Zha, Xiao-Song; Ma, Lu-Ming; Wu, Jin; Liu, Yan
2016-08-01
The removal efficiency of organic matter, the formation potential of trihalomethanes (THMFP), and the formation potential of haloacetic acids (HAAFP) in each unit of three advanced treatment processes were investigated in this paper. The molecular weight distribution and the components of organic matter in water samples were also determined to study the transformation of organic matter during these advanced treatments. Low-molecular-weight matter was the predominant fraction in raw water, and it could not be removed effectively by ultrafiltration and biofiltration. The dominant species of disinfection by-product formation potential (DBPFP) in raw water were chloroform and monochloroacetic acid (MCAA), with average concentrations of 107.3 and 125.9 μg/L, respectively. However, the formation potential of chloroform and MCAA decreased to 36.2 and 11.5 μg/L after ultrafiltration. Similarly, biological pretreatment obtained high removal efficiency for DBPFP. The total THMFP decreased from 173.8 to 81.8 μg/L, and the total HAAFP decreased from 211.9 to 84.2 μg/L. Separate ozonation had an adverse effect on DBPFP, especially for chlorinated HAAFP. Numerous low-molecular-weight compounds such as aldehydes, ketones, and alcohols were generated during the ozonation, which have been proven to be important precursors of HAAs. However, the ozonation/biological activated carbon (BAC) combined process had a better removal efficiency for DBPFP. The total DBPFP decreased remarkably from 338.7 to 113.3 μg/L after the O3/BAC process, far below the separated BAC of process B (189.1 μg/L).
Liao, Xiaobin; Liu, Jinjin; Yang, Mingli; Ma, Hongfang; Yuan, Baoling; Huang, Ching-Hua
2015-11-01
Microcystis aeruginosa (blue-green alga) commonly blooms in summer and Cyclotella meneghiniana (diatom) outbreaks in fall in the reservoirs that serve as drinking water sources in Southeast China. Herein, an evaluation of disinfection by-product formation potential (DBPFP) from them during chlorination should be conducted. Five DBPs including trichloromethane (TCM), trichloronitromethane (TCNM), dichloroacetonitrile (DCAN), 1,1-dichloropropanone (1,1-DCP) and 1,1,1-trichloropropanone (1,1,1-TCP) were monitored. The formation potential of TCM and TCNM was enhanced with the increase of reaction time and chlorine dosage, whereas that of DCAN, 1,1-DCP and 1,1,1-TCP increased first and then fell with continuing reaction time. M. aeruginosa showed higher DBPFP than C. meneghiniana, the yield of DBPs varied with components of algal cells. The DBPFP order from components of M. aeruginosa was cell suspension (CS) ≈ intracellular organic matter (IOM) > extracellular organic matter (EOM) > cell debris (CD), which indicated that IOM was the main DBP precursors for M. aeruginosa. The yields of DBPs from components of C. meneghiniana were in the order of CS>IOM≈ CD ≈ EOM, suggesting that three components made similar contributions to the total DBP formation. The amount of IOM with higher DBPFP leaked from both algae species increased with the chlorine dosage, indicating that chlorine dosage should be considered carefully in the treatment of eutrophic water for less destroying of the cell integrity. Though fluorescence substances contained in both algae species varied significantly, the soluble microbial products (SMPs) and aromatic protein-like substances were the main cellular components that contributed to DBP formation for both algae. Copyright © 2015 Elsevier B.V. All rights reserved.
EPA requires drinking water utilities to monitor source water to determine the need for treatment to remove the precursors (natural organic matter {NOM}) of disinfection by-products (DBPs). Currently, drinking water utilities use total organic carbon (TOC), dissolved organic car...
Li, Angzhen; Zhao, Xu; Mao, Ran; Liu, Huijuan; Qu, Jiuhui
2014-04-30
In this study, the disinfection byproduct formation potential (DBPFP) of three surface waters with the dissolved organic carbon (DOC) content of 2.5, 5.2, and 7.9mg/L was investigated. The formation and distribution of trihalomethanes and haloacetic acids were evaluated. Samples collected from three surface waters in China were fractionated based on molecular weight and hydrophobicity. The raw water containing more hydrophobic (Ho) fraction exhibited higher formation potentials of haloacetic acid and trihalomethane. The DBPFP of the surface waters did not correlate with the DOC value. The values of DBPFP per DOC were correlated with the specific ultraviolet absorbance (SUVA) for Ho and Hi fractions. The obtained results suggested that SUVA cannot reveal the ability of reactive sites to form disinfection byproducts for waters with few aromatic structures. Combined with the analysis of FTIR and nuclear magnetic resonance spectra of the raw waters and the corresponding fractions, it was concluded that the Ho fraction with phenolic hydroxyl and conjugated double bonds was responsible for the production of trichloromethanes and trichloroacetic acids. The Hi fraction with amino and carboxyl groups had the potential to form dichloroacetic acids and chlorinated trihalomethanes. Copyright © 2014. Published by Elsevier B.V.
Liu, Jin-Lin; Li, Xiao-Yan
2015-01-01
Water pollution worsens the problem of disinfection by-products (DBPs) in drinking water supply. Biodegradation of wastewater organics produces soluble microbial products (SMPs), which can be important DBP precursors. In this laboratory study, a number of enhanced water treatment methods for DBP control, including enhanced coagulation, ozonation, and activated carbon adsorption, were evaluated for their effectiveness in treating SMP-containing water for the DBP reduction purpose. The results show that enhanced coagulation with alum could remove SMPs only marginally and decrease the DBP formation potential (DBPFP) of the water by less than 20%. Although ozone could cause destruction of SMPs in water, the overall DBPFP of the water did not decrease but increased after ozonation. In contrast, adsorption by granular activated carbon could remove the SMP organics from water by more than 60% and reduce the DBPFP by more than 70%. It is apparent that enhanced coagulation and ozonation are not suitable for the removal of SMPs as DBP precursors from polluted water, although enhanced coagulation has been commonly used to reduce the DBP formation caused by natural organic matter. In comparison, activated carbon adsorption is shown as a more effective means to remove the SMP content from water and hence to control the wastewater-derived DBP problem in water supply.
Removal of disinfection byproduct (DBP) precursors in water by two-stage biofiltration treatment.
Fu, Jie; Lee, Wan-Ning; Coleman, Clark; Nowack, Kirk; Carter, Jason; Huang, Ching-Hua
2017-10-15
The removal of precursors of 36 disinfection byproducts (DBPs) in effluents from flocculation/sedimentation process was evaluated across a pilot-scale two-stage biofiltration process, i.e., a sand/anthracite (SA) biofilter (empty bed contact time (EBCT) of 7.5 min) coupled with a biologically-active granular activated carbon (GAC) contactor (EBCT of 15 min). The biofiltration process exhibited a good capacity for removal of the total DBP formation potential (DBPFP) (by 25.90 ± 2.63%), and GAC contactors contributed most to the DBPFP removal (accounting for 60.63 ± 16.64% of the total removal). The removal percentage of DBPFPs of different structure types was in the following order: halonitroalkanes (58.50%) > haloaldehydes (33.62%) > haloacetic acids (HAAs, 28.13%) > haloalkanes (20.46%) > haloketones (13.46%) > nitrosamines (10.23%) > halonitriles (-8.82%) > haloalkenes (-9.84%). The precursors of bromo-DBPs (containing only bromine atoms) and maximal halogenated DBPs (containing 3 & 4 halo atoms) were removed largely compared to other DBPs. Among the total DBPFP, trihalomethanes (THMs), HAAs, and chloral hydrate were the dominant DBPs, and they accounted for >92% of the total targeted DBPs by weight. Pearson correlation analysis (CA) and principal components analysis (PCA) indicated a significant association among these dominant DBPs. Canonical correspondence analysis (CCA) revealed specific ultraviolet absorbance (SUVA 254 ) could serve as a good surrogate parameter for DBPFP. Pre-chlorination upstream of the biofilters may not greatly impact the overall removal of DBPFP by SA/GAC biofiltration. In addition, results showed that SA/GAC biofiltration was a useful procedure to remove the inorganic DBP chlorite. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shen, Hong; Chen, Xin; Zhang, Dong; Chen, Hong-Bin
2016-11-01
In order to improve our understanding of bio-activated carbon (BAC) filter, the water quality of influent and effluent treated with BAC in a drinking water treatment plant (DWTP) of Shanghai during 2015 was valued. Combining the results from UV254, SUVA254, dissolved organic carbon (DOC) and scanning electron microscopic (SEM), it is found that performance of BAC treatment will be affected by characteristics of activated carbon (AC), which is relevant to the type of activated carbon (including shape and operating time) in this study. Fluorescence excitation-emission matrix (FEEM) shows that the humification index (HIX) and index of recent autochthonous contribution (BIX) is a reliable indicator to descript the variation of dissolved organic matter (DOM) during BAC process. The pattern of variation in BIX and HIX implies that soluble microbial products (SMPs) are formed and humic-like substances are removed during BAC treatment, which is also confirmed by the change of peaks of FEEM in BAC effluent. Large, positive correlations between SUVA254 and disinfection by-products formation potential yield (DBPFP yield) demonstrate that UV-absorbing DOM is directly related to the generation of DBPs. Poor correlations of HIX with DBPFP suggest that non-humic substances with UV-absorbing properties play an important role in the generation of DBPs in water with low SUVA254. Finally, strong but negative correlations between BIX and DBPFP suggest that vigorous microbial metabolism of BAC results in a decrease in DBPFP. However, the DBPFP yield will be enhanced for the generation of SMPs by BAC, especially in summer. Copyright © 2016 Elsevier B.V. All rights reserved.
Hua, Lap-Cuong; Lin, Jr-Lin; Syue, Ming-Yang; Huang, Chihpin; Chen, Pei-Chung
2018-04-15
Algogenic organic matter (AOM) in eutrophic waters is a well-known precursor to disinfection by-product (DBP) formation in drinking water. This purpose of this study is (i) to characterize the optical properties of AOM origins, including intra- (IOM) and extra-cellular organic matter (EOM), derived from Chlorella sp. growth as precursors to two major carbonaceous DBPs (C-DBPs), trihalomethanes (THMs) and haloacetic acids (HAAs) and (ii) to correlate these optical properties with THM and HAA formation potential (FP) in order to predict DBP formation. The results show that both EOM and IOM had low UV 254 and UV 280 absorbance during their entire growth phase. While IOM chiefly comprised of aromatic proteins and soluble microbial products-like substances (80% of average fluorescent intensity-AFI), EOM spectra were rich in humic- and fulvic-like substances (60% AFI). However, its chemical nature likely differed from terrestrial humics. In DBPFP tests, IOM was a higher-yielding precursor of THMs and HAAs compared to EOM, regardless its growth status. Consequently, C-DBPFP of IOM was always higher than EOM during four growth phases. Results from DBP tests also showed insignificant variation of EOM-derived THMFP and HAAFP during the algal growth phase, while the algal growth status strongly influenced the yields of IOM-derived THMFP and HAAFP. From correlation analysis, our results showed no correlation between UV absorbance with THMFP and HAAFP. Conversely, the regional AFI showed a good correlation with HAAFP and C-DBPFP. Predicting models based on AFI for the formation of HAAs and C-DBPs consequently yielded great predictability for laboratory AOM-containing water samples, with a coefficient of determination R 2 =0.879, p<0.01 and R 2 =0.846, p<0.01. This study indicates a promising application of fluorescent spectra for predicting DBPs derived from algae-rich water sources. Copyright © 2017 Elsevier B.V. All rights reserved.
Du, Ye; Lv, Xiao-Tong; Wu, Qian-Yuan; Zhang, Da-Yin; Zhou, Yu-Ting; Peng, Lu; Hu, Hong-Ying
2017-08-01
Chlorination is essential to the safety of reclaimed water; however, this process leads to concern regarding the formation of disinfection byproducts (DBPs) and toxicity. This study reviewed the formation and control strategies for DBPs and toxicity in reclaimed water during chlorination. Both regulated and emerging DBPs have been frequently detected in reclaimed water during chlorination at a higher level than those in drinking water, indicating they pose a greater risk to humans. Luminescent bacteria and Daphnia magna acute toxicity, anti-estrogenic activity and cytotoxicity generally increased after chlorination because of the formation of DBPs. Genotoxicity by umu-test and estrogenic activity were decreased after chlorination because of destruction of toxic chemicals. During chlorination, water quality significantly impacted changes in toxicity. Ammonium tended to attenuate toxicity changes by reacting with chlorine to form chloramine, while bromide tended to aggravate toxicity changes by forming hypobromous acid. During pretreatment by ozonation and coagulation, disinfection byproduct formation potential (DBPFP) and toxicity formation potential (TFP) occasionally increase, which is accompanied by DOC removal; thus, the decrease of DOC was limited to indicate the decrease of DBPFP and TFP. It is more important to eliminate the key fraction of precursors such as hydrophobic acid and hydrophilic neutrals. During chlorination, toxicities can increase with the increasing chlorine dose and contact time. To control the excessive toxicity formation, a relatively low chlorine dose and short contact time were required. Quenching chlorine residual with reductive reagents also effectively abated the formation of toxic compounds. Copyright © 2017. Published by Elsevier B.V.
Disinfection byproduct formation from chlorination of pure bacterial cells and pipeline biofilms.
Wang, Jun-Jian; Liu, Xin; Ng, Tsz Wai; Xiao, Jie-Wen; Chow, Alex T; Wong, Po Keung
2013-05-15
Disinfection byproduct (DBP) formation is commonly attributed to the reaction between natural organic matters and disinfectants, yet few have considered the contribution from disinfecting bacterial materials - the essential process of water disinfection. Here, we explored the DBP formation from chlorination and chloramination of Escherichia coli and found that most selected DBPs were detectable, including trihalomethanes, haloacetonitriles, chloral hydrate, chloropicrin, and 1,1,1-trichloro-2-propanone. A positive correlation (P = 0.08-0.09) between DBP formation and the log reduction of E. coli implied that breaking down of bacterial cells released precursors for DBP formation. As Pseudomonas aeruginosa is a dominant bacterial species in pipeline biofilms, the DBP formation potentials (DBPFPs) from its planktonic cells and biofilms were characterized. Planktonic cells formed 7-11 times greater trihalomethanes per carbon of those from biofilms but significantly lower (P < 0.05) chloral hydrate, highlighting the bacterial phenotype's impact on the bacteria-derived DBPFP. Pipe material appeared to affect the DBPFP of bacteria, with 4-28% lower bromine incorporation factor for biofilms on polyvinyl chloride compared to that on galvanized zinc. This study revealed both the in situ disinfection of bacterial planktonic cells in source water and ex situ reaction between biofilms and residual chlorine in pipeline networks as hitherto unknown DBP sources in drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hidayah, E. N.; Yeh, H. H.
2018-01-01
Laboratory scale experiments was conducted to examine effect of permanganate (KMnO4) peroxidation in characterizing and to remove natural organic matter (NOM) in source water. The experimental results shows that increasing permanganate dosage could decreased aromatic matter, as indicated by decreasing UV254 and SUVA value about 23% and 28%, respectively. It seems that permanganate preoxidation caused the breakdown of high molecular weight (MW) organics into low MW ones, as represented by increasing NPDOC about 10%. Further, disinfection by-products formation potential (DBPFP) in terms of trihalomethanes formation potential (THMFP) and haloacetic acid formation potential (HAAP) decreased about 15% and 23%, respectively. HAAFP removal is higher than THMFP removal and that DPBFP removal is consistent with UV254 and NPDOC removal.
Hong, Shen; Xian-Chun, Tang; Nan-Xiang, Wu; Hong-Bin, Chen
2018-07-01
The application of ozone-biological activated carbon (O 3 -BAC) as an advanced treatment method in drinking water treatment plants (DWTPs) can help to remove organic micropollutants and further decrease the dissolved organic carbon (DOC) level in finished water. With the increase attention to microbial safety of drinking water, a pre-positioned O 3 -BAC followed by a sand filter has been implanted into DWTP located in Shanghai, China to increase the biostability of effluents. The results showed that BAC had high removal efficiencies of UV 254 , DOC and disinfection by-product formation potential (DBPFP). The removal efficiencies between pre- and post-positioned BAC filtrations were similar. Based on the analyses of fluorescence excitation-emission matrix spectrophotometry (FEEM), the generation and leakage of soluble microbial products (SMPs) were found in both two BAC filtrations on account of the increased fluorescence intensities and fluorescence regional integration (FRI) distribution of protein-like organics, as well as the enhanced biological index (BIX). The leakage of SMPs produced by metabolism of microbes during BAC process resulted in increased DBPFP yield and carcinogenic factor per unit of DOC (CF/DOC). Although BAC filtration reduced the DBPFP and CF, there still was high health risk of effluents for the production of SMPs. Therefore, the health risks for SMPs generated by BAC filtration in drinking water advanced treatment process should be addressed, especially with that at high temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gora, Stephanie L; Andrews, Susan A
2017-05-01
Titanium dioxide is a photocatalyst that can remove organic contaminants of interest to the drinking water treatment industry, including natural organic matter (NOM) and disinfection byproduct (DBP) precursors. The photocatalytic reaction occurs in two steps: adsorption of the contaminant followed by degradation of the adsorbed contaminant upon irradiation with UV light. The second part of this process can lead to the formation of reactive intermediates and negative impacts on treated water quality, such as increased DBP formation potential (DBPfp). Adsorption alone does not result in the formation of reactive intermediates and thus may prove to be a safe way to incorporate TiO 2 into drinking water treatment processes. The goal of this study was to expand on the current understanding of NOM adsorption on TiO 2 and examine it in a drinking water context by observing NOM adsorption from real water sources and evaluating the effects of the resulting reductions on the DBPfp of the treated water. Bottle point isotherm tests were conducted with raw water from two Canadian water treatment plants adjusted to pH 4, pH 6 and pH 8 and dosed with TiO 2 nanoparticles. The DOC results were a good fit to a modified Freundlich isotherm. DBP precursors and liquid chromatography with organic carbon detection NOM fractions associated with DBP formation were removed to some extent at all pHs, but most effectively at pH 4. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Jianbing; Zhou, Yunrui; Zhu, Wanpeng; He, Xuwen
2009-07-15
Catalytic ozonation of dimethyl phthalate (DMP) in aqueous solution (5mg/L) under various reactions was performed to examine the effect of catalyst dosage, catalyst particle size, ozone dosage, and gas flow rate on the mineralization of DMP. The mineralization of DMP can be achieved via ozonation and the presence of Ru/AC could greatly accelerate the mineralization rate of DMP in ozonation process. In the continuous experiment of the Ru/AC catalyzed ozonation of DMP, total organic carbon (TOC) removals were kept stable around 75% during 42 h reaction. No leaching of ruthenium was observed in the treated water samples. The treatment of natural water using Ru/AC+O(3), Ru/AC+O(2) and ozonation alone was studied. In the Ru/AC+O(3) process, TOC removals, the reductions of the haloacetic acid formation potentials (HAAFPs), and the reductions of the trihalomethane formation potentials (THMFPs) of 11 water samples were 22-44%, 39-61% and 50-65%, respectively. Ru/AC+O(3) process was much more effective than ozonation alone for TOC removal and the reduction of disinfection by-product formation potential (DBPFP) in the treatment of natural water. It is a promising water treatment technology.
Metcalfe, David; Rockey, Chris; Jefferson, Bruce; Judd, Simon; Jarvis, Peter
2015-12-15
This investigation aimed to compare the disinfection by-product formation potentials (DBPFPs) of three UK surface waters (1 upland reservoir and 2 lowland rivers) with differing characteristics treated by (a) a full scale conventional process and (b) pilot scale processes using a novel suspended ion exchange (SIX) process and inline coagulation (ILCA) followed by ceramic membrane filtration (CMF). Liquid chromatography-organic carbon detection analysis highlighted clear differences between the organic fractions removed by coagulation and suspended ion exchange. Pretreatments which combined SIX and coagulation resulted in significant reductions in dissolved organic carbon (DOC), UV absorbance (UVA), trihalomethane and haloacetic acid formation potential (THMFP, HAAFP), in comparison with the SIX or coagulation process alone. Further experiments showed that in addition to greater overall DOC removal, the processes also reduced the concentration of brominated DBPs and selectively removed organic compounds with high DBPFP. The SIX/ILCA/CMF process resulted in additional removals of DOC, UVA, THMFP, HAAFP and brominated DBPs of 50, 62, 62, 62% and 47% respectively compared with conventional treatment. Copyright © 2015. Published by Elsevier Ltd.
Liu, Jin-Lin; Li, Xiao-Yan; Xie, Yue-Feng; Tang, Hao
2014-02-15
Water pollution by wastewater discharge can cause the problem of disinfection byproducts (DBPs) in drinking water supply. In this study, DBP formation characteristics of soluble microbial products (SMPs) as the main products of wastewater organic biodegradation were investigated. The results show that SMPs can act as DBP precursors in simulated wastewater biodegradation process. Under the experimental conditions, stabilized SMPs had DBPFP (DBP formation potential) yield of around 5.6 μmol mmol(-1)-DOC (dissolved organic carbon) and DBP speciation profile different from that of the conventional precursor, natural organic matter (NOM). SMPs contained polysaccharides, proteins, and humic-like substances, and the latter two groups can act as reactive DBP precursors. SMP fraction with molecular weight of <1 kDa accounted for 85% of the organic carbon and 65% of the DBP formation. As small SMP molecules are more difficult to remove by conventional water treatment processes, more efforts are needed to control wastewater-derived DBP problem in water resource management. Copyright © 2013 Elsevier B.V. All rights reserved.
Watershed Scale Monitoring and Modeling of Natural Organic Matter (NOM) Generation and Transport
NASA Astrophysics Data System (ADS)
Adams, R.; Rees, P. L.; Reckhow, D. A.; Castellon, C. M.
2006-05-01
This study describes a coupled watershed scale monitoring campaign, laboratory study, and hydrological modeling study which has been focused on determining the sources and transport mechanisms for Natural Organic Matter (NOM), in a small, mostly forested New England watershed. For some time, the state conservation authorities and a large metropolitan water authority have been concerned that the level of naturally-occurring disinfection byproducts in drinking water supplied by a large surface water reservoir (Watchusett Reservoir, MA) have been increasing over time. The resulting study has attempted to investigate how these compounds, which are mostly formed by the chlorination process at the water treatment plant, are related to NOM precursor compounds which are generated from organic matter and transported by runoff processes in the watershed of the Watchusett Reservoir. The laboratory study measures disinfection byproduct formation potential (DBPFP) through chlorination of raw water samples obtained through field monitoring. Samples are analysed for trihalomethanes (THMs), and haloacetic acids (HAAs). Samples are also analysed for dissolved organic carbon (DOC) and ultraviolet absorbance at 254 nm (UV254). The samples have been collected from as many components of the hydrological cycle as possible in one of the subcatchments of Watchusett Reservoir (Stillwater River). To date the samples include, stream runoff, water impounded naturally in small ponds by beaver dams, rainfall, snow, throughfall (drainage from tree canopies) and samples pumped from shallow suction lysimeters which were installed to monitor soil water in the riparian zone. The current monitoring program began in late-Summer 2005, however infrequent stream samples are available dating back to 2000 from an earlier research project and water quality monitoring by various regulatory authorities. The monitoring program has been designed to capture as much seasonal variation in water chemistry as possible and also to capture a large spring snowmelt event. The modeling study has been designed to provide a method of estimating the export of NOM and DBPFP precursor compounds by running a series of simple macromodels. One of these models has already been developed for DOC transport based on a variant of the popular TOPMODEL hydrological model. Currently, historical daily streamflow and precipitation data have been used to calibrate the hydrological model, and the results from the current and previous monitoring programs are being used to improve the representation of DOM generation in the model. The ultimate aim is to produce a modeling tool which can be used to investigate changes both in land-use and climate in the watershed and the resulting effects on the export of NOM and DBPFP compounds into the reservoir.
Tian, J Y; Chen, Z L; Liang, H; Li, X; Wang, Z Z; Li, G B
2009-01-01
Biological activated carbon (BAC) and membrane bioreactor (MBR) were systematically compared for the drinking water treatment from slightly polluted raw water under the same hydraulic retention time (HRT) of 0.5 h. MBR exhibited excellent turbidity removal capacity due to the separation of the membrane; while only 60% of influent turbidity was intercepted by BAC. Perfect nitrification was achieved by MBR with the 89% reduction in ammonia; by contrast, BAC only eliminated a moderate amount of influent ammonia (by 54.5%). However, BAC was able to remove more dissolved organic matter (DOM, especially for organic molecules of 3,000 approximately 500 Daltons) and corresponding disinfection by-product formation potential (DBPFP) in raw water than MBR. Unfortunately, particulate organic matter (POM) was detected in the BAC effluent. On the other hand, BAC and MBR displayed essentially the same capacity for biodegradable organic matter (BOM) removal. Fractionation of DOM showed that the removal efficiencies of hydrophobic neutrals, hydrophobic acids, weakly hydrophobic acids and hydrophilic organic matter through BAC treatment were 11.7%, 8.8%, 13.9% and 4.8% higher than that through MBR; while MBR achieved 13.8% higher hydrophobic bases removal as compared with BAC.
Comparative assessment of ceramic media for drinking water biofiltration.
Sharma, Dikshant; Taylor-Edmonds, Liz; Andrews, Robert C
2018-01-01
Media type is a critical design consideration when implementing biofiltration for drinking water treatment. Granular activated carbon (GAC) has been shown to provide superior performance when compared to a wide range of media types, largely due to its higher surface area. Engineered ceramic media is an attractive alternative to GAC as it has a similar surface area but at a lower cost. This pilot-scale biofiltration study compared the performance of GAC, anthracite and two different effective sizes of ceramic (CER) media (1.0 mm and 1.2 mm), in terms of dissolved organic carbon (DOC), head loss, turbidity, and disinfection by-product formation potential (DBPFP). Biological acclimation was monitored using adenosine tri-phosphate (ATP) measurements; biomass was further examined using laccase and esterase enzyme activity assays. When compared to other media types examined, biological GAC had higher (p > 0.05) removals of DOC (9.8 ± 3.8%), trihalomethane formation potential (THMFP, 26.3 ± 10.2%), and haloacetic acid formation potential (HAAFP, 27.2 ± 14.0%). CER media required 6-7 months to biologically acclimate, while filters containing GAC and anthracite were biologically active (>100 ng of ATP/g media) following 30-45 days of operation. Once acclimated, ATP values of 243 and 208 ng/g attained for CER 1.0 and 1.2, respectively, were statistically comparable to GAC (244 ng/g) and higher than anthracite (110 ng/g), however this did not translate into greater organics removal. Esterase and laccase enzyme kinetics were highest for GAC, while CER was shown to have greater biodegradation potential than anthracite. The four media types attained similar turbidity reduction (p > 0.05), however ceramic media filters were observed to have run times which were 1.5-2.3 times longer when compared to anthracite, which could represent potential cost savings in terms of energy for pumping and backwash requirements. Overall, ceramic media was shown to be a potential alternative to anthracite when considering biofiltration, especially during cold water conditions (T < 10 °C). Copyright © 2017 Elsevier Ltd. All rights reserved.
Trihalomethane and nonpurgeable total organic-halide formation potentials of the Mississippi river
Rathbun, R.E.
1996-01-01
Trihalomethane and nonpurgeable total organic-hallide formation potentials were determined for water samples from 12 sites along the Mississippi River from Minneapolis, MN, to New Orleans, LA, for the summer and fall of 1991 and the spring of 1992. The formation potentials increased with distance upstream, approximately paralleling the increase of the dissolved organic- carbon concentration. The pH and the dissolved organic-carbon and free- chlorine concentrations were significant variables in the prediction of the formation potentials. The trihalomethane formation potential increased as the pH increased, whereas the nonpurgeable total organic-halide formation potential decreased. All formation potentials increased as the dissolved organic-carbon and free-chlorine concentrations increased, with the dissolved organic-carbon concentration having a much greater effect.
Qian-Yuan, Wu; Chao, Li; Ye, Du; Wen-Long, Wang; Huang, Huang; Hong-Ying, Hu
2016-05-15
Ecological storage of reclaimed water in ponds and lakes is widely applied in water reuse. During reclaimed water storage, solar light can degrade pollutants and improve water quality. This study investigated the effects of solar light irradiation on the disinfection byproduct formation potential in reclaimed water, including haloacetonitriles (HANs), trichloronitromethane (TCNM), trihalomethanes (THMs), haloketones (HKs) and chloral hydrate (CH). Natural solar light significantly decreased the formation potential of HANs, TCNM, and HKs in reclaimed water, but had a limited effect on the formation potential of THMs and CH. Ultraviolet (UV) light in solar radiation played a dominant role in the decrease of the formation potential of HANs, TCNM and HKs. Among the disinfection byproducts, the removal kinetic constant of dichloroacetonitrile (DCAN) with irradiation dose was much larger than those for dichloropropanone (1,1-DCP), trichloropropanone (1,1,1-TCP) and TCNM. During solar irradiation, fluorescence spectra intensities of reclaimed water also decreased significantly. The removal of tyrosine (Tyr)-like and tryptophan (Trp)-like protein fluorescence spectra intensity volumes was correlated to the decrease in DCAN formation potential. Solar irradiation was demonstrated to degrade Trp, Tyr and their DCAN formation potential. The photolysis products of Trp after solar irradiation were detected as kynurenine and tryptamine, which had chloroform, CH and DCAN formation potential lower than those of Trp. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Youssef, Mohamed A. S.; Sabra, Mohamed Elsadek M.; Abdeldayem, Abdelaziz L.; Masoud, Alaa A.; Mansour, Salah A.
2017-12-01
Airborne gamma-ray spectrometric data, covering Gabal Umm Hammad area, near Quseir City, in the Eastern Desert of Egypt, has been utilized to identify the uranium migration path, and U, Th and K-favorability indices. The following of the uranium migration technique enabled estimation of the amount of migrated uranium, in and out of the rock units. Investigation of the Taref Formation, Nakhil Formation, Tarawan Formation and Dawi Formation shows large negative amount of uranium migration, indicating that uranium leaching is outward from the geologic body toward surrounding rock units. Moreover, calculation of the U, Th and K-favorability indices has been carried out for the various rock units to locate the rocks having the highest radioelement potentialities. The rock units that possess relatively major probability of uranium potentiality include Mu‧tiq Group, weakly deformed granitic rocks, and Trachyte plugs and sheets. Meanwhile, the rock units with major potential of Th-index are Taref Formation, Quseir Formation and Dawi Formation. The rock units with major potential of K-index are Dokhan volcanic and Mu‧tiq group.
Pope, L.M.; Arruda, J.A.; Fromm, C.H.
1988-01-01
The formation of carcinogenic trihalomethanes during the treatment of public surface water supplies has become a potentially serious problem. The U. S. Geological Survey, in cooperation with the Kansas Department of Health and Environment , investigated the potential for trihalomethane formation in water from 15 small, public water supply lakes in eastern Kansas from April 1984 through April 1986 in order to define the principal factors that affect or control the potential for trihalomethane formation during the water treatment process. Relations of mean concentrations of trihalomethane-formation potential to selected water quality and lake and watershed physical characteristics were investigated using correlation and regression analysis. Statistically significant, direct relations were developed between trihalomethanes produced in unfiltered and filtered lake water and mean concentrations of total and dissolved organic carbon. Correlation coefficients for these relations ranged from 0.86 to 0.93. Mean values of maximum depth of lake were shown to have statistically significant inverse relations to mean concentrations of trihalomethane-formation potential and total and dissolved organic carbon. Correlation coefficients for these relations ranged from -0.76 to -0.81. (USGS)
Formation flying benefits based on vortex lattice calculations
NASA Technical Reports Server (NTRS)
Maskew, B.
1977-01-01
A quadrilateral vortex-lattice method was applied to a formation of three wings to calculate force and moment data for use in estimating potential benefits of flying aircraft in formation on extended range missions, and of anticipating the control problems which may exist. The investigation led to two types of formation having virtually the same overall benefits for the formation as a whole, i.e., a V or echelon formation and a double row formation (with two staggered rows of aircraft). These formations have unequal savings on aircraft within the formation, but this allows large longitudinal spacings between aircraft which is preferable to the small spacing required in formations having equal benefits for all aircraft. A reasonable trade-off between a practical formation size and range benefit seems to lie at about three to five aircraft with corresponding maximum potential range increases of about 46 percent to 67 percent. At this time it is not known what fraction of this potential range increase is achievable in practice.
Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential.
de Oliveira, Maíra Maciel Mattos; Brugnera, Danilo Florisvaldo; Alves, Eduardo; Piccoli, Roberta Hilsdorf
2010-01-01
An experimental model was proposed to study biofilm formation by Listeria monocytogenes ATCC 19117 on AISI 304 (#4) stainless steel surface and biotransfer potential during this process. In this model, biofilm formation was conducted on the surface of stainless steel coupons, set on a stainless steel base with 4 divisions, each one supporting 21 coupons. Trypic Soy Broth was used as bacterial growth substrate, with incubation at 37 °C and stirring of 50 rpm. The number of adhered cells was determined after 3, 48, 96, 144, 192 and 240 hours of biofilm formation and biotransfer potential from 96 hours. Stainless steel coupons were submitted to Scanning Electron Microscopy (SEM) after 3, 144 and 240 hours. Based on the number of adhered cells and SEM, it was observed that L. monocytogenes adhered rapidly to the stainless steel surface, with mature biofilm being formed after 240 hours. The biotransfer potential of bacterium to substrate occurred at all the stages analyzed. The rapid capacity of adhesion to surface, combined with biotransfer potential throughout the biofilm formation stages, make L. monocytogenes a potential risk to the food industry. Both the experimental model developed and the methodology used were efficient in the study of biofilm formation by L. monocytogenes on stainless steel surface and biotransfer potential.
[Estimate of the formation potential of secondary organic aerosol in Beijing summertime].
Lü, Zi-Feng; Hao, Ji-Ming; Duan, Jing-Chun; Li, Jun-Hua
2009-04-15
Fractional aerosol coefficients (FAC) are used in conjunction with measurements of volatile organic compounds (VOC) during ozone episodes to estimate the formation potential of secondary organic aerosols (SOA) in the summertime of Beijing. The estimation is based on the actual atmospheric conditions of Beijing, and benzene and isoprene are considered as the precursors of SOA. The results show that 31 out of 70 measured VOC species are SOA precursors, and the total potential SOA formation is predicted to be 8.48 microg/m3, which accounts for 30% of fine organic particle matter. Toluene, xylene, pinene, ethylbenzene and n-undecane are the 5 largest contributors to SOA production and account for 20%, 22%, 14%, 9% and 4% of total SOA production, respectively. The anthropogenic aromatic compounds, which yield 76% of the calculated SOA, are the major source of SOA. The biogenic alkenes, alkanes and carbonyls produce 16%, 7% and 1% of SOA formation, respectively. The major components of produced SOA are expected to be aromatic compounds, aliphatic acids, carbonyls and aliphatic nitrates, which contribute to 72%, 14%, 11% and 3% of SOA mass, respectively. The SOA precursors have relatively low atmospheric concentrations and low ozone formation potential. Hence, SOA formation potential of VOC species, in addition to their atmospheric concentrations and ozone formation potential, should be considered in policy making process of VOCs control.
An Argument for Formative Assessment with Science Learning Progressions
ERIC Educational Resources Information Center
Alonzo, Alicia C.
2018-01-01
Learning progressions--particularly as defined and operationalized in science education--have significant potential to inform teachers' formative assessment practices. In this overview article, I lay out an argument for this potential, starting from definitions for "formative assessment practices" and "learning progressions"…
Study of the geothermal production potential in the Williston Basin, North Dakota
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Min H.
1991-09-10
Preliminary studies of geothermal production potential for the North Dakota portion of the Williston Basin have been carried out. Reservoir data such as formation depth, subsurface temperatures, and water quality were reviewed for geothermal brine production predictions. This study, in addition, provides important information about net pay thickness, porosity, volume of geothermal water available, and productivity index for future geothermal direct-use development. Preliminary results show that the Inyan Kara Formation of the Dakota Group is the most favorable geothermal resource in terms of water quality and productivity. The Madison, Duperow, and Red River Formations are deeper formations but because ofmore » their low permeability and great depth, the potential flow rates from these three formations are considerably less than those of the Inyan Kara Formation. Also, poor water quality and low porosity will make those formations less favorable for geothermal direct-use development.« less
Knight, Nicole; Watson, Kalinda; Farré, Maria José; Shaw, Glen
2012-07-01
This study assesses the prevalence of disinfection by-product (DBP) precursors in some Southeast Queensland drinking water sources by conducting formation potential experiments for the four regulated trihalomethanes (THMs), and the potent carcinogen, N-nitrosodimethylamine (NDMA). NDMA formation potentials were consistently low (<5-21 ng/L), and total THM (tTHM) formation potentials were consistently below the Australian Drinking Water Guideline (250 μg/L). NDMA concentration of finished drinking waters was also monitored and found to be <5 ng/L in all cases. The effect of coagulation and advanced oxidation on the formation of NDMA and THMs is also reported. UV/H(2)O(2) pre-treatment was effective in producing water with very low THMs concentrations, and UV irradiation was an effective method for NDMA degradation. H(2)O(2) was not required for the observed NDMA degradation to occur. Coagulation using alum, ferric chloride or poly(diallyldimethylammonium chloride) (polyDADMAC) was ineffective in removing DBPs precursors from the source water studied, irrespective of the low dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) attained. Rather, coagulation with polyDADMAC caused an increase in NDMA formation potential upon chloramination, and all coagulants led to an increased tTHM formation potential upon chlorination due to the high bromide concentration of the source water studied.
NASA Astrophysics Data System (ADS)
Diria, Shidqi A.; Musu, Junita T.; Hasan, Meutia F.; Permono, Widyo; Anwari, Jakson; Purba, Humbang; Rahmi, Shafa; Sadjati, Ory; Sopandi, Iyep; Ruzi, Fadli
2018-03-01
Upper Red Bed, Menggala Formation, Bangko Formation, Bekasap Formation and Duri Formationare considered as the major reservoirs in Central Sumatra Basin (CSB). However, Telisa Formation which is well-known as seal within CSB also has potential as reservoir rock. Field study discovered that lenses and layers which has low to high permeability sandstone enclosed inside low permeability shale of Telisa Formation. This matter is very distinctive and giving a new perspective and information related to the invention of hydrocarbon potential in reservoir sandstone that isolated inside low permeability shale. This study has been conducted by integrating seismic data, well logs, and petrophysical data throughly. Facies and static model are constructed to estimate hydrocarbon potential resource. Facies model shows that Telisa Formation was deposited in deltaic system while the potential reservoir was deposited in distributary mouth bar sandstone but would be discontinued bedding among shale mud-flat. Besides, well log data shows crossover between RHOB and NPHI, indicated that distributary mouth bar sandstone is potentially saturated by hydrocarbon. Target area has permeability ranging from 0.01-1000 mD, whereas porosity varies from 1-30% and water saturation varies from 30-70%. The hydrocarbon resource calculation approximates 36.723 MSTB.
Delatolla, R; Séguin, C; Springthorpe, S; Gorman, E; Campbell, A; Douglas, I
2015-10-01
The goal of this study was to investigate the potential of biofiltration to reduce the formation potential of disinfection byproducts (DBPs). Particularly, the work investigates the effect of the duration of the filter cycle on the formation potential of total trihalomethanes (TTHM) and five species of haloacetic acids (HAA5), dissolved oxygen (DO), organic carbon, nitrogen and total phosphorous concentrations along with biofilm coverage of the filter media and biomass viability of the attached cells. The study was conducted on a full-scale biologically active filter, with anthracite and sand media, at the Britannia water treatment plant (WTP), located in Ottawa, Ontario, Canada. The formation potential of both TTHMs and HAA5s decreased due to biofiltration. However the lowest formation potentials for both groups of DBPs and or their precursors were observed immediately following a backwash event. Hence, the highest percent removal of DBPs was observed during the early stages of the biofiltration cycle, which suggests that a higher frequency of backwashing will reduce the formation of DBPs. Variable pressure scanning electron microscopy (VPSEM) analysis shows that biofilm coverage of anthracite and sand media increases as the filtration cycle progressed, while biomass viability analysis demonstrates that the percentage of cells attached to the anthracite and sand media also increases as the filtration cycle progresses. These results suggest that the development and growth of biofilm on the filters increases the DPB formation potential. Copyright © 2015 Elsevier Ltd. All rights reserved.
Crepeau, Kathryn L.; Fram, Miranda S.; Bush, Noel
2004-01-01
An analytical method for the determination of the trihalomethane formation potential of water samples has been developed. The trihalomethane formation potential is measured by dosing samples with chlorine under specified conditions of pH, temperature, incubation time, darkness, and residual-free chlorine, and then analyzing the resulting trihalomethanes by purge and trap/gas chromatography equipped with an electron capture detector. Detailed explanations of the method and quality-control practices are provided. Method validation experiments showed that the trihalomethane formation potential varies as a function of time between sample collection and analysis, residual-free chlorine concentration, method of sample dilution, and the concentration of bromide in the sample.
A tungsten-rhenium interatomic potential for point defect studies
Setyawan, Wahyu; Gao, Ning; Kurtz, Richard J.
2018-05-28
A tungsten-rhenium (W-Re) classical interatomic potential is developed within the embedded atom method (EAM) interaction framework. A force-matching method is employed to fit the potential to ab initio forces, energies, and stresses. Simulated annealing is combined with the conjugate gradient technique to search for an optimum potential from over 1000 initial trial sets. The potential is designed for studying point defects in W-Re systems. It gives good predictions of the formation energies of Re defects in W and the binding energies of W self-interstitial clusters with Re. The potential is further evaluated for describing the formation energy of structures inmore » the σ and χ intermetallic phases. The predicted convex-hulls of formation energy are in excellent agreement with ab initio data. In pure Re, the potential can reproduce the formation energies of vacancy and self-interstitial defects sufficiently accurately, and gives the correct ground state self-interstitial configuration. Furthermore, by including liquid structures in the fit, the potential yields a Re melting temperature (3130 K) that is close to the experimental value (3459 K).« less
A tungsten-rhenium interatomic potential for point defect studies
NASA Astrophysics Data System (ADS)
Setyawan, Wahyu; Gao, Ning; Kurtz, Richard J.
2018-05-01
A tungsten-rhenium (W-Re) classical interatomic potential is developed within the embedded atom method interaction framework. A force-matching method is employed to fit the potential to ab initio forces, energies, and stresses. Simulated annealing is combined with the conjugate gradient technique to search for an optimum potential from over 1000 initial trial sets. The potential is designed for studying point defects in W-Re systems. It gives good predictions of the formation energies of Re defects in W and the binding energies of W self-interstitial clusters with Re. The potential is further evaluated for describing the formation energy of structures in the σ and χ intermetallic phases. The predicted convex-hulls of formation energy are in excellent agreement with ab initio data. In pure Re, the potential can reproduce the formation energies of vacancies and self-interstitial defects sufficiently accurately and gives the correct ground state self-interstitial configuration. Furthermore, by including liquid structures in the fit, the potential yields a Re melting temperature (3130 K) that is close to the experimental value (3459 K).
A tungsten-rhenium interatomic potential for point defect studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setyawan, Wahyu; Gao, Ning; Kurtz, Richard J.
A tungsten-rhenium (W-Re) classical interatomic potential is developed within the embedded atom method (EAM) interaction framework. A force-matching method is employed to fit the potential to ab initio forces, energies, and stresses. Simulated annealing is combined with the conjugate gradient technique to search for an optimum potential from over 1000 initial trial sets. The potential is designed for studying point defects in W-Re systems. It gives good predictions of the formation energies of Re defects in W and the binding energies of W self-interstitial clusters with Re. The potential is further evaluated for describing the formation energy of structures inmore » the σ and χ intermetallic phases. The predicted convex-hulls of formation energy are in excellent agreement with ab initio data. In pure Re, the potential can reproduce the formation energies of vacancy and self-interstitial defects sufficiently accurately, and gives the correct ground state self-interstitial configuration. Furthermore, by including liquid structures in the fit, the potential yields a Re melting temperature (3130 K) that is close to the experimental value (3459 K).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, D.; Gao, Ning; Setyawan, Wahyu
The influence of hydrostatic strain on point defect formation energy and threshold displacement energy (Ed) in body-centered cubic (BCC) tungsten was studied with molecular dynamics simulations. Two different tungsten potentials (Fikar and Juslin) were used. The minimum Ed direction calculated with the Fikar-potential was <100>, but with the Juslin-potential it was <111>. The most stable self-interstitial (SIA) configuration was a <111>-crowdion for both potentials. The stable SIA configuration did not change with applied strain. Varying the strain from compression to tension increased the vacancy formation energy but decreased the SIA formation energy. The SIA formation energy changed more significantly thanmore » for a vacancy such that Ed decreased with applied strain from compression to tension.« less
NASA Astrophysics Data System (ADS)
Nugraha, A. M. S.; Widiarti, R.; Kusumah, E. P.
2017-12-01
This study describes a deep-water slump facies shale of the Early Miocene Jatiluhur/Cibulakan Formation to understand its potential as a source rock in an active tectonic region, the onshore West Java. The formation is equivalent with the Gumai Formation, which has been well-known as another prolific source rock besides the Oligocene Talang Akar Formation in North West Java Basin, Indonesia. The equivalent shale formation is expected to have same potential source rock towards the onshore of Central Java. The shale samples were taken onshore, 150 km away from the basin. The shale must be rich of organic matter, have good quality of kerogen, and thermally matured to be categorized as a potential source rock. Investigations from petrography, X-Ray diffractions (XRD), and backscattered electron show heterogeneous mineralogy in the shales. The mineralogy consists of clay minerals, minor quartz, muscovite, calcite, chlorite, clinopyroxene, and other weathered minerals. This composition makes the shale more brittle. Scanning Electron Microscope (SEM) analysis indicate secondary porosities and microstructures. Total Organic Carbon (TOC) shows 0.8-1.1 wt%, compared to the basinal shale 1.5-8 wt%. The shale properties from this outcropped formation indicate a good potential source rock that can be found in the subsurface area with better quality and maturity.
ERIC Educational Resources Information Center
Clark, Ian
2012-01-01
Formative assessment is a potentially powerful instructional process because the practice of sharing assessment information that supports learning is embedded into the instructional process by design. If the potential of formative assessment is to be realized, it must transform from a collection of abstract theories and research methodologies and…
Farré, Maria José; Radjenovic, Jelena; Gernjak, Wolfgang
2012-12-04
UV-C radiation is the U.S. EPA recommended technology to remove N-nitrosodimethylamine (NDMA) during drinking and recycled water production. Frequently, H(2)O(2) is added to the treatment to remove other recalcitrant compounds and to prevent NDMA reformation. However, the transformation of NDMA precursors during the UV and UV/H(2)O(2) process and the consequences for NDMA formation potential are currently not well understood, in particular in the presence of monochloramine. In this study, doxylamine has been chosen as a model compound to elucidate its degradation byproducts in the UV and UV/H(2)O(2) process and correlate those with changes to the NDMA formation potential. This study shows that during UV treatment in the presence and absence of monochloramine, NDMA formation potential can be halved. However, an increase of more than 30% was observed when hydrogen peroxide was added. Ultrafast liquid chromatography coupled to quadrupole-linear ion trap mass spectrometer was used for screening and structural elucidation of degradation byproducts identifying 21 chemical structures from the original parent compound. This work shows that further oxidation of NDMA precursors does not necessarily lead to a decrease in NDMA formation potential. Degradation byproducts with increased electron density in the vicinity of the dimethylamino moiety, for example induced by hydroxylation, may have a higher yield of nucleophilic substitution and subsequent NDMA formation compared to the parent compound during chloramination. This work demonstrates the need to consider the formation of oxidation byproducts and associated implications for the control and management of NDMA formation in downstream processes and distribution when integrating oxidative treatments into a treatment train generating either drinking water or recycled water for potable reuse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dong; Gao, Ning; Setyawan, W.
The influence of strain field on defect formation energy and threshold displacement energy (Ed) in body-centered cubic (BCC) tungsten (W) has been studied with molecular dynamics simulations. Two different W potentials (Fikar and Juslin) were compared and the results indicate that the connection distance and selected function linking the short-range and long-range portions of the potentials affects the threshold displacement energy and its direction-specific values. The minimum Ed direction calculated with the Fikar-potential is <100> and with the Juslin-potential is <111>. Nevertheless, the most stable self-interstitial configuration is found to be a <111>-crowdion for both potentials. This stable configuration doesmore » not change with applied strain. Varying the strain from compression to tension increases the vacancy formation energy but decreases the self-interstitial formation energy. The formation energy of a self-interstitial changes more significantly than a vacancy such that Ed decreases with applied hydrostatic strain from compression to tension.« less
Correlation between Gas Bubble Formation and Hydrogen Evolution Reaction Kinetics at Nanoelectrodes.
Chen, Qianjin; Luo, Long
2018-04-17
We report the correlation between H 2 gas bubble formation potential and hydrogen evolution reaction (HER) activity for Au and Pt nanodisk electrodes (NEs). Microkinetic models were formulated to obtain the HER kinetic information for individual Au and Pt NEs. We found that the rate-determining steps for the HER at Au and Pt NEs were the Volmer step and the Heyrovsky step, respectively. More interestingly, the standard rate constant ( k 0 ) of the rate-determining step was found to vary over 2 orders of magnitude for the same type of NEs. The observed variations indicate the HER activity heterogeneity at the nanoscale. Furthermore, we discovered a linear relationship between bubble formation potential ( E bubble ) and log( k 0 ) with a slope of 125 mV/decade for both Au and Pt NEs. As log ( k 0 ) increases, E bubble shifts linearly to more positive potentials, meaning NEs with higher HER activities form H 2 bubbles at less negative potentials. Our theoretical model suggests that such linear relationship is caused by the similar critical bubble formation condition for Au and Pt NEs with varied sizes. Our results have potential implications for using gas bubble formation to evaluate the HER activity distribution of nanoparticles in an ensemble.
NASA Astrophysics Data System (ADS)
Zaraska, Leszek; Gilek, Dominika; Gawlak, Karolina; Jaskuła, Marian; Sulka, Grzegorz D.
2016-12-01
A simple anodic oxidation of metallic tin in fluoride-free alkaline electrolyte at low potentials was proposed as a new and effective strategy for fabrication of crack-free nanoporous tin oxide layers. A low-purity Sn foil (98.8%) was used as a starting material, and a series of anodizations were performed in 1 M NaOH at different conditions such as anodizing potential, and duration of the process. It was proved for the first time that nanostructured tin oxides with ultra-small nanochannels having diameters of <15 nm can be synthesized by simple anodization of metallic tin at a potential of 2 V in 1 M NaOH electrolyte. Increasing anodizing potential to 3 and 4 V allowed for formation of tin oxide layers with much larger pores (40-50 nm in diameter) which were still free from internal cracks and transversal pores. Applying such low potentials significantly reduces the oxide growth rate and suppresses vigorous oxygen evolution at the anode. As a result mechanical deterioration of the oxide structure is prevented while strongly alkaline electrolyte is responsible for formation of the porous layer with completely open pores even at such low potentials. On the contrary, when anodization was carried out at potentials of 5 and 6 V, much faster formation of anodic layer, accompanied by vigorous oxygen gas formation, was observed. In consequence, as grown oxide layers exhibited typical cracked or even stacked internal structure. Finally, we demonstrated for the first time that nanoporous tin oxide layers with segments of different channel sizes can be successfully obtained by simple altering potential during anodization.
Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thayanithy, Venugopal; Babatunde, Victor; Dickson, Elizabeth L.
Tunneling nanotubes (TnTs) are long, non-adherent, actin-based cellular extensions that act as conduits for transport of cellular cargo between connected cells. The mechanisms of nanotube formation and the effects of the tumor microenvironment and cellular signals on TnT formation are unknown. In the present study, we explored exosomes as potential mediators of TnT formation in mesothelioma and the potential relationship of lipid rafts to TnT formation. Mesothelioma cells co-cultured with exogenous mesothelioma-derived exosomes formed more TnTs than cells cultured without exosomes within 24–48 h; and this effect was most prominent in media conditions (low-serum, hyperglycemic medium) that support TnT formationmore » (1.3–1.9-fold difference). Fluorescence and electron microscopy confirmed the purity of isolated exosomes and revealed that they localized predominantly at the base of and within TnTs, in addition to the extracellular environment. Time-lapse microscopic imaging demonstrated uptake of tumor exosomes by TnTs, which facilitated intercellular transfer of these exosomes between connected cells. Mesothelioma cells connected via TnTs were also significantly enriched for lipid rafts at nearly a 2-fold higher number compared with cells not connected by TnTs. Our findings provide supportive evidence of exosomes as potential chemotactic stimuli for TnT formation, and also lipid raft formation as a potential biomarker for TnT-forming cells. - Highlights: • Exosomes derived from malignant cells can stimulate an increased rate in the formation of tunneling nanotubes. • Tunneling nanotubes can serve as conduits for intercellular transfer of these exosomes. • Most notably, exosomes derived from benign mesothelial cells had no effect on nanotube formation. • Cells forming nanotubes were enriched in lipid rafts at a greater number compared with cells not forming nanotubes. • Our findings suggest causal and potentially synergistic association of exosomes and tunneling nanotubes in cancer.« less
New particle formation (NPF) can potentially alter regional climate by increasing aerosol particle (hereafter particle) number concentrations and ultimately cloud condensation nuclei. The large scales on which NPF is manifest indicate potential to use satellite-based (inherently ...
Coffee melanoidins: structures, mechanisms of formation and potential health impacts.
Moreira, Ana S P; Nunes, Fernando M; Domingues, M Rosário; Coimbra, Manuel A
2012-09-01
During the roasting process, coffee bean components undergo structural changes leading to the formation of melanoidins, which are defined as high molecular weight nitrogenous and brown-colored compounds. As coffee brew is one of the main sources of melanoidins in the human diet, their health implications are of great interest. In fact, several biological activities, such as antioxidant, antimicrobial, anticariogenic, anti-inflammatory, antihypertensive, and antiglycative activities, have been attributed to coffee melanoidins. To understand the potential of coffee melanoidin health benefits, it is essential to know their chemical structures. The studies undertaken to date dealing with the structural characterization of coffee melanoidins have shown that polysaccharides, proteins, and chlorogenic acids are involved in coffee melanoidin formation. However, exact structures of coffee melanoidins and mechanisms involved in their formation are far to be elucidated. This paper systematizes the available information and provides a critical overview of the knowledge obtained so far about the structure of coffee melanoidins, mechanisms of their formation, and their potential health implications.
NASA Astrophysics Data System (ADS)
El sheikh, Hassan; Faris, Mahmoud; Shaker, Fatma; Kumral, Mustafa
2016-06-01
This paper aims to study the mineralogical composition and determine the petroleum potential of source rocks of the Oligocene-Miocene sequence in the Nile Delta and North Sinai districts. The studied interval in the five wells can be divided into five rock units arranged from the top to base; Qawasim, Sidi Salem, Kareem, Rudeis, and Qantara formations. The bulk rock mineralogy of the samples was investigated using X-Ray Diffraction technique (XRD). The results showed that the sediments of the Nile Delta area are characterized by the abundance of quartz and kaolinite with subordinate amounts of feldspars, calcite, gypsum, dolomite, and muscovite. On the other hand, the data of the bulk rock analysis at the North Sinai wells showed that kaolinite, quartz, feldspar and calcite are the main constituents associated with minor amounts of dolomite, gypsum, mica, zeolite, and ankerite. Based on the organic geochemical investigations (TOC and Rock-Eval pyrolysis analyses), all studied formations in both areas are thermally immature but in the Nile delta area, Qawasim, Sidi Salem and Qantara formations (El-Temsah-2 Well) are organically-rich and have a good petroleum potential (kerogen Type II-oil-prone), while Rudeis Formation is a poor petroleum potential source rock (kerogen Type III-gas-prone). In the North Sinai area, Qantara Formation has a poor petroleum potential (kerogen Type III-gas-prone) and Sidi Salem Formation (Bardawil-1 Well) is a good petroleum potential source rock (kerogen Type II-oil-prone).
Hydrocarbon potential assessment of Ngimbang formation, Rihen field of Northeast Java Basin
NASA Astrophysics Data System (ADS)
Pandito, R. H.; Haris, A.; Zainal, R. M.; Riyanto, A.
2017-07-01
The assessment of Ngimbang formation at Rihen field of Northeast Java Basin has been conducted to identify the hydrocarbon potential by analyzing the response of passive seismic on the proven reservoir zone and proposing a tectonic evolution model. In the case of petroleum exploration in Northeast Java basin, the Ngimbang formation cannot be simply overemphasized. East Java Basin has been well known as one of the mature basins producing hydrocarbons in Indonesia. This basin was stratigraphically composed of several formations from the old to the young i.e., the basement, Ngimbang, Kujung, Tuban, Ngerayong, Wonocolo, Kawengan and Lidah formation. All of these formations have proven to become hydrocarbon producer. The Ngrayong formation, which is geologically dominated by channels, has become a production formation. The Kujung formation that has been known with the reef build up has produced more than 102 million barrel of oil. The Ngimbang formation so far has not been comprehensively assessed in term its role as a source rock and a reservoir. In 2013, one exploratory well has been drilled at Ngimbang formation and shown a gas discovery, which is indicated on Drill Stem Test (DST) reading for more than 22 MMSCFD of gas. This discovery opens new prospect in exploring the Ngimbang formation.
Carpenter, Kurt D.; Kraus, Tamara E.C.; Goldman, Jami H.; Saraceno, John Franco; Downing, Bryan D.; Bergamaschi, Brian A.; McGhee, Gordon; Triplett, Tracy
2013-01-01
This study characterized the amount and quality of organic matter in the Clackamas River, Oregon, to gain an understanding of sources that contribute to the formation of chlorinated and brominated disinfection by-products (DBPs), focusing on regulated DBPs in treated drinking water from two direct-filtration treatment plants that together serve approximately 100,000 customers. The central hypothesis guiding this study was that natural organic matter leaching out of the forested watershed, in-stream growth of benthic algae, and phytoplankton blooms in the reservoirs contribute different and varying proportions of organic carbon to the river. Differences in the amount and composition of carbon derived from each source affects the types and concentrations of DBP precursors entering the treatment plants and, as a result, yield varying DBP concentrations and species in finished water. The two classes of DBPs analyzed in this study-trihalomethanes (THMs) and haloacetic acids (HAAs)-form from precursors within the dissolved and particulate pools of organic matter present in source water. The five principal objectives of the study were to (1) describe the seasonal quantity and character of organic matter in the Clackamas River; (2) relate the amount and composition of organic matter to the formation of DBPs; (3) evaluate sources of DBP precursors in the watershed; (4) assess the use of optical measurements, including in-situ fluorescence, for estimating dissolved organic carbon (DOC) concentrations and DBP formation; and (5) assess the removal of DBP precursors during treatment by conducting treatability "jar-test" experiments at one of the treatment plants. Data collection consisted of (1) monthly sampling of source and finished water at two drinking-water treatment plants; (2) event-based sampling in the mainstem, tributaries, and North Fork Reservoir; and (3) in-situ continuous monitoring of fluorescent dissolved organic matter (FDOM), turbidity, chlorophyll-a, and other constituents to continuously track source-water conditions in near real-time. Treatability tests were conducted during the four event-based surveys to determine the effectiveness of coagulant and powdered activated carbon (PAC) on the removal of DBP precursors. Sample analyses included DOC, total particulate carbon (TPC), total and dissolved nutrients, absorbance and fluorescence spectroscopy, and, for regulated DBPs, concentrations of THMs and HAAs in finished water and laboratory-based THM and HAA formation potentials (THMFP and HAAFP, respectively) for source water and selected locations throughout the watershed. The results of this study may not be typical given the record and near record amounts of precipitation that occurred during spring that produced streamflow much higher than average in 2010-11. Although there were algal blooms, lower concentrations of chlorophyll-a were observed in the water column during the study period compared to historical data. Concentrations of DBPs in finished (treated) water averaged 0.024 milligrams per liter (mg/L) for THMs and 0.022 mg/L for HAAs; maximum values were about 0.040 mg/L for both classes of DBPs. Although DBP concentrations were somewhat higher within the distribution system, none of the samples collected for this study or for the quarterly compliance monitoring by the water utilities exceeded levels permissible under existing U.S. Environmental Protection Agency (USEPA) regulations: 0.080 mg/L for THMs and 0.060 mg/L for HAAs. DOC concentrations were generally low in the Clackamas River, typically about 1.0-1.5 mg/L. Concentrations in the mainstem occasionally increased to nearly 2.5 mg/L during storms; DOC concentrations in tributaries were sometimes much higher (up to 7.8 mg/L). The continuous in-situ FDOM measurements indicated sharp rises in DOC concentrations in the mainstem following rainfall events; concentrations were relatively stable during summer base flow. Even though the first autumn storm mobilized appreciable quantities of carbon, higher concentrations of DBPs in finished water were observed 3-weeks later, after the ground was saturated from additional rainfall. The majority of the DOC in the lower Clackamas River appears to originate from the upper basin, suggesting terrestrial carbon was commonly the dominant source. Lower-basin tributaries typically contained the highest concentrations of DOC and DBP precursors and contributed substantially to the overall loads in the mainstem during storms. During low-flow periods, tributaries were not major sources of DOC or DBP precursors to the Clackamas River. Although the dissolved fraction of organic carbon contributed the majority of DBP precursors, at times the particulate fraction (inorganic sediment and organic particles including detritus and algal material) contributed a substantial fraction of DBP precursors. Considering just the main-stem sites, on average, 10 percent of THMFP and 32 percent of HAAFP were attributed to particulate carbon. This finding suggests water-treatment methods that remove particles prior to chlorination would reduce finished-water DBP concentrations to some degree. Overall, concentrations of THM and HAA precursors were closely linked to DOC concentrations; laboratory DBP formation potentials (DBPFPs) clearly showed that THMFP and HAAFP were greatest in the downstream tributaries that contained elevated carbon concentrations. However, carbon-normalized "specific" formation potentials for THMs and HAAs (STHMFP and SHAAFP, respectively) revealed changes in carbon character over time that affected the two types of DBP classes differently. HAA precursors were elevated in waters containing aromatic-rich soil-derived material arising from forested areas. In contrast, THM precursors were associated with carbon having a lower aromatic content; highest STHMFP occurred in autumn 2011 in the mainstem from North Fork Reservoir downstream to LO DWTP. This pattern suggests the potential for a link between THM precursors and algal-derived carbon. The highest STHMFP value was measured within North Fork Reservoir, indicating reservoir derived carbon may be important for this class of DBPs. Weak correlations between STHMFP and SHAAFP emphasize that precursor sources for these types of DBPs may be different. This highlights not only that different locations within the watershed produce carbon with different reactivity (specific DBPFP), but also that different management approaches for each class of DBP precursors could be required for control. Treatability tests conducted on source water during four basin-wide surveys demonstrated that an average of about 40 percent of DOC can be removed by coagulation. While the decrease in THMFP following coagulation was similar to DOC, the decrease in HAAFP was much greater (approximately 70 percent), indicating coagulation is particularly effective at removing HAA precursors'likely because of the aromatic nature of the carbon associated with HAA precursors. Several findings from this study have direct implications for managing drinking-water resources and for providing useful information that may help improve treatment-plant operations. For example, the use of in-situ fluorometers that measure FDOM provided an excellent proxy for DOC concentration in this system and revealed short-term, rapid changes in DOC concentration during storm events. In addition, the strong correlation between FDOM values measured in-situ and HAA5 concentrations in finished water may permit estimation of continuous HAA concentrations, as was done here. As part of this study, multiple in-situ FDOM sensors were deployed continuously and in real-time to characterize the composition of dissolved organic matter. Although the initial results were promising, additional research and engineering developments will be needed to demonstrate the full utility of these sensors for this purpose. In conclusion, although DBPFPs were strongly correlated to DOC concentration, some DBPs formed from particulate carbon, including terrestrial leaf material and algal material such as planktonic species of blue-green algae and sloughed filaments, stalks, and cells of benthic algae. Different precursor sources in the watershed were evident from the data, suggesting specific actions may be available to address some of these sources. In-situ measurements of FDOM proved to be an excellent proxy for DOC concentration as well as HAA formation during treatment, which suggests further development and refinement of these sensors have the potential to provide real-time information about complex watershed processes to operators at the drinking-water treatment plants. Follow-up studies could examine the relative roles that terrestrial and algal sources have on the DBP precursor pool to better understand how watershed-management activities may be affecting the transport of these compounds to Clackamas River drinking-water intakes. Given the low concentrations of algae in the water column during this study, additional surveys during more typical river conditions could provide a more complete understanding of how algae contribute DBP precursors. Further development of FDOM-sensor technology can improve our understanding of carbon dynamics in the river and how concentrations may be trending over time. This study was conducted in collaboration with Clackamas River Water and the City of Lake Oswego water utilities. Other research partners included Oregon Health and Science University in Hillsboro, Oregon, Alexin Laboratory in Tigard, Oregon, U.S. Geological Survey National Research Program Laboratory in Denver, Colorado, and the U.S. Geological Survey Water Science Centers in Portland, Oregon, and Sacramento, California. This project was supported with funding from Clackamas River Water, City of Lake Oswego, the U.S. Geological Survey, and the Water Research Foundation.
Gan, Jinping; Ruan, Qian; He, Bing; Zhu, Mingshe; Shyu, Wen C; Humphreys, W Griffith
2009-04-01
Reactive metabolite formation has been associated with drug-induced liver, skin, and hematopoietic toxicity of many drugs that has resulted in serious clinical toxicity, leading to clinical development failure, black box warnings, or, in some cases, withdrawal from the market. In vitro and in vivo screening for reactive metabolite formation has been proposed and widely adopted in the pharmaceutical industry with the aim of minimizing the property and thus the risk of drug-induced toxicity (DIT). One of the most common screening methods is in vitro thiol trapping of reactive metabolites. Although it is well-documented that many hepatotoxins form thiol adducts, there is no literature describing the adduct formation potential of safer drugs that are widely used. The objective of this study was to quantitatively assess the thiol adduct formation potential of 50 drugs (10 associated with DIT and 40 not associated) and document apparent differences in adduct formation between toxic and safer drugs. Dansyl glutathione was used as a trapping agent to aid the quantitation of adducts following in vitro incubation of drugs with human liver microsomes in the presence and absence of NADPH. Metabolic turnover of these drugs was also monitored by LC/UV. Overall, 15 out of the 50 drugs screened formed detectable levels of thiol adducts. There were general trends toward more positive findings in the DIT group vs the non-DIT group. These trends became more marked when the relative amount of thiol adducts was taken into account and improved further when dose and total daily reactive metabolite burdens were considered. In conclusion, there appears to be a general trend between the extent of thiol adduct formation and the potential for DIT, which would support the preclinical measurement and minimization of the property through screening of thiol adduct formation as part of an overall discovery optimization paradigm.
Madueño, Rafael; Pineda, Teresa; Sevilla, José Manuel; Blázquez, Manuel
2005-02-03
This is a report on the kinetics of the destruction and formation processes of the 6-thioguanine self-assembled monolayer (6TG SAM) on a mercury electrode from acid solutions by chronoamperometry. The destruction of the 6TG SAM that has been previously formed under open circuit potential conditions is carried out by stepping the potential from an initial value where the chemisorbed layer is stable up to potentials where the molecules are no longer chemisorbed. The destruction of the SAM has been described by a model that involves three types of contributions: (i) a Langmuir-type adsorption process, (ii) a 2D nucleation mechanism followed by a growth controlled by surface diffusion, and (iii) a 2D nucleation mechanism followed by a growth at a constant rate. The nonlinear fit of the experimental transients by using this procedure allows the quantitative determination of the individual contributions to the overall process. The kinetics of the formation process is studied under electrochemical conditions. The chronoamperometric experiment allows us to monitor the early stages of 6TG SAM formation. The implications of the physisorbed state at low potentials in the type of monolayer formation and destruction processes as well as the influence of temperature are also discussed.
Self-regulation of charged defect compensation and formation energy pinning in semiconductors
Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang; Wei, Su-Huai
2015-01-01
Current theoretical analyses of defect properties without solving the detailed balance equations often estimate Fermi-level pinning position by omitting free carriers and assume defect concentrations can be always tuned by atomic chemical potentials. This could be misleading in some circumstance. Here we clarify that: (1) Because the Fermi-level pinning is determined not only by defect states but also by free carriers from band-edge states, band-edge states should be treated explicitly in the same footing as the defect states in practice; (2) defect formation energy, thus defect density, could be pinned and independent on atomic chemical potentials due to the entanglement of atomic chemical potentials and Fermi energy, in contrast to the usual expectation that defect formation energy can always be tuned by varying the atomic chemical potentials; and (3) the charged defect compensation behavior, i.e., most of donors are compensated by acceptors or vice versa, is self-regulated when defect formation energies are pinned. The last two phenomena are more dominant in wide-gap semiconductors or when the defect formation energies are small. Using NaCl and CH3NH3PbI3 as examples, we illustrate these unexpected behaviors. Our analysis thus provides new insights that enrich the understanding of the defect physics in semiconductors and insulators. PMID:26584670
In vitro biofilm forming potential of Streptococcus suis isolated from human and swine in China.
