Revisiting the Great Lessons. Spotlight: Cosmic Education.
ERIC Educational Resources Information Center
Chattin-McNichols, John
2002-01-01
Considers the role of the Great Lessons--formation of the universe, evolution of life, evolution of humans, and discovery of language and mathematics--in the Montessori elementary curriculum. Discusses how the Great Lessons guide and organize the curriculum, as well as the timing of the lessons across the 6-12 age span. (JPB)
The cosmic merger rate of stellar black hole binaries from the Illustris simulation
NASA Astrophysics Data System (ADS)
Mapelli, Michela; Giacobbo, Nicola; Ripamonti, Emanuele; Spera, Mario
2017-12-01
The cosmic merger rate density of black hole binaries (BHBs) can give us an essential clue to constraining the formation channels of BHBs, in light of current and forthcoming gravitational wave detections. Following a Monte Carlo approach, we couple new population-synthesis models of BHBs with the Illustris cosmological simulation, to study the cosmic history of BHB mergers. We explore six population-synthesis models, varying the prescriptions for supernovae, common envelope and natal kicks. In most considered models, the cosmic BHB merger rate follows the same trend as the cosmic star formation rate. The normalization of the cosmic BHB merger rate strongly depends on the treatment of common envelope and on the distribution of natal kicks. We find that most BHBs merging within LIGO's instrumental horizon come from relatively metal-poor progenitors (<0.2 Z⊙). The total masses of merging BHBs span a large range of values, from ∼6 to ∼82 M⊙. In our fiducial model, merging BHBs consistent with GW150914, GW151226 and GW170104 represent ∼6, 3 and 12 per cent of all BHBs merging within the LIGO horizon, respectively. The heavy systems, like GW150914, come from metal-poor progenitors (<0.15 Z⊙). Most GW150914-like systems merging in the local Universe appear to have formed at high redshift, with a long delay time. In contrast, GW151226-like systems form and merge all the way through the cosmic history, from progenitors with a broad range of metallicities. Future detections will be crucial to put constraints on common envelope, on natal kicks, and on the BHB mass function.
NASA Astrophysics Data System (ADS)
Pope, Alexandra; Armus, Lee; bradford, charles; Origins Space Telescope STDT
2018-01-01
In the coming decade, new telescope facilities and surveys aim to provide a 3D map of the unobscured Universe over cosmic time. However, much of galaxy formation and evolution occurs behind dust, and is only observable through infrared observations. Previous extragalactic infrared surveys were fundamentally limited to a 2D mapping of the most extreme populations of galaxies due to spatial resolution and sensitivity. The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies sponsored by NASA to provide input to the 2020 Astronomy and Astrophysics Decadal survey. OST is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum, which will achieve spectral line sensitivities up to 1000 times deeper than previous infrared facilities. With powerful instruments such as the Medium Resolution Survey Spectrometer (MRSS), capable of simultaneous imaging and spectroscopy, the extragalactic infrared sky can finally be surveyed in 3D. In addition to spectroscopic redshifts, the rich suite of lines in the infrared provides unique diagnostics of the ongoing star formation (both obscured and unobscured) and the central supermassive black hole growth. In this poster, we present a simulated extragalactic survey with OST/MRSS which will detect millions of galaxies down to well below the knee of the infrared luminosity function. We demonstrate how this survey can map the coeval star formation and black hole growth in galaxies over cosmic time.
Aerial Neutron Detection of Cosmic-Ray Interactions with the Earth's Surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard Maurer
2008-09-18
We have demonstrated the ability to measure the neutron flux produced by the cosmic-ray interaction with nuclei in the ground surface using aerial neutron detection. High energy cosmic-rays (primarily muons with GeV energies) interact with the nuclei in the ground surface and produce energetic neutrons via spallation. At the air-surface interface, the neutrons produced by spallation will either scatter within the surface material, become thermalized and reabsorbed, or be emitted into the air. The mean free path of energetic neutrons in air can be hundreds of feet as opposed to a few feet in dense materials. As such, the fluxmore » of neutrons escaping into the air provides a measure of the surface nuclei composition. It has been demonstrated that this effect can be measured at long range using neutron detectors on low flying helicopters. Radiological survey measurements conducted at Government Wash in Las Vegas, Nevada, have shown that the neutron background from the cosmic-soil interactions is repeatable and directly correlated to the geological data. Government Wash has a very unique geology, spanning a wide variety of nuclide mixtures and formations. The results of the preliminary measurements are presented.« less
NASA Astrophysics Data System (ADS)
Driver, Simon P.; Andrews, Stephen K.; da Cunha, Elisabete; Davies, Luke J.; Lagos, Claudia; Robotham, Aaron S. G.; Vinsen, Kevin; Wright, Angus H.; Alpaslan, Mehmet; Bland-Hawthorn, Joss; Bourne, Nathan; Brough, Sarah; Bremer, Malcolm N.; Cluver, Michelle; Colless, Matthew; Conselice, Christopher J.; Dunne, Loretta; Eales, Steve A.; Gomez, Haley; Holwerda, Benne; Hopkins, Andrew M.; Kafle, Prajwal R.; Kelvin, Lee S.; Loveday, Jon; Liske, Jochen; Maddox, Steve J.; Phillipps, Steven; Pimbblet, Kevin; Rowlands, Kate; Sansom, Anne E.; Taylor, Edward; Wang, Lingyu; Wilkins, Stephen M.
2018-04-01
We use the energy-balance code MAGPHYS to determine stellar and dust masses, and dust corrected star formation rates for over 200 000 GAMA galaxies, 170 000 G10-COSMOS galaxies, and 200 000 3D-HST galaxies. Our values agree well with previously reported measurements and constitute a representative and homogeneous data set spanning a broad range in stellar-mass (108-1012 M⊙), dust-mass (106-109 M⊙), and star formation rates (0.01-100 M⊙yr-1), and over a broad redshift range (0.0 < z < 5.0). We combine these data to measure the cosmic star formation history (CSFH), the stellar-mass density (SMD), and the dust-mass density (DMD) over a 12 Gyr timeline. The data mostly agree with previous estimates, where they exist, and provide a quasi-homogeneous data set using consistent mass and star formation estimators with consistent underlying assumptions over the full time range. As a consequence our formal errors are significantly reduced when compared to the historic literature. Integrating our CSFH we precisely reproduce the SMD with an interstellar medium replenishment factor of 0.50 ± 0.07, consistent with our choice of Chabrier initial mass function plus some modest amount of stripped stellar mass. Exploring the cosmic dust density evolution, we find a gradual increase in dust density with lookback time. We build a simple phenomenological model from the CSFH to account for the dust-mass evolution, and infer two key conclusions: (1) For every unit of stellar mass which is formed 0.0065-0.004 units of dust mass is also formed. (2) Over the history of the Universe approximately 90-95 per cent of all dust formed has been destroyed and/or ejected.
Origins Space Telescope: Galaxy and Black Hole Evolution over Cosmic Time
NASA Astrophysics Data System (ADS)
Pope, Alexandra; Origins Space Telescope Study Team
2017-01-01
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. This presentation will provide a summary of the science case related to galaxy formation and evolution. Origins will investigate the connection between black hole growth and star formation, understand the role of feedback from supernovae and active galactic nuclei, probe the multiphase interstellar medium, and chart the rise of metals over cosmic time.
Cosmic Dawn Intensity Mapper (CDIM): a New Probe of Cosmic Dawn and Reionization
NASA Astrophysics Data System (ADS)
Chang, Tzu-Ching; CDIM Team
2018-01-01
The Cosmic Dawn Intensity Mapper, CDIM, is a NASA Probe-class Mission Study currently under study. CDIM is designed to be a near-IR survey instrument optimized for Cosmic Dawn and reionization sciences, answering critical questions on how and when galaxies and quasars first formed, the history of metal build-up, and the history and topology of reionization, among other questions. CDIM will provide R=300 spectroscopic imaging over ~10 sq. degree instantaneous field of view at 1 arcsecond resolution, over the wavelength range of 0.75 to 7.5 mm. A two-tiered wedding-cake survey will consist of a shallow tier spanning close to 300 deg2 and a deep tier of about 25 deg2. CDIM survey data will allow us to (i) determine spectroscopic redshifts of WFIRST-detected Lyman-break galaxies (LBGs) out to a redshift of 10; (ii) establish the environmental dependence of star formation during reionization through clustering and other environmental measurements; (iii) establish the metal abundance of first-light galaxies during reionization over two decades of stellar mass by spectrally separating NII from Hα, and detecting both Hβ and [OIII]; (iv) measure 3D tomographic intensity fluctuations during reionization in both Lyα at z > 6 and Hα at 0 < z < 10; and (v) cross-correlating intensity fluctuations with 21-cm data to establish the topology of reionization bubbles.
Wind Observations of Anomalous Cosmic Rays from Solar Minimum to Maximum
NASA Technical Reports Server (NTRS)
Reames, D. V.; McDonald, F. B.
2003-01-01
We report the first observation near Earth of the time behavior of anomalous cosmic-ray N, O, and Ne ions through the period surrounding the maximum of the solar cycle. These observations were made by the Wind spacecraft during the 1995-2002 period spanning times from solar minimum through solar maximum. Comparison of anomalous and galactic cosmic rays provides a powerful tool for the study of the physics of solar modulation throughout the solar cycle.
NASA Technical Reports Server (NTRS)
Mancini, D.; Bussoletti, E.; Mennella, V.; Vittone, A. A.; Colangeli, L.; Mirra, C.; Stephens, J.; Nuth, J.; Lilleleht, L.; Furgeson, F.
1992-01-01
The first results of the STARDUST project, aimed at producing and analyzing cosmic-dust analog materials in microgravity conditions, are summarized. The discussion covers the purpose of the investigation, cosmic-dust formation and properties, previous simulations of cosmic-dust formation, the current approach, the microgravity experimental apparatus, and potential advantages of studying dust formation under microgravity conditions.
Cosmic strings and galaxy formation
NASA Technical Reports Server (NTRS)
Bertschinger, Edmund
1989-01-01
The cosmogonical model proposed by Zel'dovich and Vilenkin (1981), in which superconducting cosmic strings act as seeds for the origin of structure in the universe, is discussed, summarizing the results of recent theoretical investigations. Consideration is given to the formation of cosmic strings, the microscopic structure of strings, gravitational effects, cosmic string evolution, and the formation of galaxies and large-scale structure. Simulation results are presented in graphs, and several outstanding issues are listed and briefly characterized.
Giving cosmic redshift drift a whirl
NASA Astrophysics Data System (ADS)
Kim, Alex G.; Linder, Eric V.; Edelstein, Jerry; Erskine, David
2015-03-01
Redshift drift provides a direct kinematic measurement of cosmic acceleration but it occurs with a characteristic time scale of a Hubble time. Thus redshift observations with a challenging precision of 10-9 require a 10 year time span to obtain a signal-to-noise of 1. We discuss theoretical and experimental approaches to address this challenge, potentially requiring less observer time and having greater immunity to common systematics. On the theoretical side we explore allowing the universe, rather than the observer, to provide long time spans; speculative methods include radial baryon acoustic oscillations, cosmic pulsars, and strongly lensed quasars. On the experimental side, we explore beating down the redshift precision using differential interferometric techniques, including externally dispersed interferometers and spatial heterodyne spectroscopy. Low-redshift emission line galaxies are identified as having high cosmology leverage and systematics control, with an 8 h exposure on a 10-m telescope (1000 h of exposure on a 40-m telescope) potentially capable of measuring the redshift of a galaxy to a precision of 10-8 (few ×10-10). Low-redshift redshift drift also has very strong complementarity with cosmic microwave background measurements, with the combination achieving a dark energy figure of merit of nearly 300 (1400) for 5% (1%) precision on drift.
Formation of Cosmic Carbon Dust Analogues in Plasma Reactors
NASA Technical Reports Server (NTRS)
Salama, Farid
2016-01-01
Cosmic carbon dust analogs are produced, processed and analyzed in the laboratory using NASA's COSmIC (COSmIC Simulation Chamber) Facility. These experiments can be used to derive information on the most efficient molecular precursors in the chemical pathways that eventually lead to the formation of carbonaceous grains in the stellar envelopes of carbon stars.
Life as a Cosmic Phenomenon: 2. the Panspermic Trajectory of Homo Sapiens
NASA Astrophysics Data System (ADS)
Tokoro, Gensuke; Wickramasinghe, N. Chandra
We discuss the origin and evolution of Homo sapiens in a cosmic context, and in relation to the Hoyle-Wickramasinghe theory of panspermia for which there is now overwhelming evidence. It is argued that the first bacteria (archea) incident on the Earth via the agency of comets 3.8-4 billion years ago continued at later times to be augmented by viral genes (DNA, RNA) from space that eventually led to the evolutionary patterns we see in present-day biology. We argue that the current evolutionary status of Homo sapiens as well as its future trajectory is circumscribed by evolutionary processes that were pre-determined on a cosmic scale -- over vast distances and enormous spans of cosmic time. Based on this teleological hypothesis we postulate that two distinct classes of cosmic viruses (cosmic viral genes) are involved in accounting for the facts relating to the evolution of life.
VAO Tools Enhance CANDELS Research Productivity
NASA Astrophysics Data System (ADS)
Greene, Gretchen; Donley, J.; Rodney, S.; LAZIO, J.; Koekemoer, A. M.; Busko, I.; Hanisch, R. J.; VAO Team; CANDELS Team
2013-01-01
The formation of galaxies and their co-evolution with black holes through cosmic time are prominent areas in current extragalactic astronomy. New methods in science research are building upon collaborations between scientists and archive data centers which span large volumes of multi-wavelength and heterogeneous data. A successful example of this form of teamwork is demonstrated by the CANDELS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey) and the Virtual Astronomical Observatory (VAO) collaboration. The CANDELS project archive data provider services are registered and discoverable in the VAO through an innovative web based Data Discovery Tool, providing a drill down capability and cross-referencing with other co-spatially located astronomical catalogs, images and spectra. The CANDELS team is working together with the VAO to define new methods for analyzing Spectral Energy Distributions of galaxies containing active galactic nuclei, and helping to evolve advanced catalog matching methods for exploring images of variable depths, wavelengths and resolution. Through the publication of VOEvents, the CANDELS project is publishing data streams for newly discovered supernovae that are bright enough to be followed from the ground.
Testing the Relation between the Local and Cosmic Star Formation Histories
NASA Astrophysics Data System (ADS)
Fields, Brian D.
1999-04-01
Recently, there has been great progress toward observationally determining the mean star formation history of the universe. When accurately known, the cosmic star formation rate could provide much information about Galactic evolution, if the Milky Way's star formation rate is representative of the average cosmic star formation history. A simple hypothesis is that our local star formation rate is proportional to the cosmic mean. In addition, to specify a star formation history, one must also adopt an initial mass function (IMF) typically it is assumed that the IMF is a smooth function, which is constant in time. We show how to test directly the compatibility of all these assumptions by making use of the local (solar neighborhood) star formation record encoded in the present-day stellar mass function. Present data suggest that at least one of the following is false: (1) the local IMF is constant in time; (2) the local IMF is a smooth (unimodal) function; and/or (3) star formation in the Galactic disk was representative of the cosmic mean. We briefly discuss how to determine which of these assumptions fail and also improvements in observations, which will sharpen this test.
NASA Technical Reports Server (NTRS)
Bennett, David P.
1988-01-01
Cosmic strings are linear topological defects which are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characterisitc microwave background anisotropy. It was recently discovered that details of cosmic string evolution are very differnt from the so-called standard model that was assumed in most of the string-induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain.
NASA Astrophysics Data System (ADS)
Chandra, Harish; Bhatt, Beena
2018-04-01
In this paper, we have selected 114 flare-CME events accompanied with Deca-hectometric (DH) type II radio burst chosen from 1996 to 2008 (i.e., solar cycle 23). Statistical analyses are performed to examine the relationship of flare-CME events accompanied with DH type II radio burst with Interplanetary Magnetic field (IMF), Geomagnetic storms (GSs) and Cosmic Ray Intensity (CRI). The collected sample events are divided into two groups. In the first group, we considered 43 events which lie under the CME span and the second group consists of 71 events which are outside the CME span. Our analysis indicates that flare-CME accompanied with DH type II radio burst is inconsistent with CSHKP flare-CME model. We apply the Chree analysis by the superposed epoch method to both set of data to find the geo-effectiveness. We observed different fluctuations in IMF for arising and decay phase of solar cycle in both the cases. Maximum decrease in Dst during arising and decay phase of solar cycle is different for both the cases. It is noted that when flare lie outside the CME span CRI shows comparatively more variation than the flare lie under the CME span. Furthermore, we found that flare lying under the CME span is more geo effective than the flare outside of CME span. We noticed that the time leg between IMF Peak value and GSs, IMF and CRI is on average one day for both the cases. Also, the time leg between CRI and GSs is on average 0 to 1 day for both the cases. In case flare lie under the CME span we observed high correlation (0.64) between CRI and Dst whereas when flare lie outside the CME span a weak correlation (0.47) exists. Thus, flare position with respect to CME span play a key role for geo-effectiveness of CME.
A connection between star formation activity and cosmic rays in the starburst galaxy M82.
2009-12-10
Although Galactic cosmic rays (protons and nuclei) are widely believed to be mainly accelerated by the winds and supernovae of massive stars, definitive evidence of this origin remains elusive nearly a century after their discovery. The active regions of starburst galaxies have exceptionally high rates of star formation, and their large size-more than 50 times the diameter of similar Galactic regions-uniquely enables reliable calorimetric measurements of their potentially high cosmic-ray density. The cosmic rays produced in the formation, life and death of massive stars in these regions are expected to produce diffuse gamma-ray emission through interactions with interstellar gas and radiation. M82, the prototype small starburst galaxy, is predicted to be the brightest starburst galaxy in terms of gamma-ray emission. Here we report the detection of >700-GeV gamma-rays from M82. From these data we determine a cosmic-ray density of 250 eV cm(-3) in the starburst core, which is about 500 times the average Galactic density. This links cosmic-ray acceleration to star formation activity, and suggests that supernovae and massive-star winds are the dominant accelerators.
2017-12-08
Morphologies, masses, and structures - oh, my! This beautiful clump of glowing gas, dark dust and glittering stars is the spiral galaxy NGC 4248, located about 24 million light-years away in the constellation of Canes Venatici (The Hunting Dogs). This image was produced by the NASA/ESA Hubble Space Telescope as it embarked upon compiling the first Hubble ultraviolet “atlas,” for which the telescope targeted 50 nearby star-forming galaxies. The collection spans all kinds of different morphologies, masses, and structures. Studying this sample can help us to piece together the star-formation history of the Universe. By exploring how massive stars form and evolve within such galaxies, astronomers can learn more about how, when, and where star formation occurs, how star clusters change over time, and how the process of forming new stars is related to the properties of both the host galaxy and the surrounding interstellar medium (the gas and dust that fills the space between individual stars). This galaxy was imaged with observations from Hubble’s Wide Field Camera 3. Image credit: ESA/Hubble & NASA
X-Ray Probes of Cosmic Star-Formation History
NASA Technical Reports Server (NTRS)
Ghosh, Pranab; White, Nicholas E.
2001-01-01
In a previous paper we point out that the X-ray luminosity L(sub x) of a galaxy is driven by the evolution of its X-ray binary population and that the profile of L(sub x) with redshift can both serve as a diagnostic probe of the Star Formation Rate (SFR) profile and constrain evolutionary models for X-ray binaries. We update our previous work using a suite of more recently developed SFR profiles that span the currently plausible range. The first Chandra deep imaging results on L(sub x)-evolution are beginning to probe the SFR profile of bright spirals and the early results are consistent with predictions based on current SFR models. Using these new SFR profiles the resolution of the "birthrate problem" of lowmass X-ray binaries (LMXBs) and recycled, millisecond pulsars in terms of an evolving global SFR is more complete. We also discuss the possible impact of the variations in the SFR profile of individual galaxies.
The impact of dark energy on galaxy formation. What does the future of our Universe hold?
NASA Astrophysics Data System (ADS)
Salcido, Jaime; Bower, Richard G.; Barnes, Luke A.; Lewis, Geraint F.; Elahi, Pascal J.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop
2018-04-01
We investigate the effect of the accelerated expansion of the Universe due to a cosmological constant, Λ, on the cosmic star formation rate. We utilise hydrodynamical simulations from the EAGLE suite, comparing a ΛCDM Universe to an Einstein-de Sitter model with Λ = 0. Despite the differences in the rate of growth of structure, we find that dark energy, at its observed value, has negligible impact on star formation in the Universe. We study these effects beyond the present day by allowing the simulations to run forward into the future (t > 13.8 Gyr). We show that the impact of Λ becomes significant only when the Universe has already produced most of its stellar mass, only decreasing the total co-moving density of stars ever formed by ≈15%. We develop a simple analytic model for the cosmic star formation rate that captures the suppression due to a cosmological constant. The main reason for the similarity between the models is that feedback from accreting black holes dramatically reduces the cosmic star formation at late times. Interestingly, simulations without feedback from accreting black holes predict an upturn in the cosmic star formation rate for t > 15 Gyr due to the rejuvenation of massive (>1011M⊙) galaxies. We briefly discuss the implication of the weak dependence of the cosmic star formation on Λ in the context of the anthropic principle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perley, D. A.; Perley, R. A.; Hjorth, J.
2015-03-10
Luminous infrared galaxies and submillimeter galaxies contribute significantly to stellar mass assembly and provide an important test of the connection between the gamma-ray burst (GRB) rate and that of overall cosmic star formation. We present sensitive 3 GHz radio observations using the Karl G. Jansky Very Large Array of 32 uniformly selected GRB host galaxies spanning a redshift range from 0 < z < 2.5, providing the first fully dust- and sample-unbiased measurement of the fraction of GRBs originating from the universe's most bolometrically luminous galaxies. Four galaxies are detected, with inferred radio star formation rates (SFRs) ranging between 50 and 300 Mmore » {sub ☉} yr{sup –1}. Three of the four detections correspond to events consistent with being optically obscured 'dark' bursts. Our overall detection fraction implies that between 9% and 23% of GRBs between 0.5 < z < 2.5 occur in galaxies with S {sub 3GHz} > 10 μJy, corresponding to SFR > 50 M {sub ☉} yr{sup –1} at z ∼ 1 or >250 M {sub ☉} yr{sup –1} at z ∼ 2. Similar galaxies contribute approximately 10%-30% of all cosmic star formation, so our results are consistent with a GRB rate that is not strongly biased with respect to the total SFR of a galaxy. However, all four radio-detected hosts have stellar masses significantly lower than IR/submillimeter-selected field galaxies of similar luminosities. We suggest that the GRB rate may be suppressed in metal-rich environments but independently enhanced in intense starbursts, producing a strong efficiency dependence on mass but little net dependence on bulk galaxy SFR.« less
Galaxy Protoclusters as Drivers of Cosmic Star Formation History in the First 2 Gyr
NASA Astrophysics Data System (ADS)
Chiang, Yi-Kuan; Overzier, Roderik A.; Gebhardt, Karl; Henriques, Bruno
2017-08-01
Present-day clusters are massive halos containing mostly quiescent galaxies, while distant protoclusters are extended structures containing numerous star-forming galaxies. We investigate the implications of this fundamental change in a cosmological context using a set of N-body simulations and semi-analytic models. We find that the fraction of the cosmic volume occupied by all (proto)clusters increases by nearly three orders of magnitude from z = 0 to z = 7. We show that (proto)cluster galaxies are an important and even dominant population at high redshift, as their expected contribution to the cosmic star formation rate density rises (from 1% at z = 0) to 20% at z = 2 and 50% at z = 10. Protoclusters thus provide a significant fraction of the cosmic ionizing photons, and may have been crucial in driving the timing and topology of cosmic reionization. Internally, the average history of cluster formation can be described by three distinct phases: at z ˜ 10-5, galaxy growth in protoclusters proceeded in an inside-out manner, with centrally dominant halos that are among the most active regions in the universe; at z ˜ 5-1.5, rapid star formation occurred within the entire 10-20 Mpc structures, forming most of their present-day stellar mass; at z ≲ 1.5, violent gravitational collapse drove these stellar contents into single cluster halos, largely erasing the details of cluster galaxy formation due to relaxation and virialization. Our results motivate observations of distant protoclusters in order to understand the rapid, extended stellar growth during cosmic noon, and their connection to reionization during cosmic dawn.
TEMPLATES: Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star Formation
NASA Astrophysics Data System (ADS)
Rigby, Jane; Vieira, Joaquin; Bayliss, M.; Fischer, T.; Florian, M.; Gladders, M.; Gonzalez, A.; Law, D.; Marrone, D.; Phadke, K.; Sharon, K.; Spilker, J.
2017-11-01
We propose high signal-to-noise NIRSpec and MIRI IFU spectroscopy, with accompanying imaging, for 4 gravitationally lensed galaxies at 1
Yakov Zeldovich and the Cosmic Web Paradigm
NASA Astrophysics Data System (ADS)
Einasto, Jaan
2016-10-01
I discuss the formation of the modern cosmological paradigm. In more detail I describe the early study of dark matter and cosmic web and the role of Yakov Zeldovich in the formation of the present concepts on these subjects.
Cosmic string lensing and closed timelike curves
NASA Astrophysics Data System (ADS)
Shlaer, Benjamin; Tye, S.-H. Henry
2005-08-01
In an analysis of the gravitational lensing by two relativistic cosmic strings, we argue that the formation of closed timelike curves proposed by Gott is unstable in the presence of particles (e.g. the cosmic microwave background radiation). Because of the attractorlike behavior of the closed timelike curve, we argue that this instability is very generic. A single graviton or photon in the vicinity, no matter how soft, is sufficient to bend the strings and prevent the formation of closed timelike curves. We also show that the gravitational lensing due to a moving cosmic string is enhanced by its motion, not suppressed.
NASA Technical Reports Server (NTRS)
Eichler, D.
1986-01-01
Data related to the development of cosmic rays are discussed. The relationship between cosmic ray production and the steady-state Boltzmann equation is analyzed. The importance of the power-law spectrum, the scattering rate, the theory of shock acceleration, anisotropic instabilities, and cosmic ray diffusion in the formation of cosmic rays is described. It is noted that spacecraft observations at the earth's bow shock are useful for studying cosmic rays and that the data support the collisionless shock-wave theory of cosmic ray origin.
Galaxy Protoclusters as Drivers of Cosmic Star Formation History in the First 2 Gyr
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Yi-Kuan; Overzier, Roderik A.; Gebhardt, Karl
Present-day clusters are massive halos containing mostly quiescent galaxies, while distant protoclusters are extended structures containing numerous star-forming galaxies. We investigate the implications of this fundamental change in a cosmological context using a set of N -body simulations and semi-analytic models. We find that the fraction of the cosmic volume occupied by all (proto)clusters increases by nearly three orders of magnitude from z = 0 to z = 7. We show that (proto)cluster galaxies are an important and even dominant population at high redshift, as their expected contribution to the cosmic star formation rate density rises (from 1% at zmore » = 0) to 20% at z = 2 and 50% at z = 10. Protoclusters thus provide a significant fraction of the cosmic ionizing photons, and may have been crucial in driving the timing and topology of cosmic reionization. Internally, the average history of cluster formation can be described by three distinct phases: at z ∼ 10–5, galaxy growth in protoclusters proceeded in an inside-out manner, with centrally dominant halos that are among the most active regions in the universe; at z ∼ 5–1.5, rapid star formation occurred within the entire 10–20 Mpc structures, forming most of their present-day stellar mass; at z ≲ 1.5, violent gravitational collapse drove these stellar contents into single cluster halos, largely erasing the details of cluster galaxy formation due to relaxation and virialization. Our results motivate observations of distant protoclusters in order to understand the rapid, extended stellar growth during cosmic noon, and their connection to reionization during cosmic dawn.« less
The impact of dark energy on galaxy formation. What does the future of our Universe hold?
NASA Astrophysics Data System (ADS)
Salcido, Jaime; Bower, Richard G.; Barnes, Luke A.; Lewis, Geraint F.; Elahi, Pascal J.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop
2018-07-01
We investigate the effect of the accelerated expansion of the Universe due to a cosmological constant, Λ, on the cosmic star formation rate. We utilize hydrodynamical simulations from the EAGLE suite, comparing a ΛCDM (cold dark matter) Universe to an Einstein-de Sitter model with Λ = 0. Despite the differences in the rate of growth of structure, we find that dark energy, at its observed value, has negligible impact on star formation in the Universe. We study these effects beyond the present day by allowing the simulations to run forward into the future (t > 13.8 Gyr). We show that the impact of Λ becomes significant only when the Universe has already produced most of its stellar mass, only decreasing the total comoving density of stars ever formed by ≈ 15 per cent. We develop a simple analytic model for the cosmic star formation rate that captures the suppression due to a cosmological constant. The main reason for the similarity between the models is that feedback from accreting black holes dramatically reduces the cosmic star formation at late times. Interestingly, simulations without feedback from accreting black holes predict an upturn in the cosmic star formation rate for t > 15 Gyr due to the rejuvenation of massive (>1011 M⊙) galaxies. We briefly discuss the implication of the weak dependence of the cosmic star formation on Λ in the context of the anthropic principle.
What is your Cosmic Connection to the Elements?
NASA Technical Reports Server (NTRS)
White, Nicholas E. (Technical Monitor); Lochner, James; Rohrbach, Gail; Cochrane, Kim
2003-01-01
This information and activity booklet describes the roles of the Big Bang, types of stars, supernovae, cosmic ray interactions, and radioactive decay in the formation of the elements. The booklet includes instructions for the following classroom activities, intended for students in Grades 9-12: Grandma's Apple Pie; Cosmic Shuffle; Nickel-odeon; Kinesthetic Big Bang; Elemental Haiku; Cosmic Ray Collisions; Cosmic Abundances; and What's Out There.
Snapshot Survey of the Globular Cluster Populations of Isolated Early Type Galaxies
NASA Astrophysics Data System (ADS)
Gregg, Michael
2017-08-01
We propose WFC3/UVIS snapshot observations of a sample of 75 isolated early type galaxiesresiding in cosmic voids or extremely low density regions. The primary aim is to usetheir globular cluster populations to reconstruct their evolutionary history, revealingif, how, and why void ellipticals differ from cluster ellipticals. The galaxies span arange of luminosities, providing a varied sample for comparison with the well-documentedglobular cluster populations in denser environments. This proposed WFC3 study of isolatedearly type galaxies breaks new ground by targeting a sample which has thus far receivedlittle attention, and, significantly, this will be the first such study with HST.Characterizing early type galaxies in voids and their GC systems promises to increase ourunderstanding of galaxy formation and evolution of galaxies in general because isolatedobjects are the best approximation to a control sample that we have for understanding theinfluence of environment on formation and evolution. Whether these isolated objects turnout to be identical to or distinct from counterparts in other regions of the Universe,they will supply insight into the formation and evolution of all galaxies. Parallel ACSimaging will help to characterize the near field environments of the sample.
NASA Astrophysics Data System (ADS)
Kudryavtsev, I. V.; Jungner, H.
2011-10-01
The possible mechanism by which cosmic rays affect the formation of neutral water droplets and ice crystals in the Earth's atmosphere has been considered. This mechanism is based on changes in atmospheric transparency and vertical temperature distribution. It has been indicated that a change in the optical thickness for visible and IR radiation by several percents, which can take place when cosmic-ray particles penetrate into the atmosphere, results in a change in the temperature vertical distribution, affecting the growth of water droplets, concentration of active condensation nuclei, and the formation of ice particles. This mechanism makes it possible to explain the correlation between the intensity of galactic cosmic rays at low altitudes and the absence of this correlation at middle altitudes.
Scattering of Cosmic Strings by Black Holes:. Loop Formation
NASA Astrophysics Data System (ADS)
Dubath, Florian; Sakellariadou, Mairi; Viallet, Claude Michel
We study the deformation of a long cosmic string by a nearby rotating black hole. We examine whether the deformation of a cosmic string, induced by the gravitational field of a Kerr black hole, may lead to the formation of a string loop. The segment of the string which enters the ergo-sphere of a rotating black hole gets deformed and, if it is sufficiently twisted, it can self-intersect, chopping off a loop. We find that the formation of a loop, via such a mechanism, is a rare event. It will only arise in a small region of the collision phase space, which depends on the string velocity, the impact parameter and the black hole angular momentum. We conclude that, generically, a long cosmic string is simply scattered, or captured, by a nearby rotating black hole.
Xenia: A Probe of Cosmic Chemical Evolution
NASA Technical Reports Server (NTRS)
Kouveliotou, Chryssa; Piro, L.
2008-01-01
Xenia is a concept study for a medium-size astrophysical cosmology mission addressing the Cosmic Origins key objective of NASA's Science Plan. The fundamental goal of this objective is to understand the formation and evolution of structures on various scales from the early Universe to the present time (stars, galaxies and the cosmic web). Xenia will use X-and y-ray monitoring and wide field X-ray imaging and high-resolution spectroscopy to collect essential information from three major tracers of these cosmic structures: the Warm Hot Intergalactic Medium (WHIM), Galaxy Clusters and Gamma Ray Bursts (GRBs). Our goal is to trace the chemo-dynamical history of the ubiquitous warm hot diffuse baryon component in the Universe residing in cosmic filaments and clusters of galaxies up to its formation epoch (at z =0-2) and to map star formation and galaxy metal enrichment into the re-ionization era beyond z 6. The concept of Xenia (Greek for "hospitality") evolved in parallel with the Explorer of Diffuse Emission and GRB Explosions (EDGE), a mission proposed by a multinational collaboration to the ESA Cosmic Vision 2015. Xenia incorporates the European and Japanese collaborators into a U.S. led mission that builds on the scientific objectives and technological readiness of EDGE.
