral membrane lipid phosphatases.

    PubMed

    Subramanian, Thangaiah; Ren, Hongmei; Subramanian, Karunai Leela; Sunkara, Manjula; Onono, Fredrick O; Morris, Andrew J; Spielmann, H Peter

    2014-09-15

    An efficient, diversity oriented synthesis of homoisoprenoid α-monofluorophosphonates utilizing electrophilic fluorination is presented along with their activity as inhibitors of PPAPDC2 family integral membrane lipid phosphatases. These novel phosphatase-resistant analogues of isoprenoid monophosphates are a platform for further structure-activity relationship studies and provide access to other isoprenoid family members where the phosphate ester oxygen is replaced by a α-monofluoromethylene moiety.

  16. Synthesis of N-diisopropyl phosphoryl benzyltetrahydroisoquinoline, a new class of mitochondrial complexes I and III inhibitors.

    PubMed

    Andreu, I; Cabedo, N; Tormo, J R; Bermejo, A; Mello, R; Cortes, D

    2000-07-03

    The synthesis of N-(O,O-diisopropylphosphoryl)-benzyltetrahydroisoquinoline (3) has been achieved in a 'one pot' procedure from imine (2) and diisopropyl-phosphorochloridate (1) generated in situ (POCl3 + iPrOH). Compound 3 is the first benzyltetrahydroisoquinoline derivative found to be a potent inhibitor of mitochondrial complexes I and III, and therefore it opens a new perspective with this series of compounds as they can be considered as new class of antitumor agents.

  17. Serine hydrolase inhibitors block necrotic cell death by preventing calcium overload of the mitochondria and permeability transition pore formation.

    PubMed

    Yun, Bogeon; Lee, HeeJung; Ghosh, Moumita; Cravatt, Benjamin F; Hsu, Ku-Lung; Bonventre, Joseph V; Ewing, Heather; Gelb, Michael H; Leslie, Christina C

    2014-01-17

    Perturbation of calcium signaling that occurs during cell injury and disease, promotes cell death. In mouse lung fibroblasts A23187 triggered mitochondrial permeability transition pore (MPTP) formation, lactate dehydrogenase (LDH) release, and necrotic cell death that were blocked by cyclosporin A (CsA) and EGTA. LDH release temporally correlated with arachidonic acid release but did not involve cytosolic phospholipase A2α (cPLA2α) or calcium-independent PLA2. Surprisingly, release of arachidonic acid and LDH from cPLA2α-deficient fibroblasts was inhibited by the cPLA2α inhibitor pyrrophenone, and another serine hydrolase inhibitor KT195, by preventing mitochondrial calcium uptake. Inhibitors of calcium/calmodulin-dependent protein kinase II, a mitochondrial Ca(2+) uniporter (MCU) regulator, also prevented MPTP formation and arachidonic acid release induced by A23187 and H2O2. Pyrrophenone blocked MCU-mediated mitochondrial calcium uptake in permeabilized fibroblasts but not in isolated mitochondria. Unlike pyrrophenone, the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol and CsA blocked cell death and arachidonic acid release not by preventing mitochondrial calcium uptake but by inhibiting MPTP formation. In fibroblasts stimulated with thapsigargin, which induces MPTP formation by a direct effect on mitochondria, LDH and arachidonic acid release were blocked by CsA and 1-oleoyl-2-acetyl-sn-glycerol but not by pyrrophenone or EGTA. Therefore serine hydrolase inhibitors prevent necrotic cell death by blocking mitochondrial calcium uptake but not the enzyme releasing fatty acids that occurs by a novel pathway during MPTP formation. This work reveals the potential for development of small molecule cell-permeable serine hydrolase inhibitors that block MCU-mediated mitochondrial calcium overload, MPTP formation, and necrotic cell death.

  18. Serine Hydrolase Inhibitors Block Necrotic Cell Death by Preventing Calcium Overload of the Mitochondria and Permeability Transition Pore Formation*

    PubMed Central

    Yun, Bogeon; Lee, HeeJung; Ghosh, Moumita; Cravatt, Benjamin F.; Hsu, Ku-Lung; Bonventre, Joseph V.; Ewing, Heather; Gelb, Michael H.; Leslie, Christina C.

    2014-01-01

    Perturbation of calcium signaling that occurs during cell injury and disease, promotes cell death. In mouse lung fibroblasts A23187 triggered mitochondrial permeability transition pore (MPTP) formation, lactate dehydrogenase (LDH) release, and necrotic cell death that were blocked by cyclosporin A (CsA) and EGTA. LDH release temporally correlated with arachidonic acid release but did not involve cytosolic phospholipase A2α (cPLA2α) or calcium-independent PLA2. Surprisingly, release of arachidonic acid and LDH from cPLA2α-deficient fibroblasts was inhibited by the cPLA2α inhibitor pyrrophenone, and another serine hydrolase inhibitor KT195, by preventing mitochondrial calcium uptake. Inhibitors of calcium/calmodulin-dependent protein kinase II, a mitochondrial Ca2+ uniporter (MCU) regulator, also prevented MPTP formation and arachidonic acid release induced by A23187 and H2O2. Pyrrophenone blocked MCU-mediated mitochondrial calcium uptake in permeabilized fibroblasts but not in isolated mitochondria. Unlike pyrrophenone, the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol and CsA blocked cell death and arachidonic acid release not by preventing mitochondrial calcium uptake but by inhibiting MPTP formation. In fibroblasts stimulated with thapsigargin, which induces MPTP formation by a direct effect on mitochondria, LDH and arachidonic acid release were blocked by CsA and 1-oleoyl-2-acetyl-sn-glycerol but not by pyrrophenone or EGTA. Therefore serine hydrolase inhibitors prevent necrotic cell death by blocking mitochondrial calcium uptake but not the enzyme releasing fatty acids that occurs by a novel pathway during MPTP formation. This work reveals the potential for development of small molecule cell-permeable serine hydrolase inhibitors that block MCU-mediated mitochondrial calcium overload, MPTP formation, and necrotic cell death. PMID:24297180

  19. Effects of inhibitors of DNA, RNA and protein synthesis on frequencies and types of premature chromosome condensation from X-ray induced micronuclei.

    PubMed

    Madle, S; Nowak, J; Obe, G

    1976-10-28

    Cells containing X-ray induced micronuclei were treated for a few hours before fixation with inhibitors of DNA synthesis (cytosine arabinoside; azathioprine; thymidine; trenimon), of RNA synthesis (actinomycin D; ethidium bromide), and of protein synthesis (puromycin). Only the inhibitors of DNA synthesis lead to a significant suppression of the frequencies of mitoses with micronucleus derived premature chromosome condensation (PCC). We tend to interprete the result as follows: Micronuclei that are in the G1 phase of their cell cycles are accumulated at the G1/S border or in the early S phase of their cell cycles under the influence of the inhibitors of the DNA synthesis. Micronuclei blocked in this way cannot be induced to undergo PCC and seem to disappear from the cells.

  20. Synthesis of three bromophenols from red algae as PTP1B inhibitors

    NASA Astrophysics Data System (ADS)

    Guo, Shuju; Li, Jing; Li, Ting; Shi, Dayong; Han, Lijun

    2011-01-01

    Bromophenols are a set of natural products widely distributed in seaweed, most of which exhibit interesting and useful biological activities. To develop a reliable and efficient synthetic route to these natural bromophenols, three of them, 3,4-dibromo-5-(2'-bromo-3',4'-dihydroxy-6'-methoxymethyl-benzyl)-benzene-1,2-diol (compound 9), 3,4-dibromo-5-(2'-bromo-6'-ethoxy methyl-3',4'-dihydroxybenzyl)-benzene-1,2-diol (compound 10), and 3-bromo-4-(3'-bromo-4',5'-dihydroxy benzyl)-5-(ethoxymethyl)-benzene-1,2-diol (compound 14), isolated from red marine algae, have been synthesized in eight steps with an overall yield of 14.4%, 14.4%, and 18.2% respectively, via a practical approach employing bromination, Wolff-Kishner-Huang reduction and a Friedel-Crafts reaction as key steps. The protein tyrosine phosphatase 1B (PTP1B) inhibitory activities of the synthetic compounds were evaluated by the colorimetric assay. The results show that these compounds are moderate PTP1B inhibitors. The synthesis of these bromophenol derivatives makes in vivo studies of their structure-activity relationships and inhibition activity against PTP1B possible.

  1. Effect of the chitin synthesis inhibitor triflumuron on the development, viability and reproduction of Aedes aegypti.

    PubMed

    Belinato, Thiago Affonso; Martins, Ademir Jesus; Lima, José Bento Pereira; Lima-Camara, Tamara Nunes de; Peixoto, Alexandre Afrânio; Valle, Denise

    2009-02-01

    The control of Aedes aegypti is impaired due to the development of resistance to chemical insecticides. Insect Growth Regulators (IGR) exhibit distinct mechanisms of action and are considered potential vector control alternatives. Studies regarding the effects of sublethal IGR doses on the viability of resulting adults will contribute to eval-uating their impact in the field. We analyzed several aspects of Ae. aegypti adults surviving exposure to a partially lethal dose of triflumuron, a chitin synthesis inhibitor. A highly significant difference in the proportion of males and females was noted in the triflumuron-exposed group (65.0% males) compared to the controls (50.2% males). Triflumuron affected adult longevity, particularly for females; after 16 days, only 29.2% of males and 13.8% of females were alive, in contrast with 94% survival of the control mosquitoes. The locomotor activity was reduced and the blood-feeding ability of the treated females was also affected (90.4% and 48.4% of the control and triflumuron-exposed females, respectively, successfully ingested blood). Triflumuron-surviving females ingested roughly 30% less blood and laid 25% fewer eggs than the control females. The treated males and females exhibited a diminished ability to copulate, resulting in less viable eggs.

  2. Treatment with the hyaluronic Acid synthesis inhibitor 4-methylumbelliferone suppresses LPS-induced lung inflammation.

    PubMed

    McKallip, Robert J; Ban, Hao; Uchakina, Olga N

    2015-01-01

    Exposure to bacterial endotoxins, such as lipopolysaccharide (LPS), can lead to the induction of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). To date, there are no known effective treatments for LPS-induced inflammation. In the current study, we investigated the potential use of the hyaluronic acid (HA) synthesis inhibitor 4-methylumbelliferone (4-MU) on LPS-induced acute lung inflammation. Culturing LPS-activated immune cells with 4-MU led to reduced proliferation, reduced cytokine production, and an increase in apoptosis when compared to untreated cells. Treatment of mice with 4-MU led to protection from LPS-induced lung injury. Specifically, 4-MU treatment led to a reduction in LPS-induced hyaluronic acid synthase (HAS) messenger RNA (mRNA) levels, reduction in lung permeability, and reduction in proinflammatory cytokine production. Taken together, these results suggest that use of 4-MU to target HA production may be an effective treatment for the inflammatory response following exposure to LPS.

  3. QSAR studies, synthesis and antibacterial assessment of new inhibitors against multidrug-resistant Mycobacterium tuberculosis.

    PubMed

    Kovalishyn, Vasyl; Brovarets, Volodymyr; Blagodatnyi, Volodymyr; Kopernyk, Iryna; Hodyna, Diana; Chumachenko, Svitlana; Shablykin, Oleg; Kozachenko, Oleksandr; Vovk, Myhailo; Barus, Marianna; Bratenko, Myhailo; Metelytsia, Larysa

    2016-11-08

    This paper describes Quantitative Structure-Activity Relationships (QSAR) studies using Artificial Neural Networks (ANN), synthesis and in vitro antitubercular activity of several potent compounds against H37Rv and resistant Mycobacterium tuberculosis (Mtb) strains. Eight QSAR models were built using various types of descriptors with four publicly available structurally diverse datasets, including recent data from PubChem and ChEMBL. The predictive power of the obtained QSAR models was evaluated with a cross-validation procedure, giving a q2=0.74-0.78 for regression models and overall accuracy 78.9-94.4% for classification models. The external test sets were predicted with accuracies in the range of 84.1-95.0% (for the active/inactive classifications) and q2=0.80-0.83 for regressions. The 15 synthesized compounds showed inhibitory activity against H37Rv strain whereas the compounds 1-7 were also active against resistant Mtb strain (resistant to isoniazid and rifampicin). The results indicated that compounds 1-7 could serve as promising leads for further optimization as novel antibacterial inhibitors, in particular, for the treatment of drug resistance of Mtb forms.

  4. Alpha-fluoromethylhistidine, a histamine synthesis inhibitor, inhibits orexin-induced wakefulness in rats.

    PubMed

    Yasuko, Seki; Atanda, Akanmu Moses; Masato, Matsuura; Kazuhiko, Yanai; Kazuki, Honda

    2010-02-11

    Orexins A and B are involved in the regulation of feeding and arousal state. Previously, we reported that third intracerebroventricular (icv) infusion of both orexins A and B induced a significant arousal effect in rats. We determined the effects of intraperitoneal (i.p.) injection of alpha-fluoromethylhistidine (alpha-FMH), a histamine synthesis inhibitor, on orexin-induced wakefulness in freely behaving rats. Male Sprague-Dawley rats were chronically implanted with cortical electroencephalogram (EEG) and neck electromyogram (EMG) electrodes, and a cannula for icv infusion. EEG and EMG were monitored for three consecutive days during continuous icv saline infusion at a rate of 10 microl/h. For a 5-h diurnal period, orexin-B (10 nmol/50 microl saline) replaced the icv infusion of saline. alpha-FMH (100mg/kg, i.p.) was administered 6h before icv infusion of orexin-B. Orexin-B at a dose of 10 nmol/h markedly increased the amount of wakefulness by 99.4% (p<0.05) over the baseline value, whereas alpha-FMH decreased orexin-B-induced wakefulness by 48.8%. Orexin-B-induced suppression of non-REM sleep was reversed by alpha-FMH treatment. Pretreatment with alpha-FMH, significantly inhibited orexin-B-induced wakefulness in rats. The findings of this study therefore suggest that arousal-state regulation by orexin neurons is possibly mediated via the histaminergic system in the tuberomammilary nucleus.

  5. Synthesis and Pharmacokinetic Evaluation of Siderophore Biosynthesis Inhibitors for Mycobacterium tuberculosis

    PubMed Central

    Nelson, Kathryn M.; Viswanathan, Kishore; Dawadi, Surendra; Duckworth, Benjamin P.; Boshoff, Helena I.; Barry, Clifton E.; Aldrich, Courtney C.

    2015-01-01

    MbtA catalyzes the first committed biosynthetic step of the mycobactins, which are important virulence factors associated with iron acquisition in Mycobacterium tuberculosis. MbtA is a validated therapeutic target for antitubercular drug development. 5′-O-[N-(salicyl)sulfamoyl]adenosine (1) is a bisubstrate inhibitor of MbtA and exhibits exceptionally potent biochemical and antitubercular activity. However, 1 suffers from sub-optimal drug disposition properties resulting in a short half-life (t1/2), low exposure (AUC), and low bioavailability (F). Four strategies were pursued to address these liabilities including the synthesis of prodrugs, increasing the pKa of the acyl-sulfonyl moiety, modulation of the lipophilicity, and strategic introduction of fluorine into 1. Complete pharmacokinetic (PK) analysis of all compounds was performed. The most successful modifications involved fluorination of the nucleoside that provided substantial improvements in t1/2 and AUC. Increasing the pKa of the acyl-sulfonyl linker yielded incremental enhancements while modulation of the lipophilicity and prodrug approaches led to substantially poorer PK parameters. PMID:26110337

  6. Design, Synthesis, and Evaluation of Acrylamide Derivatives as Direct NLRP3 Inflammasome Inhibitors.

    PubMed

    Cocco, Mattia; Miglio, Gianluca; Giorgis, Marta; Garella, Davide; Marini, Elisabetta; Costale, Annalisa; Regazzoni, Luca; Vistoli, Giulio; Orioli, Marica; Massulaha-Ahmed, Raïhane; Détraz-Durieux, Isabelle; Groslambert, Marine; Py, Bénédicte F; Bertinaria, Massimo

    2016-08-19

    NLRP3 inflammasome plays a key role in the intracellular activation of caspase-1, processing of pro-inflammatory interleukin-1β (IL-1β), and pyroptotic cell death cascade. The overactivation of NLRP3 is implicated in the pathogenesis of autoinflammatory diseases, known as cryopyrin-associated periodic syndromes (CAPS), and in the progression of several diseases, such as atherosclerosis, type-2 diabetes, gout, and Alzheimer's disease. In this study, the synthesis of acrylamide derivatives and their pharmaco-toxicological evaluation as potential inhibitors of NLRP3-dependent events was undertaken. Five hits were identified and evaluated for their efficiency in inhibiting IL-1β release from different macrophage subtypes, including CAPS mutant macrophages. The most attractive hits were tested for their ability to inhibit NLRP3 ATPase activity on human recombinant NLRP3. This screening allowed the identification of 14, 2-(2-chlorobenzyl)-N-(4-sulfamoylphenethyl)acrylamide, which was able to concentration-dependently inhibit NLRP3 ATPase with an IC50 value of 74 μm. The putative binding pose of 14 in the ATPase domain of NLRP3 was also proposed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Efficacy of chitin synthesis inhibitors on nymphal German cockroaches (Dictyoptera: Blattellidae).

    PubMed

    DeMark, J J; Bennett, G W

    1989-12-01

    Second- and fifth-instar Blattella germanica (L.), fed the chitin synthesis inhibitors triflumuron, chlorfluazuron, hexafluron, and UC 84572 (structure not disclosed) were examined for mortality and developmental abnormalities. All compounds were active against B. germanica (L.), with lower diet concentrations being required to kill second instars compared with fifth instars. Chlorfluazuron was significantly more active against second and fifth instars (LC50 = 0.000191 and 0.000363% AI, respectively for the second and fifth instars). UC 84572 also killed nymphs at extremely low concentrations (LC50 = 0.000508 and 0.000754% AI, respectively, for second and fifth instars). LC50's for hexafluron and triflumuron against fifth instars were more than 1,000 times higher than that for chlorfluazuron. Sensitive periods of exposure were determined by comparing effects when four different age classes of fifth instars (1-, 4-, 7-, and 10-d old) fed on the compounds for 3 d. Triflumuron was most effective when ingested during the first three age classes and hexafluron was most effective during the last three age classes. Chlorfluazuron and UC 84572 were most effective when ingested during the second age class (days 4-6). Adults surviving exposure during the fifth instar were often deformed and weak; they died at a greater rate than the controls. However, most surviving adults were able to reproduce normally.

  8. Synthesis and biological evaluation of flexible and conformationally constrained LpxC inhibitors.

    PubMed

    Löppenberg, Marius; Müller, Hannes; Pulina, Carla; Oddo, Alberto; Teese, Mark; Jose, Joachim; Holl, Ralph

    2013-09-28

    Inhibitors of the UDP-3-O-[(R)-3-hydroxymyristoyl]-N-acetylglucosamine deacetylase (LpxC) represent promising candidates for the development of antibiotics possessing a so far unexploited mechanism of action. In a chiral pool synthesis, starting from the D-mannose derived mannonolactone 4, conformationally constrained C-glycosidic as well as open chained hydroxamic acids with a defined stereochemistry were prepared. Diversity was introduced by performing C–C coupling reactions like the Sonogashira and Suzuki cross-coupling reactions. The biological evaluation of the synthesized compounds revealed that in the case of the C-glycosides a long, linear and rigid hydrophobic side chain is required for antibiotic activity against E. coli. The open chain derivatives show higher biological activity than the conformationally constrained C-glycosides. The morpholinomethyl substituted open chain derivative 43, being the most potent compound presented in this paper, inhibits LpxC with a Ki value of 0.35 μM and represents a promising lead structure.

  9. Synthesis and Identification of Pregnenolone Derivatives as Inhibitors of Isozymes of 5α-Reductase.

    PubMed

    Chávez-Riveros, Alejandra; Bratoeff, Eugene; Heuze, Yvonne; Soriano, Juan; Moreno, Isabel; Sánchez-Márquez, Araceli; Cabeza, Marisa

    2015-09-17

    Hyperplasia of the prostate gland and prostate cancer have been associated with high levels of serum 5α-dihydrotestosterone. This steroid is formed from testosterone by the activity of the enzyme 5α-reductase (5α-R) present in the prostate. Thus, inhibition of this enzyme could be a goal for therapies to treat these diseases. This study reports the synthesis and effects of five different 21-esters of pregnenolone derivatives as inhibitors of 5α-R types 1 and 2. The activity of these steroidal compounds was determined using in vivo and in vitro experiments. The results indicate that of the five steroids studied, the 21(p-fluoro)benzoyloxypregna-4,16-diene-3,6,20-trione derivative, whose structure has not yet been reported, has the best molecular conformation to inhibit the in vitro activity of both types of 5α-R. In addition, this steroid also displayed activity in vivo. Apparently, its pharmacological effect was increased by the presence of a keto group at C-6, because this group decreased the possibility that the steroid would be metabolized by hepatic enzymes. In addition, the double bond present at C-4 of this compound also enhanced its inhibitory activity on 5α-R, and the C-21 ester moiety increased its liphophilicity. Therefore, its solubility in the cell membrane and its pharmacological activity were both increased.

  10. Evaluation of Two Formulated Chitin Synthesis Inhibitors, Hexaflumuron and Lufenuron Against the Raisin Moth, Ephestia figulilella

    PubMed Central

    Khajepour, Simin; Izadi, Hamzeh; Asari, Mohammad Javad

    2012-01-01

    The raisin moth, Ephestia figulilella Gregson (Lepidoptera: Pyralidae), has a nearly cosmopolitan distribution, and causes severe quantitative and qualitative losses throughout the world. The larvae attack various drying and dried fruits, fallen figs, and damaged or moldy clusters of grapes on vines. Control of this pest in storage depends mostly on synthetic pesticides with several adverse side effects. To mitigate the adverse effects of these pesticides, investigations have focused on the development of compounds with more selectivity, and short residual life. In this research, insecticidal effects of two chitin synthesis inhibitors, hexaflumuron and lufenuron, were investigated against E. figulilella. Graded concentrations of each pesticide were prepared with distilled water. One-day-old fifth instar were sprayed by Potter's precision spray tower. Application of hexaflumuron and lufenuron on last instar larvae of E. figulilella caused not only mortality in larval stage, but also caused defects in pupal and adult stages. Larval mortality increased as concentration increased. The longevity of the fifth instars in both hexaflumuron and lufenuron treatments, in comparison with the controls, increased by more than 12 days. The longevity of adults decreased by about 10 days. Probit analysis data revealed that the sensitivity of the test insect to hexaflumuron (EC50 = 95.38 ppm) was greater than lufenuron (EC50= 379.21 ppm). PMID:23425138

  11. Synthesis of new pyrimidine-fused derivatives as potent and selective antidiabetic α-glucosidase inhibitors.

    PubMed

    Panahi, Farhad; Yousefi, Reza; Mehraban, Mohammad Hossein; Khalafi-Nezhad, Ali

    2013-10-18

    The synthesis of a set of pyrimidine-fused derivatives (L1-L8), resulting from the incorporation of different fragments on the pyrimidine-fused heterocycle (PFH) of the earlier reported α-glucosidase (α-Gls) inhibitor (C1-C5), allowed the discovery of new ligands with modest and selective inhibitory activity. The PFH core (substructure 2) was proved to play a significant role in their inhibitory properties. Additionally, the substituent on substructures 1 and 3 of the heterocyclic ring was demonstrated to be important in the enzyme inhibitory action of the pyrimidine-fused derivatives. Moreover, these ligands show selective inhibitory properties for α-Gls over porcine pancreatic α-amylase (α-Amy) which is important in terms of their reduced susceptibility for the possible development of intestinal disturbance side effects. Therefore, low to moderate α-Amy inhibition with effective α-Gls inhibitory action may offer a better therapeutic strategy. Overall, these compounds can potentially offer a new opportunity to develop novel antidiabetic drugs with selective inhibitory action against α-Gls. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Functionalized imidazolium and benzimidazolium salts as paraoxonase 1 inhibitors: Synthesis, characterization and molecular docking studies.

    PubMed

    Karataş, Mert Olgun; Uslu, Harun; Alıcı, Bülent; Gökçe, Başak; Gencer, Nahit; Arslan, Oktay; Arslan, N Burcu; Özdemir, Namık

    2016-03-15

    Paraoxonase (PON) is a key enzyme in metabolism of living organisms and decreased activity of PON1 was acknowledged as a risk for atherosclerosis and organophosphate toxicity. The present study describes the synthesis, characterization, PON1 inhibitory properties and molecular docking studies of functionalized imidazolium and benzimidazolium salts (1a-5g). The structures of all compounds were elucidated by IR, NMR, elemental analysis and structures of compounds 2b and 2c were characterized by single-crystal X-ray diffraction. Compound 1c, a coumarin substituted imidazolium salt showed the best inhibitory effect on the activity of PON1 with good IC50 value (6.37 μM). Kinetic investigation was evaluated for this compound and results showed that this compound is competitive inhibitor of PON1 with Ki value of 2.39 μM. Molecular docking studies were also performed for most active compound 1c and one of least active compound 2c in order to determine the probable binding model into active site of PON1 and validation of the experimental results.

  13. Design and synthesis of HIV-1 protease inhibitors for a long-acting injectable drug application.

    PubMed

    Kesteleyn, Bart; Amssoms, Katie; Schepens, Wim; Hache, Geerwin; Verschueren, Wim; Van De Vreken, Wim; Rombauts, Klara; Meurs, Greet; Sterkens, Patrick; Stoops, Bart; Baert, Lieven; Austin, Nigel; Wegner, Jörg; Masungi, Chantal; Dierynck, Inge; Lundgren, Stina; Jönsson, Daniel; Parkes, Kevin; Kalayanov, Genadiy; Wallberg, Hans; Rosenquist, Asa; Samuelsson, Bertil; Van Emelen, Kristof; Thuring, Jan Willem

    2013-01-01

    The design and synthesis of novel HIV-1 protease inhibitors (PIs) (1-22), which display high potency against HIV-1 wild-type and multi-PI-resistant HIV-mutant clinical isolates, is described. Lead optimization was initiated from compound 1, a Phe-Phe hydroxyethylene peptidomimetic PI, and was directed towards the discovery of new PIs suitable for a long-acting (LA) injectable drug application. Introducing a heterocyclic 6-methoxy-3-pyridinyl or a 6-(dimethylamino)-3-pyridinyl moiety (R(3)) at the para-position of the P1' benzyl fragment generated compounds with antiviral potency in the low single digit nanomolar range. Halogenation or alkylation of the metabolic hot spots on the various aromatic rings resulted in PIs with high stability against degradation in human liver microsomes and low plasma clearance in rats. Replacing the chromanolamine moiety (R(1)) in the P2 protease binding site by a cyclopentanolamine or a cyclohexanolamine derivative provided a series of high clearance PIs (16-22) with EC(50)s on wild-type HIV-1 in the range of 0.8-1.8 nM. PIs 18 and 22, formulated as nanosuspensions, showed gradual but sustained and complete release from the injection site over two months in rats, and were therefore identified as interesting candidates for a LA injectable drug application for treating HIV/AIDS.

  14. Molecular design and synthesis of novel peptides from amphibians skin acting as inhibitors of cholinesterase enzymes.

    PubMed

    Siano, Alvaro; Garibotto, Francisco F; Andujar, Sebastian A; Baldoni, Hector A; Tonarelli, Georgina G; Enriz, Ricardo D

    2017-03-01

    Cholinesterases are a family of enzymes that catalyze the hydrolysis of neurotransmitter acetylcholine. There are two types of cholinesterases, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), which differ in their distribution in the body. Currently, cholinesterase inhibitors (ChEI) represent the treatment of choice for Alzheimer's disease (AD). In this paper, we report the synthesis and inhibitory effect on both enzymes of four new peptides structurally related to P1-Hp-1971 (amphibian skin peptide found in our previous work. Sequence: TKPTLLGLPLGAGPAAGPGKR-NH2 ). The bioassay data and cytotoxicity test show that some of the compounds possess a significant AChE and BChE inhibition and no toxic effect. The present work demonstrates that diminution of the size of the original peptide could potentially result in new compounds with significant cholinesterase inhibition activity, although it appears that there is an optimal size for the sequence. We also conducted an exhaustive molecular modeling study to better understand the mechanism of action of these compounds by combining docking techniques with molecular dynamics simulations on BChE. This is the first report about amphibian peptides and the second one of natural peptides with ChE inhibitory activity. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  15. Pyridopyrimidine derivatives as inhibitors of cyclic nucleotide synthesis: Application for treatment of diarrhea

    PubMed Central

    Kots, Alexander Y.; Choi, Byung-Kwon; Estrella-Jimenez, Maria E.; Warren, Cirle A.; Gilbertson, Scott R.; Guerrant, Richard L.; Murad, Ferid

    2008-01-01

    Acute secretory diarrhea induced by infection with enterotoxigenic strains of Escherichia coli involves binding of stable toxin (STa) to its receptor on the intestinal brush border, guanylyl cyclase type C (GC-C). Intracellular cGMP is elevated, inducing increase in chloride efflux and subsequent accumulation of fluid in the intestinal lumen. We have screened a library of compounds and identified a pyridopyrimidine derivatives {5-(3-bromophenyl)-1,3-dimethyl-5,11-dihydro-1H-indeno[2′,1′:5,6]pyrido[2,3-d]pyrimidine-2,4,6-trione; BPIPP} as an inhibitor of GC-C that can suppress STa-stimulated cGMP accumulation by decreasing GC-C activation in intact T84 human colorectal carcinoma cells. BPIPP inhibited stimulation of guanylyl cyclases, including types A and B and soluble isoform in various cells. BPIPP suppressed stimulation of adenylyl cyclase and significantly decreased the activities of adenylyl cyclase toxin of Bordetella pertussis and edema toxin of Bacillus anthracis. The effects of BPIPP on cyclic nucleotide synthesis were observed only in intact cells. The mechanism of BPIPP-dependent inhibition appears to be complex and indirect, possibly associated with phospholipase C and tyrosine-specific phosphorylation. BPIPP inhibited chloride-ion transport stimulated by activation of guanylyl or adenylyl cyclases and suppressed STa-induced fluid accumulation in an in vivo rabbit intestinal loop model. Thus, BPIPP may be a promising lead compound for treatment of diarrhea and other diseases. PMID:18559851

  16. Bisindolylmaleimide protein-kinase-C inhibitors delay the decline in DNA synthesis in mouse hair follicle organ cultures.

    PubMed

    Harmon, C S; Nevins, T D; Ducote, J; Lutz, D

    1997-01-01

    We have used a series of bisindolylmaleimide selective protein-kinase C (PKC) inhibitors to investigate the role of this enzyme in the regulation of cell proliferation in mouse hair follicle organ cultures. Mouse whisker follicles were isolated by microdissection, and rates of DNA synthesis during culture were determined from 3H-thymidine incorporation. The bisindolylmaleimides Ro 31-7549, Ro 31-8161, Ro 31-8425 and Ro 31-8830 inhibit isolated brain PKC with IC50 values of 8-80 nM, are > 60-fold less potent against protein kinase A, and inhibit PKC-mediated protein phosphorylation in platelets with IC50 values in the range 0.25-4.4 microM. These PKC inhibitors were found to increase levels of mouse hair follicle DNA synthesis, with EC50 values in the range 1-4 microM and maximal levels in the range 151-197% of control. Ro 31-7549 had an IC50 value 50-fold lower than that of minoxidil, while the maximal level of DNA synthesis for the PKC inhibitor was 86% higher. Incubation of mouse hair follicles with Ro 31-7549 resulted in a delay of approximately 24 h in the onset of decline in follicular DNA synthesis rates. Ro 31-6045 and Ro 31-7208, bisindolylmaleimides without activity in the platelet PKC assay, did not affect mouse hair follicle DNA synthesis rates. Taken together, these findings show that PKC mediates, at least in part, the rapid loss of proliferative activity that occurs in mouse whisker follicles in culture, and provide further evidence that PKC plays a role as a negative proliferative signal in hair follicles.

  17. Tests of the protein-synthesis hypothesis of formation of long-term memory

    SciTech Connect

    Rosenzweig, M.R.; Bennett, E.L.; Flood, J.F.

    1980-09-01

    A major hypothesis has been that synthesis of protein is required for formation of long-term memory. Results of many studies conducted during the past decade have supported this hypothesis, but different limitations have been suggested and competing interpretations have been offered. Several alternative hypotheses have also been proposed and data have been offered in favor of them. We will review some of the results both for and against the protein-synthesis hypothesis.

  18. Identification, Synthesis, and Biological Evaluation of the Major Human Metabolite of NLRP3 Inflammasome Inhibitor MCC950.

    PubMed

    Salla, Manohar; Butler, Mark S; Pelingon, Ruby; Kaeslin, Geraldine; Croker, Daniel E; Reid, Janet C; Baek, Jong Min; Bernhardt, Paul V; Gillam, Elizabeth M J; Cooper, Matthew A; Robertson, Avril A B

    2016-12-08

    MCC950 is an orally bioavailable small molecule inhibitor of the NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome that exhibits remarkable activity in multiple models of inflammatory disease. Incubation of MCC950 with human liver microsomes, and subsequent analysis by HPLC-MS/MS, revealed a major metabolite, where hydroxylation of MCC950 had occurred on the 1,2,3,5,6,7-hexahydro-s-indacene moiety. Three possible regioisomers were synthesized, and coelution using HPLC-MS/MS confirmed the structure of the metabolite. Further synthesis of individual enantiomers and coelution studies using a chiral column in HPLC-MS/MS showed the metabolite was R-(+)- N-((1-hydroxy-1,2,3,5,6,7-hexahydro-s-indacen-4-yl)carbamoyl)-4-(2-hydroxypropan-2-yl)furan-2-sulfonamide (2a). Incubation of MCC950 with a panel of cytochrome P450 enzymes showed P450s 2A6, 2C9, 2C18, 2C19, 2J2, and 3A4 catalyze the formation of the major metabolite 2a, with a lower level of activity shown by P450s 1A2 and 2B6. All of the synthesized compounds were tested for inhibition of NLRP3-induced production of the pro-inflammatory cytokine IL-1β from human monocyte derived macrophages. The identified metabolite 2a was 170-fold less potent than MCC950, while one regioisomer had nanomolar inhibitory activity. These findings also give first insight into the SAR of the hexahydroindacene moiety.

