Science.gov

Sample records for formation rates revealed

  1. Southern Ocean frontal structure and sea-ice formation rates revealed by elephant seals

    PubMed Central

    Charrassin, J.-B.; Hindell, M.; Rintoul, S. R.; Roquet, F.; Sokolov, S.; Biuw, M.; Costa, D.; Boehme, L.; Lovell, P.; Coleman, R.; Timmermann, R.; Meijers, A.; Meredith, M.; Park, Y.-H.; Bailleul, F.; Goebel, M.; Tremblay, Y.; Bost, C.-A.; McMahon, C. R.; Field, I. C.; Fedak, M. A.; Guinet, C.

    2008-01-01

    Polar regions are particularly sensitive to climate change, with the potential for significant feedbacks between ocean circulation, sea ice, and the ocean carbon cycle. However, the difficulty in obtaining in situ data means that our ability to detect and interpret change is very limited, especially in the Southern Ocean, where the ocean beneath the sea ice remains almost entirely unobserved and the rate of sea-ice formation is poorly known. Here, we show that southern elephant seals (Mirounga leonina) equipped with oceanographic sensors can measure ocean structure and water mass changes in regions and seasons rarely observed with traditional oceanographic platforms. In particular, seals provided a 30-fold increase in hydrographic profiles from the sea-ice zone, allowing the major fronts to be mapped south of 60°S and sea-ice formation rates to be inferred from changes in upper ocean salinity. Sea-ice production rates peaked in early winter (April–May) during the rapid northward expansion of the pack ice and declined by a factor of 2 to 3 between May and August, in agreement with a three-dimensional coupled ocean–sea-ice model. By measuring the high-latitude ocean during winter, elephant seals fill a “blind spot” in our sampling coverage, enabling the establishment of a truly global ocean-observing system. PMID:18695241

  2. Southern Ocean frontal structure and sea-ice formation rates revealed by elephant seals.

    PubMed

    Charrassin, J-B; Hindell, M; Rintoul, S R; Roquet, F; Sokolov, S; Biuw, M; Costa, D; Boehme, L; Lovell, P; Coleman, R; Timmermann, R; Meijers, A; Meredith, M; Park, Y-H; Bailleul, F; Goebel, M; Tremblay, Y; Bost, C-A; McMahon, C R; Field, I C; Fedak, M A; Guinet, C

    2008-08-19

    Polar regions are particularly sensitive to climate change, with the potential for significant feedbacks between ocean circulation, sea ice, and the ocean carbon cycle. However, the difficulty in obtaining in situ data means that our ability to detect and interpret change is very limited, especially in the Southern Ocean, where the ocean beneath the sea ice remains almost entirely unobserved and the rate of sea-ice formation is poorly known. Here, we show that southern elephant seals (Mirounga leonina) equipped with oceanographic sensors can measure ocean structure and water mass changes in regions and seasons rarely observed with traditional oceanographic platforms. In particular, seals provided a 30-fold increase in hydrographic profiles from the sea-ice zone, allowing the major fronts to be mapped south of 60 degrees S and sea-ice formation rates to be inferred from changes in upper ocean salinity. Sea-ice production rates peaked in early winter (April-May) during the rapid northward expansion of the pack ice and declined by a factor of 2 to 3 between May and August, in agreement with a three-dimensional coupled ocean-sea-ice model. By measuring the high-latitude ocean during winter, elephant seals fill a "blind spot" in our sampling coverage, enabling the establishment of a truly global ocean-observing system.

  3. ALMACAL II: Extreme Star Formation Rate Densities in Dusty Starbursts Revealed by ALMA 20 mas Resolution Imaging

    NASA Astrophysics Data System (ADS)

    Oteo, I.; Zwaan, M. A.; Ivison, R. J.; Smail, I.; Biggs, A. D.

    2017-03-01

    We present ultrahigh spatial resolution (∼20 mas or 150 pc) ALMA observations of the dust continuum at 920 μm and 1.2 mm in two submillimeter sources at z = 3.442, ALMACAL–1 (A–1: {S}870μ {{m}}=6.5+/- 0.2 {mJy}) and ALMACAL–2 (A–2: {S}870μ {{m}}=4.4+/- 0.2 {mJy}). About half of the star formation in each of these sources is dominated by a single compact clump (FWHM size of ∼350 pc). In A–1, two additional fainter clumps are found. The star formation rate (SFR) surface densities of all these clumps are extremely high, {{{Σ }}}{SFR}∼ 1200 to ∼ 3000 {M}ȯ {{yr}}-1 {{kpc}}-2, the highest rates found in high-redshift galaxies. Given their geometry and identical redshifts, there is a possibility that A–1 and A–2 are the lensed images of a single background source that are gravitationally amplified by the blazar host. If this were the case, the effective radius of the dusty galaxy in the source plane would be {R}{eff}∼ 40 {pc} and the demagnified SFR surface density would be {{{Σ }}}{SFR} ∼ 10,000 {M}ȯ {{yr}}-1 {{kpc}}-2, comparable with the eastern nucleus of Arp 220. Although we cannot rule out an AGN contribution, our results suggest that a significant percentage of the enormous far-IR luminosity in some dusty starbursts is extremely compact. The high {{{Σ }}}{SFR} in these sources could only be measured thanks to the ultrahigh-resolution ALMA observations used in this work, demonstrating that long-baseline observations are essential to study and interpret the properties of dusty starbursts in the early Universe.

  4. The Bursty Star Formation Histories of Low-mass Galaxies at 0.4 < z < 1 Revealed by Star Formation Rates Measured From Hβ and FUV

    NASA Astrophysics Data System (ADS)

    Guo, Yicheng; Rafelski, Marc; Faber, S. M.; Koo, David C.; Krumholz, Mark R.; Trump, Jonathan R.; Willner, S. P.; Amorín, Ricardo; Barro, Guillermo; Bell, Eric F.; Gardner, Jonathan P.; Gawiser, Eric; Hathi, Nimish P.; Koekemoer, Anton M.; Pacifici, Camilla; Pérez-González, Pablo G.; Ravindranath, Swara; Reddy, Naveen; Teplitz, Harry I.; Yesuf, Hassen

    2016-12-01

    We investigate the burstiness of star formation histories (SFHs) of galaxies at 0.4 < z < 1 by using the ratio of star formation rates (SFRs) measured from Hβ and FUV (1500 Å) (Hβ-to-FUV ratio). Our sample contains 164 galaxies down to stellar mass (M *) of 108.5 M ⊙ in the CANDELS GOODS-N region, where Team Keck Redshift Survey Keck/DEIMOS spectroscopy and Hubble Space Telescope/WFC3 F275W images from CANDELS and Hubble Deep UV Legacy Survey are available. When the ratio of Hβ- and FUV-derived SFRs is measured, dust extinction correction is negligible (except for very dusty galaxies) with the Calzetti attenuation curve. The Hβ-to-FUV ratio of our sample increases with M * and SFR. The median ratio is ˜0.7 at M * ˜ 108.5 M ⊙ (or SFR ˜ 0.5 M ⊙ yr-1) and increases to ˜1 at M * ˜ 1010 M ⊙ (or SFR ˜ 10 M ⊙ yr-1). At M * < 109.5 M ⊙, our median Hβ-to-FUV ratio is lower than that of local galaxies at the same M *, implying a redshift evolution. Bursty SFH on a timescale of a few tens of megayears on galactic scales provides a plausible explanation for our results, and the importance of the burstiness increases as M * decreases. Due to sample selection effects, our Hβ-to-FUV ratio may be an upper limit of the true value of a complete sample, which strengthens our conclusions. Other models, e.g., non-universal initial mass function or stochastic star formation on star cluster scales, are unable to plausibly explain our results.

  5. Ultraviolet Mars Reveals Cloud Formation

    NASA Image and Video Library

    Images from MAVEN's Imaging UltraViolet Spectrograph were used to make this movie of rapid cloud formation on Mars on July 9-10, 2016. The ultraviolet colors of the planet have been rendered in fal...

  6. Measuring star formation rates in blue galaxies

    NASA Technical Reports Server (NTRS)

    Gallagher, John S., III; Hunter, Deidre A.

    1987-01-01

    The problems associated with measurements of star formation rates in galaxies are briefly reviewed, and specific models are presented for determinations of current star formation rates from H alpha and Far Infrared (FIR) luminosities. The models are applied to a sample of optically blue irregular galaxies, and the results are discussed in terms of star forming histories. It appears likely that typical irregular galaxies are forming stars at nearly constant rates, although a few examples of systems with enhanced star forming activity are found among HII regions and luminous irregular galaxies.

  7. Magnetic fields and galactic star formation rates

    SciTech Connect

    Loo, Sven Van; Tan, Jonathan C.; Falle, Sam A. E. G.

    2015-02-10

    The regulation of galactic-scale star formation rates (SFRs) is a basic problem for theories of galaxy formation and evolution: which processes are responsible for making observed star formation rates so inefficient compared to maximal rates of gas content divided by dynamical timescale? Here we study the effect of magnetic fields of different strengths on the evolution of giant molecular clouds (GMCs) within a kiloparsec patch of a disk galaxy and resolving scales down to ≃0.5 pc. Including an empirically motivated prescription for star formation from dense gas (n{sub H}>10{sup 5} cm{sup −3}) at an efficiency of 2% per local free-fall time, we derive the amount of suppression of star formation by magnetic fields compared to the nonmagnetized case. We find GMC fragmentation, dense clump formation, and SFR can be significantly affected by the inclusion of magnetic fields, especially in our strongest investigated B-field case of 80 μG. However, our chosen kiloparsec-scale region, extracted from a global galaxy simulation, happens to contain a starbursting cloud complex that is only modestly affected by these magnetic fields and likely requires internal star formation feedback to regulate its SFR.

  8. Magnetic Fields and Galactic Star Formation Rates

    NASA Astrophysics Data System (ADS)

    Van Loo, Sven; Tan, Jonathan C.; Falle, Sam A. E. G.

    2015-02-01

    The regulation of galactic-scale star formation rates (SFRs) is a basic problem for theories of galaxy formation and evolution: which processes are responsible for making observed star formation rates so inefficient compared to maximal rates of gas content divided by dynamical timescale? Here we study the effect of magnetic fields of different strengths on the evolution of giant molecular clouds (GMCs) within a kiloparsec patch of a disk galaxy and resolving scales down to ≃ 0.5 pc. Including an empirically motivated prescription for star formation from dense gas ({{n}H}\\gt {{10}5} c{{m}-3}) at an efficiency of 2% per local free-fall time, we derive the amount of suppression of star formation by magnetic fields compared to the nonmagnetized case. We find GMC fragmentation, dense clump formation, and SFR can be significantly affected by the inclusion of magnetic fields, especially in our strongest investigated B-field case of 80 μG. However, our chosen kiloparsec-scale region, extracted from a global galaxy simulation, happens to contain a starbursting cloud complex that is only modestly affected by these magnetic fields and likely requires internal star formation feedback to regulate its SFR.

  9. Revealing Educationally Critical Aspects of Rate

    ERIC Educational Resources Information Center

    Herbert, Sandra; Pierce, Robyn

    2012-01-01

    Rate (of change) is an important but complicated mathematical concept describing a ratio comparing two different numeric, measurable quantities. Research referring to students' difficulties with this concept spans more than 20 years. It suggests that problems experienced by some calculus students are likely a result of pre-existing limited or…

  10. Thrombus Formation at High Shear Rates.

    PubMed

    Casa, Lauren D C; Ku, David N

    2017-06-21

    The final common pathway in myocardial infarction and ischemic stroke is occlusion of blood flow from a thrombus forming under high shear rates in arteries. A high-shear thrombus forms rapidly and is distinct from the slow formation of coagulation that occurs in stagnant blood. Thrombosis at high shear rates depends primarily on the long protein von Willebrand factor (vWF) and platelets, with hemodynamics playing an important role in each stage of thrombus formation, including vWF binding, platelet adhesion, platelet activation, and rapid thrombus growth. The prediction of high-shear thrombosis is a major area of biofluid mechanics in which point-of-care testing and computational modeling are promising future directions for clinically relevant research. Further research in this area will enable identification of patients at high risk for arterial thrombosis, improve prevention and treatment based on shear-dependent biological mechanisms, and improve blood-contacting device design to reduce thrombosis risk.

  11. TIME-VARYING DYNAMICAL STAR FORMATION RATE

    SciTech Connect

    Lee, Eve J.; Chang, Philip; Murray, Norman

    2015-02-10

    We present numerical evidence of dynamic star formation in which the accreted stellar mass grows superlinearly with time, roughly as t {sup 2}. We perform simulations of star formation in self-gravitating hydrodynamic and magnetohydrodynamic turbulence that is continuously driven. By turning the self-gravity of the gas in the simulations on or off, we demonstrate that self-gravity is the dominant physical effect setting the mass accretion rate at early times before feedback effects take over, contrary to theories of turbulence-regulated star formation. We find that gravitational collapse steepens the density profile around stars, generating the power-law tail on what is otherwise a lognormal density probability distribution function. Furthermore, we find turbulent velocity profiles to flatten inside collapsing regions, altering the size-line width relation. This local flattening reflects enhancements of turbulent velocity on small scales, as verified by changes to the velocity power spectra. Our results indicate that gas self-gravity dynamically alters both density and velocity structures in clouds, giving rise to a time-varying star formation rate. We find that a substantial fraction of the gas that forms stars arrives via low-density flows, as opposed to accreting through high-density filaments.

  12. New View of Distant Galaxy Reveals Furious Star Formation

    NASA Astrophysics Data System (ADS)

    2007-12-01

    A furious rate of star formation discovered in a distant galaxy shows that galaxies in the early Universe developed either much faster or in a different way from what astronomers have thought. "This galaxy is forming stars at an incredible rate," said Wei-Hao Wang, an astronomer at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. The galaxy, Wang said, is forming the equivalent of 4,000 Suns a year. This is a thousand times more violent than our own Milky Way Galaxy. Location of Distant Galaxy Visible-light, left (from HST) and Infrared, right, (from Spitzer) Images: Circles indicate location of GOODS 850-5. CREDIT: Wang et al., STScI, Spitzer, NASA, NRAO/AUI/NSF Click on image for high-resolution file (1 MB) The galaxy, called GOODS 850-5, is 12 billion light-years from Earth, and thus is seen as it was only about 1.5 billion years after the Big Bang. Wang and his colleagues observed it using the Smithsonian Astrophysical Observatory's Submillimeter Array (SMA) on Mauna Kea in Hawaii. Young stars in the galaxy were enshrouded in dust that was heated by the stars and radiated infrared light strongly. Because of the galaxy's great distance from Earth, the infrared light waves have been stretched out to submillimeter-length radio waves, which are seen by the SMA. The waves were stretched or "redshifted," as astronomers say, by the ongoing expansion of the Universe. "This evidence for prolific star formation is hidden by the dust from visible-light telescopes," Wang explained. The dust, in turn, was formed from heavy elements that had to be built up in the cores of earlier stars. This indicates, Wang said, that significant numbers of stars already had formed, then spewed those heavy elements into interstellar space through supernova explosions and stellar winds. "Seeing the radiation from this heated dust revealed star formation we could have found in no other way," Wang said. Similar dusty galaxies in the early Universe may contain most of the

  13. A Golden Standard of Star Formation Rates

    NASA Astrophysics Data System (ADS)

    Li, Yiming; KINGFISH Team

    2013-01-01

    We propose to use the near-infrared Brγ hydrogen recombination line as a uniform standard of reference star formation rate indicator, for the use of studying star formation in extragalactic systems, calibrating other star formation rate indicators and comparing other star formation rate indicators. Comparing to other popular SFR tracers, Hα, Pα or radio free-free emissions, Brγ emission has the combined advantages of suffering from far less extinction than the shorter wavelength counterparts and the capability of efficiently mapping a large sample with recent near-infrared wide field cameras with ground-base telescopes. A sample of 23 galaxies selected from the KINGFISH/SINGS sample is observed with NEWFIRM on CTIO Blanco and with WIRCam on CFHT. We demonstrate the application of the Brγ emission line as a uniform reference SFR standard by using it to calibrate the Herschel far-infrared bands as SFR indicators. Calibrations of all the three Herschel PACS FIR bands, 70, 100 and 160 μm, are performed on a sub-kpc scale. The limitation and applicability of each calibration are discussed. Moreover, comparing to the calibration of integrated measurements for whole galaxies, a significant portion of the 70 μm is found to be not related to the current star formation activity, meaning that it comes from the dust emission heated by older (>10Myr) stellar population. This is further related to the star formation timescales corresponding to the physical sizes of the star forming regions by comparisons to a simple model prediction. Unbiased composite multi-wavelength calibrations of the observed Hα plus FIR emissions are also derived. Comparison among the three FIR bands suggests that the longer wavelength may not be as good a SFR indicator as the 70 μm emission, in agreement with previous results. With these analysis with the Herschel PACS bands, not only we can establish the SFR calibrations with these bands, but also we exhibit the power of using a uniform

  14. Basin Formation and Cratering on Mercury Revealed by MESSENGER

    NASA Astrophysics Data System (ADS)

    Chapman, C. R.; Fassett, C.; Marchi, S.; Merline, W. J.; Ostrach, L. R.; Prockter, L. M.

    2015-12-01

    Mercury has been bombarded by asteroids and comets throughout its history. The resulting craters and basins are the dominant topographic features on the planet. Although visible basins contain some of the most interesting tectonic features, plains, and evidence of vertical stratigraphy, they fall far short of saturating the surface. Nevertheless, Mercury has a greater spatial density of peak-ring basins and protobasins than any other Solar System body, partly because these morphologies begin at smaller sizes than on most bodies. Cratering at approximately three times the cratering rate on the Moon, combined with likely plains-forming volcanism, prevents recognition of surface features older than 4.0 to 4.1 Ga. Severe losses of craters <50 km in diameter (<20 km in some places) are ascribed to extensive formation of intercrater plains. Estimates of the cratering chronology of Mercury suggest that most plains formation ended about 3.6 to 3.7 Ga, though activity has continued in a few small regions until much more recently (e.g., inside the Rachmaninoff basin). Mercury, compared with other terrestrial bodies, is struck by projectiles impacting at much higher velocities, which is probably responsible for the formation of abundant secondary craters that dominate the numbers of craters <10 km diameter on older plains surfaces. The history of high-velocity bombardment has resulted in the production of abundant impact melts and has churned and processed the regolith, and eroded older topography, more thoroughly than on other Solar System bodies. Although the possible role of Mercury-specific impactors ("vulcanoids") cannot be excluded, imaging searches by MESSENGER have revealed no remaining vulcanoids and no other evidence suggests that Mercury has been bombarded by anything other than the same populations of asteroids and comets that have impacted the Moon and other terrestrial planets from the end of the period of heavy bombardment 3.8 to 3.9 Ga to the present.

  15. ANALYTICAL STAR FORMATION RATE FROM GRAVOTURBULENT FRAGMENTATION

    SciTech Connect

    Hennebelle, Patrick; Chabrier, Gilles

    2011-12-20

    We present an analytical determination of the star formation rate (SFR) in molecular clouds, based on a time-dependent extension of our analytical theory of the stellar initial mass function. The theory yields SFRs in good agreement with observations, suggesting that turbulence is the dominant, initial process responsible for star formation. In contrast to previous SFR theories, the present one does not invoke an ad hoc density threshold for star formation; instead, the SFR continuously increases with gas density, naturally yielding two different characteristic regimes, thus two different slopes in the SFR versus gas density relationship, in agreement with observational determinations. Besides the complete SFR derivation, we also provide a simplified expression, which reproduces the complete calculations reasonably well and can easily be used for quick determinations of SFRs in cloud environments. A key property at the heart of both our complete and simplified theory is that the SFR involves a density-dependent dynamical time, characteristic of each collapsing (prestellar) overdense region in the cloud, instead of one single mean or critical freefall timescale. Unfortunately, the SFR also depends on some ill-determined parameters, such as the core-to-star mass conversion efficiency and the crossing timescale. Although we provide estimates for these parameters, their uncertainty hampers a precise quantitative determination of the SFR, within less than a factor of a few.

  16. Are star formation rates of galaxies bimodal?

    NASA Astrophysics Data System (ADS)

    Feldmann, Robert

    2017-09-01

    Star formation rate (SFR) distributions of galaxies are often assumed to be bimodal with modes corresponding to star-forming and quiescent galaxies, respectively. Both classes of galaxies are typically studied separately, and SFR distributions of star-forming galaxies are commonly modelled as lognormals. Using both observational data and results from numerical simulations, I argue that this division into star-forming and quiescent galaxies is unnecessary from a theoretical point of view and that the SFR distributions of the whole population can be well fitted by zero-inflated negative binomial distributions. This family of distributions has three parameters that determine the average SFR of the galaxies in the sample, the scatter relative to the star-forming sequence and the fraction of galaxies with zero SFRs, respectively. The proposed distributions naturally account for (i) the discrete nature of star formation, (ii) the presence of 'dead' galaxies with zero SFRs and (iii) asymmetric scatter. Excluding 'dead' galaxies, the distribution of log SFR is unimodal with a peak at the star-forming sequence and an extended tail towards low SFRs. However, uncertainties and biases in the SFR measurements can create the appearance of a bimodal distribution.

  17. About recent star formation rates inferences

    NASA Astrophysics Data System (ADS)

    Cerviño, M.; Bongiovanni, A.; Hidalgo, S.

    2017-03-01

    Star Formation Rate (SFR) inferences are based in the so-called constant SFR approximation, where synthesis models are require to provide a calibration; we aims to study the key points of such approximation to produce accurate SFR inferences. We use the intrinsic algebra used in synthesis models, and we explore how SFR can be inferred from the integrated light without any assumption about the underling Star Formation history (SFH). We show that the constant SFR approximation is actually a simplified expression of more deeper characteristics of synthesis models: It is a characterization of the evolution of single stellar populations (SSPs), acting the SSPs as sensitivity curve over different measures of the SFH can be obtained. As results, we find that (1) the best age to calibrate SFR indices is the age of the observed system (i.e. about 13 Gyr for z = 0 systems); (2) constant SFR and steady-state luminosities are not requirements to calibrate the SFR ; (3) it is not possible to define a SFR single time scale over which the recent SFH is averaged, and we suggest to use typical SFR indices (ionizing flux, UV fluxes) together with no typical ones (optical/IR fluxes) to correct the SFR from the contribution of the old component of the SFH, we show how to use galaxy colors to quote age ranges where the recent component of the SFH is stronger/softer than the older component. Particular values of SFR calibrations are (almost) not affect by this work, but the meaning of what is obtained by SFR inferences does. In our framework, results as the correlation of SFR time scales with galaxy colors, or the sensitivity of different SFR indices to sort and long scale variations in the SFH, fit naturally. In addition, the present framework provides a theoretical guideline to optimize the available information from data/numerical experiments to improve the accuracy of SFR inferences. More info en Cerviño, Bongiovanni & Hidalgo A&A 588, 108C (2016)

  18. Revealing bismuth oxide hollow nanoparticle formation by the Kirkendall effect.

    PubMed

    Niu, Kai-Yang; Park, Jungwon; Zheng, Haimei; Alivisatos, A Paul

    2013-01-01

    We study the formation of bismuth oxide hollow nanoparticles by the Kirkendall effect using liquid cell transmission electron microscopy (TEM). Rich dynamics of bismuth diffusion through the bismuth oxide shell have been captured in situ. The diffusion coefficient of bismuth through bismuth oxide shell is 3-4 orders of magnitude higher than that of bulk. Observation reveals that defects, temperature, sizes of the particles, and so forth can affect the diffusion of reactive species and modify the kinetics of the hollowing process.

  19. The link between magnetic field orientations and star formation rates

    NASA Astrophysics Data System (ADS)

    Li, Hua-Bai; Jiang, Hangjin; Fan, Xiaodan; Gu, Qilao; Zhang, Yapeng

    2017-08-01

    Understanding star formation rates (SFRs) is a central goal of modern star formation models, which mainly involve gravity, turbulence and, in some cases, magnetic fields (B-fields)1,2. However, a connection between B-fields and SFRs has never been observed. Here, a comparison between the surveys of SFRs3,4 and a study of cloud-field alignment5—which revealed a bimodal (parallel or perpendicular) alignment—shows consistently lower SFRs per solar mass for clouds almost perpendicular to the B-fields. This is evidence of B-fields being a primary regulator of SFRs. The perpendicular alignment possesses a significantly higher magnetic flux than the parallel alignment and thus a stronger support of the gas against self-gravity. This results in overall lower masses of the fragmented components, which are in agreement with lower SFRs.

  20. Towards universal hybrid star formation rate estimators

    NASA Astrophysics Data System (ADS)

    Boquien, M.; Kennicutt, R.; Calzetti, D.; Dale, D.; Galametz, M.; Sauvage, M.; Croxall, K.; Draine, B.; Kirkpatrick, A.; Kumari, N.; Hunt, L.; De Looze, I.; Pellegrini, E.; Relaño, M.; Smith, J.-D.; Tabatabaei, F.

    2016-06-01

    Context. To compute the star formation rate (SFR) of galaxies from the rest-frame ultraviolet (UV), it is essential to take the obscuration by dust into account. To do so, one of the most popular methods consists in combining the UV with the emission from the dust itself in the infrared (IR). Yet, different studies have derived different estimators, showing that no such hybrid estimator is truly universal. Aims: In this paper we aim at understanding and quantifying what physical processes fundamentally drive the variations between different hybrid estimators. In so doing, we aim at deriving new universal UV+IR hybrid estimators to correct the UV for dust attenuation at local and global scales, taking the intrinsic physical properties of galaxies into account. Methods: We use the CIGALE code to model the spatially resolved far-UV to far-IR spectral energy distributions of eight nearby star-forming galaxies drawn from the KINGFISH sample. This allows us to determine their local physical properties, and in particular their UV attenuation, average SFR, average specific SFR (sSFR), and their stellar mass. We then examine how hybrid estimators depend on said properties. Results: We find that hybrid UV+IR estimators strongly depend on the stellar mass surface density (in particular at 70 μm and 100 μm) and on the sSFR (in particular at 24 μm and the total infrared). Consequently, the IR scaling coefficients for UV obscuration can vary by almost an order of magnitude: from 1.55 to 13.45 at 24 μm for instance. This result contrasts with other groups who found relatively constant coefficients with small deviations. We exploit these variations to construct a new class of adaptative hybrid estimators based on observed UV to near-IR colours and near-IR luminosity densities per unit area. We find that they can reliably be extended to entire galaxies. Conclusions: The new estimators provide better estimates of attenuation-corrected UV emission than classical hybrid estimators

  1. Gas Accretion and Star Formation Rates

    NASA Astrophysics Data System (ADS)

    Sánchez Almeida, Jorge

    Cosmological numerical simulations of galaxy evolution show that accretion of metal-poor gas from the cosmic web drives the star formation in galaxy disks. Unfortunately, the observational support for this theoretical prediction is still indirect, and modeling and analysis are required to identify hints as actual signs of star formation feeding from metal-poor gas accretion. Thus, a meticulous interpretation of the observations is crucial, and this observational review begins with a simple theoretical description of the physical process and the key ingredients it involves, including the properties of the accreted gas and of the star formation that it induces. A number of observations pointing out the connection between metal-poor gas accretion and star formation are analyzed, specifically, the short gas-consumption time-scale compared to the age of the stellar populations, the fundamental metallicity relationship, the relationship between disk morphology and gas metallicity, the existence of metallicity drops in starbursts of star-forming galaxies, the so-called G dwarf problem, the existence of a minimum metallicity for the star-forming gas in the local universe, the origin of the α-enhanced gas forming stars in the local universe, the metallicity of the quiescent BCDs, and the direct measurements of gas accretion onto galaxies. A final section discusses intrinsic difficulties to obtain direct observational evidence, and points out alternative observational pathways to further consolidate the current ideas.

  2. ENVIRONMENTAL DEPENDENCE OF THE STAR FORMATION RATE AND THE SPECIFIC STAR FORMATION RATE AT FIXED MORPHOLOGY

    SciTech Connect

    Deng Xinfa

    2010-09-20

    From the Main galaxy sample of the Sloan Digital Sky Survey Data Release 7, I construct two volume-limited samples with luminosities -20.5 {<=} M{sub r} {<=} -18.5 and -22.5{<=}M{sub r} {<=}-20.5, respectively, to explore the environmental dependence of the star formation rate (SFR) and the specific star formation rate (SSFR) at fixed morphology. It is found that in these two volume-limited samples, galaxies in the lowest density regime preferentially have higher SFR and SSFR than galaxies in the densest regime. I divide each volume-limited Main galaxy sample into two distinct populations, the early type and the late type, and observe that the environmental dependence of the SFR and SSFR of galaxies remains true at fixed morphology: the SFR and SSFR of galaxies in the densest regime is still preferentially lower than that of the ones in the lowest density regime with the same morphological type. I also note that the environmental dependence of the SFR and SSFR of late-type galaxies is stronger than that of early-type galaxies.

  3. Circulating protein synthesis rates reveal skeletal muscle proteome dynamics

    PubMed Central

    Shankaran, Mahalakshmi; King, Chelsea L.; Angel, Thomas E.; Holmes, William E.; Li, Kelvin W.; Colangelo, Marc; Price, John C.; Turner, Scott M.; Bell, Christopher; Hamilton, Karyn L.; Miller, Benjamin F.; Hellerstein, Marc K.

    2015-01-01

    Here, we have described and validated a strategy for monitoring skeletal muscle protein synthesis rates in rodents and humans over days or weeks from blood samples. We based this approach on label incorporation into proteins that are synthesized specifically in skeletal muscle and escape into the circulation. Heavy water labeling combined with sensitive tandem mass spectrometric analysis allowed integrated synthesis rates of proteins in muscle tissue across the proteome to be measured over several weeks. Fractional synthesis rate (FSR) of plasma creatine kinase M-type (CK-M) and carbonic anhydrase 3 (CA-3) in the blood, more than 90% of which is derived from skeletal muscle, correlated closely with FSR of CK-M, CA-3, and other proteins of various ontologies in skeletal muscle tissue in both rodents and humans. Protein synthesis rates across the muscle proteome generally changed in a coordinate manner in response to a sprint interval exercise training regimen in humans and to denervation or clenbuterol treatment in rodents. FSR of plasma CK-M and CA-3 revealed changes and interindividual differences in muscle tissue proteome dynamics. In human subjects, sprint interval training primarily stimulated synthesis of structural and glycolytic proteins. Together, our results indicate that this approach provides a virtual biopsy, sensitively revealing individualized changes in proteome-wide synthesis rates in skeletal muscle without a muscle biopsy. Accordingly, this approach has potential applications for the diagnosis, management, and treatment of muscle disorders. PMID:26657858

  4. Rating Format Effects on Rater Agreement and Reliability.

    ERIC Educational Resources Information Center

    Littlefield, John H.; Troendle, G. Roger

    This study compares intra- and inter-rater agreement and reliability when using three different rating form formats to assess the same stimuli. One format requests assessment by marking detailed criteria without an overall judgement; the second format requests only an overall judgement without the use of detailed criteria; and the third format…

  5. Stochastic heart-rate model can reveal pathologic cardiac dynamics

    NASA Astrophysics Data System (ADS)

    Kuusela, Tom

    2004-03-01

    A simple one-dimensional Langevin-type stochastic difference equation can simulate the heart-rate fluctuations in a time scale from minutes to hours. The model consists of a deterministic nonlinear part and a stochastic part typical of Gaussian noise, and both parts can be directly determined from measured heart-rate data. Data from healthy subjects typically exhibit the deterministic part with two or more stable fixed points. Studies of 15 congestive heart-failure subjects reveal that the deterministic part of pathologic heart dynamics has no clear stable fixed points. Direct simulations of the stochastic model for normal and pathologic cases can produce statistical parameters similar to those of real subjects. Results directly indicate that pathologic situations simplify the heart-rate control system.

  6. Direct Behavior Rating Instrumentation: Evaluating the Impact of Scale Formats

    ERIC Educational Resources Information Center

    Miller, Faith G.; Riley-Tillman, T. Chris; Chafouleas, Sandra M.; Schardt, Alyssa A.

    2017-01-01

    The purpose of this study was to investigate the impact of two different Direct Behavior Rating--Single Item Scale (DBR-SIS) formats on rating accuracy. A total of 119 undergraduate students participated in one of two study conditions, each utilizing a different DBR-SIS scale format: one that included percentage of time anchors on the DBR-SIS…

  7. The Proline Enamine Formation Pathway Revisited in Dimethyl Sulfoxide: Rate Constants Determined via NMR.

    PubMed

    Haindl, Michael H; Hioe, Johnny; Gschwind, Ruth M

    2015-10-14

    Enamine catalysis is a fundamental activation mode in organocatalysis and can be successfully combined with other catalytic methods, e.g., photocatalysis. Recently, the elusive enamine intermediates were detected, and their stabilization modes were revealed. However, the formation pathway of this central organocatalytic intermediate is still a matter of dispute, and several mechanisms involving iminium and/or oxazolidinone are proposed. Here, the first experimentally determined rate constants and rates of enamine formation are presented using 1D selective exchange spectroscopy (EXSY) buildup curves and initial rate approximation. The trends of the enamine formation rates from exo-oxazolidinones and endo-oxazolidinones upon variation of the proline and water concentrations as well as the nucelophilic/basic properties of additives are investigated together with isomerization rates of the oxazolidinones. These first kinetic data of enamine formations in combination with theoretical calculations reveal the deprotonation of iminium intermediates as the dominant pathway in dimethyl sulfoxide (DMSO). The dominant enamine formation pathway varies according to the experimental conditions, e.g., the presence and strength of basic additives. The enamine formation is zero-order in proline and oxazolidinones, which excludes the direct deprotonation of oxazolidinones via E2 mechanism. The nucleophilicity of the additives influences only the isomerization rates of the oxazolidinones and not the enamine formation rates, which excludes a nucleophile-assisted anti elimination of oxazolidinones as a major enamine formation pathway.

  8. Inclination Dependence of Estimated Galaxy Masses and Star Formation Rates

    NASA Astrophysics Data System (ADS)

    Hernandez, Betsy; Maller, Ariyeh; McKernan, Barry; Ford, Saavik

    2016-01-01

    We examine the inclination dependence of inferred star formation rates and galaxy mass estimates in the Sloan Digital Sky Survey by combining the disk/bulge de-convolved catalog of Simard et al 2011 with stellar mass estimates catalog of Mendel et al 2014 and star formation rates measured from spectra by Brinchmann et al 2004. We know that optical star formation indicators are reddened by dust, but calculated star formation rates and stellar mass estimates should account for this. However, we find that face-on galaxies have a higher calculated average star formation rates than edge-on galaxies. We also find edge-on galaxies have ,on average, slightly smaller but similar estimated masses to face-on galaxies, suggesting that there are issues with the applied dust corrections for both models.

  9. Drill-in fluid reduces formation damage, increases production rates

    SciTech Connect

    Hands, N.; Kowbel, K.; Nouris, R.

    1998-07-13

    A sodium formate drill-in fluid system reduced formation damage, resulting in better-than-expected production rates for an off-shore Dutch development well. Programmed to optimize production capacity and reservoir drainage from a Rotliegend sandstone gas discovery, the 5-7/8-in. subhorizontal production interval was drilled and completed barefoot with a unique, rheologically engineered sodium formate drill-in fluid system. The new system, consisting of a sodium formate (NaCOOH) brine as the base fluid and properly sized calcium carbonate as the formation-bridging agent, was selected on the basis of its well-documented record in reducing solids impairment and formation damage in similar sandstone structures in Germany. The system was engineered around the low-shear-rate viscosity (LSRV) concept, designed to provide exceptional rheological properties. After describing the drilling program, the paper gives results on the drilling and completion.

  10. CO2 hydrate formation and dissociation rates: Application to Mars

    NASA Astrophysics Data System (ADS)

    Ambuehl, Dan; Elwood Madden, Megan

    2014-05-01

    CO2 clathrate hydrate is a crystalline material composed of water cages around a CO2 molecule. CO2 gas hydrates are naturally occurring on Earth and are a likely phase on Mars as well as other cold planetary bodies. CO2 hydrates have minor effects on terrestrial atmospheric composition, but may be a major reservoir for greenhouse gases on Mars. In this study, CO2 hydrate formation and dissociation rates were measured experimentally on ultrapure and CO2 infused water ice (ice containing previously trapped CO2 gas bubbles). Overall, increasing pressure and temperature increased CO2 consumption rates, indicating enhanced hydrate formation rates. CO2 consumption and release rates both increased significantly in infused ice experiments as did the overall amount of CO2 consumed. CO2 bubbles formed during freezing of the infused ice likely provided more surface area for hydrate nucleation, increasing the rate of formation. Higher dissociation rates in infused ice experiments compared to ultrapure ice may be due to the higher concentration of hydrate originally formed in the bubble-filled samples. These results suggest that CO2 hydrate formation in natural, gas-rich ice occurs significantly faster than previously assumed. In addition, formation rates would be maximized and dissociation rates minimized at Mars equatorial conditions, perhaps leading to long-term storage of atmospheric CO2 in localized clathrate reservoirs.

  11. A Comparison of Star Formation Rate Indicators for Galaxies

    NASA Astrophysics Data System (ADS)

    Fan, Dong-xin; Li, Jin-rong; Pan, Zhi-zheng; Shi, Fei; Fang, Guan-wen; Kong, Xu

    2013-04-01

    With the multi-wavelength data from UV to sub-millimeter in the region of H-ATLAS (Herschel Astrophysical Terahertz Large Area Survey) Science Demonstration Phase (SDP), in combination with the population synthesis model and dust model, the total infrared luminosities of the galaxies were calculated. On this basis, for respectively the strong and weak star-forming galaxies, we studied the differences in the star formation rates calculated by the UV luminosity, infrared luminosity and Hα line, as well as the intrinsic physical origin of such differences. It was found that for the galaxies of strong star-formation activity, the 3 kinds of star formation rate indicators give the basically consistent results with a small dispersion. But at the end of high star formation rate, the star formation rate calculated by the UV luminosity is slightly smaller than that calculated by the Hα-line flux; at the end of low star formation rate, the UV indicator tends to be greater than the Hα indicator; and at both ends, the infrared indicator and Hα indicator have no significant difference. For the weak star-forming galaxies, significant differences exist among the 3 kinds of indicators, and there is a rather large dispersion. The dispersions and systematic difference of the star formation rates calculated by the UV luminosity and Hα line increase with the galactic age and mass. The main cause for the increased systematic difference is that when the extinction of an weak star-forming galaxy is calibrated by its UV continuum spectral slope β, the UV extinction of the galaxy is overestimated, it makes the UV luminosity tends to be large after the extinction correction. In addition, the star formation rates (Hα) of weak starforming galaxies in the MPA/JHU (Max Planck Institute for Astrophysics/Johns Hopkins University) database are generally less than the real values.

  12. Sulphur-radical control on petroleum formation rates

    USGS Publications Warehouse

    Lewan, M.D.

    1998-01-01

    Most petroleum is formed through the partial decomposition of kerogen (an insoluble sedimentary organic material) in response to thermal stress during subsurface burial in a sedimentary basin. Knowing the mechanisms and kinetics of this process allows the determination of the extent and timing of petroleum formation, which, in turn, are critical for evaluating the potential for petroleum occurrences within a sedimentary basin. Kinetic models of petroleum generation are derived mainly from pyrolysis experiments, in which it is usually assumed that formation rates are controlled by the strength of the bonds within the precursor compounds: this agrees with the observation that petroleum formation rates increase with increasing sulphur content of thermally immature kerogen, C-S bonds being weaker than C-C bonds. However, this explanation fails to account for the overall composition of petroleum. Here I argue, on the basis of pyrolysis experiments, that it is the presence of sulphur radicals, rather than the relative weakness of C-S bonds, that controls petroleum formation rates. My findings suggest that the rate of petroleum formation depends critically on the concentration of sulphur radicals generated during the initial stages of thermal maturation. The proposed mechanism appears to provide a realistic explanation for both the overall composition of petroleum and the observed variation in formation rates.

  13. Skin biopsy analysis reveals predisposition to stretch mark formation.

    PubMed

    Mitts, Thomas F; Jimenez, Felipe; Hinek, Aleksander

    2005-01-01

    Stretch marks are a disfiguring skin condition of yet unknown etiology. We wanted to compare the functional disposition of dermal fibroblasts, derived from unaffected skin of patients with stretch marks and fibroblasts from normal age-matched subjects, and develop a test to predict predisposition to stretch mark development. Skin biopsies from normal subjects (NS), stretch-marked skin (SM), and normal-looking skin from patients with stretch marks (NL) were analyzed by histochemistry and assays of total protein, DNA, and elastin. Cellular migration, proliferation, and matrix production were also measured in primary cultures of biopsy-derived fibroblasts. We found that NL skin contained less DNA, protein, and elastin than NS skin (-16%, -36%, -44%, respectively) and that such deficiencies were more profound in SM skin (-55%, -64%, -80%, respectively). Both NL- and SM-derived cells had slower than normal outgrowth of their fibroblasts, which also demonstrated low migration and proliferation rates, and produced less elastin, fibrillin 1, collagen 1, and fibronectin than NS-derived cells in primary cultures. All these aberrant features, indicating a dormant phenotype of NL- and SM-derived fibroblasts, were reversed and normalized in the fourth passage of all tested fibroblasts. A series of in vitro tests led to the discovery of a dormant phenotype in dermal fibroblasts from patients with stretch marks. The described tests may serve as a diagnostic tool for predicting predisposition to stretch marks. The reported reversibility of impaired fibroblast phenotypes opens a new perspective for preventive treatments for people predisposed to stretch mark formation.

  14. The rate constant for formation of HCl through radiative association

    NASA Astrophysics Data System (ADS)

    Kathir, R. K.; Nyman, Gunnar; Gustafsson, Magnus

    2017-09-01

    Formation of HCl in its electronic ground state through radiative association is studied. We ignore spin-orbit couplings and then the formation can happen through two dipole-allowed reactions, one involving an electronic transition and one where the H and Cl atoms approach and remain in the ground electronic molecular state. The radiative association rate constant is computed, through a combination of classical and quantum methods, for use in modelling of interstellar chemistry.

  15. Herschel/HIFI reveals the first stages of stellar formation

    NASA Astrophysics Data System (ADS)

    Herpin, F.; Bontemps, S.; Chavarria, L.; van der Tak, F.; Wyrowski, F.; van Dishoeck, E.

    2010-12-01

    The understanding of the star formation is still on progress. Especially, the formation of high-mass stars is much less understood than the low-mass case: even the time order of observational phenomena is uncertain. Water, one of the most important molecules in the Universe, might elucidate key episodes in the process of stellar birth, and especially could be a major role in the formation of high-mass stars. For both types of stars, the source chemical composition is not well known and even less known is the chemical evolution of the interstellar matter throughout the various phases of star formation. This talk presents the first results of the various Herschel Space Observatory star formation key-programs. One of the instruments on-board HSO, HIFI, is the most powerful spectrometer never built, covering a huge frequency range, most of them unaccessible from ground. In particular, one of the KP, WISH, aims at following the process of star formation during the various stages and at using the water as a physical diagnostic throughout the evolution.

  16. Star formation rates and abundance gradients in disk galaxies

    NASA Technical Reports Server (NTRS)

    Wyse, Rosemary F. G.; Silk, Joseph

    1989-01-01

    Analytic models for the evolution of disk galaxies are presented, placing special emphasis on the radial properties. These models are straightforward extensions of the original Schmidt (1959, 1963) models, with a dependence of star formation rate on gas density. The models provide successful descriptions of several measures of galactic disk evolution, including solar neighborhood chemical evolution, the presence and amplitude of metallicity and color gradients in disk galaxies, and the global rates of star formation in disk galaxies, and aid in the understanding of the apparent connection between young and old stellar populations in spiral galaxies.

  17. Star formation rates and efficiencies in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Barnes, A. T.; Longmore, S. N.; Battersby, C.; Bally, J.; Kruijssen, J. M. D.; Henshaw, J. D.; Walker, D. L.

    2017-08-01

    The inner few hundred parsecs of the Milky Way harbours gas densities, pressures, velocity dispersions, an interstellar radiation field and a cosmic ray ionization rate orders of magnitude higher than the disc; akin to the environment found in star-forming galaxies at high redshift. Previous studies have shown that this region is forming stars at a rate per unit mass of dense gas which is at least an order of magnitude lower than in the disc, potentially violating theoretical predictions. We show that all observational star formation rate diagnostics - both direct counting of young stellar objects and integrated light measurements - are in agreement within a factor two, hence the low star formation rate (SFR) is not the result of the systematic uncertainties that affect any one method. As these methods trace the star formation over different time-scales, from 0.1 to 5 Myr, we conclude that the SFR has been constant to within a factor of a few within this time period. We investigate the progression of star formation within gravitationally bound clouds on ∼parsec scales and find 1-4 per cent of the cloud masses are converted into stars per free-fall time, consistent with a subset of the considered 'volumetric' star formation models. However, discriminating between these models is obstructed by the current uncertainties on the input observables and, most importantly and urgently, by their dependence on ill-constrained free parameters. The lack of empirical constraints on these parameters therefore represents a key challenge in the further verification or falsification of current star formation theories.

  18. Impact of State hospital rate setting on capital formation

    PubMed Central

    Cromwell, Jerry

    1987-01-01

    For this article, a new national data base of Medicare cost reports on more than 2,000 hospitals is used to measure the impact of State prospective rate setting on capital formation. Several investment measures are analyzed, both in nominal and real terms, using a combination of descriptive and multivariate techniques. Results indicate that, over the last decade, State hospital rate-setting programs have had little demonstrable effect on capital formation and they have not caused any significant aging of plant assets. Programs in both New York and Massachusetts were found to be associated with a slowing in the rate of bed growth, however, resulting in significant long-term cost savings. PMID:10312117

  19. Mechanisms of amyloid formation revealed by solution NMR

    PubMed Central

    Karamanos, Theodoros K.; Kalverda, Arnout P.; Thompson, Gary S.; Radford, Sheena E.

    2015-01-01

    Amyloid fibrils are proteinaceous elongated aggregates involved in more than fifty human diseases. Recent advances in electron microscopy and solid state NMR have allowed the characterization of fibril structures to different extents of refinement. However, structural details about the mechanism of fibril formation remain relatively poorly defined. This is mainly due to the complex, heterogeneous and transient nature of the species responsible for assembly; properties that make them difficult to detect and characterize in structural detail using biophysical techniques. The ability of solution NMR spectroscopy to investigate exchange between multiple protein states, to characterize transient and low-population species, and to study high molecular weight assemblies, render NMR an invaluable technique for studies of amyloid assembly. In this article we review state-of-the-art solution NMR methods for investigations of: (a) protein dynamics that lead to the formation of aggregation-prone species; (b) amyloidogenic intrinsically disordered proteins; and (c) protein–protein interactions on pathway to fibril formation. Together, these topics highlight the power and potential of NMR to provide atomic level information about the molecular mechanisms of one of the most fascinating problems in structural biology. PMID:26282197

  20. Polycyclic Aromatic Hydrocarbons as Star Formation Rate Indicators

    NASA Astrophysics Data System (ADS)

    Calzetti, D.

    2011-03-01

    As images and spectra from ISO and Spitzer have provided increasingly higher-fidelity representations of the mid-infrared (MIR) and Polycyclic Aromatic Hydrocarbon (PAH) emission from galaxies and galactic and extra-galactic regions, more systematic efforts have been devoted to establishing whether the emission in this wavelength region can be used as a reliable star formation rate indicator. This has also been in response to the extensive surveys of distant galaxies that have accumulated during the cold phase of the Spitzer Space Telescope. Results so far have been somewhat contradictory, reflecting the complex nature of the PAHs and of the mid-infrared-emitting dust in general. The two main problems faced when attempting to define a star formation rate indicator based on the mid-infrared emission from galaxies and star-forming regions are: (1) the strong dependence of the PAH emission on metallicity; (2) the heating of the PAH dust by evolved stellar populations unrelated to the current star formation. I review the status of the field, with a specific focus on these two problems, and will try to quantify the impact of each on calibrations of the mid-infrared emission as a star formation rate indicator.

  1. THE COSMIC CORE-COLLAPSE SUPERNOVA RATE DOES NOT MATCH THE MASSIVE-STAR FORMATION RATE

    SciTech Connect

    Horiuchi, Shunsaku; Beacom, John F.; Kochanek, Christopher S.; Stanek, K. Z.; Thompson, Todd A.; Prieto, Jose L.

    2011-09-10

    We identify a 'supernova rate problem': the measured cosmic core-collapse supernova rate is a factor of {approx}2 smaller (with significance {approx}2{sigma}) than that predicted from the measured cosmic massive-star formation rate. The comparison is critical for topics from galaxy evolution and enrichment to the abundance of neutron stars and black holes. We systematically explore possible resolutions. The accuracy and precision of the star formation rate data and conversion to the supernova rate are well supported, and proposed changes would have far-reaching consequences. The dominant effect is likely that many supernovae are missed because they are either optically dim (low-luminosity) or dark, whether intrinsically or due to obscuration. We investigate supernovae too dim to have been discovered in cosmic surveys by a detailed study of all supernova discoveries in the local volume. If possible supernova impostors are included, then dim supernovae are common enough by fraction to solve the supernova rate problem. If they are not included, then the rate of dark core collapses is likely substantial. Other alternatives are that there are surprising changes in our understanding of star formation or supernova rates, including that supernovae form differently in small galaxies than in normal galaxies. These possibilities can be distinguished by upcoming supernova surveys, star formation measurements, searches for disappearing massive stars, and measurements of supernova neutrinos.

  2. Connecting Galaxies, Halos, and Star Formation Rates Across Cosmic Time

    SciTech Connect

    Conroy, Charlie; Wechsler, Risa H.

    2008-06-02

    A simple, observationally-motivated model is presented for understanding how halo masses, galaxy stellar masses, and star formation rates are related, and how these relations evolve with time. The relation between halo mass and galaxy stellar mass is determined by matching the observed spatial abundance of galaxies to the expected spatial abundance of halos at multiple epochs--i.e. more massive galaxies are assigned to more massive halos at each epoch. This 'abundance matching' technique has been shown previously to reproduce the observed luminosity- and scale-dependence of galaxy clustering over a range of epochs. Halos at different epochs are connected by halo mass accretion histories estimated from N-body simulations. The halo-galaxy connection at fixed epochs in conjunction with the connection between halos across time provides a connection between observed galaxies across time. With approximations for the impact of merging and accretion on the growth of galaxies, one can then directly infer the star formation histories of galaxies as a function of stellar and halo mass. This model is tuned to match both the observed evolution of the stellar mass function and the normalization of the observed star formation rate--stellar mass relation to z {approx} 1. The data demands, for example, that the star formation rate density is dominated by galaxies with M{sub star} {approx} 10{sup 10.0-10.5} M{sub {circle_dot}} from 0 < z < 1, and that such galaxies over these epochs reside in halos with M{sub vir} {approx} 10{sup 11.5-12.5} M{sub {circle_dot}}. The star formation rate--halo mass relation is approximately Gaussian over the range 0 < z < 1 with a mildly evolving mean and normalization. This model is then used to shed light on a number of issues, including (1) a clarification of 'downsizing', (2) the lack of a sharp characteristic halo mass at which star formation is truncated, and (3) the dominance of star formation over merging to the stellar build-up of galaxies

  3. Muroid rodent phylogenetics: 900-species tree reveals increasing diversification rates

    PubMed Central

    Schenk, John J.

    2017-01-01

    We combined new sequence data for more than 300 muroid rodent species with our previously published sequences for up to five nuclear and one mitochondrial genes to generate the most widely and densely sampled hypothesis of evolutionary relationships across Muroidea. An exhaustive screening procedure for publically available sequences was implemented to avoid the propagation of taxonomic errors that are common to supermatrix studies. The combined data set of carefully screened sequences derived from all available sequences on GenBank with our new data resulted in a robust maximum likelihood phylogeny for 900 of the approximately 1,620 muroids. Several regions that were equivocally resolved in previous studies are now more decisively resolved, and we estimated a chronogram using 28 fossil calibrations for the most integrated age and topological estimates to date. The results were used to update muroid classification and highlight questions needing additional data. We also compared the results of multigene supermatrix studies like this one with the principal published supertrees and concluded that the latter are unreliable for any comparative study in muroids. In addition, we explored diversification patterns as an explanation for why muroid rodents represent one of the most species-rich groups of mammals by detecting evidence for increasing net diversification rates through time across the muroid tree. We suggest the observation of increasing rates may be due to a combination of parallel increases in rate across clades and high average extinction rates. Five increased diversification-rate-shifts were inferred, suggesting that multiple, but perhaps not independent, events have led to the remarkable species diversity in the superfamily. Our results provide a phylogenetic framework for comparative studies that is not highly dependent upon the signal from any one gene. PMID:28813483

  4. Bone Formation Rate in Experimental Disuse Osteoporosis in Monkeys

    NASA Technical Reports Server (NTRS)

    Cann, Christopher; Young, Donald R.

    1976-01-01

    Specific mechanisms underlying weightless and hypodynamic bone loss are obscure. A principal relationship which must be affected is the balance between bone formation and bone resorption rates. In order to better define the influence of those parameters on bone loss, and also to develop measurements in other species as a useful adjunct to human research, studies were undertaken with experimental monkeys. Tests were conducted with a total of 6 adult male monkeys, weighing 10-13 kg, and approximately 10-12 yrs. of age to evaluate specifically bone formation rate during the development of disuse osteoporosis and osteopenia. Three animals were restrained in a semi-recumbent position for six months; three animals served as normal caged controls. Food intake (Purina) was held relatively constant at 200g/day for each animal. Using a Norland Bone Mineral Analyzer, bone mineral losses of 3.5 to 6% were seen in the mid-shaft of the tibia and in the distal radius. Bone loss was confirmed radiographically, with observation of thinning of the proximal tibial cortex and trabeculae in the calcaneus. Bone formation rate was determined using standard Ca-47 kinetics under metabolic balance conditions. After six months of restraint, accretion was 7.2-13.2 mg Ca/kg/day, compared to 3.2-4.1 mg Ca/kg/day in caged controls and 3-8 mg Ca/kg/day in normal adult humans. Fecal and urine calcium was 25-40% higher in restrained animals than in controls. Dietary calcium absorption decreases during restraint, and calcium turnover increases, implying a rise in bone resorption rate concommitant with the observed rise in bone accretion rate. Further studies dealing specifically with bone resorption are underway to define this more fully.

  5. Archaeological data reveal slow rates of evolution during plant domestication.

    PubMed

    Purugganan, Michael D; Fuller, Dorian Q

    2011-01-01

    Domestication is an evolutionary process of species divergence in which morphological and physiological changes result from the cultivation/tending of plant or animal species by a mutualistic partner, most prominently humans. Darwin used domestication as an analogy to evolution by natural selection although there is strong debate on whether this process of species evolution by human association is an appropriate model for evolutionary study. There is a presumption that selection under domestication is strong and most models assume rapid evolution of cultivated species. Using archaeological data for 11 species from 60 archaeological sites, we measure rates of evolution in two plant domestication traits--nonshattering and grain/seed size increase. Contrary to previous assumptions, we find the rates of phenotypic evolution during domestication are slow, and significantly lower or comparable to those observed among wild species subjected to natural selection. Our study indicates that the magnitudes of the rates of evolution during the domestication process, including the strength of selection, may be similar to those measured for wild species. This suggests that domestication may be driven by unconscious selection pressures similar to that observed for natural selection, and the study of the domestication process may indeed prove to be a valid model for the study of evolutionary change. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  6. VLBA Reveals Formation Region of Giant Cosmic Jet

    NASA Astrophysics Data System (ADS)

    1999-10-01

    Astronomers have gained their first glimpse of the mysterious region near a black hole at the heart of a distant galaxy, where a powerful stream of subatomic particles spewing outward at nearly the speed of light is formed into a beam, or jet, that then goes nearly straight for thousands of light-years. The astronomers used radio telescopes in Europe and the U.S., including the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) to make the most detailed images ever of the center of the galaxy M87, some 50 million light-years away. "This is the first time anyone has seen the region in which a cosmic jet is formed into a narrow beam," said Bill Junor of the University of New Mexico, in Albuquerque. "We had always speculated that the jet had to be made by some mechanism relatively near the black hole, but as we looked closer and closer to the center, we kept seeing an already-formed beam. That was becoming embarrassing, because we were running out of places to put the formation mechanism that we knew had to be there." Junor, along with John Biretta and Mario Livio of the Space Telescope Science Institute, in Baltimore, MD, now have shown that M87's jet is formed within a few tenths of a light-year of the galaxy's core, presumed to be a black hole three billion times more massive than the sun. In the formation region, the jet is seen opening widely, at an angle of about 60 degrees, nearest the black hole, but is squeezed down to only 6 degrees a few light-years away. "The 60-degree angle of the inner part of M87's jet is the widest such angle yet seen in any jet in the universe," said Junor. "We found this by being able to see the jet to within a few hundredths of a light-year of the galaxy's core -- an unprecedented level of detail." The scientists reported their findings in the October 28 issue of the journal Nature. At the center of M87, material being drawn inward by the strong gravitation of the black hole is formed into a rapidly-spinning flat

  7. Oman metamorphic sole formation reveals early subduction dynamics

    NASA Astrophysics Data System (ADS)

    Soret, Mathieu; Agard, Philippe; Dubacq, Benoît; Plunder, Alexis; Ildefonse, Benoît; Yamato, Philippe; Prigent, Cécile

    2016-04-01

    Metamorphic soles correspond to m to ~500m thick tectonic slices welded beneath most of the large-scale ophiolites. They typically show a steep inverted metamorphic structure where the pressure and temperature conditions of crystallization increase upward (from 500±100°C at 0.5±0.2 GPa to 800±100°C at 1.0±0.2 GPa), with isograds subparallel to the contact with the overlying ophiolitic peridotite. The proportion of mafic rocks in metamorphic soles also increases from the bottom (meta-sediments rich) to the top (approaching the ophiolite peridotites). These soles are interpreted as the result of heat transfer from the incipient mantle wedge toward the nascent slab (associated with large-scale fluid transfer and possible shear heating) during the first My of intra-oceanic subduction (as indicated by radiometric ages). Metamorphic soles provide therefore major constraints on early subduction dynamics (i.e., thermal structure, fluid migration and rheology along the nascent slab interface). We present a detailed structural and petrological study of the metamorphic sole from 4 major cross-sections along the Oman ophiolite. We show precise pressure-temperature estimates obtained by pseudosection modelling and EBSD measurements performed on both the garnet-bearing and garnet-free high-grade sole. Results allow quantification of the micro-scale deformation and highlight differences in pressure-temperature-deformation conditions between the 4 different locations, showing that the inverted metamorphic gradient through the sole is not continuous in all locations. Based on these new constraints, we suggest a new tectonic-petrological model for the formation of metamorphic soles below ophiolites. This model involves the stacking of several homogeneous slivers of oceanic crust leading to the present-day structure of the sole. In this view, these thrusts are the result of rheological contrasts between the sole and the peridotite as the plate interface progressively cools down

  8. Metamorphic sole formation reveals plate interface rheology during early subduction

    NASA Astrophysics Data System (ADS)

    Mathieu, S.; Agard, P.; Dubacq, B.; Plunder, A.; Prigent, C.

    2015-12-01

    Metamorphic soles are m to ~500m thick tectonic slices welded beneath most large ophiolites. They correspond to highly to mildly deformed portions of oceanic lithosphere metamorphosed at amphibolite to granulite facies peak conditions. Metamorphic soles are interpreted as formed ≤1-2Ma after intraoceanic subduction initiation by heat transfer from the hot, incipient mantle wegde to the underthrusting lower plate. Their early accretion and exhumation together with the future ophiolite implies at least one jump of the subduction plate interface from above to below the metamorphic sole. Metamorphic soles thus represent one of the few remnants of the very early evolution of the subduction plate interface and provide major constraints on the thermal structure and the effective rheology of the crust and mantle along the nascent slab interface.We herein present a structural and petrological detailed description of the Oman and Turkey metamorphic soles. Both soles present a steep inverted metamorphic structure, with isograds subparallel to the peridotite contact, in which the proportion of mafic rocks, pressure and temperature conditions increase upward. They comprise, as most metamorphic soles worldwide, two main units: (1) a high-grade unit adjacent to the overlying peridotite composed of granulitized to amphibolized metabasalts, with rare metasedimentary interlayers (~800±100ºC at 10±2kbar) and (2) a low-grade greenschist facies unit composed of metasedimentary rocks with rare metatuffs (~500±100ºC at 5±2kbar). We provide for the first time refined P-T peak condition estimations by means of pseudosection modelling and maximum temperature constraints for the Oman low-grade sole by RAMAN thermometry. In order to quantify micro-scale deformations trough the sole, we also present EBSD data on the Oman garnet-bearing and garnet-free high-grade sole.With these new constraints, we finally propose a new conceptual mechanical model for metamorphic sole formation. This

  9. What Sets the Massive Star Formation Rates and Efficiencies of Giant Molecular Clouds?

    NASA Astrophysics Data System (ADS)

    Ochsendorf, Bram B.; Meixner, Margaret; Roman-Duval, Julia; Rahman, Mubdi; Evans, Neal J., II

    2017-06-01

    Galactic star formation scaling relations show increased scatter from kpc to sub-kpc scales. Investigating this scatter may hold important clues to how the star formation process evolves in time and space. Here, we combine different molecular gas tracers, different star formation indicators probing distinct populations of massive stars, and knowledge of the evolutionary state of each star-forming region to derive the star formation properties of ˜150 star-forming complexes over the face of the Large Magellanic Cloud (LMC). We find that the rate of massive star formation ramps up when stellar clusters emerge and boost the formation of subsequent generations of massive stars. In addition, we reveal that the star formation efficiency of individual giant molecular clouds (GMCs) declines with increasing cloud gas mass ({M}{cloud}). This trend persists in Galactic star-forming regions and implies higher molecular gas depletion times for larger GMCs. We compare the star formation efficiency per freefall time ({ɛ }{ff}) with predictions from various widely used analytical star formation models. While these models can produce large dispersions in {ɛ }{ff} similar to those in observations, the origin of the model-predicted scatter is inconsistent with observations. Moreover, all models fail to reproduce the observed decline of {ɛ }{ff} with increasing {M}{cloud} in the LMC and the Milky Way. We conclude that analytical star formation models idealizing global turbulence levels and cloud densities and assuming a stationary star formation rate (SFR) are inconsistent with observations from modern data sets tracing massive star formation on individual cloud scales. Instead, we reiterate the importance of local stellar feedback in shaping the properties of GMCs and setting their massive SFR.

  10. The Fundamental Plane of star formation in galaxies revealed by the EAGLE hydrodynamical simulations

    NASA Astrophysics Data System (ADS)

    Lagos, Claudia del P.; Theuns, Tom; Schaye, Joop; Furlong, Michelle; Bower, Richard G.; Schaller, Matthieu; Crain, Robert A.; Trayford, James W.; Matthee, Jorryt

    2016-07-01

    We investigate correlations between different physical properties of star-forming galaxies in the `Evolution and Assembly of GaLaxies and their Environments' (EAGLE) cosmological hydrodynamical simulation suite over the redshift range 0 ≤ z ≤ 4.5. A principal component analysis reveals that neutral gas fraction (fgas,neutral), stellar mass (Mstellar) and star formation rate (SFR) account for most of the variance seen in the population, with galaxies tracing a two-dimensional, nearly flat, surface in the three-dimensional space of fgas, neutral-Mstellar-SFR with little scatter. The location of this plane varies little with redshift, whereas galaxies themselves move along the plane as their fgas, neutral and SFR drop with redshift. The positions of galaxies along the plane are highly correlated with gas metallicity. The metallicity can therefore be robustly predicted from fgas, neutral, or from the Mstellar and SFR. We argue that the appearance of this `Fundamental Plane of star formation' is a consequence of self-regulation, with the plane's curvature set by the dependence of the SFR on gas density and metallicity. We analyse a large compilation of observations spanning the redshift range 0 ≲ z ≲ 3, and find that such a plane is also present in the data. The properties of the observed Fundamental Plane of star formation are in good agreement with EAGLE's predictions.

  11. The star formation rate distribution function of the local Universe

    NASA Astrophysics Data System (ADS)

    Bothwell, M. S.; Kennicutt, R. C.; Johnson, B. D.; Wu, Y.; Lee, J. C.; Dale, D.; Engelbracht, C.; Calzetti, D.; Skillman, E.

    2011-08-01

    We present total infrared (IR) and ultraviolet (UV) luminosity functions derived from large representative samples of galaxies at z˜ 0, selected at IR and UV wavelengths from the Imperial IRAS Faint Source Catalogue redshift data base (IIFSCz) catalogue, and the GALEX All-Sky Imaging Survey (AIS), respectively. We augment these with deep Spitzer and GALEX imaging of galaxies in the 11 Mpc Local Volume Legacy (LVL) Survey, allowing us to extend these luminosity functions to lower luminosities (˜106 L⊙), and providing good constraints on the slope of the luminosity function at the extreme faint end for the first time. Using conventional star formation prescriptions, we generate from our data the star formation rate (SFR) distribution function for the local Universe. We find that it has a Schechter form, the faint-end slope has a constant value (to the limits of our data) of α=-1.51 ± 0.08 and the ‘characteristic’ SFR ψ* is 9.2 M⊙ yr-1. We also show the distribution function of the SFR volume density; we then use this to calculate a value for the total SFR volume density at z˜ 0 of 0.025 ± 0.0016 M⊙ yr-1 Mpc-3, of which ˜20 per cent is occurring in starbursts. Decomposing the total star formation by infrared luminosity, it can be seen that 9 ± 1 per cent is due to LIRGs, and 0.7 ± 0.2 per cent is occurring in ULIRGs. By comparing UV and IR emission for galaxies in our sample, we also calculate the fraction of star formation occurring in dust-obscured environments, and examine the distribution of dusty star formation: we find a very shallow slope at the highly extincted end, which may be attributable to line-of-sight orientation effects as well as conventional internal extinction.

  12. The Determination of Rate-Limiting Steps during Soot Formation

    DTIC Science & Technology

    1991-08-14

    the soot formation process. Alternatively, acetylene could add to a soot particle via a Diels - Alder reaction, such as 12 I I C4 H6 + C2H2 - c - C6H...identified. Kiefer (1991) suggested that the acetylene addition processes may be related to the Diels - Alder reaction of acetylene addition to CPD to form...related to the reverse diels - alder reaction of acetylene addition to CPD to form norbornadiene. Benson and O’Neal (1970) report rates for unimolecular

  13. On the cosmic evolution of the specific star formation rate

    NASA Astrophysics Data System (ADS)

    Lehnert, M. D.; van Driel, W.; Le Tiran, L.; Di Matteo, P.; Haywood, M.

    2015-05-01

    The apparent correlation between the specific star formation rate (sSFR) and total stellar mass (M⋆) of galaxies is a fundamental relationship indicating how they formed their stellar populations. To attempt to understand this relation, we hypothesize that the relation and its evolution is regulated by the increase in the stellar and gas mass surface density in galaxies with redshift, which is itself governed by the angular momentum of the accreted gas, the amount of available gas, and by self-regulation of star formation. With our model, we can reproduce the specific SFR - M⋆ relations at z ~ 1-2 by assuming gas fractions and gas mass surface densities similar to those observed for z = 1-2 galaxies. We further argue that it is the increasing angular momentum with cosmic time that causes a decrease in the surface density of accreted gas. The gas mass surface densities in galaxies are controlled by the centrifugal support (i.e., angular momentum), and the sSFR is predicted to increase as, sSFR(z) = (1 + z)3/tH0, as observed (where tH0 is the Hubble time and no free parameters are necessary). In addition, the simple evolution for the star-formation intensity we propose is in agreement with observations of Milky Way-like galaxies selected through abundance matching. At z ≳ 2, we argue that star formation is self-regulated by high pressures generated by the intense star formation itself. The star formation intensity must be high enough to either balance the hydrostatic pressure (a rather extreme assumption) or to generate high turbulent pressure in the molecular medium which maintains galaxies near the line of instability (i.e. Toomre Q ~ 1). We provide simple prescriptions for understanding these self-regulation mechanisms based on solid relationships verified through extensive study. In all cases, the most important factor is the increase in stellar and gas mass surface density with redshift, which allows distant galaxies to maintain high levels of s

  14. Rates of weathering rind formation on Costa Rican basalt

    NASA Astrophysics Data System (ADS)

    Sak, Peter B.; Fisher, Donald M.; Gardner, Thomas W.; Murphy, Katherine; Brantley, Susan L.

    2004-04-01

    ( r r = 2.9 ± 0.1 cm) is coincident with stage 5e (ca. 125 ka) and that Qt 3 (r r = 0.9 ± 0.1 cm) is consistent with OIS 3 (ca. 37 ka). These assignments yield a value of k app of 8.6 × 10 -13 cm s -1 (R 2 = 0.99). Only this value satisfies both the existing age controls and yields ages coincident with sea level maxima. Using this value, elemental weathering release fluxes across a weathering rind from Qt 2 range from 6.0 × 10 -9 mol Si m -2 s -1 to 2.5 × 10 -11 mol K m -2 s -1. The rate of rind advance for the Costa Rican terraces is 2.8 × 10 -7 m yr -1. Basalt rind formation rates in lower temperature settings described in the literature are also consistent with interface-controlled weathering with an apparent activation energy of about 50 kJ mol -1. Rates of rind formation in Costa Rica are an order of magnitude slower than reported for global averages of soil formation rates.

  15. Calibration of Star Formation Rates Across the Electromagnetic Spectrum

    NASA Technical Reports Server (NTRS)

    Cardiff, Ann H.

    2011-01-01

    Measuring and mapping star-forming activity in galaxies is a key element for our understanding of their broad- band spectra, and their structure and evolution in our local, as well as the high-redshift Universe. The main tool we use for these measurements is the observed luminosity in various spectral lines and/or continuum bands. However, the available star-formation rate (SFR) indicators are often discrepant and subject to physical biases and calibration uncertainties. We are organizing a special session at the 2012 IAU General Assembly in Beijing, China (August 20-31, 2012) in order to bring together theoreticians and observers working in different contexts of star-formation to discuss the status of current SFR indicators, to identify open issues and to define a strategic framework for their resolution. The is an ideal time to synthesize information from the current golden era of space astrophysics and still have influence on the upcoming missions that will broaden our view of star-formation. We will be including high-energy constraints on SFR in the program and encourage participation from the high energy astrophysics community.

  16. Photoionising feedback and the star formation rates in galaxies

    NASA Astrophysics Data System (ADS)

    MacLachlan, J. M.; Bonnell, I. A.; Wood, K.; Dale, J. E.

    2015-01-01

    Aims: We investigate the effects of ionising photons on accretion and stellar mass growth in a young star forming region, using a Monte Carlo radiation transfer code coupled to a smoothed particle hydrodynamics (SPH) simulation. Methods: We introduce the framework with which we correct stellar cluster masses for the effects of photoionising (PI) feedback and compare to the results of a full ionisation hydrodynamics code. Results: We present results of our simulations of star formation in the spiral arm of a disk galaxy, including the effects of photoionising radiation from high mass stars. We find that PI feedback reduces the total mass accreted onto stellar clusters by ≈23% over the course of the simulation and reduces the number of high mass clusters, as well as the maximum mass attained by a stellar cluster. Mean star formation rates (SFRs) drop from SFRcontrol = 4.2 × 10-2 M⊙ yr-1 to SFRMCPI = 3.2 × 10-2 M⊙ yr-1 after the inclusion of PI feedback with a final instantaneous SFR reduction of 62%. The overall cluster mass distribution appears to be affected little by PI feedback. Conclusions: We compare our results to the observed extra-galactic Schmidt-Kennicutt relation and the observed properties of local star forming regions in the Milky Way and find that internal photoionising (PI) feedback is unlikely to reduce SFRs by more than a factor of ≈2 and thus may play only a minor role in regulating star formation.

  17. Current Star Formation Rates for the Histories of Star Formation in Nearby Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Lee, Henry; Dalcanton, Julianne; Skillman, Evan; Lee, Janice; van Zee, Liese; Seth, Anil; Covarrubias, Ricardo

    2008-02-01

    The largest and most uniform dataset on the histories of star formation will be created with the ACS Nearby Galaxy Survey Treasury (ANGST) program and the Archival of Nearby Galaxies: Reuse, Reduce, Recycle (ANGRRR) programs, which aim, respectively, (1) to secure complete and uniform HST imaging of a volume-limited sample of galaxies out to 3.5 Mpc, and (2) to obtain homogeneous reductions of archival WFPC2/ACS imaging data of galaxies out to a distance of about 5 Mpc. These will provide some of the best and deepest data for the closest galaxies, with derived star-formation rates at ages from tens of Myr to a few Gyr. We request one night on the Kitt Peak 2.1-m telescope to obtain H(alpha) imaging for a sample of 13 galaxies with existing HST ACS and WFPC2 data. Since there are no published H(alpha) data for these 13 galaxies, our data will pin down the present-day star-formation rate in the construction of their subsequent histories of star formation.

  18. SHAPING THE DUST MASS-STAR-FORMATION RATE RELATION

    SciTech Connect

    Hjorth, Jens; Gall, Christa; Michałowski, Michał J. E-mail: cgall@phys.au.dk

    2014-02-20

    There is a remarkably tight relation between the observationally inferred dust masses and star-formation rates (SFRs) of Sloan Digital Sky Survey galaxies, M {sub dust} ∝ SFR{sup 1.11}. Here we extend the M {sub dust}-SFR relation to the high end and show that it bends over at very large SFRs (i.e., dust masses are lower than predicted for a given SFR). We identify several distinct evolutionary processes in the diagram: (1) a star-bursting phase in which dust builds up rapidly at early times. The maximum attainable dust mass in this process is the cause of the bend-over of the relation. A high dust-formation efficiency, a bottom-light initial mass function, and negligible supernova shock dust destruction are required to produce sufficiently high dust masses. (2) A quiescent star-forming phase in which the subsequent parallel decline in dust mass and SFR gives rise to the M {sub dust}-SFR relation, through astration and dust destruction. The dust-to-gas ratio is approximately constant along the relation. We show that the power-law slope of the M {sub dust}-SFR relation is inversely proportional to the global Schmidt-Kennicutt law exponent (i.e., ∼0.9) in simple chemical evolution models. (3) A quenching phase which causes star formation to drop while the dust mass stays roughly constant or drops proportionally. Combined with merging, these processes, as well as the range in total baryonic mass, give rise to a complex population of the diagram which adds significant scatter to the original M {sub dust}-SFR relation. (4) At very high redshifts, a population of galaxies located significantly below the local relation is predicted.

  19. Star formation rates as a function of galaxy mass

    NASA Technical Reports Server (NTRS)

    Romanishin, W.

    1987-01-01

    Correlations were found between the colors and absolute magnitudes of spiral galaxies. Using optical and/or near IR (1.6 micron) colors, it was found that lower luminosity spirals are systematically bluer than higher luminosity spirals. Infrared Astronomy Satellite (IRAS) far IR luminosities were used to investigate the suggestion that one prime cause of these color-absolute magnitude correlations is a systematic variation with galaxy mass of the current star formation rate (SFR) per unit mass. To the extent that the IRAS fluxes actually measure disk SFR, no correlation of SFR/unit mass and galaxy mass was found. Other possible explanations of the color-absolute magnitude correlations are discussed, as well as caveats on the use of IRAS fluxes as a means of comparing SFRs in galaxies of differing mass.

  20. A Star-Formation Rate Atlas of the Nearby Universe

    NASA Astrophysics Data System (ADS)

    Ashton, Tristan; Pooley, David; Rappaport, Saul A.

    2017-01-01

    We present our work in constructing a star-formation rate (SFR) atlas of nearby galaxies. We utilize GALEX far-ultraviolet (FUV) data and Spitzer 24 micron data to compute the SFR map of each galaxy using the relation described in Leroy et al. (2008). For each galaxy, the 24 micron data were downloaded from the Spitzer Heritage Archive and subjected to outlier and overlap corrections through the automated Spitzer pipeline MOPEX. The FUV images were constructing using gphoton, and we then performed background subtraction using source-free regions away from the galaxy. These SFR maps represent an attempt to systematically characterize the local SFR in nearby galaxies, which we will then use to explore the relationship of SFR to the incidence of other phenomena such as supernovae and ultraluminous X-ray sources. We will make all SFR maps available to the community.