Xenia: A Probe of Cosmic Chemical Evolution
NASA Astrophysics Data System (ADS)
Kouveliotou, Chryssa; Piro, L.; Xenia Collaboration
2008-03-01
Xenia is a concept study for a medium-size astrophysical cosmology mission addressing the Cosmic Origins key objective of NASA's Science Plan. The fundamental goal of this objective is to understand the formation and evolution of structures on various scales from the early Universe to the present time (stars, galaxies and the cosmic web). Xenia will use X-and γ-ray monitoring and wide field X-ray imaging and high-resolution spectroscopy to collect essential information from three major tracers of these cosmic structures: the Warm Hot Intergalactic Medium (WHIM), Galaxy Clusters and Gamma Ray Bursts (GRBs). Our goal is to trace the chemo-dynamical history of the ubiquitous warm hot diffuse baryon component in the Universe residing in cosmic filaments and clusters of galaxies up to its formation epoch (at z =0-2) and to map star formation and galaxy metal enrichment into the re-ionization era beyond z 6. The concept of Xenia (Greek for "hospitality") evolved in parallel with the Explorer of Diffuse Emission and GRB Explosions (EDGE), a mission proposed by a multinational collaboration to the ESA Cosmic Vision 2015. Xenia incorporates the European and Japanese collaborators into a U.S. led mission that builds on the scientific objectives and technological readiness of EDGE.
Alternative paradigm for the cosmic objects formation: New prospects
NASA Astrophysics Data System (ADS)
Harutyunian, Haik A.
2017-12-01
We consider here briefly the cosmogonic concept suggested by Viktor Ambartsumian in the last century for explaining the formation of cosmic objects. He grounded his concept using the observational facts available in 40s-60s of the last century. The analysis of observational data allowed him to conclude that cosmic objects formation takes place up to nowadays. The second and more "heretical" conclusion he arrived at persuades that the origination and further evolution of cosmic objects goes on in course of gradual decay of proto-stellar matter at all hierarchical levels. We argue that this approach appeared first time in Ambartsumian's papers devoted to the problems of quantum electrodynamics. Later on his concept on objects formation due to decay of protostellar dense matter was rejected because the known laws of physics do not allow existence of huge masses consisted of superdense matter. We bring to the readers' attention, that the discovery of dark energy changes the situation drastically and opens new rooms for the ideas forgotten by the scientific community.
Archetype-based conversion of EHR content models: pilot experience with a regional EHR system.
Chen, Rong; Klein, Gunnar O; Sundvall, Erik; Karlsson, Daniel; Ahlfeldt, Hans
2009-07-01
Exchange of Electronic Health Record (EHR) data between systems from different suppliers is a major challenge. EHR communication based on archetype methodology has been developed by openEHR and CEN/ISO. The experience of using archetypes in deployed EHR systems is quite limited today. Currently deployed EHR systems with large user bases have their own proprietary way of representing clinical content using various models. This study was designed to investigate the feasibility of representing EHR content models from a regional EHR system as openEHR archetypes and inversely to convert archetypes to the proprietary format. The openEHR EHR Reference Model (RM) and Archetype Model (AM) specifications were used. The template model of the Cambio COSMIC, a regional EHR product from Sweden, was analyzed and compared to the openEHR RM and AM. This study was focused on the convertibility of the EHR semantic models. A semantic mapping between the openEHR RM/AM and the COSMIC template model was produced and used as the basis for developing prototype software that performs automated bi-directional conversion between openEHR archetypes and COSMIC templates. Automated bi-directional conversion between openEHR archetype format and COSMIC template format has been achieved. Several archetypes from the openEHR Clinical Knowledge Repository have been imported into COSMIC, preserving most of the structural and terminology related constraints. COSMIC templates from a large regional installation were successfully converted into the openEHR archetype format. The conversion from the COSMIC templates into archetype format preserves nearly all structural and semantic definitions of the original content models. A strategy of gradually adding archetype support to legacy EHR systems was formulated in order to allow sharing of clinical content models defined using different formats. The openEHR RM and AM are expressive enough to represent the existing clinical content models from the template based EHR system tested and legacy content models can automatically be converted to archetype format for sharing of knowledge. With some limitations, internationally available archetypes could be converted to the legacy EHR models. Archetype support can be added to legacy EHR systems in an incremental way allowing a migration path to interoperability based on standards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kürten, Andreas; Bianchi, Federico; Almeida, Joao
Binary nucleation of sulfuric acid and water as well as ternary nucleation involving ammonia are thought to be the dominant processes responsible for new particle formation (NPF) in the cold temperatures of the middle and upper troposphere. Ions are also thought to be important for particle nucleation in these regions. However, global models presently lack experimentally measured NPF rates under controlled laboratory conditions and so at present must rely on theoretical or empirical parameterizations. Here with data obtained in the European Organization for Nuclear Research CLOUD (Cosmics Leaving OUtdoor Droplets) chamber, we present the first experimental survey of NPF ratesmore » spanning free tropospheric conditions. The conditions during nucleation cover a temperature range from 208 to 298 K, sulfuric acid concentrations between 5 × 10 5 and 1 × 10 9cm -3, and ammonia mixing ratios from zero added ammonia, i.e., nominally pure binary, to a maximumof ~1400 parts per trillion by volume (pptv).We performed nucleation studies under pure neutral conditions with zero ions being present in the chamber and at ionization rates of up to 75 ion pairs cm -3 s -1 to study neutral and ion-induced nucleation. We found that the contribution from ion-induced nucleation is small at temperatures between 208 and 248 K when ammonia is present at several pptv or higher. However, the presence of charges significantly enhances the nucleation rates, especially at 248 K with zero added ammonia, and for higher temperatures independent of NH 3 levels. In conclusion, we compare these experimental data with calculated cluster formation rates from the Atmospheric Cluster Dynamics Code with cluster evaporation rates obtained from quantum chemistry.« less
Kürten, Andreas; Bianchi, Federico; Almeida, Joao; ...
2016-10-27
Binary nucleation of sulfuric acid and water as well as ternary nucleation involving ammonia are thought to be the dominant processes responsible for new particle formation (NPF) in the cold temperatures of the middle and upper troposphere. Ions are also thought to be important for particle nucleation in these regions. However, global models presently lack experimentally measured NPF rates under controlled laboratory conditions and so at present must rely on theoretical or empirical parameterizations. Here with data obtained in the European Organization for Nuclear Research CLOUD (Cosmics Leaving OUtdoor Droplets) chamber, we present the first experimental survey of NPF ratesmore » spanning free tropospheric conditions. The conditions during nucleation cover a temperature range from 208 to 298 K, sulfuric acid concentrations between 5 × 10 5 and 1 × 10 9cm -3, and ammonia mixing ratios from zero added ammonia, i.e., nominally pure binary, to a maximumof ~1400 parts per trillion by volume (pptv).We performed nucleation studies under pure neutral conditions with zero ions being present in the chamber and at ionization rates of up to 75 ion pairs cm -3 s -1 to study neutral and ion-induced nucleation. We found that the contribution from ion-induced nucleation is small at temperatures between 208 and 248 K when ammonia is present at several pptv or higher. However, the presence of charges significantly enhances the nucleation rates, especially at 248 K with zero added ammonia, and for higher temperatures independent of NH 3 levels. In conclusion, we compare these experimental data with calculated cluster formation rates from the Atmospheric Cluster Dynamics Code with cluster evaporation rates obtained from quantum chemistry.« less
Origins Space Telescope: Cosmology and Reionization
NASA Astrophysics Data System (ADS)
Vieira, Joaquin D.; Origins Space Telescope Study Team
2017-01-01
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.A core science goal of the OST mission is to study the the cosmological history of star, galaxy, and structure formation into the epoch of reionization (EoR). OST will probe the birth of galaxies through warm molecular hydrogen emission during the cosmic dark ages. Utilizing the unique power of the infrared fine-structure emission lines, OST will trace the rise of metals from the first galaxies until today. It will quantify the dust enrichment history of the Universe, uncover its composition and physical conditions, reveal the first cosmic sources of dust, and probe the properties of the earliest star formation. OST will provide a detailed astrophysical probe into the condition of the intergalactic medium at z > 6 and the galaxies which dominate the epoch of reionization.
Origins Space Telescope: Cosmology and Reionization
NASA Astrophysics Data System (ADS)
Vieira, Joaquin Daniel; Origins Space Telescope
2018-01-01
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.A core science goal of the OST mission is to study the the cosmological history of star, galaxy, and structure formation into the epoch of reionization (EoR). OST will probe the birth of galaxies through warm molecular hydrogen emission during the cosmic dark ages. Utilizing the unique power of the infrared fine-structure emission lines, OST will trace the rise of metals from the first galaxies until today. It will quantify the dust enrichment history of the Universe, uncover its composition and physical conditions, reveal the first cosmic sources of dust, and probe the properties of the earliest star formation. OST will provide a detailed astrophysical probe into the condition of the intergalactic medium at z > 6 and the galaxies which dominate the epoch of reionization.
COSMIC probes into compact binary formation and evolution
NASA Astrophysics Data System (ADS)
Breivik, Katelyn
2018-01-01
The population of compact binaries in the galaxy represents the final state of all binaries that have lived up to the present epoch. Compact binaries present a unique opportunity to probe binary evolution since many of the interactions binaries experience can be imprinted on the compact binary population. By combining binary evolution simulations with catalogs of observable compact binary systems, we can distill the dominant physical processes that govern binary star evolution, as well as predict the abundance and variety of their end products.The next decades herald a previously unseen opportunity to study compact binaries. Multi-messenger observations from telescopes across all wavelengths and gravitational-wave observatories spanning several decades of frequency will give an unprecedented view into the structure of these systems and the composition of their components. Observations will not always be coincident and in some cases may be separated by several years, providing an avenue for simulations to better constrain binary evolution models in preparation for future observations.I will present the results of three population synthesis studies of compact binary populations carried out with the Compact Object Synthesis and Monte Carlo Investigation Code (COSMIC). I will first show how binary-black-hole formation channels can be understood with LISA observations. I will then show how the population of double white dwarfs observed with LISA and Gaia could provide a detailed view of mass transfer and accretion. Finally, I will show that Gaia could discover thousands black holes in the Milky Way through astrometric observations, yielding view into black-hole astrophysics that is complementary to and independent from both X-ray and gravitational-wave astronomy.
Cosmic strings and superconducting cosmic strings
NASA Technical Reports Server (NTRS)
Copeland, Edmund
1988-01-01
The possible consequences of forming cosmic strings and superconducting cosmic strings in the early universe are discussed. Lecture 1 describes the group theoretic reasons for and the field theoretic reasons why cosmic strings can form in spontaneously broken gauge theories. Lecture 2 discusses the accretion of matter onto string loops, emphasizing the scenario with a cold dark matter dominated universe. In lecture 3 superconducting cosmic strings are discussed, as is a mechanism which leads to the formation of structure from such strings.
The Local Group: the ultimate deep field
NASA Astrophysics Data System (ADS)
Boylan-Kolchin, Michael; Weisz, Daniel R.; Bullock, James S.; Cooper, Michael C.
2016-10-01
Near-field cosmology - using detailed observations of the Local Group and its environs to study wide-ranging questions in galaxy formation and dark matter physics - has become a mature and rich field over the past decade. There are lingering concerns, however, that the relatively small size of the present-day Local Group (˜2 Mpc diameter) imposes insurmountable sample-variance uncertainties, limiting its broader utility. We consider the region spanned by the Local Group's progenitors at earlier times and show that it reaches 3 arcmin ≈ 7 comoving Mpc in linear size (a volume of ≈350 Mpc3) at z = 7. This size at early cosmic epochs is large enough to be representative in terms of the matter density and counts of dark matter haloes with Mvir(z = 7) ≲ 2 × 109 M⊙. The Local Group's stellar fossil record traces the cosmic evolution of galaxies with 103 ≲ M⋆(z = 0)/M⊙ ≲ 109 (reaching M1500 > -9 at z ˜ 7) over a region that is comparable to or larger than the Hubble Ultra-Deep Field (HUDF) for the entire history of the Universe. In the JWST era, resolved stellar populations will probe regions larger than the HUDF and any deep JWST fields, further enhancing the value of near-field cosmology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moresco, M.; Cimatti, A.; Jimenez, R.
2012-08-01
We present new improved constraints on the Hubble parameter H(z) in the redshift range 0.15 < z < 1.1, obtained from the differential spectroscopic evolution of early-type galaxies as a function of redshift. We extract a large sample of early-type galaxies ( ∼ 11000) from several spectroscopic surveys, spanning almost 8 billion years of cosmic lookback time (0.15 < z < 1.42). We select the most massive, red elliptical galaxies, passively evolving and without signature of ongoing star formation. Those galaxies can be used as standard cosmic chronometers, as firstly proposed by Jimenez and Loeb (2002), whose differential age evolutionmore » as a function of cosmic time directly probes H(z). We analyze the 4000 Å break (D4000) as a function of redshift, use stellar population synthesis models to theoretically calibrate the dependence of the differential age evolution on the differential D4000, and estimate the Hubble parameter taking into account both statistical and systematical errors. We provide 8 new measurements of H(z), and determine its change in H(z) to a precision of 5–12% mapping homogeneously the redshift range up to z ∼ 1.1; for the first time, we place a constraint on H(z) at z≠0 with a precision comparable with the one achieved for the Hubble constant (about 5–6% at z ∼ 0.2), and covered a redshift range (0.5 < z < 0.8) which is crucial to distinguish many different quintessence cosmologies. These measurements have been tested to best match a ΛCDM model, clearly providing a statistically robust indication that the Universe is undergoing an accelerated expansion. This method shows the potentiality to open a new avenue in constrain a variety of alternative cosmologies, especially when future surveys (e.g. Euclid) will open the possibility to extend it up to z ∼ 2.« less
Progress report for a research program in theoretical high energy physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, D.; Fried, H.M.; Jevicki, A.
This year's research has dealt with: superstrings in the early universe; the invisible axion emissions from SN1987A; quartic interaction in Witten's superstring field theory; W-boson associated multiplicity and the dual parton model; cosmic strings and galaxy formation; cosmic strings and baryogenesis; quark flavor mixing; p -- /bar p/ scattering at TeV energies; random surfaces; ordered exponentials and differential equations; initial value and back-reaction problems in quantum field theory; string field theory and Weyl invariance; the renormalization group and string field theory; the evolution of scalar fields in an inflationary universe, with and without the effects of gravitational perturbations; cosmic stringmore » catalysis of skyrmion decay; inflation and cosmic strings from dynamical symmetry breaking; the physic of flavor mixing; string-inspired cosmology; strings at high-energy densities and complex temperatures; the problem of non-locality in string theory; string statistical mechanics; large-scale structures with cosmic strings and neutrinos; the delta expansion for stochastic quantization; high-energy neutrino flux from ordinary cosmic strings; a physical picture of loop bremsstrahlung; cylindrically-symmetric solutions of four-dimensional sigma models; large-scale structure with hot dark matter and cosmic strings; the unitarization of the odderon; string thermodynamics and conservation laws; the dependence of inflationary-universe models on initial conditions; the delta expansion and local gauge invariance; particle physics and galaxy formation; chaotic inflation with metric and matter perturbations; grand-unified theories, galaxy formation, and large-scale structure; neutrino clustering in cosmic-string-induced wakes; and infrared approximations to nonlinear differential equations. 17 refs.« less
The Cold Side of Galaxy Formation: Dense Gas Through Cosmic Time
NASA Astrophysics Data System (ADS)
Riechers, Dominik A.; ngVLA Galaxy Assembly through Cosmic Time Science Working Group, ngVLA Galaxy Ecosystems Science Working Group
2018-01-01
The processes that lead to the formation and evolution of galaxies throughout the history of the Universe involve the complex interplay between hierarchical merging of dark matter halos, accretion of primordial and recycled gas, transport of gas within galaxy disks, accretion onto central super-massive black holes, and the formation of molecular clouds which subsequently collapse and fragment. The resulting star formation and black hole accretion provide large sources of energy and momentum that light up galaxies and lead to feedback. The ngVLA will be key to further understand how gas is accreted onto galaxies, and the processes that regulate the growth of galaxies through cosmic history. It will reveal how and on which timescales star formation and black hole accretion impact the gas in galaxies, and how the physical properties and chemical state of the gas change as gas cycles between different phases for different galaxy populations over a broad range in redshifts. The ngVLA will have the capability to carry out unbiased, large cosmic volume surveys at virtually any redshift down to an order of magnitude lower gas masses than currently possible in the critical low-level CO lines, thus exposing the evolution of gaseous reservoirs from the earliest epochs to the peak of the cosmic history of star formation. It will also image routinely and systematically the sub-kiloparsec scale distribution and kinematic structure of molecular gas in both normal main-sequence galaxies and large starbursts. The ngVLA thus is poised to revolutionize our understanding of galaxy evolution through cosmic time.
Closed timelike curves produced by pairs of moving cosmic strings - Exact solutions
NASA Technical Reports Server (NTRS)
Gott, J. Richard, III
1991-01-01
Exact solutions of Einstein's field equations are presented for the general case of two moving straight cosmic strings that do not intersect. The solutions for parallel cosmic strings moving in opposite directions show closed timelike curves (CTCs) that circle the two strings as they pass, allowing observers to visit their own past. Similar results occur for nonparallel strings, and for masses in (2+1)-dimensional spacetime. For finite string loops the possibility that black-hole formation may prevent the formation of CTCs is discussed.
Modulation of Cosmic Ray Precipitation Related to Climate
NASA Technical Reports Server (NTRS)
Feynman, J.; Ruzmaikin, A.
1998-01-01
High energy cosmic rays may influence the formation of clouds, and thus can have an impact on weather and climate. Cosmic rays in the solar wind are incident on the magnetosphere boundary and are then transmitted through the magnetosphere and atmosphere to reach the upper troposphere.
NASA Astrophysics Data System (ADS)
Riechers, Dominik A.; Bolatto, Alberto D.; Carilli, Chris; Casey, Caitlin M.; Decarli, Roberto; Murphy, Eric Joseph; Narayanan, Desika; Walter, Fabian; ngVLA Galaxy Assembly through Cosmic Time Science Working Group, ngVLA Galaxy Ecosystems Science Working Group
2018-01-01
The Next Generation Very Large Array (ngVLA) will fundamentally advance our understanding of the formation processes that lead to the assembly of galaxies throughout cosmic history. The combination of large bandwidth with unprecedented sensitivity to the critical low-level CO lines over virtually the entire redshift range will open up the opportunity to conduct large-scale, deep cold molecular gas surveys, mapping the fuel for star formation in galaxies over substantial cosmic volumes. Imaging of the sub-kiloparsec scale distribution and kinematic structure of molecular gas in both normal main-sequence galaxies and large starbursts back to early cosmic epochs will reveal the physical processes responsible for star formation and black hole growth in galaxies over a broad range in redshifts. In the nearby universe, the ngVLA has the capability to survey the structure of the cold, star-forming interstellar medium at parsec-resolution out to the Virgo cluster. A range of molecular tracers will be accessible to map the motion, distribution, and physical and chemical state of the gas as it flows in from the outer disk, assembles into clouds, and experiences feedback due to star formation or accretion into central super-massive black holes. These investigations will crucially complement studies of the star formation and stellar mass histories with the Large UV/Optical/Infrared Surveyor and the Origins Space Telescope, providing the means to obtain a comprehensive picture of galaxy evolution through cosmic times.
Archetype-based conversion of EHR content models: pilot experience with a regional EHR system
2009-01-01
Background Exchange of Electronic Health Record (EHR) data between systems from different suppliers is a major challenge. EHR communication based on archetype methodology has been developed by openEHR and CEN/ISO. The experience of using archetypes in deployed EHR systems is quite limited today. Currently deployed EHR systems with large user bases have their own proprietary way of representing clinical content using various models. This study was designed to investigate the feasibility of representing EHR content models from a regional EHR system as openEHR archetypes and inversely to convert archetypes to the proprietary format. Methods The openEHR EHR Reference Model (RM) and Archetype Model (AM) specifications were used. The template model of the Cambio COSMIC, a regional EHR product from Sweden, was analyzed and compared to the openEHR RM and AM. This study was focused on the convertibility of the EHR semantic models. A semantic mapping between the openEHR RM/AM and the COSMIC template model was produced and used as the basis for developing prototype software that performs automated bi-directional conversion between openEHR archetypes and COSMIC templates. Results Automated bi-directional conversion between openEHR archetype format and COSMIC template format has been achieved. Several archetypes from the openEHR Clinical Knowledge Repository have been imported into COSMIC, preserving most of the structural and terminology related constraints. COSMIC templates from a large regional installation were successfully converted into the openEHR archetype format. The conversion from the COSMIC templates into archetype format preserves nearly all structural and semantic definitions of the original content models. A strategy of gradually adding archetype support to legacy EHR systems was formulated in order to allow sharing of clinical content models defined using different formats. Conclusion The openEHR RM and AM are expressive enough to represent the existing clinical content models from the template based EHR system tested and legacy content models can automatically be converted to archetype format for sharing of knowledge. With some limitations, internationally available archetypes could be converted to the legacy EHR models. Archetype support can be added to legacy EHR systems in an incremental way allowing a migration path to interoperability based on standards. PMID:19570196
Formation of large-scale structure from cosmic strings and massive neutrinos
NASA Technical Reports Server (NTRS)
Scherrer, Robert J.; Melott, Adrian L.; Bertschinger, Edmund
1989-01-01
Numerical simulations of large-scale structure formation from cosmic strings and massive neutrinos are described. The linear power spectrum in this model resembles the cold-dark-matter power spectrum. Galaxy formation begins early, and the final distribution consists of isolated density peaks embedded in a smooth background, leading to a natural bias in the distribution of luminous matter. The distribution of clustered matter has a filamentary appearance with large voids.
The Probe of Inflation and Cosmic Origins
NASA Astrophysics Data System (ADS)
Hanany, Shaul; Inflation Probe Mission Study Team
2018-01-01
The Probe of Inflation and Cosmic Origins will map the polarization of the cosmic microwave background over the entire sky with unprecedented sensitivity. It will search for gravity wave signals from the inflationary epoch, thus probing quantum gravity and constraining the energy scale of inflation; it will test the standard model of particle physics by measuring the number of light particles in the Universe and the mass of the neutrino; it will elucidate the nature of dark matter and search for new forms of matter in the early Universe; it will constrain star formation history over cosmic time; and it will determine the mechanisms of structure formation from galaxy cluster to stellar scales. I will review the status of design of this probe-scale mission.
Book Review: A Thin Cosmic Rain by Michael W. Friedlander
NASA Technical Reports Server (NTRS)
Jones, Frank C.; White, Nicholas (Technical Monitor)
2001-01-01
In reviewing this book I am going to say some harsh things about it. From this one might think that I did not like the book. In fact, one would be wrong to think so. For this reason I wish to state up front that I did like the book. It was an ambitious undertaking and I think that the author has, for the most part, pulled it off. This extremely broad and rich book will allow those non-specialists with a sufficiently long attention span to obtain a good understanding of what cosmic rays are and what cosmic ray research is all about. I have pointed out things that bothered me because I believe that the book is good enough for a second edition and I hope that these matters can be addressed at that time.
Future Experiments in Astrophysics
NASA Technical Reports Server (NTRS)
Krizmanic, John F.
2002-01-01
The measurement methodologies of astrophysics experiments reflect the enormous variation of the astrophysical radiation itself. The diverse nature of the astrophysical radiation, e.g. cosmic rays, electromagnetic radiation, and neutrinos, is further complicated by the enormous span in energy, from the 1.95 Kappa relic neutrino background to cosmic rays with energy greater than 10(exp 20)eV. The measurement of gravity waves and search for dark matter constituents are also of astrophysical interest. Thus, the experimental techniques employed to determine the energy of the incident particles are strongly dependent upon the specific particles and energy range to be measured. This paper summarizes some of the calorimetric methodologies and measurements planned by future astrophysics experiments. A focus will be placed on the measurement of higher energy astrophysical radiation. Specifically, future cosmic ray, gamma ray, and neutrino experiments will be discussed.
Using PAFEC as a preprocessor for COSMIC/NASTRAN
NASA Technical Reports Server (NTRS)
Gray, W. H.; Baudry, T. V.
1983-01-01
Programs for Automatic Finite Element Calculations (PAFEC) is a general purpose, three dimensional linear and nonlinear finite element program (ref. 1). PAFEC's features include free format input utilizing engineering keywords, powerful mesh generating facilities, sophisticated data base management procedures, and extensive data validation checks. Presented here is a description of a software interface that permits PAFEC to be used as a preprocessor for COSMIC/NASTRAN. This user friendly software, called PAFCOS, frees the stress analyst from the laborious and error prone procedure of creating and debugging a rigid format COSMIC/NASTRAN bulk data deck. By interactively creating and debugging a finite element model with PAFEC, thus taking full advantage of the free format engineering keyword oriented data structure of PAFEC, the amount of time spent during model generation can be drastically reduced. The PAFCOS software will automatically convert a PAFEC data structure into a COSMIC/NASTRAN bulk data deck. The capabilities and limitations of the PAFCOS software are fully discussed in the following report.
The [CII]/[NII] far-infrared line ratio at z>5: extreme conditions for “normal” galaxies
NASA Astrophysics Data System (ADS)
Pavesi, Riccardo; Riechers, Dominik; Capak, Peter L.; Carilli, Chris Luke; Sharon, Chelsea E.; Stacey, Gordon J.; Karim, Alexander; Scoville, Nicholas; Smolcic, Vernesa
2017-01-01
Thanks to the Atacama Large (sub-)Millimeter Array (ALMA), observations of atomic far-infrared fine structure lines are a very productive way of measuring physical properties of the interstellar medium (ISM) in galaxies at high redshift, because they provide an unobscured view into the physical conditions of star formation. While the bright [CII] line has become a routine probe of the dynamical properties of the gas, its intensity needs to be compared to other lines in order to establish the physical origin of the emission. [NII] selectively traces the emission coming from the ionized fraction of the [CII]-emitting gas, offering insight into the phase structure of the ISM. Here we present ALMA measurements of [NII] 205 μm fine structure line emission from a representative sample of galaxies at z=5-6 spanning two orders of magnitude in star formation rate (SFR). Our results show at least two different regimes of ionized gas properties for galaxies in the first billion years of cosmic time, separated by their L[CII]/L[NII] ratio. First, we find extremely low [NII] emission compared to [CII] from a “typical” Lyman Break Galaxy (LBG-1), likely due to low dust content and reminiscent of local dwarfs. Second, the dusty Lyman Break Galaxy HZ10 and the extreme starburst AzTEC-3 show ionized gas fractions typical of local star-forming galaxies and show hints of spatial variations in their [CII]/[NII] line ratio. These observations of far-infrared lines in “normal” galaxies at z>5 yield some of the first constraints on ISM models for young galaxies in the first billion years of cosmic time and shed light on the observed evolution of the dust and gas properties.
The star-forming complex LMC-N79 as a future rival to 30 Doradus
NASA Astrophysics Data System (ADS)
Ochsendorf, Bram B.; Zinnecker, Hans; Nayak, Omnarayani; Bally, John; Meixner, Margaret; Jones, Olivia C.; Indebetouw, Remy; Rahman, Mubdi
2017-11-01
Within the early Universe, `extreme' star formation may have been the norm rather than the exception1,2. Super star clusters (with masses greater than 105 solar masses) are thought to be the modern-day analogues of globular clusters, relics of a cosmic time (redshift z ≳ 2) when the Universe was filled with vigorously star-forming systems3. The giant H ii region 30 Doradus in the Large Magellanic Cloud is often regarded as a benchmark for studies of extreme star formation4. Here, we report the discovery of a massive embedded star-forming complex spanning about 500 pc in the unexplored southwest region of the Large Magellanic Cloud, which manifests itself as a younger, embedded twin of 30 Doradus. Previously known as N79, this region has a star-formation efficiency greater than that of 30 Doradus, by a factor of about 2, as measured over the past 0.5 Myr. Moreover, at the heart of N79 lies the most luminous infrared compact source discovered with large-scale infrared surveys of the Large Magellanic Cloud and Milky Way, possibly a precursor to the central super star cluster of 30 Doradus, R136. The discovery of a nearby candidate super star cluster may provide invaluable information to understand how extreme star formation proceeds in the current and high-redshift Universe.
The Great Observatories Origins Deep Survey
NASA Astrophysics Data System (ADS)
Dickinson, Mark
2008-05-01
Observing the formation and evolution of ordinary galaxies at early cosmic times requires data at many wavelengths in order to recognize, separate and analyze the many physical processes which shape galaxies' history, including the growth of large scale structure, gravitational interactions, star formation, and active nuclei. Extremely deep data, covering an adequately large volume, are needed to detect ordinary galaxies in sufficient numbers at such great distances. The Great Observatories Origins Deep Survey (GOODS) was designed for this purpose as an anthology of deep field observing programs that span the electromagnetic spectrum. GOODS targets two fields, one in each hemisphere. Some of the deepest and most extensive imaging and spectroscopic surveys have been carried out in the GOODS fields, using nearly every major space- and ground-based observatory. Many of these data have been taken as part of large, public surveys (including several Hubble Treasury, Spitzer Legacy, and ESO Large Programs), which have produced large data sets that are widely used by the astronomical community. I will review the history of the GOODS program, highlighting results on the formation and early growth of galaxies and their active nuclei. I will also describe new and upcoming observations, such as the GOODS Herschel Key Program, which will continue to fill out our portrait of galaxies in the young universe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glushkov, A. V., E-mail: a.v.glushkov@ikfia.ysn.ru
The results obtained by analyzing arrival directions for primary cosmic particles characterized by energies in the region E{sub 0} Greater-Than-Or-Slanted-Equal-To 10{sup 17} eV and zenith angles in the range {theta} Less-Than-Or-Slanted-Equal-To 60 Degree-Sign and detected at the Yakutsk array for studying extensive air showers (EASs) over the period spanning 1974 and 2009 are presented. It is shown that these events exhibit different anisotropies in different energy intervals.
Formation of the First Stars and Blackholes
NASA Astrophysics Data System (ADS)
Yoshida, Naoki
2018-05-01
Cosmic reionization is thought to be initiated by the first generation of stars and blackholes. We review recent progress in theoretical studies of early structure formation. Cosmic structure formation is driven by gravitational instability of primeval density fluctuations left over from Big Bang. At early epochs, there are baryonic streaming motions with significant relative velocity with respect to dark matter. The formation of primordial gas clouds is typically delayed by the streaming motions, but then physical conditions for the so-called direct collapse blackhole formation are realized in proto-galactic halos. We present a promising model in which intermediate mass blackholes are formed as early as z = 30.
NASA Technical Reports Server (NTRS)
Salama, Farid
2014-01-01
We present and discuss the unique characteristics and capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory. COSmIC stands for Cosmic Simulation Chamber and is dedicated to the study of molecules and ions under the low temperature and high vacuum conditions that are required to simulate interstellar, circumstellar and planetary physical environments in space. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. COSmIC is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a free jet supersonic expansion coupled to two ultrahigh-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) system for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection. Recent, unique, laboratory astrophysics results that were obtained using the capabilities of COSmIC will be discussed, in particular the progress that have been achieved in monitoring in the laboratory the formation of solid gains from their gas-phase molecular precursors in environments as varied as stellar/circumstellar outflow and planetary atmospheres. Plans for future, next generation, laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics will also be addressed as well as the implications of these studies for current and upcoming space missions.
NASA Astrophysics Data System (ADS)
Ball, Catherine; Riechers, Dominik A.; Pavesi, Riccardo
2018-01-01
The [CII]/[NII] ratio combines the [CII] line, a tracer of photodissociation and HII regions emerging from the neutral and ionized phases of the interstellar medium (ISM), with [NII] emission, which only originates from the ionized ISM. In this, the [CII]/[NII] ratio can be used to separate the fractions of [CII] emission emerging from the different phases of the ISM. We present Atacama Large sub-Millimeter Array (ALMA) observations of the Cosmic Eye, a gravitationally lensed Lyman Break Galaxy (LBG). As an LBG, the Cosmic Eye represents a "normal" star forming galaxy in the z>2 universe. LBGs were host to the bulk of star formation during the peak epoch of star formation. Diagnosing star formation in these galaxies provides insight into the evolution of “normal” galaxies in a cosmic sense. The high magnification (30x) allows us to resolve the [CII] 158μm and the [NII] 205μm lines in detail, allowing for a position-resolved analysis of their ratio. We find variations of the line ratio across the galaxy, suggesting the galaxy’s internal structure affects this ratio. We consider the Cosmic Eye in the context of both higher redshift LBGs and local luminous and ultraluminous infrared galaxies, finding that the Cosmic Eye’s line ratio is similar to those of both higher- and lower- redshift galaxies. The Cosmic Eye’s global [CII]/[NII] ratio sits between two previous measurements of z>5 LBGs at low resolution, suggesting that the ratio may correlate more significantly with LFIR than with redshift in this epoch. Furthermore, the Cosmic Eye’s [CII]/[NII] ratio is similar to those of the nearby LIRG/ULIRGs, though we expect local [CII]/[NII] values to be lower due to their different metallicities and dust content. High-resolution studies like this one probe the evolution of [CII]/[NII] over cosmic time by examining the evolution of the ISM’s structure. With a better understanding of the [CII]/[NII] line ratio, we can more effectively use it as a probe of the nature of star formation in high-redshift galaxies. CJB participated in the summer 2017 REU program in the Center for Astrophysics and Planetary Science at Cornell University under NSF award AST-1659264.