  19. Practical asymmetric synthesis of a potent PDE4 inhibitor via stereoselective enolate alkylation of a chiral aryl-heteroaryl secondary tosylate.

    PubMed

    O'Shea, Paul D; Chen, Cheng-yi; Chen, Weirong; Dagneau, Philippe; Frey, Lisa F; Grabowski, Edward J J; Marcantonio, Karen M; Reamer, Robert A; Tan, Lushi; Tillyer, Richard D; Roy, Amélie; Wang, Xin; Zhao, Dalian

    2005-04-15

    A practical, chromatography-free catalytic asymmetric synthesis of a potent and selective PDE4 inhibitor (L-869,298, 1) is described. Catalytic asymmetric hydrogenation of thiazole ketone 5a afforded the corresponding alcohol 3b in excellent enantioselectivity (up to 99.4% ee). Activation of alcohol 3b via formation of the corresponding p-toluenesulfonate followed by an unprecedented displacement with the lithium enolate of ethyl 3-pyridylacetate N-oxide 4a generated the required chiral trisubstituted methane. The displacement reaction proceeded with inversion of configuration and without loss of optical purity. Conversion of esters 2b to 1 was accomplished via a one-pot deprotection, saponification, and decarboxylation sequence in excellent overall yield.

  20. Design, synthesis and structure-activity relationships of substituted oxazole-benzamide antibacterial inhibitors of FtsZ.

    PubMed

    Stokes, Neil R; Baker, Nicola; Bennett, James M; Chauhan, Pramod K; Collins, Ian; Davies, David T; Gavade, Maruti; Kumar, Dushyant; Lancett, Paul; Macdonald, Rebecca; Macleod, Leanne; Mahajan, Anu; Mitchell, Jeffrey P; Nayal, Narendra; Nayal, Yashodanand Nandan; Pitt, Gary R W; Singh, Mahipal; Yadav, Anju; Srivastava, Anil; Czaplewski, Lloyd G; Haydon, David J

    2014-01-01

    The design, synthesis and structure-activity relationships of a series of oxazole-benzamide inhibitors of the essential bacterial cell division protein FtsZ are described. Compounds had potent anti-staphylococcal activity and inhibited the cytokinesis of the clinically-significant bacterial pathogen Staphylococcus aureus. Selected analogues possessing a 5-halo oxazole also inhibited a strain of S. aureus harbouring the glycine-to-alanine amino acid substitution at residue 196 of FtsZ which conferred resistance to previously reported inhibitors in the series. Substitutions to the pseudo-benzylic carbon of the scaffold improved the pharmacokinetic properties by increasing metabolic stability and provided a mechanism for creating pro-drugs. Combining multiple substitutions based on the findings reported in this study has provided small-molecule inhibitors of FtsZ with enhanced in vitro and in vivo antibacterial efficacy.

  1. Regioselective synthesis of 5- and 6-methoxybenzimidazole-1,3,5-triazines as inhibitors of phosphoinositide 3-kinase.

    PubMed

    Miller, Michelle S; Pinson, Jo-Anne; Zheng, Zhaohua; Jennings, Ian G; Thompson, Philip E

    2013-02-01

    Phosphoinositide 3-kinases (PI3K) hold significant therapeutic potential as novel targets for the treatment of cancer. ZSTK474 (4a) is a potent, pan-PI3K inhibitor currently under clinical evaluation for the treatment of cancer. Structural studies have shown that derivatisation at the 5- or 6-position of the benzimidazole ring may influence potency and isoform selectivity. However, synthesis of these derivatives by the traditional route results in a mixture of the two regioisomers. We have developed a straightforward regioselective synthesis that gave convenient access to 5- and 6-methoxysubstituted benzimidazole derivatives of ZSTK474. While 5-methoxy substitution abolished activity at all isoforms, the 6-methoxy substitution is consistently 10-fold more potent. This synthesis will allow convenient access to further 6-position derivatives, thus allowing the full scope of the structure-activity relationships of ZSTK474 to be probed.

  2. Structure-based Design of Potent HIV-1 Protease Inhibitors with Modified P1 - Biphenyl Ligands: Synthesis, Biological Evaluation, and Enzyme-inhibitor X-ray Structural studies

    PubMed Central

    Ghosh, Arun K.; Yu, Xufen; Osswald, Heather L.; Agniswamy, Johnson; Wang, Yuan-Fang; Amano, Masayuki; Weber, Irene T.; Mitsuya, Hiroaki

    2016-01-01

    We report the design, synthesis, X-ray structural studies, and biological evaluation of a novel series of HIV-1 protease inhibitors. We designed a variety of functionalized biphenyl derivatives to make enhanced van der Waals interactions in the S1 subsite of HIV-1 protease. These biphenyl derivatives were conveniently synthesized using a Suzuki-Miyaura cross-coupling reaction as the key step. We examined the potential of these functionalized biphenyl-derived P1 ligands in combination with 3-(S)-tetrahydrofuranyl urethane and bis-tetrahydrofuranyl urethane as the P2 ligands. Inhibitor 21e, with a 2-methoxy-1, 1’-biphenyl derivative as P1 ligand and bis-THF as the P2 ligand, displayed the most potent enzyme inhibitory and antiviral activity. This inhibitor also exhibited potent activity against a panel of multidrug-resistant HIV-1 variants. A high resolution X-ray crystal structure of related Boc-derivative 17a-bound HIV-1 protease provided important molecular insight into the ligand-binding site interactions of the biphenyl core in the S1 subsite of HIV-1 protease. PMID:26107245

  3. Synthesis and optimization of thiadiazole derivatives as a novel class of substrate competitive c-Jun N-terminal kinase inhibitors

    PubMed Central

    De, Surya K.; Chen, Vida; Stebbins, John L.; Chen, Li-Hsing; Cellitti, Jason F.; Machleidt, Thomas; Barile, Elisa; Riel-Mehan, Megan; Dahl, Russell; Yang, Li; Emdadi, Aras; Murphy, Ria; Pellecchia, Maurizio

    2009-01-01

    A series of thiadiazole derivatives has been designed as potential allosteric, substrate competitive inhibitors of the protein kinase JNK. We report on the synthesis, characterization and evaluation of a series of compounds that resulted in the identification of potent and selective JNK inhibitors targeting its JIP-1 docking site. PMID:20045647

  4. Synthesis and SAR of new pyrazolo[4,3-h]quinazoline-3-carboxamide derivatives as potent and selective MPS1 kinase inhibitors.

    PubMed

    Caldarelli, Marina; Angiolini, Mauro; Disingrini, Teresa; Donati, Daniele; Guanci, Marco; Nuvoloni, Stefano; Posteri, Helena; Quartieri, Francesca; Silvagni, Marco; Colombo, Riccardo

    2011-08-01

    The synthesis and SAR of a series of novel pyrazolo-quinazolines as potent and selective MPS1 inhibitors are reported. We describe the optimization of the initial hit, identified by screening the internal library collection, into an orally available, potent and selective MPS1 inhibitor.

  5. Oxidative Carbocation Formation in Macrocycles: Synthesis of the Neopeltolide Macrocycle**

    PubMed Central

    Tu, Wangyang

    2009-01-01

    Processes for the functionalization of carbon–hydrogen bonds are the focus of significant attention in organic synthesis[1] in response to the need to streamline molecular assembly. As a continuation of our efforts to generate carbocations through single-electron oxidation reactions,[2] we recently reported[3] DDQ-mediated cyclization reactions of benzylic and allylic ethers (Scheme 1; DDQ =2,3-dichloro-4,5-dicyanoquinone). PMID:19455526

  6. Inhibition of Deoxyribonucleic Acid Synthesis and Bud Formation by Nalidixic Acid in Hyphomicrobium neptunium

    PubMed Central

    Weiner, Ronald M.; Blackman, Marcia A.

    1973-01-01

    The relationship between chromosome replication and morphogenesis in the budding bacterium Hyphomicrobium neptunium has been investigated. Nalidixic acid was found to completely inhibit deoxyribonucleic acid synthesis, but not ribonucleic acid synthesis. The antibiotic was bacteriostatic to the organism for the initial 5 h of exposure; thereafter it was bacteriocidal. Observation of inhibited cultures revealed cells that had produced abnormally long stalks, but no buds. These results indicate that bud formation is coupled to chromosome replication in H. neptunium. They do not exclude the possibilities that cross wall formation and bud separation may also be coupled to chromosome replication. Images PMID:4127631

  7. Formation Mechanism of Spherical TiC in Ni-Ti-C System during Combustion Synthesis.

    PubMed

    Zhu, Guoliang; Wang, Wei; Wang, Rui; Zhao, Chuanbao; Pan, Weitao; Huang, Haijun; Du, Dafan; Wang, Donghong; Shu, Da; Dong, Anping; Sun, Baode; Jiang, Sheng; Pu, Yilong

    2017-08-29

    The formation mechanism of TiC particles in a Ni-Ti-C system were revealed by using differential thermal analysis (DTA), XRD, and SEM to identify the reaction products in different temperature ranges. The results indicated that the synthesis mechanism of TiC in Ni-Ti-C system was complex; several reactions were involved in the combustion synthesis of TiC-Ni composite. The Ni-Ti intermediate phases play important roles during the formation of TiC. Moreover, the influence of heating rate on the size range of TiC was also discussed.

  8. Design, synthesis and evaluation of N-benzoylindazole derivatives and analogues as inhibitors of human neutrophil elastase.

    PubMed

    Crocetti, Letizia; Giovannoni, Maria Paola; Schepetkin, Igor A; Quinn, Mark T; Khlebnikov, Andrei I; Cilibrizzi, Agostino; Piaz, Vittorio Dal; Graziano, Alessia; Vergelli, Claudia

    2011-08-01

    Human neutrophil elastase (HNE) plays an important role in tumour invasion and inflammation. A series of N-benzoylindazoles was synthesized and evaluated for their ability to inhibit HNE. We found that this scaffold is appropriate for HNE inhibitors and that the benzoyl fragment at position 1 is essential for activity. The most active compounds inhibited HNE activity with IC₅₀ values in the submicromolar range. Furthermore, docking studies indicated that the geometry of an inhibitor within the binding site and energetics of Michaelis complex formation were key factors influencing the inhibitor's biological activity. Thus, N-benzoylindazole derivatives and their analogs represent novel structural templates that can be utilized for further development of efficacious HNE inhibitors.

  9. Effect of a hepatitis B virus inhibitor, NZ-4, on capsid formation.

    PubMed

    Yang, Li; Wang, Ya-Juan; Chen, Hai-Jun; Shi, Li-Ping; Tong, Xian-Kun; Zhang, Yang-Ming; Wang, Gui-Feng; Wang, Wen-Long; Feng, Chun-Lan; He, Pei-Lan; Xu, Yi-Bin; Lu, Meng-Ji; Tang, Wei; Nan, Fa-Jun; Zuo, Jian-Ping

    2016-01-01

    During the hepatitis B virus (HBV) life cycle, nucleocapsid assembly is essential for HBV replication. Both RNA reverse transcription and DNA replication occur within the HBV nucleocapsid. HBV nucleocapsid is consisted of core protein (HBcAg), whose carboxy-terminal domain (CTD) contains an Arg-rich domain (ARD). The ARD of HBcAg does contribute to the encapsidation of pregenomic RNA (pgRNA). Previously, we reported a small-molecule, NZ-4, which dramatically reduced the HBV DNA level in an in vitro cell setting. Here, we explore the possible mechanisms by which NZ-4 inhibits HBV function. As an HBV inhibitor, NZ-4 leads to the formation of genome-free capsids, including a new population of capsid that runs faster on agarose gels. NZ-4's activity was dependent on the presence of the ARD I, containing at least one positively charged amino acid. NZ-4 might provide a new option for further development of HBV therapeutics for the treatment of chronic hepatitis B.

  10. Ultrasonic synthesis of tyramine derivatives as novel inhibitors of α-glucosidase in vitro.

    PubMed

    Siddiqui, Hina; Bashir, Muhammad Arslan; Javaid, Kulsoom; Nizamani, Arsalan; Bano, Huma; Yousuf, Sammer; Rahman, Atta-Ur; Choudhary, M Iqbal

    2016-12-01

    Tyramine derivatives 3-27 were synthesized by using conventional and environmental friendly ultrasonic techniques. These derivatives were then evaluated for the first time for their α-glucosidase (Sources: Saccharomyces cerevisiae and mammalian rat-intestinal acetone powder) inhibitory activity by using in vitro mechanism-based biochemical assays. Compounds 7, 14, 20, 21 and 26 were found to be more active (IC50 = 49.7 ± 0.4, 318.8 ± 3.7, 23.5 ± 0.9, 302.0 ± 7.3 and 230.7 ± 4.0 μM, respectively) than the standard drug, acarbose (IC50 = 840.0 ± 1.73 μM (observed) and 780 ± 0.028 μM (reported)) against α-glucosidase obtained from Saccharomyces cerevisiae. Kinetic studies were carried out on the most active members of the series in order to determine their mode of inhibition and dissociation constants. Compounds 7, 20 and 26 were found to be the competitive inhibitors of α-glucosidase. These compounds were also screened for their protein antiglycation, and dipeptidyl peptidase-IV (DPP-IV) inhibitory activities. Only compounds 20, 22 and 27 showed weak antiglycation activity with IC50 values 505.27 ± 5.95, 581.87 ± 5.50 and 440.58 ± 2.74 μM, respectively. All the compounds were found to be inactive against DDP-IV enzyme. Inhibition of α-glucosidase, DPP-IV enzymes and glycation of proteins are valid targets for the discovery of antidiabetic drugs. Cytotoxicity of compounds 3-27 was also evaluated by using mouse fibroblast 3T3 cell lines. All the compounds were found to be noncytotoxic. The current study describes the synthesis α-glucosidase inhibitory activity of derivatives, based on a natural product tyramine template. The compounds reported here may serve as the starting point for the design and development of novel α-glucosidase inhibitors as antidiabetic agents.

  11. An EPSP synthase inhibitor joining shikimate 3-phosphate with glyphosate: synthesis and ligand binding studies.

    PubMed

    Marzabadi, M R; Gruys, K J; Pansegrau, P D; Walker, M C; Yuen, H K; Sikorski, J A

    1996-04-02

    A novel EPSP synthase inhibitor 4 has been designed and synthesized to probe the configurational details of glyphosate recognition in its herbicidal ternary complex with enzyme and shikimate 3-phosphate (S3P). A kinetic evaluation of the new 3-dephospho analog 12, as well as calorimetric and (31)P NMR spectroscopic studies of enzyme-bound 4, now provides a more precise quantitative definition for the molecular interactions of 4 with this enzyme. The very poor binding, relative to 4, displayed by the 3-dephospho analog 12 is indicative that 4 has a specific interaction with the S3P site. A comparison of Ki(calc) for 12 versus the Ki(app) for 4 indicates that the 3-phosphate group in 4 contributes about 4.8 kcal/mol to binding. This compares well with the 5.2 kcal/mol which the 3-phosphate group in S3P contributes to binding. Isothermal titration calorimetry demonstrates that 4 binds to free enzyme with an observed Kd of 0.53 +/- 0.04 microM. As such, 4 binds only 3-fold weaker than glyphosate and about 150-fold better than N-methylglyphosate. Consequently, 4 represents the most potent N-alkylglyphosate derivative identified to date. However, the resulting thermodynamic binding parameters clearly demonstrate that the formation of EPSPS x 4 is entropy driven like S3P. The binding characteristics of 4 are fully consistent with a primary interaction localized at the S3P subsite. Furthermore, (31)P NMR studies of enzyme-bound 4 confirm the expected interaction at the shikimate 3-phosphate site. However, the chemical shift observed for the phosphonate signal of EPSPS x 4 is in the opposite direction than that observed previously when glyphosate binds with enzyme and S3P. Therefore, when 4 occupies the S3P binding site, there is incomplete overlap at the glyphosate phosphonate subsite. As a glyphosate analog inhibitor, the potency of 4 most likely arises from predominant interactions which occur outside the normal glyphosate binding site. Consequently, 4 is best described

  12. Synthesis and evaluation of heteroarylalanine diacids as potent and selective neutral endopeptidase inhibitors.

    PubMed

    Glossop, Melanie S; Bazin, Richard J; Dack, Kevin N; Fox, David N A; MacDonald, Graeme A; Mills, Mark; Owen, Dafydd R; Phillips, Chris; Reeves, Keith A; Ringer, Tracy J; Strang, Ross S; Watson, Christine A L

    2011-06-01

    Heteroarylalanine derivatives 4 were designed as potential inhibitors of neutral endopeptidase (NEP EC 3.4.24.11). Selectivity over other zinc metalloproteinases was explored through occupation of the S2' subsite within NEP. Structural optimisation led to the identification of 5-phenyl oxazole 4f, a potent and selective NEP inhibitor. A crystal structure of the inhibitor bound complex is reported.

  13. Synthesis and Mechanistic Studies of a Novel Homoisoflavanone Inhibitor of Endothelial Cell Growth

    PubMed Central

    Fei, Xiang; Lim, Daesung; Callaghan, Breedge; Mund, Julie A.; Case, Jamie; Rajashekhar, Gangaraju; Seo, Seung-Yong; Corson, Timothy W.

    2014-01-01

    Preventing pathological ocular angiogenesis is key to treating retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration. At present there is no small molecule drug on the market to target this process and hence there is a pressing need for developing novel small molecules that can replace or complement the present surgical and biologic therapies for these neovascular eye diseases. Previously, an antiangiogenic homoisoflavanone was isolated from the bulb of a medicinal orchid, Cremastra appendiculata. In this study, we present the synthesis of a novel homoisoflavanone isomer of this compound. Our compound, SH-11052, has antiproliferative activity against human umbilical vein endothelial cells, and also against more ocular disease-relevant human retinal microvascular endothelial cells (HRECs). Tube formation and cell cycle progression of HRECs were inhibited by SH-11052, but the compound did not induce apoptosis at effective concentrations. SH-11052 also decreased TNF-α induced p38 MAPK phosphorylation in these cells. Intriguingly, SH-11052 blocked TNF-α induced IκB-α degradation, and therefore decreased NF-κB nuclear translocation. It decreased the expression of NF-κB target genes and the pro-angiogenic or pro-inflammatory markers VCAM-1, CCL2, IL8, and PTGS2. In addition SH-11052 inhibited VEGF induced activation of Akt but not VEGF receptor autophosphorylation. Based on these results we propose that SH-11052 inhibits inflammation induced angiogenesis by blocking both TNF-α and VEGF mediated pathways, two major pathways involved in pathological angiogenesis. Synthesis of this novel homoisoflavanone opens the door to structure-activity relationship studies of this class of compound and further evaluation of its mechanism and potential to complement existing antiangiogenic drugs. PMID:24752613

  14. Physiological and Morphological Aspects of Aedes aegypti Developing Larvae: Effects of the Chitin Synthesis Inhibitor Novaluron

    PubMed Central

    Farnesi, Luana C.; Brito, José M.; Linss, Jutta G.; Pelajo-Machado, Marcelo; Valle, Denise; Rezende, Gustavo L.

    2012-01-01

    Population control of the dengue vector mosquito, Aedes aegypti, is difficult due to many reasons, one being the development of resistance to neurotoxic insecticides employed. The biosynthesis of chitin, a major constituent of insect cuticle, is a novel target for population control. Novaluron is a benzoylphenylurea (BPU) that acts as a chitin synthesis inhibitor, already used against mosquitoes. However, information regarding BPU effects on immature mosquito stages and physiological parameters related with mosquito larval development are scarce. A set of physiological parameters were recorded in control developing larvae and novaluron was administered continuously to Ae. aegypti larvae, since early third instar. Larval instar period duration was recorded from third instar until pupation. Chitin content was measured during third and fourth instars. Fourth instars were processed histochemically at the mesothorax region, stained with hematoxylin and eosin (HE) for assessment of internal tissues, and labeled with WGA-FITC to reveal chitinized structures. In control larvae: i) there is a chitin content increase during both third and fourth instars where late third instars contain more chitin than early fourth instars; ii) thoracic organs and a continuous cuticle, closely associated with the underlying epidermis were observed; iii) chitin was continuously present throughout integument cuticle. Novaluron treatment inhibited adult emergence, induced immature mortality, altered adult sex ratio and caused delay in larval development. Moreover, novaluron: i) significantly affected chitin content during larval development; ii) induced a discontinuous and altered cuticle in some regions while epidermis was often thinner or missing; iii) rendered chitin cuticle presence discontinuous and less evident. In both control and novaluron larvae, chitin was present in the peritrophic matrix. This study showed quantitatively and qualitatively evidences of novaluron effects on Ae

  15. Evidence synthesis and decision modelling to support complex decisions: stockpiling neuraminidase inhibitors for pandemic influenza usage.

    PubMed

    Watson, Samuel I; Chen, Yen-Fu; Nguyen-Van-Tam, Jonathan S; Myles, Puja R; Venkatesan, Sudhir; Zambon, Maria; Uthman, Olalekan; Chilton, Peter J; Lilford, Richard J

    2016-01-01

    Objectives: The stockpiling of neuraminidase inhibitor (NAI) antivirals as a defence against pandemic influenza is a significant public health policy decision that must be made despite a lack of conclusive evidence from randomised controlled trials regarding the effectiveness of NAIs on important clinical end points such as mortality. The objective of this study was to determine whether NAIs should be stockpiled for treatment of pandemic influenza on the basis of current evidence. Methods: A decision model for stockpiling was designed. Data on previous pandemic influenza epidemiology was combined with data on the effectiveness of NAIs in reducing mortality obtained from a recent individual participant meta-analysis using observational data. Evidence synthesis techniques and a bias modelling method for observational data were used to incorporate the evidence into the model. The stockpiling decision was modelled for adults (≥16 years old) and the United Kingdom was used as an example. The main outcome was the expected net benefits of stockpiling in monetary terms. Health benefits were estimated from deaths averted through stockpiling. Results: After adjusting for biases in the estimated effectiveness of NAIs, the expected net benefit of stockpiling in the baseline analysis was £444 million, assuming a willingness to pay of £20,000/QALY ($31,000/QALY). The decision would therefore be to stockpile NAIs. There was a greater probability that the stockpile would not be utilised than utilised. However, the rare but catastrophic losses from a severe pandemic justified the decision to stockpile. Conclusions: Taking into account the available epidemiological data and evidence of effectiveness of NAIs in reducing mortality, including potential biases, a decision maker should stockpile anti-influenza medication in keeping with the postulated decision rule.

  16. Evidence synthesis and decision modelling to support complex decisions: stockpiling neuraminidase inhibitors for pandemic influenza usage

    PubMed Central

    Watson, Samuel I.; Chen, Yen-Fu; Nguyen-Van-Tam, Jonathan S.; Myles, Puja R.; Venkatesan, Sudhir; Zambon, Maria; Uthman, Olalekan; Chilton, Peter J.; Lilford, Richard J.

    2017-01-01

    Objectives: The stockpiling of neuraminidase inhibitor (NAI) antivirals as a defence against pandemic influenza is a significant public health policy decision that must be made despite a lack of conclusive evidence from randomised controlled trials regarding the effectiveness of NAIs on important clinical end points such as mortality. The objective of this study was to determine whether NAIs should be stockpiled for treatment of pandemic influenza on the basis of current evidence. Methods: A decision model for stockpiling was designed. Data on previous pandemic influenza epidemiology was combined with data on the effectiveness of NAIs in reducing mortality obtained from a recent individual participant meta-analysis using observational data. Evidence synthesis techniques and a bias modelling method for observational data were used to incorporate the evidence into the model. The stockpiling decision was modelled for adults (≥16 years old) and the United Kingdom was used as an example. The main outcome was the expected net benefits of stockpiling in monetary terms. Health benefits were estimated from deaths averted through stockpiling. Results: After adjusting for biases in the estimated effectiveness of NAIs, the expected net benefit of stockpiling in the baseline analysis was £444 million, assuming a willingness to pay of £20,000/QALY ($31,000/QALY). The decision would therefore be to stockpile NAIs. There was a greater probability that the stockpile would not be utilised than utilised. However, the rare but catastrophic losses from a severe pandemic justified the decision to stockpile. Conclusions: Taking into account the available epidemiological data and evidence of effectiveness of NAIs in reducing mortality, including potential biases, a decision maker should stockpile anti-influenza medication in keeping with the postulated decision rule. PMID:28413608

  17. Hazards and uptake of chitin synthesis inhibitors in bumblebees Bombus terrestris.

    PubMed

    Mommaerts, Veerle; Sterk, Guido; Smagghe, Guy

    2006-08-01

    This research project examined the potential hazards of a major class of insect growth regulators (IGRs) to survival, reproduction and larval growth in bumblebees Bombus terrestris L. Eight chitin synthesis inhibitors (CSIs) were tested: buprofezin, cyromazine, diflubenzuron, flucycloxuron, flufenoxuron, lufenuron, novaluron and teflubenzuron. These different IGRs, which are important in the control of pest insects in greenhouses, were applied via three different routes of exposure under laboratory conditions: dermal contact, and orally via the drinking of sugar/water and via pollen. The compounds were tested at their respective maximum field recommended concentrations (MFRC) and also in dose-response assays to calculate LC(50) values. In general, none of the CSIs showed acute worker toxicity. However, there was a dramatic reduction in brood production, especially after oral treatment with pollen and sugar/water. Conspicuously, egg fertility was reduced in all treatments with diflubenzuron and teflubenzuron. In addition to egg mortality, the worker bumblebees removed larvae from the treated nest, and in most cases these individuals were dead first-second instars. Under a binocular microscope, such larvae showed an abnormally formed cuticle leading to mechanical weakness and death. In another series of experiments using (14)C-diflubenzuron and (14)C-flufenoxuron, cuticular penetration in workers was studied for a better understanding of the differences in toxicity. With (14)C-diflubenzuron, transovarial transport and accumulation in the deposited eggs supported the strong reproductive effects. Overall, the present results suggest that CSIs should be applied with caution in combination with bumblebees. The compatibility of each compound to be used in combination with B. terrestris is discussed in relation to calculated LC(50) values, routes of uptake and effects.

  18. The protein synthesis inhibitor anisomycin reduces sex behavior during a critical period after testosterone treatment in male Syrian hamsters.

    PubMed

    Piekarski, David J; Seto, Tiffany; Zucker, Irving

    2012-01-18

    Testosterone (T) is critical for maintaining male sexual behavior (MSB) in rodents, in part by altering protein synthesis in a well-defined neural circuit. The specific timing of protein synthesis essential for expression of MSB has never been investigated. We administered the protein synthesis inhibitor anisomycin (Ani) to castrated male Syrian hamsters treated sc with 100 μg T in an aqueous vehicle once weekly; this T regimen maintains MSB while elevating circulating T concentrations for only a few hours after each injection. Hamsters were injected s.c. with the vehicle or 12.5 mg Ani at one of several times relative to T administration; MSB was assessed once per week, 6 days after the previous T injection, for 5 weeks. Anisomycin administered 6-12 h after T injection significantly reduced the expression of sexual behavior, whereas Ani treatment between 3 h before and 3 h after T injection did not impair MSB. This experiment is the first to assess the specific timing of protein synthesis relative to a T pulse that is required for the expression of MSB. The demarcation of a critical interval for T-induced protein synthesis necessary for maintenance of MSB should facilitate specification of the genomic, proteomic, and biochemical cascades that subserve actions of T on male copulation.

  19. Regulation of leukotriene and 5oxoETE synthesis and the effect of 5-lipoxygenase inhibitors: a mathematical modeling approach

    PubMed Central

    2012-01-01

    Background 5-lipoxygenase (5-LO) is a key enzyme in the synthesis of leukotrienes and 5-Oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (oxoETE). These inflammatory signaling molecules play a role in the pathology of asthma and so 5-LO inhibition is a promising target for asthma therapy. The 5-LO redox inhibitor zileuton (Zyflo IR/CR®) is currently marketed for the treatment of asthma in adults and children, but widespread use of zileuton is limited by its efficacy/safety profile, potentially related to its redox characteristics. Thus, a quantitative, mechanistic description of its functioning may be useful for development of improved anti-inflammatory targeting this mechanism. Results A mathematical model describing the operation of 5-LO, phospholipase A2, glutathione peroxidase and 5-hydroxyeicosanoid dehydrogenase was developed. The catalytic cycles of the enzymes were reconstructed and kinetic parameters estimated on the basis of available experimental data. The final model describes each stage of cys-leukotriene biosynthesis and the reactions involved in oxoETE production. Regulation of these processes by substrates (phospholipid concentration) and intracellular redox state (concentrations of reduced glutathione, glutathione (GSH), and lipid peroxide) were taken into account. The model enabled us to reveal differences between redox and non-redox 5-LO inhibitors under conditions of oxidative stress. Despite both redox and non-redox inhibitors suppressing leukotriene A4 (LTA4) synthesis, redox inhibitors are predicted to increase oxoETE production, thus compromising efficacy. This phenomena can be explained in terms of the pseudo-peroxidase activity of 5-LO and the ability of lipid peroxides to transform 5-LO into its active form even in the presence of redox inhibitors. Conclusions The mathematical model developed described quantitatively different mechanisms of 5-LO inhibition and simulations revealed differences between the potential therapeutic outcomes for these

  20. Synthesis and Evaluation of Heterocyclic Catechol Mimics as Inhibitors of Catechol-O-methyltransferase (COMT)

    PubMed Central

    2015-01-01

    3-Hydroxy-4-pyridinones and 5-hydroxy-4-pyrimidinones were identified as inhibitors of catechol-O-methyltransferase (COMT) in a high-throughput screen. These heterocyclic catechol mimics exhibit potent inhibition of the enzyme and an improved toxicity profile versus the marketed nitrocatechol inhibitors tolcapone and entacapone. Optimization of the series was aided by X-ray cocrystal structures of the novel inhibitors in complex with COMT and cofactors SAM and Mg2+. The crystal structures suggest a mechanism of inhibition for these heterocyclic inhibitors distinct from previously disclosed COMT inhibitors. PMID:25815153

  1. Characterization of irreversible kinase inhibitors by directly detecting covalent bond formation: a tool for dissecting kinase drug resistance.

    PubMed

    Klüter, Sabine; Simard, Jeffrey R; Rode, Haridas B; Grütter, Christian; Pawar, Vijaykumar; Raaijmakers, Hans C A; Barf, Tjeerd A; Rabiller, Matthias; van Otterlo, Willem A L; Rauh, Daniel

    2010-12-10

    Targeting protein kinases in cancer therapy with irreversible small-molecule inhibitors is moving to the forefront of kinase-inhibitor research and is thought to be an effective means of overcoming mutation-associated drug resistance in epidermal growth factor receptor kinase (EGFR). We generated a detection technique that allows direct measurements of covalent bond formation without relying on kinase activity, thereby allowing the straightforward investigation of the influence of steric clashes on covalent inhibitors in different resistant kinase mutants. The obtained results are discussed together with structural biology and biochemical studies of catalytic activity in both wild-type and gatekeeper mutated kinase variants to draw conclusions about the impact of steric hindrance and increased catalytic activity in drug-resistant kinase variants.

  2. A Cyclic Disilylated Stannylene: Synthesis, Dimerization, and Adduct Formation

    PubMed Central

    2011-01-01

    Reaction of 1,4-dipotassio-1,1,4,4-tetrakis(trimethylsilyl)tetramethyltetrasilane with [(Me3Si)2N]2Sn led to the formation of an endocyclic distannene via the dimerization of a transient stannylene. In the presence of strong donor molecules such as PEt3, the stannylene could be trapped as adduct. Reaction of the PEt3 derivative with B(C6F5)3 gave rise to the formation of the stannylene B(C6F5)3 adduct. PMID:21438553

  3. Synthesis of Chromone, Quinolone, and Benzoxazinone Sulfonamide Nucleosides as Conformationally Constrained Inhibitors of Adenylating Enzymes Required for Siderophore Biosynthesis

    PubMed Central

    Engelhart, Curtis A.; Aldrich, Courtney C.

    2013-01-01

    MbtA catalyzes the first committed step of mycobactin biosynthesis in Mycobacterium tuberculosis (Mtb) and is responsible for the incorporation of salicylic acid into the mycobactin siderophores. 5′-O-[N-(Salicyl)sulfamoyl]adenosine (Sal-AMS) is an extremely potent nucleoside inhibitor of MbtA that possesses excellent activity against whole-cell Mtb, but suffers from poor bioavailability. In an effort to improve the bioavailability, we have designed four conformationally constrained analogues of Sal-AMS that remove two rotatable bonds and the ionized sulfamate group based on computational and structural studies. Herein we describe the synthesis, biochemical, and microbiological evaluation of chromone-, quinolone-, and benzoxazinone-3-sulfonamide derivatives of Sal-AMS. We developed new chemistry to assemble these three heterocycles from common β-ketosulfonamide intermediates. The synthesis of the chromone- and quinolone-3-sulfonamide intermediates features formylation of a β-ketosulfonamide employing dimethylformamide dimethyl acetal to afford an enaminone that can react intramolecularly with a phenol or intermolecularly with a primary amine via addition-elimination reaction(s). The benzoxazinone-3-sulfonamide was prepared by nitrosation of a β-ketosulfonamide followed by intramolecular nucleophilic aromatic substitution. Mitsunobu coupling of these bicyclic sulfonamides with a protected adenosine derivative followed by global deprotection provides a concise synthesis of the respective inhibitors. PMID:23805993

  4. Synthesis of chromone, quinolone, and benzoxazinone sulfonamide nucleosides as conformationally constrained inhibitors of adenylating enzymes required for siderophore biosynthesis.

    PubMed

    Engelhart, Curtis A; Aldrich, Courtney C

    2013-08-02

    MbtA catalyzes the first committed step of mycobactin biosynthesis in Mycobacterium tuberculosis (Mtb) and is responsible for the incorporation of salicylic acid into the mycobactin siderophores. 5'-O-[N-(Salicyl)sulfamoyl]adenosine (Sal-AMS) is an extremely potent nucleoside inhibitor of MbtA that possesses excellent activity against whole-cell Mtb but suffers from poor bioavailability. In an effort to improve the bioavailability, we have designed four conformationally constrained analogues of Sal-AMS that remove two rotatable bonds and the ionized sulfamate group on the basis of computational and structural studies. Herein we describe the synthesis, biochemical, and microbiological evaluation of chromone-, quinolone-, and benzoxazinone-3-sulfonamide derivatives of Sal-AMS. We developed new chemistry to assemble these three heterocycles from common β-ketosulfonamide intermediates. The synthesis of the chromone- and quinolone-3-sulfonamide intermediates features formylation of a β-ketosulfonamide employing dimethylformamide dimethyl acetal to afford an enaminone that can react intramolecularly with a phenol or intermolecularly with a primary amine via addition-elimination reaction(s). The benzoxazinone-3-sulfonamide was prepared by nitrosation of a β-ketosulfonamide followed by intramolecular nucleophilic aromatic substitution. Mitsunobu coupling of these bicyclic sulfonamides with a protected adenosine derivative followed by global deprotection provides a concise synthesis of the respective inhibitors.