  1. The formation of cluster elliptical galaxies as revealed by extensive star formation.

    PubMed

    Stevens, J A; Ivison, R J; Dunlop, J S; Smail, Ian R; Percival, W J; Hughes, D H; Röttgering, H J A; Van Breugel, W J M; Reuland, M

    2003-09-18

    The most massive galaxies in the present-day Universe are found to lie in the centres of rich clusters. They have old, coeval stellar populations suggesting that the bulk of their stars must have formed at early epochs in spectacular starbursts, which should be luminous phenomena when observed at submillimetre wavelengths. The most popular model of galaxy formation predicts that these galaxies form in proto-clusters at high-density peaks in the early Universe. Such peaks are indicated by massive high-redshift radio galaxies. Here we report deep submillimetre mapping of seven high-redshift radio galaxies and their environments. These data confirm not only the presence of spatially extended regions of massive star-formation activity in the radio galaxies themselves, but also in companion objects previously undetected at any wavelength. The prevalence, orientation, and inferred masses of these submillimetre companion galaxies suggest that we are witnessing the synchronous formation of the most luminous elliptical galaxies found today at the centres of rich clusters of galaxies.

  2. The UV + IR Hybrid Star Formation Rate Across NGC6946

    NASA Astrophysics Data System (ADS)

    Eufrasio, Rafael T.; Lehmer, Bret; Dwek, Eli; Arendt, Richard G.

    2016-01-01

    Knowledge of the star formation rate (SFR) of galaxies is essential to understand galaxy evolution and thus determining reliable, simple tracers of star-forming activity is of paramount importance to astrophysics. For instance, intrinsic ultraviolet (UV) emission from young stars is an excellent tracer of the SFR. Observed UV luminosities, however, have been strongly attenuated by intervening interstellar dust. Since emission from hot dust is readily available from IRAS, Spitzer, and WISE, it is common practice to combine mid-IR emission (around 25 μm) with observed UV in order to obtain an SFR diagnostic of the form Lobs(FUV) + acorr × Lobs(25 μm). Conventionally, a single correction acorr, previously determined for a sample of galaxies, is used. Here we test the reliability of this hybrid SFR diagnostic, allowing for a variable correction factor acorr. For this, we have performed broadband UV-to-IR SED fittings in order to model the star formation histories across the spiral galaxy NGC6946. We have obtained SFRs and stellar masses across the galaxy, from physical scales of 5 kpc down to 500 pc. We find that acorr varies significantly across the galaxy and increases with increasing specific star formation rate (sSFR), the ratio of SFR and stellar mass (or the ratio of young and old stars). The correction acorr does not seem to be correlated to the amount of attenuation AV. Variation of acorr is most likely caused by different mixes of young and old stellar populations across the galaxy. This finding agrees well with our previous results for the interacting spiral galaxy NGC 6872, for which we have demonstrated the variation of acorr and a its correlation with sSFR. Our results show the need of caution when using only two broadband filters in order to determine SFR of individual galaxies or sub-galactic regions. The dust emission most likely overestimates SFR for highly star-forming, high sSFR regions, and underestimates it for more quiescent, low sSFR regions.

  3. REVEALING TYPE Ia SUPERNOVA PHYSICS WITH COSMIC RATES AND NUCLEAR GAMMA RAYS

    SciTech Connect

    Horiuchi, Shunsaku; Beacom, John F. E-mail: beacom@mps.ohio-state.ed

    2010-11-01

    Type Ia supernovae (SNe Ia) remain mysterious despite their central importance in cosmology and their rapidly increasing discovery rate. The progenitors of SNe Ia can be probed by the delay time between progenitor birth and explosion as SNe Ia. The explosions and progenitors of SNe Ia can be probed by MeV nuclear gamma rays emitted in the decays of radioactive nickel and cobalt into iron. We compare the cosmic star formation and SN Ia rates, finding that their different redshift evolution requires a large fraction of SNe Ia to have large delay times. A delay-time distribution of the form t {sup -}{alpha} with {alpha} = 1.0 {+-} 0.3 provides a good fit, implying that 50% of SNe Ia explode more than {approx}1 Gyr after progenitor birth. The extrapolation of the cosmic SN Ia rate to z = 0 agrees with the rate we deduce from catalogs of local SNe Ia. We investigate prospects for gamma-ray telescopes to exploit the facts that escaping gamma rays directly reveal the power source of SNe Ia and uniquely provide tomography of the expanding ejecta. We find large improvements relative to earlier studies by Gehrels et al. in 1987 and Timmes and Woosley in 1997 due to larger and more certain SN Ia rates and advances in gamma-ray detectors. The proposed Advanced Compton Telescope, with a narrow-line sensitivity {approx}60 times better than that of current satellites, would, on an annual basis, detect up to {approx}100 SNe Ia (3{sigma}) and provide revolutionary model discrimination for SNe Ia within 20 Mpc, with gamma-ray light curves measured with {approx}10{sigma} significance daily for {approx}100 days. Even more modest improvements in detector sensitivity would open a new and invaluable astronomy with frequent SN Ia gamma-ray detections.

  4. Regolith Formation Rates and Evolution from the Diviner Lunar Radiometer

    NASA Astrophysics Data System (ADS)

    Hayne, P. O.; Ghent, R. R.; Bandfield, J. L.; Vasavada, A. R.; Williams, J. P.; Siegler, M. A.; Lucey, P. G.; Greenhagen, B. T.; Elder, C. M.; Paige, D. A.

    2015-12-01

    Fragmentation and overturn of lunar surface materials produces a layer of regolith, which increases in thickness through time. Experiments on the lunar surface during the Apollo era, combined with remote sensing, found that the upper 10's of cm of regolith exhibit a rapid increase in density and thermal conductivity with depth. This is interpreted to be the signature of impact gardening, which operates most rapidly in the uppermost layers. Gravity data from the GRAIL mission showed that impacts have also extensively fractured the deeper crust. The breakdown and mixing of crustal materials is therefore a central process to lunar evolution and must be understood in order to interpret compositional information from remote sensing and sample analysis. Recently, thermal infrared data from the Lunar Reconnaissance Orbiter (LRO) Diviner radiometer were used to provide the first remote observational constraints on the rate of ejecta breakdown around craters < 1 Ga (Ghent et al., 2014). Here, we use nighttime regolith temperatures derived from Diviner data to constrain regolith thermal inertia, thickness, and spatial variability. Applied to models, these new data help improve understanding of regolith formation on a variety of geologic units. We will also discuss several anomalous features that merit further investigation. Reference: Ghent, R. R., Hayne, P. O., Bandfield, J. L., Campbell, B. A., Allen, C. C., Carter, L. M., & Paige, D. A. (2014). Constraints on the recent rate of lunar ejecta breakdown and implications for crater ages. Geology, 42(12), 1059-1062.

  5. The star formation rates of active galactic nuclei host galaxies

    NASA Astrophysics Data System (ADS)

    Ellison, Sara L.; Teimoorinia, Hossen; Rosario, David J.; Mendel, J. Trevor

    2016-05-01

    Using artificial neural network predictions of total infrared luminosities (LIR), we compare the host galaxy star formation rates (SFRs) of ˜21 000 optically selected active galactic nuclei (AGN), 466 low-excitation radio galaxies (LERGs) and 721 mid-IR-selected AGN. SFR offsets (ΔSFR) relative to a sample of star-forming `main-sequence' galaxies (matched in M⋆, z and local environment) are computed for the AGN hosts. Optically selected AGN exhibit a wide range of ΔSFR, with a distribution skewed to low SFRs and a median ΔSFR = -0.06 dex. The LERGs have SFRs that are shifted to even lower values with a median ΔSFR = -0.5 dex. In contrast, mid-IR-selected AGN have, on average, SFRs enhanced by a factor of ˜1.5. We interpret the different distributions of ΔSFR amongst the different AGN classes in the context of the relative contribution of triggering by galaxy mergers. Whereas the LERGs are predominantly fuelled through low accretion rate secular processes which are not accompanied by enhancements in SFR, mergers, which can simultaneously boost SFRs, most frequently lead to powerful, obscured AGN.

  6. Black hole accretion versus star formation rate: theory confronts observations

    NASA Astrophysics Data System (ADS)

    Volonteri, Marta; Capelo, Pedro R.; Netzer, Hagai; Bellovary, Jillian; Dotti, Massimo; Governato, Fabio

    2015-09-01

    We use a suite of hydrodynamical simulations of galaxy mergers to compare star formation rate (SFR) and black hole accretion rate (BHAR) for galaxies before the interaction (`stochastic' phase), during the `merger' proper, lasting ˜0.2-0.3 Gyr, and in the `remnant' phase. We calculate the bivariate distribution of SFR and BHAR and define the regions in the SFR-BHAR plane that the three phases occupy. No strong correlation between BHAR and galaxy-wide SFR is found. A possible exception are galaxies with the highest SFR and the highest BHAR. We also bin the data in the same way used in several observational studies, by either measuring the mean SFR for AGN in different luminosity bins, or the mean BHAR for galaxies in bins of SFR. We find that the apparent contradiction or SFR versus BHAR for observed samples of AGN and star-forming galaxies is actually caused by binning effects. The two types of samples use different projections of the full bivariate distribution, and the full information would lead to unambiguous interpretation. We also find that a galaxy can be classified as AGN-dominated up to 1.5 Gyr after the merger-driven starburst took place. Our study is consistent with the suggestion that most low-luminosity AGN hosts do not show morphological disturbances.

  7. Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures

    NASA Astrophysics Data System (ADS)

    Kürten, Andreas; Bianchi, Federico; Almeida, Joao; Kupiainen-Määttä, Oona; Dunne, Eimear M.; Duplissy, Jonathan; Williamson, Christina; Barmet, Peter; Breitenlechner, Martin; Dommen, Josef; Donahue, Neil M.; Flagan, Richard C.; Franchin, Alessandro; Gordon, Hamish; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Ickes, Luisa; Jokinen, Tuija; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Onnela, Antti; Ortega, Ismael K.; Petäjä, Tuukka; Praplan, Arnaud P.; Riccobono, Francesco; Rissanen, Matti P.; Rondo, Linda; Schnitzhofer, Ralf; Schobesberger, Siegfried; Smith, James N.; Steiner, Gerhard; Stozhkov, Yuri; Tomé, António; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Wagner, Paul E.; Wimmer, Daniela; Ye, Penglin; Baltensperger, Urs; Carslaw, Ken; Kulmala, Markku; Curtius, Joachim

    2016-10-01

    Binary nucleation of sulfuric acid and water as well as ternary nucleation involving ammonia are thought to be the dominant processes responsible for new particle formation (NPF) in the cold temperatures of the middle and upper troposphere. Ions are also thought to be important for particle nucleation in these regions. However, global models presently lack experimentally measured NPF rates under controlled laboratory conditions and so at present must rely on theoretical or empirical parameterizations. Here with data obtained in the European Organization for Nuclear Research CLOUD (Cosmics Leaving OUtdoor Droplets) chamber, we present the first experimental survey of NPF rates spanning free tropospheric conditions. The conditions during nucleation cover a temperature range from 208 to 298 K, sulfuric acid concentrations between 5 × 105 and 1 × 109 cm-3, and ammonia mixing ratios from zero added ammonia, i.e., nominally pure binary, to a maximum of 1400 parts per trillion by volume (pptv). We performed nucleation studies under pure neutral conditions with zero ions being present in the chamber and at ionization rates of up to 75 ion pairs cm-3 s-1 to study neutral and ion-induced nucleation. We found that the contribution from ion-induced nucleation is small at temperatures between 208 and 248 K when ammonia is present at several pptv or higher. However, the presence of charges significantly enhances the nucleation rates, especially at 248 K with zero added ammonia, and for higher temperatures independent of NH3 levels. We compare these experimental data with calculated cluster formation rates from the Atmospheric Cluster Dynamics Code with cluster evaporation rates obtained from quantum chemistry.

  8. Exploring the Role of Galaxy Morphology in the Mass-Metallicity-Star Formation Rate Relation

    NASA Astrophysics Data System (ADS)

    Pahl, Anthony; Rafelski, Marc; Scarlata, Claudia; Pacifici, Camilla; Henry, Alaina L.; Gardner, Jonathan P.; Elmegreen, Debra M.

    2017-01-01

    The Mass-Metallicity-Star Formation Rate (M-Z-SFR) fundamental relation reveals the underlying physics behind galaxy evolution: the mechanics of gas inflow, outflow, and the formation of stars are intimately connected. At higher redshift, we observe galaxies which are believed to be more actively accreting from the cosmic web, and as a result bright star-forming clumps are expected to form due to the increased gravitational instability of the galactic medium. We investigate these “clumpy” galaxies in context of their location on the M-Z-SFR plane to search for evidence of metal-poor gas inflows as predicted by theoretical models, and to help us understand how galaxies form and change at a higher redshift (1.3 < z < 2.2). We use the CANDELS survey to examine the morphological structure of star forming regions utilizing the high resolution of space-based HST imaging. We create stamps in their rest-frame UV light to investigate recent star formation and visually classify the morphology of the galaxies. We also utilize stellar population fits of the photometric data to determine properties such as mass and star formation rate. From the grism data of the 3D-HST survey, we select 1861 galaxies based on the strong detection of the [OIII_5007] line, and determine metallicity through the line-diagnostic R_23 using [OIII_5007], [OII_3727] and H_beta. We improve these results through the stacking of spectra to remove a sample bias of requiring strong detections on weak emission lines. Using mass, star formation rate, and metallicity we compare the location of clumpy galaxies on the fundamental plane to investigate possible diminished metallicity and heightened star formation rate compared to the remainder of the sample. This will enable us to better understand the theoretical underpinnings of gas accretion and galaxy evolution at high redshift.

  9. QM/MM studies reveal pathways leading to the quenching of the formation of thymine dimer photoproduct by flanking bases.

    PubMed

    Lee, Wook; Matsika, Spiridoula

    2015-04-21

    It is known that the formation of the photochemical product of thymine-thymine cyclobutane pyrimidine dimer (TT-CPD) formed upon UV excitation in DNA is significantly affected by the nature of the flanking bases, and that the oxidation potential of the flanking base correlates with the quenching of TT-CPD formation. However, the electronic details of this correlation have remained controversial. The quenching of thymine dimer formation exerted by flanking bases was suggested to be driven by both conformational and electronic effects. In the present study, we examine both of these effects using umbrella sampling and a quantum mechanical/molecular mechanical (QM/MM) approach for selected model systems. Our results demonstrate that a charge transfer (CT) state between the flanking base and the adjacent thymine base can provide a decay pathway for the population to escape from dimer formation, which eventually leads to the formation of an exciplex. The QM/MM vertical excitation energies also reveal that the oxidation potential of flanking bases correlates with the energy level of the CT state, thereby determining whether the CT state intersects with the state that can lead to dimer formation. The consistency between these results and experimentally obtained dimer formation rates implies that the quenching of dimer formation is mainly attributed to the decay pathway via the CT state. The present results further underline the importance of the electronic effects in quenching.

  10. Are We Correctly Measuring Star-Formation Rates?

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen B.; Skillman, Evan D.; Dolphin, Andrew E.; Mitchell, Noah P.

    2017-01-01

    Integrating our knowledge of star formation (SF) traced by observations at different wavelengths is essential for correctly interpreting and comparing SF activity in a variety of systems and environments. This study compares extinction-corrected, integrated ultraviolet (UV) emission from resolved galaxies with color-magnitude diagram (CMD) based star-formation rates (SFRs) derived from resolved stellar populations and CMD fitting techniques in 19 nearby starburst and post-starburst dwarf galaxies. The data sets are from the panchromatic Starburst Irregular Dwarf Survey (STARBIRDS) and include deep legacy GALEX UV imaging, Hubble Space Telescope optical imaging, and Spitzer MIPS imaging. For the majority of the sample, the integrated near-UV fluxes predicted from the CMD-based SFRs—using four different models—agree with the measured, extinction corrected, integrated near-UV fluxes from GALEX images, but the far-UV (FUV) predicted fluxes do not. Furthermore, we find a systematic deviation between the SFRs based on integrated FUV luminosities and existing scaling relations, and the SFRs based on the resolved stellar populations. This offset is not driven by different SF timescales, variations in SFRs, UV attenuation, nor stochastic effects. This first comparison between CMD-based SFRs and an integrated FUV emission SFR indicator suggests that the most likely cause of the discrepancy is the theoretical FUV-SFR calibration from stellar evolutionary libraries and/or stellar atmospheric models. We present an empirical calibration of the FUV-based SFR relation for dwarf galaxies, with uncertainties, which is ˜53% larger than previous relations. These results have signficant implications for measuring FUV-based SFRs of high-redshift galaxies.

  11. Calibrating UV Star Formation Rates for Dwarf Galaxies from STARBIRDS

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Dolphin, Andrew E.; Mitchell, Noah P.

    2015-08-01

    Integrating our knowledge of star formation (SF) traced by observations at different wavelengths is essential for correctly interpreting and comparing SF activity in a variety of systems and environments. This study compares extinction corrected integrated ultraviolet (UV) emission from resolved galaxies with color-magnitude diagram (CMD) based star formation rates (SFRs) derived from resolved stellar populations and CMD fitting techniques in 19 nearby starburst and post-starburst dwarf galaxies. The data sets are from the panchromatic Starburst Irregular Dwarf Survey and include deep legacy GALEX UV imaging, Hubble Space Telescope optical imaging, and Spitzer MIPS imaging. For the majority of the sample, the integrated near-UV fluxes predicted from the CMD-based SFRs—using four different models—agree with the measured, extinction corrected, integrated near-UV fluxes from GALEX images, but the far-UV (FUV) predicted fluxes do not. Furthermore, we find a systematic deviation between the SFRs based on integrated FUV luminosities and existing scaling relations, and the SFRs based on the resolved stellar populations. This offset is not driven by different SF timescales, variations in SFRs, UV attenuation, nor stochastic effects. This first comparison between CMD-based SFRs and an integrated FUV emission SFR indicator suggests that the most likely cause of the discrepancy is the theoretical FUV-SFR calibration from stellar evolutionary libraries and/or stellar atmospheric models. We present an empirical calibration of the FUV-based SFR relation for dwarf galaxies, with uncertainties, which is ˜53% larger than previous relations. Based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA), and the Canadian Astronomy Data Centre (CADC/NRC/CSA).

  12. CALIBRATING UV STAR FORMATION RATES FOR DWARF GALAXIES FROM STARBIRDS

    SciTech Connect

    McQuinn, Kristen B. W.; Skillman, Evan D.; Mitchell, Noah P.; Dolphin, Andrew E.

    2015-08-01

    Integrating our knowledge of star formation (SF) traced by observations at different wavelengths is essential for correctly interpreting and comparing SF activity in a variety of systems and environments. This study compares extinction corrected integrated ultraviolet (UV) emission from resolved galaxies with color–magnitude diagram (CMD) based star formation rates (SFRs) derived from resolved stellar populations and CMD fitting techniques in 19 nearby starburst and post-starburst dwarf galaxies. The data sets are from the panchromatic Starburst Irregular Dwarf Survey and include deep legacy GALEX UV imaging, Hubble Space Telescope optical imaging, and Spitzer MIPS imaging. For the majority of the sample, the integrated near-UV fluxes predicted from the CMD-based SFRs—using four different models—agree with the measured, extinction corrected, integrated near-UV fluxes from GALEX images, but the far-UV (FUV) predicted fluxes do not. Furthermore, we find a systematic deviation between the SFRs based on integrated FUV luminosities and existing scaling relations, and the SFRs based on the resolved stellar populations. This offset is not driven by different SF timescales, variations in SFRs, UV attenuation, nor stochastic effects. This first comparison between CMD-based SFRs and an integrated FUV emission SFR indicator suggests that the most likely cause of the discrepancy is the theoretical FUV–SFR calibration from stellar evolutionary libraries and/or stellar atmospheric models. We present an empirical calibration of the FUV-based SFR relation for dwarf galaxies, with uncertainties, which is ∼53% larger than previous relations.

  13. Comparing infrared star formation rate indicators with optically derived quantities

    NASA Astrophysics Data System (ADS)

    Young, J. E.; Gronwall, C.; Salzer, J. J.; Rosenberg, J. L.

    2014-09-01

    We examine the UV reprocessing efficiencies of warm dust and polycyclic aromatic hydrocarbons (PAHs) through an analysis of the mid- and far-infrared surface luminosity densities of 85 nearby Hα-selected star-forming galaxies detected by the volume-limited KPNO (Kitt Peak National Observatory) International Spectroscopic Survey (KISS). Because Hα selection is not biased towards continuum-bright objects, the KISS sample spans a wide range in stellar masses (108-1012 M⊙), as well as Hα luminosity (1039-1043 erg s-1), mid-infrared 8.0 μm luminosity (1041-1044 erg s-1), and [Bw - R] colour (-0.1-2.2). We find that mid-infrared PAH emission in the Spitzer InfraRed Array Camera (IRAC) 8.0 μm band correlates with star formation, and that the efficiency with which galaxies reprocess UV energy into PAH emission depends on metallicity. We also find that the relationship between far-infrared luminosity in the Spitzer Multiband Imaging Photometer for Spitzer 24 μm band pass and Hα-measured star formation rate varies from galaxy to galaxy within our sample; we do not observe a metallicity dependence in this relationship. We use optical colours and established mass-to-light relationships to determine stellar masses for the KISS galaxies; we compare these masses to those of nearby galaxies as a confirmation that the volume-limited nature of KISS avoids strong biases. We also examine the relationship between IRAC 3.6 μm luminosity and galaxy stellar mass, and find a colour-dependent correlation between the two.

  14. Grain Size Variation, Discharge Rate, and Delta Island Formation

    NASA Astrophysics Data System (ADS)

    Altman, I.; Kim, W.

    2016-12-01

    River deltas are magnets for human population, but their quickly evolving morphologies threaten inhabitants. To discuss how changing morphologies of river deltas may affect people, it is critical to understand natural processes influencing their evolution. Floods are important to the natural progradation and island formation of river deltas. Here we present results from laboratory experiments with incorporated floods that develop bifurcated and formed island deposits. This study focuses on the effects of varied grain sizes and discharge rates to island formation: 1) a deposit formed with a 50:50 mixture of ground walnut shell and quartz sand grains is compared to one developed either only walnut shell sediment or quartz sand, and 2) a deposit formed by a flow with a constant discharge is compared to one formed by a flow with varied discharges (with "heavy", more sediment-laden, floods and "light", less sediment-laden, interflood flows). Concerning grain size variation, the three experiments each developed unique shapes and bifurcations. The sand-only run developed an elongated shape of the deposit and bifurcations occurred close to the inlet that migrated upward. The ground-walnut-shell-only run developed a radial deposit and had a bifurcation far from the inlet that migrated downward. The run that used the mixture made an ovular-shaped deposit and a bifurcation was developed close to the inlet that migrated downward. Concerning discharge variation, the contrast between the amounts of sediment introduced during flood and interflood periods influenced deposit morphologies. Despite an equivalent volume of sediment and the same flood frequency across the runs, a deposit formed through "heavy" floods and "light" normal flows had a more radial shape than an ovular deposit formed through flows with constant discharge rates did. While the flow of the ovular deposit bifurcated clearly close to the inlet, the flow of the radial deposit did not bifurcate clearly, but formed

  15. Water quality and daily temperature cycle affect biofilm formation in drip irrigation devices revealed by optical coherence tomography.

    PubMed

    Qian, Jueying; Horn, Harald; Tarchitzky, Jorge; Chen, Yona; Katz, Sagi; Wagner, Michael

    2017-03-01

    Drip irrigation is a water-saving technology. To date, little is known about how biofilm forms in drippers of irrigation systems. In this study, the internal dripper geometry was recreated in 3-D printed microfluidic devices (MFDs). To mimic the temperature conditions in (semi-) arid areas, experiments were conducted in a temperature controlled box between 20 and 50°C. MFDs were either fed with two different treated wastewater (TWW) or synthetic wastewater. Biofilm formation was monitored non-invasively and in situ by optical coherence tomography (OCT). 3-D OCT datasets reveal the major fouling position and illustrate that biofilm development was influenced by fluid dynamics. Biofilm volumetric coverage of the labyrinth up to 60% did not reduce the discharge rate, whereas a further increase to 80% reduced the discharge rate by 50%. Moreover, the biofilm formation rate was significantly inhibited in daily temperature cycle independent of the cultivation medium used.

  16. Kinetics of silicide formation over a wide range of heating rates spanning six orders of magnitude

    SciTech Connect

    Molina-Ruiz, Manel; Lopeandía, Aitor F.; Gonzalez-Silveira, Marta; Garcia, Gemma; Clavaguera-Mora, Maria T.; Peral, Inma; Rodríguez-Viejo, Javier

    2014-07-07

    Kinetic processes involving intermediate phase formation are often assumed to follow an Arrhenius temperature dependence. This behavior is usually inferred from limited data over narrow temperature intervals, where the exponential dependence is generally fully satisfied. However, direct evidence over wide temperature intervals is experimentally challenging and data are scarce. Here, we report a study of silicide formation between a 12 nm film of palladium and 15 nm of amorphous silicon in a wide range of heating rates, spanning six orders of magnitude, from 0.1 to 10{sup 5 }K/s, or equivalently more than 300 K of variation in reaction temperature. The calorimetric traces exhibit several distinct exothermic events related to interdiffusion, nucleation of Pd{sub 2}Si, crystallization of amorphous silicon, and vertical growth of Pd{sub 2}Si. Interestingly, the thickness of the initial nucleation layer depends on the heating rate revealing enhanced mass diffusion at the fastest heating rates during the initial stages of the reaction. In spite of this, the formation of the silicide strictly follows an Arrhenius temperature dependence over the whole temperature interval explored. A kinetic model is used to fit the calorimetric data over the complete heating rate range. Calorimetry is complemented by structural analysis through transmission electron microscopy and both standard and in-situ synchrotron X-ray diffraction.

  17. Scaling Relations of Galactic Winds with Star Formation Rate

    NASA Astrophysics Data System (ADS)

    Tanner, Ryan; Cecil, Gerald; Heitsch, Fabian

    2017-01-01

    The galactic scale outflows generated by nuclear starbursts consist of a multiphase medium where each phase has a distinct velocity depending on the characteristics of the starburst. Using synthetic absorption lines generated from 3D hydrodynamical simulations we probe the outflow velocity of the hot, warm, and neutral gas entrained in a galactic wind. By varying the star formation rate (SFR) in our simulations, we find no correlation between the outflow velocity of the hot gas with the SFR, but we do find a correlation between the outflow velocity of both warm and neutral gas with the SFR. The scaling relation between outflow velocity and SFR only holds for low SFR until the scaling relation abruptly flattens at a SFR determined by the mass loading of the starburst. The outflow velocity of the hot gas only depends on the mass loading of the starburst and not the SFR. For low SFRs the difference between the velocity of cold gas, as measured by absorption lines of neutral or low ionized gas, may be 5-7 times lower than the velocity of the hot, highly ionized gas. The difference in velocity between the cold and hot gas for higher SFRs depends on the mass loading factor of the starburst. Thus the measured velocities of neutral or low ionized gas cannot be used to estimate the outflow velocity of the hot gas without determining the mass loading of the starburst.

  18. How Question Types Reveal Student Thinking: An Experimental Comparison of Multiple-True-False and Free-Response Formats

    PubMed Central

    Hubbard, Joanna K.; Potts, Macy A.; Couch, Brian A.

    2017-01-01

    Assessments represent an important component of undergraduate courses because they affect how students interact with course content and gauge student achievement of course objectives. To make decisions on assessment design, instructors must understand the affordances and limitations of available question formats. Here, we use a crossover experimental design to identify differences in how multiple-true-false (MTF) and free-response (FR) exam questions reveal student thinking regarding specific conceptions. We report that correct response rates correlate across the two formats but that a higher percentage of students provide correct responses for MTF questions. We find that MTF questions reveal a high prevalence of students with mixed (correct and incorrect) conceptions, while FR questions reveal a high prevalence of students with partial (correct and unclear) conceptions. These results suggest that MTF question prompts can direct students to address specific conceptions but obscure nuances in student thinking and may overestimate the frequency of particular conceptions. Conversely, FR questions provide a more authentic portrait of student thinking but may face limitations in their ability to diagnose specific, particularly incorrect, conceptions. We further discuss an intrinsic tension between question structure and diagnostic capacity and how instructors might use multiple formats or hybrid formats to overcome these obstacles. PMID:28450446

  19. ON STAR FORMATION RATES AND STAR FORMATION HISTORIES OF GALAXIES OUT TO z {approx} 3

    SciTech Connect

    Wuyts, Stijn; Foerster Schreiber, Natascha M.; Lutz, Dieter; Nordon, Raanan; Berta, Stefano; Genzel, Reinhard; Magnelli, Benjamin; Poglitsch, Albrecht; Altieri, Bruno; Andreani, Paola; Aussel, Herve; Daddi, Emanuele; Elbaz, David; Cimatti, Andrea; Koekemoer, Anton M.; Maiolino, Roberto; McGrath, Elizabeth J.

    2011-09-01

    We compare multi-wavelength star formation rate (SFR) indicators out to z {approx} 3 in the GOODS-South field. Our analysis uniquely combines U to 8 {mu}m photometry from FIREWORKS, MIPS 24 {mu}m and PACS 70, 100, and 160 {mu}m photometry from the PEP, and H{alpha} spectroscopy from the SINS survey. We describe a set of conversions that lead to a continuity across SFR indicators. A luminosity-independent conversion from 24 {mu}m to total infrared luminosity yields estimates of L{sub IR} that are in the median consistent with the L{sub IR} derived from PACS photometry, albeit with significant scatter. Dust correction methods perform well at low-to-intermediate levels of star formation. They fail to recover the total amount of star formation in systems with large SFR{sub IR}/SFR{sub UV} ratios, typically occuring at the highest SFRs (SFR{sub UV+IR} {approx}> 100 M{sub sun} yr{sup -1}) and redshifts (z {approx}> 2.5) probed. Finally, we confirm that H{alpha}-based SFRs at 1.5 < z < 2.6 are consistent with SFR{sub SED} and SFR{sub UV+IR} provided extra attenuation toward H II regions is taken into account (A{sub V,neb} = A{sub V,continuum}/0.44). With the cross-calibrated SFR indicators in hand, we perform a consistency check on the star formation histories inferred from spectral energy distribution (SED) modeling. We compare the observed SFR-M relations and mass functions at a range of redshifts to equivalents that are computed by evolving lower redshift galaxies backward in time. We find evidence for underestimated stellar ages when no stringent constraints on formation epoch are applied in SED modeling. We demonstrate how resolved SED modeling, or alternatively deep UV data, may help to overcome this bias. The age bias is most severe for galaxies with young stellar populations and reduces toward older systems. Finally, our analysis suggests that SFHs typically vary on timescales that are long (at least several 100 Myr) compared to the galaxies' dynamical time.

  20. The Range of the Star Formation Rate in Local BCDs

    NASA Astrophysics Data System (ADS)

    Hopp, U.

    We will compare the star formation rate (SFR) obtained for the emission line galaxy sample (ELGS) of Popescu et al (1999, 2000) and of very nearby Blue Compact Dwarf Galaxies (BCD) which were resolved into individual stars with HST. For the ELGS, the SFR was derived from the Balmer line flux applying standard calibration. The new metal-depend calibrations of Weilbacher & Fritze-von Alvensleben (2001) will be considered. The galaxies of the ELGS are distributed in intermediate to very low environment galaxy densities. About half a dozen nearby (D <= 7 Mpc) BCDs in similar density regimes have been resolved into individual stars using either WFPC2 or NIC2 aboard HST. Analysing their color-magnitude diagrams yield clues on the recent and past SFR (e. g. Schulte-Ladbeck et al., 2001, Hopp, 2001). From both samples, we found that the SFR of BCDs is, on average, surprisingly low. For the ELGS, the values range from 2.2 Msolar yr-1 down to 0.01 Msolar yr-1, with two third of them below 0.3 Msolar yr-1. BCDs with high, star-burst like SFR (>= 0.8 Msolar yr-1) are rare (<= 10%). References: Hopp, U., 2001, in: K. de Boer, Proc. of ``Dwarf Galaxies and their Environment'', January 2001, Shacker Verlag, in press Popescu, C.C., Hopp, U., 2000, A&AS, 142, 247 Popescu, C.C., Hopp, U., Rosa, M., 1999, A&A, 350, 414 Schulte-Ladbeck, R.E., Hopp, U., Greggio, L., Crone, M., Drozdovsky, I.O., 2001, AJ (June), in press Weilbacher, P.M., Fritze-von Alvensleben, U., 2001, A&A, in press (astro-ph/0105282)

  1. The mechanics of bacterial cluster formation on plant leaf surfaces as revealed by bioreporter technology.

    PubMed

    Tecon, Robin; Leveau, Johan H J

    2012-05-01

    Bacteria that colonize the leaves of terrestrial plants often occur in clusters whose size varies from a few to thousands of cells. For the formation of such bacterial clusters, two non-mutually exclusive but very different mechanisms may be proposed: aggregation of multiple cells or clonal reproduction of a single cell. Here we assessed the contribution of both mechanisms on the leaves of bean plants that were colonized by the bacterium Pantoea agglomerans. In one approach, we used a mixture of green and red fluorescent P. agglomerans cells to populate bean leaves. We observed that this resulted in clusters made up of only one colour as well as two-colour clusters, thus providing evidence for both mechanisms. Another P. agglomerans bioreporter, designed to quantify the reproductive success of bacterial colonizers by proxy to the rate at which green fluorescent protein is diluted from dividing cells, revealed that during the first hours on the leaf surface, many bacteria were dividing, but not staying together and forming clusters, which is suggestive of bacterial relocation. Together, these findings support a dynamic model of leaf surface colonization, where both aggregative and reproductive mechanisms take place. The bioreporter-based approach we employed here should be broadly applicable towards a more quantitative and mechanistic understanding of bacterial colonization of surfaces in general. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. STAR FORMATION IN THE BULLET CLUSTER. I. THE INFRARED LUMINOSITY FUNCTION AND STAR FORMATION RATE ,

    SciTech Connect

    Sun Mi Chung; Gonzalez, Anthony H.; Clowe, Douglas; Markevitch, Maxim; Zaritsky, Dennis

    2010-12-20

    The Bullet Cluster is a massive galaxy cluster at z = 0.297 undergoing a major supersonic (Mach 3) merger event. Using data from Spitzer MIPS and the Infrared Array Camera, optical imaging, and optical spectroscopy, we present the global star formation rate (SFR) of this unique cluster. Using a 90% spectroscopically complete sample of 37 star-forming MIPS confirmed cluster members out to R < 1.7 Mpc, and the Rieke et al. relation to convert from 24 {mu}m flux to SFR, we calculate an integrated obscured SFR of 267 M{sub sun} yr{sup -1} and a specific SFR of 28 M{sub sun} yr{sup -1} per 10{sup 14} M{sub sun}. The cluster mass normalized integrated SFR of the Bullet Cluster is among the highest in a sample of eight other clusters and cluster mergers from the literature. Five LIRGs and one ULIRG contribute 30% and 40% of the total SFR of the cluster, respectively. To investigate the origin of the elevated specific SFR, we compare the infrared luminosity function (IR LF) of the Bullet Cluster to those of Coma (evolved to z = 0.297) and CL1358+62. The Bullet Cluster IR LF exhibits an excess of sources compared to the IR LFs of the other massive clusters. A Schechter function fit of the Bullet Cluster IR LF yields L* = 44.68 {+-} 0.11 erg s{sup -1}, which is {approx}0.25 and 0.35 dex brighter than L* of evolved Coma and CL1358+62, respectively. The elevated IR LF of the Bullet Cluster relative to other clusters can be explained if we attribute the 'excess' star-forming IR galaxies to a population associated with the infalling group that has not yet been transformed into quiescent galaxies. In this case, the timescale required for quenching star formation in the cluster environment must be longer than the timescale since the group's accretion-a few hundred million years. We suggest that 'strangulation' is likely to be an important process in the evolution of star formation in clusters.

  3. Ripple formation in unilamellar-supported lipid bilayer revealed by FRAPP.

    PubMed

    Harb, Frédéric; Simon, Anne; Tinland, Bernard

    2013-12-01

    The mechanisms of formation and conditions of the existence of the ripple phase are fundamental thermodynamic questions with practical implications for medicine and pharmaceuticals. We reveal a new case of ripple formation occurring in unilamellar-supported bilayers in water, which results solely from the bilayer/support interaction, without using lipid mixtures or specific ions. This ripple phase is detected by FRAPP using diffusion coefficient measurements as a function of temperature: a diffusivity plateau is observed. It occurs in the same temperature range where ripple phase existence has been observed using other methods. When AFM experiments are performed in the appropriate temperature range the ripple phase is confirmed.

  4. [Effects of fundamental frequency and speech rate on impression formation].

    PubMed

    Uchida, Teruhisa; Nakaune, Naoko

    2004-12-01

    This study investigated the systematic relationship between nonverbal features of speech and personality trait ratings of the speaker. In Study 1, fundamental frequency (F0) in original speech was converted into five levels from 64% to 156.25%. Then 132 undergraduates rated each of the converted speeches in terms of personality traits. In Study 2 134 undergraduates similarly rated the speech stimuli, which had five speech rate levels as well as two F0 levels. Results showed that listener ratings along Big Five dimensions were mostly independent. Each dimension had a slightly different change profile over the five levels of F0 and speech rate. A quadratic regression equation provided a good approximation for each rating as a function of F0 or speech rate. The quadratic regression equations put together would provide us with a rough estimate of personality trait impression as a function of prosodic features. The functional relationship among F0, speech rate, and trait ratings was shown as a curved surface in the three-dimensional space.

  5. Comparison of Traditional and Alternative Fitness Teaching Formats on Heart Rate Intensity and Perceived Enjoyment.

    ERIC Educational Resources Information Center

    Ha, Amy Sau-ching; Heung-Sang Wong, Stephen

    2002-01-01

    Compared a traditional and an alternative (skill-fitness- music) fitness teaching format to determine whether there would be differences on Hong Kong middle school students' heart rate intensity and perceived enjoyment. Data from heart rate monitors and student surveys indicated that the two formats did not produce differences in heart rates.…

  6. Endolithic algae and micrite envelope formation in Bahamian oolites as revealed by scanning electron microscopy.

    NASA Technical Reports Server (NTRS)

    Margolis, S.; Rex, R. W.

    1971-01-01

    Examination of Holocene Bahamian ooelites by scanning electron and light microscopy has revealed the morphology and orientation of aragonite crystals in the lamellar ooelitic envelope, and their modification by the boring activities of endolithic algae. The voids produced by these algae are found in progressive stages of being lined and filled with precipitated microcrystalline aragonite, which is similar to the process of micrite envelope formation in molluscan and other skeletal carbonate grains.

  7. Endolithic algae and micrite envelope formation in Bahamian oolites as revealed by scanning electron microscopy.

    NASA Technical Reports Server (NTRS)

    Margolis, S.; Rex, R. W.

    1971-01-01

    Examination of Holocene Bahamian ooelites by scanning electron and light microscopy has revealed the morphology and orientation of aragonite crystals in the lamellar ooelitic envelope, and their modification by the boring activities of endolithic algae. The voids produced by these algae are found in progressive stages of being lined and filled with precipitated microcrystalline aragonite, which is similar to the process of micrite envelope formation in molluscan and other skeletal carbonate grains.

  8. Simultaneous Measurement of Amyloid Fibril Formation by Dynamic Light Scattering and Fluorescence Reveals Complex Aggregation Kinetics

    PubMed Central

    Streets, Aaron M.; Sourigues, Yannick; Kopito, Ron R.; Melki, Ronald; Quake, Stephen R.

    2013-01-01

    An apparatus that combines dynamic light scattering and Thioflavin T fluorescence detection is used to simultaneously probe fibril formation in polyglutamine peptides, the aggregating subunit associated with Huntington's disease, in vitro. Huntington's disease is a neurodegenerative disorder in a class of human pathologies that includes Alzheimer's and Parkinson's disease. These pathologies are all related by the propensity of their associated protein or polypeptide to form insoluble, β-sheet rich, amyloid fibrils. Despite the wide range of amino acid sequence in the aggregation prone polypeptides associated with these diseases, the resulting amyloids display strikingly similar physical structure, an observation which suggests a physical basis for amyloid fibril formation. Thioflavin T fluorescence reports β-sheet fibril content while dynamic light scattering measures particle size distributions. The combined techniques allow elucidation of complex aggregation kinetics and are used to reveal multiple stages of amyloid fibril formation. PMID:23349924

  9. High Rate of Microbleed Formation Following Primary Intracerebral Hemorrhage

    PubMed Central

    Mackey, Jason; Wing, Jeffrey J.; Norato, Gina; Sobotka, Ian; Menon, Ravi S.; Burgess, Richard E.; Gibbons, M. Chris; Shara, Nawar M.; Fernandez, Stephen; Jayam-Trouth, Annapurni; Russell, Laura; Edwards, Dorothy F.; Kidwell, Chelsea S.

    2016-01-01

    Introduction We sought to investigate the frequency of microbleed (MB) development following intracerebral hemorrhage (ICH) in a predominantly African-American population and to identify predictors of new MB formation. Methods The DECIPHER study was a prospective, longitudinal, MR-based cohort study designed to evaluate racial/ethnic differences in risk factors for MBs and to evaluate the prognostic impact of MBs in this ICH population. We evaluated new MB formation in 2 time periods: from baseline to 30 days and from 30 days to year 1. Results Of 200 subjects enrolled in DECIPHER, 84 had MRIs at all required timepoints to meet criteria for this analysis. In the baseline to day 30 analysis, 11 (13.1%) had new MBs, compared to 25 (29.8%) in the day 30 to year 1 analysis. Logistic regression analysis demonstrated that baseline number of MBs (OR 1.05 [95% CI 1.01, 1.08], p=0.01) was associated with new MB formation at 30 days. A logistic regression model predicting new MB at 1 year included baseline number of MBs (OR 1.05 [1.00, 1.11], p=0.046), baseline age (OR 1.05 [1.00, 1.10], p=0.04) and WMD disease score (OR 1.18 [0.96, 1.45]. p=0.115). Overall 28 of 84 (33.3%) ICH subjects formed new MBs at some point in the first year post-ICH. Conclusions We found that one-third of ICH subjects in this cohort surviving one year developed new MBs, which suggests a dynamic and rapidly progressive vasculopathy. Future studies are needed to examine the impact of new MB formation on patient outcomes. PMID:26311530

  10. Attribution of halo merger mass ratio and star formation rate density

    NASA Astrophysics Data System (ADS)

    Kim, Sungeun; Jo, Jeong-woon; Hwang, Jihe; Youn, Soyoung; Park, Boha

    2016-06-01

    We have used codes for implementing the merger tree algorithm by Cole et al. (2007) and Parkinson et al. (2008) and derived the halo merger mass ratio of protocluster of galaxies across the cosmic time. The authors compare the observed and simulated star formation rates reported by the various groups and derive the star formation rate densities at different red-shifts. This study implies that an investigation of different mass variables should be incorporated into the analysis in order to accurately estimate cumulative star formation rates of galaxies and star formation rate densities as a function of red-shifts.

  11. Star Formation Triggering Mechanisms Revealed by Far-Ultraviolet, Hα , and HI Images of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Stewart, S. G.

    1998-12-01

    Far-Ultraviolet (FUV), Hα , and HI observations of dwarf galaxies Holmberg II, IC2574, and Sextans A are used to investigate the means by which star formation propagates in galaxies lacking dominant global triggering mechanisms. The observations trace the interaction between sites of massive star formation and the neutral and ionized components of the surrounding interstellar medium (ISM) in these intrinsically simple systems. Both local and large scale triggering mechanisms related to massive star formation are seen suggesting that feedback from massive stars is a microscopic process operating in all galaxies to a certain degree. The data emphasizes the importance of local conditions in regulating star formation from evidence such as massive stars inside ionized shells, compact HII regions surrounding aging clusters, and stars formed in chains of progressing age. Surface brightness profiles show current activity correlates with the time averaged level of past star formation at a given radius demonstrating a reliance on local conditions. Normalized star formation rates show no dependence on global conditions in comparisons with global properties such as the gas fraction. Large scale triggering by HI shells is supported by observations of progenitor populations and secondary sites of star formation on the dense HI rims. Analysis of the energy available from massive stars inside HI shells indicates energy deposited into the ISM from supernovae and stellar winds is sufficient to account for the HI morphology. Ages of individual star forming regions are derived using B, Hα , and FUV photometry and show both older, diffuse FUV regions and younger, compact HII regions. The distribution of ages is reconciled with the HI morphology showing a clear preference of young regions for areas of dense HI and old regions for HI voids. Global kinematical properties may also play a role in the star formation process since large scale feedback from massive stars is shown to operate

  12. Ultraviolet Morphology and Unobscured UV Star Formation Rates of CLASH Brightest Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Donahue, Megan; Connor, Thomas; Fogarty, Kevin; Li, Yuan; Voit, G. Mark; Postman, Marc; Koekemoer, Anton; Moustakas, John; Bradley, Larry; Ford, Holland

    2015-06-01

    Brightest cluster galaxies (BCGs) are usually quiescent, but many exhibit star formation. Here we exploit the opportunity provided by rest-frame UV imaging of galaxy clusters in the Cluster Lensing and Supernovae with Hubble (CLASH) Multi-Cycle Treasury Project to reveal the diversity of UV morphologies in BCGs and to compare them with recent simulations of the cool, star-forming gas structures produced by precipitation-driven feedback. All of the CLASH BCGs are detected in the rest-frame UV (280 nm), regardless of their star formation activity, because evolved stellar populations produce a modest amount of UV light that traces the relatively smooth, symmetric, and centrally peaked stellar distribution seen in the near infrared. Ultraviolet morphologies among the BCGs with strong UV excesses exhibit distinctive knots, multiple elongated clumps, and extended filaments of emission that distinctly differ from the smooth profiles of the UV-quiet BCGs. These structures, which are similar to those seen in the few star-forming BCGs observed in the UV at low redshift, are suggestive of bi-polar streams of clumpy star formation, but not of spiral arms or large, kiloparsec-scale disks. Based on the number of streams and lack of culprit companion galaxies, these streams are unlikely to have arisen from multiple collisions with gas-rich galaxies. These star-forming UV structures are morphologically similar to the cold-gas structures produced in simulations of precipitation-driven active galactic nucleus feedback in which jets uplift low-entropy gas to greater altitudes, causing it to condense. Unobscured star formation rates estimated from CLASH UV images using the Kennicutt relation range up to 80 {{M}⊙ } y{{r}-1} in the most extended and highly structured systems. The circumgalactic gas-entropy threshold for star formation in CLASH BCGs at z ˜ 0.2-0.5 is indistinguishable from that for clusters at z\\lt 0.2.

  13. Formation of bicalutamide nanodispersion for dissolution rate enhancement.

    PubMed

    Li, Chan; Li, Caixia; Le, Yuan; Chen, Jian-Feng

    2011-02-14

    Bicalutamide was loaded on hydrophilic excipients to form nanodispersions via a combination of anti-solvent precipitation and spray drying method. The particle size, BET surface area, contact angles and dissolution rate of the nanodispersions were analyzed. The results indicated that lactose was a suitable matrix to prevent the bicalutamide particles growth and aggregation. The lactose loaded particles had a mean size of 330 nm within a narrow distribution. X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Fourier transform infrared (FT-IR) characterization indicated the nanodispersion exhibited unchanged crystalline and chemical structure. Dissolution rate of bicalutamide nanodispersion was significantly faster than that of commercial products. It increased to 94% in 10 min while both commercial formulas Casodex and bicalutamide tablets dissolved 60% and 38% respectively at the same period. It was proposed that the enhanced dissolution rate of bicalutamide nanodispersion contribute to high surface area and well-wetted state of drug particles. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. TEMPRANILLO Reveals the Mesophyll as Crucial for Epidermal Trichome Formation1[OPEN

    PubMed Central

    Aguilar-Jaramillo, Andrea E.; Osnato, Michela; Shani, Eilon

    2016-01-01

    Plant trichomes are defensive specialized epidermal cells. In all accepted models, the epidermis is the layer involved in trichome formation, a process controlled by gibberellins (GAs) in Arabidopsis rosette leaves. Indeed, GA activates a genetic cascade in the epidermis for trichome initiation. Here we report that TEMPRANILLO (TEM) genes negatively control trichome initiation not only from the epidermis but also from the leaf layer underneath the epidermis, the mesophyll. Plants over-expressing or reducing TEM specifically in the mesophyll, display lower or higher trichome numbers, respectively. We surprisingly found that fluorescently labeled GA3 accumulates exclusively in the mesophyll of leaves, but not in the epidermis, and that TEM reduces its accumulation and the expression of several newly identified GA transporters. This strongly suggests that TEM plays an essential role, not only in GA biosynthesis, but also in regulating GA distribution in the mesophyll, which in turn directs epidermal trichome formation. Moreover, we show that TEM also acts as a link between GA and cytokinin signaling in the epidermis by negatively regulating downstream genes of both trichome formation pathways. Overall, these results call for a re-evaluation of the present theories of trichome formation as they reveal mesophyll essential during epidermal trichome initiation. PMID:26802039

  15. From attitude formation to behavioral response in organ donation: using marketing to increase consent rates.

    PubMed

    Aldridge, Alicia; Guy, Bonnie; Roggenkamp, Susan

    2003-01-01

    This article presents a theoretical analysis of attitude formation and the relationship to stated behavioral intentions as it relates to the decision to donate organs. This analysis reveals the presence of three distinct paths to behavior of potential donors, groups differing in their involvement with organ donation. Promotional objectives and campaign strategies designed to influence attitudes and behaviors should differ according to the behavioral path in operation and the involvement of the audience. Mass media campaigns are likely to reach high involvement groups only. Therefore, personal selling, underutilized in previous donation campaigns, should be brought into the donation strategy to appeal to low involvement groups. By recognizing differences in audience involvement and implementing different strategies, overall donation rates could substantially increase.

  16. Kinetic analysis reveals the diversity of microscopic mechanisms through which molecular chaperones suppress amyloid formation.

    PubMed

    Arosio, Paolo; Michaels, Thomas C T; Linse, Sara; Månsson, Cecilia; Emanuelsson, Cecilia; Presto, Jenny; Johansson, Jan; Vendruscolo, Michele; Dobson, Christopher M; Knowles, Tuomas P J

    2016-03-24

    It is increasingly recognized that molecular chaperones play a key role in modulating the formation of amyloid fibrils, a process associated with a wide range of human disorders. Understanding the detailed mechanisms by which they perform this function, however, has been challenging because of the great complexity of the protein aggregation process itself. In this work, we build on a previous kinetic approach and develop a model that considers pairwise interactions between molecular chaperones and different protein species to identify the protein components targeted by the chaperones and the corresponding microscopic reaction steps that are inhibited. We show that these interactions conserve the topology of the unperturbed reaction network but modify the connectivity weights between the different microscopic steps. Moreover, by analysing several protein-molecular chaperone systems, we reveal the striking diversity in the microscopic mechanisms by which molecular chaperones act to suppress amyloid formation.

  17. Kinetic analysis reveals the diversity of microscopic mechanisms through which molecular chaperones suppress amyloid formation

    NASA Astrophysics Data System (ADS)

    Arosio, Paolo; Michaels, Thomas C. T.; Linse, Sara; Månsson, Cecilia; Emanuelsson, Cecilia; Presto, Jenny; Johansson, Jan; Vendruscolo, Michele; Dobson, Christopher M.; Knowles, Tuomas P. J.

    2016-03-01

    It is increasingly recognized that molecular chaperones play a key role in modulating the formation of amyloid fibrils, a process associated with a wide range of human disorders. Understanding the detailed mechanisms by which they perform this function, however, has been challenging because of the great complexity of the protein aggregation process itself. In this work, we build on a previous kinetic approach and develop a model that considers pairwise interactions between molecular chaperones and different protein species to identify the protein components targeted by the chaperones and the corresponding microscopic reaction steps that are inhibited. We show that these interactions conserve the topology of the unperturbed reaction network but modify the connectivity weights between the different microscopic steps. Moreover, by analysing several protein-molecular chaperone systems, we reveal the striking diversity in the microscopic mechanisms by which molecular chaperones act to suppress amyloid formation.

  18. Kinetic analysis reveals the diversity of microscopic mechanisms through which molecular chaperones suppress amyloid formation

    PubMed Central

    Arosio, Paolo; Michaels, Thomas C. T.; Linse, Sara; Månsson, Cecilia; Emanuelsson, Cecilia; Presto, Jenny; Johansson, Jan; Vendruscolo, Michele; Dobson, Christopher M.; Knowles, Tuomas P. J.

    2016-01-01

    It is increasingly recognized that molecular chaperones play a key role in modulating the formation of amyloid fibrils, a process associated with a wide range of human disorders. Understanding the detailed mechanisms by which they perform this function, however, has been challenging because of the great complexity of the protein aggregation process itself. In this work, we build on a previous kinetic approach and develop a model that considers pairwise interactions between molecular chaperones and different protein species to identify the protein components targeted by the chaperones and the corresponding microscopic reaction steps that are inhibited. We show that these interactions conserve the topology of the unperturbed reaction network but modify the connectivity weights between the different microscopic steps. Moreover, by analysing several protein-molecular chaperone systems, we reveal the striking diversity in the microscopic mechanisms by which molecular chaperones act to suppress amyloid formation. PMID:27009901

  19. GOODS-Herschel: ultra-deep XMM-Newton observations reveal AGN/star-formation connection

    NASA Astrophysics Data System (ADS)

    Rovilos, E.; Comastri, A.; Gilli, R.; Georgantopoulos, I.; Ranalli, P.; Vignali, C.; Lusso, E.; Cappelluti, N.; Zamorani, G.; Elbaz, D.; Dickinson, M.; Hwang, H. S.; Charmandaris, V.; Ivison, R. J.; Merloni, A.; Daddi, E.; Carrera, F. J.; Brandt, W. N.; Mullaney, J. R.; Scott, D.; Alexander, D. M.; Del Moro, A.; Morrison, G.; Murphy, E. J.; Altieri, B.; Aussel, H.; Dannerbauer, H.; Kartaltepe, J.; Leiton, R.; Magdis, G.; Magnelli, B.; Popesso, P.; Valtchanov, I.

    2012-10-01

    Models of galaxy evolution assume some connection between the AGN and star formation activity in galaxies. We use the multi-wavelength information of the CDFS to assess this issue. We select the AGNs from the 3 Ms XMM-Newton survey and measure the star-formation rates of their hosts using data that probe rest-frame wavelengths longward of 20 μm, predominantly from deep 100 μm and 160 μm Herschel observations, but also from Spitzer-MIPS-70 μm. Star-formation rates are obtained from spectral energy distribution fits, identifying and subtracting an AGN component. Our sample consists of sources in the z ≈ 0.5-4 redshift range, with star-formation rates SFR ≈ 101-103 M⊙ yr-1 and stellar masses M⋆ ≈ 1010-1011.5 M⊙. We divide the star-formation rates by the stellar masses of the hosts to derive specific star-formation rates (sSFR) and find evidence for a positive correlation between the AGN activity (proxied by the X-ray luminosity) and the sSFR for themost active systems with X-ray luminosities exceeding Lx ≃ 1043 erg s-1 and redshifts z ≳ 1. We do not find evidence for such a correlation for lower luminosity systems or those at lower redshifts, consistent with previous studies. We do not find any correlation between the SFR (or the sSFR) and the X-ray absorption derived from high-quality XMM-Newton spectra either, showing that the absorption is likely to be linked to the nuclear region rather than the host, while the star-formation is not nuclear. Comparing the sSFR of the hosts to the characteristic sSFR of star-forming galaxies at the same redshift (the so-called "main sequence") we find that the AGNs reside mostly in main-sequence and starburst hosts, reflecting the AGN-sSFR connection; however the infrared selection might bias this result. Limiting our analysis to the highest X-ray luminosity AGNs (X-ray QSOs with Lx > 1044 erg s-1), we find that the highest-redshift QSOs (with z ≳ 2) reside predominantly in starburst hosts, with an average s

  20. Ultra-flat galaxies selected from RFGC catalog. III. Star formation rate

    NASA Astrophysics Data System (ADS)

    Melnyk, O. V.; Karachentseva, V. E.; Karachentsev, I. D.

    2017-01-01

    We examine the star formation properties of galaxies with very thin disks selected from the Revised FlatGalaxy Catalog (RFGC). The sample contains 333 ultra-flat galaxies (UFG) at high Galactic latitudes, |b| > 10°, with a blue major angular diameter of a ≥ 1.'2, blue and red apparent axial ratios of ( a/b)b > 10, ( a/b)r > 8.5 and radial velocities within 10 000 kms-1. As a control sample for them we use a population of 722 more thick RFGC galaxies with ( a/b)b > 7, situated in the same volume. The UFG distribution over the sky indicates them as a population of quite isolated galaxies.We found that the specific star formation rate, sSFR FUV, determined via the FUV GALEX flux, increases steadily from the early type to late type disks for both the UFG and RFGC-UFG samples, showing no significant mutual difference within each morphological type T. The population of UFG disks has the average HI-mass-to-stellarmass ratio by (0.25 ± 0.03) dex higher than that of RFGC-UFG galaxies. Being compared with arbitrary orientated disks of the same type, the ultra-flat edge-on galaxies reveal that their total HI mass is hidden by self-absorption on the average by approximately 0.20 dex.We demonstrate that using the robust stellar mass estimate via < B-K>-color and galaxy type T for the thin disks, together with a nowaday accounting for internal extinction, yields their sSFR quantities definitely lying below the limit of -9.4 dex (yr-1). The collected observational data on UFG disks imply that their average star formation rate in the past has been approximately three times the current SFR. The UFG galaxies have also sufficient amount of gas to support their observed SFR over the following nearly 9 Gyrs.

  1. Effects of CO2 doped ice on CO2 and CH4 hydrate formation rates

    NASA Astrophysics Data System (ADS)

    Ambuehl, D.; Elwood-Madden, M.

    2012-12-01

    Reports of methane plumes on Mars have prompted the proposal of many source and reservoir models for methane, one of which is methane hydrate. A hydrate reservoir could sequester methane for prolonged periods. This reservoir could form as subsurface methane advects, coming into contact with a layer of permafrost. Within 1.5 m of the Martian surface, the permafrost is likely in communication with the Martian atmosphere. Therefore, diffused atmospheric gases in the ice, especially CO2, could affect hydrate formations rates. We tested the effects of diffused CO2 on gas hydrate formation rates using CO2 doped and ultrapure water ice. The resulting data was fit with a third order polynomial trend line and the instantaneous rates were determined using the first derivative of the headspace gas pressure vs. time curve and normalized for surface area. The results have shown that CO2 hydrate formation rates increased by half an order of magnitude and CH4 hydrate formation rates increased by an order of magnitude. The accelerated rate of CO2 hydrate formation is likely due to clathration of the diffused CO2, making further hydrate formation kinetically more favorable. The CH4 hydrate formation rates show a greater acceleration due to the thermodynamic stability imparted by a mixed hydrate phase. This indicates that CO2 trapped in the permafrost layer would facilitate the formation of near-surface methane hydrate on Mars.

  2. Tau Isoform Composition Influences Rate and Extent of Filament Formation*

    PubMed Central

    Zhong, Qi; Congdon, Erin E.; Nagaraja, Haikady N.; Kuret, Jeff

    2012-01-01

    The risk of developing tauopathic neurodegenerative disease depends in part on the levels and composition of six naturally occurring Tau isoforms in human brain. These proteins, which form filamentous aggregates in disease, vary only by the presence or absence of three inserts encoded by alternatively spliced exons 2, 3, and 10 of the Tau gene (MAPT). To determine the contribution of alternatively spliced segments to Tau aggregation propensity, the aggregation kinetics of six unmodified, recombinant human Tau isoforms were examined in vitro using electron microscopy assay methods. Aggregation propensity was then compared at the level of elementary rate constants for nucleation and extension phases. We found that all three alternatively spliced segments modulated Tau aggregation but through differing kinetic mechanisms that could synergize or compete depending on sequence context. Overall, segments encoded by exons 2 and 10 promoted aggregation, whereas the segment encoded by exon 3 depressed it with its efficacy dependent on the presence or absence of a fourth microtubule binding repeat. In general, aggregation propensity correlated with genetic risk reported for multiple tauopathies, implicating aggregation as one candidate mechanism rationalizing the correlation between Tau expression patterns and disease. PMID:22539343

  3. Combined techniques for characterising pasta structure reveals how the gluten network slows enzymic digestion rate.

    PubMed

    Zou, Wei; Sissons, Mike; Gidley, Michael J; Gilbert, Robert G; Warren, Frederick J

    2015-12-01

    The aim of the present study is to characterise the influence of gluten structure on the kinetics of starch hydrolysis in pasta. Spaghetti and powdered pasta were prepared from three different cultivars of durum semolina, and starch was also purified from each cultivar. Digestion kinetic parameters were obtained through logarithm-of-slope analysis, allowing identification of sequential digestion steps. Purified starch and semolina were digested following a single first-order rate constant, while pasta and powdered pasta followed two sequential first-order rate constants. Rate coefficients were altered by pepsin hydrolysis. Confocal microscopy revealed that, following cooking, starch granules were completely swollen for starch, semolina and pasta powder samples. In pasta, they were completely swollen in the external regions, partially swollen in the intermediate region and almost intact in the pasta strand centre. Gluten entrapment accounts for sequential kinetic steps in starch digestion of pasta; the compact microstructure of pasta also reduces digestion rates.

  4. Star Formation Triggering Mechanisms Revealed by Far-Ultraviolet Hα, and HI Images of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Stewart, Susan Gessner

    1998-12-01

    Far-ultraviolet (FUV), Hα, and HI observations of dwarf galaxies Holmberg II, IC2574, and Sextans A are used to investigate the means by which star formation propagates in galaxies lacking global triggering mechanisms such as spiral density waves. The observations trace the interaction between sites of massive star formation and the neutral and ionized components of the surrounding interstellar medium (ISM) in these intrinsically simple systems. Both local and large-scale triggering mechanisms related to massive star formation are seen, suggesting that feedback from massive stars is a microscopic process operating in all galaxies to a certain degree. The data emphasize the importance of local conditions in regulating star formation from evidence such as massive stars inside ionized shells, compact HII regions surrounding aging clusters, and stars formed in chains of progressing age. Surface brightness profiles show current activity correlates with the time averaged level of past star formation at a given radius demonstrating a reliance on local conditions. Normalized star formation rates show no dependence on global conditions in comparisons with global properties such as the gas fraction. Large-scale triggering by HI shells is supported by observations of progenitor populations and secondary sites of star formation on the dense HI rims. Analysis of the energy available from massive stars inside HI shells indicates energy deposited into the ISM from supernovae and stellar winds is sufficient to account for the HI morphology. Ages of individual star forming regions are derived using B, Ha, and FUV photometry and show both older, diffuse FUV regions and younger, compact HII regions. The distribution of ages is reconciled with the HI morphology, showing a clear preference of young regions for areas of dense HI and old regions for HI voids. Global kinematical properties may also play a role in the star formation process since differences in the rotation

  5. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

    PubMed

    Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H

    2013-07-16

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process.

  6. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation

    PubMed Central

    Shiraiwa, Manabu; Yee, Lindsay D.; Schilling, Katherine A.; Loza, Christine L.; Craven, Jill S.; Zuend, Andreas; Ziemann, Paul J.; Seinfeld, John H.

    2013-01-01

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process. PMID:23818634

  7. Circumnuclear Star Formation and Heavy Obscuration Revealed by Chandra in NGC 4968

    NASA Astrophysics Data System (ADS)

    LaMassa, Stephanie M.; Yaqoob, Tahir; Levenson, Nancy; Boorman, Peter; Heckman, Timothy M.; Gandhi, Poshak; Rigby, Jane R.; Urry, C. Megan; Ptak, Andrew

    2017-08-01

    NGC 4968 is a nearby Seyfert 2 galaxy with evidence of extreme obscuration and circumnuclear star formation in its Chandra spectrum. Imaging analysis in the soft band (0.5 - 2 keV) reveals extended (~1 kpc) emission that is thermal in nature and ascribed to on-going star formation. We measure an Fe Kα equivalent width (EW) value of ~2.5 keV which is a clear indicator of Compton-thick levels of obscuration. Using physically motivated X-ray spectral models that self consistently treat the transmitted continuum, Compton scattered emission, and fluorescent line emission, we measure a column density above 1.25 x 1024 cm-2, though are unable to determine, with present data, whether the X-ray reprocessor takes the form of a toroidal or spherical geometry (in which case the column density may exceed 1025 cm-2). A spherical distribution of matter facilitiates the production of extreme Fe Kα EWs, suggesting that this geometry may be preferred. We speculate that on-going star formation increases the covering factor of the circumnuclear obscuration enshrouding the AGN. With upcoming NuSTAR observations, we will test whether the X-ray reprocessor geometry is indeed spherical and derive better constraints on the obscuring column density.

  8. Magnetite: What it reveals about the origin of the banded iron formations. [Abstract only

    NASA Technical Reports Server (NTRS)

    Schwartz, D. E.; Mancinelli, R. L.; White, M. R.

    1994-01-01

    Magnetite, Fe3O4 is produced abiotically and biotically. Abiotically, magnetite is a late magmatic mineral and forms as a consequence of the cooling of iron rich magma. Biotically, magnetite is produced by several organisms, including magnetotactic bacteria. Hematite, Fe2O3, is also produced abiotically and biotically. Abiotically, hematite rarely occurs as a primary mineral in igneous rocks, but is common as an alteration product, fumarole deposit, and in some metamorphosed Fe-rich rocks. Biotically, hematite is produced by several types of microorganisms. Biologically-produced magnetite and hematite are formed under the control of the host organism, and consequently, have characteristics not found in abiotically produced magnetite and hematite crystals. To determine if the magnetite and hematite in the Banded Iron Formation was biologically or abiotically produced, the characteristics of biologically-produced magnetite and hematite (concentrated from Aquaspirillum magnetotacticum) and abiotically-produced magnetite and hematite obtained from Wards Scientific Supply Company, were compared with characteristics of magnetite and hematite concentrated from the Gunflint Banded Iron Formation (Ontario, Canada) using thermal and crystallographic analytical techniques. Whole rock analysis of the Gunflint Banded Iron Formation by x-ray diffraction (XRD) and differential thermal analysis (DTA) revealed the presence of quartz, hematite, siderite and dolomite as the major minerals, and magnetite, greenalite, pyrite, pyrrhotite and apatite as the minor minerals. Analysis of a crude magnetic fraction of the Gunflint showed the minerals quartz, hematite, siderite, dolomite, and magnetite. Analysis of the crude magnetic fraction from Aquaspirillum magnetotacticum revealed organic compounds plus hematite and magnetite. The mineral identification and particle size distribution data obtained from the DTA along with XRD data indicate that the magnetite and hematite from the Gunflint

  9. Hα star formation rates of z > 1 galaxy clusters in the IRAC shallow cluster survey

    SciTech Connect

    Zeimann, Gregory R.; Stanford, S. A.; Brodwin, Mark; Gonzalez, Anthony H.; Mancone, Conor; Snyder, Gregory F.; Stern, Daniel; Eisenhardt, Peter; Dey, Arjun; Moustakas, John

    2013-12-20

    We present Hubble Space Telescope near-IR spectroscopy for 18 galaxy clusters at 1.0 formation rates within a projected radius of 500 kpc, and many of our clusters (∼60%) have significant levels of star formation within a projected radius of 200 kpc. A stacking analysis reveals that dust reddening in these star-forming galaxies is positively correlated with stellar mass and may be higher in the field than the cluster at a fixed stellar mass. This may indicate a lower amount of gas in star-forming cluster galaxies than in the field population. Also, Hα equivalent widths of star-forming galaxies in the cluster environment are still suppressed below the level of the field. This suppression is most significant for lower mass galaxies (log M {sub *} < 10.0 M {sub ☉}). We therefore conclude that environmental effects are still important at 1.0

  10. Comparative analysis of animal growth: a primate continuum revealed by a new dimensionless growth rate coefficient.

    PubMed

    Vinicius, Lucio; Mumby, Hannah S

    2013-05-01

    The comparative analysis of animal growth still awaits full integration into life-history studies, partially due to the difficulty of defining a comparable measure of growth rate across species. Using growth data from 50 primate species, we introduce a modified "general growth model" and a dimensionless growth rate coefficient β that controls for size scaling and phylogenetic effects in the distribution of growth rates. Our results contradict the prevailing idea that slow growth characterizes primates as a group: the observed range of β values shows that not all primates grow slowly, with galago species exhibiting growth rates similar or above the mammalian average, while other strepsirrhines and most New World monkeys show limited reduction in growth rates. Low growth rate characterizes apes and some papionines. Phylogenetic regressions reveal associations between β and life-history variables, providing tests for theories of primate growth evolution. We also show that primate slow growth is an exclusively postnatal phenomenon. Our study exemplifies how the dimensionless approach promotes the integration of growth rate data into comparative life-history analysis, and demonstrates its potential applicability to other cases of adaptive diversification of animal growth patterns.

  11. Effect of Common Cryoprotectants on Critical Warming Rates and Ice Formation in Aqueous Solutions

    PubMed Central

    Hopkins, Jesse B.; Badeau, Ryan; Warkentin, Matthew; Thorne, Robert E.

    2012-01-01

    Ice formation on warming is of comparable or greater importance to ice formation on cooling in determining survival of cryopreserved samples. Critical warming rates required for ice-free warming of vitrified aqueous solutions of glycerol, dimethyl sulfoxide, ethylene glycol, polyethylene glycol 200 and sucrose have been measured for warming rates of order 10 to 104 K/s. Critical warming rates are typically one to three orders of magnitude larger than critical cooling rates. Warming rates vary strongly with cooling rates, perhaps due to the presence of small ice fractions in nominally vitrified samples. Critical warming and cooling rate data spanning orders of magnitude in rates provide rigorous tests of ice nucleation and growth models and their assumed input parameters. Current models with current best estimates for input parameters provide a reasonable account of critical warming rates for glycerol solutions at high concentrations/low rates, but overestimate both critical warming and cooling rates by orders of magnitude at lower concentrations and larger rates. In vitrification protocols, minimizing concentrations of potentially damaging cryoprotectants while minimizing ice formation will require ultrafast warming rates, as well as fast cooling rates to minimize the required warming rates. PMID:22728046

  12. Utilisation of model pectins reveals the effect of demethylated block size frequency on calcium gel formation.

    PubMed

    Yapo, Beda M; Koffi, Kouassi L

    2013-01-30

    Calcium-mediated gelation of LMP is thought to arise from formation of a dense network of Ca(2+)-cross-linked DMB meeting a required minimum average length along pectin chains. The use of MP containing specific average DMB size (BS) types, in the range of 3-100 and in varying proportion (0-100%), has afforded further insights into the gelling behaviour of pectins with a certain DM in the presence of Ca(2+) ions. It clearly appeared that a required minimum BS and a required minimum average frequency (BSF) of the required minimum BS are conditions that must be satisfied by a pectin for formation of a highly dense Ca(2+)-cross-linked DMB network equaling an elastically stable, strong, and cohesive gel. Furthermore, there is a clear contribution of the pectin branched domains to gelation and formation of a firmer and more cohesive gel. The results suggest that this pectin portion may function, not only as a "maintainer" of the pectin molecular weight to a sufficiently high level which fosters good gelation regarding the gelling rate and the strength and nature of the gel formed, but also as junction-zone-terminating structural elements that limit the appearance of undesirable phenomena, notably turbidity, syneresis, and precipitation.

  13. Modulation of microsaccade rate by task difficulty revealed through between- and within-trial comparisons.

    PubMed

    Gao, Xin; Yan, Hongmei; Sun, Hong-Jin

    2015-03-04

    Microsaccades (MSs) are small eye movements that occur during attempted visual fixation. While most studies concerning MSs focus on their roles in visual processing, some also suggest that the MS rate can be modulated by the amount of mental exertion involved in nonvisual processing. The current study focused on the effects of task difficulty on MS rate in a nonvisual mental arithmetic task. Experiment 1 revealed a general inverse relationship between MS rate and subjective task difficulty. During Experiment 2, three task phases with different requirements were identified: during calculation (between stimulus presentation and response), postcalculation (after reporting an answer), and a control condition (undergoing a matching sequence of events without the need to make a calculation). MS rate was observed to approximately double from the during-calculation phase to the postcalculation phase, and was significantly higher in the control condition compared to postcalculation. Only during calculation was the MS rate generally decreased with greater task difficulty. Our results suggest that the nonvisual cognitive processing can suppress MS rate, and that the extent of such suppression is related to the task difficulty.

  14. EFFECTS OF VARYING THE THREE-BODY MOLECULAR HYDROGEN FORMATION RATE IN PRIMORDIAL STAR FORMATION

    SciTech Connect

    Turk, Matthew J.; Clark, Paul; Glover, S. C. O.; Klessen, Ralf; Greif, T. H.; Abel, Tom; Bromm, Volker

    2011-01-01

    The transformation of atomic hydrogen to molecular hydrogen through three-body reactions is a crucial stage in the collapse of primordial, metal-free halos, where the first generation of stars (Population III stars) in the universe is formed. However, in the published literature, the rate coefficient for this reaction is uncertain by nearly an order of magnitude. We report on the results of both adaptive mesh refinement and smoothed particle hydrodynamics simulations of the collapse of metal-free halos as a function of the value of this rate coefficient. For each simulation method, we have simulated a single halo three times, using three different values of the rate coefficient. We find that while variation between halo realizations may be greater than that caused by the three-body rate coefficient being used, both the accretion physics onto Population III protostars as well as the long-term stability of the disk and any potential fragmentation may depend strongly on this rate coefficient.

  15. Hysterectomy-corrected cervical cancer mortality rates reveal a larger racial disparity in the United States.

    PubMed

    Beavis, Anna L; Gravitt, Patti E; Rositch, Anne F

    2017-05-15

    The objectives of this study were to determine the age-standardized and age-specific annual US cervical cancer mortality rates after correction for the prevalence of hysterectomy and to evaluate disparities by age and race. Estimates for deaths due to cervical cancer stratified by age, state, year, and race were derived from the National Center for Health Statistics county mortality data (2000-2012). Equivalently stratified data on the prevalence of hysterectomy for women 20 years old or older from the Behavioral Risk Factor Surveillance System survey were used to remove women who were not at risk from the denominator. Age-specific and age-standardized mortality rates were computed, and trends in mortality rates were analyzed with Joinpoint regression. Age-standardized rates were higher for both races after correction. For black women, the corrected mortality rate was 10.1 per 100,000 (95% confidence interval [CI], 9.6-10.6), whereas the uncorrected rate was 5.7 per 100,000 (95% CI, 5.5-6.0). The corrected rate for white women was 4.7 per 100,000 (95% CI, 4.6-4.8), whereas the uncorrected rate was 3.2 per 100,000 (95% CI, 3.1-3.2). Without the correction, the disparity in mortality between races was underestimated by 44%. Black women who were 85 years old or older had the highest corrected rate: 37.2 deaths per 100,000. A trend analysis of corrected rates demonstrated that white women's rates decreased at 0.8% per year, whereas the annual decrease for black women was 3.6% (P < .05). A correction for hysterectomy has revealed that cervical cancer mortality rates are underestimated, particularly in black women. The highest rates are seen in the oldest black women, and public health efforts should focus on appropriate screening and adequate treatment in this population. Cancer 2017;123:1044-50. © 2016 American Cancer Society. © 2017 American Cancer Society.

  16. Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature

    PubMed Central

    Kolaczkowska, Elzbieta; Jenne, Craig N.; Surewaard, Bas G. J.; Thanabalasuriar, Ajitha; Lee, Woo-Yong; Sanz, Maria-Jesus; Mowen, Kerri; Opdenakker, Ghislain; Kubes, Paul

    2015-01-01

    Neutrophil extracellular traps (NETs) composed of DNA decorated with histones and proteases trap and kill bacteria but also injure host tissue. Here we show that during a bloodstream infection with methicillin-resistant Staphylococcus aureus, the majority of bacteria are sequestered immediately by hepatic Kupffer cells, resulting in transient increases in liver enzymes, focal ischaemic areas and a robust neutrophil infiltration into the liver. The neutrophils release NETs into the liver vasculature, which remain anchored to the vascular wall via von Willebrand factor and reveal significant neutrophil elastase (NE) proteolytic activity. Importantly, DNase although very effective at DNA removal, and somewhat effective at inhibiting NE proteolytic activity, fails to remove the majority of histones from the vessel wall and only partly reduces injury. By contrast, inhibition of NET production as modelled by PAD4-deficiency, or prevention of NET formation and proteolytic activity as modelled in NE−/− mice prevent collateral host tissue damage. PMID:25809117

  17. The evolution of the star formation rate function and cosmic star formation rate density of galaxies at z ˜ 1-4

    NASA Astrophysics Data System (ADS)

    Katsianis, A.; Tescari, E.; Blanc, G.; Sargent, M.