The cosmic MeV neutrino background as a laboratory for black hole formation
NASA Astrophysics Data System (ADS)
Yüksel, Hasan; Kistler, Matthew D.
2015-12-01
Calculations of the cosmic rate of core collapses, and the associated neutrino flux, commonly assume that a fixed fraction of massive stars collapse to black holes. We argue that recent results suggest that this fraction instead increases with redshift. With relatively more stars vanishing as ;unnovae; in the distant universe, the detectability of the cosmic MeV neutrino background is improved due to their hotter neutrino spectrum, and expectations for supernova surveys are reduced. We conclude that neutrino detectors, after the flux from normal SNe is isolated via either improved modeling or the next Galactic SN, can probe the conditions and history of black hole formation.
X-Ray Probes of Cosmic Star Formation History
NASA Technical Reports Server (NTRS)
Ghosh, Pranab; White, Nicholas E.
2001-01-01
We discuss the imprints left by a cosmological evolution of the star formation rate (SFR) on the evolution of X-ray luminosities Lx of normal galaxies, using the scheme earlier proposed by us, wherein the evolution of LX of a galaxy is driven by the evolution of its X-ray binary population. As indicated in our earlier work, the profile of Lx with redshift can both serve as a diagnostic probe of the SFR profile and constrain evolutionary models for X-ray binaries. We report here the first calculation of the expected evolution of X-ray luminosities of galaxies, updating our work by using a suite of more recently developed SFR profiles that span the currently plausible range. The first Chandra deep imaging results on Lx evolution are beginning to probe the SFR profile of bright spiral galaxies; the early results are consistent with predictions based on current SFR models. Using these new SFR profiles, the resolution of the "birthrate problem" of low-mass X-ray binaries and recycled, millisecond pulsars in terms of an evolving global SFR is more complete. We discuss the possible impact of the variations in the SFR profile of individual galaxies and galaxy types.
The limited role of galaxy mergers in driving stellar mass growth over cosmic time
NASA Astrophysics Data System (ADS)
Martin, G.; Kaviraj, S.; Devriendt, J. E. G.; Dubois, Y.; Laigle, C.; Pichon, C.
2017-11-01
A key unresolved question is the role that galaxy mergers play in driving stellar mass growth over cosmic time. Recent observational work hints at the possibility that the overall contribution of 'major' mergers (mass ratios ≳ 1 : 4) to cosmic stellar mass growth may be small, because they enhance star formation rates by relatively small amounts at high redshift, when much of today's stellar mass was assembled. However, the heterogeneity and relatively small size of today's data sets, coupled with the difficulty in identifying genuine mergers, makes it challenging to empirically quantify the merger contribution to stellar mass growth. Here, we use Horizon-AGN, a cosmological hydrodynamical simulation, to comprehensively quantify the contribution of mergers to the star formation budget over the lifetime of the Universe. We show that (1) both major and minor mergers enhance star formation to similar amounts, (2) the fraction of star formation directly attributable to merging is small at all redshifts (e.g. ∼35 and ∼20 per cent at z ∼ 3 and z ∼ 1, respectively) and (3) only ∼25 per cent of today's stellar mass is directly attributable to galaxy mergers over cosmic time. Our results suggest that smooth accretion, not merging, is the dominant driver of stellar mass growth over the lifetime of the Universe.
Resurrecting hot dark matter - Large-scale structure from cosmic strings and massive neutrinos
NASA Technical Reports Server (NTRS)
Scherrer, Robert J.
1988-01-01
These are the results of a numerical simulation of the formation of large-scale structure from cosmic-string loops in a universe dominated by massive neutrinos (hot dark matter). This model has several desirable features. The final matter distribution contains isolated density peaks embedded in a smooth background, producing a natural bias in the distribution of luminous matter. Because baryons can accrete onto the cosmic strings before the neutrinos, the galaxies will have baryon cores and dark neutrino halos. Galaxy formation in this model begins much earlier than in random-phase models. On large scales the distribution of clustered matter visually resembles the CfA survey, with large voids and filaments.
Impact of Cosmic-Ray Transport on Galactic Winds
NASA Astrophysics Data System (ADS)
Farber, R.; Ruszkowski, M.; Yang, H.-Y. K.; Zweibel, E. G.
2018-04-01
The role of cosmic rays generated by supernovae and young stars has very recently begun to receive significant attention in studies of galaxy formation and evolution due to the realization that cosmic rays can efficiently accelerate galactic winds. Microscopic cosmic-ray transport processes are fundamental for determining the efficiency of cosmic-ray wind driving. Previous studies modeled cosmic-ray transport either via a constant diffusion coefficient or via streaming proportional to the Alfvén speed. However, in predominantly cold, neutral gas, cosmic rays can propagate faster than in the ionized medium, and the effective transport can be substantially larger; i.e., cosmic rays can decouple from the gas. We perform three-dimensional magnetohydrodynamical simulations of patches of galactic disks including the effects of cosmic rays. Our simulations include the decoupling of cosmic rays in the cold, neutral interstellar medium. We find that, compared to the ordinary diffusive cosmic-ray transport case, accounting for the decoupling leads to significantly different wind properties, such as the gas density and temperature, significantly broader spatial distribution of cosmic rays, and higher wind speed. These results have implications for X-ray, γ-ray, and radio emission, and for the magnetization and pollution of the circumgalactic medium by cosmic rays.
The implications of the COBE diffuse microwave radiation results for cosmic strings
NASA Technical Reports Server (NTRS)
Bennett, David P.; Stebbins, Albert; Bouchet, Francois R.
1992-01-01
We compare the anisotropies in the cosmic microwave background radiation measured by the COBE experiment to those predicted by cosmic string theories. We use an analytic model for the Delta T/T power spectrum that is based on our previous numerical simulations of strings, under the assumption that cosmic strings are the sole source of the measured anisotropy. This implies a value for the string mass per unit length of 1.5 +/- 0.5 x 10 exp -6 C-squared/G. This is within the range of values required for cosmic strings to successfully seed the formation of large-scale structures in the universe. These results clearly encourage further studies of Delta T/T and large-scale structure in the cosmic string model.
Cosmic ray interactions in starbursting galaxies
NASA Astrophysics Data System (ADS)
Yoast-Hull, Tova M.
High quality gamma-ray and radio observations of nearby galaxies offer an unprecedented opportunity to quantitatively study the properties of their cosmic ray populations. Accounting for various interactions and energy losses, I developed a multi-component, single-zone model of the cosmic ray populations in the central molecular zones of star-forming galaxies. Using observational knowledge of the interstellar medium and star formation, I successfully predicted the radio, gamma-ray, and neutrino spectra for nearby starbursts. Using chi-squared tests to compare the models with observational radio and gamma-ray data, I placed constraints on magnetic field strengths, cosmic ray energy densities, and galactic wind (advection) speeds. The initial models were applied to and tested on the prototypical starburst galaxy M82. To further test the model and to explore the differences in environment between starbursts and active galactic nuclei, I studied NGC 253 and NGC 1068, both nearby giant spiral galaxies which have been detected in gamma-rays. Additionally, I demonstrated that the excess GeV energy gamma-ray emission in the Galactic Center is likely not diffuse emission from an additional population of cosmic rays accelerated in supernova remnants. Lastly, I investigated cosmic ray populations in the starburst nuclei of Arp 220, a nearby ultraluminous infrared galaxy which displays a high-intensity mode of star formation more common in young galaxies, and I showed that the nuclei are efficient cosmic-ray proton calorimeters.
The Dark Ages of the Universe and hydrogen reionization
NASA Astrophysics Data System (ADS)
Natarajan, Aravind; Yoshida, Naoki
2014-06-01
One of the milestones in cosmic history is the formation of the first luminous objects and hydrogen reionization. The standard theory of cosmic structure formation predicts that the first generation of stars were born about a few hundred million years after the Big Bang. The dark Universe was then lit up once again, and eventually filled with ultraviolet photons emitted from stars, galaxies, and quasars. The exact epoch of the cosmic reionization and the details of the process, even the dominant sources, are not known, except for the fact that the Universe was reionized early on. Signatures of reionization are expected to be imprinted in the cosmic microwave background (CMB) radiation, especially in its large-scale polarization. Future CMB experiments, together with other probes such as the H i 21 cm surveys, will provide rich information on the process of reionization. We review recent studies on reionization. The implications from available observations over a wide range of wavelengths are discussed. Results from state-of-the-art computer simulations are presented. Finally, we discuss the prospects for exploring the first few hundred million years of the cosmic history.
Star formation history from the cosmic infrared background anisotropies
NASA Astrophysics Data System (ADS)
Maniyar, A. S.; Béthermin, M.; Lagache, G.
2018-06-01
We present a linear clustering model of cosmic infrared background (CIB) anisotropies at large scales that is used to measure the cosmic star formation rate density up to redshift 6, the effective bias of the CIB, and the mass of dark matter halos hosting dusty star-forming galaxies. This is achieved using the Planck CIB auto- and cross-power spectra (between different frequencies) and CIB × CMB (cosmic microwave background) lensing cross-spectra measurements, as well as external constraints (e.g. on the CIB mean brightness). We recovered an obscured star formation history which agrees well with the values derived from infrared deep surveys and we confirm that the obscured star formation dominates the unobscured formation up to at least z = 4. The obscured and unobscured star formation rate densities are compatible at 1σ at z = 5. We also determined the evolution of the effective bias of the galaxies emitting the CIB and found a rapid increase from 0.8 at z = 0 to 8 at z = 4. At 2 < z < 4, this effective bias is similar to that of galaxies at the knee of the mass functions and submillimetre galaxies. This effective bias is the weighted average of the true bias with the corresponding emissivity of the galaxies. The halo mass corresponding to this bias is thus not exactly the mass contributing the most to the star formation density. Correcting for this, we obtained a value of log(Mh/M⊙) = 12.77-0.125+0.128 for the mass of the typical dark matter halo contributing to the CIB at z = 2. Finally, using a Fisher matrix analysis we also computed how the uncertainties on the cosmological parameters affect the recovered CIB model parameters, and find that the effect is negligible.
Cosmic Web of Galaxies in the COMOS Field
NASA Astrophysics Data System (ADS)
Darvish, Behnam; Martin, Christopher D.; Mobasher, Bahram; Scoville, Nicholas; Sobral, David; COSMOS science Team
2017-01-01
We use a mass complete sample of galaxies with accurate photometric redshifts in the COSMOS field to estimate the density field and to extract the components of the cosmic web. The comic web extraction algorithm relies on the signs and the ratio of eigenvalues of the Hessian matrix and is enable to integrate the density field into clusters, filaments and the field. We show that at z < 0.8, the median star-formation rate in the cosmic web gradually declines from the field to clusters and this decline is especially sharp for satellite galaxies (~1 dex vs. ~0.4 dex for centrals). However, at z > 0.8, the trend flattens out. For star-forming galaxies only, the median star-formation rate declines by ~ 0.3-0.4 dex from the field to clusters for both satellites and centrals, only at z < 0.5. We argue that for satellite galaxies, the main role of the cosmic web environment is to control their star-forming/quiescent fraction, whereas for centrals, it is mainly to control their overall star-formation rate. Given these, we suggest that most satellite galaxies experience a rapid quenching mechanism as they fall from the field into clusters through the channel of filaments, whereas for central galaxies, it is mostly due to a slow quenching process. Our preliminary results highlight the importance of the large-scale cosmic web on the evolution of galaxies.
Simulating the formation of cosmic structure.
Frenk, C S
2002-06-15
A timely combination of new theoretical ideas and observational discoveries has brought about significant advances in our understanding of cosmic evolution. Computer simulations have played a key role in these developments by providing the means to interpret astronomical data in the context of physical and cosmological theory. In the current paradigm, our Universe has a flat geometry, is undergoing accelerated expansion and is gravitationally dominated by elementary particles that make up cold dark matter. Within this framework, it is possible to simulate in a computer the emergence of galaxies and other structures from small quantum fluctuations imprinted during an epoch of inflationary expansion shortly after the Big Bang. The simulations must take into account the evolution of the dark matter as well as the gaseous processes involved in the formation of stars and other visible components. Although many unresolved questions remain, a coherent picture for the formation of cosmic structure is now beginning to emerge.
Interpreting the cosmic far-infrared background anisotropies using a gas regulator model
NASA Astrophysics Data System (ADS)
Wu, Hao-Yi; Doré, Olivier; Teyssier, Romain; Serra, Paolo
2018-04-01
Cosmic far-infrared background (CFIRB) is a powerful probe of the history of star formation rate (SFR) and the connection between baryons and dark matter across cosmic time. In this work, we explore to which extent the CFIRB anisotropies can be reproduced by a simple physical framework for galaxy evolution, the gas regulator (bathtub) model. This model is based on continuity equations for gas, stars, and metals, taking into account cosmic gas accretion, star formation, and gas ejection. We model the large-scale galaxy bias and small-scale shot noise self-consistently, and we constrain our model using the CFIRB power spectra measured by Planck. Because of the simplicity of the physical model, the goodness of fit is limited. We compare our model predictions with the observed correlation between CFIRB and gravitational lensing, bolometric infrared luminosity functions, and submillimetre source counts. The strong clustering of CFIRB indicates a large galaxy bias, which corresponds to haloes of mass 1012.5 M⊙ at z = 2, higher than the mass associated with the peak of the star formation efficiency. We also find that the far-infrared luminosities of haloes above 1012 M⊙ are higher than the expectation from the SFR observed in ultraviolet and optical surveys.
NASA Astrophysics Data System (ADS)
Cooray, Asantha
2018-01-01
Cosmic Dawn Intensity Mapper (CDIM) is a 1.0m-class infrared telescope capable of three-dimensional spectro-imaging observations over the wavelength range of 0.75 to 7.5 microns, at a spectral resolving power at or better than 300. This will be achieved with linear variablefilters (LVFs) and a large field-of-view (FoV). The survey strategy using spacecraft operations following a shift and stare mode will result in more than 1300 independent narrow-band spectral images of the sky at a given location. Currently prioritized science programs, taking over three-years of a five-year mission, will be accomplished with a two-tiered wedding-cake survey with the shallowest spanning close to 300 sq. degrees and the deepest tier of about 25 sq. degrees.The remaining two-years could be used for additional survey programs (the wide tier can be expanded to 1000 sq. degrees) or for use by the astronomical community through a General Observing (GO) campaign. CDIM survey data will allow us to (i) establish the initial mass function of stars in galaxies present during reionization, (ii) definitively address AGN/quasar contribution to the reionization photon budget; (iii) establish the environmental dependence of star-formation during reionization through clustering and other environmental measurements; (iv) establish the metal abundance of first-light galaxies during reionization over two decades of stellar mass; (v) measure 3D intensity fluctuations during reionization in both Ly-alpha and H-alpha; and (vi) combine intensity fluctuations with 21-cm data to establish the topology of reionization bubbles.
On the Slow time Geomagnetic field Modulation of Cosmic Rays
NASA Astrophysics Data System (ADS)
Okpala, K. C.; Egbunu, F.
2016-12-01
Cosmic rays of galactic origin are modulated by both heliospheric and geomagnetic conditions. The mutual (and mutually exclusive) contribution of both heliospheric and geomagnetic conditions to galactic cosmic rays (GCR) modulation is still an open question. While the rapid-time association of the galactic cosmic ray variation with different heliophysical and geophysical phenomena has been well studied, not so much attention has been paid to slow-time variations especially with regards to local effects. In this work, we employed monthly means of cosmic ray count rates from two mid latitude (Hermanus and Rome), and two higher latitude (Inuvik and Oulu) neutron monitors (NM), and compared their variability with geomagnetic stations that are in close proximity to the NMs. The data spans 1966 to 2008 and covers four (4) solar cycles. The difference (CRdiff)between the mean count rate of all days and the mean of the five quietest days for each month was compared with the Dst-related disturbance (Hdiff) derived from the nearby geomagnetic stations. Zeroth- and First- correlation between the cosmic ray parameters and geomagnetic parameters was performed to ascertain statistical association and test for spurious association. Our results show that solar activity is generally strongly correlated (>0.75) with mean strength of GCR count rate and geomagnetic field during individual solar cycles. The correlation between mean strength of cosmic ray intensity and Geomagnetic field strength is spurious and is basically moderated by the solar activity. The signature of convection driven disturbances at high latitude geomagnetic stations was evident during the declining phase of the solar cycles close to the solar minimums. The absence of this feature in the slow-time varying cosmic ray count rates in all stations, and in the mid latitude geomagnetic stations suggest that the local geomagnetic disturbance do not play a significant role in modulating the cosmic ray flux.
A cosmic microwave background feature consistent with a cosmic texture.
Cruz, M; Turok, N; Vielva, P; Martínez-González, E; Hobson, M
2007-12-07
The Cosmic Microwave Background provides our most ancient image of the universe and our best tool for studying its early evolution. Theories of high-energy physics predict the formation of various types of topological defects in the very early universe, including cosmic texture, which would generate hot and cold spots in the Cosmic Microwave Background. We show through a Bayesian statistical analysis that the most prominent 5 degrees -radius cold spot observed in all-sky images, which is otherwise hard to explain, is compatible with having being caused by a texture. From this model, we constrain the fundamental symmetry-breaking energy scale to be (0) approximately 8.7 x 10(15) gigaelectron volts. If confirmed, this detection of a cosmic defect will probe physics at energies exceeding any conceivable terrestrial experiment.
The basis for cosmic ray feedback: Written on the wind
Zweibel, Ellen G.
2017-01-01
Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback. Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed. PMID:28579734
The basis for cosmic ray feedback: Written on the wind
NASA Astrophysics Data System (ADS)
Zweibel, Ellen G.
2017-05-01
Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback. Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed.
The basis for cosmic ray feedback: Written on the wind.
Zweibel, Ellen G
2017-05-01
Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback . Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed.
All-particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV
NASA Astrophysics Data System (ADS)
Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.; Barber, A. S.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.; De León, C.; De la Fuente, E.; Diaz Hernandez, R.; Dichiara, S.; Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Ellsworth, R. W.; Enriquez-Rivera, O.; Fiorino, D. W.; Fleischhack, H.; Fraija, N.; García-González, J. A.; González Muñoz, A.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez-Almada, A.; Hinton, J.; Hueyotl-Zahuantitla, F.; Hui, C. M.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Lara, A.; Lauer, R. J.; Lennarz, D.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Luis Raya, G.; Luna-García, R.; López-Cámara, D.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez, O.; Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo, R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Villaseñor, L.; Weisgarber, T.; Westerhoff, S.; Wood, J.; Yapici, T.; Zepeda, A.; Zhou, H.; HAWC Collaboration
2017-12-01
We report on the measurement of the all-particle cosmic ray energy spectrum with the High Altitude Water Cherenkov (HAWC) Observatory in the energy range 10 to 500 TeV. HAWC is a ground-based air-shower array deployed on the slopes of Volcan Sierra Negra in the state of Puebla, Mexico, and is sensitive to gamma rays and cosmic rays at TeV energies. The data used in this work were taken over 234 days between June 2016 and February 2017. The primary cosmic-ray energy is determined with a maximum likelihood approach using the particle density as a function of distance to the shower core. Introducing quality cuts to isolate events with shower cores landing on the array, the reconstructed energy distribution is unfolded iteratively. The measured all-particle spectrum is consistent with a broken power law with an index of -2.49 ±0.01 prior to a break at (45.7 ±0.1 ) TeV , followed by an index of -2.71 ±0.01 . The spectrum also represents a single measurement that spans the energy range between direct detection and ground-based experiments. As a verification of the detector response, the energy scale and angular resolution are validated by observation of the cosmic ray Moon shadow's dependence on energy.
Dwarf Galaxies and the Cosmic Web
NASA Astrophysics Data System (ADS)
Benítez-Llambay, Alejandro; Navarro, Julio F.; Abadi, Mario G.; Gottlöber, Stefan; Yepes, Gustavo; Hoffman, Yehuda; Steinmetz, Matthias
2013-02-01
We use a cosmological simulation of the formation of the Local Group of Galaxies to identify a mechanism that enables the removal of baryons from low-mass halos without appealing to feedback or reionization. As the Local Group forms, matter bound to it develops a network of filaments and pancakes. This moving web of gas and dark matter drifts and sweeps a large volume, overtaking many halos in the process. The dark matter content of these halos is unaffected but their gas can be efficiently removed by ram pressure. The loss of gas is especially pronounced in low-mass halos due to their lower binding energy and has a dramatic effect on the star formation history of affected systems. This "cosmic web stripping" may help to explain the scarcity of dwarf galaxies compared with the numerous low-mass halos expected in ΛCDM and the large diversity of star formation histories and morphologies characteristic of faint galaxies. Although our results are based on a single high-resolution simulation, it is likely that the hydrodynamical interaction of dwarf galaxies with the cosmic web is a crucial ingredient so far missing from galaxy formation models.
ON TEMPORAL VARIATIONS OF THE MULTI-TeV COSMIC RAY ANISOTROPY USING THE TIBET III AIR SHOWER ARRAY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amenomori, M.; Bi, X. J.; Ding, L. K.
2010-03-01
We analyze the large-scale two-dimensional sidereal anisotropy of multi-TeV cosmic rays (CRs) by the Tibet Air Shower Array, with the data taken from 1999 November to 2008 December. To explore temporal variations of the anisotropy, the data set is divided into nine intervals, each with a time span of about one year. The sidereal anisotropy of magnitude, about 0.1%, appears fairly stable from year to year over the entire observation period of nine years. This indicates that the anisotropy of TeV Galactic CRs remains insensitive to solar activities since the observation period covers more than half of the 23rd solarmore » cycle.« less
NASA Astrophysics Data System (ADS)
Ocvirk, Pierre; Gillet, Nicolas; Shapiro, Paul R.; Aubert, Dominique; Iliev, Ilian T.; Teyssier, Romain; Yepes, Gustavo; Choi, Jun-Hwan; Sullivan, David; Knebe, Alexander; Gottlöber, Stefan; D'Aloisio, Anson; Park, Hyunbae; Hoffman, Yehuda; Stranex, Timothy
2016-12-01
Cosmic reionization by starlight from early galaxies affected their evolution, thereby impacting reionization itself. Star formation suppression, for example, may explain the observed underabundance of Local Group dwarfs relative to N-body predictions for cold dark matter. Reionization modelling requires simulating volumes large enough [˜ (100 Mpc)3] to sample reionization `patchiness', while resolving millions of galaxy sources above ˜108 M⊙ combining gravitational and gas dynamics with radiative transfer. Modelling the Local Group requires initial cosmological density fluctuations pre-selected to form the well-known structures of the Local Universe today. Cosmic Dawn (`CoDa') is the first such fully coupled, radiation-hydrodynamics simulation of reionization of the Local Universe. Our new hybrid CPU-GPU code, RAMSES-CUDATON, performs hundreds of radiative transfer and ionization rate-solver timesteps on the GPUs for each hydro-gravity timestep on the CPUs. CoDa simulated (91Mpc)3 with 40963 particles and cells, to redshift 4.23, on ORNL supercomputer Titan, utilizing 8192 cores and 8192 GPUs. Global reionization ended slightly later than observed. However, a simple temporal rescaling which brings the evolution of ionized fraction into agreement with observations also reconciles ionizing flux density, cosmic star formation history, CMB electron scattering optical depth and galaxy UV luminosity function with their observed values. Photoionization heating suppressed the star formation of haloes below ˜2 × 109 M⊙, decreasing the abundance of faint galaxies around MAB1600 = [-10, -12]. For most of reionization, star formation was dominated by haloes between 1010-1011 M⊙ , so low-mass halo suppression was not reflected by a distinct feature in the global star formation history. Intergalactic filaments display sheathed structures, with hot envelopes surrounding cooler cores, but do not self-shield, unlike regions denser than 100 <ρ>.
Inference from the small scales of cosmic shear with current and future Dark Energy Survey data
MacCrann, N.; Aleksić, J.; Amara, A.; ...
2016-11-05
Cosmic shear is sensitive to fluctuations in the cosmological matter density field, including on small physical scales, where matter clustering is affected by baryonic physics in galaxies and galaxy clusters, such as star formation, supernovae feedback and AGN feedback. While muddying any cosmological information that is contained in small scale cosmic shear measurements, this does mean that cosmic shear has the potential to constrain baryonic physics and galaxy formation. We perform an analysis of the Dark Energy Survey (DES) Science Verification (SV) cosmic shear measurements, now extended to smaller scales, and using the Mead et al. 2015 halo model tomore » account for baryonic feedback. While the SV data has limited statistical power, we demonstrate using a simulated likelihood analysis that the final DES data will have the statistical power to differentiate among baryonic feedback scenarios. We also explore some of the difficulties in interpreting the small scales in cosmic shear measurements, presenting estimates of the size of several other systematic effects that make inference from small scales difficult, including uncertainty in the modelling of intrinsic alignment on nonlinear scales, `lensing bias', and shape measurement selection effects. For the latter two, we make use of novel image simulations. While future cosmic shear datasets have the statistical power to constrain baryonic feedback scenarios, there are several systematic effects that require improved treatments, in order to make robust conclusions about baryonic feedback.« less
Patterns of the cosmic microwave background from evolving string networks
NASA Technical Reports Server (NTRS)
Bouchet, Francois R.; Bennett, David P.; Stebbins, Albert
1988-01-01
A network of cosmic strings generated in the early universe may still exist today. As the strings move across the sky, they produce, by gravitational lensing, a characteristic pattern of anisotropies in the temperature of the cosmic microwave background. The observed absence of such anisotropies places constraints on theories in which galaxy formation is seeded by strings, but it is anticipated that the next generation of experiments will detect them.
Formation of methyl formate in comets by irradiation of methanol-bearing ices
NASA Astrophysics Data System (ADS)
Modica, P.; Palumbo, M. E.; Strazzulla, G.
2012-12-01
Methyl formate is a complex organic molecule considered potentially relevant as precursor of biologically active molecules. It has been observed in several astrophysical environments, such as hot cores, hot corinos, and comets. The processes that drive the formation of molecules in cometary ices are poorly understood. In particular it is not yet clear if molecules are directly accreted from the pre-solar nebula to form comets or are formed after accretion. The present work analyzes the possible role of cosmic ion irradiation and radioactive decay in methyl formate formation in methanol-bearing ices. The results indicate that cosmic ion irradiation can account for about 12% of the methyl formate observed in comet Hale-Bopp, while radioactive decay can account for about 6% of this amount. The need of new data coming from earth based and space observational projects as well as from laboratory experiments is outlined.
NASA Astrophysics Data System (ADS)
Forero-Romero, J. E.
2017-07-01
This talk summarizes different algorithms that can be used to trace the cosmic web both in simulations and observations. We present different applications in galaxy formation and cosmology. To finalize, we show how the Dark Energy Spectroscopic Instrument (DESI) could be a good place to apply these techniques.
Low cloud properties influenced by cosmic rays
Marsh; Svensmark
2000-12-04
The influence of solar variability on climate is currently uncertain. Recent observations have indicated a possible mechanism via the influence of solar modulated cosmic rays on global cloud cover. Surprisingly the influence of solar variability is strongest in low clouds (=3 km), which points to a microphysical mechanism involving aerosol formation that is enhanced by ionization due to cosmic rays. If confirmed it suggests that the average state of the heliosphere is important for climate on Earth.
The Parker Instability with Cosmic-Ray Streaming
NASA Astrophysics Data System (ADS)
Heintz, Evan; Zweibel, Ellen G.
2018-06-01
Recent studies have found that cosmic-ray transport plays an important role in feedback processes such as star formation and the launching of galactic winds. Although cosmic-ray buoyancy is widely held to be a destabilizing force in galactic disks, the effect of cosmic-ray transport on the stability of stratified systems has yet to be analyzed. We perform a stability analysis of a stratified layer for three different cosmic-ray transport models: decoupled (Classic Parker), coupled with γ c = 4/3 but not streaming (Modified Parker), and finally coupled with streaming at the Alfvén speed. When the compressibility of the cosmic rays is decreased the system becomes much more stable, but the addition of cosmic-ray streaming to the Parker instability severely destabilizes it. Through comparison of these three cases and analysis of the work contributions for the perturbed quantities of each system, we demonstrate that cosmic-ray heating of the gas is responsible for the destabilization of the system. We find that a 3D system is unstable over a larger range of wavelengths than the 2D system. Therefore, the Parker instability with cosmic-ray streaming may play an important role in cosmic-ray feedback.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perley, D. A.; Tanvir, N. R.; Hjorth, J.
2016-01-20
We present rest-frame near-IR (NIR) luminosities and stellar masses for a large and uniformly selected population of gamma-ray burst (GRB) host galaxies using deep Spitzer Space Telescope imaging of 119 targets from the Swift GRB Host Galaxy Legacy Survey spanning 0.03 < z < 6.3, and we determine the effects of galaxy evolution and chemical enrichment on the mass distribution of the GRB host population across cosmic history. We find a rapid increase in the characteristic NIR host luminosity between z ∼ 0.5 and z ∼ 1.5, but little variation between z ∼ 1.5 and z ∼ 5. Dust-obscured GRBs dominate the massive host population but are only rarely seen associated withmore » low-mass hosts, indicating that massive star-forming galaxies are universally and (to some extent) homogeneously dusty at high redshift while low-mass star-forming galaxies retain little dust in their interstellar medium. Comparing our luminosity distributions with field surveys and measurements of the high-z mass–metallicity relation, our results have good consistency with a model in which the GRB rate per unit star formation is constant in galaxies with gas-phase metallicity below approximately the solar value but heavily suppressed in more metal-rich environments. This model also naturally explains the previously reported “excess” in the GRB rate beyond z ≳ 2; metals stifle GRB production in most galaxies at z < 1.5 but have only minor impact at higher redshifts. The metallicity threshold we infer is much higher than predicted by single-star models and favors a binary progenitor. Our observations also constrain the fraction of cosmic star formation in low-mass galaxies undetectable to Spitzer to be small at z < 4.« less
NASA Astrophysics Data System (ADS)
Ly, Chun; Malkan, Matthew A.; Rigby, Jane R.; Nagao, Tohru
2016-09-01
We present the first results from MMT and Keck spectroscopy for a large sample of 0.1≤slant z≤slant 1 emission-line galaxies selected from our narrowband imaging in the Subaru Deep Field. We measured the weak [O III] λ4363 emission line for 164 galaxies (66 with at least 3σ detections, and 98 with significant upper limits). The strength of this line is set by the electron temperature for the ionized gas. Because the gas temperature is regulated by the metal content, the gas-phase oxygen abundance is inversely correlated with [O III] λ4363 line strength. Our temperature-based metallicity study is the first to span ≈ 8 Gyr of cosmic time and ≈ 3 dex in stellar mass for low-mass galaxies, {log}({M}\\star /{M}⊙ )≈ 6.0-9.0. Using extensive multi-wavelength photometry, we measure the evolution of the stellar mass-gas metallicity relation and its dependence on dust-corrected star formation rate (SFR). The latter is obtained from high signal-to-noise Balmer emission-line measurements. Our mass-metallicity relation is consistent with Andrews & Martini at z≤slant 0.3, and evolves toward lower abundances at a given stellar mass, {log}{({{O/H}})\\propto (1+z)}-{2.32-0.26+0.52}. We find that galaxies with lower metallicities have higher SFRs at a given stellar mass and redshift, although the scatter is large (≈ 0.3 dex) and the trend is weaker than seen in local studies. We also compare our mass-metallicity relation against predictions from high-resolution galaxy formation simulations, and find good agreement with models that adopt energy- and momentum-driven stellar feedback. We identified 16 extremely metal-poor galaxies with abundances of less than a tenth of solar; our most metal-poor galaxy at z≈ 0.84 is similar to I Zw 18.
NASA Astrophysics Data System (ADS)
Oesch, P. A.; Bouwens, R. J.; Illingworth, G. D.; Labbé, I.; Stefanon, M.
2018-03-01
We present an analysis of all prime HST legacy fields spanning >800 arcmin2 in the search for z ∼ 10 galaxy candidates and the study of their UV luminosity function (LF). In particular, we present new z ∼ 10 candidates selected from the full Hubble Frontier Field (HFF) data set. Despite the addition of these new fields, we find a low abundance of z ∼ 10 candidates with only nine reliable sources identified in all prime HST data sets that include the HUDF09/12, the HUDF/XDF, all of the CANDELS fields, and now the HFF survey. Based on this comprehensive search, we find that the UV luminosity function decreases by one order of magnitude from z ∼ 8 to z ∼ 10 over a four-magnitude range. This also implies a decrease of the cosmic star formation rate density by an order of magnitude within 170 Myr from z ∼ 8 to z ∼ 10. We show that this accelerated evolution compared to lower redshift can entirely be explained by the fast build up of the dark matter halo mass function at z > 8. Consequently, the predicted UV LFs from several models of galaxy formation are in good agreement with this observed trend, even though the measured UV LF lies at the low end of model predictions. The difference is generally still consistent within the Poisson and cosmic variance uncertainties. We discuss the implications of these results in light of the upcoming James Webb Space Telescope mission, which is poised to find much larger samples of z ∼ 10 galaxies as well as their progenitors at less than 400 Myr after the big bang. Based on data obtained with the Hubble Space Telescope operated by AURA, Inc. for NASA under contract NAS5-26555.