  5. L2 Earth atmosphere observatory : formation guidance, metrology, and control synthesis

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet A.; Mettler, Edward; Breckenridge, William G.; Macenka, Steven A.; Tubbs, Eldred F.

    2004-01-01

    This paper discusses the results of research sponsored by the NASA Revolutionary Aerospace Systems Concepts (RASC) program, and includes the synthesis and analysis of the guidance, metrology and control for a two-spacecraft formation in a unique continuously powered orbit near the Sun-Earth L2 Lagrange point observing the illuminated atmosphere of the Earth while it is continuously occulting the Sun.

  6. L2 Earth atmosphere observatory : formation guidance, metrology, and control synthesis

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet A.; Mettler, Edward; Breckenridge, William G.; Macenka, Steven A.; Tubbs, Eldred F.

    2004-01-01

    This paper discusses the results of research sponsored by the NASA Revolutionary Aerospace Systems Concepts (RASC) program, and includes the synthesis and analysis of the guidance, metrology and control for a two-spacecraft formation in a unique continuously powered orbit near the Sun-Earth L2 Lagrange point observing the illuminated atmosphere of the Earth while it is continuously occulting the Sun.

  7. Synthesis of Functionalized Dihydrobenzofurans by Direct Aryl C-O Bond Formation under Mild Conditions.

    PubMed

    Alvarado, Joseph; Fournier, Jeremy; Zakarian, Armen

    2016-09-12

    A method for the synthesis of dihydrobenzofurans by a direct aryl C-O bond formation is described. A mechanistic pathway for the reaction, distinct from previously described similar transformations, allows for mild reaction conditions that are expected to be compatible with functionalized substrates.

  8. Combination Therapy with a Sodium-Glucose Cotransporter 2 Inhibitor and a Dipeptidyl Peptidase-4 Inhibitor Additively Suppresses Macrophage Foam Cell Formation and Atherosclerosis in Diabetic Mice

    PubMed Central

    Hiromura, Munenori; Mori, Yusaku; Kohashi, Kyoko; Kushima, Hideki; Ohara, Makoto; Watanabe, Takuya; Andersson, Olov

    2017-01-01

    Dipeptidyl peptidase-4 inhibitors (DPP-4is), in addition to their antihyperglycemic roles, have antiatherosclerotic effects. We reported that sodium-glucose cotransporter 2 inhibitors (SGLT2is) suppress atherosclerosis in a glucose-dependent manner in diabetic mice. Here, we investigated the effects of combination therapy with SGLT2i and DPP-4i on atherosclerosis in diabetic mice. SGLT2i (ipragliflozin, 1.0 mg/kg/day) and DPP-4i (alogliptin, 8.0 mg/kg/day), either alone or in combination, were administered to db/db mice or streptozotocin-induced diabetic apolipoprotein E-null (Apoe−/−) mice. Ipragliflozin and alogliptin monotherapies improved glucose intolerance; however, combination therapy did not show further improvement. The foam cell formation of peritoneal macrophages was suppressed by both the ipragliflozin and alogliptin monotherapies and was further enhanced by combination therapy. Although foam cell formation was closely associated with HbA1c levels in all groups, DPP-4i alone or the combination group showed further suppression of foam cell formation compared with the control or SGLT2i group at corresponding HbA1c levels. Both ipragliflozin and alogliptin monotherapies decreased scavenger receptors and increased cholesterol efflux regulatory genes in peritoneal macrophages, and combination therapy showed additive changes. In diabetic Apoe−/− mice, combination therapy showed the greatest suppression of plaque volume in the aortic root. In conclusion, combination therapy with SGLT2i and DPP4i synergistically suppresses macrophage foam cell formation and atherosclerosis in diabetic mice. PMID:28408925

  9. Design, synthesis, and biological activities of 1-aryl-1,4-diazepan-2-one derivatives as novel triple reuptake inhibitors.

    PubMed

    Honda, Eiji; Ishichi, Yuji; Kimura, Eiji; Yoshikawa, Masato; Kanzaki, Naoyuki; Nakagawa, Hideyuki; Terao, Yasuko; Suzuki, Atsuko; Kawai, Takayuki; Arakawa, Yuuichi; Ohta, Hiroyuki; Terauchi, Jun

    2014-08-15

    A novel series of triple reuptake inhibitors were explored by ligand-based drug design. A cyclic structure was designed from cyclopropane derivative 5 using the core structure of reported monoamine reuptake inhibitors, leading to the formation of the 1-aryl-1,4-diazepan-2-one derivative 23j-S. Compound 23j-S was shown to act as a potent TRI with an excellent ADME-Tox profile. Oral administration of 23j-S significantly enhanced norepinephrine, dopamine, and serotonin levels in the mouse prefrontal cortex and showed significant antidepressant-like activity in tail suspension tests in mouse.

  10. Structure-based design, synthesis and biological evaluation of N-pyrazole, N'-thiazole urea inhibitors of MAP kinase p38α.

    PubMed

    Getlik, Matthäus; Grütter, Christian; Simard, Jeffrey R; Nguyen, Hoang D; Robubi, Armin; Aust, Beate; van Otterlo, Willem A L; Rauh, Daniel

    2012-02-01

    In this paper, we present the structure-based design, synthesis and biological activity of N-pyrazole, N'-thiazole-ureas as potent inhibitors of p38α mitogen-activated protein kinase (p38α MAPK). Guided by complex crystal structures, we employed the initially identified N-aryl, N'-thiazole urea scaffold and introduced key structural elements that allowed the formation of novel hydrogen bonding interactions within the allosteric site of p38α, resulting in potent type III inhibitors. [4-(3-tert-Butyl-5-{[(1,3-thiazol-2-ylamino)carbonyl]amino}-1H-pyrazol-1-yl)-phenyl]acetic acid 18c was found to be the most potent compound within this series and inhibited p38α activity with an IC(50) of 135 ± 21 nM. Its closest analog, ethyl [4-(3-tert-butyl-5-{[(1,3-thiazol-2-ylamino)carbonyl]amino}-1H-pyrazol-1-yl)phenyl]acetate 18b, effectively inhibited p38α mediated phosphorylation of the mitogen activated protein kinase activated protein kinase 2 (MK2) in HeLa cells.

  11. Synthesis of ST7612AA1, a Novel Oral HDAC Inhibitor, via Radical 
Thioacetic Acid Addition

    PubMed Central

    Battistuzzi, Gianfranco; Giannini, Giuseppe

    2016-01-01

    Abstract: Background In the expanding field of anticancer drugs, HDAC inhibitors are playing an increasingly important role. To date, four/five HDAC inhibitors have been approved by FDA. All these compounds fit the widely accepted HDAC inhibitors pharmacophore model characterized by a cap group, a linker chain and a zinc binding group (ZBG), able to bind the Zn2+ ion in a pocket of the HDAC active site. Romidepsin, a natural compound, is the only thiol derivative. We have selected a new class of synthetic HDAC inhibitors, the thio-ω(lactam-carboxamide) derivatives, with ST7612AA1 as drug candidate, pan-inhibitor active in the range of single- to two-digit nanomolar concentrations. Preliminary results of a synthetic optimization attempt towards a fast scale-up process are here proposed. Methods In the four steps of synthesis, from unsaturated amino acid intermediate to the final product, we explored different synthetic conditions in order to have a transferable process for a scale-up synthetic laboratory. Results In the first step, isobutyl chloroformate was used and, after a simple work up with 1M HCl, 2 (96% yield) was obtained as a white solid, which was used directly in the next step. For thioacetic acid addition to the double bond of intermediate 2, two different routes were possible, with addition reaction in the first (D’) or last step (D). Reactions of 2 to give 5 or of 4 to give ST7612AA1 were both performed in dioxane. Reactions were fast and did not need the usually advised radical quenching with cyclohexene. The corresponding products were obtained in good yields (step D’, 89%; step D, 81%) after a flash chromatography. Conclusion: ST7612AA1 , a thiol derivative prodrug of ST7464AA1, is the first of a new generation of HDAC inhibitors, very potent, orally administered, and well tolerated. Here, we have identified a synthetic route, competitive, versatile and easily transferable to industrial processes. PMID:27917100

  12. Reduced estradiol synthesis by letrozole, an aromatase inhibitor, is protective against development of pentylenetetrazole-induced kindling in mice.

    PubMed

    Rashid, Davood; Panda, B P; Vohora, Divya

    2015-11-01

    Neurosteroids, such as testosterone and their metabolites, are known to modulate neuronal excitability. The enzymes regulating the metabolism of these neurosteroids, thus, may be targeted as a noval strategy for the development of new antiepileptic drugs. The present work targeted two such enzymes i,e aromatase and 5α-reductase in order to explore the potential of letrozole (an aromatase inhibitor) on pentylenetetrazole (PTZ)-induced kindling in mice and the ability of finasteride (a 5α-reductase inhibitor) to modulate any such effects. PTZ (30 mg/kg, i.p.), when administered once every two days (for a total of 24 doses) induced kindling in Swiss albino mice. Letrozole (1 mg/kg, p.o.), administered prior to PTZ, significantly reduced the % incidence of kindling, delayed mean onset time of seizures and reduced seizure severity score. Letrozole reduced the levels of plasma 17β-estradiol after induction of kindling. The concurrent administration of finasteride and letrozole produced effects similar to letrozole on PTZ-kindling and on estradiol levels. This implies that the ability of letrozole to redirect the synthesis of dihydrotestosterone (DHT) and 5α-androstanediol from testosterone doesn't appear to play a significant role in the protective effects of letrozole against PTZ kindling. Letrozole, however, increased the levels of 5α-DHT in mice plasma. The aromatase inhibitors, thus, may be exploited for inhibiting the synthesis of proconvulsant (17β-estradiol) and/or redirecting the synthesis of anticonvulsant (DHT and 5α-androstanediol) neurosteroids.

  13. Inhibitors of HIV-protease from computational design. A history of theory and synthesis still to be fully appreciated.

    PubMed

    Berti, Federico; Frecer, Vladimir; Miertus, Stanislav

    2014-01-01

    Despite the fact that HIV-Protease is an over 20 years old target, computational approaches to rational design of its inhibitors still have a great potential to stimulate the synthesis of new compounds and the discovery of new, potent derivatives, ever capable to overcome the problem of drug resistance. This review deals with successful examples of inhibitors identified by computational approaches, rather than by knowledge-based design. Such methodologies include the development of energy and scoring functions, docking protocols, statistical models, virtual combinatorial chemistry. Computations addressing drug resistance, and the development of related models as the substrate envelope hypothesis are also reviewed. In some cases, the identified structures required the development of synthetic approaches in order to obtain the desired target molecules; several examples are reported.

  14. Synthesis and biological evaluation of phosphate prodrugs of 4-phospho-D-erythronohydroxamic acid, an inhibitor of 6-phosphogluconate dehydrogenase.

    PubMed

    Ruda, Gian Filippo; Alibu, Vincent P; Mitsos, Christos; Bidet, Olivier; Kaiser, Marcel; Brun, Reto; Barrett, Michael P; Gilbert, Ian H

    2007-08-01

    We have previously reported the discovery of potent and selective inhibitors of 6-phosphogluconate dehydrogenase, the third enzyme of the phosphate pentose pathway, from Trypanosoma brucei, the causative organism of human African trypanosomiasis. These inhibitors were charged phosphate derivatives with restricted capacity to enter cells. Herein, we report the synthesis of five different classes of prodrugs: phosphoramidate; bis-S-acyl thioethyl esters (bis-SATE); bis-pivaloxymethyl (bis-POM); CycloSaligenyl; and phenyl, S-acyl thioethyl mixed phosphate esters (mix-SATE). Prodrugs were studied for stability and activity against the intact parasites. Most prodrugs caused inhibition of the growth of the parasites. The activity of the prodrugs against the parasites appeared to be related to their stability in aqueous buffer.

  15. Potential New H1N1 Neuraminidase Inhibitors from Ferulic Acid and Vanillin: Molecular Modelling, Synthesis and in Vitro Assay

    PubMed Central

    Hariono, Maywan; Abdullah, Nurshariza; Damodaran, K.V.; Kamarulzaman, Ezatul E.; Mohamed, Nornisah; Hassan, Sharifah Syed; Shamsuddin, Shaharum; Wahab, Habibah A.

    2016-01-01

    We report the computational and experimental efforts in the design and synthesis of novel neuraminidase (NA) inhibitors from ferulic acid and vanillin. Two proposed ferulic acid analogues, MY7 and MY8 were predicted to inhibit H1N1 NA using molecular docking. From these two analogues, we designed, synthesised and evaluated the biological activities of a series of ferulic acid and vanillin derivatives. The enzymatic H1N1 NA inhibition assay showed MY21 (a vanillin derivative) has the lowest IC50 of 50 μM. In contrast, the virus inhibition assay showed MY15, a ferulic acid derivative has the best activity with the EC50 of ~0.95 μM. Modelling studies further suggest that these predicted activities might be due to the interactions with conserved and essential residues of NA with ΔGbind values comparable to those of oseltamivir and zanamivir, the two commercial NA inhibitors. PMID:27995961

  16. Synthesis and molecular modeling studies of derivatives of a highly potent peptidomimetic vinyl ester as falcipain-2 inhibitors.

    PubMed

    Ettari, Roberta; Micale, Nicola; Grazioso, Giovanni; Bova, Floriana; Schirmeister, Tanja; Grasso, Silvana; Zappalà, Maria

    2012-09-01

    Herein we report the synthesis of a set of constrained peptidomimetics endowed with an electrophilic vinyl ester warhead and structurally related to a previously identified lead compound, a potent and irreversible inhibitor of falcipain-2 (FP-2). FP-2 is the main hemoglobinase of the malaria parasite P. falciparum. The new compounds were evaluated for their inhibition against FP-2, and the results were rationalized on the basis of docking experiments. These studies underscore the pivotal role of both the ester function at the P1' site and the trifluoromethyl group of the P3 side chain in determining the correct orientation of the Michael acceptor warhead in the catalytic site, and as a consequence, the potency of the inhibitors as well as their reversible or irreversible mode of inhibition.

  17. Potential New H1N1 Neuraminidase Inhibitors from Ferulic Acid and Vanillin: Molecular Modelling, Synthesis and in Vitro Assay.

    PubMed

    Hariono, Maywan; Abdullah, Nurshariza; Damodaran, K V; Kamarulzaman, Ezatul E; Mohamed, Nornisah; Hassan, Sharifah Syed; Shamsuddin, Shaharum; Wahab, Habibah A

    2016-12-20

    We report the computational and experimental efforts in the design and synthesis of novel neuraminidase (NA) inhibitors from ferulic acid and vanillin. Two proposed ferulic acid analogues, MY7 and MY8 were predicted to inhibit H1N1 NA using molecular docking. From these two analogues, we designed, synthesised and evaluated the biological activities of a series of ferulic acid and vanillin derivatives. The enzymatic H1N1 NA inhibition assay showed MY21 (a vanillin derivative) has the lowest IC50 of 50 μM. In contrast, the virus inhibition assay showed MY15, a ferulic acid derivative has the best activity with the EC50 of ~0.95 μM. Modelling studies further suggest that these predicted activities might be due to the interactions with conserved and essential residues of NA with ΔGbind values comparable to those of oseltamivir and zanamivir, the two commercial NA inhibitors.

  18. Potential New H1N1 Neuraminidase Inhibitors from Ferulic Acid and Vanillin: Molecular Modelling, Synthesis and in Vitro Assay

    NASA Astrophysics Data System (ADS)

    Hariono, Maywan; Abdullah, Nurshariza; Damodaran, K. V.; Kamarulzaman, Ezatul E.; Mohamed, Nornisah; Hassan, Sharifah Syed; Shamsuddin, Shaharum; Wahab, Habibah A.

    2016-12-01

    We report the computational and experimental efforts in the design and synthesis of novel neuraminidase (NA) inhibitors from ferulic acid and vanillin. Two proposed ferulic acid analogues, MY7 and MY8 were predicted to inhibit H1N1 NA using molecular docking. From these two analogues, we designed, synthesised and evaluated the biological activities of a series of ferulic acid and vanillin derivatives. The enzymatic H1N1 NA inhibition assay showed MY21 (a vanillin derivative) has the lowest IC50 of 50 μM. In contrast, the virus inhibition assay showed MY15, a ferulic acid derivative has the best activity with the EC50 of ~0.95 μM. Modelling studies further suggest that these predicted activities might be due to the interactions with conserved and essential residues of NA with ΔGbind values comparable to those of oseltamivir and zanamivir, the two commercial NA inhibitors.

  19. Oxazin-5-Ones as a Novel Class of Penicillin Binding Protein Inhibitors: Design, Synthesis and Structure Activity Relationship.

    PubMed

    Onoabedje, Efeturi Abraham; Ibezim, Akachukwu; Okafor, Sunday Nwankwor; Onoabedje, Ufuoma Shalom; Okoro, Uchechukwu Chris

    2016-01-01

    Penicillin binding proteins (PBPs) are normal constituents of bacterial which are absent in mammalian cells. The theoretical binding modes of known oxazin-5-ones toward the protein were used as a guide to synthesis new inhibitors. Structural studies of protein-ligand complexes revealed that conformational discrepancies of the derivatives in the protein's binding site gave rise to the variation in their inhibition constant which ranged from 68.58 μM to 2.04 mM. Biological assay results further confirmed the antibiotic potencies of the studied compounds. Although the outcome of biological screening does not parallel computational predictions, the results obtained from both methods suggest that the oxazin-5-one derivatives are potential PBP inhibitors, hence interesting antibiotic lead agents.

  20. Oxazin-5-Ones as a Novel Class of Penicillin Binding Protein Inhibitors: Design, Synthesis and Structure Activity Relationship

    PubMed Central

    Onoabedje, Efeturi Abraham; Ibezim, Akachukwu; Okafor, Sunday Nwankwor; Onoabedje, Ufuoma Shalom; Okoro, Uchechukwu Chris

    2016-01-01

    Penicillin binding proteins (PBPs) are normal constituents of bacterial which are absent in mammalian cells. The theoretical binding modes of known oxazin-5-ones toward the protein were used as a guide to synthesis new inhibitors. Structural studies of protein-ligand complexes revealed that conformational discrepancies of the derivatives in the protein’s binding site gave rise to the variation in their inhibition constant which ranged from 68.58 μM to 2.04 mM. Biological assay results further confirmed the antibiotic potencies of the studied compounds. Although the outcome of biological screening does not parallel computational predictions, the results obtained from both methods suggest that the oxazin-5-one derivatives are potential PBP inhibitors, hence interesting antibiotic lead agents. PMID:27749913

  1. Synthesis and Evaluation of Macrocyclic Peptide Aldehydes as Potent and Selective Inhibitors of the 20S Proteasome.

    PubMed

    Wilson, David L; Meininger, Isabel; Strater, Zack; Steiner, Stephanie; Tomlin, Frederick; Wu, Julia; Jamali, Haya; Krappmann, Daniel; Götz, Marion G

    2016-03-10

    This research explores the first design and synthesis of macrocyclic peptide aldehydes as potent inhibitors of the 20S proteasome. Two novel macrocyclic peptide aldehydes based on the ring-size of the macrocyclic natural product TMC-95 were prepared and evaluated as inhibitors of the 20S proteasome. Both compounds inhibited in the low nanomolar range and proved to be selective for the proteasome over other serine and cysteine proteases, particularly when compared to linear analogues with similar amino acid sequences. In HeLa cells, both macrocycles efficiently inhibited activation of nuclear factor-κB (NF-κB) transcription factor by blocking proteasomal degradation of the inhibitor protein IκBα after cytokine stimulation. Due to their covalent mechanism of binding these compounds represent a 1000-fold increase in inhibitory potency over previously reported noncovalently binding TMC-95 analogues. Molecular modeling of the macrocyclic peptides confirms the preference of the large S3 pocket for large, hydrophobic residues and the ability to exploit this to improve selectivity of proteasome inhibitors.

  2. Synthesis and biological evaluation of non-glucose glycoconjugated N-hydroyxindole class LDH inhibitors as anticancer agents

    PubMed Central

    Di Bussolo, Valeria; Calvaresi, Emilia C.; Granchi, Carlotta; Del Bino, Linda; Frau, Ileana; Lang, Maria Chiara Dasso; Tuccinardi, Tiziano; Macchia, Marco; Martinelli, Adriano

    2015-01-01

    Inhibitors of human lactate dehydrogenase A (LDH-A) are promising therapeutic agents against cancer. The development of LDH-A inhibitors that possess cellular activities has so far proved to be particularly challenging, since the enzyme’s active site is narrow and highly polar. In the recent past, we were able to develop a glucose-conjugated N-hydroxyindole-based LDH-A inhibitor designed to exploit the sugar avidity expressed by cancer cells (the Warburg effect). Herein we describe a structural modulation of the sugar moiety of this class of inhibitors, with the insertion of α-D-mannose, β-D-gulose, or β-N-acetyl-D-glucosamine portions in their structures. Their stereospecific chemical synthesis, which involves a substrate-dependent stereospecific glycosylation step, and their biological activity in reducing lactate production and proliferation in cancer cells are reported. Interestingly, the α-D-mannose conjugate displayed the best properties in the cellular assays, demonstrating an efficient antiglycolytic and antiproliferative activity in cancer cells. PMID:26167277

  3. Synthesis and Evaluation of Macrocyclic Peptide Aldehydes as Potent and Selective Inhibitors of the 20S Proteasome

    PubMed Central

    2016-01-01

    This research explores the first design and synthesis of macrocyclic peptide aldehydes as potent inhibitors of the 20S proteasome. Two novel macrocyclic peptide aldehydes based on the ring-size of the macrocyclic natural product TMC-95 were prepared and evaluated as inhibitors of the 20S proteasome. Both compounds inhibited in the low nanomolar range and proved to be selective for the proteasome over other serine and cysteine proteases, particularly when compared to linear analogues with similar amino acid sequences. In HeLa cells, both macrocycles efficiently inhibited activation of nuclear factor-κB (NF-κB) transcription factor by blocking proteasomal degradation of the inhibitor protein IκBα after cytokine stimulation. Due to their covalent mechanism of binding these compounds represent a 1000-fold increase in inhibitory potency over previously reported noncovalently binding TMC-95 analogues. Molecular modeling of the macrocyclic peptides confirms the preference of the large S3 pocket for large, hydrophobic residues and the ability to exploit this to improve selectivity of proteasome inhibitors. PMID:26985310

  4. Design and Synthesis of Hydroxyethylene-Based BACE-1 Inhibitors Incorporating Extended P1 Substituents

    PubMed Central

    Sandgren, Veronica; Bäck, Marcus; Kvarnström, Ingemar; Dahlgren, Anders

    2013-01-01

    Novel BACE-1 inhibitors with a hydroxyethylene central core have been developed. Modified P1´ and extended P1 substituents were incorporated with the aim to explore potential interactions with the S1´ and the S1-S3 pocket, respectively, of BACE-1. Inhibitors were identified displaying IC50 values in the nanomolar range, i.e. 69 nM for the most potent compound. Possible inhibitor interactions with the enzyme are also discussed. PMID:23585822

  5. Generating a Generation of Proteasome Inhibitors: From Microbial Fermentation to Total Synthesis of Salinosporamide A (Marizomib) and Other Salinosporamides

    PubMed Central

    Potts, Barbara C.; Lam, Kin S.

    2010-01-01

    The salinosporamides are potent proteasome inhibitors among which the parent marine-derived natural product salinosporamide A (marizomib; NPI-0052; 1) is currently in clinical trials for the treatment of various cancers. Methods to generate this class of compounds include fermentation and natural products chemistry, precursor-directed biosynthesis, mutasynthesis, semi-synthesis, and total synthesis. The end products range from biochemical tools for probing mechanism of action to clinical trials materials; in turn, the considerable efforts to produce the target molecules have expanded the technologies used to generate them. Here, the full complement of methods is reviewed, reflecting remarkable contributions from scientists of various disciplines over a period of 7 years since the first publication of the structure of 1. PMID:20479958

  6. Synthesis of Highly Selective Submicromolar Microcystin‐Based Inhibitors of Protein Phosphatase (PP)2A over PP1

    PubMed Central

    Fontanillo, Miriam; Zemskov, Ivan; Häfner, Maximilian; Uhrig, Ulrike; Salvi, Francesca; Simon, Bernd; Wittmann, Valentin

    2016-01-01

    Abstract Research and therapeutic targeting of the phosphoserine/threonine phosphatases PP1 and PP2A is hindered by the lack of selective inhibitors. The microcystin (MC) natural toxins target both phosphatases with equal potency, and their complex synthesis has complicated structure–activity relationship studies in the past. We report herein the synthesis and biochemical evaluation of 11 MC analogues, which was accomplished through an efficient strategy combining solid‐ and solution‐phase approaches. Our approach led to the first MC analogue with submicromolar inhibitory potency that is strongly selective for PP2A over PP1 and does not require the complex lipophilic Adda group. Through mutational and structural analyses, we identified a new key element for binding, as well as reasons for the selectivity. This work gives unprecedented insight into how selectivity between these phosphatases can be achieved with MC analogues. PMID:27723199

  7. GABA promotes elastin synthesis and elastin fiber formation in normal human dermal fibroblasts (HDFs).

    PubMed

    Uehara, Eriko; Hokazono, Hideki; Hida, Mariko; Sasaki, Takako; Yoshioka, Hidekatsu; Matsuo, Noritaka

    2017-06-01

    The multiple physiological effects of γ-aminobutyric acid (GABA) as a functional food component have been recently reported. We previously reported that GABA upregulated the expression of type I collagen in human dermal fibroblasts (HDFs), and that oral administration of GABA significantly increased skin elasticity. However, details of the regulatory mechanism still remain unknown. In this study, we further examined the effects of GABA on elastin synthesis and elastin fiber formation in HDFs. Real-time PCR indicated that GABA significantly increased the expression of tropoelastin transcript in a dose-dependent manner. Additionally, the expression of fibrillin-1, fibrillin-2, and fibulin-5/DANCE, but not lysyl oxidase and latent transforming factor-β-binding protein 4, were also significantly increased in HDFs. Finally, immunohistochemical analysis confirmed that treatment with GABA dramatically increased the formation of elastic fibers in HDFs. Taken together, our results showed that GABA improves skin elasticity in HDFs by upregulating elastin synthesis and elastin fiber formation.

  8. The design and synthesis of novel SGLT2 inhibitors: C-glycosides with benzyltriazolopyridinone and phenylhydantoin as the aglycone moieties.

    PubMed

    Guo, Cheng; Hu, Min; DeOrazio, Russell J; Usyatinsky, Alexander; Fitzpatrick, Kevin; Zhang, Zhenjun; Maeng, Jun-Ho; Kitchen, Douglas B; Tom, Susan; Luche, Michele; Khmelnitsky, Yuri; Mhyre, Andrew J; Guzzo, Peter R; Liu, Shuang

    2014-07-01

    The sodium glucose co-transporter 2 (SGLT2) has received considerable attention in recent years as a target for the treatment of type 2 diabetes mellitus. This report describes the design, synthesis and structure-activity relationship (SAR) of C-glycosides with benzyltriazolopyridinone and phenylhydantoin as the aglycone moieties as novel SGLT2 inhibitors. Compounds 5p and 33b demonstrated high potency in inhibiting SGLT2 and high selectivity against SGLT1. The in vitro ADMET properties of these compounds will also be discussed.

  9. Synthesis and Biological Evaluation of Macrocyclized Betulin Derivatives as a Novel Class of Anti-HIV-1 Maturation Inhibitors.

    PubMed

    Tang, Jun; Jones, Stacey A; Jeffery, Jerry L; Miranda, Sonia R; Galardi, Cristin M; Irlbeck, David M; Brown, Kevin W; McDanal, Charlene B; Han, Nianhe; Gao, Daxin; Wu, Yongyong; Shen, Bin; Liu, Chunyu; Xi, Caiming; Yang, Heping; Li, Rui; Yu, Yajun; Sun, Yufei; Jin, Zhimin; Wang, Erjuan; Johns, Brian A

    2014-01-01

    A macrocycle provides diverse functionality and stereochemical complexity in a conformationally preorganized ring structure, and it occupies a unique chemical space in drug discovery. However, the synthetic challenge to access this structural class is high and hinders the exploration of macrocycles. In this study, efficient synthetic routes to macrocyclized betulin derivatives have been established. The macrocycle containing compounds showed equal potency compared to bevirimat in multiple HIV-1 antiviral assays. The synthesis and biological evaluation of this novel series of HIV-1 maturation inhibitors will be discussed.

  10. Total synthesis and structural revision of TMG-chitotriomycin, a specific inhibitor of insect and fungal beta-N-acetylglucosaminidases.

    PubMed

    Yang, You; Li, Yao; Yu, Biao

    2009-09-02

    TMG-chitotriomycin, a potent and selective inhibitor of the beta-N-acetylglucosaminidases that possesses an unique N,N,N-trimethyl-d-glucosamine (TMG) residue, is revised to be the TMG-beta-(1-->4)-chitotriose instead of the originally proposed alpha-anomer via its total synthesis, for which a highly convergent approach was developed in which the sterically demanding (1-->4)-glycosidic linkages are efficiently constructed by the Au(I)-catalyzed glycosylation protocol with glycosyl o-hexynylbenzoates as donors.

  11. Rapid discovery of a novel series of Abl kinase inhibitors by application of an integrated microfluidic synthesis and screening platform.

    PubMed

    Desai, Bimbisar; Dixon, Karen; Farrant, Elizabeth; Feng, Qixing; Gibson, Karl R; van Hoorn, Willem P; Mills, James; Morgan, Trevor; Parry, David M; Ramjee, Manoj K; Selway, Christopher N; Tarver, Gary J; Whitlock, Gavin; Wright, Adrian G

    2013-04-11

    Drug discovery faces economic and scientific imperatives to deliver lead molecules rapidly and efficiently. Using traditional paradigms the molecular design, synthesis, and screening loops enforce a significant time delay leading to inefficient use of data in the iterative molecular design process. Here, we report the application of a flow technology platform integrating the key elements of structure-activity relationship (SAR) generation to the discovery of novel Abl kinase inhibitors. The platform utilizes flow chemistry for rapid in-line synthesis, automated purification, and analysis coupled with bioassay. The combination of activity prediction using Random-Forest regression with chemical space sampling algorithms allows the construction of an activity model that refines itself after every iteration of synthesis and biological result. Within just 21 compounds, the automated process identified a novel template and hinge binding motif with pIC50 > 8 against Abl kinase--both wild type and clinically relevant mutants. Integrated microfluidic synthesis and screening coupled with machine learning design have the potential to greatly reduce the time and cost of drug discovery within the hit-to-lead and lead optimization phases.

  12. Aflatoxin-Exposure of Vibrio gazogenes as a Novel System for the Generation of Aflatoxin Synthesis Inhibitors.

    PubMed

    Gummadidala, Phani M; Chen, Yung Pin; Beauchesne, Kevin R; Miller, Kristen P; Mitra, Chandrani; Banaszek, Nora; Velez-Martinez, Michelle; Moeller, Peter D R; Ferry, John L; Decho, Alan W; Chanda, Anindya

    2016-01-01

    Aflatoxin is a mycotoxin and a secondary metabolite, and the most potent known liver carcinogen that contaminates several important crops, and represents a significant threat to public health and the economy. Available approaches reported thus far have been insufficient to eliminate this threat, and therefore provide the rational to explore novel methods for preventing aflatoxin accumulation in the environment. Many terrestrial plants and microbes that share ecological niches and encounter the aflatoxin producers have the ability to synthesize compounds that inhibit aflatoxin synthesis. However, reports of natural aflatoxin inhibitors from marine ecosystem components that do not share ecological niches with the aflatoxin producers are rare. Here, we show that a non-pathogenic marine bacterium, Vibrio gazogenes, when exposed to low non-toxic doses of aflatoxin B1, demonstrates a shift in its metabolic output and synthesizes a metabolite fraction that inhibits aflatoxin synthesis without affecting hyphal growth in the model aflatoxin producer, Aspergillus parasiticus. The molecular mass of the predominant metabolite in this fraction was also different from the known prodigiosins, which are the known antifungal secondary metabolites synthesized by this Vibrio. Gene expression analyses using RT-PCR demonstrate that this metabolite fraction inhibits aflatoxin synthesis by down-regulating the expression of early-, middle-, and late- growth stage aflatoxin genes, the aflatoxin pathway regulator, aflR and one global regulator of secondary metabolism, laeA. Our study establishes a novel system for generation of aflatoxin synthesis inhibitors, and emphasizes the potential of the under-explored Vibrio's silent genome for generating new modulators of fungal secondary metabolism.