    2017-02-01

    We investigate the evolution of the galaxy star formation rate function (SFRF) and cosmic star formation rate density (CSFRD) of z ˜ 1-4 galaxies, using cosmological smoothed particle hydrodynamic (SPH) simulations and a compilation of ultraviolet (UV), infrared (IR) and Hα observations. These tracers represent different populations of galaxies with the IR light being a probe of objects with high star formation rates and dust contents, while UV and Hα observations provide a census of low star formation galaxies where mild obscuration occurs. We compare the above SFRFs with the results of SPH simulations run with the code P-GADGET3(XXL). We focus on the role of feedback from active galactic nuclei (AGN) and supernovae in form of galactic winds. The AGN feedback prescription that we use decreases the simulated CSFRD at z < 3 but is not sufficient to reproduce the observed evolution at higher redshifts. We explore different wind models and find that the key factor for reproducing the evolution of the observed SFRF and CSFRD at z ˜ 1-4 is the presence of a feedback prescription that is prominent at high redshifts (z ≥ 4) and becomes less efficient with time. We show that variable galactic winds which are efficient at decreasing the SFRs of low-mass objects are quite successful in reproducing the observables.

  18. Effect of Booklet/Folder Questionnaire Format and Style of Type on Mail Survey Response Rates.

    ERIC Educational Resources Information Center

    Boser, Judith A.

    Results of two studies, involving surveys of alumni of postsecondary institutions, are presented to assess the effect of format and typeface on mail survey response rates. The first study focused on the effect of booklet/folder format versus stapled sheets. The method of reproduction, page content, page size, and appearance of the questionnaires…

  19. CLK-dependent exon recognition and conjoined gene formation revealed with a novel small molecule inhibitor.

    PubMed

    Funnell, Tyler; Tasaki, Shinya; Oloumi, Arusha; Araki, Shinsuke; Kong, Esther; Yap, Damian; Nakayama, Yusuke; Hughes, Christopher S; Cheng, S-W Grace; Tozaki, Hirokazu; Iwatani, Misa; Sasaki, Satoshi; Ohashi, Tomohiro; Miyazaki, Tohru; Morishita, Nao; Morishita, Daisuke; Ogasawara-Shimizu, Mari; Ohori, Momoko; Nakao, Shoichi; Karashima, Masatoshi; Sano, Masaya; Murai, Aiko; Nomura, Toshiyuki; Uchiyama, Noriko; Kawamoto, Tomohiro; Hara, Ryujiro; Nakanishi, Osamu; Shumansky, Karey; Rosner, Jamie; Wan, Adrian; McKinney, Steven; Morin, Gregg B; Nakanishi, Atsushi; Shah, Sohrab; Toyoshiba, Hiroyoshi; Aparicio, Samuel

    2017-12-01

    CDC-like kinase phosphorylation of serine/arginine-rich proteins is central to RNA splicing reactions. Yet, the genomic network of CDC-like kinase-dependent RNA processing events remains poorly defined. Here, we explore the connectivity of genomic CDC-like kinase splicing functions by applying graduated, short-exposure, pharmacological CDC-like kinase inhibition using a novel small molecule (T3) with very high potency, selectivity, and cell-based stability. Using RNA-Seq, we define CDC-like kinase-responsive alternative splicing events, the large majority of which monotonically increase or decrease with increasing CDC-like kinase inhibition. We show that distinct RNA-binding motifs are associated with T3 response in skipped exons. Unexpectedly, we observe dose-dependent conjoined gene transcription, which is associated with motif enrichment in the last and second exons of upstream and downstream partners, respectively. siRNA knockdown of CLK2-associated genes significantly increases conjoined gene formation. Collectively, our results reveal an unexpected role for CDC-like kinase in conjoined gene formation, via regulation of 3'-end processing and associated splicing factors.The phosphorylation of serine/arginine-rich proteins by CDC-like kinase is a central regulatory mechanism for RNA splicing reactions. Here, the authors synthesize a novel small molecule CLK inhibitor and map CLK-responsive alternative splicing events and discover an effect on conjoined gene transcription.

  20. Metatranscriptomics reveals the molecular mechanism of large granule formation in granular anammox reactor

    PubMed Central

    Bagchi, Samik; Lamendella, Regina; Strutt, Steven; Van Loosdrecht, Mark C. M.; Saikaly, Pascal E.

    2016-01-01

    Granules enriched with anammox bacteria are essential in enhancing the treatment of ammonia-rich wastewater, but little is known about how anammox bacteria grow and multiply inside granules. Here, we combined metatranscriptomics, quantitative PCR and 16S rRNA gene sequencing to study the changes in community composition, metabolic gene content and gene expression in a granular anammox reactor with the objective of understanding the molecular mechanism of anammox growth and multiplication that led to formation of large granules. Size distribution analysis revealed the spatial distribution of granules in which large granules having higher abundance of anammox bacteria (genus Brocadia) dominated the bottom biomass. Metatranscriptomics analysis detected all the essential transcripts for anammox metabolism. During the later stage of reactor operation, higher expression of ammonia and nitrite transport proteins and key metabolic enzymes mainly in the bottom large granules facilitated anammox bacteria activity. The high activity resulted in higher growth and multiplication of anammox bacteria and expanded the size of the granules. This conceptual model for large granule formation proposed here may assist in the future design of anammox processes for mainstream wastewater treatment. PMID:27319320

  1. Metatranscriptomics reveals the molecular mechanism of large granule formation in granular anammox reactor

    NASA Astrophysics Data System (ADS)

    Bagchi, Samik; Lamendella, Regina; Strutt, Steven; van Loosdrecht, Mark C. M.; Saikaly, Pascal E.

    2016-06-01

    Granules enriched with anammox bacteria are essential in enhancing the treatment of ammonia-rich wastewater, but little is known about how anammox bacteria grow and multiply inside granules. Here, we combined metatranscriptomics, quantitative PCR and 16S rRNA gene sequencing to study the changes in community composition, metabolic gene content and gene expression in a granular anammox reactor with the objective of understanding the molecular mechanism of anammox growth and multiplication that led to formation of large granules. Size distribution analysis revealed the spatial distribution of granules in which large granules having higher abundance of anammox bacteria (genus Brocadia) dominated the bottom biomass. Metatranscriptomics analysis detected all the essential transcripts for anammox metabolism. During the later stage of reactor operation, higher expression of ammonia and nitrite transport proteins and key metabolic enzymes mainly in the bottom large granules facilitated anammox bacteria activity. The high activity resulted in higher growth and multiplication of anammox bacteria and expanded the size of the granules. This conceptual model for large granule formation proposed here may assist in the future design of anammox processes for mainstream wastewater treatment.

  2. 13C Tracking after 13CO2 Supply Revealed Diurnal Patterns of Wood Formation in Aspen.

    PubMed

    Mahboubi, Amir; Linden, Pernilla; Hedenström, Mattias; Moritz, Thomas; Niittylä, Totte

    2015-06-01

    Wood of trees is formed from carbon assimilated in the photosynthetic tissues. Determining the temporal dynamics of carbon assimilation, subsequent transport into developing wood, and incorporation to cell walls would further our understanding of wood formation in particular and tree growth in general. To investigate these questions, we designed a (13)CO2 labeling system to study carbon transport and incorporation to developing wood of hybrid aspen (Populus tremula × tremuloides). Tracking of (13)C incorporation to wood over a time course using nuclear magnetic resonance spectroscopy revealed diurnal patterns in wood cell wall biosynthesis. The dark period had a differential effect on (13)C incorporation to lignin and cell wall carbohydrates. No (13)C was incorporated into aromatic amino acids of cell wall proteins in the dark, suggesting that cell wall protein biosynthesis ceased during the night. The results show previously unrecognized temporal patterns in wood cell wall biosynthesis, suggest diurnal cycle as a possible cue in the regulation of carbon incorporation to wood, and establish a unique (13)C labeling method for the analysis of wood formation and secondary growth in trees.

  3. Proteomic Analysis of Fetal Ovaries Reveals That Primordial Follicle Formation and Transition Are Differentially Regulated

    PubMed Central

    Xu, Mengmeng; Che, Long; Yang, Zhenguo; Zhang, Pan; Shi, Jiankai; Li, Jian; Lin, Yan; Fang, Zhengfeng; Che, Lianqiang; Feng, Bin; Wu, De

    2017-01-01

    Primordial follicle formation represents a critical phase of the initiation of embryonic reproductive organ development, while the primordial follicle transition into primary follicle determines whether oestrus or ovulation will occur in female animals. To identify molecular mechanism of new proteins which are involved in ovarian development, we employed 2D-DIGE to compare the protein expression profiles of primordial follicles and primary follicles of fetal ovaries in pigs. Fetal ovaries were collected at distinct time-points of the gestation cycle (g55 and g90). The identified proteins at the g55 time-point are mainly involved in the development of anatomical structures [reticulocalbin-1 (RCN1), reticulocalbin-3 (RCN3)], cell differentiation (actin), and stress response [heterogeneous nuclear ribonucleoprotein K (HNRNPK)]. Meanwhile, at the g90 stage, the isolated proteins with altered expression levels were mainly associated with cell proliferation [major vault protein (MVP)] and stress response [heat shock-related 70 kDa protein 2 (HSPA2)]. In conclusion, our work revealed that primordial follicle formation is regulated by RCN1, RCN3, actin, and HNRNPK, while the primordial follicle transformation to primary follicle is regulated by MVP and HSPA2. Therefore, our results provide further information for the prospective understanding of the molecular mechanism(s) involved in the regulation of the ovarian follicle development. PMID:28265575

  4. Proteomic Analysis of Fetal Ovaries Reveals That Primordial Follicle Formation and Transition Are Differentially Regulated.

    PubMed

    Xu, Mengmeng; Che, Long; Yang, Zhenguo; Zhang, Pan; Shi, Jiankai; Li, Jian; Lin, Yan; Fang, Zhengfeng; Che, Lianqiang; Feng, Bin; Wu, De; Xu, Shengyu

    2017-01-01

    Primordial follicle formation represents a critical phase of the initiation of embryonic reproductive organ development, while the primordial follicle transition into primary follicle determines whether oestrus or ovulation will occur in female animals. To identify molecular mechanism of new proteins which are involved in ovarian development, we employed 2D-DIGE to compare the protein expression profiles of primordial follicles and primary follicles of fetal ovaries in pigs. Fetal ovaries were collected at distinct time-points of the gestation cycle (g55 and g90). The identified proteins at the g55 time-point are mainly involved in the development of anatomical structures [reticulocalbin-1 (RCN1), reticulocalbin-3 (RCN3)], cell differentiation (actin), and stress response [heterogeneous nuclear ribonucleoprotein K (HNRNPK)]. Meanwhile, at the g90 stage, the isolated proteins with altered expression levels were mainly associated with cell proliferation [major vault protein (MVP)] and stress response [heat shock-related 70 kDa protein 2 (HSPA2)]. In conclusion, our work revealed that primordial follicle formation is regulated by RCN1, RCN3, actin, and HNRNPK, while the primordial follicle transformation to primary follicle is regulated by MVP and HSPA2. Therefore, our results provide further information for the prospective understanding of the molecular mechanism(s) involved in the regulation of the ovarian follicle development.

  5. Patterned biofilm formation reveals a mechanism for structural heterogeneity in bacterial biofilms.

    PubMed

    Gu, Huan; Hou, Shuyu; Yongyat, Chanokpon; De Tore, Suzanne; Ren, Dacheng

    2013-09-03

    Bacterial biofilms are ubiquitous and are the major cause of chronic infections in humans and persistent biofouling in industry. Despite the significance of bacterial biofilms, the mechanism of biofilm formation and associated drug tolerance is still not fully understood. A major challenge in biofilm research is the intrinsic heterogeneity in the biofilm structure, which leads to temporal and spatial variation in cell density and gene expression. To understand and control such structural heterogeneity, surfaces with patterned functional alkanthiols were used in this study to obtain Escherichia coli cell clusters with systematically varied cluster size and distance between clusters. The results from quantitative imaging analysis revealed an interesting phenomenon in which multicellular connections can be formed between cell clusters depending on the size of interacting clusters and the distance between them. In addition, significant differences in patterned biofilm formation were observed between wild-type E. coli RP437 and some of its isogenic mutants, indicating that certain cellular and genetic factors are involved in interactions among cell clusters. In particular, autoinducer-2-mediated quorum sensing was found to be important. Collectively, these results provide missing information that links cell-to-cell signaling and interaction among cell clusters to the structural organization of bacterial biofilms.

  6. The Mass-Transfer Formation of Blue Stragglers as Revealed by their White Dwarf Companions

    NASA Astrophysics Data System (ADS)

    Gosnell, Natalie M.

    2014-01-01

    The formation mechanism of blue straggler stars, defined to be brighter and bluer than the main sequence turnoff in a star cluster, has been a question for almost six decades. The blue straggler population of the old (7 Gyr) open cluster NGC 188 provides a unique opportunity to probe the formation histories of blue straggler stars in open clusters. In comparison to the blue straggler populations in younger open clusters and in globular clusters, the cooler temperatures (6,000 to 6,750 K) and close proximity (2.5 kpc) of the blue stragglers in NGC 188 allow for in-depth high-resolution spectroscopic investigation. Long-term radial velocity studies revealed that over 75% of the NGC 188 blue stragglers exist in binaries with a prevalence of 1000-day periods and a statistical secondary mass distribution that peaks at 0.5 Msolar. Using HST/SBC far-UV photometry I will present direct observational detections of young (<300 Myr), hot white dwarf companions in three blue straggler binaries. Given the age distribution predicted in full N-body models, which translates into a white dwarf temperature distribution, three detections is consistent with the entire NGC 188 blue straggler population being formed via mass transfer. These detections affirm the prediction made by previous studies that the blue straggler population of NGC 188 is dominated by mass transfer formation. I also identify and present specific initial binaries and pathways through which these three binary systems could have formed. Support for Program number 12492 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.

  7. Dynamic auxin transport patterns preceding vein formation revealed by live-imaging of Arabidopsis leaf primordia

    PubMed Central

    Marcos, Danielle; Berleth, Thomas

    2014-01-01

    Self-regulatory patterning mechanisms capable of generating biologically meaningful, yet unpredictable cellular patterns offer unique opportunities for obtaining mathematical descriptions of underlying patterning systems properties. The networks of higher-order veins in leaf primordia constitute such a self-regulatory system. During the formation of higher-order veins, vascular precursors are selected from a homogenous field of subepidermal cells in unpredictable positions to eventually connect in complex cellular networks. Auxin transport routes have been implicated in this selection process, but understanding of their role in vascular patterning has been limited by our inability to monitor early auxin transport dynamics in vivo. Here we describe a live-imaging system in emerging Arabidopsis thaliana leaves that uses a PIN1:GFP reporter to visualize auxin transport routes and an Athb8:YFP reporter as a marker for vascular commitment. Live-imaging revealed common features initiating the formation of all higher-order veins. The formation of broad PIN1 expression domains is followed by their restriction, leading to sustained, elevated PIN1 expression in incipient procambial cells files, which then express Athb8. Higher-order PIN1 expression domains (hPEDs) are initiated as freely ending domains that extend toward each other and sometimes fuse with them, creating connected domains. During the restriction and specification phase, cells in wider hPEDs are partitioned into vascular and non-vascular fates: Central cells acquire a coordinated cell axis and express elevated PIN1 levels as well as the pre-procambial marker Athb8, while edge cells downregulate PIN1 and remain isodiametric. The dynamic nature of the early selection process is underscored by the instability of early hPEDs, which can result in dramatic changes in vascular network architecture prior to Athb8 expression, which is correlated with the promotion onto vascular cell fate. PMID:24966861

  8. Concurrent Growth Rate and Transcript Analyses Reveal Essential Gene Stringency in Escherichia coli

    PubMed Central

    Goh, Shan; Boberek, Jaroslaw M.; Nakashima, Nobutaka; Stach, Jem; Good, Liam

    2009-01-01

    Background Genes essential for bacterial growth are of particular scientific interest. Many putative essential genes have been identified or predicted in several species, however, little is known about gene expression requirement stringency, which may be an important aspect of bacterial physiology and likely a determining factor in drug target development. Methodology/Principal Findings Working from the premise that essential genes differ in absolute requirement for growth, we describe silencing of putative essential genes in E. coli to obtain a titration of declining growth rates and transcript levels by using antisense peptide nucleic acids (PNA) and expressed antisense RNA. The relationship between mRNA decline and growth rate decline reflects the degree of essentiality, or stringency, of an essential gene, which is here defined by the minimum transcript level for a 50% reduction in growth rate (MTL50). When applied to four growth essential genes, both RNA silencing methods resulted in MTL50 values that reveal acpP as the most stringently required of the four genes examined, with ftsZ the next most stringently required. The established antibacterial targets murA and fabI were less stringently required. Conclusions RNA silencing can reveal stringent requirements for gene expression with respect to growth. This method may be used to validate existing essential genes and to quantify drug target requirement. PMID:19557168

  9. Trace incorporation of heavy water reveals slow and heterogeneous pathogen growth rates in cystic fibrosis sputum

    PubMed Central

    Kopf, Sebastian H.; Sessions, Alex L.; Cowley, Elise S.; Reyes, Carmen; Van Sambeek, Lindsey; Hu, Yang; Orphan, Victoria J.; Kato, Roberta; Newman, Dianne K.

    2016-01-01

    Effective treatment for chronic infections is undermined by a significant gap in understanding of the physiological state of pathogens at the site of infection. Chronic pulmonary infections are responsible for the morbidity and mortality of millions of immunocompromised individuals worldwide, yet drugs that are successful in laboratory culture are far less effective against pathogen populations persisting in vivo. Laboratory models, upon which preclinical development of new drugs is based, can only replicate host conditions when we understand the metabolic state of the pathogens and the degree of heterogeneity within the population. In this study, we measured the anabolic activity of the pathogen Staphylococcus aureus directly in the sputum of pediatric patients with cystic fibrosis (CF), by combining the high sensitivity of isotope ratio mass spectrometry with a heavy water labeling approach to capture the full range of in situ growth rates. Our results reveal S. aureus generation times with a median of 2.1 d, with extensive growth rate heterogeneity at the single-cell level. These growth rates are far below the detection limit of previous estimates of CF pathogen growth rates, and the rates are slowest in acutely sick patients undergoing pulmonary exacerbations; nevertheless, they are accessible to experimental replication within laboratory models. Treatment regimens that include specific antibiotics (vancomycin, piperacillin/tazobactam, tobramycin) further appear to correlate with slow growth of S. aureus on average, but follow-up longitudinal studies must be performed to determine whether this effect holds for individual patients. PMID:26715741

  10. Trace incorporation of heavy water reveals slow and heterogeneous pathogen growth rates in cystic fibrosis sputum

    NASA Astrophysics Data System (ADS)

    Kopf, Sebastian H.; Sessions, Alex L.; Cowley, Elise S.; Reyes, Carmen; Van Sambeek, Lindsey; Hu, Yang; Orphan, Victoria J.; Kato, Roberta; Newman, Dianne K.

    2016-01-01

    Effective treatment for chronic infections is undermined by a significant gap in understanding of the physiological state of pathogens at the site of infection. Chronic pulmonary infections are responsible for the morbidity and mortality of millions of immunocompromised individuals worldwide, yet drugs that are successful in laboratory culture are far less effective against pathogen populations persisting in vivo. Laboratory models, upon which preclinical development of new drugs is based, can only replicate host conditions when we understand the metabolic state of the pathogens and the degree of heterogeneity within the population. In this study, we measured the anabolic activity of the pathogen Staphylococcus aureus directly in the sputum of pediatric patients with cystic fibrosis (CF), by combining the high sensitivity of isotope ratio mass spectrometry with a heavy water labeling approach to capture the full range of in situ growth rates. Our results reveal S. aureus generation times with a median of 2.1 d, with extensive growth rate heterogeneity at the single-cell level. These growth rates are far below the detection limit of previous estimates of CF pathogen growth rates, and the rates are slowest in acutely sick patients undergoing pulmonary exacerbations; nevertheless, they are accessible to experimental replication within laboratory models. Treatment regimens that include specific antibiotics (vancomycin, piperacillin/tazobactam, tobramycin) further appear to correlate with slow growth of S. aureus on average, but follow-up longitudinal studies must be performed to determine whether this effect holds for individual patients.

  11. Seasonal determinations of algal virus decay rates reveal overwintering in a temperate freshwater pond.

    PubMed

    Long, Andrew M; Short, Steven M

    2016-07-01

    To address questions about algal virus persistence (i.e., continued existence) in the environment, rates of decay of infectivity for two viruses that infect Chlorella-like algae, ATCV-1 and CVM-1, and a virus that infects the prymnesiophyte Chrysochromulina parva, CpV-BQ1, were estimated from in situ incubations in a temperate, seasonally frozen pond. A series of experiments were conducted to estimate rates of decay of infectivity in all four seasons with incubations lasting 21 days in spring, summer and autumn, and 126 days in winter. Decay rates observed across this study were relatively low compared with previous estimates obtained for other algal viruses, and ranged from 0.012 to 11% h(-1). Overall, the virus CpV-BQ1 decayed most rapidly whereas ATCV-1 decayed most slowly, but for all viruses the highest decay rates were observed during the summer and the lowest were observed during the winter. Furthermore, the winter incubations revealed the ability of each virus to overwinter under ice as ATCV-1, CVM-1 and CpV-BQ1 retained up to 48%, 19% and 9% of their infectivity after 126 days, respectively. The observed resilience of algal viruses in a seasonally frozen freshwater pond provides a mechanism that can support the maintenance of viral seed banks in nature. However, the high rates of decay observed in the summer demonstrate that virus survival and therefore environmental persistence can be subject to seasonal bottlenecks.

  12. Seasonal determinations of algal virus decay rates reveal overwintering in a temperate freshwater pond

    PubMed Central

    Long, Andrew M; Short, Steven M

    2016-01-01

    To address questions about algal virus persistence (i.e., continued existence) in the environment, rates of decay of infectivity for two viruses that infect Chlorella-like algae, ATCV-1 and CVM-1, and a virus that infects the prymnesiophyte Chrysochromulina parva, CpV-BQ1, were estimated from in situ incubations in a temperate, seasonally frozen pond. A series of experiments were conducted to estimate rates of decay of infectivity in all four seasons with incubations lasting 21 days in spring, summer and autumn, and 126 days in winter. Decay rates observed across this study were relatively low compared with previous estimates obtained for other algal viruses, and ranged from 0.012 to 11% h−1. Overall, the virus CpV-BQ1 decayed most rapidly whereas ATCV-1 decayed most slowly, but for all viruses the highest decay rates were observed during the summer and the lowest were observed during the winter. Furthermore, the winter incubations revealed the ability of each virus to overwinter under ice as ATCV-1, CVM-1 and CpV-BQ1 retained up to 48%, 19% and 9% of their infectivity after 126 days, respectively. The observed resilience of algal viruses in a seasonally frozen freshwater pond provides a mechanism that can support the maintenance of viral seed banks in nature. However, the high rates of decay observed in the summer demonstrate that virus survival and therefore environmental persistence can be subject to seasonal bottlenecks. PMID:26943625

  13. STAR FORMATION RATES IN MOLECULAR CLOUDS AND THE NATURE OF THE EXTRAGALACTIC SCALING RELATIONS

    SciTech Connect

    Lada, Charles J.; Forbrich, Jan; Lombardi, Marco; Alves, Joao F. E-mail: jforbrich@cfa.harvard.edu E-mail: joao.alves@univie.ac.at

    2012-02-01

    In this paper, we investigate scaling relations between star formation rates and molecular gas masses for both local Galactic clouds and a sample of external galaxies. We specifically consider relations between the star formation rates and measurements of dense, as well as total, molecular gas masses. We argue that there is a fundamental empirical scaling relation that directly connects the local star formation process with that operating globally within galaxies. Specifically, the total star formation rate in a molecular cloud or galaxy is linearly proportional to the mass of dense gas within the cloud or galaxy. This simple relation, first documented in previous studies, holds over a span of mass covering nearly nine orders of magnitude and indicates that the rate of star formation is directly controlled by the amount of dense molecular gas that can be assembled within a star formation complex. We further show that the star formation rates and total molecular masses, characterizing both local clouds and galaxies, are correlated over similarly large scales of mass and can be described by a family of linear star formation scaling laws, parameterized by f{sub DG}, the fraction of dense gas contained within the clouds or galaxies. That is, the underlying star formation scaling law is always linear for clouds and galaxies with the same dense gas fraction. These considerations provide a single unified framework for understanding the relation between the standard (nonlinear) extragalactic Schmidt-Kennicutt scaling law, that is typically derived from CO observations of the gas, and the linear star formation scaling law derived from HCN observations of the dense gas.

  14. Cloud Evolution during Tropical Cyclone Formation as Revealed by TRMM PR

    NASA Astrophysics Data System (ADS)

    Fritz, C.; Wang, Z.; Nesbitt, S. W.; Dunkerton, T. J.

    2015-12-01

    To understand the cloud evolution during tropical cyclone formation, cloud features for more than 100 named tropical cyclones over the Atlantic are examined from the tropical wave to the tropical cyclone stage using the TRMM Precipitation Radar (PR). We focus on a time window from 3 days before genesis to 1 day after genesis, where the diagnoses for the pre-genesis evolution are carried out in the framework of the marsupial paradigm and the post-genesis analysis using the NHC best-tracks. The 20 dBZ echo-top height is used in combination with the near surface rain rate to identify the different types of convection: i) shallow convection; ii) mid-level convection and iii) deep convection. The frequency of occurrence for each precipitation type is calculated, and the relative contributions of different types of precipitation to the total rain rate are examined with respect to the center. Precipitation was found to increase in coverage and intensity near the wave-pouch center approaching genesis. Stratiform precipitation is prevalent from day -3 to day +1, but convective precipitation persistently increases near the inner-core. Mid-level convection occurs more frequently than deep convection from day -3 to day +1 and makes a larger contribution to the total precipitation than deep convection. It is also shown that stratiform precipitation, mid-level convection and deep convection all contribute to the substantial increase in rain-rate.

  15. Isolation of Hox Cluster Genes from Insects Reveals an Accelerated Sequence Evolution Rate

    PubMed Central

    Hadrys, Heike; Simon, Sabrina; Kaune, Barbara; Schmitt, Oliver; Schöner, Anja; Jakob, Wolfgang; Schierwater, Bernd

    2012-01-01

    Among gene families it is the Hox genes and among metazoan animals it is the insects (Hexapoda) that have attracted particular attention for studying the evolution of development. Surprisingly though, no Hox genes have been isolated from 26 out of 35 insect orders yet, and the existing sequences derive mainly from only two orders (61% from Hymenoptera and 22% from Diptera). We have designed insect specific primers and isolated 37 new partial homeobox sequences of Hox cluster genes (lab, pb, Hox3, ftz, Antp, Scr, abd-a, Abd-B, Dfd, and Ubx) from six insect orders, which are crucial to insect phylogenetics. These new gene sequences provide a first step towards comparative Hox gene studies in insects. Furthermore, comparative distance analyses of homeobox sequences reveal a correlation between gene divergence rate and species radiation success with insects showing the highest rate of homeobox sequence evolution. PMID:22685537

  16. Growth-Phase Sterigmatocystin Formation on Lactose Is Mediated via Low Specific Growth Rates in Aspergillus nidulans

    PubMed Central

    Németh, Zoltán; Molnár, Ákos P.; Fejes, Balázs; Novák, Levente; Karaffa, Levente; Keller, Nancy P.; Fekete, Erzsébet

    2016-01-01

    Seed contamination with polyketide mycotoxins such as sterigmatocystin (ST) produced by Aspergilli is a worldwide issue. The ST biosynthetic pathway is well-characterized in A. nidulans, but regulatory aspects related to the carbon source are still enigmatic. This is particularly true for lactose, inasmuch as some ST production mutant strains still synthesize ST on lactose but not on other carbon substrates. Here, kinetic data revealed that on d-glucose, ST forms only after the sugar is depleted from the medium, while on lactose, ST appears when most of the carbon source is still available. Biomass-specified ST production on lactose was significantly higher than on d-glucose, suggesting that ST formation may either be mediated by a carbon catabolite regulatory mechanism, or induced by low specific growth rates attainable on lactose. These hypotheses were tested by d-glucose limited chemostat-type continuous fermentations. No ST formed at a high growth rate, while a low growth rate led to the formation of 0.4 mg·L−1 ST. Similar results were obtained with a CreA mutant strain. We concluded that low specific growth rates may be the primary cause of mid-growth ST formation on lactose in A. nidulans, and that carbon utilization rates likely play a general regulatory role during biosynthesis. PMID:27916804

  17. Migration rates and formation injectivity to determine containment time scales of sequestered carbon dioxide

    USGS Publications Warehouse

    Burke, Lauri

    2012-01-01

    Additionally, this research establishes a methodology to calculate the injectivity of a target formation. Because injectivity describes the pressure increase due to the introduction of fluids into a formation, the relevant application of injectivity is to determine the pressure increase, due to an injection volume and flow rate, that will induce fractures in the reservoir rocks. This quantity is defined mathematically as the maximum pressure differential between the hydrostatic gradient and the fracture gradient of the target formation. Injectivity is mathematically related to the maximum pressure differential of the formation, and can be used to determine the upper limit for the pressure increase that an injection target can withstand before fracturing.

  18. Fast-Timescale Star Formation at z ~ 1 Revealed by H alpha

    NASA Astrophysics Data System (ADS)

    Kurczynski, Peter; Gawiser, Eric J.; Acquaviva, Viviana; Rafelski, Marc; Teplitz, Harry I.; UVUDF Team; CANDELS Team

    2017-01-01

    Measuring scatter in the Star Formation Rate (SFR) - stellar mass (M*) correlation as a function of SFR timescale informs us whether galaxies evolve gradually or in bursts. We report the SFRs of individual, intermediate mass (9 < log M* < 10.5) galaxies at z ~ 1 using dust-corrected, fast-timescale H(alpha) grism spectroscopy in 3D-HST. We present measurements of intrinsic scatter in the SFR-M* correlation, and compare with scatter estimated using intermediate timescale, broadband SED-based SFR estimates. We also illustrate SFR calibrations that combine these Ha results with ancillary IR and UV photometry in CANDELS with the goal of achieving greater precision in SFR estimation.

  19. Robust hierarchical state-space models reveal diel variation in travel rates of migrating leatherback turtles.

    PubMed

    Jonsen, Ian D; Myers, Ransom A; James, Michael C

    2006-09-01

    1. Biological and statistical complexity are features common to most ecological data that hinder our ability to extract meaningful patterns using conventional tools. Recent work on implementing modern statistical methods for analysis of such ecological data has focused primarily on population dynamics but other types of data, such as animal movement pathways obtained from satellite telemetry, can also benefit from the application of modern statistical tools. 2. We develop a robust hierarchical state-space approach for analysis of multiple satellite telemetry pathways obtained via the Argos system. State-space models are time-series methods that allow unobserved states and biological parameters to be estimated from data observed with error. We show that the approach can reveal important patterns in complex, noisy data where conventional methods cannot. 3. Using the largest Atlantic satellite telemetry data set for critically endangered leatherback turtles, we show that the diel pattern in travel rates of these turtles changes over different phases of their migratory cycle. While foraging in northern waters the turtles show similar travel rates during day and night, but on their southward migration to tropical waters travel rates are markedly faster during the day. These patterns are generally consistent with diving data, and may be related to changes in foraging behaviour. Interestingly, individuals that migrate southward to breed generally show higher daytime travel rates than individuals that migrate southward in a non-breeding year. 4. Our approach is extremely flexible and can be applied to many ecological analyses that use complex, sequential data.

  20. Generalized additive models reveal the intrinsic complexity of wood formation dynamics.

    PubMed

    Cuny, Henri E; Rathgeber, Cyrille B K; Kiessé, Tristan Senga; Hartmann, Felix P; Barbeito, Ignacio; Fournier, Meriem

    2013-04-01

    The intra-annual dynamics of wood formation, which involves the passage of newly produced cells through three successive differentiation phases (division, enlargement, and wall thickening) to reach the final functional mature state, has traditionally been described in conifers as three delayed bell-shaped curves followed by an S-shaped curve. Here the classical view represented by the 'Gompertz function (GF) approach' was challenged using two novel approaches based on parametric generalized linear models (GLMs) and 'data-driven' generalized additive models (GAMs). These three approaches (GFs, GLMs, and GAMs) were used to describe seasonal changes in cell numbers in each of the xylem differentiation phases and to calculate the timing of cell development in three conifer species [Picea abies (L.), Pinus sylvestris L., and Abies alba Mill.]. GAMs outperformed GFs and GLMs in describing intra-annual wood formation dynamics, showing two left-skewed bell-shaped curves for division and enlargement, and a right-skewed bimodal curve for thickening. Cell residence times progressively decreased through the season for enlargement, whilst increasing late but rapidly for thickening. These patterns match changes in cell anatomical features within a tree ring, which allows the separation of earlywood and latewood into two distinct cell populations. A novel statistical approach is presented which renews our understanding of xylogenesis, a dynamic biological process in which the rate of cell production interplays with cell residence times in each developmental phase to create complex seasonal patterns.

  1. 'In-Format' screening of a novel bispecific antibody format reveals significant potency improvements relative to unformatted molecules.

    PubMed

    Scott, Martin J; Lee, Jennifer A; Wake, Matthew S; Batt, Kelly V; Wattam, Trevor A; Hiles, Ian D; Batuwangala, Thil D; Ashman, Claire I; Steward, Michael

    2017-01-01

    Bispecific antibodies (BsAbs) are emerging as an important class of biopharmaceutical. The majority of BsAbs are created from conventional antibodies or fragments engineered into more complex configurations. A recurring challenge in their development, however, is the identification of components that are optimised for inclusion in the final format in order to deliver both efficacy and robust biophysical properties. Using a modular BsAb format, the mAb-dAb, we assessed whether an 'in-format' screening approach, designed to select format-compatible domain antibodies, could expedite lead discovery. Human nerve growth factor (NGF) was selected as an antigen to validate the approach; domain antibody (dAb) libraries were screened, panels of binders identified, and binding affinities and potencies compared for selected dAbs and corresponding mAb-dAbs. A number of dAbs that exhibited high potency (IC50) when assessed in-format were identified. In contrast, the corresponding dAb monomers had ∼1000-fold lower potency than the formatted dAbs; such dAb monomers would therefore have been omitted from further characterization. Subsequent stoichiometric analyses of mAb-dAbs bound to NGF, or an additional target antigen (vascular endothelial growth factor), suggested different target binding modes; this indicates that the observed potency improvements cannot be attributed simply to an avidity effect offered by the mAb-dAb format. We conclude that, for certain antigens, screening naïve selection outputs directly in-format enables the identification of a subset of format-compatible dAbs, and that this offers substantial benefits in terms of molecular properties and development time.

  2. Current Star Formation Rates for the Histories of Star Formation in Nearby Dwarf Galaxies : Part 2 of 2

    NASA Astrophysics Data System (ADS)

    Lee, Henry; Dalcanton, Julianne; Skillman, Evan; Lee, Janice; van Zee, Liese; Seth, Anil; Covarrubias, Ricardo; Croxall, Kevin; Warren, Steven

    2008-08-01

    The largest and most uniform dataset on the histories of star formation will be created with the ACS Nearby Galaxy Survey Treasury (ANGST) program and the Archival of Nearby Galaxies: Reuse, Reduce, Recycle (ANGRRR) programs, which aim, respectively, (1) to secure complete and uniform HST imaging of a volume-limited sample of galaxies out to 3.5 Mpc, and (2) to obtain homogeneous reductions of archival WFPC2/ACS imaging data of galaxies out to a distance of about 5 Mpc. These will provide some of the best and deepest data for the closest galaxies, with derived star-formation rates at ages from tens of Myr to a few Gyr. To obtain H(alpha) imaging for galaxies with existing HST ACS and WFPC2 data and to complete the observations from the first-half of the year (semester 2008A), we request in semester 2008B two nights on the Kitt Peak 2.1-m telescope and seven nights on the Cerro Tololo 0.9-m telescope. Since there are no published H(alpha) data for these galaxies, our data will pin down the present-day star-formation rate in the construction of their subsequent histories of star formation.

  3. 40 CFR Table I-4 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for Semiconductor Manufacturing for... Factors(1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for Semiconductor...

  4. 40 CFR Table I-3 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for Semiconductor Manufacturing for... Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for Semiconductor...

  5. Surface Polysaccharide Mutants Reveal that Absence of O Antigen Reduces Biofilm Formation of Actinobacillus pleuropneumoniae

    PubMed Central

    Hathroubi, S.; Hancock, M. A.; Langford, P. R.; Tremblay, Y. D. N.; Labrie, J.

    2015-01-01

    Actinobacillus pleuropneumoniae is a Gram-negative bacterium belonging to the Pasteurellaceae family and the causative agent of porcine pleuropneumonia, a highly contagious lung disease causing important economic losses. Surface polysaccharides, including lipopolysaccharides (LPS) and capsular polysaccharides (CPS), are implicated in the adhesion and virulence of A. pleuropneumoniae, but their role in biofilm formation is still unclear. In this study, we investigated the requirement for these surface polysaccharides in biofilm formation by A. pleuropneumoniae serotype 1. Well-characterized mutants were used: an O-antigen LPS mutant, a truncated core LPS mutant with an intact O antigen, a capsule mutant, and a poly-N-acetylglucosamine (PGA) mutant. We compared the amount of biofilm produced by the parental strain and the isogenic mutants using static and dynamic systems. Compared to the findings for the biofilm of the parental or other strains, the biofilm of the O antigen and the PGA mutants was dramatically reduced, and it had less cell-associated PGA. Real-time PCR analyses revealed a significant reduction in the level of pgaA, cpxR, and cpxA mRNA in the biofilm cells of the O-antigen mutant compared to that in the biofilm cells of the parental strain. Specific binding between PGA and LPS was consistently detected by surface plasmon resonance, but the lack of O antigen did not abolish these interactions. In conclusion, the absence of the O antigen reduces the ability of A. pleuropneumoniae to form a biofilm, and this is associated with the reduced expression and production of PGA. PMID:26483403

  6. GAPS IN THE HD 169142 PROTOPLANETARY DISK REVEALED BY POLARIMETRIC IMAGING: SIGNS OF ONGOING PLANET FORMATION?

    SciTech Connect

    Quanz, Sascha P.; Avenhaus, Henning; Garufi, Antonio; Schmid, Hans Martin; Buenzli, Esther; Wolf, Sebastian

    2013-03-20

    We present H-band Very Large Telescope/NACO polarized light images of the Herbig Ae/Be star HD 169142 probing its protoplanetary disk as close as {approx}0.''1 to the star. Our images trace the face-on disk out to {approx}1.''7 ({approx}250 AU) and reveal distinct substructures for the first time: (1) the inner disk ({approx}<20 AU) appears to be depleted in scattering dust grains; (2) an unresolved disk rim is imaged at {approx}25 AU; (3) an annular gap extends from {approx}40 to 70 AU; (4) local brightness asymmetries are found on opposite sides of the annular gap. We discuss different explanations for the observed morphology among which ongoing planet formation is a tempting, but yet to be proven, one. Outside of {approx}85 AU the surface brightness drops off roughly {proportional_to}r {sup -3.3}, but describing the disk regions between 85-120 AU and 120-250 AU separately with power laws {proportional_to}r {sup -2.6} and {proportional_to}r {sup -3.9} provides a better fit hinting toward another discontinuity in the disk surface. The flux ratio between the disk-integrated polarized light and the central star is {approx}4.1 Multiplication-Sign 10{sup -3}. Finally, combining our results with those from the literature, {approx}40% of the scattered light in the H band appears to be polarized. Our results emphasize that HD 169142 is an interesting system for future planet formation or disk evolution studies.

  7. Surface Polysaccharide Mutants Reveal that Absence of O Antigen Reduces Biofilm Formation of Actinobacillus pleuropneumoniae.

    PubMed

    Hathroubi, S; Hancock, M A; Bossé, J T; Langford, P R; Tremblay, Y D N; Labrie, J; Jacques, M

    2015-10-19

    Actinobacillus pleuropneumoniae is a Gram-negative bacterium belonging to the Pasteurellaceae family and the causative agent of porcine pleuropneumonia, a highly contagious lung disease causing important economic losses. Surface polysaccharides, including lipopolysaccharides (LPS) and capsular polysaccharides (CPS), are implicated in the adhesion and virulence of A. pleuropneumoniae, but their role in biofilm formation is still unclear. In this study, we investigated the requirement for these surface polysaccharides in biofilm formation by A. pleuropneumoniae serotype 1. Well-characterized mutants were used: an O-antigen LPS mutant, a truncated core LPS mutant with an intact O antigen, a capsule mutant, and a poly-N-acetylglucosamine (PGA) mutant. We compared the amount of biofilm produced by the parental strain and the isogenic mutants using static and dynamic systems. Compared to the findings for the biofilm of the parental or other strains, the biofilm of the O antigen and the PGA mutants was dramatically reduced, and it had less cell-associated PGA. Real-time PCR analyses revealed a significant reduction in the level of pgaA, cpxR, and cpxA mRNA in the biofilm cells of the O-antigen mutant compared to that in the biofilm cells of the parental strain. Specific binding between PGA and LPS was consistently detected by surface plasmon resonance, but the lack of O antigen did not abolish these interactions. In conclusion, the absence of the O antigen reduces the ability of A. pleuropneumoniae to form a biofilm, and this is associated with the reduced expression and production of PGA. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Dynamics of erosion in a compressional mountain range revealed by 10Be paleoerosion rates

    NASA Astrophysics Data System (ADS)

    Val, P.; Hoke, G. D.; Fosdick, J. C.; Wittmann, H.

    2015-12-01

    The temporal evolution of erosion over million-year timescales is key to understanding the evolution of mountain ranges and adjacent fold-and-thrust belts. While models of orogenic wedge evolution predict an instantaneous response of erosion to pulses of rock uplift, stream-power based landscape evolution models predict catchment-wide erosion maxima that lag behind a rock uplift pulse. Here, we explore the relationships between rock uplift, erosion, and sediment deposition in the Argentine Precordillera fold-and-thrust belt at 30°S where extensive previous work documents deformation, climate and sediment accumulation histories. Sandstone samples spanning 8.8 to 1.8 Ma were collected from the previously dated wedge-top (Iglesia) and foredeep basins (Bermejo) for quartz purification and 10Be extraction. 10Be concentrations due to burial and exhumation were estimated and subtracted from the measured concentrations and yielded the inherited 10Be concentrations, which were then corrected for sample magnetostratigraphic age. The inherited concentrations were then used to calculate paleoerosion rates. We modeled various pre-burial and post-burial exposure scenarios in order to assess potential sources of uncertainty in the recovered paleoerosion rates. The modeling results reveal that pre-burial and post-burial exposure periods only marginally affect our results. By combining the 10Be-derived paleoerosion rates and geomorphic observations with detrital zircon provenance, we document the isolation of the wedge-top basin, which was later reconnected by an upstream migrating pulse of erosion in a process that was directly controlled by thrust activity and base level. The data further indicate that the attainment of maximum upland erosion rates lags maximum rates of deformation and subsidence over million-year timescales. The magnitudes and causes of the erosional delays shed new light on the catchment erosional response to tectonic deformation and rock uplift in orogenic

  9. Revealing equilibrium and rate constants of weak and fast noncovalent interactions.

    PubMed

    Mironov, Gleb G; Okhonin, Victor; Gorelsky, Serge I; Berezovski, Maxim V

    2011-03-15

    Rate and equilibrium constants of weak noncovalent molecular interactions are extremely difficult to measure. Here, we introduced a homogeneous approach called equilibrium capillary electrophoresis of equilibrium mixtures (ECEEM) to determine k(on), k(off), and K(d) of weak (K(d) > 1 μM) and fast kinetics (relaxation time, τ < 0.1 s) in quasi-equilibrium for multiple unlabeled ligands simultaneously in one microreactor. Conceptually, an equilibrium mixture (EM) of a ligand (L), target (T), and a complex (C) is prepared. The mixture is introduced into the beginning of a capillary reactor with aspect ratio >1000 filled with T. Afterward, differential mobility of L, T, and C along the reactor is induced by an electric field. The combination of differential mobility of reactants and their interactions leads to a change of the EM peak shape. This change is a function of rate constants, so the rate and equilibrium constants can be directly determined from the analysis of the EM peak shape (width and symmetry) and propagation pattern along the reactor. We proved experimentally the use of ECEEM for multiplex determination of kinetic parameters describing weak (3 mM > K(d) > 80 μM) and fast (0.25 s ≥ τ ≥ 0.9 ms) noncovalent interactions between four small molecule drugs (ibuprofen, S-flurbiprofen, salicylic acid and phenylbutazone) and α- and β-cyclodextrins. The affinity of the drugs was significantly higher for β-cyclodextrin than α-cyclodextrin and mostly determined by the rate constant of complex formation.

  10. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Shiraiwa, M.; Yee, L. D.; Schilling, K.; Loza, C. L.; Craven, J. S.; Zuend, A.; Ziemann, P. J.; Seinfeld, J.

    2013-12-01

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosol (SOA). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multi-generation gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a mid-experiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. The results of the current work have a number of implications for SOA models. While the dynamics of an aerosol size distribution reflects the mechanism of growth, we demonstrate here that it provides a key constraint in interpreting laboratory and ambient SOA formation. This work, although carried out specifically for the long chain alkane, dodecane, is expected to be widely applicable to other major classes of SOA precursors. SOA consists of a myriad of organic compounds containing various functional groups, which can generally undergo heterogeneous/multiphase reactions forming low-volatility products such as oligomers and other high molecular mass compounds. If particle-phase chemistry is indeed

  11. Early stages of carbonate mineralization revealed from molecular simulations: Implications for biomineral formation

    NASA Astrophysics Data System (ADS)

    Wallace, A. F.; DeYoreo, J.; Banfield, J. F.

    2011-12-01

    calcite-type lattice is also apparent. Continued growth results in expansion of the dehydrated core, however, complete desolvation and incorporation of cations into the growing carbonate phase is not achieved until the cluster grows to ~1.2 nm. Exploration of the system free energy along the crystallization path reveals "special" cluster sizes that correlate with ion desolvation milestones. The formation of these species comprise critical bottlenecks on the energy landscape and for the establishment of order within the growing clusters.

  12. The Relative Rate of LGRB Formation as a Function of Metallicity

    NASA Astrophysics Data System (ADS)

    Graham, J. F.; Fruchter, A. S.

    2017-01-01

    There is now strong evidence that long-duration gamma-ray bursts (LGRBs) are preferentially formed in low-metallicity environments. However, the magnitude of this effect and its functional dependence on metallicity have not been well characterized. In our previous paper, we compared the metallicity distribution of LGRB host galaxies to that of star-forming galaxies in the local universe. Here we build upon this work by in effect dividing one distribution by the other, and thus directly determine the relative rate of LGRB formation as a function of metallicity in the low-redshift universe. We find a dramatic cutoff in LGRB formation above a metallicity of {log}({{O}}/{{H}})+12≈ 8.3 in the KK04 scale, with LGRBs forming between 10 and 50 times more frequently per unit star formation below this cutoff than above. Furthermore, our data suggest that the rate of LGRB formation per unit star formation continues to fall above this break. We estimate that the LGRB formation rate per unit star formation may drop by as much as a factor of 100 between one-third solar and solar metallicity.

  13. Conditions for circumstellar disc formation - II. Effects of initial cloud stability and mass accretion rate

    NASA Astrophysics Data System (ADS)

    Machida, Masahiro N.; Matsumoto, Tomoaki; Inutsuka, Shu-ichiro

    2016-12-01

    Disc formation in strongly magnetized cloud cores is investigated using a three-dimensional magnetohydrodynamic simulation with a focus on the effects of the initial cloud stability and the mass accretion rate. The initial cloud stability greatly alters the disc formation process even for prestellar clouds with the same mass-to-flux ratio. A high mass accretion rate on to the disc-forming region is realized in initially unstable clouds, and a large angular momentum is introduced into the circumstellar region in a short time. The region around the protostar has both a thin infalling envelope and a weak magnetic field, which both weaken the effect of magnetic braking. The growth of the rotation-supported disc is promoted in such unstable clouds. Conversely, clouds in an initially near-equilibrium state show lower accretion rates of mass and angular momentum. The angular momentum is transported to the outer envelope before protostar formation. After protostar formation, the circumstellar region has a thick infalling envelope and a strong magnetic field that effectively brakes the disc. As a result, disc formation is suppressed when the initial cloud is in a nearly stable state. The density distribution of the initial cloud also affects the disc formation process. Disc growth strongly depends on the initial conditions when the prestellar cloud has a uniform density, whereas there is no significant difference in the disc formation process in prestellar clouds with non-uniform densities.

  14. Statistical tests of a periodicity hypothesis for crater formation rate - II

    NASA Astrophysics Data System (ADS)

    Yabushita, S.

    1996-04-01

    A statistical test is made of the periodicity hypothesis for crater formation rate, using a new data set compiled by Grieve. The criterion adopted is that of Broadbent, modified so as to take into account the loss of craters with time. Small craters (diameters <=2 km) are highly concentrated near the recent epoch, and are not adequate as a data set for testing. Various subsets of the original data are subjected to the test and a period close to 30 Myr is detected. On the assumption of random distribution of crater ages, the probability of detecting such a period is calculated at 50, 73 and 64 per cent respectively for craters with D<~2 km (N=49), for those with 10>=D<~2 km (N=31) and for large craters [D<~10 km, (N=18)] (where N is the number of craters). It is thus difficult to regard the detected period as being significant based on statistical argument alone. It is pointed out that a similar period is associated with geometric reversals and the climatic variation as revealed by the deep ocean delta^18O spectrum.

  15. A Model for Variable Levee Formation Rates in an Active Lava Flow

    NASA Technical Reports Server (NTRS)

    Glaze, L. S.; Baloga, S. M.; Mouginis-Mark, P.; Crisp, J.

    2004-01-01

    Channelized lava flows on Mars and the Earth often feature levees and collateral margins that change in volume along the path of the flow. Consistent with field observations of terrestrial flows, this suggests that the rate of levee formation varies with distance and other factors. Previous models have assumed a constant rate of levee growth, specified by a single parameter, lambda. The rate of levee formation for lava flows is a good indicator of the mass eruption rate and rheology of the flow. Insight into levee formation will help us better understand whether or not the effusion rate was constant during an eruption, and once local topography is considered, allows us to look at cooling and/or rheology changes downslope. Here we present a more realistic extension of the levee formation model that treats the rate of levee growth as a function of distance along the flow path. We show how this model can be used with a terrestrial flow and a long lava flow on Mars. The key statement of the new formulation is the rate of transfer from the active component to the levees (or other passive components) through an element dx along the path of the flow. This volumetric transfer equation is presented.

  16. The effect of fission products on the rate of U3O8 formation in SIMFUEL oxidized in air at 250°C

    NASA Astrophysics Data System (ADS)

    Choi, Jong-Won; McEachern, Rod J.; Taylor, Peter; Wood, Donald D.

    1996-06-01

    The effect of fission products on the rate of U3O8 formation was investigated by oxidizing UO2-based SIMFUEL (simulated high burnup nuclear fuel) and unirradiated UO2 fuel specimens in air at 250°C for different times (1-317 days). The progress of oxidation was monitored by X-ray diffraction, revealing that the rate of U3O8 formation declines with increasing burnup. An expression was derived to describe quantitatively the time for U3O8 powder formation as a function of simulated burnup. These findings were supported by additional isochronal oxidation experiments conducted between 200 and 300°C.

  17. The COSMOS-[O II] survey: evolution of electron density with star formation rate

    NASA Astrophysics Data System (ADS)

    Kaasinen, Melanie; Bian, Fuyan; Groves, Brent; Kewley, Lisa J.; Gupta, Anshu

    2017-03-01

    Star-forming galaxies at z > 1 exhibit significantly different properties to local galaxies of equivalent stellar mass. Not only are high-redshift star-forming galaxies characterized by higher star formation rates and gas fractions than their local counterparts, they also appear to host star-forming regions with significantly different physical conditions, including greater electron densities. To understand what physical mechanisms are responsible for the observed evolution of the star-forming conditions, we have assembled the largest sample of star-forming galaxies at z ∼ 1.5 with emission-line measurements of the {[O II]}λ λ 3726,3729 doublet. By comparing our z ∼ 1.5 sample to local galaxy samples with equivalent distributions of stellar mass, star formation rate and specific star formation rate we investigate the proposed evolution in electron density and its dependence on global properties. We measure an average electron density of 114_{-27}^{+28} cm^{-3} for our z ∼ 1.5 sample, a factor of 5 greater than the typical electron density of local star-forming galaxies. However, we find no offset between the typical electron densities of local and high-redshift galaxies with equivalent star formation rates. Our work indicates that the average electron density of a sample is highly sensitive to the star formation rates, implying that the previously observed evolution is mainly the result of selection effects.

  18. Estimating hydroxyl radical photochemical formation rates in natural waters during long-term laboratory irradiation experiments.

    PubMed

    Sun, Luni; Chen, Hongmei; Abdulla, Hussain A; Mopper, Kenneth

    2014-04-01

    In this study it was observed that, during long-term irradiations (>1 day) of natural waters, the methods for measuring hydroxyl radical (˙OH) formation rates based upon sequentially determined cumulative concentrations of photoproducts from probes significantly underestimate actual ˙OH formation rates. Performing a correction using the photodegradation rates of the probe products improves the ˙OH estimation for short term irradiations (<1 day), but not long term irradiations. Only the 'instantaneous' formation rates, which were obtained by adding probes to aliquots at each time point and irradiating these sub-samples for a short time (≤2 h), were found appropriate for accurately estimating ˙OH photochemical formation rates during long-term laboratory irradiation experiments. Our results also showed that in iron- and dissolved organic matter (DOM)-rich water samples, ˙OH appears to be mainly produced from the Fenton reaction initially, but subsequently from other sources possibly from DOM photoreactions. Pathways of ˙OH formation in long-term irradiations in relation to H2O2 and iron concentrations are discussed.

  19. Measuring the rates of spontaneous vortex formation in highly oblate Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Neely, Tyler; Samson, Edward; Bradley, Ashton; Davis, Matthew; Anderson, Brian

    2009-05-01

    By studying the dynamics of the Bose-Einstein condensation transition in highly oblate (˜11:1 aspect ratio) traps, we have measured the dependence of spontaneous vortex formation on BEC growth rate, extending our previous experimental and numerical observations of spontaneous vortex formation in weakly oblate (˜2:1 aspect ratio) traps [1]. Our condensation procedure in these highly oblate traps allows us to create BECs over a large range of growth times, from approximately 200 ms to over 2 s. By characterizing vortex formation vs. BEC growth rate, and comparing experimental and numerical results, the Kibble-Zurek mechanism for topological defect formation may be quantitatively studied in our system. [1] C.N. Weiler, T.W. Neely, D.R. Scherer, A.S. Bradley, M.J. Davis, and B.P. Anderson., Nature 455, 948 (2008).

  20. Galaxy formation in the Planck cosmology - I. Matching the observed evolution of star formation rates, colours and stellar masses

    NASA Astrophysics Data System (ADS)

    Henriques, Bruno M. B.; White, Simon D. M.; Thomas, Peter A.; Angulo, Raul; Guo, Qi; Lemson, Gerard; Springel, Volker; Overzier, Roderik

    2015-08-01

    We have updated the Munich galaxy formation model to the Planck first-year cosmology, while modifying the treatment of baryonic processes to reproduce recent data on the abundance and passive fractions of galaxies from z = 3 down to z = 0. Matching these more extensive and more precise observational results requires us to delay the reincorporation of wind ejecta, to lower the surface density threshold for turning cold gas into stars, to eliminate ram-pressure stripping in haloes less massive than {˜ }10^{14}{ M_{⊙}}, and to modify our model for radio mode feedback. These changes cure the most obvious failings of our previous models, namely the overly early formation of low-mass galaxies and the overly large fraction of them that are passive at late times. The new model is calibrated to reproduce the observed evolution both of the stellar mass function and of the distribution of star formation rate at each stellar mass. Massive galaxies (log M⋆/M⊙ ≥ 11.0) assemble most of their mass before z = 1 and are predominantly old and passive at z = 0, while lower mass galaxies assemble later and, for log M⋆/M⊙ ≤ 9.5, are still predominantly blue and star forming at z = 0. This phenomenological but physically based model allows the observations to be interpreted in terms of the efficiency of the various processes that control the formation and evolution of galaxies as a function of their stellar mass, gas content, environment and time.

  1. Compositional variability across Mercury's surface revealed by MESSENGER measurements of variations in thermal neutron count rates

    NASA Astrophysics Data System (ADS)

    Peplowski, P. N.; Lawrence, D. J.; Goldsten, J. O.; Nittler, L. R.; Solomon, S. C.

    2013-12-01

    Measurements by MESSENGER's Gamma-Ray and Neutron Spectrometer (GRNS) have revealed variations in the flux of thermal neutrons across Mercury's northern hemisphere. These variations are interpreted to originate from spatial variations in surface elemental composition. In particular, the measurements are sensitive to the near-surface abundances of elements that absorb thermal neutrons, including major rock-forming elements such as Fe and Ti, minor elements such as Mn and Cl, and rare-earth elements such as Gd and Sm. We have constructed a map of thermal neutron variability across the surface and compared it with known variations in elemental composition and with the distribution of geologic units. Development of the map included the derivation of the macroscopic thermal neutron absorption cross section across the surface, a quantity whose value and variability provides useful constraints on the formation and geochemical evolution of Mercury's crust. Finally, by combining the thermal neutron measurements with previously reported elemental measurements from the GRNS and MESSENGER's X-Ray Spectrometer, we have derived constraints on the abundances of neutron-absorbing elements, including previously unreported limits for some minor and rare-earth elements.

  2. Non-linear hydroxyl radical formation rate in dispersions containing mixtures of pyrite and chalcopyrite particles

    NASA Astrophysics Data System (ADS)

    Kaur, Jasmeet; Schoonen, Martin A.

    2017-06-01

    The formation of hydroxyl radicals was studied in mixed pyrite-chalcopyrite dispersions in water using the conversion rate of adenine as a proxy for hydroxyl radical formation rate. Experiments were conducted as a function of pH, presence of phosphate buffer, surface loading, and pyrite-to-chalcopyrite ratio. The results indicate that hydroxyl radical formation rate in mixed systems is non-linear with respect to the rates in the pure endmember dispersions. The only exception is a set of experiments in which phosphate buffer is used. In the presence of phosphate buffer, the hydroxyl radical formation is suppressed in mixtures and the rate is close to that predicted based on the reaction kinetics of the pure endmembers. The non-linear hydroxyl radical formation in dispersions containing mixtures of pyrite and chalcopyrite is likely the result of two complementary processes. One is the fact that pyrite and chalcopyrite form a galvanic couple. In this arrangement, chalcopyrite oxidation is accelerated, while pyrite passes electrons withdrawn from chalcopyrite to molecular oxygen, the oxidant. The incomplete reduction of molecular oxygen leads to the formation of hydrogen peroxide and hydroxyl radical. The galvanic coupling appears to be augmented by the fact that chalcopyrite generates a significant amount of hydrogen peroxide upon dispersal in water. This hydrogen peroxide is then available for conversion to hydroxyl radical, which appears to be facilitated by pyrite as chalcopyrite itself produces only minor amounts of hydroxyl radical. In essence, pyrite is a ;co-factor; that facilitates the conversion of hydrogen peroxide to hydroxyl radical. This conversion reaction is a surface-mediated reaction. Given that hydroxyl radical is one of the most reactive species in nature, the formation of hydroxyl radicals in aqueous systems containing chalcopyrite and pyrite has implications for the stability of organic molecules, biomolecules, the viability of microbes, and

  3. An Estimation of the Star Formation Rate in the Perseus Complex

    NASA Astrophysics Data System (ADS)

    Mercimek, Seyma

    2016-07-01

    The detailed study of all sources are carried on, by comparing the number of existing cores and YSOs from observations with the prediction from column density PDFs. With this investigation, we found a relation between starless cores and protostars that cores may be considered progenitors of the next generation of protostars, assuming the rate of star formation in the recent past is similar to the rate in the near future. These are also new results which have not been investigated previously. In addition, we also calculate the mean density of each starless core and its corresponding free-fall time in order to estimate star formation rate in near future. Following that, we obtained star formation efficiency from the existing stellar cores which later was used to estimate average stellar mass from standard IMF. Finally, we estimate how many starless cores will turn into stars in the predicted free fall time and how many stars will form from calculated core mass.

  4. Observational Evidence of Dynamic Star Formation Rate in Milky Way Giant Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Lee, Eve J.; Miville-Deschênes, Marc-Antoine; Murray, Norman W.

    2016-12-01

    Star formation on galactic scales is known to be a slow process, but whether it is slow on smaller scales is uncertain. We cross-correlate 5469 giant molecular clouds (GMCs) from a new all-sky catalog with 256 star-forming complexes (SFCs) to build a sample of 191 SFC-GMC complexes—collections of multiple clouds each matched to 191 SFCs. The total mass in stars harbored by these clouds is inferred from WMAP free-free fluxes. We measure the GMC mass, the virial parameter, the star formation efficiency ɛ and the star formation rate per freefall time ɛ ff. Both ɛ and ɛ ff range over 3-4 orders of magnitude. We find that 68.3% of the clouds fall within {σ }{logɛ }=0.79+/- 0.22 {dex} and {σ }{log{ɛ }{ff}}=0.91+/- 0.22 {dex} about the median. Compared to these observed scatters, a simple model with a time-independent ɛ ff that depends on the host GMC properties predicts {σ }{log{ɛ }{ff}}=0.12{--}0.24. Allowing for a time-variable ɛ ff, we can recover the large dispersion in the rate of star formation. This strongly suggests that star formation in the Milky Way is a dynamic process on GMC scales. We also show that the surface star formation rate profile of the Milky Way correlates well with the molecular gas surface density profile.

  5. Let's go formative: continuous student ratings with Web 2.0 application Twitter.

    PubMed

    Stieger, Stefan; Burger, Christoph

    2010-04-01

    Student ratings have been a controversial but important method for the improvement of teaching quality during the past several decades. Most universities rely on summative evaluations conducted at the end of a term or course. A formative approach in which each course unit is evaluated may be beneficial for students and teachers but has rarely been applied. This is most probably due to the time constraints associated with various procedures inherent in formative evaluation (numerous evaluations, high amounts of aggregated data, high administrative investment). In order to circumvent these disadvantages, we chose the Web 2.0 Internet application Twitter as evaluation tool and tested whether it is useful for the implementation of a formative evaluation. After a first pilot and subsequent experimental study, the following conclusions were drawn: First, the formative evaluation did not come to the same results as the summative evaluation at the end of term, suggesting that formative evaluations tap into different aspects of course evaluation than summative evaluations do. Second, the results from an offline (i.e., paper-pencil) summative evaluation were identical with those from an online summative evaluation of the same course conducted a week later. Third, the formative evaluation did not influence the ratings of the summative evaluation at the end of the term. All in all, we can conclude that Twitter is a useful tool for evaluating a course formatively (i.e., on a weekly basis). Because of Twitter's simple use and the electronic handling of data, the administrative effort remains small.

  6. Geologically Controlled Isotope-Time Patterns Reveal Early Differentiation and Crust Formation Processes

    NASA Astrophysics Data System (ADS)

    Bennett, V. C.; Nutman, A. P.

    2014-12-01

    The mechanisms of continental crust production and evolution in the early Earth remain controversial, as are questions of the relative roles of early differentiation versus subsequent tectonic procssing in creating Earth's chemical signatures. Here we present geologic observations integrated with whole rock major, trace element and Sm-Nd isotopic signatures and combined with U-Pb and Lu-Hf isotopic compositions of zircon populations from the same rocks, from the most extensive early rock record comprising the 3.9 Ga to 3.6 Ga terranes of southwest Greenland. These data reveal repeated patterns of formation of juvenile TTG crust and associated mafic and ultramafic rocks in convergent margin settings followed by formation of more evolved granites [1]. Our new zircon Lu-Hf data from rare 3.6-3.7 Ga tonalites within the Itsaq Gneiss Complex, obtained from single component, non-migmatitic gneisses with simple zircon populations, limited within sample Hf isotopic variability and accurate U-Pb ages, now document extraction of juvenile tonalites from a near chondritic mantle source between 3.9 Ga and 3.6 Ga. The more evolved, granitic rocks in each area show slightly negative initial ɛHf in accord with crustal reworking of the older (3.8-3.9 Ga) gniesses. There is no evidence for Hadean material in the sources of the granitoids. The Hf isotope-time patterns are consistent with juvenile crust production from a mantle source that experienced only modest amounts of prior crustal extraction. They are distinct from those predicted by reprocessing of an enriched Hadean mafic crust, as has been proposed for this region [2] and for the source of the Hadean Jack Hills zircons [3]. The well-documented, time decreasing, positive 142Nd anomalies [e.g., 4] from these rocks are further evidence of crustal derivation from a convecting mantle source, rather than reworking of an enriched mafic lithosphere. The 143Nd isotopic -time patterns are more complex, reflecting the interplay

  7. A CLUSTER IN THE MAKING: ALMA REVEALS THE INITIAL CONDITIONS FOR HIGH-MASS CLUSTER FORMATION

    SciTech Connect

    Rathborne, J. M.; Contreras, Y.; Longmore, S. N.; Bastian, N.; Jackson, J. M.; Alves, J. F.; Bally, J.; Foster, J. B.; Garay, G.; Kruijssen, J. M. D.; Testi, L.; Walsh, A. J.

    2015-04-01

    G0.253+0.016 is a molecular clump that appears to be on the verge of forming a high-mass cluster: its extremely low dust temperature, high mass, and high density, combined with its lack of prevalent star formation, make it an excellent candidate for an Arches-like cluster in a very early stage of formation. Here we present new Atacama Large Millimeter/Sub-millimeter Array observations of its small-scale (∼0.07 pc) 3 mm dust continuum and molecular line emission from 17 different species that probe a range of distinct physical and chemical conditions. The data reveal a complex network of emission features with a complicated velocity structure: there is emission on all spatial scales, the morphology of which ranges from small, compact regions to extended, filamentary structures that are seen in both emission and absorption. The dust column density is well traced by molecules with higher excitation energies and critical densities, consistent with a clump that has a denser interior. A statistical analysis supports the idea that turbulence shapes the observed gas structure within G0.253+0.016. We find a clear break in the turbulent power spectrum derived from the optically thin dust continuum emission at a spatial scale of ∼0.1 pc, which may correspond to the spatial scale at which gravity has overcome the thermal pressure. We suggest that G0.253+0.016 is on the verge of forming a cluster from hierarchical, filamentary structures that arise from a highly turbulent medium. Although the stellar distribution within high-mass Arches-like clusters is compact, centrally condensed, and smooth, the observed gas distribution within G0.253+0.016 is extended, with no high-mass central concentration, and has a complex, hierarchical structure. If this clump gives rise to a high-mass cluster and its stars are formed from this initially hierarchical gas structure, then the resulting cluster must evolve into a centrally condensed structure via a dynamical process.

  8. A Cluster in the Making: ALMA Reveals the Initial Conditions for High-mass Cluster Formation

    NASA Astrophysics Data System (ADS)

    Rathborne, J. M.; Longmore, S. N.; Jackson, J. M.; Alves, J. F.; Bally, J.; Bastian, N.; Contreras, Y.; Foster, J. B.; Garay, G.; Kruijssen, J. M. D.; Testi, L.; Walsh, A. J.

    2015-04-01

    G0.253+0.016 is a molecular clump that appears to be on the verge of forming a high-mass cluster: its extremely low dust temperature, high mass, and high density, combined with its lack of prevalent star formation, make it an excellent candidate for an Arches-like cluster in a very early stage of formation. Here we present new Atacama Large Millimeter/Sub-millimeter Array observations of its small-scale (∼0.07 pc) 3 mm dust continuum and molecular line emission from 17 different species that probe a range of distinct physical and chemical conditions. The data reveal a complex network of emission features with a complicated velocity structure: there is emission on all spatial scales, the morphology of which ranges from small, compact regions to extended, filamentary structures that are seen in both emission and absorption. The dust column density is well traced by molecules with higher excitation energies and critical densities, consistent with a clump that has a denser interior. A statistical analysis supports the idea that turbulence shapes the observed gas structure within G0.253+0.016. We find a clear break in the turbulent power spectrum derived from the optically thin dust continuum emission at a spatial scale of ∼0.1 pc, which may correspond to the spatial scale at which gravity has overcome the thermal pressure. We suggest that G0.253+0.016 is on the verge of forming a cluster from hierarchical, filamentary structures that arise from a highly turbulent medium. Although the stellar distribution within high-mass Arches-like clusters is compact, centrally condensed, and smooth, the observed gas distribution within G0.253+0.016 is extended, with no high-mass central concentration, and has a complex, hierarchical structure. If this clump gives rise to a high-mass cluster and its stars are formed from this initially hierarchical gas structure, then the resulting cluster must evolve into a centrally condensed structure via a dynamical process.

  9. Varying relative degradation rates of oil in different forms and environments revealed by ramped pyrolysis.

    PubMed

    Pendergraft, Matthew A; Rosenheim, Brad E

    2014-09-16

    Degradation of oil contamination yields stabilized products by removing and transforming reactive and volatile compounds. In contaminated coastal environments, the processes of degradation are influenced by shoreline energy, which increases the surface area of the oil as well as exchange between oil, water, sediments, microbes, oxygen, and nutrients. Here, a ramped pyrolysis carbon isotope technique is employed to investigate thermochemical and isotopic changes in organic material from coastal environments contaminated with oil from the 2010 BP Deepwater Horizon oil spill. Oiled beach sediment, tar ball, and marsh samples were collected from a barrier island and a brackish marsh in southeast Louisiana over a period of 881 days. Stable carbon ((13)C) and radiocarbon ((14)C) isotopic data demonstrate a predominance of oil-derived carbon in the organic material. Ramped pyrolysis profiles indicate that the organic material was transformed into more stable forms. Our data indicate relative rates of stabilization in the following order, from fastest to slowest: high energy beach sediments > low energy beach sediments > marsh > tar balls. Oil was transformed most rapidly where shoreline energy and the rates of oil dispersion and exchange with water, sediments, microbes, oxygen, and nutrients were greatest. Still, isotope data reveal persistence of oil.

  10. Plate-rate laboratory friction experiments reveal potential slip instability on weak faults

    NASA Astrophysics Data System (ADS)

    Ikari, M.; Kopf, A.

    2016-12-01

    In earthquake science, it is commonly assumed that earthquakes nucleate on strong patches or "asperities", and data from laboratory friction experiments indicate a tendency for unstable slip (exhibited as velocity-weakening frictional behavior) in strong geologic materials. However, an overwhelming amount of these experiments were conducted at driving velocities ranging from 0.1 µm/s to over 1 m/s. Less data exists for shearing experiments driven at slow velocities on the order of cm/yr (nm/s), approximating plate tectonic rates which represent the natural driving condition on plate boundary faults. Recent laboratory work using samples recovered from the Tohoku region at the Japan Trench, within the high coseismic slip region of the 2011 M9 Tohoku earthquake, showed that the fault is extremely weak with a friction coefficient < 0.2. At sliding velocities of at least 0.1 µm/s mostly velocity-strengthening friction is observed, which is favorable for stable creep, consistent with earlier work. However, shearing at an imposed rate of 8.5 cm/yr produced both velocity-weakening friction and discrete slow slip events, which are likely instances of frictional instabilities or quasi-instabilities. Here, we expand on the Tohoku experiment by conducting cm/yr friction experiments on natural gouges obtained from a variety of other major fault zones obtained by scientific drilling; these include the San Andreas Fault, Costa Rica subduction zone, Nankai Trough (Japan), Barbados subduction zone, Alpine Fault (New Zealand), southern Cascadia, and Woodlark Basin (Papua New Guinea). We focus here on weak fault materials having a friction coefficient of < 0.5. At conventional laboratory driving rates of 0.1-30 µm/s, velocity strengthening is common. However, at cm/yr driving rates we commonly observe velocity-weakening friction and slow slip events, with most samples exhibit both behaviors. These results demonstrate when fault samples are sheared at plate tectonic rates in the

  11. DNA fingerprinting reveals elevated mutation rates in herring gulls inhabiting a genotoxically contaminated site

    SciTech Connect

    Yauk, C.L.; Quinn, J.S.

    1995-12-31

    The authors used multi-locus DNA fingerprinting to examine families of herring gulls (Larus argentatus) from a genotoxically contaminated site (Hamilton Harbour) and from a pristine location (Kent Island, Bay of Fundy) to show significant differences in mutation rates between the locations. Overall the authors identified 17 mutant bands from 15 individuals of the 35 examined from Hamilton Harbour, and 7 mutant fragments from 7 individuals, of the 43 examined from Kent Island; a mutation frequency of 0.429 per nestling for Hamilton Harbour and 0.163 for Kent Island. The total number of individuals with mutant bands was significantly higher at Hamilton Harbour than at Kent Island (X{sup 2}=6.734; df = 1; P < 0.01). Ongoing analysis of other less contaminated sites also reveals lower mutation rates than those seen in Hamilton Harbour. With multi-locus DNA fingerprinting many regions of the genome can be surveyed simultaneously. The tandemly repeated arrays of nucleotides examined with DNA fingerprinting are known to have elevated rates of mutation. Furthermore, the mutations seen with DNA fingerprinting are predominantly heritable. Other biomarkers currently used in situ are not able to monitor direct and heritable DNA mutation, or measure biological endpoints that frequently result in spontaneous abortion creating difficulty in observing significantly elevated levels in viable offspring. The authors suggest that multilocus DNA fingerprinting can be used as a biomarker to identify potentially heritable risks before the onset of other types of ecological damage. This approach provides a direct measure of mutation in situ and in vivo in a vertebrate species under ambient conditions.

  12. Fossilized iron bacteria reveal a pathway to the biological origin of banded iron formation.

    PubMed

    Chi Fru, Ernest; Ivarsson, Magnus; Kilias, Stephanos P; Bengtson, Stefan; Belivanova, Veneta; Marone, Federica; Fortin, Danielle; Broman, Curt; Stampanoni, Marco

    2013-01-01

    Debates on the formation of banded iron formations in ancient ferruginous oceans are dominated by a dichotomy between abiotic and biotic iron cycling. This is fuelled by difficulties in unravelling the exact processes involved in their formation. Here we provide fossil environmental evidence for anoxygenic photoferrotrophic deposition of analogue banded iron rocks in shallow marine waters associated with an Early Quaternary hydrothermal vent field on Milos Island, Greece. Trace metal, major and rare earth elemental compositions suggest that the deposited rocks closely resemble banded iron formations of Precambrian origin. Well-preserved microbial fossils in combination with chemical data imply that band formation was linked to periodic massive encrustation of anoxygenic phototrophic biofilms by iron oxyhydroxide alternating with abiotic silica precipitation. The data implicate cyclic anoxygenic photoferrotrophy and their fossilization mechanisms in the construction of microskeletal fabrics that result in the formation of characteristic banded iron formation bands of varying silica and iron oxide ratios.