Dawei, Guo; Liping, Wang; Chengping, Lu
2012-07-01
Streptococcus suis is a swine pathogen and also a zoonotic agent. The formation of biofilms allows S. suis to become persistent colonizers and resist clearance by the host immune system and antibiotics. In this study, biofilm forming potentials of various S. suis strains were characterized by confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM) and tissue culture plates stained with crystal violet. In addition, the effects of five antimicrobial agents on biofilm formation were assayed in this study. S. suis produced biofilms on smooth and rough surface. The nutritional contents including glucose and NaCl in the growth medium modulated biofilm formation. There was a significant difference in their biofilm-forming ability among all 46 S. suis strains. The biofilm-forming potential of S. suis serotype 9 was stronger than type 2 and all other types. However, biofilm formation was inhibited by five commonly used antimicrobial agents, penicillin, erythromycin, azithromycin, ciprofloxacin, and ofloxacin at subinhibitory concentrations, among which inhibition of ciprofloxacin and ofloxacin was stronger than that of other three antimicrobial agents.Our study provides a detailed analysis of biofilm formation potential in S. suis, which is a step towards understanding its role in pathogenesis, and eventually lead to a better understanding of how to eradicate S. suis growing as biofilms with antibiotic therapy.
Dong, Qian-Qian; Zhang, Ai; Li, Yong-Mei; Chen, Ling; Huang, Qing-Hui
2014-03-01
Surface water samples from the Huangpu River were filtered to measure the UV absorption and fluorescence spectrum. Dissolved organic carbon (DOC), N-nitrosodimethylamine (NDMA), and its formation potential (NDMA-FP) were also analyzed to explore relationships between the properties of dissolved organic matter (DOM) and the formation potential of disinfection byproducts-NDMA in the Huangpu River. The study found that: NDMA-FP concentration increased with the increasing of DOC concentration (r = 0.487, P < 0.01), but it had negative relationships with SUVA254 and HIX (r = -0.605, P < 0.01; r = -0.396, P < 0.01). NDMA-FP concentration had positive relationships with the fluorescence intensity of protein-like substances such as low-molecular-weight (LMW) tyrosine-like and tryptophan-like substances (r = 0.421, P < 0.01; r = 0.426, P < 0.01), but had a negative relationship with humic-like substance (r = -0.422, P < 0.01). Therefore, NDMA formation potential increases with the increasing DOM content in the Huangpu River, which is significantly related with the protein-like substances, but decreases with the increasing aromaticity and humification of DOM.
Polarization controlled kinetics and composition of trivalent chromium coatings on aluminum.
Dardona, Sameh; Chen, Lei; Kryzman, Michael; Goberman, Daniel; Jaworowski, Mark
2011-08-15
Combined in situ spectroscopic ellipsometry and electrochemistry have been employed to monitor, in real-time, the formation of trivalent Cr conversion coatings on polished Al substrates at applied sample potentials. It is found that the formation kinetics and chemical composition of the film can be controlled by adjusting the anodic and cathodic reactions. The growth kinetics are accelerated at more positive anodic potentials or more negative cathodic potentials. At more negative potentials, the percentage of chromium in the coating is found to increase, while the zirconium percentage decreases.
NASA Astrophysics Data System (ADS)
Schleigh, Sharon
This study focuses on the impact of assessment format on the identification of students' ideas surrounding the concept of force and the consistency with which students apply those ideas across contexts. It is in response to the debate in conceptual change literature regarding students' knowledge structure coherence. Empirical studies in this field typically rely on an interview assessment format. The current study examined the potential of a constructed response assessment format as another possible instrument for data collection involving larger sample populations. The current study specifically compared how the two assessment formats (constructed response and interview assessment) assessed 45 students in the ninth grade in a single school in Arizona. The analysis explored possible biases and interactions by sex, order of assessment, and preference for assessment format because the literature suggests that these factors may potentially affect the performance and coding of assessments. Although small differences between the two assessments were found, the differences were not statistically significant overall or for any subgroup. More specifically, there were no apparent significant biases in the two formats with regard to one another and student sex. However it was found that girls are more likely to express multiple-best match meanings than boys in both assessments. This may be an influence in the diversity found in previous studies concerning students' knowledge structures. These findings suggest that the constructed response format could be administered on a larger scale to assist in the identification of factors contributing to the differences in findings across prior studies in this field. Additionally, these results suggest the potential of this constructed response format for helping teachers conduct formative assessments to guide instructional decisions.
Attitude coordination of multi-HUG formation based on multibody system theory
NASA Astrophysics Data System (ADS)
Xue, Dong-yang; Wu, Zhi-liang; Qi, Er-mai; Wang, Yan-hui; Wang, Shu-xin
2017-04-01
Application of multiple hybrid underwater gliders (HUGs) is a promising method for large scale, long-term ocean survey. Attitude coordination has become a requisite for task execution of multi-HUG formation. In this paper, a multibody model is presented for attitude coordination among agents in the HUG formation. The HUG formation is regarded as a multi-rigid body system. The interaction between agents in the formation is described by artificial potential field (APF) approach. Attitude control torque is composed of a conservative torque generated by orientation potential field and a dissipative term related with angular velocity. Dynamic modeling of the multibody system is presented to analyze the dynamic process of the HUG formation. Numerical calculation is carried out to simulate attitude synchronization with two kinds of formation topologies. Results show that attitude synchronization can be fulfilled based on the multibody method described in this paper. It is also indicated that different topologies affect attitude control quality with respect to energy consumption and adjusting time. Low level topology should be adopted during formation control scheme design to achieve a better control effect.
Rostad, C.E.; Martin, B.S.; Barber, L.B.; Leenheer, J.A.; Daniel, S.R.
2000-01-01
The fate of halogenated disinfection byproducts (DBPs) in treatment wetlands and the changes in the DBP formation potential as wastewater treatment plant (WWTP)-derived water moves through the wetlands were investigated. Wetland inlet and outlet samples were analyzed for total organic halide (TOX), trihalomethanes (TH M), haloacetic acids (HAA), dissolved organic carbon (DOC), and UV absorbance. Removal of DBPs by the wetland ranged from 13 to 55% for TOX, from 78 to 97% for THM, and from 67 to 96% for HAA. The 24-h and 7-day nonpurgeable total organic halide (NPTOX), THM, and HAA formation potential yields were determined at the inlet and outlet of these wetlands. The effect of wetlands on the production of DBP precursors and their DBP-formation potential yield from wastewater was dramatic. The wetlands increased DBP yield up to a factor of almost 30. Specific changes in the DOC precursors were identified using 13C NMR spectroscopy.The fate of halogenated disinfection byproducts (DBPs) in treatment wetlands and the changes in the DBP formation potential as wastewater treatment plant (WWTP)-derived water moves through the wetlands were investigated. Wetland inlet and outlet samples were analyzed for total organic halide (TOX), trihalomethanes (THM), haloacetic acids (HAA), dissolved organic carbon (DOC), and UV absorbance. Removal of DBPs by the wetland ranged from 13 to 55% for TOX, from 78 to 97% for THM, and from 67 to 96% for HAA. The 24-h and 7-day nonpurgeable total organic halide (NPTOX), THM, and HAA formation potential yields were determined at the inlet and outlet of these wetlands. The effect of wetlands on the production of DBP precursors and their DBP-formation potential yield from wastewater was dramatic. The wetlands increased DBP yield up to a factor of almost 30. Specific changes in the DOC precursors were identified using 13C NMR spectroscopy.
Publications - GMC 232 | Alaska Division of Geological & Geophysical
Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska DGGS GMC 232 Publication Details Title: Petrographic analysis and formation damage potential of core Reference Hickey, J.J., 1994, Petrographic analysis and formation damage potential of core plugs (12,017
Cognitive Association Formation in Episodic Memory: Evidence from Event-Related Potentials
ERIC Educational Resources Information Center
Kim, Alice S. N.; Vallesi, Antonino; Picton, Terence W.; Tulving, Endel
2009-01-01
The present study focused on the processes underlying cognitive association formation by investigating subsequent memory effects. Event-related potentials were recorded as participants studied pairs of words, presented one word at a time, for later recall. The findings showed that a frontal-positive late wave (LW), which occurred 1-1.6 s after the…
ERIC Educational Resources Information Center
Ibanez, Jorge G.; And Others
1988-01-01
Describes experiments in which students prepare in situ soluble complexes of metal ions with different ligands and observe and estimate the change in formal potential that the ion undergoes upon complexation. Discusses student formation and analysis of soluble complexes of two different metal ions with the same ligand. (CW)
Circulating Microparticles Alter Formation, Structure, and Properties of Fibrin Clots.
Zubairova, Laily D; Nabiullina, Roza M; Nagaswami, Chandrasekaran; Zuev, Yuriy F; Mustafin, Ilshat G; Litvinov, Rustem I; Weisel, John W
2015-12-04
Despite the importance of circulating microparticles in haemostasis and thrombosis, there is limited evidence for potential causative effects of naturally produced cell-derived microparticles on fibrin clot formation and its properties. We studied the significance of blood microparticles for fibrin formation, structure, and susceptibility to fibrinolysis by removing them from platelet-free plasma using filtration. Clots made in platelet-free and microparticle-depleted plasma samples from the same healthy donors were analyzed in parallel. Microparticles accelerate fibrin polymerisation and support formation of more compact clots that resist internal and external fibrinolysis. These variations correlate with faster thrombin generation, suggesting thrombin-mediated kinetic effects of microparticles on fibrin formation, structure, and properties. In addition, clots formed in the presence of microparticles, unlike clots from the microparticle-depleted plasma, contain 0.1-0.5-μm size granular and CD61-positive material on fibres, suggesting that platelet-derived microparticles attach to fibrin. Therefore, the blood of healthy individuals contains functional microparticles at the levels that have a procoagulant potential. They affect the structure and stability of fibrin clots indirectly through acceleration of thrombin generation and through direct physical incorporation into the fibrin network. Both mechanisms underlie a potential role of microparticles in haemostasis and thrombosis as modulators of fibrin formation, structure, and resistance to fibrinolysis.
Circulating Microparticles Alter Formation, Structure, and Properties of Fibrin Clots
Zubairova, Laily D.; Nabiullina, Roza M.; Nagaswami, Chandrasekaran; Zuev, Yuriy F.; Mustafin, Ilshat G.; Litvinov, Rustem I.; Weisel, John W.
2015-01-01
Despite the importance of circulating microparticles in haemostasis and thrombosis, there is limited evidence for potential causative effects of naturally produced cell-derived microparticles on fibrin clot formation and its properties. We studied the significance of blood microparticles for fibrin formation, structure, and susceptibility to fibrinolysis by removing them from platelet-free plasma using filtration. Clots made in platelet-free and microparticle-depleted plasma samples from the same healthy donors were analyzed in parallel. Microparticles accelerate fibrin polymerisation and support formation of more compact clots that resist internal and external fibrinolysis. These variations correlate with faster thrombin generation, suggesting thrombin-mediated kinetic effects of microparticles on fibrin formation, structure, and properties. In addition, clots formed in the presence of microparticles, unlike clots from the microparticle-depleted plasma, contain 0.1–0.5-μm size granular and CD61-positive material on fibres, suggesting that platelet-derived microparticles attach to fibrin. Therefore, the blood of healthy individuals contains functional microparticles at the levels that have a procoagulant potential. They affect the structure and stability of fibrin clots indirectly through acceleration of thrombin generation and through direct physical incorporation into the fibrin network. Both mechanisms underlie a potential role of microparticles in haemostasis and thrombosis as modulators of fibrin formation, structure, and resistance to fibrinolysis. PMID:26635081
Radon potential, geologic formations, and lung cancer risk
Hahn, Ellen J.; Gokun, Yevgeniya; Andrews, William M.; Overfield, Bethany L.; Robertson, Heather; Wiggins, Amanda; Rayens, Mary Kay
2015-01-01
Objective Exposure to radon is associated with approximately 10% of U.S. lung cancer cases. Geologic rock units have varying concentrations of uranium, producing fluctuating amounts of radon. This exploratory study examined the spatial and statistical associations between radon values and geological formations to illustrate potential population-level lung cancer risk from radon exposure. Method This was a secondary data analysis of observed radon values collected in 1987 from homes (N = 309) in Kentucky and geologic rock formation data from the Kentucky Geological Survey. Radon value locations were plotted on digital geologic maps using ArcGIS and linked to specific geologic map units. Each map unit represented a package of different types of rock (e.g., limestone and/or shale). Log-transformed radon values and geologic formation categories were compared using one-way analysis of variance. Results Observed radon levels varied significantly by geologic formation category. Of the 14 geologic formation categories in north central Kentucky, four were associated with median radon levels, ranging from 8.10 to 2.75 pCi/L. Conclusion Radon potential maps that account for geologic factors and observed radon values may be superior to using observed radon values only. Knowing radon-prone areas could help target population-based lung cancer prevention interventions given the inequities that exist related to radon. PMID:26844090
Promoting proximal formative assessment with relational discourse
NASA Astrophysics Data System (ADS)
Scherr, Rachel E.; Close, Hunter G.; McKagan, Sarah B.
2012-02-01
The practice of proximal formative assessment - the continual, responsive attention to students' developing understanding as it is expressed in real time - depends on students' sharing their ideas with instructors and on teachers' attending to them. Rogerian psychology presents an account of the conditions under which proximal formative assessment may be promoted or inhibited: (1) Normal classroom conditions, characterized by evaluation and attention to learning targets, may present threats to students' sense of their own competence and value, causing them to conceal their ideas and reducing the potential for proximal formative assessment. (2) In contrast, discourse patterns characterized by positive anticipation and attention to learner ideas increase the potential for proximal formative assessment and promote self-directed learning. We present an analysis methodology based on these principles and demonstrate its utility for understanding episodes of university physics instruction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldenburg, Curtis M.
2006-11-27
A screening and ranking framework (SRF) has been developedto evaluate potential geologic carbon dioxide (CO2) storage sites on thebasis of health, safety, and environmental (HSE) risk arising from CO2leakage. The approach is based on the assumption that CO2 leakage risk isdependent on three basic characteristics of a geologic CO2 storage site:(1) the potential for primary containment by the target formation; (2)the potential for secondary containment if the primary formation leaks;and (3) the potential for attenuation and dispersion of leaking CO2 ifthe primary formation leaks and secondary containment fails. Theframework is implemented in a spreadsheet in which users enter numericalscores representingmore » expert opinions or published information along withestimates of uncertainty. Applications to three sites in Californiademonstrate the approach. Refinements and extensions are possible throughthe use of more detailed data or model results in place of propertyproxies.« less
Sakai, Hiroshi; Tokuhara, Shunsuke; Murakami, Michio; Kosaka, Koji; Oguma, Kumiko; Takizawa, Satoshi
2016-01-01
Due to decreasing water demands in Japan, hydraulic retention times of water in piped supply systems has been extended, resulting in a longer contact time with disinfectants. However, the effects of extended contact time on the formation of various disinfection byproducts (DBPs), including carbonaceous DBPs such as trihalomethane (THM) and haloacetic acid (HAA), and nitrogenous DBPs such as nitrosodimethylamine (NDMA) and nitrosomorpholine (NMor), have not yet been investigated in detail. Herein, we compared the formation of these DBPs by chlorination and chloramination for five water samples collected from rivers and a dam in Japan, all of which represent municipal water supply sources. Water samples were treated by either filtration or a combination of coagulation and filtration. Treated samples were subjected to a DBP formation potential test by either chlorine or chloramine for contact times of 1 day or 4 days. Four THM species, nine HAA species, NDMA, and NMor were measured by GC-ECD or UPLC-MS/MS. Lifetime cancer risk was calculated based on the Integrated Risk Information System unit risk information. The experiment and analysis focused on (i) prolonged contact time from 1 day to 4 days, (ii) reduction efficiency by conventional treatment, (iii) correlations between DBP formation potentials and water quality parameters, and (iv) the contribution of each species to total risk. With an increased contact time from 1 day to 4 days, THM formation increased to 420% by chloramination. Coagulation-filtration treatment showed that brominated species in THMs are less likely to be reduced. With the highest unit risk among THM species, dibromochloromethane (DBCM) showed a high correlation with bromine, but not with organic matter parameters. NDMA contributed to lifetime cancer risk. The THM formation pathway should be revisited in terms of chloramination and bromine incorporation. It is also recommended to investigate nitrosamine formation potential by chloramination. Copyright © 2015 Elsevier Ltd. All rights reserved.
BROMIDE'S EFFECT ON DBP FORMATION, SPECIATION, AND CONTROL: PART 1, OZONATION
The effect of variable ozone dosage and bromide concentration on the formation of organic disinfection byproducts (DBPs) and bromate were evaluated. Low ozone dosages resulted in oxidation of organic precursors, yielding decreases in the formation potential for total trihalometha...
Self-regulation of charged defect compensation and formation energy pinning in semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ji -Hui; Yin, Wan -Jian; Park, Ji -Sang
2015-11-20
Current theoretical analyses of defect properties without solving the detailed balance equations often estimate Fermi-level pinning position by omitting free carriers and assume defect concentrations can be always tuned by atomic chemical potentials. This could be misleading in some circumstance. Here we clarify that: (1) Because the Fermi-level pinning is determined not only by defect states but also by free carriers from band-edge states, band-edge states should be treated explicitly in the same footing as the defect states in practice; (2) defect formation energy, thus defect density, could be pinned and independent on atomic chemical potentials due to the entanglementmore » of atomic chemical potentials and Fermi energy, in contrast to the usual expectation that defect formation energy can always be tuned by varying the atomic chemical potentials; and (3) the charged defect compensation behavior, i.e., most of donors are compensated by acceptors or vice versa, is self-regulated when defect formation energies are pinned. The last two phenomena are more dominant in wide-gap semiconductors or when the defect formation energies are small. Using NaCl and CH 3NH 3PbI 3 as examples, we illustrate these unexpected behaviors. Furthermore, our analysis thus provides new insights that enrich the understanding of the defect physics in semiconductors and insulators.« less
The Bolivian source rocks: Sub Andean Zone-Madre de Dios-Chaco
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moretti, I.; Montemurro, G.; Aguilera, E.
A complete study of source rocks has been carried out in the Bolivian foothills and foreland (Sub Andean Zone, Chaco and Madre de Dios) in order to quantify the petroleum potential of the area. Besides the classical mid-Devonian source rocks (Tequeje Formation in the north, Limoncito Formation in the center and Los Monos Formation in the south), others are important: the Tomachi Formation (late Devonian) in the north and the Copacabana Formation (Upper Carboniferous-lower Permian) in the northern Sub Andean Zone. Both show an excellent potential with S{sub 2} over 50 mg HC/g and average values higher than 10 mgmore » HC/g over few hundred meters. The Latest Cretaceous Flora Formation present locally a high potential but is very thin. Almost all the source rocks matured during the Neogene due to the subsidence in the Andean foreland and in the piggyback basins, and are thus involved on the current petroleum system. Silurian and Lower Paleozoic units also contain thick shale beds, but these source rocks were mature before the Jurassic in the south of the country. In the center, the Silurian is not nowadays overmature and may play an important role. The different zones are compared based on their Source Potential Index which indicates that the richest areas are the northern Sub Andean Zone and the Madre de Dios basin with SPI greater than 10 t/m{sup 2}. Since these two areas remain almost unexplored, these results allow us to be optimistic about the possibilities for future exploration.« less
NDMA formation during chlorination and chloramination of aqueous diuron solutions.
Chen, Wei-Hsiang; Young, Thomas M
2008-02-15
Formation of the potent carcinogen N-nitrosodimethylamine (NDMA) during chlorine disinfection of water containing secondary amines is now generally acknowledged. The phenylurea herbicide diuron is one of the most widely used herbicides in California, has been frequently detected in California's water sources with a transient nature of appearance, and has a structure that suggests it might be an NDMA precursor. This study sought to quantify the potential for NDMA formation from aqueous diuron solutions under varied chlorine and chloramine conditions. NDMA formation was consistently observed even in the absence of added ammonia, which has usually been the source of the nitroso-nitrogen during chloramination of other precursors. It appears that both nitrogen atoms in NDMA are donated by diuron during chlorination in the absence of added ammonia. For a given chlorine and diuron dose, NDMA formation increased in the order OCl- < NH2Cl < NHCl2, a result consistentwith previous NDMAformation studies. Significant quantities of NDMA (170 ng/L) were produced during dichloramination of diuron using a low dichloramine concentration and a diuron concentration at the upper end of typically detected concentrations in California (20 microg/L), suggesting a need for further investigation to accurately assess the human health risks posed by diuron with respect to NDMA formation potential. A reaction pathway is proposed to provide a possible explanation for NDMA formation from diuron during chlorination or chloramination. The findings in this study identify a specific potential precursor of NDMA formation, one that arises from nonpoint sources. This further highlights the difficulties associated with determining the environmental safety of chemicals and their associated byproducts.
Pressure data gathered from drillstem tests (DSTs) and bottomhole pressure measurements provide critical information toward formation and can be used for an assessment of prevailing pressure regimes and their influence on the migration potential of formation fluids. Reliability o...
Cross-Polar Aircraft Trajectory Optimization and the Potential Climate Impact
NASA Technical Reports Server (NTRS)
Ng, Hok K.; Sridhar, Banavar; Grabbe, Shon; Chen, Neil
2011-01-01
Cross-Polar routes offer new opportunities for air travel markets. Transpolar flights reduce travel times, fuel burns, and associated environmental emissions by flying direct paths between many North American and Asian cities. This study evaluates the potential benefits of flying wind-optimal polar routes and assessed their potential impact on climate change. An optimization algorithm is developed for transpolar flights to generate wind-optimal trajectories that minimize climate impact of aircraft, in terms of global warming potentials (relative to warming by one kg of CO2) of several types of emissions, while avoiding regions of airspace that facilitate persistent contrail formation. Estimations of global warming potential are incorporated into the objective function of the optimization algorithm to assess the climate impact of aircraft emissions discharged at a given location and altitude. The regions of airspace with very low ambient temperature and areas favorable to persistent contrail formation are modeled as undesirable regions that aircraft should avoid and are formulated as soft state constraints. The fuel burn and climate impact of cross-polar air traffic flying various types of trajectory including flight plan, great circle, wind-optimal, and contrail-avoidance are computed for 15 origin-destination pairs between major international airports in the U.S. and Asia. Wind-optimal routes reduce average fuel burn of flight plan routes by 4.4% on December 4, 2010 and 8.0% on August 7, 2010, respectively. The tradeoff between persistent contrail formation and additional global warming potential of aircraft emissions is investigated with and without altitude optimization. Without altitude optimization, the reduction in contrail travel times is gradual with increase in total fuel consumption. When altitude is optimized, a one percent increase in additional global warming potential, a climate impact equivalent to that of 4070kg and 4220kg CO2 emission, reduces 135 and 105 minutes persistent contrail formation per flight during a day with medium and high contrail formation, respectively.
Cross-Polar Aircraft Trajectory Optimization and Potential Climate Impact
NASA Technical Reports Server (NTRS)
Sridhar, Banavar; Chen, Neil; Ng, Hok
2011-01-01
Cross-Polar routes offer new opportunities for air travel markets. Transpolar flights reduce travel times, fuel burns, and associated environmental emissions by flying direct paths between many North American and Asian cities. This study evaluates the potential benefits of flying wind-optimal polar routes and assessed their potential impact on climate change. An optimization algorithm is developed for transpolar flights to generate wind-optimal trajectories that minimize climate impact of aircraft, in terms of global warming potentials (relative to warming by one kg of CO2) of several types of emissions, while avoiding regions of airspace that facilitate persistent contrail formation. Estimations of global warming potential are incorporated into the objective function of the optimization algorithm to assess the climate impact of aircraft emissions discharged at a given location and altitude. The regions of airspace with very low ambient temperature and areas favorable to persistent contrail formation are modeled as undesirable regions that aircraft should avoid and are formulated as soft state constraints. The fuel burn and climate impact of cross-polar air traffic flying various types of trajectory including flightplan, great circle, wind-optimal, and contrail-avoidance are computed for 15 origin-destination pairs between major international airports in the U.S. and Asia. Wind-optimal routes reduce average fuel burn of flight plan routes by 4.4% on December 4, 2010 and 8.0% on August 7, 2010, respectively. The tradeoff between persistent contrail formation and additional global warming potential of aircraft emissions is investigated with and without altitude optimization. Without altitude optimization, the reduction in contrail travel times is gradual with increase in total fuel consumption. When altitude is optimized, a one percent increase in additional global warming potential, a climate impact equivalent to that of 4070kg and 4220kg CO2 emission, reduces 135 and 105 minutes persistent contrail formation per flight during a day with medium and high contrail formation, respectively.
Yang, Ping; Qiu, Zhijun; Jiang, Yuan; Dong, Lei; Yang, Wensheng; Gu, Chao; Li, Guang; Zhu, Yu
2016-09-27
CircRNA is a novel type of RNA molecule formed by a covalently closed loop which have no 5'-3' polarity and possess no polyA tail and relatively stable due to the cyclic structure. Therefore, they may serve as potential targets and diagnosis biomarkers for tumor therapy. cZNF292 is an important circular oncogenic RNA and plays a critical role in the progression of tube formation. This study is aimed at exploring the role of cZNF292 in human glioma tube formation and its potential mechanism of action. We found that cZNF292 silencing suppresses tube formation by inhibiting glioma cell proliferation and cell cycle progression. Cell cycle progression in human glioma U87MG and U251 cells was halted at S/G2/M phase via the Wnt/β-catenin signaling pathway and related genes such as PRR11, Cyclin A, p-CDK2, VEGFR-1/2, p-VEGFR-1/2 and EGFR. The results suggest that cZNF292 silencing plays an important role in the tube formation process and has potential for application as a therapeutic target and biomarker in glioma.
Reducing the potential for processing contaminant formation in cereal products.
Curtis, Tanya Y; Postles, Jennifer; Halford, Nigel G
2014-05-01
Processing contaminants may be defined as substances that are produced in a food when it is cooked or processed, are not present or are present at much lower concentrations in the raw, unprocessed food, and are undesirable either because they have an adverse effect on product quality or because they are potentially harmful. The presence of very low levels of processing contaminants in common foods is becoming an increasingly important issue for the food industry, as developments in analytical techniques and equipment bring foods under closer and closer scrutiny. This review considers the formation of lipid oxidation products, hydrogenation of polyunsaturated fatty acids to prevent lipid oxidation and the associated risk of trans fatty acid formation. The formation of acrylamide in the Maillard reaction is described, as well as the genetic and agronomic approaches being taken to reduce the acrylamide-forming potential of cereal grain. The multiple routes for the formation of furan and associated chemicals, including hydroxymethylfurfuryl, are also described. The evolving regulatory and public perception situations for these processing contaminants and their implications for the cereal supply chain are discussed, emphasising the need for cereal breeders to engage with the contaminants issue.
NASA Astrophysics Data System (ADS)
Sumaryada, Tony; Maha Putra, Bima; Pramudito, Sidikrubadi
2017-05-01
We propose an alternative way to describe the pairing formation and breaking via a quantum anharmonic oscillator with a delta-function potential model. Unlike BCS theory, which describes the pairing formation in the momentum space, this model works in the coordinate space and is able to give a molecular view of pairing formation and breaking in the coordinate space. By exploring the dynamical interplay between the intrinsic factor (dissociation energy) and external factor (pairing strength) of this system additional information was gained, including the critical pairing strength and critical scattering length, which might relate to the BCS-BEC crossover phenomena and halo state formation. Although only the energetic aspect of pairing is described by this model, its simplicity and pedagogical steps might help undergraduate students to understand the pairing problem in a simple way.
Shin, Euisup; Kim, Ill Yong; Cho, Sung Baek; Ohtsuki, Chikara
2015-03-01
Hydroxyapatite formation on the surfaces of implanted materials plays an important role in osteoconduction of bone substitutes in bone tissues. Titania hydrogels are known to instigate hydroxyapatite formation in a solution mimicking human blood plasma. To date, the relationship between the surface characteristics of titania and hydroxyapatite formation on its surface remains unclear. In this study, titania powders with varying surface characteristics were prepared by addition of manganese or iron to examine hydroxyapatite formation in a type of simulated body fluid (Kokubo solution). Hydroxyapatite formation was monitored by observation of deposited particles with scale-like morphology on the prepared titania powders. The effect of the titania surface characteristics, i.e., crystal structure, zeta potential, hydroxy group content, and specific surface area, on hydroxyapatite formation was examined. Hydroxyapatite formation was observed on the surface of titania powders that were primarily anatase, and featured a negative zeta potential and low specific surface areas irrespective of the hydroxy group content. High specific surface areas inhibited the formation of hydroxyapatite because calcium and phosphate ions were mostly consumed by adsorption on the titania surface. Thus, these surface characteristics of titania determine its osteoconductivity following exposure to body fluid. Copyright © 2014 Elsevier B.V. All rights reserved.
Biodegradability of DBP precursors after drinking water ozonation.
de Vera, Glen Andrew; Keller, Jurg; Gernjak, Wolfgang; Weinberg, Howard; Farré, Maria José
2016-12-01
Ozonation is known to generate biodegradable organic matter, which is typically reduced by biological filtration to avoid bacterial regrowth in distribution systems. Post-chlorination generates halogenated disinfection byproducts (DBPs) but little is known about the biodegradability of their precursors. This study determined the effect of ozonation and biofiltration conditions, specifically ozone exposure and empty bed contact time (EBCT), on the control of DBP formation potentials in drinking water. Ozone exposure was varied through addition of H 2 O 2 during ozonation at 1 mgO 3 /mgDOC followed by biological filtration using either activated carbon (BAC) or anthracite. Ozonation led to a 10% decrease in dissolved organic carbon (DOC), without further improvement from H 2 O 2 addition. Raising H 2 O 2 concentrations from 0 to 2 mmol/mmolO 3 resulted in increased DBP formation potentials during post-chlorination of the ozonated water (target Cl 2 residual after 24 h = 1-2 mg/L) as follows: 4 trihalomethanes (THM4, 37%), 8 haloacetic acids (HAA8, 44%), chloral hydrate (CH, 107%), 2 haloketones (HK2, 97%), 4 haloacetonitriles (HAN4, 33%), trichloroacetamide (TCAM, 43%), and adsorbable organic halogen (AOX, 27%), but a decrease in the concentrations of 2 trihalonitromethanes (THNM2, 43%). Coupling ozonation with biofiltration prior to chlorination effectively lowered the formation potentials of all DBPs including CH, HK2, and THNM2, all of which increased after ozonation. The dynamics of DBP formation potentials during BAC filtration at different EBCTs followed first-order reaction kinetics. Minimum steady-state concentrations were attained at an EBCT of about 10-20 min, depending on the DBP species. The rate of reduction in DBP formation potentials varied among individual species before reaching their minimum concentrations. CH, HK2, and THNM2 had the highest rate constants of between 0.5 and 0.6 min -1 followed by HAN4 (0.4 min -1 ), THM4 (0.3 min -1 ), HAA8 (0.2 min -1 ), and AOX (0.1 min -1 ). At an EBCT of 15 min, the reduction in formation potential for most DBPs was less than 50% but was higher than 70% for CH, HK2, and THNM2. The formation of bromine-containing DBPs increased with increasing EBCT, most likely due to an increase in Br - /DOC ratio. Overall, this study demonstrated that the combination of ozonation and biofiltration is an effective approach to mitigate DBP formation during drinking water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fabrication of ultra thin anodic aluminium oxide membranes by low anodization voltages
NASA Astrophysics Data System (ADS)
Pastore, I.; Poplausks, R.; Apsite, I.; Pastare, I.; Lombardi, F.; Erts, D.
2011-06-01
Formation of ultrathin anodised aluminium oxide (AAO) membranes with high aspect ratio by Al anodization in sulphuric and oxalic acids at low potentials was investigated. Low anodization potentials ensure slow electrochemical reaction speeds and formation of AAO membranes with pore diameter and thickness below 20 nm and 70 nm respectively. Minimum time necessary for formation of continuous AAO membranes was determined. AAO membrane pore surface was covered with polymer Paraloid B72TM to transport it to the selected substrate. The fabricated ultra thin AAO membranes could be used to fabricate nanodot arrays on different surfaces.
USDA-ARS?s Scientific Manuscript database
Meats need to be sufficiently heated to inactivate foodborne pathogens such as Escherichia coli O157:H7. High-temperature heat treatment used to prepare well-done meats could, however, increase the formation of potentially carcinogenic heterocyclic amines (HCAs). The objective of this study was to ...
Rural School as a Resource for the Intellectual and Labour Potential Formation of the Rural Society
ERIC Educational Resources Information Center
Nasibullov, Ramis R.; Korshunova, Olga V.; Arshabekov, Nurgali R.
2016-01-01
The relevance of the research problem is reasoned by the need to create conceptual grounds of life organization variants in the rural school as a resource of intellectual and labor potential formation of rural society taking into account the socio-economic realities of Russia's development in the beginning of the twenty-first century, as well as…
Field measurements of the ambient ozone formation potential in Beijing during winter
NASA Astrophysics Data System (ADS)
Crilley, Leigh; Kramer, Louisa; Thomson, Steven; Lee, James; Squires, Freya; Bloss, William
2017-04-01
The air quality issues in Beijing have been well-documented, and the severe air pollution levels result in a unique chemical mix in the urban boundary layer, both in terms of concentration and composition. As many of the atmospheric chemical process are non-linear and interlinked, this makes predictions difficult for species formed in atmosphere, such as ozone, requiring field measurements to understand these processes in order to guide mitigation efforts. To investigate the ozone formation potential of ambient air, we employed a custom built instrument to measure in near real time the potential for in situ ozone production, using an artificial light source. Our results are thus indicative of the ozone formation potential for the sampled ambient air mixture. Measurements were performed as part of the Air Pollution and Human Health (APHH) field campaign in November / December 2016 at a suburban site in central Beijing. We also conducted experiments to examine the ozone production sensitivity to NOx. We will present preliminarily results from ambient sampling and NOx experiments demonstrating changes in the ozone production potential during clean and haze periods in Beijing.
On the tidal evolution and tails formation of disc galaxies
NASA Astrophysics Data System (ADS)
Alavi, M.; Razmi, H.
2015-11-01
In this paper, we want to study the tidal effect of an external perturber upon a disc galaxy based on the generalization of already used Keplerian potential. The generalization of the simple ideal Keplerian potential includes an orbital centripetal term and an overall finite range controlling correction. Considering the generalized form of the interaction potential, the velocity impulse expressions resulting from tidal forces are computed; then, using typical real values already known from modern observational data, the evolution of the disc including tidal tails formation is graphically investigated.
Kølvraa, Mathias; Müller, Felix C; Jahnsen, Henrik; Rekling, Jens C
2014-01-01
Abstract The inferior olivary nucleus (IO) in in vitro slices from postnatal mice (P5.5–P15.5) spontaneously generates clusters of neurons with synchronous calcium transients, and intracellular recordings from IO neurons suggest that electrical coupling between neighbouring IO neurons may serve as a synchronizing mechanism. Here, we studied the cluster-forming mechanism and find that clusters overlap extensively with an overlap distribution that resembles the distribution for a random overlap model. The average somatodendritic field size of single curly IO neurons was ∼6400 μm2, which is slightly smaller than the average IO cluster size. Eighty-seven neurons with overlapping dendrites were estimated to be contained in the principal olive mean cluster size, and about six non-overlapping curly IO neurons could be contained within the largest clusters. Clusters could also be induced by iontophoresis with glutamate. Induced clusters were inhibited by tetrodotoxin, carbenoxelone and 18β-glycyrrhetinic acid, suggesting that sodium action potentials and electrical coupling are involved in glutamate-induced cluster formation, which could also be induced by activation of N-methyl-d-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Spikelets and a small transient depolarizing response were observed during glutamate-induced cluster formation. Calcium transients spread with decreasing velocity during cluster formation, and somatic action potentials and cluster formation are accompanied by large dendritic calcium transients. In conclusion, cluster formation depends on gap junctions, sodium action potentials and spontaneous clusters occur randomly throughout the IO. The relative slow signal spread during cluster formation, combined with a strong dendritic influx of calcium, may signify that active dendritic properties contribute to cluster formation. PMID:24042500
Transition from single to multiple axial potential structure in expanding helicon plasma
NASA Astrophysics Data System (ADS)
Ghosh, Soumen; Chattopadhyay, P. K.; Ghosh, J.; Pal, R.; Bora, D.
2017-02-01
Transition from single to multiple axial potential structure (MAPS) formation is reported in expanding helicon plasma. This transition is created by forming a cusp magnetic field at the downstream after the expansion throat. Two distinct potential drops are separated by a uniform axial potential zone. Non-uniform axial density distribution exists in expanding helicon systems. A cusp-like field nourishes both the axial density gradients sufficient enough for the formation of these two distinct potential drops. It is also shown that both single and multiple axial potential structures are observed only when both geometric and magnetic expansions closely coincide with each other. Coexistence of these two expansions at the same location enhances plasma expansion which facilitates deviation from Boltzmann distribution and violates quasi-neutrality locally.
Park, Sang Hyuck; Padhye, Lokesh P; Wang, Pei; Cho, Min; Kim, Jae-Hong; Huang, Ching-Hua
2015-01-23
Recent studies show that cationic amine-based water treatment polymers may be important precursors that contribute to formation of the probable human carcinogen N-nitrosodimethylamine (NDMA) during water treatment and disinfection. To better understand how water treatment parameters affect NDMA formation from the polymers, the effects of in situ chloramination, breakpoint chlorination, and pre-oxidation on the NDMA formation from the polymers were investigated. NDMA formation potential (NDMA-FP) as well as dimethylamine (DMA) residual concentration were measured from poly(epichlorohydrin dimethylamine) (polyamine) and poly(diallyldimethylammonium chloride) (polyDADMAC) solutions upon reactions with oxidants including free chlorine, chlorine dioxide, ozone, and monochloramine under different treatment conditions. The results supported that dichloramine (NHCl2) formation was the critical factor affecting NDMA formation from the polymers during in situ chloramination. The highest NDMA formation from the polymers occurred near the breakpoint of chlorination. Polymer chain breakdown and transformation of the released DMA and other intermediates were important factors affecting NDMA formation from the polymers in pre-oxidation followed by post-chloramination. Pre-oxidation generally reduced NDMA-FP of the polymers; however, the treatments involving pre-ozonation increased polyDADMAC's NDMA-FP and DMA release. The strategies for reducing NDMA formation from the polymers may include the avoidance of the conditions favorable to NHCl2 formation and the avoidance of polymer exposure to strong oxidants such as ozone. Copyright © 2014 Elsevier B.V. All rights reserved.
Arnold, Mayara; Batista, Jacimaria; Dickenson, Eric; Gerrity, Daniel
2018-07-01
The purpose of this research was to investigate the impacts of ozone dose and empty bed contact time (EBCT) in ozone-biofiltration systems on disinfection byproduct (DBP) formation potential. The data were used to evaluate the possibility of using DBP formation potential as an alternative guideline for total organic carbon (TOC) removal in potable reuse applications. A pilot-scale ozone-biofiltration system was operated with O 3 /TOC ratios ranging from 0.1 to 2.25 and EBCTs ranging from 2 to 20 min. The biofiltration columns contained anthracite or biological activated carbon (BAC). Bench-scale chlorination was performed using the uniform formation conditions (UFC) approach, and quenched samples were analyzed for total trihalomethanes (TTHMs) and regulated haloacetic acids (HAA5s). The data demonstrated that ozone-biofiltration achieved TOC removals ranging from ∼10 to 30%, depending on operational conditions, but biofiltration without ozone generally achieved <10% TOC removal. UFC testing demonstrated that ozone alone was efficient in transforming bulk organic matter and reducing DBP formation potential by 10-30%. The synergistic combination of ozone and biofiltration achieved average overall reductions in TTHM and HAA5 formation potential of 26% and 51%, respectively. Finally, a maximum TOC concentration of 2.0 mg/L was identified as a recommended treatment target for reliable compliance with TTHM and HAA5 regulations for potable reuse systems in the United States. Copyright © 2018 Elsevier Ltd. All rights reserved.
Non-potential Field Formation in the X-shaped Quadrupole Magnetic Field Configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawabata, Y.; Shimizu, T.; Inoue, S., E-mail: kawabata.yusuke@ac.jaxa.jp
Some types of solar flares are observed in X-shaped quadrupolar field configuration. To understand the magnetic energy storage in such a region, we studied non-potential field formation in an X-shaped quadrupolar field region formed in the active region NOAA 11967, which produced three X-shaped M-class flares on 2014 February 2. Nonlinear force-free field modeling was applied to a time series of vector magnetic field maps from the Solar Optical Telescope on board Hinode and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory . Our analysis of the temporal three-dimensional magnetic field evolution shows that the sufficient freemore » energy had already been stored more than 10 hr before the occurrence of the first M-class flare and that the storage was observed in a localized region. In this localized region, quasi-separatrix layers (QSLs) started to develop gradually from 9 hr before the first M-class flare. One of the flare ribbons that appeared in the first M-class flare was co-spatial with the location of the QSLs, suggesting that the formation of the QSLs is important in the process of energy release. These QSLs do not appear in the potential field calculation, indicating that they were created by the non-potential field. The formation of the QSLs was associated with the transverse photospheric motion of the pre-emerged flux and the emergence of a new flux. This observation indicates that the occurrence of the flares requires the formation of QSLs in the non-potential field in which free magnetic energy is stored in advance.« less
Bush, Alfred L.; Condon, Steven M.; Franczyk, Karen J.; Brown, S.Don
1983-01-01
The mineral resource potential of the Piedra Wilderness Study Area is low. No occurrences of metallic minerals, of valuable industrial rocks and minerals, or of useful concentrations of organic fuels are known in the study area. However, a noneconomic occurrence of gypsum in the Jurassic Wanakah Formation lies a few hundred feet west of the WSA boundary, is believed to extend into the WSA, and has a low resource potential. Particular attention was paid to the possible occurrence of organic fuels in the Pennsylvanian Hermosa Formation, of uranium and vanadium in the Jurassic Entrada Sandstone and Morrison Formation, and of coal in the Cretaceous Dakota Sandstone. Thin coaly beds in the Dakota have a low resource potential. Extensive sampling of stream sediments, limited sampling of rock outcrops and springs, and a number of scintillometer traverses failed to pinpoint significant anomalies that might be clues to mineral deposits.
30 CFR 250.1617 - Application for permit to drill.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Formation fracture gradients; (iii) Potential lost circulation zones; (iv) Mud weights; (v) Casing setting... various casing strings, fracture gradients of the exposed formations, casing setting depths, and cementing...
30 CFR 250.1617 - Application for permit to drill.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Formation fracture gradients; (iii) Potential lost circulation zones; (iv) Mud weights; (v) Casing setting... various casing strings, fracture gradients of the exposed formations, casing setting depths, and cementing...
30 CFR 250.1617 - Application for permit to drill.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Formation fracture gradients; (iii) Potential lost circulation zones; (iv) Mud weights; (v) Casing setting... various casing strings, fracture gradients of the exposed formations, casing setting depths, and cementing...
Aoki, Tomohiro; Nishimura, M
2010-03-01
Cerebral aneurysms (CAs) are the main cause of life-threatening subarachnoid hemorrhage. Given its prevalence and endpoint, CA treatment is a public health issue. Effective medical treatment of CAs is lacking because the detailed mechanisms of CA formation are incompletely understood. The aim of this contribution is to review recent articles about CA formation, to suggest the underlying mechanisms of CA formation, and to discuss potential therapeutic targets for treatment. Articles were collected by an internet search of PubMed using the keywords 'intracranial' or 'cerebral aneurysm'. A review of articles about the pathogenesis of CA formation focusing on inflammation. Recent articles demonstrate that inflammation-related-molecule induction and inflammatory cell infiltration in CA walls and the close relationship between inflammatory responses and CA formation. From studies in experimental models, chronic inflammation triggered primarily by NF-kappaB activation in endothelial cells and subsequent macrophage infiltration have critical roles in CA formation. Inhibition of inflammation-related molecules in CA walls results in the decreased incidence of CA formation. Agents with anti-inflammatory activity (particularly anti- NF-kappaB effects) have potential as therapeutic drugs for CAs.
Missing ozone-induced potential aerosol formation in a suburban deciduous forest
NASA Astrophysics Data System (ADS)
Nakayama, T.; Kuruma, Y.; Matsumi, Y.; Morino, Y.; Sato, K.; Tsurumaru, H.; Ramasamy, S.; Sakamoto, Y.; Kato, S.; Miyazaki, Y.; Mochizuki, T.; Kawamura, K.; Sadanaga, Y.; Nakashima, Y.; Matsuda, K.; Kajii, Y.
2017-12-01
As a new approach to investigating formation processes of secondary organic aerosol (SOA) in the atmosphere, ozone-induced potential aerosol formation was measured in summer at a suburban forest site surrounded by deciduous trees, near Tokyo, Japan. After passage through a reactor containing high concentrations of ozone, increases in total particle volume (average of 1.4 × 109 nm3/cm3, which corresponds to 17% that of pre-existing particles) were observed, especially during daytime. The observed aerosol formations were compared with the results of box model simulations using simultaneously measured concentrations of gaseous and particulate species. According to the model, the relative contributions of isoprene, monoterpene, and aromatic hydrocarbon oxidation to SOA formation in the reactor were 24, 21, and 55%, respectively. However, the model could explain, on average, only ∼40% of the observed particle formation, and large discrepancies between the observations and model were found, especially around noon and in the afternoon when the concentrations of isoprene and oxygenated volatile organic compounds were high. The results suggest a significant contribution of missing (unaccounted-for) SOA formation processes from identified and/or unidentified volatile organic compounds, especially those emitted during daytime. Further efforts should be made to explore and parameterize this missing SOA formation to assist in the improvement of atmospheric chemistry and climate models.
Exploring the Utility of Sequential Analysis in Studying Informal Formative Assessment Practices
ERIC Educational Resources Information Center
Furtak, Erin Marie; Ruiz-Primo, Maria Araceli; Bakeman, Roger
2017-01-01
Formative assessment is a classroom practice that has received much attention in recent years for its established potential at increasing student learning. A frequent analytic approach for determining the quality of formative assessment practices is to develop a coding scheme and determine frequencies with which the codes are observed; however,…
Lean and Efficient Software: Whole Program Optimization of Executables
2016-12-31
format string “ baked in”? (If multiple printf calls pass the same format string, they could share the same new function.) This leads to the...format string becomes baked into the target function. Moving down: o Moving from the first row to the second makes any potential user control of the
Student Readiness Formation for Activities Oriented to Health Saving
ERIC Educational Resources Information Center
Tretyakova, Natalia V.; Fedorov, Vladimir A.; Dorozhkin, Evgenij M.; Komarova, Maria K.; Sukhanova, Elena I.
2016-01-01
The relevance of the studied problem is caused by the need of formation and development among students of educational organizations of the personal qualities directed to updating of their potential concerning preservation and promotion of health, organization of own style of a healthy lifestyle, i.e. formation of readiness for health-oriented…
Collaborative Learning through Formative Peer Review: Pedagogy, Programs and Potential
ERIC Educational Resources Information Center
Sondergaard, Harald; Mulder, Raoul A.
2012-01-01
We examine student peer review, with an emphasis on formative practice and collaborative learning, rather than peer grading. Opportunities to engage students in such formative peer assessment are growing, as a range of online tools become available to manage and simplify the process of administering student peer review. We consider whether…
Revisiting the Impact of Formative Assessment Opportunities on Student Learning
ERIC Educational Resources Information Center
Peat, Mary; Franklin, Sue; Devlin, Marcia; Charles, Margaret
2005-01-01
This project developed as a result of some inconclusive data from an investigation of whether a relationship existed between the use of formative assessment opportunities and performance, as measured by final grade. We were expecting to show our colleagues and students that use of formative assessment resources had the potential to improve…
Swarm formation control utilizing elliptical surfaces and limiting functions.
Barnes, Laura E; Fields, Mary Anne; Valavanis, Kimon P
2009-12-01
In this paper, we present a strategy for organizing swarms of unmanned vehicles into a formation by utilizing artificial potential fields that were generated from normal and sigmoid functions. These functions construct the surface on which swarm members travel, controlling the overall swarm geometry and the individual member spacing. Nonlinear limiting functions are defined to provide tighter swarm control by modifying and adjusting a set of control variables that force the swarm to behave according to set constraints, formation, and member spacing. The artificial potential functions and limiting functions are combined to control swarm formation, orientation, and swarm movement as a whole. Parameters are chosen based on desired formation and user-defined constraints. This approach is computationally efficient and scales well to different swarm sizes, to heterogeneous systems, and to both centralized and decentralized swarm models. Simulation results are presented for a swarm of 10 and 40 robots that follow circle, ellipse, and wedge formations. Experimental results are included to demonstrate the applicability of the approach on a swarm of four custom-built unmanned ground vehicles (UGVs).
Versloot, Judith; Grudniewicz, Agnes; Chatterjee, Ananda; Hayden, Leigh; Kastner, Monika; Bhattacharyya, Onil
2015-06-01
We present simple formatting rules derived from an extensive literature review that can improve the format of clinical practice guidelines (CPGs), and potentially increase the likelihood of being used. We recently conducted a review of the literature from medicine, psychology, design, and human factors engineering on characteristics of guidelines that are associated with their use in practice, covering both the creation and communication of content. The formatting rules described in this article are derived from that review. The formatting rules are grouped into three categories that can be easily applied to CPGs: first, Vivid: make it stand out; second, Intuitive: match it to the audience's expectations, and third, Visual: use alternatives to text. We highlight rules supported by our broad literature review and provide specific 'how to' recommendations for individuals and groups developing evidence-based materials for clinicians. The way text documents are formatted influences their accessibility and usability. Optimizing the formatting of CPGs is a relatively inexpensive intervention and can be used to facilitate the dissemination of evidence in healthcare. Applying simple formatting principles to make documents more vivid, intuitive, and visual is a practical approach that has the potential to influence the usability of guidelines and to influence the extent to which guidelines are read, remembered, and used in practice.
Ion Plume Damage in Formation Flight Regimes
NASA Astrophysics Data System (ADS)
Young, Jarred Alexander
This effort examines the potential for damage from plume impingement from an electric propulsion system within spacecraft missions that utilize a formation flight architecture. Specifically, the potential erosion of a structural material (Aluminum) and anti-reflective coatings for solar cell coverglass are explored. Sputter yields for the materials of Aluminum, Magnesium Fluoride, and Indium Tin Oxide are experimentally validated using an electrostatic ion source at energies varying from 500-1500 eV. Erosion depths are analyzed using white-light optical profilometry to measure potential depths up to 1 microm. This erosion data was then utilized to create (or augment) Bohdansky and Yamamura theoretical curve fits for multiple incidence angles to look at theoretical sputter effects within formation flight regimes at multiple formation distances from 50-1000 m. The damage from these electric propulsion plumes is explored throughout multiple orbital conditions from LEO, Sun-Synchronous, and GEO. Factors affecting erosion are: plume density, local geomagnetic field environment and incidence angles of target surfaces. Results from this simulated study show significant erosion with GEO with minor erosion in some LEO and all Sun-Synchronous cases.
NASA Astrophysics Data System (ADS)
Katsura, Shota
2018-03-01
The properties, formation, and dissipation of the North Pacific Eastern Subtropical Mode Water (ESTMW), their interannual variability, and impact on spiciness anomalies in the upper permanent pycnocline were investigated using Argo profiling float data in 2005-2015. The core temperature and salinity of ESTMWs were horizontally compensated to a constant density, and core potential density concentrates in a range of 24.5-25.2 kg m-3 with two distinct peaks. ESTMWs showed different spatial distribution and persistence for its core potential density. Denser ESTMWs with a potential density of 24.9-25.2 kg m-3 were formed in winter mixed layer depth maximum centered at 30°N, 140°W and lighter ESTMWs of 24.5-24.9 kg m-3 were formed south and east of it. After formation through shoaling of the winter mixed layer, the former persisted until the following autumn and a small part of it subducted in winter, while the latter dissipated in summer. The formation region of ESTMW corresponded to the summer sea surface density maximum resulting from its poleward sea surface salinity front. Sea surface density maximum maintains weak stratification during summer, preconditioning the deepening of the winter mixed layer and hence the formation of ESTMWs. A relationship between the ESTMW formation region and the summer sea surface density maximum was also found in the North Atlantic and the South Pacific, implying the importance of sea surface salinity fronts and the associated summer sea surface density maximum to ESTMW formation. Interannual variations of ESTMW reflected that of the winter mixed layer in its formation region, and the thickness of ESTMW was related to the Pacific decadal oscillation. ESTMW contributed to the occurrence of spice injection and affected spiciness anomalies in the upper permanent pycnocline through its formation and dissipation.
A charge optimized many-body potential for titanium nitride (TiN).
Cheng, Y-T; Liang, T; Martinez, J A; Phillpot, S R; Sinnott, S B
2014-07-02
This work presents a new empirical, variable charge potential for TiN systems in the charge-optimized many-body potential framework. The potential parameters were determined by fitting them to experimental data for the enthalpy of formation, lattice parameters, and elastic constants of rocksalt structured TiN. The potential does a good job of describing the fundamental physical properties (defect formation and surface energies) of TiN relative to the predictions of first-principles calculations. This potential is used in classical molecular dynamics simulations to examine the interface of fcc-Ti(0 0 1)/TiN(0 0 1) and to characterize the adsorption of oxygen atoms and molecules on the TiN(0 0 1) surface. The results indicate that the potential is well suited to model TiN thin films and to explore the chemistry associated with their oxidation.
Diet-related DNA adduct formation in relation to carcinogenesis.
Hemeryck, Lieselot Y; Vanhaecke, Lynn
2016-08-01
The human diet contributes significantly to the initiation and promotion of carcinogenesis. It has become clear that the human diet contains several groups of natural foodborne chemicals that are at least in part responsible for the genotoxic, mutagenic, and carcinogenic potential of certain foodstuffs. Electrophilic chemicals are prone to attack nucleophilic sites in DNA, resulting in the formation of altered nucleobases, also known as DNA adducts. Since DNA adduct formation is believed to signal the onset of chemically induced carcinogenesis, the DNA adduct-inducing potential of certain foodstuffs has been investigated to gain more insight into diet-related pathways of carcinogenesis. Many studies have investigated diet-related DNA adduct formation. This review summarizes work on known or suspected dietary carcinogens and the role of DNA adduct formation in hypothesized carcinogenesis pathways. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Lai, Janice H; Kajiyama, Glen; Smith, Robert Lane; Maloney, William; Yang, Fan
2013-12-19
Cartilage loss is a leading cause of disability among adults and effective therapy remains elusive. Neonatal chondrocytes (NChons) are an attractive allogeneic cell source for cartilage repair, but their clinical translation has been hindered by scarce donor availability. Here we examine the potential for catalyzing cartilage tissue formation using a minimal number of NChons by co-culturing them with adipose-derived stem cells (ADSCs) in 3D hydrogels. Using three different co-culture models, we demonstrated that the effects of co-culture on cartilage tissue formation are dependent on the intercellular distance and cell distribution in 3D. Unexpectedly, increasing ADSC ratio in mixed co-culture led to increased synergy between NChons and ADSCs, and resulted in the formation of large neocartilage nodules. This work raises the potential of utilizing stem cells to catalyze tissue formation by neonatal chondrocytes via paracrine signaling, and highlights the importance of controlling cell distribution in 3D matrices to achieve optimal synergy.
Nanopore formation in neuroblastoma cells following ultrashort electric pulse exposure
NASA Astrophysics Data System (ADS)
Roth, Caleb C.; Payne, Jason A.; Wilmink, Gerald J.; Ibey, Bennett L.
2011-03-01
Ultrashort or nanosecond electrical pulses (USEP) cause repairable damage to the plasma membranes of cells through formation of nanopores. These nanopores are able to pass small ions such as sodium, calcium, and potassium, but remain impermeable to larger molecules like trypan blue and propidium iodide. What remains uncertain is whether generation of nanopores by ultrashort electrical pulses can inhibit action potentials in excitable cells. In this paper, we explored the sensitivity of excitable cells to USEP using Calcium Green AM 1 ester fluorescence to measure calcium uptake indicative of nanopore formation in the plasma membrane. We determined the threshold for nanopore formation in neuroblastoma cells for three pulse parameters (amplitude, pulse width, and pulse number). Measurement of such thresholds will guide future studies to determine if USEP can inhibit action potentials without causing irreversible membrane damage.
Oil shale potential of the Heath and Tyler formations, Central Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, W.E.; Cole, G.A.
The units in the middle of the Heath formation below the gypsum beds were found to have the highest oil yields. That interval was generally 25 to 50 ft (7.6 to 15.2 m) thick. The upper portion of the Heath formation yielded as much as 9.8 gal/ton in section 9, and 14.9 gal/ton in section 10. The Tyler formation was determined to have very low oil potential, with the maximum yield being 2.2 gal/ton. The instability of some of the Heath slopes could present problems in the mining of oil shale. Specific stratigraphic horizons in which zones of high andmore » low oil and metal contents occur would be extremely difficult to map in areas where the units have been displaced by landslide movement.« less
Cavitation and water fluxes driven by ice water potential in Juglans regia during freeze–thaw cycles
Charra-Vaskou, Katline; Badel, Eric; Charrier, Guillaume; Ponomarenko, Alexandre; Bonhomme, Marc; Foucat, Loïc; Mayr, Stefan; Améglio, Thierry
2016-01-01
Freeze–thaw cycles induce major hydraulic changes due to liquid-to-ice transition within tree stems. The very low water potential at the ice–liquid interface is crucial as it may cause lysis of living cells as well as water fluxes and embolism in sap conduits, which impacts whole tree–water relations. We investigated water fluxes induced by ice formation during freeze–thaw cycles in Juglans regia L. stems using four non-invasive and complementary approaches: a microdendrometer, magnetic resonance imaging, X-ray microtomography, and ultrasonic acoustic emissions analysis. When the temperature dropped, ice nucleation occurred, probably in the cambium or pith areas, inducing high water potential gradients within the stem. The water was therefore redistributed within the stem toward the ice front. We could thus observe dehydration of the bark’s living cells leading to drastic shrinkage of this tissue, as well as high tension within wood conduits reaching the cavitation threshold in sap vessels. Ultrasonic emissions, which were strictly emitted only during freezing, indicated cavitation events (i.e. bubble formation) following ice formation in the xylem sap. However, embolism formation (i.e. bubble expansion) in stems was observed only on thawing via X-ray microtomography for the first time on the same sample. Ultrasonic emissions were detected during freezing and were not directly related to embolism formation. These results provide new insights into the complex process and dynamics of water movements and ice formation during freeze–thaw cycles in tree stems. PMID:26585223
Source rock potential in Pakistan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raza, H.A.
1991-03-01
Pakistan contains two sedimentary basins: Indus in the east and Balochistan in the west. The Indus basin has received sediments from precambrian until Recent, albeit with breaks. It has been producing hydrocarbons since 1914 from three main producing regions, namely, the Potwar, Sulaisman, and Kirthar. In the Potwar, oil has been discovered in Cambrian, Permian, Jurassic, and Tertiary rocks. Potential source rocks are identified in Infra-Cambrian, Permian, Paleocene, and Eocene successions, but Paleocene/Eocene Patala Formation seems to be the main source of most of the oil. In the Sulaiman, gas has been found in Cretaceous and Tertiary; condensate in Cretaceousmore » rocks. Potential source rocks are indicated in Cretaceous, Paleocene, and Eocene successions. The Sembar Formation of Early Cretaceous age appears to be the source of gas. In the Kirthar, oil and gas have been discovered in Cretaceous and gas has been discovered in paleocene and Eocene rocks. Potential source rocks are identified in Kirthar and Ghazij formations of Eocene age in the western part. However, in the easter oil- and gas-producing Badin platform area, Union Texas has recognized the Sembar Formation of Early Cretaceous age as the only source of Cretaceous oil and gas. The Balochistan basin is part of an Early Tertiary arc-trench system. The basin is inadequately explored, and there is no oil or gas discovery so far. However, potential source rocks have been identified in Eocene, Oligocene, Miocene, and Pliocene successions based on geochemical analysis of surface samples. Mud volcanoes are present.« less
Melt-growth dynamics in CdTe crystals
Zhou, X. W.; Ward, D. K.; Wong, B. M.; ...
2012-06-01
We use a new, quantum-mechanics-based bond-order potential (BOP) to reveal melt growth dynamics and fine scale defect formation mechanisms in CdTe crystals. Previous molecular dynamics simulations of semiconductors have shown qualitatively incorrect behavior due to the lack of an interatomic potential capable of predicting both crystalline growth and property trends of many transitional structures encountered during the melt → crystal transformation. Here, we demonstrate successful molecular dynamics simulations of melt growth in CdTe using a BOP that significantly improves over other potentials on property trends of different phases. Our simulations result in a detailed understanding of defect formation during themore » melt growth process. Equally important, we show that the new BOP enables defect formation mechanisms to be studied at a scale level comparable to empirical molecular dynamics simulation methods with a fidelity level approaching quantum-mechanical methods.« less
DBP formation of aquatic humic substances
Pomes, M.L.; Green, W.R.; Thurman, E.M.; Orem, W.H.; Lerch, H.E.
1999-01-01
Aquatic humic substances (AHSs) in water generate potentially harmful disinfection by-products (DBPs) such as haloacetic acids (HAAs) and trihalomethanes (THMs) during chlorination. AHSs from two Arkansas reservoirs were characterized to define source, identify meta-dihydroxybenzene (m-DHB) structures as probable DBP precursors, and evaluate predicted HAA and THM formation potentials. Elemental nitrogen content 0.5 ??eq/mg, ??13C values of -27???, and low yields of syringyl phenols found by cupric oxide (CuO) oxidation suggest a pine tree source for the AHSs found in the Maumelle and Winona reservoirs in Little Rock, Ark. CuO oxidation yielded fewer m-DHB structures in Maumelle AHSs than in Winona AHSs. A higher 3,5-dihydroxybenzoic acid (3,5-DHBA) content correlated with increased HAA and THM formation potential. The 3,5-DHBA concentration in Winona AHSs was similar to the range found in AHSs extracted from deciduous leaf litter, twigs, and grass leachates.
Teachers and Testing: An Investigation into Teachers' Perceptions of Formative Assessment
ERIC Educational Resources Information Center
Sach, Elizabeth
2012-01-01
Research conducted within the past decade contributes much to an understanding of the role and potential value of formative assessment in learning. As an Advisory Teacher within a local authority, the researcher was interested to find out how teachers actually perceive formative assessment. This study therefore set out to investigate the range and…
A new hydroxyl radical formation pathway via photo-excited nitrogen dioxide chemistry is incorporated into a chemistry-only box model as well as a 3D air quality model to examine its potential role on ozone formation and emission control strategy over the Pearl River Delta region...
ERIC Educational Resources Information Center
Steif, Paul S.; Fu, Luoting; Kara, Levent Burak
2016-01-01
Problems faced by engineering students involve multiple pathways to solution. Students rarely receive effective formative feedback on handwritten homework. This paper examines the potential for computer-based formative assessment of student solutions to multipath engineering problems. In particular, an intelligent tutor approach is adopted and…
Teacher Effectiveness in the Formative Use of a Mathematical Assessment
ERIC Educational Resources Information Center
Collette, Lisa Audrey
2012-01-01
In current research literature, formative assessment has been identified as having the potential for tracking student progress to ensure high-stakes test preparedness. Formative assessment has several shades of meaning. This study defines it as an ongoing process that utilizes all of the moment-by-moment day-by-day pieces of data that can be…
NASA Astrophysics Data System (ADS)
Al-Matary, Adel M.; Hakimi, Mohammed Hail; Al Sofi, Sadam; Al-Nehmi, Yousif A.; Al-haj, Mohammed Ail; Al-Hmdani, Yousif A.; Al-Sarhi, Ahmed A.
2018-06-01
A conventional organic geochemical study has been performed on the shale samples collected from the early Cretaceous Saar Formation from the Shabwah oilfields in the Sabatayn Basin, Western Yemen. The results of this study were used to preliminary evaluate the potential source-rock of the shales in the Saar Formation. Organic matter richness, type, and petroleum generation potential of the analysed shales were assessed. Total organic carbon content and Rock- Eval pyrolysis results indicate that the shale intervals within the early Cretaceous Saar Formation have a wide variation in source rock generative potential and quality. The analysed shale samples have TOC content in the range of 0.50 and 5.12 wt% and generally can be considered as fair to good source rocks. The geochemical results of this study also indicate that the analysed shales in the Saar Formation are both oil- and gas-prone source rocks, containing Type II kerogen and mixed Types II-III gradient to Type III kerogen. This is consistent with Hydrogen Index (HI) values between 66 and 552 mg HC/g TOC. The temperature-sensitive parameters such as vitrinite reflectance (%VRo), Rock-Eval pyrolysis Tmax and PI reveal that the analysed shale samples are generally immature to early-mature for oil-window. Therefore, the organic matter has not been altered by thermal maturity thus petroleum has not yet generated. Therefore, exploration strategies should focus on the known deeper location of the Saar Formation in the Shabwah-sub-basin for predicting the kitchen area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCray, John; Navarre-Sitchler, Alexis; Mouzakis, Katherine
Injection of CO2 into underground rock formations can reduce atmospheric CO2 emissions. Caprocks present above potential storage formations are the main structural trap inhibiting CO2 from leaking into overlying aquifers or back to the Earth's surface. Dissolution and precipitation of caprock minerals resulting from reaction with CO2 may alter the pore network where many pores are of the micrometer to nanometer scale, thus altering the structural trapping potential of the caprock. However, the distribution, geometry and volume of pores at these scales are poorly characterized. In order to evaluate the overall risk of leakage of CO2 from storage formations, amore » first critical step is understanding the distribution and shape of pores in a variety of different caprocks. As the caprock is often comprised of mudstones, we analyzed samples from several mudstone formations with small angle neutron scattering (SANS) and high-resolution transmission electron microscopy (TEM) imaging to compare the pore networks. Mudstones were chosen from current or potential sites for carbon sequestration projects including the Marine Tuscaloosa Group, the Lower Tuscaloosa Group, the upper and lower shale members of the Kirtland Formation, and the Pennsylvanian Gothic shale. Expandable clay contents ranged from 10% to approximately 40% in the Gothic shale and Kirtland Formation, respectively. During SANS, neutrons effectively scatter from interfaces between materials with differing scattering length density (i.e., minerals and pores). The intensity of scattered neutrons, I(Q), where Q is the scattering vector, gives information about the volume and arrangement of pores in the sample. The slope of the scattering data when plotted as log I(Q) vs. log Q provides information about the fractality or geometry of the pore network. On such plots slopes from -2 to -3 represent mass fractals while slopes from -3 to -4 represent surface fractals. Scattering data showed surface fractal dimensions for the Kirtland formation and one sample from the Tuscaloosa formation close to 3, indicating very rough surfaces. In contrast, scattering data for the Gothic shale formation exhibited mass fractal behavior. In one sample of the Tuscaloosa formation the data are described by a surface fractal at low Q (larger pores) and a mass fractal at high Q (smaller pores), indicating two pore populations contributing to the scattering behavior. These small angle neutron scattering results, combined with high-resolution TEM imaging, provided a means for both qualitative and quantitative analysis of the differences in pore networks between these various mudstones.« less
Goldman, Alvin; de Vignemont, Frederique
2009-04-01
Theories of embodied cognition abound in the literature, but it is often unclear how to understand them. We offer several interpretations of embodiment, the most interesting being the thesis that mental representations in bodily formats (B-formats) have an important role in cognition. Potential B-formats include motoric, somatosensory, affective and interoceptive formats. The literature on mirroring and related phenomena provides support for a limited-scope version of embodied social cognition under the B-format interpretation. It is questionable, however, whether such a thesis can be extended. We show the limits of embodiment in social cognition.
In situ stimulation of groundwater denitrification with formate to remediate nitrate contamination
Smith, R.L.; Miller, D.N.; Brooks, M.H.; Widdowson, M.A.; Killingstad, M.W.
2001-01-01
In situ stimulation of denitrification has been proposed as a mechanism to remediate groundwater nitrate contamination. In this study, sodium formate was added to a sand and gravel aquifer on Cape Cod, MA, to test whether formate could serve as a potential electron donor for subsurface denitrification. During 16- and 10-day trials, groundwater from an anoxic nitrate-containing zone (0.5-1.5 mM) was continuously withdrawn, amended with formate and bromide, and pumped back into the aquifer. Concentrations of groundwater constituents were monitored in multilevel samplers after up to 15 m of transport by natural gradient flow. Nitrate and formate concentrations were decreased 80-100% and 60-70%, respectively, with time and subsequent travel distance, while nitrite concentrations inversely increased. The field experiment breakthrough curves were simulated with a two-dimensional site-specific model that included transport, denitrification, and microbial growth. Initial values for model parameters were obtained from laboratory incubations with aquifer core material and then refined to fit field breakthrough curves. The model and the lab results indicated that formate-enhanced nitrite reduction was nearly 4-fold slower than nitrate reduction, but in the lab, nitrite was completely consumed with sufficient exposure time. Results of this study suggest that a long-term injection of formate is necessary to test the remediation potential of this approach for nitrate contamination and that adaptation to nitrite accumulation will be a key determinative factor.In situ stimulation of denitrification has been proposed as a mechanism to remediate groundwater nitrate contamination. In this study, sodium formate was added to a sand and gravel aquifer on Cape Cod, MA, to test whether formate could serve as a potential electron donor for subsurface denitrification. During 16- and 10-day trials, groundwater from an anoxic nitrate-containing zone (0.5-1.5 mM) was continuously withdrawn, amended with formate and bromide, and pumped back into the aquifer. Concentrations of groundwater constituents were monitored in multilevel samplers after up to 15 m of transport by natural gradient flow. Nitrate and formate concentrations were decreased 80-100% and 60-70%, respectively, with time and subsequent travel distance, while nitrite concentrations inversely increased. The field experiment breakthrough curves were simulated with a two-dimensional site-specific model that included transport, denitrification, and microbial growth. Initial values for model parameters were obtained from laboratory incubations with aquifer core material and then refined to fit field breakthrough curves. The model and the lab results indicated that formate-enhanced nitrite reduction was nearly 4-fold slower than nitrate reduction, but in the lab, nitrite was completely consumed with sufficient exposure time. Results of this study suggest that a long-term injection of formate is necessary to test the remediation potential of this approach for nitrate contamination and that adaptation to nitrite accumulation will be a key determinative factor.