  13. Aflatoxin-Exposure of Vibrio gazogenes as a Novel System for the Generation of Aflatoxin Synthesis Inhibitors

    PubMed Central

    Gummadidala, Phani M.; Chen, Yung Pin; Beauchesne, Kevin R.; Miller, Kristen P.; Mitra, Chandrani; Banaszek, Nora; Velez-Martinez, Michelle; Moeller, Peter D. R.; Ferry, John L.; Decho, Alan W.; Chanda, Anindya

    2016-01-01

    Aflatoxin is a mycotoxin and a secondary metabolite, and the most potent known liver carcinogen that contaminates several important crops, and represents a significant threat to public health and the economy. Available approaches reported thus far have been insufficient to eliminate this threat, and therefore provide the rational to explore novel methods for preventing aflatoxin accumulation in the environment. Many terrestrial plants and microbes that share ecological niches and encounter the aflatoxin producers have the ability to synthesize compounds that inhibit aflatoxin synthesis. However, reports of natural aflatoxin inhibitors from marine ecosystem components that do not share ecological niches with the aflatoxin producers are rare. Here, we show that a non-pathogenic marine bacterium, Vibrio gazogenes, when exposed to low non-toxic doses of aflatoxin B1, demonstrates a shift in its metabolic output and synthesizes a metabolite fraction that inhibits aflatoxin synthesis without affecting hyphal growth in the model aflatoxin producer, Aspergillus parasiticus. The molecular mass of the predominant metabolite in this fraction was also different from the known prodigiosins, which are the known antifungal secondary metabolites synthesized by this Vibrio. Gene expression analyses using RT-PCR demonstrate that this metabolite fraction inhibits aflatoxin synthesis by down-regulating the expression of early-, middle-, and late- growth stage aflatoxin genes, the aflatoxin pathway regulator, aflR and one global regulator of secondary metabolism, laeA. Our study establishes a novel system for generation of aflatoxin synthesis inhibitors, and emphasizes the potential of the under-explored Vibrio’s silent genome for generating new modulators of fungal secondary metabolism. PMID:27375561

  14. Synthesis and PET studies of [11C-cyano]letrozole (Femara), an aromatase inhibitor drug

    SciTech Connect

    kil K. E.; Biegon A.; Kil, K.-E.; Biegon, A.; Ding, Y.-S.; Fischer, A.; Ferrieri, R.A.; Kim, S.-W.; Pareto, D.; Schueller, M.J.; Fowler, J.S.

    2008-11-10

    Aromatase, a member of the cytochrome P450 family, converts androgens such as androstenedione and testosterone to estrone and estradiol respectively. Letrozole (1-[bis-(4-cyanophenyl)methyl]-1H-1,2,4-triazole, Femara{reg_sign}) is a high affinity aromatase inhibitor (K{sub i}=11.5 nM) which has FDA approval for breast cancer treatment. Here we report the synthesis of carbon-11 labeled letrozole and its assessment as a radiotracer for brain aromatase in the baboon. Letrozole and its precursor (4-[(4-bromophenyl)-1H-1,2,4-triazol-1-ylmethyl]benzonitrile, 3) were prepared in two-step syntheses from 4-cyanobenzyl bromide and 4-bromobenzyl bromide, respectively. The [{sup 11}C]cyano group was introduced via the tetrakis(triphenylphosphine)palladium(0) catalyzed coupling of [{sup 11}C]cyanide with the bromo-precursor (3). PET studies in the baboon brain were carried out to assess regional distribution and kinetics, reproducibility of repeated measures and saturability. The free fraction of letrozole in the plasma, log D, and the [{sup 11}C-cyano]letrozole fraction in the arterial plasma were also measured. [{sup 11}C-cyano]Letrozole was synthesized in 60 min with a radiochemical yield of 79-80%, with a radiochemical purity greater than 98% and a specific activity of 4.16 {+-} 2.21 Ci/{micro}mol at the end of bombardment (n=4). PET studies in the baboon revealed initial rapid and high uptake and initial rapid clearance followed by slow clearance of carbon-11 from the brain with no difference between brain regions. The brain kinetics was not affected by co-injection of unlabeled letrozole (0.1 mg/kg). The free fraction of letrozole in plasma was 48.9% and log D was 1.84. [{sup 11}C-cyano]Letrozole is readily synthesized via a palladium catalyzed coupling reaction with [{sup 11}C]cyanide. Although it is unsuitable as a PET radiotracer for brain aromatase as revealed by the absence of regional specificity and saturability in brain regions, such as amygdala, which are known

  15. Hepatic and nonhepatic sterol synthesis and tissue distribution following administration of a liver selective HMG-CoA reductase inhibitor, CI-981: comparison with selected HMG-CoA reductase inhibitors.

    PubMed

    Bocan, T M; Ferguson, E; McNally, W; Uhlendorf, P D; Bak Mueller, S; Dehart, P; Sliskovic, D R; Roth, B D; Krause, B R; Newton, R S

    1992-01-24

    Since cholesterol biosynthesis is an integral part of cellular metabolism, several HMG-CoA reductase inhibitors were systematically analyzed in in vitro, ex vivo and in vivo sterol synthesis assays using [14C]acetate incorporation into digitonin precipitable sterols as a marker of cholesterol synthesis. Tissue distribution of radiolabeled CI-981 and lovastatin was also performed. In vitro, CI-981 and PD134967-15 were equipotent in liver, spleen, testis and adrenal, lovastatin was more potent in extrahepatic tissues than liver and BMY21950, pravastatin and PD135023-15 were more potent in liver than peripheral tissues. In ex vivo assays, all inhibitors except lovastatin preferentially inhibited liver sterol synthesis; however, pravastatin and BMY22089 were strikingly less potent in the liver. CI-981 inhibited sterol synthesis in vivo in the liver, spleen and adrenal while not affecting the testis, kidney, muscle and brain. Lovastatin inhibited sterol synthesis to a greater extent than CI-981 in the spleen, adrenal and kidney while pravastatin and BMY22089 primarily affected liver and kidney. The tissue distribution of radiolabeled CI-981 and lovastatin support the changes observed in tissue sterol synthesis. Thus, we conclude that a spectrum of liver selective HMG-CoA reductase inhibitors exist and that categorizing agents as liver selective is highly dependent upon method of analysis.

  16. Spontaneous formation and amplification of an enantioenriched α-amino nitrile: a chiral precursor for Strecker amino acid synthesis.

    PubMed

    Kawasaki, Tsuneomi; Takamatsu, Naoya; Aiba, Shohei; Tokunaga, Yuji

    2015-10-01

    Without the addition of any chiral substances, the spontaneous formation of an enantioenriched α-amino nitrile (up to 96% ee), which is a chiral precursor for Strecker amino acid synthesis, has been achieved in combination with conglomerate formation. The frequency of the formation of enantiomorphs exhibits an approximate stochastic distribution, i.e., L-form occurred 21 times and D-form occurred 22 times, which fulfils the conditions necessary for spontaneous absolute asymmetric synthesis.

  17. Boron nitride hollow nanospheres: Synthesis, formation mechanism and dielectric property

    SciTech Connect

    Zhong, B.; Tang, X.H.; Huang, X.X.; Xia, L.; Zhang, X.D.; Wang, C.J.; Wen, G.W.

    2015-04-15

    Highlights: • BN hollow nanospheres are fabricated in large scale via a new CVD method. • Morphology and structure are elucidated by complementary analytical techniques. • Formation mechanism is proposed based on experimental observations. • Dielectric properties are investigated in the X-band microwave frequencies. • BN hollow nanospheres show lower dielectric loss than regular BN powders. - Abstract: Boron nitride (BN) hollow nanospheres have been successfully fabricated by pyrolyzing vapors decomposed from ammonia borane (NH{sub 3}BH{sub 3}) at 1300 °C. The final products have been extensively characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The BN hollow nanospheres were ranging from 100 to 300 nm in diameter and around 30–100 nm in thickness. The internal structure of the products was found dependent on the reaction temperatures. A possible formation mechanism of the BN hollow nanospheres was proposed on the basis of the experimental observations. Dielectric measurements in the X-band microwave frequencies (8–12 GHz) showed that the dielectric loss of the paraffin filled by the BN hollow nanospheres was lower than that filled by regular BN powders, which indicated that the BN hollow nanospheres could be potentially used as low-density fillers for microwave radomes.

  18. Plasminogen activator inhibitor type-1 determines plasmin formation in patients with ischaemic heart disease.

    PubMed

    Pedersen, O D; Gram, J; Jespersen, J

    1995-05-01

    The aim of the present study was to find out whether plasminogen activator inhibitor type-1 (PAI-1) controls the formation of plasmin in patients with ischaemic heart disease. We examined PAI activity, PAI-1 antigen, tissue type plasminogen activator (t-PA) activity, t-PA antigen, plasmin-alpha2-antiplasmin complex (PAP-complex) and fibrin degradation products D-dimer in 62 patients before (unstimulated) and after infusion of 1-desamino-8-D-arginine vasopressin (DDAVP; stimulated). DDAVP was used in a standardized dose to trigger the release of t-PA from the vascular endothelium. We observed that under basal conditions (unstimulated) median plasma t-PA activity for the whole group of patients was 86.5 mIU/ml (0-900), and after stimulation 2550 mIU/ml (0-6800), P < 0.0001; median plasma concentration of t-PA antigen was 14.7 ng/ml (7.0-115.5) under basal conditions, and after stimulation 34.1 ng/ml (15.8-58.6), P < 0.0001; median plasma PAI activity was 16.9 IU/ml (1.5-144.8) under basal conditions, and after stimulation 3.1 IU/ml (0-118.5), P < 0.0001; median plasma concentration of PAI-1 antigen was 21.5 ng/ml (8.1-132.2) under basal conditions, and after stimulation 14.9 ng/ml (4.8-149.0), P < 0.0001; the median plasma concentration of PAP-complex was 469.5 ng/ml (185.0-1802.0) under basal conditions, and after stimulation 695.5 (243.0-2292.0), P < 0.0001; median plasma concentration of D-dimer was 298.0 ng/ml (103.0-948.0) under basal conditions, and after stimulation 296.5 ng/ml (97.0-917.0), P < 0.0008.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Structure-based design, synthesis and validation of CD4-mimetic small molecule inhibitors of HIV-1 entry: conversion of a viral entry agonist to an antagonist.

    PubMed

    Courter, Joel R; Madani, Navid; Sodroski, Joseph; Schön, Arne; Freire, Ernesto; Kwong, Peter D; Hendrickson, Wayne A; Chaiken, Irwin M; LaLonde, Judith M; Smith, Amos B

    2014-04-15

    This Account provides an overview of a multidisciplinary consortium focused on structure-based strategies to devise small molecule antagonists of HIV-1 entry into human T-cells, which if successful would hold considerable promise for the development of prophylactic modalities to prevent HIV transmission and thereby alter the course of the AIDS pandemic. Entry of the human immunodeficiency virus (HIV) into target T-cells entails an interaction between CD4 on the host T-cell and gp120, a component of the trimeric envelope glycoprotein spike on the virion surface. The resultant interaction initiates a series of conformational changes within the envelope spike that permits binding to a chemokine receptor, formation of the gp41 fusion complex, and cell entry. A hydrophobic cavity at the CD4-gp120 interface, defined by X-ray crystallography, provided an initial site for small molecule antagonist design. This site however has evolved to facilitate viral entry. As such, the binding of prospective small molecule inhibitors within this gp120 cavity can inadvertently trigger an allosteric entry signal. Structural characterization of the CD4-gp120 interface, which provided the foundation for small molecule structure-based inhibitor design, will be presented first. An integrated approach combining biochemical, virological, structural, computational, and synthetic studies, along with a detailed analysis of ligand binding energetics, revealed that modestly active small molecule inhibitors of HIV entry can also promote viral entry into cells lacking the CD4 receptor protein; these competitive inhibitors were termed small molecule CD4 mimetics. Related congeners were subsequently identified with both improved binding affinity and more potent viral entry inhibition. Further assessment of the affinity-enhanced small molecule CD4 mimetics demonstrated that premature initiation of conformational change within the viral envelope spike, prior to cell encounter, can lead to irreversible

  20. The Sensitivity of Memory Consolidation and Reconsolidation to Inhibitors of Protein Synthesis and Kinases: Computational Analysis

    ERIC Educational Resources Information Center

    Zhang, Yili; Smolen, Paul; Baxter, Douglas A.; Byrne, John H.

    2010-01-01

    Memory consolidation and reconsolidation require kinase activation and protein synthesis. Blocking either process during or shortly after training or recall disrupts memory stabilization, which suggests the existence of a critical time window during which these processes are necessary. Using a computational model of kinase synthesis and…

  1. The Sensitivity of Memory Consolidation and Reconsolidation to Inhibitors of Protein Synthesis and Kinases: Computational Analysis

    ERIC Educational Resources Information Center

    Zhang, Yili; Smolen, Paul; Baxter, Douglas A.; Byrne, John H.

    2010-01-01

    Memory consolidation and reconsolidation require kinase activation and protein synthesis. Blocking either process during or shortly after training or recall disrupts memory stabilization, which suggests the existence of a critical time window during which these processes are necessary. Using a computational model of kinase synthesis and…

  2. Inhibition of thyrotropin-stimulated DNA synthesis by microinjection of inhibitors of cellular Ras and cyclic AMP-dependent protein kinase.

    PubMed Central

    Kupperman, E; Wen, W; Meinkoth, J L

    1993-01-01

    Microinjection of a dominant interfering mutant of Ras (N17 Ras) caused a significant reduction in thyrotropin (thyroid-stimulating hormone [TSH])-stimulated DNA synthesis in rat thyroid cells. A similar reduction was observed following injection of the heat-stable protein kinase inhibitor of the cyclic AMP-dependent protein kinase. Coinjection of both inhibitors almost completely abolished TSH-induced DNA synthesis. In contrast to TSH, overexpression of cellular Ras protein did not stimulate the expression of a cyclic AMP response element-regulated reporter gene. Similarly, injection of N17 Ras had no effect on TSH-stimulated reporter gene expression. Moreover, overexpression of cellular Ras protein stimulated similar levels of DNA synthesis in the presence or absence of the heat-stable protein kinase inhibitor. Together, these results suggest that in Wistar rat thyroid cells, a full mitogenic response to TSH requires both Ras and cyclic APK-dependent protein kinase. Images PMID:8336696

  3. Inhibition of thyrotropin-stimulated DNA synthesis by microinjection of inhibitors of cellular Ras and cyclic AMP-dependent protein kinase.

    PubMed

    Kupperman, E; Wen, W; Meinkoth, J L

    1993-08-01

    Microinjection of a dominant interfering mutant of Ras (N17 Ras) caused a significant reduction in thyrotropin (thyroid-stimulating hormone [TSH])-stimulated DNA synthesis in rat thyroid cells. A similar reduction was observed following injection of the heat-stable protein kinase inhibitor of the cyclic AMP-dependent protein kinase. Coinjection of both inhibitors almost completely abolished TSH-induced DNA synthesis. In contrast to TSH, overexpression of cellular Ras protein did not stimulate the expression of a cyclic AMP response element-regulated reporter gene. Similarly, injection of N17 Ras had no effect on TSH-stimulated reporter gene expression. Moreover, overexpression of cellular Ras protein stimulated similar levels of DNA synthesis in the presence or absence of the heat-stable protein kinase inhibitor. Together, these results suggest that in Wistar rat thyroid cells, a full mitogenic response to TSH requires both Ras and cyclic APK-dependent protein kinase.

  4. Design and synthesis of thiazolo[5,4-f]quinazolines as DYRK1A inhibitors, part II.

    PubMed

    Foucourt, Alicia; Hédou, Damien; Dubouilh-Benard, Carole; Girard, Angélique; Taverne, Thierry; Casagrande, Anne-Sophie; Désiré, Laurent; Leblond, Bertrand; Besson, Thierry

    2014-09-26

    The convenient synthesis of a focused library (forty molecules) of novel 6,6,5-tricyclic thiazolo[5,4-f]quinazolines was realized mainly under microwave irradiation. A novel 6-aminobenzo[d]thiazole-2,7-dicarbonitrile (1) was used as a versatile molecular platform for the synthesis of various derivatives. Kinase inhibition, of the obtained final compounds, was evaluated on a panel of two kinases (DYRK1A/1B) together with some known reference DYRK1A and DYRK1B inhibitors (harmine, TG003, NCGC-00189310 and leucettine L41). Compound IC50 values were obtained and compared. Five of the novel thiazolo[5,4-f]quinazoline derivatives prepared, EHT 5372 (8c), EHT 6840 (8h), EHT 1610 (8i), EHT 9851 (8k) and EHT 3356 (9b) displayed single-digit nanomolar or subnanomolar IC50 values and are among the most potent DYRK1A/1B inhibitors disclosed to date. DYRK1A/1B kinases are known to be involved in the regulation of various molecular pathways associated with oncology, neurodegenerative diseases (such as Alzheimer disease, AD, or other tauopathies), genetic diseases (such as Down Syndrome, DS), as well as diseases involved in abnormal pre-mRNA splicing. The compounds described in this communication constitute a highly potent set of novel molecular probes to evaluate the biology/pharmacology of DYR1A/1B in such diseases.

  5. Programmed cell death in plants: effect of protein synthesis inhibitors and structural changes in pea guard cells.

    PubMed

    Dzyubinskaya, E V; Kiselevsky, D B; Bakeeva, L E; Samuilov, V D

    2006-04-01

    Pea leaf epidermis incubated with cyanide displayed ultrastructural changes in guard cells that are typical of apoptosis. Cycloheximide, an inhibitor of cytoplasmic protein synthesis, and lincomycin, an inhibitor of protein synthesis in chloroplasts and mitochondria, produced different effects on the dynamics of programmed death of guard cells. According to light microscopy data, cycloheximide reinforced and lincomycin suppressed the CN(-)-induced destruction of cell nuclei. Lincomycin lowered the effect of cycloheximide in the light and prevented it in the dark. According to electron microscopy data, the most pronounced effects of cycloheximide in the presence of cyanide were autophagy and a lack of apoptotic condensation of nuclear chromatin, the prevention of chloroplast envelope rupturing and its invagination inside the stroma, and the appearance of particular compartments with granular inclusions in mitochondria. Lincomycin inhibited the CN(-)-induced ultrastructural changes in guard cell nuclei. The data show that programmed death of guard cells may have a combined scenario involving both apoptosis and autophagy and may depend on the action of both cytoplasm synthesized and chloroplast and mitochondrion synthesized proteins.

  6. Discovery of potent KIFC1 inhibitors using a method of integrated high-throughput synthesis and screening.

    PubMed

    Yang, Bin; Lamb, Michelle L; Zhang, Tao; Hennessy, Edward J; Grewal, Gurmit; Sha, Li; Zambrowski, Mark; Block, Michael H; Dowling, James E; Su, Nancy; Wu, Jiaquan; Deegan, Tracy; Mikule, Keith; Wang, Wenxian; Kaspera, Rüdiger; Chuaqui, Claudio; Chen, Huawei

    2014-12-11

    KIFC1 (HSET), a member of the kinesin-14 family of motor proteins, plays an essential role in centrosomal bundling in cancer cells, but its function is not required for normal diploid cell division. To explore the potential of KIFC1 as a therapeutic target for human cancers, a series of potent KIFC1 inhibitors featuring a phenylalanine scaffold was developed from hits identified through high-throughput screening (HTS). Optimization of the initial hits combined both design-synthesis-test cycles and an integrated high-throughput synthesis and biochemical screening method. An important aspect of this integrated method was the utilization of DMSO stock solutions of compounds registered in the corporate compound collection as synthetic reactants. Using this method, over 1500 compounds selected for structural diversity were quickly assembled in assay-ready 384-well plates and were directly tested after the necessary dilutions. Our efforts led to the discovery of a potent KIFC1 inhibitor, AZ82, which demonstrated the desired centrosome declustering mode of action in cell studies.

  7. Design, Synthesis and Evaluation of 2,5-Diketopiperazines as Inhibitors of the MDM2-p53 Interaction.

    PubMed

    Pettersson, Mariell; Quant, Maria; Min, Jaeki; Iconaru, Luigi; Kriwacki, Richard W; Waddell, M Brett; Guy, R Kiplin; Luthman, Kristina; Grøtli, Morten

    2015-01-01

    The transcription factor p53 is the main tumour suppressor in cells and many cancer types have p53 mutations resulting in a loss of its function. In tumours that retain wild-type p53 function, p53 activity is down-regulated by MDM2 (human murine double minute 2) via a direct protein-protein interaction. We have designed and synthesised two series of 2,5-diketopiperazines as inhibitors of the MDM2-p53 interaction. The first set was designed to directly mimic the α-helical region of the p53 peptide, containing key residues in the i, i+4 and i+7 positions of a natural α-helix. Conformational analysis indicated that 1,3,6-trisubstituted 2,5-diketopiperazines were able to place substituents in the same spatial orientation as an α-helix template. The key step of the synthesis involved the cyclisation of substituted dipeptides. The other set of tetrasubstituted 2,5-diketopiperazines were designed based on structure-based docking studies and the Ugi multicomponent reaction was used for the synthesis. This latter set comprised the most potent inhibitors which displayed micromolar IC50-values in a biochemical fluorescence polarisation assay.

  8. Polypeptide Inhibitors of Mineral Scaling and Corrosion

    DTIC Science & Technology

    1989-06-01

    formation. A thermal method of synthesis of polyaspartate based on peptide bond formation in dry powders of aspartic acid at around 200 C was developed...peptides are based on natural protein inhibitors of mineral formation and generally are enriched in aspartic acid and phosphoserine. Specifically, the...AsP5 to AsP60 was synthesized by repetitive couplings of t-Boc-L- aspartic acid residues with B-carboxyl protection by O-benzyl linkage. A C-terminal

  9. The Effects of Gravity on Combustion and Structure Formation During Synthesis of Advanced Materials

    NASA Technical Reports Server (NTRS)

    Varma, A.; Pelekh, A.; Mukasyan, A.

    1999-01-01

    Combustion in a variety of heterogeneous systems, leading to the synthesis of advanced materials, is characterized by high temperatures (2000-3500 K) and heating rates (up to 10(exp 6) K/s) at and ahead of the reaction front. These high temperatures generate liquids and gases which are subject to gravity-driven flow. The removal of such gravitational effects is likely to provide increased control of the reaction front, with a consequent improvement in control of the microstructure of the synthesized products. Thus, microgravity experiments can lead to major advances in the understanding of fundamental aspects of combustion and structure formation under the extreme conditions of the combustion synthesis wave. In addition, the specific features of microgravity environment allow one to produce unique materials, which cannot be obtained under terrestrial conditions. The general goals of the current research are: 1) to improve the understanding of fundamental phenomena taking place during combustion of heterogeneous systems, 2) to use low-gravity experiments for insight into the physics and chemistry of materials synthesis processes, and 3) based on the obtained knowledge, to optimize processing conditions for synthesis of advanced materials with desired microstructures and properties. This research follows logically from the results of investigations we have conducted in the framework of our previous grant on gravity influence on combustion synthesis (CS) of gasless systems. Prior work, by others and by us, has clearly demonstrated that gravity plays an important role during combustion synthesis of materials. The immediate tasks for the future are to quantitatively identify the nature of observed effects, and to create accurate local kinetic models of the processes, which can lead to a control of the microstructure and properties of the synthesized materials. In summary, this is the value of the proposed research. Based on our prior work, we focus on the fundamental

  10. The Effects of Gravity on Combustion and Structure Formation During Synthesis of Advanced Materials

    NASA Technical Reports Server (NTRS)

    Varma, A.; Pelekh, A.; Mukasyan, A.

    1999-01-01

    Combustion in a variety of heterogeneous systems, leading to the synthesis of advanced materials, is characterized by high temperatures (2000-3500 K) and heating rates (up to 10(exp 6) K/s) at and ahead of the reaction front. These high temperatures generate liquids and gases which are subject to gravity-driven flow. The removal of such gravitational effects is likely to provide increased control of the reaction front, with a consequent improvement in control of the microstructure of the synthesized products. Thus, microgravity experiments can lead to major advances in the understanding of fundamental aspects of combustion and structure formation under the extreme conditions of the combustion synthesis wave. In addition, the specific features of microgravity environment allow one to produce unique materials, which cannot be obtained under terrestrial conditions. The general goals of the current research are: 1) to improve the understanding of fundamental phenomena taking place during combustion of heterogeneous systems, 2) to use low-gravity experiments for insight into the physics and chemistry of materials synthesis processes, and 3) based on the obtained knowledge, to optimize processing conditions for synthesis of advanced materials with desired microstructures and properties. This research follows logically from the results of investigations we have conducted in the framework of our previous grant on gravity influence on combustion synthesis (CS) of gasless systems. Prior work, by others and by us, has clearly demonstrated that gravity plays an important role during combustion synthesis of materials. The immediate tasks for the future are to quantitatively identify the nature of observed effects, and to create accurate local kinetic models of the processes, which can lead to a control of the microstructure and properties of the synthesized materials. In summary, this is the value of the proposed research. Based on our prior work, we focus on the fundamental

  11. Synthesis and optimization of N-heterocyclic pyridinones as catechol-O-methyltransferase (COMT) inhibitors.

    PubMed

    Zhao, Zhijian; Harrison, Scott T; Schubert, Jeffrey W; Sanders, John M; Polsky-Fisher, Stacey; Zhang, Nanyan Rena; McLoughlin, Debra; Gibson, Christopher R; Robinson, Ronald G; Sachs, Nancy A; Kandebo, Monika; Yao, Lihang; Smith, Sean M; Hutson, Pete H; Wolkenberg, Scott E; Barrow, James C

    2016-06-15

    A series of N-heterocyclic pyridinone catechol-O-methyltransferase (COMT) inhibitors were synthesized. Physicochemical properties, including ligand lipophilic efficiency (LLE) and clogP, were used to guide compound design and attempt to improve inhibitor pharmacokinetics. Incorporation of heterocyclic central rings provided improvements in physicochemical parameters but did not significantly reduce in vitro or in vivo clearance. Nevertheless, compound 11 was identified as a potent inhibitor with sufficient in vivo exposure to significantly affect the dopamine metabolites homovanillic acid (HVA) and dihydroxyphenylacetic acid (DOPAC), and indicate central COMT inhibition.

  12. Synthesis and evaluation of potential inhibitors of human and Escherichia coli histidine triad nucleotide binding proteins.

    PubMed

    Bardaweel, Sanaa K; Ghosh, Brahma; Wagner, Carston R

    2012-01-01

    Based on recent substrate specificity studies, a series of ribonucleotide based esters and carbamates were synthesized and screened as inhibitors of the phosphoramidases and acyl-AMP hydrolases, Escherichia coli Histidine Triad Nucleotide Binding Protein (ecHinT) and human Histidine Triad Nucleotide Binding Protein 1 (hHint1). Using our established phosphoramidase assay, K(i) values were determined. All compounds exhibited non-competitive inhibition profiles. The carbamate based inhibitors were shown to successfully suppress the Hint1-associated phenotype in E. coli, suggesting that they are permeable intracellular inhibitors of ecHinT.

  13. Toward analogues of MraY natural inhibitors: synthesis of 5'-triazole-substituted-aminoribosyl uridines through a Cu-catalyzed azide-alkyne cycloaddition.

    PubMed

    Fer, Mickaël J; Olatunji, Samir; Bouhss, Ahmed; Calvet-Vitale, Sandrine; Gravier-Pelletier, Christine

    2013-10-18

    A straightforward strategy for the synthesis of triazole-containing MraY inhibitors has been developed. It involves the sequential introduction of a terminal alkyne at the 5' position of an uridine derivative and O-glycosylation with a protected aminoribose leading to an elaborated alkyne scaffold. An efficient Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) allowed the introduction of chemical diversity toward a small library of inhibitors.

  14. Synthesis, biological evaluation, and molecular docking of Ugi products containing a zinc-chelating moiety as novel inhibitors of histone deacetylases.

    PubMed

    Grolla, Ambra A; Podestà, Valeria; Chini, Maria Giovanna; Di Micco, Simone; Vallario, Antonella; Genazzani, Armando A; Canonico, Pier Luigi; Bifulco, Giuseppe; Tron, Gian Cesare; Sorba, Giovanni; Pirali, Tracey

    2009-05-14

    HDAC inhibitors show great promise for the treatment of cancer. As part of a broader effort to explore the SAR of HDAC inhibitors, synthesis, biological evaluation, and molecular docking of novel Ugi products containing a zinc-chelating moiety are presented. One compound shows improved inhibitory potencies compared to SAHA, demonstrating that hindered lipophilic residues grafted on the peptide scaffold of the alpha-aminoacylamides can be favorable in the interaction with the enzyme.

  15. Vitamin C targets (p)ppGpp synthesis leading to stalling of long-term survival and biofilm formation in Mycobacterium smegmatis.

    PubMed

    Syal, Kirtimaan; Bhardwaj, Neerupma; Chatterji, Dipankar

    2017-01-01

    Earlier, vitamin C was demonstrated to sterilize Mycobacterium tuberculosis culture via Fenton's reaction at high concentration. It alters the regulatory pathways associated with stress response and dormancy. Since (p)ppGpp is considered to be the master regulator of stress response and is responsible for bacterial survival under stress, we tested the effect of vitamin C on the formation of (p)ppGpp. In vivo estimation of (p)ppGpp showed a decrease in (p)ppGpp levels in vitamin C-treated M. smegmatis cells in comparison to the untreated cells. Furthermore, in vitro (p)ppGpp synthesis using RelMSM enzyme was conducted in order to confirm the specificity of the inhibition in the presence of variable concentrations of vitamin C. We observed that vitamin C at high concentration can inhibit the synthesis of (p)ppGpp. We illustrated binding of vitamin C to RelMSM by isothermal titration calorimetry. Enzyme kinetics was followed where K0.5 was found to be increased with the concomitant reduction of Vmax value suggesting mixed inhibition. Both long-term survival and biofilm formation were inhibited by vitamin C. The experiments suggest that vitamin C has the potential to be developed as the inhibitor of (p)ppGpp synthesis and stress response, at least in the concentration range used here.

  16. Green synthesis of ZnO nanoparticles via complex formation by using Curcuma longa extract

    SciTech Connect

    Fatimah, Is Yudha, Septian P.; Mutiara, Nur Afisa Lintang

    2016-02-08

    Synthesis of ZnO nanoparticles(NPs) were conducted via Zn(II) complex formation by using Curcuma longa extract as template. Curcuma longa extract has the ability to form zinc ions complex with curcumin as ligating agent. Study on synthesis was conducted by monitoring thermal degradation of the material. Successful formation of zinc oxide nanoparticles was confirmed by employing x-ray diffraction, surface area analysis and transmission electron microscopy(TEM) studies. From the XRD analysis it is denoted that ZnO in hexagonal wurtzite phase was formed and particle size was varied as varied temperature. The data are also confirmed by TEM analysis which shows the particle sie at the range 20-80nm. The NPs exhibited excelent photocatalytic activity for methylene blue degradation and also significant antibacterial activity for Eschericia coli. The activity in methylene blue degradation was also confirmed from fast chemical oxygen demand (COD) reduction.

  17. Green synthesis of ZnO nanoparticles via complex formation by using Curcuma longa extract

    NASA Astrophysics Data System (ADS)

    Fatimah, Is; Yudha, Septian P.; Mutiara, Nur Afisa Lintang

    2016-02-01

    Synthesis of ZnO nanoparticles(NPs) were conducted via Zn(II) complex formation by using Curcuma longa extract as template. Curcuma longa extract has the ability to form zinc ions complex with curcumin as ligating agent. Study on synthesis was conducted by monitoring thermal degradation of the material. Successful formation of zinc oxide nanoparticles was confirmed by employing x-ray diffraction, surface area analysis and transmission electron microscopy(TEM) studies. From the XRD analysis it is denoted that ZnO in hexagonal wurtzite phase was formed and particle size was varied as varied temperature. The data are also confirmed by TEM analysis which shows the particle sie at the range 20-80nm. The NPs exhibited excelent photocatalytic activity for methylene blue degradation and also significant antibacterial activity for Eschericia coli. The activity in methylene blue degradation was also confirmed from fast chemical oxygen demand (COD) reduction.

  18. A novel process for methanol synthesis. [Concurrent sythesis of methly formate and methanol

    SciTech Connect

    Tierney, J.W.; Wender, I.

    1992-01-01

    A bench-scale reactor is being used to conduct studies of the conversion of synthesis gas to methanol (MeOH) by a novel process. In previous reports, we provided evidence for a two-step reaction in series, the carbonylation reaction taking place mainly in a non-equilibrium region in the vicinity of the copper chromite surface, and the hydrogenolysis reaction taking place on the surface of the copper chromite. Interaction between the two catalysts enhances the rate of methanol formation. In this quarter, we investigated the effect of pore diffusion on reaction rate and obtained an expression for the rate of reaction for the methanol/methyl formate concurrent synthesis.

  19. Regioselective reductive cleavage of bis-benzylidene acetal: stereoselective synthesis of anticancer agent OGT2378 and glycosidase inhibitor 1,4-dideoxy-1,4-imino-l-xylitol.

    PubMed

    Aravind, Appu; Sankar, Muthukumar Gomathi; Varghese, Babu; Baskaran, Sundarababu

    2009-04-03

    A highly regioselective reductive cleavage of the bis-benzylidene acetal of D-mannitol was performed using a BF(3) x Et(2)O/Et(3)SiH reagent system. A chiral intermediate 6 thus obtained was efficiently utilized in the stereoselective synthesis of the anticancer agent OGT2378 (3) and glycosidase inhibitor derivative N-tosyl 1,4-dideoxy-1,4-imino-L-xylitol (22). Chemoselective reduction of azido epoxide 10 followed by regioselective intramolecular cyclization of amino epoxide 11 resulted in the exclusive formation of deoxyidonojirimycin derivative 12. By changing the order of deprotection, the chiral intermediate 6 was readily transformed to glycosidase inhibitor derivative 22.

  20. Physalin H from Solanum nigrum as an Hh signaling inhibitor blocks GLI1-DNA-complex formation.

    PubMed

    Arai, Midori A; Uchida, Kyoko; Sadhu, Samir K; Ahmed, Firoj; Ishibashi, Masami

    2014-01-13

    Hedgehog (Hh) signaling plays an important role in embryonic development, cell maintenance and cell proliferation. Moreover, Hh signaling contributes to the growth of cancer cells. Physalins are highly oxidized natural products with a complex structure. Physalins (1-7) were isolated from Solanum nigrum (Solanaceae) collected in Bangladesh by using our cell-based assay. The isolated physalins included the previously reported Hh inhibitors 5 and 6. Compounds 1 and 4 showed strong inhibition of GLI1 transcriptional activity, and exhibited cytotoxicity against cancer cell lines with an aberrant activation of Hh signaling. Compound 1 inhibited the production of the Hh-related proteins patched (PTCH) and BCL2. Analysis of the structures of different physalins showed that the left part of the physalins was important for Hh inhibitory activity. Interestingly, physalin H (1) disrupted GLI1 binding to its DNA binding domain, while the weak inhibitor physalin G (2) did not show inhibition of GLI1-DNA complex formation.

  1. Synthesis and multiparametric evaluation of thiadiazoles and oxadiazoles as diacylglycerol acyltransferase type 1 inhibitors.