  13. A Novel Type of Colony Formation in Marine Planktonic Diatoms Revealed by Atomic Force Microscopy

    PubMed Central

    Bosak, Sunčica; Pletikapić, Galja; Hozić, Amela; Svetličić, Vesna; Sarno, Diana; Viličić, Damir

    2012-01-01

    Diatoms have evolved a variety of colonial life forms in which cells are connected by organic threads, mucilage pads or silicate structures. In this study, we provide the first description of a novel strategy of colony formation among marine planktonic diatoms. Bacteriastrum jadranum forms loose but regular chains with distinct heterovalvate terminal cells. The colonial cells and their siliceous projections, the setae, are not in direct contact; instead, they are enclosed within the optically transparent organic matrix. This cell jacket structure was detected by staining procedure with Alcian Blue, which showed that the polysaccharides are predominant matrix constituents and revealed that the jacket reaches the span of the setae. The scanning electron microscopy (SEM) observations showed distinguishable fibrillar network firmly associated with cells. Using atomic force microscopy (AFM), we were able to visualise and characterise the cell jacket structure at molecular resolution. At nanoscale resolution, the cell jacket appears as a cross-linked fibrillar network organised into a recognisable structure. The circular patches of self-repeating pattern (hexagonal pores with openings of 8–100 nm) are connected through thicker surrounding fibrils and reinforced by branching fibrils. The pore-forming fibrils within the patches are only 0.6–1.6 nm high, the surrounding fibrils connecting patches are 2.0–2.8 nm high, and the branching fibrils are considerably wider but not higher than 4.0 nm. The discovered polysaccharide fibrillar network is highly organised and delicately structured with a monomolecular fibril height of 0.6 nm. We conclude that the Bacteriastrum polysaccharide jacket represents an essential part of the cell, as the conjunction of the polymer network with the frustule appears to be extremely tight and such specific and unique patterns have never been found in self-assembled polysaccharide gel networks, which are usually encountered in the marine

  14. A novel type of colony formation in marine planktonic diatoms revealed by atomic force microscopy.

    PubMed

    Bosak, Sunčica; Pletikapić, Galja; Hozić, Amela; Svetličić, Vesna; Sarno, Diana; Viličić, Damir

    2012-01-01

    Diatoms have evolved a variety of colonial life forms in which cells are connected by organic threads, mucilage pads or silicate structures. In this study, we provide the first description of a novel strategy of colony formation among marine planktonic diatoms. Bacteriastrum jadranum forms loose but regular chains with distinct heterovalvate terminal cells. The colonial cells and their siliceous projections, the setae, are not in direct contact; instead, they are enclosed within the optically transparent organic matrix. This cell jacket structure was detected by staining procedure with Alcian Blue, which showed that the polysaccharides are predominant matrix constituents and revealed that the jacket reaches the span of the setae. The scanning electron microscopy (SEM) observations showed distinguishable fibrillar network firmly associated with cells. Using atomic force microscopy (AFM), we were able to visualise and characterise the cell jacket structure at molecular resolution. At nanoscale resolution, the cell jacket appears as a cross-linked fibrillar network organised into a recognisable structure. The circular patches of self-repeating pattern (hexagonal pores with openings of 8-100 nm) are connected through thicker surrounding fibrils and reinforced by branching fibrils. The pore-forming fibrils within the patches are only 0.6-1.6 nm high, the surrounding fibrils connecting patches are 2.0-2.8 nm high, and the branching fibrils are considerably wider but not higher than 4.0 nm. The discovered polysaccharide fibrillar network is highly organised and delicately structured with a monomolecular fibril height of 0.6 nm. We conclude that the Bacteriastrum polysaccharide jacket represents an essential part of the cell, as the conjunction of the polymer network with the frustule appears to be extremely tight and such specific and unique patterns have never been found in self-assembled polysaccharide gel networks, which are usually encountered in the marine

  15. A Primary Linkage Map of the Porcine Genome Reveals a Low Rate of Genetic Recombination

    PubMed Central

    Ellegren, H.; Chowdhary, B. P.; Johansson, M.; Marklund, L.; Fredholm, M.; Gustavsson, I.; Andersson, L.

    1994-01-01

    A comprehensive genetic linkage map of the porcine genome has been developed by typing 128 genetic markers in a cross between the European Wild Boar and a domestic breed (Large White). The marker set includes 68 polymerase chain reaction-formatted microsatellites, 60 anchored reference markers informative for comparative mapping and 47 markers which have been physically assigned by in situ hybridization. Novel multipoint assignments are provided for 54 of the markers. The map covers about 1800 cM, and the average spacing between markers is 11 cM. We used the map data to estimate the genome size in pigs, thereby addressing the total recombination distance in a third mammalian species. A sex-average genome length of 1873 +/- 139 cM was obtained by comparing the recombinational and physical distances in defined regions of the genome. This is strikingly different from the length of the human genome (3800-4000 cM) and is more similar to the mouse estimate (1600 cM). The recombination rate in females was significantly higher than in males. PMID:7982563

  16. A coherent digital demodulator for multiple signal formats and widely varying data rates

    NASA Technical Reports Server (NTRS)

    Mcguffin, Bruce F.

    1989-01-01

    The Tracking and Data Relay Satellite System (TDRSS) uses four ground station demodulators for K-band signals with data rates from 1 kb/s to 300 Mb/s. The author discusses the feasibility of replacing these demodulators with a single digital demodulator that may be reconfigured by altering stored parameters to accommodate all signal formats and data rates. This implementation will reduce total ground station cost and facilitate automation of ground station operation. Analysis of system performance concentrates on the carrier tracking loop. Analytic and simulation results relate system performance to parameter values and signal format as data rate and power vary independently on the In-phase and quadrature channels. It is demonstrated that a single digital demodulator can support TDRSS-compatible signals at data rates conservatively extending from 1K symbols/s to 10M symbols/s, using off-the-shelf hardware with 6 or more bits of accuracy.

  17. A coherent digital demodulator for multiple signal formats and widely varying data rates

    NASA Astrophysics Data System (ADS)

    McGuffin, Bruce F.

    The Tracking and Data Relay Satellite System (TDRSS) uses four ground station demodulators for K-band signals with data rates from 1 kb/s to 300 Mb/s. The author discusses the feasibility of replacing these demodulators with a single digital demodulator that may be reconfigured by altering stored parameters to accommodate all signal formats and data rates. This implementation will reduce total ground station cost and facilitate automation of ground station operation. Analysis of system performance concentrates on the carrier tracking loop. Analytic and simulation results relate system performance to parameter values and signal format as data rate and power vary independently on the In-phase and quadrature channels. It is demonstrated that a single digital demodulator can support TDRSS-compatible signals at data rates conservatively extending from 1K symbols/s to 10M symbols/s, using off-the-shelf hardware with 6 or more bits of accuracy.

  18. Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    NASA Astrophysics Data System (ADS)

    Butler, Michael J.; Tan, Jonathan C.; Teyssier, Romain; Rosdahl, Joakim; Van Loo, Sven; Nickerson, Sarah

    2017-06-01

    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H2-dissociating feedback results in the largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H2-dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.

  19. The Dense-gas Mass versus Star Formation Rate Relation: A Misleading Linearity?

    NASA Astrophysics Data System (ADS)

    Parmentier, G.

    2017-07-01

    We model the star formation relation of molecular clumps in dependence of their dense-gas mass when their volume density profile is that of an isothermal sphere (i.e., {ρ }{clump}(r)\\propto {r}-2). Dense gas is defined as gas whose volume density is higher than a threshold {ρ }{th}=700 {M}⊙ {{pc}}-3 (i.e., HCN(1-0)-mapped gas). We divide the clump into two regions: a dense inner region (where {ρ }{clump}(r)≥slant {ρ }{th}), and low-density outskirts (where {ρ }{clump}(r)< {ρ }{th}). We find that the total star formation rate of clumps scales linearly with the mass of their dense inner region, even when more than half of the clump star formation activity takes place in the low-density outskirts. We therefore emphasize that a linear star formation relation does not necessarily imply that star formation takes place exclusively in the gas whose mass is given by the star formation relation. The linearity of the star formation relation is strengthened when we account for the mass of dense fragments (e.g., cores, fibers) seeding star formation in the low-density outskirts, and which our adopted clump density profile {ρ }{clump}(r) does not resolve. We also find that the star formation relation is significantly tighter when considering the dense gas than when considering all the clump gas, as observed for molecular clouds of the Galactic plane. When the clumps have no low-density outskirts (i.e., they consist of dense gas only), the star formation relation becomes superlinear and progressively wider.

  20. Revisiting the formation rate and redshift distribution of long gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Kanaan, C.; de Freitas Pacheco, J. A.

    2013-11-01

    Using a novel approach, the distribution of fluences of long gamma-ray bursts derived from the Swift-BAT catalog was reproduced by a jet-model characterized by the distribution of the total radiated energy in γ-rays and the distribution of the aperture angle of the emission cone. The best fit between simulated and observed fluence distributions permits one to estimate the parameters of the model. An evolution of the median energy of the bursts is required to adequately reproduce the observed redshift distribution of the events when the formation rate of γ-ray bursts follows the cosmic star formation rate. For our preferred model, the median jet energy evolves as EJ ∝ e0.5(1 + z) and the mean expected jet energy is 3.0 × 1049 erg, which agrees with the mean value derived from afterglow data. The estimated local formation rate is Rgrb = 290 Gpc-3 yr-1, representing less than 9% of the local formation rate of type Ibc supernovae. This result also suggests that the progenitors of long gamma-ray bursts have masses ≥ 90 M⊙ when a Miller-Scalo initial mass function is assumed.

  1. Effectiveness of Intramuscularly Administered Cyanide Antidotes and the Rate of Methemoglobin Formation.

    DTIC Science & Technology

    Dimethylaminophenol (DMAP) are usually able to prevent the lethal effect of cyanide following intramuscular injections in doses sufficient to induce 20...associated severe bradycardia appears to limit the rate of absorption of sodium nitrite from the intramuscular site which prevents the rapid formation of sufficient methemoglobin to counteract cyanide intoxication.

  2. Effects of Varying Response Formats on Self-Ratings of Life-Satisfaction

    ERIC Educational Resources Information Center

    Mazaheri, Mehrdad; Theuns, Peter

    2009-01-01

    A sample of 1,737 volunteering students, randomly assigned to 12 conditions, rated their current overall (dis)satisfaction with life. Each condition used 1 of 12 response formats, differing in (1) "polarity" ("bipolar" versus "unipolar"), (2) "orientation" ("horizontal" versus "vertical"), and (3) "anchoring" (-5 to +5, "Not Numbered," and 0 "to"…

  3. 41 CFR 109-40.306-1 - Recommended rate tender format.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., TRANSPORTATION, AND MOTOR VEHICLES 40-TRANSPORTATION AND TRAFFIC MANAGEMENT 40.3-Traffic Management § 109-40.306... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Recommended rate tender format. 109-40.306-1 Section 109-40.306-1 Public Contracts and Property Management Federal Property...

  4. 41 CFR 109-40.306-1 - Recommended rate tender format.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., TRANSPORTATION, AND MOTOR VEHICLES 40-TRANSPORTATION AND TRAFFIC MANAGEMENT 40.3-Traffic Management § 109-40.306... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Recommended rate tender format. 109-40.306-1 Section 109-40.306-1 Public Contracts and Property Management Federal Property...

  5. Effects of Varying Response Formats on Self-Ratings of Life-Satisfaction

    ERIC Educational Resources Information Center

    Mazaheri, Mehrdad; Theuns, Peter

    2009-01-01

    A sample of 1,737 volunteering students, randomly assigned to 12 conditions, rated their current overall (dis)satisfaction with life. Each condition used 1 of 12 response formats, differing in (1) "polarity" ("bipolar" versus "unipolar"), (2) "orientation" ("horizontal" versus "vertical"), and (3) "anchoring" (-5 to +5, "Not Numbered," and 0 "to"…

  6. Reconciling the Gamma-Ray Burst Rate and Star Formation Histories

    NASA Astrophysics Data System (ADS)

    Jimenez, Raul; Piran, Tsvi

    2013-08-01

    While there are numerous indications that gamma-ray bursts (GRBs) arise from the deaths of massive stars, the GRB rate does not follow the global cosmic star formation rate and, within their hosts, GRBs are more concentrated in regions of very high star formation. We explain both puzzles here. Using the publicly available VESPA database of the Sloan Digital Sky Survey (SDSS) Data Release 7 spectra, we explore a multi-parameter space in galaxy properties such as stellar mass, metallicity, and dust to find the subset of galaxies that reproduces the GRB rate recently obtained by Wanderman & Piran. We find that only galaxies with present stellar masses below <1010 M ⊙ and low metallicity reproduce the observed GRB rate. This is consistent with direct observations of GRB hosts and provides an independent confirmation of the nature of GRB hosts. Because of the significantly larger sample of SDSS galaxies, we compute their correlation function and show that they are anti-biased with respect to dark matter: they are in filaments and voids. Using recent observations of massive stars in local dwarfs we show how the fact that GRB host galaxies are dwarfs can explain the observation that GRBs are more concentrated in regions of high star formation than are supernovae. Finally, we explain these results using new theoretical advances in the field of star formation.

  7. RECONCILING THE GAMMA-RAY BURST RATE AND STAR FORMATION HISTORIES

    SciTech Connect

    Jimenez, Raul; Piran, Tsvi E-mail: tsvi.piran@huji.ac.il

    2013-08-20

    While there are numerous indications that gamma-ray bursts (GRBs) arise from the deaths of massive stars, the GRB rate does not follow the global cosmic star formation rate and, within their hosts, GRBs are more concentrated in regions of very high star formation. We explain both puzzles here. Using the publicly available VESPA database of the Sloan Digital Sky Survey (SDSS) Data Release 7 spectra, we explore a multi-parameter space in galaxy properties such as stellar mass, metallicity, and dust to find the subset of galaxies that reproduces the GRB rate recently obtained by Wanderman and Piran. We find that only galaxies with present stellar masses below <10{sup 10} M{sub Sun} and low metallicity reproduce the observed GRB rate. This is consistent with direct observations of GRB hosts and provides an independent confirmation of the nature of GRB hosts. Because of the significantly larger sample of SDSS galaxies, we compute their correlation function and show that they are anti-biased with respect to dark matter: they are in filaments and voids. Using recent observations of massive stars in local dwarfs we show how the fact that GRB host galaxies are dwarfs can explain the observation that GRBs are more concentrated in regions of high star formation than are supernovae. Finally, we explain these results using new theoretical advances in the field of star formation.

  8. Pathway of actin filament branch formation by Arp2/3 complex revealed by single-molecule imaging

    PubMed Central

    Smith, Benjamin A.; Daugherty-Clarke, Karen; Goode, Bruce L.; Gelles, Jeff

    2013-01-01

    Actin filament nucleation by actin-related protein (Arp) 2/3 complex is a critical process in cell motility and endocytosis, yet key aspects of its mechanism are unknown due to a lack of real-time observations of Arp2/3 complex through the nucleation process. Triggered by the verprolin homology, central, and acidic (VCA) region of proteins in the Wiskott-Aldrich syndrome protein (WASp) family, Arp2/3 complex produces new (daughter) filaments as branches from the sides of preexisting (mother) filaments. We visualized individual fluorescently labeled Arp2/3 complexes dynamically interacting with and producing branches on growing actin filaments in vitro. Branch formation was strikingly inefficient, even in the presence of VCA: only ∼1% of filament-bound Arp2/3 complexes yielded a daughter filament. VCA acted at multiple steps, increasing both the association rate of Arp2/3 complexes with mother filament and the fraction of filament-bound complexes that nucleated a daughter. The results lead to a quantitative kinetic mechanism for branched actin assembly, revealing the steps that can be stimulated by additional cellular factors. PMID:23292935

  9. UNLEASHING POSITIVE FEEDBACK: LINKING THE RATES OF STAR FORMATION, SUPERMASSIVE BLACK HOLE ACCRETION, AND OUTFLOWS IN DISTANT GALAXIES

    SciTech Connect

    Silk, Joseph

    2013-08-01

    Pressure-regulated star formation is a simple variant on the usual supernova-regulated star formation efficiency that controls the global star formation rate as a function of cold gas content in star-forming galaxies, and accounts for the Schmidt-Kennicutt law in both nearby and distant galaxies. Inclusion of active galactic nucleus (AGN) induced pressure, by jets and/or winds that flow back onto a gas-rich disk, can lead, under some circumstances, to significantly enhanced star formation rates, especially at high redshift and most likely followed by the more widely accepted phase of star formation quenching. Simple expressions are derived that relate supermassive black hole growth, star formation, and outflow rates. The ratios of black hole to spheroid mass and of both black hole accretion and outflow rates to star formation rate are predicted as a function of time. I suggest various tests of the AGN-triggered star formation hypothesis.

  10. Singlet Molecular Oxygen on Ice: Rates of Formation and Steady State Concentrations

    NASA Astrophysics Data System (ADS)

    Bower, J. P.; Anastasio, C.

    2007-12-01

    Singlet molecular oxygen (1O2*), the first electronically excited state of molecular oxygen, reacts rapidly with certain types of environmental pollutants such as furans, phenols, and polycyclic aromatic hydrocarbons (PAHs). Its formation requires the absorption of light by a chromophore (a.k.a. sensitizer), which subsequently transfers energy to ground state molecular oxygen. In the environment, 1O2* chemistry has been studied primarily in the aqueous phase, such as in surface waters or cloud and fog drops. In this work, we expand our current understanding by investigating the rate of formation (Rf) and steady state concentration ([1O2*]) of 1O2* on ice. To investigate 1O2* kinetics, we use a chemical probe technique in which photoformed 1O2* reacts with furfuryl alcohol (FFA). To generate 1O2*, we illuminated frozen samples containing a sensitizer (Rose Bengal, RB) at 549 nm. The concentration of total solutes in each sample was controlled using sodium sulfate (Na2SO4). Following illumination, the decay of FFA was measured using high performance liquid chromatography (HPLC). Ice tests were conducted at 253, 263, and 268 K. Liquid tests for comparison were conducted at 278 K. Results showed dramatically faster (~104) FFA decay on ice than in liquid samples prepared from the same solutions, in agreement with the calculated solute concentration factor in the quasi-liquid layer (QLL) on ice compared to bulk solution. Varying the concentration of RB resulted in similar changes in both Rf and [1O2*], with magnitudes of change close to those expected. Changing temperature and total solutes, both of which control the volume of the QLL on ice, revealed two model regimes: FFA as a major (1) or minor (2) sink of 1O2*. Experimental results from the former regime show good agreement with expected values for both Rf and [1O2*]. Experiments in the later regime are currently in progress. We will also discuss the potential implications of 1O2* to the chemistry of naturally

  11. Stellar populations and Star Formation Rates in NGC 6872, the Condor galaxy

    NASA Astrophysics Data System (ADS)

    Eufrasio, Rafael T.; De Mello, D. F.; Dwek, E.; Arendt, R. G.; Gadotti, D. A.

    2014-01-01

    We present a detailed analysis of the Spectral Energy Distributions (SEDs) of 10 kpc regions across the giant spiral galaxy NGC 6872, the Condor galaxy. We made use of archival data from the FUV (GALEX) to 22 μm (WISE). In order to find any signature of the recent interaction 130 Myr) with its companion, the S0 galaxy IC 4970, we inspected the SED of Condor's bar. One possibility is that is would have been formed by passage of the companion. We find that it is a particularly long bar (9 kpc semi-major axis), with a size almost twice as large as the average found in other barred galaxies (4.5 kpc median in the local universe, Gadotti 2011). A bulge/bar/disk 2D decomposition using the Spitzer 3.6 μm image and the budda package (de Souza et al. 2004; Gadotti 2008) reveals that the ratio of the bar semi-major axis to the disk scale-length is 1.4, which is a value typically found in other barred galaxies (see Fig. 1 in Gadotti 2011). The disk scale-length is ~ 7 kpc, which is extremely large (2.8 kpc median in local galaxies, Gadotti 2009). Our analysis also shows that there are no signs of recent star formation along the bar. We find no signs of a box-peanut structure near the central regions, which is also another signature of an evolved bar. Taken altogether, the evidence points to a bar formed at least a few billion years ago and the stars in the bar seem to be a fossil record of the stellar population in the galaxy before the interaction with its companion. Then, we modeled the SFH of each 10 kpc region as constant Star Formation Rate (SFR) for the past 100 Myr superposed on an exponentially decaying, longstanding SFR. We find a single exponential SFH to account for all the recent SFR of the galaxy, with no need for an additional SFR due to the interaction. Av is low all across the galaxy 0.25), but increases near 0.7) the point of collision. The SFH of the arms are asymmetric. The northeastern arm having older ages 5 Gyr) and SFH closer to constant, while the

  12. Bayesian coalescent inference reveals high evolutionary rates and diversification of Zika virus populations.

    PubMed

    Fajardo, Alvaro; Soñora, Martín; Moreno, Pilar; Moratorio, Gonzalo; Cristina, Juan

    2016-10-01

    Zika virus (ZIKV) is a member of the family Flaviviridae. In 2015, ZIKV triggered an epidemic in Brazil and spread across Latin America. By May of 2016, the World Health Organization warns over spread of ZIKV beyond this region. Detailed studies on the mode of evolution of ZIKV strains are extremely important for our understanding of the emergence and spread of ZIKV populations. In order to gain insight into these matters, a Bayesian coalescent Markov Chain Monte Carlo analysis of complete genome sequences of recently isolated ZIKV strains was performed. The results of these studies revealed a mean rate of evolution of 1.20 × 10(-3) nucleotide substitutions per site per year (s/s/y) for ZIKV strains enrolled in this study. Several variants isolated in China are grouped together with all strains isolated in Latin America. Another genetic group composed exclusively by Chinese strains were also observed, suggesting the co-circulation of different genetic lineages in China. These findings indicate a high level of diversification of ZIKV populations. Strains isolated from microcephaly cases do not share amino acid substitutions, suggesting that other factors besides viral genetic differences may play a role for the proposed pathogenesis caused by ZIKV infection. J. Med. Virol. 88:1672-1676, 2016. © 2016 Wiley Periodicals, Inc.

  13. Lidar surveys reveal eruptive volumes and rates at Etna, 2007-2010

    NASA Astrophysics Data System (ADS)

    Behncke, Boris; Fornaciai, Alessandro; Neri, Marco; Favalli, Massimiliano; Ganci, Gaetana; Mazzarini, Francesco

    2016-05-01

    The quantification of eruptive activity represents one major challenge in volcanology. Digital comparison of lidar-based elevation models of Etna (Italy) was made to quantify the volumes of volcanics emitted in 2007-2010. During this period, Etna produced several summit paroxysms followed by a flank eruption. We integrated the total volume difference resulting from the subtraction of the 2007 and 2010 digital elevation models with volumes of eruptive products based on field and aerial surveys to attribute volumes with hitherto unrealized precision to poorly constrained eruptions. The total erupted volume of 2007-2010 is >86 × 106 m3, most (~74 × 106 m3) of which is made up by the lava flows of the 2008-2009 flank eruption. The survey also reveals the high lava volume (5.73 × 106 m3) and average eruption rate (~400 m3 s-1) of the 10 May 2008 paroxysm, whose flow front stopped 6.2 km from the vent, not far from the town of Zafferana Etnea.

  14. Which response format reveals the truth about donations to a public good?

    Treesearch

    Thomas C. Brown; Patricia A. Champ; Richard C. Bishop; Daniel W. McCollum

    1996-01-01

    Seceral contingent valuation studies hace found that the open-ended format yields lower estimates of willingness to pay (WTP) than does the closed-ended, or dichotomous choice, format. In this study, WTP for a public encironmental good was estimated under four conditions: actual payment in response to open-ended and closed-ended requests, and hypothetical payment in...

  15. Modern Sedimentation along the SE Bangladesh Coast Reveal Surprisingly Low Accumulation Rates

    NASA Astrophysics Data System (ADS)

    McHugh, C.; Mustaque, S.; Mondal, D. R.; Akhter, S. H.; Iqbal, M.

    2016-12-01

    Recent sediments recovered along the SE coast of Bangladesh, from Teknaf to Cox's Bazar and drainage basin analyses reveal sediment sources and very low sedimentation rates of 1mm/year. These low rates are surprisingly low given that this coast is adjacent to the Ganges-Brahmaputra Delta with a yearly discharge of 1GT. The Teknaf anticline (elevation 200 m), part of the western Burma fold-thrust belt dominates the topography extending across and along the Teknaf peninsula. It is thought to have begun evolving since the Miocene (Alam et al. 2003 & Allen et al. 2008). Presently the anticline foothills on the west are flanked by uplifted terraces, the youngest linked to coseismic displacement during the 1762 earthquake (Mondal et al. 2015), and a narrow beach 60-200 m in width. Petrography, semi-quantitative bulk mineralogy and SEM/EDX analyses were conducted on sediments recovered along the west coast from 1-4 m deep trenches and three 4-8 m deep drill holes. GIS mapping of drainage basins and quartz-feldspar-lithic (QFL) ternary plots based on grain counting show mixing of sediments from multiple sources: Himalayan provenance of metamorphic and igneous origin (garnet-mostly almandine, tourmaline, rutile, kyanite, zircon, sillimanite and clinopyroxene) similar to Uddin et al. (2007); Brahmaputra provenance of igneous and metamorphic origin (amphibole, epidote, plagioclase 40% Na and 60% Ca, apatite, ilmenite, magnetite, Cr-spinel and garnet-mostly grossular,) as indicated by Garzanti et al. (2010) & Rahman et al. (2016) and Burmese sources (cassiterite and wolframite) (Zaw 1990 & Searle et al. 2007). Low sedimentation rates are the result of two main factors: 1. Strong longshore currents from the south-east that interact with high tidal ranges as evidenced by the morphology of sand waves and ridge and runnel landforms along the beach. 2. Streams draining the Teknaf anticline are dry during the winter and during summer monsoon rains, the sediments bypass the narrow

  16. A Possible Correlation Between the BLR and Star Formation Rate in AGNs

    NASA Astrophysics Data System (ADS)

    Cutiva A., K. A.; Higuera-G., Mario A.; Granados, A.

    2017-07-01

    The aim of this work was to find a correlation between the size of the BLR and the star formation rate. This research is based on the studies elaborated by Kaspi et al. (2000, ApJ, 533,631; 2005, ApJ, 629, 61), Maiolino et al. (2008, A&A, 468,979), Kennicutt (1998, ARAA, 36, 189) and Diamond-Stanic et al.(2012, ApJ, 746, 168). Kaspi et al. (2005, ApJ, 629, 61) using measures of mapping reverberation derived the size of the BLR and correlated this with the emission at 5100Å, λ Lλ(2-10 keV) and other emissions. On the other hand Maiolino et al. (2008, A&A, 468, 979) and Diamond-Stanic et al. (2012, ApJ, 746, 168), derived star formation rates (SFR) using observations in (7.7μm) and (11.3μm). For this study, we estimated the size of the BLR based on observations on hard X-rays, continuous emissions and recombination lines on the hydrogen atom of a sample of Active Nuclei. Besides, we determined the star formation rate based on observations of the emissions of PAHs for the same sample above and the adjustment equation was derived for the expected correlation. Using 17 Seyfert Galaxies with emission in PAH (11.3μm) obtained from IRS SL module (Spitzer Space Telescope Database) and 5100Å from the Nasa-IPAC Extragalactic Database (NED), we made a plot of R(BLR) versus the star formation rate (SFR). In the estimation of R(BLR) size, we used the R(BLR)∝Lα and for the SFR we use SFR∝LPAH. We found that the nuclear star formation rate (SFR) traced by the 11.3μm aromatic feature follows a relationship with the RBLR of the form SFR∝(RBLR0.7.

  17. Reflectometry-Ellipsometry Reveals Thickness, Growth Rate, and Phase Composition in Oxidation of Copper.

    PubMed

    Diaz Leon, Juan J; Fryauf, David M; Cormia, Robert D; Zhang, Min-Xian Max; Samuels, Kathryn; Williams, R Stanley; Kobayashi, Nobuhiko P

    2016-08-31

    The oxidation of copper is a complicated process. Copper oxide develops two stable phases at room temperature and standard pressure (RTSP): cuprous oxide (Cu2O) and cupric oxide (CuO). Both phases have different optical and electrical characteristics that make them interesting for applications such as solar cells or resistive switching devices. For a given application, it is necessary to selectively control oxide thickness and cupric/cuprous oxide phase volume fraction. The thickness and composition of a copper oxide film growing on the surface of copper widely depend on the characteristics of as-deposited copper. In this Research Article, two samples, copper films prepared by two different deposition techniques, electron-beam evaporation and sputtering, were studied. As the core part of the study, the formation of the oxidized copper was analyzed routinely over a period of 253 days using spectroscopic polarized reflectometry-spectroscopic ellipsometry (RE). An effective medium approximation (EMA) model was used to fit the RE data. The RE measurements were complemented and validated by using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and X-ray diffraction (XRD). Our results show that the two samples oxidized under identical laboratory ambient conditions (RTSP, 87% average relative humidity) developed unique oxide films following an inverse-logarithmic growth rate with thickness and composition different from each other over time. Discussion is focused on the ability of RE to simultaneously extract thickness (i.e., growth rate) and composition of copper oxide films and on plausible physical mechanisms responsible for unique oxidation habits observed in the two copper samples. It appears that extended surface characteristics (i.e., surface roughness and grain boundaries) and preferential crystalline orientation of as-deposited polycrystalline copper films control the growth kinetics of the copper oxide film. Analysis based on a noncontact

  18. Effect of storage temperature on crystal formation rate and growth rate of calcium lactate crystals on smoked Cheddar cheeses.

    PubMed

    Rajbhandari, P; Patel, J; Valentine, E; Kindstedt, P S

    2013-06-01

    Previous studies have shown that storage temperature influences the formation of calcium lactate crystals on vacuum-packaged Cheddar cheese surfaces. However, the mechanisms by which crystallization is modulated by storage temperature are not completely understood. The objectives of this study were to evaluate the effect of storage temperature on smoked Cheddar cheese surfaces for (1) the number of discrete visible crystals formed per unit of cheese surface area; (2) growth rate and shape of discrete crystals (as measured by area and circularity); (3) percentage of total cheese surface area occupied by crystals. Three vacuum-packaged, random weight (∼300 g) retail samples of naturally smoked Cheddar cheese, produced from the same vat of cheese, were obtained from a retail source. The samples were cut parallel to the longitudinal axis at a depth of 10mm from the 2 surfaces to give six 10-mm-thick slabs, 4 of which were randomly assigned to 4 different storage temperature treatments: 1, 5, 10°C, and weekly cycling between 1 and 10°C. Samples were stored for 30 wk. Following the onset of visible surface crystals, digital photographs of surfaces were taken every other week and evaluated by image analysis for number of discrete crystal regions and total surface area occupied by crystals. Specific discrete crystals were chosen and evaluated biweekly for radius, area, and circularity. The entire experiment was conducted in triplicate. The effects of cheese surface, storage temperature, and storage time on crystal number and total crystal area were evaluated by ANOVA, according to a repeated-measures design. The number of discrete crystal regions increased significantly during storage but at different rates for different temperature treatments. Total crystal area also increased significantly during storage, at rates that varied with temperature treatment. Storage temperature did not appear to have a major effect on the growth rates and shapes of the individual crystals

  19. Measurement of the Resonant dμt Molecular Formation Rate in Solid HD

    NASA Astrophysics Data System (ADS)

    Porcelli, T. A.; Adamczak, A.; Bailey, J. M.; Beer, G. A.; Douglas, J. L.; Faifman, M. P.; Fujiwara, M. C.; Huber, T. M.; Kammel, P.; Kim, S. K.; Knowles, P. E.; Kunselman, A. R.; Maier, M.; Markushin, V. E.; Marshall, G. M.; Mason, G. R.; Mulhauser, F.; Olin, A.; Petitjean, C.; Zmeskal, J.

    2001-04-01

    Measurements of muon-catalyzed dt fusion ( dμt-->4He+n+μ-) in solid HD have been performed. The theory describing the energy dependent resonant molecular formation rate for the reaction μt+HD-->[\\(dμt\\)pee]* is compared to experimental results in a pure solid HD target. Constraints on the rates are inferred through the use of a Monte Carlo model developed specifically for the experiment. From the time-of-flight analysis of fusion events in 16 and 37 μg˙cm-2 targets, an average formation rate consistent with 0.897+/-\\(0.046\\)stat+/-\\(0.166\\)syst times the theoretical prediction was obtained.

  20. Analysis of Metmyoglobin Formation Rates in Frozen Tuna Meat during Frozen Storage

    NASA Astrophysics Data System (ADS)

    Viriyarattanasak, Chotika; Watanabe, Manabu; Suzuki, Toru

    Formation of metmyoglobin (metMb) in frozen tuna meat stored at -90, -60, -40, -30, -20, and -10°C for approximately 6 months was investigated. The reaction rate of metMB formation was estimated from a linear plot of ln ([M∞ . Mt] /[M∞ . Mo]) and storage time (t) for each storage temperature (Ts) (M∞, Mt, and Mo are metMb contents at times t = t∞, t, and 0, respectively). When M∞ was assumed to be 100%, the rate of metMb formation followed the first-order reaction only during the early stage of storage period. MetMb formation, however obeyed the first-order reaction for all test temperatures even during long-term storage when M∞ was assumed to be dependent on storage temperature (M∞(Ts)). A discontinuity was observed in the temperature dependence of M∞(Ts) at storage temperature range between -60 and -40°C, which was attributed to the glass transition of protein system. On the other hand, the temperature dependence of metMb formation did not show a significant change over all storage temperatures.

  1. All-optical phase modulated format conversion for high transmission rates based on fiber nonlinearity

    NASA Astrophysics Data System (ADS)

    Duarte, Vanessa C.; Drummond, Miguel V.; Nogueira, Rogério N.

    2013-11-01

    Advanced modulation formats are an emerging area since they allow reducing the symbol rate while encoding more bits per symbol. This allows higher spectral efficiencies. In addition, we can achieve higher data rates using lower-speed equipment like in all-optical format conversion systems, an important step for the development of systems with high transmission rates. In this paper we study the impact of some impairments found in all-optical advanced format conversions based on cross phase modulation (XPM) on a highly nonlinear fiber (HNLF), such as amplified spontaneous emission (ASE), nonlinear fiber length and group velocity dispersion (GVD), and analyze its performance based on error vector magnitude (EVM) for different bitrate transmissions. This simulation study is applied on earlier proposed phase modulated format conversion where n nonreturn-to-zero on-off keying (NRZ-OOK) channels at 10 Gb/s are converted into a return-to-zero m phase shift keying (RZ-mPSK) at 20Gb/s. We extend the work with simulations and show the results for n NRZ-OOK channels at 20Gb/s, 40 Gb/s and 50Gb/s to RZ-PSK at 40Gb/s, 80 Gb/s and 100Gb/s, respectively.

  2. Gas hydrate formation rates from dissolved-phase methane in porous laboratory specimens

    USGS Publications Warehouse

    Waite, William F.; Spangenberg, E.K.

    2013-01-01

    Marine sands highly saturated with gas hydrates are potential energy resources, likely forming from methane dissolved in pore water. Laboratory fabrication of gas hydrate-bearing sands formed from dissolved-phase methane usually requires 1–2 months to attain the high hydrate saturations characteristic of naturally occurring energy resource targets. A series of gas hydrate formation tests, in which methane-supersaturated water circulates through 100, 240, and 200,000 cm3 vessels containing glass beads or unconsolidated sand, show that the rate-limiting step is dissolving gaseous-phase methane into the circulating water to form methane-supersaturated fluid. This implies that laboratory and natural hydrate formation rates are primarily limited by methane availability. Developing effective techniques for dissolving gaseous methane into water will increase formation rates above our observed (1 ± 0.5) × 10−7 mol of methane consumed for hydrate formation per minute per cubic centimeter of pore space, which corresponds to a hydrate saturation increase of 2 ± 1% per day, regardless of specimen size.

  3. Star Formation Rate and Gas Relations in the Arp 299 Merger from the VIXENS Survey

    NASA Astrophysics Data System (ADS)

    Heiderman, Amanda L.; Evans, N. J.; Gebhardt, K.; Blanc, G. A.; Davis, T.; Papovich, C. J.; van den Bosch, R.; Iono, D.; Yun, M.; VIXENS Team

    2014-01-01

    We investigate the relationship between star formation and gas content in late interaction phase merger Arp 299 from the VIRUS-P Investigation of the eXtreme ENvironments of Starbursts (VIXENS) integral field unit survey. By comparing H-alpha, Pa-alpha and 24um data to CO(1-0), CO(2-1), HCN(1-0), HCO+(1-0), and HI maps, we explore the relation between the star formation rate and gas surface densities on spatially resolved ~kpc scales. We find discrepancies from known extragalactic spatially resolved relations in nearby spiral galaxies and disk-averaged relations in high-z mergers.

  4. Distinctive Genome Reduction Rates Revealed by Genomic Analyses of Two Coxiella-Like Endosymbionts in Ticks

    PubMed Central

    Gottlieb, Yuval; Lalzar, Itai; Klasson, Lisa

    2015-01-01

    Genome reduction is a hallmark of symbiotic genomes, and the rate and patterns of gene loss associated with this process have been investigated in several different symbiotic systems. However, in long-term host-associated coevolving symbiont clades, the genome size differences between strains are normally quite small and hence patterns of large-scale genome reduction can only be inferred from distant relatives. Here we present the complete genome of a Coxiella-like symbiont from Rhipicephalus turanicus ticks (CRt), and compare it with other genomes from the genus Coxiella in order to investigate the process of genome reduction in a genus consisting of intracellular host-associated bacteria with variable genome sizes. The 1.7-Mb CRt genome is larger than the genomes of most obligate mutualists but has a very low protein-coding content (48.5%) and an extremely high number of identifiable pseudogenes, indicating that it is currently undergoing genome reduction. Analysis of encoded functions suggests that CRt is an obligate tick mutualist, as indicated by the possible provisioning of the tick with biotin (B7), riboflavin (B2) and other cofactors, and by the loss of most genes involved in host cell interactions, such as secretion systems. Comparative analyses between CRt and the 2.5 times smaller genome of Coxiella from the lone star tick Amblyomma americanum (CLEAA) show that many of the same gene functions are lost and suggest that the large size difference might be due to a higher rate of genome evolution in CLEAA generated by the loss of the mismatch repair genes mutSL. Finally, sequence polymorphisms in the CRt population sampled from field collected ticks reveal up to one distinct strain variant per tick, and analyses of mutational patterns within the population suggest that selection might be acting on synonymous sites. The CRt genome is an extreme example of a symbiont genome caught in the act of genome reduction, and the comparison between CLEAA and CRt

  5. Distinctive Genome Reduction Rates Revealed by Genomic Analyses of Two Coxiella-Like Endosymbionts in Ticks.

    PubMed

    Gottlieb, Yuval; Lalzar, Itai; Klasson, Lisa

    2015-05-28

    Genome reduction is a hallmark of symbiotic genomes, and the rate and patterns of gene loss associated with this process have been investigated in several different symbiotic systems. However, in long-term host-associated coevolving symbiont clades, the genome size differences between strains are normally quite small and hence patterns of large-scale genome reduction can only be inferred from distant relatives. Here we present the complete genome of a Coxiella-like symbiont from Rhipicephalus turanicus ticks (CRt), and compare it with other genomes from the genus Coxiella in order to investigate the process of genome reduction in a genus consisting of intracellular host-associated bacteria with variable genome sizes. The 1.7-Mb CRt genome is larger than the genomes of most obligate mutualists but has a very low protein-coding content (48.5%) and an extremely high number of identifiable pseudogenes, indicating that it is currently undergoing genome reduction. Analysis of encoded functions suggests that CRt is an obligate tick mutualist, as indicated by the possible provisioning of the tick with biotin (B7), riboflavin (B2) and other cofactors, and by the loss of most genes involved in host cell interactions, such as secretion systems. Comparative analyses between CRt and the 2.5 times smaller genome of Coxiella from the lone star tick Amblyomma americanum (CLEAA) show that many of the same gene functions are lost and suggest that the large size difference might be due to a higher rate of genome evolution in CLEAA generated by the loss of the mismatch repair genes mutSL. Finally, sequence polymorphisms in the CRt population sampled from field collected ticks reveal up to one distinct strain variant per tick, and analyses of mutational patterns within the population suggest that selection might be acting on synonymous sites. The CRt genome is an extreme example of a symbiont genome caught in the act of genome reduction, and the comparison between CLEAA and CRt

  6. COSMOLOGICAL EVOLUTION OF LONG GAMMA-RAY BURSTS AND THE STAR FORMATION RATE

    SciTech Connect

    Petrosian, Vahé; Kitanidis, Ellie; Kocevski, Daniel

    2015-06-10

    Gamma-ray bursts (GRBs), by virtue of their high luminosities, can be detected up to very high redshifts and therefore can be excellent probes of the early universe. This task is hampered by the fact that most of their characteristics have a broad range, so we first need to obtain an accurate description of the distribution of these characteristics and, especially, their cosmological evolution. We use a sample of about 200 Swift long GRBs with known redshifts to determine the evolution of the luminosity, formation rate, and the general shape of the luminosity function (LF). In contrast to most other forward-fitting methods of treating this problem, we use the Efron–Petrosian methods, which allow a non-parametric determination of the above quantities. We find a relatively strong luminosity evolution, an LF that can be fitted to a broken power law, and an unusually high formation rate at low redshifts, a rate more than one order of magnitude higher than the star formation rate (SFR). On the other hand, our results seem to agree with the almost constant SFR in redshifts 1–3 and the decline above this redshift.

  7. Comparative Genomics Revealed Multiple Helicobacter pylori Genes Associated with Biofilm Formation In Vitro

    PubMed Central

    Chua, Eng Guan; Tay, Alfred Chin Yen; Peters, Fanny; Marshall, Barry J.; Ho, Bow; Goh, Khean Lee; Vadivelu, Jamuna; Loke, Mun Fai

    2016-01-01

    Background Biofilm formation by Helicobacter pylori may be one of the factors influencing eradication outcome. However, genetic differences between good and poor biofilm forming strains have not been studied. Materials and Methods Biofilm yield of 32 Helicobacter pylori strains (standard strain and 31 clinical strains) were determined by crystal-violet assay and grouped into poor, moderate and good biofilm forming groups. Whole genome sequencing of these 32 clinical strains was performed on the Illumina MiSeq platform. Annotation and comparison of the differences between the genomic sequences were carried out using RAST (Rapid Annotation using Subsystem Technology) and SEED viewer. Genes identified were confirmed using PCR. Results Genes identified to be associated with biofilm formation in H. pylori includes alpha (1,3)-fucosyltransferase, flagellar protein, 3 hypothetical proteins, outer membrane protein and a cag pathogenicity island protein. These genes play a role in bacterial motility, lipopolysaccharide (LPS) synthesis, Lewis antigen synthesis, adhesion and/or the type-IV secretion system (T4SS). Deletion of cagA and cagPAI confirmed that CagA and T4SS were involved in H. pylori biofilm formation. Conclusions Results from this study suggest that biofilm formation in H. pylori might be genetically determined and might be influenced by multiple genes. Good, moderate and poor biofilm forming strain might differ during the initiation of biofilm formation. PMID:27870886

  8. Crystal structure of listeriolysin O reveals molecular details of oligomerization and pore formation

    NASA Astrophysics Data System (ADS)

    Köster, Stefan; van Pee, Katharina; Hudel, Martina; Leustik, Martin; Rhinow, Daniel; Kühlbrandt, Werner; Chakraborty, Trinad; Yildiz, Özkan

    2014-04-01

    Listeriolysin O (LLO) is an essential virulence factor of Listeria monocytogenes that causes listeriosis. Listeria monocytogenes owes its ability to live within cells to the pH- and temperature-dependent pore-forming activity of LLO, which is unique among cholesterol-dependent cytolysins. LLO enables the bacteria to cross the phagosomal membrane and is also involved in activation of cellular processes, including the modulation of gene expression or intracellular Ca2+ oscillations. Neither the pore-forming mechanism nor the mechanisms triggering the signalling processes in the host cell are known in detail. Here, we report the crystal structure of LLO, in which we identified regions important for oligomerization and pore formation. Mutants were characterized by determining their haemolytic and Ca2+ uptake activity. We analysed the pore formation of LLO and its variants on erythrocyte ghosts by electron microscopy and show that pore formation requires precise interface interactions during toxin oligomerization on the membrane.

  9. Contribution of cotranslational folding to the rate of formation of native protein structure.

    PubMed Central

    Fedorov, A N; Baldwin, T O

    1995-01-01

    To compare the process of protein folding in the cell with refolding following denaturation in vitro, we have investigated and compared the kinetics of renaturation of a full-length protein upon dilution from concentrated urea with the rate of folding in the course of biosynthesis. Formation of enzymatically active bacterial luciferase, an alpha beta heterodimer, occurred 2 min after completion of beta-subunit synthesis in an Escherichia coli cell-free system. Renaturation of urea-denatured beta subunit, either in the presence of the cell-free protein synthesis system or in buffer solutions, proceeded more slowly. Cellular components present in the cell-free protein synthesis system slightly accelerated the rate of refolding of urea-unfolded beta subunit. The results indicate that the luciferase beta subunit begins the folding process cotranslationally and that cotranslational folding contributes to the rapid formation of the native structure in the cell. Images Fig. 1 PMID:7862665

  10. Outcrossing rates in two self-compatible, hybridising Rhinanthus species: implications for hybrid formation.

    PubMed

    Ducarme, V; Wesselingh, R A

    2013-05-01

    The congeners Rhinanthus angustifolius and Rhinanthus minor, two annual hemiparasites pollinated by bumblebees, are known to hybridise in the wild. Both species are self-compatible, but the capacity for autonomous selfing is higher in R. minor. This suggests a difference in realized outcrossing rates, which have not been determined before in these species. Using microsatellites, both species turned out to have mixed mating systems, but with a much lower multilocus outcrossing rate (0.13) for R. minor compared to R. angustifolius (0.76). We hypothesised that a higher outcrossing rate should lead to a higher chance of heterospecific pollination, and we therefore determined the rate of hybrid formation on each species in an artificial mixed population. Hybrid seeds were produced at low frequency (4.5%), and no significant difference was found between the species. It is therefore likely that post-pollination processes influence hybrid seed formation to counteract the expected difference in heterospecific pollen deposition. We checked fruit set, seed set and the rate of autonomous selfing in controlled crosses in the greenhouse in 2 years, and found that fruit set (2003) or seed set (2010) were lower in R. angustifolius × R. minor crosses relative to the reciprocal cross. Hybrid seeds produced on R. angustifolius also had a much lower germination rate, so most of the established F1 hybrid plants have the R. minor cytoplasm. The formation of advanced hybrids depends on pollinator preference, which is biased towards R. angustifolius if present in sufficient numbers, because it offers more rewards.

  11. Fibronectin alters the rate of formation and structure of the fibrin matrix.

    PubMed

    Ramanathan, Anand; Karuri, Nancy

    2014-01-10

    Plasma fibronectin is a vital component of the fibrin clot; however its role on clot structure is not clearly understood. The goal of this study was to examine the influence of fibronectin on the kinetics of formation, structural characteristics and composition of reconstituted fibrin clots or fibrin matrices. Fibrin matrices were formed by adding thrombin to 1, 2 or 4 mg/ml fibrinogen supplemented with 0-0.4 mg/ml fibronectin. The rate of fibrin matrix formation was then monitored by measuring light absorbance properties at different time points. Confocal microscopy of fluorescein conjugated fibrinogen was used to visualize the structural characteristics of fibrin matrices. The amount of fibronectin in fibrin matrices was determined through electrophoresis and immunoblotting of solubilized matrices. Fibronectin concentration positively correlated with the initial rate of fibrin matrix formation and with steady state light absorbance values of fibrin matrices. An increase in fibronectin concentration resulted in thinner and denser fibers in the fibrin matrices. Electrophoresis and immunoblotting showed that fibronectin was covalently and non-covalently bound to fibrin matrices and in the form of high molecular weight multimers. The formation of fibronectin multimers was attributed to cross-linking of fibronectin by trace amounts Factor XIIIa. These findings are novel because they link results from light absorbance studies to microcopy analyses and demonstrate an influence of fibronectin on fibrin matrix structural characteristics. This data is important in developing therapies that destabilize fibrin clots.

  12. High star formation rates as the origin of turbulence in early and modern disk galaxies.

    PubMed

    Green, Andrew W; Glazebrook, Karl; McGregor, Peter J; Abraham, Roberto G; Poole, Gregory B; Damjanov, Ivana; McCarthy, Patrick J; Colless, Matthew; Sharp, Robert G

    2010-10-07

    Observations of star formation and kinematics in early galaxies at high spatial and spectral resolution have shown that two-thirds are massive rotating disk galaxies, with the remainder being less massive non-rotating objects. The line-of-sight-averaged velocity dispersions are typically five times higher than in today's disk galaxies. This suggests that gravitationally unstable, gas-rich disks in the early Universe are fuelled by cold, dense accreting gas flowing along cosmic filaments and penetrating hot galactic gas halos. These accreting flows, however, have not been observed, and cosmic accretion cannot power the observed level of turbulence. Here we report observations of a sample of rare, high-velocity-dispersion disk galaxies in the nearby Universe where cold accretion is unlikely to drive their high star formation rates. We find that their velocity dispersions are correlated with their star formation rates, but not their masses or gas fractions, which suggests that star formation is the energetic driver of galaxy disk turbulence at all cosmic epochs.

  13. GAS REGULATION OF GALAXIES: THE EVOLUTION OF THE COSMIC SPECIFIC STAR FORMATION RATE, THE METALLICITY-MASS-STAR-FORMATION RATE RELATION, AND THE STELLAR CONTENT OF HALOS

    SciTech Connect

    Lilly, Simon J.; Carollo, C. Marcella; Pipino, Antonio; Peng Yingjie; Renzini, Alvio

    2013-08-01

    A very simple physical model of galaxies is one in which the formation of stars is instantaneously regulated by the mass of gas in a reservoir with mass loss scaling with the star-formation rate (SFR). This model links together three different aspects of the evolving galaxy population: (1) the cosmic time evolution of the specific star-formation rate (sSFR) relative to the growth of halos, (2) the gas-phase metallicities across the galaxy population and over cosmic time, and (3) the ratio of the stellar to dark matter mass of halos. The gas regulator is defined by the gas consumption timescale ({epsilon}{sup -1}) and the mass loading {lambda} of the wind outflow {lambda}{center_dot}SFR. The simplest regulator, in which {epsilon} and {lambda} are constant, sets the sSFR equal to exactly the specific accretion rate of the galaxy; more realistic situations lead to an sSFR that is perturbed from this precise relation. Because the gas consumption timescale is shorter than the timescale on which the system evolves, the metallicity Z is set primarily by the instantaneous operation of the regulator system rather than by the past history of the system. The metallicity of the gas reservoir depends on {epsilon}, {lambda}, and sSFR, and the regulator system therefore naturally produces a Z(m{sub star}, SFR) relation if {epsilon} and {lambda} depend on the stellar mass m{sub star}. Furthermore, this relation will be the same at all epochs unless the parameters {epsilon} and {lambda} themselves change with time. A so-called fundamental metallicity relation is naturally produced by these conditions. The overall mass-metallicity relation Z(m{sub star}) directly provides the fraction f{sub star}(m{sub star}) of incoming baryons that are being transformed into stars. The observed Z(m{sub star}) relation of Sloan Digital Sky Survey (SDSS) galaxies implies a strong dependence of stellar mass on halo mass that reconciles the different faint-end slopes of the stellar and halo mass

  14. The effect of clouds on photolysis rates and ozone formation in the unpolluted troposphere

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.

    1984-01-01

    The photochemistry of the lower atmosphere is sensitive to short- and long-term meteorological effects; accurate modeling therefore requires photolysis rates for trace gases which reflect this variability. As an example, the influence of clouds on the production of tropospheric ozone has been investigated, using a modification of Luther's two-stream radiation scheme to calculate cloud-perturbed photolysis rates in a one-dimensional photochemical transport model. In the unpolluted troposphere, where stratospheric inputs of odd nitrogen appear to represent the photochemical source of O3, strong cloud reflectance increases the concentration of NO in the upper troposphere, leading to greatly enhanced rates of ozone formation. Although the rate of these processes is too slow to verify by observation, the calculation is useful in distinguishing some features of the chemistry of regions of differing mean cloudiness.

  15. The Calibration of Mono-Chromatic Infrared Star Formation Rate Indicators

    NASA Astrophysics Data System (ADS)

    Calzetti, Daniela; LVL Team

    2010-01-01

    I will present recent results on the calibration of mono-chromatic (single band) star formation rate indicators using Spitzer data of nearby galaxies from the SINGS and LVL samples. I will discuss not only the range of applicability of each indicator, but also the limitations and caveats. Many of these indicators can have immediate application in surveys of distant galaxies with the Herschel Space Telescope.

  16. In vivo loading increases mechanical properties of scaffold by affecting bone formation and bone resorption rates.

    PubMed

    Roshan-Ghias, Alireza; Lambers, Floor M; Gholam-Rezaee, Mehdi; Müller, Ralph; Pioletti, Dominique P

    2011-12-01

    A successful bone tissue engineering strategy entails producing bone-scaffold constructs with adequate mechanical properties. Apart from the mechanical properties of the scaffold itself, the forming bone inside the scaffold also adds to the strength of the construct. In this study, we investigated the role of in vivo cyclic loading on mechanical properties of a bone scaffold. We implanted PLA/β-TCP scaffolds in the distal femur of six rats, applied external cyclic loading on the right leg, and kept the left leg as a control. We monitored bone formation at 7 time points over 35 weeks using time-lapsed micro-computed tomography (CT) imaging. The images were then used to construct micro-finite element models of bone-scaffold constructs, with which we estimated the stiffness for each sample at all time points. We found that loading increased the stiffness by 60% at 35 weeks. The increase of stiffness was correlated to an increase in bone volume fraction of 18% in the loaded scaffold compared to control scaffold. These changes in volume fraction and related stiffness in the bone scaffold are regulated by two independent processes, bone formation and bone resorption. Using time-lapsed micro-CT imaging and a newly-developed longitudinal image registration technique, we observed that mechanical stimulation increases the bone formation rate during 4-10 weeks, and decreases the bone resorption rate during 9-18 weeks post-operatively. For the first time, we report that in vivo cyclic loading increases mechanical properties of the scaffold by increasing the bone formation rate and decreasing the bone resorption rate.

  17. The impact of gas inflows on star formation rates and metallicities in barred galaxies

    NASA Astrophysics Data System (ADS)

    Ellison, Sara L.; Nair, Preethi; Patton, David R.; Scudder, Jillian M.; Mendel, J. Trevor; Simard, Luc

    2011-09-01

    The star formation rates (SFRs) and metallicities of a sample of 294 galaxies with visually classified, strong, large-scale bars are compared to a control sample of unbarred disc galaxies selected from the Sloan Digital Sky Survey Data Release 4. The fibre (inner few kpc) metallicities of barred galaxies are uniformly higher (at a given mass) than the unbarred sample by ˜0.06 dex. However, the fibre SFRs of the visually classified barred galaxies are higher by about 60 per cent only in the galaxies with total stellar mass M★ > 1010 M⊙. The metal enhancement at M★ < 1010 M⊙ without an accompanying increase in the SFR may be due to a short-lived phase of early bar-triggered star formation in the past, compared to on-going SFR enhancements in higher mass barred galaxies. There is no correlation between bar length or bar axial ratio with the enhancement of the SFR. In order to assess the relative importance of star formation triggered by bars and galaxy-galaxy interactions, SFRs are also determined for a sample of close galaxy pairs. Both mechanisms appear to be similarly effective at triggering central star formation for galaxies with M★ > 1010 M⊙. However, due to the much lower fraction of pairs than bars, bars account for ˜3.5 times more triggered central star formation than interactions.

  18. Surface Brightness Profiles and Star Formation Rates of Galaxies in NRGb054

    NASA Astrophysics Data System (ADS)

    Hansen, Ellen; Koopmann, Rebecca A.; Miller, Brendan; Durbala, Adriana; Fitzgerald, Garrett

    2016-01-01

    We present new optical R and H-alpha images of the galaxy group NRGb054, obtained with the WIYN 0.9m telescope at KPNO using the MOSAIC camera. This group was studied as part of the larger Undergraduate ALFALFA Team project investigating the effects of a group environment on star formation. The stacked H-alpha image was continuum subtracted by the removal of a scaled and stacked R image. Surface photometry was performed on R and continuum-subtracted H-alpha cutouts of 20 covered galaxies to determine the surface brightness as a function of radius. Integrating the continuum-subtracted H-alpha surface brightness profile provides the total star formation within that galaxy, while the shape of the profile illustrates how star formation is spread throughout the galaxy. We provide a catalog of surface brightness profiles and integrated star formation rates for NRGb054. We consider star formation as a function of galaxy-galaxy separation and galaxy location within the group, and discuss our findings in the context of the wider study. This work has been supported by NSF grant AST-1211005.

  19. KMOS3D Reveals Low-level Star Formation Activity in Massive Quiescent Galaxies at 0.7 < z < 2.7

    NASA Astrophysics Data System (ADS)

    Belli, Sirio; Genzel, Reinhard; Förster Schreiber, Natascha M.; Wisnioski, Emily; Wilman, David J.; Wuyts, Stijn; Mendel, J. Trevor; Beifiori, Alessandra; Bender, Ralf; Brammer, Gabriel B.; Burkert, Andreas; Chan, Jeffrey; Davies, Rebecca L.; Davies, Ric; Fabricius, Maximilian; Fossati, Matteo; Galametz, Audrey; Lang, Philipp; Lutz, Dieter; Momcheva, Ivelina G.; Nelson, Erica J.; Saglia, Roberto P.; Tacconi, Linda J.; Tadaki, Ken-ichi; Übler, Hannah; van Dokkum, Pieter

    2017-05-01

    We explore the Hα emission in the massive quiescent galaxies observed by the KMOS3D survey at 0.7 < z < 2.7. The Hα line is robustly detected in 20 out of 120 UVJ-selected quiescent galaxies, and we classify the emission mechanism using the Hα line width and the [N ii]/Hα line ratio. We find that AGNs are likely to be responsible for the line emission in more than half of the cases. We also find robust evidence for star formation activity in nine quiescent galaxies, which we explore in detail. The Hα kinematics reveal rotating disks in five of the nine galaxies. The dust-corrected Hα star formation rates are low (0.2-7 M ⊙ yr-1), and place these systems significantly below the main sequence. The 24 μm-based, infrared luminosities, instead, overestimate the star formation rates. These galaxies present a lower gas-phase metallicity compared to star-forming objects with similar stellar mass, and many of them have close companions. We therefore conclude that the low-level star formation activity in these nine quiescent galaxies is likely to be fueled by inflowing gas or minor mergers, and could be a sign of rejuvenation events. Based on observations collected at the European Southern Observatory under programs 092.A-0091, 093.A-0079, 094.A-0217, 095.A-0047, 096.A-0025, and 097.A-0028.

  20. The rate and latency of star formation in dense, massive clumps in the Milky Way

    NASA Astrophysics Data System (ADS)

    Heyer, M.; Gutermuth, R.; Urquhart, J. S.; Csengeri, T.; Wienen, M.; Leurini, S.; Menten, K.; Wyrowski, F.

    2016-04-01

    Context. Newborn stars form within the localized, high density regions of molecular clouds. The sequence and rate at which stars form in dense clumps and the dependence on local and global environments are key factors in developing descriptions of stellar production in galaxies. Aims: We seek to observationally constrain the rate and latency of star formation in dense massive clumps that are distributed throughout the Galaxy and to compare these results to proposed prescriptions for stellar production. Methods: A sample of 24 μm-based Class I protostars are linked to dust clumps that are embedded within molecular clouds selected from the APEX Telescope Large Area Survey of the Galaxy. We determine the fraction of star-forming clumps, f∗, that imposes a constraint on the latency of star formation in units of a clump's lifetime. Protostellar masses are estimated from models of circumstellar environments of young stellar objects from which star formation rates are derived. Physical properties of the clumps are calculated from 870 μm dust continuum emission and NH3 line emission. Results: Linear correlations are identified between the star formation rate surface density, ΣSFR, and the quantities ΣH2/τff and ΣH2/τcross, suggesting that star formation is regulated at the local scales of molecular clouds. The measured fraction of star forming clumps is 23%. Accounting for star formation within clumps that are excluded from our sample due to 24 μm saturation, this fraction can be as high as 31%, which is similar to previous results. Dense, massive clumps form primarily low mass (<1-2 M⊙) stars with emergent 24 μm fluxes below our sensitivity limit or are incapable of forming any stars for the initial 70% of their lifetimes. The low fraction of star forming clumps in the Galactic center relative to those located in the disk of the Milky Way is verified. Full Tables 2-4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130

  1. Submerged conidiation and product formation by Aspergillus niger at low specific growth rates are affected in aerial developmental mutants.

    PubMed

    Jørgensen, Thomas R; Nielsen, Kristian F; Arentshorst, Mark; Park, Joohae; van den Hondel, Cees A; Frisvad, Jens C; Ram, Arthur F

    2011-08-01

    Exposure to an aerial environment or severe nutrient limitation induces asexual differentiation in filamentous fungi. Submerged cultivation of Aspergillus niger in carbon- and energy-limited retentostat cultures both induces and fuels conidiation. Physiological and transcriptomic analyses have revealed that this differentiation strongly affects product formation. Since conidiation is inherent in the aerial environment, we hypothesized that product formation near zero growth can be influenced by affecting differentiation or development of aerial hyphae in general. To investigate this idea, three developmental mutants (ΔfwnA, scl-1, and scl-2 mutants) that have no apparent vegetative growth defects were cultured in maltose-limited retentostat cultures. The secondary-metabolite profile of the wild-type strain defined flavasperone, aurasperone B, tensidol B, and two so far uncharacterized compounds as associated with conidium formation, while fumonisins B(2), B(4), and B(6) were characteristic of early response to nutrient limitation by the vegetative mycelium. The developmental mutants responded differently to the severe substrate limitation, which resulted in distinct profiles of growth and product formation. fwnA encodes the polyketide synthase responsible for melanin biosynthesis during aerial differentiation, and we show that conidial melanin synthesis in submerged retentostat cultures and aurasperone B production are fwnA dependent. The scl-1 and scl-2 strains are two UV mutants generated in the ΔfwnA background that displayed reduced asexual conidiation and formed sclerotium-like structures on agar plates. The reduced conidiation phenotypes of the scl-1 and scl-2 strains are reflected in the retentostat cultivation and are accompanied by elimination or severely reduced accumulation of secondary metabolites and distinctly enhanced accumulation of extracellular protein. This investigation shows that submerged conidiation and product formation of a mitosporic

  2. 5D imaging via light sheet microscopy reveals cell dynamics during the eye-antenna disc primordium formation in Drosophila

    NASA Astrophysics Data System (ADS)

    Huang, Yu Shan; Ku, Hui Yu; Tsai, Yun Chi; Chang, Chin Hao; Pao, Sih Hua; Sun, Y. Henry; Chiou, Arthur

    2017-03-01

    5D images of engrailed (en) and eye gone (eyg) gene expressions during the course of the eye-antenna disc primordium (EADP) formation of Drosophila embryos from embryonic stages 13 through 16 were recorded via light sheet microscopy and analyzed to reveal the cell dynamics involved in the development of the EADP. Detailed analysis of the time-lapsed images revealed the process of EADP formation and its invagination trajectory, which involved an inversion of the EADP anterior-posterior axis relative to the body. Furthermore, analysis of the en-expression pattern in the EADP provided strong evidence that the EADP is derived from one of the en-expressing head segments.

  3. 5D imaging via light sheet microscopy reveals cell dynamics during the eye-antenna disc primordium formation in Drosophila

    PubMed Central

    Huang, Yu Shan; Ku, Hui Yu; Tsai, Yun Chi; Chang, Chin Hao; Pao, Sih Hua; Sun, Y. Henry; Chiou, Arthur

    2017-01-01

    5D images of engrailed (en) and eye gone (eyg) gene expressions during the course of the eye-antenna disc primordium (EADP) formation of Drosophila embryos from embryonic stages 13 through 16 were recorded via light sheet microscopy and analyzed to reveal the cell dynamics involved in the development of the EADP. Detailed analysis of the time-lapsed images revealed the process of EADP formation and its invagination trajectory, which involved an inversion of the EADP anterior-posterior axis relative to the body. Furthermore, analysis of the en-expression pattern in the EADP provided strong evidence that the EADP is derived from one of the en-expressing head segments. PMID:28322328

  4. OH{sup +} in astrophysical media: state-to-state formation rates, Einstein coefficients and inelastic collision rates with He

    SciTech Connect

    Gómez-Carrasco, Susana; Godard, Benjamin; Lique, François; Bulut, Niyazi; Kłos, Jacek; Roncero, Octavio; Aguado, Alfredo; Aoiz, F. Javier; Castillo, Jesús F.; Goicoechea, Javier R.; Etxaluze, Mireya; Cernicharo, José

    2014-10-10

    The rate constants required to model the OH{sup +} observations in different regions of the interstellar medium have been determined using state of the art quantum methods. First, state-to-state rate constants for the H{sub 2}(v = 0, J = 0, 1) + O{sup +}({sup 4} S) → H + OH{sup +}(X {sup 3}Σ{sup –}, v', N) reaction have been obtained using a quantum wave packet method. The calculations have been compared with time-independent results to assess the accuracy of reaction probabilities at collision energies of about 1 meV. The good agreement between the simulations and the existing experimental cross sections in the 0.01-1 eV energy range shows the quality of the results. The calculated state-to-state rate constants have been fitted to an analytical form. Second, the Einstein coefficients of OH{sup +} have been obtained for all astronomically significant rovibrational bands involving the X {sup 3}Σ{sup –} and/or A {sup 3}Π electronic states. For this purpose, the potential energy curves and electric dipole transition moments for seven electronic states of OH{sup +} are calculated with ab initio methods at the highest level, including spin-orbit terms, and the rovibrational levels have been calculated including the empirical spin-rotation and spin-spin terms. Third, the state-to-state rate constants for inelastic collisions between He and OH{sup +}(X {sup 3}Σ{sup –}) have been calculated using a time-independent close coupling method on a new potential energy surface. All these rates have been implemented in detailed chemical and radiative transfer models. Applications of these models to various astronomical sources show that inelastic collisions dominate the excitation of the rotational levels of OH{sup +}. In the models considered, the excitation resulting from the chemical formation of OH{sup +} increases the line fluxes by about 10% or less depending on the density of the gas.

  5. [First time revealed small formations of lungs (under 2 cm in diameter). Dynamic follow-up or surgery?

    PubMed

    Pavlov, Yu V; Rybin, V K

    To develop the treatment algorithm in patients with first time revealed lung lesions smaller than 2 cm. The study included 110 patients with pathological lung lesions with small dimensions who have been treated in the Burdenko Clinic of Faculty Surgery for the period 1997-2013. All patients underwent surgical removal of lung tissue using different surgical approaches: 44 cases of videothoracoscopic resections, 43 video-assisted minithoracotomies, 23 minithoracotomies. There were 25 patients with lung cancer, 38 cases of benign tumours (hamartoma and tuberculoma) and 10 patients with disseminated tuberculosis thar required special treatment. Small pulmonary formations (from 0.5 to 2 cm) can be removed without morphological verification prior to surgery. Optimal surgical approach should be selected depending on the amount and size of formations. Management of solitary lung formation smaller than 0.5 cm that was newly diagnosed by computed tomography should include dynamic follow-up and performance of computed tomography in 3-6-12 months.

  6. Schottky barrier formation and band bending revealed by first- principles calculations.

    PubMed

    Jiao, Yang; Hellman, Anders; Fang, Yurui; Gao, Shiwu; Käll, Mikael

    2015-06-12

    The formation of a Schottky barrier at the metal-semiconductor interface is widely utilised in semiconductor devices. With the emerging of novel Schottky barrier based nanoelectronics, a further microscopic understanding of this interface is in high demand. Here we provide an atomistic insight into potential barrier formation and band bending by ab initio simulations and model analysis of a prototype Schottky diode, i.e., niobium doped rutile titania in contact with gold (Au/Nb:TiO2). The local Schottky barrier height is found to vary between 0 and 1.26 eV depending on the position of the dopant. The band bending is caused by a dopant induced dipole field between the interface and the dopant site, whereas the pristine Au/TiO2 interface does not show any band bending. These findings open the possibility for atomic scale optimisation of the Schottky barrier and light harvesting in metal-semiconductor nanostructures.

  7. Vacuum-ultraviolet circular dichroism reveals DNA duplex formation between short strands of adenine and thymine.

    PubMed

    Nielsen, Lisbeth Munksgaard; Hoffmann, Søren Vrønning; Brøndsted Nielsen, Steen

    2012-11-21

    Absorbance spectroscopy is used extensively to tell when two DNA single strands come together and form a double strand. Here we show that circular dichroism in the vacuum ultraviolet region provides an even stronger indication for duplex formation in the case of short strands of adenine and thymine (4 to 16 bases in each strand). Indeed, our results show that a strong positive CD band appears at 179 nm when double strands are formed. Melting experiments were done in aqueous solution with and without added Na(+) counter ions. With additional salt present a huge increase in the 179 nm CD band was observed when lowering the temperature. A 179 nm CD marker band for duplex formation can be used to measure the kinetics for the association of two single strands. Such experiments rely on large changes at one particular wavelength since it is too time-consuming to record a full-wavelength spectrum.

  8. Direct observation of mineral–organic composite formation reveals occlusion mechanism

    PubMed Central

    Rae Cho, Kang; Kim, Yi-Yeoun; Yang, Pengcheng; Cai, Wei; Pan, Haihua; Kulak, Alexander N.; Lau, Jolene L.; Kulshreshtha, Prashant; Armes, Steven P.; Meldrum, Fiona C.; De Yoreo, James J.

    2016-01-01

    Manipulation of inorganic materials with organic macromolecules enables organisms to create biominerals such as bones and seashells, where occlusion of biomacromolecules within individual crystals generates superior mechanical properties. Current understanding of this process largely comes from studying the entrapment of micron-size particles in cooling melts. Here, by investigating micelle incorporation in calcite with atomic force microscopy and micromechanical simulations, we show that different mechanisms govern nanoscale occlusion. By simultaneously visualizing the micelles and propagating step edges, we demonstrate that the micelles experience significant compression during occlusion, which is accompanied by cavity formation. This generates local lattice strain, leading to enhanced mechanical properties. These results give new insight into the formation of occlusions in natural and synthetic crystals, and will facilitate the synthesis of multifunctional nanocomposite crystals. PMID:26732046

  9. Direct observation of mineral–organic composite formation reveals occlusion mechanism

    SciTech Connect

    Cho, Kang Rae; Kim, Yi -Yeoun; Yang, Pengcheng; Cai, Wei; Pan, Haihua; Kulak, Alexander N.; Lau, Jolene L.; Kulshreshtha, Prashant; Armes, Steven P.; Meldrum, Fiona C.; De Yoreo, James J.

    2016-01-06

    Manipulation of inorganic materials with organic macromolecules enables organisms to create biominerals such as bones and seashells, where occlusion of biomacromolecules within individual crystals generates superior mechanical properties. Current understanding of this process largely comes from studying the entrapment of micron-size particles in cooling melts. Here, by investigating micelle incorporation in calcite with atomic force microscopy and micromechanical simulations, we show that different mechanisms govern nanoscale occlusion. By simultaneously visualizing the micelles and propagating step edges, we demonstrate that the micelles experience significant compression during occlusion, which is accompanied by cavity formation. This generates local lattice strain, leading to enhanced mechanical properties. Furthermore, these results give new insight into the formation of occlusions in natural and synthetic crystals, and will facilitate the synthesis of multifunctional nanocomposite crystals.

  10. Schottky barrier formation and band bending revealed by first- principles calculations

    PubMed Central

    Jiao, Yang; Hellman, Anders; Fang, Yurui; Gao, Shiwu; Käll, Mikael

    2015-01-01

    The formation of a Schottky barrier at the metal-semiconductor interface is widely utilised in semiconductor devices. With the emerging of novel Schottky barrier based nanoelectronics, a further microscopic understanding of this interface is in high demand. Here we provide an atomistic insight into potential barrier formation and band bending by ab initio simulations and model analysis of a prototype Schottky diode, i.e., niobium doped rutile titania in contact with gold (Au/Nb:TiO2). The local Schottky barrier height is found to vary between 0 and 1.26 eV depending on the position of the dopant. The band bending is caused by a dopant induced dipole field between the interface and the dopant site, whereas the pristine Au/TiO2 interface does not show any band bending. These findings open the possibility for atomic scale optimisation of the Schottky barrier and light harvesting in metal-semiconductor nanostructures. PMID:26065401

  11. Direct observation of mineral–organic composite formation reveals occlusion mechanism

    DOE PAGES

    Cho, Kang Rae; Kim, Yi -Yeoun; Yang, Pengcheng; ...

    2016-01-06

    Manipulation of inorganic materials with organic macromolecules enables organisms to create biominerals such as bones and seashells, where occlusion of biomacromolecules within individual crystals generates superior mechanical properties. Current understanding of this process largely comes from studying the entrapment of micron-size particles in cooling melts. Here, by investigating micelle incorporation in calcite with atomic force microscopy and micromechanical simulations, we show that different mechanisms govern nanoscale occlusion. By simultaneously visualizing the micelles and propagating step edges, we demonstrate that the micelles experience significant compression during occlusion, which is accompanied by cavity formation. This generates local lattice strain, leading to enhancedmore » mechanical properties. Furthermore, these results give new insight into the formation of occlusions in natural and synthetic crystals, and will facilitate the synthesis of multifunctional nanocomposite crystals.« less

  12. Direct observation of mineral-organic composite formation reveals occlusion mechanism

    NASA Astrophysics Data System (ADS)

    Rae Cho, Kang; Kim, Yi-Yeoun; Yang, Pengcheng; Cai, Wei; Pan, Haihua; Kulak, Alexander N.; Lau, Jolene L.; Kulshreshtha, Prashant; Armes, Steven P.; Meldrum, Fiona C.; de Yoreo, James J.

    2016-01-01

    Manipulation of inorganic materials with organic macromolecules enables organisms to create biominerals such as bones and seashells, where occlusion of biomacromolecules within individual crystals generates superior mechanical properties. Current understanding of this process largely comes from studying the entrapment of micron-size particles in cooling melts. Here, by investigating micelle incorporation in calcite with atomic force microscopy and micromechanical simulations, we show that different mechanisms govern nanoscale occlusion. By simultaneously visualizing the micelles and propagating step edges, we demonstrate that the micelles experience significant compression during occlusion, which is accompanied by cavity formation. This generates local lattice strain, leading to enhanced mechanical properties. These results give new insight into the formation of occlusions in natural and synthetic crystals, and will facilitate the synthesis of multifunctional nanocomposite crystals.

  13. Effects of Antimicrobial Peptide Revealed by Simulations: Translocation, Pore Formation, Membrane Corrugation and Euler Buckling

    PubMed Central

    Chen, Licui; Jia, Nana; Gao, Lianghui; Fang, Weihai; Golubovic, Leonardo

    2013-01-01

    We explore the effects of the peripheral and transmembrane antimicrobial peptides on the lipid bilayer membrane by using the coarse grained Dissipative Particle Dynamics simulations. We study peptide/lipid membrane complexes by considering peptides with various structure, hydrophobicity and peptide/lipid interaction strength. The role of lipid/water interaction is also discussed. We discuss a rich variety of membrane morphological changes induced by peptides, such as pore formation, membrane corrugation and Euler buckling. PMID:23579956

  14. Repetition rate dependency of reactive oxygen species formation during femtosecond laser-based cell surgery

    NASA Astrophysics Data System (ADS)

    Baumgart, Judith; Kuetemeyer, Kai; Bintig, Willem; Ngezahayo, Anaclet; Ertmer, Wolfgang; Lubatschowski, Holger; Heisterkamp, Alexander

    2009-09-01

    Femtosecond (fs) laser-based cell surgery is typically done in two different regimes, at kHz or MHz repetition rate. Formation of reactive oxygen species (ROS) is an often predicted effect due to illumination with short laser pulses in biological tissue. We present our study on ROS formation in single cells in response to irradiation with fs laser pulses depending on the repetition rate while focusing into the cell nucleus. We observed a significant increase of ROS concentration directly after manipulation followed by a decrease in both regimes at kHz and MHz repetition rate. In addition, effects of consecutive exposures at MHz and kHz repetition rate and vice versa on ROS production were studied. Irradiation with a MHz pulse train followed by a kHz pulse train resulted in a significantly higher increase of ROS concentration than in the reversed case and often caused cell death. In the presence of the antioxidant ascorbic acid, accumulation of ROS and cell death were strongly reduced. Therefore, addition of antioxidants during fs laser-based cell surgery experiments could be advantageous in terms of suppressing photochemical damage to the cell.

  15. Bar-induced Central Star Formation as Revealed by Integral Field Spectroscopy from CALIFA

    NASA Astrophysics Data System (ADS)

    Lin, Lin; Li, Cheng; He, Yanqin; Xiao, Ting; Wang, Enci

    2017-04-01

    We investigate the recent star formation history (SFH) in the inner region of 57 nearly face-on spiral galaxies selected from the Calar Alto Legacy Integral Field Area (CALIFA) survey. For each galaxy, we use the integral field spectroscopy from CALIFA to obtain two-dimensional maps and radial profiles of three parameters that are sensitive indicators of the recent SFH: the 4000 Å break (D n (4000)), and the equivalent width of Hδ absorption ({EW}({{H}}{δ }A)) and Hα emission (EW(Hα)). We have also performed photometric decomposition of bulge/bar/disk components based on SDSS optical image. We identify a class of 17 “turnover” galaxies for which the central region presents a significant drop in D n (4000), and most of them correspondingly show a central upturn in {EW}({{H}}{δ }A) and EW(Hα). This indicates that the central region of the turnover galaxies has experienced star formation in the past 1–2 Gyr, which makes the bulge younger and more star-forming than surrounding regions. We find that almost all (15/17) of the turnover galaxies are barred, while only half of the barred galaxies in our sample (15/32) are classified as a turnover galaxies. This finding provides strong evidence in support of the theoretical expectation that the bar may drive gas from the disk inward to trigger star formation in the galaxy center, an important channel for the growth/rejuvenation of pseudobulges in disk galaxies.