Reservoir characterization of the Smackover Formation in southwest Alabama. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopaska-Merkel, D.C.; Hall, D.R.; Mann, S.D.
1993-02-01
The Upper Jurassic Smackover Formation is found in an arcuate belt in the subsurface from south Texas to panhandle Florida. The Smackover is the most prolific hydrocarbon-producing formation in Alabama and is an important hydrocarbon reservoir from Florida to Texas. In this report Smackover hydrocarbon reservoirs in southwest Alabama are described. Also, the nine enhanced- and improved-recovery projects that have been undertaken in the Smackover of Alabama are evaluated. The report concludes with recommendations about potential future enhanced- and improved-recovery projects in Smackover reservoirs in Alabama and an estimate of the potential volume of liquid hydrocarbons recoverable by enhanced- andmore » improved-recovery methods from the Smackover of Alabama.« less
Reservoir characterization of the Smackover Formation in southwest Alabama
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopaska-Merkel, D.C.; Hall, D.R.; Mann, S.D.
1993-02-01
The Upper Jurassic Smackover Formation is found in an arcuate belt in the subsurface from south Texas to panhandle Florida. The Smackover is the most prolific hydrocarbon-producing formation in Alabama and is an important hydrocarbon reservoir from Florida to Texas. In this report Smackover hydrocarbon reservoirs in southwest Alabama are described. Also, the nine enhanced- and improved-recovery projects that have been undertaken in the Smackover of Alabama are evaluated. The report concludes with recommendations about potential future enhanced- and improved-recovery projects in Smackover reservoirs in Alabama and an estimate of the potential volume of liquid hydrocarbons recoverable by enhanced- andmore » improved-recovery methods from the Smackover of Alabama.« less
Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries
NASA Astrophysics Data System (ADS)
Raj, R.; Wolfenstine, J.
2017-03-01
We build upon the concept that nucleation of lithium dendrites at the lithium anode-solid state electrolyte interface is instigated by the higher resistance of grain boundaries that raises the local electro-chemical potential of lithium, near the lithium-electrode. This excess electro-chemo-mechanical potential, however, is reduced by the mechanical back stress generated when the dendrite is formed within the electrolyte. These parameters are coalesced into an analytical model that prescribes a specific criterion for dendrite formation. The results are presented in the form of current limit diagrams that show the "safe" and "fail" regimes for battery function. A higher conductivity of the electrolyte can reduce dendrite formation.
Shakir'yanova, Yu P; Leonov, S V; Pinchuk, P V; Sukhareva, M A
This article was designed to share the experience gained with the three-dimensional modeling for the purpose of situational expertise intended to reconstruct the occurrence circumstances and check up the alternative investigative leads concerning formation of potential injuries to a concrete person. Simulation was performed with the use of the dimensionally scaled model of the place of occurrence as well as the models of the human head and body totally consistent with the anthropometric characteristics of the victim. The results of this work made it possible to reject several potential opportunities for the formation of injuries to the victim and identify the most probable version.
Verhagen, Tibert; Vonkeman, Charlotte; van Dolen, Willemijn
2016-07-01
Although several studies have looked at the effects of online product presentations on consumer decision making, no study thus far has considered a potential key factor in online product evaluations: tangibility. The present study aims at filling this gap by developing and testing a model that relates different online product presentation formats to the three-dimensional concept of product tangibility. We test how the three tangibility dimensions influence perceived diagnosticity and, eventually, online purchase intentions. A between-subjects lab experiment (n = 366) was used to test the hypothesized effects of three common online product presentation formats (pictures vs. 360 spin rotation vs. virtual mirror). The results showed that out of these formats, virtual mirrors were superior in providing a sense of product tangibility, followed by the 360-spin rotation format and static pictures. Furthermore, in terms of predictive validity, two of the three tangibility dimensions significantly increased perceived diagnosticity, which, in turn, positively and strongly affected purchase intentions. Overall, our results add to previous works studying the relationships between online product presentation formats and consumer decision making. Also, they hold value for online practitioners by highlighting the potential benefits of applying technologically advanced product presentation formats such as the virtual mirror.
Funakawa, Akiyasu; Yamanaka, Ichiro; Otsuka, Kiyoshi
2005-05-12
Electrochemical oxidative carbonylation of methanol was studied over Au supported carbon anode in CO. The major carbonylation products were dimethyl oxalate (DMO) and dimethyl carbonate (DMC). The minor oxidation products were dimethoxy methane (DMM) and methyl formate (MF) from methanol and CO(2). Influences of various reaction conditions were studied on carbonylation activities and selectivities. The selectivities to DMO and DMC can be controlled by the electrochemical potential. Electrocatalysis of Au/carbon anode was studied by cyclic voltammetry (CV), stoichiometric reactions among Au(3+), methanol, and CO, and UV-vis spectra. The Au/carbon anode was characterized by XRD, SEM, and BE images before and after the carbonylation. These experimental facts strongly suggest that transition of oxidation states of Au affects changing of the carbonylation selectivities to DMO and DMC. Au(0) is the active species for the selective DMO formation by direct electrochemical carbonylation at low potentials (<+1.2 V (Ag/AgCl)). On the other hand, Au(3+) is the active spices for the selective DMC formation by indirect electrochemical carbonylation through Au(3+)/Au(+) redox at high potentials (>+1.3 V).
NASA Astrophysics Data System (ADS)
Gómez, José J. Arroyo; Zubieta, Carolina; Ferullo, Ricardo M.; García, Silvana G.
2016-02-01
The electrochemical formation of Au nanoparticles on a highly ordered pyrolytic graphite (HOPG) substrate using conventional electrochemical techniques and ex-situ AFM is reported. From the potentiostatic current transients studies, the Au electrodeposition process on HOPG surfaces was described, within the potential range considered, by a model involving instantaneous nucleation and diffusion controlled 3D growth, which was corroborated by the microscopic analysis. Initially, three-dimensional (3D) hemispherical nanoparticles distributed on surface defects (step edges) of the substrate were observed, with increasing particle size at more negative potentials. The double potential pulse technique allowed the formation of rounded deposits at low deposition potentials, which tend to form lines of nuclei aligned in defined directions leading to 3D ordered structures. By choosing suitable nucleation and growth pulses, one-dimensional (1D) deposits were possible, preferentially located on step edges of the HOPG substrate. Quantum-mechanical calculations confirmed the tendency of Au atoms to join selectively on surface defects, such as the HOPG step edges, at the early stages of Au electrodeposition.
Synthesis of Zn-MOF incorporating titanium-hydrides as active sites binding H{sub 2} molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jongsik, E-mail: jkim40@nd.edu; Ok Kim, Dong; Wook Kim, Dong
2015-10-15
This paper describes the synthetic effort for a Zn-MOF imparting Ti-H as a preferential binding site potentially capturing H{sub 2} molecules via Kubas-type interaction. The formation mechanism of Ti-H innate to the final material was potentially demonstrated to follow a radical dissociation rather than a β-hydrogen elimination and a C-H reductive elimination. - Graphical abstract: This study details the synthesis and the formation mechanism of Zn-MOF adsorbent site-isolating TiH{sub 3} that can potentially capture H{sub 2} molecules via Kubas-binding mechanism. - Highlights: • OH-functionalized Zn-MOF was employed as a reactive template to site-isolate TiH{sub 3}. • This MOF was post-syntheticallymore » modified using a tetracyclohexyl titanium (IV). • This intermediate was hydrogenolyzed to change ligand from cyclohexyl to hydride. • Formation mechanism of TiH{sub 3} was investigated via two control GC–MS experiments. • Final Zn-MOF potentially site-isolating TiH{sub 3} species was used as a H{sub 2} adsorbent.« less
The Multifaceted Osteoclast; Far and Beyond Bone Resorption.
Drissi, Hicham; Sanjay, Archana
2016-08-01
The accepted function of the bone resorbing cell, osteoclast, has been linked to bone remodeling and pathological osteolysis. Emerging evidence points to novel functions of osteoclasts in controlling bone formation and angiogenesis. Thus, while the concept of a "clastokine" with the potential to regulate osteogenesis during remodeling did not come as a surprise, new evidence provided unique insight into the mechanisms underlying osteoclastic control of bone formation. The question still remains as to whether osteoclast precursors or a unique trap positive mononuclear cell, can govern any aspect of bone formation. The novel paradigm eloquently proposed by leaders in the field brings together the concept of clastokines and osteoclast precursor-mediated bone formation, potentially though enhanced angiogenesis. These fascinating advances in osteoclast biology have motivated this short review, in which we discuss these new roles of osteoclasts. J. Cell. Biochem. 117: 1753-1756, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Intermittent, noncyclic dysfunction of a mechanical aortic prosthesis by pannus formation.
Giroux, Sylvie K; Labinaz, Marino X; Grisoli, Dominique; Klug, Andrew P; Veinot, John P; Burwash, Ian G
2010-01-01
Mechanical aortic prosthesis dysfunction can result from thrombosis or pannus formation. Pannus formation usually restricts systolic excursion of the occluding disk, resulting in progressive stenosis of the aortic prosthesis. Intermittent dysfunction of a mechanical aortic prosthesis is usually ascribed to thrombus formation. We describe an unusual case of intermittent, noncyclic dysfunction of a mechanical aortic prosthesis due to pannus formation in the absence of systolic restriction of disk excursion that presented with intermittent massive aortic regurgitation, severe ischemia, and shock. Pannus formation should be considered as a potential cause of acute intermittent severe aortic regurgitation in a patient with a mechanical aortic prosthesis.
Sarkar, Saptarshi; Mallick, Subhasish; Kumar, Pradeep; Bandyopadhyay, Biman
2018-05-16
Quantum chemical calculations at the CCSD(T)/CBS//MP2/aug-cc-pVTZ levels of theory have been carried out to investigate a potential new source of acetamide in Earth's atmosphere through the ammonolysis of the simplest ketene. It was found that the reaction can occur via the addition of ammonia at either the C[double bond, length as m-dash]C or C[double bond, length as m-dash]O bond of ketene. The potential energy surface as well as calculated rate coefficients indicate that under tropospheric conditions, ammonolysis would occur almost exclusively via ammonia addition at the C[double bond, length as m-dash]O bond with negligible contribution from addition at the C[double bond, length as m-dash]C bond. The reaction of ketene with water has also been investigated in order to compare between hydrolysis and ammonolysis, as the former is known to be responsible for the formation of acetic acid. The rate coefficient for the formation of acetamide was found to be ∼106 to 109 times higher than that for the formation of acetic acid from the same ketene source in the troposphere. By means of the relative rate of ammonolysis with respect to hydrolysis, it was shown that acetamide formation would dominate over acetic acid formation at various altitudes in the troposphere.
Alkhatib, E; Peters, R
2008-04-01
During rain storm events, land surface runoff and resuspension of bottom sediments cause an increase in Trihalomethane (THM) precursors in rivers. These precursors, when chlorinated at water treatment facilities will lead to the formation of THMs and hence impact drinking water resources. In order to evaluate the wet weather impact on the potential formation of THMs, river samples were collected before, during and after three rain storms ranging from 15.2 to 24.9 mm precipitation. The samples were tested for THM formation potential and other indicators including UV254 absorbance, turbidity and volatile suspended solid (VSS). Average levels of THMs increased from 61 microg/l during dry weather to 131 microg/l during wet weather, and then went back to 81 microg/l after rain ended. Wet weather values of THM are well above the maximum contaminant level (MCL) 80 microg/l, set by EPA for drinking water. THM indicators also exhibited similar trends. Average levels increased from 0.6 to 1.8 abs; 2.6 to 6 ntu; and 7.5 to 15 mg/l respectively for UV254, turbidity and VSS. A positive correlation was observed between THM formation and THM indicators. The t-test of significance (p-value) was less than 0.05 for all indicators, and R values ranged from 0.85 to 0.92 between THMs and the indicators, and 0.72 to 0.9 among indicators themselves.
Kufner, K; Tonne, M; Barth, J
2009-01-01
Improved pregnancy rates in IVF have led to increasing numbers of surplus embryos which can potentially be used for purposes like donation to another infertile couple or further research. Individuals report high levels of ambivalence concerning the donation of surplus embryos. This study examined which strategies infertile patients use to deal with this ambivalence when asked to evaluate potential dispositions of surplus embryos created during IVF. Guideline-based interviews with fertility patients were audio-recorded and transcribed verbatim. Following the principle of theoretical sampling, eight interviews were analysed by use of Grounded Theory. Analyses focused on processes of individual attitude formation. Strategies for handling ambivalence during attitude formation were identified: the six strategies comprise cognitive and communicative strategies, and were integrated into a model of attitude formation under ambivalence. As ambivalence is a relevant phenomenon in attitude formation within IVF treatment, assessment of ambivalence is strongly recommended in social science studies investigating ethical problems in patient care. In the context of informed consent, there is a need for individual counselling which draws attention to the conflicting values during attitude formation. Counsellors should be aware of the signs of and the strategies to deal with ambivalence.
NASA Astrophysics Data System (ADS)
Habibi, Tahereh; Ruban, Dmitry A.
2017-09-01
The ideas of geological heritage and geological diversity have become very popular in the modern science. These are usually applied to geological domains or countries, provinces, districts, etc. Additionally, it appears to be sensible to assess heritage value of geological bodies. The review of the available knowledge and the field investigation of the Gachsaran Formation (lower Miocene) in southwest Iran permit to assign its features and the relevant phenomena to as much as 10 geological heritage types, namely stratigraphical, sedimentary, palaeontological, palaeogeographical, geomorphological, hydrogeological, engineering, structural, economical, and geohistorical types. The outstanding diversity of the features of this formation determines its high heritage value and the national rank. The geological heritage of the Gachsaran Formation is important to scientists, educators, and tourists. The Papoon and Abolhaiat sections of this formation are potential geological heritage sites, although these do not represent all above-mentioned types. The large territory, where the Gachsaran Formation outcrop, has a significant geoconservation and geotourism potential, and further inventory of geosites on this territory is necessary. Similar studies of geological bodies in North Africa and the Middle East can facilitate better understanding of the geological heritage of this vast territory.
The Epoch of Disk Formation: z is Approximately l to Today
NASA Technical Reports Server (NTRS)
Kassin, Susan; Gardner, Jonathan; Weiner, Ben; Faber, Sandra
2012-01-01
We present data on galaxy kinematics, morphologies, and star-formation rates over 0.1 less than z less than 1.2 for approximately 500 blue galaxies. These data show how systems like our own Milky-Way have come into being. At redshifts around 1, about half the age of the Universe ago, Milky-Way mass galaxies were different beasts than today. They had a significant amount of disturbed motions, disturbed morphologies, shallower potential wells, higher specific star-formation rates, and likely higher gas fractions. Since redshift approximately 1, galaxies have decreased in disturbed motions, increased in rotation velocity and potential well depth, become more well-ordered morphologically, and decreased in specific star-formation rate. We find interrelationships between these measurements. Galaxy kinematics are correlated with morphology and specific star-formation rate such that galaxies with the fastest rotation velocities and the least amounts of disturbed motions have the most well-ordered morphologies and the lowest specific star-formation rates. The converse is true. Moreover, we find that the rate at which galaxies become more well-ordered kinematically (i.e., increased rotation velocity, decreased disturbed motions) and morphologically is directly proportional to their stellar mass.
NASA Astrophysics Data System (ADS)
Verisqa, F.; Triaminingsih, S.; Corputty, J. E. M.
2017-08-01
Hydroxyapatite (HA) formation is one of the most important aspects of bone regeneration. Because domestically made chitosan-hydroxyapatite-collagen composite scaffolding from crab shell and bovine bone and tendon has potential as a maxillofacial reconstruction material, the material’s HA-forming ability requires evaluation. The aim of this research is to investigate chitosan-hydroxyapatite-collagen composite scaffold’s potential as a maxillofacial reconstruction material by observing the scaffold’s compositional changes. Scaffold specimens were immersed in 37°C simulated body fluid (SBF) for periods of 2, 4, 6, and 8 days. Scaffold composition was then evaluated by using energy dispersive spectroscopy (EDS). The calcium (Ca) and phosphorus (P) percentages of the scaffold were found to increase following SBF immersion. The high Ca/P ratio (3.82) on the scaffold indicated HA formation. Ion exchange played a significant role in the increased percentages of Ca and P, which led to new HA layer formation. The scaffold’s HA acted as a nucleation site of Ca and P from the SBF, with collagen and chitosan as the scaffold’s matrix. Chitosan-hydroxyapatite-collagen composite scaffold shows potential as a maxillofacial reconstruction material, since its composition favors HA formation.
Onset of phase separation in the double perovskite oxide La2MnNiO6
NASA Astrophysics Data System (ADS)
Spurgeon, Steven R.; Sushko, Peter V.; Devaraj, Arun; Du, Yingge; Droubay, Timothy; Chambers, Scott A.
2018-04-01
Identification of kinetic and thermodynamic factors that control crystal nucleation and growth represents a central challenge in materials synthesis. Here we report that apparently defect-free growth of La2MnNiO6 (LMNO) thin films supported on SrTiO3 (STO) proceeds up to 1-5 nm, after which it is disrupted by precipitation of NiO phases. Local geometric phase analysis and ensemble-averaged x-ray reciprocal space mapping show no change in the film strain away from the interface, indicating that mechanisms other than strain relaxation induce the formation of the NiO phases. Ab initio simulations suggest that the electrostatic potential build-up associated with the polarity mismatch at the film-substrate interface promotes the formation of oxygen vacancies with increasing thickness. In turn, oxygen deficiency promotes the formation of Ni-rich regions, which points to the built-in potential as an additional factor that contributes to the NiO precipitation mechanisms. These results suggest that the precipitate-free region could be extended further by either incorporating dopants that suppress the built-in potential or by increasing the oxygen fugacity in order to suppress the formation of oxygen vacancies.
,
2006-01-01
The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The USGS recently completed an assessment of undiscovered oil and gas potential of the Cotton Valley Group and Travis Peak and Hosston Formations in the East Texas Basin and Louisiana-Mississippi Salt Basins Provinces in the Gulf Coast Region (USGS Provinces 5048 and 5049). The Cotton Valley Group and Travis Peak and Hosston Formations are important because of their potential for natural gas resources. This assessment is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). The USGS used this geologic framework to define one total petroleum system and eight assessment units. Seven assessment units were quantitatively assessed for undiscovered oil and gas resources.
Formation of novel rare-gas-containing molecules by molecular photodissociation in clusters.
Cohen, A; Niv, M Y; Gerber, R B
2001-01-01
Recent work by Räsänen and coworkers showed that photolysis of hydrides in rare-gas matrices results in part in formation of novel, rare-gas-containing molecules. Thus, photolysis of HCl in Xe and of H2O in Xe result respectively in formation of HXeCl and HXeOH in the Xe matrices. Ab initio calculations show that the compounds HRgY so formed are stable in isolation, and that by the strength and nature of the bonding these are molecules, very different from the corresponding weakly bound clusters Rg...HY. This paper presents a study of the formation mechanism of HRgY following the photolysis of HY in clusters Rgn(HY). Calculations are described for HXeCl, as a representative example. Potential energy surfaces that govern the formation of HXeCl in the photolysis of HCl in xenon clusters are obtained, and the dynamics on these surfaces is analyzed, partly with insight from trajectories of molecular dynamics simulations. The potential surfaces are obtained by a new variant of the DIM (diatomics in molecules) and DIIS (diatomics in ionic systems) models. Non-adiabatic couplings are also obtained. The main results are: (1) Properties of HXeCl predicted by the DIM-DIIS model are in reasonable accord with results of ab initio calculations. (2) The potential along the isomerization path HXeCl-->Xe...HCl predicted by DIM is in semiquantitative accord with the ab initio results. (3) Surface-hopping molecular dynamics simulations of the process in clusters, with "on the fly" calculations of the DIM-DIIS potentials and non-adiabatic couplings are computationally feasible. (4) Formation of HXeCl, following photolysis of HCl in Xe54(HCl), requires cage-exit of the H atom as a precondition. The H atom and the Cl can then attack the same Xe atom on opposite sides, leading to charge transfer and production of the ionic HXeCl. (5) Non-adiabatic processes play an important role, both in the reagent configurations, and at the charge-transfer stage. The results open the way to predictions of the formation of new HRgY species.
Charra-Vaskou, Katline; Badel, Eric; Charrier, Guillaume; Ponomarenko, Alexandre; Bonhomme, Marc; Foucat, Loïc; Mayr, Stefan; Améglio, Thierry
2016-02-01
Freeze-thaw cycles induce major hydraulic changes due to liquid-to-ice transition within tree stems. The very low water potential at the ice-liquid interface is crucial as it may cause lysis of living cells as well as water fluxes and embolism in sap conduits, which impacts whole tree-water relations. We investigated water fluxes induced by ice formation during freeze-thaw cycles in Juglans regia L. stems using four non-invasive and complementary approaches: a microdendrometer, magnetic resonance imaging, X-ray microtomography, and ultrasonic acoustic emissions analysis. When the temperature dropped, ice nucleation occurred, probably in the cambium or pith areas, inducing high water potential gradients within the stem. The water was therefore redistributed within the stem toward the ice front. We could thus observe dehydration of the bark's living cells leading to drastic shrinkage of this tissue, as well as high tension within wood conduits reaching the cavitation threshold in sap vessels. Ultrasonic emissions, which were strictly emitted only during freezing, indicated cavitation events (i.e. bubble formation) following ice formation in the xylem sap. However, embolism formation (i.e. bubble expansion) in stems was observed only on thawing via X-ray microtomography for the first time on the same sample. Ultrasonic emissions were detected during freezing and were not directly related to embolism formation. These results provide new insights into the complex process and dynamics of water movements and ice formation during freeze-thaw cycles in tree stems. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
DLK1 as a potential target against cancer stem/progenitor cells of hepatocellular carcinoma.
Xu, Xiao; Liu, Rui-Fang; Zhang, Xin; Huang, Li-Yu; Chen, Fei; Fei, Qian-Lan; Han, Ze-Guang
2012-03-01
Delta-like 1 homolog (DLK1; Drosophila) is a hepatic stem/progenitor cell marker in fetal livers that plays a vital role in oncogenesis of hepatocellular carcinoma (HCC). The aim of this study is to investigate whether DLK1 could serve as a potential therapeutic target against cancer stem/progenitor cells of HCC. DLK1(+) and DLK1(-) cells were sorted by fluorescence-activated cell sorting and magnetic-activated cell sorting, respectively, and then were evaluated by flow cytometry. The biological behaviors of these isolated cells and those with DLK1 knockdown were assessed by growth curve, colony formation assay, spheroid colony formation, chemoresistance, and in vivo tumorigenicity. Adenovirus-mediated RNA interference was used to knockdown the endogenous DLK1. We found that DLK1(+) population was less than 10% in almost all 17 HCC cell lines examined. DLK1(+) HCC cells showed stronger ability of chemoresistance, colony formation, spheroid colony formation, and in vivo tumorigenicity compared with DLK1(-) cells. The DLK1(+) HCC cells could generate the progeny without DLK1 expression. Furthermore, DLK1 knockdown could suppress the ability of proliferation, colony formation, spheroid colony formation, and in vivo tumorigenicity of Hep3B and Huh-7 HCC cells. Our data suggested that DLK1(+) HCC cells have characteristics similar to those of cancer stem/progenitor cells. RNA interference against DLK1 can suppress the malignant behaviors of HCC cells, possibly through directly disrupting cancer stem/progenitor cells, which suggested that DLK1 could be a potential therapeutic target against the HCC stem/progenitor cells.
Rossi, C C; Santos-Gandelman, J F; Barros, E M; Alvarez, V M; Laport, M S; Giambiagi-deMarval, M
2016-09-01
Staphylococcus haemolyticus is an opportunistic human pathogen that usually gains entry into the host tissue in association with medical device contamination. Biofilm formation is a key factor for the establishment of this bacterium and its arrangement and dynamics can be influenced by the synthesis of biosurfactants. Biosurfactants are structurally diverse amphiphilic molecules with versatile biotechnological applications, but information on their production by staphylococci is still scarce. In this work, two Staph. haemolyticus strains, showing high potential for biosurfactant production - as observed by four complementary methods - were investigated. Biosurfactant extracts were produced and studied for their capacity to inhibit the growth and biofilm formation by other bacterial human pathogens. The biosurfactant produced by the one of the strains inhibited the growth of most bacteria tested and subinhibitory concentrations of the biosurfactant were able to decrease biofilm formation and showed synergistic effects with tetracycline. Because these results were also positive when the biosurfactants were tested against the producing strains, it is likely that biosurfactant production by Staph. haemolyticus may be an unexplored virulence factor, important for competition and biofilm formation by the bacterium, in addition to the biotechnological potential. This work is the first to show the production of biosurfactants by Staphylococcus haemolyticus strains. Extracts showed antimicrobial, anti-adhesive and synergistic properties against a variety of relevant human pathogens, including the producing strains. In addition to the biotechnological potential, biosurfactants produced by Staph. haemolyticus are potentially undescribed virulence determinants in their producing strains. © 2016 The Society for Applied Microbiology.
Measurements of the potential ozone production rate in a forest
NASA Astrophysics Data System (ADS)
Crilley, L.; Sklaveniti, S.; Kramer, L.; Bloss, W.; Flynn, J. H., III; Alvarez, S. L.; Erickson, M.; Dusanter, S.; Locoge, N.; Stevens, P. S.; Millet, D. B.; Alwe, H. D.
2017-12-01
Biogenic volatile organic compounds (BVOC) are a significant source of organic compounds globally and alongside NOx play a key role in the formation of ozone in the troposphere. Understanding how changes in NOx concentrations feed through to altered ozone production in BVOC dominated environments will aid our understanding of future atmospheric composition, notably as developing nations transition from NOx dominated to NOx limited chemistry as a result of mitigation strategies. Here we empirically investigate this ambient ozone formation potential. We report deployment of a custom built instrument to measure in near real time the potential for in situ chemical ozone production, using an artificial light source. Our results are thus indicative of the ozone formation potential for a sampled ambient air mixture, including full VOC complexity, i.e. independent of characterization of individual organic compounds. Ground level measurements were performed as part of the PROPHET-AMOS 2016 field campaign, at a site located within a Northern Michigan forest that has typically low NOx abundance, but high isoprene and terpenoid loadings. As the ambient NOx concentrations were low during the campaign, experiments were performed in which NO was artificially added to the sampled ambient air mixture, to quantify changes in the potential ozone production rate as a function of NOx, and hence the ozone forming characteristics of the ambient air. Preliminarily results from these experiments are presented, and indicate that while ozone production increases with added NO, significant variation was observed for a given NO addition, reflecting differences in the ambient VOC chemical reactivity and ozone formation tendency.
Yan, Qiao-Ling; Zhu, Jiao-Jun; Yu, Li-Zhong
2012-01-01
Promoting the seed regeneration potential of secondary forests undergoing gap disturbances is an important approach for achieving forest restoration and sustainable management. Seedling recruitment from seed banks strongly determines the seed regeneration potential, but the process is poorly understood in the gaps of secondary forests. The objectives of the present study were to evaluate the effects of gap size, seed availability, and environmental conditions on the seed regeneration potential in temperate secondary forests. It was found that gap formation could favor the invasion of more varieties of species in seed banks, but it also could speed up the turnover rate of seed banks leading to lower seed densities. Seeds of the dominant species, Fraxinus rhynchophylla, were transient in soil and there was a minor and discontinuous contribution of the seed bank to its seedling emergence. For Quercus mongolica, emerging seedling number was positively correlated with seed density in gaps (R = 0.32, P<0.01), especially in medium and small gaps (<500 m2). Furthermore, under canopies, there was a positive correlation between seedling number and seed density of Acer mono (R = 0.43, P<0.01). Gap formation could promote seedling emergence of two gap-dependent species (i.e., Q. mongolica and A. mono), but the contribution of seed banks to seedlings was below 10% after gap creation. Soil moisture and temperature were the restrictive factors controlling the seedling emergence from seeds in gaps and under canopies, respectively. Thus, the regeneration potential from seed banks is limited after gap formation. PMID:22745771
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anders, André; Ni, Pavel; Panjan, Matjaž
2013-09-30
Ion energy distribution functions measured for high power impulse magnetron sputtering show features, such as a broad peak at several 10 eV with an extended tail, as well as asymmetry with respect to E×B, where E and B are the local electric and magnetic field vectors, respectively. Here it is proposed that those features are due to the formation of a potential hump of several 10 V in each of the traveling ionization zones. Potential hump formation is associated with a negative-positive-negative space charge that naturally forms in ionization zones driven by energetic drifting electrons.
Formation of Schrödinger-cat states in the Morse potential: Wigner function picture.
Foldi, Peter; Czirjak, Attila; Molnar, Balazs; Benedict, Mihaly
2002-04-22
We investigate the time evolution of Morse coherent states in the potential of the NO molecule. We present animated wave functions and Wigner functions of the system exhibiting spontaneous formation of Schrödinger-cat states at certain stages of the time evolution. These nonclassical states are coherent superpositions of two localized states corresponding to two di.erent positions of the center of mass. We analyze the degree of nonclassicality as the function of the expectation value of the position in the initial state. Our numerical calculations are based on a novel, essentially algebraic treatment of the Morse potential.
Wang, Bao-Guo; Ren, Fu-de; Shi, Wen-Jing
2015-11-01
Changes in N-NO2 bond strength, ring strain energy and electrostatic potential upon formation of intermolecular H-bonds between HF and the nitro group in nitrogen heterocyclic rings C n H2n N-NO2 (n = 2-5), RDX and HMX were investigated using DFT-B3LYP and MP2(full) methods with the 6-311++G(2df,2p) and aug-cc-pVTZ basis sets. Analysis of electron density shifts was also carried out. The results indicate that H-bonding energy correlates well with the increment of ring strain energy. Upon complex formation, the strength of the N-NO2 trigger-bond is enhanced, suggesting reduced sensitivity, while judged by the increased ring strain energy, sensitivity is increased. However, some features of the molecular surface electrostatic potential, such as a local maximum above the N-NO2 bond and ring, σ + (2) and electrostatic balance parameter ν, remain essentially unchanged upon complex formation, and only a small change in the impact sensitivity h 50 is suggested. It is not sufficient to determine sensitivity solely on the basis of trigger bond or ring strain; as a global feature of a molecule, the molecular surface electrostatic potential is available to help judge the change of sensitivity in H-bonded complexes. Graphical Abstract The strengthened N-NO2 bond suggests reduced sensitivity, while it is reverse by theincreased ring strain energy upon the complex formation. However, the molecular surfaceelectrostatic potential (V S) shows the little change of h 50. The V S should be taken into accountin the analysis of explosive sensitivity in the H-bonded complex.
Controlling the Maillard reaction by reactant encapsulation: sodium chloride in cookies.
Fiore, Alberto; Troise, Antonio Dario; Ataç Mogol, Burçe; Roullier, Victor; Gourdon, Anthony; El Mafadi Jian, Samira; Hamzalioğlu, Berat Aytül; Gökmen, Vural; Fogliano, Vincenzo
2012-10-31
Formation of Maillard reaction products (MRPs) including 5-hydroxymethylfurfural (HMF) and acrylamide has been an intensive area of research in recent decades. The presence of reactants such as sodium chloride may influence the Maillard reaction (MR) pathways through the dehydration of various key intermediates. The aim of this work was to test the potential of ingredient encapsulation to mitigate the MR by investigating the case of sodium chloride encapsulation on the HMF formation in cookies. Thirteen cookies were prepared with recipes containing free or encapsulated NaCl. Increasing NaCl concentration from 0 to 0.65% increases HMF concentration up to 75%, whereas in the presence of encapsulated NaCl the reduction of HMF varied from 18 to 61% due to the inhibition of sucrose pyrolytic decomposition and the fructofuranosyl cation formation. Data demonstrated that the more heat-resistant the lipid-based coating was, the more pronounced the reduction of HMF formation. The results showed that encapsulation represents a useful approach to prevent the formation of potentially harmful compounds in thermally processed foods.
Inaba, Hiroyoshi; Kishimoto, Takuya; Oishi, Satoru; Nagata, Kan; Hasegawa, Shunsuke; Watanabe, Tamae; Kida, Satoshi
2016-01-01
Patients with severe Wernicke–Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation. PMID:27576603
Inaba, Hiroyoshi; Kishimoto, Takuya; Oishi, Satoru; Nagata, Kan; Hasegawa, Shunsuke; Watanabe, Tamae; Kida, Satoshi
2016-12-01
Patients with severe Wernicke-Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation.
Lim, C K; Yuan, Z X; Jones, R M; White, I N; Smith, L L
1997-06-01
On-line high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI MS) and tandem mass spectrometry (MS/MS) have been applied to the study of tamoxifen metabolism in liver microsomes and to the identification of potentially genotoxic metabolites. The results showed that the hydroxylated derivatives, including 4-hydroxytamoxifen and alpha-hydroxytamoxifen are detoxication metabolites, while arene oxides, their free radical precursors or metabolic intermediates, are the most probable species involved in DNA-adduct formation.
Sahli, Rihab; Fave, Claire; Raouafi, Noureddine; Boujlel, Khaled; Schöllhorn, Bernd; Limoges, Benoît
2013-04-30
An in situ and real-time electrochemical method has been devised for quantitatively monitoring the self-assembly of a ferrocene-labeled cyclic disulfide derivative (i.e., a thioctic acid derivative) on a polycrystalline gold electrode under electrode polarization. Taking advantage of the high sensitivity, specificity, accuracy, and temporal resolution of this method, we were able to demonstrate an unexpectedly facilitated formation of the redox-active SAM when the electrode was held at a moderate cathodic potential (-0.4 V vs SCE in CH3CN), affording a saturated monolayer from only micromolar solutions in less than 10 min, and a totally impeded SAM growth when the electrode was polarized at a slightly anodic potential (+0.5 V vs SCE in CH3CN). This method literally allows for switching on/off the formation of SAMs under "soft" conditions. Moreover the cyclic disulfide-based SAM was completely desorbed at this potential contrary to the facilitated deposition of a ferrocene-labeled alkanethiol. Such a strikingly contrasting behavior could be explained by an energetically favored release of the thioctic-based SAM through homolytic cleavage of the Au-S bond followed by intramolecular cyclization of the generated thiyl diradicals. Moreover, the absence of a discernible transient faradaic current response during the potential-assisted adsorption/desorption of the redox-labeled cyclic disulfide led us to conclude in a potential-dependent reversible surface reaction where no electron is released or consumed. These results provide new insights into the formation of disulfide-based SAMs on gold but also raise some fundamental questions about the intimate mechanism involved in the facilitated adsorption/desorption of SAMs under electrode polarization. Finally, the possibility to easily and selectively address the formation/removal of thioctic-based SAMs on gold by applying a moderate cathodic/anodic potential offers another degree of freedom in tailoring their properties and in controlling their self-assembly, nanostructuration, and/or release.
NASA Astrophysics Data System (ADS)
Pedroza, Viviana; Le Roux, Jacobus P.; Gutiérrez, Néstor M.; Vicencio, Vladimir E.
2017-08-01
The Tolhuaca Volcano near Lonquimay in south-central Chile has been the subject of several studies due to its geothermal manifestations, but little is known about the stratigraphy and reservoir potential of the Cura-Mallín Formation forming its basement. Field work and U-Pb dating of detrital zircons allow us to redefine this succession as the Cura-Mallín Group, consisting of the volcano-sedimentary Guapitrío Formation, sedimentary Río Pedregoso Formation, and volcano-sedimentary Mitrauquén Formation. The Río Pedregoso Formation can be subdivided into three formal units, namely the Quilmahue Member, Rucañanco Member, and Bío-Bío Member. The base of the Quilmahue Member interfingers laterally with the base of the Guapitrío Formation, for which a previous K/Ar date of 22.0 ± 0.9 Ma was apparently discarded by the original authors. However, this date is consistent with the stratigraphic position of the Quilmahue Member and new zircon dates from the overlying units, also coinciding with the initiation of an extensional phase in the Bíobío-Aluminé Basin. Deposition of the Quilmahue Member continued throughout the early Miocene, as confirmed by dates of 17.5 Ma reported by previous authors and 16.5 Ma obtained in this study. The Rucañanco Member was deposited during the Serravalian around 12.6 Ma, whereas the Bío-Bío Member was dated at the Serravalian-Tortonian limit (11.6 Ma). Although all three members were deposited in a fluvio-lacustrine environment, they were dominated respectively by flood plains with crevasse splays, lake margins with distributary mouth bars and Gilbert-type deltas, and distal braided and meandering rivers. Whereas the Quilmahue Member was deposited during basin extension, the Rucañanco Member was formed during a period of basin inversion and compression. Temporary tectonic quiescence during deposition of the Bío-Bío Member allowed denudation of the landscape, but around 9.5 Ma tectonism was renewed again during deposition of the Mitrauquén Formation. From a geothermal point of view, the Guapitrío Formation has a low potential to host significant reservoirs due to extensive hydrothermal alteration that produced secondary minerals clogging pore spaces and fractures. In the Río Pedregoso Formation, on the other hand, the Rucañanco Member seems to have the best reservoir potential, as it has relatively thick, semi-permeable sandstones and conglomerates deposited in a lake-margin environment.
NASA Technical Reports Server (NTRS)
Mancini, D.; Bussoletti, E.; Mennella, V.; Vittone, A. A.; Colangeli, L.; Mirra, C.; Stephens, J.; Nuth, J.; Lilleleht, L.; Furgeson, F.
1992-01-01
The first results of the STARDUST project, aimed at producing and analyzing cosmic-dust analog materials in microgravity conditions, are summarized. The discussion covers the purpose of the investigation, cosmic-dust formation and properties, previous simulations of cosmic-dust formation, the current approach, the microgravity experimental apparatus, and potential advantages of studying dust formation under microgravity conditions.
Hines, Thomas; Díez-Pérez, Ismael; Nakamura, Hisao; Shimazaki, Tomomi; Asai, Yoshihiro; Tao, Nongjian
2013-03-06
We report controlling the formation of single-molecule junctions by means of electrochemically reducing two axialdiazonium terminal groups on a molecule, thereby producing direct Au-C covalent bonds in situ between the molecule and gold electrodes. We report a yield enhancement in molecular junction formation as the electrochemical potential of both junction electrodes approach the reduction potential of the diazonium terminal groups. Step length analysis shows that the molecular junction is significantly more stable, and can be pulled over a longer distance than a comparable junction created with amine anchoring bonds. The stability of the junction is explained by the calculated lower binding energy associated with the direct Au-C bond compared with the Au-N bond.
XML-BSPM: an XML format for storing Body Surface Potential Map recordings.
Bond, Raymond R; Finlay, Dewar D; Nugent, Chris D; Moore, George
2010-05-14
The Body Surface Potential Map (BSPM) is an electrocardiographic method, for recording and displaying the electrical activity of the heart, from a spatial perspective. The BSPM has been deemed more accurate for assessing certain cardiac pathologies when compared to the 12-lead ECG. Nevertheless, the 12-lead ECG remains the most popular ECG acquisition method for non-invasively assessing the electrical activity of the heart. Although data from the 12-lead ECG can be stored and shared using open formats such as SCP-ECG, no open formats currently exist for storing and sharing the BSPM. As a result, an innovative format for storing BSPM datasets has been developed within this study. The XML vocabulary was chosen for implementation, as opposed to binary for the purpose of human readability. There are currently no standards to dictate the number of electrodes and electrode positions for recording a BSPM. In fact, there are at least 11 different BSPM electrode configurations in use today. Therefore, in order to support these BSPM variants, the XML-BSPM format was made versatile. Hence, the format supports the storage of custom torso diagrams using SVG graphics. This diagram can then be used in a 2D coordinate system for retaining electrode positions. This XML-BSPM format has been successfully used to store the Kornreich-117 BSPM dataset and the Lux-192 BSPM dataset. The resulting file sizes were in the region of 277 kilobytes for each BSPM recording and can be deemed suitable for example, for use with any telemonitoring application. Moreover, there is potential for file sizes to be further reduced using basic compression algorithms, i.e. the deflate algorithm. Finally, these BSPM files have been parsed and visualised within a convenient time period using a web based BSPM viewer. This format, if widely adopted could promote BSPM interoperability, knowledge sharing and data mining. This work could also be used to provide conceptual solutions and inspire existing formats such as DICOM, SCP-ECG and aECG to support the storage of BSPMs. In summary, this research provides initial ground work for creating a complete BSPM management system.
Development of a non-linear spatial model for predicting snowpack and snowmelt
Formation and melting of snowpack can be important components of hydrologic budgets in mountainous areas. Methods that predict discharge without accounting for snowpack dynamics can overestimate potential discharge during periods of snowpack formation, and underestimate potentia...
Two-dimensional potential double layers and discrete auroras
NASA Technical Reports Server (NTRS)
Kan, J. R.; Lee, L. C.; Akasofu, S.-I.
1979-01-01
This paper is concerned with the formation of the acceleration region for electrons which produce the visible auroral arc and with the formation of the inverted V precipitation region. The former is embedded in the latter, and both are associated with field-aligned current sheets carried by plasma sheet electrons. It is shown that an electron current sheet driven from the plasma sheet into the ionosphere leads to the formation of a two-dimensional potential double layer. For a current sheet of a thickness less than the proton gyrodiameter solutions are obtained in which the field-aligned potential drop is distributed over a length much greater than the Debye length. For a current sheet of a thickness much greater than the proton gyrodiameter solutions are obtained in which the potential drop is confined to a distance on the order of the Debye length. The electric field in the two-dimensional double-layer model is the zeroth-order field inherent to the current sheet configuration, in contrast to those models in which the electric field is attributed to the first-order field due to current instabilities or turbulences. The maximum potential in the two-dimensional double-layer models is on the order of the thermal energy of plasma sheet protons, which ranges from 1 to 10 keV.
Step-wise potential development across the lipid bilayer under external electric fields
NASA Astrophysics Data System (ADS)
Majhi, Amit Kumar
2018-04-01
Pore formation across the bilayers under external electric field is an important phenomenon, which has numerous applications in biology and bio-engineering fields. However, it is not a ubiquitous event under all field applications. To initiate a pore in the bilayer a particular threshold electric field is required. The electric field alters the intrinsic potential distribution across the bilayer as we as it enhances total potential drop across the bilayer, which causes the pore formation. The intrinsic potential profile has a maximum peak value, which is 0.8 V and it gets enhanced under application of external field, 0.43 V/nm. The peak value becomes 1.4 V when a pore appears in the bilayer and it continues to evolve as along as the external electric field remains switched on.
Zazzi, Barbara C.; Crepeau, Kathryn L.; Fram, Miranda S.; Bergamaschi, Brian A.
2005-01-01
An analytical method for the determination of haloacetic acid formation potential of water samples has been developed by the U.S. Geological Survey California Water Science Center Sacramento Laboratory. The haloacetic acid formation potential is measured by dosing water samples with chlorine under specified conditions of pH, temperature, incubation time, darkness, and residual-free chlorine. The haloacetic acids formed are bromochloroacetic acid, bromodichloroacetic acid, dibromochloroacetic acid, dibromoacetic acid, dichloroacetic acid, monobromoacetic acid, monochloroacetic acid, tribromoacetic acid, and trichloroacetic acid. They are extracted, methylated, and then analyzed using a gas chromatograph equipped with an electron capture detector. Method validation experiments were performed to determine the method accuracy, precision, and detection limit for each of the compounds. Method detection limits for these nine haloacetic acids ranged from 0.11 to 0.45 microgram per liter. Quality-control practices include the use of blanks, quality-control samples, calibration verification standards, surrogate recovery, internal standard, matrix spikes, and duplicates.
UAV formation control design with obstacle avoidance in dynamic three-dimensional environment.
Chang, Kai; Xia, Yuanqing; Huang, Kaoli
2016-01-01
This paper considers the artificial potential field method combined with rotational vectors for a general problem of multi-unmanned aerial vehicle (UAV) systems tracking a moving target in dynamic three-dimensional environment. An attractive potential field is generated between the leader and the target. It drives the leader to track the target based on the relative position of them. The other UAVs in the formation are controlled to follow the leader by the attractive control force. The repulsive force affects among the UAVs to avoid collisions and distribute the UAVs evenly on the spherical surface whose center is the leader-UAV. Specific orders or positions of the UAVs are not required. The trajectories of avoidance obstacle can be obtained through two kinds of potential field with rotation vectors. Every UAV can choose the optimal trajectory to avoid the obstacle and reconfigure the formation after passing the obstacle. Simulations study on UAV are presented to demonstrate the effectiveness of proposed method.
Choi, Junghoon; Valentine, Richard L
2002-02-01
Studies have been conducted specifically to investigate the hypothesis that N-nitrosodimethylamine (NDMA) can be produced by reactions involving monochloramine. Experiments were conducted using dimethylamine (DMA) as a model precursor. NDMA was formed from the reaction between DMA and monochloramine indicating that it should be considered a potential disinfection by-product. The formation of NDMA increased with increased monochloramine concentration and showed maximum in yield when DMA was varied at fixed monochloramine concentrations. The mass spectra of the NDMA formed from DMA and 15N isotope labeled monochloramine (15NH2Cl) showed that the source of one of the nitrogen atoms in the nitroso group in NDMA was from monochloramine. Addition of 0.05 and 0.5 mM of preformed monochloramine to a secondarily treated wastewater at pH 7.2 also resulted in the formation of 3.6 and 111 ng/L of NDMA, respectively, showing that this is indeed an environmentally relevant NDMA formation pathway. The proposed NDMA formation mechanism consists of (i) the formation of 1,1-dimethylhydrazine (UDMH) intermediate from the reaction of DMA with monochloramine followed by, (ii) the oxidation of UDMH by monochloramine to NDMA, and (iii) the reversible chlorine transfer reaction between monochloramine and DMA which is parallel to (i). We conclude that reactions involving monochloramine in addition to classical nitrosation reactions are potentially important pathways for NDMA formation.
Troglitazone induced apoptosis via PPARγ activated POX-induced ROS formation in HT29 cells.
Wang, Jing; Lv, XiaoWen; Shi, JiePing; Hu, XiaoSong; DU, YuGuo
2011-08-01
In order to investigate the potential mechanisms in troglitazone-induced apoptosis in HT29 cells, the effects of PPARγ and POX-induced ROS were explored. [3- (4, 5)-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay, Annexin V and PI staining using FACS, plasmid transfection, ROS formation detected by DCFH staining, RNA interference, RT-PCR & RT-QPCR, and Western blotting analyses were employed to investigate the apoptotic effect of troglitazone and the potential role of PPARγ pathway and POX-induced ROS formation in HT29 cells. Troglitazone was found to inhibit the growth of HT29 cells by induction of apoptosis. During this process, mitochondria related pathways including ROS formation, POX expression and cytochrome c release increased, which were inhibited by pretreatment with GW9662, a specific antagonist of PPARγ. These results illustrated that POX upregulation and ROS formation in apoptosis induced by troglitazone was modulated in PPARγ-dependent pattern. Furthermore, the inhibition of ROS and apoptosis after POX siRNA used in troglitazone-treated HT29 cells indicated that POX be essential in the ROS formation and PPARγ-dependent apoptosis induced by troglitazone. The findings from this study showed that troglitazone-induced apoptosis was mediated by POX-induced ROS formation, at least partly, via PPARγ activation. Copyright © 2011 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.
Watson, Kalinda; Farré, Maria José; Knight, Nicole
2015-01-01
The removal of both organic and inorganic disinfection by-product (DBP) precursors prior to disinfection is important in mitigating DBP formation, with halide removal being particularly important in salinity-impacted water sources. A matrix of waters of variable alkalinity, halide concentration and dissolved organic carbon (DOC) concentration were treated with enhanced coagulation (EC) followed by anion exchange (MIEX resin) or powdered activated carbon (PAC) and the subsequent disinfection by-product formation potentials (DBP-FPs) assessed and compared to DBP-FPs for untreated samples. Halide and DOC removal were also monitored for both treatment processes. Bromide and iodide adsorption by MIEX treatment ranged from 0 to 53% and 4-78%, respectively. As expected, EC and PAC treatments did not remove halides. DOC removal by EC/PAC was 70 ± 10%, while EC/MIEX enabled a DOC removal of 66 ± 12%. Despite the halide removals achieved by MIEX, increases in brominated disinfection by-product (Br-DBP) formation were observed relative to untreated samples, when favourable Br:DOC ratios were created by the treatment. However, the increases in formation were less than what was observed for the EC/PAC treated waters, which caused large increases in Br-DBP formation when high Br-DBP-forming water quality conditions occurred. The formation potential of fully chlorinated DBPs decreased after treatment in all cases.
Millimeter Wave Spectrum and Astronomical Search for Vinyl Formate
NASA Astrophysics Data System (ADS)
Alonso, E. R.; Kolesniková, L.; Tercero, B.; Cabezas, C.; Alonso, J. L.; Cernicharo, J.; Guillemin, J.-C.
2016-11-01
Previous detections of methyl and ethyl formate make other small substituted formates potential candidates for observation in the interstellar medium. Among them, vinyl formate is one of the simplest unsaturated carboxylic ester. The aim of this work is to provide direct experimental frequencies of the ground vibrational state of vinyl formate in a large spectral range for astrophysical use. The room-temperature rotational spectrum of vinyl formate has been measured from 80 to 360 GHz and analyzed in terms of Watson’s semirigid rotor Hamiltonian. Two thousand six hundred transitions within J = 3-88 and K a = 0-28 were assigned to the most stable conformer of vinyl formate and a new set of spectroscopic constants was accurately determined. Spectral features of vinyl formate were then searched for in Orion KL, Sgr B2(N), B1-b, and TMC-1 molecular clouds. Upper limits to the column density of vinyl formate are provided.
SECONDARY ORGANIC AEROSOL FORMATION FROM THE IRRADIATION OF SIMULATED AUTOMOBILE EXHAUST
A laboratory study was conducted to evaluate the potential for secondary organic aerosol formation from emissions from automotive exhaust. The goal was to determine to what extent photochemical oxidation products of these hydrocarbons contribute to secondary organic aerosol (SO...
The Role of Hydroxylamine as a Nitrification Intermediate in N-nitrosamine Formation
The formation of N-nitrosamines, and in particular N-nitrosodimethylamine (NDMA), in drinking water systems that use chloramines is a concern because of their potential carcinogenicity and occurrences in finished waters at toxicologically relevant levels. The widely accepted mech...
Renal stone risk assessment during Space Shuttle flights
NASA Technical Reports Server (NTRS)
Whitson, P. A.; Pietrzyk, R. A.; Pak, C. Y.
1997-01-01
PURPOSE: The metabolic and environmental factors influencing renal stone formation before, during, and after Space Shuttle flights were assessed. We established the contributing roles of dietary factors in relationship to the urinary risk factors associated with renal stone formation. MATERIALS AND METHODS: 24-hr. urine samples were collected prior to, during space flight, and following landing. Urinary and dietary factors associated with renal stone formation were analyzed and the relative urinary supersaturation of calcium oxalate, calcium phosphate (brushite), sodium urate, struvite and uric acid were calculated. RESULTS: Urinary composition changed during flight to favor the crystallization of calcium-forming salts. Factors that contributed to increased potential for stone formation during space flight were significant reductions in urinary pH and increases in urinary calcium. Urinary output and citrate, a potent inhibitor of calcium-containing stones, were slightly reduced during space flight. Dietary intakes were significantly reduced for a number of variables, including fluid, energy, protein, potassium, phosphorus and magnesium. CONCLUSIONS: This is the first in-flight characterization of the renal stone forming potential in astronauts. With the examination of urinary components and nutritional factors, it was possible to determine the factors that contributed to increased risk or protected from risk. In spite of the protective components, the negative contributions to renal stone risk predominated and resulted in a urinary environment that favored the supersaturation of stone-forming salts. Dietary and pharmacologic therapies need to be assessed to minimize the potential for renal stone formation in astronauts during/after space flight.
Saveant, Jean-Michel; Tard, Cédric
2016-01-27
In the context of the electrochemical and photochemical conversion of CO2 to liquid fuels, one of the most important issues of contemporary energy and environmental issues, the possibility of pushing the reduction beyond the CO and formate level and catalytically generate products such as methanol is particularly attractive. Biomimetic 2e(-) + 2H(+) is often viewed as a potential hydride donor. This has been the object of a recent interesting attempt (J. Am. Chem. Soc. 2014, 136, 14007) in which 6,7-dimethyl-4-hydroxy-2-mercaptopteridine was reported as a catalyst of the electrochemical conversion of CO2 to methanol and formate, based on cyclic voltammetric, (13)C NMR, IR, and GC analyses. After checking electrolysis at the reported potential and at a more negative potential to speed up the reaction, it appears, on (1)H NMR and gas chromatographic grounds, that there is neither catalysis nor methanol and nor formate production. (1)H NMR (with H2O presaturation) brings about an unambiguous answer to the eventual production of methanol and formate, much more so than (13)C NMR, which can even be misleading when no internal standard is used as in the above-mentioned paper. IR analysis is even less conclusive. Use of a GC technique with sufficient sensitivity confirmed the lack of methanol formation. The direct or indirect hydride transfer electrochemical reduction of CO2 to formate and to methanol remains an open question. Original ideas and efforts such as those discussed here are certainly worth tempting. However, in view of the importance of the stakes, it appears necessary to carefully check reports in this area.
Zhang, Yimeng; Chu, Wenhai; Yao, Dechang; Yin, Daqiang
2017-08-01
The comprehensive control efficiency for the formation potentials (FPs) of a range of regulated and unregulated halogenated disinfection by-products (DBPs) (including carbonaceous DBPs (C-DBPs), nitrogenous DBPs (N-DBPs), and iodinated DBPs (I-DBPs)) with the multiple drinking water treatment processes, including pre-ozonation, conventional treatment (coagulation-sedimentation, pre-sand filtration), ozone-biological activated carbon (O 3 -BAC) advanced treatment, and post-sand filtration, was investigated. The potential toxic risks of DBPs by combing their FPs and toxicity values were also evaluated. The results showed that the multiple drinking water treatment processes had superior performance in removing organic/inorganic precursors and reducing the formation of a range of halogenated DBPs. Therein, ozonation significantly removed bromide and iodide, and thus reduced the formation of brominated and iodinated DBPs. The removal of organic carbon and nitrogen precursors by the conventional treatment processes was substantially improved by O 3 -BAC advanced treatment, and thus prevented the formation of chlorinated C-DBPs and N-DBPs. However, BAC filtration leads to the increased formation of brominated C-DBPs and N-DBPs due to the increase of bromide/DOC and bromide/DON. After the whole multiple treatment processes, the rank order for integrated toxic risk values caused by these halogenated DBPs was haloacetonitriles (HANs)≫haloacetamides (HAMs)>haloacetic acids (HAAs)>trihalomethanes (THMs)>halonitromethanes (HNMs)≫I-DBPs (I-HAMs and I-THMs). I-DBPs failed to cause high integrated toxic risk because of their very low FPs. The significant higher integrated toxic risk value caused by HANs than other halogenated DBPs cannot be ignored. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang Y.; Setyawan, Wahyu; Jiang, Weilin
2014-08-28
The Vienna Ab-initio Simulation Package (VASP) is employed to calculate charge states and the formation energies of Mg, Al and Be transmutants at different lattice sites in 3C-SiC. The results provide important information on the dependence of the most stable charge state and formation energy of Mg, Al, Be and vacancies on electron potentials.
Formation of oxidation byproducts from ozonation of wastewater.
Wert, Eric C; Rosario-Ortiz, Fernando L; Drury, Doug D; Snyder, Shane A
2007-04-01
Disinfection byproduct (DBP) formation in tertiary wastewater was examined after ozonation (O(3)) and advanced oxidation with O(3) and hydrogen peroxide (O(3)/H(2)O(2)). O(3) and O(3)/H(2)O(2) were applied at multiple dosages to investigate DBP formation during coliform disinfection and trace contaminant oxidation. Results showed O(3) provided superior disinfection of fecal and total coliforms compared to O(3)/H(2)O(2). Color, UV absorbance, and SUVA were reduced by O(3) and O(3)/H(2)O(2), offering wastewater utilities a few potential surrogates to monitor disinfection or trace contaminant oxidation. At equivalent O(3) dosages, O(3)/H(2)O(2) produced greater concentrations of assimilable organic carbon (5-52%), aldehydes (31-47%), and carboxylic acids (12-43%) compared to O(3) alone, indicating that organic DBP formation is largely dependent upon hydroxyl radical exposure. Bromate formation occurred when O(3) dosages exceeded the O(3) demand of the wastewater. Bench-scale tests with free chlorine showed O(3) is capable of reducing total organic halide (TOX) formation potential by at least 20%. In summary, O(3) provided superior disinfection compared to O(3)/H(2)O(2) while minimizing DBP concentrations. These are important considerations for water reuse, aquifer storage and recovery, and advanced wastewater treatment applications.
Liu, Wei; Niu, Xiaojun; Chen, Weiyi; An, Shaorong; Sheng, Hong
2017-04-01
Phosphine (PH 3 ) emission from conventional biological wastewater treatment is very inefficient (ng-μg m -3 ). In this work, we investigated the feasibility of promoting PH 3 formation from inorganic phosphorus (IP) or organic phosphorus (OP) containing synthetic wastewater treatment by Microbial Electrolysis Cell (MEC) for the first time. Positive effect of applied potential on PH 3 production was observed after methanogens was inhibited. The highest production of PH 3 (1103.10 ± 72.02 ng m -3 ) was obtained in IP-fed MEC operated at -0.6 V, which was about 5-fold and 2-fold compared to that in open circuit experiment and OP-fed MEC, respectively. Meanwhile, PH 3 formation corresponded positively with current density and alkaline phosphatase activity. This result showed that suitable potential could enhance the activity of relevant enzymes and boost the biosynthesis of PH 3 . Bacterial communities analysis based on high-throughput sequencing revealed that applied potential was conductive to the enrichment of phosphate-reducing organisms in contrast to the control test. These results provide a new idea for resource utilization of phosphorus in wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pogosov, V. V.; Reva, V. I.
2017-09-01
In terms of the model of stable jellium, self-consistent calculations of spatial distributions of electrons and potentials, as well as of energies of dissociation, cohesion, vacancy formation, electron attachment, and ionization potentials of solid clusters of Mg N , Li N (with N ≤ 254 ) and of clusters containing a vacancy ( N ≥ 12) have been performed. The contribution of a monovacancy to the energy of the cluster and size dependences of its characteristics and of asymptotics have been discussed. Calculations have been performed using a SKIT-3 cluster at Glushkov Institute of Cybernetics, National Academy of Sciences, Ukraine (Rpeak = 7.4 Tflops).
Sum rules for the uniform-background model of an atomic-sharp metal corner
NASA Astrophysics Data System (ADS)
Streitenberger, P.
1994-04-01
Analytical results are derived for the electrostatic potential of an atomic-sharp 90° metal corner in the uniform-background model. The electrostatic potential at a free jellium edge and the jellium corner, respectively, is determined exactly in terms of the energy per electron of the uniform electron gas integrated over the background density. The surface energy, the edge formation energy and the derivative of the corner formation energy with respect to the background density are given as integrals over the electrostatic potential. The present approach represents a novel approach to such sum rules, inclusive of the Budd-Vannimenus sum rules for a free jellium surface, based on general properties of linear response functions.
Pinto, David; Coradin, Thibaud; Laberty-Robert, Christel
2018-04-01
In microbial fuel cells, electricity generation is assumed by bacterial degradation of low-grade organics generating electrons that are transferred to an electrode. The nature and efficiency of the electron transfer from the bacteria to the electrodes are determined by several chemical, physical and biological parameters. Specifically, the application of a specific potential at the bioanode has been shown to stimulate the formation of an electro-active biofilm, but the underlying mechanisms remain poorly understood. In this study, we have investigated the effect of an applied potential on the formation and electroactivity of biofilms established by Shewanella oneidensis bacteria on graphite felt electrodes in single- and double-chamber reactor configurations in oxic conditions. Using amperometry, cyclic voltammetry, and OCP/Power/Polarization curves techniques, we showed that a potential ranging between -0.3V and +0.5V (vs. Ag/AgCl/KCl sat.) and its converse application to a couple of electrodes leads to different electrochemical behaviors, anodic currents and biofilm architectures. For example, when the bacteria were confined in the anodic compartment of a double-chamber cell, a negative applied potential (-0.3V) at the bioanode favors a mediated electron transfer correlated with the progressive formation of a biofilm that fills the felt porosity and bridges the graphite fibers. In contrast, a positive applied potential (+0.3V) at the bioanode stimulates a direct electron transfer resulting in the fast-bacterial colonization of the fibers only. These results provide significant insight for the understanding of the complex bacteria-electrode interactions in microbial fuel cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Craddock, William H.; Drake II, Ronald M.; Mars, John L.; Merrill, Matthew D.; Warwick, Peter D.; Blondes, Madalyn S.; Gosai, Mayur A.; Freeman, P.A.; Cahan, Steven A.; DeVera, Christina A.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.
2012-01-01
This report presents ten storage assessment units (SAUs) within the Powder River Basin of Wyoming, Montana, South Dakota, and Nebraska. The Powder River Basin contains a thick succession of sedimentary rocks that accumulated steadily throughout much of the Phanerozoic, and at least three stratigraphic packages contain strata that are suitable for CO2 storage. Pennsylvanian through Triassic siliciclastic strata contain two potential storage units: the Pennsylvanian and Permian Tensleep Sandstone and Minnelusa Formation, and the Triassic Crow Mountain Sandstone. Jurassic siliciclastic strata contain one potential storage unit: the lower part of the Sundance Formation. Cretaceous siliciclastic strata contain seven potential storage units: (1) the Fall River and Lakota Formations, (2) the Muddy Sandstone, (3) the Frontier Sandstone and Turner Sandy Member of the Carlile Shale, (4) the Sussex and Shannon Sandstone Members of Cody Shale, and (5) the Parkman, (6) Teapot, and (7) Teckla Sandstone Members of the Mesaverde Formation. For each SAU, we discuss the areal distribution of suitable CO2 reservoir rock. We also characterize the overlying sealing unit and describe the geologic characteristics that influence the potential CO2 storage volume and reservoir performance. These characteristics include reservoir depth, gross thickness, net thickness, porosity, permeability, and groundwater salinity. Case-by-case strategies for estimating the pore volume existing within structurally and (or) stratigraphically closed traps are presented. Although assessment results are not contained in this report, the geologic information included herein will be employed to calculate the potential storage space in the various SAUs.
HERCULES GLADES WILDERNESS, MISSOURI.
Miller, Mary H.; Ryan, George S.
1984-01-01
Based on geologic, geochemical, geophysical, and mine and claim surveys, Hercules Glades Wilderness, Missouri has little promise for the occurrence of metallic-mineral or energy resources in formations exposed at and near the surface. Upper Cambrian formations, known to contain major deposits of lead, zinc, silver, copper, nickel, and cobalt in the Viburnum Trend and Southeast Missouri mining districts, occur in the subsurface within the wilderness. Deep drilling to test the buried Cambrian formations for lithologic character and trace metals would be needed in order to permit apprasial of the potential of these formations for base-metal deposits.
Formation Control over Delayed Communication Network
NASA Astrophysics Data System (ADS)
Secchi, Cristian; Fantuzzi, Cesare
In this Chapter we address the problem of formation control of a group of robots that exchange information over a communication network characterized by a non negligible delay. We consider the Virtual Body Artificial Potential approach for stabilizing a group of robots at a desired formation. We show that it is possible to model the controlled group of robots as a port-Hamiltonian system and we exploit the scattering framework to achieve a passive behavior of the controlled system and to stabilize the robots in the desired formation independently of any communication delay.
Milestone report on MD potential development for uranium silicide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Jianguo; Zhang, Yongfeng; Hales, Jason Dean
2016-03-01
This report summarizes the progress on the interatomic potential development of triuranium-disilicide (U 3Si 2) for molecular dynamics (MD) simulations. The development is based on the Tersoff type potentials for single element U and Si. The Si potential is taken from the literature and a Tersoff type U potential is developed in this project. With the primary focus on the U 3Si 2 phase, some other U-Si systems such as U 3Si are also included as a test of the transferability of the potentials for binary U-Si phases. Based on the potentials for unary U and Si, two sets ofmore » parameters for the binary U-Si system are developed using the Tersoff mixing rules and the cross-term fitting, respectively. The cross-term potential is found to give better results on the enthalpy of formation, lattice constants and elastic constants than those produced by the Tersoff mixing potential, with the reference data taken from either experiments or density functional theory (DFT) calculations. In particular, the results on the formation enthalpy and lattice constants for the U 3Si 2 phase and lattice constants for the high temperature U 3Si (h-U 3Si) phase generated by the cross-term potential agree well with experimental data. Reasonable agreements are also reached on the elastic constants of U 3Si 2, on the formation enthalpy for the low temperature U 3Si (m-U 3Si) and h-U 3Si phases, and on the lattice constants of m-U 3Si phase. All these phases are predicted to be mechanically stable. The unary U potential is tested for three metallic U phases (α, β, γ). The potential is found capable to predict the cohesive energies well against experimental data for all three phases. It matches reasonably with previous experiments on the lattice constants and elastic constants of αU.« less
Duan, Wenyan; Dudchenko, Alexander; Mende, Elizabeth; Flyer, Celeste; Zhu, Xiaobo; Jassby, David
2014-05-01
The electrochemical prevention and removal of CaSO4 and CaCO3 mineral scales on electrically conducting carbon nanotube - polyamide reverse osmosis membrane was investigated. Different electrical potentials were applied to the membrane surface while filtering model scaling solutions with high saturation indices. Scaling progression was monitored through flux measurements. CaCO3 scale was efficiently removed from the membrane surface through the intermittent application of a 2.5 V potential to the membrane surface, when the membrane acted as an anode. Water oxidation at the anode, which led to proton formation, resulted in the dissolution of deposited CaCO3 crystals. CaSO4 scale formation was significantly retarded through the continuous application of 1.5 V DC to the membrane surface, when the membrane was operated as an anode. The continuous application of a sufficient electrical potential to the membrane surface leads to the formation of a thick layer of counter-ions along the membrane surface that pushed CaSO4 crystal formation away from the membrane surface, allowing the formed crystals to be carried away by the cross-flow. We developed a simple model, based on a modified Poisson-Boltzmann equation, which qualitatively explained our observed experimental results.
Higley, Debra K.
2007-01-01
Introduction The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The USGS recently completed an assessment of undiscovered oil and gas resources of the Raton Basin-Sierra Grande Uplift Province of southeastern Colorado and northeastern New Mexico (USGS Province 41). The Cretaceous Vermejo Formation and Cretaceous-Tertiary Raton Formation have production and undiscovered resources of coalbed methane. Other formations in the province exhibit potential for gas resources and limited production. This assessment is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). The USGS used this geologic framework to define two total petroleum systems and five assessment units. All five assessment units were quantitatively assessed for undiscovered gas resources. Oil resources were not assessed because of the limited potential due to levels of thermal maturity of petroleum source rocks.
Krauss, Ulrich; Jäger, Vera D; Diener, Martin; Pohl, Martina; Jaeger, Karl-Erich
2017-09-20
Bacterial inclusion bodies (IBs) consist of unfolded protein aggregates and represent inactive waste products often accumulating during heterologous overexpression of recombinant genes in Escherichia coli. This general misconception has been challenged in recent years by the discovery that IBs, apart from misfolded polypeptides, can also contain substantial amounts of active and thus correctly or native-like folded protein. The corresponding catalytically-active inclusion bodies (CatIBs) can be regarded as a biologically-active sub-micrometer sized biomaterial or naturally-produced carrier-free protein immobilizate. Fusion of polypeptide (protein) tags can induce CatIB formation paving the way towards the wider application of CatIBs in synthetic chemistry, biocatalysis and biomedicine. In the present review we summarize the history of CatIBs, present the molecular-biological tools that are available to induce CatIB formation, and highlight potential lines of application. In the second part findings regarding the formation, architecture, and structure of (Cat)IBs are summarized. Finally, an overview is presented about the available bioinformatic tools that potentially allow for the prediction of aggregation and thus (Cat)IB formation. This review aims at demonstrating the potential of CatIBs for biotechnology and hopefully contributes to a wider acceptance of this promising, yet not widely utilized, protein preparation. Copyright © 2017 Elsevier B.V. All rights reserved.
Tan, Hor-Yue; Wang, Ning; Takahashi, Masao; Feng, Yigang; Li, Hongyun; Feng, Yibin
2016-08-05
For the first time, we discovered a small proportion of aqueous fraction from Saw Palmetto apart from the fatty acid-rich fraction exhibited pharmacological activity. Therefore, this study aims to explore the anti-tumor potential of red pigmented aqueous fraction of Saw Palmetto, NYG on human hepatocellular carcinoma and its possible targets. Subcutaneous xenograft and orthotopic implantation models of HCC were used to evaluate the tumor inhibitory effect of NYG. Human hepatocellular carcinoma (HCC) cell lines and human umbilical vein endothelial cells (HUVEC) were used as in vitro model. The mRNA expression was conducted by qPCR. Protein expression was monitored by immunoblotting and immunohistochemistry. Cell migration and blood vessel formation were determined by chamber assay and tube formation assay, respectively. Significant tumor inhibition of NYG in dose-dependent manner was observed on subcutaneous xenograft and orthotopic HCC model. NYG has no direct action on cell viability or VEGF secretion of HCC cells. However, NYG reduced in vitro migration and vessel formation activities of HUVEC cells, as well as in vivo intratumoral neovascularization. NYG attenuated extracellular signal-regulated kinases (ERK) activation in endothelial cells, which may be associated with the suppression of migration and tube formation of HUVEC. NYG suppressed tumor expansion of HCC via inhibiting neovascularization, and may be potential adjuvant treatment for HCC.