    PubMed

    Mougenot, Patrick; Namane, Claudie; Fett, Eykmar; Goumy, Florence; Dadji-Faïhun, Rommel; Langot, Gwladys; Monseau, Catherine; Onofri, Bénédicte; Pacquet, François; Pascal, Cécile; Crespin, Olivier; Ben-Hassine, Majdi; Ragot, Jean-Luc; Van-Pham, Thao; Philippo, Christophe; Chatelain-Egger, Florence; Péron, Philippe; Le Bail, Jean-Christophe; Guillot, Etienne; Chamiot-Clerc, Philippe; Chabanaud, Marie-Aude; Pruniaux, Marie-Pierre; Ménegotto, Jérôme; Schmidt, Friedemann; Venier, Olivier; Viviani, Fabrice; Nicolai, Eric

    2016-01-01

    Chemical modulation of a formerly disclosed DGAT-1 inhibitor resulted in the identification of a compound with a suitable profile for preclinical development. Optimisation of solubility is discussed and a PK/PD study is presented.

  2. Seeking for Non-Zinc-Binding MMP-2 Inhibitors: Synthesis, Biological Evaluation and Molecular Modelling Studies

    PubMed Central

    Ammazzalorso, Alessandra; De Filippis, Barbara; Campestre, Cristina; Laghezza, Antonio; Marrone, Alessandro; Amoroso, Rosa; Tortorella, Paolo; Agamennone, Mariangela

    2016-01-01

    Matrix metalloproteinases (MMPs) are an important family of zinc-containing enzymes with a central role in many physiological and pathological processes. Although several MMP inhibitors have been synthesized over the years, none reached the market because of off-target effects, due to the presence of a zinc binding group in the inhibitor structure. To overcome this problem non-zinc-binding inhibitors (NZIs) have been recently designed. In a previous article, a virtual screening campaign identified some hydroxynaphtyridine and hydroxyquinoline as MMP-2 non-zinc-binding inhibitors. In the present work, simplified analogues of previously-identified hits have been synthesized and tested in enzyme inhibition assays. Docking and molecular dynamics studies were carried out to rationalize the activity data. PMID:27782083

  3. Synthesis of hydroxypyrone- and hydroxythiopyrone-based matrix metalloproteinase inhibitors: Developing a structure–activity relationship

    PubMed Central

    Yan, Yi-Long; Miller, Melissa T.; Cao, Yuchen; Cohen, Seth M.

    2010-01-01

    The zinc(II)-dependent matrix metalloproteinases (MMPs) are associated with a variety of diseases. Development of inhibitors to modulate MMP activity has been an active area of investigation for therapeutic development. Hydroxypyrones and hydroxythiopyrones are alternative zinc-binding groups (ZBGs) that, when combined with peptidomimetic backbones, comprise a novel class of MMP inhibitors (MMPi). In this report, a series of hydroxypyrone- and hydroxythiopyrone-based MMPi with aryl backbones at the 2-, 5-, and 6-positions of the hydroxypyrone ring have been synthesized. Synthetic routes for developing inhibitors with substituents at two of these positions (so-called double-handed inhibitors) are also explored. The MMP inhibition profiles and structure–activity relationship of synthesized hydroxypyrones and hydroxythiopyrones have been analyzed. The results here show that the ZBG, the position of the backbone on the ZBG, and the nature of the linker between the ZBG and backbone are critical for MMPi activities. PMID:19261472

  4. Plaque REgression with Cholesterol absorption Inhibitor or Synthesis inhibitor Evaluated by IntraVascular UltraSound (PRECISE-IVUS Trial): Study protocol for a randomized controlled trial.

    PubMed

    Tsujita, Kenichi; Sugiyama, Seigo; Sumida, Hitoshi; Shimomura, Hideki; Yamashita, Takuro; Yamanaga, Kenshi; Komura, Naohiro; Sakamoto, Kenji; Ono, Takamichi; Oka, Hideki; Nakao, Koichi; Nakamura, Sunao; Ishihara, Masaharu; Matsui, Kunihiko; Sakaino, Naritsugu; Nakamura, Natsuki; Yamamoto, Nobuyasu; Koide, Shunichi; Matsumura, Toshiyuki; Fujimoto, Kazuteru; Tsunoda, Ryusuke; Morikami, Yasuhiro; Matsuyama, Koushi; Oshima, Shuichi; Kaikita, Koichi; Hokimoto, Seiji; Ogawa, Hisao

    2015-10-01

    Although the positive association between achieved low-density lipoprotein cholesterol (LDL-C) level and the risk of coronary artery disease (CAD) has been confirmed by randomized studies with statins, many patients remain at high residual risk of events suggesting the necessity of novel pharmacologic strategies. The combination of ezetimibe/statin produces greater reductions in LDL-C compared to statin monotherapy. The Plaque REgression with Cholesterol absorption Inhibitor or Synthesis inhibitor Evaluated by IntraVascular UltraSound (PRECISE-IVUS) trial was aimed at evaluating the effects of ezetimibe addition to atorvastatin, compared with atorvastatin monotherapy, on coronary plaque regression and change in lipid profile in patients with CAD. The study is a prospective, randomized, controlled, multicenter study. The eligible patients undergoing IVUS-guided percutaneous coronary intervention will be randomly assigned to receive either atorvastatin alone or atorvastatin plus ezetimibe (10 mg) daily using a web-based randomization software. The dosage of atorvastatin will be increased by titration within the usual dose range with a treatment goal of lowering LDL-C below 70 mg/dL based on consecutive measures of LDL-C at follow-up visits. IVUS will be performed at baseline and 9-12 months follow-up time point at participating cardiovascular centers. The primary endpoint will be the nominal change in percent coronary atheroma volume measured by volumetric IVUS analysis. PRECISE-IVUS will assess whether the efficacy of combination of ezetimibe/atorvastatin is noninferior to atorvastatin monotherapy for coronary plaque reduction, and will translate into increased clinical benefit of dual lipid-lowering strategy in a Japanese population. Copyright © 2015 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  5. Diversity-Oriented Synthesis Probe Targets Plasmodium falciparum Cytochrome b Ubiquinone Reduction Site and Synergizes With Oxidation Site Inhibitors

    PubMed Central

    Lukens, Amanda K.; Heidebrecht, Richard W.; Mulrooney, Carol; Beaudoin, Jennifer A.; Comer, Eamon; Duvall, Jeremy R.; Fitzgerald, Mark E.; Masi, Daniela; Galinsky, Kevin; Scherer, Christina A.; Palmer, Michelle; Munoz, Benito; Foley, Michael; Schreiber, Stuart L.; Wiegand, Roger C.; Wirth, Dyann F.

    2015-01-01

    Background. The emergence and spread of drug resistance to current antimalarial therapies remains a pressing concern, escalating the need for compounds that demonstrate novel modes of action. Diversity-Oriented Synthesis (DOS) libraries bridge the gap between conventional small molecule and natural product libraries, allowing the interrogation of more diverse chemical space in efforts to identify probes of novel parasite pathways. Methods. We screened and optimized a probe from a DOS library using whole-cell phenotypic assays. Resistance selection and whole-genome sequencing approaches were employed to identify the cellular target of the compounds. Results. We identified a novel macrocyclic inhibitor of Plasmodium falciparum with nanomolar potency and identified the reduction site of cytochrome b as its cellular target. Combination experiments with reduction and oxidation site inhibitors showed synergistic inhibition of the parasite. Conclusions. The cytochrome b oxidation center is a validated antimalarial target. We show that the reduction site of cytochrome b is also a druggable target. Our results demonstrating a synergistic relationship between oxidation and reduction site inhibitors suggests a future strategy for new combination therapies in the treatment of malaria. PMID:25336726

  6. Small-molecule inhibitors of 25-hydroxyvitamin D-24-hydroxylase (CYP24A1): synthesis and biological evaluation.

    PubMed

    Ferla, Salvatore; Aboraia, Ahmed S; Brancale, Andrea; Pepper, Christopher J; Zhu, Jinge; Ochalek, Justin T; DeLuca, Hector F; Simons, Claire

    2014-09-25

    The synthesis of imidazole styrylbenzamide, tert-butyl styrylimidazole, and tert-butyl styrylsulfonate derivatives is described. Evaluation of binding affinity and inhibitory activity against CYP24A1 identified the imidazole styrylbenzamides as potent inhibitors of CYP24A1, having selectivity with respect to CYP27B1 comparable with or greater than that of the standard ketoconazole. Further evaluation of the 3,5-dimethoxy and 3,4,5-trimethoxy derivatives in chronic lymphocytic leukemia cells revealed that co-treatment of 1α,25-dihydroxyvitamin D3 plus inhibitor coordinately upregulated GADD45α and CDKN1A. Docking experiments on the inhibitors in the CYP24A1 enzyme active site suggest the compounds reach the active site through the vitamin D access tunnel and are exposed to multiple hydrophobic residues. The imidazole styrylbenzamides are optimally positioned to allow interaction of the imidazole with the heme, and, in the case of the methoxy derivatives, a hydrogen bond between the 3-methoxy group and Gln82 stabilizes the molecule in a favorable active conformation.

  7. 3-Heterocycle-phenyl N-alkylcarbamates as FAAH inhibitors: design, synthesis and 3D-QSAR studies.

    PubMed

    Käsnänen, Heikki; Myllymäki, Mikko J; Minkkilä, Anna; Kataja, Antti O; Saario, Susanna M; Nevalainen, Tapio; Koskinen, Ari M P; Poso, Antti

    2010-02-01

    Carbamates are a well-established class of fatty acid amide hydrolase (FAAH) inhibitors. Here we describe the synthesis of meta-substituted phenolic N-alkyl/aryl carbamates and their in vitro FAAH inhibitory activities. The most potent compound, 3-(oxazol-2yl)phenyl cyclohexylcarbamate (2 a), inhibited FAAH with a sub-nanomolar IC(50) value (IC(50)=0.74 nM). Additionally, we developed and validated three-dimensional quantitative structure-activity relationships (QSAR) models of FAAH inhibition combining the newly disclosed carbamates with our previously published inhibitors to give a total set of 99 compounds. Prior to 3D-QSAR modeling, the degree of correlation between FAAH inhibition and in silico reactivity was also established. Both 3D-QSAR methods used, CoMSIA and GRID/GOLPE, produced statistically significant models with coefficient of correlation for external prediction (R(2) (PRED)) values of 0.732 and 0.760, respectively. These models could be of high value in further FAAH inhibitor design.

  8. Design, synthesis and biological evaluation of 2-(substituted phenyl)thiazolidine-4-carboxylic acid derivatives as novel tyrosinase inhibitors.

    PubMed

    Ha, Young Mi; Park, Yun Jung; Lee, Ji Yeon; Park, Daeui; Choi, Yeon Ja; Lee, Eun Kyeong; Kim, Ji Min; Kim, Jin-Ah; Park, Ji Young; Lee, Hye Jin; Moon, Hyung Ryong; Chung, Hae Young

    2012-02-01

    Herein we describe the design, synthesis and biological activities of 2-(substituted phenyl)thiazolidine-4-carboxylic acid derivatives as novel tyrosinase inhibitors. The target compounds 2a-2j were designed and synthesized from the structural characteristics of N-phenylthiourea, tyrosinase inhibitor and tyrosine, and l-DOPA, the natural substrates of tyrosinase. Among them, (2R/S,4R)-2-(2,4-dimethoxyphenyl)thiazolidine-4-carboxylic acid (2g) caused the greatest inhibition 66.47% at 20 μM of l-DOPA oxidase activity of mushroom tyrosinase. Kinetic analysis of tyrosinase inhibition revealed that 2g is a competitive inhibitor. We predicted the tertiary structure of tyrosinase, and simulated the docking of mushroom tyrosinase with 2g. These results suggest that the binding affinity of 2g with tyrosinase is high. Also, 2g effectively inhibited tyrosinase activity and reduced melanin levels in B16 cells treated with α-MSH. These data strongly suggest that 2g can suppress the production of melanin via the inhibition of tyrosinase activity.

  9. Probing the Active Site of Candida Glabrata Dihydrofolate Reductase with High Resolution Crystal Structures and the Synthesis of New Inhibitors

    SciTech Connect

    Liu, J.; Bolstad, D; Smith, A; Priestley, N; Wright, D; Anderson, A

    2009-01-01

    Candida glabrata, a fungal strain resistant to many commonly administered antifungal agents, has become an emerging threat to human health. In previous work, we validated that the essential enzyme, dihydrofolate reductase, is a drug target in C. glabrata. Using a crystal structure of dihydrofolate reductase from C. glabrata bound to an initial lead compound, we designed a class of biphenyl antifolates that potently and selectively inhibit both the enzyme and the growth of the fungal culture. In this work, we explore the structure-activity relationships of this class of antifolates with four new high resolution crystal structures of enzyme:inhibitor complexes and the synthesis of four new inhibitors. The designed inhibitors are intended to probe key hydrophobic pockets visible in the crystal structure. The crystal structures and an evaluation of the new compounds reveal that methyl groups at the meta and para positions of the distal phenyl ring achieve the greatest number of interactions with the pathogenic enzyme and the greatest degree of selectivity over the human enzyme. Additionally, antifungal activity can be tuned with substitution patterns at the propargyl and para-phenyl positions.

  10. Design and synthesis of lactam-thiophene carboxylic acids as potent hepatitis C virus polymerase inhibitors.

    PubMed

    Barnes-Seeman, David; Boiselle, Carri; Capacci-Daniel, Christina; Chopra, Rajiv; Hoffmaster, Keith; Jones, Christopher T; Kato, Mitsunori; Lin, Kai; Ma, Sue; Pan, Guoyu; Shu, Lei; Wang, Jianling; Whiteman, Leah; Xu, Mei; Zheng, Rui; Fu, Jiping

    2014-08-15

    Herein we report the successful incorporation of a lactam as an amide replacement in the design of hepatitis C virus NS5B Site II thiophene carboxylic acid inhibitors. Optimizing potency in a replicon assay and minimizing potential risk for CYP3A4 induction led to the discovery of inhibitor 22a. This lead compound has a favorable pharmacokinetic profile in rats and dogs.

  11. Synthesis and application of polyaminoamide as new paraffin inhibitor from vegetable oil

    PubMed Central

    2011-01-01

    In this work, a series of novel paraffin inhibitor, polyaminoamide (PAA), was designed and prepared by aminolysis and poly-condensation using soybean oil and canola oil as the raw material. The property of the PAAs as paraffin inhibitor was investigated, the results show several PAA samples are potent in paraffin inhibition, and PPC-2 is the most effective one. Besides, the paraffin crystal morphology analysis was carried out to provide the mechanism of paraffin inhibition. PMID:22152091

  12. Proline-Based Macrocyclic Inhibitors of the Hepatitis C Virus: Stereoselective Synthesis and Biological Activity

    SciTech Connect

    Chen, Kevin X.; Njoroge, F. George; Vibulbhan, Bancha; Prongay, Andrew; Pichardo, John; Madison, Vincent; Buevich, Alexei; Chan, Tze-Ming

    2008-06-30

    Macrocyclization through a Mitsunobu reaction was used to synthesize a 17-membered macrocycle. The bicyclic acetal core was prepared completely diastereoselectively. The macrocyclic peptidomimetic surrogate of the P2-P3 dipeptide moiety was designed to function as a hepatitis C virus (HCV) NS3 serine protease inhibitor, and the pentapeptide {alpha}-ketoamides derived from the macrocycle were shown to be potent HCV inhibitors.

  13. Design and synthesis of a new type of non steroidal human aromatase inhibitors.

    PubMed

    Sonnet, P; Guillon, J; Enguehard, C; Dallemagne, P; Bureau, R; Rault S Auvray, P; Moslemi, S; Sourdiane, P; Galopin, S; Séralini, G E

    1998-05-05

    The structure-activity relationship study of one of recently described aromatase inhibitors, compound 1 (MR20814), allowed us to design some related derivatives as potential new inhibitors. Among those we synthesized, chlorophenylpyridylmethylenetetrahydroindolizinone 5 (MR20492) exhibited in vitro a ten-fold higher inhibition of the enzyme (IC50 = 0.2 +/- 0.0 microM and Ki = 10.3 +/- 3.3 nM).

  14. [Design, synthesis and activity evaluation of novel matrix metalloproteinases inhibitors based on the structure of enzyme].

    PubMed

    Jia, Hong; Guo, Yan-shen; Ge, Yi-yu; Wen, Hui; Yang, Jing; Yang, Xiu-ying; Du, Guan-hua; Yang, Guang-zhong

    2007-12-01

    A novel inhibitor series for matrix metalloproteinases (MMPs) were designed and synthesized. Using succinate and malonate as zinc binding groups and long hydrophobic substituents to bind with S1' pockets, the compounds showed micromolar inhibition and selectivity for MMP-2 over others. And we found a better activity compound. It is a chance to find a better precursor of MMP-2 inhibitors with activity and bioavailability by further optimization of compounds.

  15. Design, synthesis and evaluation of polar head group containing 2-keto-oxazole inhibitors of FAAH.

    PubMed

    Rusch, Marion; Zahov, Stefan; Vetter, Ingrid R; Lehr, Matthias; Hedberg, Christian

    2012-01-15

    2-α-Keto oxazoles containing polar head groups in their C5-side chains were designed as fatty acid amide hydrolase (FAAH) inhibitors. Variation in the spacer length resulted in submicromolar α-keto-oxazole FAAH inhibitor (IC(50)=436 nM) presenting electrostatic stabilizing interactions between its polar head group contained in the C5-side chain and the hydrophilic pocket of the enzyme.

  16. Natural and synthetic geiparvarins are strong and selective MAO-B inhibitors. Synthesis and SAR studies.

    PubMed

    Carotti, Angelo; Carrieri, Antonio; Chimichi, Stefano; Boccalini, Marco; Cosimelli, Barbara; Gnerre, Carmela; Carotti, Andrea; Carrupt, Pierre Alain; Testa, Bernard

    2002-12-16

    Natural geiparvarin 1 and a number of its analogues were prepared and tested as inhibitors of both monoamine oxidase isoforms, MAO-B and MAO-A. The desmethyl congener 6 of geiparvarin, proved potent and selective MAO-B inhibitor (pIC(50)=7.55 vs 4.62). X-ray crystallography and molecular modelling studies helped the understanding of the observed structure-activity relationships.

  17. Design, synthesis and structure-activity relationships of novel biarylamine-based Met kinase inhibitors

    SciTech Connect

    Williams, David K; Chen, Xiao-Tao; Tarby, Christine; Kaltenbach, Robert; Cai, Zhen-Wei; Tokarski, John S; An, Yongmi; Sack, John S; Wautlet, Barri; Gullo-Brown, Johnni; Henley, Benjamin J; Jeyaseelan, Robert; Kellar, Kristen; Manne, Veeraswamy; Trainor, George L; Lombardo, Louis J; Fargnoli, Joseph; Borzilleri, Robert M

    2010-09-03

    Biarylamine-based inhibitors of Met kinase have been identified. Lead compounds demonstrate nanomolar potency in Met kinase biochemical assays and significant activity in the Met-driven GTL-16 human gastric carcinoma cell line. X-ray crystallography revealed that these compounds adopt a bioactive conformation, in the kinase domain, consistent with that previously seen with 2-pyridone-based Met kinase inhibitors. Compound 9b demonstrated potent in vivo antitumor activity in the GTL-16 human tumor xenograft model.

  18. Synthesis, Structural Analysis, and Biological Evaluation of Thioxoquinazoline Derivatives as Phosphodiesterase 7 Inhibitors

    SciTech Connect

    Castano, T.; Wang, H; Campillo, N; Ballester, S; Gonzalez-Garcia, C; Hernandez, J; Perez, C; Cuenca, J; Perez-Castillo, A; et. al.

    2009-01-01

    PDE7 inhibitors regulate pro-inflammatory and immune T-cell functions, and are a potentially novel class of drugs particularly useful for treatment of a wide variety of immune and inflammatory disorders. Structural optimization of thioxoquinazoline derivatives led to new compounds with very interesting profiles as PDE7 or PDE7/PDE4 dual inhibitors, which may be further developed as new drugs for inflammatory and neurological diseases.

  19. Design, synthesis and structure-activity relationships of novel biarylamine-based Met kinase inhibitors.

    PubMed

    Williams, David K; Chen, Xiao-Tao; Tarby, Christine; Kaltenbach, Robert; Cai, Zhen-Wei; Tokarski, John S; An, Yongmi; Sack, John S; Wautlet, Barri; Gullo-Brown, Johnni; Henley, Benjamin J; Jeyaseelan, Robert; Kellar, Kristen; Manne, Veeraswamy; Trainor, George L; Lombardo, Louis J; Fargnoli, Joseph; Borzilleri, Robert M

    2010-05-01

    Biarylamine-based inhibitors of Met kinase have been identified. Lead compounds demonstrate nanomolar potency in Met kinase biochemical assays and significant activity in the Met-driven GTL-16 human gastric carcinoma cell line. X-ray crystallography revealed that these compounds adopt a bioactive conformation, in the kinase domain, consistent with that previously seen with 2-pyridone-based Met kinase inhibitors. Compound 9b demonstrated potent in vivo antitumor activity in the GTL-16 human tumor xenograft model.

  20. First evidence for the formation of technetium oxosulfide complexes: synthesis, structure and characterization.

    PubMed

    Ferrier, Maryline; Weck, Philippe F; Poineau, Frederic; Kim, Eunja; Stebbins, Alan; Ma, Longzhou; Sattelberger, Alfred P; Czerwinski, Kenneth R

    2012-05-28

    The reaction of tetrabutylammonium pertechnetate with bis(trimethylsilyl) sulfide in solution was studied by UV-Visible spectroscopy and mass spectrometry. Experimental results and density functional calculations provide the first evidence for the formation of a TcO(3)S(-) precursor. Larger scale synthesis afforded a solid that was characterized by EDX and XANES spectroscopy. XANES showed the presence of technetium in tetravalent state. EDX indicated the solid contained technetium, sulfur and oxygen.

  1. Formation of N-branched oligonucleotides as by-products in solid-phase oligonucleotide synthesis.

    PubMed

    Cazenave, Christian; Bathany, Katell; Rayner, Bernard

    2006-01-01

    During the synthesis of oligonucleotides by the standard phosphoramidite method using 2'-deoxycytidine- derivatized solid support, a side reaction was observed that gave rise to the formation of high molecular weight N-branched oligomers having two identical chains linked to the 3'-terminal 2'-deoxycytidine. Postsynthesis treatment with neat triethylamine trihydrofluoride selectively cleaved the phosphoramidate linkage and converted the N-branched oligomers back to the expected oligonucleotides.

  2. Formation, Evolution, and Population Synthesis of Binary Systems Containing Collapsed Stars

    NASA Technical Reports Server (NTRS)

    West, Donald (Technical Monitor); Rappaport, Saul

    2004-01-01

    During the period September 1, 2002 through August 31, 2003 we have been supported in part by a small NASA 'bridge" grant NAG5-12522 to continue our theoretical investigations of the "Formation, Evolution, and Population Synthesis of Binary Systems Containing Collapsed Stars". This research includes theoretical studies of the formation and evolution of several different types of interacting binary systems containing collapsed stars. Four papers were completed under the auspices of this grant: 1. Theoretical Consideration on the Properties of Accreting Millisecond Pulsars. 2. Accretion Onto Fast X-Ray Pulsars. 3. The Effects of Binary Evolution on the Dynamics of Core Collapse and Neutron-Star.

  3. Molecular Recognition of DNA. Synthesis of Novel Bases for Triple Helix Formation

    DTIC Science & Technology

    1991-01-01

    to the purine strand in the major groove of the Watson - Crick double helical DNA (TAT, C+GC triplets). Purine oligonucleotides bind antiparallel to...R&T Code 4135018 S MAy 05 199411 "Molecular Recognition of DNA . Synthesis of Novel Bases for Triple Helix Formation" Peter B. Dervan cv _California...035 T"IQA""D PART I A) Completed work (1988-91) Triple Helix Formation by Oligonucleotides on DNA Extended to the Physiological pH Range. T. J. Povsic

  4. Inducible and Constitutive β-Galactosidase Formation in Cells Recovering from Protein Synthesis Inhibition1

    PubMed Central

    Soreq, Hermona; Kaplan, Ruth

    1971-01-01

    Inducible and constitutive β-galactosidase formation and radioactive amino acid incorporation were measured in cells recovering from various treatments which inhibit protein synthesis in the cell. Undelayed β-galactosidase formation was found in stringent auxotrophs recovering from amino acid starvation, in cells recovering from glycerol or potassium starvation, and in bacteria recovering from puromycin treatment. Delayed β-galactosidase formation was found in relaxed auxotrophs recovering from amino acid starvation and in prototrophs recovering from chloramphenicol or from tetracycline treatment. The length of this delay was directly proportional to the duration of the treatment. All cells recovering from the various treatments exhibited a slightly decreased rate of β-galactosidase formation and an increase in radioactive amino acid incorporation. PMID:4945186

  5. Ir-CPI, a coagulation contact phase inhibitor from the tick Ixodes ricinus, inhibits thrombus formation without impairing hemostasis

    PubMed Central

    Decrem, Yves; Rath, Géraldine; Blasioli, Virginie; Cauchie, Philippe; Robert, Séverine; Beaufays, Jérôme; Frère, Jean-Marie; Feron, Olivier; Dogné, Jean-Michel; Dessy, Chantal; Vanhamme, Luc

    2009-01-01

    Blood coagulation starts immediately after damage to the vascular endothelium. This system is essential for minimizing blood loss from an injured blood vessel but also contributes to vascular thrombosis. Although it has long been thought that the intrinsic coagulation pathway is not important for clotting in vivo, recent data obtained with genetically altered mice indicate that contact phase proteins seem to be essential for thrombus formation. We show that recombinant Ixodes ricinus contact phase inhibitor (Ir-CPI), a Kunitz-type protein expressed by the salivary glands of the tick Ixodes ricinus, specifically interacts with activated human contact phase factors (FXIIa, FXIa, and kallikrein) and prolongs the activated partial thromboplastin time (aPTT) in vitro. The effects of Ir-CPI were also examined in vivo using both venous and arterial thrombosis models. Intravenous administration of Ir-CPI in rats and mice caused a dose-dependent reduction in venous thrombus formation and revealed a defect in the formation of arterial occlusive thrombi. Moreover, mice injected with Ir-CPI are protected against collagen- and epinephrine-induced thromboembolism. Remarkably, the effective antithrombotic dose of Ir-CPI did not promote bleeding or impair blood coagulation parameters. To conclude, our results show that a contact phase inhibitor is an effective and safe antithrombotic agent in vivo. PMID:19808248

  6. The Design and Synthesis of Potent and Selective Inhibitors of Trypanosoma brucei Glycogen Synthase Kinase 3 for the Treatment of Human African Trypanosomiasis

    PubMed Central

    2014-01-01

    Glycogen synthase kinase 3 (GSK3) is a genetically validated drug target for human African trypanosomiasis (HAT), also called African sleeping sickness. We report the synthesis and biological evaluation of aminopyrazole derivatives as Trypanosoma brucei GSK3 short inhibitors. Low nanomolar inhibitors, which had high selectivity over the off-target human CDK2 and good selectivity over human GSK3β enzyme, have been prepared. These potent kinase inhibitors demonstrated low micromolar levels of inhibition of the Trypanosoma brucei brucei parasite grown in culture. PMID:25198388

  7. Discovery of benzimidazole-diamide finger loop (Thumb Pocket I) allosteric inhibitors of HCV NS5B polymerase: Implementing parallel synthesis for rapid linker optimization.

    PubMed

    Goulet, Sylvie; Poupart, Marc-André; Gillard, James; Poirier, Martin; Kukolj, George; Beaulieu, Pierre L

    2010-01-01

    Previously described SAR of benzimidazole-based non-nucleoside finger loop (Thumb Pocket I) inhibitors of HCV NS5B polymerase was expanded. Prospecting studies using parallel synthesis techniques allowed the rapid identification of novel cinnamic acid right-hand sides that provide renewed opportunities for further optimization of these inhibitors. Novel diamide derivatives such as 44 exhibited comparable potency (enzymatic and cell-based HCV replicon) as previously described tryptophan-based inhibitors but physicochemical properties (e.g., aqueous solubility and lipophilicity) have been improved, resulting in molecules with reduced off-target liabilities (CYP inhibition) and increased metabolic stability.

  8. Molecular Features of the YAP Inhibitor Verteporfin: Synthesis of Hexasubstituted Dipyrrins as Potential Inhibitors of YAP/TAZ, the Downstream Effectors of the Hippo Pathway.

    PubMed

    Gibault, Floriane; Bailly, Fabrice; Corvaisier, Matthieu; Coevoet, Mathilde; Huet, Guillemette; Melnyk, Patricia; Cotelle, Philippe

    2017-06-21

    Porphyrin derivatives, in particular verteporfin (VP), a photosensitizer initially designed for cancer therapy, have been identified as inhibitors of the YAP-TEAD interaction and transcriptional activity. Herein we report the efficient convergent synthesis of the dipyrrin half of protoporphyrin IX dimethyl ester (PPIX-DME), in which the sensitive vinyl group was created at the final stage by a dehydroiodination reaction. Two other dipyrrin derivatives were synthesized, including dipyrrin 19 [(Z)-2-((3,5-dimethyl-4-vinyl-2H-pyrrol-2-ylidene)methyl)-3,5-dimethyl-4-vinyl-1H-pyrrole], containing two vinyl groups. We found that VP and dipyrrin 19 showed significant inhibitory effects on TEAD transcriptional activity in MDA-MB-231 human breast cancer cells, whereas other compounds did not show significant changes. In addition, we observed a marked decrease in both YAP and TAZ levels following VP treatment, whereas dipyrrin 19 treatment primarily decreased the levels of YAP and receptor kinase AXL, a downstream target of YAP. Together, our data suggest that, due to their chemical structures, porphyrin- and dipyrrin-related derivatives can directly target YAP and/or TAZ proteins and inhibit TEAD transcriptional activity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Synthesis, modelling and kinetic assays of potent inhibitors of purple acid phosphatase.

    PubMed

    Mohd-Pahmi, Siti Hajar; Hussein, Waleed M; Schenk, Gerhard; McGeary, Ross P

    2011-05-15

    Purple acid phosphatases (PAPs) are binuclear metallohydrolases that have been isolated from various mammals, plants, fungi and bacteria. In mammals PAP activity is associated with bone resorption and can lead to bone metabolic disorders such as osteoporosis; thus human PAP is an attractive target to develop anti-osteoporotic drugs. Based on a previous lead compound and rational drug design, acyl derivatives of α-aminonaphthylmethylphosphonic acid were synthesised and tested as PAP inhibitors. Kinetic analysis showed that they are good PAP inhibitors whose potencies improve with increasing acyl chain length. Maximum potency is reached when the number of carbons in the acyl chain is between 12 and 14. The most potent inhibitor of red kidney bean PAP is the dodecyl-derivative with K(ic)=5 μM, while the most potent pig PAP inhibitor is the tetradecyl-derivative with K(ic)=8 μM, the most potent inhibitor of a mammalian PAP yet reported. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  10. Design of Gem-difluoro-bis-Tetrahydrofuran as P2-Ligand for HIV-1 Protease Inhibitors to Improve Brain Penetration: Synthesis, X-ray Studies, and Biological Evaluation

    PubMed Central

    Yashchuk, Sofiya; Mizuno, Akira; Chakraborty, Nilanjana; Agniswamy, Johnson; Wang, Yuan-Fang; Aoki, Manabu; Gomez, Pedro Miguel Salcedo; Amano, Masayuki; Weber, Irene T.; Mitsuya, Hiroaki

    2015-01-01

    Structure-based design, synthesis, biological evaluation and X-ray structural studies of fluorine containing HIV-1 protease inhibitors are described. The synthesis of both enantiomers of the gem-difluoro-bis-THF ligands was carried out in a stereoselective manner using a Reformatskii-Claisen reaction as the key step. Optically active ligands HIV-1LAI were converted to protease inhibitors. Two of these inhibitors (3 and 4) exhibited HIV-1 protease inhibitory Ki’s in picomolar range. Both inhibitors showed very potent antiviral activity with EC50 values of 0.8 nM and 3.1 nM respectively against the laboratory strain HIV-1LAI. Both inhibitors exhibited improved lipophilicity profiles compared to darunavir. Also, both inhibitors showed much improved blood-brain-barrier permeability in an in vitro model. A high resolution X-ray structure of inhibitor 4-bound HIV-1 protease was determined. The X-ray structure revealed that fluoro ligand makes extensive interactions with the HIV-1 protease S2 subsite, including hydrogen-bonding interactions with the protease backbone atoms. Also, both fluorine atoms on the bis-THF ligand formed strong interactions with the flap Gly48 carbonyl oxygen. PMID:25336073

  11. Improved loading and cleavage methods for solid-phase synthesis using chlorotrityl resins: synthesis and testing of a library of 144 discrete chemicals as potential farnesyltransferase inhibitors.

    PubMed

    Park, Jewn Giew; Langenwalter, Kevin J; Weinbaum, Carolyn A; Casey, Patrick J; Pang, Yuan-Ping

    2004-01-01

    The use of chlorotrityl resins for the immobilization of amines is sometimes deterred by the lengthy process of loading the reactants on the resins and product decomposition caused by the reactive chlorotrityl group in the presence of 1% TFA as a cleavage agent. Here, we report improved methods developed for selective and efficient loading of aminobenzoic acid derivatives on chlorotrityl resins and for cleavage of aniline-containing products from the resins without decomposition. These methods led to the synthesis of a library of 144 discrete chemicals as potential farnesyltransferase inhibitors (FTIs) using IRORI's radio-frequency-encoded sorting technique and to the study of the applicability of the bivalence approach to the development of FTIs.

  12. Synthesis and biological evaluation of thiazole derivatives as novel USP7 inhibitors.

    PubMed

    Chen, Chao; Song, Jiemei; Wang, Jinzheng; Xu, Chang; Chen, Caiping; Gu, Wei; Sun, Hongbin; Wen, Xiaoan

    2017-02-15

    Herpesvirus-associated Ubiquitin-Specific Protease (HAUSP, also called USP7) interacts with and stabilizes Mdm2, and represents one of the first examples that deubiquitinases oncogenic proteins. USP7 has been regarded as a potential drug target for cancer therapy. Inhibitors of USP7 have been recently shown to suppress tumor cell growth in vitro and in vivo. Based on leading USP7 inhibitors P5091 and P22077, we designed and synthesized a series of thiazole derivatives. The results of in vitro assays showed that the thiazole compounds exhibited low micromolar inhibition activity against both USP7 enzyme and cancer cell lines. The compounds induced cell death in a p53-dependent and p53-independent manner. Taken together, this study may provide thiazole compounds as a new class of USP7 inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Synthesis, biological evaluation and docking of novel bisamidinohydrazones as non-peptide inhibitors of furin.