  16. Optimized Jasmonic Acid Production by Lasiodiplodia theobromae Reveals Formation of Valuable Plant Secondary Metabolites

    PubMed Central

    Eng, Felipe; Haroth, Sven; Feussner, Kirstin; Meldau, Dorothea; Rekhter, Dmitrij; Ischebeck, Till; Brodhun, Florian

    2016-01-01

    Jasmonic acid is a plant hormone that can be produced by the fungus Lasiodiplodia theobromae via submerged fermentation. From a biotechnological perspective jasmonic acid is a valuable feedstock as its derivatives serve as important ingredients in different cosmetic products and in the future it may be used for pharmaceutical applications. The objective of this work was to improve the production of jasmonic acid by L. theobromae strain 2334. We observed that jasmonic acid formation is dependent on the culture volume. Moreover, cultures grown in medium containing potassium nitrate as nitrogen source produced higher amounts of jasmonic acid than analogous cultures supplemented with ammonium nitrate. When cultivated under optimal conditions for jasmonic acid production, L. theobromae secreted several secondary metabolites known from plants into the medium. Among those we found 3-oxo-2-(pent-2-enyl)-cyclopentane-1-butanoic acid (OPC-4) and hydroxy-jasmonic acid derivatives, respectively, suggesting that fungal jasmonate metabolism may involve similar reaction steps as that of plants. To characterize fungal growth and jasmonic acid-formation, we established a mathematical model describing both processes. This model may form the basis of industrial upscaling attempts. Importantly, it showed that jasmonic acid-formation is not associated to fungal growth. Therefore, this finding suggests that jasmonic acid, despite its enormous amount being produced upon fungal development, serves merely as secondary metabolite. PMID:27907207

  17. Optimized Jasmonic Acid Production by Lasiodiplodia theobromae Reveals Formation of Valuable Plant Secondary Metabolites.

    PubMed

    Eng, Felipe; Haroth, Sven; Feussner, Kirstin; Meldau, Dorothea; Rekhter, Dmitrij; Ischebeck, Till; Brodhun, Florian; Feussner, Ivo

    2016-01-01

    Jasmonic acid is a plant hormone that can be produced by the fungus Lasiodiplodia theobromae via submerged fermentation. From a biotechnological perspective jasmonic acid is a valuable feedstock as its derivatives serve as important ingredients in different cosmetic products and in the future it may be used for pharmaceutical applications. The objective of this work was to improve the production of jasmonic acid by L. theobromae strain 2334. We observed that jasmonic acid formation is dependent on the culture volume. Moreover, cultures grown in medium containing potassium nitrate as nitrogen source produced higher amounts of jasmonic acid than analogous cultures supplemented with ammonium nitrate. When cultivated under optimal conditions for jasmonic acid production, L. theobromae secreted several secondary metabolites known from plants into the medium. Among those we found 3-oxo-2-(pent-2-enyl)-cyclopentane-1-butanoic acid (OPC-4) and hydroxy-jasmonic acid derivatives, respectively, suggesting that fungal jasmonate metabolism may involve similar reaction steps as that of plants. To characterize fungal growth and jasmonic acid-formation, we established a mathematical model describing both processes. This model may form the basis of industrial upscaling attempts. Importantly, it showed that jasmonic acid-formation is not associated to fungal growth. Therefore, this finding suggests that jasmonic acid, despite its enormous amount being produced upon fungal development, serves merely as secondary metabolite.

  18. Time series analyses reveal environmental and fisheries controls on Atlantic horse mackerel (Trachurus trachurus) catch rates

    NASA Astrophysics Data System (ADS)

    Leitão, Francisco

    2015-12-01

    Time-series models (Dynamic factorial analyses and; Min/max autocorrelation factor analysis) were used to explore the relative influences of environmental variables and fishing pressure of trawl, seine and artisanal fleets on catch rates on Trachurus trachurus in ICES IXa sub-divisions (IXaCN-North coast; IXa- CS-South coast; IXaS-Algarve, South coast, Algarve). Fishing effort influenced catch rates in all areas with a 2 year lag and fishing pressure for each area was related to specific fleet sectors effort. In IXaCN, winter upwelling (spawning peak) and both summer northerly wind and wind magnitude (outside of the spawning peak) were strongly correlated with catch rates. In IXaCS summer/autumn westerly winds were related with catch rates. Northerly winds in spring, upwelling and SST (winter and autumn) were related with catch rates in IXaS-Algarve. For species with a long spawning season such as horse mackerel, seasonal analyses at broad regional scales can detract from a better understanding of variability in short term sub-stock catch rates. Favorable environmental conditions, even during seasons with low spawning activity can positively affect catch rates. Ignoring the role of regional oceanographic features on the spatial distribution of the sub-stocks when analysing variability in catch rates can lead to poor inferences about the productivity of the populations.

  19. Cryogenian cap carbonates - what do laminar scale investigations reveal about formation?

    NASA Astrophysics Data System (ADS)

    Miller, N. R.; Maupin, C. R.; Partin, J. W.; Quinn, T.; Giddings, J.

    2009-12-01

    Mid- to Late-Neoproterozoic “Cryogenian” cap carbonates are generally regarded as marine chemical sediments rapidly deposited during climatic recoveries from some of Earth’s most extreme glacial intervals, but there is little consensus regarding formation. Many cap successions initiate abruptly above glacigenic strata as finely laminated carbonate (typically dolostone), even in otherwise siliciclastic dominated marine continua, suggesting water mass control and widespread deposition below storm wave base. Cap carbonate units often culminate intervals of ongoing negative δ13C, transitioning to positive δ13C in the higher succession. Considering that fine lamination is a common characteristic among many cap carbonate units in space and time, laminar scale chemostratigraphic investigations may offer insights to modes of formation. Toward this end, we integrate bedding-normal LA-ICP-MS scans and high-resolution C and O isotope stratigraphy, for an array of cap carbonate units spanning “Kaigas”, “Sturtian”, and “Marinoan” post-glacial intervals; namely: Assem Limestone, N. Ethiopia (Nubia); Beck Spring Dolomite and Noonday Dolomite, Death Valley Area (W. Laurentia); Scout Mountain Member of the Pocatello Formation, S. Idaho (W. Laurentia); Tindelpina Shale Member, S. Australia (Adelaide Geosyncline); Rasthof and Keilberg Formations, N. Namibia (Congo Craton); and Mirrasol O’est, Brazil (Sao Francisco Craton). Whole-rock assessments for basal cap samples have δ13C between -4.8 to -1.4‰ and δ18O between -15.5 to -3.1‰. Corresponding PASS-normalized REE patterns show moderate LREE depletion, minor MREE enrichment, and slight HREE depletion. Cap samples from the higher positive δ13C succession (Noonday/Rasthof) display flatter patterns. Laser ablation scans for the Rasthof Fm (basal rhythmite and middle sublittoral microbialite) and Noonday Dolomite show that lamina couplets consist of alternations of comparatively darker organic/terrigenous (Si

  20. Particle number size distribution in the eastern Mediterranean: Formation and growth rates of ultrafine airborne atmospheric particles

    NASA Astrophysics Data System (ADS)

    Kopanakis, I.; Chatoutsidou, S. E.; Torseth, K.; Glytsos, T.; Lazaridis, M.

    2013-10-01

    Particle number concentration was measured between June 2009 and June 2010 at Akrotiri research station in a rural/suburban region of western Crete (Greece). Overall, the available data covered 157 days during the aforementioned period of measurements. The objectives were to study the number size distribution characteristics of ambient aerosols and furthermore to identify new particle formation events and to evaluate particle formation rates and growth rates of the newborn particles. Aerosol particles with mobility diameters between 10 and 1100 nm were measured using a Scanning Mobility Particle Sizer (SMPS) system. Measurements were performed at ambient relative humidities. The median total particle number concentration was 525 #/cm3 whereas the number concentration ranged between 130 #/cm3 and 9597 #/cm3. The average percentage of particles with diameters between 10 nm and 100 nm (N10-100) to total particles was 53% during summer and spring, but reached 80% during winter. Maximum average contribution of nano-particles (10 nm < Dp < 50 nm) to total particles was recorded also in winter and was attributed partly to the effect of local heating. Furthermore, back trajectories (HYSPLIT model) showed that different air mass origins are linked to different levels of particle number concentrations, with higher values associated with air masses passing from polluted areas before reaching the Akrotiri station. Modal analysis of the measured size distribution data revealed a strong nucleation mode during winter (15-25 nm), which can be correlated with emissions from local sources (domestic heating). The nucleation mode was observed also during the spring campaigns and was partly linked to new particle formation events. On the contrary, an accumulation mode (80-120 nm) prevailed in the measurements during summer campaigns, when the station area was influenced by polluted air masses arriving mainly from Eastern Europe. In total, 13 new particle formation events were recorded

  1. Three stages of bubble formation on submerged orifice under constant gas flow rate

    NASA Astrophysics Data System (ADS)

    Yu, Xianxian; Wang, Yiwei; Huang, Chenguang; Du, Tezhuan

    2015-12-01

    Bubble formation is involved in many engineering applications. It is important to understand the dynamics of bubble formation. This work reports experimental and numerical results of bubble formation on submerged orifice under constant gas flow rate. Compressible large eddy simulation combined volume of fluid (VOF) was adopted in simulation and results was validated by experiment. Bubble formation is divided into three stages in this paper, expansion stage, elongation stage and pinch-off stage. In expansion stage, The bubble grows radially due to the incoming gas flux, but the bubble base remains attached to the orifice. But as gas injected, the spherical bubble will go into the elongation stage when the downward resultant force is lager than upward resultant force. And when bubble neck's length is bigger than √2Ro the bubble will go into pinch-off stage. Cylindrical Rayleigh-Plesset equation can be used to describe the pinch-off stage. Uncertain parameter r in it is given reference value in this paper.

  2. Direct measurement of transcription rates reveals multiple mechanisms for configuration of the Arabidopsis ambient temperature response.

    PubMed

    Sidaway-Lee, Kate; Costa, Maria J; Rand, David A; Finkenstadt, Bärbel; Penfield, Steven

    2014-03-03

    Sensing and responding to ambient temperature is important for controlling growth and development of many organisms, in part by regulating mRNA levels. mRNA abundance can change with temperature, but it is unclear whether this results from changes in transcription or decay rates, and whether passive or active temperature regulation is involved. Using a base analog labelling method, we directly measured the temperature coefficient, Q10, of mRNA synthesis and degradation rates of the Arabidopsis transcriptome. We show that for most genes, transcript levels are buffered against passive increases in transcription rates by balancing passive increases in the rate of decay. Strikingly, for temperature-responsive transcripts, increasing temperature raises transcript abundance primarily by promoting faster transcription relative to decay and not vice versa, suggesting a global transcriptional process exists that controls mRNA abundance by temperature. This is partly accounted for by gene body H2A.Z which is associated with low transcription rate Q10, but is also influenced by other marks and transcription factor activities. Our data show that less frequent chromatin states can produce temperature responses simply by virtue of their rarity and the difference between their thermal properties and those of the most common states, and underline the advantages of directly measuring transcription rate changes in dynamic systems, rather than inferring rates from changes in mRNA abundance.

  3. Effects of work hardening rate on formation of nanocrystallized subsurface layer in Cu alloys

    NASA Astrophysics Data System (ADS)

    Sato, Hisashi; Kaneko, Yuya; Watanabe, Yoshimi

    2017-01-01

    The effects of the work hardening rate on the formation of a nanocrystallized subsurface layer by sliding wear for pure Cu and Cu-Ge alloys are investigated. The nanocrystallized subsurface layer is called the wear-induced layer (WIL). The work hardening rates of the Cu-Ge alloys increase with Ge concentration. By sliding wear, the WIL is formed around a worn surface in all the specimens. The thickness of the WIL decreases with increasing Ge concentration. This means that a thinner WIL is formed in a specimen with a higher work hardening rate. The equivalent Hencky strain required to form the WIL is about 5 regardless of the work hardening rate of the specimen. In addition, a larger strain gradient is generated just below the WIL in the specimen with a higher work hardening rate. This decrease in the thickness of the WIL depending on the work hardening rate of the specimen can be explained by the localization of shear deformation around the worn surface.

  4. The formation of zona radiata in Pseudosciaena crocea revealed by light and transmission electron microscopy.

    PubMed

    Ma, Xiao-Xin; Zhu, Jun-Quan; Zhou, Hong; Yang, Wan-Xi

    2012-02-01

    The egg envelope is an essential structure occurring during oogenesis. It plays an important role during the process of fertilization in the large yellow croaker Pseudosciaena crocea. Elucidation of egg envelope formation helps us to understand fertilization mechanisms in teleosts. In the present work, we studied the formation of egg envelope in P. crocea by light microscopy, as well as by transmission and scanning electron microscopy. Four layers exist outside the oocyte plasmalemma, i.e., theca cell layer, basal membrane, granulosa cell layer and zona radiata. According to our observation, zona radiata is a multilaminar structure just like the same structure reported in teleosts, but the origin of this structure is a little different. Before it is formed, a peripheral space filled with different density of vesicles is the place where zona radiata is formed. Zona radiata (Z1) is secreted only by oocyte itself, it belongs to the primary envelope; zona radiata 2 (Z2) and zona radiata 3 (Z3) belong to the secondary envelope, because the two layers are formed after granulosa cells appear, and microvilli participate this process. It is very interesting that Z2 and Z3 are situated between Z1 and the granulosa cell first, but they translocate to the other side of Z1. This microanatomy difference may due to the participation of microvilli. The new finding about egg envelope formation in P. crocea will help us to do further investigation on fertilization mechanisms and will make artificial breeding possible which may contribute to the resource recovery of this species. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Chandra Reveals Heavy Obscuration and Circumnuclear Star Formation in Seyfert 2 Galaxy NGC 4968

    NASA Astrophysics Data System (ADS)

    LaMassa, Stephanie M.; Yaqoob, Tahir; Levenson, N. A.; Boorman, Peter; Heckman, Timothy M.; Gandhi, Poshak; Rigby, Jane R.; Urry, C. Megan; Ptak, Andrew F.

    2017-01-01

    We present the Chandra imaging and spectral analysis of NGC 4968, a nearby (z = 0.00986) Seyfert 2 galaxy. We discover extended (∼1 kpc) X-ray emission in the soft band (0.5–2 keV) that is neither coincident with the narrow line region nor the extended radio emission. Based on spectral modeling, it is linked to on-going star formation (∼2.6–4 M⊙ yr‑1). The soft emission at circumnuclear scales (inner ∼400 pc) originates from hot gas, with kT ∼ 0.7 keV, while the most extended thermal emission is cooler (kT ∼ 0.3 keV). We refine previous measurements of the extreme Fe Kα equivalent width in this source ({EW}={2.5}-1.0+2.6 {keV}), which suggests the central engine is completely embedded within Compton-thick levels of obscuration. Using physically motivated models fit to the Chandra spectrum, we derive a Compton-thick column density (NH > 1.25 × 1024 cm‑2) and an intrinsic hard (2–10 keV) X-ray luminosity of ∼3–8 × 1042 erg s‑1 (depending on the presumed geometry of the obscurer), which is over two orders of magnitude larger than that observed. The large Fe Kα EW suggests a spherical covering geometry, which could be confirmed with X-ray measurements above 10 keV. NGC 4968 is similar to other active galaxies that exhibit extreme Fe Kα EWs (i.e., >2 keV) in that they also contain on-going star formation. This work supports the idea that gas associated with nuclear star formation may increase the covering factor of the enshrouding gas and play a role in obscuring active galactic nuclei.

  6. Alternative pathways for Escherichia coli biofilm formation revealed by sRNA overproduction.

    PubMed

    Parker, Ashley; Cureoglu, Suanur; De Lay, Nicholas; Majdalani, Nadim; Gottesman, Susan

    2017-07-01

    Small regulatory RNAs have major roles in many regulatory circuits in Escherichia coli and other bacteria, including the transition from planktonic to biofilm growth. We tested Hfq-dependent sRNAs in E. coli for their ability, when overproduced, to inhibit or stimulate biofilm formation, in two different growth media. We identify two mutually exclusive pathways for biofilm formation. In LB, PgaA, encoding an adhesion export protein, played a critical role; biofilm was independent of the general stress factor RpoS or CsgD, regulator of curli and other biofilm genes. The PgaA-dependent pathway was stimulated upon overproduction of DsrA, via negative regulation of H-NS, or of GadY, likely by titration of CsrA. In yeast extract casamino acids (YESCA) media, biofilm was dependent on RpoS and CsgD, but independent of PgaA; RpoS appears to indirectly negatively regulate the PgaA-dependent pathway in YESCA medium. Deletions of most sRNAs had very little effect on biofilm, although deletion of hfq, encoding an RNA chaperone, was defective in both LB and YESCA. Deletion of ArcZ, a small RNA activator of RpoS, decreased biofilm in YESCA; only a portion of this defect could be bypassed by overproduction of RpoS. Overall, sRNAs highlight different pathways to biofilm formation. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  7. Local shear texture formation in adiabatic shear bands by high rate compression of high manganese TRIP steels

    NASA Astrophysics Data System (ADS)

    Li, J.; Yang, P.; Mao, W. M.; Cui, F. E.

    2015-04-01

    Local shear textures in ASBs of high manganese TRIP steels under high rate straining are determined and the influences of initial microstructure is analyzed using EBSD technique. It is seen that even at the presence of majority of two types of martensite before deformation, ASB is preferred to evolve in austenite, rather than in martenite, due to reverse transformation. Ultrafine grains of thress phases due to dynamic recrystallization are formed and all show shear textures. The less ε-martensite in ASB is distributed as islands and its preferred orientation can be found to originate from the variants in matrix. The grain orientation rotation around ASB in multi-phase alloy reveals significant influence of α'- martensite on texture in ASB. The mechanism of local texture formation in ASB of high manganese TRIP steel is proposed in terms of the interaction of early TRIP and later reverse transformation.

  8. Comparative genomics reveals convergent rates of evolution in ant–plant mutualisms

    PubMed Central

    Rubin, Benjamin E. R.; Moreau, Corrie S.

    2016-01-01

    Symbiosis—the close and often long-term interaction of species—is predicted to drive genome evolution in a variety of ways. For example, parasitic interactions have been shown to increase rates of molecular evolution, a trend generally attributed to the Red Queen Hypothesis. However, it is much less clear how mutualisms impact the genome, as both increased and reduced rates of change have been predicted. Here we sequence the genomes of seven species of ants, three that have convergently evolved obligate plant–ant mutualism and four closely related species of non-mutualists. Comparing these sequences, we investigate how genome evolution is shaped by mutualistic behaviour. We find that rates of molecular evolution are higher in the mutualists genome wide, a characteristic apparently not the result of demography. Our results suggest that the intimate relationships of obligate mutualists may lead to selective pressures similar to those seen in parasites, thereby increasing rates of evolution. PMID:27557866

  9. Comparative genomics reveals convergent rates of evolution in ant-plant mutualisms.

    PubMed

    Rubin, Benjamin E R; Moreau, Corrie S

    2016-08-25

    Symbiosis-the close and often long-term interaction of species-is predicted to drive genome evolution in a variety of ways. For example, parasitic interactions have been shown to increase rates of molecular evolution, a trend generally attributed to the Red Queen Hypothesis. However, it is much less clear how mutualisms impact the genome, as both increased and reduced rates of change have been predicted. Here we sequence the genomes of seven species of ants, three that have convergently evolved obligate plant-ant mutualism and four closely related species of non-mutualists. Comparing these sequences, we investigate how genome evolution is shaped by mutualistic behaviour. We find that rates of molecular evolution are higher in the mutualists genome wide, a characteristic apparently not the result of demography. Our results suggest that the intimate relationships of obligate mutualists may lead to selective pressures similar to those seen in parasites, thereby increasing rates of evolution.

  10. Late Cenozoic Himalayan Erosion Rates Revealed by Cosmogenic Isotopes in Foreland Sediments, Northern India

    NASA Astrophysics Data System (ADS)

    Scherler, D.; Barnes, J. B.; Insel, N.; Densmore, A.

    2015-12-01

    Most surface processes that transport sediment are influenced by climate. For example, more rainfall enhances runoff and stream capacity, and colder temperatures expand glaciers at the expense of rivers. Late Cenozoic cooling and glacial cycles during the Quaternary should thus have affected erosion of the Earth's surface. But whether these changes were also associated with an overall increase of erosion rates is not clear. Here, we assess the erosional response of the fluvial-dominated Yamuna catchment in the Garhwal Himalaya, northern India, to late Cenozoic cooling and Quaternary climatic oscillations. Our approach is to measure cosmogenic radionuclide (10Be) concentrations in fluvial sediments (n = 14) eroded from uplifting foreland deposits and compare them with modelled concentrations for different paleo-erosion rate scenarios. This approach differs from previous ones that determine paleo-erosion rates from 10Be concentrations in distinct samples from stratigraphic sections, and avoids misinterpreting short-term fluctuations in 10Be concentrations that are unrelated to erosion rates. We tested this approach in the Mohand Range in northwest India, where Miocene to Quaternary deposits of the paleo-Yamuna River are actively uplifting, and where a robust kinematic model and published stratigraphic age constraints exist. Our model free parameters are the shortening rate across the Main Frontal Thrust (MFT) and the onset of shortening, within a known amount of total MFT slip (4-5 km). Preliminary results show that we can reproduce the measured 10Be concentrations best when Himalayan erosion rates were lower in the past than they are now, or have been increasing towards the present. Within uncertainties, the best-fit parameter combinations give shortening rates between 10 and 20 mm/yr, which is consistent with independent estimates from a nearby dated strath terrace and expected uplift rates based on channel steepness indices. Scenarios in which erosion rates are

  11. Genome-wide investigation reveals high evolutionary rates in annual model plants

    PubMed Central

    2010-01-01

    Background Rates of molecular evolution vary widely among species. While significant deviations from molecular clock have been found in many taxa, effects of life histories on molecular evolution are not fully understood. In plants, annual/perennial life history traits have long been suspected to influence the evolutionary rates at the molecular level. To date, however, the number of genes investigated on this subject is limited and the conclusions are mixed. To evaluate the possible heterogeneity in evolutionary rates between annual and perennial plants at the genomic level, we investigated 85 nuclear housekeeping genes, 10 non-housekeeping families, and 34 chloroplast genes using the genomic data from model plants including Arabidopsis thaliana and Medicago truncatula for annuals and grape (Vitis vinifera) and popular (Populus trichocarpa) for perennials. Results According to the cross-comparisons among the four species, 74-82% of the nuclear genes and 71-97% of the chloroplast genes suggested higher rates of molecular evolution in the two annuals than those in the two perennials. The significant heterogeneity in evolutionary rate between annuals and perennials was consistently found both in nonsynonymous sites and synonymous sites. While a linear correlation of evolutionary rates in orthologous genes between species was observed in nonsynonymous sites, the correlation was weak or invisible in synonymous sites. This tendency was clearer in nuclear genes than in chloroplast genes, in which the overall evolutionary rate was small. The slope of the regression line was consistently lower than unity, further confirming the higher evolutionary rate in annuals at the genomic level. Conclusions The higher evolutionary rate in annuals than in perennials appears to be a universal phenomenon both in nuclear and chloroplast genomes in the four dicot model plants we investigated. Therefore, such heterogeneity in evolutionary rate should result from factors that have genome

  12. Star formation at low rates - the impact of lacking massive stars on stellar feedback

    NASA Astrophysics Data System (ADS)

    Hensler, Gerhard; Steyrleithner, Patrick; Recchi, Simone

    2017-03-01

    Due to their low masses dwarf galaxies experience low star-formation rates resulting in stellar cluster masses insufficient to fill the initial mass function (IMF) to the uppermost mass. Numerical simulations usually do not account for the completeness of the IMF, but treat a filed IMF by numbers, masses, and stellar feedback by fractions. To ensure that only entire stars are formed, we consider an IMF filled from the lower-mass regime and truncated where at least one entire massive star is formed. By 3D simulations we investigate the effects of two possible IMFs on the evolution of dwarf galaxies: filled vs. truncated IMF. For the truncated IMF the star-formation self-regulation is suppressed, while the energy release by typeII supernovae is larger, both compared to the filled IMF. Moreover, the abundance ratios of particular elements yielded from massive and intermediate-mass stars differ significantly between the two IMF distributions.

  13. Star Formation Rate and Gas Relations in the Arp 299 Merger from the VIXENS Survey

    NASA Astrophysics Data System (ADS)

    Heiderman, Amanda; Evans, Neal J.; Gebhardt, Karl; Blanc, Guillermo; Davis, Timothy; Papovich, Casey; van den Bosch, Remco; Iono, Daisuke; Yun, Min S.

    2015-08-01

    We highlight first results from the VIRUS-P Investigation of the eXtreme ENvironments of Starbursts (VIXENS) integral field unit survey. We investigate the relationship between star formation and gas content in late interaction phase merger Arp 299 from VIXENS. By comparing Hα, Paα, and 24μm images to CO(2→1), CO(3→2), HCN(1→0), HCO+(1→0), and HI maps, we explore the relation between the star formation rate and gas surface densities on spatially resolved ~kpc scales. We find that the SFR-gas relations for Arp 299 are discrepant from known extragalactic spatially resolved relations in nearby spiral galaxies and disk-averaged relations in high-z mergers.

  14. Negative ion formation by Rydberg electron transfer: Isotope-dependent rate constants

    SciTech Connect

    Carman, H.S. Jr.; Klots, C.E.; Compton, R.N.

    1991-01-01

    The formation of negative ions during collisions of rubidium atoms in selected ns and nd Rydberg states with carbon disulfide molecules has been studied for a range of effective principal quantum numbers (10 {le} n* {le} 25). For a narrow range of n* near n* = 17, rate constants for CS{sub 2}{sup {minus}} formation are found to depend upon the isotopic composition of the molecule, producing a negative ion isotope ratio (mass 78 to mass 76, amu) up to 10.5 times larger than the natural abundance ratio of CS{sub 2} isotopes in the reagent. The isotope ratio is found to depend strongly upon the initial quantum state of the Rydberg atom and perhaps upon the collision energy and CS{sub 2} temperature. 32 refs., 5 figs., 1 tab.

  15. Bifurcation and neck formation as a precursor to ductile fracture during high rate extension

    SciTech Connect

    Freund, L.B.; Soerensen, N.J.

    1997-12-31

    A block of ductile material, typically a segment of a plate or shell, being deformed homogeneously in simple plane strain extension commonly undergoes a bifurcation in deformation mode to nonuniform straining in the advanced stages of plastic flow. The focus here is on the influence of material inertia on the bifurcation process, particularly on the formation of diffuse necks as precursors to dynamic ductile fracture. The issue is considered from two points of view, first within the context of the theory of bifurcation of rate-independent, incrementally linear materials and then in terms of the complete numerical solution of a boundary value problem for an elastic-viscoplastic material. It is found that inertia favors the formation of relatively short wavelength necks as observed in shaped charge break-up and dynamic fragmentation.

  16. Transcriptome sequencing reveals genome-wide variation in molecular evolutionary rate among ferns.

    PubMed

    Grusz, Amanda L; Rothfels, Carl J; Schuettpelz, Eric

    2016-08-30

    Transcriptomics in non-model plant systems has recently reached a point where the examination of nuclear genome-wide patterns in understudied groups is an achievable reality. This progress is especially notable in evolutionary studies of ferns, for which molecular resources to date have been derived primarily from the plastid genome. Here, we utilize transcriptome data in the first genome-wide comparative study of molecular evolutionary rate in ferns. We focus on the ecologically diverse family Pteridaceae, which comprises about 10 % of fern diversity and includes the enigmatic vittarioid ferns-an epiphytic, tropical lineage known for dramatically reduced morphologies and radically elongated phylogenetic branch lengths. Using expressed sequence data for 2091 loci, we perform pairwise comparisons of molecular evolutionary rate among 12 species spanning the three largest clades in the family and ask whether previously documented heterogeneity in plastid substitution rates is reflected in their nuclear genomes. We then inquire whether variation in evolutionary rate is being shaped by genes belonging to specific functional categories and test for differential patterns of selection. We find significant, genome-wide differences in evolutionary rate for vittarioid ferns relative to all other lineages within the Pteridaceae, but we recover few significant correlations between faster/slower vittarioid loci and known functional gene categories. We demonstrate that the faster rates characteristic of the vittarioid ferns are likely not driven by positive selection, nor are they unique to any particular type of nucleotide substitution. Our results reinforce recently reviewed mechanisms hypothesized to shape molecular evolutionary rates in vittarioid ferns and provide novel insight into substitution rate variation both within and among fern nuclear genomes.

  17. Proteome Analysis of Streptococcus thermophilus Grown in Milk Reveals Pyruvate Formate-Lyase as the Major Upregulated Protein

    PubMed Central

    Derzelle, Sylviane; Bolotin, Alexander; Mistou, Michel-Yves; Rul, Françoise

    2005-01-01

    We investigated the adaptation to milk of Streptococcus thermophilus LMG18311 using a proteomic approach. Two-dimensional electrophoresis of cytosolic proteins were performed after growth in M17 medium or in milk. A major modification of the proteome concerned proteins involved in the supply of amino acids, like the peptidase PepX, and several enzymes involved in amino acid biosynthesis. In parallel, we observed the upregulation of the synthesis of seven enzymes directly involved in the synthesis of purines, as well as formyl-tetrahydrofolate (THF) synthetase and serine hydroxy-methyl transferase, two enzymes responsible for the synthesis of compounds (THF and glycine, respectively) feeding the purine biosynthetic pathway. The analysis also revealed a massive increase in the synthesis of pyruvate formate-lyase (PFL), the enzyme which converts pyruvate into acetyl coenzyme A and formate. PFL has been essentially studied for its role in mixed-acid product formation in lactic acid bacteria during anaerobic fermentation. However, formate is an important methyl group donor for anabolic pathway through the formation of folate derivates. We hypothesized that PFL was involved in purine biosynthesis during growth in milk. We showed that PFL expression was regulated at the transcriptional level and that pfl transcription occurred during the exponential growth phase in milk. The complementation of milk with formate or purine bases was shown to reduce pfl expression, to suppress PFL synthesis, and to stimulate growth of S. thermophilus. These results show a novel regulatory mechanism controlling the synthesis of PFL and suggest an unrecognized physiological role for PFL as a formate supplier for anabolic purposes. PMID:16332852

  18. Mechanisms of endoderm formation in a cartilaginous fish reveal ancestral and homoplastic traits in jawed vertebrates.

    PubMed

    Godard, Benoit G; Coolen, Marion; Le Panse, Sophie; Gombault, Aurélie; Ferreiro-Galve, Susana; Laguerre, Laurent; Lagadec, Ronan; Wincker, Patrick; Poulain, Julie; Da Silva, Corinne; Kuraku, Shigehiro; Carre, Wilfrid; Boutet, Agnès; Mazan, Sylvie

    2014-10-31

    In order to gain insight into the impact of yolk increase on endoderm development, we have analyzed the mechanisms of endoderm formation in the catshark S. canicula, a species exhibiting telolecithal eggs and a distinct yolk sac. We show that in this species, endoderm markers are expressed in two distinct tissues, the deep mesenchyme, a mesenchymal population of deep blastomeres lying beneath the epithelial-like superficial layer, already specified at early blastula stages, and the involuting mesendoderm layer, which appears at the blastoderm posterior margin at the onset of gastrulation. Formation of the deep mesenchyme involves cell internalizations from the superficial layer prior to gastrulation, by a movement suggestive of ingressions. These cell movements were observed not only at the posterior margin, where massive internalizations take place prior to the start of involution, but also in the center of the blastoderm, where internalizations of single cells prevail. Like the adjacent involuting mesendoderm, the posterior deep mesenchyme expresses anterior mesendoderm markers under the control of Nodal/activin signaling. Comparisons across vertebrates support the conclusion that endoderm is specified in two distinct temporal phases in the catshark as in all major osteichthyan lineages, in line with an ancient origin of a biphasic mode of endoderm specification in gnathostomes. They also highlight unexpected similarities with amniotes, such as the occurrence of cell ingressions from the superficial layer prior to gastrulation. These similarities may correspond to homoplastic traits fixed separately in amniotes and chondrichthyans and related to the increase in egg yolk mass.

  19. Mechanisms of endoderm formation in a cartilaginous fish reveal ancestral and homoplastic traits in jawed vertebrates

    PubMed Central

    Godard, Benoit G.; Coolen, Marion; Le Panse, Sophie; Gombault, Aurélie; Ferreiro-Galve, Susana; Laguerre, Laurent; Lagadec, Ronan; Wincker, Patrick; Poulain, Julie; Da Silva, Corinne; Kuraku, Shigehiro; Carre, Wilfrid; Boutet, Agnès; Mazan, Sylvie

    2014-01-01

    ABSTRACT In order to gain insight into the impact of yolk increase on endoderm development, we have analyzed the mechanisms of endoderm formation in the catshark S. canicula, a species exhibiting telolecithal eggs and a distinct yolk sac. We show that in this species, endoderm markers are expressed in two distinct tissues, the deep mesenchyme, a mesenchymal population of deep blastomeres lying beneath the epithelial-like superficial layer, already specified at early blastula stages, and the involuting mesendoderm layer, which appears at the blastoderm posterior margin at the onset of gastrulation. Formation of the deep mesenchyme involves cell internalizations from the superficial layer prior to gastrulation, by a movement suggestive of ingressions. These cell movements were observed not only at the posterior margin, where massive internalizations take place prior to the start of involution, but also in the center of the blastoderm, where internalizations of single cells prevail. Like the adjacent involuting mesendoderm, the posterior deep mesenchyme expresses anterior mesendoderm markers under the control of Nodal/activin signaling. Comparisons across vertebrates support the conclusion that endoderm is specified in two distinct temporal phases in the catshark as in all major osteichthyan lineages, in line with an ancient origin of a biphasic mode of endoderm specification in gnathostomes. They also highlight unexpected similarities with amniotes, such as the occurrence of cell ingressions from the superficial layer prior to gastrulation. These similarities may correspond to homoplastic traits fixed separately in amniotes and chondrichthyans and related to the increase in egg yolk mass. PMID:25361580

  20. Distribution of star formation rates during the rapid assembly of NGC 1399 as deduced from its globular cluster system

    NASA Astrophysics Data System (ADS)

    Schulz, C.; Hilker, M.; Kroupa, P.; Pflamm-Altenburg, J.

    2016-10-01

    Ultra-compact dwarf galaxies (UCDs) share many properties with globular clusters (GCs) and are found in similar environments. Here, a large sample of UCDs and GCs around NGC 1399, the central giant elliptical of the Fornax galaxy cluster, is used to infer their formation history and also to shed light on the formation of NGC 1399 itself. We assumed that all GCs and UCDs in our sample are the result of star cluster (SC) formation processes and used them as tracers of past star formation activities. After correcting our GC/UCD sample for mass loss, we interpreted their overall mass function to be a superposition of SC populations that formed coevally during different formation epochs. The SC masses of each population were distributed according to the embedded cluster mass function (ECMF), a pure power law with the slope - β. Each ECMF was characterized by a stellar upper mass limit, Mmax, which depended on the star formation rate (SFR). We decomposed the observed GC/UCD mass function into individual SC populations and converted Mmax of each SC population to an SFR. The overall distribution of SFRs reveals under which conditions the GC/UCD sample around NGC 1399 formed. Considering the constraints set by the age of the GCs/UCDs and the present stellar mass of NGC 1399, we found that the formation of the GCs/UCDs can be well explained within our framework with values for β below 2.3. This finding agrees very well with the observation of young SCs where β ≈ 2.0 is usually found. Even though we took into account that some of the most massive objects might not be genuine SCs and applied different corrections for the mass loss, we found that these considerations do not influence much the outcome. We derived the peak SFRs to be between approximately 300 and 3000 M⊙ yr-1, which matches the SFRs observed in massive high-redshift sub-millimeter galaxies and an SFR estimate inferred from NGC 1399 based on the so-called downsizing picture, meaning that more massive

  1. Changes in the halo formation rates due to features in the primordial spectrum

    SciTech Connect

    Hazra, Dhiraj Kumar

    2013-03-01

    Features in the primordial scalar power spectrum provide a possible roadway to describe the outliers at the low multipoles in the WMAP data. Apart from the CMB angular power spectrum, these features can also alter the matter power spectrum and, thereby, the formation of the large scale structure. Carrying out a complete numerical analysis, we investigate the effects of primordial features on the formation rates of the halos. We consider a few different inflationary models that lead to features in the scalar power spectrum and an improved fit to the CMB data, and analyze the corresponding imprints on the formation of halos. Performing a Markov Chain Monte Carlo analysis with the WMAP seven year data and the SDSS halo power spectrum from LRG DR7 for the models of our interest, we arrive at the parameter space of the models allowed by the data. We illustrate that, inflationary potentials, such as the quadratic potential with sinusoidal modulations and the axion monodromy model, which generate certain repeated, oscillatory features in the inflationary perturbation spectrum, do not induce a substantial difference in the number density of halos at their best fit values, when compared with, say, a nearly scale invariant spectrum as is generated by the standard quadratic potential. However, we find that the number density and the formation rates of halos change by about 13–22% for halo masses ranging over 10{sup 4}–10{sup 14} M{sub s}un, for potential parameters that lie within 2-σ around the best fit values arrived at from the aforesaid joint constraints. We briefly discuss the implications of our results.

  2. Changes in the halo formation rates due to features in the primordial spectrum

    NASA Astrophysics Data System (ADS)

    Hazra, Dhiraj Kumar

    2013-03-01

    Features in the primordial scalar power spectrum provide a possible roadway to describe the outliers at the low multipoles in the WMAP data. Apart from the CMB angular power spectrum, these features can also alter the matter power spectrum and, thereby, the formation of the large scale structure. Carrying out a complete numerical analysis, we investigate the effects of primordial features on the formation rates of the halos. We consider a few different inflationary models that lead to features in the scalar power spectrum and an improved fit to the CMB data, and analyze the corresponding imprints on the formation of halos. Performing a Markov Chain Monte Carlo analysis with the WMAP seven year data and the SDSS halo power spectrum from LRG DR7 for the models of our interest, we arrive at the parameter space of the models allowed by the data. We illustrate that, inflationary potentials, such as the quadratic potential with sinusoidal modulations and the axion monodromy model, which generate certain repeated, oscillatory features in the inflationary perturbation spectrum, do not induce a substantial difference in the number density of halos at their best fit values, when compared with, say, a nearly scale invariant spectrum as is generated by the standard quadratic potential. However, we find that the number density and the formation rates of halos change by about 13-22% for halo masses ranging over 104-1014 Msolar, for potential parameters that lie within 2-σ around the best fit values arrived at from the aforesaid joint constraints. We briefly discuss the implications of our results.

  3. Rate constants for the formation of SiO by radiative association

    NASA Astrophysics Data System (ADS)

    Cairnie, M.; Forrey, R. C.; Babb, J. F.; Stancil, P. C.; McLaughlin, B. M.

    2017-10-01

    Accurate molecular data for the low-lying states of SiO are computed and used to calculate rate constants for radiative association (RA) of Si and O. Einstein A-coefficients are also calculated for transitions between all of the bound and quasi-bound levels for each molecular state. The radiative widths are used together with elastic tunnelling widths to define effective RA rate constants which include both direct and indirect (inverse pre-dissociation) formation processes. The indirect process is evaluated for two kinetic models which represent limiting cases for astrophysical environments. The first case scenario assumes an equilibrium distribution of quasi-bound states and would be applicable whenever collisional and/or radiative excitation mechanisms are able to maintain the population. The second case scenario assumes that no excitation mechanisms are available which corresponds to the limit of zero radiation temperature and zero atomic density. Rate constants for SiO formation in realistic astrophysical environments would presumably lie between these two limiting cases.

  4. Analysis of carrier gas flow rate effect on hydroxyapatite particle formation in ultrasonic spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Widiyastuti, W.; Setiawan, Adhi; Nurtono, Tantular; Winardi, Sugeng

    2016-02-01

    Ultrasonic spray pyrolysis has been well-known process for producing fine particles from single and multicomponent materials. Here, the effect of carrier gas flow rate in ultrasonic spray pyrolysis process was studied in the particle formation of hydroxyapatite using solution precursor of Ca(CH3COO)2 and (NH4)2HPO4 with Ca/P ratio of 1.67. The experimental analysis was accompanied with computational fluid dynamics (CFD) simulation for comparison. In the simulation, the evaporation of the solvent in the droplets, a second evaporation due to crust formation, the decomposition reaction of the precursor involving the transfer of heat and mass transfer from droplet to surrounding were considered. By maintaining temperature at 900 °C, the residence time increased with decreasing the carrier gas flow rate led to the increasing the evaporation rate and the reacted fraction of the precursor. The predicted and experimental results of average particles size were agreed well with discrepancy 6.3%.

  5. Concerted simulations reveal how peroxidase compound III formation results in cellular oscillations.

    PubMed

    Gabdoulline, Razif R; Kummer, Ursula; Olsen, Lars F; Wade, Rebecca C

    2003-09-01

    A major problem in mathematical modeling of the dynamics of complex biological systems is the frequent lack of knowledge of kinetic parameters. Here, we apply Brownian dynamics simulations, based on protein three-dimensional structures, to estimate a previously undetermined kinetic parameter, which is then used in biochemical network simulations. The peroxidase-oxidase reaction involves many elementary steps and displays oscillatory dynamics important for immune response. Brownian dynamics simulations were performed for three different peroxidases to estimate the rate constant for one of the elementary steps crucial for oscillations in the peroxidase-oxidase reaction, the association of superoxide with peroxidase. Computed second-order rate constants agree well with available experimental data and permit prediction of rate constants at physiological conditions. The simulations show that electrostatic interactions depress the rate of superoxide association with myeloperoxidase, bringing it into the range necessary for oscillatory behavior in activated neutrophils. Such negative electrostatic steering of enzyme-substrate association presents a novel control mechanism and lies in sharp contrast to the electrostatically-steered fast association of superoxide and Cu/Zn superoxide dismutase, which is also simulated here. The results demonstrate the potential of an integrated and concerted application of structure-based simulations and biochemical network simulations in cellular systems biology.

  6. Concerted Simulations Reveal How Peroxidase Compound III Formation Results in Cellular Oscillations

    PubMed Central

    Gabdoulline, Razif R.; Kummer, Ursula; Olsen, Lars F.; Wade, Rebecca C.

    2003-01-01

    A major problem in mathematical modeling of the dynamics of complex biological systems is the frequent lack of knowledge of kinetic parameters. Here, we apply Brownian dynamics simulations, based on protein three-dimensional structures, to estimate a previously undetermined kinetic parameter, which is then used in biochemical network simulations. The peroxidase-oxidase reaction involves many elementary steps and displays oscillatory dynamics important for immune response. Brownian dynamics simulations were performed for three different peroxidases to estimate the rate constant for one of the elementary steps crucial for oscillations in the peroxidase-oxidase reaction, the association of superoxide with peroxidase. Computed second-order rate constants agree well with available experimental data and permit prediction of rate constants at physiological conditions. The simulations show that electrostatic interactions depress the rate of superoxide association with myeloperoxidase, bringing it into the range necessary for oscillatory behavior in activated neutrophils. Such negative electrostatic steering of enzyme-substrate association presents a novel control mechanism and lies in sharp contrast to the electrostatically-steered fast association of superoxide and Cu/Zn superoxide dismutase, which is also simulated here. The results demonstrate the potential of an integrated and concerted application of structure-based simulations and biochemical network simulations in cellular systems biology. PMID:12944259

  7. Vacuum ultraviolet photolysis of hydrogenated amorphous carbons . I. Interstellar H2 and CH4 formation rates

    NASA Astrophysics Data System (ADS)

    Alata, I.; Cruz-Diaz, G. A.; Muñoz Caro, G. M.; Dartois, E.

    2014-09-01

    Context. The interstellar hydrogenated amorphous carbons (HAC or a-C:H) observed in the diffuse medium are expected to disappear in a few million years, according to the destruction time scale from laboratory measurements. The existence of a-C:H results from the equilibrium between photodesorption, radiolysis, hydrogenation and resilience of the carbonaceous network. During this processing, many species are therefore injected into the gas phase, in particular H2, but also small organic molecules, radicals or fragments. Aims: We perform experiments on interstellar a-C:H analogs to quantify the release of these species in the interstellar medium. Methods: The vacuum ultraviolet (VUV) photolysis of interstellar hydrogenated amorphous carbon analogs was performed at low (10 K) to ambient temperature, coupled to mass-spectrometry detection and temperature-programed desorption. Using deuterium isotopic substitution, the species produced were unambiguously separated from background contributions. Results: The VUV photolysis of hydrogenated amorphous carbons leads to the efficient production of H2 molecules, but also to small hydrocarbons. Conclusions: These species are formed predominantly in the bulk of the a-C:H analog carbonaceous network, in addition to the surface formation. Compared with species made by the recombination of H atoms and physisorbed on surfaces, they diffuse out at higher temperatures. In addition to the efficient production rate, it provides a significant formation route in environments where the short residence time scale for H atoms inhibits H2 formation on the surface, such as PDRs. The photolytic bulk production of H2 with carbonaceous hydrogenated amorphous carbon dust grains can provide a very large portion of the contribution to the H2 molecule formation. These dust grains also release small hydrocarbons (such as CH4) into the diffuse interstellar medium, which contribute to the formation of small carbonaceous radicals after being dissociated

  8. Effect of cooling rate on the crystal polymorphism in beta-nucleated isotactic polypropylene as revealed by a combined WAXS/FSC analysis

    NASA Astrophysics Data System (ADS)

    Rhoades, Alicyn Marie; Wonderling, Nichole; Gohn, Anne; Williams, Jason; Mileva, Daniela; Gahleitner, Markus; Androsch, René

    2016-05-01

    The efficiency of γ-quinacridone to nucleate β-crystal formation in isotactic polypropylene (iPP) at rapid cooling has been evaluated by a combination of fast scanning chip calorimetry (FSC) and wide-angle X-ray scattering (WAXS). For samples with different amount of γ-quinacridone, FSC experiments revealed information about a critical cooling rate above which the crystallization temperature decreases to below 105 °C, that is, to temperatures at which the growth rate of α-crystals is higher than that of β-crystals. Microfocus WAXS analysis was then applied to gain information about the competition of formation of β- and α-crystals in samples prepared at defined cooling conditions at rates up to 1000 K/s in the FSC. For iPP containing 1 and 500 ppm γ-quinacridone, the crystallization temperature is lower than 105 °C on cooling faster about 10 and 70 K/s, respectively, which then on further increase of the cooling rate leads to a distinct reduction of the β-crystal fraction.

  9. Chandra Reveals Heavy Obscuration and Circumnuclear Star Formation in Seyfert 2 Galaxy NGC 4968

    NASA Technical Reports Server (NTRS)

    LaMassa, Stephanie M.; Yaqoob, Tahir; Levenson, N. A.; Boorman, Peter; Heckman, Timothy M.; Gandhi, Poshak; Rigby, Jane R.; Urry, C. Megan; Ptak, Andrew F.

    2017-01-01

    We present the Chandra imaging and spectral analysis of NGC 4968, a nearby (z = 0.00986) Seyfert 2 galaxy. We discover extended (approx. 1 kpc) X-ray emission in the soft band (0.5-2 keV) that is neither coincident with the narrow line region nor the extended radio emission. Based on spectral modeling, it is linked to on-going star formation [approx. 2.6-4 Mass compared to Earth yr(exp.- 1)]. The soft emission at circumnuclear scales (inner approx. 400 pc) originates from hot gas, with kT approx. 0.7 keV, while the most extended thermal emission is cooler (kT approx. 0.3 keV). We refine previous measurements of the extreme Fe K alpha equivalent width in this source (EW 2.5 + 2.6/-1.0 keV), which suggests the central engine is completely embedded within Compton-thick levels of obscuration. Using physically motivated models fit to the Chandra spectrum, we derive a Compton-thick column density [N(sub H) is greater than 1.25× 10(exp 24) cm(exp.- 2)] and an intrinsic hard (2-10 keV) X-ray luminosity of approx. 3-8× 10(exp. 42) erg s(exp. - 1) (depending on the presumed geometry of the obscurer), which is over two orders of magnitude larger than that observed. The large Fe K Alpha EW suggests a spherical covering geometry, which could be confirmed with X-ray measurements above 10 keV. NGC 4968 is similar to other active galaxies that exhibit extreme Fe K Alpha EWs (i.e., greater than 2 keV) in that they also contain on-going star formation. This work supports the idea that gas associated with nuclear star formation may increase the covering factor of the enshrouding gas and play a role in obscuring active galactic nuclei.

  10. Galaxy Evolution at High Redshift: Obscured Star Formation, GRB Rates, Cosmic Reionization, and Missing Satellites

    NASA Astrophysics Data System (ADS)

    Lapi, A.; Mancuso, C.; Celotti, A.; Danese, L.

    2017-01-01

    We provide a holistic view of galaxy evolution at high redshifts z ≳ 4, which incorporates the constraints from various astrophysical/cosmological probes, including the estimate of the cosmic star formation rate (SFR) density from UV/IR surveys and long gamma-ray burst (GRBs) rates, the cosmic reionization history following the latest Planck measurements, and the missing satellites issue. We achieve this goal in a model-independent way by exploiting the SFR functions derived by Mancuso et al. on the basis of an educated extrapolation of the latest UV/far-IR data from HST/Herschel, and already tested against a number of independent observables. Our SFR functions integrated down to a UV magnitude limit MUV ≲ ‑13 (or SFR limit around 10‑2 M⊙ yr‑1) produce a cosmic SFR density in excellent agreement with recent determinations from IR surveys and, taking into account a metallicity ceiling Z ≲ Z⊙/2, with the estimates from long GRB rates. They also yield a cosmic reionization history consistent with that implied by the recent measurements of the Planck mission of the electron scattering optical depth τes ≈ 0.058 remarkably, this result is obtained under a conceivable assumption regarding the average value fesc ≈ 0.1 of the escape fraction for ionizing photons. We demonstrate via the abundance-matching technique that the above constraints concurrently imply galaxy formation becoming inefficient within dark matter halos of mass below a few 108 M⊙ pleasingly, such a limit is also required so as not to run into the missing satellites issue. Finally, we predict a downturn of the Galaxy luminosity function faintward of MUV ≲ ‑12, and stress that its detailed shape, to be plausibly probed in the near future by the JWST, will be extremely informative on the astrophysics of galaxy formation in small halos, or even on the microscopic nature of the dark matter.

  11. The Link between the Formation Rates of Clusters and Stars in Galaxies

    NASA Astrophysics Data System (ADS)

    Chandar, Rupali; Fall, S. Michael; Whitmore, Bradley C.

    2015-09-01

    The goal of this paper is to test whether the formation rate of star clusters is proportional to the star formation rate (SFR) in galaxies. As a first step, we present the mass functions of compact clusters younger than 10 Myr in seven star-forming galaxies of diverse masses, sizes, and morphologies: the Large and Small Magellanic Clouds, NGC 4214, NGC 4449, M83, M51, and the Antennae. These cluster mass functions (CMFs) are well represented by power laws, {dN}/{dM}\\propto {M}β , with similar exponents β =-1.92+/- 0.27, but with amplitudes that differ by factors up to ˜ {10}3, corresponding to vast differences in the sizes of the cluster populations in these galaxies. We then normalize these CMFs by the SFRs in the galaxies, derived from dust-corrected Hα luminosities, and find that the spread in the amplitudes collapses, with a remaining rms deviation of only σ ({log}A)=0.2. This is close to the expected dispersion from random uncertainties in the CMFs and SFRs. Thus, the data presented here are consistent with exact proportionality between the formation rates of stars and clusters. However, the data also permit weak deviations from proportionality, at the factor of two level, within the statistical uncertainties. We find the same spread in amplitudes when we normalize the mass functions of much older clusters, with ages in the range 100-400 Myr, by the current SFR. This is another indication of the general similarity among the cluster populations of different galaxies.

  12. Resolved Gas Kinematics in a Sample of Low-Redshift High Star-Formation Rate Galaxies

    NASA Astrophysics Data System (ADS)

    Varidel, Mathew; Pracy, Michael; Croom, Scott; Owers, Matt S.; Sadler, Elaine

    2016-03-01

    We have used integral field spectroscopy of a sample of six nearby (z 0.01-0.04) high star-formation rate (SFR ˜ 10-40 M_⊙ yr^{-1}) galaxies to investigate the relationship between local velocity dispersion and star-formation rate on sub-galactic scales. The low-redshift mitigates, to some extent, the effect of beam smearing which artificially inflates the measured dispersion as it combines regions with different line-of-sight velocities into a single spatial pixel. We compare the parametric maps of the velocity dispersion with the Hα flux (a proxy for local star-formation rate), and the velocity gradient (a proxy for the local effect of beam smearing). We find, even for these very nearby galaxies, the Hα velocity dispersion correlates more strongly with velocity gradient than with Hα flux-implying that beam smearing is still having a significant effect on the velocity dispersion measurements. We obtain a first-order non parametric correction for the unweighted and flux weighted mean velocity dispersion by fitting a 2D linear regression model to the spaxel-by-spaxel data where the velocity gradient and the Hα flux are the independent variables and the velocity dispersion is the dependent variable; and then extrapolating to zero velocity gradient. The corrected velocity dispersions are a factor of 1.3-4.5 and 1.3-2.7 lower than the uncorrected flux-weighted and unweighted mean line-of-sight velocity dispersion values, respectively. These corrections are larger than has been previously cited using disc models of the velocity and velocity dispersion field to correct for beam smearing. The corrected flux-weighted velocity dispersion values are σ m 20-50 km s-1.

  13. Mercury's Hollows: Depths, Estimation of Formation Rates, and the Nature of the Bright Haloes

    NASA Astrophysics Data System (ADS)

    Blewett, D. T.; Stadermann, A. C.; Chabot, N. L.; Denevi, B. W.; Ernst, C. M.; Xiao, Z.; Solomon, S. C.

    2015-12-01

    Mercury's hollows are shallow depressions, often with high-reflectance interiors and haloes. The fresh appearance of hollows indicates that they are relatively young features. Their morphology is suggestive of formation via sublimation-like loss of a volatile-bearing phase through solar heating, destruction by UV photolysis, contact with molten rock, or bombardment by micrometeoroids and/or ions. Hollows are found within the low-reflectance material (LRM) color unit. Following an examination of all MESSENGER images with pixel sizes <20 m and incidence angles <85°, shadow-length measurements made on 905 images yielded the depths of 2608 hollows. The mean depth is 24 ± 16 m. The narrow range of depths, despite formation within LRM units that are of much greater and more variable thickness, could result from development of a protective lag as the volatile-bearing phase is lost. The rate at which hollows form may be estimated as follows. The size-frequency distribution of Mercury rayed craters >4 km in diameter gives absolute model ages of 110 to 689 Ma, depending on the crater production model. The 41-km-diameter rayed crater Balanchine has a density of superposed craters similar to the average for all rayed craters, so we take Balanchine's age to be the population average. Hollows on Balanchine's floor are ~300 m wide. The average rate of hollows formation by horizontal scarp retreat for a 110 Ma model age would be 1 cm per 3700 Earth years. If Balanchine formed 689 Ma ago, then the average growth rate would be 1 cm per 23,000 yr. We also consider the mechanisms by which hollows form bright haloes. Calculations show that comet-style lofting of dust by sublimating gas is not important given Mercury's high surface gravitational acceleration. Instead, the bright haloes may form by condensation of sublimated material or by physical modification or chemical alteration of the surface by re-deposited sublimation products.

  14. An empirical model for the galaxy luminosity and star formation rate function at high redshift

    NASA Astrophysics Data System (ADS)

    Mashian, Natalie; Oesch, Pascal A.; Loeb, Abraham

    2016-01-01

    Using the most recent measurements of the ultraviolet (UV) luminosity functions (LFs) and dust estimates of early galaxies, we derive updated dust-corrected star formation rate functions (SFRFs) at z ˜ 4-8, which we model to predict the evolution to higher redshifts, z > 8. We employ abundance matching techniques to calibrate a relation between galaxy star formation rate (SFR) and host halo mass Mh by mapping the shape of the observed SFRFs at z ˜ 4-8 to that of the halo mass function. The resulting scaling law remains roughly constant over this redshift range. We apply the average SFR-Mh relation to reproduce the observed SFR functions at 4 ≲ z ≲ 8 and also derive the expected UV LFs at higher redshifts. At z ˜ 9 and z ˜ 10 these model LFs are in excellent agreement with current observed estimates. Our predicted number densities and UV LFs at z > 10 indicate that James Webb Space Telescope will be able to detect galaxies out to z ˜ 15 with an extensive treasury sized program. We also derive the redshift evolution of the star formation rate density (SFRD) and associated reionization history by galaxies. Models which integrate down to the current HUDF12/XDF detection limit (MUV ˜ -17.7 mag) result in a SFRD that declines as (1 + z)-10.4 ± 0.3 at high redshift and fail to reproduce the observed cosmic microwave background electron scattering optical depth, τ ≃ 0.066, to within 1σ. On the other hand, we find that the inclusion of galaxies with SFRs well below the current detection limit (MUV < -5.7 mag) leads to a fully reionized universe by z ˜ 6.5 and an optical depth of τ ≃ 0.054, consistent with the recently derived Planck value at the 1σ level.

  15. Using Herschel Far-Infrared Photometry to Constrain Star Formation Rates in CLASH Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Larson, Rebecca L.; Postman, Marc; Fogarty, Kevin

    2016-01-01

    The Cluster Lensing And Supernova survey with Hubble (CLASH) program obtained broadband images of 25 massive galaxy clusters in 16 passbands from the UV to the near-IR. The data was taken with the Wide-field Camera 3 (WFC3), and the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST). These 25 clusters have also been observed in the mid-IR by Spitzer IRAC, the far-IR by the Herschel Space Observatory PACS and SPIRE, and in the x-ray by the Chandra and XMM observatories. We focused on the two brightest cluster galaxies (BCGs) in the survey (MACS1931.8-2653 and RXJ1532.9+3021) that have reddening-corrected UV-derived star formation rates (SFRs) > 100 M⊙ yr-1 as measured by Fogarty et al (2015). The inclusion of Herschel data provides unique constraints on dust content and independent estimates of the star formation rates in these interesting galaxies. We performed photometry on the five Herschel bands (100-500μm), and removed any contamination from other cluster members. We fit a UV-FIR SED to each galaxy to measure the bolometric dust luminosity (Lbol), which we use to derive the FIR obscured SFR. We calculate the sum of the measured UV unobscured SFR from the HST photometry and the FIR obscured SFR from the Herschel photometry to get a total SFR for these two BCGs. We compared this to the reddening-corrected SFRs and found they were in agreement within error. This confirms that the Kennicutt and Calzetti methods for calculating star formation rates are both applicable for these highly star-forming massive cluster galaxies.

  16. Crystal structure of a human prion protein fragment reveals a motif for oligomer formation.

    PubMed

    Apostol, Marcin I; Perry, Kay; Surewicz, Witold K

    2013-07-17

    The structural transition of the prion protein from α-helical- to β-sheet-rich underlies its conversion into infectious and disease-associated isoforms. Here we describe the crystal structure of a fragment from human prion protein consisting of the disulfide-bond-linked portions of helices 2 and 3. Instead of forming a pair-of-sheets steric zipper structure characteristic of amyloid fibers, this fragment crystallized into a β-sheet-rich assembly of hexameric oligomers. This study reveals a never before observed structural motif for ordered protein aggregates and suggests a possible mechanism for self-propagation of misfolded conformations by such nonamyloid oligomers.

  17. NACA deficiency reveals the crucial role of somite-derived stromal cells in haematopoietic niche formation.

    PubMed

    Murayama, Emi; Sarris, Milka; Redd, Michael; Le Guyader, Dorothée; Vivier, Catherine; Horsley, Wyatt; Trede, Nikolaus; Herbomel, Philippe

    2015-09-28

    The ontogeny of haematopoietic niches in vertebrates is essentially unknown. Here we show that the stromal cells of the caudal haematopoietic tissue (CHT), the first niche where definitive haematopoietic stem/progenitor cells (HSPCs) home in zebrafish development, derive from the caudal somites through an epithelial-mesenchymal transition (EMT). The resulting stromal cell progenitors accompany the formation of the caudal vein sinusoids, the other main component of the CHT niche, and mature into reticular cells lining and interconnecting sinusoids. We characterize a zebrafish mutant defective in definitive haematopoiesis due to a deficiency in the nascent polypeptide-associated complex alpha subunit (NACA). We demonstrate that the defect resides not in HSPCs but in the CHT niche. NACA-deficient stromal cell progenitors initially develop normally together with the sinusoids, and HSPCs home to the resulting niche, but stromal cell maturation is compromised, leading to a niche that is unable to support HSPC maintenance, expansion and differentiation.

  18. Star Formation Rate Indicators in Different Scales: from Star Forming Regions to Galaxies

    NASA Astrophysics Data System (ADS)

    Hei Law, Ka; Gordon, K.

    2011-01-01

    Do Star Formation Rate (SFR) indicators derived from galaxies work in star forming regions, or vice versa? We explore the behavior and effectiveness of various single- and multi-band SFR indicators across different scales. Our sample spans over 4 orders of magnitudes in total infrared luminosity and covers a wide range of spatial scale - from individual regions in nearby galaxies such as those in SMC, LMC, M33 and M31, to whole galaxies, including galaxies from the Spitzer Local Volume Legacy Survey (LVL; Dale et al. 2009), the Spitzer Infrared Nearby Galaxies Survey (SINGS; Kennicutt et al. 2003), and starburst galaxies from Engelbracht et al. 2008.

  19. Changes in the spectrum and rates of extracellular enzyme activities in seawater following aggregate formation

    NASA Astrophysics Data System (ADS)

    Ziervogel, K.; Steen, A. D.; Arnosti, C.

    2009-12-01

    Marine snow aggregates are heavily colonized by heterotrophic microorganisms that express high levels of hydrolytic activities, making aggregates hotspots for carbon remineralization in the ocean. To assess how aggregate formation influences the ability of seawater microbial communities to access organic carbon, we compared hydrolysis rates of six polysaccharides in coastal seawater after aggregates had been formed (via incubation on a roller table) with hydrolysis rates in seawater from the same site that had not incubated on a roller table (referred to as whole seawater). Hydrolysis rates in the aggregates themselves were up to three orders of magnitude higher on a volume basis than in whole seawater. The enhancement of enzyme activity in aggregates relative to whole seawater differed by substrate, suggesting that the enhancement was under cellular control, rather than due to factors such as lysis or grazing. A comparison of hydrolysis rates in whole seawater with those in aggregate-free seawater, i.e. the fraction of water from the roller bottles that did not contain aggregates, demonstrated a nuanced microbial response to aggregate formation. Activities of laminarinase and xylanase enzymes in aggregate-free seawater were higher than in whole seawater, while activities of chondroitin, fucoidan, and arabinogalactan hydrolyzing enzymes were lower than in whole seawater. These data suggest that aggregate formation enhanced production of laminarinase and xylanase enzymes, and the enhancement also affected the surrounding seawater. Decreased activities of chondroitin, fucoidan, and arabinoglactan-hydrolyzing enzymes in aggregate-free seawater relative to whole seawater are likely due to shifts in enzyme production by the aggregate-associated community, coupled with the effects of enzyme degradation. Enhanced activities of laminarin- and xylan-hydrolyzing enzymes in aggregate-free seawater were due at least in part to cell-free enzymes. Measurements of enzyme lifetime

  20. Changes in the spectrum and rates of extracellular enzyme activities in seawater following aggregate formation

    NASA Astrophysics Data System (ADS)

    Ziervogel, K.; Steen, A. D.; Arnosti, C.

    2010-03-01

    Marine snow aggregates are heavily colonized by heterotrophic microorganisms that express high levels of hydrolytic activities, making aggregates hotspots for carbon remineralization in the ocean. To assess how aggregate formation influences the ability of seawater microbial communities to access organic carbon, we compared hydrolysis rates of six polysaccharides in coastal seawater after aggregates had been formed (via incubation on a roller table) with hydrolysis rates in seawater from the same site that had not incubated on a roller table (referred to as whole seawater). Hydrolysis rates in the aggregates themselves were up to three orders of magnitude higher on a volume basis than in whole seawater. The enhancement of enzyme activity in aggregates relative to whole seawater differed by substrate, suggesting that the enhancement was under cellular control, rather than due to factors such as lysis or grazing. A comparison of hydrolysis rates in whole seawater with those in aggregate-free seawater, i.e. the fraction of water from the roller bottles that did not contain aggregates, demonstrated a nuanced microbial response to aggregate formation. Activities of laminarinase and xylanase enzymes in aggregate-free seawater were higher than in whole seawater, while activities of chondroitin, fucoidan, and arabinogalactan hydrolyzing enzymes were lower than in whole seawater. These data suggest that aggregate formation enhanced production of laminarinase and xylanase enzymes, and the enhancement also affected the surrounding seawater. Decreased activities of chondroitin, fucoidan, and arabinoglactan-hydrolyzing enzymes in aggregate-free seawaters relative to whole seawater are likely due to shifts in enzyme production by the aggregate-associated community, coupled with the effects of enzyme degradation. Enhanced activities of laminarin- and xylan-hydrolyzing enzymes in aggregate-free seawater were due at least in part to cell-free enzymes. Measurements of enzyme

  1. Reaction Rates for the Formation of Deuterium Tritide from Deuterium and Tritium

    SciTech Connect

    McConville, G. T.; Menke, D. A.; Ellefson, R. E.

    1985-04-01

    The rates of formation of DT in a mixture of D2 and T2 have been measured as a function of initial T2 concentration, pressure, temperature,and methane concentration in a stainless steel reaction container which had been treated to inhibit protium ingrowth. An attempt has been made to explain the experimental resuts on the basis of ion-molecule chain reactions. Some of the observations are consistent with a gas-phase ion, ground-state molecule reaction, but some of the more interesting observations require more complicated models. The addition of excited state molecules or heterogeneous catalytic effects are possibilities that will need further experiments for confirmation.

  2. REGULATION OF STAR FORMATION RATES IN MULTIPHASE GALACTIC DISKS: A THERMAL/DYNAMICAL EQUILIBRIUM MODEL

    SciTech Connect

    Ostriker, Eve C.; McKee, Christopher F.; Leroy, Adam K. E-mail: cmckee@astro.berkeley.ed

    2010-10-01

    We develop a model for the regulation of galactic star formation rates {Sigma}{sub SFR} in disk galaxies, in which interstellar medium (ISM) heating by stellar UV plays a key role. By requiring that thermal and (vertical) dynamical equilibrium are simultaneously satisfied within the diffuse gas, and that stars form at a rate proportional to the mass of the self-gravitating component, we obtain a prediction for {Sigma}{sub SFR} as a function of the total gaseous surface density {Sigma} and the midplane density of stars+dark matter {rho}{sub sd}. The physical basis of this relationship is that the thermal pressure in the diffuse ISM, which is proportional to the UV heating rate and therefore to {Sigma}{sub SFR}, must adjust until it matches the midplane pressure value set by the vertical gravitational field. Our model applies to regions where {Sigma} {approx}< 100 M{sub sun} pc{sup -2}. In low-{Sigma}{sub SFR} (outer-galaxy) regions where diffuse gas dominates, the theory predicts that {Sigma}{sub SFR{proportional_to}{Sigma}{radical}}({rho}{sub sd}). The decrease of thermal equilibrium pressure when {Sigma}{sub SFR} is low implies, consistent with observations, that star formation can extend (with declining efficiency) to large radii in galaxies, rather than having a sharp cutoff at a fixed value of {Sigma}. The main parameters entering our model are the ratio of thermal pressure to total pressure in the diffuse ISM, the fraction of diffuse gas that is in the warm phase, and the star formation timescale in self-gravitating clouds; all of these are (at least in principle) direct observables. At low surface density, our model depends on the ratio of the mean midplane FUV intensity (or thermal pressure in the diffuse gas) to the star formation rate, which we set based on solar-neighborhood values. We compare our results to recent observations, showing good agreement overall for azimuthally averaged data in a set of spiral galaxies. For the large flocculent spiral

  3. Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring

    PubMed Central

    Asner, Gregory P.; Llactayo, William; Tupayachi, Raul; Luna, Ernesto Ráez

    2013-01-01

    Gold mining has rapidly increased in western Amazonia, but the rates and ecological impacts of mining remain poorly known and potentially underestimated. We combined field surveys, airborne mapping, and high-resolution satellite imaging to assess road- and river-based gold mining in the Madre de Dios region of the Peruvian Amazon from 1999 to 2012. In this period, the geographic extent of gold mining increased 400%. The average annual rate of forest loss as a result of gold mining tripled in 2008 following the global economic recession, closely associated with increased gold prices. Small clandestine operations now comprise more than half of all gold mining activities throughout the region. These rates of gold mining are far higher than previous estimates that were based on traditional satellite mapping techniques. Our results prove that gold mining is growing more rapidly than previously thought, and that high-resolution monitoring approaches are required to accurately quantify human impacts on tropical forests. PMID:24167281

  4. Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring.

    PubMed

    Asner, Gregory P; Llactayo, William; Tupayachi, Raul; Luna, Ernesto Ráez

    2013-11-12

    Gold mining has rapidly increased in western Amazonia, but the rates and ecological impacts of mining remain poorly known and potentially underestimated. We combined field surveys, airborne mapping, and high-resolution satellite imaging to assess road- and river-based gold mining in the Madre de Dios region of the Peruvian Amazon from 1999 to 2012. In this period, the geographic extent of gold mining increased 400%. The average annual rate of forest loss as a result of gold mining tripled in 2008 following the global economic recession, closely associated with increased gold prices. Small clandestine operations now comprise more than half of all gold mining activities throughout the region. These rates of gold mining are far higher than previous estimates that were based on traditional satellite mapping techniques. Our results prove that gold mining is growing more rapidly than previously thought, and that high-resolution monitoring approaches are required to accurately quantify human impacts on tropical forests.

  5. Delayed-onset of procoagulant signalling revealed by kinetic analysis of COAT platelet formation.

    PubMed

    Alberio, Lorenzo; Ravanat, Catherine; Hechler, Béatrice; Mangin, Pierre H; Lanza, François; Gachet, Christian

    2017-06-02

    The combined action of collagen and thrombin induces the formation of COAT platelets, which are characterised by a coat of procoagulant and adhesive molecules on their surface. Although recent work has started to highlight their clinical relevance, the exact mechanisms regulating the formation of procoagulant COAT platelets remain unclear. Therefore, we employed flow cytometry in order to visualise in real time surface and intracellular events following simultaneous platelet activation with convulxin and thrombin. After a rapid initial response pattern characterised by the homogenous activation of the fibrinogen receptor glycoprotein IIb/IIIa in all platelets, starting with a delay of about 2 minutes an increasing fraction transforms to procoagulant COAT platelets. Their surface is characterised by progressive loss of PAC-1 binding, expression of negative phospholipids and retention of α-granule von Willebrand factor. Intracellular events in procoagulant COAT platelets are a marked increase of free calcium into the low micromolar range, concomitantly with early depolarisation of the mitochondrial membrane and activation of caspase-3, while non-COAT platelets keep the intracellular free calcium in the nanomolar range and maintain an intact mitochondrial membrane. We show for the first time that the flow-cytometrically distinct fractions of COAT and non-COAT platelets differentially phosphorylate two signalling proteins, PKCα and p38MAPK, which may be involved in the regulation of the different calcium fluxes observed in COAT versus non-COAT platelets. This study demonstrates the utility of concomitant cellular and signalling evaluation using flow cytometry in order to further dissect the mechanisms underlying the dichotomous platelet response observed after collagen/thrombin stimulation.

  6. Transcriptional profiling reveals regulated genes in the hippocampus during memory formation

    NASA Technical Reports Server (NTRS)

    Donahue, Christine P.; Jensen, Roderick V.; Ochiishi, Tomoyo; Eisenstein, Ingrid; Zhao, Mingrui; Shors, Tracey; Kosik, Kenneth S.

    2002-01-01

    Transcriptional profiling (TP) offers a powerful approach to identify genes activated during memory formation and, by inference, the molecular pathways involved. Trace eyeblink conditioning is well suited for the study of regional gene expression because it requires the hippocampus, whereas the highly parallel task, delay conditioning, does not. First, we determined when gene expression was most regulated during trace conditioning. Rats were exposed to 200 trials per day of paired and unpaired stimuli each day for 4 days. Changes in gene expression were most apparent 24 h after exposure to 200 trials. Therefore, we profiled gene expression in the hippocampus 24 h after 200 trials of trace eyeblink conditioning, on multiple arrays using additional animals. Of 1,186 genes on the filter array, seven genes met the statistical criteria and were also validated by real-time polymerase chain reaction. These genes were growth hormone (GH), c-kit receptor tyrosine kinase (c-kit), glutamate receptor, metabotropic 5 (mGluR5), nerve growth factor-beta (NGF-beta), Jun oncogene (c-Jun), transmembrane receptor Unc5H1 (UNC5H1), and transmembrane receptor Unc5H2 (UNC5H2). All these genes, except for GH, were downregulated in response to trace conditioning. GH was upregulated; therefore, we also validated the downregulation of the GH inhibitor, somatostatin (SST), even though it just failed to meet criteria on the arrays. By during situ hybridization, GH was expressed throughout the cell layers of the hippocampus in response to trace conditioning. None of the genes regulated in trace eyeblink conditioning were similarly affected by delay conditioning, a task that does not require the hippocampus. These findings demonstrate that transcriptional profiling can exhibit a repertoire of genes sensitive to the formation of hippocampal-dependent associative memories.

  7. Transcriptional profiling reveals regulated genes in the hippocampus during memory formation

    NASA Technical Reports Server (NTRS)

    Donahue, Christine P.; Jensen, Roderick V.; Ochiishi, Tomoyo; Eisenstein, Ingrid; Zhao, Mingrui; Shors, Tracey; Kosik, Kenneth S.

    2002-01-01

    Transcriptional profiling (TP) offers a powerful approach to identify genes activated during memory formation and, by inference, the molecular pathways involved. Trace eyeblink conditioning is well suited for the study of regional gene expression because it requires the hippocampus, whereas the highly parallel task, delay conditioning, does not. First, we determined when gene expression was most regulated during trace conditioning. Rats were exposed to 200 trials per day of paired and unpaired stimuli each day for 4 days. Changes in gene expression were most apparent 24 h after exposure to 200 trials. Therefore, we profiled gene expression in the hippocampus 24 h after 200 trials of trace eyeblink conditioning, on multiple arrays using additional animals. Of 1,186 genes on the filter array, seven genes met the statistical criteria and were also validated by real-time polymerase chain reaction. These genes were growth hormone (GH), c-kit receptor tyrosine kinase (c-kit), glutamate receptor, metabotropic 5 (mGluR5), nerve growth factor-beta (NGF-beta), Jun oncogene (c-Jun), transmembrane receptor Unc5H1 (UNC5H1), and transmembrane receptor Unc5H2 (UNC5H2). All these genes, except for GH, were downregulated in response to trace conditioning. GH was upregulated; therefore, we also validated the downregulation of the GH inhibitor, somatostatin (SST), even though it just failed to meet criteria on the arrays. By during situ hybridization, GH was expressed throughout the cell layers of the hippocampus in response to trace conditioning. None of the genes regulated in trace eyeblink conditioning were similarly affected by delay conditioning, a task that does not require the hippocampus. These findings demonstrate that transcriptional profiling can exhibit a repertoire of genes sensitive to the formation of hippocampal-dependent associative memories.

  8. Localized Upper Tropospheric Warming During Tropical Depression and Storm Formation Revealed by the NOAA-15 AMSU

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Braswell, William D.