The effects of Dark Matter annihilation on cosmic reionization
Kaurov, Alexander A.; Hooper, Dan; Gnedin, Nickolay Y.
2016-12-15
We revisit the possibility of constraining the properties of dark matter (DM) by studying the epoch of cosmic reionization. Previous studies have shown that DM annihilation was unlikely to have provided a large fraction of the photons that ionized the universe, but instead played a subdominant role relative to stars and quasars. The DM, however, begins to efficiently annihilate with the formation of primordial microhalos atmore » $$z\\sim100-200$$, much earlier than the formation of the first stars. Therefore, if DM annihilation ionized the universe at even the percent level over the interval $$z \\sim 20-100$$, it can leave a significant imprint on the global optical depth, $$\\tau$$. Moreover, we show that cosmic microwave background (CMB) polarization data and future 21 cm measurements will enable us to more directly probe the DM contribution to the optical depth. In order to compute the annihilation rate throughout the epoch of reionization, we adopt the latest results from structure formation studies and explore the impact of various free parameters on our results. Here, we show that future measurements could make it possible to place constraints on the dark matter's annihilation cross section that are at a level comparable to those obtained from the observations of dwarf galaxies, cosmic ray measurements, and studies of recombination.« less
Cosmic infrared background measurements and star formation history from Planck
NASA Astrophysics Data System (ADS)
Serra, Paolo; Serra
2014-05-01
We present new measurements of Cosmic Infrared Background (CIB) anisotropies using Planck. Combining HFI data with IRAS, the angular auto- and cross-frequency power spectrum is measured from 143 to 3000 GHz. After careful removal of the contaminants (cosmic microwave background anisotropies, Galactic dust and Sunyaev-Zeldovich emission), and a complete study of systematics, the CIB power spectrum is measured with unprecedented signal to noise ratio from angular multipoles l ~ 150 to 2500. The interpretation based on the halo model is able to associate star-forming galaxies with dark matter halos and their subhalos, using a parametrized relation between the dust-processed infrared luminosity and (sub-)halo mass, and it allows to simultaneously fit all auto- and cross- power spectra very well. We find that the star formation history is well constrained up to redshifts around 2, and agrees with recent estimates of the obscured star-formation density using Spitzer and Herschel. However, at higher redshift, the accuracy of the star formation history measurement is strongly degraded by the uncertainty in the spectral energy distribution of CIB galaxies. We also find that the mean halo mass which is most efficient at hosting star formation is log(M eff/M ⊙) = 12.6 and that CIB galaxies have warmer temperatures as redshift increases.
NASA Astrophysics Data System (ADS)
Khaire, Vikram
2017-08-01
There exists a large void in our understanding of the intergalactic medium (IGM) at z=0.5-1.5, spanning a significant cosmic time of 4 Gyr. This hole resulted from a paucity of near-UV QSO spectra, which were historically very expensive to obtain. However, with the advent of COS and the HST UV initiative, sufficient STIS/COS NUV spectra have finally become available, enabling the first statistical analyses. We propose a comprehensive study of the z 1 IGM using the Ly-alpha forest of 26 archival QSO spectra. This analysis will: (1) measure the distribution of HI absorbers to several percent precision down to log NHI < 13 to test our model of the IGM, and determine the extragalactic UV background (UVB) at that epoch; (2) measure the Ly-alpha forest power spectrum to 12%, providing another precision test of LCDM and our theory of the IGM; (3) measure the thermal state of the IGM, which reflects the balance of heating (photoheating, HI/HeII reionization) and cooling (Hubble expansion) of cosmic baryons, and directly verify the predicted cooldown of IGM gas after reionization for the first time; (4) generate high-quality reductions, coadds, and continuum fits that will be released to the public to enable other science cases. These results, along with our state-of-the-art hydrodynamical simulations, and theoretical models of the UVB, will fill the 4 Gyr hole in our understanding of the IGM. When combined with existing HST and ground-based data from lower and higher z, they will lead to a complete, empirical description of the IGM from HI reionization to the present, spanning more than 10 Gyr of cosmic history, adding substantially to Hubble's legacy of discovery on the IGM.
Black holes as beads on cosmic strings
NASA Astrophysics Data System (ADS)
Ashoorioon, Amjad; Mann, Robert B.
2014-11-01
We consider the possibility of the formation of cosmic strings with black holes as beads. We focus on the simplest setup where two black holes are formed on a long cosmic string. It turns out that in the absence of a background magnetic field and for observationally viable values for cosmic string tensions, μ \\lt 2× {{10}-7}, the tension of the strut in between the black holes has to be less than the ones that run into infinity. This result does not change if a cosmological constant is present. However, if a background magnetic field is turned on, we can have stable setups where the tensions of all cosmic strings are equal. We derive the equilibrium conditions in each of these setups depending on whether the black holes are extremal or non-extremal. We obtain cosmologically acceptable solutions with solar mass black holes and an intragalactic-strength cosmic magnetic field.
Cosmic strings - A problem or a solution?
NASA Technical Reports Server (NTRS)
Bennett, David P.; Bouchet, Francois R.
1988-01-01
The most fundamental issue in the theory of cosmic strings is addressed by means of Numerical Simulations: the existence of a scaling solution. The resolution of this question will determine whether cosmic strings can form the basis of an attractive theory of galaxy formation or prove to be a cosmological disaster like magnetic monopoles or domain walls. After a brief discussion of our numerical technique, results are presented which, though still preliminary, offer the best support to date of this scaling hypothesis.
Evidence for a scaling solution in cosmic-string evolution
NASA Technical Reports Server (NTRS)
Bennett, David P.; Bouchet, Francois R.
1988-01-01
Numerical simulations are used to study the most fundamental issue of cosmic-string evolution: the existence of a scaling solution. Strong evidence is found that a scaling solution does indeed exist. This justifies the main assumption on which the cosmic-string theories of galaxy formation is based. The main conclusion coincides with that of Albrecht and Turok (1985) but the results are not consistent with theirs. In fact, the results indicate that the details of string evolution are very different from the standard dogma.
Causal Structure around Spinning 5-DIMENSIONAL Cosmic Strings
NASA Astrophysics Data System (ADS)
Slagter, Reinoud Jan
2008-09-01
We present a numerical solution of a stationary 5-dimensional spinning cosmic string in the Einstein-Yang-Mills (EYM) model, where the extra bulk coordinate ψ is periodic. It turns out that when gψψ approaches zero, i.e., a closed time-like curve (CTC) would appear, the solution becomes singular. We also investigated the geometrical structure of the static 5D cosmic string. Two opposite moving 5D strings could, in contrast with the 4D case, fulfil the Gott condition for CTC formation.
Straight spinning cosmic strings in Brans-Dicke gravity
NASA Astrophysics Data System (ADS)
Dos Santos, S. Mittmann; da Silva, J. M. Hoff; Cindra, J. L.
2018-03-01
An exact solution of straight spinning cosmic strings in Brans-Dicke theory of gravitation is presented. The possibility of the existence of closed time-like curves around these cosmic strings is analyzed. Furthermore, the stability about the formation of the topological defect discussed here is checked. It is shown that the existence of a suitable choice for the integration constants in which closed time-like curves are not allowed. We also study the (im)possibility of using the obtained spacetime in the rotational curves problem.
NASA Astrophysics Data System (ADS)
de la Fuente Marcos, R.; de la Fuente Marcos, C.
2004-11-01
Shaviv [New Astron. 8 (2003) 39; J. Geophys. Res. 108 (2003) 3] has shown evidence for a correlation between variations in the Galactic cosmic ray flux reaching Earth and the glaciation period record on Earth during the last 2 Gyr. If the flux of cosmic rays is mainly the result of Type II supernovae, an additional correlation between the star formation history of the Solar Neighbourhood and the timing of past ice ages is expected. Higher star formation rate implies increased cosmic ray flux and this may translate into colder climate through a rise in the average low altitude cloud cover. Here we reanalyze the correlation between this star formation history and the glaciation period record on Earth using a volume limited open cluster sample. Numerical modeling and recent observational data indicate that the correlation is rather strong but only if open clusters within 1.5 kpc from the Sun are considered. Under this constraint, our statistical analysis not only suggests a strong correlation in the timing of the events (enhanced star formation and glaciation episodes), but also in the severity and length of the episodes. In particular, the snowball Earth scenario appears to be connected with the strongest episode of enhanced star formation recorded in the Solar Neighbourhood during the last 2 Gyr.
Research and technology, 1990: Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
1990-01-01
Goddard celebrates 1990 as a banner year in space based astronomy. From above the Earth's obscuring atmosphere, four major orbiting observatories examined the heavens at wavelengths that spanned the electromagnetic spectrum. In the infrared and microwave, the Cosmic Background Explorer (COBE), measured the spectrum and angular distribution of the cosmic background radiation to extraordinary precision. In the optical and UV, the Hubble Space Telescope has returned spectacular high resolution images and spectra of a wealth of astronomical objects. The Goddard High Resolution Spectrograph has resolved dozens of UV spectral lines which are as yet unidentified because they have never before been seen in any astronomical spectrum. In x rays, the Roentgen Satellite has begun returning equally spectacular images of high energy objects within our own and other galaxies.
A machine learning approach to galaxy-LSS classification - I. Imprints on halo merger trees
NASA Astrophysics Data System (ADS)
Hui, Jianan; Aragon, Miguel; Cui, Xinping; Flegal, James M.
2018-04-01
The cosmic web plays a major role in the formation and evolution of galaxies and defines, to a large extent, their properties. However, the relation between galaxies and environment is still not well understood. Here, we present a machine learning approach to study imprints of environmental effects on the mass assembly of haloes. We present a galaxy-LSS machine learning classifier based on galaxy properties sensitive to the environment. We then use the classifier to assess the relevance of each property. Correlations between galaxy properties and their cosmic environment can be used to predict galaxy membership to void/wall or filament/cluster with an accuracy of 93 per cent. Our study unveils environmental information encoded in properties of haloes not normally considered directly dependent on the cosmic environment such as merger history and complexity. Understanding the physical mechanism by which the cosmic web is imprinted in a halo can lead to significant improvements in galaxy formation models. This is accomplished by extracting features from galaxy properties and merger trees, computing feature scores for each feature and then applying support vector machine (SVM) to different feature sets. To this end, we have discovered that the shape and depth of the merger tree, formation time, and density of the galaxy are strongly associated with the cosmic environment. We describe a significant improvement in the original classification algorithm by performing LU decomposition of the distance matrix computed by the feature vectors and then using the output of the decomposition as input vectors for SVM.
The Spitzer/Swift Gamma-Ray Burst Host Galaxy Extended Legacy Survey
NASA Astrophysics Data System (ADS)
Perley, Daniel; Berger, Edo; Butler, Nathaniel; Cenko, S. Bradley; Chary, Ranga-Ram; Cucchiara, Antonino; Ellis, Richard; Fong, Wen-fai; Fruchter, Andrew; Fynbo, Johan; Gehrels, Neil; Graham, John; Greiner, Jochen; Hjorth, Jens; Hunt, Leslie; Jakobsson, Pall; Kruehler, Thomas; Laskar, Tanmoy; Le Floc'h, Emerich; Levan, Andrew; Levesque, Emily; Littlejohns, Owen; Malesani, Daniele; Michalowski, Michal; Prochaska, J. Xavier; Salvaterra, Ruben; Schulze, Steve; Schady, Patricia; Tanvir, Nial; de Ugarte Postigo, Antonio; Vergani, Susanna
2014-12-01
Long-duration gamma-ray bursts act as beacons to the sites of star-formation in the distant universe. GRBs reveal galaxies too faint and star-forming regions too dusty to characterize in detail using any other method, and provide a powerful independent constraint on the evolution of the cosmic star-formation rate density at high-redshift. However, a full understanding of the GRB phenomenon and its relation to cosmic star-formation requires connecting the observations obtained from GRBs to the properties of the galaxies hosting them. The large majority of GRBs originate at moderate to high redshift (z>1) and Spitzer has proven crucial for understanding the host population, given its unique ability to observe the rest-frame NIR and its unrivaled sensitivity and efficiency. We propose to complete a comprehensive public legacy survey of the Swift GRB host population to build on our earlier successes and push beyond the statistical limits of previous, smaller efforts. Our survey will enable a diverse range of GRB and galaxy science including: (1) to quantitatively and robustly map the connection between GRBs and cosmic star-formation to constrain the GRB progenitor and calibrate GRB rate-based measurements of the high-z cosmic star-formation rate; (2) to constrain the luminosity function of star-forming galaxies at the faint end and at high redshift; (3) to understand how the ISM properties seen in absorption in high-redshift galaxies unveiled by GRBs - metallicity, dust column, dust properties - connect to global properties of the host galaxies such as mass and age. Building on a decade of experience at both observatories, our observations will create an enduring joint Swift-Spitzer legacy sample and provide the definitive resource with which to examine all aspects of the GRB/galaxy connection for years and possibly decades to come.
DWARF GALAXIES AND THE COSMIC WEB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benitez-Llambay, Alejandro; Abadi, Mario G.; Navarro, Julio F.
2013-02-01
We use a cosmological simulation of the formation of the Local Group of Galaxies to identify a mechanism that enables the removal of baryons from low-mass halos without appealing to feedback or reionization. As the Local Group forms, matter bound to it develops a network of filaments and pancakes. This moving web of gas and dark matter drifts and sweeps a large volume, overtaking many halos in the process. The dark matter content of these halos is unaffected but their gas can be efficiently removed by ram pressure. The loss of gas is especially pronounced in low-mass halos due tomore » their lower binding energy and has a dramatic effect on the star formation history of affected systems. This 'cosmic web stripping' may help to explain the scarcity of dwarf galaxies compared with the numerous low-mass halos expected in {Lambda}CDM and the large diversity of star formation histories and morphologies characteristic of faint galaxies. Although our results are based on a single high-resolution simulation, it is likely that the hydrodynamical interaction of dwarf galaxies with the cosmic web is a crucial ingredient so far missing from galaxy formation models.« less
Gamma Ray Bursts as Cosmological Probes with EXIST
NASA Astrophysics Data System (ADS)
Hartmann, Dieter; EXIST Team
2006-12-01
The EXIST mission, studied as a Black Hole Finder Probe within NASA's Beyond Einstein Program, would, in its current design, trigger on 1000 Gamma Ray Bursts (GRBs) per year (Grindlay et al, this meeting). The redshift distribution of these GRBs, using results from Swift as a guide, would probe the z > 7 epoch at an event rate of > 50 per year. These bursts trace early cosmic star formation history, point to a first generation of stellar objects that reionize the universe, and provide bright beacons for absorption line studies with groundand space-based observatories. We discuss how EXIST, in conjunction with other space missions and future large survey programs such as LSST, can be utilized to advance our understanding of cosmic chemical evolution, the structure and evolution of the baryonic cosmic web, and the formation of stars in low metallicity environments.
The High Energy Universe: Ultra-High Energy Events in Astrophysics and Cosmology
NASA Astrophysics Data System (ADS)
Mészáros, Péter
2010-09-01
1. Introduction; 2. The nuts and bolts of the Universe; 3. Cosmology; 4. Cosmic structure formation; 5. Active galaxies; 6. Stellar cataclysms; 7. Gamma ray bursts; 8. GeV and TeV gamma rays; 9. Gravitational waves; 10. Cosmic rays; 11. Neutrinos; 12. Dark dreams, Higgs and beyond.
Visualizing Cosmological Concepts Using the Analog of a Hot Liquid
ERIC Educational Resources Information Center
Yusofi, E.; Mohsenzadeh, M.
2010-01-01
We have used the expansion process of hot milk, which has similarities with the cosmic expansion, to facilitate easier and better visualization and teaching of cosmological concepts. Observations of milk are used to illustrate phenomena related to the Planck era, the standard hot big bang model, cosmic inflation, problems with the formation of…
Cosmic strings and the large-scale structure
NASA Technical Reports Server (NTRS)
Stebbins, Albert
1988-01-01
A possible problem for cosmic string models of galaxy formation is presented. If very large voids are common and if loop fragmentation is not much more efficient than presently believed, then it may be impossible for string scenarios to produce the observed large-scale structure with Omega sub 0 = 1 and without strong environmental biasing.
On the large-scale structures formed by wakes of open cosmic strings
NASA Technical Reports Server (NTRS)
Hara, Tetsuya; Morioka, Shoji; Miyoshi, Shigeru
1990-01-01
Large-scale structures of the universe have been variously described as sheetlike, filamentary, cellular, bubbles or spongelike. Recently cosmic strings became one of viable candidates for a galaxy formation scenario, and some of the large-scale structures seem to be simply explained by the open cosmic strings. According to this scenario, sheets are wakes which are traces of moving open cosmic strings where dark matter and baryonic matter have accumulated. Filaments are intersections of such wakes and high density regions are places where three wakes intersect almost orthogonally. The wakes formed at t sub eq become the largest surface density among all wakes, where t sub eq is the epoch when matter density equals to radiation density. If we assume that there is one open cosmic string per each horizon, then it can be explained that the typical distances among wakes, filaments and clusters are also approx. 10(exp 2) Mpc. This model does not exclude a much more large scale structure. Open cosmic string may move even now and accumulate cold dark matter after its traces. However, the surface density is much smaller than the ones formed at t sub eq. From this model, it is expected that the typical high density region will have extended features such as six filaments and three sheets and be surrounded by eight empty regions (voids). Here, the authors are mainly concerned with such structures and have made numerical simulations for the formation of such large scale structures.
NASA Astrophysics Data System (ADS)
Ruiz Castruita, Daniel; Niduaza, Rommel; Hernandez, Victor; Knox, Adrian; Ramos, Daniel; Fan, Sewan; Fatuzzo, Laura
2015-04-01
Lately, a new light sensor technology based on the breakdown phenomenon in the reverse biased silicon diode has found many applications that span from particle physics to medical imaging science. The silicon photomultiplier (SiPM) has several notable advantages compared to conventional photomultiplier tubes which include: lower cost, lower operating voltage and the ability to measure very weak light signals at the single photon level. At this conference meeting, we describe our efforts to implement SiPMs as read out light detectors for plastic scintillators in a cosmic ray telescope for use in high schools. In particular, we describe our work in designing, testing and assembling the cosmic ray telescope. We include a high gain preamplifier, a custom coincidence circuit using fast comparators to discriminate the SiPM signal amplitudes and a monovibrator IC for lengthening the singles and coincidence logic pulses. An Arduino micro-controller and program sketches are used for processing and storing the singles and coincidence counts data. Results from our measurements would be illustrated and presented. US Department of Education Title V Grant Award PO31S090007.
NASA Astrophysics Data System (ADS)
Lapi, A.; Mancuso, C.; Celotti, A.; Danese, L.
2017-01-01
We provide a holistic view of galaxy evolution at high redshifts z ≳ 4, which incorporates the constraints from various astrophysical/cosmological probes, including the estimate of the cosmic star formation rate (SFR) density from UV/IR surveys and long gamma-ray burst (GRBs) rates, the cosmic reionization history following the latest Planck measurements, and the missing satellites issue. We achieve this goal in a model-independent way by exploiting the SFR functions derived by Mancuso et al. on the basis of an educated extrapolation of the latest UV/far-IR data from HST/Herschel, and already tested against a number of independent observables. Our SFR functions integrated down to a UV magnitude limit MUV ≲ -13 (or SFR limit around 10-2 M⊙ yr-1) produce a cosmic SFR density in excellent agreement with recent determinations from IR surveys and, taking into account a metallicity ceiling Z ≲ Z⊙/2, with the estimates from long GRB rates. They also yield a cosmic reionization history consistent with that implied by the recent measurements of the Planck mission of the electron scattering optical depth τes ≈ 0.058 remarkably, this result is obtained under a conceivable assumption regarding the average value fesc ≈ 0.1 of the escape fraction for ionizing photons. We demonstrate via the abundance-matching technique that the above constraints concurrently imply galaxy formation becoming inefficient within dark matter halos of mass below a few 108 M⊙ pleasingly, such a limit is also required so as not to run into the missing satellites issue. Finally, we predict a downturn of the Galaxy luminosity function faintward of MUV ≲ -12, and stress that its detailed shape, to be plausibly probed in the near future by the JWST, will be extremely informative on the astrophysics of galaxy formation in small halos, or even on the microscopic nature of the dark matter.
Rest-Frame Optical Spectra of Three Strongly Lensed Galaxies at z ~ 2
NASA Astrophysics Data System (ADS)
Hainline, Kevin N.; Shapley, Alice E.; Kornei, Katherine A.; Pettini, Max; Buckley-Geer, Elizabeth; Allam, Sahar S.; Tucker, Douglas L.
2009-08-01
We present Keck II NIRSPEC rest-frame optical spectra for three recently discovered lensed galaxies: the Cosmic Horseshoe (z = 2.38), the Clone (z = 2.00), and SDSS J090122.37+181432.3 (z = 2.26). The boost in signal-to-noise ratio (S/N) from gravitational lensing provides an unusually detailed view of the physical conditions in these objects. A full complement of high S/N rest-frame optical emission lines is measured, spanning from rest frame 3600 to 6800 Å, including robust detections of fainter lines such as Hγ, [S II]λ6717,6732, and in one instance [Ne III]λ3869. SDSS J090122.37+181432.3 shows evidence for active galactic nucleus activity, and therefore we focus our analysis on star-forming regions in the Cosmic Horseshoe and the Clone. For these two objects, we estimate a wide range of physical properties. Current lensing models for the Cosmic Horseshoe and the Clone allow us to correct the measured Hα luminosity and calculated star formation rate. Metallicities have been estimated with a variety of indicators, which span a range of values of 12+ log(O/H) = 8.3-8.8, between ~0.4 and ~1.5 of the solar oxygen abundance. Dynamical masses were computed from the Hα velocity dispersions and measured half-light radii of the reconstructed sources. A comparison of the Balmer lines enabled measurement of dust reddening coefficients. Variations in the line ratios between the different lensed images are also observed, indicating that the spectra are probing different regions of the lensed galaxies. In all respects, the lensed objects appear fairly typical of ultraviolet-selected star-forming galaxies at z ~ 2. The Clone occupies a position on the emission-line diagnostic diagram of [O III]/Hβ versus [N II]/Hα that is offset from the locations of z ~ 0 galaxies. Our new NIRSPEC measurements may provide quantitative insights into why high-redshift objects display such properties. From the [S II] line ratio, high electron densities (~1000 cm-3) are inferred compared to local galaxies, and [O III]/[O II] line ratios indicate higher ionization parameters compared to the local population. Building on previous similar results at z ~ 2, these measurements provide further evidence (at high S/N) that star-forming regions are significantly different in high-redshift galaxies, compared to their local counterparts. Based, in part, on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W.M. Keck Foundation.
Evolution of cosmic star formation in the SCUBA-2 Cosmology Legacy Survey
NASA Astrophysics Data System (ADS)
Bourne, N.; Dunlop, J. S.; Merlin, E.; Parsa, S.; Schreiber, C.; Castellano, M.; Conselice, C. J.; Coppin, K. E. K.; Farrah, D.; Fontana, A.; Geach, J. E.; Halpern, M.; Knudsen, K. K.; Michałowski, M. J.; Mortlock, A.; Santini, P.; Scott, D.; Shu, X. W.; Simpson, C.; Simpson, J. M.; Smith, D. J. B.; van der Werf, P. P.
2017-05-01
We present a new exploration of the cosmic star formation history and dust obscuration in massive galaxies at redshifts 0.5 < z < 6. We utilize the deepest 450- and 850-μm imaging from SCUBA-2 CLS, covering 230 arcmin2 in the AEGIS, COSMOS and UDS fields, together with 100-250 μm imaging from Herschel. We demonstrate the capability of the t-phot deconfusion code to reach below the confusion limit, using multiwavelength prior catalogues from CANDELS/3D-HST. By combining IR and UV data, we measure the relationship between total star formation rate (SFR) and stellar mass up to z ˜ 5, indicating that UV-derived dust corrections underestimate the SFR in massive galaxies. We investigate the relationship between obscuration and the UV slope (the IRX-β relation) in our sample, which is similar to that of low-redshift starburst galaxies, although it deviates at high stellar masses. Our data provide new measurements of the total SFR density (SFRD) in M_{\\ast }>10^{10} M_{⊙} galaxies at 0.5 < z < 6. This is dominated by obscured star formation by a factor of >10. One third of this is accounted for by 450-μm-detected sources, while one-fifth is attributed to UV-luminous sources (brighter than L_UV^\\ast), although even these are largely obscured. By extrapolating our results to include all stellar masses, we estimate a total SFRD that is in good agreement with previous results from IR and UV data at z ≲ 3, and from UV-only data at z ˜ 5. The cosmic star formation history undergoes a transition at z ˜ 3-4, as predominantly unobscured growth in the early Universe is overtaken by obscured star formation, driven by the build-up of the most massive galaxies during the peak of cosmic assembly.
NASA Astrophysics Data System (ADS)
de Barros, A. L. F.; Andrade, D. P. P.; da Silveira, E. F.; Alcantara, K. F.; Boduch, P.; Rothard, H.
2018-02-01
The radiolysis of 10:1 nitrogen:acetone mixture, condensed at 11 K, by 40 MeV 58Ni11 + ions is studied. These results are representative of studies concerning Solar system objects, such as transneptunian objects, exposed to cosmic rays. Bombardment by cosmic rays triggers chemical reactions leading to synthesis of larger molecules. In this work, destruction cross-sections of acetone and nitrogen molecules in solid phase are determined and compared with those for pure acetone. The N2 column density decreases very fast indicating that, under irradiation, nitrogen leaves quickly a porous sample. The most abundant molecular species formed in the radiolysis are C3H6, C2H6, N3, CO, CH4 and CO2. Some N-bearing species are also formed, but with low production yield. Dissolving acetone in nitrogen decreases the formation cross-sections of CH4, CO2 and H2CO, while increases those for CO and C2H6 species. This fact may explain the presence of C2H6 in Pluto's surface where CH4 is not pure, but diluted in an N2 matrix. The formation of more complex molecules, such as HNCO and, possibly, glycine is observed, suggesting the formation of small prebiotic species in objects beyond Neptune from acetone diluted in a N2 matrix irradiated by cosmic rays.
Radiative feedback and cosmic molecular gas: the role of different radiative sources
NASA Astrophysics Data System (ADS)
Maio, Umberto; Petkova, Margarita; De Lucia, Gabriella; Borgani, Stefano
2016-08-01
We present results from multifrequency radiative hydrodynamical chemistry simulations addressing primordial star formation and related stellar feedback from various populations of stars, stellar spectral energy distributions (SEDs) and initial mass functions. Spectra for massive stars, intermediate-mass stars and regular solar-like stars are adopted over a grid of 150 frequency bins and consistently coupled with hydrodynamics, heavy-element pollution and non-equilibrium species calculations. Powerful massive Population III stars are found to be able to largely ionize H and, subsequently, He and He+, causing an inversion of the equation of state and a boost of the Jeans masses in the early intergalactic medium. Radiative effects on star formation rates are between a factor of a few and 1 dex, depending on the SED. Radiative processes are responsible for gas heating and photoevaporation, although emission from soft SEDs has minor impacts. These findings have implications for cosmic gas preheating, primordial direct-collapse black holes, the build-up of `cosmic fossils' such as low-mass dwarf galaxies, the role of active galactic nuclei during reionization, the early formation of extended discs and angular-momentum catastrophe.
Scientific results from the Cosmic Background Explorer (COBE)
Bennett, C. L.; Boggess, N. W.; Cheng, E. S.; Hauser, M. G.; Kelsall, T.; Mather, J. C.; Moseley, S. H.; Murdock, T. L.; Shafer, R. A.; Silverberg, R. F.; Smoot, G. F.; Weiss, R.; Wright, E. L.
1993-01-01
The National Aeronautics and Space Administration (NASA) has flown the COBE satellite to observe the Big Bang and the subsequent formation of galaxies and large-scale structure. Data from the Far-Infrared Absolute Spectrophotometer (FIRAS) show that the spectrum of the cosmic microwave background is that of a black body of temperature T = 2.73 ± 0.06 K, with no deviation from a black-body spectrum greater than 0.25% of the peak brightness. The data from the Differential Microwave Radiometers (DMR) show statistically significant cosmic microwave background anisotropy, consistent with a scale-invariant primordial density fluctuation spectrum. Measurements from the Diffuse Infrared Background Experiment (DIRBE) provide new conservative upper limits to the cosmic infrared background. Extensive modeling of solar system and galactic infrared foregrounds is required for further improvement in the cosmic infrared background limits. PMID:11607383
ON THE PROPER USE OF THE REDUCED SPEED OF LIGHT APPROXIMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnedin, Nickolay Y., E-mail: gnedin@fnal.gov
I show that the reduced speed of light (RSL) approximation, when used properly (i.e., as originally designed—only for local sources but not for the cosmic background), remains a highly accurate numerical method for modeling cosmic reionization. Simulated ionization and star formation histories from the “Cosmic Reionization on Computers” project are insensitive to the adopted value of the RSL for as long as that value does not fall below about 10% of the true speed of light. A recent claim of the failure of the RSL approximation in the Illustris reionization model appears to be due to the effective speed ofmore » light being reduced in the equation for the cosmic background too and hence illustrates the importance of maintaining the correct speed of light in modeling the cosmic background.« less
Marvel-ous Dwarfs: Results from Four Heroically Large Simulated Volumes of Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Munshi, Ferah; Brooks, Alyson; Weisz, Daniel; Bellovary, Jillian; Christensen, Charlotte
2018-01-01
We present results from high resolution, fully cosmological simulations of cosmic sheets that contain many dwarf galaxies. Together, they create the largest collection of simulated dwarf galaxies to date, with z=0 stellar masses comparable to the LMC or smaller. In total, we have simulated almost 100 luminous dwarf galaxies, forming a sample of simulated dwarfs which span a wide range of physical (stellar and halo mass) and evolutionary properties (merger history). We show how they can be calibrated against a wealth of observations of nearby galaxies including star formation histories, HI masses and kinematics, as well as stellar metallicities. We present preliminary results answering the following key questions: What is the slope of the stellar mass function at extremely low masses? Do halos with HI and no stars exist? What is the scatter in the stellar to halo mass relationship as a function of dwarf mass? What drives the scatter? With this large suite, we are beginning to statistically characterize dwarf galaxies and identify the types and numbers of outliers to expect.
Featured Image: Making Dust in the Lab
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-12-01
This remarkable photograph (which spans only 10 m across; click for a full view) reveals what happens when you form dust grains in a laboratory under conditions similar to those of interstellar space. The cosmic life cycle of dust grains is not well understood we know that in the interstellar medium (ISM), dust is destroyed at a higher rate than it is produced by stellar sources. Since the amount of dust in the ISM stays constant, however, there must be additional sources of dust production besides stars. A team of scientists led by Daniele Fulvio (Pontifical Catholic University of Rio de Janeiro and the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena) have now studied formation mechanisms of dust grains in the lab by mimicking low-temperature ISM conditions and exploring how, under these conditions, carbonaceous materials condense from gas phase to form dust grains. To read more about their results and see additional images, check out the paper below.CitationDaniele Fulvio et al 2017 ApJS 233 14. doi:10.3847/1538-4365/aa9224
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao Yitian; Tian Bo; State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing 100083
2006-11-15
The spherical modified Kadomtsev-Petviashvili (smKP) model is hereby derived with symbolic computation for the dust-ion-acoustic waves with zenith-angle perturbation in a cosmic dusty plasma. Formation and properties of both dark and bright smKP nebulons are obtained and discussed. The relevance of those smKP nebulons to the supernova shells and Saturn's F-ring is pointed out, and possibly observable nebulonic effects for the future cosmic plasma experiments are proposed. The difference of the smKP nebulons from other types of nebulons is also analyzed.
NASA Astrophysics Data System (ADS)
Scaringi, Simone
2016-11-01
Low-mass stars form through a process known as disk accretion, eating up material that orbits in a disk around them. It turns out that the same mechanism also describes the formation of more massive stars.
NASA Astrophysics Data System (ADS)
Scaringi, Simone
2017-03-01
Low-mass stars form through a process known as disk accretion, eating up material that orbits in a disk around them. It turns out that the same mechanism also describes the formation of more massive stars.
Neronov, Andrii
2017-11-10
Cosmic rays could be produced via shock acceleration powered by supernovae. The supernova hypothesis implies that each supernova injects, on average, some 10^{50} erg in cosmic rays, while the shock acceleration model predicts a power law cosmic ray spectrum with the slope close to 2. Verification of these predictions requires measurement of the spectrum and power of cosmic ray injection from supernova population(s). Here, we obtain such measurements based on γ-ray observation of the Constellation III region of the Large Magellanic Cloud. We show that γ-ray emission from this young star formation region originates from cosmic rays injected by approximately two thousand supernovae, rather than by a massive star wind powered by a superbubble predating supernova activity. Cosmic ray injection power is found to be (1.1_{-0.2}^{+0.5})×10^{50} erg/supernova (for the estimated interstellar medium density 0.3 cm^{-3}). The spectrum is a power law with slope 2.09_{-0.07}^{+0.06}. This agrees with the model of particle acceleration at supernova shocks and provides a direct proof of the supernova origin of cosmic rays.
Interactive DataBase of Cosmic Ray Anisotropy (DB A10)
NASA Astrophysics Data System (ADS)
Asipenka, A.S.; Belov, A.V.; Eroshenko, E.F.; Klepach, E.G.; Oleneva, V.A.; Yake, V.G.