    PubMed

    Kibirev, V K; Osadchuk, T V; Kozachenko, O P; Kholodovych, V; Fedoryak, D; Brovarets, V S

    2015-01-01

    A series of novel non-peptidicfurin inhibitors with values of inhibitory constants (Ki) in the range of 0.74-1.54 μM was obtained by interactions of aminoguanidine hydrocarbonate with three diaryldicarbalde- hydes. Correspondingly p-hydroquinone, piperazine and adipic acid were used as linkers between their ben- zene moieties. Docking studies of these new inhibitors into recently published 3D-structure of human furin (PDB code 4OMC) showed that they were able to interact with subsites S1 and S4 of the enzyme. The overall arrangement of bisamidinohydrazones into furin active site was similar to the position of the ligand co- crystallized with a protease. Observations obtained with molecular modeling allowed further guidance into chemical modifications of the synthesized inhibitors which improve their inhibitory activity.

  14. Design, synthesis and biological evaluation of novel non-peptide boronic acid derivatives as proteasome inhibitors.

    PubMed

    Ge, Ying; Li, Aibo; Wu, Jianwei; Feng, Haiwei; Wang, Letian; Liu, Hongwu; Xu, Yungen; Xu, Qingxiang; Zhao, Li; Li, Yuyan

    2017-03-10

    A novel series of non-peptide proteasome inhibitors bearing the 1, 4-naphthoquinone scaffold and boronic acid warhead was developed. In the biological evaluation on the chymotrypsin-like activity of human 20S proteasome, five compounds showed IC50 values in the nanomolar range. Docking experiments into the yeast 20S proteasome rationalized their biological activities and allowed further optimization of this interesting class of inhibitors. Within the cellular proliferation inhibition assay and western blot analysis, compound 3e demonstrated excellent anti-proliferative activity against solid tumor cells and clear accumulation of ubiquitinated cellular proteins. Furthermore, in the microsomal stability assay compound 3e demonstrated much improved metabolic stability compared to bortezomib, emerging as a promising lead compound for further design of non-peptide proteasome inhibitors.

  15. Molecular Design, Synthesis and Trypanocidal Activity of Dipeptidyl Nitriles as Cruzain Inhibitors

    PubMed Central

    Avelar, Leandro A. A.; Camilo, Cristian D.; de Albuquerque, Sérgio; Fernandes, William B.; Gonçalez, Cristiana; Kenny, Peter W.; Leitão, Andrei; McKerrow, James H.; Montanari, Carlos A.; Orozco, Erika V. Meñaca; Ribeiro, Jean F. R.; Rocha, Josmar R.; Rosini, Fabiana; Saidel, Marta E.

    2015-01-01

    A series of compounds based on the dipeptidyl nitrile scaffold were synthesized and assayed for their inhibitory activity against the T. cruzi cysteine protease cruzain. Structure activity relationships (SARs) were established using three, eleven and twelve variations respectively at the P1, P2 and P3 positions. A Ki value of 16 nM was observed for the most potent of these inhibitors which reflects a degree of non-additivity in the SAR. An X-ray crystal structure was determined for the ligand-protein complex for the structural prototype for the series. Twenty three inhibitors were also evaluated for their anti-trypanosomal effects and an EC50 value of 28 μM was observed for the most potent of these. Although there remains scope for further optimization, the knowledge gained from this study is also transferable to the design of cruzain inhibitors based on warheads other than nitrile as well as alternative scaffolds. PMID:26173110

  16. Molecular Design, Synthesis and Trypanocidal Activity of Dipeptidyl Nitriles as Cruzain Inhibitors.

    PubMed

    Avelar, Leandro A A; Camilo, Cristian D; de Albuquerque, Sérgio; Fernandes, William B; Gonçalez, Cristiana; Kenny, Peter W; Leitão, Andrei; McKerrow, James H; Montanari, Carlos A; Orozco, Erika V Meñaca; Ribeiro, Jean F R; Rocha, Josmar R; Rosini, Fabiana; Saidel, Marta E

    2015-01-01

    A series of compounds based on the dipeptidyl nitrile scaffold were synthesized and assayed for their inhibitory activity against the T. cruzi cysteine protease cruzain. Structure activity relationships (SARs) were established using three, eleven and twelve variations respectively at the P1, P2 and P3 positions. A Ki value of 16 nM was observed for the most potent of these inhibitors which reflects a degree of non-additivity in the SAR. An X-ray crystal structure was determined for the ligand-protein complex for the structural prototype for the series. Twenty three inhibitors were also evaluated for their anti-trypanosomal effects and an EC50 value of 28 μM was observed for the most potent of these. Although there remains scope for further optimization, the knowledge gained from this study is also transferable to the design of cruzain inhibitors based on warheads other than nitrile as well as alternative scaffolds.

  17. Synthesis and biological evaluation of 6-substituted indolizinoquinolinediones as catalytic DNA topoisomerase I inhibitors.

    PubMed

    Yu, Le-Mao; Zhang, Xiao-Ru; Li, Xiao-Bing; Yang, Yuan; Wei, Hong-Yu; He, Xi-Xin; Gu, Lian-Quan; Huang, Zhi-Shu; Pommier, Yves; An, Lin-Kun

    2015-08-28

    In our previous work, indolizinoquinolinedione derivative 1 was identified as a Top1 catalytic inhibitor. Herein, a series of 6-substituted indolizinoquinolinedione derivatives were synthesized through modification of the parent compound 1. Top1 cleavage and relaxation assays indicate that none of these novel compounds act as classical Top1 poison, and that the compounds with alkylamino terminus at C-6 side chain, including 8, 11-16, 18-21, 25, 26 and 28-30, are the most potent Top1 catalytic inhibitors. Top1-mediated unwinding assay demonstrated that 14, 22 and 26 were Top1 catalytic inhibitors without Top1-mediated unwinding effect. Moreover, MTT results showed that compounds 26, 28-30 exhibit significant cytotoxicity against human leukemia HL-60 cells, and that compound 26 exerts potent cytotoxicity against A549 lung cancer cells at nanomolar range.

  18. Synthesis and biological evaluation of 6-substituted indolizinoquinolinediones as catalytic DNA topoisomerase I inhibitors

    PubMed Central

    Yu, Le-Mao; Zhang, Xiao-Ru; Li, Xiao-Bing; Yang, Yuan; Wei, Hong-Yu; He, Xi-Xin; Gu, Lian-Quan; Huang, Zhi-Shu; Pommier, Yves; An, Lin-Kun

    2015-01-01

    In our previous work, indolizinoquinolinedione derivative 1 was identified as a Top1 catalytic inhibitor. Herein, a series of 6-substituted indolizinoquinolinedione derivatives were synthesized through modification of the parent compound 1. Top1 cleavage and relaxation assays indicate that none of these novel compounds act as classical Top1 poison, and that the compounds with alkylamino terminus at C-6 side chain, including 8, 11–16, 18–21, 25, 26 and 28–30, are the most potent Top1 catalytic inhibitors. Top1-mediated unwinding assay demonstrated that 14, 22 and 26 were Top1 catalytic inhibitors without Top1-mediated unwinding effect. Moreover, MTT results showed that compounds 26, 28–30 exhibit significant cytotoxicity against human leukemia HL-60 cells, and that compound 26 exerts potent cytotoxicity against A549 lung cancer cells at nanomolar range. PMID:26188908

  19. BET Bromodomain Inhibitors with One-Step Synthesis Discovered from Virtual Screen.

    PubMed

    Ayoub, Alex M; Hawk, Laura M L; Herzig, Ryan J; Jiang, Jiewei; Wisniewski, Andrea J; Gee, Clifford T; Zhao, Peiliang; Zhu, Jin-Yi; Berndt, Norbert; Offei-Addo, Nana K; Scott, Thomas G; Qi, Jun; Bradner, James E; Ward, Timothy R; Schönbrunn, Ernst; Georg, Gunda I; Pomerantz, William C K

    2017-06-22

    Chemical inhibition of epigenetic regulatory proteins BrdT and Brd4 is emerging as a promising therapeutic strategy in contraception, cancer, and heart disease. We report an easily synthesized dihydropyridopyrimidine pan-BET inhibitor scaffold, which was uncovered via a virtual screen followed by testing in a fluorescence anisotropy assay. Dihydropyridopyimidine 3 was subjected to further characterization and is highly selective for the BET family of bromodomains. Structure-activity relationship data and ligand deconstruction highlight the importance of the substitution of the uracil moiety for potency and selectivity. Compound 3 was also cocrystallized with Brd4 for determining the ligand binding pose and rationalizing subsequent structure-activity data. An additional series of dihydropyridopyrimidines was synthesized to exploit the proximity of a channel near the ZA loop of Brd4, leading to compounds with submicromolar affinity and cellular target engagement. Given these findings, novel and easily synthesized inhibitors are being introduced to the growing field of bromodomain inhibitor development.

  20. Design and Synthesis of Phenylpyrrolidine Phenylglycinamides As Highly Potent and Selective TF-FVIIa Inhibitors

    PubMed Central

    2013-01-01

    Inhibitors of the Tissue Factor/Factor VIIa (TF-FVIIa) complex are promising novel anticoagulants that show excellent efficacy and minimal bleeding in preclinical models. On the basis of a zwitterionic phenylglycine acylsulfonamide 1, a phenylglycine benzylamide 2 was shown to possess improved permeability and oral bioavailability. Optimization of the benzylamide, guided by X-ray crystallography, led to a potent TF-FVIIa inhibitor 18i with promising oral bioavailability, but promiscuous activity in an in vitro safety panel of receptors and enzymes. Introducing an acid on the pyrrolidine ring, guided by molecular modeling, resulted in highly potent, selective, and efficacious TF-FVIIa inhibitors with clean in vitro safety profile. The pyrrolidine acid 20 showed a moderate clearance, low volume of distribution, and a short t1/2 in dog PK studies. PMID:24900796

  1. Synthesis of bicyclic N-arylmethyl-substituted iminoribitol derivatives as selective nucleoside hydrolase inhibitors.

    PubMed

    Berg, Maya; Bal, Gunther; Goeminne, Annelies; Van der Veken, Pieter; Versées, Wim; Steyaert, Jan; Haemers, Achiel; Augustyns, Koen

    2009-02-01

    The purine metabolism of Trypanosoma and Leishmania spp. provides a good target in the search for new selective drugs. Bicyclic N-arylmethyl-substituted iminoribitols were developed as inhibitors of T. vivax nucleoside hydrolase, a key enzyme of the purine salvage pathway. The obtained results and structure-activity data confirmed our model for inhibitor binding with a hydrogen bond between a nitrogen atom of the nucleobase mimetic and the protonated Asp40 from the enzyme. This interaction depends on an optimal pK(a) value, which can be influenced by the electronic properties of the substituents. These compounds are potent, selective inhibitors of nucleoside hydrolase and are inactive toward human nucleoside phosphorylase.

  2. Synthesis, Structure, and SAR of Tetrahydropyran-Based LpxC Inhibitors

    PubMed Central

    2014-01-01

    In the search for novel Gram-negative agents, we performed a comprehensive search of the AstraZeneca collection and identified a tetrahydropyran-based matrix metalloprotease (MMP) inhibitor that demonstrated nanomolar inhibition of UDP-3-O-(acyl)-N-acetylglucosamine deacetylase (LpxC). Crystallographic studies in Aquifex aeolicus LpxC indicated the tetrahydropyran engaged in the same hydrogen bonds and van der Waals interactions as other known inhibitors. Systematic optimization of three locales on the scaffold provided compounds with improved Gram-negative activity. However, the optimization of LpxC activity was not accompanied by reduced inhibition of MMPs. Comparison of the crystal structure of the native product, UDP-3-O-(acyl)-glucosamine, in Aquifex aeolicus to the structure of a tetrahydropyran-based inhibitor indicates pathways for future optimization. PMID:25408833

  3. Structural basis for the design and synthesis of selective HDAC inhibitors.

    PubMed

    Di Micco, Simone; Chini, Maria Giovanna; Terracciano, Stefania; Bruno, Ines; Riccio, Raffaele; Bifulco, Giuseppe

    2013-07-01

    Histone Deacetylases are considered promising targets for cancer epigenetic therapy, and small molecules able to modulate their biological function have recently gained an increasing interest as potential anticancer agents. In spite of their potential application in cancer therapy, most HDAC inhibitors unselectively bind the several HDAC isoforms, giving rise to different side-effects. In this context, we have traced out the structural elements responsible of selective binding for the therapeutically relevant different HDAC isoforms. The structural analysis has been carried out by molecular modeling, docking in the binding pockets of HDAC1-4 and HDAC6-8, 36 inhibitors presenting a well defined selectivity for the different isoforms. As quick proof of evidence, we have designed, synthesized and experimentally tested three selective ligands. The experimental data suggest that the obtained structural guidelines can be useful tools for the rational design of new potent inhibitors against selected HDAC isoforms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Synthesis of selective inhibitors against V. cholerae sialidase and human cytosolic sialidase NEU2.

    PubMed

    Khedri, Zahra; Li, Yanhong; Cao, Hongzhi; Qu, Jingyao; Yu, Hai; Muthana, Musleh M; Chen, Xi

    2012-08-14

    Sialidases or neuraminidases catalyze the hydrolysis of terminal sialic acid residues from sialyl oligosaccharides and glycoconjugates. Despite successes in developing potent inhibitors specifically against influenza virus neuraminidases, the progress in designing and synthesizing selective inhibitors against bacterial and human sialidases has been slow. Guided by sialidase substrate specificity studies and sialidase crystal structural analysis, a number of 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA or Neu5Ac2en) analogues with modifications at C9 or at both C5 and C9 were synthesized. Inhibition studies of various bacterial sialidases and human cytosolic sialidase NEU2 revealed that Neu5Gc9N(3)2en and Neu5AcN(3)9N(3)2en are selective inhibitors against V. cholerae sialidase and human NEU2, respectively.

  5. Synthesis and Evaluation of Substituted Chroman-4-one and Chromone Derivatives as Sirtuin 2-Selective Inhibitors

    PubMed Central

    2012-01-01

    A series of substituted chromone/chroman-4-one derivatives has been synthesized and evaluated as novel inhibitors of SIRT2, an enzyme involved in aging-related diseases, e.g., neurodegenerative disorders. The analogues were efficiently synthesized in a one-step procedure including a base-mediated aldol condensation using microwave irradiation. The most potent compounds, with inhibitory concentrations in the low micromolar range, were substituted in the 2-, 6-, and 8-positions. Larger, electron-withdrawing substituents in the 6- and 8-positions were favorable. The most potent inhibitor of SIRT2 was 6,8-dibromo-2-pentylchroman-4-one with an IC50 of 1.5 μM. The synthesized compounds show high selectivity toward SIRT2 over SIRT1 and SIRT3 and represent an important starting point for the development of novel SIRT2 inhibitors. PMID:22746324

  6. Recent Methodologies toward the Synthesis of Valdecoxib: A Potential 3,4-diarylisoxazolyl COX-2 Inhibitor

    PubMed Central

    Dadiboyena, Sureshbabu; Nefzi, Adel

    2011-01-01

    Non-steroidal anti-inflammatory drugs are widely used therapeutic agents in the treatment of inflammation, pain and fever. Cyclooxygenase catalyzes the initial step of biotransformation of arachidonic acid to prostanoids, and exist as three distinct isozymes; COX-I, COX-II and COX-III. Selective COX-II inhibitors are a class of potential anti-inflammatory, analgesic, and antipyretic drugs with reduced gastrointestinal (GI) side effects compared to nonselective inhibitors. 3,4-diarylisoxazole scaffold is recurrently found in a wide variety of NSAIDs, protein kinase inhibitors, hypertensive agents, and estrogen receptor (ER) modulators. In the present review, we document on the recent synthetic strategies of 3,4-diarylisoxazolyl scaffolds of valdecoxib and its relevant structural analogues. PMID:20724040

  7. Design and synthesis of 1,4-dihydropyridine derivatives as BACE-1 inhibitors.

    PubMed

    Choi, Soo-Jeong; Cho, Joong-Heui; Im, Isak; Lee, So-Deok; Jang, Ji-Yeon; Oh, Yu-Min; Jung, Yong-Keun; Jeon, Eun-Seok; Kim, Yong-Chul

    2010-06-01

    BACE-1 has been shown to be an attractive therapeutic target in Alzheimer's disease (AD). Using a 1,4-dihydropyridine (DHP) scaffold, we synthesized new inhibitors of BACE-1 by modifying the known BACE inhibitor 2 containing a hydroxyethylamine (HEA) motif. Using structure-based drug design based on computer-aided molecular docking, the isophthalamide ring of 2 was replaced with a 1,4-dihydropyridine ring as a brain-targeting strategy. Several of the new dihydropyridine derivatives were synthesized and their BACE-1-inhibitory activities were evaluated using a cell-based, reporter gene assay system that measures the cleavage of alkaline phosphatase (AP)-APP fusion protein by BACE-1. Most of the 1,4-DHP analogs showed BACE-1-inhibitory activities with IC50 values in the range 8-30 microM, suggesting that the 1,4-DHP skeleton may be utilized to develop brain-targeting BACE-1 inhibitors.

  8. Design and Synthesis of Novel and Selective Phosphodiesterase 2 (PDE2a) Inhibitors for the Treatment of Memory Disorders.

    PubMed

    Gomez, Laurent; Massari, Mark Eben; Vickers, Troy; Freestone, Graeme; Vernier, William; Ly, Kiev; Xu, Rui; McCarrick, Margaret; Marrone, Tami; Metz, Markus; Yan, Yingzhou G; Yoder, Zachary W; Lemus, Robert; Broadbent, Nicola J; Barido, Richard; Warren, Noelle; Schmelzer, Kara; Neul, David; Lee, Dong; Andersen, Carsten B; Sebring, Kristen; Aertgeerts, Kathleen; Zhou, Xianbo; Tabatabaei, Ali; Peters, Marco; Breitenbucher, J Guy

    2017-03-09

    A series of potent and selective [1,2,4]triazolo[1,5-a]pyrimidine PDE2a inhibitors is reported. The design and improvement of the binding properties of this series was achieved using X-ray crystal structures in conjunction with careful analysis of electronic and structural requirements for the PDE2a enzyme. One of the lead compounds, compound 27 (DNS-8254), was identified as a potent and highly selective PDE2a enzyme inhibitor with favorable rat pharmacokinetic properties. Interestingly, the increased potency of compound 27 was facilitated by the formation of a halogen bond with the oxygen of Tyr827 present in the PDE2a active site. In vivo, compound 27 demonstrated significant memory enhancing effects in a rat model of novel object recognition. Taken together, these data suggest that compound 27 may be a useful tool to explore the pharmacology of selective PDE2a inhibition.

  9. Pharmacological Targeting of Plasminogen Activator Inhibitor-1 Decreases Vascular Smooth Muscle Cell Migration and Neointima Formation.

    PubMed

    Ji, Yan; Weng, Zhen; Fish, Philip; Goyal, Neha; Luo, Mao; Myears, Samantha P; Strawn, Tammy L; Chandrasekar, Bysani; Wu, Jianbo; Fay, William P

    2016-11-01

    Plasminogen activator inhibitor-1 (PAI-1), a serine protease inhibitor that promotes and inhibits cell migration, plays a complex and important role in adverse vascular remodeling. Little is known about the effects of pharmacological PAI-1 inhibitors, an emerging drug class, on migration of vascular smooth muscle cells (SMCs) and endothelial cells (ECs), crucial mediators of vascular remodeling. We investigated the effects of PAI-039 (tiplaxtinin), a specific PAI-1 inhibitor, on SMC and EC migration in vitro and vascular remodeling in vivo. PAI-039 inhibited SMC migration through collagen gels, including those supplemented with vitronectin and other extracellular matrix proteins, but did not inhibit migration of PAI-1-deficient SMCs, suggesting that its antimigratory effects were PAI-1-specific and physiologically relevant. However, PAI-039 did not inhibit EC migration. PAI-039 inhibited phosphorylation and nuclear translocation of signal transducers and activators of transcription-1 in SMCs, but had no discernable effect on signal transducer and activator of transcription-1 signaling in ECs. Expression of low-density lipoprotein receptor-related protein 1, a motogenic PAI-1 receptor that activates Janus kinase/signal transducers and activators of transcription-1 signaling, was markedly lower in ECs than in SMCs. Notably, PAI-039 significantly inhibited intimal hyperplasia and inflammation in murine models of adverse vascular remodeling, but did not adversely affect re-endothelialization after endothelium-denuding mechanical vascular injury. PAI-039 inhibits SMC migration and intimal hyperplasia, while having no inhibitory effect on ECs, which seems to be because of differences in PAI-1-dependent low-density lipoprotein receptor-related protein 1/Janus kinase/signal transducer and activator of transcription-1 signaling between SMCs and ECs. These findings suggest that PAI-1 may be an important therapeutic target in obstructive vascular diseases characterized by

  10. Structure of 'linkerless' hydroxamic acid inhibitor-HDAC8 complex confirms the formation of an isoform-specific subpocket.

    PubMed

    Tabackman, Alexa A; Frankson, Rochelle; Marsan, Eric S; Perry, Kay; Cole, Kathryn E

    2016-09-01

    Histone deacetylases (HDACs) catalyze the hydrolysis of acetylated lysine side chains in histone and non-histone proteins, and play a critical role in the regulation of many biological processes, including cell differentiation, proliferation, senescence, and apoptosis. Aberrant HDAC activity is associated with cancer, making these enzymes important targets for drug design. In general, HDAC inhibitors (HDACi) block the proliferation of tumor cells by inducing cell differentiation, cell cycle arrest, and/or apoptosis, and comprise some of the leading therapies in cancer treatments. To date, four HDACi have been FDA approved for the treatment of cancers: suberoylanilide hydroxamic acid (SAHA, Vorinostat, Zolinza®), romidepsin (FK228, Istodax®), belinostat (Beleodaq®), and panobinostat (Farydak®). Most current inhibitors are pan-HDACi, and non-selectively target a number of HDAC isoforms. Six previously reported HDACi were rationally designed, however, to target a unique sub-pocket found only in HDAC8. While these inhibitors were indeed potent against HDAC8, and even demonstrated specificity for HDAC8 over HDACs 1 and 6, there were no structural data to confirm the mode of binding. Here we report the X-ray crystal structure of Compound 6 complexed with HDAC8 to 1.98Å resolution. We also describe the use of molecular docking studies to explore the binding interactions of the other 5 related HDACi. Our studies confirm that the HDACi induce the formation of and bind in the HDAC8-specific subpocket, offering insights into isoform-specific inhibition.

  11. Suppression of FVIII Inhibitor Formation in Hemophilic Mice by Delivery of Transgene Modified Apoptotic Fibroblasts

    PubMed Central

    Su, Rui-Jun; Epp, Angela; Latchman, Yvette; Bolgiano, Doug; Pipe, Steven W; Josephson, Neil C

    2009-01-01

    The development of inhibitory antibodies to factor VIII (FVIII) is currently the most significant complication of FVIII replacement therapy in the management of patients with severe hemophilia A. Immune tolerance protocols for the eradication of inhibitors require daily delivery of intravenous FVIII for at least 6 months and are unsuccessful in 20–40% of treated patients. We hypothesize that tolerance can be induced more efficiently and reliably by delivery of FVIII antigen within autologous apoptotic cells (ACs). In this study, we demonstrated suppression of the T cell and inhibitor responses to FVIII by infusion of FVIII expression vector modified apoptotic syngeneic fibroblasts in both naive and preimmunized hemophilia A mice. ACs without FVIII antigen exerted modest generalized immune suppression mediated by anti-inflammatory signals. However, FVIII expressing apoptotic syngeneic fibroblasts produced much stronger antigen-specific immune suppression. Mice treated with these fibroblasts generated CD4+ T cells that suppressed the immune response to FVIII after adoptive transfer into naive recipients and antigen-specific CD4+CD25+ regulatory T cells (Tregs) that inhibited the proliferation of FVIII responsive effector T cells in vitro. These preclinical results demonstrate the potential for using FVIII vector modified autologous ACs to treat high-titer inhibitors in patients with hemophilia A. PMID:19755963

  12. Design, synthesis, and biological activity of diaryl ether inhibitors of Toxoplasma gondii enoyl reductase.

    PubMed

    Cheng, Gang; Muench, Stephen P; Zhou, Ying; Afanador, Gustavo A; Mui, Ernest J; Fomovska, Alina; Lai, Bo Shiun; Prigge, Sean T; Woods, Stuart; Roberts, Craig W; Hickman, Mark R; Lee, Patty J; Leed, Susan E; Auschwitz, Jennifer M; Rice, David W; McLeod, Rima

    2013-04-01

    Triclosan is a potent inhibitor of Toxoplasma gondii enoyl reductase (TgENR), which is an essential enzyme for parasite survival. In view of triclosan's poor druggability, which limits its therapeutic use, a new set of B-ring modified analogs were designed to optimize its physico-chemical properties. These derivatives were synthesized and evaluated by in vitro assay and TgENR enzyme assay. Some analogs display improved solubility, permeability and a comparable MIC50 value to that of triclosan. Modeling of these inhibitors revealed the same overall binding mode with the enzyme as triclosan, but the B-ring modifications have additional interactions with the strongly conserved Asn130.

  13. Design and synthesis of disubstituted thiophene and thiazole based inhibitors of JNK

    SciTech Connect

    Hom, Roy K.; Bowers, Simeon; Sealy, Jennifer M.; Truong, Anh P.; Probst, Gary D.; Neitzel, Martin L.; Neitz, R. Jeffrey; Fang, Larry; Brogley, Louis; Wu, Jing; Konradi, Andrei W.; Sham, Hing L.; Tóth, Gergely; Pan, Hu; Yao, Nanhua; Artis, Dean R.; Quinn, Kevin; Sauer, John-Michael; Powell, Kyle; Ren, Zhao; Bard, Frédérique; Yednock, Ted A.; Griswold-Prenner, Irene

    2012-02-28

    From high throughput screening, we discovered compound 1, the prototype for a series of disubstituted thiophene inhibitors of JNK which is selective towards closely related MAP kinases p38 and Erk2. Herein we describe the evolution of these compounds to a novel class of thiophene and thiazole JNK inhibitors that retain favorable solubility, permeability, and P-gp properties for development as CNS agents for treatment of neurodegeneration. Compound 61 demonstrated JNK3 IC{sub 50} = 77 nM and retained the excellent broad kinase selectivity observed for the series.

  14. Design, synthesis and biological evaluation of bambuterol analogues as novel inhibitors of butyrylcholinesterase.

    PubMed

    Wu, Jie; Tian, Yiguang; Wang, Shanping; Pistolozzi, Marco; Jin, Ya; Zhou, Ting; Roy, Gaurab; Xu, Ling; Tan, Wen

    2017-01-27

    An increase activity of butyrylcholinesterase is believed to contribute to Alzheimer's disease. Bambuterol is a known potent inhibitor of butyrylcholinesterase, but it has undesired cardiac effects and less lipophilicity. Thirteen bambuterol analogues were synthesized using 1-(3, 5-dihydroxyphenyl) ethanone as a starting material. In-vitro cholinesterase assay established that the majority of the compounds are specific butyrylcholinesterase inhibitors. Out of the 13 compounds, two bambuterol derivatives, BD-6 and BD-11 exhibited similar efficacies in inhibiting butyrylcholinesterase with fewer effects on heart and enhanced possibilities of permeating through the blood-brain barrier as compared to bambuterol. These bambuterol analogues may provide better alternatives for treatments of Alzheimer's disease.

  15. Design, Synthesis and Biological Evaluation of Biphenylamide Derivatives as Hsp90 C-terminal Inhibitors

    PubMed Central

    Zhao, Huiping; Garg, Gaurav; Zhao, Jinbo; Moroni, Elisabetta; Girgis, Antwan; Franco, Lucas S.; Singh, Swapnil; Colombo, Giorgio; Blagg, Brian S. J.

    2015-01-01

    Modulation of Hsp90 C-terminal function represents a promising therapeutic approach for the treatment of cancer and neurodegenerative diseases. Current drug discovery efforts toward Hsp90 C-terminal inhibition focus on novobiocin, an antibiotic that was transformed into an Hsp90 inhibitor. Based on structural information obtained during the development of novobiocin derivatives and molecular docking studies, scaffolds containing a biphenyl moiety in lieu of the coumarin ring present in novobiocin were identified as new Hsp90 C-terminal inhibitors. Structure-activity relationship studies produced new derivatives that inhibit the proliferation of breast cancer cell lines at nanomolar concentrations, which corresponded directly with Hsp90 inhibition. PMID:25462258

  16. New 7,8-benzoflavanones as potent aromatase inhibitors: synthesis and biological evaluation.

    PubMed

    Yahiaoui, Samir; Fagnere, Catherine; Pouget, Christelle; Buxeraud, Jacques; Chulia, Albert-José

    2008-02-01

    Some natural compounds such as flavonoids are known to possess a moderate inhibitory activity against aromatase, this enzyme being an interesting target for hormone-dependent breast cancer treatment. It has been demonstrated that the modulation of flavonoid skeleton could increase anti-aromatase effect. Therefore, new 7,8-benzoflavanones were synthesized and tested for their activity toward aromatase inhibition. It was observed that the introduction of a benzo ring at position C-7 and C-8 on flavanone skeleton led to new potent aromatase inhibitors, the resulting 7,8-benzoflavanones being until nine times more potent than aminogluthetimide (the first aromatase inhibitor used clinically).

  17. Design and synthesis of 3,3'-biscoumarin-based c-Met inhibitors.

    PubMed

    Xu, Jimin; Ai, Jing; Liu, Sheng; Peng, Xia; Yu, Linqian; Geng, Meiyu; Nan, Fajun

    2014-06-14

    A library of biscoumarin-based c-Met inhibitors was synthesized, based on optimization of 3,3'-biscoumarin hit 3, which was identified as a non-ATP competitive inhibitor of c-Met from a diverse library of coumarin derivatives. Among these compounds, 38 and 40 not only showed potent enzyme activities with IC50 values of 107 nM and 30 nM, respectively, but also inhibited c-Met phosphorylation in BaF3/TPR-Met and EBC-1 cells.

  18. Asymmetric synthesis and evaluation of epoxy-α-acyloxycarboxamides as selective inhibitors of cathepsin L.

    PubMed

    Dos Santos, Deborah A; Deobald, Anna Maria; Cornelio, Vivian E; Ávila, Roberta M D; Cornea, Renata C; Bernasconi, Gilberto C R; Paixão, Marcio W; Vieira, Paulo C; Corrêa, Arlene G

    2017-09-01

    Cathepsin L plays important roles in physiological processes as well as in the development of many pathologies. Recently the attentions were turned to its association with tumor progress what makes essential the development of more potent and selective inhibitors. In this work, epoxipeptidomimetics were investigated as new cathepsin inhibitors. This class of compounds is straightforward obtained by using a green one-pot asymmetric epoxidation/Passerini 3-MCR. A small library of 17 compounds was evaluated against cathepsin L, and among them LSPN423 showed to be the most potent. Investigations of the mechanism suggested a tight binding uncompetitive inhibition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Synthesis of N-glyoxylyl peptides and their in vitro evaluation as HIV-1 protease inhibitors.

    PubMed

    Qasmi, D; de Rosny, E; René, L; Badet, B; Vergely, I; Boggetto, N; Reboud-Ravaux, M

    1997-04-01

    A series of novel synthetic peptides containing an N-terminal glyoxylyl function (CHOCO-) have been tested as inhibitors of HIV-1 protease. The N-glyoxylyl peptide CHOCO-Pro-Ile-Val-NH2, which fulfills the specificity requirements of the MA/CA protease cleavage site together with the criteria of transition state analogue of the catalyzed reaction, was found to be a moderate competitive inhibitor although favorable interactions were visualized between its hydrated form and the catalytic aspartates using molecular modeling. Increasing the length of the peptide sequence led to compounds acting only as substrates.

  20. Synthesis and biological evaluation of nojirimycin- and pyrrolidine-based trehalase inhibitors

    PubMed Central

    Bini, Davide; Cardona, Francesca; Forcella, Matilde; Parmeggiani, Camilla; Parenti, Paolo; Nicotra, Francesco

    2012-01-01

    Summary A small set of nojirimycin- and pyrrolidine-based iminosugar derivatives has been synthesized and evaluated as potential inhibitors of porcine and insect trehalases. Compounds 12, 13 and 20 proved to be active against both insect and porcine trehalases with selectivity towards the insect glycosidase, while compounds 10, 14 and 16 behaved as inhibitors only of insect trehalase. Despite the fact that the activity was found in the micromolar range, these findings may help in elucidating the structural features of this class of enzymes of different origin, which are still scarcely characterised. PMID:22509223

  1. High-throughput synthesis of conopeptides: a safety-catch linker approach enabling disulfide formation in 96-well format.

    PubMed

    Brust, Andreas; Tickle, Alice E

    2007-02-01

    Conotoxins exhibit a high degree of selectivity and potency for a range of pharmacologically relevant targets. The rapid access to libraries of conotoxin analogues, containing multiple intramolecular disulfide bridges for use in drug development, can be a very labor intensive, multi-step task. This work describes a high-throughput method for the synthesis of cystine-bridged conopeptides. Peptides were assembled on a peptide synthesizer employing the Fmoc solid-phase strategy using a safety-catch amide linker (SCAL). Side-chain protecting groups were removed on solid phase before SCAL activation with ammonium iodide in TFA, finally releasing the peptide into the TFA solution. Disulfide bond formation was performed in the cleavage mixture employing DMSO. This improved method allows mixtures of oxidized peptides to be obtained in parallel directly from a peptide synthesizer. A single HPLC purification of the resulting crude oxidized material produced peptides of > 95% purity.