    1999-01-01

    The warm core of hurricanes as measured by microwave temperature sounders has been related to various azimuthally averaged measures of hurricane strength by several researchers Unfortunately, the use of these instruments (e.g. the Microwave Sounding Units, MSU) for the routine monitoring of tropical cyclone genesis and intensity has been hampered by poor resolution. The recent launch of the NOAA-15 AMSU represents a significant advance in our ability to monitor subtle atmospheric temperature variations (0.1-0.2 C) at relatively high spatial resolution (50 km) in the presence of clouds. Of particular interest is the possible capability of the AMSU to observe the slight warming associated with depression formation, and the relationship of the spatial characteristics of the warming to the surface pressure and wind field, without azimuthal averaging. In order to present the AMSU data as imagery, we have developed a method for precise limb-correction of all 15 AMSU channels. Through a linear combination of several neighboring channels, we can very closely match the nadir weighting functions of a given AMSU sounding channel with the non-nadir data. It is found that there is discernible, localized upper tropospheric warming associated with depression formation in the Atlantic basin during the 1998 hurricane season. Also, it is found that uncertainty in positioning of tropical cyclone circulation centers can be reduced, as in the example of Hurricane Georges as it approached Cuba. Finally, to explore the potential utility of a future high resolution microwave temperature sounder, we present an analysis of the relationship between the modeled surface wind field and simulated high -resolution AMSU-type measurements, based upon cloud resolving model simulations of hurricane Andrew in 1992.

  9. Formation of the geometrically controlled carbon coils by manipulating the additive gas (SF6) flow rate.

    PubMed

    Jeon, Young-Chul; Kim, Sung-Hoon

    2012-07-01

    Carbon coils could be synthesized using C2H2/H2 as source gases and SF6 as an incorporated additive gas under the thermal chemical vapor deposition system. The nickel catalyst layer deposition and then hydrogen plasma pretreatment were performed prior to the carbon coils deposition reaction. The flow rate and the injection time of SF6 varied according to the different reaction processes. Geometries of carbon coils developed from embryos to nanosized coils with increasing SF, flow rate from 5 to 35 sccm under the short SF6 flow injection time (5 minutes) condition. The gradual development of carbon coils geometries from nanosized to microsized types could be observed with increasing SF6 flow rate under the full time (90 minutes) SF6 flow injection condition. The flow rate of SF6 for the coil-type geometry formation should be more than or at least equal to the flow rate of carbon source gas (C2H2). A longer injection time of SF6 flow would increase the size of coils diameters from nanometer to micrometer.

  10. The reliability of [C II] as an indicator of the star formation rate

    NASA Astrophysics Data System (ADS)

    De Looze, Ilse; Baes, Maarten; Bendo, George J.; Cortese, Luca; Fritz, Jacopo

    2011-10-01

    The [C II] 157.74 μm line is an important coolant for the neutral interstellar gas. Since [C II] is the brightest spectral line for most galaxies, it is a potentially powerful tracer of star formation activity. In this paper, we present a calibration of the star formation rate (SFR) as a function of the [C II] luminosity for a sample of 24 star-forming galaxies in the nearby Universe. This sample includes objects classified as H II regions or low-ionization nuclear emission-line regions, but omits all Seyfert galaxies with a significant contribution from the active galactic nucleus to the mid-infrared photometry. In order to calibrate the SFR against the line luminosity, we rely on both Galaxy Evolution Explorer far-ultraviolet data, which is an ideal tracer of the unobscured star formation, and MIPS 24 μm, to probe the dust-enshrouded fraction of star formation. In the case of normal star-forming galaxies, the [C II] luminosity correlates well with the SFR. However, the extension of this relation to more quiescent (Hα EW ≤ 10 Å) or ultraluminous galaxies should be handled with caution, since these objects show a non-linearity in the ?-to-LFIR ratio as a function of LFIR (and thus, their star formation activity). We provide two possible explanations for the origin of the tight correlation between the [C II] emission and the star formation activity on a global galaxy-scale. A first interpretation could be that the [C II] emission from photodissociation regions (PDRs) arises from the immediate surroundings of star-forming regions. Since PDRs are neutral regions of warm dense gas at the boundaries between H II regions and molecular clouds and they provide the bulk of [C II] emission in most galaxies, we believe that a more or less constant contribution from these outer layers of photon-dominated molecular clumps to the [C II] emission provides a straightforward explanation for this close link between the [C II] luminosity and SFR. Alternatively, we consider the

  11. Study of new modulation data-transmission formats for dispersion-controlled high-bit-rate fibreoptic communication lines

    SciTech Connect

    Shtyrina, O V; Fedoruk, M P; Turitsyn, S K

    2007-09-30

    The results of simulation of the propagation of optical signals in a multichannel high-bit-rate fibreoptic communication line with a combined scheme for amplifying optical signals based on new modulation data-transmission formats are presented. A comparative characteristic of formats with the amplitude and phase modulations of the electromagnetic-wave carrier is presented. The results of numerical simulation show that phase-modulation formats have a considerable advantage over amplitude formats. The use of phase-modulation formats leads to an increase in the maximum range of high-quality communications by a factor of three on average compared to amplitude-modulation formats. It is shown that optimal propagation regimes both in the case of amplitude-modulation and phase-modulation formats are realised for the normal (negative) group-velocity dispersion. However, the dispersion value for amplitude-modulation formats proves to be considerably greater than for phase-modulation formats. (optical communication)

  12. Moving beyond Means: Revealing Features of the Learning Environment by Investigating the Consensus among Student Ratings

    ERIC Educational Resources Information Center

    Schweig, Jonathan David

    2016-01-01

    Student ratings, a critical component in policy efforts to assess and improve teaching, are often collected using questionnaires, and inferences about teachers are then based on aggregated student survey responses. While considerable attention has been paid to the reliability and validity of these aggregates, much less attention has been paid to…

  13. Direct rate constant measurement of radical disulphide anion formation for cysteine and cysteamine in aqueous solution

    NASA Astrophysics Data System (ADS)

    Mezyk, Stephen P.

    1995-03-01

    The techniques of pulse radiolysis, laser photolysis and absorption spectroscopy have been used to directly determine rate constants for radical disulphide anion formation for cysteine and cysteamine in aqueous solution. The measured values for cysteine, over the pH range 7-12, allowed calculation of individual rate constants for the constituent reactions RS . + RSH → RSSR -. + H + and RS . + RS - → RSSR -. as (3.39 ± 0.31) × 10 8 and (1.21 ± 0.04) × 10 9 dm 3 mol -1 s -1, respectively. Analogous values for cysteamine were also determined by this technique as (3.06 ± 0.16) × 10 8 and (3.65 ± 0.07) × 10 9 dm 3 mol -1 s -1.

  14. A New DTA Method for Measuring Critical Cooling Rate for Glass Formation

    NASA Technical Reports Server (NTRS)

    Ray, Chandra S.; Reis, Signo T.; Brow, Richard K.; Holand, Wolfram; Rheinberger, Volker

    2004-01-01

    A new differential thermal analysis (DTA) experimental method has been developed to determine the critical cooling rate for glass formation, R(sub c). The method, which is found especially suitable for melts that, upon cooling, have a small heat of crystallization or a very slow crystallization rate, has been verified using a 38Na2O-62SiO2 (mol%) melt with a known R(sub c) (-approx. 19 C/min), then used to determine R(sub c) for two complex lithium silicate glass forming melts. The new method is rapid, easy to conduct and yields values for R(sub c) that are in excellent agreement with the R(sub c)-values measured by standard DTA techniques.

  15. Gas-Phase Formation Rates of Nitric Acid and Its Isomers Under Urban Conditions

    NASA Technical Reports Server (NTRS)

    Okumura, M.; Mollner, A. K.; Fry, J. L.; Feng, L.

    2005-01-01

    Ozone formation in urban smog is controlled by a complex set of reactions which includes radical production from photochemical processes, catalytic cycles which convert NO to NO2, and termination steps that tie up reactive intermediates in long-lived reservoirs. The reaction OH + NO2 + M -4 HONO2 + M (la) is a key termination step because it transforms two short-lived reactive intermediates, OH and NO2, into relatively long-lived nitric acid. Under certain conditions (low VOC/NOx), ozone production in polluted urban airsheds can be highly sensitive to this reaction, but the rate parameters are not well constrained. This report summarizes the results of new laboratory studies of the OH + NO2 + M reaction including direct determination of the overall rate constant and branching ratio for the two reaction channels under atmospherically relevant conditions.

  16. A New DTA Method for Measuring Critical Cooling Rate for Glass Formation

    NASA Technical Reports Server (NTRS)

    Ray, Chandra S.; Reis, Signo T.; Brow, Richard K.; Holand, Wolfram; Rheinberger, Volker

    2004-01-01

    A new differential thermal analysis (DTA) experimental method has been developed to determine the critical cooling rate for glass formation, R(sub c). The method, which is found especially suitable for melts that, upon cooling, have a small heat of crystallization or a very slow crystallization rate, has been verified using a 38Na2O-62SiO2 (mol%) melt with a known R(sub c) (-approx. 19 C/min), then used to determine R(sub c) for two complex lithium silicate glass forming melts. The new method is rapid, easy to conduct and yields values for R(sub c) that are in excellent agreement with the R(sub c)-values measured by standard DTA techniques.

  17. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings

    PubMed Central

    Druege, Uwe; Franken, Philipp; Lischewski, Sandra; Ahkami, Amir H.; Zerche, Siegfried; Hause, Bettina; Hajirezaei, Mohammad R.

    2014-01-01

    Adventitious root (AR) formation in the stem base (SB) of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours post-excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from SB to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled by auxin. PMID

  18. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings.

    PubMed

    Druege, Uwe; Franken, Philipp; Lischewski, Sandra; Ahkami, Amir H; Zerche, Siegfried; Hause, Bettina; Hajirezaei, Mohammad R

    2014-01-01

    Adventitious root (AR) formation in the stem base (SB) of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours post-excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from SB to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled by auxin.

  19. Transcriptome profiling of radiata pine branches reveals new insights into reaction wood formation with implications in plant gravitropism.

    PubMed

    Li, Xinguo; Yang, Xiaohui; Wu, Harry X

    2013-11-08

    Formation of compression (CW) and opposite wood (OW) in branches and bent trunks is an adaptive feature of conifer trees in response to various displacement forces, such as gravity, wind, snow and artificial bending. Several previous studies have characterized tracheids, wood and gene transcription in artificially or naturally bent conifer trunks. These studies have provided molecular basis of reaction wood formation in response to bending forces and gravity stimulus. However, little is known about reaction wood formation and gene transcription in conifer branches under gravity stress. In this study SilviScan® technology was used to characterize tracheid and wood traits in radiate pine (Pinus radiata D. Don) branches and genes differentially transcribed in CW and OW were investigated using cDNA microarrays. CW drastically differed from OW in tracheids and wood traits with increased growth, thicker tracheid walls, larger microfibril angle (MFA), higher density and lower stiffness. However, CW and OW tracheids had similar diameters in either radial or tangential direction. Thus, gravity stress largely influenced wood growth, secondary wall deposition, cellulose microfibril orientation and wood properties, but had little impact on primary wall expansion. Microarray gene transcription revealed about 29% of the xylem transcriptomes were significantly altered in CW and OW sampled in both spring and autumn, providing molecular evidence for the drastic variation in tracheid and wood traits. Genes involved in cell division, cellulose biosynthesis, lignin deposition, and microtubules were mostly up-regulated in CW, conferring its greater growth, thicker tracheid walls, higher density, larger MFA and lower stiffness. However, genes with roles in cell expansion and primary wall formation were differentially transcribed in CW and OW, respectively, implicating their similar diameters of tracheid walls and different tracheid lengths. Interestingly, many genes related to hormone

  20. Timing of European fluvial terrace formation and incision rates constrained by cosmogenic nuclide dating

    NASA Astrophysics Data System (ADS)

    Schaller, Mirjam; Ehlers, Todd A.; Stor, Tomas; Torrent, Jose; Lobato, Leonardo; Christl, Marcus; Vockenhuber, Christof

    2016-10-01

    Age constraints of late Cenozoic fluvial terraces are important for addressing surface process questions related to the incision rates of rivers, or tectonic and climate controls on denudation and sedimentation. Unfortunately, absolute age constraints of fluvial terraces are not always possible, and many previous studies have often dated terraces with relative age constraints that do not allow for robust interpretations of incision rates and timing of terrace formation. However, in situ-produced cosmogenic nuclides allow absolute age determination, and hence incision rates, of fluvial deposits back to 5 Ma. Here we present, cosmogenic depth profile dating and isochron burial dating of four different river systems in Europe spanning 12° of latitude. We do this to determine river incision rates and spatial variations in the timing of terrace formation. Isochron burial age constraints of four selected terraces from the Vltava river (Czech Republic) range between 1.00 ± 0.21 to 1.99 ± 0.45Ma. An isochron burial age derived for the Allier river (Central France) is 2.00 ± 0.17Ma. Five terrace levels from the Esla river (NW Spain) were dated between 0.08 + 0.04 / - 0.01Ma and 0.59 + 0.13 / - 0.20Ma with depth profile dating. The latter age agrees with an isochron burial age of 0.52 ± 0.20Ma. Two terrace levels from the Guadalquivir river (SW Spain) were dated by depth profile dating to 0.09 + 0.03 / - 0.02Ma and 0.09 + 0.04 / - 0.03Ma. The one terrace level from the Guadalquivir river dated by isochron burial dating resulted in an age of 1.79 ± 0.18Ma. Results indicate that the cosmogenic nuclide-based ages are generally older than ages derived from previous relative age constraints leading to a factor 2-3 lower incision rates than previous work. Furthermore, the timing of terrace formation over this latitudinal range is somewhat obscured by uncertainties associated with dating older terraces and not clearly synchronous with global climate variations.

  1. Ancient DNA reveals key stages in the formation of Central European mitochondrial genetic diversity

    PubMed Central

    Brandt, Guido; Haak, Wolfgang; Adler, Christina J.; Roth, Christina; Szécsényi-Nagy, Anna; Karimnia, Sarah; Möller-Rieker, Sabine; Meller, Harald; Ganslmeier, Robert; Friederich, Susanne; Dresely, Veit; Nicklisch, Nicole; Pickrell, Joseph K.; Sirocko, Frank; Reich, David; Cooper, Alan; Alt, Kurt W.

    2014-01-01

    The processes which shaped modern European mitochondrial DNA (mtDNA) variation remain unclear. The initial peopling by Palaeolithic hunter-gatherers ~42kyrs ago and the immigration of Neolithic farmers into Europe ~8kyrs ago appear to have played important roles, but do not explain present-day mtDNA diversity. We generated mtDNA profiles of 364 individuals from prehistoric cultures in Central Europe to perform a chronological study, spanning the Early Neolithic to the Early Bronze Age (5,500–1,550 cal BC). We use this transect through time to identify four marked shifts in genetic composition during the Neolithic period, revealing a key role for Late Neolithic cultures in shaping modern Central European genetic diversity. PMID:24115443

  2. Ancient DNA reveals key stages in the formation of central European mitochondrial genetic diversity.

    PubMed

    Brandt, Guido; Haak, Wolfgang; Adler, Christina J; Roth, Christina; Szécsényi-Nagy, Anna; Karimnia, Sarah; Möller-Rieker, Sabine; Meller, Harald; Ganslmeier, Robert; Friederich, Susanne; Dresely, Veit; Nicklisch, Nicole; Pickrell, Joseph K; Sirocko, Frank; Reich, David; Cooper, Alan; Alt, Kurt W

    2013-10-11

    The processes that shaped modern European mitochondrial DNA (mtDNA) variation remain unclear. The initial peopling by Palaeolithic hunter-gatherers ~42,000 years ago and the immigration of Neolithic farmers into Europe ~8000 years ago appear to have played important roles but do not explain present-day mtDNA diversity. We generated mtDNA profiles of 364 individuals from prehistoric cultures in Central Europe to perform a chronological study, spanning the Early Neolithic to the Early Bronze Age (5500 to 1550 calibrated years before the common era). We used this transect through time to identify four marked shifts in genetic composition during the Neolithic period, revealing a key role for Late Neolithic cultures in shaping modern Central European genetic diversity.

  3. Properties of the protein matrix revealed by the free energy of cavity formation.

    PubMed

    Kocher, J P; Prévost, M; Wodak, S J; Lee, B

    1996-12-15

    The classical picture of the hydrophobic stabilization of proteins invokes a resemblance between the protein interior and nonpolar solvents, but the extent to which this is the case has often been questioned. The protein interior is believed to be at least as tightly packed as organic crystals, and was shown to have very low compressibility. There is also evidence that these properties are not uniform throughout the protein, and conflicting views exist on the nature of sidechain packing and on its influence on the properties of the protein. In order to probe the physical properties of the protein, the free energy associated with the formation of empty cavities has been evaluated for two proteins: barnase and T4 lysozyme. To this end, the likelihood of encountering such cavities was computed from room temperature molecular dynamics trajectories of these proteins in water. The free energy was evaluated in each protein taken as a whole and in submolecular regions. The computed free energies yielded information on the manner in which empty space is distributed in the system, while the latter undergoes thermal motion, a property hitherto not analyzed in heterogeneous media such as proteins. Our results showed that the free energy of cavity formation is higher in proteins than in both water and hexane, providing direct evidence that the native protein medium differs in fundamental ways from the two liquids. Furthermore, although the packing density was found to be higher in nonpolar regions of the protein than in polar ones, the free energy cost of forming atomic size cavities is significantly lower in nonpolar regions, implying that these regions contain larger chunks of empty space, thereby increasing the likelihood of containing atomic size packing defects. These larger empty spaces occur preferentially where buried hydrophobic sidechains belonging to secondary structures meet one another. These particular locations also appear to be more compressible than other parts

  4. Torque controlled rotary-shear experiments reveal pseudotachilites formation-dynamics and precursor events

    NASA Astrophysics Data System (ADS)

    Tisato, Nicola; Cordonnier, Benoit; De Siena, Luca; Lavier, Luc; Di Toro, Giulio

    2017-04-01

    Except few cases, rotary shear tests, which are designed to study dynamic friction and strengthening/weakening mechanisms in seismogenic faults, are performed by imposing, to the specimens, a slipping velocity that is pre-defined. This approach has been adopted from engineering that typically, tests man-made objects that, when functioning, spin or slide at a pre-defined velocity under a pre-defined load. On the other hand, natural earthquakes are the effect of a rupture that nucleates, propagates and arrests in the subsurface. These three phases, and the consequent emerging fault slipping velocity, are controlled by the accumulated and released energy around the seismogenic fault before, during and after the earthquake. Thus, imposing the slipping velocity in laboratory experiments might not represent the best option to uncover many aspects of earthquake nucleation and fault slipping dynamics. Here we present some experiments performed with an innovative rotary shear apparatus that uses a clock-spring that when winded provides to the rotating sample a linearly increasing torque. Thus, the nucleation of simulated events occur spontaneously when the shear stress on the slipping surface overcomes the static friction times the normal load that is controlled by a deadweight. In addition, this method allows studying precursory seismic events resembling natural slow-slip earthquakes. We report some preliminary results for a transparent polymer that has melting point 340 K and allows observing the slipping surface (i.e., the contact between the two samples). By coupling: i) the rotary shear apparatus, ii) a video camera recording at 60 fps and a iii) laser pointer we observed the formation and evolution of a melt film that forms in the slipping surface after a phase of "dry" stick-slip. After each seismic event the melt layer solidify forming a pseudotachilite that partially welds the slipping surfaces. We also present the mechanical data that show rupture strengthening in

  5. Formation of a proto-Jovian envelope for various planetary accretion rates

    NASA Astrophysics Data System (ADS)

    Ikoma, M.; Emori, H.; Nakazawa, K.

    1998-12-01

    The formation of a proto-Jovian envelope has been simulated on the basis of a core accretion model and the maximum mass that a proto-Jovian planet can have while keeping its envelope gravitationally stable, called the critical core mass, has also been investigated extensively over a wide range of the core accretion rate. The value of the critical core mass has been found to depend strongly on the core accretion rate; for example, it is less than or equal to 0953-8984/10/49/040/img1 for the typical accretion rates for Uranus and Neptune. Furthermore, through simulations of the quasi-static evolution of the envelope beyond the critical core mass, we have found that the characteristic times of envelope contraction are 0953-8984/10/49/040/img2 and 0953-8984/10/49/040/img3 for the cases where the core accretion rates are 0953-8984/10/49/040/img4 per year, 0953-8984/10/49/040/img5 per year and 0953-8984/10/49/040/img6 per year, respectively. Also, in the last case, the core mass of the Jovian planet can be estimated to be about 0953-8984/10/49/040/img7. We conclude that if a given one of the Jovian planets of our solar system has a core smaller than about 0953-8984/10/49/040/img8, it is very hard to see how the core could have attracted a gaseous envelope from our solar nebula and formed the Jovian envelope. Determination of the sizes of the cores in our Jovian planets should give fruitful information for the theory of the formation of our solar system.

  6. Chiral supramolecular order revealed during the formation of calf thymus and phage DNA crystals.

    PubMed

    Vidal, Benedicto de Campos; Mello, Maria Luiza S

    2017-09-01

    The control of DNA packaging has been reported to be dependent on an ordered liquid-crystalline state. However, the textural characteristics that are typical of crystals and that resemble mesophases have not been reported for highly polymerized or even shorter types of DNA filaments under in vitro conditions that favor crystallization. Because DNA crystals are expected to exhibit particular textural optical anisotropies, pure and highly polymerized calf thymus DNA and simpler λ phage DNA were crystallized from solution drops and were analyzed using high-performance polarization microscopy with and without differential interference contrast (DIC) optics. Both types of DNA formed crystals that exhibited chiral supramolecular textures resembling the twist-grain boundary (TGB) columnar mesophases described for liquid crystals and exhibited intrinsic negative birefringence. To the best of our knowledge, this is the first observation using polarization/interference optics of pure DNA crystals that have TGB columnar mesophase-like textural characteristics. A comparison of the crystals formed from the highly polymerized calf thymus DNA and those formed from the shorter phage DNA strands revealed textural differences. Compared to the phage DNA crystals, the crystals of highly polymerized thymus DNA exhibited a more intertwisted columnar distribution and a fibrous texture between their columnar structures. In addition, a form birefringence phenomenon was detected only in the thymus DNA crystals. These characteristics are presumed to reflect the higher level of supramolecular order, self-assembly and chirality in highly polymerized calf thymus DNA crystals relative to that of crystals formed from the simpler, shorter, λ phage DNA. The higher-order supramolecular organization revealed here for in vitro DNA preparations raises the possibility that this structure could also occur, possibly to a smaller degree, during DNA self-aggregation under specific in vivo conditions

  7. Which Phase of the Interstellar Medium Correlates with the Star Formation Rate?

    NASA Astrophysics Data System (ADS)

    Krumholz, Mark R.; Leroy, Adam K.; McKee, Christopher F.

    2011-04-01

    Nearby spiral galaxies show an extremely tight correlation between tracers of molecular hydrogen (H2) in the interstellar medium and tracers of recent star formation, but it is unclear whether this correlation is fundamental or accidental. In the galaxies that have been surveyed to date, H2 resides predominantly in gravitationally bound clouds cooled by carbon monoxide (CO) molecules, but in galaxies of low metal content the correlations between bound clouds, CO, and H2 break down, and it is unclear if the star formation rate (SFR) will then correlate with H2 or with some other quantity. Here, we show that star formation will continue to follow H2 independent of metallicity. This is not because H2 is directly important for cooling, but instead because the transition from predominantly atomic hydrogen (H I) to H2 occurs under the same conditions as a dramatic drop in gas temperature and Bonnor-Ebert mass that destabilizes clouds and initiates collapse. We use this model to compute how SFR will correlate with total gas mass, with mass of gas where the hydrogen is H2, and with mass of gas where the carbon is CO in galaxies of varying metallicity, and show that preliminary observations match the trend we predict.

  8. Natural variation in Pristionchus pacificus dauer formation reveals cross-preference rather than self-preference of nematode dauer pheromones

    PubMed Central

    Mayer, Melanie G.; Sommer, Ralf J.

    2011-01-01

    Many free-living nematodes, including the laboratory model organisms Caenorhabditis elegans and Pristionchus pacificus, have a choice between direct and indirect development, representing an important case of phenotypic plasticity. Under harsh environmental conditions, these nematodes form dauer larvae, which arrest development, show high resistance to environmental stress and constitute a dispersal stage. Pristionchus pacificus occurs in a strong association with scarab beetles in the wild and remains in the dauer stage on the living beetle. Here, we explored the circumstances under which P. pacificus enters and exits the dauer stage by using a natural variation approach. The analysis of survival, recovery and fitness after dauer exit of eight P. pacificus strains revealed that dauer larvae can survive for up to 1 year under experimental conditions. In a second experiment, we isolated dauer pheromones from 16 P. pacificus strains, and tested for natural variation in pheromone production and sensitivity in cross-reactivity assays. Surprisingly, 13 of the 16 strains produce a pheromone that induces the highest dauer formation in individuals of other genotypes. These results argue against a simple adaptation model for natural variation in dauer formation and suggest that strains may have evolved to induce dauer formation precociously in other strains in order to reduce the fitness of these strains. We therefore discuss intraspecific competition among genotypes as a previously unconsidered aspect of dauer formation. PMID:21307052

  9. The stellar masses and specific star-formation rates of submillimetre galaxies

    NASA Astrophysics Data System (ADS)

    Michałowski, M. J.; Dunlop, J. S.; Cirasuolo, M.; Hjorth, J.; Hayward, C. C.; Watson, D.

    2012-05-01

    Establishing the stellar masses, and hence specific star-formation rates of submillimetre galaxies is crucial for determining the role of such objects in the cosmic history of galaxy/star formation. However, there is as yet no consensus over the typical stellar masses of submillimetre galaxies, as illustrated by the widely differing results reported from recent optical-infrared studies of submillimetre galaxies with spectroscopic redshifts z ≃ 2-3. Specifically, even for the same set of submillimetre galaxies, the reported average stellar masses have ranged over an order of magnitude, from ≃5 × 1010 M⊙ to ≃5 × 1011 M⊙. Here we study how different methods of analysis can lead to such widely varying results. We find that, contrary to recent claims in the literature, potential contamination of IRAC 3-8 μm photometry from hot dust associated with an active nucleus is not the origin of the published discrepancies in derived stellar masses. Instead, we expose in detail how inferred stellar mass depends on assumptions made in the photometric fitting, and quantify the individual and cumulative effects of different choices of initial mass function, different "brands" of evolutionary synthesis models, and different forms of assumed star-formation history. We review current observational evidence for and against these alternatives as well as clues from the hydrodynamical simulations, and conclude that, for the most justifiable choices of these model inputs, the average stellar mass of luminous (S850 ≳ 5 mJy) submillimetre galaxies is ≃2 × 1011 M⊙ to within a factor ≃2. We also check and confirm that this number is perfectly reasonable in the light of the latest measurements of the dynamical masses of these objects (≃2-6 × 1011 M⊙ from CO (1-0) observations), and the evolving stellar mass function of the overall galaxy population. Galaxy stellar masses of this order imply that the average specific star-formation rate of submillimetre galaxies is

  10. The transition state for peptide bond formation reveals the ribosome as a water trap.

    PubMed

    Wallin, Göran; Aqvist, Johan

    2010-02-02

    Recent progress in elucidating the peptide bond formation process on the ribosome has led to notion of a proton shuttle mechanism where the 2'-hydroxyl group of the P-site tRNA plays a key role in mediating proton transfer between the nucleophile and leaving group, whereas ribosomal groups do not actively participate in the reaction. Despite these advances, the detailed nature of the transition state for peptidyl transfer and the role of several trapped water molecules in the peptidyl transferase center remain major open questions. Here, we employ high-level quantum chemical ab initio calculations to locate and characterize global transition states for the reaction, described by a molecular model encompassing all the key elements of the reaction center. The calculated activation enthalpy as well as structures are in excellent agreement with experimental data and point to feasibility of an eight-membered "double proton shuttle" mechanism in which an auxiliary water molecule, observed both in computer simulations and crystal structures, actively participates. A second conserved water molecule is found to be of key importance for stabilizing developing negative charge on the substrate oxyanion and its presence is catalytically favorable both in terms of activation enthalpy and entropy. Transition states calculated both for six- and eight-membered mechanisms are invariably late and do not involve significant charge development on the attacking amino group. Predicted kinetic isotope effects consistent with this picture are similar to those observed for uncatalyzed ester aminolysis reactions in solution.

  11. Unique Features of Hepatitis C Virus Capsid Formation Revealed by De Novo Cell-Free Assembly

    PubMed Central

    Klein, Kevin C.; Polyak, Stephen J.; Lingappa, Jaisri R.

    2004-01-01

    The assembly of hepatitis C virus (HCV) is poorly understood, largely due to the lack of mammalian cell culture systems that are easily manipulated and produce high titers of virus. This problem is highlighted by the inability of the recently established HCV replicon systems to support HCV capsid assembly despite high levels of structural protein synthesis. Here we demonstrate that up to 80% of HCV core protein synthesized de novo in cell-free systems containing rabbit reticulocyte lysate or wheat germ extracts assembles into HCV capsids. This contrasts with standard primate cell culture systems, in which almost no core assembles into capsids. Cell-free HCV capsids, which have a sedimentation value of ≈100S, have a buoyant density (1.28 g/ml) on cesium chloride similar to that of HCV capsids from other systems. Capsids produced in cell-free systems are also indistinguishable from capsids isolated from HCV-infected patient serum when analyzed by transmission electron microscopy. Using these cell-free systems, we show that HCV capsid assembly is independent of signal sequence cleavage, is dependent on the N terminus but not the C terminus of HCV core, proceeds at very low nascent chain concentrations, is independent of intact membrane surfaces, and is partially inhibited by cultured liver cell lysates. By allowing reproducible and quantitative assessment of viral and cellular requirements for capsid formation, these cell-free systems make a mechanistic dissection of HCV capsid assembly possible. PMID:15308720

  12. Structural Changes Associated with Transthyretin Misfolding and Amyloid Formation Revealed by Solution and Solid-State NMR

    SciTech Connect

    Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan; Gan, Zhehong; Kelly, Jeffery W.; Wemmer, David E.

    2016-03-21

    Elucidation of structural changes involved in protein misfolding and amyloid formation is crucial for unraveling the molecular basis of amyloid formation. We report structural analyses of the amyloidogenic intermediate and amyloid aggregates of transthyretin using solution and solid-state nuclear magnetic resonance (NMR) spectroscopy. These NMR solution results show that one of the two main β-sheet structures (CBEF β-sheet) is maintained in the aggregation-competent intermediate, while the other DAGH β-sheet is more flexible on millisecond time scales. Magic-angle-spinning solid-state NMR revealed that AB loop regions interacting with strand A in the DAGH β-sheet undergo conformational changes, leading to the destabilized DAGH β-sheet.

  13. Structural Changes Associated with Transthyretin Misfolding and Amyloid Formation Revealed by Solution and Solid-State NMR

    DOE PAGES

    Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan; ...

    2016-03-21

    Elucidation of structural changes involved in protein misfolding and amyloid formation is crucial for unraveling the molecular basis of amyloid formation. We report structural analyses of the amyloidogenic intermediate and amyloid aggregates of transthyretin using solution and solid-state nuclear magnetic resonance (NMR) spectroscopy. These NMR solution results show that one of the two main β-sheet structures (CBEF β-sheet) is maintained in the aggregation-competent intermediate, while the other DAGH β-sheet is more flexible on millisecond time scales. Magic-angle-spinning solid-state NMR revealed that AB loop regions interacting with strand A in the DAGH β-sheet undergo conformational changes, leading to the destabilized DAGHmore » β-sheet.« less

  14. Cryo-EM structure of aerolysin variants reveals a novel protein fold and the pore-formation process

    NASA Astrophysics Data System (ADS)

    Iacovache, Ioan; de Carlo, Sacha; Cirauqui, Nuria; Dal Peraro, Matteo; van der Goot, F. Gisou; Zuber, Benoît

    2016-07-01

    Owing to their pathogenical role and unique ability to exist both as soluble proteins and transmembrane complexes, pore-forming toxins (PFTs) have been a focus of microbiologists and structural biologists for decades. PFTs are generally secreted as water-soluble monomers and subsequently bind the membrane of target cells. Then, they assemble into circular oligomers, which undergo conformational changes that allow membrane insertion leading to pore formation and potentially cell death. Aerolysin, produced by the human pathogen Aeromonas hydrophila, is the founding member of a major PFT family found throughout all kingdoms of life. We report cryo-electron microscopy structures of three conformational intermediates and of the final aerolysin pore, jointly providing insight into the conformational changes that allow pore formation. Moreover, the structures reveal a protein fold consisting of two concentric β-barrels, tightly kept together by hydrophobic interactions. This fold suggests a basis for the prion-like ultrastability of aerolysin pore and its stoichiometry.

  15. Cryo-EM structure of aerolysin variants reveals a novel protein fold and the pore-formation process.

    PubMed

    Iacovache, Ioan; De Carlo, Sacha; Cirauqui, Nuria; Dal Peraro, Matteo; van der Goot, F Gisou; Zuber, Benoît

    2016-07-13

    Owing to their pathogenical role and unique ability to exist both as soluble proteins and transmembrane complexes, pore-forming toxins (PFTs) have been a focus of microbiologists and structural biologists for decades. PFTs are generally secreted as water-soluble monomers and subsequently bind the membrane of target cells. Then, they assemble into circular oligomers, which undergo conformational changes that allow membrane insertion leading to pore formation and potentially cell death. Aerolysin, produced by the human pathogen Aeromonas hydrophila, is the founding member of a major PFT family found throughout all kingdoms of life. We report cryo-electron microscopy structures of three conformational intermediates and of the final aerolysin pore, jointly providing insight into the conformational changes that allow pore formation. Moreover, the structures reveal a protein fold consisting of two concentric β-barrels, tightly kept together by hydrophobic interactions. This fold suggests a basis for the prion-like ultrastability of aerolysin pore and its stoichiometry.

  16. National Lupus Hospitalization Trends Reveal Rising Rates of Herpes Zoster and Declines in Pneumocystis Pneumonia

    PubMed Central

    Murray, Sara G.; Schmajuk, Gabriela; Trupin, Laura; Gensler, Lianne; Katz, Patricia P.; Yelin, Edward H.; Gansky, Stuart A.; Yazdany, Jinoos

    2016-01-01

    Objective Infection is a leading cause of morbidity and mortality in systemic lupus erythematosus (SLE). Therapeutic practices have evolved over the past 15 years, but effects on infectious complications of SLE are unknown. We evaluated trends in hospitalizations for severe and opportunistic infections in a population-based SLE study. Methods Data derive from the 2000 to 2011 United States National Inpatient Sample, including individuals who met a validated administrative definition of SLE. Primary outcomes were diagnoses of bacteremia, pneumonia, opportunistic fungal infection, herpes zoster, cytomegalovirus, or pneumocystis pneumonia (PCP). We used Poisson regression to determine whether infection rates were changing in SLE hospitalizations and used predictive marginals to generate annual adjusted rates of specific infections. Results We identified 361,337 SLE hospitalizations from 2000 to 2011 meeting study inclusion criteria. Compared to non-SLE hospitalizations, SLE patients were younger (51 vs. 62 years), predominantly female (89% vs. 54%), and more likely to be racial/ethnic minorities. SLE diagnosis was significantly associated with all measured severe and opportunistic infections. From 2000 to 2011, adjusted SLE hospitalization rates for herpes zoster increased more than non-SLE rates: 54 to 79 per 10,000 SLE hospitalizations compared with 24 to 29 per 10,000 non-SLE hospitalizations. Conversely, SLE hospitalizations for PCP disproportionately decreased: 5.1 to 2.5 per 10,000 SLE hospitalizations compared with 0.9 to 1.3 per 10,000 non-SLE hospitalizations. Conclusions Among patients with SLE, herpes zoster hospitalizations are rising while PCP hospitalizations are declining. These trends likely reflect evolving SLE treatment strategies. Further research is needed to identify patients at greatest risk for infectious complications. PMID:26731012

  17. Free energy of cluster formation and a new scaling relation for the nucleation rate

    SciTech Connect

    Tanaka, Kyoko K.; Tanaka, Hidekazu; Diemand, Jürg; Angélil, Raymond

    2014-05-21

    Recent very large molecular dynamics simulations of homogeneous nucleation with (1 − 8) × 10{sup 9} Lennard-Jones atoms [J. Diemand, R. Angélil, K. K. Tanaka, and H. Tanaka, J. Chem. Phys. 139, 074309 (2013)] allow us to accurately determine the formation free energy of clusters over a wide range of cluster sizes. This is now possible because such large simulations allow for very precise measurements of the cluster size distribution in the steady state nucleation regime. The peaks of the free energy curves give critical cluster sizes, which agree well with independent estimates based on the nucleation theorem. Using these results, we derive an analytical formula and a new scaling relation for nucleation rates: ln J{sup ′}/η is scaled by ln S/η, where the supersaturation ratio is S, η is the dimensionless surface energy, and J{sup ′} is a dimensionless nucleation rate. This relation can be derived using the free energy of cluster formation at equilibrium which corresponds to the surface energy required to form the vapor-liquid interface. At low temperatures (below the triple point), we find that the surface energy divided by that of the classical nucleation theory does not depend on temperature, which leads to the scaling relation and implies a constant, positive Tolman length equal to half of the mean inter-particle separation in the liquid phase.

  18. Strain-rate Dependence of Elastic Modulus Reveals Silver Nanoparticle Induced Cytotoxicity.

    PubMed

    Caporizzo, Matthew Alexander; Roco, Charles M; Ferrer, Maria Carme Coll; Grady, Martha E; Parrish, Emmabeth; Eckmann, David M; Composto, Russell John

    Force-displacement measurements are taken at different rates with an atomic force microscope to assess the correlation between cell health and cell viscoelasticity in THP-1 cells that have been treated with a novel drug carrier. A variable indentation-rate viscoelastic analysis, VIVA, is employed to identify the relaxation time of the cells that are known to exhibit a frequency dependent stiffness. The VIVA agrees with a fluorescent viability assay. This indicates that dextran-lysozyme drug carriers are biocompatible and deliver concentrated toxic material (rhodamine or silver nanoparticles) to the cytoplasm of THP-1 cells. By modelling the frequency dependence of the elastic modulus, the VIVA provides three metrics of cytoplasmic viscoelasticity: a low frequency modulus, a high frequency modulus and viscosity. The signature of cytotoxicity by rhodamine or silver exposure is a frequency independent twofold increase in the elastic modulus and cytoplasmic viscosity, while the cytoskeletal relaxation time remains unchanged. This is consistent with the known toxic mechanism of silver nanoparticles, where metabolic stress causes an increase in the rigidity of the cytoplasm. A variable indentation-rate viscoelastic analysis is presented as a straightforward method to promote the self-consistent comparison between cells. This is paramount to the development of early diagnosis and treatment of disease.

  19. A novel twelve class fluctuation test reveals higher than expected mutation rates for influenza A viruses

    PubMed Central

    Pauly, Matthew D; Procario, Megan C; Lauring, Adam S

    2017-01-01

    Influenza virus’ low replicative fidelity contributes to its capacity for rapid evolution. Clonal sequencing and fluctuation tests have suggested that the influenza virus mutation rate is 2.7 × 10–6 - 3.0 × 10–5 substitutions per nucleotide per strand copied (s/n/r). However, sequencing assays are biased toward mutations with minimal fitness impacts and fluctuation tests typically investigate only a subset of all possible single nucleotide mutations. We developed a fluctuation test based on reversion to fluorescence in a set of virally encoded mutant green fluorescent proteins, which allowed us to measure the rates of selectively neutral mutations representative of the twelve different mutation types. We measured an overall mutation rate of 1.8 × 10–4 s/n/r for PR8 (H1N1) and 2.5 × 10–4 s/n/r for Hong Kong 2014 (H3N2) and a transitional bias of 2.7–3.6. Our data suggest that each replicated genome will have an average of 2–3 mutations and highlight the importance of mutational load in influenza virus evolution. DOI: http://dx.doi.org/10.7554/eLife.26437.001 PMID:28598328

  20. The Mass-independence of Specific Star Formation Rates in Galactic Disks

    NASA Astrophysics Data System (ADS)

    Abramson, Louis E.; Kelson, Daniel D.; Dressler, Alan; Poggianti, Bianca; Gladders, Michael D.; Oemler, Augustus, Jr.; Vulcani, Benedetta

    2014-04-01

    The slope of the star formation rate/stellar mass relation (the SFR "Main Sequence"; SFR-M *) is not quite unity: specific star formation rates (SFR/M *) are weakly but significantly anti-correlated with M *. Here we demonstrate that this trend may simply reflect the well-known increase in bulge mass-fractions—portions of a galaxy not forming stars—with M *. Using a large set of bulge/disk decompositions and SFR estimates derived from the Sloan Digital Sky Survey, we show that re-normalizing SFR by disk stellar mass (sSFRdisk ≡ SFR/M *, disk) reduces the M * dependence of SF efficiency by ~0.25 dex per dex, erasing it entirely in some subsamples. Quantitatively, we find log sSFRdisk-log M * to have a slope βdisk in [ - 0.20, 0.00] ± 0.02 (depending on the SFR estimator and Main Sequence definition) for star-forming galaxies with M * >= 1010 M ⊙ and bulge mass-fractions B/T <~ 0.6, generally consistent with a pure-disk control sample (βcontrol = -0.05 ± 0.04). That langSFR/M *, diskrang is (largely) independent of host mass for star-forming disks has strong implications for aspects of galaxy evolution inferred from any SFR-M * relation, including manifestations of "mass quenching" (bulge growth), factors shaping the star-forming stellar mass function (uniform dlog M */dt for low-mass, disk-dominated galaxies), and diversity in star formation histories (dispersion in SFR(M *, t)). Our results emphasize the need to treat galaxies as composite systems—not integrated masses—in observational and theoretical work.

  1. An Estimation of the Star Formation Rate in the Perseus Complex

    NASA Astrophysics Data System (ADS)

    Mercimek, Seyma; Myers, Philip C.; Lee, Katherine I.; Sadavoy, Sarah I.

    2017-05-01

    We present the results of our investigation of the star-forming potential in the Perseus star-forming complex. We build on previous starless core, protostellar core, and young stellar object (YSO) catalogs from Spitzer (3.6-70 μm), Herschel (70-500 μm), and SCUBA (850 μm) observations in the literature. We place the cores and YSOs within seven star-forming clumps based on column densities greater than 5× {10}21 cm-2. We calculate the mean density and free-fall time for 69 starless cores as ˜5.55 × {10}-19 g cm-3 and ˜0.1 Myr, respectively, and we estimate the star formation rate for the near future as ˜150 M ⊙ Myr-1. According to Bonnor-Ebert stability analysis, we find that majority of starless cores in Perseus are unstable. Broadly, these cores can collapse to form the next generation of stars. We found a relation between starless cores and YSOs, where the numbers of young protostars (Class 0 + Class I) are similar to the numbers of starless cores. This similarity, which shows a one-to-one relation, suggests that these starless cores may form the next generation of stars with approximately the same formation rate as the current generation, as identified by the Class 0 and Class I protostars. It follows that if such a relation between starless cores and any YSO stage exists, the SFR values of these two populations must be nearly constant. In brief, we propose that this one-to-one relation is an important factor in better understanding the star formation process within a cloud.

  2. Replication Rate, Framing, and Format Affect Attitudes and Decisions about Science Claims.

    PubMed

    Barnes, Ralph M; Tobin, Stephanie J; Johnston, Heather M; MacKenzie, Noah; Taglang, Chelsea M

    2016-01-01

    A series of five experiments examined how the evaluation of a scientific finding was influenced by information about the number of studies that had successfully replicated the initial finding. The experiments also tested the impact of frame (negative, positive) and numeric format (percentage, natural frequency) on the evaluation of scientific findings. In Experiments 1 through 4, an attitude difference score served as the dependent measure, while a measure of choice served as the dependent measure in Experiment 5. Results from a diverse sample of 188 non-institutionalized U.S. adults (Experiment 2) and 730 undergraduate college students (Experiments 1, 3, and 4) indicated that attitudes became more positive as the replication rate increased and attitudes were more positive when the replication information was framed positively. The results also indicate that the manner in which replication rate was framed had a greater impact on attitude than the replication rate itself. The large effect for frame was attenuated somewhat when information about replication was presented in the form of natural frequencies rather than percentages. A fifth study employing 662 undergraduate college students in a task in which choice served as the dependent measure confirmed the framing effect and replicated the replication rate effect in the positive frame condition, but provided no evidence that the use of natural frequencies diminished the effect.

  3. Theoretical and Shock Tube Study of the Rate Constants for Hydrogen Abstraction Reactions of Ethyl Formate.

    PubMed

    Wu, Junjun; Khaled, Fethi; Ning, Hongbo; Ma, Liuhao; Farooq, Aamir; Ren, Wei

    2017-08-24

    We report a systematic chemical kinetics study of the H atom abstractions from ethyl formate (EF) by H, O((3)P), CH3, OH, and HO2 radicals. The geometry optimization and frequency calculation of all the species were conducted using the M06 method and the cc-pVTZ basis set. The one-dimensional hindered rotor treatment of the reactants and transition states and the intrinsic reaction coordinate analysis were also performed at the M06/cc-pVTZ level of theory. The relative electronic energies were calculated at the CCSD(T)/cc-pVXZ (where X = D, T) level of theory and further extrapolated to the complete basis set limit. Rate constants for the tittle reactions were calculated over the temperature range 500-2500 K by the transition state theory (TST) in conjunction with the asymmetric Eckart tunneling effect. In addition, the rate constants of H-abstraction by hydroxyl radical were measured in shock tube experiments at 900-1321 K and 1.4-2.0 atm. Our theoretical rate constants of OH + EF → products agree well with the experimental results within 15% over the experimental temperature range of 900-1321 K. Branching ratios for the five types of H-abstraction reactions were also determined from their individual site-specific rate constants.

  4. Replication Rate, Framing, and Format Affect Attitudes and Decisions about Science Claims

    PubMed Central

    Barnes, Ralph M.; Tobin, Stephanie J.; Johnston, Heather M.; MacKenzie, Noah; Taglang, Chelsea M.

    2016-01-01

    A series of five experiments examined how the evaluation of a scientific finding was influenced by information about the number of studies that had successfully replicated the initial finding. The experiments also tested the impact of frame (negative, positive) and numeric format (percentage, natural frequency) on the evaluation of scientific findings. In Experiments 1 through 4, an attitude difference score served as the dependent measure, while a measure of choice served as the dependent measure in Experiment 5. Results from a diverse sample of 188 non-institutionalized U.S. adults (Experiment 2) and 730 undergraduate college students (Experiments 1, 3, and 4) indicated that attitudes became more positive as the replication rate increased and attitudes were more positive when the replication information was framed positively. The results also indicate that the manner in which replication rate was framed had a greater impact on attitude than the replication rate itself. The large effect for frame was attenuated somewhat when information about replication was presented in the form of natural frequencies rather than percentages. A fifth study employing 662 undergraduate college students in a task in which choice served as the dependent measure confirmed the framing effect and replicated the replication rate effect in the positive frame condition, but provided no evidence that the use of natural frequencies diminished the effect. PMID:27920743

  5. Power penalties for multi-level PAM modulation formats at arbitrary bit error rates

    NASA Astrophysics Data System (ADS)

    Kaliteevskiy, Nikolay A.; Wood, William A.; Downie, John D.; Hurley, Jason; Sterlingov, Petr

    2016-03-01

    There is considerable interest in combining multi-level pulsed amplitude modulation formats (PAM-L) and forward error correction (FEC) in next-generation, short-range optical communications links for increased capacity. In this paper we derive new formulas for the optical power penalties due to modulation format complexity relative to PAM-2 and due to inter-symbol interference (ISI). We show that these penalties depend on the required system bit-error rate (BER) and that the conventional formulas overestimate link penalties. Our corrections to the standard formulas are very small at conventional BER levels (typically 1×10-12) but become significant at the higher BER levels enabled by FEC technology, especially for signal distortions due to ISI. The standard formula for format complexity, P = 10log(L-1), is shown to overestimate the actual penalty for PAM-4 and PAM-8 by approximately 0.1 and 0.25 dB respectively at 1×10-3 BER. Then we extend the well-known PAM-2 ISI penalty estimation formula from the IEEE 802.3 standard 10G link modeling spreadsheet to the large BER case and generalize it for arbitrary PAM-L formats. To demonstrate and verify the BER dependence of the ISI penalty, a set of PAM-2 experiments and Monte-Carlo modeling simulations are reported. The experimental results and simulations confirm that the conventional formulas can significantly overestimate ISI penalties at relatively high BER levels. In the experiments, overestimates up to 2 dB are observed at 1×10-3 BER.

  6. The structure, dynamics, and star formation rate of the Orion nebula cluster

    SciTech Connect

    Da Rio, Nicola; Tan, Jonathan C.; Jaehnig, Karl

    2014-11-01

    The spatial morphology and dynamical status of a young, still-forming stellar cluster provide valuable clues to the conditions during the star formation event and the processes that regulated it. We analyze the Orion Nebula Cluster (ONC), utilizing the latest censuses of its stellar content and membership estimates over a large wavelength range. We determine the center of mass of the ONC and study the radial dependence of angular substructure. The core appears rounder and smoother than the outskirts, which is consistent with a higher degree of dynamical processing. At larger distances, the departure from circular symmetry is mostly driven by the elongation of the system, with very little additional substructure, indicating a somewhat evolved spatial morphology or an expanding halo. We determine the mass density profile of the cluster, which is well fitted by a power law that is slightly steeper than a singular isothermal sphere. Together with the interstellar medium density, which is estimated from average stellar extinction, the mass content of the ONC is insufficient by a factor ∼1.8 to reproduce the observed velocity dispersion from virialized motions, in agreement with previous assessments that the ONC is moderately supervirial. This may indicate recent gas dispersal. Based on the latest estimates for the age spread in the system and our density profiles, we find that at the half-mass radius, 90% of the stellar population formed within ∼5-8 free-fall times (t {sub ff}). This implies a star formation efficiency per t {sub ff} of ε{sub ff} ∼ 0.04-0.07 (i.e., relatively slow and inefficient star formation rates during star cluster formation).

  7. Hα imaging survey of Wolf-Rayet galaxies: morphologies and star formation rates

    NASA Astrophysics Data System (ADS)

    Jaiswal, S.; Omar, A.

    2016-10-01

    The Hα and optical broad-band images of 25 nearby Wolf-Rayet (WR) galaxies are presented. The WR galaxies are known to have a recent (≤10 Myr) and massive star formation episode. The photometric Hα fluxes are estimated and corrected for extinction and line contamination in the filter pass-bands. The star formation rates (SFRs) are estimated using Hα images and from archival data in the far-ultraviolet (FUV), far-infrared (FIR) and 1.4-GHz radio continuum wavebands. A comparison of SFRs estimated from different wavebands is made after including similar data available in the literature for other WR galaxies. The Hα-based SFRs are found to be tightly correlated with SFRs estimated from the FUV data. The correlations also exist with SFR estimates based on the radio and FIR data. The WR galaxies also follow the radio-FIR correlation known for normal star-forming galaxies, although it is seen here that the majority of dwarf WR galaxies have a radio deficiency. An analysis using the ratio of non-thermal to thermal radio continuum and the ratio of the FUV to Hα SFRs indicates that WR galaxies have lower non-thermal radio emission compared to normal galaxies, most likely due to a lack of supernovae in the very young star formation episode in the WR galaxies. The morphologies of 16 galaxies in our sample are highly suggestive of an ongoing tidal interaction or a past merger in these galaxies. This survey strengthens the conclusions obtained from previous similar studies indicating the importance of tidal interactions in triggering star-formation in WR galaxies.

  8. Controlling the relative rates of adlayer formation and removal during etching in inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Fuller, Nicholas Colvin Masi

    Laser desorption (LD) of the adlayer coupled with laser induced fluorescence (LIF) and plasma induced emission (PIE) of desorbed adsorbates is used to investigate the relative rates of chlorination and sputtering during the etching of Si in inductively coupled Cl2-Ar plasmas. Such an analysis is a two-fold process: surface analysis and plasma characterization. Surface analysis of Si etching using LD-LIF and LD-PIE techniques combined with etch rate measurements have revealed that the coverage of SiCl2 and etch rate increases and coverage of Si decreases abruptly for a chlorine fraction of 75% and ion energy of 80 eV. The precise Cl2 fraction for which these abrupt changes occur increases with an increase in ion energy. These changes may be caused by local chemisorption-induced reconstruction of Si <100>. Furthermore, the chlorination and sputtering rates are increased by ˜ an order of magnitude as the plasma is changed from Ar-dominant to Cl-dominant. Characterization of the plasma included determination of the dominant ion in Cl2 plasmas using LIF and a Langmuir probe and measurement of the absolute densities of Cl2, Cl, Cl+, and At + in Cl2-Ar discharges using optical emission actinometry. These studies reveal that Cl+ is the dominant positive ion in the H-mode and the dissociation of Cl2 to Cl increases with an increase in Ar fraction due to an increase in electron temperature. Furthermore, for powers exceeding 600 W, the neutral to ion flux ratio is strongly dependent on Cl2 fraction and is attributed mostly to the decrease in Cl density. Such dependence of the flux ratio on Cl2 fraction is significant in controlling chlorination and sputtering rates not only for Si etching, but for etching other key technological materials. ICP O2 discharges were also studied for low-kappa polymeric etch applications. These studies reveal that the electron temperature is weakly dependent on rf power and O2 dissociation is low (˜2%) at the maximum rf power density of 5.7 Wcm

  9. Contrasting behavior of oxygen and iron isotopes in banded iron formation revealed by in situ analysis

    NASA Astrophysics Data System (ADS)

    Beard, B.; Li, W.; Kita, N.; Valley, J. W.; Johnson, C.

    2012-12-01

    Banded iron formations (BIFs) record a period of dramatic secular change in Earth's geologic history, when abundant aqueous Fe(II) was removed from Archean and Proterozoic oceans by oxidation. BIFs are characterized by co-existing of quartz and iron minerals, including oxides and carbonates, and alternating iron-rich and iron-poor layers range from m to Formation, Hamersley Group, Western Australia. Oxygen isotope ratios were measured by Secondary Ion Mass Spectrometry (SIMS), and Fe isotope ratios were measured by femtosecond Laser ablation Multi-Collector ICP-MS (fs-LA-MC-ICP-MS), with spatial resolutions of 15 mm (O) and 30-50 mm (Fe), and external precisions (2s) of +0.7 ‰ for δ18O and +0.2 ‰ for δ56Fe, respectively. Analysis of δ18O in iron oxides by SIMS employed special tuning with a 3kV primary beam to minimize orientation effects (Huberty et al. 2010 ). For hematite, δ18O values range from -7.1 ‰ to -0.6 ‰, with the majority of data clustering around -4.5 ‰, and δ56Fe values range from -0.50 ‰ to +1.53‰. Magnetite has a δ18O range of -5.6 ‰ to +5.6 ‰ and a δ56Fe range of -0.76 ‰ to +1.33 ‰. Notably, magnetite shows significant O isotope heterogeneity at a mineral grain scale, and the highest δ18O values were commonly measured from Si-rich (1-3 wt% SiO2) magnetite overgrowths or magnetite grains that have a recrystallization texture. In contrast, lowest δ18O values were measured from magnetite that contains less than 1 wt% SiO2. Individual magnetite grains can have up to 6 ‰ variation in δ18O values between low-Si core and Si-rich overgrowth. Iron

  10. Transcriptome sequencing and metabolite analysis for revealing the blue flower formation in waterlily.

    PubMed

    Wu, Qian; Wu, Jie; Li, Shan-Shan; Zhang, Hui-Jin; Feng, Cheng-Yong; Yin, Dan-Dan; Wu, Ru-Yan; Wang, Liang-Sheng

    2016-11-09

    Waterlily (Nymphaea spp.), a perennial herbaceous aquatic plant, is divided into two ecological groups: hardy waterlily and tropical waterlily. Although the hardy waterlily has no attractive blue flower cultivar, its adaptability is stronger than tropical waterlily because it can survive a cold winter. Thus, breeding hardy waterlily with real blue flowers has become an important target for breeders. Molecular breeding may be a useful way. However, molecular studies on waterlily are limited due to the lack of sequence data. In this study, six cDNA libraries generated from the petals of two different coloring stages of blue tropical waterlily cultivar Nymphaea 'King of Siam' were sequenced using the Illumina HiSeq™ 2500 platform. Each library produced no less than 5.65 Gb clean reads. Subsequently, de novo assembly generated 112,485 unigenes, including 26,206 unigenes annotated to seven public protein databases. Then, 127 unigenes could be identified as putative homologues of color-related genes in other species, including 28 up-regulated and 5 down-regulated unigenes. In petals, 16 flavonoids (4 anthocyanins and 12 flavonols) were detected in different contents during the color development due to the different expression levels of color-related genes, and four flavonols were detected in waterlily for the first time. Furthermore, UA3GTs were selected as the most important candidates involved in the flavonoid metabolic pathway, UA3GTs induced blue petal color formation in Nymphaea 'King of Siam'. This study will improve our understanding of the molecular mechanism of blue flowers in waterlily and provide the basis for molecular breeding of blue hardy waterlily cultivars.

  11. Expression and activity analysis reveal that heme oxygenase (decycling) 1 is associated with blue egg formation.

    PubMed

    Wang, Z P; Liu, R F; Wang, A R; Li, J Y; Deng, X M

    2011-04-01

    Biliverdin is responsible for the coloration of blue eggs and is secreted onto the eggshell by the shell gland. Previous studies confirmed that a significant difference exists in biliverdin content between blue eggs and brown eggs, although the reasons are still unknown. Because the pigment is derived from oxidative degradation of heme catalyzed by heme oxygenase (HO), this study compared heme oxygenase (decycling) 1 (HMOX1), the gene encoding HO expression and HO activity, in the shell glands of the Dongxiang blue-shelled chicken (n = 12) and the Dongxiang brown-shelled chicken (n = 12). Results showed that HMOX1 was highly expressed at the mRNA (1.58-fold; P < 0.05) and protein levels in blue-shelled chickens compared with brown-shelled chickens. At the functional level, blue-shelled chickens also showed 1.40-fold (P < 0.05) higher HO activity than brown-shelled chickens. To explore the reasons for the differential expression of HMOX1, an association study of 6 SNP capturing the majority of HMOX1 variants with the blue egg coloration was performed. Results showed no significant association between SNP and the blue egg coloration in HMOX1 (P > 0.05). Taken together, these results show that blue egg formation is associated with high expression of HMOX1 in the shell gland of Dongxiang blue-shelled chickens, and suggest that differential expression of HMOX1 in the 2 groups of chickens is most likely to arise from an alteration in the trans-acting factor.

  12. Experimental setup affects the particle formation rate and its slope d(log J)/d(log C)

    NASA Astrophysics Data System (ADS)

    Kupiainen, Oona; Olenius, Tinja; Vehkamäki, Hanna

    2013-05-01

    We have simulated the formation of sulfuric acid-dimethylamine clusters in different experimental setups and in the atmosphere. We demonstrate that the cluster formation rate may be different in flow tube experiments than in chamber experiments due to the depletion of some trace compound. We also show that applying the nucleation theorem in a situation where all its assumptions do not hold may lead to erroneous results: the slope d(log J)/d(log C) of the formation rate versus the sulfuric acid concentration is in many conditions 4, although each step of the formation process decreases the Gibbs energy of the system and there is no critical cluster.

  13. The formation and evolution of M33 as revealed by its star clusters

    NASA Astrophysics Data System (ADS)

    San Roman, Izaskun

    2012-03-01

    Numerical simulations based on the Lambda-Cold Dark Matter (Λ-CDM) model predict a scenario consistent with observational evidence in terms of the build-up of Milky Way-like halos. Under this scenario, large disk galaxies derive from the merger and accretion of many smaller subsystems. However, it is less clear how low-mass spiral galaxies fit into this picture. The best way to answer this question is to study the nearest example of a dwarf spiral galaxy, M33. We will use star clusters to understand the structure, kinematics and stellar populations of this galaxy. Star clusters provide a unique and powerful tool for studying the star formation histories of galaxies. In particular, the ages and metallicities of star clusters bear the imprint of the galaxy formation process. We have made use of the star clusters to uncover the formation and evolution of M33. In this dissertation, we have carried out a comprehensive study of the M33 star cluster system, including deep photometry as well as high signal-to-noise spectroscopy. In order to mitigate the significant incompleteness presents in previous catalogs, we have conducted ground-based and space-based photometric surveys of M33 star clusters. Using archival images, we have analyzed 12 fields using the Advanced Camera for Surveys Wide Field Channel onboard the Hubble Space Telescope (ACS/HST) along the major axis of the galaxy. We present integrated photometry and color-magnitude diagrams for 161 star clusters in M33, of which 115 were previously uncataloged. This survey extends the depth of the existing M33 cluster catalogs by ˜ 1 mag. We have expanded our search through a photometric survey in a 1° x 1° area centered on M33 using the MegaCam camera on the 3.6m Canada-France-Hawaii Telescope (CFHT). In this work we discuss the photometric properties of the sample, including color-color diagrams of 599 new candidate stellar clusters, and 204 confirmed clusters. Comparisons with models of simple stellar populations

  14. Revealing all: misleading self-disclosure rates in laboratory-based online research.

    PubMed

    Callaghan, Diana E; Graff, Martin G; Davies, Joanne

    2013-09-01

    Laboratory-based experiments in online self-disclosure research may be inadvertently compromising the accuracy of research findings by influencing some of the factors known to affect self-disclosure behavior. Disclosure-orientated interviews conducted with 42 participants in the laboratory and in nonlaboratory settings revealed significantly greater breadth of self-disclosure in laboratory interviews, with message length and intimacy of content also strongly related. These findings suggest that a contrived online setting with a researcher presence may stimulate motivation for greater self-disclosure than would occur naturally in an online environment of an individual's choice. The implications of these findings are that researchers should consider the importance of experimental context and motivation in self-disclosure research.

  15. Effects of rapid distraction rate on new bone formation during mandibular distraction osteogenesis in goats.

    PubMed

    Long, Jie; Tang, Wei; Fan, Yu-bo; Tian, Wei-dong; Feng, Fan; Liu, Lei; Zheng, Xiao-hui; Jing, Wei; Wu, Ling

    2009-08-01

    Distraction osteogenesis typically requires a long treatment period, which can lead to bone and soft-tissue infection and considerable patient discomfort. Use of a rapid distraction rate in craniofacial distraction osteogenesis to shorten the distraction period is possible owing to the unique characteristics of craniofacial bones, including an abundant blood supply and rapid bone healing compared with long bones. The effects of using a rapid distraction rate in the treatment of craniofacial deformities are currently unclear, however. The objective of this study was to investigate the effects of a rapid distraction rate on new bone formation during mandibular distraction osteogenesis in goats. Sixteen goats were randomly divided into four groups consisting of four goats each. In Groups A, B, and C, the right mandible of each goat was distracted at a rate of 0.8mm/d, 1.6mm/d, and 2.0mm/d, respectively; Group D was the control group and did not undergo distraction. Six weeks after the conclusion of distraction, bone densitometry and three-point bending testing were performed in all groups. The mean bone density value of goats in Group A was significantly higher than those of all the other groups (p<0.05), and the mean bone density value of goats in Group C was significantly lower than those of all the other groups (p<0.05). The mean curve slope, peak stress, bending modulus, and energy to failure values of Groups A, B, and C were all significantly lower than those of the control group (p<0.05). As the distraction rate increased, the curve slope and peak stress values gradually declined (p<0.05). Use of a rapid distraction rate in mandibular distraction osteogenesis may have detrimental effects on the quality of new bone, despite the abundant blood supply of craniofacial bones.

  16. Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ

    PubMed Central

    Pertsinidis, Alexandros; Mukherjee, Konark; Sharma, Manu; Pang, Zhiping P.; Park, Sang Ryul; Zhang, Yunxiang; Brunger, Axel T.; Südhof, Thomas C.; Chu, Steven

    2013-01-01

    Membrane fusion is mediated by complexes formed by SNAP-receptor (SNARE) and Secretory 1 (Sec1)/mammalian uncoordinated-18 (Munc18)-like (SM) proteins, but it is unclear when and how these complexes assemble. Here we describe an improved two-color fluorescence nanoscopy technique that can achieve effective resolutions of up to 7.5-nm full width at half maximum (3.2-nm localization precision), limited only by stochastic photon emission from single molecules. We use this technique to dissect the spatial relationships between the neuronal SM protein Munc18-1 and SNARE proteins syntaxin-1 and SNAP-25 (25 kDa synaptosome-associated protein). Strikingly, we observed nanoscale clusters consisting of syntaxin-1 and SNAP-25 that contained associated Munc18-1. Rescue experiments with syntaxin-1 mutants revealed that Munc18-1 recruitment to the plasma membrane depends on the Munc18-1 binding to the N-terminal peptide of syntaxin-1. Our results suggest that in a primary neuron, SNARE/SM protein complexes containing syntaxin-1, SNAP-25, and Munc18-1 are preassembled in microdomains on the presynaptic plasma membrane. Our superresolution imaging method provides a framework for investigating interactions between the synaptic vesicle fusion machinery and other subcellular systems in situ. PMID:23821748

  17. Conditional Deletion of Prolyl Hydroxylase Domain-Containing Protein 2 (Phd2) Gene Reveals Its Essential Role in Chondrocyte Function and Endochondral Bone Formation.

    PubMed

    Cheng, Shaohong; Xing, Weirong; Pourteymoor, Sheila; Schulte, Jan; Mohan, Subburaman

    2016-01-01

    The hypoxic growth plate cartilage requires hypoxia-inducible factor (HIF)-mediated pathways to maintain chondrocyte survival and differentiation. HIF proteins are tightly regulated by prolyl hydroxylase domain-containing protein 2 (Phd2)-mediated proteosomal degradation. We conditionally disrupted the Phd2 gene in chondrocytes by crossing Phd2 floxed mice with type 2 collagen-α1-Cre transgenic mice and found massive increases (>50%) in the trabecular bone mass of long bones and lumbar vertebra of the Phd2 conditional knockout (cKO) mice caused by significant increases in trabecular number and thickness and reductions in trabecular separation. Cortical thickness and tissue mineral density at the femoral middiaphysis of the cKO mice were also significantly increased. Dynamic histomorphometric analyses revealed increased longitudinal length and osteoid surface per bone surface in the primary spongiosa of the cKO mice, suggesting elevated conversion rate from hypertrophic chondrocytes to mineralized bone matrix as well as increased bone formation in the primary spongiosa. In the secondary spongiosa, bone formation measured by mineralizing surface per bone surface and mineral apposition rate were not changed, but resorption was slightly reduced. Increases in the mRNA levels of SRY (sex determining region Y)-box 9, osterix (Osx), type 2 collagen, aggrecan, alkaline phosphatase, bone sialoprotein, vascular endothelial growth factor, erythropoietin, and glycolytic enzymes in the growth plate of cKO mice were detected by quantitative RT-PCR. Immunohistochemistry revealed an increased HIF-1α protein level in the hypertrophic chondrocytes of cKO mice. Infection of chondrocytes isolated from Phd2 floxed mice with adenoviral Cre resulted in similar gene expression patterns as observed in the cKO growth plate chondrocytes. Our findings indicate that Phd2 suppresses endochondral bone formation, in part, via HIF-dependent mechanisms in mice.

  18. Conditional Deletion of Prolyl Hydroxylase Domain-Containing Protein 2 (Phd2) Gene Reveals Its Essential Role in Chondrocyte Function and Endochondral Bone Formation

    PubMed Central

    Cheng, Shaohong; Xing, Weirong; Pourteymoor, Sheila; Schulte, Jan

    2016-01-01

    The hypoxic growth plate cartilage requires hypoxia-inducible factor (HIF)-mediated pathways to maintain chondrocyte survival and differentiation. HIF proteins are tightly regulated by prolyl hydroxylase domain-containing protein 2 (Phd2)-mediated proteosomal degradation. We conditionally disrupted the Phd2 gene in chondrocytes by crossing Phd2 floxed mice with type 2 collagen-α1-Cre transgenic mice and found massive increases (>50%) in the trabecular bone mass of long bones and lumbar vertebra of the Phd2 conditional knockout (cKO) mice caused by significant increases in trabecular number and thickness and reductions in trabecular separation. Cortical thickness and tissue mineral density at the femoral middiaphysis of the cKO mice were also significantly increased. Dynamic histomorphometric analyses revealed increased longitudinal length and osteoid surface per bone surface in the primary spongiosa of the cKO mice, suggesting elevated conversion rate from hypertrophic chondrocytes to mineralized bone matrix as well as increased bone formation in the primary spongiosa. In the secondary spongiosa, bone formation measured by mineralizing surface per bone surface and mineral apposition rate were not changed, but resorption was slightly reduced. Increases in the mRNA levels of SRY (sex determining region Y)-box 9, osterix (Osx), type 2 collagen, aggrecan, alkaline phosphatase, bone sialoprotein, vascular endothelial growth factor, erythropoietin, and glycolytic enzymes in the growth plate of cKO mice were detected by quantitative RT-PCR. Immunohistochemistry revealed an increased HIF-1α protein level in the hypertrophic chondrocytes of cKO mice. Infection of chondrocytes isolated from Phd2 floxed mice with adenoviral Cre resulted in similar gene expression patterns as observed in the cKO growth plate chondrocytes. Our findings indicate that Phd2 suppresses endochondral bone formation, in part, via HIF-dependent mechanisms in mice. PMID:26562260

  19. Metabolic rate throughout the annual cycle reveals the demands of an Arctic existence in great cormorants.

    PubMed

    White, Craig R; Grémillet, David; Green, Jonathan A; Martin, Graham R; Butler, Patrick J

    2011-02-01

    Aquatic endotherms living in polar regions are faced with a multitude of challenges, including low air and water temperatures and low illumination, especially in winter. Like other endotherms from cold environments, Great Cormorants (Phalacrocorax carbo) living in Arctic waters were hypothesized to respond to these challenges through a combination of high daily rate of energy expenditure (DEE) and high food requirements, which are met by a high rate of catch per unit effort (CPUE). CPUE has previously been shown in Great Cormorants to be the highest of any diving bird. In the present study, we tested this hypothesis by making the first measurements of DEE and foraging activity of Arctic-dwelling Great Cormorants throughout the annual cycle. We demonstrate that, in fact, Great Cormorants have surprisingly low rates of DEE. This low DEE is attributed primarily to very low levels of foraging activity, particularly during winter, when the cormorants spent only 2% of their day submerged. Such a low level of foraging activity can only be sustained through consistently high foraging performance. We demonstrate that Great Cormorants have one of the highest recorded CPUEs for a diving predator; 18.6 g per minute submerged (95% prediction interval 13.0-24.2 g/min) during winter. Temporal variation in CPUE was investigated, and highest CPUE was associated with long days and shallow diving depths. The effect of day length is attributed to seasonal variation in prey abundance. Shallow diving leads to high CPUE because less time is spent swimming between the surface and the benthic zone where foraging occurs. Our study demonstrates the importance of obtaining accurate measurements of physiology and behavior from free-living animals when attempting to understand their ecology.

  20. 40 CFR Table I-5 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for MEMS Manufacturing I Table I-5 to Subpart I of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electronics Manufacturing Pt. 98, Subpt. I, Table...

  1. 40 CFR Table I-6 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Gas Utilization Rates (Uij) and By-Product Formation Rates(Bijk) for LCD Manufacturing I Table I-6 to Subpart I of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electronics Manufacturing Pt. 98, Subpt. I, Table I-6 Table...

  2. 40 CFR Table I-7 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for PV Manufacturing I Table I-7 to Subpart I of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electronics Manufacturing Pt. 98, Subpt. I, Table I-7 Table...

  3. 40 CFR Table I-11 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for Semiconductor Manufacturing for... (Bijk) for Semiconductor Manufacturing for Use With the Stack Test Method (150 mm and 200 mm Wafers...

  4. 40 CFR Table I-12 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for Semiconductor Manufacturing for... (Bijk) for Semiconductor Manufacturing for Use With the Stack Test Method (300 mm and 450 mm Wafers...

  5. Low 18O-contents in Arctic Neogloboquadrina pachyderma shells: A proxy of brine formation rate?

    NASA Astrophysics Data System (ADS)

    Hillaire-Marcel, C.; de Vernal, A.

    2006-12-01

    In the Arctic Ocean, the cold water foraminifera Neogloboquadrina pachyderma (Np), left as right coiled, likely forms its shell along the pycnocline between the cold, dilute, surface water and the warmer, saline North Atlantic Water (NAW), due to salinity conditions in the surface water mass below optimum values for the species (~ 35 psu;[1]). However, δ18O-values in Np shell still present negative offsets with isotopic equilibrium conditions for a calcite precipitated at mid-pycnocline depth. This offset ranges from 1 (Arctic seas) to 3 per mil (Canada Basin, East Siberian Sea), although temperature gradients along the pycnocline still result in predictable isotopic shifts from small (juvenile?) to large (mature?) shells [2]. The precise mechanism responsible for the 18O offset is not known, but it seems linked to rate of sea-ice formation or to its seasonal duration (e.g., [3]). The freezing of low 18O-content sea-surface waters rejects isotopically-light brines that sink to the pycnocline. We hypothesize that Np-shell growth occurs in such high- salinity/low-δ18O water droplets or thin layers sinking to the pycnocline. In vitro experiments [4] have indeed shown that formation of new shell-chambers could still occurs in salinities of up to 58 psu, and that some specimens could survive 82 psu for at least a week. Thus, in this hypothesis, isotopic offsets in Np would relate to the rate of brine formation. In the modern Arctic Ocean, mixing of these brines into NAW and export of surface water and sea ice into the North Atlantic would contribute maintaining steady-state conditions, thus resulting in an asymptotic offset value near 2.5/-3 per mil in Np shells. From this viewpoint, the greater offsets in the western Arctic and East Siberian Sea areas (up to 3 per mil), compared with the eastern Arctic Ocean (appr. 1 per mil), would reflect a difference in sea-ice formation rates along the shelves. Such isotopic offsets maintained in the Chukchi Sea during most of

  6. Trace fossils revealed through x-radiography in facies analysis of Smackover Formation, southwest Alabama

    SciTech Connect

    Esposito, R.A.; King, D.T. Jr.

    1986-05-01

    The use of x-radiography has been applied to slabbed cores of Jurassic Smackover limestones from southwestern Alabama to enhance the complete petrologic description of the rocks. Through x-radiography, trace fossils have been revealed in what would otherwise appear to be homogeneous rock. In these biogenic structures, organic material, partly fecal in origin, is concentrated as infill packing in actively filled burrows. A microreducing environment within the burrow results in the mineralization by finely disseminated FeS/sub 2/. The density difference between FeS/sub 2/, which has a high absorption coefficient, and the surrounding calcium carbonate highlights the burrows in the x-radiographs. This characteristic burrow mineralization is shown well in the Smackover where a Zoophycus-Thalassinoides trace-fossil assemblage has been identified. Zoophycus, a feeding structure, is characterized by concave-upward traces with whorled peaks, and is best seen in slabs cut perpendicular to bedding. Thalassinoides is a dwelling structure characterized by a boxwork burrow system and is best seen in cores cut parallel to bedding. This assemblage is restricted to facies that is laterally persistent throughout the Smackover in most of Escambia County, Alabama. This trace-fossil assemblage is found in an oolitic pelletal packstone. This unit is overlain by an oolitic grainstone and is stratigraphically above a sparsely fossiliferous, laminated wackestone and packstone. Trace fossils in this horizon are abundant, but the traces are not found in stratigraphically adjacent lithofacies. Detecting these otherwise unseen trace fossils by x-radiography assisted the paleoenvironmental interpretation of this depositional facies as a low-energy subwave-base carbonate-shelf deposit.

  7. THE MOSDEF SURVEY: MASS, METALLICITY, AND STAR-FORMATION RATE AT z ∼ 2.3

    SciTech Connect

    Sanders, Ryan L.; Shapley, Alice E.; Kriek, Mariska; Price, Sedona H.; Reddy, Naveen A.; Freeman, William R.; Siana, Brian; Mobasher, Bahram; Shivaei, Irene; De Groot, Laura; Coil, Alison L.

    2015-02-01

    We present results on the z ∼ 2.3 mass-metallicity relation (MZR) using early observations from the MOSFIRE Deep Evolution Field survey. We use an initial sample of 87 star-forming galaxies with spectroscopic coverage of Hβ, [O III] λ5007, Hα, and [N II] λ6584 rest-frame optical emission lines, and estimate the gas-phase oxygen abundance based on the N2 and O3N2 strong-line indicators. We find a positive correlation between stellar mass and metallicity among individual z ∼ 2.3 galaxies using both the N2 and O3N2 indicators. We also measure the emission-line ratios and corresponding oxygen abundances for composite spectra in bins of stellar mass. Among composite spectra, we find a monotonic increase in metallicity with increasing stellar mass, offset ∼0.15-0.3 dex below the local MZR. When the sample is divided at the median star-formation rate (SFR), we do not observe significant SFR dependence of the z ∼ 2.3 MZR among either individual galaxies or composite spectra. We furthermore find that z ∼ 2.3 galaxies have metallicities ∼0.1 dex lower at a given stellar mass and SFR than is observed locally. This offset suggests that high-redshift galaxies do not fall on the local ''fundamental metallicity relation'' among stellar mass, metallicity, and SFR, and may provide evidence of a phase of galaxy growth in which the gas reservoir is built up due to inflow rates that are higher than star-formation and outflow rates. However, robust conclusions regarding the gas-phase oxygen abundances of high-redshift galaxies await a systematic reappraisal of the application of locally calibrated metallicity indicators at high redshift.