Data on the hourly means of cosmic ray density and anisotropy derived by the GSM method over the 1957-2006 are introduced in to MySQL database. This format allowed an access to data both in local and in the Internet. Using the realized combination of script-language Php and My SQL database the Internet project was created on the access for users data on the CR anisotropy in different formats (http://cr20.izmiran.ru/AnisotropyCR/main.htm/). Usage the sheaf Php and MySQL provides fast receiving data even in the Internet since a request and following process of data are accomplished on the project server. Usage of MySQL basis for the storing data on cosmic ray variations give a possibility to construct requests of different structures, extends the variety of data reflection, makes it possible the conformity data to other systems and usage them in other projects.
The Lyα forest and the Cosmic Web
NASA Astrophysics Data System (ADS)
Meiksin, Avery
2016-10-01
The accurate description of the properties of the Lyman-α forest is a spectacular success of the Cold Dark Matter theory of cosmological structure formation. After a brief review of early models, it is shown how numerical simulations have demonstrated the Lyman-α forest emerges from the cosmic web in the quasi-linear regime of overdensity. The quasi-linear nature of the structures allows accurate modeling, providing constraints on cosmological models over a unique range of scales and enabling the Lyman-α forest to serve as a bridge to the more complex problem of galaxy formation.
Method for Direct Measurement of Cosmic Acceleration by 21-cm Absorption Systems
NASA Astrophysics Data System (ADS)
Yu, Hao-Ran; Zhang, Tong-Jie; Pen, Ue-Li
2014-07-01
So far there is only indirect evidence that the Universe is undergoing an accelerated expansion. The evidence for cosmic acceleration is based on the observation of different objects at different distances and requires invoking the Copernican cosmological principle and Einstein's equations of motion. We examine the direct observability using recession velocity drifts (Sandage-Loeb effect) of 21-cm hydrogen absorption systems in upcoming radio surveys. This measures the change in velocity of the same objects separated by a time interval and is a model-independent measure of acceleration. We forecast that for a CHIME-like survey with a decade time span, we can detect the acceleration of a ΛCDM universe with 5σ confidence. This acceleration test requires modest data analysis and storage changes from the normal processing and cannot be recovered retroactively.
Cosmic web and star formation activity in galaxies at z ∼ 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darvish, B.; Mobasher, B.; Sales, L. V.
We investigate the role of the delineated cosmic web/filaments on star formation activity by exploring a sample of 425 narrow-band selected Hα emitters, as well as 2846 color-color selected underlying star-forming galaxies for a large-scale structure at z = 0.84 in the COSMOS field from the HiZELS survey. Using the scale-independent Multi-scale Morphology Filter algorithm, we are able to quantitatively describe the density field and disentangle it into its major components: fields, filaments, and clusters. We show that the observed median star formation rate (SFR), stellar mass, specific SFR, the mean SFR-mass relation, and its scatter for both Hα emittersmore » and underlying star-forming galaxies do not strongly depend on different classes of environment, in agreement with previous studies. However, the fraction of Hα emitters varies with environment and is enhanced in filamentary structures at z ∼ 1. We propose mild galaxy-galaxy interactions as the possible physical agent for the elevation of the fraction of Hα star-forming galaxies in filaments. Our results show that filaments are the likely physical environments that are often classed as the 'intermediate' densities and that the cosmic web likely plays a major role in galaxy formation and evolution which has so far been poorly investigated.« less
Nuclear Physics in Space: What We Can Learn From Cosmic Rays
NASA Technical Reports Server (NTRS)
Moskalenko, Igor V.
2004-01-01
Studies and discoveries in cosmic-ray physics and generally in Astrophysics provide a fertile ground for research in many areas of Particle Physics and Cosmology, such as the search for dark matter, antimatter, new particles, and exotic physics, studies of the nucleosynthesis, origin of Galactic and extragalactic gamma-ray diffuse emission, formation of the large scale structure of the universe etc. In several years new missions are planned for cosmic-ray experiments, which will tremendously increase the quality and accuracy of cosmic-ray data. On the other hand, direct measurements of cosmic rays are possible in only one location on the outskirts of the Milky Way galaxy and present only a snapshot of very dynamic processes. It has been recently realized that direct information about the fluxes and spectra of cosmic rays in distant locations is provided by the Galactic diffuse gamma-rays, therefore, complementing the local cosmic-ray studies. A wealth of information is also contained in the isotopic abundances of cosmic rays, therefore, accurate evaluation of the isotopic production cross sections is of primary importance for Astrophysics of cosmic rays, studies of the galactic chemical evolution, and Cosmology. In this talk, I will show new results obtained with GALPROP, the most advanced numerical model for cosmic-ray propagation, which includes in a self-consistent way all cosmic-ray species (stable and long-lived radioactive isotopes from H to Ni, antiprotons, positrons and electrons, gamma rays and synchrotron radiation), and all relevant processes and reactions.
Tests for Gaussianity of the MAXIMA-1 cosmic microwave background map.
Wu, J H; Balbi, A; Borrill, J; Ferreira, P G; Hanany, S; Jaffe, A H; Lee, A T; Rabii, B; Richards, P L; Smoot, G F; Stompor, R; Winant, C D
2001-12-17
Gaussianity of the cosmological perturbations is one of the key predictions of standard inflation, but it is violated by other models of structure formation such as cosmic defects. We present the first test of the Gaussianity of the cosmic microwave background (CMB) on subdegree angular scales, where deviations from Gaussianity are most likely to occur. We apply the methods of moments, cumulants, the Kolmogorov test, the chi(2) test, and Minkowski functionals in eigen, real, Wiener-filtered, and signal-whitened spaces, to the MAXIMA-1 CMB anisotropy data. We find that the data, which probe angular scales between 10 arcmin and 5 deg, are consistent with Gaussianity. These results show consistency with the standard inflation and place constraints on the existence of cosmic defects.
Iamshanov, V A
2009-01-01
The cosmic rays are one of the constantly acting factors influencing on genetic apparatus and depending from sun activity, which have the circadian rhythm. The nature creates a number of mechanisms, which defend the organism from cosmic rays and free radicals as consequence. However, the malfunctions of these mechanisms damage the genetic apparatus, accelerate the aging and bring to a number of illnesses. It is supposed that to neutralise the free radicals as cosmic rays consequence the organism uses its own free radicals, which have the physiological functions, for example, the nitric oxide. To limit the nitric oxide production, the mechanism of melatonin formation is used, which has a circadian rhythm.
NASA Astrophysics Data System (ADS)
Hill, M. E.; Kollmann, P.; McNutt, R. L., Jr.; Stern, A.; Weaver, H. A., Jr.; Young, L. A.; Olkin, C.; Spencer, J. R.
2017-12-01
During the period from January 2012 to December 2017 the New Horizons spacecraft traveled from 22 to 41 AU from the Sun, making nearly continuous interplanetary plasma and particle measurements utilizing the SWAP and PEPSSI instruments. We report on newly extended measurements from PEPSSI (Pluto Energetic Particle Spectrometer Science Investigation) that now bring together suprathermal particles above 2 keV/nuc (including interstellar pickup ions), energetic particles with H, He, and O composition from 30 keV to 1 MeV, and cosmic rays above 65 MeV (with effective count-rate-limited upper energy of 1 GeV). Such a wide energy range allows us to look at the solar wind structures passing over the spacecraft, the energetic particles that are often accelerated by these structures, and the suppression of cosmic rays resulting from the increased turbulence inhibiting cosmic ray transport to the spacecraft position (i.e., Forbush decreases). This broad perspective provides simultaneous, previously unattainable diagnostics of outer heliospheric particle dynamics and acceleration. Besides the benefit of being recent, in-ecliptic measurements, unlike the historic Voyager 1 and 2 spacecraft, these PEPSSI observations are also totally unique in the suprathermal range; in this region only PEPSSI can span the suprathermal range, detecting a population that is a linchpin to understanding the outer heliosphere.
On the proper use of the reduced speed of light approximation
Gnedin, Nickolay Y.
2016-12-07
I show that the Reduced Speed of Light (RSL) approximation, when used properly (i.e. as originally designed - only for the local sources but not for the cosmic background), remains a highly accurate numerical method for modeling cosmic reionization. Simulated ionization and star formation histories from the "Cosmic Reionization On Computers" (CROC) project are insensitive to the adopted value of the reduced speed of light for as long as that value does not fall below about 10% of the true speed of light. Here, a recent claim of the failure of the RSL approximation in the Illustris reionization model appearsmore » to be due to the effective speed of light being reduced in the equation for the cosmic background too, and, hence, illustrates the importance of maintaining the correct speed of light in modeling the cosmic background.« less
On the proper use of the reduced speed of light approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnedin, Nickolay Y.
I show that the Reduced Speed of Light (RSL) approximation, when used properly (i.e. as originally designed - only for the local sources but not for the cosmic background), remains a highly accurate numerical method for modeling cosmic reionization. Simulated ionization and star formation histories from the "Cosmic Reionization On Computers" (CROC) project are insensitive to the adopted value of the reduced speed of light for as long as that value does not fall below about 10% of the true speed of light. Here, a recent claim of the failure of the RSL approximation in the Illustris reionization model appearsmore » to be due to the effective speed of light being reduced in the equation for the cosmic background too, and, hence, illustrates the importance of maintaining the correct speed of light in modeling the cosmic background.« less
The cosmic spiderweb: equivalence of cosmic, architectural and origami tessellations.
Neyrinck, Mark C; Hidding, Johan; Konstantatou, Marina; van de Weygaert, Rien
2018-04-01
For over 20 years, the term 'cosmic web' has guided our understanding of the large-scale arrangement of matter in the cosmos, accurately evoking the concept of a network of galaxies linked by filaments. But the physical correspondence between the cosmic web and structural engineering or textile 'spiderwebs' is even deeper than previously known, and also extends to origami tessellations. Here, we explain that in a good structure-formation approximation known as the adhesion model, threads of the cosmic web form a spiderweb, i.e. can be strung up to be entirely in tension. The correspondence is exact if nodes sampling voids are included, and if structure is excluded within collapsed regions (walls, filaments and haloes), where dark-matter multistreaming and baryonic physics affect the structure. We also suggest how concepts arising from this link might be used to test cosmological models: for example, to test for large-scale anisotropy and rotational flows in the cosmos.
The cosmic spiderweb: equivalence of cosmic, architectural and origami tessellations
NASA Astrophysics Data System (ADS)
Neyrinck, Mark C.; Hidding, Johan; Konstantatou, Marina; van de Weygaert, Rien
2018-04-01
For over 20 years, the term `cosmic web' has guided our understanding of the large-scale arrangement of matter in the cosmos, accurately evoking the concept of a network of galaxies linked by filaments. But the physical correspondence between the cosmic web and structural engineering or textile `spiderwebs' is even deeper than previously known, and also extends to origami tessellations. Here, we explain that in a good structure-formation approximation known as the adhesion model, threads of the cosmic web form a spiderweb, i.e. can be strung up to be entirely in tension. The correspondence is exact if nodes sampling voids are included, and if structure is excluded within collapsed regions (walls, filaments and haloes), where dark-matter multistreaming and baryonic physics affect the structure. We also suggest how concepts arising from this link might be used to test cosmological models: for example, to test for large-scale anisotropy and rotational flows in the cosmos.
Selections from 2017: Hubble Survey Explores Distant Galaxies
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-12-01
Editors note:In these last two weeks of 2017, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume in January.CANDELS Multi-Wavelength Catalogs: Source Identification and Photometry in the CANDELS COSMOSSurvey FieldPublished January2017Main takeaway:A publication led byHooshang Nayyeri(UC Irvine and UC Riverside) early this year details acatalog of sources built using the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey(CANDELS), a survey carried out by cameras on board the Hubble Space Telescope. The catalogliststhe properties of 38,000 distant galaxies visiblewithin the COSMOS field, a two-square-degree equatorial field explored in depthto answer cosmological questions.Why its interesting:Illustration showing the three-dimensional map of the dark matter distribution in theCOSMOS field. [Adapted from NASA/ESA/R. Massey(California Institute of Technology)]The depth and resolution of the CANDELS observations areuseful for addressingseveral major science goals, including the following:Studying the most distant objects in the universe at the epoch of reionization in the cosmic dawn.Understanding galaxy formation and evolution during the peak epoch of star formation in the cosmic high noon.Studying star formation from deep ultravioletobservations and studying cosmology from supernova observations.Why CANDELS is a major endeavor:CANDELS isthe largest multi-cycle treasury program ever approved on the Hubble Space Telescope using over 900 orbits between 2010 and 2013 withtwo cameras on board the spacecraftto study galaxy formation and evolution throughout cosmic time. The CANDELS images are all publicly available, and the new catalogrepresents an enormous source of information about distant objectsin our universe.CitationH. Nayyeri et al 2017 ApJS 228 7. doi:10.3847/1538-4365/228/1/7
Scientific activity program for 1989
NASA Astrophysics Data System (ADS)
1989-04-01
The current research projects are summarized. The research is grouped into four main directions: infrared astronomy, interplanetary media, cosmic rays and gravitational fields. The projects include instruments for the Infrared Space Observatory (ISO) satellite, problems of star formation and star evolution, Tethered Satellite System (TSS) experiment, Opera experiment, propagation of cosmic rays in the ionosphere, design of a solar neutron detector, and gravitational wave antennas experiments.
A Physical Parameterization of the Evolution of X-ray Binary Emission
NASA Astrophysics Data System (ADS)
Gilbertson, Woodrow; Lehmer, Bret; Eufrasio, Rafael
2018-01-01
The Chandra Deep Field-South (CDF-S) and North (CDF-N) surveys, 7 Ms and 2 Ms respectively, contain measurements spanning a large redshift range of z = 0 to 7. These data-rich fields provide a unique window into the cosmic history of X-ray emission from normal galaxies (i.e., not dominated by AGN). Scaling relations between normal-galaxy X-ray luminosity and quantities, such as star formation rate (SFR) and stellar mass (M*), have been used to constrain the redshift evolution of the formation rates of low-mass X-ray binaries (LMXB) and high-mass X-ray binaries (HMXB). However, these measurements do not directly reveal the driving forces behind the redshift evolution of X-ray binaries (XRBs). We hypothesize that changes in the mean stellar age and metallicity of the Universe drive the evolution of LMXB and HMXB emission, respectively. We use star-formation histories, derived through fitting broad-band UV-to-far-IR spectra, to estimate the masses of stellar populations in various age bins for each galaxy. We then divide our galaxy samples into bins of metallicity, and use our star-formation history information and measured X-ray luminosities to determine for each metallicity bin a best model LX/M*(tage). We show that this physical model provides a more useful parameterization of the evolution of X-ray binary emission, as it can be extrapolated out to high redshifts with more sensible predictions. This meaningful relation can be used to better estimate the emission of XRBs in the early Universe, where XRBs are predicted to play an important role in heating the intergalactic medium.
Suture spanning augmentation of single-row rotator cuff repair: a biomechanical analysis.
Early, Nicholas A; Elias, John J; Lippitt, Steven B; Filipkowski, Danielle E; Pedowitz, Robert A; Ciccone, William J
2017-02-01
This in vitro study evaluated the biomechanical benefit of adding spanning sutures to single-row rotator cuff repair. Mechanical testing was performed to evaluate 9 pairs of cadaveric shoulders with complete rotator cuff repairs, with a single-row technique used on one side and the suture spanning technique on the other. The spanning technique included sutures from 2 lateral anchors securing tendon near the musculotendinous junction, spanning the same anchor placement from single-row repair. The supraspinatus muscle was loaded to 100 N at 0.25 Hz for 100 cycles, followed by a ramp to failure. Markers and a video tracking system measured anterior and posterior gap formation across the repair at 25-cycle intervals. The force at which the stiffness decreased by 50% and 75% was determined. Data were compared using paired t-tests. One single-row repair failed at <25 cycles. Both anterior and posterior gap distances tended to be 1 to 2 mm larger for the single-row repairs than for the suture spanning technique. The difference was statistically significant at all cycles for the posterior gap formation (P ≤ .02). The trends were not significant for the anterior gap (P ≥ .13). The loads at which the stiffness decreased by 50% and 75% did not differ significantly between the 2 types of repair (P ≥ .10). The suture spanning technique primarily improved posterior gap formation. Decreased posterior gap formation could reduce failure rates for rotator cuff repair. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Colalillo, R.; Mussa, R.
2017-12-01
Very peculiar events have been detected with the surface detector (SD) of the Pierre Auger Observatory. These events are characterized by stations collecting a long-lasting signal compared to cosmic-ray signal, and by stations where the high-frequency noise was observed. This noise could be associated with a lightning-caused signal. A correlation between our events and lightning strikes as recorded by the WWLLN (World Wide Lightning Location Network) network was found. The time difference between lightning and Auger data spans from 10 μs to 100 ms. The long-lasting signals are observed in stations distributed in a circular pattern with a typical radius of about 6 km for the big events, that are almost the whole sample. The amplitude of the signal is bigger close to the centre of the circle and decreases while the distance from the centre increases. The energy deposited in each station spans from 10 GeV to 1 TeV, well above the typical energies deposited by cosmic rays showers. The first stations reached by the signal are the central ones. The observed timing is consistent with a spherical or cylindrical front propagating from a source very close to the ground. The main characteristics of these events will be described. Studies are under way to understand phenomena and mechanisms that may have generated them.
Is QSO 1146 + 111B,C due to lensing by a cosmic string?
NASA Technical Reports Server (NTRS)
Gott, J. R., III
1986-01-01
A newly discovered lens candidate, QSO 1146 + 111B,C, is discussed which appears to consist of two images of equal brightness of a quasar at redshift 1.01 separated by 2.6 arcmin. If this is produced by a cosmic string, its mass per unit length is about 4.0 x 10 to the 23rd g/cm or more. This value is large enough to be interesting for string-assisted galaxy formation and near the upper limits implied by the isotropy of the cosmic microwave background and constraints on gravitational radiation.
The metallicity of the intracluster medium over cosmic time: further evidence for early enrichment
NASA Astrophysics Data System (ADS)
Mantz, Adam B.; Allen, Steven W.; Morris, R. Glenn; Simionescu, Aurora; Urban, Ondrej; Werner, Norbert; Zhuravleva, Irina
2017-12-01
We use Chandra X-ray data to measure the metallicity of the intracluster medium (ICM) in 245 massive galaxy clusters selected from X-ray and Sunyaev-Zel'dovich (SZ) effect surveys, spanning redshifts 0 < z < 1.2. Metallicities were measured in three different radial ranges, spanning cluster cores through their outskirts. We explore trends in these measurements as a function of cluster redshift, temperature and surface brightness 'peakiness' (a proxy for gas cooling efficiency in cluster centres). The data at large radii (0.5-1 r500) are consistent with a constant metallicity, while at intermediate radii (0.1-0.5 r500) we see a late-time increase in enrichment, consistent with the expected production and mixing of metals in cluster cores. In cluster centres, there are strong trends of metallicity with temperature and peakiness, reflecting enhanced metal production in the lowest entropy gas. Within the cool-core/sharply peaked cluster population, there is a large intrinsic scatter in central metallicity and no overall evolution, indicating significant astrophysical variations in the efficiency of enrichment. The central metallicity in clusters with flat surface brightness profiles is lower, with a smaller intrinsic scatter, but increases towards lower redshifts. Our results are consistent with other recent measurements of ICM metallicity as a function of redshift. They reinforce the picture implied by observations of uniform metal distributions in the outskirts of nearby clusters, in which most of the enrichment of the ICM takes place before cluster formation, with significant later enrichment taking place only in cluster centres, as the stellar populations of the central galaxies evolve.
NASA Astrophysics Data System (ADS)
Brouwer, Margot M.; Cacciato, Marcello; Dvornik, Andrej; Eardley, Lizzie; Heymans, Catherine; Hoekstra, Henk; Kuijken, Konrad; McNaught-Roberts, Tamsyn; Sifón, Cristóbal; Viola, Massimo; Alpaslan, Mehmet; Bilicki, Maciej; Bland-Hawthorn, Joss; Brough, Sarah; Choi, Ami; Driver, Simon P.; Erben, Thomas; Grado, Aniello; Hildebrandt, Hendrik; Holwerda, Benne W.; Hopkins, Andrew M.; de Jong, Jelte T. A.; Liske, Jochen; McFarland, John; Nakajima, Reiko; Napolitano, Nicola R.; Norberg, Peder; Peacock, John A.; Radovich, Mario; Robotham, Aaron S. G.; Schneider, Peter; Sikkema, Gert; van Uitert, Edo; Verdoes Kleijn, Gijs; Valentijn, Edwin A.
2016-11-01
Galaxies and their dark matter haloes are part of a complex network of mass structures, collectively called the cosmic web. Using the tidal tensor prescription these structures can be classified into four cosmic environments: voids, sheets, filaments and knots. As the cosmic web may influence the formation and evolution of dark matter haloes and the galaxies they host, we aim to study the effect of these cosmic environments on the average mass of galactic haloes. To this end we measure the galaxy-galaxy lensing profile of 91 195 galaxies, within 0.039 < z < 0.263, from the spectroscopic Galaxy And Mass Assembly survey, using {˜ }100 ° ^2 of overlapping data from the Kilo-Degree Survey. In each of the four cosmic environments we model the contributions from group centrals, satellites and neighbouring groups to the stacked galaxy-galaxy lensing profiles. After correcting the lens samples for differences in the stellar mass distribution, we find no dependence of the average halo mass of central galaxies on their cosmic environment. We do find a significant increase in the average contribution of neighbouring groups to the lensing profile in increasingly dense cosmic environments. We show, however, that the observed effect can be entirely attributed to the galaxy density at much smaller scales (within 4 h-1 Mpc), which is correlated with the density of the cosmic environments. Within our current uncertainties we find no direct dependence of galaxy halo mass on their cosmic environment.
Cosmic string loops as the seeds of super-massive black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bramberger, Sebastian F.; Brandenberger, Robert H.; Jreidini, Paul
2015-06-01
Recent discoveries of super-massive black holes at high redshifts indicate a possible tension with the standard ΛCDM paradigm of early universe cosmology which has difficulties in explaining the origin of the required nonlinear compact seeds which trigger the formation of these super-massive black holes. Here we show that cosmic string loops which result from a scaling solution of strings formed during a phase transition in the very early universe lead to an additional source of compact seeds. The number density of string-induced seeds dominates at high redshifts and can help trigger the formation of the observed super-massive black holes.
Origin of the cosmic network in ΛCDM: Nature vs nurture
NASA Astrophysics Data System (ADS)
Shandarin, Sergei; Habib, Salman; Heitmann, Katrin
2010-05-01
The large-scale structure of the Universe, as traced by the distribution of galaxies, is now being revealed by large-volume cosmological surveys. The structure is characterized by galaxies distributed along filaments, the filaments connecting in turn to form a percolating network. Our objective here is to quantitatively specify the underlying mechanisms that drive the formation of the cosmic network: By combining percolation-based analyses with N-body simulations of gravitational structure formation, we elucidate how the network has its origin in the properties of the initial density field (nature) and how its contrast is then amplified by the nonlinear mapping induced by the gravitational instability (nurture).
The Cold Gas History of the Universe as seen by the ngVLA
NASA Astrophysics Data System (ADS)
Riechers, Dominik A.; Carilli, Chris Luke; Casey, Caitlin; da Cunha, Elisabete; Hodge, Jacqueline; Ivison, Rob; Murphy, Eric J.; Narayanan, Desika; Sargent, Mark T.; Scoville, Nicholas; Walter, Fabian
2017-01-01
The Next Generation Very Large Array (ngVLA) will fundamentally advance our understanding of the formation processes that lead to the assembly of galaxies throughout cosmic history. The combination of large bandwidth with unprecedented sensitivity to the critical low-level CO lines over virtually the entire redshift range will open up the opportunity to conduct large-scale, deep cold molecular gas surveys, mapping the fuel for star formation in galaxies over substantial cosmic volumes. Informed by the first efforts with the Karl G. Jansky Very Large Array (COLDz survey) and the Atacama Large (sub)Millimeter Array (ASPECS survey), we here present initial predictions and possible survey strategies for such "molecular deep field" observations with the ngVLA. These investigations will provide a detailed measurement of the volume density of molecular gas in galaxies as a function of redshift, the "cold gas history of the universe". This will crucially complement studies of the neutral gas, star formation and stellar mass histories with large low-frequency arrays, the Large UV/Optical/Infrared Surveyor, and the Origins Space Telescope, providing the means to obtain a comprehensive picture of galaxy evolution through cosmic times.
Unaltered cosmic spherules in a 1.4-Gyr-old sandstone from Finland.
Deutsch, A; Greshake, A; Pesonen, L J; Pihlaja, P
1998-09-10
Micrometeorites-submillimetre-sized particles derived from asteroids and comets-occur in significant quantities in deep sea sediments, and the ice sheets of Greenland and Antarctica. The most abundant micrometeorites are cosmic spherules, which contain nickel-rich spinels that were crystallized and oxidized during atmospheric entry, therefore recording the oxygen content in the uppermost atmosphere. But the use of micrometeorites for detecting past changes in the flux of incoming extraterrestrial matter, and as probes of the evolution of the atmosphere, has been hampered by the fact that most objects with depositional ages higher than 0.5 Myr show severe chemical alteration. Here we report the discovery of unaltered cosmic spherules in a 1.4-Gyr-old sandstone (red bed) from Finland. From this we infer that red beds, a common lithology in the Earth's history, may contain substantial unbiased populations of fossil micrometeorites. The study of such populations would allow systematic research on variations in the micrometeorite flux from the early Proterozoic era to recent times (a time span of about 2.5 Gyr), and could help to better constrain the time when the atmospheric oxygen content was raised to its present level.
Space Radiation and Human Exposures, A Primer.
Nelson, Gregory A
2016-04-01
The space radiation environment is a complex field comprised primarily of charged particles spanning energies over many orders of magnitude. The principal sources of these particles are galactic cosmic rays, the Sun and the trapped radiation belts around the earth. Superimposed on a steady influx of cosmic rays and a steady outward flux of low-energy solar wind are short-term ejections of higher energy particles from the Sun and an 11-year variation of solar luminosity that modulates cosmic ray intensity. Human health risks are estimated from models of the radiation environment for various mission scenarios, the shielding of associated vehicles and the human body itself. Transport models are used to propagate the ambient radiation fields through realistic shielding levels and materials to yield radiation field models inside spacecraft. Then, informed by radiobiological experiments and epidemiology studies, estimates are made for various outcome measures associated with impairments of biological processes, losses of function or mortality. Cancer-associated risks have been formulated in a probabilistic model while management of non-cancer risks are based on permissible exposure limits. This article focuses on the various components of the space radiation environment and the human exposures that it creates.
NASA Astrophysics Data System (ADS)
Liu, G. C.; Lu, Y. J.; Xie, L. Z.; Chen, X. L.; Zhao, Y. H.
2016-01-01
Context. Massive luminous red galaxies (LRGs) are believed to be evolving passively and can be used as cosmic chronometers to estimate the Hubble constant (the differential age method). However, different LRGs may be located in different environments. The environmental effects, if any, on the mean ages of LRGs, and the ages of the oldest LRGs at different redshift, may limit the use of the LRGs as cosmic chronometers. Aims: We aim to investigate the environmental and mass dependence of the formation of "quiescent" LRGs, selected from the Sloan Digital Sky Survey (SDSS) data release 8, and to pave the way for using LRGs as cosmic chronometers. Methods: Using the population synthesis software STARLIGHT, we derive the stellar populations in each LRG through the full spectrum fitting and obtain the mean age distribution and the mean star formation history (SFH) of those LRGs. Results: We find that there is no apparent dependence of the mean age and the SFH of quiescent LRGs on their environment, while the ages of those quiescent LRGs depend weakly on their mass. We compare the SFHs of the SDSS LRGs with those obtained from a semi-analytical galaxy formation model and find that they are roughly consistent with each other if we consider the errors in the STARLIGHT-derived ages. We find that a small fraction of later star formation in LRGs leads to a systematical overestimation (~28%) of the Hubble constant by the differential age method, and the systematical errors in the STARLIGHT-derived ages may lead to an underestimation (~ 16%) of the Hubble constant. However, these errors can be corrected by a detailed study of the mean SFH of those LRGs and by calibrating the STARLIGHT-derived ages with those obtained independently by other methods. Conclusions: The environmental effects do not play a significant role in the age estimates of quiescent LRGs; and the quiescent LRGs as a population can be used securely as cosmic chronometers, and the Hubble constant can be measured with high precision by using the differential age method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapi, A.; Mancuso, C.; Celotti, A.
We provide a holistic view of galaxy evolution at high redshifts z ≳ 4, which incorporates the constraints from various astrophysical/cosmological probes, including the estimate of the cosmic star formation rate (SFR) density from UV/IR surveys and long gamma-ray burst (GRBs) rates, the cosmic reionization history following the latest Planck measurements, and the missing satellites issue. We achieve this goal in a model-independent way by exploiting the SFR functions derived by Mancuso et al. on the basis of an educated extrapolation of the latest UV/far-IR data from HST / Herschel , and already tested against a number of independent observables.more » Our SFR functions integrated down to a UV magnitude limit M {sub UV} ≲ −13 (or SFR limit around 10{sup −2} M {sub ⊙} yr{sup −1}) produce a cosmic SFR density in excellent agreement with recent determinations from IR surveys and, taking into account a metallicity ceiling Z ≲ Z {sub ⊙}/2, with the estimates from long GRB rates. They also yield a cosmic reionization history consistent with that implied by the recent measurements of the Planck mission of the electron scattering optical depth τ {sub es} ≈ 0.058; remarkably, this result is obtained under a conceivable assumption regarding the average value f {sub esc} ≈ 0.1 of the escape fraction for ionizing photons. We demonstrate via the abundance-matching technique that the above constraints concurrently imply galaxy formation becoming inefficient within dark matter halos of mass below a few 10{sup 8} M {sub ⊙}; pleasingly, such a limit is also required so as not to run into the missing satellites issue. Finally, we predict a downturn of the Galaxy luminosity function faintward of M {sub UV} ≲ −12, and stress that its detailed shape, to be plausibly probed in the near future by the JWST , will be extremely informative on the astrophysics of galaxy formation in small halos, or even on the microscopic nature of the dark matter.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karelin, A. V., E-mail: karelin@hotbox.ru; Voronov, S. A.; Galper, A. M.
2015-03-15
A method based on the use of a sampling calorimeter was developed for measuring the total energy spectrum of electrons and positrons from high-energy cosmic rays in the PAMELA satellite-borne experiment. This made it possible to extend the range of energies accessible to measurements by the magnetic system of the PAMELA spectrometer. Themethod involves a procedure for selecting electrons on the basis of features of a secondary-particle shower in the calorimeter. The results obtained by measuring the total spectrum of cosmic-ray electrons and positrons in the energy range of 300–1500 GeV by the method in question are presented on themore » basis of data accumulated over a period spanning 2006 and 2013.« less
Power spectrum constraints from spectral distortions in the cosmic microwave background
NASA Technical Reports Server (NTRS)
Hu, Wayne; Scott, Douglas; Silk, Joseph
1994-01-01
Using recent experimental limits on chemical potential distortions from Cosmic Background Explorer (COBE) Far Infrared Astronomy Satellite (FIRAS), and the large lever-arm spanning the damping of sub-Jeans scale fluctuations to the COBE DMR fluctuations, we set a constraint on the slope of the primordial power spectrum n. It is possible to analytically calculate the contribution over the full range of scales and redshifts, correctly taking into account fluctuation growth and damping as well as thermalization processes. Assuming conservatively that mu is less than 1.76 x 10(exp -4), we find that the 95% upper limit on n is only weakly dependent on other cosmological parameters, e.g., n is less than 1.60 (h=0.5) and n is less than 1.63 (h=1.0) for Omega(sub 0) = 1, with marginally weaker constraints for Omega(sub 0) is less than 1 in a flat model with a cosmological constant.
NASA Astrophysics Data System (ADS)
Pietroni, M.
2009-02-01
All the non-trivial features of the Universe we see around us, such as particles, stars, galaxies, and clusters of galaxies, are the result of non-equilibrium processes in the cosmic evolution. These lectures aim to provide some general background in cosmology and to examine specific, and notable, examples of departures from thermal equilibrium. They are organized as follows: 1) Overview of the thermal history of the Universe after the Big Bang: the relevant time-scales and the mechanism of particle decoupling from the themal bath; 2) Explicit examples of cosmic relics: nucleosynthesis, photons and the cosmic microwave background, neutrinos, and cold dark matter; 3) Baryogenesis: the generation of the baryon asymmetry of the Universe; 4) The formation of cosmic structures (galaxies, clusters of galaxies): from the Vlasov equation to the renormalization group.
A Search for Cosmic String Loops Using GADGET-2 Cosmological N-Body Simulator
NASA Astrophysics Data System (ADS)
Braverman, William; Cousins, Bryce; Jia, Hewei
2018-01-01
Cosmic string loops are an extremely elusive hypothetical entity that have eluded the grasp of physicists and astronomers since their existence was postulated in the 1970’s. Finding evidence of their existence could be the first empirical evidence of string theory.Simulating their basic motion in a cold dark matter background using GADGET-2 allows us to predict where they may cluster during large scale structure formation (if they cluster at all). Here, we present our progress in placing cosmic strings into GADGET-2 with their basic equations of motion to lay a ground work for more complex simulations to find where these strings cluster. Ultimately, these simulations could lay a groundwork as to where future microlensing and gravitational wave observatories should look for cosmic strings.