Onset of phase separation in the double perovskite oxide La 2 MnNiO 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spurgeon, Steven R.; Sushko, Peter V.; Devaraj, Arun
2018-04-01
Identification of kinetic and thermodynamic factors that control crystal nucleation and growth represents a central challenge in materials synthesis. Here we report that apparently defect-free growth of La2MnNiO6 (LMNO) thin films supported on SrTiO3 (STO) proceeds up to 1–5 nm, after which it is disrupted by precipitation of NiO phases. Local geometric phase analysis and ensemble-averaged x-ray reciprocal space mapping show no change in the film strain away from the interface, indicating that mechanisms other than strain relaxation induce the formation of the NiO phases. Ab initio simulations suggest that the electrostatic potential build-up associated with the polarity mismatch atmore » the film-substrate interface promotes the formation of oxygen vacancies with increasing thickness. In turn, oxygen deficiency promotes the formation of Ni-rich regions, which points to the built-in potential as an additional factor that contributes to the NiO precipitation mechanisms. These results suggest that the precipitate-free region could be extended further by either incorporating dopants that suppress the built-in potential or by increasing the oxygen fugacity in order to suppress the formation of oxygen vacancies.« less
Farré, Maria José; Day, Sophie; Neale, Peta A; Stalter, Daniel; Tang, Janet Y M; Escher, Beate I
2013-09-15
Disinfection by-products (DBP) formed from natural organic matter and disinfectants like chlorine and chloramine may cause adverse health effects. Here, we evaluate how the quantity and quality of natural organic matter and other precursors influence the formation of DBPs during chlorination and chloramination using a comprehensive approach including chemical analysis of regulated and emerging DBPs, total organic halogen quantification, organic matter characterisation and bioanalytical tools. In vitro bioassays allow us to assess the hazard potential of DBPs early in the chain of cellular events, when the DBPs react with their molecular target(s) and activate stress response and defence mechanisms. Given the reactive properties of known DBPs, a suite of bioassays targeting reactive modes of toxic action including genotoxicity and sensitive early warning endpoints such as protein damage and oxidative stress were evaluated in addition to cytotoxicity. Coagulated surface water was collected from three different drinking water treatment plants, along with reverse osmosis permeate from a desalination plant, and DBP formation potential was assessed after chlorination and chloramination. While effects were low or below the limit of detection before disinfection, the observed effects and DBP levels increased after disinfection and were generally higher after chlorination than after chloramination, indicating that chlorination forms higher concentrations of DBPs or more potent DBPs in the studied waters. Bacterial cytotoxicity, assessed using the bioluminescence inhibition assay, and induction of the oxidative stress response were the most sensitive endpoints, followed by genotoxicity. Source waters with higher dissolved organic carbon levels induced increased DBP formation and caused greater effects in the endpoints related to DNA damage repair, glutathione conjugation/protein damage and the Nrf2 oxidative stress response pathway after disinfection. Fractionation studies indicated that all molecular weight fractions of organic carbon contributed to the DBP formation potential, with the humic rich fractions forming the greatest amount of DBPs, while the low molecular weight fractions formed more brominated DBPs due to the high bromide to organic carbon ratio. The presence of higher bromide concentrations also led to a higher fraction of brominated DBPs as well as proportionally higher effects. This study demonstrates how a suite of analytical and bioanalytical tools can be used to effectively characterise the precursors and formation potential of DBPs. Copyright © 2013 Elsevier Ltd. All rights reserved.
The Role of Hydroxylamine as a Nitrification Intermediate in N-Nitrosamine Formation- Indianapolis
The formation of N-nitrosamines, and in particular N-nitrosodimethylamine (NDMA), in drinking water systems that use chloramines is a concern because of their potential carcinogenicity and occurrences in finished waters at toxicologically relevant levels. The widely accepted mech...
NASA Astrophysics Data System (ADS)
Tory, Kevin J.; Ye, H.; Dare, R. A.
2018-04-01
Projections of Tropical cyclone (TC) formation under future climate scenarios are dependent on climate model simulations. However, many models produce unrealistic geographical distributions of TC formation, especially in the north and south Atlantic and eastern south Pacific TC basins. In order to improve confidence in projections it is important to understand the reasons behind these model errors. However, considerable effort is required to analyse the many models used in projection studies. To address this problem, a novel diagnostic is developed that provides compelling insight into why TCs form where they do, using a few summary diagrams. The diagnostic is developed after identifying a relationship between seasonal climatologies of atmospheric variables in 34 years of ECMWF reanalysis data, and TC detection distributions in the same data. Geographic boundaries of TC formation are constructed from four threshold quantities. TCs form where Emanuel's Maximum Potential Intensity, V_{{PI}}, exceeds 40 {ms}^{{ - 1}}, 700 hPa relative humidity, RH_{{700}}, exceeds 40%, and the magnitude of the difference in vector winds between 850 and 200 hPa, V_{{sh}}, is less than 20 {ms}^{{ - 1}}. The equatorial boundary is best defined by a composite quantity containing the ratio of absolute vorticity (η ) to the meridional gradient of absolute vorticity (β ^{*}), rather than η alone. {β ^*} is also identified as a potentially important ingredient for TC genesis indices. A comparison of detected Tropical Depression (TD) and Tropical Storm (TS) climatologies revealed TDs more readily intensify further to TS where {V_{PI}} is elevated and {V_{sh}} is relatively weak. The distributions of each threshold quantity identify the factors that favour and suppress TC formation throughout the tropics in the real world. This information can be used to understand why TC formation is poorly represented in some climate models, and shows potential for understanding anomalous TC formation behaviour in the real world.
Evaluation of the Field Water-bearing Potential Using Geophysical Methods
NASA Astrophysics Data System (ADS)
Avxhiu, R. B.; Nenaj, S. S.
2002-12-01
There are about 16 villages and the center of the district itself, Bilishti, in the Devolli field with a developed agricultural economy. The actual demand for drink and irrigation water has been considerably increased. As the existing irrigation system is damaged and outdated, it is necessary to have an evaluation of the water-bearing potential of the Quaternary formations of the Devolli Field. These formations are composed of various layers such as clay, sandy clay, sand, coarse-grained sand and gravels. Electrical soundings in a grid of 500 x 500 m and 250 x 250 m have been carried out in an area of 100 km2 to evaluate the water-bearing-potential. Their location along with the geological map is shown in Fig.1. Their interpretation shows that the Quaternary formations thickness varies from some meters to 150 m at the center of the valley. It is shown in Fig.2. It has been made possible to distinguish different layers of various composition and non-homogeneous thickness composing the Quaternary formations, (Figs.3,4,5) but we have been mostly focused on the water-bearing coarse-grained sands and gravels, of higher thickness and consistency. This may help to plan an effective grid of holes to take out water. The history of the Devolli River beds formation during the Quaternary period is treated in this poster as well. This information has been obtained both from the traces of the river beds (which have often changed) and electrical soundings.(Fig.6) We can conclude that the results of the electrical soundings show that there are some waterbearing layers at different hypsometric levels. Two of them are the most important: (Figs.3.4) 1. The uppermost Upper Quaternary sand-gravel formations. 2. The deeper (but almost of the same composition) layer of the Q1 - Q2 formations. The poster is composed of the explanatory text and six illustrating figures,
Geologic and anthropogenic factors influencing karst development in the Frederick region of Maryland
Brezinski, D.K.
2007-01-01
Karst features pervade the outcrop belts of Triassic, Ordovician, and Cambrian rocks in the Frederick Valley region of Maryland's western Piedmont. Detailed stratigraphic analysis and geologic and karst mapping demonstrate that individual stratigraphic units have differing susceptibilities of karst feature creation. Although the Triassic Leesburg Member of the Bull Run Formation and Rocky Springs Station Member of the Cambrian Frederick Formation have many surface depressions within their outcrop belts, the Lime Kiln Member of the Frederick Formation and the Ceresville, Fountain Rock, and Woodsboro members of the Ordovician Grove Formation have the greatest potential for development of catastrophic collapse sinkholes. Although these four members have the highest relative susceptibility, human activity can increase the potential for sinkhole activation in all units. Rerouting of surface drainage patterns, unlined drainage, and storm-water management areas and removal of significant overburden deposits significantly increase sinkhole development, but mainly, these units are inherently more susceptible to begin with. Copyright ?? 2007. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.
Formation of Methane Hydrate in the Presence of Natural and Synthetic Nanoparticles
2018-01-01
Natural gas hydrates occur widely on the ocean-bed and in permafrost regions, and have potential as an untapped energy resource. Their formation and growth, however, poses major problems for the energy sector due to their tendency to block oil and gas pipelines, whereas their melting is viewed as a potential contributor to climate change. Although recent advances have been made in understanding bulk methane hydrate formation, the effect of impurity particles, which are always present under conditions relevant to industry and the environment, remains an open question. Here we present results from neutron scattering experiments and molecular dynamics simulations that show that the formation of methane hydrate is insensitive to the addition of a wide range of impurity particles. Our analysis shows that this is due to the different chemical natures of methane and water, with methane generally excluded from the volume surrounding the nanoparticles. This has important consequences for our understanding of the mechanism of hydrate nucleation and the design of new inhibitor molecules. PMID:29401390
The role of Proteus mirabilis cell wall features in biofilm formation.
Czerwonka, Grzegorz; Guzy, Anna; Kałuża, Klaudia; Grosicka, Michalina; Dańczuk, Magdalena; Lechowicz, Łukasz; Gmiter, Dawid; Kowalczyk, Paweł; Kaca, Wiesław
2016-11-01
Biofilms formed by Proteus mirabilis strains are a serious medical problem, especially in the case of urinary tract infections. Early stages of biofilm formation, such as reversible and irreversible adhesion, are essential for bacteria to form biofilm and avoid eradication by antibiotic therapy. Adhesion to solid surfaces is a complex process where numerous factors play a role, where hydrophobic and electrostatic interactions with solid surface seem to be substantial. Cell surface hydrophobicity and electrokinetic potential of bacterial cells depend on their surface composition and structure, where lipopolysaccharide, in Gram-negative bacteria, is prevailing. Our studies focused on clinical and laboratory P. mirabilis strains, where laboratory strains have determined LPS structures. Adherence and biofilm formation tests revealed significant differences between strains adhered in early stages of biofilm formation. Amounts of formed biofilm were expressed by the absorption of crystal violet. Higher biofilm amounts were formed by the strains with more negative values of zeta potential. In contrast, high cell surface hydrophobicity correlated with low biofilm amount.
Hydrology and subsidence potential of proposed coal-lease tracts in Delta County, Colorado
Brooks, Tom
1983-01-01
Potential subsidence from underground coal mining and associated hydrologic impacts were investigated at two coal-lease tracts in Delta County, Colorado. Alteration of existing flow systems could affect water users in the surrounding area. The Mesaverde Formation transmits little ground water because of the neglibile transmissivity of the 1,300 feet of fine-grained sandstone, coal , and shale comprising the formation. The transmissivities of coal beds within the lower Mesaverde Formation ranged from 1.5 to 16.7 feet squared per day, and the transmissivity of the upper Mesaverde Formation, based on a single test, was 0.33 foot squared per day. Transmissivities of the alluvium ranged from 108 to 230 feet squared per day. The transmissivity of unconsolidated Quaternary deposits, determined from an aquifer test, was about 1,900 feet squared per day. Mining beneath Stevens Gulch and East Roatcap Creek could produce surface expressions of subsidence. Subsidence fractures could partly drain alluvial valley aquifers or streamflow in these mines. (USGS)
Crystal nucleation and glass formation in metallic alloy melts
NASA Technical Reports Server (NTRS)
Spaepen, F.
1984-01-01
Homogeneous nucleation, containerless solidification, and bulk formation of metallic glasses are discussed. Homogeneous nucleation is not a limiting factor for metallic glass formation at slow cooling rates if the reduced glass transition temperature is high enough. Such glasses can be made in bulk if heterogeneous nucleants are removed. Containerless processing eleminates potential sources of nucleants, but as drop tube experiments on the Pd-Si alloys show, the free surface may still be a very effective heterogeneous nucleant. Combination of etching and heating in vacuum or fluxing can be effective for cleaning fairly large ingots of nucleants. Reduced gravity processing has a potentially useful role in the fluxing technique, for example to keep large metallic ingots surrounded by a low density, low fluidity flux if this proved difficult under ground conditions. For systems where heterogeneous nucleants in the bulk of the ingot need gravity to segregate to the flux-metal interface, reduced gravity processing may not be appropriate for bulk glass formation.
Van Durme, Jim; Ingels, Isabel; De Winne, Ann
2016-08-15
Today, the cocoa industry is in great need of faster and robust analytical techniques to objectively assess incoming cocoa quality. In this work, inline roasting hyphenated with a cooled injection system coupled to a gas chromatograph-mass spectrometer (ILR-CIS-GC-MS) has been explored for the first time to assess fermentation quality and/or overall aroma formation potential of cocoa. This innovative approach resulted in the in-situ formation of relevant cocoa aroma compounds. After comparison with data obtained by headspace solid phase micro extraction (HS-SPME-GC-MS) on conventional roasted cocoa beans, ILR-CIS-GC-MS data on unroasted cocoa beans showed similar formation trends of important cocoa aroma markers as a function of fermentation quality. The latter approach only requires small aliquots of unroasted cocoa beans, can be automatated, requires no sample preparation, needs relatively short analytical times (<1h) and is highly reproducible. Copyright © 2016 Elsevier Ltd. All rights reserved.
Barnett, Jacqueline M.; Wraith, Patrick; Kiely, Janice; Persad, Raj; Hurley, Katrina; Hawkins, Peter; Luxton, Richard
2014-01-01
We describe the detection characteristics of a device the Resonant Coil Magnetometer (RCM) to quantify paramagnetic particles (PMPs) in immunochromatographic (lateral flow) assays. Lateral flow assays were developed using PMPs for the measurement of total prostate specific antigen (PSA) in serum samples. A detection limit of 0.8 ng/mL was achieved for total PSA using the RCM and is at clinically significant concentrations. Comparison of data obtained in a pilot study from the analysis of serum samples with commercially available immunoassays shows good agreement. The development of a quantitative magneto-immunoassay in lateral flow format for total PSA suggests the potential of the RCM to operate with many immunoassay formats. The RCM has the potential to be modified to quantify multiple analytes in this format. This research shows promise for the development of an inexpensive device capable of quantifying multiple analytes at the point-of-care using a magneto-immunoassay in lateral flow format. PMID:25587419
Zheng, Ke-wei; Xiao, Shan; Liu, Jia-quan; Zhang, Jia-yu; Hao, Yu-hua; Tan, Zheng
2013-05-01
G-quadruplex formation in genomic DNA is considered to regulate transcription. Previous investigations almost exclusively focused on intramolecular G-quadruplexes formed by DNA carrying four or more G-tracts, and structure formation has rarely been studied in physiologically relevant processes. Here, we report an almost entirely neglected, but actually much more prevalent form of G-quadruplexes, DNA:RNA hybrid G-quadruplexes (HQ) that forms in transcription. HQ formation requires as few as two G-tracts instead of four on a non-template DNA strand. Potential HQ sequences (PHQS) are present in >97% of human genes, with an average of 73 PHQSs per gene. HQ modulates transcription under both in vitro and in vivo conditions. Transcriptomal analysis of human tissues implies that maximal gene expression may be limited by the number of PHQS in genes. These features suggest that HQs may play fundamental roles in transcription regulation and other transcription-mediated processes.
Sonic horizon formation for oscillating Bose-Einstein condensates in isotropic harmonic potential
Wang, Ying; Zhou, Yu; Zhou, Shuyu
2016-01-01
We study the sonic horizon phenomena of the oscillating Bose-Einstein condensates in isotropic harmonic potential. Based on the Gross-Pitaevskii equation model and variational method, we derive the original analytical formula for the criteria and lifetime of the formation of the sonic horizon, demonstrating pictorially the interaction parameter dependence for the occur- rence of the sonic horizon and damping effect of the system distribution width. Our analytical results corroborate quantitatively the particular features of the sonic horizon reported in previous numerical study. PMID:27922129
Birdwell, Justin E.; Mercier, Tracey J.; Johnson, Ronald C.; Brownfield, Michael E.
2013-01-01
Using a geology-based assessment methodology, the U.S. Geological Survey estimated a total of 4.285 trillion barrels of oil in-place in the oil shale of the three principal basins of the Eocene Green River Formation. Using oil shale cutoffs of potentially viable (15 gallons per ton) and high grade (25 gallons per ton), it is estimated that between 353 billion and 1.146 trillion barrels of the in-place resource have a high potential for development.
National assessment of geologic carbon dioxide storage resources: methodology implementation
Blondes, Madalyn S.; Brennan, Sean T.; Merrill, Matthew D.; Buursink, Marc L.; Warwick, Peter D.; Cahan, Steven M.; Corum, Margo D.; Cook, Troy A.; Craddock, William H.; DeVera, Christina A.; Drake II, Ronald M.; Drew, Lawrence J.; Freeman, P.A.; Lohr, Celeste D.; Olea, Ricardo A.; Roberts-Ashby, Tina L.; Slucher, Ernie R.; Varela, Brian A.
2013-01-01
In response to the 2007 Energy Independence and Security Act, the U.S. Geological Survey (USGS) conducted a national assessment of potential geologic storage resources for carbon dioxide (CO2). Storage of CO2 in subsurface saline formations is one important method to reduce greenhouse gas emissions and curb global climate change. This report provides updates and implementation details of the assessment methodology of Brennan and others (2010, http://pubs.usgs.gov/of/2010/1127/) and describes the probabilistic model used to calculate potential storage resources in subsurface saline formations.
Influence of Electric Fields on Biofouling of Carbonaceous Electrodes.
Pandit, Soumya; Shanbhag, Sneha; Mauter, Meagan; Oren, Yoram; Herzberg, Moshe
2017-09-05
Biofouling commonly occurs on carbonaceous capacitive deionization electrodes in the process of treating natural waters. Although previous work reported the effect of electric fields on bacterial mortality for a variety of medical and engineered applications, the effect of electrode surface properties and the magnitude and polarity of applied electric fields on biofilm development has not been comprehensively investigated. This paper studies the formation of a Pseudomonas aeruginosa biofilm on a Papyex graphite (PA) and a carbon aerogel (CA) in the presence and the absence of an electric field. The experiments were conducted using a two-electrode flow cell with a voltage window of ±0.9 V. The CA was less susceptible to biofilm formation compared to the PA due to its lower surface roughness, lower hydrophobicity, and significant antimicrobial properties. For both positive and negative applied potentials, we observed an inverse relationship between biofilm formation and the magnitude of the applied potential. The effect is particularly strong for the CA electrodes and may be a result of cumulative effects between material toxicity and the stress experienced by cells at high applied potentials. Under the applied potentials for both electrodes, high production of endogenous reactive oxygen species (ROS) was indicative of bacterial stress. For both electrodes, the elevated specific ROS activity was lowest for the open circuit potential condition, elevated when cathodically and anodically polarized, and highest for the ±0.9 V cases. These high applied potentials are believed to affect the redox potential across the cell membrane and disrupt redox homeostasis, thereby inhibiting bacterial growth.
NASA Astrophysics Data System (ADS)
Njahi, Zahra; Kassabi, Nadhem; Touir, Jamel
2017-07-01
During the middle and upper Eocene, the deposits in the Gulf of Gabes correspond to the Cherahil Formation, which is sub-divided into three units, which are as follows from base to top: the Lower Cherahil A, the Siouf and the Upper Cherahil B members. The Siouf member has a lateral equivalent in the Souar Formation named Reineche member. The Cherahil Formation has never been considered by oil companies as a particular drilling target in the Gulf of Gabes (offshore east Tunisia) despite the presence of hydrocarbon at the bottom of Cherahil Formation in Sidi Behara and Sidi Litayem oil fields in Sfax Area (onshore east Tunisia) and in its equivalent carbonate beds in Jebel Trozza (Central Tunisia). Therefore, the evaluation of porosity in the carbonate levels of Cherahil Formation in 20 drilling wells were performed on well logging by applying Wyllie method. The obtained results show that the studied carbonates are characterized by an economically important total porosity average ranging between 5% and 55%, and both vertical and lateral variations. The vertical porosity variation was controlled by the sea-level fluctuation that, in turn, controlled the evolution of carbonate sedimentary environments and relative facies. The lateral porosity variation followed the Tunisian middle-upper Eocene paleogeography changes controlled by NW-SE synsedimentary tectonic trends. Considering the important features of the Cherahil Formation and the coexistence of components of an oil system in the Gulf of Gabes, this formation can be an important potential reservoir and subsequently a new petroleum exploration target in the Gulf of Gabes.
Reversible interconversion of carbon dioxide and formate by an electroactive enzyme
Reda, Torsten; Plugge, Caroline M.; Abram, Nerilie J.; Hirst, Judy
2008-01-01
Carbon dioxide (CO2) is a kinetically and thermodynamically stable molecule. It is easily formed by the oxidation of organic molecules, during combustion or respiration, but is difficult to reduce. The production of reduced carbon compounds from CO2 is an attractive proposition, because carbon-neutral energy sources could be used to generate fuel resources and sequester CO2 from the atmosphere. However, available methods for the electrochemical reduction of CO2 require excessive overpotentials (are energetically wasteful) and produce mixtures of products. Here, we show that a tungsten-containing formate dehydrogenase enzyme (FDH1) adsorbed to an electrode surface catalyzes the efficient electrochemical reduction of CO2 to formate. Electrocatalysis by FDH1 is thermodynamically reversible—only small overpotentials are required, and the point of zero net catalytic current defines the reduction potential. It occurs under thoroughly mild conditions, and formate is the only product. Both as a homogeneous catalyst and on the electrode, FDH1 catalyzes CO2 reduction with a rate more than two orders of magnitude faster than that of any known catalyst for the same reaction. Formate oxidation is more than five times faster than CO2 reduction. Thermodynamically, formate and hydrogen are oxidized at similar potentials, so formate is a viable energy source in its own right as well as an industrially important feedstock and a stable intermediate in the conversion of CO2 to methanol and methane. FDH1 demonstrates the feasibility of interconverting CO2 and formate electrochemically, and it is a template for the development of robust synthetic catalysts suitable for practical applications. PMID:18667702
Targeting Instruction with Formative Assessment Probes
ERIC Educational Resources Information Center
Fagan, Emily R.; Tobey, Cheryl Rose; Brodesky, Amy R.
2016-01-01
This article introduces the formative assessment probe--a powerful tool for collecting focused, actionable information about student thinking and potential misconceptions--along with a process for targeting instruction in response to probe results. Drawing on research about common student mathematical misconceptions as well as the former work of…
Handbook of Formative Assessment
ERIC Educational Resources Information Center
Andrade, Heidi, Ed.; Cizek, Gregory J., Ed.
2010-01-01
Formative assessment has recently become a focus of renewed research as state and federal policy-makers realize that summative assessments have reached a point of diminishing returns as a tool for increasing student achievement. Consequently, supporters of large-scale testing programs are now beginning to consider the potential of formative…
Investigating secondary aerosol formation from agricultural amines and reduced sulfur compounds
USDA-ARS?s Scientific Manuscript database
Gas phase amines and reduced sulfur compounds are often co-emitted from agricultural processes. Amines have been recently recognized as potentially major sources of agricultural aerosol formation, while the reduced sulfur compounds are largely ignored. There is a severe lack of knowledge and under...
Enhanced Preliminary Assessment Report: Croom Army Housing Units, Croom, Maryland
1989-10-01
aquifer from recharge (via rain) or leakage (via confining beds and other aquifers). The Patuxent, Patapsco, and Magothy formations contain aquifers that...is generally low in chlorides and total dissolved solids. The Magothy formation is one of the most extensive water-bearing aquifers in the Coastal...the base of the formation, and clays increase toward its top. A potential problem in the Magothy aquifer is the possible intrusion of brackish water
Staff - Trystan M. Herriott | Alaska Division of Geological & Geophysical
sandstone interval in outcrop of the Tonnie Siltstone Member, Chinitna Formation, lower Cook Inlet, south Paveloff Siltstone Member of the Chinitna Formation: Exploring the potential role of facies variations in member of the Upper Jurassic Naknek Formation, northern Chinitna Bay, Alaska, in Wartes, M.A., ed
Prospects of oil field development in Tomsk region
NASA Astrophysics Data System (ADS)
Il'ina, M. N.; Il'ina, G. F.
2017-12-01
The article describes the geologic structure of the formation located not far from Strezhevoy, Tomsk Oblast. The formation has been poorly studied by seismic methods. The reserves categories C1 and C2 as well as hydrocarbon potential are presented. 4 exploratory and 39 production wells are designed to be drilled depending on geologic knowledge and formation conditions. The article deals with the investment plan including development, oil export expenditures and implementing cost calculation.
Wang, Yi; Lee, Sui M; Dykes, Gary A
2013-01-01
Tea can inhibit the attachment of Streptococcus mutans to surfaces and subsequent biofilm formation. Five commercial tea extracts were screened for their ability to inhibit attachment and biofilm formation by two strains of S. mutans on glass and hydroxyapatite surfaces. The mechanisms of these effects were investigated using scanning electron microscopy (SEM) and phytochemical screening. The results indicated that extracts of oolong tea most effectively inhibited attachment and extracts of pu-erh tea most effectively inhibited biofilm formation. SEM images showed that the S. mutans cells treated with extracts of oolong tea, or grown in medium containing extracts of pu-erh tea, were coated with tea components and were larger with more rounded shapes. The coatings on the cells consisted of flavonoids, tannins and indolic compounds. The ratio of tannins to simple phenolics in each of the coating samples was ∼3:1. This study suggests potential mechanisms by which tea components may inhibit the attachment and subsequent biofilm formation of S. mutans on tooth surfaces, such as modification of cell surface properties and blocking of the activity of proteins and the structures used by the bacteria to interact with surfaces.
Peng, Xiaofang; Cheng, Ka-Wing; Ma, Jinyu; Chen, Bo; Ho, Chi-Tang; Lo, Clive; Chen, Feng; Wang, Mingfu
2008-03-26
Cinnamon bark has been reported to be effective in the alleviation of diabetes through its antioxidant and insulin-potentiating activities. In this study, the inhibitory effect of cinnamon bark on the formation of advanced glycation endproducts (AGEs) was investigated in a bovine serum albumin (BSA)-glucose model. Several phenolic compounds, such as catechin, epicatechin, and procyanidin B2, and phenol polymers were identified from the subfractions of aqueous cinnamon extract. These compounds showed significant inhibitory effects on the formation of AGEs. Their antiglycation activities were not only brought about by their antioxidant activities but also related to their trapping abilities of reactive carbonyl species such as methylglyoxal (MGO), an intermediate reactive carbonyl of AGE formation. Preliminary study on the reaction between MGO and procyanidin B2 revealed that MGO-procyanidin B2 adducts are primary products which are supposed to be stereoisomers. This is the first report that proanthocyanidins can effectively scavenge reactive carbonyl species and thus inhibit the formation of AGEs. As proanthocyanidins behave in a similar fashion as aminoguanidine (AG), the first AGE inhibitor explored in clinical trials, they show great potential to be developed as agents to alleviate diabetic complications.
NASA Astrophysics Data System (ADS)
Jiang, Xiaoxu; Liu, Guorui; Wang, Mei; Zheng, Minghui
2015-09-01
Emission of unintentionally formed polychlorinated biphenyls (PCBs) from industrial thermal processes is a global issue. Because the production and use of technical PCB mixtures has been banned, industrial thermal processes have become increasingly important sources of PCBs. Among these processes, secondary copper smelting is an important PCB source in China. In the present study, the potential for fly ash-mediated formation of PCBs in the secondary copper industry, and the mechanisms involved, were studied in laboratory thermochemical experiments. The total PCB concentrations were 37-70 times higher than the initial concentrations. Thermochemical reactions on the fly ash amplified the potential toxic equivalents of PCBs. The formation of PCBs over time and the effect of temperature were investigated. Based on analyses of PCB homologue profiles with different reaction conditions, a chlorination mechanism was proposed for forming PCBs in addition to a de novo synthesis mechanism. The chlorination pathway was supported by close correlations between each pair of adjacent homologue groups. Formation of PCBs and multiple persistent organic pollutants, including polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polychlorinated naphthalenes, occurred during the tests, indicating that these compounds may share similar formation mechanisms.
NASA Astrophysics Data System (ADS)
Timonen, Hilkka; Karjalainen, Panu; Saukko, Erkka; Saarikoski, Sanna; Aakko-Saksa, Päivi; Simonen, Pauli; Murtonen, Timo; Dal Maso, Miikka; Kuuluvainen, Heino; Bloss, Matthew; Ahlberg, Erik; Svenningsson, Birgitta; Pagels, Joakim; Brune, William H.; Keskinen, Jorma; Worsnop, Douglas R.; Hillamo, Risto; Rönkkö, Topi
2017-04-01
The effect of fuel ethanol content (10, 85 and 100 %) on primary emissions and on subsequent secondary aerosol formation was investigated for a Euro 5 flex-fuel gasoline vehicle. Emissions were characterized during a New European Driving Cycle (NEDC) using a comprehensive set-up of high time-resolution instruments. A detailed chemical composition of the exhaust particulate matter (PM) was studied using a soot particle aerosol mass spectrometer (SP-AMS), and secondary aerosol formation was studied using a potential aerosol mass (PAM) chamber. For the primary gaseous compounds, an increase in total hydrocarbon emissions and a decrease in aromatic BTEX (benzene, toluene, ethylbenzene and xylenes) compounds was observed when the amount of ethanol in the fuel increased. In regard to particles, the largest primary particulate matter concentrations and potential for secondary particle formation was measured for the E10 fuel (10 % ethanol). As the ethanol content of the fuel increased, a significant decrease in the average primary particulate matter concentrations over the NEDC was found. The PM emissions were 0.45, 0.25 and 0.15 mg m-3 for E10, E85 and E100, respectively. Similarly, a clear decrease in secondary aerosol formation potential was observed with a larger contribution of ethanol in the fuel. The secondary-to-primary PM ratios were 13.4 and 1.5 for E10 and E85, respectively. For E100, a slight decrease in PM mass was observed after the PAM chamber, indicating that the PM produced by secondary aerosol formation was less than the PM lost through wall losses or the degradation of the primary organic aerosol (POA) in the chamber. For all fuel blends, the formed secondary aerosol consisted mostly of organic compounds. For E10, the contribution of organic compounds containing oxygen increased from 35 %, measured for primary organics, to 62 % after the PAM chamber. For E85, the contribution of organic compounds containing oxygen increased from 42 % (primary) to 57 % (after the PAM chamber), whereas for E100 the amount of oxidized organics remained the same (approximately 62 %) with the PAM chamber when compared to the primary emissions.
The Challenge of Formative Assessment in Mathematics Education: Children's Minds, Teachers' Minds
ERIC Educational Resources Information Center
Ginsburg, Herbert P.
2009-01-01
The developmental psychology of mathematical thinking and the clinical interview method can make major contributions to education by transforming the process of formative assessment--the attempt to use information concerning student performance, knowledge, learning potential, and motivation to inform instruction. The clinical interview is a…
Integration of Educational and Sports Technologies in Youth Wellness Tourism
ERIC Educational Resources Information Center
Malyshev, Andrei A.; Khodasevich, Leonid S.; Maznichenko, Marina A.; Romanov, Sergei M.
2016-01-01
The article reveals the potential of the youth tourism, addressing a number of problems of higher education: formation of a general cultural competence, preservation and strengthening of students' health, enhancing educational progress, motivating the physical self-improvement, contributing to the formation of healthy lifestyle values and…
Digital Signal Processing in Acoustics--Part 2.
ERIC Educational Resources Information Center
Davies, H.; McNeill, D. J.
1986-01-01
Reviews the potential of a data acquisition system for illustrating the nature and significance of ideas in digital signal processing. Focuses on the fast Fourier transform and the utility of its two-channel format, emphasizing cross-correlation and its two-microphone technique of acoustic intensity measurement. Includes programing format. (ML)
NASA Technical Reports Server (NTRS)
Gaffey, Michael J.; Kelley, Michael S.; Hardersen, Paul S.
2002-01-01
Studies of meteorites and observations of asteroids can provide important constraints on the formation and evolution of asteroid families. The iron meteorites alone require the disruption of 85 differentiated asteroids, and the potential formation of 85 families. Additional information is contained in the original extended abstract.
Naming, the Formation of Stimulus Classes, and Applied Behavior Analysis.
ERIC Educational Resources Information Center
Stromer, Robert; And Others
1996-01-01
This review of research discusses how children with autism may acquire equivalence classes after learning to supply a common oral name to each stimulus in a potential class. A proposed methodology for researching referent naming and class formation, analysis of stimulus classes, and generalization is offered. (CR)
ERIC Educational Resources Information Center
Webster, R. Scott
2015-01-01
In response to the lecture format coming under "attack" and being replaced by online materials and smaller tutorials, this paper attempts to offer not only a defence but also to assert that the potential value of the lecture is difficult to replicate through other learning formats. Some of the criticisms against lectures will be…
Community Agency Survey Formative Research Results from the TAAG Study
ERIC Educational Resources Information Center
Saunders, Ruth P.; Moody, Jamie
2006-01-01
School and community agency collaboration can potentially increase physical activity opportunities for youth. Few studies have examined the role of community agencies in promoting physical activity, much less in collaboration with schools. This article describes formative research data collection from community agencies to inform the development…
Synthesis of photochromic nanoparticles and determination of the mechanism of photochromism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoue, Shuhei, E-mail: shu18@hiroshima-u.ac.jp; Matsumura, Yukihiko; Kawamoto, Takahiro
2016-05-15
Photochromic nanoparticles of zinc-silicon oxide were synthesized using plasma enhanced chemical vapor deposition. These particles turned black upon irradiating with ultraviolet light. We investigated this phenomenon using density functional theory calculations. Silicon inclusions create trap levels and oxygen defects that reduce the ionization potential of ZnO. This forms a quantum potential between ZnO and zinc-silicon oxide, and the excited electron is stable. Because oxygen defects also increase the bond overlap population between the zinc atoms in a ZnO crystal, they introduce further defects and help in the formation of quantum potentials. Growth of a perfect crystal of ZnO prevents themore » formation of oxygen defects, which is not desirable for photochromism.« less
[Ru/AC catalyzed ozonation of recalcitrant organic compounds].
Wang, Jian-Bing; Hou, Shao-Pei; Zhou, Yun-Rui; Zhu, Wan-Peng; He, Xu-Wen
2009-09-15
Ozonation and Ru/AC catalyzed ozonation of dimethyl phthalate (DMP), phenols and disinfection by-products precursors were studied. It shows that Ru/AC catalyst can obviously enhance the mineralization of organic compounds. In the degradation of DMP, TOC removal was 28.84% by ozonation alone while it was 66.13% by catalytic ozonation. In the oxidation of 23 kinds of phenols, TOC removals were 9.57%-56.08% by ozonation alone while they were 41.81%-82.32% by catalytic ozonation. Compared to ozonation alone, Ru/AC catalyzed ozonation was more effective for the reduction of disinfection by-products formation potentials in source water. The reduction of haloacetic acids formation potentials was more obvious than thichlomethane formation potentials. After the treatment by catalytic ozonation, the haloacetic acids formation potentials decreased from 144.02 microg/L to 58.50 microg/L, which was below the standard value of EPA. However ozonation alone could not make it reach the standard. The treatments of source water by BAC, O3 + BAC, O3/AC + BAC and Ru/AC + O3 + BAC were also studied. In the four processes, TOC removal was 3.80%, 20.14%, 27.45% and 48.30% respectively, COD removal was 4.37%, 27.22%, 39.91% and 50.00% respectively, UV254 removal was 8.16%, 62.24%, 67.03% and 84.95% respectively. Ru/AC + O3 + BAC process is more effective than the other processes for the removal of TOC, COD and UV254 and no ruthenium leaching observed in the solution. It is a promising process for the treatment of micro polluted source water.
P-selectin ligation induces platelet activation and enhances microaggregate and thrombus formation.
Théorêt, Jean-François; Yacoub, Daniel; Hachem, Ahmed; Gillis, Marc-Antoine; Merhi, Yahye
2011-09-01
Platelet P-selectin is a thrombo-inflammatory molecule involved in platelet activation and aggregation. This may occur via the adhesive function of P-selectin and its potential capacity to trigger intracellular signaling. However, its impact on platelet function remains elusive. This study was therefore designed to investigate the relationship between the signaling potential of platelet P-selectin and its function in platelet physiology. Human and mouse platelets were freshly isolated from whole blood. Platelet activation was assessed using flow cytometry and western blot analysis, while platelet physiological responses were evaluated through aggregation, microaggregate formation and in a thrombosis model in wild-type and P-selectin-deficient (CD62P(-/-)) mice. Interaction of P-selectin with its high-affinity ligand, a recombinant soluble form of P-Selectin Glycoprotein Ligand-1 (rPSGL-1), enhances platelet activation, adhesion and microaggregate formation. This augmented platelet microaggregates requires an intact cytoskeleton, but occurs independently of platelet α(IIb)β(3). Thrombus formation and microaggregate were both enhanced by rPSGL-1 in wild-type, but not in CD62P(-/-) mice. In addition, CD62P(-/-) mice exhibited thrombosis abnormalities without an α(IIb)β(3) activation defect. This study demonstrates that the role of platelet P-selectin is not solely adhesive; its binding to PSGL-1 induces platelet activation that enhances platelet aggregation and thrombus formation. Therefore, targeting platelet P-selectin or its ligand PSGL-1 could provide a potential therapeutic approach in the management of thrombotic disorders. Copyright © 2011 Elsevier Ltd. All rights reserved.
MILLIMETER WAVE SPECTRUM AND ASTRONOMICAL SEARCH FOR VINYL FORMATE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alonso, E. R.; Kolesniková, L.; Cabezas, C.
2016-11-20
Previous detections of methyl and ethyl formate make other small substituted formates potential candidates for observation in the interstellar medium. Among them, vinyl formate is one of the simplest unsaturated carboxylic ester. The aim of this work is to provide direct experimental frequencies of the ground vibrational state of vinyl formate in a large spectral range for astrophysical use. The room-temperature rotational spectrum of vinyl formate has been measured from 80 to 360 GHz and analyzed in terms of Watson’s semirigid rotor Hamiltonian. Two thousand six hundred transitions within J = 3–88 and K {sub a} = 0–28 were assignedmore » to the most stable conformer of vinyl formate and a new set of spectroscopic constants was accurately determined. Spectral features of vinyl formate were then searched for in Orion KL, Sgr B2(N), B1-b, and TMC-1 molecular clouds. Upper limits to the column density of vinyl formate are provided.« less
Formation of 2D nanoparticles with block structure in simultaneous electric explosion of conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kryzhevich, Dmitrij S., E-mail: kryzhev@ispms.ru, E-mail: kost@ispms.ru; Zolnikov, Konstantin P., E-mail: kryzhev@ispms.ru, E-mail: kost@ispms.ru; Abdrashitov, Andrei V.
2014-11-14
A molecular dynamics simulation of nanoparticle formation in simultaneous electric explosion of conductors is performed. Interatomic interaction is described using potentials calculated in the framework of the embedded atom method. High-rate heating results in failure of the conductors with the formation of nanoparticles. The influence of the heating rate, temperature distribution over the specimen cross-section and the distance between simultaneously exploded conductors on the structure of formed nanoparticles is studied. The calculation results show that the electric explosion of conductors allows the formation of nanoparticles with block structure.
Mrar formation of western Libya - evolution of an early Carboniferous delta system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitbread, T.; Kelling, G.
1982-08-01
The Lower Carboniferous Mrar Formation is exposed extensively along the southern margin of the Ghadames basin in northwest Libya. The basal part of the Mrar forms the cap rock and possible hydrocarbon source for many of the producing reservoirs in the underlying Tahara sandstones. Furthermore, the Mrar itself is known to contain significant gas shows southwest of the outcrop, associated with some oil potential. The Mrar formation was deposited in a deltaic environment which developed on the northern part of the stable Saharan platform. The history of the Mrar formation's deposition is discussed. (JMT)
Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region (RMCCS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
McPherson, Brian; Matthews, Vince
2013-09-30
The primary objective of the “Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region” project, or RMCCS project, is to characterize the storage potential of the most promising geologic sequestration formations within the southwestern U.S. and the Central Rocky Mountain region in particular. The approach included an analysis of geologic sequestration formations under the Craig Power Station in northwestern Colorado, and application or extrapolation of those local-scale results to the broader region. A ten-step protocol for geologic carbon storage site characterization was a primary outcome of this project.
Wen, Gang; Kötzsch, Stefan; Vital, Marius; Egli, Thomas; Ma, Jun
2015-10-06
In contact with water, polymeric materials (plastics) release compounds that can support suspended microbial growth and/or biofilm formation. The different methods presently used in the European Union to test plastics take 7-16 weeks to obtain a result. In industry, this delays material and product development as well as quality testing. Therefore, we developed a method package (BioMig) that allows testing of plastic materials with high reproducibility in 2 weeks for their potential biofilm (or biomass) formation and release of carbonaceous migration products when in contact with water. BioMig consists of (i) an extended migration potential test (seven times for 24 h at 60 °C), based on the European norm EN 12873-1 and the German UBA (Umweltbundesamt) guideline, and (ii) a biomass formation potential (BFP) test (14 days at 30 °C), which is a modified version of the Dutch biofilm production potential test. In the migration potential test, the amount of carbon released into water by the specimen is quantified by monitoring total and assimilable organic carbon over time; furthermore, the modular design of the test also allows one to assess additional parameters such as pathogen growth potential on the migration water or toxic effects on microbial growth. Flow cytometry (FCM)-based total cell counting (TCC) is used to quantify microbial growth in suspension and on surfaces after removal with mild sonication without affecting cell integrity. The BFP test allows one to determine both the planktonic (pBFP) and the sessile (sBFP) cell fractions. The sBFP consists of surface-attached cells after removal (>90% efficiency). Results for four standard test materials (PE-Xa, PE-Xc, EPDM 2%, and EPDM 20%), plus positive (PVC-P) and negative (glass) controls are presented. FCM-based TCC demonstrates that the release of growth-supporting carbon and proliferation of surface-attached cells stops increasing and stabilizes after 14 days of incubation; this allows for faster assessment of growth-supporting properties of plastics with BioMig compared to established tests.
Spacelab uplink/downlink data flow and formats
NASA Technical Reports Server (NTRS)
Kandefer, F.
1978-01-01
The results of an analysis of the Spacelab (SL) data uplink/downlink structure and those data system elements associated with the support of this data flow are presented. Specific objectives of this report are to present the results of the following analyses: (1) operations of the SL high rate multiplexer, including format structure, data rates, format combinations, format switching, etc.; (2) operations of SL data recorders to include the definition of modes, data rates and forms; (3) operations of the high rate demultiplexer as described above; (4) potential experiment data formats defining formatting parameters to be considered in decommutation analysis; (5) SL computer input/output (I/O) decommutation channels, including the definition of structure, quantity and use of this I/O data; (6) detailed requirements of the data quality monitoring philosophy for this function.
Formate production through biocatalysis
Alissandratos, Apostolos; Kim, Hye-Kyung; Easton, Christopher J
2013-01-01
The generation of formate from CO2 provides a method for sequestration of this greenhouse gas as well as the production of a valuable commodity chemical and stabilized form of hydrogen fuel. Formate dehydrogenases are enzymes with the potential to catalyze this reaction; however they generally favor the reverse process, i.e., formate oxidation. By contrast, the formate dehydrogenase of the acetogen Clostridium carboxidivorans has been found to preferentially catalyze the reduction of CO2. This is in accord with its natural role to introduce CO2 as a carbon source in the Wood-Ljungdahl pathway. The direction of catalysis derives from the enzyme’s low affinity for formate. This enzyme is therefore an excellent candidate for biotechnological applications aimed at producing formic acid and derivative chemicals from CO2. PMID:23841981
NASA Astrophysics Data System (ADS)
Ma, Xiao; Li, Xinguo; Zheng, Xianxu; Li, Kewu; Hu, Qiushi; Li, Jianling
2017-11-01
In recent decades, the hot-spot theory of condensed-phase explosives has been a compelling focus of scientific investigation attracting many researchers. The defect in the polymeric binder of the polymer-bonded explosive is called the intergranular defect. In this study, the real polymeric binder was substituted by poly(methyl methacrylate) (PMMA) as it is transparent and has similar thermodynamic properties to some binders. A set of modified split Hopkinson pressure bars equipped with a time-resolved shadowgraph was used to study the process of crack initiation and potential hot-spot formation around a cylindrical defect in PMMA. The new and significant phenomenon that the opening-mode crack emerged earlier than the shearing-mode crack from the cylindrical defect has been published for the first time in this paper. Furthermore, a two-dimensional numerical simulation was performed to show the evolution of both the stress field and the temperature field. The simulation results were in good agreement with the experiment. Finally, the law of potential hot-spot formation is discussed in detail.
Small molecule-mediated duplex formation of nucleic acids with 'incompatible' backbones.
Cafferty, Brian J; Musetti, Caterina; Kim, Keunsoo; Horowitz, Eric D; Krishnamurthy, Ramanarayanan; Hud, Nicholas V
2016-04-07
Proflavine, a known intercalator of DNA and RNA, promotes duplex formation by nucleic acids with natural and non-natural backbones that otherwise form duplexes with low thermal stability, and even some that show no sign of duplex formation in the absence of proflavine. These findings demonstrate the potential for intercalators to be used as cofactors for the assembly of rationally designed nucleic acid structures, and could provide fundamental insights regarding intercalation of natural nucleic acid duplexes.
Galvanostatic interruption of lithium insertion into magnetite: Evidence of surface layer formation
Nicholas W. Brady; Takeuchi, Esther S.; Knehr, K. W.; ...
2016-04-24
Magnetite is a known lithium intercalation material, and the loss of active, nanocrystalline magnetite can be inferred from the open-circuit potential relaxation. Specifically, for current interruption after relatively small amounts of lithium insertion, the potential first increases and then decreases, and the decrease is hypothesized to be due to a formation of a surface layer, which increases the solid-state lithium concentration in the remaining active material. Comparisons of simulation to experiment suggest that the reactions with the electrolyte result in the formation of a thin layer of electrochemically inactive material, which is best described by a nucleation and growth mechanism.more » Simulations are consistent with experimental results observed for 6, 8 and 32-nm crystals. As a result, simulations capture the experimental differences in lithiation behavior between the first and second cycles.« less
NASA Astrophysics Data System (ADS)
Xie, Guoxin; Luo, Jianbin; Liu, Shuhai; Guo, Dan
2011-01-01
The effect of external electrical potentials (EEPs) on aqueous surfactant films nanoconfined in a ball-plate configuration has been investigated by measuring the dynamic film thickness with an interferometer. Experimental results indicate that the film formation properties of the surfactant solutions in the nanogap under applied EEPs are strongly dependent on the interfacial adsorbed surfactant structure. Effective control over the film formation properties by applying EEPs depends on the signs of the charges on the solid surface and the surfactant headgroups, the surfactant concentration, and the magnitude of EEPs. Remarkable alterations of the film formation properties in the nanogap by EEPs can be observed except when the surface charge is the same in sign as the headgroups and the surfactant concentration is above the critical micelle concentration. Mechanisms of these phenomena have been discussed in this work.
Nakamura, Kenta; Tsonis, Panagiotis A.
2014-01-01
Adult newts (Notophthalmus viridescens) are capable of complete lens regeneration that is mediated through dorsal iris pigment epithelial (IPE) cells transdifferentiation. In contrast, higher vertebrates such as mice demonstrate only limited lens regeneration in the presence of an intact lens capsule with remaining lens epithelial cells. To compare the intrinsic lens regeneration potential of newt IPE versus mouse lens epithelial cells (MLE), we have established a novel culture method that uses cell aggregation before culture in growth factor-reduced Matrigel™. Dorsal newt IPE aggregates demonstrated complete lens formation within 1 to 2 weeks of Matrigel culture without basic fibroblast growth factor (bFGF) supplementation, including the establishment of a peripheral cuboidal epithelial cell layer, and the appearance of central lens fibers that were positive for αA-crystallin. In contrast, the lens-forming potential of MLE cell aggregates cultured in Matrigel was incomplete and resulted in the formation of defined-size lentoids with partial optical transparency. While the peripheral cell layers of MLE aggregates were nucleated, cells in the center of aggregates demonstrated a nonapoptotic nuclear loss over a time period of 3 weeks that was representative of lens fiber formation. Matrigel culture supplementation with bFGF resulted in higher transparent bigger-size MLE aggregates that demonstrated increased appearance of βB1-crystallin expression. Our study demonstrates that bFGF is not required for induction of newt IPE aggregate-dependent lens formation in Matrigel, while the addition of bFGF seems to be beneficial for the formation of MLE aggregate-derived lens-like structures. In conclusion, the three-dimensional aggregate culture of IPE and MLE in Matrigel allows to a higher extent than older models the indepth study of the intrinsic lens-forming potential and the corresponding identification of lentogenic factors. PMID:23672748
Sedimentary rocks in our mouth: dental pulp stones made by nanobacteria
NASA Astrophysics Data System (ADS)
Ciftcioglu, Neva; Ciftcioglu, Vefa; Vali, Hojatollah; Turcott, Eduardo; Kajander, E. Olavi
1998-07-01
The mechanisms of dental pulp stone formation are still largely unknown. Pulp stones are mainly composed of carbonate apatite. Only few experimental reports have elucidated the potential of some selected bacteria to produce apatite under in vitro conditions using special calcification media. The tested stone forming bacteria were, in fact, often better known for their cariogenic potential. Our preliminary work with 18 dental pulp stones from Turkey, selected only by severity of the stone formation, indicated the presence of nanobacterial antigens in the demineralized stones. Furthermore, high incidence of kidney stones and gall stones in the patient group and in their parents was found. This raises the implication that nanobacteria may enter the body also via oral route, in addition to the parenteral and transplacental routes. The role of nanobacteria in dental pulp stone formation was further studied by following nanobacterial colonization and mineral formation on human tooth in vitro. Two molar teeth, one having pulp stone and one without, were vertically cut into two pieces, sterilized by autoclaving and incubated with or without nanobacteria in DMEM. Electron microscopic observations indicate that nanobacteria can cause apatite stone formation on tooth surface. The sever from of dental pulp stone formation might be associated with nanobacteria. This form of dental disease results in loss of teeth due to osteolytic processes. This addresses the necessity for a study on unconventional mineral-forming bacteria as a cause for human diseases.
ERIC Educational Resources Information Center
Rodriguez-Falces, Javier
2015-01-01
A concept of major importance in human electrophysiology studies is the process by which activation of an excitable cell results in a rapid rise and fall of the electrical membrane potential, the so-called action potential. Hodgkin and Huxley proposed a model to explain the ionic mechanisms underlying the formation of action potentials. However,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldenburg, Curtis M.
2005-09-19
This report describes a screening and ranking framework(SRF) developed to evaluate potential geologic carbon dioxide (CO2) storage sites on the basis of health, safety, and environmental (HSE) risk arising from possible CO2 leakage. The approach is based on the assumption that HSE risk due to CO2 leakage is dependent on three basic characteristics of a geologic CO2 storage site: (1) the potential for primary containment by the target formation; (2) the potential for secondary containment if the primary formation leaks; and (3) the potential for attenuation and dispersion of leaking CO2 if the primary formation leaks and secondary containment fails.more » The framework is implemented in a spreadsheet in which users enter numerical scores representing expert opinions or general information available from published materials along with estimates of uncertainty to evaluate the three basic characteristics in order to screen and rank candidate sites. Application of the framework to the Rio Visa Gas Field, Ventura Oil Field, and Mammoth Mountain demonstrates the approach. Refinements and extensions are possible through the use of more detailed data or model results in place of property proxies. Revisions and extensions to improve the approach are anticipated in the near future as it is used and tested by colleagues and collaborators.« less
Muttucumaru, N; Powers, SJ; Elmore, JS; Briddon, A; Mottram, DS; Halford, NG
2014-01-01
Free amino acids and reducing sugars participate in the Maillard reaction during high-temperature cooking and processing. This results not only in the formation of colour, aroma and flavour compounds, but also undesirable contaminants, including acrylamide, which forms when the amino acid that participates in the reaction is asparagine. In this study, tubers of 13 varieties of potato (Solanum tuberosum), which had been produced in a field trial in 2010 and sampled immediately after harvest or after storage for 6 months, were analysed to show the relationship between the concentrations of free asparagine, other free amino acids, sugars and acrylamide-forming potential. The varieties comprised five that are normally used for crisping, seven that are used for French fry production and one that is used for boiling. Acrylamide formation was measured in heated flour, and correlated with glucose and fructose concentration. In French fry varieties, which contain higher concentrations of sugars, acrylamide formation also correlated with free asparagine concentration, demonstrating the complex relationship between precursor concentration and acrylamide-forming potential in potato. Storage of the potatoes for 6 months at 9°C had a significant, variety-dependent impact on sugar and amino acid concentrations and acrylamide-forming potential. PMID:25540460
Competing formate- and carbon dioxide-utilizing prokaryotes in an anoxic methane-emitting fen soil.
Hunger, Sindy; Schmidt, Oliver; Hilgarth, Maik; Horn, Marcus A; Kolb, Steffen; Conrad, Ralf; Drake, Harold L
2011-06-01
Methanogenesis in wetlands is dependent on intermediary substrates derived from the degradation of biopolymers. Formate is one such substrate and is stimulatory to methanogenesis and acetogenesis in anoxic microcosms of soil from the fen Schlöppnerbrunnen. Formate dissimilation also yields CO(2) as a potential secondary substrate. The objective of this study was to resolve potential differences between anaerobic formate- and CO(2)-utilizing prokaryotes of this fen by stable isotope probing. Anoxic soil microcosms were pulsed daily with low concentrations of [(13)C]formate or (13)CO(2) (i.e., [(13)C]bicarbonate). Taxa were evaluated by assessment of 16S rRNA genes, mcrA (encoding the alpha-subunit of methyl-coenzyme M reductase), and fhs (encoding formyltetrahydrofolate synthetase). Methanogens, acetogens, and formate-hydrogen lyase-containing taxa appeared to compete for formate. Genes affiliated with Methanocellaceae, Methanobacteriaceae, Acetobacteraceae, and Rhodospirillaceae were (13)C enriched (i.e., labeled) in [(13)C]formate treatments, whereas genes affiliated with Methanosarcinaceae, Conexibacteraceae, and Solirubrobacteraceae were labeled in (13)CO(2) treatments. [(13)C]acetate was enriched in [(13)C]formate treatments, but labeling of known acetogenic taxa was not detected. However, several phylotypes were affiliated with acetogen-containing taxa (e.g., Sporomusa). Methanosaetaceae-affiliated methanogens appeared to participate in the consumption of acetate. Twelve and 58 family-level archaeal and bacterial 16S rRNA phylotypes, respectively, were detected, approximately half of which had no isolated representatives. Crenarchaeota constituted half of the detected archaeal 16S rRNA phylotypes. The results highlight the unresolved microbial diversity of the fen Schlöppnerbrunnen, suggest that differing taxa competed for the same substrate, and indicate that Methanocellaceae, Methanobacteriaceae, Methanosarcinaceae, and Methanosaetaceae were linked to the production of methane, but they do not clearly resolve the taxa responsible for the apparent conversion of formate to acetate.
Schmid, Michael; Kulli, Sandra; Schneeberger, Kerstin; Naskova, Javorka; Knøchel, Susanne; Ahrens, Christian H.
2017-01-01
ABSTRACT We tested the biofilm formation potential of 30 heat-resistant and 6 heat-sensitive Escherichia coli dairy isolates. Production of curli and cellulose, static biofilm formation on polystyrene (PS) and stainless steel surfaces, biofilm formation under dynamic conditions (Bioflux), and initial adhesion rates (IAR) were evaluated. Biofilm formation varied greatly between strains, media, and assays. Our results highlight the importance of the experimental setup in determining biofilm formation under conditions of interest, as correlation between different assays was often not a given. The heat-resistant, multidrug-resistant (MDR) strain FAM21845 showed the strongest biofilm formation on PS and the highest IAR and was the only strain that formed significant biofilms on stainless steel under conditions relevant to the dairy industry, and it was therefore fully sequenced. Its chromosome is 4.9 Mb long, and it harbors a total of five plasmids (147.2, 54.2, 5.8, 2.5, and 1.9 kb). The strain carries a broad range of genes relevant to antimicrobial resistance and biofilm formation, including some on its two large conjugative plasmids, as demonstrated in plate mating assays. IMPORTANCE In biofilms, cells are embedded in an extracellular matrix that protects them from stresses, such as UV radiation, osmotic shock, desiccation, antibiotics, and predation. Biofilm formation is a major bacterial persistence factor of great concern in the clinic and the food industry. Many tested strains formed strong biofilms, and especially strains such as the heat-resistant, MDR strain FAM21845 may pose a serious issue for food production. Strong biofilm formation combined with diverse resistances (some encoded on conjugative plasmids) may allow for increased persistence, coselection, and possible transfer of these resistance factors. Horizontal gene transfer may conceivably occur in the food production setting or the gastrointestinal tract after consumption. PMID:28550056
Competing Formate- and Carbon Dioxide-Utilizing Prokaryotes in an Anoxic Methane-Emitting Fen Soil▿†
Hunger, Sindy; Schmidt, Oliver; Hilgarth, Maik; Horn, Marcus A.; Kolb, Steffen; Conrad, Ralf; Drake, Harold L.
2011-01-01
Methanogenesis in wetlands is dependent on intermediary substrates derived from the degradation of biopolymers. Formate is one such substrate and is stimulatory to methanogenesis and acetogenesis in anoxic microcosms of soil from the fen Schlöppnerbrunnen. Formate dissimilation also yields CO2 as a potential secondary substrate. The objective of this study was to resolve potential differences between anaerobic formate- and CO2-utilizing prokaryotes of this fen by stable isotope probing. Anoxic soil microcosms were pulsed daily with low concentrations of [13C]formate or 13CO2 (i.e., [13C]bicarbonate). Taxa were evaluated by assessment of 16S rRNA genes, mcrA (encoding the alpha-subunit of methyl-coenzyme M reductase), and fhs (encoding formyltetrahydrofolate synthetase). Methanogens, acetogens, and formate-hydrogen lyase-containing taxa appeared to compete for formate. Genes affiliated with Methanocellaceae, Methanobacteriaceae, Acetobacteraceae, and Rhodospirillaceae were 13C enriched (i.e., labeled) in [13C]formate treatments, whereas genes affiliated with Methanosarcinaceae, Conexibacteraceae, and Solirubrobacteraceae were labeled in 13CO2 treatments. [13C]acetate was enriched in [13C]formate treatments, but labeling of known acetogenic taxa was not detected. However, several phylotypes were affiliated with acetogen-containing taxa (e.g., Sporomusa). Methanosaetaceae-affiliated methanogens appeared to participate in the consumption of acetate. Twelve and 58 family-level archaeal and bacterial 16S rRNA phylotypes, respectively, were detected, approximately half of which had no isolated representatives. Crenarchaeota constituted half of the detected archaeal 16S rRNA phylotypes. The results highlight the unresolved microbial diversity of the fen Schlöppnerbrunnen, suggest that differing taxa competed for the same substrate, and indicate that Methanocellaceae, Methanobacteriaceae, Methanosarcinaceae, and Methanosaetaceae were linked to the production of methane, but they do not clearly resolve the taxa responsible for the apparent conversion of formate to acetate. PMID:21478308
Marti, Roger; Schmid, Michael; Kulli, Sandra; Schneeberger, Kerstin; Naskova, Javorka; Knøchel, Susanne; Ahrens, Christian H; Hummerjohann, Jörg
2017-08-01
We tested the biofilm formation potential of 30 heat-resistant and 6 heat-sensitive Escherichia coli dairy isolates. Production of curli and cellulose, static biofilm formation on polystyrene (PS) and stainless steel surfaces, biofilm formation under dynamic conditions (Bioflux), and initial adhesion rates (IAR) were evaluated. Biofilm formation varied greatly between strains, media, and assays. Our results highlight the importance of the experimental setup in determining biofilm formation under conditions of interest, as correlation between different assays was often not a given. The heat-resistant, multidrug-resistant (MDR) strain FAM21845 showed the strongest biofilm formation on PS and the highest IAR and was the only strain that formed significant biofilms on stainless steel under conditions relevant to the dairy industry, and it was therefore fully sequenced. Its chromosome is 4.9 Mb long, and it harbors a total of five plasmids (147.2, 54.2, 5.8, 2.5, and 1.9 kb). The strain carries a broad range of genes relevant to antimicrobial resistance and biofilm formation, including some on its two large conjugative plasmids, as demonstrated in plate mating assays. IMPORTANCE In biofilms, cells are embedded in an extracellular matrix that protects them from stresses, such as UV radiation, osmotic shock, desiccation, antibiotics, and predation. Biofilm formation is a major bacterial persistence factor of great concern in the clinic and the food industry. Many tested strains formed strong biofilms, and especially strains such as the heat-resistant, MDR strain FAM21845 may pose a serious issue for food production. Strong biofilm formation combined with diverse resistances (some encoded on conjugative plasmids) may allow for increased persistence, coselection, and possible transfer of these resistance factors. Horizontal gene transfer may conceivably occur in the food production setting or the gastrointestinal tract after consumption. Copyright © 2017 Marti et al.
Theoretical analysis of degradation mechanisms in the formation of morphogen gradients
NASA Astrophysics Data System (ADS)
Bozorgui, Behnaz; Teimouri, Hamid; Kolomeisky, Anatoly B.
2015-07-01
Fundamental biological processes of development of tissues and organs in multicellular organisms are governed by various signaling molecules, which are called morphogens. It is known that spatial and temporal variations in the concentration profiles of signaling molecules, which are frequently referred as morphogen gradients, lead to a cell differentiation via activating specific genes in a concentration-dependent manner. It is widely accepted that the establishment of the morphogen gradients involves multiple biochemical reactions and diffusion processes. One of the critical elements in the formation of morphogen gradients is a degradation of signaling molecules. We develop a new theoretical approach that provides a comprehensive description of the degradation mechanisms. It is based on the idea that the degradation works as an effective potential that drives the signaling molecules away from the source region. Utilizing the method of first-passage processes, the dynamics of the formation of morphogen gradients for various degradation mechanisms is explicitly evaluated. It is found that linear degradation processes lead to a dynamic behavior specified by times to form the morphogen gradients that depend linearly on the distance from the source. This is because the effective potential due to the degradation is quite strong. At the same time, nonlinear degradation mechanisms yield a quadratic scaling in the morphogen gradients formation times since the effective potentials are much weaker. Physical-chemical explanations of these phenomena are presented.
Tanino, Fumihiko; Maeda, Yuki; Sakai, Hiromichi; Sakane, Fumio
2013-01-01
Type I diacylglycerol kinase (DGK) isozymes (α, β, and γ) contain recoverin homology domains and calcium-binding EF-hand motifs at their N-termini. The γ-isoform of DGK is abundantly expressed in retinal and Purkinje cells; however, its function in neuronal cells remains unknown. Here, we report that the mRNA and protein levels of DGKγ, but not DGKα or β, were markedly increased in N1E-115 neuroblastoma cells upon cellular differentiation by serum starvation. Interestingly, overexpression of wild-type DGKγ, which was partially located at the plasma membrane, considerably induced the formation of slender, filopodia-like cytoplasmic projections from N1E-115 cell bodies. Deletion of the recoverin homology domain and the EF-hand motifs, which potentiated the plasma membrane localization of the isozyme, significantly enhanced the formation of the filopodia-like protrusions. Intriguingly, the catalytic activity of the isozyme is not essential for the protrusion formation. The N-terminal half of the catalytic domain and a short stretch of amino acid residues at the C-terminus are responsible for plasma membrane localization and filopodia-like process formation. Taken together, we have described a potentially novel morphological function of the C-terminal DGKγ catalytic region that is independent of its enzymatic activity.
An, Dong; Gu, Bin; Sun, Sainan; Zhang, Han; Chen, Yanan; Zhu, Huifeng; Shi, Jian; Tong, Jun
2017-12-15
Molecular weight (MW) distributions in source and treated water in Shanghai, China were investigated to understand the relationship between trihalomethanes formation potential/N-nitrosodimethylamine formation potential (THMFP/NDMAFP) and dissolved organic carbon (DOC) for different MW ranges (<1K, 1-10K, 10-30K, >30KDa). The result of MW distributions in source water indicated a relationship between THMFP/NDMAFP and DOC such that DOC for <1K and 1-30KDa DOC were linearly related to THMFP and NDMAFP, respectively. In treated water, >30KDa THMFP was totally removed whereas <1KDa THMFP showed linear relationships with R 2 =0.88 and 0.83 after sand and granular activated carbon (GAC) filtration, respectively. DOC content for 1-10KDa tended to form NDMA according to the results for treated water between DOC and NDMAFP (R 2 =0.94 and 0.93 for sand and GAC filtration, respectively). The results may provide researchers with targeted treatment strategies to destroy, remove, or reduce the occurrence of THMs and NDMA precursors. The findings presented in this study will be of great value in future work for selecting suitable drinking water treatment processes to minimize the formation of disinfection by-products using chlorine or chloramine disinfection. Copyright © 2017 Elsevier B.V. All rights reserved.
Tan, Hor-Yue; Wang, Ning; Takahashi, Masao; Feng, Yigang; Li, Hongyun; Feng, Yibin
2016-01-01
For the first time, we discovered a small proportion of aqueous fraction from Saw Palmetto apart from the fatty acid-rich fraction exhibited pharmacological activity. Therefore, this study aims to explore the anti-tumor potential of red pigmented aqueous fraction of Saw Palmetto, NYG on human hepatocellular carcinoma and its possible targets. Subcutaneous xenograft and orthotopic implantation models of HCC were used to evaluate the tumor inhibitory effect of NYG. Human hepatocellular carcinoma (HCC) cell lines and human umbilical vein endothelial cells (HUVEC) were used as in vitro model. The mRNA expression was conducted by qPCR. Protein expression was monitored by immunoblotting and immunohistochemistry. Cell migration and blood vessel formation were determined by chamber assay and tube formation assay, respectively. Significant tumor inhibition of NYG in dose-dependent manner was observed on subcutaneous xenograft and orthotopic HCC model. NYG has no direct action on cell viability or VEGF secretion of HCC cells. However, NYG reduced in vitro migration and vessel formation activities of HUVEC cells, as well as in vivo intratumoral neovascularization. NYG attenuated extracellular signal-regulated kinases (ERK) activation in endothelial cells, which may be associated with the suppression of migration and tube formation of HUVEC. NYG suppressed tumor expansion of HCC via inhibiting neovascularization, and may be potential adjuvant treatment for HCC. PMID:27527161
Formation of methyl formate in comets by irradiation of methanol-bearing ices
NASA Astrophysics Data System (ADS)
Modica, P.; Palumbo, M. E.; Strazzulla, G.
2012-12-01
Methyl formate is a complex organic molecule considered potentially relevant as precursor of biologically active molecules. It has been observed in several astrophysical environments, such as hot cores, hot corinos, and comets. The processes that drive the formation of molecules in cometary ices are poorly understood. In particular it is not yet clear if molecules are directly accreted from the pre-solar nebula to form comets or are formed after accretion. The present work analyzes the possible role of cosmic ion irradiation and radioactive decay in methyl formate formation in methanol-bearing ices. The results indicate that cosmic ion irradiation can account for about 12% of the methyl formate observed in comet Hale-Bopp, while radioactive decay can account for about 6% of this amount. The need of new data coming from earth based and space observational projects as well as from laboratory experiments is outlined.
Onsager Vortex Formation in Two-component Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Han, Junsik; Tsubota, Makoto
2018-06-01
We numerically study the dynamics of quantized vortices in two-dimensional two-component Bose-Einstein condensates (BECs) trapped by a box potential. For one-component BECs in a box potential, it is known that quantized vortices form Onsager vortices, which are clusters of same-sign vortices. We confirm that the vortices of the two components spatially separate from each other — even for miscible two-component BECs — suppressing the formation of Onsager vortices. This phenomenon is caused by the repulsive interaction between vortices belonging to different components, hence, suggesting a new possibility for vortex phase separation.
Frackowiak, Anna; Skibiński, Przemysław; Gaweł, Wiesław; Zaczyńska, Ewa; Czarny, Anna; Gancarz, Roman
2010-03-01
Synthesis of glycosyl derivatives of hydroxyanthraquinones (6-10) potentially useful for kidney stone therapy is presented. These compounds were analyzed as inhibitors of calcium oxalate crystals formation as well as substances with the ability of dissolving crystalline calcium oxalate. In addition, the effect of the compounds obtained on real kidney stones was analyzed by ex vivo tests. The tests on L929 and A545 cell lines have shown that the compounds obtained were not cytotoxic. Copyright (c) 2009 Elsevier Masson SAS. All rights reserved.
Quantitative assessment of pair formation behavior in captive whooping cranes (Grus americana)
Nelson, J.T.; Small, C.R.; Ellis, D.H.