  2. Design, synthesis, and evaluation of bioactive molecules; Quantification of tricyclic pyrones from pharmacokinetic studies; Nanodelivery of siRNA; and Synthesis of viral protease inhibitors

    NASA Astrophysics Data System (ADS)

    Weerasekara, Sahani Manjitha

    simulation studies of dsRNA with these polymers revealed that nanoparticles can be formed between dsRNA and modified chitosan and PVP polymers. Nanocarriers of hydroxylated PVP (HO-PVP) and chitosan conjugated with polyethylene glycol (PEG) were synthesized, and analyzed using IR spectroscopy. Particle sizes and morphology were evaluated using AFM and encapsulation was studied using UV spectroscopy. However, the formation of stable nanoparticles with dsRNA could not be achieved with either of the polymers, and further efforts are ongoing to discover a better nanocarrier for nanodelivery of siRNA by using chitosan-galactose nanocarrier. In our efforts to discover a novel class of tripeptidyl anti-norovirus compounds that can strongly inhibit NV3CLpro, a set of tripeptidyl molecules were synthesized by modifying the P1 - P3 of the substrate peptide including a warhead. It was found that the replacement of P1 glutamine surrogate with triazole functionality does not improve the inhibitory activities of the compounds. In addition, the synthesis of a known dipeptidyl compound (GC376) was carried out for evaluating its efficacy on feline infectious peritonitis (FIP) in cats.

  3. Effects of systemic administration of histone deacetylase inhibitor on memory formation and immediate early gene expression in chick brain.

    PubMed

    Tiunova, A A; Toropova, K A; Konovalova, E V; Anokhin, K V

    2012-09-01

    We studied the effects of histone deacetylase inhibitor that stimulates transcriptional activity via histone hyperacetylation on memory formation. Sodium butyrate and sodium valproate enhanced memory in chicks following "weak" training with memory transfer into long-term state. Quantitative analysis of c-Fos and ZENK transcriptional factor gene expression in six structures of chick brain revealed induction of these genes in the structures involved in this type of learning. Sodium valproate administration did not increase this induction, but even reduced it. These findings suggest that sodium butyrate and sodium valproate exert cognitive stimulating action in the "weak" memory formation paradigm, and that this effect is not mediated via enhanced expression of transcriptional factors, which are traditionally considered as "molecular switcher" for memory transfer into long-term state.

  4. Design, synthesis and insight into the structure-activity relationship of 1,3-disubstituted indazoles as novel HIF-1 inhibitors.

    PubMed

    An, Hongchan; Kim, Nam-Jung; Jung, Jong-Wha; Jang, Hannah; Park, Jong-Wan; Suh, Young-Ger

    2011-11-01

    Design, synthesis and insight into the structure-activity relationship (SAR) of 1,3-disubstituted indazoles as novel HIF-1 inhibitors are described. In particular, the substituted furan moiety on indazole skeleton as well as its substitution pattern turns out crucial for the high HIF-1 inhibition.

  5. Synthesis of a novel UDP-carbasugar as UDP-galactopyranose mutase inhibitor.

    PubMed

    El Bkassiny, Sandy; N'Go, Inès; Sevrain, Charlotte M; Tikad, Abdellatif; Vincent, Stéphane P

    2014-05-02

    The multistep synthesis of a novel UDP-C-cyclohexene, designed as a high energy intermediate analogue of the UDP-galactopyranose mutase (UGM) catalyzed isomerization reaction, is reported. The synthesis of the central carbasugar involved the preparation of a galactitol derivative bearing two olefins necessary for the construction of the cyclohexene ring by a ring-closing metathesis as a key step. Further successive phosphonylation, deprotection, and UMP coupling provided the target molecule. The final molecule was assayed against UGM and compared with UDP-C-Galf, the C-glycosidic UGM substrate analogue.

  6. Bacterial Lysis through Interference with Peptidoglycan Synthesis Increases Biofilm Formation by Nontypeable Haemophilus influenzae

    PubMed Central

    Puig, Carmen; Merlos, Alexandra; Viñas, Miguel; de Jonge, Marien I.; Liñares, Josefina; Ardanuy, Carmen

    2017-01-01

    ABSTRACT Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen that mainly causes otitis media in children and community-acquired pneumonia or exacerbations of chronic obstructive pulmonary disease in adults. A large variety of studies suggest that biofilm formation by NTHi may be an important step in the pathogenesis of this bacterium. However, the underlying mechanisms involved in this process are poorly elucidated. In this study, we used a transposon mutant library to identify bacterial genes involved in biofilm formation. The growth and biofilm formation of 4,172 transposon mutants were determined, and the involvement of the identified genes in biofilm formation was validated in in vitro experiments. Here, we present experimental data showing that increased bacterial lysis, through interference with peptidoglycan synthesis, results in elevated levels of extracellular DNA, which increased biofilm formation. Interestingly, similar results were obtained with subinhibitory concentrations of β-lactam antibiotics, known to interfere with peptidoglycan synthesis, but such an effect does not appear with other classes of antibiotics. These results indicate that treatment with β-lactam antibiotics, especially for β-lactam-resistant NTHi isolates, might increase resistance to antibiotics by increasing biofilm formation. IMPORTANCE Most, if not all, bacteria form a biofilm, a multicellular structure that protects them from antimicrobial actions of the host immune system and affords resistance to antibiotics. The latter is especially disturbing with the increase in multiresistant bacterial clones worldwide. Bacterial biofilm formation is a multistep process that starts with surface adhesion, after which attached bacteria divide and give rise to biomass. The actual steps required for Haemophilus influenzae biofilm formation are largely not known. We show that interference with peptidoglycan biosynthesis increases biofilm formation because of the release

  7. Precursor soot synthesis of fullerenes and nanotubes without formation of carbonaceous soot

    SciTech Connect

    Reilly, Peter T. A.

    2007-03-20

    The present invention is a method for the synthesis of fullerenes and/or nanotubes from precursor soot without the formation of carbonaceous soot. The method comprises the pyrolysis of a hydrocarbon fuel source by heating the fuel source at a sufficient temperature to transform the fuel source to a condensed hydrocarbon. The condensed hydrocarbon is a reaction medium comprising precursor soot wherein hydrogen exchange occurs within the reaction medium to form reactive radicals which cause continuous rearrangement of the carbon skeletal structure of the condensed hydrocarbon. Then, inducing dehydrogenation of the precursor soot to form fullerenes and/or nanotubes free from the formation of carbonaceous soot by continued heating at the sufficient temperature and by regulating the carbon to hydrogen ratio within the reaction medium. The dehydrogenation process produces hydrogen gas as a by-product. The method of the present invention in another embodiment is also a continuous synthesis process having a continuous supply of the fuel source. The method of the present invention can also be a continuous cyclic synthesis process wherein the reaction medium is fed back into the system as a fuel source after extraction of the fullerenes and/or nanotube products. The method of the present invention is also a method for producing precursor soot in bulk quantity, then forming fullerenes and/or nanotubes from the precursor bulk.

  8. Neuronal response of the hippocampal formation to injury: blood flow, glucose metabolism, and protein synthesis

    SciTech Connect

    Kameyama, M.; Wasterlain, C.G.; Ackermann, R.F.; Finch, D.; Lear, J.; Kuhl, D.E.

    1983-02-01

    The reaction of the hippocampal formation to entorhinal lesions was studied from the viewpoints of cerebral blood flow ((/sup 123/I)isopropyl-iodoamphetamine(IMP))-glucose utilization ((/sup 14/C)2-deoxyglucose), and protein synthesis ((/sup 14/C)leucine), using single- and double-label autoradiography. Researchers' studies showed decreased glucose utilization in the inner part, and increased glucose utilization in the outer part of the molecular layer of the dentate gyrus, starting 3 days after the lesion; increased uptake of (/sup 123/I)IMP around the lesion from 1 to 3 days postlesion; and starting 3 days after the lesion, marked decrease in (/sup 14/C)leucine incorporation into proteins and cell loss in the dorsal CA1 and dorsal subiculum in about one-half of the rats. These changes were present only in animals with lesions which invaded the ventral hippocampal formation in which axons of CA1 cells travel. By contrast, transsection of the 3rd and 4th cranial nerves resulted, 3 to 9 days after injury, in a striking increase in protein synthesis in the oculomotor and trochlear nuclei. These results raise the possibility that in some neurons the failure of central regeneration may result from the cell's inability to increase its rate of protein synthesis in response to axonal injury.

  9. Synthesis and biological evaluation of alkenyldiarylmethane HIV-1 non-nucleoside reverse transcriptase inhibitors that possess increased hydrolytic stability.

    PubMed

    Cullen, Matthew D; Deng, Bo-Liang; Hartman, Tracy L; Watson, Karen M; Buckheit, Robert W; Pannecouque, Christophe; Clercq, Erik De; Cushman, Mark

    2007-10-04

    Non-nucleoside inhibitors of HIV reverse transcriptase (NNRTIs), albeit not the mainstays of HIV/AIDS treatment, have become increasingly important in highly active antiretroviral therapy (HAART) due to their unique mechanism of action. Several years ago our group identified the alkenyldiarylmethanes (ADAMs) as a potent and novel class of NNRTIs; however, the most active compounds were found to be metabolically unstable. Subsequent work has led to the synthesis of 33 analogues, with improved metabolic profiles, through the replacement of labile esters with various heterocycles, nitriles, and thioesters. As a result, a number of hydrolytically stable NNRTIs were identified with anti-HIV activity in the nanomolar concentration range. Furthermore, an improved pharmacophore model has been developed based on the new ADAM series, in which a salicylic acid-derived aryl ring is oriented cis to the side chain and the aryl ring that is trans to the side chain contains a hydrogen bond acceptor site within the plane of the ring.

  10. Synthesis of chiral ND-322, ND-364 and ND-364 derivatives as selective inhibitors of human gelatinase.

    PubMed

    Yan, Yugang; Chen, Xueying; Yang, Xinying; Zhang, Jian; Xu, Wenfang; Zhang, Yingjie

    2015-10-15

    Compounds 10 (ND-322) and 15 (ND-364) are potent selective inhibitors for gelatinases, matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase 9 (MMP9). However, both of them are racemates. Herein we report facile synthesis of optically active (R)- and (S)-enantiomers of compounds 10 and 15. And the sulfonyl of 15 was transformed to sulfinyl to obtain four epimeric mixtures. All synthesized thiirane-based compounds were evaluated in MMP2 and MMP9 inhibitory assays. Our results indicated that the configuration of thiirane moiety had little effects on gelatinase inhibition, but the substitution of sulfinyl for sulfonyl was detrimental to gelatinase inhibition. Besides, all target compounds exhibited no inhibition against other two Zn(2+) dependant metalloproteases, aminopeptidase N (APN) and histone deacetylases (HDACs), which confirmed the unique Zn(2+) chelation mechanism of thiirane moiety against gelatinases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Novel 2-arylazoimidazole derivatives as inhibitors of Trypanosoma cruzi proliferation: Synthesis and evaluation of their biological activity.

    PubMed

    Salerno, Alejandra; Celentano, Ana M; López, Julieta; Lara, Virginia; Gaozza, Carlos; Balcazar, Darío E; Carrillo, Carolina; Frank, Fernanda M; Blanco, María M

    2017-01-05

    In this work, the synthesis of a series of 2-arylazoimidazole derivatives 6-20 has been achieved through the reaction of imidazole with aryldiazonium salts, followed by ultrasound-assisted alkylation. This approach has important advantages including higher yield, shorter reaction times and milder reaction conditions. The structures of the compounds obtained were determined by MS, IR; and (1)H and (13)C NMR. The anti-Trypanosoma cruzi activity of the 15 compounds obtained was evaluated. Two compounds with piperidino substituents in the carboxamide moiety proved to be effective inhibitors of epimastigote proliferation, obtaining inhibition values comparable to those achieved with the reference drug Benznidazole. Besides, these compounds displayed low cytotoxicity on mammalian cells. In vivo, both compounds protected mice against a challenge with a lethal Trypanosoma cruzi strain. These results allow us to propose 2-arylazoimidazoles as lead compounds for the design of novel drugs to treat Chagas' disease.

  12. Locomotion Inhibition of Cimex lectularius L. Following Topical, Sublethal Dose Application of the Chitin Synthesis Inhibitor Lufenuron

    PubMed Central

    Campbell, Brittany; Baldwin, Rebecca; Koehler, Philip

    2017-01-01

    To date, few studies have evaluated chitin synthesis inhibitors against bed bugs, although they would provide an alternative mode of action to circumvent insecticide resistance. Acute and sublethal effects of lufenuron were evaluated against two strains of the common bed bug. Combined acute and sublethal effects were used to calculate effective doses. The dose that was effective against 50% of Harlan strain bed bugs was 0.0081% (w/v), and was much higher against Bradenton strain bed bugs (1.11% w/v). Sublethal doses were chosen to determine the effect that leg abnormalities had on pulling force. Both Harlan and Bradenton strain bed bugs had significantly lower locomotion ability (p < 0.0001) following topical application of lufenuron. The observed sublethal effects that limit locomotion could prevent bed bugs from moving within a domicile and taking a blood meal, subsequently reducing a bed bug population over time. PMID:28862646

  13. Diastereoselective synthesis and molecular docking studies of novel fused tetrahydropyridine derivatives as new inhibitors of HIV protease

    NASA Astrophysics Data System (ADS)

    Mohammadi, Ali A.; Taheri, Salman; Amouzegar, Ali; Ahdenov, Reza; Halvagar, Mohammad Reza; Sadr, Ahmad Shahir

    2017-07-01

    An efficient one-pot, catalyst-free, and four-components procedure for the synthesis of novel 10b-hydroxy-4-nitro-5-phenyl-2,3,5,5a-tetrahydro-1H-imidazo[1,2-a]indeno[2,1-e]pyridin-6(10bH)-one derivatives from corresponding diamine, nitro ketene dithioacetal, aldehydes and 1,3-indandione in ethanol has been achieved upon a Knoevenagel condensation-Michael addition-tautomerism-cyclisation sequence. All the newly synthesized compounds were screened for molecular docking studies. Molecular docking studies were carried out using the crystal structure of HIV protease enzyme. Some of the compounds obtain minimum binding energy and good affinity toward the active pocket of HIV protease enzyme in compare with Saquinavir as a standard HIV protease inhibitor.

  14. Locomotion Inhibition of Cimex lectularius L. Following Topical, Sublethal Dose Application of the Chitin Synthesis Inhibitor Lufenuron.

    PubMed

    Campbell, Brittany; Baldwin, Rebecca; Koehler, Philip

    2017-09-01

    To date, few studies have evaluated chitin synthesis inhibitors against bed bugs, although they would provide an alternative mode of action to circumvent insecticide resistance. Acute and sublethal effects of lufenuron were evaluated against two strains of the common bed bug. Combined acute and sublethal effects were used to calculate effective doses. The dose that was effective against 50% of Harlan strain bed bugs was 0.0081% (w/v), and was much higher against Bradenton strain bed bugs (1.11% w/v). Sublethal doses were chosen to determine the effect that leg abnormalities had on pulling force. Both Harlan and Bradenton strain bed bugs had significantly lower locomotion ability (p < 0.0001) following topical application of lufenuron. The observed sublethal effects that limit locomotion could prevent bed bugs from moving within a domicile and taking a blood meal, subsequently reducing a bed bug population over time.

  15. Synthesis and Evaluation of Derivatives of the Proteasome Deubiquitinase Inhibitor b-AP15

    PubMed Central

    Wang, Xin; D'Arcy, Pádraig; Caulfield, Thomas R.; Paulus, Aneel; Chitta, Kasyapa; Mohanty, Chitralekha; Gullbo, Joachim; Chanan-Khan, Asher; Linder, Stig

    2016-01-01

    The ubiquitin–proteasome system (UPS) is increasingly recognized as a therapeutic target for the development of anticancer therapies. The success of the 20S proteasome core particle (20S CP) inhibitor bortezomib in the clinical management of multiple myeloma has raised the possibility of identifying other UPS components for therapeutic intervention. We previously identified the small molecule b-AP15 as an inhibitor of 19S proteasome deubiquitinase (DUB) activity. Building upon our previous data, we performed a structure–activity relationship (SAR) study on b-AP15 and identified VLX1570 as an analog with promising properties, including enhanced potency and improved solubility in aqueous solution. In silico modeling was consistent with interaction of VLX1570 with key cysteine residues located at the active sites of the proteasome DUBs USP14 and UCHL5. VLX1570 was found to inhibit proteasome deubiquitinase activity in vitro in a manner consistent with competitive inhibition. Furthermore, using active-site-directed probes, VLX1570 also inhibited proteasome DUB activity in exposed cells. Importantly, VLX1570 did not show inhibitory activity on a panel of recombinant non-proteasome DUBs, on recombinant kinases, or on caspase-3 activity, suggesting that VLX1570 is not an overtly reactive general enzyme inhibitor. Taken together, our data shows the chemical and biological properties of VLX1570 as an optimized proteasome DUB inhibitor. PMID:25854145

  16. Synthesis and evaluation of novel quinolinones as HIV-1 reverse transcriptase inhibitors.

    PubMed

    Patel, M; McHugh, R J; Cordova, B C; Klabe, R M; Bacheler, L T; Erickson-Viitanen, S; Rodgers, J D

    2001-07-23

    A series of 4,4-disubstituted quinolinones was prepared and evaluated as HIV-1 reverse transcriptase inhibitors. The C-3 substituted compound 9h displayed improved antiviral activity against clinically significant single (K103N) and double (K103N/L100I) mutant viruses.

  17. An Efficient Synthesis of 5-Amido-3-Hydroxy-4-Pyrones as Inhibitors of Matrix Metalloproteinases

    PubMed Central

    Yan, Yi-Long; Cohen, Seth M.

    2008-01-01

    3-Hydroxy-4-pyrones are a class of important metal chelators with versatile medicinal applications. An efficient pathway for the preparation of new 5-amido-3-hydroxy-4-pyrone derivatives has been developed. The synthesized 5-amido-3-hydroxy-4-pyrones have been evaluated as inhibitors of matrix metalloproteinases. PMID:17521196

  18. Cyanopeptide analogues: new lead structures for the design and synthesis of new thrombin inhibitors.

    PubMed

    Radau, G; Stürzebecher, J

    2002-11-01

    This contribution deals with the structure-based design and syntheses of the new serine protease inhibitors RA-1001 and RA-1002, which are analogues of the blue-green algae derived cyanopeptide aeruginosin 98-B. Both compounds inhibit thrombin with Ki values of 5.6 microM and 8.7 microM, respectively.

  19. New hydroxamate inhibitors of neurotensin-degrading enzymes. Synthesis and enzyme active-site recognition.

    PubMed

    Bourdel, E; Doulut, S; Jarretou, G; Labbe-Jullie, C; Fehrentz, J A; Doumbia, O; Kitabgi, P; Martinez, J

    1996-08-01

    Selective and mixed inhibitors of the three zinc metallopeptidases that degrade neurotensin (NT), e.g. endopeptidase 24-16 (EC 3.4.24.16), endopeptidase 24-11 (EC 3.4.24.11 or neutral endopeptidase, NEP) and endopeptidase 24-15 (EC 3.4.24.15), and leucine-aminopeptidase (type IV-S), that degrades the NT-related peptides, Neuromedin N (NN), are of great interest. On the structural basis of compound JMV 390-1 (N-[3-[(hydroxyamino)carbonyl]-1-oxo-2(R)-benzylpropyl]-L- isoleucyl-L-leucine), which was a full inhibitor of the major NT degrading enzymes, several hydroxamate inhibitors corresponding to the general formula HONHCO-CH2-CH(CH2-C6H5)CO-X-Y-OH (with X-Y = dipeptide) have been synthesized. Compound 7a (X-Y = Ile-Ala) was nearly 40-times more potent in inhibiting EC 24-16 than NEP and more than 800-times more potent than EC 24-15, with an IC50 (12 nM) almost equivalent to that of compound JMV 390-1. Therefore, this compound is an interesting selective inhibitor of EC 24-16, and should be an interesting probe to explore the physiological involvement of EC 24-16 in the metabolism of neurotensin.

  20. Synthesis and biological evaluation of analogues of AKT (protein kinase B) inhibitor-IV.

    PubMed

    Sun, Qi; Wu, Runzhi; Cai, Sutang; Lin, Yuan; Sellers, Llewlyn; Sakamoto, Kaori; He, Biao; Peterson, Blake R

    2011-03-10

    Inhibitors of the PI3-kinase/AKT (protein kinase B) pathway are under investigation as anticancer and antiviral agents. The benzimidazole derivative AKT inhibitor-IV (ChemBridge 5233705) affects this pathway and exhibits potent anticancer and antiviral activity. To probe its biological activity, we synthesized AKT inhibitor-IV and 21 analogues using a novel six-step route based on ZrCl(4)-catalyzed cyclization of 1,2-arylenediamines with α,β-unsaturated aldehydes. We examined effects on viability of HeLa carcinoma cells, viability of normal human cells (NHBE), replication of recombinant parainfluenza virus 5 (PIV5) in HeLa cells, and replication of the intracellular bacterium Mycobacterium fortuitum in HeLa cells. Replacement of the benzimidazole N-ethyl substitutent of AKT inhibitor-IV with N-hexyl and N-dodecyl groups enhanced antiviral activity and cytotoxicity against the cancer cell line, but these compounds showed substantially lower toxicity (from 6-fold to >20-fold) against NHBE cells and no effect on M. fortuitum, suggesting inhibition of one or more host protein(s) required for proliferation of cancer cells and PIV5. The key structural elements identified here may facilitate identification of targets of this highly biologically active scaffold.

  1. Synthesis of PSA Inhibitors as SPECT- and PET-Based Imaging Agents for Prostate Cancer

    DTIC Science & Technology

    2011-06-01

    for their ability to inhibit PSA and chymotrypsin. 15. SUBJECT TERMS Prostate cancer , PSA inhibitors, boronic acids, peptidomimetics, serine protease...prostate cancer . First, all men undergoing androgen ablation, eventually relapse and no longer respond to hormone treatment . Therefore, there is an...Imaging Agents for Prostate Cancer PRINCIPAL INVESTIGATOR: Maya Kostova, Ph.D. CONTRACTING ORGANIZATION: Johns Hopkins University

  2. Novel protein kinase C inhibitors: synthesis and PKC inhibition of beta-substituted polythiophene derivatives.

    PubMed

    Xu, W C; Zhou, Q; Ashendel, C L; Chang, C T; Chang, C J

    1999-08-02

    A series of beta-substituted polythiophene derivatives was synthesized through palladium-catalyzed coupling reaction. Their structure-protein kinase C (PKC) inhibitory activity relationship was studied. The carboxaldehyde and hydroxymethyl derivatives of alpha-terthiophene were potent PKC inhibitors (IC50 = 10(-7) M).

  3. Stereoselective synthesis of 3,3-diarylacrylonitriles as tubulin polymerization inhibitors.

    PubMed

    Fang, Zhenglai; Song, Yunlong; Sarkar, Taradas; Hamel, Ernest; Fogler, William E; Agoston, Gregory E; Fanwick, Phillip E; Cushman, Mark

    2008-06-06

    A series of 3,3-diarylacrylonitriles were synthesized stereoselectively as tubulin polymerization inhibitors for potential use in cancer chemotherapy. This synthetic route features stannylcupration and palladium-catalyzed Stille cross-coupling chemistry, allowing both E and Z isomers of 3,3-diarylacrylonitriles to be prepared in a very short sequence of reactions.

  4. Design and synthesis of potent, non-peptidic inhibitors of HPTPbeta.

    PubMed

    Amarasinghe, Kande K D; Evdokimov, Artem G; Evidokimov, Artem G; Xu, Kevin; Clark, Cynthia M; Maier, Matthew B; Srivastava, Anil; Colson, Anny-Odile; Gerwe, Gina S; Stake, George E; Howard, Brian W; Pokross, Matthew E; Gray, Jeffrey L; Peters, Kevin G

    2006-08-15

    The sulfamic acid phosphotyrosine mimetic was coupled with a previously known malonate template to obtain highly selective and potent inhibitors of HPTPbeta. Potentially hydrolyzable malonate ester functionalities were replaced with 1,2,4-oxadiazoles without a significant effect on HPTPbeta potency.

  5. Synthesis of 11-Thialinoleic Acid and 14-Thialinoleic Acid, Inhibitors of Soybean and Human Lipoxygenases

    PubMed Central

    Jacquot, Cyril; McGinley, Chris M.; Plata, Erik; Holman, Theodore R.

    2010-01-01

    Lipoxygenases catalyse the oxidation of polyunsaturated fatty acids and have been invoked in many diseases including cancer, atherosclerosis and Alzheimer’s disease. Currently, no X-ray structures are available with substrate or substrate analogues bound in a productive conformation. Such structures would be very useful for examining interactions between substrate and active site residues. Reported here are the syntheses of linoleic acid analogues containing a sulphur atom at the 11 or 14 positions. The key steps in the syntheses were the incorporation of sulphur using nucleophilic attack of metallated alkynes on electrophilic sulphur compounds and the subsequent stereospecific tantalum-mediated reduction of the alkynylsulphide to the cis-alkenylsulphide. Kinetic assays performed with soybean lipoxygenase-1 showed that both 11-thialinoleic acid and 14-thialinoleic acid were competitive inhibitors with respect to linoleic acid with Ki values of 22 and 35 µM, respectively. On the other hand, 11-thialinoleic acid was a noncompetitive inhibitor with respect to arachidonic acid with Kis and Kii values of 48 and 36 µM, respectively. 11-Thialinoleic acid was also a noncompetitive inhibitor of human 15-lipoxygenase-1 with arachidonic acid (Kis = 11.4 µM, Kii = 18.1 µM) or linoleic acid as substrate (Kis = 20.1 µM, Kii = 20.0 µM), and a competitive inhibitor of human 12-lipoxygenase with arachidonic acid as substrate (Ki = 2.5 µM). The presence of inhibitor did not change the regioselectivity of soybean lipoxygenase-1, human 12- or 15-lipoxygenase-1. PMID:18972057

  6. Cinnamide Derivatives as Mammalian Arginase Inhibitors: Synthesis, Biological Evaluation and Molecular Docking

    PubMed Central

    Pham, Thanh-Nhat; Bordage, Simon; Pudlo, Marc; Demougeot, Céline; Thai, Khac-Minh; Girard-Thernier, Corine

    2016-01-01

    Arginases are enzymes that are involved in many human diseases and have been targeted for new treatments. Here a series of cinnamides was designed, synthesized and evaluated in vitro and in silico for their inhibitory activity against mammalian arginase. Using a microassay on purified liver bovine arginase (b-ARG I), (E)-N-(2-phenylethyl)-3,4-dihydroxycinnamide, also named caffeic acid phenylamide (CAPA), was shown to be slightly more active than our natural reference inhibitor, chlorogenic acid (IC50 = 6.9 ± 1.3 and 10.6 ± 1.6 µM, respectively) but it remained less active that the synthetic reference inhibitor Nω-hydroxy-nor-l-arginine nor-NOHA (IC50 = 1.7 ± 0.2 µM). Enzyme kinetic studies showed that CAPA was a competitive inhibitor of arginase with Ki = 5.5 ± 1 µM. Whereas the activity of nor-NOHA was retained (IC50 = 5.7 ± 0.6 µM) using a human recombinant arginase I (h-ARG I), CAPA showed poorer activity (IC50 = 60.3 ± 7.8 µM). However, our study revealed that the cinnamoyl moiety and catechol function were important for inhibitory activity. Docking results on h-ARG I demonstrated that the caffeoyl moiety could penetrate into the active-site pocket of the enzyme, and the catechol function might interact with the cofactor Mn2+ and several crucial amino acid residues involved in the hydrolysis mechanism of arginase. The results of this study suggest that 3,4-dihydroxycinnamides are worth being considered as potential mammalian arginase inhibitors, and could be useful for further research on the development of new arginase inhibitors. PMID:27690022

  7. Suppression of inhibitor formation against FVIII in a murine model of hemophilia A by oral delivery of antigens bioencapsulated in plant cells.

    PubMed

    Sherman, Alexandra; Su, Jin; Lin, Shina; Wang, Xiaomei; Herzog, Roland W; Daniell, Henry

    2014-09-04

    Hemophilia A is the X-linked bleeding disorder caused by deficiency of coagulation factor VIII (FVIII). To address serious complications of inhibitory antibody formation in current replacement therapy, we created tobacco transplastomic lines expressing FVIII antigens, heavy chain (HC) and C2, fused with the transmucosal carrier, cholera toxin B subunit. Cholera toxin B-HC and cholera toxin B-C2 fusion proteins expressed up to 80 or 370 µg/g in fresh leaves, assembled into pentameric forms, and bound to GM1 receptors. Protection of FVIII antigen through bioencapsulation in plant cells and oral delivery to the gut immune system was confirmed by immunostaining. Feeding of HC/C2 mixture substantially suppressed T helper cell responses and inhibitor formation against FVIII in mice of 2 different strain backgrounds with hemophilia A. Prolonged oral delivery was required to control inhibitor formation long-term. Substantial reduction of inhibitor titers in preimmune mice demonstrated that the protocol could also reverse inhibitor formation. Gene expression and flow cytometry analyses showed upregulation of immune suppressive cytokines (transforming growth factor β and interleukin 10). Adoptive transfer experiments confirmed an active suppression mechanism and revealed induction of CD4(+)CD25(+) and CD4(+)CD25(-) T cells that potently suppressed anti-FVIII formation. In sum, these data support plant cell-based oral tolerance for suppression of inhibitor formation against FVIII.

  8. A Two-Step Synthesis of Virstatin, a Virulence Inhibitor of "Vibrio cholerae"

    ERIC Educational Resources Information Center

    McDonald, Chriss E.

    2009-01-01

    Virstatin, an "N"-butanoic acid substituted naphthalimide, inhibits the ability of "Vibrio cholerae" to cause disease. A three-week experiment involving synthesis, purification, and spectral characterization of this compound is described. This experiment is appropriate for organic chemistry. It has been performed with three lab sections of about…

  9. Total synthesis and absolute stereochemistry of the proteasome inhibitors cystargolides A and B.

    PubMed

    Tello-Aburto, Rodolfo; Hallada, Liam P; Niroula, Doleshwar; Rogelj, Snezna

    2015-10-28

    The absolute stereochemistry of the cystargolides was determined by total synthesis. Evaluation of synthetic cystargolides and derivatives showed that the natural (2S,3R) stereochemistry is essential for activity. Moreover, benzyl esters (-)-10 and (-)-15 were found to be about 100 times more potent, and to selectively kill MCF-7 cancerous cells.

  10. A Two-Step Synthesis of Virstatin, a Virulence Inhibitor of "Vibrio cholerae"

    ERIC Educational Resources Information Center

    McDonald, Chriss E.

    2009-01-01

    Virstatin, an "N"-butanoic acid substituted naphthalimide, inhibits the ability of "Vibrio cholerae" to cause disease. A three-week experiment involving synthesis, purification, and spectral characterization of this compound is described. This experiment is appropriate for organic chemistry. It has been performed with three lab sections of about…

  11. Design, synthesis, and structure-activity relationship studies of new phenolic DNA gyrase inhibitors.

    PubMed

    Lübbers, Thomas; Angehrn, Peter; Gmünder, Hans; Herzig, Silvia

    2007-08-15

    Starting from a biased needle screening hit 3a, we report herein the design and synthesis of a series of novel 2,3-dihydroisoindol-1-ones structurally related to cyclothialidine 2 with DNA gyrase inhibitory activity. In this series, some compounds exhibited promising antibacterial activity against gram-positive bacterial strains.

  12. Total Synthesis and Absolute Stereochemistry of the Proteasome Inhibitors Cystargolides A and B

    PubMed Central

    Tello-Aburto, Rodolfo; Hallada, Liam P.; Niroula, Doleshwar; Rogelj, Snezna

    2015-01-01

    The absolute stereochemistry of the cystargolides was determined by total synthesis. Evaluation of synthetic cystargolides and derivatives showed that the natural (2S,3R) stereochemistry is essential for activity. Moreover, benzyl esters (−)-10 and (−)-15 were found to be about 100 times more potent, and to selectively kill MCF-7 cancerous cells. PMID:26400369

  13. General approach to glycosidase inhibitors. Enantioselective synthesis of deoxymannojirimycin and swainsonine.

    PubMed

    Martín, Rubén; Murruzzu, Caterina; Pericàs, Miquel A; Riera, Antoni

    2005-03-18

    [reaction: see text] Deoxymannojirimycin (2) and swainsonine (4) have been synthesized from each enantiomer of the same bicyclic carbamate precursor 7. The key intermediate was prepared by a simple and efficient three-step synthesis involving RCM of the diene 8, which in turn is easily accessible in any configuration from enantiomerically enriched 2,3-epoxy-4-penten-1-ol 9.