Voids and the Cosmic Web: cosmic depression & spatial complexity
NASA Astrophysics Data System (ADS)
van de Weygaert, Rien
2016-10-01
Voids form a prominent aspect of the Megaparsec distribution of galaxies and matter. Not only do theyrepresent a key constituent of the Cosmic Web, they also are one of the cleanest probesand measures of global cosmological parameters. The shape and evolution of voids are highly sensitive tothe nature of dark energy, while their substructure and galaxy population provides a direct key to thenature of dark matter. Also, the pristine environment of void interiors is an important testing groundfor our understanding of environmental influences on galaxy formation and evolution. In this paper, we reviewthe key aspects of the structure and dynamics ofvoids, with a particular focus on the hierarchical evolution of the void population. We demonstratehow the rich structural pattern of the Cosmic Web is related to the complex evolution and buildupof voids.
Cosmic Evolution of Accretion Power and Fusion Power: AGN and Starbursts at High Redshifts
NASA Astrophysics Data System (ADS)
Arnold Malkan, Matthew
2009-05-01
Extragalactic astronomers have been working for decades on obtaining robust measures of the luminosities galaxies produce from stars, and from active galactic nuclei. Our ultimate goal is deriving the cosmic evolution of all radiation produced by fusion and by black hole accretion. The combined effects of dust reddening and redshift make it impossible to achieve this with optical observations alone. Fortunately, infrared thermal continuum and forbidden line emission--from warm dust grains and ionized gas, respectively--can now be measured with excellent sensitivity. However, when measuring entire galaxies, these dust and gas emissions are powered by both active galactic nuclei and starbursts, which may be hard to separate spatially. We must use the fact that the patterns of IR energy output from AGN and SBs differ, with AGN making more ionized gas and hotter dust grains. Low-resolution spectroscopy, or even narrow-band filters can sort out the line emission from both processes when they are mixed in the same galaxy. The hope is that these spectroscopic determinations of star formation rate, and mass accretion rate in relatively small samples of bright galaxies will allow a calibration of broadband continuum measures. The dust continuum emission will then be measured in enormous samples of galaxies spanning their full range of masses, metallicities, environments and redshifts. Along the way, we should learn the astrophysical basis of black hole/galaxy "co-evolution." I will summarize some of the first specific infrared steps of this ambitious agenda, taken with IRAS and ISO to 2MASS, Akari and Spitzer and other telescopes. Time permitting, some of the exciting upcoming observational prospects will be advertised.
NASA Technical Reports Server (NTRS)
Ferguson, F.; Lilleleht, L. U.; Nuth, J.; Stephens, J. R.; Bussoletti, E.; Colangeli, L.; Mennella, V.; Dell'Aversana, P.; Mirra, C.
1993-01-01
The formation, properties and chemical dynamics of microparticles are important in a wide variety of technical and scientific fields including synthesis of semiconductor crystals from the vapour, heterogeneous chemistry in the stratosphere and the formation of cosmic dust surrounding the stars. Gravitational effects on particle formation from vapors include gas convection and buoyancy and particle sedimentation. These processes can be significantly reduced by studying condensation and agglomeration of particles in microgravity. In addition, to accurately simulate particle formation near stars, which takes place under low gravity conditions, studies in microgravity are desired. We report here the STARDUST experience, a recent collaborative effort that brings together a successful American program of microgravity experiments on particle formation aboard NASA KC-135 Reduced Gravity Research Aircraft and several Italian research groups with expertise in microgravity research and astrophysical dust formation. The program goal is to study the formation and properties of high temperature particles and gases that are of interest in astrophysics and planetary science. To do so we are developing techniques that are generally applicable to study particle formation and properties, taking advantage of the microgravity environment to allow accurate control of system parameters.
Ferguson, F; Lilleleht, L U; Nuth, J; Stephens, J R; Bussoletti, E; Colangeli, L; Mennella, V; Dell'Aversana, P; Mirra, C
1993-01-01
The formation, properties and chemical dynamics of microparticles are important in a wide variety of technical and scientific fields including synthesis of semiconductor crystals from the vapour, heterogeneous chemistry in the stratosphere and the formation of cosmic dust surrounding the stars. Gravitational effects on particle formation from vapors include gas convection and buoyancy and particle sedimentation. These processes can be significantly reduced by studying condensation and agglomeration of particles in microgravity. In addition, to accurately simulate particle formation near stars, which takes place under low gravity conditions, studies in microgravity are desired. We report here the STARDUST experience, a recent collaborative effort that brings together a successful American program of microgravity experiments on particle formation aboard NASA KC-135 Reduced Gravity Research Aircraft and several Italian research groups with expertise in microgravity research and astrophysical dust formation. The program goal is to study the formation and properties of high temperature particles and gases that are of interest in astrophysics and planetary science. To do so we are developing techniques that are generally applicable to study particle formation and properties, taking advantage of the microgravity environment to allow accurate control of system parameters.
NASA Astrophysics Data System (ADS)
Decarli, Roberto; Walter, Fabian; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Ivison, R. J.; Popping, Gergö; Riechers, Dominik; Smail, Ian R.; Swinbank, Mark; Weiss, Axel; Anguita, Timo; Assef, Roberto J.; Bauer, Franz E.; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Dickinson, Mark; Elbaz, David; Gónzalez-López, Jorge; Ibar, Edo; Infante, Leopoldo; Hodge, Jacqueline; Karim, Alex; Le Fevre, Olivier; Magnelli, Benjamin; Neri, Roberto; Oesch, Pascal; Ota, Kazuaki; Rix, Hans-Walter; Sargent, Mark; Sheth, Kartik; van der Wel, Arjen; van der Werf, Paul; Wagg, Jeff
2016-12-01
In this paper we use ASPECS, the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field in band 3 and band 6, to place blind constraints on the CO luminosity function and the evolution of the cosmic molecular gas density as a function of redshift up to z ˜ 4.5. This study is based on galaxies that have been selected solely through their CO emission and not through any other property. In all of the redshift bins the ASPECS measurements reach the predicted “knee” of the CO luminosity function (around 5 × 109 K km s-1 pc2). We find clear evidence of an evolution in the CO luminosity function with respect to z ˜ 0, with more CO-luminous galaxies present at z ˜ 2. The observed galaxies at z ˜ 2 also appear more gas-rich than predicted by recent semi-analytical models. The comoving cosmic molecular gas density within galaxies as a function of redshift shows a drop by a factor of 3-10 from z ˜ 2 to z ˜ 0 (with significant error bars), and possibly a decline at z > 3. This trend is similar to the observed evolution of the cosmic star formation rate density. The latter therefore appears to be at least partly driven by the increased availability of molecular gas reservoirs at the peak of cosmic star formation (z ˜ 2).
Hyper Suprime-Camera Survey of the Akari NEP Wide Field
NASA Astrophysics Data System (ADS)
Goto, Tomotsugu; Toba, Yoshiki; Utsumi, Yousuke; Oi, Nagisa; Takagi, Toshinobu; Malkan, Matt; Ohayma, Youichi; Murata, Kazumi; Price, Paul; Karouzos, Marios; Matsuhara, Hideo; Nakagawa, Takao; Wada, Takehiko; Serjeant, Steve; Burgarella, Denis; Buat, Veronique; Takada, Masahiro; Miyazaki, Satoshi; Oguri, Masamune; Miyaji, Takamitsu; Oyabu, Shinki; White, Glenn; Takeuchi, Tsutomu; Inami, Hanae; Perason, Chris; Malek, Katarzyna; Marchetti, Lucia; Lee, Hyung Mok; Im, Myung; Kim, Seong Jin; Koptelova, Ekaterina; Chao, Dani; Wu, Yi-Han; AKARI NEP Survey Team; AKARI All Sky Survey Team
2017-03-01
The extragalactic background suggests half the energy generated by stars was reprocessed into the infrared (IR) by dust. At z ∼1.3, 90% of star formation is obscured by dust. To fully understand the cosmic star formation history, it is critical to investigate infrared emission. AKARI has made deep mid-IR observation using its continuous 9-band filters in the NEP field (5.4 deg^2), using ∼10% of the entire pointed observations available throughout its lifetime. However, there remain 11,000 AKARI infrared sources undetected with the previous CFHT/Megacam imaging (r ∼25.9ABmag). Redshift and IR luminosity of these sources are unknown. These sources may contribute significantly to the cosmic star-formation rate density (CSFRD). For example, if they all lie at 1 < z < 2, the CSFRD will be twice as high at the epoch. We are carrying out deep imaging of the NEP field in 5 broad bands (g,r,i,z, and y) using Hyper Suprime-Camera (HSC), which has 1.5 deg field of view in diameter on Subaru 8m telescope. This will provide photometric redshift information, and thereby IR luminosity for the previously-undetected 11,000 faint AKARI IR sources. Combined with AKARI's mid-IR AGN/SF diagnosis, and accurate mid-IR luminosity measurement, this will allow a complete census of cosmic star-formation/AGN accretion history obscured by dust.
Mapping Diffuse HI Content in MHONGOOSE Galaxies NGC 1744 and NGC 7424
NASA Astrophysics Data System (ADS)
Sardone, Amy; Pisano, Daniel J.; Pingel, Nickolas
2017-01-01
The universe contains an abundance of neutral atomic hydrogen, or HI. This HI holds the key to knowing how stars are born, how galaxies form and develop, and how dark matter halos accrete gas from the cosmic web. One of the most crucial questions regarding galaxy formation today is how galaxies accrete their gas and how accretion processes affect subsequent star formation. We are trying to answer these questions by mapping the HI content in a four square degree region around galaxies NGC 1744 and NGC 7424, galaxies to be observed as part of the MHONGOOSE survey. NGC 1744 has already been observed extensively with the VLA, so we will be able to quantify the differences in emission. To do this our GBT maps must be sensitive to column densities on the order of ~1018 cm-2. With such low column densities, we will be able to search for features of the cosmic web in the form of tidal interactions and cosmic web filaments with its relation to star-forming galaxies.
Differential Cross Sections for Proton-Proton Elastic Scattering
NASA Technical Reports Server (NTRS)
Norman, Ryan B.; Dick, Frank; Norbury, John W.; Blattnig, Steve R.
2009-01-01
Proton-proton elastic scattering is investigated within the framework of the one pion exchange model in an attempt to model nucleon-nucleon interactions spanning the large range of energies important to cosmic ray shielding. A quantum field theoretic calculation is used to compute both differential and total cross sections. A scalar theory is then presented and compared to the one pion exchange model. The theoretical cross sections are compared to proton-proton scattering data to determine the validity of the models.
NASA Astrophysics Data System (ADS)
Buitink, Stijn; Scholten, Olaf; van den Berg, Ad; Ebert, Ute
2013-04-01
Cosmic Rays in Thunderstorms Cosmic rays are protons and heavier nuclei that constantly bombard the Earth's atmosphere with energies spanning a vast range from 109 to 1021 eV. At typical altitudes up to 10-20 km they initiate large particle cascades, called extensive air showers, that contain millions to billions of secondary particles depending on their initial energy. These particles include electrons, positrons, hadrons and muons, and are concentrated in a compact particle front that propagates at relativistic speed. In addition, the shower leaves behind a trail of lower energy electrons from ionization of air molecules. Under thunderstorm conditions these electrons contribute to the electrical and ionization processes in the cloud. When the local electric field is strong enough the secondary electrons can create relativistic electron run-away avalanches [1] or even non-relativistic avalanches. Cosmic rays could even trigger lightning inception. Conversely, strong electric fields also influence the development of the air shower [2]. Extensive air showers emit a short (tens of nanoseconds) radio pulse due to deflection of the shower particles in the Earth's magnetic field [3]. Antenna arrays, such as AERA, LOFAR and LOPES detect these pulses in a frequency window of roughly 10-100 MHz. These systems are also sensitive to the radiation from discharges associated to thunderstorms, and provide a means to study the interaction of cosmic ray air showers and the electrical processes in thunderstorms [4]. In this presentation we discuss the involved radiation mechanisms and present analyses of thunderstorm data from air shower arrays [1] A. Gurevich et al., Phys. Lett. A 165, 463 (1992) [2] S. Buitink et al., Astropart. Phys. 33, 1 (2010) [3] H. Falcke et al., Nature 435, 313 (2005) [4] S. Buitink et al., Astron. & Astrophys. 467, 385 (2007)
Nonlocal Models of Cosmic Acceleration
NASA Astrophysics Data System (ADS)
Woodard, R. P.
2014-02-01
I review a class of nonlocally modified gravity models which were proposed to explain the current phase of cosmic acceleration without dark energy. Among the topics considered are deriving causal and conserved field equations, adjusting the model to make it support a given expansion history, why these models do not require an elaborate screening mechanism to evade solar system tests, degrees of freedom and kinetic stability, and the negative verdict of structure formation. Although these simple models are not consistent with data on the growth of cosmic structures many of their features are likely to carry over to more complicated models which are in better agreement with the data.
Analytical Solutions to Backreaction on Cosmic Strings
NASA Astrophysics Data System (ADS)
Wachter, Jeremy M.
2017-08-01
We present analytical studies of gravitational and electromagnetic backreaction on cosmic strings. For oscillating loops of cosmic string, we present a general argument for how kinks must change; additionally, we apply this general argument to the geometrically simple case of the Garfinkle-Vachaspati loop. Our results suggest that the formation of cusps on loops is delayed, and so we should expect fewer cuspy signatures to be seen in gravitational wave observations. Electromagnetic backreaction we show to reduce currents on a string at least as rapidly as necessary to avoid a paradox, and currents induced on a superconducting straight string will be asymptotically reduced to zero.
Cosmic shear as a probe of galaxy formation physics
Foreman, Simon; Becker, Matthew R.; Wechsler, Risa H.
2016-09-01
Here, we evaluate the potential for current and future cosmic shear measurements from large galaxy surveys to constrain the impact of baryonic physics on the matter power spectrum. We do so using a model-independent parametrization that describes deviations of the matter power spectrum from the dark-matter-only case as a set of principal components that are localized in wavenumber and redshift. We perform forecasts for a variety of current and future data sets, and find that at least ~90 per cent of the constraining power of these data sets is contained in no more than nine principal components. The constraining powermore » of different surveys can be quantified using a figure of merit defined relative to currently available surveys. With this metric, we find that the final Dark Energy Survey data set (DES Y5) and the Hyper Suprime-Cam Survey will be roughly an order of magnitude more powerful than existing data in constraining baryonic effects. Upcoming Stage IV surveys (Large Synoptic Survey Telescope, Euclid, and Wide Field Infrared Survey Telescope) will improve upon this by a further factor of a few. We show that this conclusion is robust to marginalization over several key systematics. The ultimate power of cosmic shear to constrain galaxy formation is dependent on understanding systematics in the shear measurements at small (sub-arcminute) scales. Lastly, if these systematics can be sufficiently controlled, cosmic shear measurements from DES Y5 and other future surveys have the potential to provide a very clean probe of galaxy formation and to strongly constrain a wide range of predictions from modern hydrodynamical simulations.« less
Cosmic ray processing of N2-containing interstellar ice analogues at dark cloud conditions
NASA Astrophysics Data System (ADS)
Fedoseev, G.; Scirè, C.; Baratta, G. A.; Palumbo, M. E.
2018-04-01
N2 is believed to lock considerable part of nitrogen elemental budget and, therefore, to be one of the most abundant ice constituent in cold dark clouds. This laboratory-based research utilizes high energetic processing of N2 containing interstellar ice analogues using 200 keV H+ and He+ ions that mimics cosmic ray processing of the interstellar icy grains. It aims to investigate the formation of (iso)cyanates and cyanides in the ice mantles at the conditions typical for cold dark clouds and prestellar cores. Investigation of cosmic ray processing as a chemical trigger mechanism is explained by the high stability of N2 molecules that are chemically inert in most of the atom- and radical-addition reactions and cannot be efficiently dissociated by cosmic ray induced UV-field. Two sets of experiments are performed to closer address solid-state chemistry occurring in two distinct layers of the ice formed at different stages of dark cloud evolution, i.e. `H2O-rich' and `CO-rich' ice layers. Formation of HNCO and OCN- is discussed in all of the performed experiments. Corresponding kinetic curves for HNCO and OCN- are obtained. Furthermore, a feature around 2092 cm-1 assigned to the contributions of 13CO, CN-, and HCN is analysed. The kinetic curves for the combined HCN/CN- abundance are derived. In turn, normalized formation yields are evaluated by interpolation of the obtained results to the low irradiation doses relevant to dark cloud stage. The obtained values can be used to interpret future observations towards cold dark clouds using James Webb Space Telescope.
NASA Astrophysics Data System (ADS)
Robertson, Brant E.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; Stark, Dan P.; McLeod, Derek
2014-12-01
Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ~35% at redshift z ~ 7 to >~ 65% at z ~ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.
The cosmic spiderweb: equivalence of cosmic, architectural and origami tessellations
Hidding, Johan; Konstantatou, Marina; van de Weygaert, Rien
2018-01-01
For over 20 years, the term ‘cosmic web’ has guided our understanding of the large-scale arrangement of matter in the cosmos, accurately evoking the concept of a network of galaxies linked by filaments. But the physical correspondence between the cosmic web and structural engineering or textile ‘spiderwebs’ is even deeper than previously known, and also extends to origami tessellations. Here, we explain that in a good structure-formation approximation known as the adhesion model, threads of the cosmic web form a spiderweb, i.e. can be strung up to be entirely in tension. The correspondence is exact if nodes sampling voids are included, and if structure is excluded within collapsed regions (walls, filaments and haloes), where dark-matter multistreaming and baryonic physics affect the structure. We also suggest how concepts arising from this link might be used to test cosmological models: for example, to test for large-scale anisotropy and rotational flows in the cosmos. PMID:29765637
Scientific Goals and Objectives of the Probe of Inflation and Cosmic Origins
NASA Astrophysics Data System (ADS)
Wen, Qi; Hanany, Shaul; Young, Karl S.; PICO Team
2018-01-01
The Probe of Inflation and Cosmic Origins (PICO) is a space mission concept that is being studied in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. PICO will conduct a polarimetric full sky survey in 21 frequency bands between 20 and 800 GHz with 70 times the sensitivity of the Planck satellite. Using the data from 8 redundant full sky surveys PICO will detect or place new limits on the energy scale of inflation and the physics of quantum gravity; it will determine the effective number of light degrees of freedom in the early universe and the sum of neutrino masses; it will measure the optical depth to reionization up to cosmic variance limits; it will provide a full sky catalog of thousands of strongly lensed high-z infrared sources, of proto clusters, and of low-z low-mass galaxies extending our understanding of structure formation to populations not yet observed; it will find tens of thousands of new clusters across cosmic time, information that will further constrain cosmological parameters; and it will make sensitive maps of the galactic magnetic field, which will clarify its role in the process of star formation.We present an overview of the mission’s scientific goals, its design, and the current status of the study.
Origin of the cosmic network in {Lambda}CDM: Nature vs nurture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shandarin, Sergei; Habib, Salman; Heitmann, Katrin
The large-scale structure of the Universe, as traced by the distribution of galaxies, is now being revealed by large-volume cosmological surveys. The structure is characterized by galaxies distributed along filaments, the filaments connecting in turn to form a percolating network. Our objective here is to quantitatively specify the underlying mechanisms that drive the formation of the cosmic network: By combining percolation-based analyses with N-body simulations of gravitational structure formation, we elucidate how the network has its origin in the properties of the initial density field (nature) and how its contrast is then amplified by the nonlinear mapping induced by themore » gravitational instability (nurture).« less
Ukar, Estibalitz; Laubach, Stephen E.; Marrett, Randall
2016-03-09
Here, we evaluate a published model for crystal growth patterns in quartz cement in sandstone fractures by comparing crystal fracture-spanning predictions to quartz c-axis orientation distributions measured by electron backscatter diffraction (EBSD) of spanning quartz deposits. Samples from eight subvertical opening-mode fractures in four sandstone formations, the Jurassic– Cretaceous Nikanassin Formation, northwestern Alberta Foothills (Canada), Cretaceous Mesaverde Group (USA; Cozzette Sandstone Member of the Iles Formation), Piceance Basin, Colorado (USA), and upper Jurassic–lower Cretaceous Cotton Valley Group (Taylor sandstone) and overlying Travis Peak Formation, east Texas, have similar quartzose composition and grain size but contain fractures with different temperature historiesmore » and opening rates based on fluid inclusion assemblages and burial history. Spherical statistical analysis shows that, in agreement with model predictions, bridging crystals have a preferred orientation with c-axis orientations at a high angle to fracture walls. The second form of validation is for spanning potential that depends on the size of cut substrate grains. Using measured cut substrate grain sizes and c-axis orientations of spanning bridges, we calculated the required orientation for the smallest cut grain to span the maximum gap size and the required orientation of the crystal with the least spanning potential to form overgrowths that span across maximum measured gap sizes. We find that within a 10° error all spanning crystals conform to model predictions. Using crystals with the lowest spanning potential based on crystallographic orientation (c-axis parallel to fracture wall) and a temperature range for fracture opening measured from fluid inclusion assemblages, we calculate maximum fracture opening rates that allow crystals to span. These rates are comparable to those derived independently from fracture temperature histories based on burial history and multiple sequential fluid inclusion assemblages. Results support the R. Lander and S. Laubach model, which predicts that for quartz deposited synchronously with fracture opening, spanning potential, or likelihood of quartz deposits that are thick enough to span between fracture walls, depends on temperature history, fracture opening rate, size of opening increments, and size, mineralogy, and crystallographic orientation of substrates in the fracture wall (transected grains). Results suggest that EBSD maps, which can be more rapidly acquired than measurement of tens to hundreds of fluid inclusion assemblages, can provide a useful measure of relative opening rates within populations of quartz-filled fractures formed under sedimentary basin conditions. Such data are useful for evaluating fracture pattern development models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ukar, Estibalitz; Laubach, Stephen E.; Marrett, Randall
Here, we evaluate a published model for crystal growth patterns in quartz cement in sandstone fractures by comparing crystal fracture-spanning predictions to quartz c-axis orientation distributions measured by electron backscatter diffraction (EBSD) of spanning quartz deposits. Samples from eight subvertical opening-mode fractures in four sandstone formations, the Jurassic– Cretaceous Nikanassin Formation, northwestern Alberta Foothills (Canada), Cretaceous Mesaverde Group (USA; Cozzette Sandstone Member of the Iles Formation), Piceance Basin, Colorado (USA), and upper Jurassic–lower Cretaceous Cotton Valley Group (Taylor sandstone) and overlying Travis Peak Formation, east Texas, have similar quartzose composition and grain size but contain fractures with different temperature historiesmore » and opening rates based on fluid inclusion assemblages and burial history. Spherical statistical analysis shows that, in agreement with model predictions, bridging crystals have a preferred orientation with c-axis orientations at a high angle to fracture walls. The second form of validation is for spanning potential that depends on the size of cut substrate grains. Using measured cut substrate grain sizes and c-axis orientations of spanning bridges, we calculated the required orientation for the smallest cut grain to span the maximum gap size and the required orientation of the crystal with the least spanning potential to form overgrowths that span across maximum measured gap sizes. We find that within a 10° error all spanning crystals conform to model predictions. Using crystals with the lowest spanning potential based on crystallographic orientation (c-axis parallel to fracture wall) and a temperature range for fracture opening measured from fluid inclusion assemblages, we calculate maximum fracture opening rates that allow crystals to span. These rates are comparable to those derived independently from fracture temperature histories based on burial history and multiple sequential fluid inclusion assemblages. Results support the R. Lander and S. Laubach model, which predicts that for quartz deposited synchronously with fracture opening, spanning potential, or likelihood of quartz deposits that are thick enough to span between fracture walls, depends on temperature history, fracture opening rate, size of opening increments, and size, mineralogy, and crystallographic orientation of substrates in the fracture wall (transected grains). Results suggest that EBSD maps, which can be more rapidly acquired than measurement of tens to hundreds of fluid inclusion assemblages, can provide a useful measure of relative opening rates within populations of quartz-filled fractures formed under sedimentary basin conditions. Such data are useful for evaluating fracture pattern development models.« less
NASA Technical Reports Server (NTRS)
Efstathiou, G.; Silk, J.
1983-01-01
Current models of galaxy formation are examined in a review of recent observational and theoretical studies. Observational data on elliptical galaxies, disk galaxies, luminosity functions, clustering, and angular fluctuations in the cosmic microwave background are summarized. Theoretical aspects discussed include the origin and early evolution of small fluctuations, matter and radiation fluctuations, the formation of large-scale structure, dissipationless galaxy formation, galaxy mergers, dissipational galaxy formation, and the implications of particle physics (GUTs, massive neutrinos, and gravitinos) for cosmology.
NASA Astrophysics Data System (ADS)
Sibthorpe, B.; Helmich, F.; Roelfsema, P.; Kaneda, H.; Shibai, H.
2015-05-01
SPICA is a mid and far-infrared space mission to be submitted as a candidate to ESA's fifth medium class mission call, due in early 2016. This will be a joint project between ESA and JAXA, with ESA taking the lead role. If selected, SPICA will launch in ˜2029 and operate for a goal lifetime of 5 years. The spacecraft will house a 2.5 m telescope actively cooled to 8 K, providing unprecedented sensitivity at mid-far infrared wavelengths. The low background environment and wavelength coverage provided by SPICA will make it possible to conduct detailed spectroscopic surveys of sources in both the local and distant Universe, deep into the most obscured regions. Using these data the evolution of galaxies over a broad and continuous range of cosmic time can be studied, spanning the era of peak star forming activity. SPICA will also provide unique access to, among others, the deep-lying water-ice spectral features and HD lines within planet forming discs. SPICA will conduct an extensive survey of both planet forming discs and evolved planetary systems, with the aim of providing the missing link between planet formation models and the large number of extrasolar planetary systems now being discovered.
Simulating Cosmic Reionization and Its Observable Consequences
NASA Astrophysics Data System (ADS)
Shapiro, Paul
2017-01-01
I summarize recent progress in modelling the epoch of reionization by large- scale simulations of cosmic structure formation, radiative transfer and their interplay, which trace the ionization fronts that swept across the IGM, to predict observable signatures. Reionization by starlight from early galaxies affected their evolution, impacting reionization, itself, and imprinting the galaxies with a memory of reionization. Star formation suppression, e.g., may explain the observed underabundance of Local Group dwarfs relative to N-body predictions for Cold Dark Matter. I describe CoDa (''Cosmic Dawn''), the first fully-coupled radiation-hydrodynamical simulation of reionization and galaxy formation in the Local Universe, in a volume large enough to model reionization globally but with enough resolving power to follow all the atomic-cooling galactic halos in that volume. A 90 Mpc box was simulated from a constrained realization of primordial fluctuations, chosen to reproduce present-day features of the Local Group, including the Milky Way and M31, and the local universe beyond, including the Virgo cluster. The new RAMSES-CUDATON hybrid CPU-GPU code took 11 days to perform this simulation on the Titan supercomputer at Oak Ridge National Laboratory, with 4096-cubed N-body particles for the dark matter and 4096-cubed cells for the atomic gas and ionizing radiation.
Gasquoine, Philip G; Weimer, Amy A; Amador, Arnoldo
2017-04-01
To measure specificity as failure rates for non-clinical, bilingual, Mexican Americans on three popular performance validity measures: (a) the language format Reliable Digit Span; (b) visual-perceptual format Test of Memory Malingering; and (c) visual-perceptual format Dot Counting, using optimal/suboptimal effort cut scores developed for monolingual, English-speakers. Participants were 61 consecutive referrals, aged between 18 and 65 years, with <16 years of education who were subjectively bilingual (confirmed via formal assessment) and chose the language of assessment, Spanish or English, for the performance validity tests. Failure rates were 38% for Reliable Digit Span, 3% for the Test of Memory Malingering, and 7% for Dot Counting. For Reliable Digit Span, the failure rates for Spanish (46%) and English (31%) languages of administration did not differ significantly. Optimal/suboptimal effort cut scores derived for monolingual English-speakers can be used with Spanish/English bilinguals when using the visual-perceptual format Test of Memory Malingering and Dot Counting. The high failure rate for Reliable Digit Span suggests it should not be used as a performance validity measure with Spanish/English bilinguals, irrespective of the language of test administration, Spanish or English.
Cosmic microwave background theory
Bond, J. Richard
1998-01-01
A long-standing goal of theorists has been to constrain cosmological parameters that define the structure formation theory from cosmic microwave background (CMB) anisotropy experiments and large-scale structure (LSS) observations. The status and future promise of this enterprise is described. Current band-powers in ℓ-space are consistent with a ΔT flat in frequency and broadly follow inflation-based expectations. That the levels are ∼(10−5)2 provides strong support for the gravitational instability theory, while the Far Infrared Absolute Spectrophotometer (FIRAS) constraints on energy injection rule out cosmic explosions as a dominant source of LSS. Band-powers at ℓ ≳ 100 suggest that the universe could not have re-ionized too early. To get the LSS of Cosmic Background Explorer (COBE)-normalized fluctuations right provides encouraging support that the initial fluctuation spectrum was not far off the scale invariant form that inflation models prefer: e.g., for tilted Λ cold dark matter sequences of fixed 13-Gyr age (with the Hubble constant H0 marginalized), ns = 1.17 ± 0.3 for Differential Microwave Radiometer (DMR) only; 1.15 ± 0.08 for DMR plus the SK95 experiment; 1.00 ± 0.04 for DMR plus all smaller angle experiments; 1.00 ± 0.05 when LSS constraints are included as well. The CMB alone currently gives weak constraints on Λ and moderate constraints on Ωtot, but theoretical forecasts of future long duration balloon and satellite experiments are shown which predict percent-level accuracy among a large fraction of the 10+ parameters characterizing the cosmic structure formation theory, at least if it is an inflation variant. PMID:9419321
Magnetic field evolution in dwarf and Magellanic-type galaxies
NASA Astrophysics Data System (ADS)
Siejkowski, H.; Soida, M.; Chyży, K. T.
2018-03-01
Aims: Low-mass galaxies radio observations show in many cases surprisingly high levels of magnetic field. The mass and kinematics of such objects do not favour the development of effective large-scale dynamo action. We attempted to check if the cosmic-ray-driven dynamo can be responsible for measured magnetization in this class of poorly investigated objects. We investigated how starburst events on the whole, as well as when part of the galactic disk, influence the magnetic field evolution. Methods: We created a model of a dwarf/Magellanic-type galaxy described by gravitational potential constituted from two components: the stars and the dark-matter halo. The model is evolved by solving a three-dimensional (3D) magnetohydrodynamic equation with an additional cosmic-ray component, which is approximated as a fluid. The turbulence is generated in the system via supernova explosions manifested by the injection of cosmic-rays. Results: The cosmic-ray-driven dynamo works efficiently enough to amplify the magnetic field even in low-mass dwarf/Magellanic-type galaxies. The e-folding times of magnetic energy growth are 0.50 and 0.25 Gyr for the slow (50 km s-1) and fast (100 km s-1) rotators, respectively. The amplification is being suppressed as the system reaches the equipartition level between kinetic, magnetic, and cosmic-ray energies. An episode of star formation burst amplifies the magnetic field but only for a short time while increased star formation activity holds. We find that a substantial amount of gas is expelled from the galactic disk, and that the starburst events increase the efficiency of this process.
Cosmic reionization on computers. II. Reionization history and its back-reaction on early galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnedin, Nickolay Y.; Kaurov, Alexander A., E-mail: gnedin@fnal.gov, E-mail: kaurov@uchicago.edu
We compare the results from several sets of cosmological simulations of cosmic reionization, produced under the Cosmic Reionization On Computers project, with existing observational data on the high-redshift Lyα forest and the abundance of Lyα emitters. We find good consistency with the observational measurements and previous simulation work. By virtue of having several independent realizations for each set of numerical parameters, we are able to explore the effect of cosmic variance on observable quantities. One unexpected conclusion we are forced into is that cosmic variance is unusually large at z > 6, with both our simulations and, most likely, observationalmore » measurements still not fully converged for even such basic quantities as the average Gunn-Peterson optical depth or the volume-weighted neutral fraction. We also find that reionization has little effect on the early galaxies or on global cosmic star formation history, because galaxies whose gas content is affected by photoionization contain no molecular (i.e., star-forming) gas in the first place. In particular, measurements of the faint end of the galaxy luminosity function by the James Webb Space Telescope are unlikely to provide a useful constraint on reionization.« less
De Herschel à Alma. Les galaxies dévoilent enfin leurs secrets.
NASA Astrophysics Data System (ADS)
Elbaz, David
2016-08-01
With deep surveys, one can measure the amount of stars born in slices of the Universe and infer a "cosmic rate of star formation." The latest estimates from the Herschel satellite show a rapid drop of star formation in galaxies since ten billion years. To understand the cause of this fall, we can now measure the interstellar reservoirs of galaxies by combining observations from Herschel and the millimeter interferometer ALMA. Early results suggest that this fall comes from the rapid consumption of interstellar matter which served as reservoir to galaxies. Thanks to the technique of interferometry, ALMA can map interstellar dust within galaxies observed at the time of the peak of cosmic star formation, ten billion years ago. We discover that the stars of the most massive galaxies are born not only at very high rates but also with an extreme concentration.