1995-01-01
Instantaneous scan sampling for mean distance and synchronous action patterns and all-occurrence sampling for unison call, dance, strut, and hoover-up behaviors were conducted for five potential whooping crane pairs at Patuxent Environmental Science Center, Laurel. Maryland. Dance, strut, and hoover-up differed among pairs, as did total frequency of social behaviors. It was unclear whether or not total frequency of social behaviors during pair formation can be used as an index for potential breeding success. The relative importance of different action patterns should be used as indices of pair compatibility in captive whooping cranes.
Water-supply potential from an asphalt-lined catchment near Holualoa Kona, Hawaii
Chinn, Salwyn S.W.
1965-01-01
The Jenkins-Whitesburg area includes approximately 250 square miles In Letcher and Pike Counties in the southeastern part of the Eastern Coal Field. In this area ground water is the principal source of water for nearly all rural families, most public supplies, several coal mines and coal processing plants, and one bottling plant. The major aquifers in the Jenkins-Whitesburg area are the Breathitt and Lee Formations of Pennsylvanian age. Other aquifers range in age from Devonian to Quaternary but are not important in this area because they occur at great depth or yield little or no water. The Breathitt Formation occurs throughout the area except along the crest and slopes of Pine Mountain and where it is covered by unconsolidated material of Quaternary age. The Breathitt Formation consists of shale, sandstone, and lesser amounts of coal and associated underclay. The yield of wells penetrating the Breathitt Formation ranges from less than 1 to 330 gallons per minute. Well yield is controlled by the type and depth of well, character of the aquifer, and topography of the well site. Generally, deep wells drilled in valleys of perennial streams offer the best potential for high yields. Although enough water for a minimum domestic supply (more than 100 gallons per day) may be obtained from shale, all high-yielding wells probably obtain water from vertical joints and from bedding planes which are best developed in sandstone. About 13 percent of the wells inventoried in the Breathitt Formation failed to supply enough water for a minimum domestic supply. Most of these are shallow dug wells or drilled wells on hillsides or hilltops. Abandoned coal mines are utilized as large infiltration galleries and furnish part of the water for several public supplies. The chemical quality of water from the Breathitt Formation varies considerably from place to place, but the water generally is acceptable for most domestic and industrial uses. Most water is a calcium magnesium bicarbonate or sodium bicarbonate type, and nearly all sampled water contained enough iron to stain cooking and laundry utensils. The water ranged from soft to very hard, and only one well in the Breathitt Formation produced salty water. The absence of salty water may be due to abundant fractures which are associated with the Pine Mountain fault and which have allowed fresh water to enter the formation. The Lee Formation underlies the Cumberland Mountain section and is exposed along the crest and southeast slope of Pine Mountain. The Lee Formation consists of massive sandstone and conglomerate with thin beds of shale and a few thin coal seams. Although the Lee Formation is tapped by only a few wells in this area, it is potentially an important aquifer. Wells penetrating the Lee Formation in the Cumberland Mountain section would probably yield water under artesian pressure. Unlike most water from the Lee Formation in other part.3 of eastern Kentucky, all water from the Lee Formation in the Jenkins-Whitesburg area is fresh. All water from the Lee Formation contained more than 0.3 parts per million of iron and ranged from soft to moderately hard.
Impenetrability in Floquet Scattering in One Dimension
NASA Astrophysics Data System (ADS)
Volosniev, A. G.; Smith, D. H.
2018-07-01
We study the scattering off a time-periodic zero-range potential in one spatial dimension. We focus on the parameter regions that lead to zero-transmission probability (ZTP). For static potentials, ZTP leads to fermionization of distinguishable equal-mass particles. For time-periodic potentials, fermionization is prevented by the formation of evanescent waves.
Potential restrictions for CO2 sequestration sites due to shale and tight gas production.
Elliot, T R; Celia, M A
2012-04-03
Carbon capture and geological sequestration is the only available technology that both allows continued use of fossil fuels in the power sector and reduces significantly the associated CO(2) emissions. Geological sequestration requires a deep permeable geological formation into which captured CO(2)can be injected, and an overlying impermeable formation, called a caprock, that keeps the buoyant CO(2) within the injection formation. Shale formations typically have very low permeability and are considered to be good caprock formations. Production of natural gas from shale and other tight formations involves fracturing the shale with the explicit objective to greatly increase the permeability of the shale. As such, shale gas production is in direct conflict with the use of shale formations as a caprock barrier to CO(2) migration. We have examined the locations in the United States where deep saline aquifers, suitable for CO(2) sequestration, exist, as well as the locations of gas production from shale and other tight formations. While estimated sequestration capacity for CO(2) sequestration in deep saline aquifers is large, up to 80% of that capacity has areal overlap with potential shale-gas production regions and, therefore, could be adversely affected by shale and tight gas production. Analysis of stationary sources of CO(2) shows a similar effect: about two-thirds of the total emissions from these sources are located within 20 miles of a deep saline aquifer, but shale and tight gas production could affect up to 85% of these sources. These analyses indicate that colocation of deep saline aquifers with shale and tight gas production could significantly affect the sequestration capacity for CCS operations. This suggests that a more comprehensive management strategy for subsurface resource utilization should be developed.
Chen, Wei-Hsiang; Wang, Chung-Ya; Huang, Tsung-Hsien
2016-10-01
Nitrosamines are toxic and emerging disinfection byproducts. In this study, three drinking water treatment plants (DWTPs) in southern Taiwan treating the same source water in Gaoping River with comparable technologies were selected. The objective was to evaluate the formation and fates of six nitrosamines and their formation potentials (FPs) from a surface water source to drinking water. Albeit decreased further downstream in the river, four nitrosamine-FPs were observed in the source water due to anthropogenic pollution in the upstream areas. In the DWTPs, nitrosamines were formed and NDMA was the main species. While high organic carbon concentrations indicated elevated nitrosamine-FPs in the source water, NDMA formation in the DWTPs was more positively associated with reductions of water parameters that quantify organic matters with double bonded ring structures. Although precursor removal via pre-oxidation is a viable approach to limit nitrosamine formation during post-disinfection, this study clearly indicates that a great portion of NDMA in treated water has been formed in the 1st oxidation step of drinking water treatment. The pre-oxidation simulations in the lab demonstrated the impact of pre-chlorination on nitrosamine formation. Given the limited removal in conventional treatment processes, avoiding nitrosamine-FPs in sources and/or nitrosamine formation during pre-oxidation become important issues to control the threats of nitrosamines in drinking water. Under current circumstance in which pre-oxidation is widely used to optimize the treatment effectiveness in many DWTPs, its adverse effect by forming nitrosamines needs to be carefully minimized and using technologies other than pre-chlorination (e.g., pre-ozonation) may be considered. Copyright © 2016 Elsevier Ltd. All rights reserved.
γ-Aminobutyric Acid Type A Receptor Potentiation Inhibits Learning in a Computational Network Model.
Storer, Kingsley P; Reeke, George N
2018-04-17
Propofol produces memory impairment at concentrations well below those abolishing consciousness. Episodic memory, mediated by the hippocampus, is most sensitive. Two potentially overlapping scenarios may explain how γ-aminobutyric acid receptor type A (GABAA) potentiation by propofol disrupts episodic memory-the first mediated by shifting the balance from excitation to inhibition while the second involves disruption of rhythmic oscillations. We use a hippocampal network model to explore these scenarios. The basis for these experiments is the proposal that the brain represents memories as groups of anatomically dispersed strongly connected neurons. A neuronal network with connections modified by synaptic plasticity was exposed to patterned stimuli, after which spiking output demonstrated evidence of stimulus-related neuronal group development analogous to memory formation. The effect of GABAA potentiation on this memory model was studied in 100 unique networks. GABAA potentiation consistent with moderate propofol effects reduced neuronal group size formed in response to a patterned stimulus by around 70%. Concurrently, accuracy of a Bayesian classifier in identifying learned patterns in the network output was reduced. Greater potentiation led to near total failure of group formation. Theta rhythm variations had no effect on group size or classifier accuracy. Memory formation is widely thought to depend on changes in neuronal connection strengths during learning that enable neuronal groups to respond with greater facility to familiar stimuli. This experiment suggests the ability to form such groups is sensitive to alteration in the balance between excitation and inhibition such as that resulting from administration of a γ-aminobutyric acid-mediated anesthetic agent.
Hydrocarbon Source Rocks in the Deep River and Dan River Triassic Basins, North Carolina
Reid, Jeffrey C.; Milici, Robert C.
2008-01-01
This report presents an interpretation of the hydrocarbon source rock potential of the Triassic sedimentary rocks of the Deep River and Dan River basins, North Carolina, based on previously unpublished organic geochemistry data. The organic geochemical data, 87 samples from 28 drill holes, are from the Sanford sub-basin (Cumnock Formation) of the Deep River basin, and from the Dan River basin (Cow Branch Formation). The available organic geochemical data are biased, however, because many of the samples collected for analyses by industry were from drill holes that contained intrusive diabase dikes, sills, and sheets of early Mesozoic age. These intrusive rocks heated and metamorphosed the surrounding sediments and organic matter in the black shale and coal bed source rocks and, thus, masked the source rock potential that they would have had in an unaltered state. In places, heat from the intrusives generated over-mature vitrinite reflectance (%Ro) profiles and metamorphosed the coals to semi-anthracite, anthracite, and coke. The maximum burial depth of these coal beds is unknown, and depth of burial may also have contributed to elevated thermal maturation profiles. The organic geochemistry data show that potential source rocks exist in the Sanford sub-basin and Dan River basin and that the sediments are gas prone rather than oil prone, although both types of hydrocarbons were generated. Total organic carbon (TOC) data for 56 of the samples are greater than the conservative 1.4% TOC threshold necessary for hydrocarbon expulsion. Both the Cow Branch Formation (Dan River basin) and the Cumnock Formation (Deep River basin, Sanford sub-basin) contain potential source rocks for oil, but they are more likely to have yielded natural gas. The organic material in these formations was derived primarily from terrestrial Type III woody (coaly) material and secondarily from lacustrine Type I (algal) material. Both the thermal alteration index (TAI) and vitrinite reflectance data (%Ro) indicate levels of thermal maturity suitable for generation of hydrocarbons. The genetic potential of the source rocks in these Triassic basins is moderate to high and many source rock sections have at least some potential for hydrocarbon generation. Some data for the Cumnock Formation indicate a considerably higher source rock potential than the basin average, with S1 + S2 data in the mid-20 mg HC/g sample range, and some hydrocarbons have been generated. This implies that the genetic potential for all of these strata may have been higher prior to the igneous activity. However, the intergranular porosity and permeability of the Triassic strata are low, which makes fractured reservoirs more attractive as drilling targets. In some places, gravity and magnetic surveys that are used to locate buried intrusive rock may identify local thermal sources that have facilitated gas generation. Alternatively, awareness of the distribution of large intrusive igneous bodies at depth may direct exploration into other areas, where thermal maturation is less than the limits of hydrocarbon destruction. Areas prospective for natural gas also contain large surficial clay resources and any gas discovered could be used as fuel for local industries that produce clay products (principally brick), as well as fuel for other local industries.
ERIC Educational Resources Information Center
De Marzio, Derryl; Ignaffo, Timothy
2016-01-01
Background & Purpose: According to McClintock, persons and groups exercise formative justice as a strategy of selecting the behaviors, powers, and potentials that ought to receive educational attention to achieve their maximization. We argue that the question of what motivates individuals and collectives to utilize certain capacities to…
Nanotwin Formation in High-Manganese Austenitic Steels Under Explosive Shock Loading
NASA Astrophysics Data System (ADS)
Canadinc, D.; Uzer, B.; Elmadagli, M.; Guner, F.
2018-04-01
The micro-deformation mechanisms active in a high-manganese austenitic steel were investigated upon explosive shock loading. Single system of nanotwins forming within primary twins were shown to govern the deformation despite the elevated temperatures attained during testing. The benefits of nanotwin formation for potential armor materials were demonstrated.
Journal Clubs and Case Conferences: From Academic Tradition to Communities of Practice
ERIC Educational Resources Information Center
Price, David W.; Felix, Kate G.
2008-01-01
Introduction: As small group learning sessions, Journal Clubs (JCs) and Case Conferences (CCs), if structured interactively, have potential as educational formats that can change practice. However, the degree to which these formats, as currently typically structured, lead to practice change is unknown. Methods: We used concepts of communities of…
Formation of the Creativity of Students in the Context of the Education Informatization
ERIC Educational Resources Information Center
Ramankulov, Sherzod; Usembaeva, Indira; Berdi, Dinara; Omarov, Bakhitzhan; Baimukhanbetov, Bagdat; Shektibayev, Nurdaulet
2016-01-01
Information and communication technologies are an effective means of formation of the creative potential of future physics teachers, as with their science-based application in the educational process at the university they allow fully activating learning activities of students, and provide conditions for their creative self-realization in the…
Written Feedback for Students: Too Much, Too Detailed or Too Incomprehensible to Be Effective?
ERIC Educational Resources Information Center
Glover, Chris; Brown, Evelyn
2006-01-01
A three year research study entitled "Improving the effectiveness of Formative Assessment in Science Teaching", involving Biosciences and Physical Sciences staff and students at two UK Universities, has been examining the potential for improving student learning by making changes to the way formative assessment and feedback are…
The entropy and Gibbs free energy of formation of the aluminum ion
Hemingway, B.S.; Robie, R.A.
1977-01-01
A reevaluation of the entropy and Gibbs free energy of formation of Al3+(aq) yields -308 ?? 15 J/K??mol and 489.4 ?? 1.4kj/mol for S0298 and ??G0f{hook},298 respectively. The standard electrode potential for aluminum is 1.691 ?? 0.005 volts. ?? 1977.
The Role of University Branches in the Formation of Common Cultural Competences of Students
ERIC Educational Resources Information Center
Korotkova, Marina Albertovna; Rimskaya, Tatyana Grigoryevna
2015-01-01
The present study describes the capabilities and potential of educational institutions in the formation of common cultural competences of students studying at regional municipalities of the Russian Far East. The study offers the directions and methods of interaction between government and local self-government authorities and training institutions…
A Closed Loop System Using a Brine Reservoir to Replace Fresh Water as the Frac Fluid Source
A non-fresh water source, the Debolt formation, has been proposed and tested in the laboratory and field for application as a fracturing fluid in shale gas formations, with potential to replace much of the fresh water used in the Horn River Basin.
Exploring Language Teacher Identity Work as Ethical Self-Formation
ERIC Educational Resources Information Center
Miller, Elizabeth R.; Morgan, Brian; Medina, Adriana L.
2017-01-01
In this article, we treat language teacher identity as foundational to educational practice and see Foucault's (1983, 1997) notion of ethical self-formation, and its adoption in teacher education research by Clarke (2008, 2009, 2010), as providing a potential vehicle for understanding the development of teacher agency and critical identity work.…
PROPOSED ST ANDARD TO GREA TL Y EXP AND PUBLIC ACCESS AND EXPLORATION OF TOXICITY DATA: EVALUATION OF STRUCTURE DATA FILE FORMAT
The ability to assess the potential toxicity of environmental, pharmaceutical, or industrial chemicals based on chemical structure in...
Formative Assessment in a Test-Dominated Context: How Test Practice Can Become More Productive
ERIC Educational Resources Information Center
Xiao, Yangyu
2017-01-01
In recent years, increasing attention has been paid to the roles that assessment plays in promoting learning. Formative assessment is considered a powerful strategy for improving student learning; however, its learning potential has been less extensively explored in contexts where summative assessment dominates, because summative assessment is…
Video Cassettes: The Systems, the Market, the Future.
ERIC Educational Resources Information Center
Roberts, Martin
In its survey of the videocassette field, this book details the background, current status, problems, and potentials of the various systems designed to record and reproduce films and other audiovisual material through a conventional television set. The systems used by CBS (a miniaturized film format), Avco, Sony, Ampex (all magnetic tape formats),…
The EHEC type III effector NleL is an E3 ubiquitin ligase that modulates pedestal formation
USDA-ARS?s Scientific Manuscript database
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes hemorrhagic colitis and may result in potentially fatal hemolytic uremia syndrome in humans. EHEC colonize the intestinal mucosa and promote formation of “pedestals” in the tissue beneath the adherent bacteria. Secreted proteins are key playe...
Digital Identity Formation: Socially Being Real and Present on Digital Networks
ERIC Educational Resources Information Center
Bozkurt, Aras; Tu, Chih-Hsiung
2016-01-01
Social networks have become popular communication and interaction environments recently. As digital environments, so as ecosystems, they have potential in terms of networked learning as they fulfill some roles such as mediating an environment for digital identity formation and providing social and emotional presence. Based on this phenomenon, the…
Farias, Manuel J S; Cheuquepán, William; Tanaka, Auro A; Feliu, Juan M
2018-03-15
This works deals with the identification of preferential site-specific activation at a model Pt surface during a multiproduct reaction. The (110)-type steps of a Pt(332) surface were selectively marked by attaching isotope-labeled 13 CO molecules to them, and ethanol oxidation was probed by in situ Foureir transfrom infrared spectroscopy in order to precisely determine the specific sites at which CO 2 , acetic acid, and acetaldehyde were preferentially formed. The (110) steps were active for splitting the C-C bond, but unexpectedly, we provide evidence that the pathway of CO 2 formation was preferentially activated at (111) terraces, rather than at (110) steps. Acetaldehyde was formed at (111) terraces at potentials comparable to those for CO 2 formation also at (111) terraces, while the acetic acid formation pathway became active only when the (110) steps were released by the oxidation of adsorbed 13 CO, at potentials higher than for the formation of CO 2 at (111) terraces of the stepped surface.
Qi, Wang; Fang Yee, Lim; Jiangyong, Hu
2014-12-01
The presence of organic compounds in water sources is one of the concerns in water treatment. They are potential precursors of disinfection byproducts (DBPs) and thus induce health problems in humans. Among the emerging DBPs, carcinogenic compound N-nitrosodimethylamine (NDMA) has been receiving attention during the last decade. This study examined the characteristics of organic components in various water sources and investigated their relationships with NDMA formation. Experiments were carried out on selected water samples from both natural water and wastewater. Results showed similar NDMA formation kinetics for both water sources. However, more contribution of NDMA precursors was found to be from the wastewater due to its higher organic nitrogen content. NDMA formation potential (NDMAFP) of secondary effluent ranged from 264 to 530 ng/L. A correlation study between organic compound characteristics and NDMAFP indicated that the majority of NDMA precursors came from dissolved organic nitrogen (DON) compound with small molecular weight (smaller than 500 Da), with correlation R(2) = 0.898. Although secondary treatment removed more than 90% of NDMA precursors, the remaining precursors in secondary effluent would still pose a challenge for water quality.
Fitness trade-offs of group formation and movement by Thomson's gazelles in the Serengeti ecosystem.
Fryxell, John M; Berdahl, Andrew M
2018-05-19
Collective behaviours contributing to patterns of group formation and coordinated movement are common across many ecosystems and taxa. Their ubiquity is presumably due to altering interactions between individuals and their predators, resources and physical environment in ways that enhance individual fitness. On the other hand, fitness costs are also often associated with group formation. Modifications to these interactions have the potential to dramatically impact population-level processes, such as trophic interactions or patterns of space use in relation to abiotic environmental variation. In a wide variety of empirical systems and models, collective behaviour has been shown to enhance access to ephemeral patches of resources, reduce the risk of predation and reduce vulnerability to environmental fluctuation. Evolution of collective behaviour should accordingly depend on the advantages of collective behaviour weighed against the costs experienced at the individual level. As an illustrative case study, we consider the potential trade-offs on Malthusian fitness associated with patterns of group formation and movement by migratory Thomson's gazelles in the Serengeti ecosystem.This article is part of the theme issue 'Collective movement ecology'. © 2018 The Authors.
SOA formation potential of emissions from soil and leaf litter.
Faiola, Celia L; Vanderschelden, Graham S; Wen, Miao; Elloy, Farah C; Cobos, Douglas R; Watts, Richard J; Jobson, B Thomas; Vanreken, Timothy M
2014-01-21
Soil and leaf litter are significant global sources of small oxidized volatile organic compounds, VOCs (e.g., methanol and acetaldehyde). They may also be significant sources of larger VOCs that could act as precursors to secondary organic aerosol (SOA) formation. To investigate this, soil and leaf litter samples were collected from the University of Idaho Experimental Forest and transported to the laboratory. There, the VOC emissions were characterized and used to drive SOA formation via dark, ozone-initiated reactions. Monoterpenes dominated the emission profile with emission rates as high as 228 μg-C m(-2) h(-1). The composition of the SOA produced was similar to biogenic SOA formed from oxidation of ponderosa pine emissions and α-pinene. Measured soil and litter monoterpene emission rates were compared with modeled canopy emissions. Results suggest surface soil and litter monoterpene emissions could range from 12 to 136% of canopy emissions in spring and fall. Thus, emissions from leaf litter may potentially extend the biogenic emissions season, contributing to significant organic aerosol formation in the spring and fall when reduced solar radiation and temperatures reduce emissions from living vegetation.
Steppeler, Christina; Haugen, John-Erik; Rødbotten, Rune; Kirkhus, Bente
2016-01-20
Red meat high in heme iron may promote the formation of potentially genotoxic aldehydes during lipid peroxidation in the gastrointestinal tract. In this study, the formation of malondialdehyde (MDA) equivalents measured by the thiobarbituric acid reactive substances (TBARS) method was determined during in vitro digestion of cooked red meat (beef and pork), as well as white meat (chicken) and fish (salmon), whereas analysis of 4-hydroxyhexenal (HHE) and 4-hydroxynonenal (HNE) was performed during in vitro digestion of cooked beef and salmon. Comparing products with similar fat contents indicated that the amount of unsaturated fat and not total iron content was the dominating factor influencing the formation of aldehydes. It was also shown that increasing fat content in beef products caused increasing concentrations of MDA equivalents. The highest levels, however, were found in minced beef with added fish oil high in unsaturated fat. This study indicates that when ingested alone, red meat products low in unsaturated fat and low in total fat content contribute to relatively low levels of potentially genotoxic aldehydes in the gastrointestinal tract.
NASA Technical Reports Server (NTRS)
Elsila, Jamie E.; Burton, Aaron S.; Callahan, Michael C.; Charnley, Steven B.; Glavin, Daniel P.; Dworkin, Jason P.
2012-01-01
Measurements of stable hydrogen, carbon, and nitrogen isotopic ratios (delta D, delta C-13, delta N-15) of organic compounds can reveal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may point towards the most likely of these proposed pathways. The technique of gas chromatography coupled with mass spectrometry and isotope ratio mass spectrometry provides compound-specific structural and isotopic information from a single splitless injection, enhancing the amount of information gained from small amounts of precious samples such as carbonaceous chondrites. We have applied this technique to measure the compound-specific C, N, and H isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites. We are using these measurements to evaluate predictions of expected isotopic enrichments from potential formation pathways and environments, leading to a better understanding of the origin of these compounds.
Surfactant process for promoting gas hydrate formation and application of the same
Rogers, Rudy E.; Zhong, Yu
2002-01-01
This invention relates to a method of storing gas using gas hydrates comprising forming gas hydrates in the presence of a water-surfactant solution that comprises water and surfactant. The addition of minor amounts of surfactant increases the gas hydrate formation rate, increases packing density of the solid hydrate mass and simplifies the formation-storage-decomposition process of gas hydrates. The minor amounts of surfactant also enhance the potential of gas hydrates for industrial storage applications.
Implementation of a standard format for GPS common view data
NASA Technical Reports Server (NTRS)
Weiss, Marc A.; Thomas, Claudine
1995-01-01
A new format for standardizing common view time transfer data, recommended by the Consultative Committee for the Definition of the Second, is being implemented in receivers commonly used for contributing data for the generation of International Atomic Time. We discuss three aspects of this new format that potentially improve GPS common-view time transfer: (1) the standard specifies the method for treating short term data, (2) it presents data in consistent formats including needed terms not previously available, and (3) the standard includes a header of parameters important for the GPS common-view process. In coordination with the release of firmware conforming to this new format the Bureau International des Poids et Mesures will release future international track schedules consistent with the new standard.
NASA Astrophysics Data System (ADS)
Sang, Hua; Lin, Changsong; Jiang, Yiming
2017-05-01
The reservoir of Mishrif formation has a large scale distribution of marine facies carbonate sediments in great thickness in central and south east Iraq. Rudist reef and shoal facies limestones of the Mishrif Formation (Late Cenomanian - Middle Turonian) form a great potential reservoir rocks at oilfields and structures of Iraq. Facies modelling was applied to predict the relationship between facies distribution and reservoir characteristics to construct a predictive geologic model which will assist future exploration and development in south east Iraq. Microfacies analysis and electrofacies identification and correlations indicate that the limestone of the Mishrif Formation were mainly deposited in open platform setting. Sequence stratigraphic analyses of the Mishrif Formation indicate 3 third order depositional sequences.
A Qualitative Study of the Formation and Composition of Social Networks Among Homeless Youth
Tyler, Kimberly A.; Melander, Lisa A.
2011-01-01
Although social networks are essential for explaining protective and risk factors among homeless youth, little is known about the formation and composition of these groups. In this study, we utilized 19 in-depth interviews with homeless youth to investigate their social network formation, role relationships, housing status, and network member functions. Our findings reveal that the formation of these networks occurred in different ways including meeting network members through others or in specific social situations. The majority of social network members were currently housed and provided various functions including instrumental and social support and protection. Responses from participants provide valuable insight into the formation of social networks and potentially explain their subsequent involvement in risky behaviors. PMID:22121330
Model of the Reticular Formation of the Brainstem Based on Glial-Neuronal Interactions.
Mitterauer, Bernhard J
A new model of the reticular formation of the brainstem is proposed. It refers to the neuronal and glial cell systems. Thus, it is biomimetically founded. The reticular formation generates modes of behavior (sleeping, eating, etc.) and commands all behavior according to the most appropriate environmental information. The reticular formation works on an abductive logic and is dominated by a redundancy of potential command. Formally, a special mode of behavior is represented by a comprehensive cycle (Hamilton loop) located in the glial network (syncytium) and embodied in gap junctional plaques. Whereas for the neuronal network of the reticular formation, a computer simulation has already been presented; here, the necessary devices for computation in the whole network are outlined.
Salomäki, T; Karonen, T; Siljamäki, P; Savijoki, K; Nyman, T A; Varmanen, P; Iivanainen, A
2015-01-01
The environmental pathogen Streptococcus uberis causes intramammary infections in dairy cows. Because biofilm growth might contribute to Strep. uberis mastitis, we conducted a biological screen to identify genes potentially involved in the regulation of biofilm growth. By screening a transposon mutant library of Strep. uberis, we determined that the disruption of 13 genes (including hasA, coaC, clpP, miaA, nox and uidA) led to increased biofilm formation. One of the genes (SUB1382) encoded a homologue of the LiaR response regulator (RR) of the Bacillus subtilis two-component signalling system (TCS). Electrophoretic mobility shift assays revealed that DNA binding by LiaR was greatly enhanced by phosphorylation. Two-dimensional differential in-gel electrophoresis analyses of the liaR mutant and the parental Strep. uberis strain revealed five differentially produced proteins with at least a 1·5-fold change in relative abundance (P < 0·05). The DNA-binding protein LiaR is a potential regulator of biofilm formation by Strep. uberis. Several molecular primary and downstream targets involved in biofilm formation by Strep. uberis were identified. This provides a solid foundation for further studies on the regulation of biofilm formation in this important pathogen. © 2014 The Society for Applied Microbiology.
Rosu-Myles, Michael; Taylor, Barbara J; Wolff, Linda
2007-03-01
The tumor suppressor p15Ink4b (Ink4b) is a cell-cycle inhibitor that is inactivated in a high percentage of acute myeloid leukemia and myeloid dysplasia syndrome cases. Despite this, the role of Ink4b in hematopoiesis remains unclear. Here we examined the role of Ink4b in blood cell formation using Ink4b-deficient (Ink4b(-/-)) mice. We compared the bone marrow (BM) of Ink4b(-/-) and wild-type mice using flow cytometric, colony-forming unit and competitive repopulating assays (CRA). The proliferation, differentiation, self-renewal, and apoptosis of progenitor cells were further compared by in vitro and in vivo methods. BM from Ink4b(-/-) mice contained increased numbers of granulocyte-monocyte progenitors and Gr-1(+) cells and showed a competitive advantage over wild-type cells in myeloid cell formation by CRA. Ink4b(-/-) progenitors did not demonstrate increased proliferation, self-renewing potential, or reduced apoptosis. Instead, Ink4b(-/-) common myeloid progenitors (CMPs) showed increased myeloid progenitor formation concomitant with reduced erythroid potential. This work establishes a role for Ink4b in regulating the differentiation of CMPs and indicates that loss of Ink4b enhances the formation of myeloid progenitors.
Cheng, Tao; Goddard, William A; An, Qi; Xiao, Hai; Merinov, Boris; Morozov, Sergey
2017-01-25
The sluggish oxygen reduction reaction (ORR) is a major impediment to the economic use of hydrogen fuel cells in transportation. In this work, we report the full ORR reaction mechanism for Pt(111) based on Quantum Mechanics (QM) based Reactive metadynamics (RμD) simulations including explicit water to obtain free energy reaction barriers at 298 K. The lowest energy pathway for 4 e - water formation is: first, *OOH formation; second, *OOH reduction to H 2 O and O*; third, O* hydrolysis using surface water to produce two *OH and finally *OH hydration to water. Water formation is the rate-determining step (RDS) for potentials above 0.87 Volt, the normal operating range. Considering the Eley-Rideal (ER) mechanism involving protons from the solvent, we predict the free energy reaction barrier at 298 K for water formation to be 0.25 eV for an external potential below U = 0.87 V and 0.41 eV at U = 1.23 V, in good agreement with experimental values of 0.22 eV and 0.44 eV, respectively. With the mechanism now fully understood, we can use this now validated methodology to examine the changes upon alloying and surface modifications to increase the rate by reducing the barrier for water formation.
NASA Technical Reports Server (NTRS)
Yang, Qianli; Wu, S. T.; Stone, N. H.; Li, Xiaoquing
1996-01-01
In this paper we solve the self-consistent Vlasov and Poisson equations by a numerical method to determine the local distribution function of the ion and the electron, within a thin layer near the moving body, respectively. Using these ion and electron distributions, the number density for the ions and electrons are determined, such that, the electric potential is obtained within this thin layer (i.e., measured by Debye length). Numerical results are presented for temporal evolution of the electron and ion density and its corresponding electric potential within the layer which shows the formation of electric double layer and its structures. From these numerical results, we are able to determine the maximum conditions of the electric potential, it may create satellite anomaly.
Data documenting the potential distribution of Aedes aegypti in the center of Veracruz, Mexico.
Estrada-Contreras, Israel; Sandoval-Ruiz, César A; Mendoza-Palmero, Fredy S; Ibáñez-Bernal, Sergio; Equihua, Miguel; Benítez, Griselda
2017-02-01
The data presented in this article are related to the research article entitled "Establishment of Aedes aegypti (L.) in mountainous regions in Mexico: Increasing number of population at risk of mosquito-borne disease and future climate conditions" (M. Equihua, S. Ibáñez-Bernal, G. Benítez, I. Estrada-Contreras, C.A. Sandoval-Ruiz, F.S. Mendoza-Palmero, 2016) [1]. This article provides presence records in shapefile format used to generate maps of potential distribution of Aedes aegypti with different climate change scenarios as well as each of the maps obtained in raster format. In addition, tables with values of potential distribution of the vector as well as the average values of probability of presence including data of the mosquito incidence along the altitudinal range.
Hydrocarbon source rock potential of the Karoo in Zimbabwe
NASA Astrophysics Data System (ADS)
Hiller, K.; Shoko, U.
1996-07-01
The hydrocarbon potential of Zimbabwe is tied to the Karoo rifts which fringe the Zimbabwe Craton, i.e. the Mid-Zambezi basin/rift and the Mana Pools basin in the northwest, the Cabora Bassa basin in the north and the Tuli-Bubye and Sabi-Runde basins in the south. Based on the geochemical investigation of almost one thousand samples of fine clastic Karoo sediments, a concise source rock inventory has been established showing the following features. No marine source rocks have been identified. In the Mid-Zambezi area and Cabora Bassa basin, the source rocks are gas-prone, carbonaceous to coaly mudstones and coal of Lower Karoo age. In the Cabora Bassa basin, similar gas-prone source rocks occur in the Upper Karoo (Angwa Alternations Member). These kerogen type III source rocks are widespread and predominantly immature to moderately mature. In the southern basins, the Lower Karoo source rocks are gas-prone; in addition some have a small condensate potential. Most of the samples are, however, overmature due to numerous dolerite intrusions. Samples with a mixed gas, condensate and oil potential (mainly kerogen types II and III) were identified in the Lower Karoo (Coal Measure and Lower Madumabisa Mudstone Formations) of the Mid-Zambezi basin, and in the Louver Karoo (Mkanga Formation) and Upper Karoo (Upper Angwa Alternations Member Formation) of the Cabora Bassa basin. The source rocks, with a liquid potential, are also immature to moderately mature and were deposited in swamp, paludal and lacustrine environments of limited extent.
NASA Astrophysics Data System (ADS)
Huntington, K. W.; Peters, N.; Roe, G.; Hoke, G. D.; Eiler, J.
2010-12-01
Soil carbonates archive a potentially rich record of past climate, but rates of pedogenic carbonate formation, erosion, and deposition impact how the isotopic composition and formation temperature of carbonate-bearing paleosols reflect the local environmental conditions under which they form. We investigate these processes using conventional stable isotope (δ18O and δ13C) and clumped isotope thermometry data for Quaternary pedogenic carbonates from the southern Central Andes at ~33°S, Argentina. The study area spans over 2 km of relief in the Río Mendoza and Río de las Cuevas valleys, accessing a range of mean annual temperature conditions and vegetative cover and exhibiting large seasonal variations in temperature, precipitation, and soil moisture. Variations in soil conditions influence carbonate precipitation and dissolution reactions and the rate and depth of pedogenic carbonate formation. Because soil temperature varies predictably as a function of depth in the soil and seasonal and secular variations in air temperature, clumped isotope thermometry of samples collected in soil pits offers a direct way to estimate the seasonality of pedogenic carbonate formation and potential biases in the long-term climate record. We explore potential complications due to the effects of radiative solar heating on the relationship between air and soil temperatures by examining clumped isotope thermometry results in the context of site-to-site variations in vegetative cover. Temperature estimates from clumped isotope thermometry of pedogenic carbonate collected 5-110 cm below geomorphically stable soil surfaces from 1200-3400 m a.s.l. are compared to temperature profiles predicted by simple rule-based models of soil carbonate formation. The models use climate reanalysis daily diagnostic data (soil temperature, soil moisture, and latent heat flux as a proxy for evaporation) and weather station data as input to assess how varying rates of pedogenic carbonate formation integrated over millennial timescales might impact the geologic record of temperature and isotopic composition.
Urban stress-induced biogenic VOC emissions impact secondary aerosol formation in Beijing
NASA Astrophysics Data System (ADS)
Ghirardo, A.; Xie, J.; Zheng, X.; Wang, Y.; Grote, R.; Block, K.; Wildt, J.; Mentel, T.; Kiendler-Scharr, A.; Hallquist, M.; Butterbach-Bahl, K.; Schnitzler, J.-P.
2015-08-01
Trees can significantly impact the urban air chemistry by the uptake and emission of reactive biogenic volatile organic compounds (BVOCs), which are involved in ozone and particle formation. Here we present the emission potentials of "constitutive" (cBVOCs) and "stress-induced" BVOCs (sBVOCs) from the dominant broadleaf woody plant species in the megacity of Beijing. Based on an inventory of BVOC emissions and the tree census, we assessed the potential impact of BVOCs on secondary particulate matter formation in 2005 and 2010, i.e., before and after realizing the large tree-planting program for the 2008 Olympic Games. We found that sBVOCs, such as fatty acid derivatives, benzenoids and sesquiterpenes, constituted a significant fraction (∼ 15 %) of the total annual BVOC emissions, and we estimated that the overall annual BVOC budget may have doubled from ∼ 3.6 × 109 g C year-1 in 2005 to ∼ 7.1 × 109 g C year-1 in 2010 due to the increase in urban greens, while at the same time, the emission of anthropogenic VOCs (AVOCs) could be lowered by 24 %. Based on our BVOC emission assessment, we estimated the biological impact on SOA mass formation in Beijing. Compared to AVOCs, the contribution of biogenic precursors (2-5 %) for secondary particulate matter in Beijing was low. However, sBVOCs can significantly contribute (∼ 40 %) to the formation of total secondary organic aerosol (SOA) from biogenic sources; apparently, their annual emission increased from 1.05 μg m-3 in 2005 to 2.05 μg m-3 in 2010. This study demonstrates that biogenic and, in particular, sBVOC emissions contribute to SOA formation in megacities. However, the main problems regarding air quality in Beijing still originate from anthropogenic activities. Nevertheless, the present survey suggests that in urban plantation programs, the selection of plant species with low cBVOC and sBVOC emission potentials have some possible beneficial effects on urban air quality.
Braunholz, Diana; Saki, Mohammad; Niehr, Franziska; Öztürk, Merve; Borràs Puértolas, Berta; Konschak, Robert; Budach, Volker; Tinhofer, Ingeborg
2016-01-01
In solid tumours millions of cells are shed into the blood circulation each day. Only a subset of these circulating tumour cells (CTCs) survive, many of them presumable because of their potential to form multi-cellular clusters also named spheroids. Tumour cells within these spheroids are protected from anoikis, which allows them to metastasize to distant organs or re-seed at the primary site. We used spheroid cultures of head and neck squamous cell carcinoma (HNSCC) cell lines as a model for such CTC clusters for determining the role of the epidermal growth factor receptor (EGFR) in cluster formation ability and cell survival after detachment from the extra-cellular matrix. The HNSCC cell lines FaDu, SCC-9 and UT-SCC-9 (UT-SCC-9P) as well as its cetuximab (CTX)-resistant sub-clone (UT-SCC-9R) were forced to grow in an anchorage-independent manner by coating culture dishes with the anti-adhesive polymer poly-2-hydroxyethylmethacrylate (poly-HEMA). The extent of apoptosis, clonogenic survival and EGFR signalling under such culture conditions was evaluated. The potential of spheroid formation in suspension culture was found to be positively correlated with the proliferation rate of HNSCC cell lines as well as their basal EGFR expression levels. CTX and gefitinib blocked, whereas the addition of EGFR ligands promoted anchorage-independent cell survival and spheroid formation. Increased spheroid formation and growth were associated with persistent activation of EGFR and its downstream signalling component (MAPK/ERK). Importantly, HNSCC cells derived from spheroid cultures retained their clonogenic potential in the absence of cell-matrix contact. Addition of CTX under these conditions strongly inhibited colony formation in CTX-sensitive cell lines but not their resistant subclones. Altogether, EGFR activation was identified as crucial factor for anchorage-independent survival of HNSCC cells. Targeting EGFR in CTC cluster formation might represent an attractive anti-metastatic treatment approach in HNSCC.
Wilderness study area, mineral resources of the Sleeping Giant, Lewis and Clark County, Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tysdal, G.; Reynold, M.W.; Carlson, R.R.
1991-01-01
A Mineral resource survey was conducted in 1987 by the U.S. Geological Survey and the U.S. Bureau of Mines to evaluate mineral resources (known) and mineral resource potential (undiscovered) of the Sleeping Giant Wilderness Study Area (MT-075-111) in Lewis and Clark County, Montana. The only economic resource in the study area is an inferred 1.35-million-ton reserve of decorative stone (slate); a small gold placer resource is subeconomic. A high resource potential for decorative slate exists directly adjacent to the area of identified slate resource and in the northeastern part of the study area. The rest of the study area hasmore » a low potential for decorative slate. The westernmost part of the study area has a moderate resource potential for copper and associated silver in state-bound deposits in green beds and limestone; potential is low in the rest of the study are. The study area has a low resource potential for sapphires in placer deposits, gold in placer deposits (exclusive of subeconomic resource mentioned above), phosphate in the Spokane Formation, diatomite in lake deposits, uranium, oil, gas, geothermal energy, and no resource potential for phosphate in the Phosphoria Formation.« less
NASA Astrophysics Data System (ADS)
Yang, Z.; Burn, D. H.
2017-12-01
Extreme rainfall events can have devastating impacts on society. To quantify the associated risk, the IDF curve has been used to provide the essential rainfall-related information for urban planning. However, the recent changes in the rainfall climatology caused by climate change and urbanization have made the estimates provided by the traditional regional IDF approach increasingly inaccurate. This inaccuracy is mainly caused by two problems: 1) The ineffective choice of similarity indicators for the formation of a homogeneous group at different regions; and 2) An inadequate number of stations in the pooling group that does not adequately reflect the optimal balance between group size and group homogeneity or achieve the lowest uncertainty in the rainfall quantiles estimates. For the first issue, to consider the temporal difference among different meteorological and topographic indicators, a three-layer design is proposed based on three stages in the extreme rainfall formation: cloud formation, rainfall generation and change of rainfall intensity above urban surface. During the process, the impacts from climate change and urbanization are considered through the inclusion of potential relevant features at each layer. Then to consider spatial difference of similarity indicators for the homogeneous group formation at various regions, an automatic feature selection and weighting algorithm, specifically the hybrid searching algorithm of Tabu search, Lagrange Multiplier and Fuzzy C-means Clustering, is used to select the optimal combination of features for the potential optimal homogenous groups formation at a specific region. For the second issue, to compare the uncertainty of rainfall quantile estimates among potential groups, the two sample Kolmogorov-Smirnov test-based sample ranking process is used. During the process, linear programming is used to rank these groups based on the confidence intervals of the quantile estimates. The proposed methodology fills the gap of including the urbanization impacts during the pooling group formation, and challenges the traditional assumption that the same set of similarity indicators can be equally effective in generating the optimal homogeneous group for regions with different geographic and meteorological characteristics.
Shigeta, S; Toyoshima, M; Kitatani, K; Ishibashi, M; Usui, T; Yaegashi, N
2016-07-07
Fallopian tubal epithelium is a candidate for the origin of high-grade serous ovarian cancer. Transferrin-containing follicular fluid and/or retrograde menstrual blood are possible risk factors for carcinogenesis. Accumulation of DNA double-strand breaks (DNA-DSBs) in the fallopian tubal epithelium is considered to play an important role in the development of cancer. However, the mechanisms by which DNA-DSBs accumulate have not yet been fully elucidated. The hydroxyl radical, which is produced in a Fenton reaction catalyzed by an iron ion, serves as a potent DNA-DSB-inducing molecule, raising the potential of an iron ion transporter of transferrin in the formation of DNA-DSBs. We studied the potential involvement of transferrin in DNA damage and the development of ovarian cancer. Treatment with transferrin facilitated the formation of histone 2AX phosphorylated at Serine 139 (γH2AX), which is known as a DNA-DSB marker, in human fallopian tube secretory epithelial cells and A2780 ovarian cancer cells. Knockdown of transferrin receptor 1 (TfR1), but not transferrin receptor 2, suppressed the transferrin uptake and consequent formation of γH2AX. As hydroxyl radicals in reactive oxygen species (ROS) are involved in DNA-DSBs, the formation of ROS was determined. Treatment with TfR1-specific small interference RNAs significantly diminished transferrin-induced formation of ROS. Moreover, TfR1-dependent uptake of transferrin was revealed to augment the formation of DNA-DSBs in the presence of hydrogen peroxide, which served as a substrate for the Fenton reaction. An ex vivo study with murine fallopian tubes further demonstrated that transferrin treatment introduced DNA-DSBs in the fallopian tubal epithelium. Collectively, these data suggested that the transferrin-TfR1 axis accounts for the induction of DNA-DSBs that potentially lead to DNA damage/genome instability. These findings also suggested that exposure to transferrin initiates and promotes the development of ovarian cancer by aiding the accumulation of DNA-DSBs in the fallopian tubal epithelium.
Formation of N-nitrosodimethylamine (NDMA) from humic substances in natural water.
Chen, Zhuo; Valentine, Richard L
2007-09-01
N-nitrosodimethylamine (NDMA)formation in chloraminated Iowa River water (IRW) is primarily attributed to reactions with natural organic matter (NOM) generally classified as humic substances. Experiments were conducted to determine the contribution of various NOM humic fractions to the NDMA formation potential (NDMA FP) in this drinking water source. NOM was concentrated by reverse osmosis (RO) and humic fractions were obtained by a series of resin elution procedures. Mass balances showed that nearly 90% of the NDMA formation potential could be recovered in the NOM concentrate and in water reconstituted using additions of the various humic fractions. Generally, the hydrophilic fractions tended to form more NDMA than hydrophobic fractions, and basic fractions tend to form more NDMA than acid fractions when normalized to a carbon basis. Overall, the hydrophobic acid fraction was the dominant source of NDMA when both formation efficiency and water composition were considered. The amount of NDMA formed in a sample was found to correlate linearly with an oxidation-induced decrease in specific UV absorbance (SUVA) value at 272 nm. This is consistent with a mechanism in which precursors are formed as the direct consequence of the oxidation of NOM. The NDMA FP estimated using the slope of this relationship and the initial SUVA value compared closely to the value obtained by measuring the NDMA formed in solutions dosed with excess concentrations of monochloramine that presumably exhaust all potential precursor sources. However, the NOMA FP could not be correlated to the SUVA value of the individual humic fractions indicating that the relationship of the NDMA FP to SUVA value is probably a water-specific parameter dependent on the exact composition of humic fractions. It is hypothesized that either specific NDMA precursors are distributed among the various humic fractions or that the humic material itself represents a "generic" nonspecific precursor source that requires some degree of oxidation to eventually produce NDMA. The nonmonotonic behavior of NOM fluorescence spectra during chloramination and lack of correlation between NOM fluorescence characteristics and NDMA formation limited the usage of fluorescence spectra into probing NDMA formation.
Li, Bo; Wang, Hai; Qiu, Guixing; Su, Xinlin
2016-01-01
Vascular endothelial growth factor (VEGF) and bone morphogenetic proteins (BMPs), as key mediators in angiogenesis and osteogenesis, are used in a combined delivery manner as a novel strategy in bone tissue engineering. VEGF has the potential to enhance BMPs induced bone formation. Both gene delivery and material-based delivery systems were incorporated in previous studies to investigate the synergistic effects of VEGF and BMPs. However, their results were controversial due to variation of methods incorporated in different studies. Factors influencing the synergistic effects of VEGF on BMPs induced bone formation were identified and analyzed in this review to reduce confusion on this issue. The potential mechanisms and directions of future studies were also proposed here. Further investigating mechanisms of the synergistic effects and optimizing these influencing factors will help to generate more effective bone regeneration. PMID:28070506
MN Carbonates in the Martian Meteorite Nakhla: Possible Evidence of Brine Evaporation
NASA Technical Reports Server (NTRS)
Bailey, J. V.; McKay, D. S.; Wentworth, S. J.
2003-01-01
The importance of secondary phases in martian meteorites lies in their potential to provide clues about the martian environments responsible for their formation. During this study, we analyzed a number of carbonate-bearing fracture surfaces from the Nakhla meteorite. Here we describe the physical and chemical properties of several manganese-calcium-rich siderites. Additionally, we describe a potential model for the formation and alteration of these carbonates, and we suggest constraints on the conditions responsible for their precipitation. Nakhla is an olivine-bearing clinopyroxenite with minor amounts of feldspar, FeS, and Fe oxides. Secondary mineral assemblages include vein filling clay with embedded iron oxides, a calcium sulfate, amorphous silica, chlorapatite, halite and carbonates. Bridges and Grady suggested that the carbonates in Nakhla formed from brine evaporation. Isotope studies of the Mn rich siderite are also consistent with formation from hydrothermal fluids with an upper T constraint of 170 C.
On the Diversity of Planetary Systems
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; Young, Richard E. (Technical Monitor)
1997-01-01
Models of planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. Modern theories of star and planet formation, which are based upon observations of the Solar System and of young stars and their environments, predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.
The Birth of Planetary Systems
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.
1997-01-01
Models of planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. Modern theories of star and planet formation, which are based upon observations of the Solar System and of young stars and their environments, predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large- enough to gravitationally trap substantial quantities of gas. Another potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.
Methane Hydrate in Confined Spaces: An Alternative Storage System.
Borchardt, Lars; Casco, Mirian Elizabeth; Silvestre-Albero, Joaquin
2018-06-05
Methane hydrate inheres the great potential to be a nature-inspired alternative for chemical energy storage, as it allows to store large amounts of methane in a dense solid phase. The embedment of methane hydrate in the confined environment of porous materials can be capitalized for potential applications as its physicochemical properties, such as the formation kinetics or pressure and temperature stability, are significantly changed compared to the bulk system. We review this topic from a materials scientific perspective by considering porous carbons, silica, clays, zeolites, and polymers as host structures for methane hydrate formation. We discuss the contribution of advanced characterization techniques and theoretical simulations towards the elucidation of the methane hydrate formation and dissociation process within the confined space. We outline the scientific challenges this system is currently facing and look on possible future applications for this technology. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fundamentals and applications of gas hydrates.
Koh, Carolyn A; Sloan, E Dendy; Sum, Amadeu K; Wu, David T
2011-01-01
Fundamental understanding of gas hydrate formation and decomposition processes is critical in many energy and environmental areas and has special importance in flow assurance for the oil and gas industry. These areas represent the core of gas hydrate applications, which, albeit widely studied, are still developing as growing fields of research. Discovering the molecular pathways and chemical and physical concepts underlying gas hydrate formation potentially can lead us beyond flowline blockage prevention strategies toward advancing new technological solutions for fuel storage and transportation, safely producing a new energy resource from natural deposits of gas hydrates in oceanic and arctic sediments, and potentially facilitating effective desalination of seawater. The state of the art in gas hydrate research is leading us to new understanding of formation and dissociation phenomena that focuses on measurement and modeling of time-dependent properties of gas hydrates on the basis of their well-established thermodynamic properties.
Impact of butyric acid on butanol formation by Clostridium pasteurianum.
Regestein, Lars; Doerr, Eric Will; Staaden, Antje; Rehmann, Lars
2015-11-01
The butanol yield of the classic fermentative acetone-butanol-ethanol (ABE) process has been enhanced in the past decades through the development of better strains and advanced process design. Nevertheless, by-product formation and the incomplete conversion of intermediates still decrease the butanol yield. This study demonstrates the potential of increasing the butanol yield from glycerol though the addition of small amounts of butyric acid. The impact of butyric acid was investigated in a 7L stirred tank reactor. The results of this study show the positive impact of butyric acid on butanol yield under pH controlled conditions and the metabolic stages were monitored via online measurement of carbon dioxide formation, pH value and redox potential. Butyric acid could significantly increase the butanol yield at low pH values if sufficient quantities of primary carbon source (glycerol) were present. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Heidari, Andrew E.; Moghaddam, Samer; Troung, Kimberly K.; Chou, Lidek; Genberg, Carl; Brenner, Matthew; Chen, Zhongping
2015-12-01
Biofilm formation has been linked to ventilator-associated pneumonia, which is a prevalent infection in hospital intensive care units. Currently, there is no rapid diagnostic tool to assess the degree of biofilm formation or cellular biofilm composition. Optical coherence tomography (OCT) is a minimally invasive, nonionizing imaging modality that can be used to provide high-resolution cross-sectional images. Biofilm deposited in critical care patients' endotracheal tubes was analyzed in vitro. This study demonstrates that OCT could potentially be used as a diagnostic tool to analyze and assess the degree of biofilm formation and extent of airway obstruction caused by biofilm in endotracheal tubes.
NASA Astrophysics Data System (ADS)
Pogosov, V. V.; Reva, V. I.
2018-04-01
Self-consistent computations of the monovacancy formation energy are performed for Na N , Mg N , and Al N (12 < N ≤ 168) spherical clusters in the drop model for stable jelly. Scenarios of the Schottky vacancy formation and "bubble vacancy blowing" are considered. It is shown that the asymptotic behavior of the size dependences of the energy for the vacancy formation by these two mechanisms is different and the difference between the characteristics of a charged and neutral cluster is entirely determined by the difference between the ionization potentials of clusters and the energies of electron attachment to them.
NASA Astrophysics Data System (ADS)
Edwards, Ryan W. J.; Celia, Michael A.
2018-04-01
The potential for shale gas development and hydraulic fracturing to cause subsurface water contamination has prompted a number of modeling studies to assess the risk. A significant impediment for conducting robust modeling is the lack of comprehensive publicly available information and data about the properties of shale formations, shale wells, the process of hydraulic fracturing, and properties of the hydraulic fractures. We have collated a substantial amount of these data that are relevant for modeling multiphase flow of water and gas in shale gas formations. We summarize these data and their sources in tabulated form.
Towards a realistic 3D simulation of the extraction region in ITER NBI relevant ion source
NASA Astrophysics Data System (ADS)
Mochalskyy, S.; Wünderlich, D.; Fantz, U.; Franzen, P.; Minea, T.
2015-03-01
The development of negative ion (NI) sources for ITER is strongly accompanied by modelling activities. The ONIX code addresses the physics of formation and extraction of negative hydrogen ions at caesiated sources as well as the amount of co-extracted electrons. In order to be closer to the experimental conditions the code has been improved. It includes now the bias potential applied to first grid (plasma grid) of the extraction system, and the presence of Cs+ ions in the plasma. The simulation results show that such aspects play an important role for the formation of an ion-ion plasma in the boundary region by reducing the depth of the negative potential well in vicinity to the plasma grid that limits the extraction of the NIs produced at the Cs covered plasma grid surface. The influence of the initial temperature of the surface produced NI and its emission rate on the NI density in the bulk plasma that in turn affects the beam formation region was analysed. The formation of the plasma meniscus, the boundary between the plasma and the beam, was investigated for the extraction potentials of 5 and 10 kV. At the smaller extraction potential the meniscus moves closer to the plasma grid but as in the case of 10 kV the deepest meniscus bend point is still outside of the aperture. Finally, a plasma containing the same amount of NI and electrons (nH- =ne =1017 m-3) , representing good source conditioning, was simulated. It is shown that at such conditions the extracted NI current can reach values of ˜32 mA cm-2 using ITER-relevant extraction potential of 10 kV and ˜19 mA cm-2 at 5 kV. These results are in good agreement with experimental measurements performed at the small scale ITER prototype source at the test facility BATMAN.
NASA Astrophysics Data System (ADS)
Hong, Sung Kyung; Shinn, Young Jae; Choi, Jiyoung; Lee, Hyun Suk
2017-04-01
The gas generation and storage potentials of shale has mostly been assessed by original TOC (TOCo) and original kerogen type. However, in the Horn River Formation, organic geochemical tools and analysis are barely sufficient for assessing the TOCo and original kerogen type because residual carbon contents represent up to 90% of TOC in shales. Major and trace elements are used as proxies for the bottom water oxygen level, for terrestrial sediment input and for productivity, which is related with variation of kerogen type. By using the inorganic geochemical proxies, we attempt to assess original kerogen type in shale gas formation and suggest its implication for HIo (original Hydrogen Index) estimation. The estimated HIo in this study allows us to calculate a reliable TOCo. These results provide new insights into the accurate estimation of the hydrocarbon potential of shale gas resources. The inorganic geochemical proxies indicate vertical variations of productivity (EX-SiO2 and Baauth), terrestrial sediment input (Al2O3, Zr, Hf, and Nb) and oxygen content in bottom water during deposition (Moauth, Uauth and Th/U), which represent the temporal changes in the mixing ratio between Type II and III kerogens. The Horn River Formation has different HIo values calculated from EX-SiO2 (biogenic origin) and it is ranked by HIo value in descending order: Evie and Muskwa members (500-700 mgHC/gTOC) > middle Otterpark Member (400-500 mgHC/gTOC) > upper Otterpark Member (300-400 mgHC/gTOC) > lower Otterpark Member (200 mgHC/gTOC). Based on the original kerogen type and TOCo, the gas generation and storage potentials of the Evie, middle Otterpark and Muskwa members are higher than those of other members. The source rock potential is excellent for the Evie Member with a remarkable difference between TOCo and measured TOC.
Genome size and metabolic intensity in tetrapods: a tale of two lines
Vinogradov, Alexander E; Anatskaya, Olga V
2005-01-01
We show the negative link between genome size and metabolic intensity in tetrapods, using the heart index (relative heart mass) as a unified indicator of metabolic intensity in poikilothermal and homeothermal animals. We found two separate regression lines of heart index on genome size for reptiles–birds and amphibians–mammals (the slope of regression is steeper in reptiles–birds). We also show a negative correlation between GC content and nucleosome formation potential in vertebrate DNA, and, consistent with this relationship, a positive correlation between genome GC content and nuclear size (independent of genome size). It is known that there are two separate regression lines of genome GC content on genome size for reptiles–birds and amphibians–mammals: reptiles–birds have the relatively higher GC content (for their genome sizes) compared to amphibians–mammals. Our results suggest uniting all these data into one concept. The slope of negative regression between GC content and nucleosome formation potential is steeper in exons than in non-coding DNA (where nucleosome formation potential is generally higher), which indicates a special role of non-coding DNA for orderly chromatin organization. The chromatin condensation and nuclear size are supposed to be key parameters that accommodate the effects of both genome size and GC content and connect them with metabolic intensity. Our data suggest that the reptilian–birds clade evolved special relationships among these parameters, whereas mammals preserved the amphibian-like relationships. Surprisingly, mammals, although acquiring a more complex general organization, seem to retain certain genome-related properties that are similar to amphibians. At the same time, the slope of regression between nucleosome formation potential and GC content is steeper in poikilothermal than in homeothermal genomes, which suggests that mammals and birds acquired certain common features of genomic organization. PMID:16519230
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Shijun; Stocks, George Malcolm; Zhang, Yanwen
2016-08-03
It has been shown that concentrated solid solution alloys possess unusual electronic, magnetic, transport, mechanical and radiation-resistant properties that are directly related to underlying chemical complexity. Because every atom experiences a different local atomic environment, the formation and migration energies of vacancies and interstitials in these alloys exhibit a distribution, rather than a single value as in a pure metal or dilute alloy. In this study, using ab initio calculations based on density functional theory and special quasirandom structure, we have characterized the distribution of defect formation energy and migration barrier in four Ni-based solid-solution alloys: Ni 0.5Co 0.5, Nimore » 0.5Fe 0.5, Ni 0.8Fe 0.2 and Ni 0.8Cr 0.2. As defect formation energies in finite-size models depend sensitively on the elemental chemical potential, we have developed a computationally efficient method for determining it which takes into account the global composition and the local short-range order. In addition we have compared the results of our ab initio calculations to those obtained from available embedded atom method (EAM) potentials. Our results indicate that the defect formation and migration energies are closely related to the specific atomic size in the structure, which further determines the elemental diffusion properties. In conclusion, different EAM potentials yield different features of defect energetics in concentrated alloys, pointing to the need for additional potential development efforts in order to allow spatial and temporal scale-up of defect and simulations, beyond those accessible to ab initio methods.« less
Zhao, Shijun; Stocks, G Malcolm; Zhang, Yanwen
2016-09-14
It has been shown that concentrated solid solution alloys possess unusual electronic, magnetic, transport, mechanical and radiation-resistant properties that are directly related to underlying chemical complexity. Because every atom experiences a different local atomic environment, the formation and migration energies of vacancies and interstitials in these alloys exhibit a distribution, rather than a single value as in a pure metal or dilute alloy. Using ab initio calculations based on density functional theory and special quasirandom structures, we have characterized the distribution of defect formation energy and migration barrier in four Ni-based solid-solution alloys: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2, and Ni0.8Cr0.2. As defect formation energies in finite-size models depend sensitively on the elemental chemical potential, we have developed a computationally efficient method for determining it which takes into account the global composition and the local short-range order. In addition we have compared the results of our ab initio calculations to those obtained from available embedded atom method (EAM) potentials. Our results indicate that the defect formation and migration energies are closely related to the specific atoms in the structure, which further determines the elemental diffusion properties. Different EAM potentials yield different features of defect energetics in concentrated alloys, pointing to the need for additional potential development efforts in order to allow spatial and temporal scale-up of defect and simulations, beyond those accessible to ab initio methods.
NASA Astrophysics Data System (ADS)
Zhu, L.
2017-12-01
2-Nitrophenol is an important component of "brown carbon" in the atmosphere. The concentration of 2-nitrophenol is higher in polluted urban areas where there are increased emissions of aromatic hydrocarbons. To assess the air quality impacts of pollutant emissions, it is important to understand the oxidant formation potential of the emitted species. Photolysis is the dominant atmospheric removal process for 2-nitrophenol. Although photodissociation dynamics studies of 2-nitrophenol have reported OH formation at photolysis wavelengths of 266 nm, 355 nm, and over the 361-390 nm range, and HONO has been observed as a product from 2-nitrophenol photolysis in an environmental chamber, the lack of quantitative absorption cross section and product quantum yield information has prevented quantitative assessment of the extent of oxidant formation from the photolysis of 2-nitrophenol in the atmosphere. My group determined the gas phase absorption cross sections of 2-nitrophenol in the 295-400 nm region by using cavity ring-down spectroscopy. The OH, HONO, and NO2 formation channels following the gas phase photolysis of 2-nitrophenol at 308 and 351 nm were investigated. Direct NO2 formation was not observed. OH and HONO were direct products from the 2-nitrophenol photolysis, and their quantum yields were obtained. The sum of the OH and the HONO quantum yields was about unity at both photolysis wavelengths. The estimated photolysis rate constant of 2-nitrophenol was about twice that of NO2. I will discuss the importance of 2-nitrophenol gas phase photolysis as a potential source of OH and HONO in regions of high anthropogenic emissions.
3D seismic data interpretation of Boonsville Field, Texas
NASA Astrophysics Data System (ADS)
Alhakeem, Aamer Ali
The Boonsville field is one of the largest gas fields in the US located in the Fort Worth Basin, north central Texas. The highest potential reservoirs reside in the Bend Conglomerate deposited during the Pennsylvanian. The Boonsville data set is prepared by the Bureau of Economic Geology at the University of Texas, Austin, as part of the secondary gas recovery program. The Boonsville field seismic data set covers an area of 5.5 mi2. It includes 38 wells data. The Bend Conglomerate is deposited in fluvio-deltaic transaction. It is subdivided into many genetic sequences which include depositions of sandy conglomerate representing the potential reserves in the Boonsville field. The geologic structure of the Boonsville field subsurface are visualized by constructing structure maps of Caddo, Davis, Runaway, Beans Cr, Vineyard, and Wade. The mapping includes time structure, depth structure, horizon slice, velocity maps, and isopach maps. Many anticlines and folds are illustrated. Karst collapse features are indicated specially in the lower Atoka. Dipping direction of the Bend Conglomerate horizons are changing from dipping toward north at the top to dipping toward east at the bottom. Stratigraphic interpretation of the Runaway Formation and the Vineyard Formation using well logs and seismic data integration showed presence of fluvial dominated channels, point bars, and a mouth bar. RMS amplitude maps are generated and used as direct hydrocarbon indicator for the targeted formations. As a result, bright spots are indicated and used to identify potential reservoirs. Petrophysical analysis is conducted to obtain gross, net pay, NGR, water saturation, shale volume, porosity, and gas formation factor. Volumetric calculations estimated 989.44 MMSCF as the recoverable original gas in-place for a prospect in the Runaway and 3.32 BSCF for a prospect in the Vineyard Formation.
NASA Astrophysics Data System (ADS)
Khasanshin, Rashid; Novikov, Lev
Action of charged particles on low-conductive dielectrics causes formation of areas with a high charge density inside; their fields may give rise to development of electrostatic discharge between the charged area and the surface of the dielectric. Discharge channels are growing due to breakdown of dielectric and formation of a conducting phase. Generation of the channels is a complex stochastic process accompanied by such physical and chemical processes as ionization, gas formation, heating, and so on, which cause formation of conducting phase in a glass. That is why no quantitative theory describing formation of conductive channels has been formulated yet. The study of electrostatic discharges in dielectrics under radiation is essential both from a scientific point of view and for the solution of applied problems. In particular, interaction of a spacecraft with ambient plasma causes accumulation of electric charges on its surface producing, as a consequence, electric potential between the spacecraft surface and the plasma. For example, potentials on the surface of satellites operating on a geostationary orbit reach up to 20 kV. Elec-trostatic discharges caused by such potentials can produce not only the considerable electromag-netic interference, but also lead to the destruction of hardware components and structural ele-ments. Electrostatic charging due to electrons from the Earth’s radiation belts causes degradation of solar arrays as a result of surface and internal electrostatic discharges. In the work, surface of K-208 spacecraft solar array protective coatings irradiated by 20 and 40 keV electrons and protons has studied using by AFM methods. Traces of electrostatic dis-charges at different radiation flux densities were analyzed.
Sima, Mihaela; Dold, Bernhard; Frei, Linda; Senila, Marin; Balteanu, Dan; Zobrist, Jurg
2011-05-30
Sulfidic mine tailings have to be classified as one of the major source of hazardous materials leading to water contamination. This study highlights the processes leading to sulfide oxidation and acid mine drainage (AMD) formation in the active stage of two tailings impoundments located in the southern part of the Apuseni Mountains, in Romania, a well-known region for its long-term gold-silver and metal mining activity. Sampling was undertaken when both impoundments were still in operation in order to assess their actual stage of oxidation and long-term behavior in terms of the potential for acid mine drainage generation. Both tailings have high potential for AMD formation (2.5 and 3.7 wt.% of pyrite equivalent, respectively) with lesser amount of carbonates (5.6 and 3.6 wt.% of calcite equivalent) as neutralization potential (ABA=-55.6 and -85.1 tCaCO(3)/1000 t ) and showed clear signs of sulfide oxidation yet during operation. Sequential extraction results indicate a stronger enrichment and mobility of elements in the oxidized tailings: Fe as Fe(III) oxy-hydroxides and oxides (transformation from sulfide minerals, leaching in oxidation zone), Ca mainly in water soluble and exchangeable form where gypsum and calcite are dissolved and higher mobility of Cu for Ribita and Pb for Mialu. Two processes leading to the formation of mine drainage at this stage could be highlighted (1) a neutral Fe(II) plume forming in the impoundment with ferrihydrite precipitation at its outcrop and (2) acid mine drainage seeping in the unsaturated zone of the active dam, leading to the formation of schwertmannite at its outcrop. Copyright © 2011 Elsevier B.V. All rights reserved.
What's in a ray set: moving towards a unified ray set format
NASA Astrophysics Data System (ADS)
Muschaweck, Julius
2011-10-01
For the purpose of optical simulation, a plethora of formats exist to describe the properties of a light source. Except for the EULUMDAT and IES formats which describe sources in terms of aperture area and far field intensity, all these formats are vendor specific, and no generally accepted standard exists. Most illumination simulation software vendors use their own format for ray sets, which describe sources in terms of many rays. Some of them keep their format definition proprietary. Thus, software packages typically can read or write only their own specific format, although the actual data content is not so different. Typically, they describe origin and direction of each ray in 3D vectors, and use one more single number for magnitude, where magnitude may denote radiant flux, luminous flux (equivalently tristimulus Y), or tristimulus X and Z. Sometimes each ray also carries its wavelength, while other formats allow to specify an overall spectrum for the whole source. In addition, in at least one format, polarization properties are also included for each ray. This situation makes it inefficient and potentially error prone for light source manufacturers to provide ray data sets for their sources in many different formats. Furthermore, near field goniometer vendors again use their proprietary formats to store the source description in terms of luminance data, and offer their proprietary software to generate ray sets from this data base. Again, the plethora of ray sets make the ray set production inefficient and potentially error prone. In this paper, we propose to describe ray data sets in terms of phase space, as a step towards a standardized ray set format. It is well known that luminance and radiance can be defined as flux density in phase space: luminance is flux divided by etendue. Therefore, single rays can be thought of as center points of phase space cells, where each cell possesses its volume (i.e. etendue), its flux, and therefore its luminance. In addition, each phase space cell possesses its spectrum, and its polarization properties. We show how this approach leads to a unification of the EULUMDAT/IES, ray set and near field goniometer formats, making possible the generation of arbitrarily many additional rays by luminance interpolation. We also show how the EULUMDAT/IES and individual ray set formats can be derived from the proposed general format, making software using a possible standard format downward compatible.
Epigenetic mechanisms in experience-driven memory formation and behavior.
Puckett, Rosemary E; Lubin, Farah D
2011-10-01
Epigenetic mechanisms have long been associated with the regulation of gene-expression changes accompanying normal neuronal development and cellular differentiation; however, until recently these mechanisms were believed to be statically quiet in the adult brain. Behavioral neuroscientists have now begun to investigate these epigenetic mechanisms as potential regulators of gene-transcription changes in the CNS subserving synaptic plasticity and long-term memory (LTM) formation. Experimental evidence from learning and memory animal models has demonstrated that active chromatin remodeling occurs in terminally differentiated postmitotic neurons, suggesting that these molecular processes are indeed intimately involved in several stages of LTM formation, including consolidation, reconsolidation and extinction. Such chromatin modifications include the phosphorylation, acetylation and methylation of histone proteins and the methylation of associated DNA to subsequently affect transcriptional gene readout triggered by learning. The present article examines how such learning-induced epigenetic changes contribute to LTM formation and influence behavior. In particular, this article is a survey of the specific epigenetic mechanisms that have been demonstrated to regulate gene expression for both transcription factors and growth factors in the CNS, which are critical for LTM formation and storage, as well as how aberrant epigenetic processing can contribute to psychological states such as schizophrenia and drug addiction. Together, the findings highlighted in this article support a novel role for epigenetic mechanisms in the adult CNS serving as potential key molecular regulators of gene-transcription changes necessary for LTM formation and adult behavior.