  14. Design, Synthesis and Structure-Activity Relationship Studies of Novel Survivin Inhibitors with Potent Anti-Proliferative Properties

    PubMed Central

    Xiao, Min; Wang, Jin; Lin, Zongtao; Lu, Yan; Li, Zhenmei; White, Stephen W.; Miller, Duane D.; Li, Wei

    2015-01-01

    The anti-apoptotic protein survivin is highly expressed in most human cancer cells, but has very low expression in normal differentiated cells. Thus survivin is considered as an attractive cancer drug target. Herein we report the design and synthesis of a series of novel survivin inhibitors based on the oxyquinoline scaffold from our recently identified hit compound UC-112. These new analogs were tested against a panel of cancer cell lines including one with multidrug-resistant phenotype. Eight of these new UC-112 analogs showed IC50 values in the nanomole range in anti-proliferative assays. The best three compounds among them along with UC-112 were submitted for NCI-60 cancer cell line screening. The results indicated that structural modification from UC-112 to our best compound 4g has improved activity by four folds (2.2 μM for UC-112 vs. 0.5 μM for 4g, average GI50 values over all cancer cell lines in the NCI-60 panel).Western blot analyses demonstrated the new compounds maintained high selectivity for survivin inhibition over other members in the inhibition of apoptosis protein family. When tested in an A375 human melanoma xenograft model, the most active compound 4g effectively suppressed tumor growth and strongly induced cancer cell apoptosis in tumor tissues. This novel scaffold is promising for the development of selective survivin inhibitors as potential anticancer agents. PMID:26070194

  15. Design, Synthesis, and Biological Evaluation of Tetra-Substituted Thiophenes as Inhibitors of p38α MAPK

    PubMed Central

    Vinh, Natalie B; Devine, Shane M; Munoz, Lenka; Ryan, Renae M; Wang, Bing H; Krum, Henry; Chalmers, David K; Simpson, Jamie S; Scammells, Peter J

    2015-01-01

    p38α mitogen-activated protein kinase (MAPK) plays a role in several cellular processes and consequently has been a therapeutic target in inflammatory diseases, cancer, and cardiovascular disease. A number of known p38α MAPK inhibitors contain vicinal 4-fluorophenyl/4-pyridyl rings connected to either a 5- or 6-membered heterocycle. In this study, a small library of substituted thiophene-based compounds bearing the vicinal 4-fluorophenyl/4-pyridyl rings was designed using computational docking as a visualisation tool. Compounds were synthesised and evaluated in a fluorescence polarisation binding assay. The synthesised analogues had a higher binding affinity to the active phosphorylated form of p38α MAPK than the inactive nonphosphorylated form of the protein. 4-(2-(4-fluorophenyl)thiophen-3-yl)pyridine had a Ki value of 0.6 μm to active p38α MAPK highlighting that substitution of the core ring to a thiophene retains affinity to the enzyme and can be utilised in p38α MAPK inhibitors. This compound was further elaborated using a substituted phenyl ring in order to probe the second hydrophobic pocket. Many of these analogues exhibited low micromolar affinity to active p38α MAPK. The suppression of neonatal rat fibroblast collagen synthesis was also observed suggesting that further development of these compounds may lead to potential therapeutics having cardioprotective properties. PMID:25861571

  16. Synthesis of D-lyxitol and D-ribitol analogues of the naturally occurring glycosidase inhibitor salacinol.

    PubMed

    Kumar, Nag S; Pinto, B Mario

    2005-12-12

    The synthesis of analogues of the naturally occurring glycosidase inhibitor, salacinol, in which the D-arabinitol ring has been replaced by D-lyxitol or D-ribitol, is described. Salacinol is one of the active principles in the aqueous extracts of Salacia reticulata, which are traditionally used in India and Sri Lanka for the treatment of Type II diabetes. The synthetic strategy relies on the nucleophilic attack of 1,4-anhydro-2,3,5-tri-O-p-methoxybenzyl-4-thio-D-lyxitol or 1,4-anhydro-2,3,5-tri-O-p-methoxybenzyl-4-thio-D-ribitol at the least hindered carbon of the benzylidene-protected L-cyclic sulfate derived from L-erythritol. Screening of these compounds against recombinant human maltase glucoamylase (MGA), a critical intestinal glucosidase involved in the processing of oligosaccharides of glucose into glucose itself, shows that they are not effective inhibitors of MGA and demonstrates the importance of the d-arabinitol configuration in the heterocyclic ring for effective inhibition.

  17. Affinity capture of a mammalian DNA polymerase beta by inhibitors immobilized to resins used in solid-phase organic synthesis.

    PubMed

    Kuramochi, Kouji; Haruyama, Tetsuya; Takeuchi, Ryo; Sunoki, Takashi; Watanabe, Madoka; Oshige, Masahiko; Kobayashi, Susumu; Sakaguchi, Kengo; Sugawara, Fumio

    2005-01-01

    The application of resins normally used in solid-phase organic synthesis to the affinity capture of a mammalian DNA polymerase beta (pol beta) is reported. Lithocholic acid (LCA), an inhibitor of pol beta, was immobilized on various solid supports, and the batch affinity purification of pol beta from a mixture of proteins using these LCA-immobilized resins was examined. Of the resins tested, TentaGel was the most effective at purifying pol beta and at resisting nonspecific absorption of proteins. The immobilized LCA recognized pol beta specifically, which resulted in pol beta binding to the resin. Using the LCA-immobilized resin, it was possible to purify pol beta from a mixture of proteins. Furthermore, it was possible to concentrate pol beta from a crude nuclear extract of human T lymphoma Molt4 cells. To facilitate the immobilization of compounds on TentaGel resins, we also designed and prepared photoaffinity beads containing a photoreactive group at the free termini of the TentaGel resin. The pol beta inhibitors LCA, C18-beta-SQDG, and epolactaene were immobilized on the photoaffinity beads by photoreaction. The batch affinity purification of pol beta from a protein mixture could be also achieved with these beads.

  18. Design, Synthesis and Biological Evaluation of New 1, 4-Dihydropyridine (DHP) Derivatives as Selective Cyclooxygenase-2 Inhibitors.

    PubMed

    Sabakhi, Iman; Topuzyan, Vigen; Hajimahdi, Zahra; Daraei, Bahram; Arefi, Hadi; Zarghi, Afshin

    2015-01-01

    As a continuous research for discovery of new COX-2 inhibitors, chemical synthesis, in vitro biological activity and molecular docking study of a new group of 1, 4-dihydropyridine (DHP) derivatives were presented. Novel synthesized compounds possessing a COX-2 SO2Me pharmacophore at the para position of C-4 phenyl ring, different hydrophobic groups (R1) at C-2 position and alkoxycarbonyl groups (COOR2) at C-3 position of 1, 4-dihydropyridine, displayed selective inhibitory activity against COX-2 isozyme. Among them, compound 5e was identified as the most potent and selective COX-2 inhibitor with IC50 value of 0.30 μM and COX-2 selectivity index of 92. Molecular docking study was performed to determine probable binding models of compound 5e. The study showed that the p-SO2Me-phenyl fragment of 5e inserted inside secondary COX-2 binding site (Arg(513), Phe(518), Gly(519), and His(90)). The structure-activity relationships acquired reveal that compound 5e with methyl and ethoxycarbonyl as R1 and COOR2 substitutions has the necessary geometry to provide selective inhibition of the COX-2 isozyme and it can be a good basis for the development of new hits.

  19. Flexible Cyclic Ethers/Polyethers as Novel P2-Ligands for HIV-1 Protease Inhibitors: Design, Synthesis, Biological Evaluation and Protein-ligand X-ray Studies

    PubMed Central

    Ghosh, Arun K.; Gemma, Sandra; Baldridge, Abigail; Wang, Yuan-Fang; Kovalevsky, Andrey Yu.; Koh, Yashiro; Weber, Irene T.; Mitsuya, Hiroaki

    2009-01-01

    We report the design, synthesis and biological evaluation of a series of novel HIV-1 protease inhibitors. The inhibitors incorporate stereochemically defined flexible cyclic ethers/polyethers as the high affinity P2-ligands. Inhibitors containing small ring 1,3-dioxacycloalkanes have shown potent enzyme inhibitory and antiviral activity. Inhibitors 3d and 3h are the most active inhibitors. Inhibitor 3d maintains excellent potency against a variety of multi-PI-resistant clinical strains. Our structure-activity studies indicate that the ring size, stereochemistry, and position of oxygens are important for the observed activity. Optically active synthesis of 1,3-dioxepan-5-ol along with the syntheses of various cyclic ether and polyether ligands have been described. A protein-ligand X-ray crystal structure of 3d-bound HIV-1 protease was determined. The structure revealed that the P2-ligand makes extensive interactions including hydrogen bonding with the protease backbone in the S2-site. In addition, the P2-ligand in 3d forms a unique water-mediated interaction with the NH of Gly-48. PMID:18783203

  20. Flexible Cyclic Ethers/Polyethers as Novel P2-Ligands for HIV-1 Protease Inhibitors: Design, Synthesis, Biological Evaluation, and Protein-Ligand X-Ray Studies

    SciTech Connect

    Ghosh, Arun; Gemma, Sandra; Baldridge, Abigal; Wang, Yuan-Fang; Kovalevsky, Andrey; Koh, Yashiro; Weber, Irene; Mitsuya, Hiroaki

    2008-12-05

    We report the design, synthesis, and biological evaluation of a series of novel HIV-1 protease inhibitors. The inhibitors incorporate stereochemically defined flexible cyclic ethers/polyethers as high affinity P2-ligands. Inhibitors containing small ring 1,3-dioxacycloalkanes have shown potent enzyme inhibitory and antiviral activity. Inhibitors 3d and 3h are the most active inhibitors. Inhibitor 3d maintains excellent potency against a variety of multi-PI-resistant clinical strains. Our structure-activity studies indicate that the ring size, stereochemistry, and position of oxygens are important for the observed activity. Optically active synthesis of 1,3-dioxepan-5-ol along with the syntheses of various cyclic ether and polyether ligands have been described. A protein-ligand X-ray crystal structure of 3d-bound HIV-1 protease was determined. The structure revealed that the P2-ligand makes extensive interactions including hydrogen bonding with the protease backbone in the S2-site. In addition, the P2-ligand in 3d forms a unique water-mediated interaction with the NH of Gly-48.

  1. Artepillin C isoprenomics: design and synthesis of artepillin C isoprene analogues as lipid peroxidation inhibitor having low mitochondrial toxicity.

    PubMed

    Uto, Yoshihiro; Ae, Shutaro; Koyama, Daisuke; Sakakibara, Mitsutoshi; Otomo, Naoki; Otsuki, Mamoru; Nagasawa, Hideko; Kirk, Kenneth L; Hori, Hitoshi

    2006-08-15

    We designed and synthesized isoprene analogues of artepillin C, a major component of Brazilian propolis, and investigated the inhibitory activity on lipid peroxidation of rat liver mitochondria (RLM) and RLM toxicity based on isoprenomics. We succeeded in the synthesis of artepillin C isoprene analogues using regioselective prenylation within the range from 22% to 53% total yield. Reactivity of artepillin C and its isoprene analogues with ABTS (2,2'-Azinobis(3-ethylbenzothiazoline-6-sulfonate)) radical cations showed only a slight difference among the molecules. The isoprene side-chain elongation analogues of artepillin C showed almost the same inhibitory activity against RLM lipid peroxidation as artepillin C. Artepillin C and its isoprene analogues had very weak RLM uncoupling activity. Moreover, artepillin C and its isoprene analogues exhibited a lower inhibitory activity against adenosine 5'-triphosphate (ATP) synthesis by about two orders of magnitude than the effective inhibitory activity against RLM lipid peroxidation. From these results we conclude that artepillin C isoprene analogues could be potent lipid peroxidation inhibitors having low mitochondrial toxicity. We also conclude that elongation of the isoprene side chain of artepillin C to increase lipophilicity had little influence on the inhibitory activity toward RLM lipid peroxidation.

  2. Regulatory substances produced by lymphocytes. VI. Cell cycle specificity of inhibitor of DNA synthesis action in L cells.

    PubMed

    Wagshal, A B; Jegasothy, B V; Waksman, B H

    1978-01-01

    IDS inhibits DNA synthesis and mitosis of L cells only when present during the late G1 phase of the cell cycle, as shown with L cells synchronized by a variety of methods. This corresponds well with earlier findings that IDS inhibits DNA synthesis in mitogen-stimulated lymphocytes when present between 16 and 24 h after adding mitogen. In both cell types, the inhibition produced by IDS appears to be totally the result of elevation of cAMP level. Thus, inhibitors of cAMP phosphodiesterase work synergistically with IDS, and activators of cAMP phosphodiesterase overcome the inhibition by IDS. This paper shows that IDS raises cAMP levels in L cells only within a narrow interval of the cell cycle, around 6-8 h after mitosis. This cell cycle specificity, which may be related to appearance of receptors for IDS only at discrete times, may be important in limiting IDS action to suppression, as elevated cAMP levels have a variety of other effects during other phases of the cell cycle.

  3. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors

    PubMed Central

    Nudelman, Fabio; Pieterse, Koen; George, Anne; Bomans, Paul H. H.; Friedrich, Heiner; Brylka, Laura J.; Hilbers, Peter A. J.; de With, Gijsbertus; Sommerdijk, Nico A. J. M.

    2011-01-01

    Bone is a composite material, in which collagen fibrils form a scaffold for a highly organized arrangement of uniaxially oriented apatite crystals1,2. In the periodic 67 nm cross-striated pattern of the collagen fibril3–5, the less dense 40-nm-long gap zone has been implicated as the place where apatite crystals nucleate from an amorphous phase, and subsequently grow6–9. This process is believed to be directed by highly acidic non-collagenous proteins6,7,9–11; however, the role of the collagen matrix12–14 during bone apatite mineralization remains unknown. Here, combining nanometre-scale resolution cryogenic transmission electron microscopy and cryogenic electron tomography15 with molecular modelling, we show that collagen functions in synergy with inhibitors of hydroxyapatite nucleation to actively control mineralization. The positive net charge close to the C-terminal end of the collagen molecules promotes the infiltration of the fibrils with amorphous calcium phosphate (ACP). Furthermore, the clusters of charged amino acids, both in gap and overlap regions, form nucleation sites controlling the conversion of ACP into a parallel array of oriented apatite crystals. We developed a model describing the mechanisms through which the structure, supramolecular assembly and charge distribution of collagen can control mineralization in the presence of inhibitors of hydroxyapatite nucleation. PMID:20972429

  4. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors.

    PubMed

    Nudelman, Fabio; Pieterse, Koen; George, Anne; Bomans, Paul H H; Friedrich, Heiner; Brylka, Laura J; Hilbers, Peter A J; de With, Gijsbertus; Sommerdijk, Nico A J M

    2010-12-01

    Bone is a composite material in which collagen fibrils form a scaffold for a highly organized arrangement of uniaxially oriented apatite crystals. In the periodic 67 nm cross-striated pattern of the collagen fibril, the less dense 40-nm-long gap zone has been implicated as the place where apatite crystals nucleate from an amorphous phase, and subsequently grow. This process is believed to be directed by highly acidic non-collagenous proteins; however, the role of the collagen matrix during bone apatite mineralization remains unknown. Here, combining nanometre-scale resolution cryogenic transmission electron microscopy and cryogenic electron tomography with molecular modelling, we show that collagen functions in synergy with inhibitors of hydroxyapatite nucleation to actively control mineralization. The positive net charge close to the C-terminal end of the collagen molecules promotes the infiltration of the fibrils with amorphous calcium phosphate (ACP). Furthermore, the clusters of charged amino acids, both in gap and overlap regions, form nucleation sites controlling the conversion of ACP into a parallel array of oriented apatite crystals. We developed a model describing the mechanisms through which the structure, supramolecular assembly and charge distribution of collagen can control mineralization in the presence of inhibitors of hydroxyapatite nucleation.

  5. Formation of sodium bismuth titanate-barium titanate during solid-state synthesis

    DOE PAGES

    Hou, Dong; Aksel, Elena; Fancher, Chris M.; ...

    2017-01-12

    Phase formation of sodium bismuth titanate (Na0.5Bi0.5TiO3 or NBT) and its solid solution with barium titanate (BaTiO3 or BT) during the calcination process is studied using in situ high-temperature diffraction. The reactant powders were mixed and heated to 1000°C, while X-ray diffraction patterns were recorded continuously. Phase evolutions from starting materials to final perovskite products are observed, and different transient phases are identified. The formation mechanism of NBT and NBT–xBT perovskite structures is discussed, and a reaction sequence is suggested based on the observations. The in situ study leads to a new processing approach, which is the use of nano-TiO2,more » and gives insights to the particle size effect for solid-state synthesis products. Lastly, it was found that the use of nano-TiO2 as reactant powder accelerates the synthesis process, decreases the formation of transient phases, and helps to obtain phase-pure products using a lower thermal budget.« less

  6. Synthesis, biological evaluation and molecular modeling studies on novel quinonoid inhibitors of CDC25 phosphatases.

    PubMed

    Evain-Bana, Emilie; Schiavo, Lucie; Bour, Christophe; Lanfranchi, Don Antoine; Berardozzi, Simone; Ghirga, Francesca; Bagrel, Denyse; Botta, Bruno; Hanquet, Gilles; Mori, Mattia

    2017-12-01

    The cell division cycle 25 phosphatases (CDC25A, B, and C; E.C. 3.1.3.48) are key regulator of the cell cycle in human cells. Their aberrant expression has been associated with the insurgence and development of various types of cancer, and with a poor clinical prognosis. Therefore, CDC25 phosphatases are a valuable target for the development of small molecule inhibitors of therapeutic relevance. Here, we used an integrated strategy mixing organic chemistry with biological investigation and molecular modeling to study novel quinonoid derivatives as CDC25 inhibitors. The most promising molecules proved to inhibit CDC25 isoforms at single digit micromolar concentration, becoming valuable tools in chemical biology investigations and profitable leads for further optimization. [Formula: see text].

  7. Design, synthesis, and biological activity of diaryl ether inhibitors of Toxoplasma gondii enoyl reductase

    PubMed Central

    Cheng, Gang; Muench, Stephen P.; Zhou, Ying; Afanador, Gustavo A.; Mui, Ernest J.; Fomovska, Alina; Lai, Bo Shiun; Prigge, Sean T.; Woods, Stuart; Roberts, Craig W.; Hickman, Mark R.; Lee, Patty J.; Leed, Susan E.; Auschwitz, Jennifer M.; Rice, David W.; McLeod, Rima

    2013-01-01

    Triclosan is a potent inhibitor of Toxoplasma gondii enoyl reductase (TgENR), which is an essential enzyme for parasite survival. In view of triclosan’s poor druggability, which limits its therapeutic use, a new set of B-ring modified analogs were designed to optimize its physico-chemical properties. These derivatives were synthesized and evaluated by in vitro assay and TgENR enzyme assay. Some analogs display improved solubility, permeability and a comparable MIC50 value to that of triclosan. Modeling of these inhibitors revealed the same overall binding mode with the enzyme as triclosan, but the Bring modifications have additional interactions with the strongly conserved Asn130. PMID:23453069

  8. Synthesis of triazole Schiff bases: novel inhibitors of nucleotide pyrophosphatase/phosphodiesterase-1.

    PubMed

    Khan, Khalid Mohammed; Siddiqui, Salman; Saleem, Muhammad; Taha, Muhammad; Saad, Syed Muhammad; Perveen, Shahnaz; Choudhary, M Iqbal

    2014-11-15

    A series of Schiff base triazoles 1–25 was synthesized and evaluated for their nucleotide pyrophosphatase/phosphodiesterase-1 inhibitory activities. Among twenty-five compounds, three compounds 10 (IC50 = 132.20 ± 2.89 lM), 13 (IC50 = 152.83 ± 2.39 lM), and 22 (IC50 = 251.0 ± 6.64 lM) were identified as potent inhibitors with superior activities than the standard EDTA (IC50 = 277.69 ± 2.52 lM). The newly identified inhibitors may open a new avenue for the development of treatment of phosphodiesterase-I related disorders. These compounds were also evaluated for carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase inhibitory potential and were found to be inactive. The compounds showed non-toxic effect towards PC3 cell lines.

  9. Design, synthesis and molecular modeling of aloe-emodin derivatives as potent xanthine oxidase inhibitors.

    PubMed

    Shi, Da-Hua; Huang, Wei; Li, Chao; Liu, Yu-Wei; Wang, Shi-Fan

    2014-03-21

    A series of aloe-emodin derivatives were synthesized and evaluated as xanthine oxidase inhibitors. Among them, four aloe-emodin derivatives showed significant inhibitory activities against xanthine oxidase. The compound 4,5-dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carbaldehyde (A1) possessed the best xanthine oxidase inhibitory activity with IC50 of 2.79 μM. Lineweaver-Burk plot analysis revealed that A1 acted as a mixed-type inhibitor for xanthine oxidase. The docking study revealed that the molecule A1 had strong interactions with the active site of xanthine oxidase and this result was in agreement with kinetic study. Consequently, compound A1 is a new-type candidate for further development for the treatment of gout.

  10. Design, Synthesis, and Evaluation of Novel Prodrugs of Transition State Inhibitors of Norovirus 3CL Protease.

    PubMed

    Galasiti Kankanamalage, Anushka C; Kim, Yunjeong; Rathnayake, Athri D; Alliston, Kevin R; Butler, Michelle M; Cardinale, Steven C; Bowlin, Terry L; Groutas, William C; Chang, Kyeong-Ok

    2017-07-27

    Ester and carbamate prodrugs of aldehyde bisulfite adduct inhibitors were synthesized in order to improve their pharmacokinetic and pharmacodynamic properties. The inhibitory activity of the compounds against norovirus 3C-like protease in enzyme and cell-based assays was determined. The ester and carbamate prodrugs displayed equivalent potency to those of the precursor aldehyde bisulfite adducts and precursor aldehydes. Furthermore, the rate of ester cleavage was found to be dependent on alkyl chain length. The generated prodrugs exhibited low cytotoxicity and satisfactory liver microsomes stability and plasma protein binding. The methodology described herein has wide applicability and can be extended to the bisulfite adducts of common warheads employed in the design of transition state inhibitors of serine and cysteine proteases of medical relevance.

  11. Synthesis of new sulfonylamido-penicillanic acid sulfones inhibitors of beta-lactamases.

    PubMed

    Vanwetswinkel, S; Fastrez, J; Marchand-Brynaert, J

    1994-09-01

    Three new sulfonylamido-penicillanic acid sulfones have been prepared by reaction of 6-aminopenicillanic esters with the monoester or monoamide derivatives obtained in nucleophilic substitution reactions by alcohol or aniline on the carboxyl chloride function of sulfoacetic dichloride followed by oxidation. These penicillin sulfones are converted to beta-lactamases suicide inhibitors by removal of the C3 ester protecting group. This synthetic strategy can give access to sulfonamidopenam sulfones bearing a variety of 6-amino side chain. These inhibitors inactivate the RTEM beta-lactamase rapidly. The kinetics of inactivation are consistent with the partitioning of an acylenzyme intermediate between two main pathways: regeneration of free enzyme and irreversible inactivation, little transient inactivation is observed. A slow inhibition by the product of enzymatic hydrolysis of the sulfones is also observed.

  12. Synthesis, biological activities and pharmacokinetic properties of new fluorinated derivatives of selective PDE4D inhibitors.

    PubMed

    Brullo, Chiara; Massa, Matteo; Villa, Carla; Ricciarelli, Roberta; Rivera, Daniela; Pronzato, Maria Adelaide; Fedele, Ernesto; Barocelli, Elisabetta; Bertoni, Simona; Flammini, Lisa; Bruno, Olga

    2015-07-01

    A new series of selective PDE4D inhibitors has been designed and synthesized by replacing 3-methoxy group with 3-difluoromethoxy isoster moiety in our previously reported cathecolic structures. All compounds showed a good PDE4D3 inhibitory activity, most of them being inactive toward other PDE4 isoforms (PDE4A4, PDE4B2 and PDE4C2). Compound 3b, chosen among the synthesized compounds as the most promising in terms of inhibitory activity, selectivity and safety, showed an improved pharmacokinetic profile compared to its non fluorinated analogue. Spontaneous locomotor activity, assessed in an open field apparatus, showed that, differently from rolipram and diazepam, selective PDE4D inhibitors, such as compounds 3b, 5b and 7b, did not affect locomotion, whereas compound 1b showed a tendency to reduce the distance traveled and to prolong the immobility period, possibly due to a poor selectivity.

  13. Design and Synthesis of a Focused Library of Diamino Triazines as Potential Mycobacterium tuberculosis DHFR Inhibitors

    PubMed Central

    2015-01-01

    We report design of a series of 2,4-diamino triazines as Mycobacterium tuberculosis (Mtb) dihydrofolate reductase inhibitors. The synthesized compounds were evaluated against Mtb (H37Rv and Dormant stage H37Ra), their cytotoxicity was assessed (HepG2 and A549 cell lines), and selectivity toward Mtb was evaluated by testing against other bacterial strains. Some derivatives showed promising activity along with low cytotoxicity. The most potent compound in the whole cell assay (MIC 0.325 μM against H37Rv) showed selectivity in the enzyme assay and exhibited synergy with second line anti-TB agent p-amino salicylic acid. This study therefore provides promising molecules for further development as antituberculosis DHFR inhibitors. PMID:26617968

  14. Synthesis and bioevaluation of pyrazole-benzimidazolone hybrids as novel human 4-Hydroxyphenylpyruvate dioxygenase inhibitors.

    PubMed

    Xu, Yu-Ling; Lin, Hong-Yan; Ruan, Xu; Yang, Sheng-Gang; Hao, Ge-Fei; Yang, Wen-Chao; Yang, Guang-Fu

    2015-03-06

    4-Hydroxyphenylpyruvate dioxygenase (HPPD), an essential enzyme in tyrosine catabolism, is an important target for treating type I tyrosinemia. Inhibition of HPPD can effectively alleviate the symptoms of type I tyrosinemia. However, only one commercial HPPD inhibitor, 2-(2-nitro-4-trifluoromethylbenzoyl) cyclohexane-1,3-dione (NTBC), has been available for clinical use so far. In the present study, a series of novel pyrazole-benzimidazolone hybrids were designed, synthesized and evaluated as potent human HPPD inhibitors. Most of the new compounds displayed significant inhibitory activity against the recombinant human HPPD. Moreover, compound 9l was identified as the most potent candidate with IC50 value of 0.021 μM against recombinant human HPPD, about 3-fold more potent than NTBC. Thus the pyrazole-benzimidazolone hybrid has great potential to be further developed for the treatment of type I tyrosinemia.

  15. Modulation of Platelet Activation and Thrombus Formation Using a Pan-PI3K Inhibitor S14161

    PubMed Central

    Ren, Lijie; Liu, Xiaohui; Wang, Qi; He, Sudan; Wu, Qingyu; Hu, Hu; Mao, Xinliang; Zhu, Li

    2014-01-01

    The phosphatidylinositol 3–kinase (PI3K) signaling pathway is critical in modulating platelet functions. In the present study, we evaluated the effect of S14161, a recently identified pan-class I PI3K inhibitor, on platelet activation and thrombus formation. Results showed that S14161 inhibited human platelet aggregation induced by collagen, thrombin, U46619, and ADP in a dose-dependent manner. Flow cytometric studies showed that S14161 inhibited convulxin- or thrombin-induced P-selectin expression and fibrinogen binding of single platelet. S14161 also inhibited platelet spreading on fibrinogen and clot retraction, processes mediated by outside-in signaling. Using a microfluidic chamber we demonstrated that S14161 decreased platelet adhesion on collagen-coated surface by about 80%. Western blot showed that S14161 inhibited phosphorylation of Akt at both Ser473 and Thr308 sites, and GSK3β at Ser9 in response to collagen, thrombin, or U46619. Comparable studies showed that S14161 has a higher potential bioavailability than LY294002, a prototypical inhibitor of pan-class I PI3K. Finally, the effects of S14161 on thrombus formation in vivo were measured using a ferric chloride-induced carotid artery injury model in mice. The intraperitoneal injection of S14161 (2 mg/kg) to male C57BL/6 mice significantly extended the first occlusion time (5.05±0.99 min, n = 9) compared to the vehicle controls (3.72±0.95 min, n = 8) (P<0.05), but did not prolong the bleeding time (P>0.05). Taken together, our data showed that S14161 inhibits platelet activation and thrombus formation without significant bleeding tendency and toxicity, and considering its potential higher bioavailability, it may be developed as a novel therapeutic agent for the prevention of thrombotic disorders. PMID:25115838

  16. Prevention of neointimal formation by a serine protease inhibitor, FUT-175, after carotid balloon injury in rats.

    PubMed

    Sawada, M; Yanamoto, H; Nagata, I; Hashimoto, N; Nakahara, I; Akiyama, Y; Kikuchi, H; Macdonald, R L

    1999-03-01

    In vivo and vitro studies revealed the activation of thrombin and the complement system in vascular lesion formation during the process of atherosclerosis, along with pathological proliferation of smooth muscle cells. We examined the effect of the synthetic serine protease inhibitor FUT-175 (developed as a potent inhibitor of thrombin and the complement system) on vascular lesions using balloon dilatation-induced neointimal formation in the carotid artery of rats. Sprague-Dawley (SD) rats underwent balloon dilatation injury of the left carotid artery to induce neointimal formation. Three groups of these rats (n=8, each) were treated with daily intraperitoneal injections of 1 of the following doses of FUT-175: 0.5, 1.0, or 2.0 mg/d in 1 mL of saline for 7 consecutive days. The control group (n=8) was similarly treated with 1 mL of saline for 7 days. The injections were started immediately after balloon injury. Two weeks after the injury, the left carotid arteries were perfusion-fixed, and the areas of the neointimal and medial layer were analyzed under a microscope. A morphometric analysis revealed that there were significant differences in the intima-media ratio between the 4 groups treated with vehicle (saline) or a low, medium, or high dose of FUT-175 (1.45+/-0.11, 1.08+/-0.06, 0.71+/-0.04, or 0.32+/-0.04, respectively). This suppression was achieved in a dose-dependent manner by the administration of FUT-175 after balloon injury. In the histological study, it was demonstrated that FUT-175 suppresses the production of platelet-derived growth factor (PDGF)-BB in the neointima and the medial smooth muscle cell layer. After balloon injury activated proteases that were inhibited by FUT-175 were demonstrated to have an essential role in the development of the pathological thickening of the arterial wall.

  17. Synthesis and biochemical evaluation of benzoylbenzophenone thiosemicarbazone analogues as potent and selective inhibitors of cathepsin L

    PubMed Central

    Parker, Erica N.; Song, Jiangli; Kumar, G. D. Kishore; Odutola, Samuel O.; Chavarria, Gustavo E.; Charlton-Sevcik, Amanda K.; Strecker, Tracy E.; Barnes, Ashleigh L.; Sudhan, Dhivya R.; Wittenborn, Thomas R.; Siemann, Dietmar W.; Horsman, Michael R.; Chaplin, David J.; Trawick, Mary Lynn; Pinney, Kevin G.

    2016-01-01

    Upregulation of cathepsin L in a variety of tumors and its ability to promote cancer cell invasion and migration through degradation of the extracellular matrix suggest that cathepsin L is a promising biological target for the development of anti-metastatic agents. Based on encouraging results from studies on benzophenone thiosemicarbazone cathepsin inhibitors, a series of fourteen benzoylbenzophenone thiosemicarbazone analogues were designed, synthesized, and evaluated for their inhibitory activity against cathepsins L and B. Thiosemicarbazone inhibitors 3-benzoylbenzophenone thiosemicarbazone 1, 1,3-bis(4-fluorobenzoyl)benzene thiosemicarbazone 8, and 1,3-bis(2-fluorobenzoyl)-5-bromobenzene thiosemicarbazone 32 displayed the greatest potency against cathepsin L with low IC50 values of 9.9 nM, 14.4 nM, and 8.1 nM, respectively. The benzoylbenzophenone thiosemicarbazone analogues evaluated were selective in their inhibition of cathepsin L compared to cathepsin B. Thiosemicarbazone analogue 32 inhibited invasion through Matrigel of MDA-MB-231 breast cancer cells by 70% at 10 μM. Thiosemicarbazone analogue 8 significantly inhibited the invasive potential of PC-3ML prostate cancer cells by 92% at 5 μM. The most active cathepsin L inhibitors from this benzoylbenzophenone thiosemicarbazone series (1, 8, and 32) displayed low cytotoxicity toward normal primary cells [in this case human umbilical vein endothelial cells (HUVECs)]. In an initial in vivo study, 3-benzoylbenzophenone thiosemicarbazone (1) was well-tolerated in a CDF1 mouse model bearing an implanted C3H mammary carcinoma, and showed efficacy in tumor growth delay. Low cytotoxicity, inhibition of cell invasion, and in vivo tolerability are desirable characteristics for anti-metastatic agents functioning through an inhibition of cathepsin L. Active members of this structurally diverse group of benzoylbenzophenone thiosemicarbazone cathepsin L inhibitors show promise as potential anti-metastatic, pre

  18. The synthesis of ethacrynic acid thiazole derivatives as glutathione S-transferase pi inhibitors.

    PubMed

    Li, Ting; Liu, Guyue; Li, Hongcai; Yang, Xinmei; Jing, Yongkui; Zhao, Guisen

    2012-04-01

    Glutathione S-transferase pi (GSTpi) is a phase II enzyme which protects cells from death and detoxifies chemotherapeutic agents in cancer cells. Ethacrynic acid (EA) is a weak GSTpi inhibitor. Structure modifications were done to improve the ability of EA to inhibit GSTpi activity. Eighteen EA thiazole derivatives were designed and synthesized. Compounds 9a, 9b and 9c with a replacement of carboxyl group of EA by a heterocyclic thiazole exhibited improvement over EA to inhibit GSTpi activity.

  19. The Design and Synthesis of Orally Active Inhibitors of Botulinum Toxin Metalloproteases

    DTIC Science & Technology

    1997-06-01

    succeeded in demonstrating the feasibility of our approach to the design of botulinum inhibitors based on using the weak activity of captopril as a lead...compound. We report the first prototype compounds that exceed our captopril lead compound by at least an order of magnitude in inhibitory properties...Develop solution chemical methods for synthesizing analogs of captopril in a combinatorial chemical approach 4. Extend the solution methods developed in

  20. Novel bis-arylalkylamines as myeloperoxidase inhibitors: Design, synthesis, and structure-activity relationship study.

    PubMed

    Aldib, Iyas; Gelbcke, Michel; Soubhye, Jalal; Prévost, Martine; Furtmüller, Paul G; Obinger, Christian; Elfving, Betina; Alard, Ibaa Chikh; Roos, Goedele; Delporte, Cédric; Berger, Gilles; Dufour, Damien; Zouaoui Boudjeltia, Karim; Nève, Jean; Dufrasne, Francois; Van Antwerpen, Pierre

    2016-11-10

    Human myeloperoxidase (MPO) plays an important role in innate immunity but also aggravates tissue damage by oxidation of biomolecules at sites of inflammation. As a result from a recent high-throughput virtual screening approach for MPO inhibitors, bis-2,2'-[(dihydro-1,3(2H,4H) pyrimidinediyl)bis(methylene)]phenol was detected as a promising lead compound for inhibition of the MPO-typical two-electron oxidation of chloride to hypochlorous acid (IC50 = 0.5 μM). In the present pharmacomodulation study, 37 derivatives of this lead compound were designed and synthesized driven by comprehensive docking studies and the impact on the chlorination activity of MPO. We describe the structural requirements for optimum (i) binding to the heme periphery and (ii) inhibition capacity. Finally, the best three inhibitors (bis-arylalkylamine derivatives) were probed for interaction with the MPO redox intermediates Compound I and Compound II. Determined apparent bimolecular rate constants together with determination of reduction potential and nucleophilicity of the selected compounds allowed us to propose a mechanism of inhibition. The best inhibitor was found to promote the accumulation of inactive form of MPO-Compound II and has IC50 = 54 nM, demonstrating the successful approach of the drug design. Due to the similarity of ligand interactions between MPO and serotonine transporter, the selectivity of this inhibitor was also tested on the serotonin transporter providing a selectivity index of 14 (KiSERT/IC50MPO).