Cosmic Rays and Gamma-Rays in Large-Scale Structure
NASA Astrophysics Data System (ADS)
Inoue, Susumu; Nagashima, Masahiro; Suzuki, Takeru K.; Aoki, Wako
2004-12-01
During the hierarchical formation of large scale structure in the universe, the progressive collapse and merging of dark matter should inevitably drive shocks into the gas, with nonthermal particle acceleration as a natural consequence. Two topics in this regard are discussed, emphasizing what important things nonthermal phenomena may tell us about the structure formation (SF) process itself. 1. Inverse Compton gamma-rays from large scale SF shocks and non-gravitational effects, and the implications for probing the warm-hot intergalactic medium. We utilize a semi-analytic approach based on Monte Carlo merger trees that treats both merger and accretion shocks self-consistently. 2. Production of 6Li by cosmic rays from SF shocks in the early Galaxy, and the implications for probing Galaxy formation and uncertain physics on sub-Galactic scales. Our new observations of metal-poor halo stars with the Subaru High Dispersion Spectrograph are highlighted.
Introducing CoDa (Cosmic Dawn): Radiation-Hydrodynamics of Galaxy Formation in the Early Universe
NASA Astrophysics Data System (ADS)
Ocvirk, Pierre; Gillet, Nicolas; Shapiro, Paul; Aubert, Dominique; Iliev, Ilian; Romain, Teyssier; Yepes, Gustavo; Choi, Jun-hwan; Sullivan, David; Knebe, Alexander; Gottloeber, Stefan; D'Aloisio, Anson; Park, Hyunbae; Hoffman, Yehuda
2015-08-01
CoDa (Cosmic Dawn) is the largest fully coupled radiation hydrodynamics simulation of the reionization of the local Universe to date. It was performed using RAMSES-CUDATON running on 8192 nodes (i.e. 8192 GPUs) on the titan supercomputer at Oak Ridge National Laboratory to simulate a 64 h-1Mpc side box down to z=4.23. In this simulation, reionization proceeds self-consistently, driven by stellar radiation. We compare the simulation's reionization history, ionizing flux density, the cosmic star formation history and the CMB Thompson scattering optical depth with their observational values. Luminosity functions are also in rather good agreement with high redshift observations, although very bright objects (MAB1600 < -21) are overabundant in CoDa. We investigate the evolution of the intergalactic medium, and find that gas filaments present a sheathed structure, with a hot envelope surrounding a cooler core. They are however not able to self-shield, while regions denser than 10^-4.5 H atoms per comoving h^-3cm^3 are. Haloes below M ˜ 3.10^9 M⊙ are severely affected by the expanding, rising UV background: their ISM is quickly photo-heated to temperatures above our star formation threshold and therefore stop forming stars after local reionization has occured. Overall, the haloes between 10^(10-11) M⊙ dominate the star formation budget of the box for most of the Epoch of Reionization. Several additional studies will follow, looking for instance at environmental effects on galaxy properties, and the regimes of accretion.
Theoretical Astrophysics - Volume 3, Galaxies and Cosmology
NASA Astrophysics Data System (ADS)
Padmanabhan, T.
2002-12-01
1. Overview: galaxies and cosmology; 2. Galactic structure and dynamics; 3. Friedmann model of the universe; 4. Thermal history of the universe; 5. Structure formation; 6. Cosmic microwave background radiation; 7. Formation of baryonic structures; 8. Active galactic nuclei; 9. Intergalactic medium and absorption systems; 10. Cosmological observations.
RADIATION CHEMISTRY 2010 GORDON RESEARCH CONFERENCE JULY 18-23
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas Orlando
The 2010 Gordon Conference on Radiation Chemistry will present cutting edge research regarding the study of radiation-induced chemical transformations. Radiation Chemistry or 'high energy' chemistry is primarily initiated by ionizing radiation: i.e. photons or particles with energy sufficient to create conduction band electrons and 'holes', excitons, ionic and neutral free radicals, highly excited states, and solvated electrons. These transients often interact or 'react' to form products vastly different than those produced under thermal equilibrium conditions. The non-equilibrium, non-thermal conditions driving radiation chemistry exist in plasmas, star-forming regions, the outer solar system, nuclear reactors, nuclear waste repositories, radiation-based medical/clinical treatment centersmore » and in radiation/materials processing facilities. The 2010 conference has a strong interdisciplinary flavor with focus areas spanning (1) the fundamental physics and chemistry involved in ultrafast (atto/femtosecond) energy deposition events, (2) radiation-induced processes in biology (particularly spatially resolved studies), (3) radiation-induced modification of materials at the nanoscale and cosmic ray/x-ray mediated processes in planetary science/astrochemistry. While the conference concentrates on fundamental science, topical applied areas covered will also include nuclear power, materials/polymer processing, and clinical/radiation treatment in medicine. The Conference will bring together investigators at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present work in poster format or as contributors to the Young Investigator session. The program and format provides excellent avenues to promote cross-disciplinary collaborations.« less
NASA Technical Reports Server (NTRS)
Silk, Joseph; Schramm, David N.
1992-01-01
Attention is drawn to a potentially observable flux of diffuse extragalactic gamma rays produced by inelastic cosmic-ray interactions that is inevitably a by-product of spallation-synthesized Be. The epoch of cosmic ray-induced Population II light element nucleosynthesis is constrained to be at redshift greater than 0.5. A spectral feature in the diffuse extragalactic gamma-ray background with amplitude 0.1 above 10 MeV is predicted if the Be is synthesized at z less than 10. The possibility is discussed that the cosmic-ray flux responsible for Population II Be and B synthesis may be associated with a precursor hypothesized Population III.
Is it really naked? On cosmic censorship in string theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, Andrei V.
We investigate the possibility of cosmic censorship violation in string theory using a characteristic double-null code, which penetrates horizons and is capable of resolving the spacetime all the way to the singularity. We perform high-resolution numerical simulations of the evolution of negative mass initial scalar field profiles, which were argued to provide a counterexample to cosmic censorship conjecture for AdS-asymptotic spacetimes in five-dimensional supergravity. In no instances formation of naked singularity is seen. Instead, numerical evidence indicates that black holes form in the collapse. Our results are consistent with earlier numerical studies, and explicitly show where the 'no black hole'more » argument breaks.« less
Ground-Level Solar Cosmic Ray Data from Solar Cycle 19
NASA Technical Reports Server (NTRS)
Shea, M. A.
2003-01-01
The purpose of this grant was to locate, catalog, and assemble, in standard computer format, ground-level solar cosmic ray data acquired by cosmic ray detectors for selected events in the 19th solar cycle. The events for which we initially proposed to obtain these data were for the events of 23 February 1956,4 May 1960, 12 and 15 November 1960 and 18 and 20 July 1961. These were the largest events of the 19th solar cycle. However, a severe (more than 50%) reduction in the requested funding, required the work effort be limited to neutron monitor data for the 23 February 1956 event and the three major events in 1960.
Relative likelihood for life as a function of cosmic time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loeb, Abraham; Batista, Rafael A.; Sloan, David, E-mail: aloeb@cfa.harvard.edu, E-mail: rafael.alvesbatista@physics.ox.ac.uk, E-mail: david.sloan@physics.ox.ac.uk
2016-08-01
Is life most likely to emerge at the present cosmic time near a star like the Sun? We address this question by calculating the relative formation probability per unit time of habitable Earth-like planets within a fixed comoving volume of the Universe, dP ( t )/ dt , starting from the first stars and continuing to the distant cosmic future. We conservatively restrict our attention to the context of ''life as we know it'' and the standard cosmological model, ΛCDM . We find that unless habitability around low mass stars is suppressed, life is most likely to exist near ∼more » 0.1 M {sub ⊙} stars ten trillion years from now. Spectroscopic searches for biosignatures in the atmospheres of transiting Earth-mass planets around low mass stars will determine whether present-day life is indeed premature or typical from a cosmic perspective.« less
Atmospheric anomalies in summer 1908: Water in the atmosphere
NASA Astrophysics Data System (ADS)
Gladysheva, O. G.
2011-10-01
A gigantic noctilucent cloud field was formed and different solar halos were observed after the Tunguska catastrophe. To explain these anomalous phenomena, it is necessary to assume that a large quantity of water was carried into the atmosphere, which indicates that the Tunguska cosmic body was of a comet origin. According to rough estimates, the quantity of water that is released into the atmosphere as a result of a cosmic body's destruction is more than 1010 kg. The observation of a flying object in an area with a radius of ≥700 km makes it possible to state that the Tunguska cosmic body looked like a luminous coma with a diameter not smaller than ≥10 km and became visible at heights of >500 km. The assumption that the Tunguska cosmic body started disintegrating at a height of ˜1000 km explains the formation of an area where its mater diffused and formed a luminous area above Europe.
The cosmic web and the orientation of angular momenta
NASA Astrophysics Data System (ADS)
Libeskind, Noam I.; Hoffman, Yehuda; Knebe, Alexander; Steinmetz, Matthias; Gottlöber, Stefan; Metuki, Ofer; Yepes, Gustavo
2012-03-01
We use a 64 h-1 Mpc dark-matter-only cosmological simulation to examine the large-scale orientation of haloes and substructures with respect to the cosmic web. A web classification scheme based on the velocity shear tensor is used to assign to each halo in the simulation a web type: knot, filament, sheet or void. Using ˜106 haloes that span ˜3 orders of magnitude in mass, the orientation of the halo's spin and the orbital angular momentum of subhaloes with respect to the eigenvectors of the shear tensor is examined. We find that the orbital angular momentum of subhaloes tends to align with the intermediate eigenvector of the velocity shear tensor for all haloes in knots, filaments and sheets. This result indicates that the kinematics of substructures located deep within the virialized regions of a halo is determined by its infall which in turn is determined by the large-scale velocity shear, a surprising result given the virialized nature of haloes. The non-random nature of subhalo accretion is thus imprinted on the angular momentum measured at z= 0. We also find that the haloes' spin axis is aligned with the third eigenvector of the velocity shear tensor in filaments and sheets: the halo spin axis points along filaments and lies in the plane of cosmic sheets.
The metallicity of the intracluster medium over cosmic time: further evidence for early enrichment
Mantz, Adam B.; Allen, Steven W.; Morris, R. Glenn; ...
2017-08-26
Here, we use Chandra X-ray data to measure the metallicity of the intracluster medium (ICM) in 245 massive galaxy clusters selected from X-ray and Sunyaev–Zel'dovich (SZ) effect surveys, spanning redshifts 0 < z < 1.2. Metallicities were measured in three different radial ranges, spanning cluster cores through their outskirts. We explore trends in these measurements as a function of cluster redshift, temperature and surface brightness ‘peakiness’ (a proxy for gas cooling efficiency in cluster centres). The data at large radii (0.5–1 r500) are consistent with a constant metallicity, while at intermediate radii (0.1–0.5 r500) we see a late-time increase inmore » enrichment, consistent with the expected production and mixing of metals in cluster cores. In cluster centres, there are strong trends of metallicity with temperature and peakiness, reflecting enhanced metal production in the lowest entropy gas. Within the cool-core/sharply peaked cluster population, there is a large intrinsic scatter in central metallicity and no overall evolution, indicating significant astrophysical variations in the efficiency of enrichment. The central metallicity in clusters with flat surface brightness profiles is lower, with a smaller intrinsic scatter, but increases towards lower redshifts. Our results are consistent with other recent measurements of ICM metallicity as a function of redshift. They reinforce the picture implied by observations of uniform metal distributions in the outskirts of nearby clusters, in which most of the enrichment of the ICM takes place before cluster formation, with significant later enrichment taking place only in cluster centres, as the stellar populations of the central galaxies evolve.« less
NASA Astrophysics Data System (ADS)
Steigies, C. T.
2015-12-01
Since the International Geophysical Year (IGY) in 1957-58 cosmic rays areroutinely measured by many ground-based Neutron Monitors (NM) around theworld. The World Data Center for Cosmic Rays (WDCCR) was established as apart of this activity and is providing a database of cosmic-ray neutronobservations in unified formats. However, that standard data comprises onlyof one hour averages, whereas most NM stations have been enhanced at the endof the 20th century to provide data in one minute resolution or even better.This data was only available on the web-sites of the institutes operatingthe station, and every station invented their own data format for thehigh-resolution measurements. There were some efforts to collect data fromseveral stations, to make this data available on FTP servers, however noneof these efforts could provide real-time data for all stations.The EU FP7 project NMDB (real-time database for high-resolution NeutronMonitor measurements, http://nmdb.eu) was funded by the European Commission,and a new database was set up by several Neutron Monitor stations in Europeand Asia to store high-resolution data and to provide access to the data inreal-time (i.e. less than five minute delay). By storing the measurements ina database, a standard format for the high-resolution measurements isenforced. This database is complementary to the WDCCR, as it does not (yet)provide all historical data, but the creation of this effort has spurred anew collaboration between Neutron Monitor scientists worldwide, (new)stations have gone online (again), new projects are building on the resultsof NMDB, new users outside of the Cosmic Ray community are starting to useNM data for new applications like soil moisture measurements using cosmicrays. These applications are facilitated by the easy access to the data withthe http://nest.nmdb.eu interface that offers access to all NMDB data forall users.
NASA Astrophysics Data System (ADS)
Samui, Saumyadip; Subramanian, Kandaswamy; Srianand, Raghunathan
2018-05-01
We present semi-analytical models of galactic outflows in high-redshift galaxies driven by both hot thermal gas and non-thermal cosmic rays. Thermal pressure alone may not sustain a large-scale outflow in low-mass galaxies (i.e. M ˜ 108 M⊙), in the presence of supernovae feedback with large mass loading. We show that inclusion of cosmic ray pressure allows outflow solutions even in these galaxies. In massive galaxies for the same energy efficiency, cosmic ray-driven winds can propagate to larger distances compared to pure thermally driven winds. On an average gas in the cosmic ray-driven winds has a lower temperature which could aid detecting it through absorption lines in the spectra of background sources. Using our constrained semi-analytical models of galaxy formation (that explains the observed ultraviolet luminosity functions of galaxies), we study the influence of cosmic ray-driven winds on the properties of the intergalactic medium (IGM) at different redshifts. In particular, we study the volume filling factor, average metallicity, cosmic ray and magnetic field energy densities for models invoking atomic cooled and molecular cooled haloes. We show that the cosmic rays in the IGM could have enough energy that can be transferred to the thermal gas in presence of magnetic fields to influence the thermal history of the IGM. The significant volume filling and resulting strength of IGM magnetic fields can also account for recent γ-ray observations of blazars.
Star Formation Studies in the SPICA/SAFARI Era
NASA Astrophysics Data System (ADS)
Sibthorpe, Bruce; Goicoechea, Javier
2013-07-01
The Japanese JAXA SPICA space observatory, due for launch in 2022, will provide astronomers with a long awaited new window on the universe. Having a large cold telescope, cooled to only 6K above absolute zero, SPICA will provide a unique environment in which instruments are limited only by the cosmic background itself. A consortium of European and Canadian institutes has been established to design and implement the SpicA FAR infrared Instrument, SAFARI, an imaging FTS spectrometer designed to fully exploit this extremely low far infrared background environment provided by the SPICA observatory. With SAFARI it will be possible to obtain continuous spectra spanning 34 -\\ 210 um within an instantaneous 2'x2' field-of-view, at spectral resolutions of up to R = 2000 @ 100um (4000 @ 50um), within a single telescope pointing. This capability, coupled with the exquisite sensitivity provided by the cold SPICA telescope, makes SAFARI the ideal instrument to perform large area spectroscopic mapping surveys in the far-infrared. SPICA/SFARI will provide new insights into a range of astronomical sources. By obtaining spectra for large, statistically significant samples, we can obtain a fundamental understanding of their chemistry and physical processes, and thereby characterise and understand the nature of these sources. Moreover, with the high sensitivity of SAFARI, it will be possible to extend current far-infrared studies of star formation processes to nearby galaxies, thereby putting our current understanding in a wider, universal, context. This poster provides a description of the SAFARI instrument and its capabilities. A brief representative sample of the contribution SAFARI can make in the field of star formation studies is also given, and compared to similar observations made using the Herschel-PACS instrument.
NASA Astrophysics Data System (ADS)
Wang, Xin; Jones, Tucker A.; Treu, Tommaso; Morishita, Takahiro; Abramson, Louis E.; Brammer, Gabriel B.; Huang, Kuang-Han; Malkan, Matthew A.; Schmidt, Kasper B.; Fontana, Adriano; Grillo, Claudio; Henry, Alaina L.; Karman, Wouter; Kelly, Patrick L.; Mason, Charlotte A.; Mercurio, Amata; Rosati, Piero; Sharon, Keren; Trenti, Michele; Vulcani, Benedetta
2017-03-01
We combine deep Hubble Space Telescope grism spectroscopy with a new Bayesian method to derive maps of gas-phase metallicity for 10 star-forming galaxies at high redshift (1.2≲ z≲ 2.3). Exploiting lensing magnification by the foreground cluster MACS1149.6+2223, we reach sub-kiloparsec spatial resolution and push the limit of stellar mass associated with such high-z spatially resolved measurements below {10}8 {M}⊙ for the first time. Our maps exhibit diverse morphologies, indicative of various effects such as efficient radial mixing from tidal torques, rapid accretion of low-metallicity gas, and other physical processes that can affect the gas and metallicity distributions in individual galaxies. Based upon an exhaustive sample of all existing sub-kiloparesec resolution metallicity gradient measurements at high z, we find that predictions given by analytical chemical evolution models assuming a relatively extended star-formation profile in the early disk-formation phase can explain the majority of observed metallicity gradients, without involving galactic feedback or radial outflows. We observe a tentative correlation between stellar mass and metallicity gradients, consistent with the “downsizing” galaxy formation picture that more massive galaxies are more evolved into a later phase of disk growth, where they experience more coherent mass assembly at all radii and thus show shallower metallicity gradients. In addition to the spatially resolved analysis, we compile a sample of homogeneously cross-calibrated integrated metallicity measurements spanning three orders of magnitude in stellar mass at z ˜ 1.8. We use this sample to study the mass-metallicity relation (MZR) and find that the slope of the observed MZR can rule out the momentum-driven wind model at a 3σ confidence level.
Cosmic setting for chondrule formation
NASA Technical Reports Server (NTRS)
Taylor, G. J.; Scott, E. R. D.; Keil, K.
1983-01-01
Chondrules are igneous-textured, millimeter-sized, spherical to irregularly-shaped silicate objects which constitute the major component of most chondrites. There is agreement that chondrules were once molten. Models for chondrule origin can be divided into two categories. One involves a 'planetary' setting, which envisages chondrules forming on the surfaces of parent bodies. Melting mechanisms include impact and volcanism. The other category is concerned with a cosmic setting in the solar nebula, prior to nebula formation. Aspects regarding the impact on planetary surfaces are considered, taking into account chondrule abundances, the abundancy of agglutinates on the moon, comminution, hypervelocity impact pits, questions of age, and chondrule compositions. Attention is also given to collisions during accretion, collisions between molten planetesimals, volcanism, and virtues of a nebular setting.
Cosmic string wakes and large-scale structure
NASA Technical Reports Server (NTRS)
Charlton, Jane C.
1988-01-01
The formation of structure from infinite cosmic string wakes is modeled for a universe dominated by cold dark matter (CDM). Cross-sectional slices through the wake distribution tend to outline empty regions with diameters which are not inconsistent with the range of sizes of the voids in the CfA slice of the universe. The topology of the wake distribution is found to be spongy rather than cell-like. Correlations between CDM wakes do not extend much beyond a horizon length, so it is unlikely that CDM wakes are responsible for the correlations between clusters of galaxies. An estimate of the fraction of matter to accrete onto CDM wakes indicates that wakes could be more important in galaxy formation than previously anticipated.
Formation of large-scale structure from cosmic-string loops and cold dark matter
NASA Technical Reports Server (NTRS)
Melott, Adrian L.; Scherrer, Robert J.
1987-01-01
Some results from a numerical simulation of the formation of large-scale structure from cosmic-string loops are presented. It is found that even though G x mu is required to be lower than 2 x 10 to the -6th (where mu is the mass per unit length of the string) to give a low enough autocorrelation amplitude, there is excessive power on smaller scales, so that galaxies would be more dense than observed. The large-scale structure does not include a filamentary or connected appearance and shares with more conventional models based on Gaussian perturbations the lack of cluster-cluster correlation at the mean cluster separation scale as well as excessively small bulk velocities at these scales.
The Universe at Infrared and Submillimeter Wavelengths
NASA Technical Reports Server (NTRS)
Dwek, E.; Arendt, R. G.; Benford, D. J.; Mather, J. C.; Moseley, S. H.; Shafer, R. A.; Staguhn, J.
2004-01-01
Far infrared and submillimeter surveys offer unique information on the early stages of galaxy formation and evolution, and the cosmic history of star formation and metal enrichment. This paper presents various model results that can be used in the interpretation of far-IR and submm surveys with different diameter telescopes.
Cosmic vacuum and galaxy formation
NASA Astrophysics Data System (ADS)
Chernin, A. D.
2006-04-01
It is demonstrated that the protogalactic perturbations must enter the nonlinear regime before the red shift z≈ 1; otherwise they would be destroyed by the antigravity of the vacuum dark energy at the subsequent epoch of the vacuum domination. At the zrrV={M/[(8π/3)ρV]}1/3, where M is the mass of a given over-density and ρV is the vacuum density. The criterion provides a new relation between the largest mass condensations and their spatial scales. All the real large-scale systems follow this relation definitely. It is also shown that a simple formula is possible for the key quantity in the theory of galaxy formation, namely the initial amplitude of the perturbation of the gravitational potential in the protogalactic structures. The amplitude is time independent and given in terms of the Friedmann integrals, which are genuine physical characteristics of the cosmic energies. The results suggest that there is a strong correspondence between the global design of the Universe as a whole and the cosmic structures of various masses and spatial scales.
The formation of cosmic structure in a texture-seeded cold dark matter cosmogony
NASA Technical Reports Server (NTRS)
Gooding, Andrew K.; Park, Changbom; Spergel, David N.; Turok, Neil; Gott, Richard, III
1992-01-01
The growth of density fluctuations induced by global texture in an Omega = 1 cold dark matter (CDM) cosmogony is calculated. The resulting power spectra are in good agreement with each other, with more power on large scales than in the standard inflation plus CDM model. Calculation of related statistics (two-point correlation functions, mass variances, cosmic Mach number) indicates that the texture plus CDM model compares more favorably than standard CDM with observations of large-scale structure. Texture produces coherent velocity fields on large scales, as observed. Excessive small-scale velocity dispersions, and voids less empty than those observed may be remedied by including baryonic physics. The topology of the cosmic structure agrees well with observation. The non-Gaussian texture induced density fluctuations lead to earlier nonlinear object formation than in Gaussian models and may also be more compatible with recent evidence that the galaxy density field is non-Gaussian on large scales. On smaller scales the density field is strongly non-Gaussian, but this appears to be primarily due to nonlinear gravitational clustering. The velocity field on smaller scales is surprisingly Gaussian.
An Origami Approximation to the Cosmic Web
NASA Astrophysics Data System (ADS)
Neyrinck, Mark C.
2016-10-01
The powerful Lagrangian view of structure formation was essentially introduced to cosmology by Zel'dovich. In the current cosmological paradigm, a dark-matter-sheet 3D manifold, inhabiting 6D position-velocity phase space, was flat (with vanishing velocity) at the big bang. Afterward, gravity stretched and bunched the sheet together in different places, forming a cosmic web when projected to the position coordinates. Here, I explain some properties of an origami approximation, in which the sheet does not stretch or contract (an assumption that is false in general), but is allowed to fold. Even without stretching, the sheet can form an idealized cosmic web, with convex polyhedral voids separated by straight walls and filaments, joined by convex polyhedral nodes. The nodes form in `polygonal' or `polyhedral' collapse, somewhat like spherical/ellipsoidal collapse, except incorporating simultaneous filament and wall formation. The origami approximation allows phase-space geometries of nodes, filaments, and walls to be more easily understood, and may aid in understanding spin correlations between nearby galaxies. This contribution explores kinematic origami-approximation models giving velocity fields for the first time.
NASA Astrophysics Data System (ADS)
Sudoh, Takahiro; Totani, Tomonori; Kawanaka, Norita
2018-06-01
We present new theoretical modeling to predict the luminosity and spectrum of gamma-ray and neutrino emission of a star-forming galaxy, from the star formation rate (ψ), gas mass (Mgas), stellar mass, and disk size, taking into account production, propagation, and interactions of cosmic rays. The model reproduces the observed gamma-ray luminosities of nearby galaxies detected by Fermi better than the simple power-law models as a function of ψ or ψMgas. This model is then used to predict the cosmic background flux of gamma-rays and neutrinos from star-forming galaxies, by using a semi-analytical model of cosmological galaxy formation that reproduces many observed quantities of local and high-redshift galaxies. Calibration of the model using gamma-ray luminosities of nearby galaxies allows us to make a more reliable prediction than previous studies. In our baseline model, star-forming galaxies produce about 20% of the isotropic gamma-ray background unresolved by Fermi, and only 0.5% of IceCube neutrinos. Even with an extreme model assuming a hard injection cosmic-ray spectral index of 2.0 for all galaxies, at most 22% of IceCube neutrinos can be accounted for. These results indicate that it is difficult to explain most of the IceCube neutrinos by star-forming galaxies, without violating the gamma-ray constraints from nearby galaxies.
NASA Astrophysics Data System (ADS)
Sudoh, Takahiro; Totani, Tomonori; Kawanaka, Norita
2018-04-01
We present new theoretical modeling to predict the luminosity and spectrum of gamma-ray and neutrino emission of a star-forming galaxy, from the star formation rate (ψ), gas mass (Mgas), stellar mass, and disk size, taking into account production, propagation, and interactions of cosmic rays. The model reproduces the observed gamma-ray luminosities of nearby galaxies detected by Fermi better than the simple power-law models as a function of ψ or ψMgas. This model is then used to predict the cosmic background flux of gamma-rays and neutrinos from star-forming galaxies, by using a semi-analytical model of cosmological galaxy formation that reproduces many observed quantities of local and high-redshift galaxies. Calibration of the model using gamma-ray luminosities of nearby galaxies allows us to make a more reliable prediction than previous studies. In our baseline model, star-forming galaxies produce about 20% of the isotropic gamma-ray background unresolved by Fermi, and only 0.5% of IceCube neutrinos. Even with an extreme model assuming a hard injection cosmic-ray spectral index of 2.0 for all galaxies, at most 22% of IceCube neutrinos can be accounted for. These results indicate that it is difficult to explain most of the IceCube neutrinos by star-forming galaxies, without violating the gamma-ray constraints from nearby galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Brant E.; Stark, Dan P.; Ellis, Richard S.
Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ∼35% atmore » redshift z ∼ 7 to ≳ 65% at z ∼ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.« less
Priming the search for cosmic superstrings using GADGET2 simulations
NASA Astrophysics Data System (ADS)
Cousins, Bryce; Jia, Hewei; Braverman, William; Chernoff, David
2018-01-01
String theory is an extensive mathematical theory which, despite its broad explanatory power, is still lacking empirical support. However, this may change when considering the scope of cosmology, where “cosmic superstrings” may serve as observational evidence. According to string theory, these superstrings were stretched to cosmic scales in the early Universe and may now be detectable, via microlensing or gravitational radiation. Negative results from prior surveys have put some limits on superstring properties, so to investigate the parameter space more effectively, we ask: “where should we expect to find cosmic superstrings, and how many should we predict?” This research investigates these questions by simulating cosmic string behavior during structure formation in the universe using GADGET2. The sizes and locations of superstring clusters are assessed using kernel density estimation and radial correlation functions. Currently, only preliminary small-scale simulations have been performed, producing superstring clustering with low sensitivity. However, future simulations of greater magnitude will offer far higher resolution, allowing us to more precisely track superstring behavior within structures. Such results will guide future searches, most imminently those made possible by LSST and WFIRST.
Probing Cosmic Infrared Sources: A Computer Modeling Approach
1992-06-01
developed to study various physical phenomena involving dust grains, e.g., molecule formation on grains, grain formation in expanding circumstellar...EVALUATION OF METHODS OF ANALYSIS IN INFRARED ASTR9?NOMY 16 4.0 THEORETICAL STUDIES INVOLVING DUST GRAINS., 16 4.1 Theory of Molecule Formation on Dust Grains...17 4.2 Modeling Grain Formation in Stellar Outflows 7 18 4.3 Infrared Emission from Fractal Grains * 19 4.4 Photochemistry in Circumstellar Envelopes
Cosmic-Ray Propagation in Turbulent Spiral Magnetic Fields Associated with Young Stellar Objects
NASA Astrophysics Data System (ADS)
Fatuzzo, Marco; Adams, Fred C.
2018-04-01
External cosmic rays impinging upon circumstellar disks associated with young stellar objects provide an important source of ionization, and, as such, play an important role in disk evolution and planet formation. However, these incoming cosmic rays are affected by a variety of physical processes internal to stellar/disk systems, including modulation by turbulent magnetic fields. Globally, these fields naturally provide both a funneling effect, where cosmic rays from larger volumes are focused into the disk region, and a magnetic mirroring effect, where cosmic rays are repelled due to the increasing field strength. This paper considers cosmic-ray propagation in the presence of a turbulent spiral magnetic field, analogous to that produced by the solar wind. The interaction of this wind with the interstellar medium defines a transition radius, analogous to the heliopause, which provides the outer boundary to this problem. We construct a new coordinate system where one coordinate follows the spiral magnetic field lines and consider magnetic perturbations to the field in the perpendicular directions. The presence of magnetic turbulence replaces the mirroring points with a distribution of values and moves the mean location outward. Our results thus help quantify the degree to which cosmic-ray fluxes are reduced in circumstellar disks by the presence of magnetic field structures that are shaped by stellar winds. The new coordinate system constructed herein should also be useful in other astronomical applications.
Detecting dark matter in the Milky Way with cosmic and gamma radiation
NASA Astrophysics Data System (ADS)
Carlson, Eric C.
Over the last decade, experiments in high-energy astroparticle physics have reached unprecedented precision and sensitivity which span the electromagnetic and cosmic-ray spectra. These advances have opened a new window onto the universe for which little was previously known. Such dramatic increases in sensitivity lead naturally to claims of excess emission, which call for either revised astrophysical models or the existence of exotic new sources such as particle dark matter. Here we stand firmly with Occam, sharpening his razor by (i) developing new techniques for discriminating astrophysical signatures from those of dark matter, and (ii) by developing detailed foreground models which can explain excess signals and shed light on the underlying astrophysical processes at hand. We concentrate most directly on observations of Galactic gamma and cosmic rays, factoring the discussion into three related parts which each contain significant advancements from our cumulative works. In Part I we introduce concepts which are fundamental to the Indirect Detection of particle dark matter, including motivations, targets, experiments, production of Standard Model particles, and a variety of statistical techniques. In Part II we introduce basic and advanced modelling techniques for propagation of cosmic-rays through the Galaxy and describe astrophysical gamma-ray production, as well as presenting state-of-the-art propagation models of the Milky Way.Finally, in Part III, we employ these models and techniques in order to study several indirect detection signals, including the Fermi GeV excess at the Galactic center, the Fermi 135 GeV line, the 3.5 keV line, and the WMAP-Planck haze.
NASA Astrophysics Data System (ADS)
Feldbrugge, Job; van de Weygaert, Rien; Hidding, Johan; Feldbrugge, Joost
2018-05-01
We present a general formalism for identifying the caustic structure of a dynamically evolving mass distribution, in an arbitrary dimensional space. The identification of caustics in fluids with Hamiltonian dynamics, viewed in Lagrangian space, corresponds to the classification of singularities in Lagrangian catastrophe theory. On the basis of this formalism we develop a theoretical framework for the dynamics of the formation of the cosmic web, and specifically those aspects that characterize its unique nature: its complex topological connectivity and multiscale spinal structure of sheetlike membranes, elongated filaments and compact cluster nodes. Given the collisionless nature of the gravitationally dominant dark matter component in the universe, the presented formalism entails an accurate description of the spatial organization of matter resulting from the gravitationally driven formation of cosmic structure. The present work represents a significant extension of the work by Arnol'd et al. [1], who classified the caustics that develop in one- and two-dimensional systems that evolve according to the Zel'dovich approximation. His seminal work established the defining role of emerging singularities in the formation of nonlinear structures in the universe. At the transition from the linear to nonlinear structure evolution, the first complex features emerge at locations where different fluid elements cross to establish multistream regions. Involving a complex folding of the 6-D sheetlike phase-space distribution, it manifests itself in the appearance of infinite density caustic features. The classification and characterization of these mass element foldings can be encapsulated in caustic conditions on the eigenvalue and eigenvector fields of the deformation tensor field. In this study we introduce an alternative and transparent proof for Lagrangian catastrophe theory. This facilitates the derivation of the caustic conditions for general Lagrangian fluids, with arbitrary dynamics. Most important in the present context is that it allows us to follow and describe the full three-dimensional geometric and topological complexity of the purely gravitationally evolving nonlinear cosmic matter field. While generic and statistical results can be based on the eigenvalue characteristics, one of our key findings is that of the significance of the eigenvector field of the deformation field for outlining the entire spatial structure of the caustic skeleton emerging from a primordial density field. In this paper we explicitly consider the caustic conditions for the three-dimensional Zel'dovich approximation, extending earlier work on those for one- and two-dimensional fluids towards the full spatial richness of the cosmic web. In an accompanying publication, we apply this towards a full three-dimensional study of caustics in the formation of the cosmic web and evaluate in how far it manages to outline and identify the intricate skeletal features in the corresponding N-body simulations.
NASA Astrophysics Data System (ADS)
Driver, Simon P.; Robotham, Aaron S. G.