Peng, Xuan; Jain, Surendra Kumar; Singh, Jayant Kumar; Liu, Anqi; Jin, Qibing
2018-06-13
Grand canonical Monte Carlo simulations are performed to study the adsorption of water in realistic CMK-3 and CMK-5 models at 300 K. The adsorption isotherms are characterized by negligible uptake at lower chemical potentials and complete pore filling once the threshold chemical potential is increased. Results for the isosteric heat of adsorption, radial distribution function (O-O and O-H), hydrogen bond statistics and the cluster size distribution of water molecules are presented. The snapshots of GCMC simulations in CMK-3 and CMK-5 models show that the adsorption happens via the formation of water clusters. For the CMK-3 model, it was found that the pore filling occurred via the formation of a single water cluster and a few very small clusters. The water cluster size increased with an increase in pore size of the CMK-3 model. For the CMK-5 model, it was found that the adsorption first occurred in the inner porosity (via cluster formation). There was no adsorption of water in the outer porosity during the filling of the inner porosity. After the inner porosity was completely filled, the water begins to fill the outer porosity. Snapshots from GCMC simulations of the CMK-5 model clearly show that the water adsorption in the outer porosity occurs via the formation and growth of clusters and there was no formation of layers of water in the porosity as seen for nonpolar fluids like nitrogen.
Le Roux, Julien; Gallard, Hervé; Croué, Jean-Philippe
2011-05-01
Disinfection with chloramines is often used to reduce the production of regulated disinfection by-products (DBPs) such as trihalomethanes (THMs) and haloacetic acids (HAAs). However, chloramination can lead to the formation of N-nitrosamines, including N-nitrosodimethylamine (NDMA), a probable human carcinogen. Previous research used dimethylamine (DMA) as a model precursor of NDMA, but certain widely used tertiary dimethylamines (e.g. the pharmaceutical ranitidine) show much higher conversion rates to NDMA than DMA. This study investigates the NDMA formation potential of several tertiary amines including pharmaceuticals and herbicides. The reactivity of these molecules with monochloramine (NH(2)Cl) is studied through the formation of NDMA, and other halogenated DBPs such as haloacetonitriles (HANs) and AOX (Adsorbable Organic Halides). Several compounds investigated formed NDMA in greater amounts than DMA, revealing the importance of structural characteristics of tertiary amines for NDMA formation. Among these compounds, the pharmaceutical ranitidine showed the highest molar conversion to NDMA. The pH and dissolved oxygen content of the solution were found to play a major role for the formation of NDMA from ranitidine. NDMA was formed in higher amounts at pH around pH 8 and a lower concentration of dissolved oxygen dramatically decreased NDMA yields. These findings seem to indicate that dichloramine (NHCl(2)) is not the major oxidant involved in the formation of NDMA from ranitidine, results in contradiction with the reaction mechanisms proposed in the literature. Dissolved oxygen was also found to influence the formation of other oxygen-containing DBPs (i.e. trichloronitromethane and haloketones). The results of this study identify several anthropogenic precursors of NDMA, indicating that chloramination of waters impacted by these tertiary amines could lead to the formation of significant amounts of NDMA and other non-regulated DBPs of potential health concern (e.g. dichloroacetonitrile or trichloronitromethane). This could be of particular importance for the chloramination of wastewater effluents, especially during water reuse processes. Copyright © 2011 Elsevier Ltd. All rights reserved.
Bone Balance within a Cortical BMU: Local Controls of Bone Resorption and Formation
Smith, David W.; Gardiner, Bruce S.; Dunstan, Colin
2012-01-01
Maintaining bone volume during bone turnover by a BMU is known as bone balance. Balance is required to maintain structural integrity of the bone and is often dysregulated in disease. Consequently, understanding how a BMU controls bone balance is of considerable interest. This paper develops a methodology for identifying potential balance controls within a single cortical BMU. The theoretical framework developed offers the possibility of a directed search for biological processes compatible with the constraints of balance control. We first derive general control constraint equations and then introduce constitutive equations to identify potential control processes that link key variables that describe the state of the BMU. The paper describes specific local bone volume balance controls that may be associated with bone resorption and bone formation. Because bone resorption and formation both involve averaging over time, short-term fluctuations in the environment are removed, leaving the control systems to manage deviations in longer-term trends back towards their desired values. The length of time for averaging is much greater for bone formation than for bone resorption, which enables more filtering of variability in the bone formation environment. Remarkably, the duration for averaging of bone formation may also grow to control deviations in long-term trends of bone formation. Providing there is sufficient bone formation capacity by osteoblasts, this leads to an extraordinarily robust control mechanism that is independent of either osteoblast number or the cellular osteoid formation rate. A complex picture begins to emerge for the control of bone volume. Different control relationships may achieve the same objective, and the ‘integration of information’ occurring within a BMU may be interpreted as different sets of BMU control systems coming to the fore as different information is supplied to the BMU, which in turn leads to different observable BMU behaviors. PMID:22844401
ERIC Educational Resources Information Center
Chen, Qiuxian; May, Lyn; Klenowski, Val; Kettle, Margaret
2014-01-01
The "College English Curriculum Requirements," announced by the Chinese Ministry of Education in 2007, recommended the inclusion of formative assessment into the existing summative assessment framework of College English. This policy had the potential to fundamentally change the nature of assessment and its role in the teaching and…
32 CFR Appendix F to Part 310 - Format for New or Altered System Report
Code of Federal Regulations, 2010 CFR
2010-07-01
... DEFENSE (CONTINUED) PRIVACY PROGRAM DOD PRIVACY PROGRAM Pt. 310, App. F Appendix F to Part 310—Format for.... Transmittal Letter The transmittal letter shall be prepared by the Defense Privacy Office and shall contain... maintenance of the System; 5. Probable or potential effects on the privacy of individuals; 6. Is the system...
ERIC Educational Resources Information Center
Nuttall, Joce; Thomas, Louise; Henderson, Linda
2018-01-01
This article critiques the usefulness of double stimulation, a key concept in Vygotskian analyses of human development, with leaders in early childhood services in Australia. A series of formative interventions was conducted to identify and address systemic tensions that were confounding leaders' attempts to realise a central object of activity in…
ERIC Educational Resources Information Center
Klute, Mary; Apthorp, Helen; Harlacher, Jason; Reale, Marianne
2017-01-01
Formative assessment is a process that engages teachers and students in gathering, interpreting, and using evidence about what and how students are learning in order to facilitate further student learning during a short period of time. The process offers the potential to guide educator decisions about midstream adjustments to instruction that…
ERIC Educational Resources Information Center
Thanh Pham, Thi Hong; Renshaw, Peter
2015-01-01
Formative assessment has recently become a preferred assessment strategy in educational institutions worldwide. However, it is not easy to implement in Asian classrooms, because local cultures and institutional constraints potentially hinder the practice. This one-semester study aimed to use the "third space", as the core of the third…
Experimental Evidence on the Effectiveness of Automated Essay Scoring in Teacher Education Cases
ERIC Educational Resources Information Center
Riedel, Eric; Dexter, Sara L.; Scharber, Cassandra; Doering, Aaron
2006-01-01
Research on computer-based writing evaluation has only recently focused on the potential for providing formative feedback rather than summative assessment. This study tests the impact of an automated essay scorer (AES) that provides formative feedback on essay drafts written as part of a series of online teacher education case studies. Seventy…
USDA-ARS?s Scientific Manuscript database
Biofilm formation by pathogenic bacteria plays a key role in their pathogenesis. Previously, the pstA gene was shown to be involved in the virulence of Mycobacterium avium subspecies paratuberculosis (M. ap), the causative agent of Johne's disease in cattle and a potential risk factor for Crohn's d...
The Role of Educational Systems in the Link between Formative Assessment and Motivation
ERIC Educational Resources Information Center
Nolen, Susan Bobbitt
2011-01-01
Formative assessment has been widely promoted as a means to support student learning and motivation. This practice has potential for communicating to students the value of what they are learning, both in the classroom and beyond (Brophy, 2008). To make good on those promises, however, requires an understanding of the connections between formative…
Biofilm Formation by a Metabolically Versatile Bacterium
2009-03-19
ABSTRACT Rhodopseudomonas palustris is a photosynthetic bacterium that has good potential as a biocatalyst for the production ofhydrogen gas, a biofuel...Biofilm formation by a metabolically versatile bacterium: final report Report Title ABSTRACT Rhodopseudomonas palustris is a photosynthetic bacterium...agricultural waste. We characterized five new Rhodopseudomonas genome sequences and isolated and described R. palustris mutant strains that produce
Extant or Absent: Formation Water in New York State Drinking Water Wells
NASA Astrophysics Data System (ADS)
Christian, K.; Lautz, L. K.
2013-12-01
The current moratorium on hydraulic fracturing in New York State (NYS) provides an opportunity to collect baseline shallow groundwater quality data pre-hydraulic fracturing, which is essential for determining the natural variability of groundwater chemistry and to evaluate future claims of impaired groundwater quality if hydraulic fracturing occurs in the State. Concerns regarding the future environmental impact of shale gas extraction in NYS include potential shallow groundwater contamination due to migration of methane or formation water from shale gas extraction sites. Treatment, storage and disposal of saline flowback fluids after gas extraction could also be a source of water contamination. In this study, we combine southern NYS shallow groundwater chemistry data from Project Shale-Water Interaction Forensic Tools (SWIFT, n=60), the National Uranium Resource Evaluation program (NURE, n=684), and the USGS 305(b) Ambient Groundwater Quality Monitoring program (USGS, n=89) to examine evidence of formation water mixing with groundwater using the methodology of Warner et al. (2012). Groundwater characterized as low salinity (<20 mg/L Cl-) accounted for 72% of samples and 28% of samples had high salinity (>20 mg/L Cl-). A plot of bromide versus chloride shows high salinity groundwater samples with Br/Cl ratios >0.0001 fall on the mixing line between low salinity groundwater and Appalachian Basin formation water. Based on the observed linear relationship between bromide and chloride, it appears there is up to 1% formation water mixing with shallow groundwater in the region. The presence of formation water in shallow groundwater would indicate the existence of natural migratory pathways between deep formation wells and shallow groundwater aquifers. A plot of sodium versus chloride also illustrates a linear trend for Type D waters (R^2= 0.776), but the relationship is weaker than that for bromide versus chloride (R^2= 0.924). Similar linear relationships are not observed between other ions and chloride, including Mg, Ca, and Sr. If high salinity groundwater samples from NYS contain small percentages of formation water, we expect linear relationships between chloride and these other, generally conservative ions. The absence of these linear relationships suggests high salinity could be associated with contamination by landfill leachate, septic effluent, road salt, or other potential sources of elevated salt. Future work needs to determine if mixing of shallow groundwater with other potential sources of salinity, such as road deicers, can explain the observed linear relationships. Strontium isotopes from shallow groundwater samples will also be compared to those for NY formation water.
NASA Astrophysics Data System (ADS)
Dishron, Joseph B.
2011-12-01
The Delaware Basin of the Permian Basin is a classic intra-cratonic basin of West Texas and Southeast New Mexico. Hydrocarbon exploration and production have occurred in the region since the early 1920s, and, as a result, the formations related to these oil and gas reserves have been studied in great detail. Some formations in the Delaware Basin, however, have not been studied in such detail, and this thesis examines one, lesser-known unit that could have economic potential. The Lamar Limestone (Lamar Lime) of the Bell Canyon Formation has commonly been dismissed as a production interval; rather, it has been described as a source and seal rock for the Ramsey Sand of the lower Bell Canyon Formation. However, recent studies found that the Lamar Lime was contributing to production, and it has been described by Trentham (2006) as a potentia "mini Barnett" reservoir. The depths of these deposits are in a range that is ideal for oil accumulation. This study made use of data from wells and test holes drilled in the western Delaware Basin, Culberson County, Texas. Many oil and gas wells have been drilled in the western Delaware Basin, but they are concentrated in the north and east portions of Culberson County. In addition, sulfur wells were drilled in the area in the late 1960s and early 1970s. Analyses of the well logs of these wells and of core and outcrop studies were completed to gain a better understanding of the distribution and economic potential of the Lamar. Both datasets were combined to provide information not readily available in the oil and gas dataset. The Lamar Lime is an excellent marker bed because it underlies thick evaporites. The evaporite sequences are Ochoan in age, and, therefore, the contact of the Lamar Lime (Bell Canyon Formation) and the Castile Formation is the approximate boundary for the Guadalupian-Ochoan Series. The Castile Formation, the Salado Formation, and the Rustler Formation (from oldest to youngest) are the evaporite units that consist of halite, gypsum, and anhydrite and are discussed herein. The boundary also marks a significant faunal-extinction event. The high organic content found in the Lamar Lime helps to evaluate the economic potential. Updated isopach and structural contour maps extend the knowledge of the Lamar Lime more to the western Delaware Basin.
Raising financing through strategic timing
NASA Astrophysics Data System (ADS)
Maine, Elicia; Thomas, V. J.
2017-02-01
Strategic timing can be key for nano-drug-delivery ventures to get financing. Timely publications engage potential partners; early broad, blocking, relevant patents demonstrate the potential to appropriate value; and venture formation closer to clinical viability better aligns its timeline with that of venture capitalists.
Wnt signaling in bone formation and its therapeutic potential for bone diseases
Kim, Jeong Hwan; Liu, Xing; Wang, Jinhua; Chen, Xiang; Zhang, Hongyu; Kim, Stephanie H.; Cui, Jing; Li, Ruidong; Zhang, Wenwen; Kong, Yuhan; Zhang, Jiye; Shui, Wei; Lamplot, Joseph; Rogers, Mary Rose; Zhao, Chen; Wang, Ning; Rajan, Prashant; Tomal, Justin; Statz, Joseph; Wu, Ningning; Luu, Hue H.; Haydon, Rex C.
2013-01-01
The Wnt signaling pathway plays an important role not only in embryonic development but also in the maintenance and differentiation of the stem cells in adulthood. In particular, Wnt signaling has been shown as an important regulatory pathway in the osteogenic differentiation of mesenchymal stem cells. Induction of the Wnt signaling pathway promotes bone formation while inactivation of the pathway leads to osteopenic states. Our current understanding of Wnt signaling in osteogenesis elucidates the molecular mechanisms of classic osteogenic pathologies. Activating and inactivating aberrations of the canonical Wnt signaling pathway in osteogenesis results in sclerosteosis and osteoporosis respectively. Recent studies have sought to target the Wnt signaling pathway to treat osteogenic disorders. Potential therapeutic approaches attempt to stimulate the Wnt signaling pathway by upregulating the intracellular mediators of the Wnt signaling cascade and inhibiting the endogenous antagonists of the pathway. Antibodies against endogenous antagonists, such as sclerostin and dickkopf-1, have demonstrated promising results in promoting bone formation and fracture healing. Lithium, an inhibitor of glycogen synthase kinase 3β, has also been reported to stimulate osteogenesis by stabilizing β catenin. Although manipulating the Wnt signaling pathway has abundant therapeutic potential, it requires cautious approach due to risks of tumorigenesis. The present review discusses the role of the Wnt signaling pathway in osteogenesis and examines its targeted therapeutic potential. PMID:23514963
The fine nebula dust component: A key to chondrule formation by lightning
NASA Technical Reports Server (NTRS)
Wasson, J. T.; Rasmussen, K. L.
1994-01-01
Our assessment indicates that chondrule formation by lightning is indeed possible in the solar nebula. Previously the overriding objection to the lightning process of chondrule formation has been that low nebula pressures prevented the buildup of large potential differences. The breakdown potential is controlled by the mean free live distance of an electron. We calculate the mean free live distance in pure H2 gas at 2 AU to be approximately 500 m. A fine dust load constituting 4 wt% of the dust in the dusty midplane region leads to a reduced mean free live distance of only 7 m. Very conservatively we estimate the breakdown potential to be at least 10, 1.8, and 0.7 V/cm at 1, 2, and 3 AU respectively. We set the radius of the lightning bolt equal to the kinetic mean free path of the gas. Our calculations based on electron drift velocities in a fully ionized H2 gas show that first strike durations are 0.96, 3.4, and 7.0 ms at 1, 2, and 3 AU respectively, in much better accordance with the meteoritic evidence than previous estimates of 10-100 s.
Atomistic properties of γ uranium.
Beeler, Benjamin; Deo, Chaitanya; Baskes, Michael; Okuniewski, Maria
2012-02-22
The properties of the body-centered cubic γ phase of uranium (U) are calculated using atomistic simulations. First, a modified embedded-atom method interatomic potential is developed for the high temperature body-centered cubic (γ) phase of U. This phase is stable only at high temperatures and is thus relatively inaccessible to first principles calculations and room temperature experiments. Using this potential, equilibrium volume and elastic constants are calculated at 0 K and found to be in close agreement with previous first principles calculations. Further, the melting point, heat capacity, enthalpy of fusion, thermal expansion and volume change upon melting are calculated and found to be in reasonable agreement with experiment. The low temperature mechanical instability of γ U is correctly predicted and investigated as a function of pressure. The mechanical instability is suppressed at pressures greater than 17.2 GPa. The vacancy formation energy is analyzed as a function of pressure and shows a linear trend, allowing for the calculation of the extrapolated zero pressure vacancy formation energy. Finally, the self-defect formation energy is analyzed as a function of temperature. This is the first atomistic calculation of γ U properties above 0 K with interatomic potentials.
Atomistic properties of γ uranium
NASA Astrophysics Data System (ADS)
Beeler, Benjamin; Deo, Chaitanya; Baskes, Michael; Okuniewski, Maria
2012-02-01
The properties of the body-centered cubic γ phase of uranium (U) are calculated using atomistic simulations. First, a modified embedded-atom method interatomic potential is developed for the high temperature body-centered cubic (γ) phase of U. This phase is stable only at high temperatures and is thus relatively inaccessible to first principles calculations and room temperature experiments. Using this potential, equilibrium volume and elastic constants are calculated at 0 K and found to be in close agreement with previous first principles calculations. Further, the melting point, heat capacity, enthalpy of fusion, thermal expansion and volume change upon melting are calculated and found to be in reasonable agreement with experiment. The low temperature mechanical instability of γ U is correctly predicted and investigated as a function of pressure. The mechanical instability is suppressed at pressures greater than 17.2 GPa. The vacancy formation energy is analyzed as a function of pressure and shows a linear trend, allowing for the calculation of the extrapolated zero pressure vacancy formation energy. Finally, the self-defect formation energy is analyzed as a function of temperature. This is the first atomistic calculation of γ U properties above 0 K with interatomic potentials.
Far-Field RF Sheaths due to Shear Alfvén Waves in the LAPD
NASA Astrophysics Data System (ADS)
Martin, Michael; van Compernolle, Bart; Gekelman, Walter; Pribyl, Pat; Carter, Troy; D'Ippolito, Daniel A.; Myra, James R.
2013-10-01
Ion cyclotron resonance heating (ICRH) is an important tool in current fusion experiments and will be an essential heating component in ITER. ICRH could be limited by deleterious effects due to the formation of radio frequency (RF) sheaths in the near-field (at the antenna) and in the far-field (e.g. in the divertor region). Far-field sheaths are thought to be caused by the direct launch of or mode conversion to a shear Alfvén wave with an electric field component parallel to the background magnetic field at the wall. In this experiment a limiter plate was inserted into a cylindrical plasma in the LAPD (ne ~ 1010-11 cm-3, Te ~ 5 eV, B0 = 1.2 kG) and RF sheaths were created by directly launching the shear Alfven wave. Plasma potential measurements were made with an emissive probe. DC plasma potential rectification was observed along field lines connected to the plate, serving as an indirect measure of RF sheath formation. 2-D maps of plasma properties and rectified plasma potential will be presented. This research is part of an ongoing campaign to study the formation and structure of RF sheaths.
Geology of an area near Brentwood, Williamson County, Tennessee
Hanchar, D.W.
1988-01-01
The geology and structure of an area near Brentwood, Williamson County, Tennessee, were studied to define the potential aquifers and confining units that comprise the groundwater flow system of the area. Four different formations were identified. These formations are, in descending order, the Bigby-Cannon Limestone, the Hermitage Formation, the Carters Limestone, and the Lebanon Limestone. The Bigby-Cannon Limestone and the Hermitage Formation have been affected by recent erosion. Any variation of the Carters Limestone is controlled by pre-Carters erosion of the top of the Lebanon Limestone. The thickness of this formation ranges from 65 to 79 ft. A small scale anticline-syncline pair is evident. This structure is not a result of erosion and also occurs in the T-3 bentonite bed in the Carters Limestone. (USGS)
Alteration in cellular acetylcholine influences dauer formation in Caenorhabditis elegans.
Lee, Jeeyong; Kim, Kwang-Youl; Paik, Young-Ki
2014-02-01
Altered acetylcholine (Ach) homeostasis is associated with loss of viability in flies, developmental defects in mice, and cognitive deficits in human. Here, we assessed the importance of Ach in Caenorhabditis elegans development, focusing on the role of Ach during dauer formation. We found that dauer formation was disturbed in choline acetyltransferase (cha-1) and acetylcholinesterase (ace) mutants defective in Ach biosynthesis and degradation, respectively. When examined the potential role of G-proteins in dauer formation, goa-1 and egl-30 mutant worms, expressing mutated versions of mammalian G(o) and G(q) homolog, respectively, showed some abnormalities in dauer formation. Using quantitative mass spectrometry, we also found that dauer larvae had lower Ach content than did reproductively grown larvae. In addition, a proteomic analysis of acetylcholinesterase mutant worms, which have excessive levels of Ach, showed differential expression of metabolic genes. Collectively, these results indicate that alterations in Ach release may influence dauer formation in C. elegans.
NASA Astrophysics Data System (ADS)
Nguyen, Phuong T. M.; Nguyen, Van T.; Annapureddy, Harsha V. R.; Dang, Liem X.; Do, D. D.
2012-12-01
To enhance our understanding of ion specific activity in biological systems, the potential of mean force approach was utilized to study solvent effects on the interactions between two alkali cations (Na+ and K+) with a formate anion in water. A very complex free energy landscape was observed, much more so than alkali-halide ion pairs. Furthermore, a stronger binding between the Na+-formate pair was found in comparison to the K+-formate pair in water, which is in agreement with experimental and theoretical studies [1-4]. The kinetics of ion-pair inter-conversions was studied using the transition rate theory, along with a number of theoretical approaches such as the Kramers and Grote-Hynes theories. These kinetic results were used to predict solvent effects on dynamical features of ion-pair association, in which we have found that the dynamics of K+-formate pairs is faster than Na+-formate pairs.
Jet-induced star formation by accreting black holes: impact on stellar, galaxy, and cosmic evolution
NASA Astrophysics Data System (ADS)
Mirabel, Igor Felix
2016-07-01
Evidence that relativistic jets trigger star formation along their axis has been found associated to low redshift and high redshift accreting supermassive black holes. However, the physical processes by which jet-cloud interaction may trigger star formation has so far not been elucidated. To gain insight into this potentially important star formation mechanism during reionization, when microquasars were form prolifically before AGN, our international team is carrying out a muliwavelength study of a microquasar jet-induced star formation region in the Milky Way using data from space missions (Chandra, Integral, ISO, Herschel) and from the ground (at cm and mm wavelengths with the VLA and IRAM, and IR with Gemini and VLT). I will show that this relative nearby star forming region is an ideal laboratory to test models of jet-induced star formation elsewhere in the universe.
NDMA formation kinetics from three pharmaceuticals in four water matrices.
Shen, Ruqiao; Andrews, Susan A
2011-11-01
N, N-nitrosodimethylamine (NDMA) is an emerging disinfection by-product (DBP) that has been widely detected in many drinking water systems and commonly associated with the chloramine disinfection process. Some amine-based pharmaceuticals have been demonstrated to form NDMA during chloramination, but studies regarding the reaction kinetics are largely lacking. This study investigates the NDMA formation kinetics from ranitidine, chlorphenamine, and doxylamine under practical chloramine disinfection conditions. The formation profile was monitored in both lab-grade water and real water matrices, and a statistical model is proposed to describe and predict the NDMA formation from selected pharmaceuticals in various water matrices. The results indicate the significant impact of water matrix components and reaction time on the NDMA formation from selected pharmaceuticals, and provide fresh insights on the estimation of ultimate NDMA formation potential from pharmaceutical precursors. Copyright © 2011 Elsevier Ltd. All rights reserved.
Near-Infrared Imaging for Spatial Mapping of Organic Content in Petroleum Source Rocks
NASA Astrophysics Data System (ADS)
Mehmani, Y.; Burnham, A. K.; Vanden Berg, M. D.; Tchelepi, H.
2017-12-01
Natural gas from unconventional petroleum source rocks (shales) plays a key role in our transition towards sustainable low-carbon energy production. The potential for carbon storage (in adsorbed state) in these formations further aligns with efforts to mitigate climate change. Optimizing production and development from these resources requires knowledge of the hydro-thermo-mechanical properties of the rock, which are often strong functions of organic content. This work demonstrates the potential of near-infrared (NIR) spectral imaging in mapping the spatial distribution of organic content with O(100µm) resolution on cores that can span several hundred feet in depth (Mehmani et al., 2017). We validate our approach for the immature oil shale of the Green River Formation (GRF), USA, and show its applicability potential in other formations. The method is a generalization of a previously developed optical approach specialized to the GRF (Mehmani et al., 2016a). The implications of this work for spatial mapping of hydro-thermo-mechanical properties of excavated cores, in particular thermal conductivity, are discussed (Mehmani et al., 2016b). References:Mehmani, Y., A.K. Burnham, M.D. Vanden Berg, H. Tchelepi, "Quantification of organic content in shales via near-infrared imaging: Green River Formation." Fuel, (2017). Mehmani, Y., A.K. Burnham, M.D. Vanden Berg, F. Gelin, and H. Tchelepi. "Quantification of kerogen content in organic-rich shales from optical photographs." Fuel, (2016a). Mehmani, Y., A.K. Burnham, H. Tchelepi, "From optics to upscaled thermal conductivity: Green River oil shale." Fuel, (2016b).
NASA Astrophysics Data System (ADS)
Dhraief, Wissem; Dhahri, Ferid; Chalwati, Imen; Boukadi, Noureddine
2017-04-01
The objective and the main contribution of this issue are dedicated to using subsurface data to delineate a basin beneath the Gulf of Tunis and its neighbouring areas, and to investigate the potential of this area in terms of hydrocarbon resources. Available well data provided information about the subsurface geology beneath the Gulf of Tunis. 2D seismic data allowed delineation of the basin shape, strata geometries, and some potential promising subsurface structures in terms of hydrocarbon accumulation. Together with lithostratigraphic data obtained from drilled wells, seismic data permitted the construction of isochron and isobath maps of Upper Cretaceous-Neogene strata. Structural and lithostratigraphic interpretations indicate that the area is tectonically complex, and they highlight the tectonic control of strata deposition during the Cretaceous and Neogene. Tectonic activity related to the geodynamic evolution of the northern African margin appears to have been responsible for several thickness and facies variations, and to have played a significant role in the establishment and evolution of petroleum systems in northeastern Tunisia. As for petroleum systems in the basin, the Cretaceous series of the Bahloul, Mouelha and Fahdene formations are acknowledged to be the main source rocks. In addition, potential reservoirs (Fractured Abiod and Bou Dabbous carbonated formations) sealed by shaly and marly formations (Haria and Souar formations respectively) show favourable geometries of trap structures (anticlines, tilted blocks, unconformities, etc.) which make this area adequate for hydrocarbon accumulations.
NASA Astrophysics Data System (ADS)
Liu, Shurong; Herbst, Michael; Bol, Roland; Gottselig, Nina; Pütz, Thomas; Weymann, Daniel; Wiekenkamp, Inge; Vereecken, Harry; Brüggemann, Nicolas
2016-04-01
Hydroxylamine (NH2OH), a reactive intermediate of several microbial nitrogen turnover processes, is a potential precursor of nitrous oxide (N2O) formation in the soil. However, the contribution of soil NH2OH to soil N2O emission rates in natural ecosystems is unclear. Here, we determined the spatial variability of NH2OH content and potential N2O emission rates of organic (Oh) and mineral (Ah) soil layers of a Norway spruce forest, using a recently developed analytical method for the determination of soil NH2OH content, combined with a geostatistical Kriging approach. Potential soil N2O emission rates were determined by laboratory incubations under oxic conditions, followed by gas chromatographic analysis and complemented by ancillary measurements of soil characteristics. Stepwise multiple regressions demonstrated that the potential N2O emission rates, NH2OH and nitrate (NO3-) content were spatially highly correlated, with hotspots for all three parameters observed in the headwater of a small creek flowing through the sampling area. In contrast, soil ammonium (NH4+) was only weakly correlated with potential N2O emission rates, and was excluded from the multiple regression models. While soil NH2OH content explained the potential soil N2O emission rates best for both layers, also NO3- and Mn content turned out to be significant parameters explaining N2O formation in both soil layers. The Kriging approach was improved markedly by the addition of the co-variable information of soil NH2OH and NO3- content. The results indicate that determination of soil NH2OH content could provide crucial information for the prediction of the spatial variability of soil N2O emissions.
Young, Adrian; Gardiner, Danielle; Brosnan, Margaret E; Brosnan, John T; Mailloux, Ryan J
2017-08-01
Here, we found that formate, an essential one-carbon metabolite, activates superoxide (O2·-)/hydrogen peroxide (H 2 O 2 ) release from mitochondria. Sodium formate (30 μm) induces a significant increase in O2·-/H 2 O 2 production in liver mitochondria metabolizing pyruvate (50 μm). At concentrations deemed to be toxic, formate does not increase O2·-/H 2 O 2 production further. It was observed that the formate-mediated increase in O2·-/H 2 O 2 production is not associated with cytochrome c oxidase (COX) inhibition or changes in membrane potential and NAD(P)H levels. Sodium formate supplementation increases phosphorylating respiration without altering proton leaks. Finally, it was observed that the 2-oxoglutarate dehydrogenase (OGDH) inhibitors 3-methyl-2-oxovaleric acid (KMV) and CPI-613 inhibit the formate-induced increase in pyruvate-driven ROS production. The importance of these findings in one-carbon metabolism and physiology are discussed herein. © 2017 Federation of European Biochemical Societies.
Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination.
Mitch, William A; Sedlak, David L
2002-02-15
Chlorine disinfection of secondary wastewater effluent and drinking water can result in the production of the potent carcinogen N-nitrosodimethylamine (NDMA) at concentrations of approximately 100 and 10 parts per trillion (ng/L), respectively. Laboratory experiments with potential NDMA precursors indicate that NDMA formation can form during the chlorination of dimethylamine and other secondary amines. The formation of NDMA during chlorination may involve the slow formation of 1,1-dimethylhydrazine by the reaction of monochloramine and dimethylamine followed by its rapid oxidation to NDMA and other products including dimethylcyanamide and dimethylformamide. Other pathways also lead to NDMA formation during chlorination such as the reaction of sodium hypochlorite with dimethylamine. However, the rate of NDMA formation is approximately an order of magnitude slower than that observed when monochloramine reacts with dimethylamine. The reaction exhibits a strong pH dependence due to competing reactions. It may be possible to reduce NDMA formation during chlorination by removing ammonia prior to chlorination, by breakpoint chlorination, or by avoidance of the use of monochloramine for drinking water disinfection.
NASA Astrophysics Data System (ADS)
Elsila, Jamie E.; Charnley, Steven B.; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason P.
2012-09-01
Stable hydrogen, carbon, and nitrogen isotopic ratios (δD, δ13C, and δ15N) of organic compounds can reveal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may indicate the most likely of these pathways. We have applied gas chromatography with mass spectrometry and combustion isotope ratio mass spectrometry to measure the compound-specific C, N, and H stable isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites: CM1/2 Allan Hills (ALH) 83100, CM2 Murchison, CM2 Lewis Cliff (LEW) 90500, CM2 Lonewolf Nunataks (LON) 94101, CR2 Graves Nunataks (GRA) 95229, CR2 Elephant Moraine (EET) 92042, and CR3 Queen Alexandra Range (QUE) 99177. We compare the isotopic compositions of amino acids in these meteorites with predictions of expected isotopic enrichments from potential formation pathways. We observe trends of decreasing δ13C and increasing δD with increasing carbon number in the α-H, α-NH2 amino acids that correspond to predictions made for formation via Strecker-cyanohydrin synthesis. We also observe light δ13C signatures for β-alanine, which may indicate either formation via Michael addition or via a pathway that forms primarily small, straight-chain, amine-terminal amino acids (n-ω-amino acids). Higher deuterium enrichments are observed in α-methyl amino acids, indicating formation of these amino acids or their precursors in cold interstellar or nebular environments. Finally, individual amino acids are more enriched in deuterium in CR chondrites than in CM chondrites, reflecting different parent-body chemistry.
Autonomous Guidance Strategy for Spacecraft Formations and Reconfiguration Maneuvers
NASA Astrophysics Data System (ADS)
Wahl, Theodore P.
A guidance strategy for autonomous spacecraft formation reconfiguration maneuvers is presented. The guidance strategy is presented as an algorithm that solves the linked assignment and delivery problems. The assignment problem is the task of assigning the member spacecraft of the formation to their new positions in the desired formation geometry. The guidance algorithm uses an auction process (also called an "auction algorithm''), presented in the dissertation, to solve the assignment problem. The auction uses the estimated maneuver and time of flight costs between the spacecraft and targets to create assignments which minimize a specific "expense'' function for the formation. The delivery problem is the task of delivering the spacecraft to their assigned positions, and it is addressed through one of two guidance schemes described in this work. The first is a delivery scheme based on artificial potential function (APF) guidance. APF guidance uses the relative distances between the spacecraft, targets, and any obstacles to design maneuvers based on gradients of potential fields. The second delivery scheme is based on model predictive control (MPC); this method uses a model of the system dynamics to plan a series of maneuvers designed to minimize a unique cost function. The guidance algorithm uses an analytic linearized approximation of the relative orbital dynamics, the Yamanaka-Ankersen state transition matrix, in the auction process and in both delivery methods. The proposed guidance strategy is successful, in simulations, in autonomously assigning the members of the formation to new positions and in delivering the spacecraft to these new positions safely using both delivery methods. This guidance algorithm can serve as the basis for future autonomous guidance strategies for spacecraft formation missions.
NASA Technical Reports Server (NTRS)
Elsila, Jamie E.; Charnley, Steven B.; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason P.
2012-01-01
Stable hydrogen, carbon, and nitrogen isotopic ratios (oD, 013C, and olSN) of organic compounds can revcal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may indicate the most likely of these pathways. We have applied gas chromatography with mass spectrometry and combustion isotope ratio mass spectrometry to measure the compound-specific C, N, and H stable isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites: CM1I2 Allan Hills (ALH) 83100, CM2 Murchison, CM2 Lewis Cliff (LEW) 90500, CM2 Lonewolf Nunataks (LON) 94101, CRZ Graves Nunataks (GRA) 95229, CRZ Elephant Moraine (EET) 92042, and CR3 Queen Alexandra Range (QUE) 99177. We compare the isotopic compositions of amino acids in these meteorites with predictions of expected isotopic enrichments from potential formation pathways. We observe trends of decreasing ODC and increasing oD with increasing carbon number in the aH, (l-NH2 amino acids that correspond to predictions made for formation via Streckercyanohydrin synthesis. We also observe light ODC signatures for -alanine, which may indicate either formation via Michael addition or via a pathway that forms primarily small, straight-chain, amine-terminal amino acids (n-ro-amino acids). Higher deuterium enrichments are observed in amethyl amino acids, indicating formation of these amino acids or their precursors in cold interstellar or nebular environments. Finally, individual amino acids are more enriched in deuterium in CR chondrites than CM chondrites, reflecting different parent-body chemistry.
The Arduous Journey to Black Hole Formation in Potential Gamma-Ray Burst Progenitors
NASA Astrophysics Data System (ADS)
Dessart, Luc; O'Connor, Evan; Ott, Christian D.
2012-07-01
We present a quantitative study on the properties at death of fast-rotating massive stars evolved at low-metallicity—objects that are proposed as likely progenitors of long-duration γ-ray bursts (LGRBs). We perform one-dimensional+rotation stellar-collapse simulations on the progenitor models of Woosley and Heger, and critically assess their potential for the formation of a black hole and a Keplerian disk (namely, a collapsar) or a proto-magnetar. We note that theoretical uncertainties in the treatment of magnetic fields and the approximate handling of rotation compromise the accuracy of stellar-evolution models. We find that only the fastest rotating progenitors achieve sufficient compactness for black hole formation while the bulk of models possess a core density structure typical of garden-variety core-collapse supernova (SN) progenitors evolved without rotation and at solar metallicity. Of the models that do have sufficient compactness for black hole formation, most of them also retain a large amount of angular momentum in the core, making them prone to a magneto-rotational explosion, therefore preferentially leaving behind a proto-magnetar. A large progenitor angular-momentum budget is often the sole criterion invoked in the community today to assess the suitability for producing a collapsar. This simplification ignores equally important considerations such as the core compactness, which conditions black hole formation, the core angular momentum, which may foster a magneto-rotational explosion preventing black hole formation, or the metallicity and the residual envelope mass which must be compatible with inferences from observed LGRB/SNe. Our study suggests that black hole formation is non-trivial, that there is room for accommodating both collapsars and proto-magnetars as LGRB progenitors, although proto-magnetars seem much more easily produced by current stellar-evolutionary models.
THE ARDUOUS JOURNEY TO BLACK HOLE FORMATION IN POTENTIAL GAMMA-RAY BURST PROGENITORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dessart, Luc; O'Connor, Evan; Ott, Christian D., E-mail: Luc.Dessart@oamp.fr, E-mail: evanoc@tapir.caltech.edu, E-mail: cott@tapir.caltech.edu
2012-07-20
We present a quantitative study on the properties at death of fast-rotating massive stars evolved at low-metallicity-objects that are proposed as likely progenitors of long-duration {gamma}-ray bursts (LGRBs). We perform one-dimensional+rotation stellar-collapse simulations on the progenitor models of Woosley and Heger, and critically assess their potential for the formation of a black hole and a Keplerian disk (namely, a collapsar) or a proto-magnetar. We note that theoretical uncertainties in the treatment of magnetic fields and the approximate handling of rotation compromise the accuracy of stellar-evolution models. We find that only the fastest rotating progenitors achieve sufficient compactness for black holemore » formation while the bulk of models possess a core density structure typical of garden-variety core-collapse supernova (SN) progenitors evolved without rotation and at solar metallicity. Of the models that do have sufficient compactness for black hole formation, most of them also retain a large amount of angular momentum in the core, making them prone to a magneto-rotational explosion, therefore preferentially leaving behind a proto-magnetar. A large progenitor angular-momentum budget is often the sole criterion invoked in the community today to assess the suitability for producing a collapsar. This simplification ignores equally important considerations such as the core compactness, which conditions black hole formation, the core angular momentum, which may foster a magneto-rotational explosion preventing black hole formation, or the metallicity and the residual envelope mass which must be compatible with inferences from observed LGRB/SNe. Our study suggests that black hole formation is non-trivial, that there is room for accommodating both collapsars and proto-magnetars as LGRB progenitors, although proto-magnetars seem much more easily produced by current stellar-evolutionary models.« less
Radiation hydrodynamics of super star cluster formation
NASA Astrophysics Data System (ADS)
Tsang, Benny Tsz Ho; Milos Milosavljevic
2018-01-01
Throughout the history of the Universe, the nuclei of super star clusters represent the most active sites for star formation. The high densities of massive stars within the clusters produce intense radiation that imparts both energy and momentum on the surrounding star-forming gas. Theoretical claims based on idealized geometries have claimed the dominant role of radiation pressure in controlling the star formation activity within the clusters. In order for cluster formation simulations to be reliable, numerical schemes have to be able to model accurately the radiation flows through the gas clumps at the cluster nuclei with high density contrasts. With a hybrid Monte Carlo radiation transport module we developed, we performed 3D radiation hydrodynamical simulations of super star cluster formation in turbulent clouds. Furthermore, our Monte Carlo radiation treatment provides a native capability to produce synthetic observations, which allows us to predict observational indicators and to inform future observations. We found that radiation pressure has definite, but minor effects on limiting the gas supply for star formation, and the final mass of the most massive cluster is about one million solar masses. The ineffective forcing was due to the density variations inside the clusters, i.e. radiation takes the paths of low densities and avoids forcing on dense clumps. Compared to a radiation-free control run, we further found that the presence of radiation amplifies the density variations. The core of the resulting cluster has a high stellar density, about the threshold required for stellar collisions and merging. The very massive star that form from the stellar merging could continue to gain mass from the surrounding gas reservoir that is gravitationally confined by the deep potential of the cluster, seeding the potential formation of a massive black hole.
Agarwal, Manjree; Ren, Yonglin; Newman, James; Learmonth, Stewart
2015-12-01
Export of Pink Lady apples from Australia has been significantly affected by infestations of adult eucalyptus weevils (Gonipterus platensis Marelli). These weevils cling tenaciously to the pedicel of apple fruit when selecting overwintering sites. As a result, apples infested with live G. platensis adults lead to rejection for export. Since the Montreal Protocol restricted use of methyl bromide as postharvest treatment, it was necessary to consider alternative safer fumigants for disinfestation of eucalyptus weevil. Laboratory experiments were conducted using concentrations of 5, 10, 15, 20, 25, 30, 40, and 80 mg/liter of ethyl formate. Complete control (100% mortality) was achieved at 25-30 mg/liter of ethyl formate at 22-24°C for 24-h exposure without apples. However, with 90-95% of the volume full of apples, complete control was achieved at 40 mg/liter of ethyl formate at 22-24°C for 24-h exposure. No phytotoxicity was observed and after one day aeration, residue of ethyl formate declined to natural levels (0.05-0.2 mg/kg). Five ethyl formate field trials were conducted in cool storages (capacity from 250-900 tons) and 100% kill of eucalyptus weevils were achieved at 50-55 mg/liter at 7-10°C for 24 h. Ethyl formate has great potential for preshipment treatment of apples. Its use is considerably cheaper and safer than already existing fumigants like methyl bromide and phosphine. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Landmeyer, J.E.; Bradley, P.M.
1998-01-01
Test well BFT-2055 was drilled through the entire thickness of Coastal Plain sediments beneath central Hilton Head Island, South Carolina, and terminated in bedrock at a depth of 3833 feet. The well was drilled to evaluate the hydraulic properties of the Cretaceous formations beneath Hilton Head Island as a potential source of supplemental water to supplies currently withdrawn from the Upper Floridan aquifer. The intervals tested include sediments of the Cape Fear and Middendorf Formations. Results from aquifer tests indicate that the transmissivity of the formations screened ranges from 1300 to 3000 feet squared per day and an average hydraulic conductivity of about 15 feet per day. Formation-fluid pressure tests indicate that the potential exists for upward ground-water flow from higher fluid pressures in the deeper Cape Fear and Middendorf Formations to lower fluid pressures in the Black Creek Formation and shallower units. A flowmeter test indicated that greater than 75 percent of the natural, unpumped flow in the well is from the screened intervals no deeper than 3100 feet. Water-chemistry analyses indicate that the water sampled from the Middendorf and Cape Fear has about 1450 milligrams per liter dissolved solids, 310 to 1000 milligrams per liter sodium, and 144 to 1600 milligrams per liter chloride. Because these chloride concentrations would render water pumped from these aquifers as nonpotable, it is unlikely that these aquifers will be used as a supplemental source of water for island residents without some form of pretreatment. Similar chloride concentrations are present in some wells in the Upper Floridan aquifer adjacent to Port Royal Sound, and these chloride concentrations were the primary reason for drilling the test well in the Cretaceous formations as a possible source of more potable water.
NASA Astrophysics Data System (ADS)
Uda, M. N. A.; Hasfalina, C. M.; Samsuzanaa, A. A.; Faridah, S.; Zamri, I.; Noraini, B. Siti; Sabrina, W. Nur; Hashim, U.; Gopinath, Subash C. B.
2017-03-01
The plant disease such as Rice tungro disease (RTD) becomes a major problem in rice production and also will effect in the economy loss in the country. Therefore, to tackle this problem at early stages, the immunosensor application is a most reliable sensor nowadays because of advantages towards detecting biological molecule. Thus, in order to deal with immunosensor development, it can be done by undergoing the formation of immunosensor format on screen-printed carbon electrode (SPCE). Results can be elaborated with the potential applications to detect the viruses.
RTG resource book for western states and provinces: Final proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Western Interstate Energy Board held a workshop and liaison activities among western states, provinces, and utilities on the formation of Regional Transmission Groups (RTGs). Purpose of the activities was to examine the policy implications for western states and provinces in the formation of RTGs in the West, the implications for western ratepayers and utilities of the RTG formation and potential impacts of RTGs on the western electricity system. The workshop contributed to fulfilling the transmission access and competition objectives of Title VII of the Energy Policy Act of 1992.
Properties of the outer regions of spiral disks: abundances, colors and ages
NASA Astrophysics Data System (ADS)
Mollá, Mercedes; Díaz, Angeles I.; Gibson, Brad K.; Cavichia, Oscar; López-Sánchez, Ángel-R.
2017-03-01
We summarize the results obtained from our suite of chemical evolution models for spiral disks, computed for different total masses and star formation efficiencies. Once the gas, stars and star formation radial distributions are reproduced, we analyze the Oxygen abundances radial profiles for gas and stars, in addition to stellar averaged ages and global metallicity. We examine scenarios for the potential origin of the apparent flattening of abundance gradients in the outskirts of disk galaxies, in particular the role of molecular gas formation prescriptions.
De Cremer, Kaat; Delattin, Nicolas; De Brucker, Katrijn; Peeters, Annelies; Kucharíková, Soña; Gerits, Evelien; Verstraeten, Natalie; Michiels, Jan; Van Dijck, Patrick; Thevissen, Karin
2014-01-01
We here report on the in vitro activity of toremifene to inhibit biofilm formation of different fungal and bacterial pathogens, including Candida albicans, Candida glabrata, Candida dubliniensis, Candida krusei, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis. We validated the in vivo efficacy of orally administered toremifene against C. albicans and S. aureus biofilm formation in a rat subcutaneous catheter model. Combined, our results demonstrate the potential of toremifene as a broad-spectrum oral antibiofilm compound. PMID:25288093
Study of charge transfer complexes of menadione (vitamin K 3) with a series of anilines
NASA Astrophysics Data System (ADS)
Pal, Purnendu; Saha, Avijit; Mukherjee, Asok K.; Mukherjee, Dulal C.
2004-01-01
Menadione (vitamin K 3) has been shown to form charge transfer complexes with N, N-dimethyl aniline, N, N-dimethyl p-toluidine and N, N-dimethyl m-toluidine in CCl 4 medium. The CT transition energies are well correlated with the ionisation potentials of the anilines. The formation constants of the complexes have been determined at a number of temperatures from which the enthalpies and entropies of formation have been obtained. The formation constants exhibit a very good linear free energy relationship (Hammett) at all the temperatures studied.
Bone Repair and Military Readiness
2012-10-25
formation. Orthopedic surgeons have had to adapt surgical techniques to account for issues with cementing total joint prostheses and subsequent total joint ...the silorane composite has the potential to support osseous integration around the cemented total joint implant and may generate less immunogenic wear...factors, and potential for osseointegration/osseoinduction, this material has potential to be used for screw augmentation, total hip/knee joint
Evaluation of porous carbon felt as an aerobic biocathode support in terms of hydrogen peroxide
NASA Astrophysics Data System (ADS)
Milner, Edward M.; Scott, Keith; Head, Ian M.; Curtis, Tom; Yu, Eileen Hao
2017-07-01
Aerobic biocathodes provide a low-cost and sustainable substitute for expensive precious metal catalysts at the cathode of Microbial Fuel Cells (MFCs). However, the abiotic formation of peroxide, which is catalyzed by the porous carbon support at certain cathode potentials, may be detrimental to their activity. Two different carbon felt supports, one treated with nitric acid, the other untreated, were characterized electrochemically through a series of chronoamperometry (CA) experiments using a novel 4-electrode electrochemical setup, in order to determine the potential at which peroxide is initially formed. Peroxide was detected at a potential of -0.2 V (all potentials are against Ag/AgCl) for the untreated carbon felt electrode and at a potential of -0.05 V for the nitric acid treated carbon felt. Given these results, two half-cells poised at -0.2 and -0.1 V were setup in order to study biocathode formation. The half-cell poised at -0.2 V did not develop an aerobic biocathode, whereas the half-cell poised at -0.1 V developed an aerobic biocathode. This study shows that to develop aerobic biocathodes on carbon felt, cathode electrode potentials more positive than -0.2 V must be applied.
New interatomic potentials of W, Re and W-Re alloy for radiation defects
NASA Astrophysics Data System (ADS)
Chen, Yangchun; Li, Yu-Hao; Gao, Ning; Zhou, Hong-Bo; Hu, Wangyu; Lu, Guang-Hong; Gao, Fei; Deng, Huiqiu
2018-04-01
Tungsten (W) and W-based alloys have been considered as promising candidates for plasma-facing materials (PFMs) in future fusion reactors. The formation of rhenium (Re)-rich clusters and intermetallic phases due to high energy neutron irradiation and transmutations significantly induces the hardening and embrittlement of W. In order to better understand these phenomena, in the present work, new interatomic potentials of W-W, Re-Re and W-Re, suitable for description of radiation defects in such alloys, have been developed. The fitted potentials not only reproduce the results of the formation energy, binding energy and migration energy of various radiation defects and the physical properties from the extended database obtained from DFT calculations, but also predict well the relative stability of different interstitial dislocation loops in W, as reported in experiments. These potentials are applicable for describing the evolution of defects in W and W-Re alloys, thus providing a possibility for the detailed understanding of the precipitation mechanism of Re in W under irradiation.
The evidence for natural therapeutics as potential anti-scarring agents in burn-related scarring.
Mehta, M; Branford, O A; Rolfe, K J
2016-01-01
Though survival rate following severe thermal injuries has improved, the incidence and treatment of scarring have not improved at the same speed. This review discusses the formation of scars and in particular the formation of hypertrophic scars. Further, though there is as yet no gold standard treatment for the prevention or treatment of scarring, a brief overview is included. A number of natural therapeutics have shown beneficial effects both in vivo and in vitro with the potential of becoming clinical therapeutics in the future. These natural therapeutics include both plant-based products such as resveratrol, quercetin and epigallocatechin gallate as examples and includes the non-plant-based therapeutic honey. The review also includes potential mechanism of action for the therapeutics, any recorded adverse events and current administration of the therapeutics used. This review discusses a number of potential 'treatments' that may reduce or even prevent scarring particularly hypertrophic scarring, which is associated with thermal injuries without compromising wound repair.
Genovese, Chiara; Schuster, Manfred E; Gibson, Emma K; Gianolio, Diego; Posligua, Victor; Grau-Crespo, Ricardo; Cibin, Giannantonio; Wells, Peter P; Garai, Debi; Solokha, Vladyslav; Krick Calderon, Sandra; Velasco-Velez, Juan J; Ampelli, Claudio; Perathoner, Siglinda; Held, Georg; Centi, Gabriele; Arrigo, Rosa
2018-03-05
The carbon-carbon coupling via electrochemical reduction of carbon dioxide represents the biggest challenge for using this route as platform for chemicals synthesis. Here we show that nanostructured iron (III) oxyhydroxide on nitrogen-doped carbon enables high Faraday efficiency (97.4%) and selectivity to acetic acid (61%) at very-low potential (-0.5 V vs silver/silver chloride). Using a combination of electron microscopy, operando X-ray spectroscopy techniques and density functional theory simulations, we correlate the activity to acetic acid at this potential to the formation of nitrogen-coordinated iron (II) sites as single atoms or polyatomic species at the interface between iron oxyhydroxide and the nitrogen-doped carbon. The evolution of hydrogen is correlated to the formation of metallic iron and observed as dominant reaction path over iron oxyhydroxide on oxygen-doped carbon in the overall range of negative potential investigated, whereas over iron oxyhydroxide on nitrogen-doped carbon it becomes important only at more negative potentials.
Anisotropic etching of platinum electrodes at the onset of cathodic corrosion
Hersbach, Thomas J. P.; Yanson, Alexei I.; Koper, Marc T. M.
2016-01-01
Cathodic corrosion is a process that etches metal electrodes under cathodic polarization. This process is presumed to occur through anionic metallic reaction intermediates, but the exact nature of these intermediates and the onset potential of their formation is unknown. Here we determine the onset potential of cathodic corrosion on platinum electrodes. Electrodes are characterized electrochemically before and after cathodic polarization in 10 M sodium hydroxide, revealing that changes in the electrode surface start at an electrode potential of −1.3 V versus the normal hydrogen electrode. The value of this onset potential rules out previous hypotheses regarding the nature of cathodic corrosion. Scanning electron microscopy shows the formation of well-defined etch pits with a specific orientation, which match the voltammetric data and indicate a remarkable anisotropy in the cathodic etching process, favouring the creation of (100) sites. Such anisotropy is hypothesized to be due to surface charge-induced adsorption of electrolyte cations. PMID:27554398
NASA Astrophysics Data System (ADS)
Stang, Dallon Michael
Petrographic, conglomerate and detrital-zircon analyses of formations in southern California can determine consanguineous petrofacies and lithofacies that help constrain paleotectonic and paleogeographic reconstructions of the southwestern United States. Arkosic sandstone of the lower Middle Miocene Cajon Valley formation is exposed on the southwest edge of the Mojave block and juxtaposed against Mesozoic and Paleozoic rocks by the San Andreas fault (SAf). Early work in Cajon Valley referred to the formation as Punchbowl, due to its similar appearance to the Punchbowl Formation at Devil's Punchbowl (northwest along the SAf). However, paleontological work placed Cajon Valley strata in the Hemingfordian-Barstovian (18-14 Ma), as opposed to the Clarendonian-Hemphillian (13-9 Ma) Punchbowl Formation. Since the Cajon Valley formation was deposited prior to being truncated by the San Andreas fault, the 2400m-thick, laterally extensive subaerial deposits likely were deposited across what is now the fault trace. Restoring 310 km of dextral slip on the SAf system should indicate the location of offset equivalent sandstone. Restoration of slip on the SAf system places Cajon Valley adjacent to the Caliente and La Panza Ranges, east of San Luis Obispo. Although analysis of detrital zircon from Cenozoic sandstone throughout southern California has been crucial in establishing paleodrainage areas, detrital zircon from the Cajon Valley and equivalent formations had not been analyzed prior to this study. Paleocurrents measured throughout the Cajon Valley formation indicate a source to the NE, in the Mojave Desert. Sandstone samples analyzed in thin section using the Gazzi-Dickinson method of point-counting are homogeneously arkosic, with slight compositional variability, making differentiation of the Cajon Valley formation and potential offset equivalents problematic. However, Branch Canyon Sandstone and Santa Margarita Formation samples are compositionally the best match for the Cajon Valley formation. Detrital-zircon ages were determined from the Cajon Valley formation and related strata. These data are slightly more variable than sandstone composition, with distinct age peaks at 85-90 Ma, 150 Ma and 250 Ma. These ages correlate with batholiths in the SW Mojave Desert. Of the nine samples from six formations collected as potential offset equivalents, Branch Canyon and Santa Margarita samples are most similar to Cajon Valley samples, in terms of both detrital-zircon ages and sandstone composition. Based on 310km of post-Miocene offset on the San Andreas fault system, the Cajon Valley formation restores adjacent to shallow-marine sandstone of the Santa Margarita Formation and Branch Canyon Sandstone Member of the Monterey Formation in the Caliente and La Panza ranges. Cajon Valley sandstone is interpreted to represent a Miocene fluvial system on a coastal plain, flowing toward a delta on a narrow continental shelf.
Anti-atherosclerotic potential of gossypetin via inhibiting LDL oxidation and foam cell formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jing-Hsien; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan; Tsai, Chia-Wen
Gossypetin, a flavone originally isolated from Hibiscus species, has been shown to possess antioxidant, antimicrobial, and antimutagenic activities. Here, we investigated the mechanism(s) underlying the anti-atherosclerotic potential of gossypetin. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) scavenging activity assay showed that the addition of > 50 μM of gossypetin could scavenge over 50% of DPPH radicals. The inhibitory effects of gossypetin on the lipid and protein oxidation of LDL were defined by thiobarbituric acid reactive substance (TBARS) assay, the relative electrophoretic mobility (REM) of oxidized LDL (ox-LDL), and fragmentation of apoB in the Cu{sup 2+}-induced oxidation of LDL. Gossypetin showed potential in reducing ox-LDL-induced foammore » cell formation and intracellular lipid accumulation, and uptake ability of macrophages under non-cytotoxic concentrations. Molecular data showed that these influences of gossypetin might be mediated via peroxisome proliferator-activated receptor α (PPARα)/liver-X receptor α (LXRα)/ATP-binding cassette transporter A1 (ABCA1) and PPARγ/scavenger receptor CD36 pathways, as demonstrated by the transfection of PPARα siRNA or PPARγ expression vector. Our data implied that gossypetin regulated the PPAR signals, which in turn led to stimulation of cholesterol removal from macrophages and delay atherosclerosis. These results suggested that gossypetin potentially could be developed as an anti-atherosclerotic agent. - Highlights: • The anti-atherosclerotic effect of gossypetin in vitro was examined. • Gossypetin inhibited LDL oxidation. • Gossypetin showed potential in reducing on the formation of foam cells. • Gossypetin functions against ox-LDL through PPARa activation and PPARγ depression.« less
Xu, Fei; Zhang, Ruiming; Li, Yunfeng; Zhang, Qingzhu; Wang, Wenxing
2015-01-01
Polychlorinated naphthalenes (PCNs) are dioxins-like compounds and are formed along with polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in thermal and combustion procedures. Chlorophenols (CPs) are the most important forerunners of PCNs. A comprehensive comprehension of PCN formation procedure from CPs is a precondition for reducing the discharge of PCNs. Experiments on the formation of PCNs from CPs have been hindered by PCN toxicity and short of precise detection methods for active intermediate radicals. In this work, PCN formation mechanism in gas-phase condition from 2-chlorophenol (2-CP) as forerunner was studied by quantum chemistry calculations. Numbers of energetically advantaged formation routes were proposed. The rate constants of key elementary steps were calculated over 600–1200 K using canonical variational transition-state theory (CVT) with small curvature tunneling contribution (SCT) method. This study illustrates formation of PCNs with one chlorine atom loss from 2-CP is preferred over that without chlorine atom loss. In comparison with formation of PCDFs from 2-CP, PCN products are less chlorinated and have lower formation potential. PMID:26516839
Xu, Fei; Zhang, Ruiming; Li, Yunfeng; Zhang, Qingzhu; Wang, Wenxing
2015-10-26
Polychlorinated naphthalenes (PCNs) are dioxins-like compounds and are formed along with polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in thermal and combustion procedures. Chlorophenols (CPs) are the most important forerunners of PCNs. A comprehensive comprehension of PCN formation procedure from CPs is a precondition for reducing the discharge of PCNs. Experiments on the formation of PCNs from CPs have been hindered by PCN toxicity and short of precise detection methods for active intermediate radicals. In this work, PCN formation mechanism in gas-phase condition from 2-chlorophenol (2-CP) as forerunner was studied by quantum chemistry calculations. Numbers of energetically advantaged formation routes were proposed. The rate constants of key elementary steps were calculated over 600-1200 K using canonical variational transition-state theory (CVT) with small curvature tunneling contribution (SCT) method. This study illustrates formation of PCNs with one chlorine atom loss from 2-CP is preferred over that without chlorine atom loss. In comparison with formation of PCDFs from 2-CP, PCN products are less chlorinated and have lower formation potential.
Saline-water resources of Texas
Winslow, Allen George; Kister, Lester Ray
1956-01-01
Most of the aquifers in Texas contain saline water in some parts, and a few are capable of producing large quantities of saline water. Of the early Paleozoic formations, the Hickory sandstone member of the Riley formation of Cambrian age and the Ellenburger group of Ordovician age are potential sources of small to moderate supplies of saline water in parts of central and west-central Texas.
ERIC Educational Resources Information Center
Farrell, Shannon L.; Kelly, Julia Ann
2018-01-01
Describing, preserving, and providing access to data is now the purview of many science librarians, although the emphasis has been on data in electronic format. Data in paper or analog format might be found in many places around our campuses. At the University of Minnesota we conducted a preliminary investigation of analog data through discussions…
ERIC Educational Resources Information Center
Kirwan, Morwenna; Duncan, Mitch J.; Vandelanotte, Corneel; Mummery, W. Kerry
2013-01-01
Objectives: Limited research exists addressing the development of health-related smartphone apps, a new and potentially effective health promotion delivery strategy. This article describes the development and formative evaluation of a smartphone app associated with a physical activity promotion website. Methods: A combination of qualitative and…
Carrasco-Labra, Alonso; Brignardello-Petersen, Romina; Santesso, Nancy; Neumann, Ignacio; Mustafa, Reem A; Mbuagbaw, Lawrence; Etxeandia Ikobaltzeta, Itziar; De Stio, Catherine; McCullagh, Lauren J; Alonso-Coello, Pablo; Meerpohl, Joerg J; Vandvik, Per Olav; Brozek, Jan L; Akl, Elie A; Bossuyt, Patrick; Churchill, Rachel; Glenton, Claire; Rosenbaum, Sarah; Tugwell, Peter; Welch, Vivian; Garner, Paul; Guyatt, Gordon; Schünemann, Holger J
2016-06-01
The current format of summary of findings (SoFs) tables for presenting effect estimates and associated quality of evidence improve understanding and assist users finding key information in systematic reviews. Users of SoF tables have demanded alternative formats to express findings from systematic reviews. We conducted a randomized controlled trial among systematic review users to compare the relative merits of a new format with the current formats of SoF tables regarding understanding, accessibility of information, satisfaction, and preference. Our primary goal was to show that the new format is not inferior to the current format. Of 390 potentially eligible subjects, 290 were randomized. Of seven items testing understanding, three showed similar results, two showed small differences favoring the new format, and two (understanding risk difference and quality of the evidence associated with a treatment effect) showed large differences favoring the new format [63% (95% confidence interval {CI}: 55, 71) and 62% (95% CI: 52, 71) more correct answers, respectively]. Respondents rated information in the alternative format as more accessible overall and preferred the new format over the current format. While providing at least similar levels of understanding for some items and increased understanding for others, users prefer the new format of SoF tables. Copyright © 2016 Elsevier Inc. All rights reserved.
Therapeutic Potential of Modulating microRNAs in Atherosclerotic Vascular Disease
Araldi, Elisa; Chamorro-Jorganes, Aranzazu; van Solingen, Coen; Fernández-Hernando, Carlos; Suárez, Yajaira
2013-01-01
Atherosclerosis (also known as arteriosclerotic vascular disease) is a chronic inflammatory disease of the arterial wall, characterized by the formation of lipid-laden lesions. The activation of endothelial cells at atherosclerotic lesion–prone sites in the arterial tree results in the up-regulation of cell adhesion molecules and chemokines, which mediate the recruitment of circulating monocytes. Accumulation of monocytes and monocyte-derived phagocytes in the wall of large arteries leads to chronic inflammation and the development and progression of atherosclerosis. The lesion experiences the following steps: foam cell formation, fatty streak accumulation, migration and proliferation of vascular smooth muscle cells, and fibrous cap formation. Finally, the rupture of the unstable fibrous cap causes thrombosis in complications of advanced lesions that leads to unstable coronary syndromes, myocardial infarction and stroke. MicroRNAs have recently emerged as a novel class of gene regulators at the post-transcriptional level. Several functions of vascular cells, such as cell differentiation, contraction, migration, proliferation and inflammation that are involved in angiogenesis, neointimal formation and lipid metabolism underlying various vascular diseases, have been found to be regulated by microRNAs and are described in the present review as well as their potential therapeutic application. PMID:23713860
Novel targets for the treatment of autosomal dominant polycystic kidney disease
Belibi, Franck A; Edelstein, Charles L
2010-01-01
Importance of the field Autosomal dominant (AD) polycystic kidney disease (PKD) is the most common life-threatening hereditary disorder. There is currently no therapy that slows or prevents cyst formation and kidney enlargement in humans. An increasing number of animal studies have advanced our understanding of molecular and cellular targets of PKD. Areas covered in the review The purpose of this review is to summarize the molecular and cellular targets involved in cystogenesis and to update on the promising therapies that are being developed and tested based on knowledge of these molecular and cellular targets. What the reader will gain Insight into the pathogenesis of PKD and how a better understanding of the pathogenesis of PKD has led to the development of potential therapies to inhibit cyst formation and/or growth and improve kidney function. Take home message The results of animal studies in PKD have led to the development of clinical trials testing potential new therapies to reduce cyst formation and/or growth. A vasopressin V2 receptor antagonist, mTOR inhibitors, blockade of the renin–angiotensin system and statins that reduce cyst formation and improve renal function in animal models of PKD are being tested in interventional studies in humans. PMID:20141351
Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Cho, Seong Jun; Lee, Ju Dong; Lee, Kun-Hong
2016-08-16
Natural gas hydrates are solid hydrogen-bonded water crystals containing small molecular gases. The amount of natural gas stored as hydrates in permafrost and ocean sediments is twice that of all other fossil fuels combined. However, hydrate blockages also hinder oil/gas pipeline transportation, and, despite their huge potential as energy sources, our insufficient understanding of hydrates has limited their extraction. Here, we report how the presence of amino acids in water induces changes in its structure and thus interrupts the formation of methane and natural gas hydrates. The perturbation of the structure of water by amino acids and the resulting selective inhibition of hydrate cage formation were observed directly. A strong correlation was found between the inhibition efficiencies of amino acids and their physicochemical properties, which demonstrates the importance of their direct interactions with water and the resulting dissolution environment. The inhibition of methane and natural gas hydrate formation by amino acids has the potential to be highly beneficial in practical applications such as hydrate exploitation, oil/gas transportation, and flow assurance. Further, the interactions between amino acids and water are essential to the equilibria and dynamics of many physical, chemical, biological, and environmental processes.
Formation mechanism of the graphite-rich protective layer in blast furnace hearths
NASA Astrophysics Data System (ADS)
Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Liu, Feng; Liang, Li-sheng
2016-01-01
A long campaign life of blast furnaces is heavily linked to the existence of a protective layer in their hearths. In this work, we conducted dissection studies and investigated damage in blast furnace hearths to estimate the formation mechanism of the protective layer. The results illustrate that a significant amount of graphite phase was trapped within the hearth protective layer. Furthermore, on the basis of the thermodynamic and kinetic calculations of the graphite precipitation process, a precipitation potential index related to the formation of the graphite-rich protective layer was proposed to characterize the formation ability of this layer. We determined that, under normal operating conditions, the precipitation of graphite phase from hot metal was thermodynamically possible. Among elements that exist in hot metal, C, Si, and P favor graphite precipitation, whereas Mn and Cr inhibit this process. Moreover, at the same hot-face temperature, an increase of carbon concentration in hot metal can shorten the precipitation time. Finally, the results suggest that measures such as reducing the hot-face temperature and increasing the degree of carbon saturation in hot metal are critically important to improve the precipitation potential index.
Chanda, Warren; Joseph, Thomson Patrick; Padhiar, Arshad Ahmed; Guo, Xuefang; Min, Liu; Wang, Wendong; Lolokote, Sainyugu; Ning, Anhong; Cao, Jing; Huang, Min; Zhong, Mintao
2017-01-01
Pseudomonas aeruginosa is a ubiquitous Gram negative opportunistic pathogen capable of causing severe nosocomial infections in humans, and tobramycin is currently used to treat P. aeruginosa associated lung infections. Quorum sensing regulates biofilm formation which allows the bacterium to result in fatal infections forcing clinicians to extensively use antibiotics to manage its infections leading to emerging multiple drug resistant strains. As a result, tobramycin is also becoming resistant. Despite extensive studies on drug discovery to alleviate microbial drug resistance, the continued microbial evolution has forced researchers to focus on screening various phytochemicals and dietary compounds for antimicrobial potential. Linolenic acid (LNA) is an essential fatty acid that possesses antimicrobial actions on various microorganisms. It was hypothesized that LNA may affect the formation of biofilm on P. aeruginosa and improve the potency of tobramycin. The present study demonstrated that LNA interfered with cell-to-cell communication and reduced virulence factor production. It further enhanced the potency of tobramycin and synergistically inhibited biofilm formation through P. aeruginosa quorum sensing systems. Therefore, LNA may be considered as a potential agent for adjunctive therapy and its utilization may decrease tobramycin concentration in combined treatment thereby reducing aminoglycoside adverse effects. PMID:29104645
Zhang, Peng; Du, Guocheng; Zou, Huijun; Xie, Guangfa; Chen, Jian; Shi, Zhongping; Zhou, Jingwen
2017-03-01
Ubiquitination can significantly affect the endocytosis and degradation of plasma membrane proteins. Here, the ubiquitination of a Saccharomyces cerevisiae urea plasma membrane transporter (Dur3p) was altered. Two potential ubiquitination sites, lysine residues K556 and K571, of Dur3p were predicted and replaced by arginine, and the effects of these mutations on urea utilization and formation under different nitrogen conditions were investigated. Compared with Dur3p, the Dur3p K556R mutant showed a 20.1% decrease in ubiquitination level in yeast nitrogen base medium containing urea and glutamine. It also exhibited a >75.8% decrease in urea formation in yeast extract-peptone-dextrose medium and 41.3 and 55.4% decreases in urea and ethyl carbamate formation (a known carcinogen), respectively, in a model rice wine system. The results presented here show that the mutation of Dur3p ubiquitination sites could significantly affect urea utilization and formation. Modifying the ubiquitination of specific transporters might have promising applications in rationally engineering S. cerevisiae strains to efficiently use specific nitrogen sources.