  8. GLOBAL STAR FORMATION RATES AND DUST EMISSION OVER THE GALAXY INTERACTION SEQUENCE

    SciTech Connect

    Lanz, Lauranne; Zezas, Andreas; Smith, Howard A.; Ashby, Matthew L. N.; Fazio, Giovanni G.; Hernquist, Lars; Brassington, Nicola; Da Cunha, Elisabete; Hayward, Christopher C.; Jonsson, Patrik

    2013-05-01

    We measured and modeled spectral energy distributions (SEDs) in 28 bands from the ultraviolet to the far-infrared (FIR) for 31 interacting galaxies in 14 systems. The sample is drawn from the Spitzer Interacting Galaxy Survey, which probes a range of galaxy interaction parameters at multiple wavelengths with an emphasis on the infrared bands. The subset presented in this paper consists of all galaxies for which FIR Herschel SPIRE observations are publicly available. Our SEDs combine the Herschel photometry with multi-wavelength data from Spitzer, GALEX, Swift UVOT, and 2MASS. While the shapes of the SEDs are broadly similar across our sample, strongly interacting galaxies typically have more mid-infrared emission relative to their near-infrared and FIR emission than weakly or moderately interacting galaxies. We modeled the full SEDs to derive host galaxy star formation rates (SFRs), specific star formation rates (sSFRs), stellar masses, dust temperatures, dust luminosities, and dust masses. We find increases in the dust luminosity and mass, SFR, and cold (15-25 K) dust temperature as the interaction progresses from moderately to strongly interacting and between non-interacting and strongly interacting galaxies. We also find increases in the SFR between weakly and strongly interacting galaxies. In contrast, the sSFR remains unchanged across all the interaction stages. The ultraviolet photometry is crucial for constraining the age of the stellar population and the SFR, while dust mass is primarily determined by SPIRE photometry. The SFR derived from the SED modeling agrees well with rates estimated by proportionality relations that depend on infrared emission.

  9. Comparative analyses of evolutionary rates reveal different pathways to encephalization in bats, carnivorans, and primates.

    PubMed

    Smaers, Jeroen B; Dechmann, Dina K N; Goswami, Anjali; Soligo, Christophe; Safi, Kamran

    2012-10-30

    Variation in relative brain size is commonly interpreted as the result of selection on neuronal capacity. However, this approach ignores that relative brain size is also linked to another highly adaptive variable: body size. Considering that one-way tradeoff mechanisms are unlikely to provide satisfactory evolutionary explanations, we introduce an analytical framework that describes and quantifies all possible evolutionary scenarios between two traits. To investigate the effects of body mass changes on the interpretation of relative brain size evolution, we analyze three mammalian orders that are expected to be subject to different selective pressures on body size due to differences in locomotor adaptation: bats (powered flight), primates (primarily arboreal), and carnivorans (primarily terrestrial). We quantify rates of brain and body mass changes along individual branches of phylogenetic trees using an adaptive peak model of evolution. We find that the magnitude and variance of the level of integration of brain and body mass rates, and the subsequent relative influence of either brain or body size evolution on the brain-body relationship, differ significantly between orders and subgroups within orders. Importantly, we find that variation in brain-body relationships was driven primarily by variability in body mass. Our approach allows a more detailed interpretation of correlated trait evolution and variation in the underlying evolutionary pathways. Results demonstrate that a principal focus on interpreting relative brain size evolution as selection on neuronal capacity confounds the effects of body mass changes, thereby hiding important aspects that may contribute to explaining animal diversity.

  10. Comparative analyses of evolutionary rates reveal different pathways to encephalization in bats, carnivorans, and primates

    PubMed Central

    Smaers, Jeroen B.; Dechmann, Dina K. N.; Goswami, Anjali; Soligo, Christophe; Safi, Kamran

    2012-01-01

    Variation in relative brain size is commonly interpreted as the result of selection on neuronal capacity. However, this approach ignores that relative brain size is also linked to another highly adaptive variable: body size. Considering that one-way tradeoff mechanisms are unlikely to provide satisfactory evolutionary explanations, we introduce an analytical framework that describes and quantifies all possible evolutionary scenarios between two traits. To investigate the effects of body mass changes on the interpretation of relative brain size evolution, we analyze three mammalian orders that are expected to be subject to different selective pressures on body size due to differences in locomotor adaptation: bats (powered flight), primates (primarily arboreal), and carnivorans (primarily terrestrial). We quantify rates of brain and body mass changes along individual branches of phylogenetic trees using an adaptive peak model of evolution. We find that the magnitude and variance of the level of integration of brain and body mass rates, and the subsequent relative influence of either brain or body size evolution on the brain–body relationship, differ significantly between orders and subgroups within orders. Importantly, we find that variation in brain–body relationships was driven primarily by variability in body mass. Our approach allows a more detailed interpretation of correlated trait evolution and variation in the underlying evolutionary pathways. Results demonstrate that a principal focus on interpreting relative brain size evolution as selection on neuronal capacity confounds the effects of body mass changes, thereby hiding important aspects that may contribute to explaining animal diversity. PMID:23071335

  11. Rate coefficient of CN formation through radiative association: a theoretical study of quantum effects.

    PubMed

    Antipov, Sergey V; Sjölander, Tobias; Nyman, Gunnar; Gustafsson, Magnus

    2009-08-21

    Radiative association of CN is simulated using a quantum dynamical as well as a semiclassical approach. A comparison of the resulting energy-resolved cross sections reveals striking quantum effects that are due to shape resonances. These, in turn, arise because of states that are quasibound by the centrifugal barrier. The quantal rate coefficient for temperatures from 40 to 1900 K has been computed using the Breit-Wigner theory to account for the resonances. Comparison with the results obtained by Singh and Andreazza [Astrophys. J. 537, 261 (2000)] shows that the semiclassical method, which completely omits the shape resonances, is accurate to within 25% above room temperature. At lower temperatures the contribution from the shape resonances to the radiative association rate is more significant.

  12. Transient β-hairpin formation in α-synuclein monomer revealed by coarse-grained molecular dynamics simulation

    SciTech Connect

    Yu, Hang; Ma, Wen; Han, Wei; Schulten, Klaus

    2015-12-28

    Parkinson’s disease, originating from the intrinsically disordered peptide α-synuclein, is a common neurodegenerative disorder that affects more than 5% of the population above age 85. It remains unclear how α-synuclein monomers undergo conformational changes leading to aggregation and formation of fibrils characteristic for the disease. In the present study, we perform molecular dynamics simulations (over 180 μs in aggregated time) using a hybrid-resolution model, Proteins with Atomic details in Coarse-grained Environment (PACE), to characterize in atomic detail structural ensembles of wild type and mutant monomeric α-synuclein in aqueous solution. The simulations reproduce structural properties of α-synuclein characterized in experiments, such as secondary structure content, long-range contacts, chemical shifts, and {sup 3}J(H{sub N}H{sub C{sub α}})-coupling constants. Most notably, the simulations reveal that a short fragment encompassing region 38-53, adjacent to the non-amyloid-β component region, exhibits a high probability of forming a β-hairpin; this fragment, when isolated from the remainder of α-synuclein, fluctuates frequently into its β-hairpin conformation. Two disease-prone mutations, namely, A30P and A53T, significantly accelerate the formation of a β-hairpin in the stated fragment. We conclude that the formation of a β-hairpin in region 38-53 is a key event during α-synuclein aggregation. We predict further that the G47V mutation impedes the formation of a turn in the β-hairpin and slows down β-hairpin formation, thereby retarding α-synuclein aggregation.

  13. Transcriptomics Analysis Reveals Putative Genes Involved in Biofilm Formation and Biofilm-associated Drug Resistance of Enterococcus faecalis.

    PubMed

    Seneviratne, Chaminda J; Suriyanarayanan, Tanujaa; Swarup, Sanjay; Chia, Kuan Hui Burton; Nagarajan, Niranjan; Zhang, Chengfei

    2017-06-01

    Enterococcus faecalis is a gram-positive bacterium associated with endodontic infections and is capable of forming biofilms that can confer drug resistance to the bacterium, resulting in treatment failure. Current knowledge on E. faecalis drug resistance is of a limited and conflicting nature. The present study examined the genetic basis of E. faecalis biofilm formation and drug resistance using a RNA sequencing (RNA-Seq)-based transcriptome approach. Eighteen clinical isolates of E. faecalis were screened for their biofilm formation abilities using the crystal violet assay, colony counting, and confocal imaging. Selected isolates were then evaluated for antibiotic susceptibility in planktonic and biofilm growth modes followed by RNA-Seq analysis of E. faecalis planktonic, biofilm, and vancomycin-treated biofilm samples and Kyoto Encyclopedia of Genes and Genomes mapping in order to identify genes associated with biofilm formation and drug resistance of E. faecalis. All 18 clinical isolates retained biofilm formation ability and were classified as strong, weak, or laboratory American Type Culture Collection strainlike biofilm formers. Interestingly, both the strong and weak biofilm-forming isolates were uniformly resistant to ampicillin and vancomycin at the treated concentrations (256-4096 μg/mL). RNA-Seq analysis of these isolates identified a total of 163 and 101 differentially regulated genes in planktonic versus biofilm and vancomycin-treated biofilm versus biofilm comparisons, respectively, with significant differences in arsenic resistance operon genes arsR and arsD, sporulation regulatory gene paiA, ABC drug transporter classes, and penicillin-binding proteins. The present transcriptomic study revealed putative genes associated with E. faecalis biofilm formation and drug resistance, which will provide a foundation for improved therapeutic strategies against E. faecalis infections in the future. Copyright © 2017 American Association of Endodontists

  14. Transient β-hairpin formation in α-synuclein monomer revealed by coarse-grained molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Yu, Hang; Han, Wei; Ma, Wen; Schulten, Klaus

    2015-12-01

    Parkinson's disease, originating from the intrinsically disordered peptide α-synuclein, is a common neurodegenerative disorder that affects more than 5% of the population above age 85. It remains unclear how α-synuclein monomers undergo conformational changes leading to aggregation and formation of fibrils characteristic for the disease. In the present study, we perform molecular dynamics simulations (over 180 μs in aggregated time) using a hybrid-resolution model, Proteins with Atomic details in Coarse-grained Environment (PACE), to characterize in atomic detail structural ensembles of wild type and mutant monomeric α-synuclein in aqueous solution. The simulations reproduce structural properties of α-synuclein characterized in experiments, such as secondary structure content, long-range contacts, chemical shifts, and 3J(HNHCα)-coupling constants. Most notably, the simulations reveal that a short fragment encompassing region 38-53, adjacent to the non-amyloid-β component region, exhibits a high probability of forming a β-hairpin; this fragment, when isolated from the remainder of α-synuclein, fluctuates frequently into its β-hairpin conformation. Two disease-prone mutations, namely, A30P and A53T, significantly accelerate the formation of a β-hairpin in the stated fragment. We conclude that the formation of a β-hairpin in region 38-53 is a key event during α-synuclein aggregation. We predict further that the G47V mutation impedes the formation of a turn in the β-hairpin and slows down β-hairpin formation, thereby retarding α-synuclein aggregation.

  15. Active Site Formation, Not Bond Kinetics, Limits Adhesion Rate between Human Neutrophils and Immobilized Vascular Cell Adhesion Molecule 1

    PubMed Central

    Waugh, Richard E.; Lomakina, Elena B.

    2009-01-01

    Abstract The formation of receptor ligand bonds at the interface between different cells and between cells and substrates is a widespread phenomenon in biological systems. Physical measurements of bond formation rates between cells and substrates have been exploited to increase our understanding of the biophysical mechanisms that regulate bond formation at interfaces. Heretofore, these measurements have been interpreted in terms of simple bimolecular reaction kinetics. Discrepancies between this simple framework and the behavior of neutrophils adhering to surfaces expressing vascular cell adhesion molecule 1 (VCAM-1) motivated the development of a new kinetic framework in which the explicit formation of active bond formation sites (reaction zones) are a prerequisite for bond formation to occur. Measurements of cells interacting with surfaces having a wide range of VCAM-1 concentrations, and for different durations of contact, enabled the determination of novel kinetic rate constants for the formation of reaction zones and for the intrinsic bond kinetics. Comparison of these rates with rates determined previously for other receptor-ligand pairs points to a predominant role of extrinsic factors such as surface topography and accessibility of active molecules to regions of close contact in determining forward rates of bond formation at cell interfaces. PMID:19134479

  16. An evolutionary model for collapsing molecular clouds and their star formation activity. II. Mass dependence of the star formation rate

    SciTech Connect

    Zamora-Avilés, Manuel; Vázquez-Semadeni, Enrique

    2014-10-01

    We discuss the evolution and dependence on cloud mass of the star formation rate (SFR) and efficiency (SFE) of star-forming molecular clouds (MCs) within the scenario that clouds are undergoing global collapse and that the SFR is controlled by ionization feedback. We find that low-mass clouds (M {sub max} ≲ 10{sup 4} M {sub ☉}) spend most of their evolution at low SFRs, but end their lives with a mini-burst, reaching a peak SFR ∼10{sup 4} M {sub ☉} Myr{sup –1}, although their time-averaged SFR is only (SFR) ∼ 10{sup 2} M {sub ☉} Myr{sup –1}. The corresponding efficiencies are SFE{sub final} ≲ 60% and (SFE) ≲ 1%. For more massive clouds (M {sub max} ≳ 10{sup 5} M {sub ☉}), the SFR first increases and then reaches a plateau because the clouds are influenced by stellar feedback since earlier in their evolution. As a function of cloud mass, (SFR) and (SFE) are well represented by the fits (SFR) ≈ 100(1 + M {sub max}/1.4 × 10{sup 5} M {sub ☉}){sup 1.68} M {sub ☉} Myr{sup –1} and (SFE) ≈ 0.03(M {sub max}/2.5 × 10{sup 5} M {sub ☉}){sup 0.33}, respectively. Moreover, the SFR of our model clouds follows closely the SFR-dense gas mass relation recently found by Lada et al. during the epoch when their instantaneous SFEs are comparable to those of the clouds considered by those authors. Collectively, a Monte Carlo integration of the model-predicted SFR(M) over a Galactic giant molecular cloud mass spectrum yields values for the total Galactic SFR that are within half an order of magnitude of the relation obtained by Gao and Solomon. Our results support the scenario that star-forming MCs may be in global gravitational collapse and that the low observed values of the SFR and SFE are a result of the interruption of each SF episode, caused primarily by the ionizing feedback from massive stars.

  17. Prediction of terrestrial gamma dose rate based on geological formations and soil types in the Johor State, Malaysia.

    PubMed

    Saleh, Muneer Aziz; Ramli, Ahmad Termizi; bin Hamzah, Khaidzir; Alajerami, Yasser; Moharib, Mohammed; Saeed, Ismael

    2015-10-01

    This study aims to predict and estimate unmeasured terrestrial gamma dose rate (TGDR) using statistical analysis methods to derive a model from the actual measurement based on geological formation and soil type. The measurements of TGDR were conducted in the state of Johor with a total of 3873 measured points which covered all geological formations, soil types and districts. The measurements were taken 1 m above the soil surface using NaI [Ti] detector. The measured gamma dose rates ranged from 9 nGy h(-1) to 1237 nGy h(-1) with a mean value of 151 nGy h(-1). The data have been normalized to fit a normal distribution. Tests of significance were conducted among all geological formations and soil types, using the unbalanced one way ANOVA. The results indicated strong significant differences due to the different geological formations and soil types present in Johor State. Pearson Correlation was used to measure the relations between gamma dose rate based on geological formation and soil type (D(G,S)) with the gamma dose rate based on geological formation (D(G)) or soil type (D(s)). A very good correlation was found between D(G,S) and D(G) or D(G,S) and D(s). A total of 118 pairs of geological formations and soil types were used to derive the statistical contribution of geological formations and soil types to gamma dose rates. The contribution of the gamma dose rate from geological formation and soil type were found to be 0.594 and 0.399, respectively. The null hypotheses were accepted for 83% of examined data, therefore, the model could be used to predict gamma dose rates based on geological formation and soil type information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effects of the Sports Level, Format of the Game and Task Condition on Heart Rate Responses, Technical and Tactical Performance of Youth Basketball Players

    PubMed Central

    Clemente, Filipe Manuel; González-Víllora, Sixto; Delextrat, Anne; Martins, Fernando Manuel Lourenço; Vicedo, Juan Carlos Pastor

    2017-01-01

    Abstract The aim of this study was to analyze the effect of different small-sided and conditioning games (SSCG) with different tactical contents on heart rate responses, technical performance and collective organization of youth basketball players of different performance levels. Twenty male basketball players from U14 (13.7 ± 0.8 years old; 4.2 ± 1.4 years of practice) and U16 (15.3 ± 1.1 years old; 6.4 ± 2.1 years of practice) participated in this research study. The two-way MANOVA revealed that the sports level (p = 0.009; ηp2 = 0.151), format (p = 0.001; ηp2 = 0.246) and task condition (p = 0.023; ηp2 = 0.104; small effect size) had significant main effects on heart rate responses. It was also found that the format (p = 0.001; ηp2 = 0.182) had significant main effects on technical performance. A smaller format significantly increased the heart rate, volume of play, efficiency index and collective density during attacking plays. The SSCG with attacking content statistically increased the heart rate, efficiency index and performance score. Therefore, this study revealed that different SSCGs with tactical content influenced the physiological responses of youth players. PMID:28828085

  19. Effects of the Sports Level, Format of the Game and Task Condition on Heart Rate Responses, Technical and Tactical Performance of Youth Basketball Players.

    PubMed

    Clemente, Filipe Manuel; González-Víllora, Sixto; Delextrat, Anne; Martins, Fernando Manuel Lourenço; Vicedo, Juan Carlos Pastor

    2017-09-01

    The aim of this study was to analyze the effect of different small-sided and conditioning games (SSCG) with different tactical contents on heart rate responses, technical performance and collective organization of youth basketball players of different performance levels. Twenty male basketball players from U14 (13.7 ± 0.8 years old; 4.2 ± 1.4 years of practice) and U16 (15.3 ± 1.1 years old; 6.4 ± 2.1 years of practice) participated in this research study. The two-way MANOVA revealed that the sports level (p = 0.009; [Formula: see text] = 0.151), format (p = 0.001; [Formula: see text] = 0.246) and task condition (p = 0.023; [Formula: see text] = 0.104; small effect size) had significant main effects on heart rate responses. It was also found that the format (p = 0.001; [Formula: see text] = 0.182) had significant main effects on technical performance. A smaller format significantly increased the heart rate, volume of play, efficiency index and collective density during attacking plays. The SSCG with attacking content statistically increased the heart rate, efficiency index and performance score. Therefore, this study revealed that different SSCGs with tactical content influenced the physiological responses of youth players.

  20. Polysomnography reveals unexpectedly high rates of organic sleep disorders in patients with prediagnosed primary insomnia.

    PubMed

    Crönlein, Tatjana; Geisler, Peter; Langguth, Berthold; Eichhammer, Peter; Jara, Cecilia; Pieh, Christoph; Zulley, Jürgen; Hajak, Göran

    2012-12-01

    It is a matter of debate whether patients with primary insomnia require a polysomnographic examination in order to exclude specific sleep disorders such as sleep apnea syndrome (SAS) or periodic limb movements (PLM). Using a prospective design, we investigated the prevalence of organic sleep disorders by means of polysomnography (PSG) in a series of patients who were previously diagnosed with primary insomnia. This diagnosis was based on a clinical exam and an ambulatory monitoring device or previous PSG. Seventy-seven women and 16 men (mean age 55.12 ± 13.21 years) who were admitted for cognitive behavioral therapy for insomnia were evaluated by PSG including cardiorespiratory parameters and tibialis EMG. Among them, 50 patients had undergone a clinical exam by a sleep specialist; in 18 patients, actigraphy or portable monitoring had been performed to exclude SAS or PLM; 25 patients had undergone PSG in another sleep lab previously. In 32 patients (34% of the sample), a PSG revealed a specific sleep disorder (SAS 16; PLMD 11; both 5), resulting in therapeutic consequences for 21 patients (SAS 10; PLMD 9; both 2). SAS and PLM patients were older and SAS patients had a higher body mass index than insomnia patients without additional findings. Indications for a PSG should be handled less restrictively in the diagnostic workup of older insomnia patients since they have a higher risk of comorbid sleep disorders even in the absence of the clinical signs of SAS or PLM.

  1. Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate.

    PubMed

    De Filippis, Francesca; Genovese, Alessandro; Ferranti, Pasquale; Gilbert, Jack A; Ercolini, Danilo

    2016-02-25

    Traditional cheeses harbour complex microbial consortia that play an important role in shaping typical sensorial properties. However, the microbial metabolism is considered difficult to control. Microbial community succession and the related gene expression were analysed during ripening of a traditional Italian cheese, identifying parameters that could be modified to accelerate ripening. Afterwards, we modulated ripening conditions and observed consistent changes in microbial community structure and function. We provide concrete evidence of the essential contribution of non-starter lactic acid bacteria in ripening-related activities. An increase in the ripening temperature promoted the expression of genes related to proteolysis, lipolysis and amino acid/lipid catabolism and significantly increases the cheese maturation rate. Moreover, temperature-promoted microbial metabolisms were consistent with the metabolomic profiles of proteins and volatile organic compounds in the cheese. The results clearly indicate how processing-driven microbiome responses can be modulated in order to optimize production efficiency and product quality.

  2. Increasing organ donation rates by revealing recipient details to families of potential donors.

    PubMed

    Shaw, David; Gardiner, Dale

    2017-09-07

    Many families refuse to consent to donation from their deceased relatives or over-rule the consent given before death by the patient, but giving families more information about the potential recipients of organs could reduce refusal rates. In this paper, we analyse arguments for and against doing so, and conclude that this strategy should be attempted. While it would be impractical and possibly unethical to give details of actual potential recipients, generic, realistic information about the people who could benefit from organs should be provided to families before they make a decision about donation or attempt to over-rule it. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate

    SciTech Connect

    De Filippis, Francesca; Genovese, Alessandro; Ferranti, Pasquale; Gilbert, Jack A.; Ercolini, Danilo

    2016-02-25

    Traditional cheeses harbour complex microbial consortia that play an important role in shaping typical sensorial properties. However, the microbial metabolism is considered difficult to control. Microbial community succession and the related gene expression were analysed during ripening of a traditional Italian cheese, identifying parameters that could be modified to accelerate ripening. Afterwards, we modulated ripening conditions and observed consistent changes in microbial community structure and function. We provide concrete evidence of the essential contribution of non-starter lactic acid bacteria in ripening-related activities. An increase in the ripening temperature promoted the expression of genes related to proteolysis, lipolysis and amino acid/lipid catabolism and significantly increases the cheese maturation rate. Moreover, temperature-promoted microbial metabolisms were consistent with the metabolomic profiles of proteins and volatile organic compounds in the cheese. Finally, the results clearly indicate how processing-driven microbiome responses can be modulated in order to optimize production efficiency and product quality.

  4. Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate

    PubMed Central

    De Filippis, Francesca; Genovese, Alessandro; Ferranti, Pasquale; Gilbert, Jack A.; Ercolini, Danilo

    2016-01-01

    Traditional cheeses harbour complex microbial consortia that play an important role in shaping typical sensorial properties. However, the microbial metabolism is considered difficult to control. Microbial community succession and the related gene expression were analysed during ripening of a traditional Italian cheese, identifying parameters that could be modified to accelerate ripening. Afterwards, we modulated ripening conditions and observed consistent changes in microbial community structure and function. We provide concrete evidence of the essential contribution of non-starter lactic acid bacteria in ripening-related activities. An increase in the ripening temperature promoted the expression of genes related to proteolysis, lipolysis and amino acid/lipid catabolism and significantly increases the cheese maturation rate. Moreover, temperature-promoted microbial metabolisms were consistent with the metabolomic profiles of proteins and volatile organic compounds in the cheese. The results clearly indicate how processing-driven microbiome responses can be modulated in order to optimize production efficiency and product quality. PMID:26911915

  5. Stochastic modeling reveals an evolutionary mechanism underlying elevated rates of childhood leukemia

    PubMed Central

    Rozhok, Andrii I.; Salstrom, Jennifer L.; DeGregori, James

    2016-01-01

    Young children have higher rates of leukemia than young adults. This fact represents a fundamental conundrum, because hematopoietic cells in young children should have fewer mutations (including oncogenic ones) than such cells in adults. Here, we present the results of stochastic modeling of hematopoietic stem cell (HSC) clonal dynamics, which demonstrated that early HSC pools were permissive to clonal evolution driven by drift. We show that drift-driven clonal expansions cooperate with faster HSC cycling in young children to produce conditions that are permissive for accumulation of multiple driver mutations in a single cell. Later in life, clonal evolution was suppressed by stabilizing selection in the larger young adult pools, and it was driven by positive selection at advanced ages in the presence of microenvironmental decline. Overall, our results indicate that leukemogenesis is driven by distinct evolutionary forces in children and adults. PMID:26755588

  6. AspWood: High-Spatial-Resolution Transcriptome Profiles Reveal Uncharacterized Modularity of Wood Formation in Populus tremula[OPEN

    PubMed Central

    Sundell, David; Kumar, Manoj; Kucukoglu, Melis; Kumar, Vikash; Mannapperuma, Chanaka; Niittylä, Totte

    2017-01-01

    Trees represent the largest terrestrial carbon sink and a renewable source of ligno-cellulose. There is significant scope for yield and quality improvement in these largely undomesticated species, and efforts to engineer elite varieties will benefit from improved understanding of the transcriptional network underlying cambial growth and wood formation. We generated high-spatial-resolution RNA sequencing data spanning the secondary phloem, vascular cambium, and wood-forming tissues of Populus tremula. The transcriptome comprised 28,294 expressed, annotated genes, 78 novel protein-coding genes, and 567 putative long intergenic noncoding RNAs. Most paralogs originating from the Salicaceae whole-genome duplication had diverged expression, with the exception of those highly expressed during secondary cell wall deposition. Coexpression network analyses revealed that regulation of the transcriptome underlying cambial growth and wood formation comprises numerous modules forming a continuum of active processes across the tissues. A comparative analysis revealed that a majority of these modules are conserved in Picea abies. The high spatial resolution of our data enabled identification of novel roles for characterized genes involved in xylan and cellulose biosynthesis, regulators of xylem vessel and fiber differentiation and lignification. An associated web resource (AspWood, http://aspwood.popgenie.org) provides interactive tools for exploring the expression profiles and coexpression network. PMID:28655750

  7. Rate of carotenoid triplet formation in solubilized light-harvesting complex II (LHCII) from spinach.

    PubMed Central

    Schödel, R; Irrgang, K D; Voigt, J; Renger, G

    1998-01-01

    In the present study the rate of triplet transfer from chlorophyll to carotenoids in solubilized LHCII was investigated by flash spectroscopy using laser pulses of approximately 2 ns for both pump and probe. Special attention has been paid to calibration of the experimental setup and to avoid saturation effects. Carotenoid triplets were identified by the pronounced positive peak at approximately 507 nm in the triplet-singlet difference spectra. DeltaOD (507 nm) exhibits a monoexponential relaxation kinetics with characteristic lifetimes of 2-9 micros (depending on the oxygen content) that was found to be independent of the pump pulse intensity. The rise of DeltaOD (507 nm) was resolved via a pump probe technique where an optical delay of up to 20 ns was used. A thorough analysis of these experimental data leads to the conclusion that the kinetics of carotenoid triplet formation in solubilized LHCII is almost entirely limited by the lifetime of the excited singlet state of chlorophyll but neither by the pulse width nor by the rate constant of triplet-triplet transfer. Within the experimental error the rate constant of triplet-triplet transfer from chlorophyll to carotenoids was estimated to be kTT > (0.5 ns)-1. This value exceeds all data reported so far by at least one order of magnitude. The implications of this finding are briefly discussed. PMID:9826635

  8. Utilization of frozen plasma in Ontario: a provincewide audit reveals a high rate of inappropriate transfusions.

    PubMed

    Tinmouth, Alan; Thompson, Troy; Arnold, Donald M; Callum, Jeannie L; Gagliardi, Kate; Lauzon, Deborah; Owens, Wendy; Pinkerton, Peter

    2013-10-01

    Frozen plasma (FP) is frequently transfused inappropriately, an intervention that results in risk without benefit for the patient. To better understand current utilization practices in our region, we undertook a provincewide prospective audit to evaluate the clinical indications and appropriateness of FP transfusion. All hospitals in the Canadian province of Ontario with transfusion medicine services were invited to participate in a 5-day audit of FP utilization. FP dose, indication, and clinical patient data were collected for each transfusion request. Indications for FP transfusions were independently adjudicated as appropriate, inappropriate, or indeterminate based on predefined criteria. Seventy-six (49%) of 155 invited hospitals participated in the audit, which included 573 requests for 2012 units of FP. A total of 559 transfusions (1909 units) were administered. Of 573 requests, 164 (28.6%) were deemed inappropriate most often because: 1) they were administered to patients with an international normalized ratio below 1.5 or 2) they were administered in absence of bleeding or emergency surgery. The most frequent indications for FP transfusions were before surgery and warfarin reversal. Overall, patients admitted to the clinical areas of surgery, internal medicine, and the emergency department represented the largest users of FP, but this varied by hospital type (community vs. academic). The most frequently requested doses of FP were 2 and 4 units. This point-prevalence hospital audit revealed that transfusion of FP is frequently inappropriate. Focusing on reducing the two most common reasons for inappropriate FP transfusions could lead to a significant improvement in FP utilization. © 2013 American Association of Blood Banks.

  9. Popular media records reveal multi-decadal trends in recreational fishing catch rates.

    PubMed

    Thurstan, Ruth H; Game, Edward; Pandolfi, John M

    2017-01-01

    Despite threats to human wellbeing from ecological degradation, public engagement with this issue remains at low levels. However, studies have shown that crafting messages to resonate with people's personal experiences can enhance engagement. Recreational fishing is one of the principal ways in which people interact with aquatic environments, but long-term data from this perspective are considered rare. We uncovered 852 popular media records of recreational fishing for an Australian estuary across a 140-year period. Using information contained in these articles we analysed the species composition of recreational catches over time and constructed two distinct time series of catch and effort (n fish fisher-1 trip-1; kg fish fisher-1 trip-1) for recreational fishing trips and fishing club competitions (mean n and kg fish caught across all competitors, and n and kg fish caught by the competition winner). Reported species composition remained similar over time. Catch rates reported from recreational fishing trips (1900-1998) displayed a significant decline, averaging 32.5 fish fisher-1 trip-1 prior to 1960, and 18.8 fish fisher-1 trip-1 post-1960. Mean n fish fisher-1 competition-1 (1913-1983) also significantly declined, but best n fish fisher-1 competition-1 (1925-1980) displayed no significant change, averaging 31.2 fish fisher-1 competition-1 over the time series. Mean and best kg fish fisher-1 competition-1 trends also displayed no significant change, averaging 4.2 and 9.9 kg fisher-1 competition-1, respectively. These variable trends suggest that while some fishers experienced diminishing returns in this region over the last few decades, the most skilled inshore fishers were able to maintain their catch rates, highlighting the difficulties inherent in crafting conservation messages that will resonate with all sections of a community. Despite these challenges, this research demonstrates that popular media sources can provide multiple long-term trends at spatial

  10. Popular media records reveal multi-decadal trends in recreational fishing catch rates

    PubMed Central

    Game, Edward; Pandolfi, John M.

    2017-01-01

    Despite threats to human wellbeing from ecological degradation, public engagement with this issue remains at low levels. However, studies have shown that crafting messages to resonate with people’s personal experiences can enhance engagement. Recreational fishing is one of the principal ways in which people interact with aquatic environments, but long-term data from this perspective are considered rare. We uncovered 852 popular media records of recreational fishing for an Australian estuary across a 140-year period. Using information contained in these articles we analysed the species composition of recreational catches over time and constructed two distinct time series of catch and effort (n fish fisher-1 trip-1; kg fish fisher-1 trip-1) for recreational fishing trips and fishing club competitions (mean n and kg fish caught across all competitors, and n and kg fish caught by the competition winner). Reported species composition remained similar over time. Catch rates reported from recreational fishing trips (1900–1998) displayed a significant decline, averaging 32.5 fish fisher-1 trip-1 prior to 1960, and 18.8 fish fisher-1 trip-1 post-1960. Mean n fish fisher-1 competition-1 (1913–1983) also significantly declined, but best n fish fisher-1 competition-1 (1925–1980) displayed no significant change, averaging 31.2 fish fisher-1 competition-1 over the time series. Mean and best kg fish fisher-1 competition-1 trends also displayed no significant change, averaging 4.2 and 9.9 kg fisher-1 competition-1, respectively. These variable trends suggest that while some fishers experienced diminishing returns in this region over the last few decades, the most skilled inshore fishers were able to maintain their catch rates, highlighting the difficulties inherent in crafting conservation messages that will resonate with all sections of a community. Despite these challenges, this research demonstrates that popular media sources can provide multiple long-term trends at

  11. Negative Ion Photoelectron Spectroscopy Reveals Thermodynamic Advantage of Organic Acids in Facilitating Formation of Bisulfate Ion Clusters: Atmospheric Implications

    SciTech Connect

    Hou, Gao-Lei; Lin, Wei; Deng, Shihu; Zhang, Jian; Zheng, Weijun; Paesani, Francesco; Wang, Xue B.

    2013-03-07

    Recent lab and field measurements have indicated critical roles of organic acids in enhancing new atmospheric aerosol formation. Such findings have stimulated theoretical studies with the aim of understanding interaction of organic acids with common aerosol nucleation precursors like bisulfate (HSO4-). In this Letter, we report a combined negative ion photoelectron spectroscopic and theoretical investigation of molecular clusters formed by HSO4- with succinic acid (SUA, HO2C(CH2)2CO2H), HSO4-(SUA)n (n = 0-2), along with HSO4-(H2O)n and HSO4-(H2SO4)n. It is found that one SUA molecule can stabilize HSO4- by ca. 39 kcal/mol, triple the corresponding value that one water molecule is capable of (ca. 13 kcal/mol). Molecular dynamics simulations and quantum chemical calculations reveal the most plausible structures of these clusters and attribute the stability of these clusters due to formation of strong hydrogen bonds. This work provides direct experimental evidence showing significant thermodynamic advantage by involving organic acid molecules to promote formation and growth in bisulfate clusters and aerosols.

  12. Intravoxel distribution of DWI decay rates reveals C6 glioma invasion in rat brain.

    PubMed

    Bennett, Kevin M; Hyde, James S; Rand, Scott D; Bennett, Raoqiong; Krouwer, Hendrikus G J; Rebro, Kelly J; Schmainda, Kathleen M

    2004-11-01

    The hypothesis was tested that the intravoxel distribution of water diffusion rates, as measured with a stretched-exponential model of diffusion-weighted imaging (DWI), is a marker of brain tumor invasion. Eight rats underwent intracerebral inoculation of C6 glioma cells. In three rats, cells were labeled with a fluorescent dye for microscopy. One rat was inoculated with a saline solution, and five more rats were imaged without inoculation as controls. Five healthy uninoculated rats were also imaged. DWI was performed 14-15 days after inoculation, with diffusion-weighting factor b = 500 to 6500 sec/mm2, and the resulting signal attenuation was fitted with the stretched-exponential model. The heterogeneity index values were significantly lower (P < 0.05) in the peritumor ROI than in normal gray matter and significantly higher than in normal white matter. The distributed diffusion coefficient values were significantly lower than in normal white matter or normal gray matter. Fluorescence microscopy confirmed the presence of tumors in the peritumor region that could be histologically distinguished from the main tumor mass. There was no change in proton density or T2-weighted images in the peritumor region, making vasogenic edema unlikely as a source of contrast. It is therefore thought that the heterogeneity parameter alpha is a marker of brain tumor invasion. (c) 2004 Wiley-Liss, Inc.

  13. Exposure Time Distributions reveal Denitrification Rates along Groundwater Flow Path of an Agricultural Unconfined Aquifer

    NASA Astrophysics Data System (ADS)

    Kolbe, T.; Abbott, B. W.; Thomas, Z.; Labasque, T.; Aquilina, L.; Laverman, A.; Babey, T.; Marçais, J.; Fleckenstein, J. H.; Peiffer, S.; De Dreuzy, J. R.; Pinay, G.

    2016-12-01

    Groundwater contamination by nitrate is nearly ubiquitous in agricultural regions. Nitrate is highly mobile in groundwater and though it can be denitrified in the aquifer (reduced to inert N2 gas), this process requires the simultaneous occurrence of anoxia, an electron donor (e.g. organic carbon, pyrite), nitrate, and microorganisms capable of denitrification. In addition to this the ratio of the time groundwater spent in a denitrifying environment (exposure time) to the characteristic denitrification reaction time plays an important role, because denitrification can only occur if the exposure time is longer than the characteristic reaction time. Despite a long history of field studies and numerical models, it remains exceedingly difficult to measure or model exposure times in the subsurface at the catchment scale. To approach this problem, we developed a unified modelling approach combining measured environmental proxies with an exposure time based reactive transport model. We measured groundwater age, nitrogen and sulfur isotopes, and water chemistry from agricultural wells in an unconfined aquifer in Brittany, France, to quantify changes in nitrate concentration due to dilution and denitrification. Field data showed large differences in nitrate concentrations among wells, associated with differences in the exposure time distributions. By constraining a catchment-scale characteristic reaction time for denitrification with water chemistry proxies and exposure times, we were able to assess rates of denitrification along groundwater flow paths. This unified modeling approach is transferable to other catchments and could be further used to investigate how catchment structure and flow dynamics interact with biogeochemical processes such as denitrification.

  14. Lognormal firing rate distribution reveals prominent fluctuation–driven regime in spinal motor networks

    PubMed Central

    Petersen, Peter C; Berg, Rune W

    2016-01-01

    When spinal circuits generate rhythmic movements it is important that the neuronal activity remains within stable bounds to avoid saturation and to preserve responsiveness. Here, we simultaneously record from hundreds of neurons in lumbar spinal circuits of turtles and establish the neuronal fraction that operates within either a ‘mean-driven’ or a ‘fluctuation–driven’ regime. Fluctuation-driven neurons have a ‘supralinear’ input-output curve, which enhances sensitivity, whereas the mean-driven regime reduces sensitivity. We find a rich diversity of firing rates across the neuronal population as reflected in a lognormal distribution and demonstrate that half of the neurons spend at least 50 % of the time in the ‘fluctuation–driven’ regime regardless of behavior. Because of the disparity in input–output properties for these two regimes, this fraction may reflect a fine trade–off between stability and sensitivity in order to maintain flexibility across behaviors. DOI: http://dx.doi.org/10.7554/eLife.18805.001 PMID:27782883

  15. Comparative genomics of Eucalyptus and Corymbia reveals low rates of genome structural rearrangement.

    PubMed

    Butler, J B; Vaillancourt, R E; Potts, B M; Lee, D J; King, G J; Baten, A; Shepherd, M; Freeman, J S

    2017-05-22

    Previous studies suggest genome structure is largely conserved between Eucalyptus species. However, it is unknown if this conservation extends to more divergent eucalypt taxa. We performed comparative genomics between the eucalypt genera Eucalyptus and Corymbia. Our results will facilitate transfer of genomic information between these important taxa and provide further insights into the rate of structural change in tree genomes. We constructed three high density linkage maps for two Corymbia species (Corymbia citriodora subsp. variegata and Corymbia torelliana) which were used to compare genome structure between both species and Eucalyptus grandis. Genome structure was highly conserved between the Corymbia species. However, the comparison of Corymbia and E. grandis suggests large (from 1-13 MB) intra-chromosomal rearrangements have occurred on seven of the 11 chromosomes. Most rearrangements were supported through comparisons of the three independent Corymbia maps to the E. grandis genome sequence, and to other independently constructed Eucalyptus linkage maps. These are the first large scale chromosomal rearrangements discovered between eucalypts. Nonetheless, in the general context of plants, the genomic structure of the two genera was remarkably conserved; adding to a growing body of evidence that conservation of genome structure is common amongst woody angiosperms.

  16. Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate

    DOE PAGES

    De Filippis, Francesca; Genovese, Alessandro; Ferranti, Pasquale; ...

    2016-02-25

    Traditional cheeses harbour complex microbial consortia that play an important role in shaping typical sensorial properties. However, the microbial metabolism is considered difficult to control. Microbial community succession and the related gene expression were analysed during ripening of a traditional Italian cheese, identifying parameters that could be modified to accelerate ripening. Afterwards, we modulated ripening conditions and observed consistent changes in microbial community structure and function. We provide concrete evidence of the essential contribution of non-starter lactic acid bacteria in ripening-related activities. An increase in the ripening temperature promoted the expression of genes related to proteolysis, lipolysis and amino acid/lipidmore » catabolism and significantly increases the cheese maturation rate. Moreover, temperature-promoted microbial metabolisms were consistent with the metabolomic profiles of proteins and volatile organic compounds in the cheese. Finally, the results clearly indicate how processing-driven microbiome responses can be modulated in order to optimize production efficiency and product quality.« less

  17. The Radio Spectral Energy Distribution and Star-formation Rate Calibration in Galaxies

    NASA Astrophysics Data System (ADS)

    Tabatabaei, F. S.; Schinnerer, E.; Krause, M.; Dumas, G.; Meidt, S.; Damas-Segovia, A.; Beck, R.; Murphy, E. J.; Mulcahy, D. D.; Groves, B.; Bolatto, A.; Dale, D.; Galametz, M.; Sandstrom, K.; Boquien, M.; Calzetti, D.; Kennicutt, R. C.; Hunt, L. K.; De Looze, I.; Pellegrini, E. W.

    2017-02-01

    We study the spectral energy distribution (SED) of the radio continuum (RC) emission from the Key Insight in Nearby Galaxies Emitting in Radio (KINGFISHER) sample of nearby galaxies to understand the energetics and origin of this emission. Effelsberg multi-wavelength observations at 1.4, 4.8, 8.4, and 10.5 GHz combined with archive data allow us, for the first time, to determine the mid-RC (1–10 GHz, MRC) bolometric luminosities and further present calibration relations versus the monochromatic radio luminosities. The 1–10 GHz radio SED is fitted using a Bayesian Markov Chain Monte Carlo technique leading to measurements for the nonthermal spectral index ({S}ν ∼ {ν }-{α {nt}}) and the thermal fraction ({f}{th}) with mean values of {α }{nt}=0.97 +/- 0.16(0.79 +/- 0.15 for the total spectral index) and {f}{th} = (10 ± 9)% at 1.4 GHz. The MRC luminosity changes over ∼3 orders of magnitude in the sample, 4.3× {10}2 {L}ȯ < MRC < 3.9× {10}5 {L}ȯ . The thermal emission is responsible for ∼23% of the MRC on average. We also compare the extinction-corrected diagnostics of the star-formation rate (SFR) with the thermal and nonthermal radio tracers and derive the first star-formation calibration relations using the MRC radio luminosity. The nonthermal spectral index flattens with increasing SFR surface density, indicating the effect of the star-formation feedback on the cosmic-ray electron population in galaxies. Comparing the radio and IR SEDs, we find that the FIR-to-MRC ratio could decrease with SFR, due to the amplification of the magnetic fields in star-forming regions. This particularly implies a decrease in the ratio at high redshifts, where mostly luminous/star-forming galaxies are detected.

  18. Nature or nurture? Clues from the distribution of specific star formation rates in SDSS galaxies

    NASA Astrophysics Data System (ADS)

    Casado, J.; Ascasibar, Y.; Gavilán, M.; Terlevich, R.; Terlevich, E.; Hoyos, C.; Díaz, A. I.

    2015-07-01

    This work investigates the main mechanism(s) that regulate the specific star formation rate (SSFR) in nearby galaxies, cross-correlating two proxies of this quantity - the equivalent width of the Hα line and the (u - r) colour - with other physical properties (mass, metallicity, environment, morphology, and the presence of close companions) in a sample of ˜82 500 galaxies extracted from the Sloan Digital Sky Survey. The existence of a relatively tight `ageing sequence' in the colour-equivalent width plane favours a scenario where the secular conversion of gas into stars (i.e. nature) is the main physical driver of the instantaneous SSFR and the gradual transition from a `chemically primitive' (metal-poor and intensely star-forming) state to a `chemically evolved' (metal-rich and passively evolving) system. Nevertheless, environmental factors (i.e. nurture) are also important. In the field, galaxies may be temporarily affected by discrete `quenching' and `rejuvenation' episodes, but such events show little statistical significance in a probabilistic sense, and we find no evidence that galaxy interactions are, on average, a dominant driver of star formation. Although visually classified mergers tend to display systematically higher EW(Hα) and bluer (u - r) colours for a given luminosity, most galaxies with high SSFR have uncertain morphologies, which could be due to either internal or external processes. Field galaxies of early and late morphological types are consistent with the gradual `ageing' scenario, with no obvious signatures of a sudden decrease in their SSFR. In contrast, star formation is significantly reduced and sometimes completely quenched on a short time-scale in dense environments, where many objects are found on a `quenched sequence' in the colour-equivalent width plane.

  19. Galactic chemical evolution: The star formation rate in the early galaxy.

    NASA Astrophysics Data System (ADS)

    Sahijpal, Sandeep

    2012-07-01

    The metallicity of the sun has been recently revised from an earlier value of ~0.02 (Anders & Grevesse 1989) to a value ~0.014 (Asplund et al. 2009). We have developed a galactic chemical evolution model to make an assessment of the implications of the revision in the metallicity on the stellar evolutionary history of the galaxy (Sahijpal & Gupta 2012). We performed numerical simulations of the galaxy by evolving numerous generations of stars. The approch is distinct from the conventional approach of solving the non-linear integro-differential equations (e.g., Pagel 1997). In the present work, we have performed numerical simulations of the galactic chemical evolution by taking into account the star formation rate in the earliest epoch of the galaxy. The era corresponds to the formation of the metal-poor stars during the accretion of the halo-thick disk of the galaxy. We have performed several simulations to study the role of the star formation history in this earliest era on the evolution of age-metallicity relation, the elemental abundance evolution of the galaxy in the solar neighborhood. The preliminary results of this work will be presented in the presentation. References: [1] Anders E. & Grevesse N. 1989, Geo. Cosmochimic. Acta 53, 197-214. [2] Asplund M., Grevesse N., Sauval A. J. & Scott P. 2009, A. Rev. A & A 47, 481-522. [3] Sahijpal S. and Gupta G. 2012, Met. Planet. Sci., submitted. [4] Pagel B. E. J. 1997, Nucleosynthesis and the chemical evolution of galaxies. Cambridge University Press.

  20. The formation of linear aggregates in magnetic hyperthermia: implications on specific absorption rate and magnetic anisotropy.

    PubMed

    Saville, Steven L; Qi, Bin; Baker, Jonathon; Stone, Roland; Camley, Robert E; Livesey, Karen L; Ye, Longfei; Crawford, Thomas M; Mefford, O Thompson

    2014-06-15

    The design and application of magnetic nanoparticles for use as magnetic hyperthermia agents has garnered increasing interest over the past several years. When designing these systems, the fundamentals of particle design play a key role in the observed specific absorption rate (SAR). This includes the particle's core size, polymer brush length, and colloidal arrangement. While the role of particle core size on the observed SAR has been significantly reported, the role of the polymer brush length has not attracted as much attention. It has recently been reported that for some suspensions linear aggregates form in the presence of an applied external magnetic field, i.e. chains of magnetic particles. The formation of these chains may have the potential for a dramatic impact on the biomedical application of these materials, specifically the efficiency of the particles to transfer magnetic energy to the surrounding cells. In this study we demonstrate the dependence of SAR on magnetite nanoparticle core size and brush length as well as observe the formation of magnetically induced colloidal arrangements. Colloidally stable magnetic nanoparticles were demonstrated to form linear aggregates in an alternating magnetic field. The length and distribution of the aggregates were dependent upon the stabilizing polymer molecular weight. As the molecular weight of the stabilizing layer increased, the magnetic interparticle interactions decreased therefore limiting chain formation. In addition, theoretical calculations demonstrated that interparticle spacing has a significant impact on the magnetic behavior of these materials. This work has several implications for the design of nanoparticle and magnetic hyperthermia systems, while improving understanding of how colloidal arrangement affects SAR.

  1. Evolution of Galaxies and the Star Formation Rate in the Infrared

    NASA Technical Reports Server (NTRS)

    Pahre, Michael, A.; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    A central goal of extragalactic observational astronomy is to understand how normal galaxies evolve with redshift, and particularly when galaxies formed their stars. While optical and rest-frame UV (ultraviolet) observations have begun to address these issues, the interpretation of such data is particularly challenging because of the sensitivity to dust obscureness (at optical and UV wavelengths). The absorbed light is re-radiated at IR (infrared) wavelengths, hence the optimal indicators of the star formation rate (SFR) is at a rest-frame of (lambda) (is approximately equal to) 60 microns. The SIRTF (space infrared telescope facility) mission will revolutionize the study of the global evolution of the SFR by providing mass-selected, complete samples of galaxies and fares estimators of the SFR. This research program is to study the SFR using statistical samples of galaxies in the local universe, at intermediate redshifts, and set the stage for continuing studies up to z = 5.

  2. A statistical test for periodicity hypothesis in the crater formation rate

    NASA Astrophysics Data System (ADS)

    Yabushita, S.

    1991-06-01

    The hypothesis that the crater formation rate exhibits periodicity is examined by adopting a criterion proposed by Broadbent, which is more stringent than those adopted previously. Data sets of Alvarez and Muller, Rampino and Stothers and of Grieve are tested. The data set of Rampino and Stothers is found to satisfy the adopted criterion for periodicity with period P = 30 Myr. Again, small craters (D less than 10 km) in the data set of Grieve satisfy the criterion even better with P = 30 Myr and 50 Myr, but large craters do not satisfy the criterion. Removal of some of the very young craters (ages less than 8 Myr) yields three significant periods, 16.5, 30, and 50 Myr. Taken at face value, the result would indicate that small impactors hit the earth at intervals of 16.5 Myr and that this period is modulated by the galactic tide.

  3. The effects of interactions on spiral galaxies. II - Disk star-formation rates

    NASA Technical Reports Server (NTRS)

    Kennicutt, Robert C., Jr.; Roettiger, Kurt A.; Keel, William C.; Van Der Hulst, J. M.; Hummel, E.

    1987-01-01

    H-alpha emission-line and IRAS far-IR observations of interacting spiral and irregular galaxies are here used to assess the influence of interactions on their global star-formation rates. Two samples of interacting galaxies were observed: a complete sample of close pairs, and an Arp atlas sample of peculiar systems. When compared to a control sample of single galaxies, both samples of interacting systems exhibit systematically higher levels of H-alpha and infrared emission on average, and a larger dispersion in emission properties. Emission levels in the very active system are much more strongly correlated with the properties of the interaction than with the internal properties of the galaxies themselves. Strong disk emission is almost always accompanied by unusually strong nuclear activity. Simple star-formation burst models can reproduce the observed H-alpha equivalent widths and broadband colors of most of the galaxies. The bursts are relatively short (few times 10 million yr) and rarely involve more than 1-2 percent of a galaxy's total mass.

  4. The Ultraviolet and Infrared Star Formation Rates of Compact Group Galaxies: An Expanded Sample

    NASA Technical Reports Server (NTRS)

    Lenkic, Laura; Tzanavaris, Panayiotis; Gallagher, Sarah C.; Desjardins, Tyler D.; Walker, Lisa May; Johnson, Kelsey E.; Fedotov, Konstantin; Charlton, Jane; Cardiff, Ann H.; Durell, Pat R.

    2016-01-01

    Compact groups of galaxies provide insight into the role of low-mass, dense environments in galaxy evolution because the low velocity dispersions and close proximity of galaxy members result in frequent interactions that take place over extended time-scales. We expand the census of star formation in compact group galaxies by Tzanavaris et al. (2010) and collaborators with Swift UVOT, Spitzer IRAC and MIPS 24 m photometry of a sample of 183 galaxies in 46 compact groups. After correcting luminosities for the contribution from old stellar populations, we estimate the dust-unobscured star formation rate (SFRUV) using the UVOT uvw2 photometry. Similarly, we use the MIPS 24 m photometry to estimate the component of the SFR that is obscured by dust (SFRIR). We find that galaxies which are MIR-active (MIR-red), also have bluer UV colours, higher specific SFRs, and tend to lie in Hi-rich groups, while galaxies that are MIR-inactive (MIR-blue) have redder UV colours, lower specific SFRs, and tend to lie in Hi-poor groups. We find the SFRs to be continuously distributed with a peak at about 1 M yr1, indicating this might be the most common value in compact groups. In contrast, the specific SFR distribution is bimodal, and there is a clear distinction between star-forming and quiescent galaxies. Overall, our results suggest that the specific SFR is the best tracer of gas depletion and galaxy evolution in compact groups.

  5. Evolution of Galaxies and the Star Formation Rate in the Infrared

    NASA Technical Reports Server (NTRS)

    Pahre, Michael A.; Oliversen, Ronald J. (Technical Monitor)

    2005-01-01

    A central goal of extragalactic observational astronomy is to understand how normal galaxies evolve with redshift, and particularly when galaxies formed their stars. While optical and rest-frame UV observations have begun to address these issues, the interpretation of such data is particularly challenging because of the sensitivity to dust obscuration (at optical and UV wavelengths). The absorbed light is re-radiated at IR wavelengths, hence the optimal indicators of the star formation rate (SFR) is at a rest-frame wavelength of approx. 60 microns. The Spitzer Space Telescope mission is revolutionizing the study of the global properties and evolution of galaxies. Spitzer reaches nearly two orders of magnitude more sensitivity than previous IR space missions. This research program is to study the SFR using statistical samples of galaxies in the local universe, at intermediate redshifts, and set the stage for continuing studies up to z=5. The overall research program is divided into three main investigations: A Mid-IR Hubble Atlas and SFR estimators in the local universe, Evolution of the SFR at 0 < z < 1 using pencil beam redshift surveys, and Galaxy formation and evolution at 1 < z < 5. The first papers from Spitzer were published during the last year, including ten refereed journal papers where the PI was first or co-author.

  6. Stellar Masses and Star Formation Rates for 1M Galaxies from SDSS+WISE

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Yen; van der Wel, Arjen; da Cunha, Elisabete; Rix, Hans-Walter

    2015-07-01

    We combine Sloan Digitital Sky Survey (SDSS) and WISE photometry for the full SDSS spectroscopic galaxy sample, creating spectral energy distributions (SEDs) that cover λ = 0.4-22 μm for an unprecedentedly large and comprehensive sample of 858,365 present-epoch galaxies. Using MAGPHYS, we then simultaneously and consistently model both the attenuated stellar SED and the dust emission at 12 and 22 μm, producing robust new calibrations for monochromatic mid-IR star formation rate (SFR) proxies. These modeling results provide the first mid-IR-based view of the bimodality in star formation activity among galaxies, exhibiting the sequence of star-forming galaxies (“main sequence”) with a slope of d {log} {SFR}/d{log}{M}* = 0.80 and a scatter of 0.39 dex. We find that these new SFRs along the SF main sequence are systematically lower by a factor of 1.4 than those derived from optical spectroscopy. We show that for most present-day galaxies, the 0.4-22 μm SED fits can exquisitely predict the fluxes measured by Herschel at much longer wavelengths. Our analysis also illustrates that the majority of stars in the present-day universe are formed in luminous galaxies (˜ {L}*) in and around the “green valley” of the color-luminosity plane. We make publicly available the matched photometry catalog and SED modeling results.

  7. Chemical consequences of low star formation rates: stochastically sampling the initial mass function

    NASA Astrophysics Data System (ADS)

    Carigi, L.; Hernandez, X.

    2008-10-01

    When estimating the abundances which result from a given star formation event, it is customary to treat the initial mass function (IMF) as a series of weight factors to be applied to the stellar yields, as a function of mass, implicitly assuming one is dealing with an infinite population. However, when the stellar population is small, the standard procedure would imply the inclusion of fractional numbers of stars at certain masses. We study the effects of small number statistics on the resulting abundances by performing a statistical sampling of the IMF to form a stellar population out of discrete numbers of stars. A chemical evolution code then follows the evolution of the population, and traces the resulting abundances. The process is repeated to obtain a statistical distribution of the resulting abundances and their evolution. We explore the manner in which different elements are affected, and how different abundances converge to the infinite population limit as the total mass increases. We include a discussion of our results in the context of dwarf spheroidal galaxies and show the recently reported internal dispersions in abundance ratios for dSph galaxies might be partly explained through the stochastic effects introduced by a low star formation rate, which can account for dispersions of over 2 dex in [C/O], [N/O], [C/Fe], [N/Fe] and [O/Fe].

  8. Star formation rates of star-forming galaxies from the WISE All-Sky Survey

    NASA Astrophysics Data System (ADS)

    Wen, Xiao-Qing; Wu, Hong; Zhu, Yi-Nan; Lam, Man I.; Wu, Chao-Jian; Wicker, James; Long, R. J.; Zhao, Yong-Heng

    2014-02-01

    We explore correlations between extinction-corrected Hα, Hβ and {[O II]_{double}} luminosities versus 12- and 22-μm band luminosities, based on matching samples from the Sloan Digital Sky Survey (SDSS) and the Wide-field Infrared Survey Explorer (WISE). All the coefficients show strong correlations between Balmer lines and mid-infrared (MIR) luminosities, while the extinction-corrected {[O II]_{double}} shows a weaker correlation with MIR luminosities. The extinction-corrected emission-line (EL) luminosities are more tightly correlated with linear combinations of EL(obs) and MIR luminosities than with pure MIR luminosities. Linear combinations include both direct and dust-obscured star formation activity in galaxies and offer an improved star formation rate (SFR) indicator for star-forming galaxies. The factor that causes log10LMIR/log10LHα to vary is the metallicity. We find that log10(LHα(obs) + α × LMIR) and {log _{10}(L[O II]_double(obs)+α × L_MIR)}, rather than pure MIR luminosities or {[O II]_{double}} alone, are good proxies for extinction-corrected log10LHα, with a residual that is independent of metallicity. The morphologies have weak correlations with log10LMIR/log10LEL ratios. E(B - V) can be estimated by log10[LMIR/LHα(obs)].

  9. Alpha-satellite DNA and vector composition influence rates of human artificial chromosome formation.

    PubMed

    Grimes, Brenda R; Rhoades, Angela A; Willard, Huntington F

    2002-06-01

    Human artificial chromosomes (HACs) have been proposed as a new class of potential gene transfer and gene therapy vector. HACs can be formed when bacterial cloning vectors containing alpha-satellite DNA are transfected into cultured human cells. We have compared the HAC-forming potential of different sequences to identify features critical to the efficiency of the process. Chromosome 17 or 21 alpha-satellite arrays are highly competent HAC-forming substrates in this assay. In contrast, a Y-chromosome-derived alpha-satellite sequence is inefficient, suggesting that centromere specification is at least partly dependent on DNA sequence. The length of the input array is also an important determinant, as reduction of the chromosome-17-based array from 80 kb to 35 kb reduced the frequency of HAC formation. In addition to the alpha-satellite component, vector composition also influenced HAC formation rates, size, and copy number. The data presented here have a significant impact on the design of future HAC vectors that have potential to be developed for therapeutic applications and as tools for investigating human chromosome structure and function.

  10. Evolution of Galaxies and the Star Formation Rate in the Infrared

    NASA Technical Reports Server (NTRS)

    Pahre, Michael A.; Oliversen, Ronald J. (Technical Monitor)

    2003-01-01

    A central goal of extragalactic observational astronomy is to understand how normal galaxies evolve with redshift, and particularly when galaxies formed their stars. While optical and rest-frame UV observations have begun to address these issues, the interpretation of such data is particularly challenging because of the sensitivity to dust obscuration (at optical and UV wavelengths). The absorbed light is re-radiated at IR wavelengths, hence the optimal indicators of the star formation rate (SFR) is at a rest-frame wavelength of approx. 60 microns. The SIRTF mission will revolutionize the study of the global evolution of the SFR by providing mass-selected, complete samples of galaxies and far-IR estimators of the SFR. SIRTF will be two orders of magnitude more sensitive than previous IR space missions, and therefore will open up a completely new region of parameter space in sensitivity and angular resolution. This research program will study the SFR using statistical samples of galaxies in the local universe, at intermediate redshifts, and set the stage for continuing studies up to z = 5. The overall research program is divided into three main investigations: a Mid-IR Hubble Atlas and SFR estimators in the local universe, evolution of the SFR at 0 less than z less that 1 using pencil beam redshift surveys, and Galaxy formation and evolution at 1 less than z less than 5.

  11. Evolution of Galaxies and the Star Formation Rate in the Infrared

    NASA Technical Reports Server (NTRS)

    Pahre, Michael A.; Oliversen, Ronald J. (Technical Monitor)

    2004-01-01

    A central goal of extragalactic observational astronomy is to understand how normal galaxies evolve with redshift, and particularly when galaxies formed their stars. While optical and rest-frame UV observations have begun to address these issues, the interpretation of such data is particularly challenging because of the sensitivity to dust obscuration (at optical and UV wavelengths). The absorbed light is reradiated at IR wavelengths, hence the optimal indicators of the star-formation rate (SFR) is at a rest-frame wavelength of approx. 60 microns. The Spitzer Space Telescope mission is beginning to revolutionize the study of the global properties and evolution of galaxies. Spitzer reaches nearly two orders of magnitude more sensitivity than previous IR space missions. This research program is to study the SFR using statistical samples of galaxies in the local universe, at intermediate redshifts, and set the stage for continuing studies up to z=5. The overall research program is divided into three main investigations: A Mid-IR Hubble Atlas and SFR estimators in the local universe, Evolution of the SFR at 0 < z < 1 using pencil beam redshift surveys, and Galaxy formation and evolution at 1 < z < 5. The Spitzer Space Telescope launched during the past year and the first papers from it are currently being submitted to The Astrophysical Journal. This is clearly an exciting time for IR astronomy!

  12. Isolation and characterization of Escherichia coli mutants with altered rates of deletion formation.

    PubMed

    Whoriskey, S K; Schofield, M A; Miller, J H

    1991-01-01

    Using site-specific mutagenesis in vitro we constructed a genetic system to detect mutants with altered rates of deletion formation between short repeated sequences in Escherichia coli. After in vivo mutagenesis with chemical mutagens and transposons, the system allowed the identification of mutants with either increased or decreased deletion frequencies. One mutational locus, termed mutR, that results in an increase in deletion formation, was studied in detail. The mutR gene maps at 38.5 min on the E. coli genetic map. Since the precise excision of many transposable elements is also mediated at short repeated sequences, we investigated the effects of the mutant alleles, as well as recA, on precise excision of the transposon Tn9. Neither mutR nor recA affect precise excision of the transposon Tn9, from three different insertions in lacI, whereas these alleles do affect other spontaneous deletions in the same system. These results indicate that deletion events leading to precise excision occur principally via a different pathway than other random spontaneous deletions. It is suggested that, whereas precise excision occurs predominantly via a pathway involving replication enzymes (for instance template strand slippage), deletions on an F'factor are stimulated by recombination enzymes.

  13. Isolation and Characterization of Escherichia Coli Mutants with Altered Rates of Deletion Formation

    PubMed Central

    Whoriskey, S. K.; Schofield, M. A.; Miller, J. H.

    1991-01-01

    Using site-specific mutagenesis in vitro we constructed a genetic system to detect mutants with altered rates of deletion formation between short repeated sequences in Escherichia coli. After in vivo mutagenesis with chemical mutagens and transposons, the system allowed the identification of mutants with either increased or decreased deletion frequencies. One mutational locus, termed mutR, that results in an increase in deletion formation, was studied in detail. The mutR gene maps at 38.5 min on the E. coli genetic map. Since the precise excision of many transposable elements is also mediated at short repeated sequences, we investigated the effects of the mutant alleles, as well as recA, on precise excision of the transposon Tn9. Neither mutR nor recA affect precise excision of the transposon Tn9, from three different insertions in lacI, whereas these alleles do affect other spontaneous deletions in the same system. These results indicate that deletion events leading to precise excision occur principally via a different pathway than other random spontaneous deletions. It is suggested that, whereas precise excision occurs predominantly via a pathway involving replication enzymes (for instance template strand slippage), deletions on an F' factor are stimulated by recombination enzymes. PMID:2016043

  14. THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES

    SciTech Connect

    Zahid, H. J.; Kewley, L. J.; Kudritzki, R. P.; Yates, R. M.

    2013-02-15

    In this study, we investigate the relation between stellar mass, dust extinction, and star formation rate (SFR) using {approx}150,000 star-forming galaxies from SDSS DR7. We show that the relation between dust extinction and SFR changes with stellar mass. For galaxies at the same stellar mass, dust extinction is anti-correlated with the SFR at stellar masses <10{sup 10} M {sub Sun }. There is a sharp transition in the relation at a stellar mass of 10{sup 10} M {sub Sun }. At larger stellar masses, dust extinction is positively correlated with the SFR for galaxies at the same stellar mass. The observed relation between stellar mass, dust extinction, and SFR presented in this study helps to confirm similar trends observed in the relation between stellar mass, metallicity, and SFR. The relation reported in this study provides important new constraints on the physical processes governing the chemical evolution of galaxies. The correlation between SFR and dust extinction for galaxies with stellar masses >10{sup 10} M {sub Sun} is shown to extend to the population of quiescent galaxies suggesting that the physical processes responsible for the observed relation between stellar mass, dust extinction, and SFR may be related to the processes leading to the shutdown of star formation in galaxies.

  15. Exploring Systematic Effects in the Relation Between Stellar Mass, Gas Phase Metallicity, and Star Formation Rate

    NASA Astrophysics Data System (ADS)

    Telford, O. Grace; Dalcanton, Julianne J.; Skillman, Evan D.; Conroy, Charlie

    2016-08-01

    There is evidence that the well-established mass-metallicity relation in galaxies is correlated with a third parameter: star formation rate (SFR). The strength of this correlation may be used to disentangle the relative importance of different physical processes (e.g., infall of pristine gas, metal-enriched outflows) in governing chemical evolution. However, all three parameters are susceptible to biases that might affect the observed strength of the relation between them. We analyze possible sources of systematic error, including sample bias, application of signal-to-noise ratio cuts on emission lines, choice of metallicity calibration, uncertainty in stellar mass determination, aperture effects, and dust. We present the first analysis of the relation between stellar mass, gas phase metallicity, and SFR using strong line abundance diagnostics from Dopita et al. for ˜130,000 star-forming galaxies in the Sloan Digital Sky Survey and provide a detailed comparison of these diagnostics in an appendix. Using these new abundance diagnostics yields a 30%-55% weaker anti-correlation between metallicity and SFR at fixed stellar mass than that reported by Mannucci et al. We find that, for all abundance diagnostics, the anti-correlation with SFR is stronger for the relatively few galaxies whose current SFRs are elevated above their past average SFRs. This is also true for the new abundance diagnostic of Dopita et al., which gives anti-correlation between Z and SFR only in the high specific star formation rate (sSFR) regime, in contrast to the recent results of Kashino et al. The poorly constrained strength of the relation between stellar mass, metallicity, and SFR must be carefully accounted for in theoretical studies of chemical evolution.

  16. ANALYTICAL THEORY FOR THE INITIAL MASS FUNCTION. III. TIME DEPENDENCE AND STAR FORMATION RATE

    SciTech Connect

    Hennebelle, Patrick

    2013-06-20

    The present paper extends our previous theory of the stellar initial mass function (IMF) by including time dependence and by including the impact of the magnetic field. The predicted mass spectra are similar to the time-independent ones with slightly shallower slopes at large masses and peak locations shifted toward smaller masses by a factor of a few. Assuming that star-forming clumps follow Larson-type relations, we obtain core mass functions in good agreement with the observationally derived IMF, in particular, when taking into account the thermodynamics of the gas. The time-dependent theory directly yields an analytical expression for the star formation rate (SFR) at cloud scales. The SFR values agree well with the observational determinations of various Galactic molecular clouds. Furthermore, we show that the SFR does not simply depend linearly on density, as is sometimes claimed in the literature, but also depends strongly on the clump mass/size, which yields the observed scatter. We stress, however, that any SFR theory depends, explicitly or implicitly, on very uncertain assumptions like clump boundaries or the mass of the most massive stars that can form in a given clump, making the final determinations uncertain by a factor of a few. Finally, we derive a fully time dependent model for the IMF by considering a clump, or a distribution of clumps accreting at a constant rate and thus whose physical properties evolve with time. In spite of its simplicity, this model reproduces reasonably well various features observed in numerical simulations of converging flows. Based on this general theory, we present a paradigm for star formation and the IMF.

  17. Hot spring siliceous stromatolites from Yellowstone National Park: assessing growth rate and laminae formation.

    PubMed

    Berelson, W M; Corsetti, F A; Pepe-Ranney, C; Hammond, D E; Beaumont, W; Spear, J R

    2011-09-01

    Stromatolites are commonly interpreted as evidence of ancient microbial life, yet stromatolite morphogenesis is poorly understood. We apply radiometric tracer and dating techniques, molecular analyses and growth experiments to investigate siliceous stromatolite morphogenesis in Obsidian Pool Prime (OPP), a hot spring in Yellowstone National Park. We examine rates of stromatolite growth and the environmental and/or biologic conditions that affect lamination formation and preservation, both difficult features to constrain in ancient examples. The "main body" of the stromatolite is composed of finely laminated, porous, light-dark couplets of erect (surface normal) and reclining (surface parallel) silicified filamentous bacteria, interrupted by a less-distinct, well-cemented "drape" lamination. Results from dating studies indicate a growth rate of 1-5 cm year(-1) ; however, growth is punctuated. (14)C as a tracer demonstrates that stromatolite cyanobacterial communities fix CO(2) derived from two sources, vent water (radiocarbon dead) and the atmosphere (modern (14)C). The drape facies contained a greater proportion of atmospheric CO(2) and more robust silica cementation (vs. the main body facies), which we interpret as formation when spring level was lower. Systematic changes in lamination style are likely related to environmental forcing and larger scale features (tectonic, climatic). Although the OPP stromatolites are composed of silica and most ancient forms are carbonate, their fine lamination texture requires early lithification. Without early lithification, whether silica or carbonate, it is unlikely that a finely laminated structure representing an ancient microbial mat would be preserved. In OPP, lithification on the nearly diurnal time scale is likely related to temperature control on silica solubility. © 2011 Blackwell Publishing Ltd.

  18. Evidence for Reduced Specific Star Formation Rates in the Centers of Massive Galaxies at z = 4

    NASA Astrophysics Data System (ADS)

    Jung, Intae; Finkelstein, Steven L.; Song, Mimi; Dickinson, Mark; Dekel, Avishai; Ferguson, Henry C.; Fontana, Adriano; Koekemoer, Anton M.; Lu, Yu; Mobasher, Bahram; Papovich, Casey; Ryan, Russell E., Jr.; Salmon, Brett; Straughn, Amber N.

    2017-01-01

    We perform the first spatially resolved stellar population study of galaxies in the early universe (z = 3.5–6.5), utilizing the Hubble Space Telescope Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey imaging data set over the GOODS-S field. We select a sample of 418 bright and extended galaxies at z = 3.5–6.5 from a parent sample of ∼8000 photometric-redshift-selected galaxies from Finkelstein et al. We first examine galaxies at 3.5 ≲ z ≲ 4.0 using additional deep K-band survey data from the HAWK-I UDS and GOODS Survey which covers the 4000 Å break at these redshifts. We measure the stellar mass, star formation rate, and dust extinction for galaxy inner and outer regions via spatially resolved spectral energy distribution fitting based on a Markov Chain Monte Carlo algorithm. By comparing specific star formation rates (sSFRs) between inner and outer parts of the galaxies we find that the majority of galaxies with high central mass densities show evidence for a preferentially lower sSFR in their centers than in their outer regions, indicative of reduced sSFRs in their central regions. We also study galaxies at z ∼ 5 and 6 (here limited to high spatial resolution in the rest-frame ultraviolet only), finding that they show sSFRs which are generally independent of radial distance from the center of the galaxies. This indicates that stars are formed uniformly at all radii in massive galaxies at z ∼ 5–6, contrary to massive galaxies at z ≲ 4.

  19. Calcium phosphate formation and ion dissolution rates in silica gel-PDLLA composites.

    PubMed

    Korventausta, Joni; Jokinen, Mika; Rosling, Ari; Peltola, Timo; Yli-Urpo, Antti

    2003-12-01

    Sol-gel derived silicas are potential biomaterials both for tissue regeneration and drug delivery applications. In this study, both SiO(2) and calcium and phosphate-containing SiO(2) (CaPSiO(2)) are combined with poly-(DL-lactide) to form a composite. The main properties studied are the ion release rates of biologically important ions (soluble SiO(2) and Ca(2+)) and the formation of bone mineral-like calcium phosphate (CaP) on the composite surface. These properties are studied by varying the quality, content and granule size of silica gel in the composite, and porosity of the polymer. The results indicate that release rates of SiO(2) and Ca(2+) depend mostly on the formed CaP layer, but in some extent also on the granule size of silicas and polymer porosity. The formation of the bone mineral-like CaP is suggested to be induced by a thin SiO(-) layer on the composite surface. However, due to absence of active SiO(2) or CaPSiO(2) granules on the outermost surface, the suitable nanoscale dimensions do not contribute the nucleation and growth and an extra source for calcium is needed instead. The result show also that all composites with varying amount of CaPSiO(2) (10-60 wt%) formed bone mineral-like CaP on their surfaces, which provides possibilities to optimise the mechanical properties of composites.

  20. Evidence for Reduced Species Star Formation Rates in the Centers of Massive Galaxies at zeta = 4

    NASA Technical Reports Server (NTRS)

    Jung, Intae; Finkelstein, Steven L.; Song, Mimi; Dickinson, Mark; Dekel, Avishai; Ferguson, Henry C.; Fontana, Adriano; Koekemoer, Anton M.; Lu, Yu; Mobasher, Bahram; hide

    2017-01-01

    We perform the first spatially-resolved stellar population study of galaxies in the early universe z equals 3.5 -6.5, utilizing the Hubble Space Telescope Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) imaging dataset over the GOODS-S field. We select a sample of 418 bright and extended galaxies at z less than or approximately equal to 3.5-6.5 from a parent sample of approximately 8000 photometric-redshift selected galaxies from Finkelstein et al. We first examine galaxies at 3.5 less than or equal to z less than or approximately equal to 4.0 using additional deep K-band survey data from the HAWK-I UDS and GOODS Survey (HUGS) which covers the 4000 Angstrom break at these redshifts. We measure the stellar mass, star formation rate, and dust extinction for galaxy inner and outer regions via spatially-resolved spectral energy distribution fitting based on a Markov Chain Monte Carlo algorithm. By comparing specific star formation rates (sSFRs) between inner and outer parts of the galaxies we find that the majority of galaxies with the high central mass densities show evidence for a preferentially lower sSFR in their centers than in their outer regions, indicative of reduced sSFRs in their central regions. We also study galaxies at z approximately equal to 5 and 6 (here limited to high spatial resolution in the rest-frame ultraviolet only), finding that they show sSFRs which are generally independent of radial distance from the center of the galaxies. This indicates that stars are formed uniformly at all radii in massive galaxies at z approximately equal to 5-6, contrary tomassive galaxies at z. less than approximately equal to 4.