Biological Communities in Desert Varnish and Potential Implications for Varnish Formation Mechanisms
NASA Astrophysics Data System (ADS)
Lang-Yona, Naama; Maier, Stefanie; Macholdt, Dorothea; Rodriguez-Caballero, Emilio; Müller-Germann, Isabell; Yordanova, Petya; Jochum, Klaus-Peter; Andreae, Meinrat O.; Pöschl, Ulrich; Weber, Bettina; Fröhlich-Nowoisky, Janine
2017-04-01
Desert varnishes are thin, orange to black coatings found on rocks in arid and semi-arid environments on Earth. The formation mechanisms of rock varnish are still under debate and the involvement of microorganisms in this process remains unclear. In this work we aimed to identify the microbial community occurring in rock varnish to potentially gain insights into the varnish formation mechanism. For this purpose, rocks coated with desert varnish were collected from the Anza-Borrego Desert, California, USA, as well as soils from underneath the rocks. DNA from both varnish coatings and soil samples was extracted and subsequently used for metagenomic analysis, as well as for q-PCR analyses for specific species quantification. The element composition of the varnish coatings was analyzed and compared to the soil samples. Rock varnish shows similar depleted elements, compared to soil, but Mn and Pb are 50-60 times enriched compared to the soil samples, and about 100 times enriched compared to the upper continental crust. Our genomic analyses suggest unique populations and different protein functional groups occurring in the varnish compared to soil samples. We discuss these differences and try to shed light on the mechanism of Mn oxyhydroxide production in desert varnish formation.
Preparation of self-assembled microspheres and their potential for drug delivery.
Mellors, Rachel; Benzeval, Ian; Eisenthal, Robert; Hubble, John
2010-01-01
Dextran solutions intended for use as plasma extenders have been observed to form insoluble precipitates. Earlier studies of precipitation have shown that in solutions of 50% and 60% w/w of dextran molecular mass 6000 g mol(-1) beaded precipitates are formed over a two-week period. This study considers dextran precipitation over a wider molecular mass range and the kinetics, of formation, morphology and potential utility of these precipitates is investigated. Results show precipitation occurs over the dextran molecular mass range 6000-17,000 g mol(-1), with lower molecular mass material showing more rapid precipitation. As bead formation is accompanied by an increase in turbidity, formation kinetics were quantified spectrophotometrically confirming that precipitation rates were inversely proportional to molecular mass. The utility of these precipitates for drug delivery applications was assessed using bovine serum albumin as a protein drug analogue. The results showed that the inclusion of protein did not prevent bead formation and that entrapped protein was subsequently released from dextran beads in a time dependant manner. This suggests that dextran beads of this type may find application in the drug delivery area, as they combine the advantages of mild entrapment conditions with the use of an unmodified clinically approved polymer.
Pisarenko, Aleksey N; Stanford, Benjamin D; Yan, Dongxu; Gerrity, Daniel; Snyder, Shane A
2012-02-01
An ozone and ozone/peroxide oxidation process was evaluated at pilot scale for trace organic contaminant (TOrC) mitigation and NDMA formation in both drinking water and water reuse applications. A reverse osmosis (RO) pilot was also evaluated as part of the water reuse treatment train. Ozone/peroxide showed lower electrical energy per order of removal (EEO) values for TOrCs in surface water treatment, but the addition of hydrogen peroxide increased EEO values during wastewater treatment. TOrC oxidation was correlated to changes in UV(254) absorbance and fluorescence offering a surrogate model for predicting contaminant removal. A decrease in N-nitrosodimethylamine (NDMA) formation potential (after chloramination) was observed after treatment with ozone and ozone/peroxide. However, during spiking experiments with surface water, ozone/peroxide achieved limited destruction of NDMA, while in wastewaters net direct formation of NDMA of 6-33 ng/L was observed after either ozone or ozone/peroxide treatment. Once formed during ozonation, NDMA passed through the subsequent RO membranes, which highlights the significance of the potential for direct NDMA formation during oxidation in reuse applications. Copyright © 2011 Elsevier Ltd. All rights reserved.
In-situ observation of the chemical erosion of graphite in the scrape-off-layer of TEXTOR
NASA Astrophysics Data System (ADS)
Philipps, V.; Vietzke, E.; Erdweg, M.
1989-04-01
A sniffer probe system has been used to investigate the chemical erosion during interaction of the TEXTOR scrape-off plasma with a pyrolytic graphite plate at temperatures up to 1400 °C. Floating potential conditions as well as 200 V bias has been applied at plasma ion fluxes of about 10 18ions/cm 2 sec.Methane formation was found to be 8 × 10 -3 CH 4/H and 1.5 × 10 -2 CD 4/D + for room temperature graphite and floating potential increasing by a factor of two at temperature around 500 °C. Biasing the graphite decreases the methane yield at room temperature and increase it in the maximum temperature range. CO formation due to chemical interaction of oxygen ions with the graphite reaches ratios between 3 and 6 × 10 -2 CO/D(H) near the limiter edge under normal TEXTOR scrape-off conditions and exceeds the chemical hydro-(deu-tero-carbon formation significantly. The results are discussed in view of the present status of hydro-(deutero-)carbon formation on graphite and carbon impurity observations made in fusion experiments.
Planet Formation and the Characteristics of Extrasolar Planets
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
An overview of current theories of planetary growth, emphasizing the formation of extrasolar planets, is presented. Models of planet formation are based upon observations of the Solar System, extrasolar planets, and young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but if they become massive enough before the protoplanetary disk dissipates, then they are able to accumulate substantial amounts of gas. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.
Mayer, Brooke K; Daugherty, Erin; Abbaszadegan, Morteza
2015-02-01
Advanced oxidation processes (AOPs) are gaining traction as they offer mineralization potential rather than transferring contaminants between media. However, AOPs operated with limited energy and/or chemical inputs can exacerbate disinfection byproduct (DBP) formation, even as precursors such as dissolved organic carbon, UV254, and specific UV absorbance (SUVA) decrease. This study examined the relationship between DBP precursors and formation using TiO2 photocatalysis experiments, external AOP and non-AOP data, and predictive DBP models. The top-performing indicator, SUVA, generally correlated positively with trihalomethanes and haloacetic acids, but limited-energy photocatalysis yielded contrasting negative correlations. The accuracy of predicted DBP values from models based on bulk parameters was generally poor, regardless of use and extent of AOP treatment and type of source water. Though performance improved for scenarios bounded by conditions used in model development, only 0.5% of the model/dataset pairings satisfied all measured parameter boundary conditions, thereby introducing skepticism toward model usefulness. Study findings suggest that caution should be employed when using bulk indicators and/or models as a metric for AOP mitigation of DBP formation potential, particularly for limited-energy/chemical inputs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Investigation on the photoreactions of nitrate and nitrite ions with selected azaarenes in water
Beitz; Bechmann; Mitzner
1999-01-01
The photoreactions of selected azaarenes with nitrate and nitrite ions were investigated under irradiation at lambda = 313 nm. The excitation of both anions leads to several photochemical reactions forming mainly hydroxyl radicals and nitrogen oxides. The purification capability of natural waters i.e. the oxidation of inorganic and organic substances results from the formation of hydroxyl radicals. Nitrated isomers of azaarenes were found among the main products of the investigated photoreactions. The nitrogen oxides were responsible for the production of nitrated derivatives which possess a high toxic potential. Their formation was explained by the parallel occurance of two mechanism, a molecular and a radical one. The molecular mechanism became more important with increasing ionisation potentials of the azaarenes. The spectrum of oxidized products corresponded to the one got in the photoreactions of azaarenes with hydrogen peroxide. The formation of several oxidation and nitration products of the pyridine ring with its low electron density was explained by the reaction of excited states of azaarenes. The photoreactions with nitrite ions only led to the formation of oxidized and nitrated products. Nitroso products were not formed. The reactivity of nitrogen monoxide is too low for its reaction with the azaarenes.
Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Cho, Seong Jun; Lee, Ju Dong; Lee, Kun-Hong
2016-01-01
Natural gas hydrates are solid hydrogen-bonded water crystals containing small molecular gases. The amount of natural gas stored as hydrates in permafrost and ocean sediments is twice that of all other fossil fuels combined. However, hydrate blockages also hinder oil/gas pipeline transportation, and, despite their huge potential as energy sources, our insufficient understanding of hydrates has limited their extraction. Here, we report how the presence of amino acids in water induces changes in its structure and thus interrupts the formation of methane and natural gas hydrates. The perturbation of the structure of water by amino acids and the resulting selective inhibition of hydrate cage formation were observed directly. A strong correlation was found between the inhibition efficiencies of amino acids and their physicochemical properties, which demonstrates the importance of their direct interactions with water and the resulting dissolution environment. The inhibition of methane and natural gas hydrate formation by amino acids has the potential to be highly beneficial in practical applications such as hydrate exploitation, oil/gas transportation, and flow assurance. Further, the interactions between amino acids and water are essential to the equilibria and dynamics of many physical, chemical, biological, and environmental processes. PMID:27526869
SOA formation potential of emissions from soil and leaf litter
Faiola, Celia L.; VanderSchelden, Graham S.; Wen, Miao; ...
2013-12-13
Soil and leaf litter are significant global sources of small oxidized volatile organic compounds, VOCs (e.g., methanol and acetaldehyde). They may also be significant sources of larger VOCs that could act as precursors to secondary organic aerosol (SOA) formation. To investigate this, soil and leaf litter samples were collected from the University of Idaho Experimental Forest and transported to the laboratory. There, the VOC emissions were characterized and used to drive SOA formation via dark, ozone-initiated reactions. Monoterpenes dominated the emission profile with emission rates as high as 228 μg-C m –2 h –1. The composition of the SOA producedmore » was similar to biogenic SOA formed from oxidation of ponderosa pine emissions and α-pinene. Measured soil and litter monoterpene emission rates were compared with modeled canopy emissions. Results suggest surface soil and litter monoterpene emissions could range from 12 to 136% of canopy emissions in spring and fall. Furthermore, emissions from leaf litter may potentially extend the biogenic emissions season, contributing to significant organic aerosol formation in the spring and fall when reduced solar radiation and temperatures reduce emissions from living vegetation.« less
NASA Astrophysics Data System (ADS)
Nishioka, S.; Goto, I.; Miyamoto, K.; Hatayama, A.; Fukano, A.
2016-01-01
Recently, in large-scale hydrogen negative ion sources, the experimental results have shown that ion-ion plasma is formed in the vicinity of the extraction hole under the surface negative ion production case. The purpose of this paper is to clarify the mechanism of the ion-ion plasma formation by our three dimensional particle-in-cell simulation. In the present model, the electron loss along the magnetic filter field is taken into account by the " √{τ///τ⊥ } model." The simulation results show that the ion-ion plasma formation is due to the electron loss along the magnetic filter field. Moreover, the potential profile for the ion-ion plasma case has been looked into carefully in order to discuss the ion-ion plasma formation. Our present results show that the potential drop of the virtual cathode in front of the plasma grid is large when the ion-ion plasma is formed. This tendency has been explained by a relationship between the virtual cathode depth and the net particle flux density at the virtual cathode.
Extremely Low Mass: The Circumstellar Envelope of a Potential Proto-Brown Dwarf
NASA Technical Reports Server (NTRS)
Wiseman, Jennifer
2011-01-01
What is the environment for planet formation around extremely low mass stars? Is the environment around brown dwarfs and extremely low mass stars conducive and sufficiently massive for planet production? The determining conditions may be set very early in the process of the host object's formation. IRAS 16253-2429, the source of the Wasp-Waist Nebula seen in Spitzer IRAC images, is an isolated, very low luminosity ("VeLLO") Class 0 protostar in the nearby rho Ophiuchi cloud. We present VLA ammonia mapping observations of the dense gas envelope feeding the central core accreting system. We find a flattened envelope perpendicular to the outflow axis, and gas cavities that appear to cradle the outflow lobes as though carved out by the flow and associated (apparently precessing) jet, indicating environmental disruption. Based on the NH3 (1,1) and (2,2) emission distribution, we derive the mass, velocity fields and temperature distribution for the envelope. We discuss the combined evidence for this source to be one of the youngest and lowest mass sources in formation yet known, and discuss the ramifications for planet formation potential in this extremely low mass system.
NASA Astrophysics Data System (ADS)
Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Cho, Seong Jun; Lee, Ju Dong; Lee, Kun-Hong
2016-08-01
Natural gas hydrates are solid hydrogen-bonded water crystals containing small molecular gases. The amount of natural gas stored as hydrates in permafrost and ocean sediments is twice that of all other fossil fuels combined. However, hydrate blockages also hinder oil/gas pipeline transportation, and, despite their huge potential as energy sources, our insufficient understanding of hydrates has limited their extraction. Here, we report how the presence of amino acids in water induces changes in its structure and thus interrupts the formation of methane and natural gas hydrates. The perturbation of the structure of water by amino acids and the resulting selective inhibition of hydrate cage formation were observed directly. A strong correlation was found between the inhibition efficiencies of amino acids and their physicochemical properties, which demonstrates the importance of their direct interactions with water and the resulting dissolution environment. The inhibition of methane and natural gas hydrate formation by amino acids has the potential to be highly beneficial in practical applications such as hydrate exploitation, oil/gas transportation, and flow assurance. Further, the interactions between amino acids and water are essential to the equilibria and dynamics of many physical, chemical, biological, and environmental processes.
Zhang, Yongfeng; Bai, Xian-Ming; Yu, Jianguo; ...
2016-06-01
A formation path for homogeneous γ hydride formation in hcp α-Zr, from solid solution to the ζ and then the γ hydride, was demonstrated using molecular static calculations and molecular dynamic simulations with the charge-optimized many-body (COMB) potential. Hydrogen has limited solubility in α-Zr. Once the solubility limit is exceeded, the stability of solid solution gives way to that of coherent hydride phases such as the ζ hydride by planar precipitation of hydrogen. At finite temperatures, the ζ hydride goes through a partial hcp-fcc transformation via 1/3 <1¯100> slip on the basal plane, and transforms into a mixture of γmore » hydride and α-Zr. In the ζ hydride, slip on the basal plane is favored thermodynamically with negligible barrier, and is therefore feasible at finite temperatures without mechanical loading. The transformation process involves slips of three equivalent shear partials, in contrast to that proposed in the literature where only a single shear partial was involved. The adoption of multiple slip partials minimizes the macroscopic shape change of embedded hydride clusters and the shear strain accumulation in the matrix, and thus reduces the overall barrier needed for homogeneous γ hydride formation. In conclusion, this formation path requires finite temperatures for hydrogen diffusion without mechanical loading. Therefore, it should be effective at the cladding operating conditions.« less
Xu, Zhongwei; Chen, Tingmei; Luo, Jiao; Ding, Shijia; Gao, Sichuan; Zhang, Jian
2017-04-07
Osteophyte is one of the inevitable consequences of progressive osteoarthritis with the main characteristics of cartilage degeneration and endochondral ossification. The pathogenesis of osteophyte formation is not fully understood to date. In this work, metabolomic approaches were employed to explore potential mechanisms of osteophyte formation by detecting metabolic variations between extracts of osteophyte cartilage tissues (n = 32) and uninvolved control cartilage tissues (n = 34), based on the platform of ultraperformance liquid chromatography tandem quadrupole time-of-flight mass spectrometry, as well as the use of multivariate statistic analysis and univariate statistic analysis. The osteophyte group was significantly separated from the control group by the orthogonal partial least-squares discriminant analysis models, indicating that metabolic state of osteophyte cartilage had been changed. In total, 28 metabolic variations further validated by mass spectrum (MS) match, tandom mass spectrum (MS/MS) match, and standards match mainly included amino acids, sulfonic acids, glycerophospholipids, and fatty acyls. These metabolites were related to some specific physiological or pathological processes (collagen dissolution, boundary layers destroyed, self-restoration triggered, etc.) which might be associated with the procedure of osteophyte formation. Pathway analysis showed phenylalanine metabolism (PI = 0.168, p = 0.004) was highly correlative to this degenerative process. Our findings provided a direction for targeted metabolomic study and an insight into further reveal the molecular mechanisms of ostophyte formation.
Potential of secondary aerosol formation from Chinese gasoline engine exhaust.
Du, Zhuofei; Hu, Min; Peng, Jianfei; Guo, Song; Zheng, Rong; Zheng, Jing; Shang, Dongjie; Qin, Yanhong; Niu, He; Li, Mengren; Yang, Yudong; Lu, Sihua; Wu, Yusheng; Shao, Min; Shuai, Shijin
2018-04-01
Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds (VOCs). However, little information on secondary aerosol formation from exhaust for Chinese vehicles and fuel conditions is available. In this study, chamber experiments were conducted to quantify the potential of secondary aerosol formation from the exhaust of a port fuel injection gasoline engine. The engine and fuel used are common in the Chinese market, and the fuel satisfies the China V gasoline fuel standard. Substantial secondary aerosol formation was observed during a 4-5hr simulation, which was estimated to represent more than 10days of equivalent atmospheric photo-oxidation in Beijing. As a consequence, the extreme case secondary organic aerosol (SOA) production was 426±85mg/kg-fuel, with high levels of precursors and OH exposure. The low hygroscopicity of the aerosols formed inside the chamber suggests that SOA was the dominant chemical composition. Fourteen percent of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatile organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reductions of emissions of aerosol precursor gases from vehicles are essential to mediate pollution in China. Copyright © 2017. Published by Elsevier B.V.
Role of Chlorine Dioxide in N-Nitrosodimethylamine Formation from Oxidation of Model Amines.
Gan, Wenhui; Bond, Tom; Yang, Xin; Westerhoff, Paul
2015-10-06
N-Nitrosodimethylamine (NDMA) is an emerging disinfection byproduct, and we show that use of chlorine dioxide (ClO2) has the potential to increase NDMA formation in waters containing precursors with hydrazine moieties. NDMA formation was measured after oxidation of 13 amines by monochloramine and ClO2 and pretreatment with ClO2 followed by postmonochloramination. Daminozide, a plant growth regulator, was found to yield 5.01 ± 0.96% NDMA upon reaction with ClO2, although no NDMA was recorded during chloramination. The reaction rate was estimated to be ∼0.0085 s(-1), and on the basis of our identification by mass spectrometry of the intermediates, the reaction likely proceeds via the hydrolytic release of unsymmetrical dimethylhydrazine (UDMH), with the hydrazine structure a key intermediate in NDMA formation. The presence of UDMH was confirmed by gas chromatography-mass spectrometry analysis. For 10 of the 13 compounds, ClO2 preoxidation reduced NDMA yields compared with monochloramination alone, which is explained by our measured release of dimethylamine. This work shows potential preoxidation strategies to control NDMA formation may not impact all organic precursors uniformly, so differences might be source specific depending upon the occurrence of different precursors in source waters. For example, daminozide is a plant regulator, so drinking water that is heavily influenced by upstream agricultural runoff could be at risk.
Dippon, Urs; Pantke, Claudia; Porsch, Katharina; Larese-Casanova, Phil; Kappler, Andreas
2012-06-19
The mobility of toxic metals and the transformation of organic pollutants in the environment are influenced and in many cases even controlled by iron minerals. Therefore knowing the factors influencing iron mineral formation and transformation by Fe(II)-oxidizing and Fe(III)-reducing bacteria is crucial for understanding the fate of contaminants and for the development of remediation technologies. In this study we followed mineral formation by the nitrate-reducing Fe(II)-oxidizing strain Acidovorax sp. BoFeN1 in the presence of the crystalline Fe(III) (oxyhydr)oxides goethite, magnetite and hematite added as potential nucleation sites. Mössbauer spectroscopy analysis of minerals precipitated by BoFeN1 in (57)Fe(II)-spiked microbial growth medium showed that goethite was formed in the absence of mineral additions as well as in the presence of goethite or hematite. The presence of magnetite minerals during Fe(II) oxidation induced the formation of magnetite in addition to goethite, while the addition of humic substances along with magnetite also led to goethite but no magnetite. This study showed that mineral formation not only depends on the aqueous geochemical conditions but can also be affected by the presence of mineral nucleation sites that initiate precipitation of the same underlying mineral phases.
AGN feedback in action? - outflows and star formation in type 2 AGNs
NASA Astrophysics Data System (ADS)
Woo, Jong-Hak
2017-01-01
We present the statistical constraints on the ionized gas outflows and their connection to star formation, using a large sample of ~110,000 AGNs and star-forming galaxies at z < 0.3. First, we find a dramatic difference of the outflow signatures between AGNs and star-forming galaxies based on the [OIII] emission line kinematics. While the [OIII] velocity and velocity dispersion of star forming galaxies can be entirely accounted by the gravitational potential of host galaxies, AGNs clearly show non-gravitational kinematics, which is comparable to or stronger than the virial motion caused by the gravitational potential. Second, the distribution in the [OIII] velocity - velocity dispersion diagram dramatically expands toward large values with increasing AGN luminosity, implying that the outflows are AGN-driven. Third, the fraction of AGNs with a signature of outflow kinematics, steeply increases with AGN luminosity and Eddington ratio. In particular, the majority of luminous AGNs presents strong non-gravitational kinematics in the [OIII] profile. Interestingly, we find that the specific star formation of non-outflow AGNs is much lower than that of strong outflow AGNs, while the star formation rate of strong outflow AGNs is comparable to that of star forming galaxies. We interpret this trend as a delayed AGN feedback as it takes dynamical time for the outflows to suppress star formation in galactic scales.
Huff, G.F.
2004-01-01
The tendency of solutes in input water to precipitate efficiency lowering scale deposits on the membranes of reverse osmosis (RO) desalination systems is an important factor in determining the suitability of input water for desalination. Simulated input water evaporation can be used as a technique to quantitatively assess the potential for scale formation in RO desalination systems. The technique was demonstrated by simulating the increase in solute concentrations required to form calcite, gypsum, and amorphous silica scales at 25??C and 40??C from 23 desalination input waters taken from the literature. Simulation results could be used to quantitatively assess the potential of a given input water to form scale or to compare the potential of a number of input waters to form scale during RO desalination. Simulated evaporation of input waters cannot accurately predict the conditions under which scale will form owing to the effects of potentially stable supersaturated solutions, solution velocity, and residence time inside RO systems. However, the simulated scale-forming potential of proposed input waters could be compared with the simulated scale-forming potentials and actual scale-forming properties of input waters having documented operational histories in RO systems. This may provide a technique to estimate the actual performance and suitability of proposed input waters during RO.
NASA Astrophysics Data System (ADS)
Shkolyar, S.; Farmer, J. D.
2016-05-01
We studied evaporite subfacies in the Verde Fmn., AZ. We identified diagenetic pathways and assessed how diagenesis affected biosignature preservation potential (BPP) in each. Results revealed eight pathways, each with diverse impacts on BPP.
The Potential Role of Formate for Synthesis and Life in Serpentinization Systems
NASA Astrophysics Data System (ADS)
Lang, S. Q.; Frueh-Green, G. L.; Bernasconi, S. M.; Brazelton, W. J.; McGonigle, J. M.
2016-12-01
The high hydrogen concentrations produced during water-rock serpentinization reactions provide abundant thermodynamic energy that can drive the synthesis of organic compounds both biotically and abiotically. We investigated the synthesis of abiotic carbon and the metabolic pathways of the microbial inhabitants of the high energy but low diversity serpentinite-hosted Lost City Hydrothermal Field. High concentrations of the organic acid formate can be attributed to two sources. In some locations formate lacks detectable 14C, demonstrating it was formed abiotically from mantle-derived CO2. In other locations there is an additional modern contribution to the formate pool, potentially indicating active cycling with modern seawater dissolved inorganic carbon by microorganisms. The presence of this carbon source is likely critical for the survival of the subsurface microbial communities that inhabit alkaline serpentinization environments, where inorganic carbon is severely limited. Archaeal lipids produced by the Lost City Methanosarcinales (LCMS) also largely lack 14C, requiring their carbon source to be similarly 14C-free. Metagenomic evidence suggests that the LCMS could use formate for methanogenesis and, altogether, the data suggests that these organisms cannot rely on inorganic carbon as their carbon source and substrate for methanogenesis. Considering the lack of dissolved inorganic carbon in this system, the ability to utilize formate may have been a key evolutionary adaptation for survival in serpentinite-hosted environments. In the Lost City system, the LCMS apparently rely upon an abiotically produced organic carbon source, which may enable the Lost City microbial ecosystem to survive in the absence of photosynthesis or its byproducts.
Orthodontic treatment with fixed appliances and biofilm formation--a potential public health threat?
Ren, Yijin; Jongsma, Marije A; Mei, Li; van der Mei, Henny C; Busscher, Henk J
2014-09-01
Orthodontic treatment is highly popular for restoring functional and facial esthetics in juveniles and adults. As a downside, prevalence of biofilm-related complications is high. Objectives of this review are to (1) identify special features of biofilm formation in orthodontic patients and (2) emphasize the need for strong concerted action to prevent biofilm-related complications during orthodontic treatment. Literature on biofilm formation in the oral cavity is reviewed to identify special features of biofilm formation in orthodontic patients. Estimates are made of juvenile and adult orthodontic patient population sizes, and biofilm-related complication rates are used to indicate the costs and clinical workload resulting from biofilm-related complications. Biofilm formation in orthodontic patients is governed by similar mechanisms as common in the oral cavity. However, orthodontic appliances hamper the maintenance of oral hygiene and provide numerous additional surfaces, with properties alien to the oral cavity, to which bacteria can adhere and form a biofilm. Biofilm formation may lead to gingivitis and white spot lesions, compromising facial esthetics. Whereas gingivitis after orthodontic treatment is often transient, white spot lesions may turn into cavities requiring professional restoration. Complications requiring professional care develop in 15 % of all orthodontic patients, implying an annual cost of over US$500,000,000 and a workload of 1,000 full-time dentists in the USA alone. Improved preventive measures and antimicrobial materials are urgently required to prevent biofilm-related complications of orthodontic treatment from overshadowing its functional and esthetic advantages. High treatment demand and occurrence of biofilm-related complications requiring professional care make orthodontic treatment a potential public health threat.
Conversion of gas into stars in the Galactic center
NASA Astrophysics Data System (ADS)
Longmore, S. N.
2014-05-01
The star formation rate in the central 500 pc of the Milky Way is lower by a factor of > 10 than expected for the substantial amount of dense gas it contains, which challenges current star formation theories. I discuss which physical mechanisms could be causing this observation and put forward a self-consistent cycle of star formation in the Galactic center, in which the plausible star formation inhibitors are combined. Their ubiquity suggests that the perception of a lowered central SFR should be a common phenomenon in other galaxies with direct implications for galactic star formation and also potentially supermassive black hole growth. I then describe a scenario to explain the presence of super star clusters in the Galactic center environment, in which their formation is triggered by gas streams passing close to the minimum of the global Galactic gravitational potential at the location of the central supermassive black hole, Sgr A*. If this triggering mechanism can be verified, we can use the known time interval since closest approach to Sgr A* to study the physics of stellar mass assembly in an extreme environment as a function of absolute time. I outline the first results from detailed numerical simulations testing this scenario. Finally, I describe a study showing that in terms of the baryonic composition, kinematics, and densities, the gas in the Galactic center is indistinguishable from high-redshift clouds and galaxies. As such, the Galactic center clouds may be used as a template to understand the evolution (and possibly the life cycle) of high-redshift clouds and galaxies.
Wang, Wen-Long; Zhang, Xue; Wu, Qian-Yuan; Du, Ye; Hu, Hong-Ying
2017-11-01
The degradation of natural organic matters (NOMs) by the combination of UV and chlorine (UV/chlorine) was investigated in this study. UV/chlorine oxidation can effectively degrade NOMs, with the degradation of chromophores (∼80%) and fluorophores (76.4-80.8%) being more efficient than that of DOC (15.1-18.6%). This effect was attributed to the chromophores and fluorophores (double bonds, aromatic groups and phenolic groups) being preferentially degraded by UV/chlorine oxidation, particularly reactive groups with high electron donating capacity. Radical species •OH and •Cl were generated during UV/chlorine oxidation, with the contribution of •OH 1.4 times as high as that of •Cl. The degradation kinetics of different molecular weight (MW) fractions suggests that UV/chlorine oxidation degrades high MW fractions into low MW fractions, with the degradation rates of high MW fractions (>3000 Da) 4.5 times of those of medium MW fractions (1000-3000 Da). In comparison with chlorination alone, UV/chlorine oxidation did not increase the formation (30 min) and formation potential (24 h) of trihalomethanes, but instead promoted the formation and formation potential of haloacetic acids and chloral hydrate. Adsorbable organic halogen (AOX) formed from UV/chlorine oxidation of NOM were 0.8 times higher than those formed from chlorination. Cytotoxicity studies indicated that the cytotoxicity of NOM increased after both chlorination and UV/chlorine oxidation, which may be due to the formation of AOX. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Permian–Triassic transition in Colorado
Hagadorn, James S.; Whitely, Karen R.; Lahey, Bonita L.; Henderson, Charles M.; Holm-Denoma, Christopher S.
2016-01-01
The Lykins Formation and its equivalents in Colorado are a stratigraphically poorly constrained suite of redbeds and intercalated stromatolitic carbonates, which is hypothesized to span the Permian-Triassic boundary. Herein we present a preliminary detrital zircon geochronology, new fossil occurrences, and δ13C chemostratigraphy for exposures along the Front Range and in southeastern Colorado, to refine understanding of the unit's age and depositional history.Detrital zircons from the uppermost Lykins Formation and an overlying eolianite consist of a complex and highly diverse primary and multi-cycle grain population transported from Laurentian and Gondwanan terranes, potentially both by wind and water. Youngest concordant zircons do not rule out deposition of the uppermost Lykins Formation during a portion of Early Triassic time. Conodonts from the lower Lykins Formation require Middle Permian (Guadalupian) deposition. Conodont alteration indices of 1 indicate the unit has a shallow burial history and is amenable to paleomagnetic inquiry. Conodonts, together with other vertebrate, invertebrate, microfossil, and trace fossils, suggest a very shallow to emergent marine origin for the unit's most substantial carbonates, and hint at a marine origin for the unit's intercalated gypsum-anhydrite members. Chemostratigraphy corroborates field evidence of emergence and karst development capping certain units, like the Forelle Limestone Member of the Lykins Formation, where potential sequence boundaries appear to be punctuated by a short-lived meteoric signature.Results presented here are a progress report of ongoing work in these successions. This field trip consists of a brief tour through exposures of the Lykins Formation, in which we will examine well-known localities as well as view new ones for which we seek insights.
A three-stage experimental strategy to evaluate and validate an interplate IC50 format.
Rodrigues, Daniel J; Lyons, Richard; Laflin, Philip; Pointon, Wayne; Kammonen, Juha
2007-12-01
The serial dilution of compounds to establish potency against target enzymes or receptors can at times be a rate-limiting step in project progression. We have investigated the possibility of running 50% inhibitory concentration experiments in an interplate format, with dose ranges constructed across plates. The advantages associated with this format include a faster reformatting time for the compounds while also increasing the number of doses that can be potentially generated. These two factors, in particular, would lend themselves to a higher-throughput and more timely testing of compounds, while also maximizing chances to capture fully developed dose-response curves. The key objective from this work was to establish a strategy to assess the feasibility of an interplate format to ensure that the quality of data generated would be equivalent to historical formats used. A three-stage approach was adopted to assess and validate running an assay in an interplate format, compared to an intraplate format. Although the three-stage strategy was tested with two different assay formats, it would be necessary to investigate the feasibility for other assay types. The recommendation is that the three-stage experimental strategy defined here is used to assess feasibility of other assay formats used.
Engineering a Synthetic Dual-Organism System for Hydrogen Production▿
Waks, Zeev; Silver, Pamela A.
2009-01-01
Molecular hydrogen produced biologically from renewable biomass is an attractive replacement for fossil fuels. One potential route for biological hydrogen production is the conversion of biomass into formate, which can subsequently be processed into hydrogen by Escherichia coli. Formate is also a widely used commodity chemical, making its bioproduction even more attractive. Here we demonstrate the implementation of a formate-overproducing pathway in Saccharomyces cerevisiae, a well-established industrial organism. By expressing the anaerobic enzyme pyruvate formate lyase from E. coli, we engineered a strain of yeast that overproduced formate relative to undetectable levels in the wild type. The addition of a downstream enzyme, AdhE of E. coli, resulted in an additional 4.5-fold formate production increase as well as an increase in growth rate and biomass yield. Overall, an 18-fold formate increase was achieved in a strain background whose formate degradation pathway had been deleted. Finally, as a proof of concept, we were able to produce hydrogen from this formate-containing medium by using E. coli as a catalyst in a two-step process. With further optimizations, it may be feasible to use S. cerevisiae on a larger scale as the foundation for yeast-based biohydrogen. PMID:19201964
Sued, Bruna Pinto Ribeiro; Pereira, Paula Marcele Afonso; Faria, Yuri Vieira; Ramos, Juliana Nunes; Binatti, Vanessa Batista; Santos, Kátia Regina Netto Dos; Seabra, Sérgio Henrique; Hirata, Raphael; Vieira, Verônica Viana; Mattos-Guaraldi, Ana Luíza; Pereira, José Augusto Adler
2017-03-01
The association between Staphylococcus haemolyticus and severe nosocomial infections is increasing. However, the extent to which fomites contribute to the dissemination of this pathogen through patients and hospital wards remains unknown. In the present study, sphygmomanometers and thermometers were evaluated as potential fomites of oxacillin-resistant S. haemolyticus (ORSH). The influence of oxacillin and vancomycin on biofilm formation by ORSH strains isolated from fomites was also investigated. The presence of ORSH on swabs taken from fomite surfaces in a Brazilian hospital was assessed using standard microbiological procedures. Antibiotic susceptibility profiles were determined by the disk diffusion method, and clonal distribution was assessed in pulsed-field gel electrophoresis (PFGE) assays. Minimum inhibitory concentrations (MICs) of oxacillin and vancomycin were evaluated via the broth microdilution method. Polymerase chain reaction (PCR) assays were performed to detect the mecA and icaAD genes. ORSH strains grown in media containing 1/4 MIC of vancomycin or oxacillin were investigated for slime production and biofilm formation on glass, polystyrene and polyurethane catheter surfaces. ORSH strains comprising five distinct PFGE types were isolated from sphygmomanometers (n = 5) and a thermometer (n = 1) used in intensive care units and surgical wards. ORSH strains isolated from fomites showed susceptibility to only linezolid and vancomycin and were characterised as multi-drug resistant (MDR). Slime production, biofilm formation and the survival of sessile bacteria differed and were independent of the presence of the icaAD and mecA genes, PFGE type and subtype. Vancomycin and oxacillin did not inhibit biofilm formation by vancomycin-susceptible ORSH strains on abiotic surfaces, including on the catheter surface. Enhanced biofilm formation was observed in some situations. Moreover, a sub-lethal dose of vancomycin induced biofilm formation by an ORSH strain on polystyrene. Sphygmomanometers and thermometers are fomites for the transmission of ORSH. A sub-lethal dose of vancomycin may favor biofilm formation by ORSH on fomites and catheter surfaces.
Sued, Bruna Pinto Ribeiro; Pereira, Paula Marcele Afonso; Faria, Yuri Vieira; Ramos, Juliana Nunes; Binatti, Vanessa Batista; dos Santos, Kátia Regina Netto; Seabra, Sérgio Henrique; Hirata, Raphael; Vieira, Verônica Viana; Mattos-Guaraldi, Ana Luíza; Pereira, José Augusto Adler
2017-01-01
BACKGROUND The association between Staphylococcus haemolyticus and severe nosocomial infections is increasing. However, the extent to which fomites contribute to the dissemination of this pathogen through patients and hospital wards remains unknown. OBJECTIVES In the present study, sphygmomanometers and thermometers were evaluated as potential fomites of oxacillin-resistant S. haemolyticus (ORSH). The influence of oxacillin and vancomycin on biofilm formation by ORSH strains isolated from fomites was also investigated. METHODS The presence of ORSH on swabs taken from fomite surfaces in a Brazilian hospital was assessed using standard microbiological procedures. Antibiotic susceptibility profiles were determined by the disk diffusion method, and clonal distribution was assessed in pulsed-field gel electrophoresis (PFGE) assays. Minimum inhibitory concentrations (MICs) of oxacillin and vancomycin were evaluated via the broth microdilution method. Polymerase chain reaction (PCR) assays were performed to detect the mecA and icaAD genes. ORSH strains grown in media containing 1/4 MIC of vancomycin or oxacillin were investigated for slime production and biofilm formation on glass, polystyrene and polyurethane catheter surfaces. FINDINGS ORSH strains comprising five distinct PFGE types were isolated from sphygmomanometers (n = 5) and a thermometer (n = 1) used in intensive care units and surgical wards. ORSH strains isolated from fomites showed susceptibility to only linezolid and vancomycin and were characterised as multi-drug resistant (MDR). Slime production, biofilm formation and the survival of sessile bacteria differed and were independent of the presence of the icaAD and mecA genes, PFGE type and subtype. Vancomycin and oxacillin did not inhibit biofilm formation by vancomycin-susceptible ORSH strains on abiotic surfaces, including on the catheter surface. Enhanced biofilm formation was observed in some situations. Moreover, a sub-lethal dose of vancomycin induced biofilm formation by an ORSH strain on polystyrene. MAIN CONCLUSIONS Sphygmomanometers and thermometers are fomites for the transmission of ORSH. A sub-lethal dose of vancomycin may favor biofilm formation by ORSH on fomites and catheter surfaces. PMID:28225903
Samdal, Svein; Møllendal, Harald; Carles, Sophie
2015-08-27
The rotational spectrum of cyanomethyl formate (HC(O)OCH2C≡N) has been recorded in the 12–123 GHz spectral range. The spectra of two conformers were assigned. The rotamer denoted I has a symmetry plane and two out-of plane hydrogen atoms belonging to the cyanomethyl (CH2CN) moiety. In the conformer called II, the cyanomethyl group is rotated 80.3° out of this plane. Conformer I has an energy that is 1.4(6) kJ/mol lower than the energy of II according to relative intensity measurements. A large number of rotational transitions have been assigned for the ground and vibrationally excited states of the two conformers and accurate spectroscopic constants have been obtained. These constants should predict frequencies of transitions outside the investigated spectral range with a very high degree of precision. It is suggested that cyanomethyl formate is a potential interstellar compound. This suggestion is based on the fact that its congener methyl formate (HC(O)OCH3) exists across a large variety of interstellar environments and the fact that cyanides are very prevalent in the Universe. The experimental work has been augmented by high-level quantum chemical calculations. The CCSD/cc-pVQZ calculations are found to predict structures of the two forms that are very close to the Born–Oppenheimer equilibrium structures. MP2/cc-pVTZ predictions of several vibration–rotation interaction constants were generally found to be rather inaccurate. A gas-phase reaction between methyl formate and the cyanomethyl radical CH2CN to produce a hydrogen atom and cyanomethyl formate was mimicked using MP2/cc-pVTZ calculations. It was found that this reaction is not favored thermodynamically. It is also conjectured that the possible formation of cyanomethyl formate might be catalyzed and take place on interstellar particles.
Suppressed star formation by a merging cluster system
Mansheim, A. S.; Lemaux, B. C.; Tomczak, A. R.; ...
2017-03-24
We examine the effects of an impending cluster merger on galaxies in the large scale structure (LSS) RX J0910 at z =1.105. Using multi-wavelength data, including 102 spectral members drawn from the Observations of Redshift Evolution in Large Scale Environments (ORELSE) survey and precise photometric redshifts, we calculate star formation rates and map the specific star formation rate density of the LSS galaxies. These analyses along with an investigation of the color-magnitude properties of LSS galaxies indicate lower levels of star formation activity in the region between the merging clusters relative to the outskirts of the system. We suggest thatmore » gravitational tidal forces due to the potential of the merging halos may be the physical mechanism responsible for the observed suppression of star formation in galaxies caught between the merging clusters.« less
Tailoring risk communication to improve comprehension: Do patient preferences help or hurt?
Barnes, Andrew J; Hanoch, Yaniv; Miron-Shatz, Talya; Ozanne, Elissa M
2016-09-01
Risk communication tools can facilitate patients' understanding of risk information. In this novel study, we examine the hypothesis that risk communication methods tailored to individuals' preferences can increase risk comprehension. Preferences for breast cancer risk formats, and risk comprehension data were collected using an online survey from 361 women at high risk for breast cancer. Women's initial preferences were assessed by asking them which of the following risk formats would be the clearest: (a) percentage, (b) frequency, (c) bar graph, (d) pictogram, and (e) comparison to other women. Next, women were presented with 5 different formats for displaying cancer risks and asked to interpret the risk information presented. Finally, they were asked again which risk format they preferred. Initial preferences for risk formats were not associated with risk comprehension scores. However, women with lower risk comprehension scores were more likely to update their risk format preferences after they evaluated risks in different formats. Less numerate women were more likely to prefer graphical rather than numeric risk formats. Importantly, we found that women preferring graphical risk formats had lower risk comprehension in these formats compared to numeric formats. In contrast, women preferring numeric formats performed equally well across formats. Our findings suggest that tailoring risk communication to patient preferences may not improve understanding of medical risks, particularly for less numerate women, and point to the potential perils of tailoring risk communication formats to patient preferences. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
An analytical bond-order potential for carbon
Zhou, Xiaowang; Ward, Donald K.; Foster, Michael E.
2015-05-27
Carbon is the most widely studied material today because it exhibits special properties not seen in any other materials when in nano dimensions such as nanotube and graphene. Reduction of material defects created during synthesis has become critical to realize the full potential of carbon structures. Molecular dynamics (MD) simulations, in principle, allow defect formation mechanisms to be studied with high fidelity, and can, therefore, help guide experiments for defect reduction. Such MD simulations must satisfy a set of stringent requirements. First, they must employ an interatomic potential formalism that is transferable to a variety of carbon structures. Second, themore » potential needs to be appropriately parameterized to capture the property trends of important carbon structures, in particular, diamond, graphite, graphene, and nanotubes. The potential must predict the crystalline growth of the correct phases during direct MD simulations of synthesis to achieve a predictive simulation of defect formation. An unlimited number of structures not included in the potential parameterization are encountered, thus the literature carbon potentials are often not sufficient for growth simulations. We have developed an analytical bond order potential for carbon, and have made it available through the public MD simulation package LAMMPS. We also demonstrate that our potential reasonably captures the property trends of important carbon phases. As a result, stringent MD simulations convincingly show that our potential accounts not only for the crystalline growth of graphene, graphite, and carbon nanotubes but also for the transformation of graphite to diamond at high pressure.« less
NASA Astrophysics Data System (ADS)
Shane, Timothy E.
The middle member of the Eagle Ford formation is a heterogeneous, carbonate-shale unit that is a focus of unconventional oil and gas exploration in southern Texas. Exploration results have been mixed because of the apparent heterogeneity of the member. In this study, the extent of heterogeneities in the Eagle Ford on the "bedding-scale" were examined by evaluating changes in organic and inorganic geochemistry. Samples were collected vertically in outcrop covering four non-consecutive parasequences. These samples were analyzed using a Rock Eval 6 Analyzer(TM) to determine source rock generative potential and a Niton(TM) XRF to evaluate inorganic geochemistry to identify changes in paleoredox conditions, paleoproductivity, and clastic influx. From pyrolysis data, it is determined that Parasequence 1 potentially displays an increase in source rock potential, Parasequence 2 potentially displays a constant source rock potential, and Parasequences 3 and 4 potentially display overall decreases in source rock potential during deposition. From the inferred paleoredox conditions, paleoproductivity, and clastic influx, it is determined that Parasequence 1 experienced a potential increase in oxygen abundance, Parasequence 2 experienced a potential decrease in oxygen abundance, and Parasequences 3 and 4 potentially experienced increases in oxygen abundance during deposition. It is concluded that geochemical heterogeneities do exist on a bedding scale within the parasequences of the middle member of the Eagle Ford. Additional comprehensive sampling and analysis is recommended in the future in order to tie these data to subsurface data for economic application.
An analytical bond-order potential for carbon.
Zhou, X W; Ward, D K; Foster, M E
2015-09-05
Carbon is the most widely studied material today because it exhibits special properties not seen in any other materials when in nano dimensions such as nanotube and graphene. Reduction of material defects created during synthesis has become critical to realize the full potential of carbon structures. Molecular dynamics (MD) simulations, in principle, allow defect formation mechanisms to be studied with high fidelity, and can, therefore, help guide experiments for defect reduction. Such MD simulations must satisfy a set of stringent requirements. First, they must employ an interatomic potential formalism that is transferable to a variety of carbon structures. Second, the potential needs to be appropriately parameterized to capture the property trends of important carbon structures, in particular, diamond, graphite, graphene, and nanotubes. Most importantly, the potential must predict the crystalline growth of the correct phases during direct MD simulations of synthesis to achieve a predictive simulation of defect formation. Because an unlimited number of structures not included in the potential parameterization are encountered, the literature carbon potentials are often not sufficient for growth simulations. We have developed an analytical bond order potential for carbon, and have made it available through the public MD simulation package LAMMPS. We demonstrate that our potential reasonably captures the property trends of important carbon phases. Stringent MD simulations convincingly show that our potential accounts not only for the crystalline growth of graphene, graphite, and carbon nanotubes but also for the transformation of graphite to diamond at high pressure. © 2015 Wiley Periodicals, Inc.
2016-04-01
2 Fig. 2 Electrostatic potential map of AMDNNM: a) without and b) with molecule overlay...3 Fig. 3 Electrostatic potential map of BAFDAONAB: a) without and b) with molecule...overlay ....................................................................................4 Fig. 4 Electrostatic potential map of BNFDAONAB: a) without
Observations of geese foraging for clam shells during spring on the Yukon-Kuskokwim Delta, Alaska
Flint, Paul L.; Fowler, Ada C.; Bottitta, Grace E.; Schamber, Jason L.
1998-01-01
We studied the behavior of geese on exposed river ice during spring on the Yukon-Kuskokwim Delta. The predominant behavior while on the ice for both sexes was foraging; however, females foraged more than males. Visual inspection of the ice revealed no potential plant or animal food items. However, numerous small (<20 mm) clam shells (Macoma balthica) and pieces of shell were noted. It appeared that geese were foraging on empty clam shells. This potential source of calcium was available to breeding geese just prior to egg formation and geese likely stored this calcium in the form of medullary bone for use during egg formation.
Mineral resources of the Scorpion Wilderness study area, Garfield and Kane counties, Utah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartsch-Winkler, S.; Jones, J.L.; Kilburn, J.E.
1989-01-01
This paper reports on the Scorpion Wilderness Study Area which covers 14,978 acres in south- central Utah in Garfield and Kane counties. No mining claims or oil and gas leases or lease applications extend inside this study-area boundary. Demonstrated subeconomic resources of less than 30,000 tons of gypsum are in this study area. The mineral resource potential is low for undiscovered gypsum in the Carmel Formation, for undiscovered uranium in the Chinle Formation in the subsurface, and for undiscovered metals other than uranium. The energy resource potential is low for geothermal resources and is moderate for oil, gas, and carbonmore » dioxide.« less
Centonze, D; Siracusano, A; Calabresi, P; Bernardi, G
2005-01-01
Far from disproving the model of mind functioning proposed by psychoanalysis, the recent advances in neuropsychiatrical research confirmed the crucial ideas of Sigmund Freud. The hypothesis that the origin of mental illnesses lies in the impossibility for a subject to erase the long-term effects of a remote adverse event is in tune with the view that several psychiatric disturbances reflect the activation of aberrant unconscious memory processes. Freud's insights did not stop here, but went on to describe in an extremely precise manner the neural mechanisms of memory formation almost a century before the description of long-term synaptic potentiation.
Multiphoton Process and Anomalous Potential of Cell Membrane by Laser Radiation
NASA Technical Reports Server (NTRS)
Zhang, Kaixi; Zhao, Qingxun; Cui, Zhiyun; Zhar, Ping; Dong, Lifang
1996-01-01
In this paper, by the use of quantum biology and quantum optics, the laser induced potential variation of cell membrane has been studied. Theoretically, we have found a method of calculating the monophoton and multiphoton processes in the formation of the anomalous potential of cell membrane. In contrast with the experimental results, our numerical result is in the same order. Therefore, we have found the possibility of cancer caused by the laser induced anomalous cell potential.
An unusual cause of cervical kyphosis.
Raj, Mamtha S; Schwab, Joseph H
2017-02-01
Acute fixed cervical kyphosis may be a rare presentation of conversion disorder, psychogenic dystonia, and potentially as a side effect from typical antipsychotic drugs. Haldol has been associated with acute dystonic reactions. In some cases, rigid deformities ensue. We are reporting a case of a fixed cervical kyphosis after the use of Haldol. To present a case of a potential acute dystonic reaction temporally associated with Haldol ingestion leading to fixed cervical kyphosis. This is a case report. A patient diagnosed with bipolar disorder presented to the emergency room several times with severe neck pain and stiffness. The neck appeared fixed in flexion with extensive osteophyte formation over a 3-month period. The patient's condition was resolved by a posterior-anterior-posterior surgical approach. It corrected the patient's cervical curvature from 88° to 5°. Acute dystonic reactions have the potential to apply enough pressure on bone to cause rapid osteophyte formation. Copyright © 2016 Elsevier Inc. All rights reserved.
The effect of a lignosulphate type additive on the lead—acid battery positive plate reactions
NASA Astrophysics Data System (ADS)
Ovuru, S. E.; Harrison, J. A.
The electrochemical formation of lead dioxide has been investigated at a lead electrode in a 5 M sulphuric acid solution, and in the presence of phosphoric acid and lignosulphate-type additive. The formation of lead dioxide from lead sulphate, and the reverse reaction, have been investigated by the linear potential sweep method, by an impedance method in which the impedance was measured at the end of each pulse during a potential pulse train, and by a charging curve method in which the current and charge was measured during a similar potential pulse train. The charge measurements prove that the main effect of the additive is to decrease the accompanying oxygen evolution reaction. The impedance measurements, however, show that the additive has a small but significant effect on the structure of the solid lead sulphate and lead dioxide layers.
Limits of the potential flow approach to the single-mode Rayleigh-Taylor problem
NASA Astrophysics Data System (ADS)
Ramaprabhu, P.; Dimonte, Guy; Young, Yuan-Nan; Calder, A. C.; Fryxell, B.
2006-12-01
We report on the behavior of a single-wavelength Rayleigh-Taylor flow at late times. The calculations were performed in a long square duct (λ×λ×8λ) , using four different numerical simulations. In contradiction with potential flow theories that predict a constant terminal velocity, the single-wavelength Rayleigh-Taylor problem exhibits late-time acceleration. The onset of acceleration occurs as the bubble penetration depth exceeds the diameter of bubbles, and is observed for low and moderate density differences. Based on our simulations, we provide a phenomenological description of the observed acceleration, and ascribe this behavior to the formation of Kelvin-Helmholtz vortices on the bubble-spike interface that diminish the friction drag, while the associated induced flow propels the bubbles forward. For large density ratios, the formation of secondary instabilities is suppressed, and the bubbles remain terminal consistent with potential flow models.
Stalking Higher Energy Conformers on the Potential Energy Surface of Charged Species.
Brites, Vincent; Cimas, Alvaro; Spezia, Riccardo; Sieffert, Nicolas; Lisy, James M; Gaigeot, Marie-Pierre
2015-03-10
Combined theoretical DFT-MD and RRKM methodologies and experimental spectroscopic infrared predissociation (IRPD) strategies to map potential energy surfaces (PES) of complex ionic clusters are presented, providing lowest and high energy conformers, thresholds to isomerization, and cluster formation pathways. We believe this association not only represents a significant advance in the field of mapping minima and transition states on the PES but also directly measures dynamical pathways for the formation of structural conformers and isomers. Pathways are unraveled over picosecond (DFT-MD) and microsecond (RRKM) time scales while changing the amount of internal energy is experimentally achieved by changing the loss channel for the IRPD measurements, thus directly probing different kinetic and isomerization pathways. Demonstration is provided for Li(+)(H2O)3,4 ionic clusters. Nonstatistical formation of these ionic clusters by both direct and cascade processes, involving isomerization processes that can lead to trapping of high energy conformers along the paths due to evaporative cooling, has been unraveled.
Hippocampal 5-HT Input Regulates Memory Formation and Schaffer Collateral Excitation.
Teixeira, Catia M; Rosen, Zev B; Suri, Deepika; Sun, Qian; Hersh, Marc; Sargin, Derya; Dincheva, Iva; Morgan, Ashlea A; Spivack, Stephen; Krok, Anne C; Hirschfeld-Stoler, Tessa; Lambe, Evelyn K; Siegelbaum, Steven A; Ansorge, Mark S
2018-06-06
The efficacy and duration of memory storage is regulated by neuromodulatory transmitter actions. While the modulatory transmitter serotonin (5-HT) plays an important role in implicit forms of memory in the invertebrate Aplysia, its function in explicit memory mediated by the mammalian hippocampus is less clear. Specifically, the consequences elicited by the spatio-temporal gradient of endogenous 5-HT release are not known. Here we applied optogenetic techniques in mice to gain insight into this fundamental biological process. We find that activation of serotonergic terminals in the hippocampal CA1 region both potentiates excitatory transmission at CA3-to-CA1 synapses and enhances spatial memory. Conversely, optogenetic silencing of CA1 5-HT terminals inhibits spatial memory. We furthermore find that synaptic potentiation is mediated by 5-HT4 receptors and that systemic modulation of 5-HT4 receptor function can bidirectionally impact memory formation. Collectively, these data reveal powerful modulatory influence of serotonergic synaptic input on hippocampal function and memory formation. Copyright © 2018 Elsevier Inc. All rights reserved.
Feng, Xianchao; Li, Chenyi; Ullah, Niamat; Hackman, Robert M; Chen, Lin; Zhou, Guanghong
2015-12-30
The stability of cured meat products is increased by the protection of its proteins from oxidation by sodium nitrite (NaNO2) during processing. This study investigated the effects of NaNO2 (0, 50, 100, 200, and 400 mg/kg) on the physiochemical and structural characteristics of myofibrillar protein (MP) in raw and cooked ham. The NaNO2 showed a dose-dependent antioxidant effect, by inhibiting carbonyl formation, dityrosine formation, and denaturation of MP, and a nitrosative effect, through the formation of 3-Nitrotyrosine (3-NT). The 3-NT content within MP of raw ham had distinct negative correlations with sulfhydryl content and surface hydrophobicity. The 3-NT content within MP of cooked ham had significantly negative correlations with carbonyl, sulfhydryl content and turbidity and had significantly positive correlations with disulfide content. These results indicated that 3-NT may be a potential marker for protein oxidation in raw and cooked cured meat products.
Azaria, P.; Konik, R. M.; Lecheminant, P.; ...
2016-08-03
In our paper we study a (1+1)-dimensional version of the famous Nambu–Jona-Lasinio model of quantum chromodynamics (QCD2) both at zero and at finite baryon density. We use nonperturbative techniques (non-Abelian bosonization and the truncated conformal spectrum approach). When the baryon chemical potential, μ, is zero, we describe the formation of fermion three-quark (nucleons and Δ baryons) and boson (two-quark mesons, six-quark deuterons) bound states. We also study at μ=0 the formation of a topologically nontrivial phase. When the chemical potential exceeds the critical value and a finite baryon density appears, the model has a rich phase diagram which includes phasesmore » with a density wave and superfluid quasi-long-range (QLR) order, as well as a phase of a baryon Tomonaga-Luttinger liquid (strange metal). Finally, the QLR order results in either a condensation of scalar mesons (the density wave) or six-quark bound states (deuterons).« less
NASA Astrophysics Data System (ADS)
Mack, Dietrich; Davies, Angharad P.; Harris, Llinos G.; Knobloch, Johannes K. M.; Rohde, Holger
Medical device-associated infections, most frequently caused by Staphylococcus epidermidis and Staphylococcus aureus, are of increasing importance in modern medicine. The formation of adherent, multilayered bacterial biofilms is crucial in the pathogenesis of these infections. Polysaccharide intercellular adhesin (PIA), a homoglycan of β-1,6-linked 2-acetamido-2-deoxy-d-glucopyranosyl residues, of which about 15% are non-N-acetylated, is central to biofilm accumulation in staphylococci. It transpires that polysaccharides - structurally very similar to PIA - are also key to biofilm formation in a number of other organisms including the important human pathogens Escherichia coli, Aggregatibacter (Actinobacillus) actinomycetemcomitans, Yersinia pestis, and Bordetella spp. Apparently, synthesis of PIA and related polysaccharides is a general feature important for biofilm formation in diverse bacterial genera. Current knowledge about the structure and biosynthesis of PIA and related polysaccharides is reviewed. Additionally, information on their role in pathogenesis of biomaterial-related and other type of infections and the potential use of PIA and related compounds for prevention of infection is evaluated.
NASA Astrophysics Data System (ADS)
Faizan, Mohd; Afroz, Ziya; Alam, Mohammad Jane; Bhat, Sheeraz Ahmad; Ahmad, Shabbir; Ahmad, Afaq
2018-05-01
The intermolecular interactions in complex formation between 2-amino-4-hydroxy-6-methylpyrimidine (AHMP) and 2,3-pyrazinedicarboxylicacid (PDCA) have been explored using density functional theory calculations. The isolated 1:1 molecular geometry of proton transfer (PT) complex between AHMP and PDCA has been optimized on a counterpoise corrected potential energy surface (PES) at DFT-B3LYP/6-31G(d,p) level of theory in the gaseous phase. Further, the formation of hydrogen bonded charge transfer (HBCT) complex between PDCA and AHMP has been also discussed. PT energy barrier between two extremes is calculated using potential energy surface (PES) scan by varying bond length. The intermolecular interactions have been analyzed from theoretical perspective of natural bond orbital (NBO) analysis. In addition, the interaction energy between molecular fragments involved in the complex formation has been also computed by counterpoise procedure at same level of theory.
Mouse strains to study cold-inducible beige progenitors and beige adipocyte formation and function
Berry, Daniel C.; Jiang, Yuwei; Graff, Jonathan M.
2016-01-01
Cold temperatures induce formation of beige adipocytes, which convert glucose and fatty acids to heat, and may increase energy expenditure, reduce adiposity and lower blood glucose. This therapeutic potential is unrealized, hindered by a dearth of genetic tools to fate map, track and manipulate beige progenitors and ‘beiging'. Here we examined 12 Cre/inducible Cre mouse strains that mark adipocyte, muscle and mural lineages, three proposed beige origins. Among these mouse strains, only those that marked perivascular mural cells tracked the cold-induced beige lineage. Two SMA-based strains, SMA-CreERT2 and SMA-rtTA, fate mapped into the majority of cold-induced beige adipocytes and SMA-marked progenitors appeared essential for beiging. Disruption of the potential of the SMA-tracked progenitors to form beige adipocytes was accompanied by an inability to maintain body temperature and by hyperglycaemia. Thus, SMA-engineered mice may be useful to track and manipulate beige progenitors, beige adipocyte formation and function. PMID:26729601
Amyloid formation and inhibition of an all-beta protein: A study on fungal polygalacturonase
NASA Astrophysics Data System (ADS)
Chinisaz, Maryam; Ghasemi, Atiyeh; Larijani, Bagher; Ebrahim-Habibi, Azadeh
2014-02-01
Theoretically, all proteins can adopt the nanofibrillar structures known as amyloid, which contain cross-beta structures. The all-beta folded proteins are particularly interesting in this regard, since they appear to be naturally more predisposed toward this structural arrangement. In this study, methanol has been used to drive the beta-helix protein polygalacturonase (PG), toward amyloid fibril formation. Congo red absorbance, thioflavin T fluorescence, circular dichroism (CD) and transmission electron microscopy have been used to characterize this process. Similar to other all-beta proteins, PG shows a non-cooperative fibrillation mechanism, but the structural changes that are monitored by CD indicate a different pattern. Furthermore, several compounds containing aromatic components were tested as potential inhibitors of amyloid formation. Another protein predominantly composed of alpha-helices (human serum albumin) was also targeted by these ligands, in order to get an insight into their potential anti-aggregation property toward structurally different proteins. Among tested compounds, silibinin and chlorpropamide were able to considerably affect both proteins fibrillation process.
Kinetic Monte Carlo simulation of nanoparticle film formation via nanocolloid drying
NASA Astrophysics Data System (ADS)
Kameya, Yuki
2017-06-01
A kinetic Monte Carlo simulation of nanoparticle film formation via nanocolloid drying is presented. The proposed two-dimensional model addresses the dynamics of nanoparticles in the vertical plane of a drying nanocolloid film. The gas-liquid interface movement due to solvent evaporation was controlled by a time-dependent chemical potential, and the resultant particle dynamics including Brownian diffusion and aggregate growth were calculated. Simulations were performed at various Peclet numbers defined based on the rate ratio of solvent evaporation and nanoparticle diffusion. At high Peclet numbers, nanoparticles accumulated at the top layer of the liquid film and eventually formed a skin layer, causing the formation of a particulate film with a densely packed structure. At low Peclet numbers, enhanced particle diffusion led to significant particle aggregation in the bulk colloid, and the resulting film structure became highly porous. The simulated results showed some typical characteristics of a drying nanocolloid that had been reported experimentally. Finally, the potential of the model as well as the remaining challenges are discussed.
2010-01-01
The neurodegenerative potential of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) and underlying mechanisms are under debate. Here, we show that MDMA is a substrate for CNS prostaglandin H synthase (PHS)-catalyzed bioactivation to a free radical intermediate that causes reactive oxygen species (ROS) formation and neurodegenerative oxidative DNA damage. In vitro PHS-1-catalyzed bioactivation of MDMA stereoselectively produced free radical intermediate formation and oxidative DNA damage that was blocked by the PHS inhibitor eicosatetraynoic acid. In vivo, MDMA stereoselectively caused gender-independent DNA oxidation and dopaminergic nerve terminal degeneration in several brain regions, dependent on regional PHS-1 levels. Conversely, MDMA-initiated striatal DNA oxidation, nerve terminal degeneration, and motor coordination deficits were reduced in PHS-1 +/− and −/− knockout mice in a gene dose-dependent fashion. These results confirm the neurodegenerative potential of MDMA and provide the first direct evidence for a novel molecular mechanism involving PHS-catalyzed formation of a neurotoxic MDMA free radical intermediate. PMID:22778832
Fast formation cycling for lithium ion batteries
An, Seong Jin; Li, Jianlin; Du, Zhijia; ...
2017-01-09
The formation process for lithium ion batteries typically takes several days or more, and it is necessary for providing a stable solid electrolyte interphase on the anode (at low potentials vs. Li/Li +) for preventing irreversible consumption of electrolyte and lithium ions. An analogous layer known as the cathode electrolyte interphase layer forms at the cathode at high potentials vs. Li/Li +. However, several days, or even up to a week, of these processes result in either lower LIB production rates or a prohibitively large size of charging-discharging equipment and space (i.e. excessive capital cost). In this study, a fastmore » and effective electrolyte interphase formation protocol is proposed and compared with an Oak Ridge National Laboratory baseline protocol. Graphite, NMC 532, and 1.2 M LiPF 6 in ethylene carbonate: diethyl carbonate were used as anodes, cathodes, and electrolytes, respectively. Finally, results from electrochemical impedance spectroscopy show the new protocol reduced surface film (electrolyte interphase) resistances, and 1300 aging cycles show an improvement in capacity retention.« less
Lin, Tao; Zhou, Dongju; Yu, Shilin; Chen, Wei
2016-09-01
The removal process of 2,2-dichloroacetamide (DCAcAm), a new disinfection by-product (DBP) in conventional drinking water treatment plant (C-DWTP) and advanced DWTP (ADWTP) was studied with newly maximum formation potential (MFP) process. It was demonstrated that the advanced treatment displayed greater removal efficiency towards DCAcAm formation potential (MFP) than the conventional treatment. The hydrophilic natural organic matter and natural organic matter with molecular weight <1 kDa or >10 kDa leaded to more DCAcAm formation, and the aromatic protein was inferred as one part of DCAcAm precursor. DCAcAm was found to cause delayed development and malformation to zebrafish embryos at embryonic growth stage. Compared with heart toxicity, it caused a significant neuron toxicity. It also could cause the acute DNA damage to adult zebrafish, which should be extremely cautioned. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lautz, L. K.; Hoke, G. D.; Lu, Z.; Siegel, D. I.
2013-12-01
Hydraulic fracturing has the potential to introduce saline water into the environment due to migration of deep formation water to shallow aquifers and/or discharge of flowback water to the environment during transport and disposal. It is challenging to definitively identify whether elevated salinity is associated with hydraulic fracturing, in part, due to the real possibility of other anthropogenic sources of salinity in the human-impacted watersheds in which drilling is taking place and some formation water present naturally in shallow groundwater aquifers. We combined new and published chemistry data for private drinking water wells sampled across five southern New York (NY) counties overlying the Marcellus Shale (Broome, Chemung, Chenango, Steuben, and Tioga). Measurements include Cl, Na, Br, I, Ca, Mg, Ba, SO4, and Sr. We compared this baseline groundwater quality data in NY, now under a moratorium on hydraulic fracturing, with published chemistry data for 6 different potential sources of elevated salinity in shallow groundwater, including Appalachian Basin formation water, road salt runoff, septic effluent, landfill leachate, animal waste, and water softeners. A multivariate random number generator was used to create a synthetic, low salinity (< 20 mg/L Cl) groundwater data set (n=1000) based on the statistical properties of the observed low salinity groundwater. The synthetic, low salinity groundwater was then artificially mixed with variable proportions of different potential sources of salinity to explore chemical differences between groundwater impacted by formation water, road salt runoff, septic effluent, landfill leachate, animal waste, and water softeners. We then trained a multivariate, discriminant analysis model on the resulting data set to classify observed high salinity groundwater (> 20 mg/L Cl) as being affected by formation water, road salt, septic effluent, landfill leachate, animal waste, or water softeners. Single elements or pairs of elements (e.g. Cl and Br) were not effective at discriminating between sources of salinity, indicating multivariate methods are needed. The discriminant analysis model classified most accurately samples affected by formation water and landfill leachate, whereas those contaminated by road salt, animal waste, and water softeners were more likely to be discriminated as contaminated by a different source. Using this approach, no shallow groundwater samples from NY appear to be affected by formation water, suggesting the source of salinity pre-hydraulic fracturing is primarily a combination of road salt, septic effluent, landfill leachate, and animal waste.
NASA Technical Reports Server (NTRS)
Williams, Alton C. (Editor); Moorehead, Tauna W. (Editor)
1987-01-01
Topics addressed include: laboratory double layers; ion-acoustic double layers; pumping potential wells; ion phase-space vortices; weak double layers; electric fields and double layers in plasmas; auroral double layers; double layer formation in a plasma; beamed emission from gamma-ray burst source; double layers and extragalactic jets; and electric potential between plasma sheet clouds.
ERIC Educational Resources Information Center
Barnum, Dennis W.
1982-01-01
Potential-pH diagrams show the domains of redoxpotential and pH in which major species are most stable. Constructing such diagrams provides students with opportunities to decide what species must be considered, search literature for equilibrium constants and free energies of formation, and practice in using the Nernst equation. (Author/JN)
NASA Astrophysics Data System (ADS)
Arakaki, T.; Kinjo, M.; Shiroma, K.; Shibata, M.; Miyake, T.; Hirakawa, T.; Sakugawa, H.
2003-12-01
Hydroxyl radical formation was studied by detecting concentration of formate in solutions of hydrated formaldehyde, HOOH, and Fe(III) or Cu(II). Oxidation of hydrated formaldehyde by OH radical is known to form formate. Formate formation increased by about 4 times when the solution underwent freezing and thawing. Although the reaction mechanisms are not clearly understood, we believe that the concentration effect of freezing enhanced the catalytic reactions between HOOH and Fe(III) or Cu(II) and the reduction of transition metals, i.e., Fe(III) to Fe(II) and Cu(II) to Cu(I). The concentration effect also enhanced reactions between Fe(II) and HOOH or Cu(I) and HOOH, which generated OH radical (freeze-Fenton reaction). Study of the effects of pH showed that formate formation was the highest at pH = 4.0, indicating that the speciation of Fe(III) affected the formation of formate. Concentration-dependent experiments demonstrated that Fe is probably the limiting agent under typical atmospheric conditions. Our results suggested that the freezing process could be an important source of hydroxyl radical in high cloud, winter fog, rime ice and freezing acidic rain, and more importantly, a potentially additional oxidation mechanism in the atmosphere.
NASA Astrophysics Data System (ADS)
Barnhoorn, Auke; Houben, Maartje; Lie-A-Fat, Joella; Ravestein, Thomas; Drury, Martyn
2015-04-01
In unconventional tough gas reservoirs (e.g. tight sandstones or shales) the presence of fractures, either naturally formed or hydraulically induced, is almost always a prerequisite for hydrocarbon productivity to be economically viable. One of the formations classified so far as a potential interesting formation for shale gas exploration in the Netherlands is the Lower Jurassic Posidonia Shale Formation (PSF). However data of the Posidonia Shale Formation is scarce so far and samples are hard to come by, especially on the variability and heterogeneity of the petrophysical parameters of this shale little is known. Therefore research and sample collection is conducted on a time and depositional analogue of the PSF: the Whitby Mudstone Formation (WMF) in the United Kingdom. A large number of samples along a ~7m stratigraphic section of the Whitby Mudstone Formation have been collected and analysed. Standard petrophysical properties such as porosity and matrix densities are quantified for a number of samples throughout the section, as well as mineral composition analysis based on XRD/XRF and SEM analyses. Seismic velocity measurements are also conducted at multiple heights in the section and in multiple directions to elaborate on anisotropy of the material. Attenuation anisotropy is incorporated as well as Thomsen's parameters combined with elastic parameters, e.g. Young's modulus and Poisson's ratio, to quantify the elastic anisotropy. Furthermore rock mechanical experiments are conducted to determine the elastic constants, rock strength, fracture characteristics, brittleness index, fraccability and rock mechanical anisotropy across the stratigraphic section of the Whitby mudstone formation. Results show that the WMF is highly anisotropic and it exhibits an anisotropy on the large limit of anisotropy reported for US gas shales. The high anisotropy of the Whitby shales has an even larger control on the formation of the fracture network. Furthermore, most petrophysical properties are highly variable. They vary per sample, but even within a sample on a mm-scale, large variations in e.g. the porosity occur. These relatively large variations influence the potential for future shale gas exploration for these Lower Jurassic shales in northern Europe and need to be quantified in detail beforehand. Compositional analyses and rock deformation experiments on the first samples indicate relatively low brittleness indices for the Whitby shale, but variation of these parameters within the stratigraphy are present. All petrophysical analyses combined will provide a complete assessment of the potential for shale gas exploration of these Lower Jurassic shales.
Helical Peierls distortion: Formation of helices of polyketone and polyisocyanide
NASA Astrophysics Data System (ADS)
Cui, Chang-Xing; Kertesz, Miklos
1990-06-01
A new type of Peierls-like distortion, the formation of a helix due to the existence of partially filled crossing bands, is reported for polyketone and polyisocyanide. The torsional potential curves, optimized geometries, band structures and phonon dispersion curves are derived. A comparison with the well-known Peierls-distorted all-trans polyacetylene indicates close similarity between the two types of Peierls distortions.
USDA-ARS?s Scientific Manuscript database
The establishment of new approaches to control chewing insects has been sought not only for direct use in reducing crop loss but also in managing resistance to the pesticides already in use. Engineered formation of calcium oxalate crystals is a potential strategy that could be developed to fulfill ...
ERIC Educational Resources Information Center
Planar, Dolors; Moya, Soledad
2016-01-01
Formative feedback has great potential for teaching and learning in online undergraduate programmes. There is a large number of courses where the main source of feedback is provided by the instructor. This is particularly seen in subjects where assessments are designed based on specific activities which are the same for all students, and where the…
Development of a Protocol and a Screening Tool for Selection of DNAPL Source Area Remediation
2012-05-01
sensitivity study completed to investigate the potential influence of manganese dioxide rind formation during permanganate treatment... permanganate as the oxidant. This evaluation is specific to permanganate treatment and the corresponding manganese dioxide rind formation; however...forms within close proximity of the DNAPL phase, as occurs when permanganate reacts with the DNAPL. 1.4 IMPLEMENTATION ISSUES DNAPL TEST has been
ERIC Educational Resources Information Center
Feeney, Sharon; Hogan, John; O'Rourke, Brendan K.
2017-01-01
The role of higher education systems in the formation and reproduction of governing elites, and their countervailing potential for the creation of a more egalitarian, or meritocratic, society, has been an enduring subject of concern, debate and research. Many of these debates are made all the more difficult by our inability to directly compare…
ERIC Educational Resources Information Center
Ranalli, Jim; Link, Stephanie; Chukharev-Hudilainen, Evgeny
2017-01-01
An increasing number of studies on the use of tools for automated writing evaluation (AWE) in writing classrooms suggest growing interest in their potential for formative assessment. As with all assessments, these applications should be validated in terms of their intended interpretations and uses. A recent argument-based validation framework…
Proquin, Héloïse; Rodríguez-Ibarra, Carolina; Moonen, Carolyn G J; Urrutia Ortega, Ismael M; Briedé, Jacob J; de Kok, Theo M; van Loveren, Henk; Chirino, Yolanda I
2017-01-01
Since 1969, the European Union approves food-grade titanium dioxide (TiO 2 ), also known as E171 colouring food additive. E171 is a mixture of micro-sized particles (MPs) and nano-sized particles (NPs). Previous studies have indicated adverse effects of oral exposure to E171, i.e. facilitation of colon tumour growth. This could potentially be partially mediated by the capacity to induce reactive oxygen species (ROS). The aim of the present study is to determine whether E171 exposure induces ROS formation and DNA damage in an in vitro model using human Caco-2 and HCT116 cells and to investigate the contribution of the separate MPs and NPs TiO 2 fractions to these effects. After suspension of the particles in Hanks' balanced salt solution buffer and cell culture medium with either bovine serum albumin (BSA) or foetal bovine serum, characterization of the particles was performed by dynamic light scattering, ROS formation was determined by electron spin/paramagnetic resonance spectroscopy and DNA damage was determined by the comet and micronucleus assays. The results showed that E171, MPs and NPs are stable in cell culture medium with 0.05% BSA. The capacity for ROS generation in a cell-free environment was highest for E171, followed by NPs and MPs. Only MPs were capable to induce ROS formation in exposed Caco-2 cells. E171, MPs and NPs all induced single-strand DNA breaks. Chromosome damage was shown to be induced by E171, as tested with the micronucleus assay in HCT116 cells. In conclusion, E171 has the capability to induce ROS formation in a cell-free environment and E171, MPs and NPs have genotoxic potential. The capacity of E171 to induce ROS formation and DNA damage raises concerns about potential adverse effects associated with E171 (TiO 2 ) in food. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Sullivan, Pamela L.; Engel, Victor C.; Ross, Michael S.; Price, René M.
2013-01-01
Transpiration-driven nutrient accumulation has been identified as a potential mechanism governing the creation and maintenance of wetland vegetation patterning. This process may contribute to the formation of nutrient-rich tree islands within the expansive oligotrophic marshes of the Everglades (Florida, United States). This study presents hydrogeochemical data indicating that tree root water uptake is a primary driver of groundwater ion accumulation across one of these islands. Sap flow, soil moisture, water level, water chemistry, and rainfall were measured to identify the relationships between climate, transpiration, and groundwater uptake by phreatophytes and to examine the effect this uptake has on groundwater chemistry and mineral formation in three woody plant communities of differing elevations. During the dry season, trees relied more on groundwater for transpiration, which led to a depressed water table and the advective movement of groundwater and dissolved ions, including phosphorus, from the surrounding marsh towards the centre of the island. Ion exclusion during root water uptake led to elevated concentrations of all major dissolved ions in the tree island groundwater compared with the adjacent marsh. Groundwater was predominately supersaturated with respect to aragonite and calcite in the lower-elevation woody communities, indicating the potential for soil formation. Elevated groundwater phosphorous concentrations detected in the highest-elevation woody community were associated with the leaching of inorganic sediments (i.e. hydroxyapatite) in the vadose zone. Understanding the complex feedback mechanisms regulating plant/groundwater/surface water interactions, nutrient dynamics, and potential soil formation is necessary to manage and restore patterned wetlands such as the Everglades.
NASA Astrophysics Data System (ADS)
Meidt, Sharon E.; Leroy, Adam K.; Rosolowsky, Erik; Kruijssen, J. M. Diederik; Schinnerer, Eva; Schruba, Andreas; Pety, Jerome; Blanc, Guillermo; Bigiel, Frank; Chevance, Melanie; Hughes, Annie; Querejeta, Miguel; Usero, Antonio
2018-02-01
Modern extragalactic molecular gas surveys now reach the scales of star-forming giant molecular clouds (GMCs; 20–50 pc). Systematic variations in GMC properties with galaxy environment imply that clouds are not universally self-gravitating objects, decoupled from their surroundings. Here we re-examine the coupling of clouds to their environment and develop a model for 3D gas motions generated by forces arising with the galaxy gravitational potential defined by the background disk of stars and dark matter. We show that these motions can resemble or even exceed the motions needed to support gas against its own self-gravity throughout typical galactic disks. The importance of the galactic potential in spiral arms and galactic centers suggests that the response to self-gravity does not always dominate the motions of gas at GMC scales, with implications for observed gas kinematics, virial equilibrium, and cloud morphology. We describe how a uniform treatment of gas motions in the plane and in the vertical direction synthesizes the two main mechanisms proposed to regulate star formation: vertical pressure equilibrium and shear/Coriolis forces as parameterized by Toomre Q ≈ 1. As the modeled motions are coherent and continually driven by the external potential, they represent support for the gas that is distinct from that conventionally attributed to turbulence, which decays rapidly and thus requires maintenance, e.g., via feedback from star formation. Thus, our model suggests that the galaxy itself can impose an important limit on star formation, as we explore in a second paper in this series.
Yang, Liyang; Hur, Jin; Lee, Sonmin; Chang, Soon-Woong; Shin, Hyun-Sang
2015-06-01
Dynamics of river dissolved organic matter (DOM) during storm events have profound influences on the downstream aquatic ecosystem and drinking water safety. This study investigated temporal variations in DOM during four storm events in two forest headwater streams (the EH and JH brooks, South Korea) and the impacts on the disinfection byproducts (DBPs) formation potential. The within-event variations of most DOM quantity parameters were similar to the flow rate in the EH but not in the larger JH brook. The dissolved organic carbon (DOC) showed clockwise and counterclockwise hysteresis with the flow rate in the EH and JH brooks, respectively, indicating the importance of both flow path and DOM source pool size in determining the effects of storm events. The stream DOM became less aromatic/humified from the first to the last event in both brooks, probably due to the increasing fresh plant pool and the decreasing leaf litter pool during the course of rainy season. The DOC export during each event increased 1.3-2.7- and 1.1-7.0-fold by stormflows in the EH and JH brooks, respectively. The leaf litter and soil together was the major DOM source, particularly during early events. The enhanced DOM export probably increases the risks of DBPs formation in disinfection, as indicated by a strong correlation observed between DOC and trihalomethanes formation potential (THMFP). High correlations between two humic-like fluorescent components and THMFP further suggested the potential of assessing THMFP with in situ fluorescence sensors during storms.
Wada, Hiroshi; Masumoto-Kubo, Chisato; Gholipour, Yousef; Nonami, Hiroshi; Tanaka, Fukuyo; Erra-Balsells, Rosa; Tsutsumi, Koichi; Hiraoka, Kenzo; Morita, Satoshi
2014-01-01
Foehn-like extreme hot and dry wind conditions (34°C, >2.5 kPa vapor pressure deficit, and 7 m s(-1)) strongly affect grain quality in rice (Oryza sativa L.). This is a current concern because of the increasing frequency and intensity of combined heat and water-deficit stress under climate change. Foehn-induced dry wind conditions during the grain-filling stage increase ring-shaped chalkiness as a result of spatiotemporal reduction in starch accumulation in the endosperm, but kernel growth is sometimes maintained by osmotic adjustment. Here, we assess the effects of dry wind on chalky ring formation in environmentally controlled growth chambers. Our results showed that hot and dry wind conditions that lasted for >24 h dramatically increased chalky ring formation. Hot and dry wind conditions temporarily reduced panicle water potential to -0.65 MPa; however, kernel growth was maintained by osmotic adjustment at control levels with increased transport of assimilate to the growing kernels. Dynamic tracer analysis with a nano-electrospray-ionization Orbitrap mass spectrometer and quantitative polymerase chain reaction analysis revealed that starch degradation was negligible in the short-term treatment. Overall expression of starch synthesis-related genes was found to be down-regulated at moderately low water potential. Because the events observed at low water potential preceded the packing of starch granules in cells, we concluded that reduced rates of starch biosynthesis play a central role in the events of cellular metabolism that are altered at osmotic adjustment, which leads to chalky ring formation under short-term hot and dry wind conditions.
An, Heeseon
2015-01-01
Proteasome inhibitors have revolutionized the treatment of multiple myeloma, and validated the therapeutic potential of the ubiquitin proteasome system (UPS). It is believed that in part, proteasome inhibitors elicit their therapeutic effect by inhibiting the degradation of misfolded proteins, which is proteotoxic and causes cell death. In spite of these successes, proteasome inhibitors are not effective against solid tumors, thus necessitating the need to explore alternative approaches. Furthermore, proteasome inhibitors lead to the formation of aggresomes that clear misfolded proteins via the autophagy–lysosome degradation pathway. Importantly, aggresome formation depends on the presence of polyubiquitin tags on misfolded proteins. We therefore hypothesized that inhibitors of ubiquitin conjugation should inhibit both degradation of misfolded proteins, and ubiquitin dependent aggresome formation, thus outlining the path forward toward more effective anticancer therapeutics. To explore the therapeutic potential of targeting the UPS to treat solid cancers, we have developed an inhibitor of ubiquitin conjugation (ABP A3) that targets ubiquitin and Nedd8 E1 enzymes, enzymes that are required to maintain the activity of the entire ubiquitin system. We have shown that ABP A3 inhibits conjugation of ubiquitin to intracellular proteins and prevents the formation of cytoprotective aggresomes in A549 lung cancer cells. Furthermore, ABP A3 induces activation of the unfolded protein response and apoptosis. Thus, similar to proteasome inhibitors MG132, bortezomib, and carfilzomib, ABP A3 can serve as a novel probe to explore the therapeutic potential of the UPS in solid and hematological malignancies. PMID:28717502
Van Vorhis Key, S E; Baker, T C
1982-07-01
In laboratory trail-following bioassays of Argentine ant workers,Iridomyrmex humilis (Mayr), the geometric isomer, (E)-9-hexadecenal, of the trail pheromone component (Z)-9-hexadecenal elicited insignificant trail following as did the potentially more stable formate analogs, (Z)-7-tetradecenyl formate, (E)-7-tetradecenyl formate, and tetradecyl formate. Further, in direct choice tests, workers showed no preference for gaster extract trails (0.002 ant equiv/cm) over trails of (Z)-9-hexadecenal (0.2 ng/cm). Moreover, a 10-fold increase in synthetic trail concentration to 2.0 ng/cm caused (Z)-9-hexadecenal trails to be significantly preferred over gaster extract trails by trail-following ants.
Eight indicators of unilateral pregnancy.
Melchionne, Kevin
2010-12-01
Unintended pregnancy often leads to undesirable outcomes for both mothers and children. However, the definition of unintended pregnancy in the sociology of family formation has been restricted to the intentions of mothers. The intentions of fathers--and, with them, the possible role of disagreement about pregnancy intention--remain outside most conceptual frameworks and research programs. This article draws together a number of indicators of unilateral pregnancy in research on contemporary family formation in the United States. Studies of pregnancy intendedness and contraceptive use consistently provide evidence suggesting a significant role for unilateral pregnancy in family formation. Working on the assumption that unilateral pregnancy presents great potential for social dislocation, this article argues for the integration of the concept of unilateral pregnancy into the theoretical framework informing research on family formation.
Coptis chinensis Polysaccharides Inhibit Advanced Glycation End Product Formation.
Yang, Ye; Li, Yun; Yin, Dengke; Chen, Song; Gao, Xiangdong
2016-06-01
Coptis chinensis Franch (Huanglian) is commonly used to treat diabetes in China. In this study, the effects of the C. chinensis Franch polysaccharides (CCP) on advanced glycation end product (AGE) formation in vitro and in streptozotocin-induced diabetic mice were investigated. CCP significantly inhibited all the three periods of nonenzymatic protein glycation in vitro, including Amadori product, dicarbonyl compound, and AGE formation (P < .01). In diabetic mice, the administration of CCP not only improved both bodyweight and serum insulin and decreased fasting blood glucose and glycated serum protein concentrations but also decreased the AGE accumulations and morphological abnormalities in pancreas and liver. The inhibitory effects of CCP on AGE formation afford a potential therapeutic use in the prevention and treatment of diabetes.
NASA Astrophysics Data System (ADS)
A. Takahashi, Tsuneo
Vitrification is an alternative to customary approaches to cryopreserve cell, tissue and organ. In this method, ice formation can be prevented by a combination of high solute concentration and rapid cooling, a solution become glassy without ice crystalline formation at temperatures below-115°C. The cell and tissue damage associated with ice formation is avoided, but thawing should be rapid enough to prevent ice growth during warming and they should be equilibrated with the vitrification medium without injury. This approach has been extensively studied in the past few years, and has the potential to be an alternative approach to the cryopreservation of a wide range of biological systems.
NASA Technical Reports Server (NTRS)
Ferris, James P.; Ertem, Goezen; Ding, Zi Ping; Prabahar, Joseph
1994-01-01
The condensation of the 5'-phosphorimidazolide of adenosine (ImpA) on montmorillonite in a pH 8 aqueous solution yields oligomers containing up to 10 monomer units. The regiospecificity of 3',5'-phosphodiester bond formation is enhanced by addition of 10% diadenosine pyrophosphate (AppA) to the reaction mixture. A series of activated derivatives of 5'-AMP was prepared to investigate the effect of the leaving group on oligomer formation. The benzimidazole and p-dimethylamino-pyridine derivatives gave the best yields of oligomers. Factors important for oligomer formation is discussed.
Houseknecht, David W.; Lease, Richard O.; Schenk, Christopher J.; Mercier, Tracey J.; Rouse, William A.; Jarboe, Palma B.; Whidden, Katherine J.; Garrity, Christopher P.; Lewis, Kristen A.; Heller, Samuel; Craddock, William H.; Klett, Timothy R.; Le, Phuong A.; Smith, Rebecca; Tennyson, Marilyn E.; Gaswirth, Stephanie B.; Woodall, Cheryl A.; Brownfield, Michael E.; Leathers-Miller, Heidi M.; Finn, Thomas M.
2017-12-22
The U.S. Geological Survey estimated mean undiscovered, technically recoverable resources of 8.7 billion barrels of oil and 25 trillion cubic feet of natural gas (associated and nonassociated) in conventional accumulations in the Cretaceous Nanushuk and Torok Formations in the National Petroleum Reserve in Alaska, adjacent State and Native lands, and State waters. The estimated undiscovered oil resources in the Nanushuk and Torok Formations are significantly higher than previous estimates, owing primarily to recent, larger than anticipated oil discoveries.
Trion formation dynamics in monolayer transition metal dichalcogenides
Singh, Akashay; Moody, Galan; Schaibley, John R.; ...
2016-01-05
Here, we report charged exciton (trion) formation dynamics in doped monolayer transition metal dichalcogenides, specifically molybdenum diselenide (MoSe 2), using resonant two-color pump-probe spectroscopy. When resonantly pumping the exciton transition, trions are generated on a picosecond time scale through exciton-electron interaction. As the pump energy is tuned from the high energy to low energy side of the inhomogeneously broadened exciton resonance, the trion formation time increases by ~50%. This feature can be explained by the existence of both localized and delocalized excitons in a disordered potential and suggests the existence of an exciton mobility edge in transition metal dichalcogenides.
Dalyander, P. Soupy; Long, Joseph W.; Plant, Nathaniel G.; Thompson, David M.
2013-01-01
During the Deepwater Horizon oil spill, oil in the surf zone mixed with sediment in the surf zone to form heavier-than-water sediment oil agglomerates of various size, ranging from small (cm-scale) pieces (surface residual balls, SRBs) to large mats (100-m scale, surface residue mats, SR mats). Once SR mats formed in the nearshore or in the intertidal zone, they may have become buried by sand moving onshore or alongshore. To assist in locating possible sites of buried oil, wave scenarios previously developed by the U.S. Geological Survey (USGS) were used to determine the depths at which surface oil had the potential to mix with suspended sediment. For sediment to mix with floating oil and form an agglomerate of sufficient density to sink to the seafloor, either the water must be very shallow (e.g., within the swash zone) or sediment must be suspended to the water surface in sufficient concentrations to create a denser-than-sea water agglomerate. The focus of this study is to analyze suspended sediment mixing with surface oil in depths beyond the swash zone, in order to define the seaward limit of mat formation. A theoretical investigation of sediment dynamics in the nearshore zone revealed that non-breaking waves do not suspend enough sediment to the surface to form sinking sand/oil agglomerates. For this study, it was assumed that the cross-shore distribution of potential agglomerate formation is associated with the primary breaker line, and the presence of plunging breakers, over the time frame of oiling. The potential locations of submerged oil mats (SOMs) are sites where (1) possible agglomerate formation occurred, where (2) sediment accreted post-oiling and buried the SOM, and where (3) the bathymetry has not subsequently eroded to re-expose any mat that may have formed at that site. To facilitate identification of these locations, the range of water level variation over the time frame of oiling was also prescribed, which combined with the wave-breaking depth analysis and pre-oiling bathymetry would identify the potential geographic locations of SOMs.
NASA Astrophysics Data System (ADS)
Deng, Jun-Gang; Zhao, Jie-Cheng; Chu, Peng-Cheng; Li, Xiao-Hua
2018-04-01
In the present work, we systematically study the α decay preformation factors Pα within the cluster-formation model and α decay half-lives by the proximity potential 1977 formalism for nuclei around Z =82 ,N =126 closed shells. The calculations show that the realistic Pα is linearly dependent on the product of valance protons (holes) and valance neutrons (holes) NpNn . It is consistent with our previous works [Sun et al., Phys. Rev. C 94, 024338 (2016), 10.1103/PhysRevC.94.024338; Deng et al., Phys. Rev. C 96, 024318 (2017), 10.1103/PhysRevC.96.024318], in which Pα are model dependent and extracted from the ratios of calculated α half-lives to experimental data. Combining with our previous works, we confirm that the valance proton-neutron interaction plays a key role in the α preformation for nuclei around Z =82 ,N =126 shell closures whether the Pα is model dependent or microcosmic. In addition, our calculated α decay half-lives by using the proximity potential 1977 formalism taking Pα evaluated by the cluster-formation model can well reproduce the experimental data and significantly reduce the errors.
Geomagnetic Reversals of the Late Jurassic and Early Cretaceous Captured in a North China Core
NASA Astrophysics Data System (ADS)
Kuhn, T.; Fu, R. R.; Kent, D. V.; Olsen, P. E.
2016-12-01
The Tuchengzi formation in North China nominally spans nearly 20 million years of the Late Jurassic and Early Cretaceous, an interval during which age calibration of the Geomagnetic Polarity Time Scale (GPTS) based on seafloor magnetic anomalies is poorly known. The overlying Yixian formation is of special paleontological interest due to an abundance of spectacularly preserved macrofossils of feathered non-avian dinosaurs, birds, mammals, and insects. Scarce fossils in the Tuchengzi, sparse accurate radiometric dates on both the Tuchengzi and overlying Yixian formation, and scant previous paleomagnetic studies on these formations motivated our application of magnetostratigraphy as a geochronological tool. We constructed a geomagnetic reversal sequence from the upper 142m of a 200m core extracted in Liaoning Province at Huangbanjigou spanning the lower Yixian Formation and the unconformably underlying Tuchengzi Formation. Thermal demagnetization up to 680°C in steps of 25-50°C revealed predominantly normal overprints consistent with the modern day field with unblocking temperatures between 125°C and as high as 550°C, as well as normal and reverse characteristic components with unblocking temperatures between 500°C and 680°C. Going up from the base of the core, there is a reverse polarity magnetozone >6m thick, followed by a 5m normal magnetozone, a 10m reverse magnetozone, a 25m normal magnetozone, and a 6m reverse magnetozone truncated by the Yixian-Tuchengzi unconformity. Above the unconformity, all 81m of core were normal. These results indicate that a meaningful polarity stratigraphy can be recovered from the Tuchengzi and Yixian formations that will be invaluable for correlations across the Tuchengzi and potentially the Yixian formations, which span thousands of square kilometers and vary in thickness by many hundreds of meters. The results also demonstrate that, in combination with accurate and precise radiometric dates, the Tuchengzi Formation has the potential to provide tight constraints on presently poorly constrained Late Jurassic and Early Cretaceous parts of the GPTS and provide an independent reversal time scale by which seafloor-anomaly based time scales can be refined.
Park, Yoo Jin; Warnock, Garth L; Ao, Ziliang; Safikhan, Nooshin; Meloche, Mark; Asadi, Ali; Kieffer, Timothy J; Marzban, Lucy
2017-05-01
Islet amyloid, formed by aggregation of human islet amyloid polypeptide (hIAPP), contributes to β-cell failure in type 2 diabetes, cultured and transplanted islets. We previously showed that biosynthetic hIAPP aggregates induce β-cell Fas upregulation and activation of the Fas apoptotic pathway. We used cultured human and hIAPP-expressing mouse islets to investigate: (1) the role of interleukin-1β (IL-1β) in amyloid-induced Fas upregulation; and (2) the effects of IL-1β-induced β-cell dysfunction on pro-islet amyloid polypeptide (proIAPP) processing and amyloid formation. Human and h IAPP -expressing mouse islets were cultured to form amyloid without or with the IL-1 receptor antagonist (IL-1Ra) anakinra, in the presence or absence of recombinant IL-1β. Human islets in which amyloid formation was prevented (amyloid inhibitor or Ad-prohIAPP-siRNA) were cultured similarly. β-cell function, apoptosis, Fas expression, caspase-8 activation, islet IL-1β, β-cell area, β-/α-cell ratio, amyloid formation, and (pro)IAPP forms were assessed. hIAPP aggregates were found to increase IL-1β levels in cultured human islets that correlated with β-cell Fas upregulation, caspase-8 activation and apoptosis, all of which were reduced by IL-1Ra treatment or prevention of amyloid formation. Moreover, IL-1Ra improved culture-induced β-cell dysfunction and restored impaired proIAPP processing, leading to lower amyloid formation. IL-1β treatment potentiated impaired proIAPP processing and increased amyloid formation in cultured human and h IAPP -expressing mouse islets, which were prevented by IL-1Ra. IL-1β plays a dual role by: (1) mediating amyloid-induced Fas upregulation and β-cell apoptosis; (2) inducing impaired proIAPP processing thereby potentiating amyloid formation. Blocking IL-1β may provide a new strategy to preserve β cells in conditions associated with islet amyloid formation. © 2017 John Wiley & Sons Ltd.
Basler, J.A.
1983-01-01
Requirements for testing hydrologic test wells at the proposed Waste Isolation Pilot Plant near Carlsbad, New Mexico, necessitated the use of inflatable formation packers and pressure transducers. Observations during drilling and initial development indicated small formation yields which would require considerable test times by conventional open-casing methods. A pressure-monitoring system was assembled for performance evaluation utilizing commercially available components. Formation pressures were monitored with a down-hole strain-gage transducer. An inflatable packer equipped with a 1/4-inch-diameter steel tube extending through the inflation element permitted sensing formation pressures in isolated test zones. Surface components of the monitoring system provided AC transducer excitation, signal conditioning for recording directly in engineering units, and both analog and digital recording. Continuous surface monitoring of formation pressures provided a means of determining test status and projecting completion times during any phase of testing. Maximum portability was afforded by battery operation with all surface components mounted in a small self-contained trailer. (USGS)
NASA's Autonomous Formation Flying Technology Demonstration, Earth Observing-1(EO-1)
NASA Technical Reports Server (NTRS)
Folta, David; Bristow, John; Hawkins, Albin; Dell, Greg
2002-01-01
NASA's first autonomous formation flying mission, the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft, recently completed its principal goal of demonstrating advanced formation control technology. This paper provides an overview of the evolution of an onboard system that was developed originally as a ground mission planning and operations tool. We discuss the Goddard Space Flight Center s formation flying algorithm, the onboard flight design and its implementation, the interface and functionality of the onboard system, and the implementation of a Kalman filter based GPS data smoother. A number of safeguards that allow the incremental phasing in of autonomy and alleviate the potential for mission-impacting anomalies from the on- board autonomous system are discussed. A comparison of the maneuvers planned onboard using the EO-1 autonomous control system to those from the operational ground-based maneuver planning system is presented to quantify our success. The maneuvers discussed encompass reactionary and routine formation maintenance. Definitive orbital data is presented that verifies all formation flying requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bras, Patrice, E-mail: patrice.bras@angstrom.uu.se; Sterner, Jan; Platzer-Björkman, Charlotte
2015-11-15
Blister formation in Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films sputtered from a quaternary compound target is investigated. While the thin film structure, composition, and substrate material are not correlated to the blister formation, a strong link between sputtering gas entrapment, in this case argon, and blistering effect is found. It is shown that argon is trapped in the film during sputtering and migrates to locally form blisters during the high temperature annealing. Blister formation in CZTS absorbers is detrimental for thin film solar cell fabrication causing partial peeling of the absorber layer and potential shunt paths in the complete device.more » Reduced sputtering gas entrapment, and blister formation, is seen for higher sputtering pressure, higher substrate temperature, and change of sputtering gas to larger atoms. This is all in accordance with previous publications on blister formation caused by sputtering gas entrapment in other materials.« less
Safety Assessment of Formic Acid and Sodium Formate as Used in Cosmetics.
Johnson, Wilbur; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan
2016-11-01
Formic acid functions as a fragrance ingredient, preservative, and pH adjuster in cosmetic products, whereas sodium formate functions as a preservative. Because of its acidic properties, formic acid is a dermal and ocular irritant. However, when used as a pH adjuster in cosmetic formulations, formic acid will be neutralized to yield formate salts, for example, sodium formate, thus minimizing safety concerns. Formic acid and sodium formate have been used at concentrations up to 0.2% and 0.34%, respectively, with hair care products accounting for the highest use concentrations of both ingredients. The low use concentrations of these ingredients in leave-on products and uses in rinse-off products minimize concerns relating to skin/ocular irritation or respiratory irritation potential. The Cosmetic Ingredient Review Expert Panel concluded that formic acid and sodium formate are safe in the present practices of use and concentration in cosmetics, when formulated to be nonirritating. © The Author(s) 2016.
Lakshmi, Vijaya M; Clapper, Margie L; Chang, Wen-Chi; Zenser, Terry V
2005-03-01
Heme has been reported to be an important contributor to endogenous N-nitrosation within the colon and to the enhanced incidence of colon cancer observed with increased intake of red meat. This study uses the heterocyclic amine 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) as a target to evaluate hemin potentiation of nitric oxide (NO)-mediated nitrosation. Formation of 14C-2-nitrosoamino-3-methylimidazo[4,5-f]quinoline (N-NO-IQ) was monitored by HPLC following incubation of 10 microM IQ with the NO donor spermine NONOate (1.2 microM NO/min) at pH 7.4 in the presence or absence of hemin. N-NO-IQ formation due to autoxidation of NO was at the limit of detection (0.1 microM) and increased 22-fold in the presence of 10 microM hemin and an in situ system for generating H2O2 (glucose oxidase/glucose). A linear increase in N-NO-IQ formation was observed from 1 to 10 microM hemin. Significant nitrosamine formation occurred at fluxes of NO and H2O2 as low as 0.024 and 0.25 microM/min, respectively. Potentiation by hemin was not affected by a 400-fold excess flux of H2O2 over NO or a 4.8-fold excess flux of NO over H2O2. Reactive nitrogen species produced by hemin potentiation had a 46-fold greater affinity for IQ than those produced by autoxidation. Azide inhibited autoxidation, suggesting involvement of the nitrosonium ion, NO+. Hemin potentiation was inhibited by NADH, but not azide, suggesting oxidative nitrosylation with NO2* or a NO2*-like species. IQ and 2,3-diaminonaphthylene were much better targets for nitrosation than the secondary amine morpholine. Apc(min) mice with dextran sulfate sodium-induced colitis demonstrated increased levels of urinary nitrite and nitrate consistent with increased expression of iNOS and NO synthesis. As reported previously, identical conditions increased fecal N-nitroso compounds. Thus, hemin potentiation of NO-mediated nitrosation of heterocyclic amines provides a testable mechanism by which red meat consumption can generate N-nitroso compounds and initiate colon cancer under inflammatory conditions, such as colitis.
Andrzejewski, Przemysław; Nawrocki, Jacek
2009-03-01
The reactivity of permanganate with dimethylamine, as possible path of NDMA formation, has been investigated. The results have shown that potassium permanganate reaction with aqueous solutions of dimethylamine (DMA) leads to the formation of N-nitrosodimethylamine (NDMA). The contact time, the molar ratio of permanganate and DMA, pH and presence of nitrite are the key factors influencing the efficiency of NDMA formation. Significant conversion rates of DMA to NDMA were observed only for the high doses of permanganate, which were many times higher than those typically used in water treatment. This reaction however is of importance for water treatment technology, since it shows the possibility of NDMA formation as a result of oxidation of DMA. It is likely that nitrosation is the main path of the reaction. An important role of MnO2 suspension, formed as a result of permanganate reduction in NDMA formation is emphasized. Significant influence of MnO2 suspension on NDMA formation should draw our attention to the potential impact of MnO2 activated filtration beds on NDMA formation.
Long-range empirical potential model: extension to hexagonal close-packed metals.
Dai, Y; Li, J H; Liu, B X
2009-09-23
An n-body potential is developed and satisfactorily applied to hcp metals, Co, Hf, Mg, Re, Ti, and Zr, in the form of long-range empirical potential. The potential can well reproduce the lattice constants, c/a ratios, cohesive energies, and the bulk modulus for their stable structures (hcp) and metastable structures (bcc or fcc). Meanwhile, the potential can correctly predict the order of structural stability and distinguish the energy differences between their stable hcp structure and other structures. The energies and forces derived by the potential can smoothly go to zero at cutoff radius, thus completely avoiding the unphysical behaviors in the simulations. The developed potential is applied to study the vacancy, surface fault, stacking fault and self-interstitial atom in the hcp metals. The calculated formation energies of vacancy and divacancy and activation energies of self-diffusion by vacancies are in good agreement with the values in experiments and in other works. The calculated surface energies and stacking fault energies are also consistent with the experimental data and those obtained in other theoretical works. The calculated formation energies generally agree with the results in other works, although the stable configurations of self-interstitial atoms predicted in this work somewhat contrast with those predicted by other methods. The proposed potential is shown to be relevant for describing the interaction of bcc, fcc and hcp metal systems, bringing great convenience for researchers in constructing potentials for metal systems constituted by any combination of bcc, fcc and hcp metals.
Network based transcription factor analysis of regenerating axolotl limbs
2011-01-01
Background Studies on amphibian limb regeneration began in the early 1700's but we still do not completely understand the cellular and molecular events of this unique process. Understanding a complex biological process such as limb regeneration is more complicated than the knowledge of the individual genes or proteins involved. Here we followed a systems biology approach in an effort to construct the networks and pathways of protein interactions involved in formation of the accumulation blastema in regenerating axolotl limbs. Results We used the human orthologs of proteins previously identified by our research team as bait to identify the transcription factor (TF) pathways and networks that regulate blastema formation in amputated axolotl limbs. The five most connected factors, c-Myc, SP1, HNF4A, ESR1 and p53 regulate ~50% of the proteins in our data. Among these, c-Myc and SP1 regulate 36.2% of the proteins. c-Myc was the most highly connected TF (71 targets). Network analysis showed that TGF-β1 and fibronectin (FN) lead to the activation of these TFs. We found that other TFs known to be involved in epigenetic reprogramming, such as Klf4, Oct4, and Lin28 are also connected to c-Myc and SP1. Conclusions Our study provides a systems biology approach to how different molecular entities inter-connect with each other during the formation of an accumulation blastema in regenerating axolotl limbs. This approach provides an in silico methodology to identify proteins that are not detected by experimental methods such as proteomics but are potentially important to blastema formation. We found that the TFs, c-Myc and SP1 and their target genes could potentially play a central role in limb regeneration. Systems biology has the potential to map out numerous other pathways that are crucial to blastema formation in regeneration-competent limbs, to compare these to the pathways that characterize regeneration-deficient limbs and finally, to identify stem cell markers in regeneration. PMID:21418574
NASA Astrophysics Data System (ADS)
Seubert, Carl R.
Spacecraft operating in a desired formation offers an abundance of attractive mission capabilities. One proposed method of controlling a close formation of spacecraft is with Coulomb (electrostatic) forces. The Coulomb formation flight idea utilizes charge emission to drive the spacecraft to kilovolt-level potentials and generate adjustable, micronewton- to millinewton-level Coulomb forces for relative position control. In order to advance the prospects of the Coulomb formation flight concept, this dissertation presents the design and implementation of a unique one-dimensional testbed. The disturbances of the testbed are identified and reduced below 1 mN. This noise level offers a near-frictionless platform that is used to perform relative motion actuation with electrostatics in a terrestrial atmospheric environment. Potentials up to 30 kV are used to actuate a cart over a translational range of motion of 40 cm. A challenge to both theoretical and hardware implemented electrostatic actuation developments is correctly modeling the forces between finite charged bodies, outside a vacuum. To remedy this, studies of Earth orbit plasmas and Coulomb force theory is used to derive and propose a model of the Coulomb force between finite spheres in close proximity, in a plasma. This plasma force model is then used as a basis for a candidate terrestrial force model. The plasma-like parameters of this terrestrial model are estimated using charged motion data from fixed-potential, single-direction experiments on the testbed. The testbed is advanced to the level of autonomous feedback position control using solely Coulomb force actuation. This allows relative motion repositioning on a flat and level track as well as an inclined track that mimics the dynamics of two charged spacecraft that are aligned with the principal orbit axis. This controlled motion is accurately predicted with simulations using the terrestrial force model. This demonstrates similarities between the partial charge shielding of space-based plasmas to the electrostatic screening in the laboratory atmosphere.
A theoretical study of the omega-phase transformation in metals
NASA Astrophysics Data System (ADS)
Sanati, Mahdi
I have studied the formation of o-phase from electronic and mesoscopic (domain wall) points of view. To study the formation of domain walls, I have extended the Landau model of Cook for the o-phase transition by including a spatial gradient (Ginzburg) term of the scalar order parameter. In general, the Landau free energy is an asymmetric double-well potential. From the variational derivative of the total free energy I obtained a static equilibrium condition. By solving this equation for different physical parameters and boundary conditions, I obtained different quasi-one-dimensional soliton-like solutions. These solutions correspond to three different types of domain walls between the o-phase and the beta-matrix. These results are used to model the formation of the o-phase in bcc Ti. Canonical band model and first principles calculations confirmed the instability of the bcc-phase of group III and IV transition metals with respect to the o-phase transformation. I showed that the d-electron density is the controlling parameter for this type of the transformation. Also the possibility of formation of the o-phase for rare earth metals is discussed. First-principles full-potential linear muffin-tin orbital method (FPLMTO) calculations are performed for o-type displacement of the atoms to study the formation of the o-phase in TiAl and Ti 3Al2Nb alloys. The results of my calculations showed an instability in ordered B2 TiAl structure with respect to the o-phase when one third of the Al atoms are replaced by Nb atoms. These phenomena are explained, first by symmetry arguments; then a pair potential model is used to illustrate this instability based on interactions between different pair of atoms derived from the electronic structure. In addition, importance of the atomic arrangements on the structural stability of the Ti3Al2 Nb system is discussed.
The Collyhurst Sandstone as a secondary storage unit for CCS in the East Irish Sea Basin (UK)
NASA Astrophysics Data System (ADS)
Gamboa, D.; Williams, J. D. O.; Kirk, K.; Gent, C. M. A.; Bentham, M.; Schofield, D. I.
2016-12-01
Carbon Capture and Storage (CCS) is key technology for low-carbon energy and industry. The UK hosts a large CO2 storage potential offshore with an estimated capacity of 78 Gt. The East Irish Sea Basin (EISB) is the key area for CCS in the western UK, with a CO2 storage potential of 1.7 Gt in hydrocarbon fields and in saline aquifers within the Triassic Sherwood Sandstone Formation. However, this theoretical storage capacity does not consider the secondary storage potential in the lower Permian Collyhurst Sandstone Formation. 3D seismic data were used to characterise the Collyhurst Sandstone Formation in the EISB. On the southern basin domain, numerous fault-bound blocks limit the lateral continuity of the sandstone strata, while on the northern domain the sandstones are intersected by less faults. The caprock for the Collyhurst sandstones is variable. The Manchester Marls predominate in the south, transitioning to the St. Bees evaporites towards the north. The evaporites in the EISB cause overburden faults to terminate or detach along Upper Permian strata, limiting the deformation of the underlying reservoir units. Five main storage closures have been identified in the Permian strata. In the southern and central area these are predominantly fault bounded, occurring at depths over 1000m. Despite the higher Collyhurst sandstone thickness in the southern IESB, the dolomitic nature of the caprock constitutes a storage risk in this area. Closures in the northern area are deeper (around 2000-2500m) and wider, reaching areas of 34Km2, and are overlain by evaporitic caprocks. The larger Collyhurst closures to the north underlie large Triassic fields with high storage potential. The spatial overlap favours storage plans including secondary storage units in the EISB. The results of this work also expand the understanding of prospective areas for CO2 sequestration in the East Irish Sea Basin in locations where the primary Sherwood Sandstone Formation is either too shallow, discontinuous or eroded.
National Uranium Resource Evaluation: Lewistown Quadrangle, Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culver, J.C.
1982-09-01
Uranium resources in the Lewistown Quadrangle, Montana, were evaluated to a depth of 1500 m (5000 ft). All existing geologic data were considered, including geologic surveys, literature, theses, radiometric surveys, oil- and water-well logs. Additional data were generated during the course of two field seasons, including the collection of more than 350 water, rock, crude oil and panned concentrate samples for analyses, sedimentary facies maps, structural geology and isopach maps, and field examination of reported areas of anomalous radioactivity. Three environments with potential for the occurrence of a minimum of 100 t of 0.01% U/sub 3/O/sub 8/ were delineated. Themore » most favorable environment is located in the southeastern portion of the quadrangle; here, Tertiary felsic dikes intrude four potential sandstone host rocks in the Kootenai Formation and the Colorado Shale. Structural-chemical traps for allogenic uranium are provided by the juxtaposition of oil-bearing domes. A second potential environment is located in the Eagle Sandstone in the northwestern and western portions of the quadrangle; here, anomalous water samples were obtained downtip from oxidized outcrops that are structurally related to Tertiary intrusive rocks of the Bearpaw and Highwood Mountains. Lignitic lenses and carbonaceous sandstones deposited in a near-shore lagoonal and deltaic environment provide potential reductants for hexavalent uranium in this environment. A third environment, in the Judith River Formation, was selected as favorable on the basis of water-well and gamma-ray log anomalies and their structural relationship with the Bearpaw Mountains. Organic materials are present in the Judith River Formation as potential reductants. They were deposited in a near-shore fluvial and lagoonal system similar to the depositional environment of the Jackson Group of the Texas Gulf Coast.« less
Water relations of Calycanthus flowers: Hydraulic conductance, capacitance, and embolism resistance.
Roddy, Adam B; Simonin, Kevin A; McCulloh, Katherine A; Brodersen, Craig R; Dawson, Todd E
2018-03-30
For most angiosperms, producing and maintaining flowers is critical to sexual reproduction, yet little is known about the physiological processes involved in maintaining flowers throughout anthesis. Among extant species, flowers of the genus Calycanthus have the highest hydraulic conductance and vein densities of species measured to date, yet they can wilt by late morning under hot conditions. Here, we combine diurnal measurements of gas exchange and water potential, pressure-volume relations, functional responses of gas exchange, and characterization of embolism formation using high resolution X-ray computed microtomography to determine drought responses of Calycanthus flowers. Transpiration from flowers frequently exceeded transpiration from leaves, and flowers were unable to limit transpiration under conditions of high vapour pressure deficit. As a result, they rely heavily on hydraulic capacitance to prevent water potential declines. Despite having high water potentials at turgor loss, flowers were very resistant to embolism formation, with no embolism apparent until tepal water potentials had declined to -2 MPa. Although Calycanthus flowers remain connected to the stem xylem and have high hydraulic capacitance, their inability to curtail transpiration leads to turgor loss. These results suggest that extreme climate events may cause flower failure, potentially preventing successful reproduction. © 2018 John Wiley & Sons Ltd.
Primordial black holes from polynomial potentials in single field inflation
NASA Astrophysics Data System (ADS)
Hertzberg, Mark P.; Yamada, Masaki
2018-04-01
Within canonical single field inflation models, we provide a method to reverse engineer and reconstruct the inflaton potential from a given power spectrum. This is not only a useful tool to find a potential from observational constraints, but also gives insight into how to generate a large amplitude spike in density perturbations, especially those that may lead to primordial black holes (PBHs). In accord with other works, we find that the usual slow-roll conditions need to be violated in order to generate a significant spike in the spectrum. We find that a way to achieve a very large amplitude spike in single field models is for the classical roll of the inflaton to overshoot a local minimum during inflation. We provide an example of a quintic polynomial potential that implements this idea and leads to the observed spectral index, observed amplitude of fluctuations on large scales, significant PBH formation on small scales, and is compatible with other observational constraints. We quantify how much fine-tuning is required to achieve this in a family of random polynomial potentials, which may be useful to estimate the probability of PBH formation in the string landscape.
Saigal, Sonal; Bhargava, Ankur; Mehra, S K; Dakwala, Falguni
2011-07-01
The present study evaluates the association of Candida albicans with normal control group, potentially malignant and malignant lesions of oral cavity by using two different liquid culture media. Saliva was collected and biopsy was taken only from those clinically suspected potentially malignant and malignant lesions for histopathological diagnosis. Saliva samples were inoculated for fungal growth in Sabouraud's dextrose agar and culture-positive samples had undergone for Germ tube test. Germ tube-positive samples were further taken for quantification of chlamydospore production in liquid media at 8 and 16 hours. In normal control groups no fungus growth was found; however, potentially malignant and malignant cases showed fungus growth, positive germ tube test and chlamydospore formation. The result also showed rapid and quantitatively more chlamydospore formation in corn meal broth + 5% milk in comparison to serum milk culture media. The oral mucosa is compromised in potentially malignant lesions, it can be argued that this species may be involved in carcinogenesis by elaborating the nitrosamine compounds which either act directly on oral mucosa or interact with other chemical carcinogens to activate specific proto-oncogenes and thereby initiate oral neoplasia.
Antimicrobial and Antiproliferative Potential of Anadenanthera colubrina (Vell.) Brenan
Lima, Rennaly de Freitas; Alves, Érika Ponchet; Rosalen, Pedro Luiz; Ruiz, Ana Lúcia Tasca Gois; Teixeira Duarte, Marta Cristina; Góes, Vivian Fernandes Furletti; de Medeiros, Ana Cláudia Dantas; Pereira, Jozinete Vieira; Godoy, Gustavo Pina; Melo de Brito Costa, Edja Maria
2014-01-01
The aim of the present study was to perform an in vitro analysis of the antimicrobial and antiproliferative potential of an extract from Anadenanthera colubrina (Vell.) Brenan (angico) and chemically characterize the crude extract. Antimicrobial action was evaluated based on the minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration, and the inhibition of formation to oral biofilm. Cell morphology was determined through scanning electron microscopy (SEM). Six strains of tumor cells were used for the determination of antiproliferative potential. The extract demonstrated strong antifungal activity against Candida albicans ATCC 18804 (MIC = 0.031 mg/mL), with similar activity found regarding the ethyl acetate fraction. The extract and active fraction also demonstrated the capacity to inhibit the formation of Candida albicans to oral biofilm after 48 hours, with median values equal to or greater than the control group, but the difference did not achieve statistical significance (P > 0.05). SEM revealed alterations in the cell morphology of the yeast. Regarding antiproliferative activity, the extract demonstrated cytostatic potential in all strains tested. The present findings suggest strong antifungal potential for Anadenanthera colubrina (Vell.) Brenan as well as a tendency toward diminishing the growth of human tumor cells. PMID:25093029
Saigal, Sonal; Bhargava, Ankur; Mehra, S. K.; Dakwala, Falguni
2011-01-01
Background and Objective: The present study evaluates the association of Candida albicans with normal control group, potentially malignant and malignant lesions of oral cavity by using two different liquid culture media. Materials and Methods: Saliva was collected and biopsy was taken only from those clinically suspected potentially malignant and malignant lesions for histopathological diagnosis. Saliva samples were inoculated for fungal growth in Sabouraud's dextrose agar and culture-positive samples had undergone for Germ tube test. Germ tube-positive samples were further taken for quantification of chlamydospore production in liquid media at 8 and 16 hours. Results: In normal control groups no fungus growth was found; however, potentially malignant and malignant cases showed fungus growth, positive germ tube test and chlamydospore formation. The result also showed rapid and quantitatively more chlamydospore formation in corn meal broth + 5% milk in comparison to serum milk culture media. Conclusion: The oral mucosa is compromised in potentially malignant lesions, it can be argued that this species may be involved in carcinogenesis by elaborating the nitrosamine compounds which either act directly on oral mucosa or interact with other chemical carcinogens to activate specific proto-oncogenes and thereby initiate oral neoplasia. PMID:22090762
Aquifer Characterization and Groundwater Potential Evaluation in Sedimentary Rock Formation
NASA Astrophysics Data System (ADS)
Ashraf, M. A. M.; Yusoh, R.; Sazalil, M. A.; Abidin, M. H. Z.
2018-04-01
This study was conducted to characterize the aquifer and evaluate the ground water potential in the formation of sedimentary rocks. Electrical resistivity and drilling methods were used to develop subsurface soil profile for determining suitable location for tube well construction. The electrical resistivity method was used to infer the subsurface soil layer by use of three types of arrays, namely, the pole–dipole, Wenner, and Schlumberger arrays. The surveys were conducted using ABEM Terrameter LS System, and the results were analyzed using 2D resistivity inversion program (RES2DINV) software. The survey alignments were performed with maximum electrode spreads of 400 and 800 m by employing two different resistivity survey lines at the targeted zone. The images were presented in the form of 2D resistivity profiles to provide a clear view of the distribution of interbedded sandstone, siltstone, and shale as well as the potential groundwater zones. The potential groundwater zones identified from the resistivity results were confirmed using pumping, step drawdown, and recovery tests. The combination among the three arrays and the correlation between the well log and pumping test are reliable and successful in identifying potential favorable zones for obtaining groundwater in the study area.
Microwave-induced formation of oligomeric amyloid aggregates.
Lee, Wonseok; Choi, Yeseong; Lee, Sang Won; Kim, Insu; Lee, Dongtak; Hong, Yoochan; Lee, Gyudo; Yoon, Dae Sung
2018-08-24
Amyloid aggregates have emerged as a significant hallmark of neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Although it has been recently reported that microwave heating induces amyloid aggregation compared with conventional heating methods, the mechanism of amyloid aggregate induction has remained unclear. In this study, we investigated the formation of oligomeric amyloid aggregates (OAAs) by microwave irradiation at microscale volumes of solution. Microwave irradiation of protein monomer solution triggered rapid formation of OAAs within 7 min. We characterized the formation of OAAs using atomic force microscopy, thioflavin T fluorescent assay and circular dichroism. In the microwave system, we also investigated the inhibitory effect on the formation of amyloid aggregates by L-ascorbic acid as well as enhanced amyloid aggregation by silver nanomaterials such as nanoparticles and nanowires. We believe that microwave technology has the potential to facilitate the study of amyloid aggregation in the presence of chemical agents or nanomaterials.
Formation and dissolution of bacterial colonies.
Weber, Christoph A; Lin, Yen Ting; Biais, Nicolas; Zaburdaev, Vasily
2015-09-01
Many organisms form colonies for a transient period of time to withstand environmental pressure. Bacterial biofilms are a prototypical example of such behavior. Despite significant interest across disciplines, physical mechanisms governing the formation and dissolution of bacterial colonies are still poorly understood. Starting from a kinetic description of motile and interacting cells we derive a hydrodynamic equation for their density on a surface, where most of the kinetic coefficients are estimated from experimental data for N. gonorrhoeae bacteria. We use it to describe the formation of multiple colonies with sizes consistent with experimental observations. Finally, we show how the changes in the cell-to-cell interactions lead to the dissolution of the bacterial colonies. The successful application of kinetic theory to a complex far from equilibrium system such as formation and dissolution of living bacterial colonies potentially paves the way for the physical quantification of the initial stages of biofilm formation.
Reconsidering formative measurement.
Howell, Roy D; Breivik, Einar; Wilcox, James B
2007-06-01
The relationship between observable responses and the latent constructs they are purported to measure has received considerable attention recently, with particular focus on what has become known as formative measurement. This alternative to reflective measurement in the area of theory-testing research is examined in the context of the potential for interpretational confounding and a construct's ability to function as a point variable within a larger model. Although these issues have been addressed in the traditional reflective measurement context, the authors suggest that they are particularly relevant in evaluating formative measurement models. On the basis of this analysis, the authors conclude that formative measurement is not an equally attractive alternative to reflective measurement and that whenever possible, in developing new measures or choosing among alternative existing measures, researchers should opt for reflective measurement. In addition, the authors provide guidelines for researchers dealing with existing formative measures. Copyright 2007 APA, all rights reserved.
In Vivo Generation of Neural Stem Cells Through Teratoma Formation.
Hong, Yean Ju; Kim, Jong Soo; Choi, Hyun Woo; Song, Hyuk; Park, Chankyu; Do, Jeong Tae
2016-09-01
Pluripotent stem cells have the potential to differentiate into all cell types of the body in vitro through embryoid body formation or in vivo through teratoma formation. In this study, we attempted to generate in vivo neural stem cells (NSCs) differentiated through teratoma formation using Olig2-GFP transgenic embryonic stem cells (ESCs). After 4 to 6 weeks of injection with Olig2-GFP transgenic ESCs, Olig2-GFP(+) NSCs were identified in teratomas formed in immunodeficient mice. Interestingly, 4-week-old teratomas contained higher percentage of Olig2-GFP(+) cells (∼11%) than 6-week-old teratomas (∼3%). These in vivo-derived NSCs expressed common NSC markers (Nestin and Sox2) and differentiated into terminal neuronal and glial lineages. These results suggest that pure NSC populations exhibiting properties similar to those of brain-derived NSCs can be established through teratoma formation.
A Single-Boundary Accumulator Model of Response Times in an Addition Verification Task
Faulkenberry, Thomas J.
2017-01-01
Current theories of mathematical cognition offer competing accounts of the interplay between encoding and calculation in mental arithmetic. Additive models propose that manipulations of problem format do not interact with the cognitive processes used in calculation. Alternatively, interactive models suppose that format manipulations have a direct effect on calculation processes. In the present study, we tested these competing models by fitting participants' RT distributions in an arithmetic verification task with a single-boundary accumulator model (the shifted Wald distribution). We found that in addition to providing a more complete description of RT distributions, the accumulator model afforded a potentially more sensitive test of format effects. Specifically, we found that format affected drift rate, which implies that problem format has a direct impact on calculation processes. These data give further support for an interactive model of mental arithmetic. PMID:28769853
Penfold, Jeffrey; Thomas, Robert K; Li, Peixun; Xu, Hui; Tucker, Ian M; Petkov, Jordan T; Sivia, Devinderjit S
2015-06-23
Surface multilayer formation from the anionic-nonionic surfactant mixture of sodium dodecyl dioxyethylene sulfate, SLES, and monododecyl dodecaethylene glycol, C12E12, by the addition of multivalent Al(3+) counterions at the solid-solution interface is observed and characterized by neutron reflectivity, NR. The ability to form surface multilayer structures on hydrophobic and hydrophilic silica and cellulose surfaces is demonstrated. The surface multilayer formation is more pronounced and more well developed on the hydrophilic and hydrophobic silica surfaces than on the hydrophilic and hydrophobic cellulose surfaces. The less well developed multilayer formation on the cellulose surfaces is attributed to the greater surface inhomogeneities of the cellulose surface which partially inhibit lateral coherence and growth of the multilayer domains at the surface. The surface multilayer formation is associated with extreme wetting properties and offers the potential for the manipulation of the solid surfaces for enhanced adsorption and control of the wetting behavior.
NASA Astrophysics Data System (ADS)
Ye, Z.; Meng, Q.; Mohamadian, H. P.; Wang, J. T.; Chen, L.; Zhu, L.
2007-06-01
The formation of SI engine combustion deposits is a complex phenomenon which depends on various factors of fuel, oil, additives, and engine. The goal of this study is to examine the effects of operating conditions, gasoline, lubricating oil, and additives on deposit formation. Both an experimental investigation and theoretical analysis are conducted on a single cylinder engine. As a result, the impact of deposits on engine performance and exhaust emissions (HC, NO x ) has been indicated. Using samples from a cylinder head and exhaust pipe as well as switching gases via the dual-gas method (N2, O2), the deposit formation mechanism is thoroughly investigated via the thermogravity analysis approach, where the roles of organic, inorganic, and volatile components of fuel, additives, and oil on deposit formation are identified from thermogravity curves. Sustainable feedback control design is then proposed for potential emission control and performance optimization
Knudsen, A.C.; Gunter, M.E.; Herring, J.R.; Grauch, R.I.
2002-01-01
The Permian Phosphoria Formation of southeastern Idaho hosts one of the largest phosphate deposits in the world. Despite the economic significance of this Formation, the fine-grained nature of the phosphorite has discouraged detailed mineralogical characterization and quantification studies. Recently, selenium and other potentially toxic trace elements in mine wastes have drawn increased attention to this formation, and motivated additional study. This study uses powder X-ray diffraction (XRD), with Rietveld quantification software, to quantify and characterize the mineralogy of composite channel samples and individual samples collected from the stratigraphic sections measured by the U.S. Geological Survey in the Meade Peak Member of the Permian Phosphoria Formation at the Enoch Valley mine on Rasmussen Ridge, approximately 15 miles northeast of Soda Springs, Idaho.
Developing a model of adolescent friendship formation on the internet.
Peter, Jochen; Valkenburg, Patti M; Schouten, Alexander P
2005-10-01
Previous research has been largely silent about what precisely influences online friendship formation and has ignored motives for online communication as potential explanations. Drawing on a sample of 493 adolescents, this study tested a path model of adolescent friendship formation including as predictors introversion/extraversion, online self-disclosure, motive for social compensation, and frequency of online communication. Our path analysis showed that extraverted adolescents self-disclosed and communicated online more frequently, which, in turn, facilitated the formation of online friendships. Introverted adolescents, by contrast, were more strongly motivated to communicate online to compensate for lacking social skills. This increased their chances of making friends online. Among introverted adolescents, a stronger motive for social compensation also led to more frequent online communication and online self-disclosure, resulting in more online friendships. The model suggests that the antecedents of online friendship formation are more complex than previously assumed and that motives for online communication should be studied more closely.
Interpreting fluid pressure anomalies in shallow intraplate argillaceous formations
Neuzil, Christopher E.
2015-01-01
Investigations have revealed several instances of apparently isolated highs or lows in pore fluid potential in shallow (< ~ 1 km depth) argillaceous formations in intraplate settings. Formations with the pressure anomalies are distinguished by (1) smaller ratios of hydraulic conductivity to formation thickness and (2) smaller hydraulic (or pressure) diffusivities than those without anomalies. This is consistent with transient Darcian flow caused by strain at rates of ~ 10−17 to 10-16 s-1, by significant perturbing events in the past 104 to 106 annum or by some combination of the two. Plausible causes include erosional downwasting, tectonic strain, and glaciation. In this conceptualization the anomalies provide constraints on formation-scale flow properties, flow history, and local geological forcing in the last 106 annum and in particular indicate zones of low permeability (10−19–10−22 m2) that could be useful for isolation of nuclear waste.
NASA Technical Reports Server (NTRS)
Gilinskiy, M. A.; Korsakov, I. A.
1979-01-01
Averaged evoked potentials in the auditory, somatosensory, and motor cortical zones, as well as in the mesencephalic reticular formation were recorded in acute experiments on nonanesthetized, immobilized cats. Omission of the painful stimulus after a number of pairings resulted in the appearance of a delayed evoked potential, often resembling the late phases of the response to the painful stimulus. The characteristics of this response are discussed in comparison with conditioned changes of the sensory potential amplitudes.
Fahami, Abbas; Beall, Gary W; Betancourt, Tania
2016-02-01
Chlorine and fluorine substituted hydroxyapatites (HA-Cl-F) with different degrees of ion replacement were successfully prepared by the one step mechanochemical activation method. X-ray diffraction (XRD) and FT-IR spectra indicated that substitution of these anions in milled powders resulted in the formation of pure hydroxyapatite phase except for the small observed change in the lattice parameters and unit cell volumes of the resultant hydroxyapatite. Microscopic observations showed that the milled product had a cluster-like structure made up of polygonal and spherical particles with an average particle size of approximately ranged from 20±5 to 70±5nm. The zeta potential of milled samples was performed at three different pH (5, 7.4, and 9). The obtained zeta potential values were negative for all three pH values. Negative zeta potential was described to favor osseointegration, apatite nucleation, and bone regeneration. The bioactivity of samples was investigated on sintered pellets soaked in simulated body fluid (SBF) solution and apatite crystals formed on the surface of the pellets after being incubated for 14days. Zeta potential analysis and bioactivity experiment suggested that HA-Cl-F will lead to the formation of new apatite particles and therefore be a potential implant material. Copyright © 2015 Elsevier B.V. All rights reserved.
Potential gases emissions from the combustion of municipal solid waste by bio-drying.
Zhang, Dong-Qing; He, Pin-Jing; Shao, Li-Ming
2009-09-15
One aerobic and two combined hydrolytic-aerobic processes were set up to investigate the influence of bio-drying on the potential emissions of combustion gases and the quantitative relationships of potential emissions with organics degradation. Results showed that the bio-drying would result in the increase of the HCl and SO(2) emissions and potential for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) formation, but the decrease of NO(x) emissions in the combustion. The potential emissions of combustion gases were correlated with organics degradation (correlation coefficient, r=0.67 for HCl, r=0.96 for SO(2), r=0.91 for PCDD/Fs and r=-0.60 for NO(x)). Interestingly, the total emissions of combustion gases based on input waste could be minimized by bio-drying. The bio-drying caused a reduction of NO(x) emissions but a negligible variation of total emissions of HCl and SO(2) as well as the potential for total PCDD/Fs formation. Moreover, the bio-drying could significantly improve the ratio of gas emissions to low heating values. The mixed waste after bio-drying was more favorable for combustion and the combined process with insufficient aeration during the hydrolytic stage was proposed for the bio-drying operation.
Bollen, Kenneth A
2007-06-01
R. D. Howell, E. Breivik, and J. B. Wilcox (2007) have argued that causal (formative) indicators are inherently subject to interpretational confounding. That is, they have argued that using causal (formative) indicators leads the empirical meaning of a latent variable to be other than that assigned to it by a researcher. Their critique of causal (formative) indicators rests on several claims: (a) A latent variable exists apart from the model when there are effect (reflective) indicators but not when there are causal (formative) indicators, (b) causal (formative) indicators need not have the same consequences, (c) causal (formative) indicators are inherently subject to interpretational confounding, and (d) a researcher cannot detect interpretational confounding when using causal (formative) indicators. This article shows that each claim is false. Rather, interpretational confounding is more a problem of structural misspecification of a model combined with an underidentified model that leaves these misspecifications undetected. Interpretational confounding does not occur if the model is correctly specified whether a researcher has causal (formative) or effect (reflective) indicators. It is the validity of a model not the type of indicator that determines the potential for interpretational confounding. Copyright 2007 APA, all rights reserved.
Lin, Jr-Lin; Hua, Lap-Cuong; Hung, Shih Kai; Huang, Chihpin
2018-01-01
The cyanobacteria-bloom in raw waters frequently causes an unpredictable chemical dosing of preoxidation and coagulation for an effective removal of algal cells in water treatment plants. This study investigated the effects of preoxidation with NaOCl and ClO 2 on the coagulation-flotation effectiveness in the removal of two commonly blooming cyanobacteria species, Microcystis aeruginosa (MA) and Cylindrospermopsis raciborskii (CR), and their corresponding trihalomethane (THM) formation potential. The results showed that dual dosing with NaOCl plus ClO 2 was more effective in enhancing the deformation of cyanobacterial cells compared to single dosing with NaOCl, especially for CR-rich water. Both preoxidation approaches for CR-rich water effectively reduced the CR cell count with less remained dissolved organic carbon (DOC), which benefited subsequent coagulation-flotation. However, preoxidation led to an adverse release of algogenic organic matter (AOM) in the case of MA-rich water. The release of AOM resulted in a poor removal in MA cells and a large amount of THM formation after oxidation-assisted coagulation-flotation process. The reduction in THM formation potential of CR-rich waters is responsible for effective algae and DOC removal by alum coagulation. It is concluded that the species-specific characteristic of cyanobacteria and their AOM released during chlorination significantly influences the performance of coagulation-flotation for AOM removal and corresponding THM formation. Copyright © 2017. Published by Elsevier B.V.
Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation
Sengupta, Kamalika; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K.; Wagner, Robert; Dunne, Eimear M.; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S.; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A.; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P.; Pringle, Kirsty J.; Richards, Nigel A. D.; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Scott, Catherine E.; Seinfeld, John H.; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C.; Wagner, Paul E.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Worsnop, Douglas R.; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim
2016-01-01
The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol–cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20–100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by 0.22 W m−2 (27%) to −0.60 W m−2. Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes. PMID:27790989
Traction Stresses Exerted by Adherent Cells: From Angiogenesis to Metastasis
NASA Astrophysics Data System (ADS)
Reinhart-King, Cynthia
2010-03-01
Cells exert traction stresses against their substrate that mediate their ability to sense the mechanical properties of their microenvironment. These same forces mediate cell adhesion, migration and the formation of stable cell-cell contacts during tissue formation. In this talk, I will present our data on the traction stresses generated by endothelial cells and metastatic breast cancer cells focused on understanding the processes of angiogenesis and metastasis, respectively. In the context of capillary formation, our data indicate that the mechanics of the substrate play a critical role in establishing endothelial cell-cell contacts. On more compliant substrates, endothelial cell shape and traction stresses polarize and promote the formation of stable cell-cell contacts. On stiffer substrates, traction stresses are less polarized and cell connectivity is disrupted. These data indicate that the mechanical properties of the microenvironment may drive cell connectivity and the formation of stable cell-cell contacts through the reorientation of traction stresses. In our studies of metastatic cell migration, we have found that traction stresses increase with increasing metastatic potential. We investigated three lines of varying metastatic potential (MCF10A, MCF7 and MDAMB231). MDAMB231, which are the most invasive, exert the most significant forces as measured by Traction Force Microscopy. These data present the possibility that cellular traction stress generation aids in the ability of metastatic cells to migrate through the matrix-dense tumor microenvironment. Such measurements are integral to link the mechanical and chemical microenvironment with the resulting response of the cell in health and disease.
Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation
NASA Astrophysics Data System (ADS)
Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K.; Wagner, Robert; Dunne, Eimear M.; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S.; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A.; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P.; Pringle, Kirsty J.; Richards, Nigel A. D.; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E.; Seinfeld, John H.; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C.; Wagner, Paul E.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M.; Worsnop, Douglas R.; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim; Carslaw, Kenneth S.
2016-10-01
The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by 0.22 W m-2 (27%) to -0.60 W m-2. Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.
Geologic report on the Sand Wash Drilling Project, Moffat and Routt Counties, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, T.E.; Wayland, T.E.
1981-09-01
The Sand Wash Basin Drilling Project comprises twenty-seven (27) drill holes located in Moffat and Routt Counties, northwest Colorado, having an aggregate depth of 26,107.5 feet (7957.6 m). The holes penetrate the Browns Park Formation of Miocene age, which is a tuffaceous continental sandstone deposited in fluvial, eolian, and lacustrine environments. Partly based on project drilling results, uranium potential resource estimates for this formation in the $50/lb U/sub 3/O/sub 8/ forward-cost category have been increased by 34,476 tons U/sub 3/O/sub 8/ (35,036 metric tons). Three areas between Maybell and Craig, Colorado, considered favorable for uranium occurrences were verified as favorablemore » by project drilling, and a fourth favorable area northwest of Maybell has been expanded. In addition, project drilling results indicate two new favorable areas, one north and northwest and one south of Steamboat Springs, Colorado. Anomalous radioactivity was detected in drill holes in all six study areas of the project. The most important factor in concentrating significant amounts of uranium in the target formation appears to be the availability of gaseous or liquid hydrocarbons and/or hydrogen sulfide gas as reductants. Where subjacent formations supply these reductants to the Browns Park Formation, project drilling encountered 0.05 percent to 0.01 percent uranium concentrations. Potential, though unproven, sources of these reductants are believed to underlie parts of all six project study areas.« less
The adaptor protein p62 is involved in RANKL-induced autophagy and osteoclastogenesis.
Li, Rui-Fang; Chen, Gang; Ren, Jian-Gang; Zhang, Wei; Wu, Zhong-Xing; Liu, Bing; Zhao, Yi; Zhao, Yi-Fang
2014-12-01
Previous studies have implicated autophagy in osteoclast differentiation. The aim of this study was to investigate the potential role of p62, a characterized adaptor protein for autophagy, in RANKL-induced osteoclastogenesis. Real-time quantitative PCR and western blot analyses were used to evaluate the expression levels of autophagy-related markers during RANKL-induced osteoclastogenesis in mouse macrophage-like RAW264.7 cells. Meanwhile, the potential relationship between p62/LC3 localization and F-actin ring formation was tested using double-labeling immunofluorescence. Then, the expression of p62 in RAW264.7 cells was knocked down using small-interfering RNA (siRNA), followed by detecting its influence on RANKL-induced autophagy activation, osteoclast differentiation, and F-actin ring formation. The data showed that several key autophagy-related markers including p62 were significantly altered during RANKL-induced osteoclast differentiation. In addition, the expression and localization of p62 showed negative correlation with LC3 accumulation and F-actin ring formation, as demonstrated by western blot and immunofluorescence analyses, respectively. Importantly, the knockdown of p62 obviously attenuated RANKL-induced expression of autophagy- and osteoclastogenesis-related genes, formation of TRAP-positive multinuclear cells, accumulation of LC3, as well as formation of F-actin ring. Our study indicates that p62 may play essential roles in RANKL-induced autophagy and osteoclastogenesis, which may help to develop a novel therapeutic strategy against osteoclastogenesis-related diseases. © The Author(s) 2014.