  1. Imbalance of heterologous protein folding and disulfide bond formation rates yields runaway oxidative stress

    PubMed Central

    2012-01-01

    Background The protein secretory pathway must process a wide assortment of native proteins for eukaryotic cells to function. As well, recombinant protein secretion is used extensively to produce many biologics and industrial enzymes. Therefore, secretory pathway dysfunction can be highly detrimental to the cell and can drastically inhibit product titers in biochemical production. Because the secretory pathway is a highly-integrated, multi-organelle system, dysfunction can happen at many levels and dissecting the root cause can be challenging. In this study, we apply a systems biology approach to analyze secretory pathway dysfunctions resulting from heterologous production of a small protein (insulin precursor) or a larger protein (α-amylase). Results HAC1-dependent and independent dysfunctions and cellular responses were apparent across multiple datasets. In particular, processes involving (a) degradation of protein/recycling amino acids, (b) overall transcription/translation repression, and (c) oxidative stress were broadly associated with secretory stress. Conclusions Apparent runaway oxidative stress due to radical production observed here and elsewhere can be explained by a futile cycle of disulfide formation and breaking that consumes reduced glutathione and produces reactive oxygen species. The futile cycle is dominating when protein folding rates are low relative to disulfide bond formation rates. While not strictly conclusive with the present data, this insight does provide a molecular interpretation to an, until now, largely empirical understanding of optimizing heterologous protein secretion. This molecular insight has direct implications on engineering a broad range of recombinant proteins for secretion and provides potential hypotheses for the root causes of several secretory-associated diseases. PMID:22380681

  2. Dissolution Rate Enhancement of Clarithromycin Using Ternary Ground Mixtures: Nanocrystal Formation

    PubMed Central

    Shahbaziniaz, Malihe; Foroutan, Seyed Mohsen; Bolourchian, Noushin

    2013-01-01

    Clarithromycin (CLA), a broad-spectrum macrolide, is a poorly soluble drug with dissolution rate limited absorption. The aim of this investigation was to prepare CLA nanoparticles from a ternary ground mixture in the presence of sodium lauryl sulfate (SLS) and polyvinyl pyrrolidone (PVP) as co-grinding water-soluble compounds, in order to improve the drug dissolution rate. Different weight ratios of CLA: SLS: PVP were ground in a dry process by planetary ball mill using different grinding ball size. Following the dissolution rate study, physical properties of the best dissolved co-ground formulation was studied. The accelerated stability studies were also conducted on the co-ground formulation. The results revealed that the dissolution rate of ternary ground mixtures was much higher than that of the intact drug (p < 0.001). Decreasing the grinding ball size and weight with the same rotation speed resulted in particles with decreased dissolution. On the other hand, increasing the PVP concentration in the formulations reduced the drug dissolution. Dissolution efficiencies (DE10 and DE30) for the best dissolved formulation, which consisted of the equal ratio of each co-ground component, were 8.7 and 5 folds higher than the untreated CLA, respectively. This formulation formed nanocrystals with enhanced solubility after dispersing in water. X-ray diffraction, differential scanning calorimetry and infrared spectrophotometry confirmed no chemical interaction and phase transition during the process. Accelerated stability studies confirmed that the co-ground mixture almost remained unchanged in terms of dissolution rate, drug assay and particle size after exposing in stability conditions for three months. PMID:24523739

  3. Dissolution rate enhancement of clarithromycin using ternary ground mixtures: nanocrystal formation.

    PubMed

    Shahbaziniaz, Malihe; Foroutan, Seyed Mohsen; Bolourchian, Noushin

    2013-01-01

    Clarithromycin (CLA), a broad-spectrum macrolide, is a poorly soluble drug with dissolution rate limited absorption. The aim of this investigation was to prepare CLA nanoparticles from a ternary ground mixture in the presence of sodium lauryl sulfate (SLS) and polyvinyl pyrrolidone (PVP) as co-grinding water-soluble compounds, in order to improve the drug dissolution rate. Different weight ratios of CLA: SLS: PVP were ground in a dry process by planetary ball mill using different grinding ball size. Following the dissolution rate study, physical properties of the best dissolved co-ground formulation was studied. The accelerated stability studies were also conducted on the co-ground formulation. The results revealed that the dissolution rate of ternary ground mixtures was much higher than that of the intact drug (p < 0.001). Decreasing the grinding ball size and weight with the same rotation speed resulted in particles with decreased dissolution. On the other hand, increasing the PVP concentration in the formulations reduced the drug dissolution. Dissolution efficiencies (DE10 and DE30) for the best dissolved formulation, which consisted of the equal ratio of each co-ground component, were 8.7 and 5 folds higher than the untreated CLA, respectively. This formulation formed nanocrystals with enhanced solubility after dispersing in water. X-ray diffraction, differential scanning calorimetry and infrared spectrophotometry confirmed no chemical interaction and phase transition during the process. Accelerated stability studies confirmed that the co-ground mixture almost remained unchanged in terms of dissolution rate, drug assay and particle size after exposing in stability conditions for three months.

  4. Is intracellular ice formation the cause of death of mouse sperm frozen at high cooling rates?

    PubMed

    Mazur, Peter; Koshimoto, Chihiro

    2002-05-01

    Mouse spermatozoa in 18% raffinose and 3.8% Oxyrase in 0.25 x PBS exhibit high motilities when frozen to -70 degrees C at 20-130 degrees C/min and then rapidly warmed. However, survival is <10% when they are frozen at 260 or 530 degrees C/min, presumably because, at those high rates, intracellular water cannot leave rapidly enough to prevent extensive supercooling and this supercooling leads to nucleation and freezing in situ (intracellular ice formation [IIF]). The probability of IIF as a function of cooling rate can be computed by coupled differential equations that describe the extent of the loss of cell water during freezing and from knowledge of the temperature at which the supercooled protoplasm of the cell can nucleate. Calculation of the kinetics of dehydration requires values for the hydraulic conductivity (Lp) of the cell and for its activation energy (Ea). Using literature values for these parameters in mouse sperm, we calculated curves of water volume versus temperature for four cooling rates between 250 and 2000 degrees C/min. The intracellular nucleation temperature was inferred to be -20 degrees C or above based on the greatly reduced motilities of sperm that underwent rapid cooling to a minimum temperature of between -20 and -70 degrees C. Combining that information regarding nucleation temperature with the computed dehydration curves leads to the conclusion that intracellular freezing should occur only in cells that are cooled at 2000 degrees C/min and not in cells that are cooled at 250-1000 degrees C/min. The calculated rate of 2000 degrees C/min for IIF is approximately eightfold higher than the experimentally inferred value of 260 degrees C/min. Possible reasons for the discrepancy are discussed.

  5. Genome-wide maps of polyadenylation reveal dynamic mRNA 3'-end formation in mammalian cell lineages.

    PubMed

    Wang, Li; Dowell, Robin D; Yi, Rui

    2013-03-01

    Post-transcriptional regulation, often mediated by miRNAs and RNA-binding proteins at the 3' untranslated regions (UTRs) of mRNAs, is implicated in important roles in the output of transcriptome. To decipher this layer of gene regulation, it is essential to measure global mRNA expression quantitatively in a 3'-UTR-specific manner. Here we establish an experimental and bioinformatics pipeline that simultaneously determines 3'-end formation by leveraging local nucleotide composition and quantitatively measures mRNA expression by sequencing polyadenylated transcripts. When applied to purified mouse embryonic skin stem cells and their daughter lineages, we identify 18,060 3' UTRs representing 12,739 distinct mRNAs that are abundantly expressed in the skin. We determine that ∼78% of UTRs are formed by using canonical A[A/U]UAAA polyadenylation signals, whereas ∼22% of UTRs use alternative signals. By comparing to relative and absolute mRNA abundance determined by qPCR, our RNA-seq approach can precisely measure mRNA fold-change and accurately determine the expression of mRNAs over four orders of magnitude. Surprisingly, only 829 out of 12,739 genes show differential 3'-end usage between embryonic skin stem cells and their immediate daughter cells, whereas the numbers increase to 933 genes when comparing embryonic skin stem cells with the more remotely related hair follicle cells. This suggests an evolving diversity instead of switch-like dynamics in 3'-end formation during development. Finally, core components of the miRNA pathway including Dicer, Dgcr8, Xpo5, and Argonautes show dynamic 3'-UTR formation patterns, indicating a self-regulatory mechanism. Together, our quantitative analysis reveals a dynamic picture of mRNA 3'-end formation in tissue stem cell lineages in vivo.

  6. Feedback Regulated Turbulence, Magnetic Fields, and Star Formation Rates in Galactic Disks

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Goo; Ostriker, Eve C.

    2015-08-01

    We use three-dimensional numerical magnetohydrodynamic simulations to investigate the quasi-equilibrium states of galactic disks regulated by star formation feedback. We incorporate effects from massive-star feedback via time-varying heating rates and supernova (SN) explosions, comparing momentum-only injection with thermal energy injection for SNe. The latter SN prescription generates more realistic feedback, producing a hot interstellar medium (ISM), but we show that the minimum required resolution (at least three grid zones for the SN remnant (SNR) radius at shell formation epoch) is beyond the capability of most large-scale global galaxy simulations. Our local model disks enable higher resolution, to follow the full SNR evolution and all ISM phases. The momentum-only approach for SNe yields the correct turbulence level and star formation rate (SFR) in the warm and cold ISM, and can be used when resolution is limited. We find that the ISM disks in our simulations rapidly approach a quasi-steady state that satisfies vertical dynamical equilibrium. The SFR surface density self-adjusts to provide the total momentum flux (pressure) in the vertical direction that matches the weight of the gas. The final (time-averaged) state is insensitive to initial conditions and vertical boundary conditions. We quantify feedback efficiency by measuring ``feedback yields’’ defined by the ratio between different pressure components and the SFR surface density. For both magnetized and unmagnetized models, the turbulent and thermal yields are the same, and the ratio of turbulent to thermal yield is about 3. In magnetized models, turbulent magnetic fields are rapidly generated by the small-scale turbulence dynamo, and saturate at a level corresponding to the equipartition with the turbulent kinetic energy. The presence of magnetic fields enhances the total feedback yield and therefore reduces the SFR, since the same vertical support can be supplied at a smaller SFR. Since

  7. Formation and growth rates of atmospheric nanoparticles: four years of observations at two West Siberian stations

    NASA Astrophysics Data System (ADS)

    Arshinov, Mikhail Yu.; Belan, Boris D.; Davydov, Denis K.; Kozlov, Artem V.; Arshinova, Victoria

    2015-04-01

    In spite of fact that the first report on the new particle formation (NPF) itself was done by John Aitken more than one century ago (Aitken, 1898), a phenomenon of NPF bursts taken place in the atmosphere was discovered not very long ago. Nevertheless, to date it is known that they may occur quite often in a variety of environments (Kulmala et al., 2004; Hirsikko et al., 2011). Siberia occupies a vast area covered by forests, but the comprehensive data on burst frequency, as well as on formation and growth rates of freshly nucleated particles in this key region are still lacking. Continuous measurements of aerosol size distribution carried out in recent years at two West Siberian stations (TOR-station - 56o28'41"N, 85o03'15"E; Fonovaya Observatory - 56o25'07"N, 84o04'27"E) allowed this gap in data to be filled up. Analysis of the size spectra classified in accordance with criteria proposed by Dal Maso et al. (2005) and Hammed et al. (2007) enabled a conclusion to be drawn that NPF events in Wets Siberia are more often observed during spring (from March to May) and early autumn (secondary frequency peak in September). On average, particle formation bursts took place on 23-28 % of all days. Such a seasonal pattern of the NPF occurrence is very similar to one observed at SMEAR II Station (Hyytiälä, Finland; Dal Maso et al. 2005, 2007). Formation rates (FR) of particles with diameters below 25 nm varied in a wide range from 0.1 to 10 cm-3 s-1. Mean values of FR for the entire period of observations were 1.7 cm-3s-1 (median = 1.13 cm-3 s-1) at TOR-station and 0.88 cm-3 s-1 (median = 0.69 cm-3 s-1) at Fonovaya Observatory. Enhanced values of FR are usually observed from spring to autumn. Mean growth rates of observed at TOR-station and Fonovaya Observatory were 6.5 nm h-1 (median = 5.0 nm h-1) and 8.3 nm h-1 (median = 6.4 nm h-1), respectively. This work was supported by the Branch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5); State contracts of

  8. Crystal Structure of the Core Region of Hantavirus Nucleocapsid Protein Reveals the Mechanism for Ribonucleoprotein Complex Formation

    PubMed Central

    Guo, Yu; Wang, Wenming; Sun, Yuna; Ma, Chao; Wang, Xu; Wang, Xin; Liu, Pi; Shen, Shu; Li, Baobin; Lin, Jianping; Deng, Fei

    2015-01-01

    ABSTRACT Hantaviruses, which belong to the genus Hantavirus in the family Bunyaviridae, infect mammals, including humans, causing either hemorrhagic fever with renal syndrome (HFRS) or hantavirus cardiopulmonary syndrome (HCPS) in humans with high mortality. Hantavirus encodes a nucleocapsid protein (NP) to encapsidate the genome and form a ribonucleoprotein complex (RNP) together with viral polymerase. Here, we report the crystal structure of the core domains of NP (NPcore) encoded by Sin Nombre virus (SNV) and Andes virus (ANDV), which are two representative members that cause HCPS in the New World. The constructs of SNV and ANDV NPcore exclude the N- and C-terminal portions of full polypeptide to obtain stable proteins for crystallographic study. The structure features an N lobe and a C lobe to clamp RNA-binding crevice and exhibits two protruding extensions in both lobes. The positively charged residues located in the RNA-binding crevice play a key role in RNA binding and virus replication. We further demonstrated that the C-terminal helix and the linker region connecting the N-terminal coiled-coil domain and NPcore are essential for hantavirus NP oligomerization through contacts made with two adjacent protomers. Moreover, electron microscopy (EM) visualization of native RNPs extracted from the virions revealed that a monomer-sized NP-RNA complex is the building block of viral RNP. This work provides insight into the formation of hantavirus RNP and provides an understanding of the evolutionary connections that exist among bunyaviruses. IMPORTANCE Hantaviruses are distributed across a wide and increasing range of host reservoirs throughout the world. In particular, hantaviruses can be transmitted via aerosols of rodent excreta to humans or from human to human and cause HFRS and HCPS, with mortalities of 15% and 50%, respectively. Hantavirus is therefore listed as a category C pathogen. Hantavirus encodes an NP that plays essential roles both in RNP formation and

  9. Crystal Structure of the Core Region of Hantavirus Nucleocapsid Protein Reveals the Mechanism for Ribonucleoprotein Complex Formation.

    PubMed

    Guo, Yu; Wang, Wenming; Sun, Yuna; Ma, Chao; Wang, Xu; Wang, Xin; Liu, Pi; Shen, Shu; Li, Baobin; Lin, Jianping; Deng, Fei; Wang, Hualin; Lou, Zhiyong

    2015-11-11

    Hantaviruses, which belong to the genus Hantavirus in the family Bunyaviridae, infect mammals, including humans, causing either hemorrhagic fever with renal syndrome (HFRS) or hantavirus cardiopulmonary syndrome (HCPS) in humans with high mortality. Hantavirus encodes a nucleocapsid protein (NP) to encapsidate the genome and form a ribonucleoprotein complex (RNP) together with viral polymerase. Here, we report the crystal structure of the core domains of NP (NPcore) encoded by Sin Nombre virus (SNV) and Andes virus (ANDV), which are two representative members that cause HCPS in the New World. The constructs of SNV and ANDV NPcore exclude the N- and C-terminal portions of full polypeptide to obtain stable proteins for crystallographic study. The structure features an N lobe and a C lobe to clamp RNA-binding crevice and exhibits two protruding extensions in both lobes. The positively charged residues located in the RNA-binding crevice play a key role in RNA binding and virus replication. We further demonstrated that the C-terminal helix and the linker region connecting the N-terminal coiled-coil domain and NPcore are essential for hantavirus NP oligomerization through contacts made with two adjacent protomers. Moreover, electron microscopy (EM) visualization of native RNPs extracted from the virions revealed that a monomer-sized NP-RNA complex is the building block of viral RNP. This work provides insight into the formation of hantavirus RNP and provides an understanding of the evolutionary connections that exist among bunyaviruses. Hantaviruses are distributed across a wide and increasing range of host reservoirs throughout the world. In particular, hantaviruses can be transmitted via aerosols of rodent excreta to humans or from human to human and cause HFRS and HCPS, with mortalities of 15% and 50%, respectively. Hantavirus is therefore listed as a category C pathogen. Hantavirus encodes an NP that plays essential roles both in RNP formation and in multiple

  10. A MULTI-WAVELENGTH ANALYSIS OF SPITZER SELECTED COMA CLUSTER GALAXIES: STAR FORMATION RATES AND MASSES

    SciTech Connect

    Edwards, Louise O. V.; Fadda, Dario E-mail: fadda@ipac.caltech.edu

    2011-11-15

    We present a thorough study of the specific star formation rates (sSFRs) for MIPS 24 {mu}m selected galaxies in the Coma cluster. We build galaxy spectral energy distributions using optical (u', g', r', i', z'), near-infrared (J, H, K{sub s} ), and mid- to far-infrared (Infrared Array Camera and MIPS) photometry. New and archival spectra confirm 210 cluster members. Subsequently, the total infrared luminosity, galaxy stellar mass, and sSFR for the members are determined by measuring best-fit templates. Using an array of complementary diagnostics, we search for any contaminating active galactic nuclei, but find few. We compare obscured SFRs to unobscured rates derived from extinction-corrected H{alpha} emission line measurements. The agreement between these two values leads us to conclude that there is no evidence for an additionally obscured component. In our spectroscopic sample, complete to 80% for r' < 19.5, we find that all starbursts are blue and are dwarfs, having masses <10{sup 9} M{sub sun}. Examining the location of these starbursts within the cluster, we confirm that there is a lower fraction in the cluster core.

  11. A CORRELATION BETWEEN STAR FORMATION RATE AND AVERAGE BLACK HOLE ACCRETION IN STAR-FORMING GALAXIES

    SciTech Connect

    Chen, Chien-Ting J.; Hickox, Ryan C.; Alberts, Stacey; Pope, Alexandra; Brodwin, Mark; Jones, Christine; Forman, William R.; Goulding, Andrew D.; Murray, Stephen S.; Alexander, David M.; Mullaney, James R.; Assef, Roberto J.; Gorjian, Varoujan; Brown, Michael J. I.; Dey, Arjun; Jannuzi, Buell T.; Le Floc'h, Emeric

    2013-08-10

    We present a measurement of the average supermassive black hole accretion rate (BHAR) as a function of the star formation rate (SFR) for galaxies in the redshift range 0.25 < z < 0.8. We study a sample of 1767 far-IR-selected star-forming galaxies in the 9 deg{sup 2} Booetes multi-wavelength survey field. The SFR is estimated using 250 {mu}m observations from the Herschel Space Observatory, for which the contribution from the active galactic nucleus (AGN) is minimal. In this sample, 121 AGNs are directly identified using X-ray or mid-IR selection criteria. We combined these detected AGNs and an X-ray stacking analysis for undetected sources to study the average BHAR for all of the star-forming galaxies in our sample. We find an almost linear relation between the average BHAR (in M{sub Sun} yr{sup -1}) and the SFR (in M{sub Sun} yr{sup -1}) for galaxies across a wide SFR range 0.85 < log SFR < 2.56: log BHAR = (- 3.72 {+-} 0.52) + (1.05 {+-} 0.33)log SFR. This global correlation between SFR and average BHAR is consistent with a simple picture in which SFR and AGN activity are tightly linked over galaxy evolution timescales.

  12. Evaporation Rate Study and NDMA Formation from UDMH/NO2 Reaction Products

    NASA Technical Reports Server (NTRS)

    Buchanan, Vanessa D.; Dee, Louis A.; Baker, David L.

    2003-01-01

    Laboratory samples of uns-dimethylhydrazine (UDMH) fuel/oxidizer (nitrogen dioxide) non-combustion reaction products (UFORP) were prepared using a unique permeation tube technology. Also, a synthetic UFORP was prepared from UDMH, N-nitrosodimethylamine (NDMA), dimethylammonium nitrate, sodium nitrite and purified water. The evaporation rate of UFORP and synthetic UFORP was determined under space vacuum (approx 10(exp -3) Torr) at -40 ?C and 0 ?C. The material remaining was analyzed and showed that the UFORP weight and NDMA concentration decreased over time; however, NDMA had not completely evaporated. Over 85% of the weight was removed by subjecting the UFORP to 10(-3) Torr for 7 hours at -40 ?C and 4 hours at 0 ?C. A mixture of dimethylammonium nitrate and sodium nitrite formed NDMA at a rapid rate in a moist air environment. A sample of UFORP residue was analyzed for formation of NDMA under various conditions. It was found that NDMA was not formed unless nitrite was added.

  13. Targeted disruption of TGFBI in mice reveals its role in regulating bone mass and bone size through periosteal bone formation.

    PubMed

    Yu, Hongrun; Wergedal, Jon E; Zhao, Yongliang; Mohan, Subburaman

    2012-07-01

    Transforming growth factor-beta induced (TGFBI) and periostin are two closely related proteins in structure as well as in function. A previous study found that periostin positively regulates bone size. Here, we hypothesize that TGFBI has a similar function in bone development. To test this hypothesis, we employed TGFBI-deficient mice, which were generated by targeted disruption of the TGFBI gene. We bred these mice with C57BL/6J mice to generate homozygous TGFBI-deficient (TGFBI(-/-)) mice and homozygous wild-type littermates. All mice were raised to 12 weeks of age. Bone mass parameters were determined by PIXImus and micro-CT, bone strength parameters by three-point bending, and bone formation and resorption parameters by histomorphometry. We found that targeted disruption of TGFBI led to reduced body size, bone mass, bone size, and bone strength. This indicates that, like periostin, TGFBI also positively regulates bone size and that changes in bone size affect bone strength. Furthermore, there was also a significant decrease in periosteal, but not endosteal, bone formation rate of cortical bone in TGFBI(-/-) mice, suggesting that the observed effect of TGFBI on bone mass and bone size was largely caused by the effect of TGFBI on periosteal bone formation.

  14. Genomic Analysis of Hepatitis B Virus Reveals Antigen State and Genotype as Sources of Evolutionary Rate Variation

    PubMed Central

    Harrison, Abby; Lemey, Philippe; Hurles, Matthew; Moyes, Chris; Horn, Susanne; Pryor, Jan; Malani, Joji; Supuri, Mathias; Masta, Andrew; Teriboriki, Burentau; Toatu, Tebuka; Penny, David; Rambaut, Andrew; Shapiro, Beth

    2011-01-01

    Hepatitis B virus (HBV) genomes are small, semi-double-stranded DNA circular genomes that contain alternating overlapping reading frames and replicate through an RNA intermediary phase. This complex biology has presented a challenge to estimating an evolutionary rate for HBV, leading to difficulties resolving the evolutionary and epidemiological history of the virus. Here, we re-examine rates of HBV evolution using a novel data set of 112 within-host, transmission history (pedigree) and among-host genomes isolated over 20 years from the indigenous peoples of the South Pacific, combined with 313 previously published HBV genomes. We employ Bayesian phylogenetic approaches to examine several potential causes and consequences of evolutionary rate variation in HBV. Our results reveal rate variation both between genotypes and across the genome, as well as strikingly slower rates when genomes are sampled in the Hepatitis B e antigen positive state, compared to the e antigen negative state. This Hepatitis B e antigen rate variation was found to be largely attributable to changes during the course of infection in the preCore and Core genes and their regulatory elements. PMID:21765983

  15. Star formation rate and metallicity of damped Lyman α absorbers in cosmological smoothed particle hydrodynamics simulations

    NASA Astrophysics Data System (ADS)

    Nagamine, K.; Springel, V.; Hernquist, L.

    2004-02-01

    We study the distribution of the star formation rate (SFR) and metallicity of damped Lyman α absorbers (DLAs) in the redshift range z= 0-4.5 using cosmological smoothed particle hydrodynamics (SPH) simulations of the Λ cold dark matter model. Our simulations include standard radiative cooling and heating with a uniform ultraviolet background, star formation, supernova (SN) feedback, as well as a phenomenological model for feedback by galactic winds. The latter allows us to examine, in particular, the effect of galactic outflows on the distribution of the SFR and metallicity of DLAs. We employ a `conservative entropy' formulation of SPH which alleviates numerical overcooling effects that affected earlier simulations. In addition, we utilize a series of simulations of varying box-size and particle number to investigate the impact of numerical resolution on our results. We find that there is a positive correlation between the projected stellar mass density and the neutral hydrogen column density (NHI) of DLAs for high NHI systems, and that there is a good correspondence in the spatial distribution of stars and DLAs in the simulations. The evolution of typical star-to-gas mass ratios in DLAs can be characterized by an increase from approximately 2 at z= 4.5 to 3 at z= 3, to 10 at z= 1 and finally to 20 at z= 0. We also find that the projected SFR density in DLAs follows the Kennicutt law well at all redshifts, and the simulated values are consistent with the recent observational estimates of this quantity by Wolfe, Prochaska & Gawiser. The rate of evolution in the mean metallicity of simulated DLAs as a function of redshift is mild, and is consistent with the rate estimated from observations. The predicted metallicity of DLAs is generally subsolar in our simulations, and there is a significant scatter in the distribution of DLA metallicity for a given NHI. However, we find that the median metallicity of simulated DLAs is close to that of Lyman-break galaxies, and is

  16. Local and Regional Diversity Reveals Dispersal Limitation and Drift as Drivers for Groundwater Bacterial Communities from a Fractured Granite Formation.

    PubMed

    Beaton, E D; Stevenson, Bradley S; King-Sharp, Karen J; Stamps, Blake W; Nunn, Heather S; Stuart, Marilyne

    2016-01-01

    Microorganisms found in terrestrial subsurface environments make up a large proportion of the Earth's biomass. Biogeochemical cycles catalyzed by subsurface microbes have the potential to influence the speciation and transport of radionuclides managed in geological repositories. To gain insight on factors that constrain microbial processes within a formation with restricted groundwater flow we performed a meta-community analysis on groundwater collected from multiple discrete fractures underlying the Chalk River Laboratories site (located in Ontario, Canada). Bacterial taxa were numerically dominant in the groundwater. Although these were mainly uncultured, the closest cultivated representatives were from the phenotypically diverse Betaproteobacteria, Deltaproteobacteria, Bacteroidetes, Actinobacteria, Nitrospirae, and Firmicutes. Hundreds of taxa were identified but only a few were found in abundance (>1%) across all assemblages. The remainder of the taxa were low abundance. Within an ecological framework of selection, dispersal and drift, the local and regional diversity revealed fewer taxa within each assemblage relative to the meta-community, but the taxa that were present were more related than predicted by chance. The combination of dispersion at one phylogenetic depth and clustering at another phylogenetic depth suggest both niche (dispersion) and filtering (clustering) as drivers of local assembly. Distance decay of similarity reveals apparent biogeography of 1.5 km. Beta diversity revealed greater influence of selection at shallow sampling locations while the influences of dispersal limitation and randomness were greater at deeper sampling locations. Although selection has shaped each assemblage, the spatial scale of groundwater sampling favored detection of neutral processes over selective processes. Dispersal limitation between assemblages combined with local selection means the meta-community is subject to drift, and therefore, likely reflects the

  17. Local and Regional Diversity Reveals Dispersal Limitation and Drift as Drivers for Groundwater Bacterial Communities from a Fractured Granite Formation

    PubMed Central

    Beaton, E. D.; Stevenson, Bradley S.; King-Sharp, Karen J.; Stamps, Blake W.; Nunn, Heather S.; Stuart, Marilyne

    2016-01-01

    Microorganisms found in terrestrial subsurface environments make up a large proportion of the Earth’s biomass. Biogeochemical cycles catalyzed by subsurface microbes have the potential to influence the speciation and transport of radionuclides managed in geological repositories. To gain insight on factors that constrain microbial processes within a formation with restricted groundwater flow we performed a meta-community analysis on groundwater collected from multiple discrete fractures underlying the Chalk River Laboratories site (located in Ontario, Canada). Bacterial taxa were numerically dominant in the groundwater. Although these were mainly uncultured, the closest cultivated representatives were from the phenotypically diverse Betaproteobacteria, Deltaproteobacteria, Bacteroidetes, Actinobacteria, Nitrospirae, and Firmicutes. Hundreds of taxa were identified but only a few were found in abundance (>1%) across all assemblages. The remainder of the taxa were low abundance. Within an ecological framework of selection, dispersal and drift, the local and regional diversity revealed fewer taxa within each assemblage relative to the meta-community, but the taxa that were present were more related than predicted by chance. The combination of dispersion at one phylogenetic depth and clustering at another phylogenetic depth suggest both niche (dispersion) and filtering (clustering) as drivers of local assembly. Distance decay of similarity reveals apparent biogeography of 1.5 km. Beta diversity revealed greater influence of selection at shallow sampling locations while the influences of dispersal limitation and randomness were greater at deeper sampling locations. Although selection has shaped each assemblage, the spatial scale of groundwater sampling favored detection of neutral processes over selective processes. Dispersal limitation between assemblages combined with local selection means the meta-community is subject to drift, and therefore, likely reflects the

  18. Mechanism of Formation of Copper(II) Chloro Complexes Revealed by Transient Absorption Spectroscopy and DFT/TDDFT Calculations.

    PubMed

    Mereshchenko, Andrey S; Olshin, Pavel K; Karabaeva, Kanykey E; Panov, Maxim S; Wilson, R Marshall; Kochemirovsky, Vladimir A; Skripkin, Mikhail Yu; Tveryanovich, Yury S; Tarnovsky, Alexander N

    2015-07-16

    Copper(II) complexes are extremely labile with typical ligand exchange rate constants on the order of 10(6)-10(9) M(-1) s(-1). As a result, it is often difficult to identify the actual formation mechanism of these complexes. In this work, using UV-vis transient absorption when probing in a broad time range (20 ps to 8 μs) in conjunction with DFT/TDDFT calculations, we studied the dynamics and underlying reaction mechanisms of the formation of extremely labile copper(II) CuCl4(2-) chloro complexes from copper(II) CuCl3(-) trichloro complexes and chloride ions. These two species, produced via photochemical dissociation of CuCl4(2-) upon 420 nm excitation into the ligand-to-metal-charge-transfer electronic state, are found to recombine into parent complexes with bimolecular rate constants of (9.0 ± 0.1) × 10(7) and (5.3 ± 0.4) × 10(8) M(-1) s(-1) in acetonitrile and dichloromethane, respectively. In dichloromethane, recombination occurs via a simple one-step addition. In acetonitrile, where [CuCl3](-) reacts with the solvent to form a [CuCl3CH3CN](-) complex in less than 20 ps, recombination takes place via ligand exchange described by the associative interchange mechanism that involves a [CuCl4CH3CN](2-) intermediate. In both solvents, the recombination reaction is potential energy controlled.

  19. Rate of formation of carboxyhemoglobin in exercising humans exposed to carbon monoxide.

    PubMed

    Tikuisis, P; Kane, D M; McLellan, T M; Buick, F; Fairburn, S M

    1992-04-01

    The purpose of this study was to test the CFK equation for its prediction of the rate of formation of carboxyhemoglobin (HbCO) in exercising humans by use of measured values of the respiratory variables and to characterize the rate of appearance of HbCO with frequent blood sampling. Ten nonsmoking male subjects were exposed to carbon monoxide (CO) on two separate occasions distinguished by the level of activity. Steady-state exercise was conducted on a cycle ergometer at either a low (approximately 45 W) or moderate (approximately 90 W) power output. Each experiment began with an exposure of 3,000 ppm CO for 3 min during a rest period followed by three intermittent exposures ranging from 3,000 ppm CO for 1 min at low exercise to 667 ppm CO for 3 min at moderate exercise. Increases in HbCO were normalized against predicted values to account for individual differences in the variables that govern CO uptake. No difference in the normalized uptake of CO was found between the low- and moderate-exercise trials. However, the CFK equation underpredicted the increase in HbCO for the exposures at rest and the first exposure at exercise, whereas it overpredicted for the latter two exposures at exercise. The net increase in HbCO after all exposures (approximately 10% HbCO) deviated by less than 1% HbCO between the measured and predicted values. The rate of appearance of HbCO fits a sigmoidal shape with considerable overshoot at the end of exposure. This can be explained by delays in the delivery of CO to the blood sampling point (dorsal hand vein) and by a relatively small blood circulation time compared with other regions of the body. A simple circulation model is used to demonstrate the overshoot phenomenon.

  20. Rate of formation of carboxyhemoglobin in exercising humans exposed to carbon monoxide

    SciTech Connect

    Tikuisis, P.; Kane, D.M.; McLellan, T.M.; Buick, F.; Fairburn, S.M. )

    1992-04-01

    The purpose of this study was to test the CFK equation for its prediction of the rate of formation of carboxyhemoglobin (HbCO) in exercising humans by use of measured values of the respiratory variables and to characterize the rate of appearance of HbCO with frequent blood sampling. Ten nonsmoking male subjects were exposed to carbon monoxide (CO) on two separate occasions distinguished by the level of activity. Steady-state exercise was conducted on a cycle ergometer at either a low ([approximately]45 W) or moderate ([approximately]90W) power output. Each experiment began with an exposure of 3,000 ppm CO for 3 min during a rest period followed by three intermittent exposures ranging from 3,000 ppm CO for 1 min at low exercise to 667 ppm CO for 3 min at moderate exercise. Increases in HbCO were normalized against predicted values to account for individual differences in the variables that govern CO uptake. No difference in the normalized uptake of CO was found between the low-and moderate-exercise trials. However, the CFK equation underpredicted the increase in HbCO for the exposures at rest and the first exposure at exercise, whereas it overpredicted for the latter two exposures at exercise. The net increase in HbCO after all exposures ([approximately]10% HbCO) deviated by <1% HbCO between the measured and predicted values. The rate of appearance of HbCO fits a sigmoidal shape with considerable overshoot at the end of exposure. This can be explained by delays in the delivery of CO to the blood sampling point (dorsal hand vein) and by a relatively small blood circulation time compared with other regions of the body. A simple circulation model is used to demonstrate the overshoot phenomenon. 26 refs., 6 figs., 1 tab.

  1. Dinosaur Census Reveals Abundant Tyrannosaurus and Rare Ontogenetic Stages in the Upper Cretaceous Hell Creek Formation (Maastrichtian), Montana, USA

    PubMed Central

    Horner, John R.; Goodwin, Mark B.; Myhrvold, Nathan

    2011-01-01

    Background A dinosaur census recorded during the Hell Creek Project (1999–2009) incorporates multiple lines of evidence from geography, taphohistory, stratigraphy, phylogeny and ontogeny to investigate the relative abundance of large dinosaurs preserved in the Upper Cretaceous Hell Creek Formation of northeastern Montana, USA. Overall, the dinosaur skeletal assemblages in the Hell Creek Formation (excluding lag-influenced records) consist primarily of subadult or small adult size individuals. Small juveniles and large adults are both extremely rare, whereas subadult individuals are relatively common. We propose that mature individuals of at least some dinosaur taxa either lived in a separate geographic locale analogous to younger individuals inhabiting an upland environment where sedimentation rates were relatively less, or these taxa experienced high mortality before reaching terminal size where late stage and often extreme cranial morphology is expressed. Methodology/Principal Findings Tyrannosaurus skeletons are as abundant as Edmontosaurus, an herbivore, in the upper Hell Creek Formation and nearly twice as common in the lower third of the formation. Smaller, predatory dinosaurs (e.g., Troodon and dromaeosaurids) are primarily represented by teeth found in microvertebrate localities and their skeletons or identifiable lag specimens were conspicuously absent. This relative abundance suggests Tyrannosaurus was not a typical predator and likely benefited from much wider food choice opportunities than exclusively live prey and/or specific taxa. Tyrannosaurus adults may not have competed with Tyrannosaurus juveniles if the potential for selecting carrion increased with size during ontogeny. Conclusions/Significance Triceratops is the most common dinosaur and isolated skulls contribute to a significant portion of this census. Associated specimens of Triceratops consisting of both cranial and postcranial elements remain relatively rare. This rarity may be explained

  2. Dinosaur census reveals abundant Tyrannosaurus and rare ontogenetic stages in the Upper Cretaceous Hell Creek Formation (Maastrichtian), Montana, USA.

    PubMed

    Horner, John R; Goodwin, Mark B; Myhrvold, Nathan

    2011-02-09

    A dinosaur census recorded during the Hell Creek Project (1999-2009) incorporates multiple lines of evidence from geography, taphohistory, stratigraphy, phylogeny and ontogeny to investigate the relative abundance of large dinosaurs preserved in the Upper Cretaceous Hell Creek Formation of northeastern Montana, USA. Overall, the dinosaur skeletal assemblages in the Hell Creek Formation (excluding lag-influenced records) consist primarily of subadult or small adult size individuals. Small juveniles and large adults are both extremely rare, whereas subadult individuals are relatively common. We propose that mature individuals of at least some dinosaur taxa either lived in a separate geographic locale analogous to younger individuals inhabiting an upland environment where sedimentation rates were relatively less, or these taxa experienced high mortality before reaching terminal size where late stage and often extreme cranial morphology is expressed. Tyrannosaurus skeletons are as abundant as Edmontosaurus, an herbivore, in the upper Hell Creek Formation and nearly twice as common in the lower third of the formation. Smaller, predatory dinosaurs (e.g., Troodon and dromaeosaurids) are primarily represented by teeth found in microvertebrate localities and their skeletons or identifiable lag specimens were conspicuously absent. This relative abundance suggests Tyrannosaurus was not a typical predator and likely benefited from much wider food choice opportunities than exclusively live prey and/or specific taxa. Tyrannosaurus adults may not have competed with Tyrannosaurus juveniles if the potential for selecting carrion increased with size during ontogeny. Triceratops is the most common dinosaur and isolated skulls contribute to a significant portion of this census. Associated specimens of Triceratops consisting of both cranial and postcranial elements remain relatively rare. This rarity may be explained by a historical collecting bias influenced by facies and taphonomic

  3. The Conditions Underpinning Extreme Star Formation in ULIRGs and LIRGs as Revealed by Herschel Far-Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Vasquez, Gabriel A.; Ashby, Matthew; Smith, Howard Alan; McTier, Moiya; Melendez, Marcio

    2016-01-01

    We present a systematic survey of molecular and atomic line fluxes in all star-forming galaxies observed by the Herschel PACs instrument with detectable OH lines that also contain Herschel SPIRE FTS spectra, to determine how physical conditions vary as a function of star formation rate. Specifically, we measured selected CO, H2O, [CI], and [NII] integrated line fluxes in a sample of 145 star-forming galaxies covering a range of far-infrared luminosities ranging from 109 to above 1012 LSun . Thus, our sample includes typical, quiescent galaxies as well as Luminous Infrared Galaxies (LIRGs) and Ultra Luminous Infrared Galaxies (ULIRGs), known to be creating stars extremely rapidly. We find evidence suggesting that ULIRGs with far-infrared luminosities of LFIR> 1012 LSun require an additional heating mechanism other than UV heating from star formation, while LIRGs and less luminous star-forming galaxies may be heated primarily by their star formation. We also find that the [NII] 3P1 - 3P0 fine structure line flux and those of the CO J=5-4, CO J=7-6, and CO J=8-7 transitions are generally weaker for ULIRGs compared to LIRGs and less luminous star-forming galaxies, while we find the CO J=11-10, CO J=12-11, and CO J=13-12 transitions are generally stronger. In all these respects, ULIRGs are shown to differ significantly from other galaxies undergoing less extreme star formation. This work was supported in part by the NSF REU and DoD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  4. Rating Scale Items: A Brief Review of Nomenclature, Components, and Formatting to Inform the Development of Direct Behavior Rating (DBR)

    ERIC Educational Resources Information Center

    Christ, Theodore J.; Boice, Christina

    2009-01-01

    Ratings scales are a common component of many multisource, multimethod frameworks for socioemotional and behavior assessment of children. There is a modest literature base to support the use of attitudinal, behavioral, and personality rating scales. Much of that historic literature focuses on the characteristics and interpretations of specific…

  5. Rating Scale Items: A Brief Review of Nomenclature, Components, and Formatting to Inform the Development of Direct Behavior Rating (DBR)

    ERIC Educational Resources Information Center

    Christ, Theodore J.; Boice, Christina

    2009-01-01

    Ratings scales are a common component of many multisource, multimethod frameworks for socioemotional and behavior assessment of children. There is a modest literature base to support the use of attitudinal, behavioral, and personality rating scales. Much of that historic literature focuses on the characteristics and interpretations of specific…

  6. A chamber study of the influence of boreal BVOC emissions and sulfuric acid on nanoparticle formation rates at ambient concentrations

    NASA Astrophysics Data System (ADS)

    Dal Maso, M.; Liao, L.; Wildt, J.; Kiendler-Scharr, A.; Kleist, E.; Tillmann, R.; Sipilä, M.; Hakala, J.; Lehtipalo, K.; Ehn, M.; Kerminen, V.-M.; Kulmala, M.; Worsnop, D.; Mentel, T.

    2016-02-01

    Aerosol formation from biogenic and anthropogenic precursor trace gases in continental background areas affects climate via altering the amount of available cloud condensation nuclei. Significant uncertainty still exists regarding the agents controlling the formation of aerosol nanoparticles. We have performed experiments in the Jülich plant-atmosphere simulation chamber with instrumentation for the detection of sulfuric acid and nanoparticles, and present the first simultaneous chamber observations of nanoparticles, sulfuric acid, and realistic levels and mixtures of biogenic volatile compounds (BVOCs). We present direct laboratory observations of nanoparticle formation from sulfuric acid and realistic BVOC precursor vapour mixtures performed at atmospherically relevant concentration levels. We directly measured particle formation rates separately from particle growth rates. From this, we established that in our experiments, the formation rate was proportional to the product of sulfuric acid and biogenic VOC emission strength. The formation rates were consistent with a mechanism in which nucleating BVOC oxidation products are rapidly formed and activate with sulfuric acid. The growth rate of nanoparticles immediately after birth was best correlated with estimated products resulting from BVOC ozonolysis.

  7. Galaxy And Mass Assembly (GAMA): galaxy environments and star formation rate variations

    NASA Astrophysics Data System (ADS)

    Wijesinghe, D. B.; Hopkins, A. M.; Brough, S.; Taylor, E. N.; Norberg, P.; Bauer, A.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S.; Driver, S.; Grootes, M. W.; Jones, D. H.; Kelvin, L.; Loveday, J.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Sharp, R.; Baldry, I.; Sadler, E. M.; Liske, J.; Robotham, A. S. G.; Bamford, S.; Bland-Hawthorn, J.; Gunawardhana, M.; Meyer, M.; Parkinson, H.; Drinkwater, M. J.; Peacock, J.; Tuffs, R.

    2012-07-01

    We present a detailed investigation into the effects of galaxy environment on their star formation rates (SFRs) using galaxies observed in the Galaxy And Mass Assembly (GAMA) survey. We use three independent volume-limited samples of galaxies within z < 0.2 and Mr < -17.8. We investigate the known SFR-density relationship and explore in detail the dependence of SFR on stellar mass and density. We show that the SFR-density trend is only visible when we include the passive galaxy population along with the star-forming population. This SFR-density relation is absent when we consider only the star-forming population of galaxies, consistent with previous work. While there is a strong dependence of the EWHα on density we find, as in previous studies, that these trends are largely due to the passive galaxy population and this relationship is absent when considering a 'star-forming' sample of galaxies. We find that stellar mass has the strongest influence on SFR and EWHα with the environment having no significant effect on the star formation properties of the star-forming population. We also show that the SFR-density relationship is absent for both early- and late-type star-forming galaxies. We conclude that the stellar mass has the largest impact on the current SFR of a galaxy, and any environmental effect is not detectable. The observation that the trends with density are due to the changing morphology fraction with density implies that the time-scales must be very short for any quenching of the SFR in infalling galaxies. Alternatively, galaxies may in fact undergo predominantly in situ evolution where the infall and quenching of galaxies from the field into dense environments is not the dominant evolutionary mode.

  8. The star formation rate density and dust attenuation evolution over 12 Gyr with the VVDS surveys

    NASA Astrophysics Data System (ADS)

    Cucciati, O.; Tresse, L.; Ilbert, O.; Le Fèvre, O.

    2011-12-01

    We investigate the cosmic star formation rate density (SFRD) over ˜12 Gyr (0.05≤ z≤ 4.5), combining the VVDS Deep (17.5 ≤ I_{AB}≤ 24.0) and Ultra-Deep (23.00 ≤ i'_{AB} ≤ 24.75) surveys. We obtain a single homogeneous spectroscopic redshift sample, totalizing about 11000 galaxies. We estimate the rest-frame FUV luminosity function (LF) and luminosity density (LD), extract the dust attenuation of the FUV radiation using SED fitting, and derive the dust-corrected SFRD. We find a constant and flat faint-end slope alpha in the FUV LF at z<1.7. The absolute magnitude M^{*}_{FUV} brightens in the entire range 02 it is on average brighter than in the literature, while φ^{*} is smaller. Our total LD shows a robust peak at z≃2, and the SFRD history peaks as well at z≃2. This peak is produced by the decreasing contribution at z<2 of galaxies with -21.5 ≤ M_{FUV} ≤ -19.5 mag. As times goes by, the total SFRD is dominated by fainter and fainter galaxies. Moreover, at z>2 the SFRD is entirely shaped by the high specific SFR galaxies. The presence of a fast rise at z>2 and of a clear peak at z≃2 of the SFRD is compelling for models of galaxy formation. The mean dust attenuation A_{FUV} of the global galaxy population rises by 1 mag from z=4.5 to z=2, reaches its maximum at z=1 (A_{FUV}≃2.2 mag), and then decreases by 1.1 mag down to z=0. The dust attenuation maximum is reached 2 Gyr after the SFRD peak, implying a contribution from the intermediate-mass stars to the dust production at z<2.

  9. Predicting Galaxy Star Formation Rates via the Co-evolution of Galaxies and Halos

    DOE PAGES

    Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; ...

    2014-03-06

    In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy is determined by its dark matter halo formation history, and as such, that more quiescent galaxies reside in older halos. This simple model has been remarkably successful at predicting color-based galaxy statistics at low redshift as measured in the Sloan Digital Sky Survey (SDSS). To further test this method with observations, we present new SDSS measurements of the galaxy two-point correlation function and galaxy-galaxy lensing as a function of stellar mass and SFR, separated into quenched and star forming galaxy samples. Wemore » find that our age matching model is in excellent agreement with these new measurements. We also employ a galaxy group finder and show that our model is able to predict: (1) the relative SFRs of central and satellite galaxies, (2) the SFR-dependence of the radial distribution of satellite galaxy populations within galaxy groups, rich groups, and clusters and their surrounding larger scale environments, and (3) the interesting feature that the satellite quenched fraction as a function of projected radial distance from the central galaxy exhibits an approx r-.15 slope, independent of environment. The accurate prediction for the spatial distribution of satellites is intriguing given the fact that we do not explicitly model satellite-specific processes after infall, and that in our model the virial radius does not mark a special transition region in the evolution of a satellite, contrary to most galaxy evolution models. The success of the model suggests that present-day galaxy SFR is strongly correlated with halo mass assembly history.« less

  10. Predicting Galaxy Star Formation Rates via the Co-evolution of Galaxies and Halos

    SciTech Connect

    Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; Becker, Matthew R.; Behroozi, Peter S.; Skibba, Ramin A.; Reyes, Reinabelle; Zentner, Andrew R.

    2014-03-06

    In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy is determined by its dark matter halo formation history, and as such, that more quiescent galaxies reside in older halos. This simple model has been remarkably successful at predicting color-based galaxy statistics at low redshift as measured in the Sloan Digital Sky Survey (SDSS). To further test this method with observations, we present new SDSS measurements of the galaxy two-point correlation function and galaxy-galaxy lensing as a function of stellar mass and SFR, separated into quenched and star forming galaxy samples. We find that our age matching model is in excellent agreement with these new measurements. We also employ a galaxy group finder and show that our model is able to predict: (1) the relative SFRs of central and satellite galaxies, (2) the SFR-dependence of the radial distribution of satellite galaxy populations within galaxy groups, rich groups, and clusters and their surrounding larger scale environments, and (3) the interesting feature that the satellite quenched fraction as a function of projected radial distance from the central galaxy exhibits an approx r-.15 slope, independent of environment. The accurate prediction for the spatial distribution of satellites is intriguing given the fact that we do not explicitly model satellite-specific processes after infall, and that in our model the virial radius does not mark a special transition region in the evolution of a satellite, contrary to most galaxy evolution models. The success of the model suggests that present-day galaxy SFR is strongly correlated with halo mass assembly history.

  11. Probing the peak of the star formation rate density with the extragalactic background light

    NASA Astrophysics Data System (ADS)

    Raue, Martin; Meyer, Manuel

    2012-10-01

    The extragalactic background light (EBL), i.e. the diffuse metagalactic photon field in the ultraviolet to infrared, is dominated by the emission from stars in galaxies. It is, therefore, intimately connected with the integrated star formation rate density (SFRD). In this paper, the SFRD is constrained using recent limits on the EBL density derived from observations of distant sources of high and very high energy gamma-rays. The stellar EBL contribution is modelled utilizing simple stellar population spectra including dust attenuation and emission. For modelling the SFRD up to z = 4, a broken power-law function in z + 1 is assumed. A wide range of values for the different model parameters [SFRD(z), metallicity, dust absorption] is investigated, and their impact on the resulting EBL is studied. The calculated EBL densities are compared with the specific EBL density limits, and constraints on the SFRD are derived. For the fiducial model, by adopting a Chabrier initial mass function (IMF) and a second power-law index for the SFRD of β = 0.3, the SFRD is constrained to ≲0.1 and < 0.2 M⊙ yr-1 Mpc-3 for a redshift of z ˜ 1 and z ˜ 2, respectively. The limits for a redshift of z ˜ 1 are in tension with SFRD measurements derived from instantaneous star formation tracers. While the tension for the conservative fiducial model in this study is not yet overly strong, the tension increases when applying plausible changes to the model parameters, e.g., using a Salpeter IMF instead of a Chabrier one or adopting a sub-solar metallicity.

  12. The ultraviolet and infrared star formation rates of compact group galaxies: an expanded sample

    NASA Astrophysics Data System (ADS)

    Lenkić, Laura; Tzanavaris, Panayiotis; Gallagher, Sarah C.; Desjardins, Tyler D.; Walker, Lisa May; Johnson, Kelsey E.; Fedotov, Konstantin; Charlton, Jane; Hornschemeier, Ann E.; Durrell, Pat R.; Gronwall, Caryl

    2016-07-01

    Compact groups of galaxies provide insight into the role of low-mass, dense environments in galaxy evolution because the low velocity dispersions and close proximity of galaxy members result in frequent interactions that take place over extended time-scales. We expand the census of star formation in compact group galaxies by Tzanavaris et al. (2010) and collaborators with Swift UVOT, Spitzer IRAC and MIPS 24 μm photometry of a sample of 183 galaxies in 46 compact groups. After correcting luminosities for the contribution from old stellar populations, we estimate the dust-unobscured star formation rate (SFRUV) using the UVOT uvw2 photometry. Similarly, we use the MIPS 24 μm photometry to estimate the component of the SFR that is obscured by dust (SFRIR). We find that galaxies which are MIR-active (MIR-`red'), also have bluer UV colours, higher specific SFRs, and tend to lie in H I-rich groups, while galaxies that are MIR-inactive (MIR-`blue') have redder UV colours, lower specific SFRs, and tend to lie in H I-poor groups. We find the SFRs to be continuously distributed with a peak at about 1 M⊙ yr-1, indicating this might be the most common value in compact groups. In contrast, the specific SFR distribution is bimodal, and there is a clear distinction between star-forming and quiescent galaxies. Overall, our results suggest that the specific SFR is the best tracer of gas depletion and galaxy evolution in compact groups.

  13. SUSTAINING STAR FORMATION RATES IN SPIRAL GALAXIES: SUPERNOVA-DRIVEN TURBULENT ACCRETION DISK MODELS APPLIED TO THINGS GALAXIES

    SciTech Connect

    Vollmer, Bernd; Leroy, Adam K.

    2011-01-15

    Gas disks of spiral galaxies can be described as clumpy accretion disks without a coupling of viscosity to the actual thermal state of the gas. The model description of a turbulent disk consisting of emerging and spreading clumps contains free parameters, which can be constrained by observations of molecular gas, atomic gas, and the star formation rate for individual galaxies. Radial profiles of 18 nearby spiral galaxies from THINGS, HERACLES, SINGS, and GALEX data are used to compare the observed star formation efficiency, molecular fraction, and velocity dispersion to the model. The observed radially decreasing velocity dispersion can be reproduced by the model. In the framework of this model, the decrease in the inner disk is due to the stellar mass distribution which dominates the gravitational potential. Introducing a radial break in the star formation efficiency into the model improves the fits significantly. This change in the star formation regime is realized by replacing the free-fall time in the prescription of the star formation rate with the molecule formation timescale. Depending on the star formation prescription, the break radius is located near the transition region between the molecular-gas-dominated and atomic-gas-dominated parts of the galactic disk or closer to the optical radius. It is found that only less massive galaxies (log M(M{sub sun}) {approx}< 10) can balance gas loss via star formation by radial gas accretion within the disk. These galaxies can thus access their gas reservoirs with large angular momentum. On the other hand, the star formation of massive galaxies is determined by the external gas mass accretion rate from a putative spherical halo of ionized gas or from satellite accretion. In the absence of this external accretion, star formation slowly exhausts the gas within the optical disk within the star formation timescale.

  14. The Metabolic Regulation of Sporulation and Parasporal Crystal Formation in Bacillus thuringiensis Revealed by Transcriptomics and Proteomics*

    PubMed Central

    Wang, Jieping; Mei, Han; Zheng, Cao; Qian, Hongliang; Cui, Cui; Fu, Yang; Su, Jianmei; Liu, Ziduo; Yu, Ziniu; He, Jin

    2013-01-01

    Bacillus thuringiensis is a well-known entomopathogenic bacterium used worldwide as an environmentally compatible biopesticide. During sporulation, B. thuringiensis accumulates a large number of parasporal crystals consisting of insecticidal crystal proteins (ICPs) that can account for nearly 20–30% of the cell's dry weight. However, the metabolic regulation mechanisms of ICP synthesis remain to be elucidated. In this study, the combined efforts in transcriptomics and proteomics mainly uncovered the following 6 metabolic regulation mechanisms: (1) proteases and the amino acid metabolism (particularly, the branched-chain amino acids) became more active during sporulation; (2) stored poly-β-hydroxybutyrate and acetoin, together with some low-quality substances provided considerable carbon and energy sources for sporulation and parasporal crystal formation; (3) the pentose phosphate shunt demonstrated an interesting regulation mechanism involving gluconate when CT-43 cells were grown in GYS medium; (4) the tricarboxylic acid cycle was significantly modified during sporulation; (5) an obvious increase in the quantitative levels of enzymes and cytochromes involved in energy production via the electron transport system was observed; (6) most F0F1-ATPase subunits were remarkably up-regulated during sporulation. This study, for the first time, systematically reveals the metabolic regulation mechanisms involved in the supply of amino acids, carbon substances, and energy for B. thuringiensis spore and parasporal crystal formation at both the transcriptional and translational levels. PMID:23408684

  15. Atomic force microscopy imaging reveals the formation of ASIC/ENaC cross-clade ion channels

    SciTech Connect

    Jeggle, Pia; Smith, Ewan St. J.; Stewart, Andrew P.; Haerteis, Silke; Korbmacher, Christoph; Edwardson, J. Michael

    2015-08-14

    ASIC and ENaC are co-expressed in various cell types, and there is evidence for a close association between them. Here, we used atomic force microscopy (AFM) to determine whether ASIC1a and ENaC subunits are able to form cross-clade hybrid ion channels. ASIC1a and ENaC could be co-isolated from detergent extracts of tsA 201 cells co-expressing the two subunits. Isolated proteins were incubated with antibodies against ENaC and Fab fragments against ASIC1a. AFM imaging revealed proteins that were decorated by both an antibody and a Fab fragment with an angle of ∼120° between them, indicating the formation of ASIC1a/ENaC heterotrimers. - Highlights: • There is evidence for a close association between ASIC and ENaC. • We used AFM to test whether ASIC1a and ENaC subunits form cross-clade ion channels. • Isolated proteins were incubated with subunit-specific antibodies and Fab fragments. • Some proteins were doubly decorated at ∼120° by an antibody and a Fab fragment. • Our results indicate the formation of ASIC1a/ENaC heterotrimers.

  16. 13C Tracking after 13CO2 Supply Revealed Diurnal Patterns of Wood Formation in Aspen1

    PubMed Central

    Mahboubi, Amir; Linden, Pernilla; Moritz, Thomas

    2015-01-01

    Wood of trees is formed from carbon assimilated in the photosynthetic tissues. Determining the temporal dynamics of carbon assimilation, subsequent transport into developing wood, and incorporation to cell walls would further our understanding of wood formation in particular and tree growth in general. To investigate these questions, we designed a 13CO2 labeling system to study carbon transport and incorporation to developing wood of hybrid aspen (Populus tremula × tremuloides). Tracking of 13C incorporation to wood over a time course using nuclear magnetic resonance spectroscopy revealed diurnal patterns in wood cell wall biosynthesis. The dark period had a differential effect on 13C incorporation to lignin and cell wall carbohydrates. No 13C was incorporated into aromatic amino acids of cell wall proteins in the dark, suggesting that cell wall protein biosynthesis ceased during the night. The results show previously unrecognized temporal patterns in wood cell wall biosynthesis, suggest diurnal cycle as a possible cue in the regulation of carbon incorporation to wood, and establish a unique 13C labeling method for the analysis of wood formation and secondary growth in trees. PMID:25931520

  17. IMAGING AND SPECTROSCOPIC DIAGNOSTICS ON THE FORMATION OF TWO MAGNETIC FLUX ROPES REVEALED BY SDO/AIA AND IRIS

    SciTech Connect

    Cheng, X.; Ding, M. D.; Fang, C.

    2015-05-10

    Helical magnetic flux rope (MFR) is a fundamental structure of coronal mass ejections (CMEs) and has been discovered recently to exist as a sigmoidal channel structure prior to its eruption in the EUV high-temperature passbands of the Atmospheric Imaging Assembly (AIA). However, when and where the MFR is built up are still elusive. In this paper, we investigate two MFRs (MFR1 and MFR2) in detail, whose eruptions produced two energetic solar flares and CMEs on 2014 April 18 and 2014 September 10, respectively. The AIA EUV images reveal that for a long time prior to their eruption, both MFR1 and MFR2 are under formation, which is probably through magnetic reconnection between two groups of sheared arcades driven by the shearing and converging flows in the photosphere near the polarity inversion line. At the footpoints of the MFR1, the Interface Region Imaging Spectrograph Si iv, C ii, and Mg ii lines exhibit weak to moderate redshifts and a non-thermal broadening in the pre-flare phase. However, a relatively large blueshift and an extremely strong non-thermal broadening are found at the formation site of the MFR2. These spectral features consolidate the proposition that the reconnection plays an important role in the formation of MFRs. For the MFR1, the reconnection outflow may propagate along its legs, penetrating into the transition region and the chromosphere at the footpoints. For the MFR2, the reconnection probably takes place in the lower atmosphere and results in the strong blueshift and non-thermal broadening for the Mg ii, C ii, and Si iv lines.

  18. Imaging and Spectroscopic Diagnostics on the Formation of Two Magnetic Flux Ropes Revealed by SDO/AIA and IRIS

    NASA Astrophysics Data System (ADS)

    Cheng, X.; Ding, M. D.; Fang, C.

    2015-05-01

    Helical magnetic flux rope (MFR) is a fundamental structure of coronal mass ejections (CMEs) and has been discovered recently to exist as a sigmoidal channel structure prior to its eruption in the EUV high-temperature passbands of the Atmospheric Imaging Assembly (AIA). However, when and where the MFR is built up are still elusive. In this paper, we investigate two MFRs (MFR1 and MFR2) in detail, whose eruptions produced two energetic solar flares and CMEs on 2014 April 18 and 2014 September 10, respectively. The AIA EUV images reveal that for a long time prior to their eruption, both MFR1 and MFR2 are under formation, which is probably through magnetic reconnection between two groups of sheared arcades driven by the shearing and converging flows in the photosphere near the polarity inversion line. At the footpoints of the MFR1, the Interface Region Imaging Spectrograph Si iv, C ii, and Mg ii lines exhibit weak to moderate redshifts and a non-thermal broadening in the pre-flare phase. However, a relatively large blueshift and an extremely strong non-thermal broadening are found at the formation site of the MFR2. These spectral features consolidate the proposition that the reconnection plays an important role in the formation of MFRs. For the MFR1, the reconnection outflow may propagate along its legs, penetrating into the transition region and the chromosphere at the footpoints. For the MFR2, the reconnection probably takes place in the lower atmosphere and results in the strong blueshift and non-thermal broadening for the Mg ii, C ii, and Si iv lines.

  19. THE STAR FORMATION RATE OF TURBULENT MAGNETIZED CLOUDS: COMPARING THEORY, SIMULATIONS, AND OBSERVATIONS

    SciTech Connect

    Federrath, Christoph; Klessen, Ralf S.

    2012-12-20

    The role of turbulence and magnetic fields is studied for star formation in molecular clouds. We derive and compare six theoretical models for the star formation rate (SFR)-the Krumholz and McKee (KM), Padoan and Nordlund (PN), and Hennebelle and Chabrier (HC) models, and three multi-freefall versions of these, suggested by HC-all based on integrals over the log-normal distribution of turbulent gas. We extend all theories to include magnetic fields and show that the SFR depends on four basic parameters: (1) virial parameter {alpha}{sub vir}; (2) sonic Mach number M; (3) turbulent forcing parameter b, which is a measure for the fraction of energy driven in compressive modes; and (4) plasma {beta}=2M{sub A}{sup 2}/M{sup 2} with the Alfven Mach number M{sub A}. We compare all six theories with MHD simulations, covering cloud masses of 300 to 4 Multiplication-Sign 10{sup 6} M{sub Sun} and Mach numbers M=3-50 and M{sub A}=1-{infinity}, with solenoidal (b = 1/3), mixed (b = 0.4), and compressive turbulent (b = 1) forcings. We find that the SFR increases by a factor of four between M=5 and 50 for compressive turbulent forcing and {alpha}{sub vir} {approx} 1. Comparing forcing parameters, we see that the SFR is more than 10 times higher with compressive than solenoidal forcing for M=10 simulations. The SFR and fragmentation are both reduced by a factor of two in strongly magnetized, trans-Alfvenic turbulence compared to hydrodynamic turbulence. All simulations are fit simultaneously by the multi-freefall KM and multi-freefall PN theories within a factor of two over two orders of magnitude in SFR. The simulated SFRs cover the range and correlation of SFR column density with gas column density observed in Galactic clouds, and agree well for star formation efficiencies SFE = 1%-10% and local efficiencies {epsilon} = 0.3-0.7 due to feedback. We conclude that the SFR is primarily controlled by interstellar turbulence, with a secondary effect coming from magnetic fields.

  20. The Star Formation Rate of Turbulent Magnetized Clouds: Comparing Theory, Simulations, and Observations

    NASA Astrophysics Data System (ADS)

    Federrath, Christoph; Klessen, Ralf S.

    2012-12-01

    The role of turbulence and magnetic fields is studied for star formation in molecular clouds. We derive and compare six theoretical models for the star formation rate (SFR)—the Krumholz & McKee (KM), Padoan & Nordlund (PN), and Hennebelle & Chabrier (HC) models, and three multi-freefall versions of these, suggested by HC—all based on integrals over the log-normal distribution of turbulent gas. We extend all theories to include magnetic fields and show that the SFR depends on four basic parameters: (1) virial parameter αvir (2) sonic Mach number {M}; (3) turbulent forcing parameter b, which is a measure for the fraction of energy driven in compressive modes; and (4) plasma \\beta =2 {M}_A^2/ {M}^2 with the Alfvén Mach number {M}_A. We compare all six theories with MHD simulations, covering cloud masses of 300 to 4 × 106 M ⊙ and Mach numbers {M}=3-50 and {M}_A=1-∞, with solenoidal (b = 1/3), mixed (b = 0.4), and compressive turbulent (b = 1) forcings. We find that the SFR increases by a factor of four between {M}=5 and 50 for compressive turbulent forcing and αvir ~ 1. Comparing forcing parameters, we see that the SFR is more than 10 times higher with compressive than solenoidal forcing for {M}=10 simulations. The SFR and fragmentation are both reduced by a factor of two in strongly magnetized, trans-Alfvénic turbulence compared to hydrodynamic turbulence. All simulations are fit simultaneously by the multi-freefall KM and multi-freefall PN theories within a factor of two over two orders of magnitude in SFR. The simulated SFRs cover the range and correlation of SFR column density with gas column density observed in Galactic clouds, and agree well for star formation efficiencies SFE = 1%-10% and local efficiencies epsilon = 0.3-0.7 due to feedback. We conclude that the SFR is primarily controlled by interstellar turbulence, with a secondary effect coming from magnetic fields.

  1. Local SDSS galaxies in the Herschel Stripe 82 survey: a critical assessment of optically derived star formation rates

    NASA Astrophysics Data System (ADS)

    Rosario, D. J.; Mendel, J. T.; Ellison, S. L.; Lutz, D.; Trump, J. R.

    2016-04-01

    We study a set of 3319 galaxies in the redshift interval 0.04 < z < 0.15 with far-infrared (FIR) coverage from the Herschel Stripe 82 survey (HerS), and emission-line measurements, redshifts, stellar masses and star formation rates (SFRs) from the Sloan Digital Sky Survey (SDSS) (DR7) MPA/JHU data base. About 40 per cent of the sample are detected in the Herschel/SPIRE 250 μm band. Total infrared (TIR) luminosities derived from HerS and Wide-field Infrared Survey Explorer (WISE) photometry allow us to compare infrared and optical estimates of SFR with unprecedented statistics for diverse classes of galaxies. We find excellent agreement between TIR-derived and emission line-based SFRs for H II galaxies. Other classes, such as active galaxies and evolved galaxies, exhibit systematic discrepancies between optical and TIR SFRs. We demonstrate that these offsets are attributable primarily to survey biases and the large intrinsic uncertainties of the Dn4000- and colour-based optical calibrations used to estimate the SDSS SFRs of these galaxies. Using a classification scheme which expands upon popular emission-line methods, we demonstrate that emission-line galaxies with uncertain classifications include a population of massive, dusty, metal-rich star-forming systems that are frequently neglected in existing studies. We also study the capabilities of infrared selection of star-forming galaxies. FIR selection reveals a substantial population of galaxies dominated by cold dust which are missed by the long-wavelength WISE bands. Our results demonstrate that Herschel large-area surveys offer the means to construct large, relatively complete samples of local star-forming galaxies with accurate estimates of SFR that can be used to study the interplay between nuclear activity and star formation.

  2. THREE-DIMENSIONAL HYDRODYNAMIC SIMULATIONS OF MULTIPHASE GALACTIC DISKS WITH STAR FORMATION FEEDBACK. I. REGULATION OF STAR FORMATION RATES

    SciTech Connect

    Kim, Chang-Goo; Ostriker, Eve C.; Kim, Woong-Tae E-mail: eco@astro.princeton.edu

    2013-10-10

    The energy and momentum feedback from young stars has a profound impact on the interstellar medium (ISM), including heating and driving turbulence in the neutral gas that fuels future star formation. Recent theory has argued that this leads to a quasi-equilibrium self-regulated state, and for outer atomic-dominated disks results in the surface density of star formation Σ{sub SFR} varying approximately linearly with the weight of the ISM (or midplane turbulent + thermal pressure). We use three-dimensional numerical hydrodynamic simulations to test the theoretical predictions for thermal, turbulent, and vertical dynamical equilibrium, and the implied functional dependence of Σ{sub SFR} on local disk properties. Our models demonstrate that all equilibria are established rapidly, and that the expected proportionalities between mean thermal and turbulent pressures and Σ{sub SFR} apply. For outer disk regions, this results in Σ{sub SFR}∝Σ√(ρ{sub sd}), where Σ is the total gas surface density and ρ{sub sd} is the midplane density of the stellar disk (plus dark matter). This scaling law arises because ρ{sub sd} sets the vertical dynamical time in our models (and outer disk regions generally). The coefficient in the star formation law varies inversely with the specific energy and momentum yield from massive stars. We find proportions of warm and cold atomic gas, turbulent-to-thermal pressure, and mean velocity dispersions that are consistent with solar-neighborhood and other outer disk observations. This study confirms the conclusions of a previous set of simulations, which incorporated the same physics treatment but was restricted to radial-vertical slices through the ISM.

  3. Calibrating the Star Formation Rate at z ~ 1 from Optical Data

    NASA Astrophysics Data System (ADS)

    Mostek, Nick; Coil, Alison L.; Moustakas, John; Salim, Samir; Weiner, Benjamin J.

    2012-02-01

    We present a star formation rate (SFR) calibration based on optical data that is consistent with average observed rates in both the red and blue galaxy populations at z ~ 1. The motivation for this study is to calculate SFRs for DEEP2 Redshift Survey galaxies in the 0.7 < z < 1.4 redshift range, but our results are generally applicable to similar optically selected galaxy samples without requiring UV or IR data. Using SFR fits from UV/optical spectral energy distributions (SEDs) in the All-Wavelength Extended Groth Strip International Survey, we explore the behavior of rest-frame B-band magnitude, observed [O II] luminosity, and rest-frame color with SED-fit SFR for both red sequence and blue cloud galaxies. The resulting SFR calibration is based on three optical-band observables: MB , (U - B), and (B - V). The best-fit linear relation produces residual errors of 0.3 dex rms scatter for the full color-independent sample with minimal correlated residual error in L[O II] or stellar mass. We then compare the calibrated z ~ 1 SFRs to two diagnostics that use L[O II] as a tracer in local galaxies and correct for dust extinction at intermediate redshifts through either galaxy B-band luminosity or stellar mass. We find that an L[O II]-MB SFR calibration commonly used in the literature agrees well with our calculated SFRs after correcting for the average B-band luminosity evolution in L * galaxies. However, we find better agreement with a local L[O II]-based SFR calibration that includes stellar mass to correct for reddening effects, indicating that stellar mass is a better tracer of dust extinction for all galaxy types and less affected by systematic evolution than galaxy luminosity from z = 1 to the current epoch.

  4. Ultraviolet+Infrared Star Formation Rates: Hickson Compact Groups with Swift and Spitzer

    NASA Astrophysics Data System (ADS)

    Tzanavaris, P.; Hornschemeier, A. E.; Gallagher, S. C.; Johnson, K. E.; Gronwall, C.; Immler, S.; Reines, A. E.; Hoversten, E.; Charlton, J. C.

    2010-06-01

    We present Swift UVOT ultraviolet (UV; 1600-3000 Å) data with complete three-band UV photometry for a sample of 41 galaxies in 11 nearby (<4500 km s-1) Hickson Compact Groups (HCGs) of galaxies. We use UVOT uvw2-band (2000 Å) photometry to estimate the dust-unobscured component, SFRUV, of the total star formation rate, SFRTOTAL. We use Spitzer MIPS 24 μm photometry to estimate SFRIR, the component of SFRTOTAL that suffers dust extinction in the UV and is re-emitted in the IR. By combining the two components, we obtain SFRTOTAL estimates for all HCG galaxies. We obtain total stellar mass, M *, estimates by means of Two Micron All Sky Survey Ks -band luminosities, and use them to calculate specific star formation rates, SSFR ≡ SFRTOTAL/M *. SSFR values show a clear and significant bimodality, with a gap between low (lsim3.2 × 10-11 yr-1) and high-SSFR (gsim1.2 × 10-10 yr-1) systems. We compare this bimodality to the previously discovered bimodality in αIRAC, the MIR activity index from a power-law fit to the Spitzer IRAC 4.5-8 μm data for these galaxies. We find that all galaxies with αIRAC <= 0 ( >0) are in the high- (low-) SSFR locus, as expected if high levels of star-forming activity power MIR emission from polycyclic aromatic hydrocarbon molecules and a hot dust continuum. Consistent with this finding, all elliptical/S0 galaxies are in the low-SSFR locus, while 22 out of 24 spirals/irregulars are in the high-SSFR locus, with two borderline cases. We further divide our sample into three subsamples (I, II, and III) according to decreasing H I richness of the parent galaxy group to which a galaxy belongs. Consistent with the SSFR and αIRAC bimodality, 12 out of 15 type I (11 out of 12 type III) galaxies are in the high- (low-) SSFR locus, while type II galaxies span almost the full range of SSFR values. We use the Spitzer Infrared Nearby Galaxy Survey (SINGS) to construct a comparison subsample of galaxies that (1) match HCG galaxies in J-band total

  5. ULTRAVIOLET+INFRARED STAR FORMATION RATES: HICKSON COMPACT GROUPS WITH SWIFT AND SPITZER

    SciTech Connect

    Tzanavaris, P.; Hornschemeier, A. E.; Immler, S.; Johnson, K. E.; Reines, A. E.; Gronwall, C.; Hoversten, E.; Charlton, J. C.

    2010-06-10

    We present Swift UVOT ultraviolet (UV; 1600-3000 A) data with complete three-band UV photometry for a sample of 41 galaxies in 11 nearby (<4500 km s{sup -1}) Hickson Compact Groups (HCGs) of galaxies. We use UVOT uvw2-band (2000 A) photometry to estimate the dust-unobscured component, SFR{sub UV}, of the total star formation rate, SFR{sub TOTAL}. We use Spitzer MIPS 24 {mu}m photometry to estimate SFR{sub IR}, the component of SFR{sub TOTAL} that suffers dust extinction in the UV and is re-emitted in the IR. By combining the two components, we obtain SFR{sub TOTAL} estimates for all HCG galaxies. We obtain total stellar mass, M {sub *}, estimates by means of Two Micron All Sky Survey K{sub s} -band luminosities, and use them to calculate specific star formation rates, SSFR {identical_to} SFR{sub TOTAL}/M {sub *}. SSFR values show a clear and significant bimodality, with a gap between low ({approx}<3.2 x 10{sup -11} yr{sup -1}) and high-SSFR ({approx_gt}1.2 x 10{sup -10} yr{sup -1}) systems. We compare this bimodality to the previously discovered bimodality in {alpha}{sub IRAC}, the MIR activity index from a power-law fit to the Spitzer IRAC 4.5-8 {mu}m data for these galaxies. We find that all galaxies with {alpha}{sub IRAC} {<=} 0 ( >0) are in the high- (low-) SSFR locus, as expected if high levels of star-forming activity power MIR emission from polycyclic aromatic hydrocarbon molecules and a hot dust continuum. Consistent with this finding, all elliptical/S0 galaxies are in the low-SSFR locus, while 22 out of 24 spirals/irregulars are in the high-SSFR locus, with two borderline cases. We further divide our sample into three subsamples (I, II, and III) according to decreasing H I richness of the parent galaxy group to which a galaxy belongs. Consistent with the SSFR and {alpha}{sub IRAC} bimodality, 12 out of 15 type I (11 out of 12 type III) galaxies are in the high- (low-) SSFR locus, while type II galaxies span almost the full range of SSFR values. We use the

  6. Ultraviolet+Infrared Star Formation Rates: Hickson Compact Groups with Swift and SPitzer

    NASA Technical Reports Server (NTRS)

    Tzanavaris, P.; Hornschemeier, A. E.; Gallagher, S. C.; Johnson, K. E.; Gronwall, C.; Immler, S.; Reines, A. E.; Hoversten, E.; Charlton, J. C.

    2010-01-01

    We present Swift UVOT ultraviolet (UV; 1600-3000 A) data with complete three-band UV photometry for a sample of 41 galaxies in 11 nearby (<4500 km/s) Hickson Compact Groups (HCGs) of galaxies. We use UVOT uvw2-band (2000A) photometry to estimate the dust-unobscured component, SFR(sub uv), of the total star formation rate, SFR(sub TOTAL). We use Spitzer MIPS 24 micron photometry to estimate SFR(sub IR), the component of SFR(sub TOTAL) that suffers dust extinction in the UV and is re-emitted in the IR. By combining the two components, we obtain SFR(sub TOTAL) estimates for all HCG galaxies. We obtain total stellar mass, M(sub *) estimates by means of Two Micron All Sky Survey K(sub s)-band luminosities, and use them to calculate specific star formation rates, SSFR is identical with SFR(sub TOTAL)/ M (sub *). SSFR values show a clear and significant bimodality, with a gap between low (approximately <3.2 x 10(exp -11) / yr) and high-SSFR (approximately > 1.2 x lO)exp -10)/yr) systems. We compare this bimodality to the previously discovered bimodality in alpha-IRAC, the MIR activity index from a power-law fit to the Spitzer IRAC 4.5-8 micron data for these galaxies. We find that all galaxies with alpha-IRAC <= 0 (> 0) are in the high- (low-) SSFR locus, as expected if high levels of star-forming activity power MIR emission from polycyclic aromatic hydrocarbon molecules and a hot dust continuum. Consistent with this finding, all elliptical/SO galaxies are in th