2010-10-01
We determine an expression for the cosmic variance of any `normal' galaxy survey based on examination of M* +/- 1 mag galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) data cube. We find that cosmic variance will depend on a number of factors principally: total survey volume, survey aspect ratio and whether the area surveyed is contiguous or comprising independent sightlines. As a rule of thumb cosmic variance falls below 10 per cent once a volume of 107h-30.7Mpc3 is surveyed for a single contiguous region with a 1:1 aspect ratio. Cosmic variance will be lower for higher aspect ratios and/or non-contiguous surveys. Extrapolating outside our test region we infer that cosmic variance in the entire SDSS DR7 main survey region is ~7 per cent to z < 0.1. The equation obtained from the SDSS DR7 region can be generalized to estimate the cosmic variance for any density measurement determined from normal galaxies (e.g. luminosity densities, stellar mass densities and cosmic star formation rates) within the volume range 103-107h-30.7Mpc3. We apply our equation to show that two sightlines are required to ensure that cosmic variance is <10 per cent in any ASKAP galaxy survey (divided into Δ z ~ 0.1 intervals, i.e. ~1Gyr intervals for z < 0.5). Likewise 10 MeerKAT sightlines will be required to meet the same conditions. GAMA, VVDS and zCOSMOS all suffer less than 10 per cent cosmic variance (~3-8 per cent) in Δ z intervals of 0.1, 0.25 and 0.5, respectively. Finally we show that cosmic variance is potentially at the 50-70 per cent level, or greater, in the Hubble Space Telescope (HST) Ultra Deep Field depending on assumptions as to the evolution of clustering. 100 or 10 independent sightlines will be required to reduce cosmic variance to a manageable level (<10 per cent) for HST ACS or HST WFC3 surveys, respectively (in Δ z ~ 1 intervals). Cosmic variance is therefore a significant factor in the z > 6 HST studies currently underway.
Cosmic ray heating of intergalactic medium: patchy or uniform?
NASA Astrophysics Data System (ADS)
Jana, Ranita; Nath, Biman B.
2018-06-01
We study the heating of the intergalactic medium (IGM) surrounding high redshift star forming galaxies due to cosmic rays (CR). We take into account the diffusion of low energy cosmic rays and study the patchiness of the resulting heating. We discuss the case of IGM heating around a high redshift minihalo (z ˜ 10-20, M˜105-107 M⊙),and put an upper limit on the diffusion coefficient D ≤ 1 × 1026 cm2 s-1 for the heating to be inhomogeneous at z ˜ 10 and D ≤ 5-6 × 1026 cm2 s-1 at z ˜ 20. For typical values of D, our results suggest uniform heating by CR at high redshift, although there are uncertainties in magnetic field and other CR parameters. We also discuss two cases with continuous star formation, one in which the star formation rate (SFR) of a galaxy is high enough to make the IGM in the vicinity photoionized, and another in which the SFR is low enough to keep it neutral but high enough to cause significant heating by cosmic ray protons. In the neutral case (low SFR), we find that the resulting heating can make the gas hotter than the cosmic microwave background (CMB) radiation for D < 1030 cm2 s-1, within a few kpc of the galaxy, and unlikely to be probed by near future radio observations. In the case of photoionized IGM (high SFR), the resulting heating of the gas in the vicinity of high redshift (z ˜ 4) galaxies of mass ≥1012 M⊙ can suppress gas infall into the galaxy. At lower redshifts (z ˜ 0), an SFR of ˜1 M⊙ yr-1 can suppress the infall into galaxies of mass ≤1010 M⊙.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Decarli, Roberto; Walter, Fabian; Aravena, Manuel
2016-12-10
In this paper we use ASPECS, the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field in band 3 and band 6, to place blind constraints on the CO luminosity function and the evolution of the cosmic molecular gas density as a function of redshift up to z ∼ 4.5. This study is based on galaxies that have been selected solely through their CO emission and not through any other property. In all of the redshift bins the ASPECS measurements reach the predicted “knee” of the CO luminosity function (around 5 × 10{sup 9} K km s{sup −1} pc{sup 2}). We find clear evidence ofmore » an evolution in the CO luminosity function with respect to z ∼ 0, with more CO-luminous galaxies present at z ∼ 2. The observed galaxies at z ∼ 2 also appear more gas-rich than predicted by recent semi-analytical models. The comoving cosmic molecular gas density within galaxies as a function of redshift shows a drop by a factor of 3–10 from z ∼ 2 to z ∼ 0 (with significant error bars), and possibly a decline at z > 3. This trend is similar to the observed evolution of the cosmic star formation rate density. The latter therefore appears to be at least partly driven by the increased availability of molecular gas reservoirs at the peak of cosmic star formation ( z ∼ 2).« less
The Zel'dovich approximation: key to understanding cosmic web complexity
NASA Astrophysics Data System (ADS)
Hidding, Johan; Shandarin, Sergei F.; van de Weygaert, Rien
2014-02-01
We describe how the dynamics of cosmic structure formation defines the intricate geometric structure of the spine of the cosmic web. The Zel'dovich approximation is used to model the backbone of the cosmic web in terms of its singularity structure. The description by Arnold et al. in terms of catastrophe theory forms the basis of our analysis. This two-dimensional analysis involves a profound assessment of the Lagrangian and Eulerian projections of the gravitationally evolving four-dimensional phase-space manifold. It involves the identification of the complete family of singularity classes, and the corresponding caustics that we see emerging as structure in Eulerian space evolves. In particular, as it is instrumental in outlining the spatial network of the cosmic web, we investigate the nature of spatial connections between these singularities. The major finding of our study is that all singularities are located on a set of lines in Lagrangian space. All dynamical processes related to the caustics are concentrated near these lines. We demonstrate and discuss extensively how all 2D singularities are to be found on these lines. When mapping this spatial pattern of lines to Eulerian space, we find a growing connectedness between initially disjoint lines, resulting in a percolating network. In other words, the lines form the blueprint for the global geometric evolution of the cosmic web.
Impacts of Cosmic Dust on Planetary Atmospheres and Surfaces
NASA Astrophysics Data System (ADS)
Plane, John M. C.; Flynn, George J.; Määttänen, Anni; Moores, John E.; Poppe, Andrew R.; Carrillo-Sanchez, Juan Diego; Listowski, Constantino
2018-02-01
Recent advances in interplanetary dust modelling provide much improved estimates of the fluxes of cosmic dust particles into planetary (and lunar) atmospheres throughout the solar system. Combining the dust particle size and velocity distributions with new chemical ablation models enables the injection rates of individual elements to be predicted as a function of location and time. This information is essential for understanding a variety of atmospheric impacts, including: the formation of layers of metal atoms and ions; meteoric smoke particles and ice cloud nucleation; perturbations to atmospheric gas-phase chemistry; and the effects of the surface deposition of micrometeorites and cosmic spherules. There is discussion of impacts on all the planets, as well as on Pluto, Triton and Titan.
Large-scale structure from cosmic-string loops in a baryon-dominated universe
NASA Technical Reports Server (NTRS)
Melott, Adrian L.; Scherrer, Robert J.
1988-01-01
The results are presented of a numerical simulation of the formation of large-scale structure in a universe with Omega(0) = 0.2 and h = 0.5 dominated by baryons in which cosmic strings provide the initial density perturbations. The numerical model yields a power spectrum. Nonlinear evolution confirms that the model can account for 700 km/s bulk flows and a strong cluster-cluster correlation, but does rather poorly on smaller scales. There is no visual 'filamentary' structure, and the two-point correlation has too steep a logarithmic slope. The value of G mu = 4 x 10 to the -6th is significantly lower than previous estimates for the value of G mu in baryon-dominated cosmic string models.
Galaxy properties and the cosmic web in simulations
NASA Astrophysics Data System (ADS)
Metuki, Ofer; Libeskind, Noam I.; Hoffman, Yehuda; Crain, Robert A.; Theuns, Tom
2015-01-01
We seek to understand the relationship between galaxy properties and their local environment, which calls for a proper formulation of the notion of environment. We analyse the Galaxies-Intergalactic Medium Interaction Calculation suite of cosmological hydrodynamical simulations within the framework of the cosmic web as formulated by Hoffman et al., focusing on properties of simulated dark matter haloes and luminous galaxies with respect to voids, sheets, filaments, and knots - the four elements of the cosmic web. We find that the mass functions of haloes depend on environment, which drives other environmental dependence of galaxy formation. The web shapes the halo mass function, and through the strong dependence of the galaxy properties on the mass of their host haloes, it also shapes the galaxy-(web) environment dependence.
Possible complementary cosmic-ray systems: Nuclei and antinuclei
NASA Technical Reports Server (NTRS)
Buck, Warren W.; Wilson, John W.; Townsend, Lawrence W.; Norbury, John W.
1987-01-01
Arguments are presented for the possible existence of antinuclei of charge Absolute Value of Z greater than 2 and particularly galactic cosmic antinuclei. Theoretical antinucleus-nucleus optical model cross sections are calculated and presented for the first time. A brief review of the nucleon-antinucleon interaction is also presented and its connection with the antinucleus-nucleus interaction is made. The predicted cross sections are smooth and show no structure. Finally, the findings are tied together with the formation of microlesions in living tissue.
End Point of the Ultraspinning Instability and Violation of Cosmic Censorship.
Figueras, Pau; Kunesch, Markus; Lehner, Luis; Tunyasuvunakool, Saran
2017-04-14
We determine the end point of the axisymmetric ultraspinning instability of asymptotically flat Myers-Perry black holes in D=6 spacetime dimensions. In the nonlinear regime, this instability gives rise to a sequence of concentric rings connected by segments of black membrane on the rotation plane. The latter become thinner over time, resulting in the formation of a naked singularity in finite asymptotic time and hence a violation of the weak cosmic censorship conjecture in asymptotically flat higher-dimensional spaces.
End Point of the Ultraspinning Instability and Violation of Cosmic Censorship
NASA Astrophysics Data System (ADS)
Figueras, Pau; Kunesch, Markus; Lehner, Luis; Tunyasuvunakool, Saran
2017-04-01
We determine the end point of the axisymmetric ultraspinning instability of asymptotically flat Myers-Perry black holes in D =6 spacetime dimensions. In the nonlinear regime, this instability gives rise to a sequence of concentric rings connected by segments of black membrane on the rotation plane. The latter become thinner over time, resulting in the formation of a naked singularity in finite asymptotic time and hence a violation of the weak cosmic censorship conjecture in asymptotically flat higher-dimensional spaces.
NASA Astrophysics Data System (ADS)
Bradac, Marusa; Coe, Dan; Huang, Kuang-Han; Salmon, Brett; Hoag, Austin; Bradley, Larry; Ryan, Russell; Dawson, Will; Zitrin, Adi; Jones, Christine; Sharon, Keren; Trentu, Michele; Stark, Daniel; Bouwens, Rychard; Oesch, Pascal; Lam, Daniel; Patricia Carasco Nunez, Daniela; Paterno-Mahler, Rachel; Strait, Victoria
2017-10-01
When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and epoch of reionization? Recent observations indicate at least two critical puzzles in these studies. (1) First galaxies might have started forming stars earlier than previously thought (<400Myr after the Big Bang). (2) It is still unclear what is their star formation history and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z 6-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose Spitzer imaging of the fields behind the most powerful cosmic telescopes selected using HST, Spitzer, and Planck data from the RELICS and SRELICS programs (Reionization Lensing Cluster Survey; 41 clusters, 190 HST orbits, 550 Spitzer hours). This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population with much improved sample variance. The program will allow us to study stellar properties of a large number, 20 galaxies at z 6-11. Deep Spitzer data will be crucial to unambiguously measure their stellar properties (age, SFR, M*). Finally this proposal is a unique opportunity to establish the presence (or absence) of an unusually early established stellar population, as was recently observed in MACS1149JD at z 9. If confirmed, this result will require a paradigm shift in our understanding of the earliest star formation.
NASA Astrophysics Data System (ADS)
Bradac, Marusa; Coe, Dan; Huang, Kuang-Han; Salmon, Brett; Hoag, Austin; Bradley, Larry; Ryan, Russell; Dawson, Will; Zitrin, Adi; Jones, Christine; Sharon, Keren; Trenti, Michele; Stark, Daniel; Bouwens, Rychard; Oesch, Pascal; Lam, Daniel; Carrasco Nunez, Daniela Patricia
2017-04-01
When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and epoch of reionization? Recent observations indicate at least two critical puzzles in these studies. (1) First galaxies might have started forming stars earlier than previously thought (<400Myr after the Big Bang). (2) It is still unclear what is their star formation history and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z 6-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose Spitzer imaging of the fields behind 3 most powerful cosmic telescopes selected using HST, Spitzer, and Planck data from the RELICS and SRELICS programs (Reionization Lensing Cluster Survey; 41 clusters, 190 HST orbits, 390 Spitzer hours). This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population with much improved sample variance. The program will allow us to study stellar properties of a large number, 30 galaxies at z 6-11. Deep Spitzer data will be crucial to unambiguously measure their stellar properties (age, SFR, M*). Finally this proposal will establish the presence (or absence) of an unusually early established stellar population, as was recently observed in MACS1149JD at z 9. If confirmed in a larger sample, this result will require a paradigm shift in our understanding of the earliest star formation.
Cosmic Reionization On Computers: Numerical and Physical Convergence
Gnedin, Nickolay Y.
2016-04-01
In this paper I show that simulations of reionization performed under the Cosmic Reionization On Computers (CROC) project do converge in space and mass, albeit rather slowly. A fully converged solution (for a given star formation and feedback model) can be determined at a level of precision of about 20%, but such a solution is useless in practice, since achieving it in production-grade simulations would require a large set of runs at various mass and spatial resolutions, and computational resources for such an undertaking are not yet readily available. In order to make progress in the interim, I introduce amore » weak convergence correction factor in the star formation recipe, which allows one to approximate the fully converged solution with finite resolution simulations. The accuracy of weakly converged simulations approaches a comparable, ~20% level of precision for star formation histories of individual galactic halos and other galactic properties that are directly related to star formation rates, like stellar masses and metallicities. Yet other properties of model galaxies, for example, their HI masses, are recovered in the weakly converged runs only within a factor of two.« less
Cosmic Reionization On Computers: Numerical and Physical Convergence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnedin, Nickolay Y.
In this paper I show that simulations of reionization performed under the Cosmic Reionization On Computers (CROC) project do converge in space and mass, albeit rather slowly. A fully converged solution (for a given star formation and feedback model) can be determined at a level of precision of about 20%, but such a solution is useless in practice, since achieving it in production-grade simulations would require a large set of runs at various mass and spatial resolutions, and computational resources for such an undertaking are not yet readily available. In order to make progress in the interim, I introduce amore » weak convergence correction factor in the star formation recipe, which allows one to approximate the fully converged solution with finite resolution simulations. The accuracy of weakly converged simulations approaches a comparable, ~20% level of precision for star formation histories of individual galactic halos and other galactic properties that are directly related to star formation rates, like stellar masses and metallicities. Yet other properties of model galaxies, for example, their HI masses, are recovered in the weakly converged runs only within a factor of two.« less
Pioneer 10 and 11 Data Analysis
NASA Technical Reports Server (NTRS)
Fillius, Walker
1997-01-01
This report finishes the work of NASA Grant NAS2-153, which supported data analysis for the UCSD instruments on Pioneers 10 and 11. The data analyzed under this grant span 22 years of interplanetary measurements in the inner and outer heliosphere. The UCSD instruments made their mark in cosmic ray research based upon their high energy thresholds, directional responses, and reliable data streams. one of their primary scientific objectives concerns the size, configuration, and time behavior of the heliosphere. The size scale is inferred from the radial intensity gradient, which is measured between the two spacecraft and extrapolated to interstellar intensity levels at the cosmic ray modulation boundary. This boundary still eludes us, and its position, motion, and the best method of extrapolation are ongoing problems. Current projections place the boundary beyond 100 AU, which may be beyond the termination shock, and raises the question of possible modulation in the heliosheath. Probably our only hope of seeing this region in the immediate future rides on the possibility that the boundary will move inward. Our instruments have recorded many Forbush, or transient, decreases in the outer heliosphere. These observations led us to a model that attributes many of the decreases to solar wind stream-stream interactions, and relates the cosmic ray variations to the locally observed magnetic field magnitude. As the cosmic ray variations in this model result only from topological changes in the modulation integral, the model is a tool for studying the possibility that the 11 year cosmic ray modulation cycle can be accounted for by a superposition of Forbush decreases. The cosmic ray angular distribution function is measurable, given a good telemetry rate, by the UCSD Cerenkov detector which counts particles of energy greater than 500 MeV/n. We obtained statistically significant samples from 1 to 9 AU, at 13 AU, and at 34 AU. The anisotropy tends to be a few tenths of a per cent at all radial distances. A quasiperiodic variation in the east-west anisotropy with period of about 50 days remains unexplained.
Recent Progress in Laboratory Astrophysics and Astrochemistry Achieved with the COSmIC Facility
NASA Technical Reports Server (NTRS)
Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma
2017-01-01
We describe the characteristics and the capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory. COSmIC stands for "Cosmic Simulation Chamber" and is dedicated to the study of neutral and ionized molecules and nanoparticles under the low temperature and high vacuum conditions that are required to simulate various space environments such as diffuse interstellar clouds, circumstellar outflows and planetary atmospheres. COSmIC integrates a variety of state-of-the-art instruments that allow recreating simulated space conditions to generate, process and monitor cosmic analogs in the laboratory. The COSmIC experimental setup is composed of a Pulsed Discharge Nozzle (PDN) expansion, that generates a plasma in the stream of a free supersonic jet expansion, coupled to high-sensitivity, complementary in situ diagnostics: cavity ring down spectroscopy (CRDS) and laser induced fluorescence (LIF) systems for photonic detection, and Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection. Recent results obtained using COSmIC will be highlighted. In particular, the progress that has been achieved in the domain of the diffuse interstellar bands (DIBs) and in monitoring, in the laboratory, the formation of circumstellar dust grains and planetary atmosphere aerosols from their gas-phase molecular precursors. Plans for future laboratory experiments on interstellar and planetary molecules and grains will also be addressed, as well as the implications of the studies underway for astronomical observations and past and future space mission data analysis.
Radiobiological foundation of crew radiation risk for mars mission
NASA Astrophysics Data System (ADS)
Shafirkin, A.
The results of a comprehensive clinico-physiological study of 250 dogs after 22 hours per day chronic exposure to gamma -radiation throughout their life are presented. The exposure duration was 3 and 6 years. The dose rate varied between 25 and 150 cSv/year to simulate galactic cosmic ray dose of crew members during mars mission. Several groups of the dogs received an additional acute dose of 10 and 50 cSv during a day three times per year to simulate stochastic irradiation caused by solar cosmic rays. Data on the status of regulatory systems of organism, exchange processes dynamics, organism reaction on additional functional loads are also presented. Organism reaction and dynamics of kinetic relations are considered in detail for most radiosensitive and regenerating tissue systems of the organism, namely, bloodforming system and spermatogenic epithelium. The results on life span reduction of the dogs and dog race characteristics after the radiation exposure are discussed. Based on the results obtained in this study and in model experiments realized with big amount of small laboratory animals that were exposed to a wide dose range, using other published data, mathematical models were developed, e. g. a model of radiation damage forming as dependent on time with taking into account recovery processes, and a model of radiation mortality rate of mammals. Based on these models and analysis of radiation environment behind various shielding on the route to Mars, crew radiation risk was calculated for space missions of various durations. Total radiation risk values for cosmonaut lifetime after the missions were also estimated together with expected life span reduction.
Radiobiological foundation of crew radiation risk for Mars mission
NASA Astrophysics Data System (ADS)
Aleksandr, Shafirkin; Grigoriev, Yurj
The results of a comprehensive clinico-physiological study of 250 dogs after 22 hours per day chronic exposure to gamma-radiation throughout their life are presented. The exposure duration was 3 and 6 years. The dose rate varied between 25 and 150 cSv/year to simulate galactic cosmic ray dose of crew members during mars mission. Several groups of the dogs received an additional acute dose of 10 and 50 cSv during a day three times per year to simulate stochastic irradiation caused by solar cosmic rays. Data on the status of regulatory systems of organism, exchange processes dynamics, organism reaction on additional functional loads are also presented. Organism reaction and dynamics of kinetic relations are considered in detail for most radiosensitive and regenerating tissue systems of the organism, namely, bloodforming system and spermatogenic epithelium. The results on life span reduction of the dogs and dog race characteristics after the radiation exposure are discussed. Based on the results obtained in this study and in model experiments realized with big amount of small laboratory animals that were exposed to a wide dose range, using other published data, mathematical models were developed, e. g. a model of radiation damage forming as dependent on time with taking into account recovery processes, and a model of radiation mortality rate of mammals. Based on these models and analysis of radiation environment behind various shielding on the route to Mars, crew radiation risk was calculated for space missions of various durations. Total radiation risk values for cosmonaut lifetime after the missions were also estimated together with expected life span reduction.
Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Yu; Romano, D.; Ivison, R. J.; Papadopoulos, Padelis P.; Matteucci, F.
2018-06-01
All measurements of cosmic star formation must assume an initial distribution of stellar masses—the stellar initial mass function—in order to extrapolate from the star-formation rate measured for typically rare, massive stars (of more than eight solar masses) to the total star-formation rate across the full stellar mass spectrum1. The shape of the stellar initial mass function in various galaxy populations underpins our understanding of the formation and evolution of galaxies across cosmic time2. Classical determinations of the stellar initial mass function in local galaxies are traditionally made at ultraviolet, optical and near-infrared wavelengths, which cannot be probed in dust-obscured galaxies2,3, especially distant starbursts, whose apparent star-formation rates are hundreds to thousands of times higher than in the Milky Way, selected at submillimetre (rest-frame far-infrared) wavelengths4,5. The 13C/18O isotope abundance ratio in the cold molecular gas—which can be probed via the rotational transitions of the 13CO and C18O isotopologues—is a very sensitive index of the stellar initial mass function, with its determination immune to the pernicious effects of dust. Here we report observations of 13CO and C18O emission for a sample of four dust-enshrouded starbursts at redshifts of approximately two to three, and find unambiguous evidence for a top-heavy stellar initial mass function in all of them. A low 13CO/C18O ratio for all our targets—alongside a well tested, detailed chemical evolution model benchmarked on the Milky Way6—implies that there are considerably more massive stars in starburst events than in ordinary star-forming spiral galaxies. This can bring these extraordinary starbursts closer to the `main sequence' of star-forming galaxies7, although such main-sequence galaxies may not be immune to changes in initial stellar mass function, depending on their star-formation densities.
Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time.
Zhang, Zhi-Yu; Romano, D; Ivison, R J; Papadopoulos, Padelis P; Matteucci, F
2018-06-01
All measurements of cosmic star formation must assume an initial distribution of stellar masses-the stellar initial mass function-in order to extrapolate from the star-formation rate measured for typically rare, massive stars (of more than eight solar masses) to the total star-formation rate across the full stellar mass spectrum 1 . The shape of the stellar initial mass function in various galaxy populations underpins our understanding of the formation and evolution of galaxies across cosmic time 2 . Classical determinations of the stellar initial mass function in local galaxies are traditionally made at ultraviolet, optical and near-infrared wavelengths, which cannot be probed in dust-obscured galaxies 2,3 , especially distant starbursts, whose apparent star-formation rates are hundreds to thousands of times higher than in the Milky Way, selected at submillimetre (rest-frame far-infrared) wavelengths 4,5 . The 13 C/ 18 O isotope abundance ratio in the cold molecular gas-which can be probed via the rotational transitions of the 13 CO and C 18 O isotopologues-is a very sensitive index of the stellar initial mass function, with its determination immune to the pernicious effects of dust. Here we report observations of 13 CO and C 18 O emission for a sample of four dust-enshrouded starbursts at redshifts of approximately two to three, and find unambiguous evidence for a top-heavy stellar initial mass function in all of them. A low 13 CO/C 18 O ratio for all our targets-alongside a well tested, detailed chemical evolution model benchmarked on the Milky Way 6 -implies that there are considerably more massive stars in starburst events than in ordinary star-forming spiral galaxies. This can bring these extraordinary starbursts closer to the 'main sequence' of star-forming galaxies 7 , although such main-sequence galaxies may not be immune to changes in initial stellar mass function, depending on their star-formation densities.
NASA Astrophysics Data System (ADS)
Zhao, L.; Zhang, H.
2014-12-01
Anomalous cosmic rays (ACRs) carry crucial information on the coupling between solar wind and interstellar medium, as well as cosmic ray modulation within the heliosphere. Due to the distinct origins and modulation processes, the spectra and abundance of ACRs are significantly different from that of galactic cosmic rays (GCRs). Since the launch of NASA's ACE spacecraft in 1997, its CRIS and SIS instruments have continuously recorded GCR and ACR intensities of several elemental heavy-ions, spanning the whole cycle 23 and the cycle 24 maximum. Here we present a statistical comparison of ACR and GCR observed by ACE spacecraft and their possible relation to solar activity. While the differential flux of ACR also exhibits apparent anti-correlation with solar activity level, the flux of the latest prolonged solar minimum (year 2009) is approximately 5% lower than its previous solar minimum (year 1997). And the minimal level of ACR flux appears in year 2004, instead of year 2001 with the strongest solar activities. The negative indexes of the power law spectra within the energy range from 5 to 30 MeV/nuc also vary with time. The spectra get harder during the solar minimum but softer during the solar maximum. The approaching solar minimum of cycle 24 is believed to resemble the Dalton or Gleissberg Minimum with extremely low solar activity (Zolotova and Ponyavin, 2014). Therefore, the different characteristics of ACRs between the coming solar minimum and the previous minimum are also of great interest. Finally, we will also discuss the possible solar-modulation processes which is responsible for different modulation of ACR and GCR, especially the roles played by diffusion and drifts. The comparative analysis will provide valuable insights into the physical modulation process within the heliosphere under opposite solar polarity and variable solar activity levels.
Towards a Unified Source-Propagation Model of Cosmic Rays
NASA Astrophysics Data System (ADS)
Taylor, M.; Molla, M.
2010-07-01
It is well known that the cosmic ray energy spectrum is multifractal with the analysis of cosmic ray fluxes as a function of energy revealing a first “knee” slightly below 1016 eV, a second knee slightly below 1018 eV and an “ankle” close to 1019 eV. The behaviour of the highest energy cosmic rays around and above the ankle is still a mystery and precludes the development of a unified source-propagation model of cosmic rays from their source origin to Earth. A variety of acceleration and propagation mechanisms have been proposed to explain different parts of the spectrum the most famous of course being Fermi acceleration in magnetised turbulent plasmas (Fermi 1949). Many others have been proposd for energies at and below the first knee (Peters & Cimento (1961); Lagage & Cesarsky (1983); Drury et al. (1984); Wdowczyk & Wolfendale (1984); Ptuskin et al. (1993); Dova et al. (0000); Horandel et al. (2002); Axford (1991)) as well as at higher energies between the first knee and the ankle (Nagano & Watson (2000); Bhattacharjee & Sigl (2000); Malkov & Drury (2001)). The recent fit of most of the cosmic ray spectrum up to the ankle using non-extensive statistical mechanics (NESM) (Tsallis et al. (2003)) provides what may be the strongest evidence for a source-propagation system deviating significantly from Boltmann statistics. As Tsallis has shown (Tsallis et al. (2003)), the knees appear as crossovers between two fractal-like thermal regimes. In this work, we have developed a generalisation of the second order NESM model (Tsallis et al. (2003)) to higher orders and we have fit the complete spectrum including the ankle with third order NESM. We find that, towards the GDZ limit, a new mechanism comes into play. Surprisingly it also presents as a modulation akin to that in our own local neighbourhood of cosmic rays emitted by the sun. We propose that this is due to modulation at the source and is possibly due to processes in the shell of the originating supernova. We report that the entire spectrum, spanning cosmic rays of local solar origin and those eminating from galactic and extra-galactic sources can be explained using a new diagnostic — the gradient of the log-log plot. This diagnostic reveals the known Boltmann statistics in the solar-terrestrial neighbourhood but at the highest energies — presumably at the cosmic ray source, with clearly separated fractal scales in between. We interpret this as modulation at the source followed by Fermi acceleration facilitated by galactic and extra-galactic magnetic fields with a final modulation in the solar-terrestrial neighbourhood. We conclude that the gradient of multifractal curves appears to be an excellent detector of fractality.
Unveiling the Synchrotron Cosmic Web: Pilot Study
NASA Astrophysics Data System (ADS)
Brown, Shea; Rudnick, Lawrence; Pfrommer, Christoph; Jones, Thomas
2011-10-01
The overall goal of this project is to challenge our current theoretical understanding of the relativistic particle populations in the inter-galactic medium (IGM) through deep 1.4 GHz observations of 13 massive, high-redshift clusters of galaxies. Designed to compliment/extend the GMRT radio halo survey (Venturi et al. 2007), these observations will attempt to detect the peaks of the purported synchrotron cosmic-web, and place serious limits on models of CR acceleration and magnetic field amplification during large-scale structure formation. The primary goals of this survey are: 1) Confirm the bi-modal nature of the radio halo population, which favors turbulent re-acceleration of cosmic-ray electrons (CRe) during cluster mergers as the source of the diffuse radio emission; 2) Directly test hadronic secondary models which predict the presence of cosmic-ray protons (CRp) in the cores of massive X-ray clusters; 3) Search in polarization for shock structures, a potential source of CR acceleration in the IGM.
New Perspectives: Wave Mechanical Interpretations of Dark Matter, Baryon and Dark Energy
NASA Astrophysics Data System (ADS)
Russell, Esra
We model the cosmic components: dark matter, dark energy and baryon distributions in the Cosmic Web by means of highly nonlinear Schrodinger type and reaction diffusion type wave mechanical descriptions. The construction of these wave mechanical models of the structure formation is achieved by introducing the Fisher information measure and its comparison with highly nonlinear term which has dynamical analogy to infamous quantum potential in the wave equations. Strikingly, the comparison of this nonlinear term and the Fisher information measure provides a dynamical distinction between lack of self-organization and self-organization in the dynamical evolution of the cosmic components. Mathematically equivalent to the standard cosmic fluid equations, these approaches make it possible to follow the evolution of the matter distribution even into the highly nonlinear regime by circumventing singularities. Also, numerical realizations of the emerging web-like patterns are presented from the nonlinear dynamics of the baryon component while dark energy component shows Gaussian type dynamics corresponding to soliton-like solutions.
Lagrangian methods of cosmic web classification
NASA Astrophysics Data System (ADS)
Fisher, J. D.; Faltenbacher, A.; Johnson, M. S. T.
2016-05-01
The cosmic web defines the large-scale distribution of matter we see in the Universe today. Classifying the cosmic web into voids, sheets, filaments and nodes allows one to explore structure formation and the role environmental factors have on halo and galaxy properties. While existing studies of cosmic web classification concentrate on grid-based methods, this work explores a Lagrangian approach where the V-web algorithm proposed by Hoffman et al. is implemented with techniques borrowed from smoothed particle hydrodynamics. The Lagrangian approach allows one to classify individual objects (e.g. particles or haloes) based on properties of their nearest neighbours in an adaptive manner. It can be applied directly to a halo sample which dramatically reduces computational cost and potentially allows an application of this classification scheme to observed galaxy samples. Finally, the Lagrangian nature admits a straightforward inclusion of the Hubble flow negating the necessity of a visually defined threshold value which is commonly employed by grid-based classification methods.
WWW.NMDB.EU: The real-time Neutron Monitor databas
NASA Astrophysics Data System (ADS)
Klein, Karl-Ludwig; Steigies, Christian; Steigies, Christian T.; Wimmer-Schweingruber, Robert F.; Kudela, Karel; Strharsky, Igor; Langer, Ronald; Usoskin, Ilya; Ibragimov, Askar; Flückiger, Erwin O.; Bütikofer, Rolf; Eroshenko, Eugenia; Belov, Anatoly; Yanke, Victor; Klein, Karl-Ludwig; Fuller, Nicolas; Mavromichalaki, Helen; Papaioannou, Athana-Sios; Sarlanis, Christos; Souvatzoglou, George; Plainaki, Christina; Geron-Tidou, Maria; Papailiou, Maria-Christina; Mariatos, George; Chilingaryan, Ashot; Hovsepyan, G.; Reymers, Artur; Parisi, Mario; Kryakunova, Olga; Tsepakina, Irina; Nikolayevskiy, Nikolay; Dor-Man, Lev; Pustil'Nik, Lev; García-Población, Oscar
The Real time database for high-resolution neutron monitor measurements(NMDB), which was supported by the 7th Framework Programme of the European Commission, hosts data on cosmic rays in the GeV range from European and some non-European neutron monitor stations. Besides real-time data and historical data over several decades in a unified format, it offers data products such as galactic cosmic ray spectra and applications including solar energetic particle alerts and the calculation of ionisation rates in the atmosphere and effective radiation dose rates at aircraft altitudes. Furthermore the web site comprises public outreach pages in several languages and offers training material on cosmic rays for university students and researchers and engineers who want to become familiar with cosmic rays and neutron monitor measurements. This contribution presents an overview of the provided services and indications on how to access the database. Operators of other neutron monitor stations are welcome to submit their data to NMDB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stroman, Thomas; Pohl, Martin; Niemiec, Jacek
2012-02-10
There is an observational correlation between astrophysical shocks and nonthermal particle distributions extending to high energies. As a first step toward investigating the possible feedback of these particles on the shock at the microscopic level, we perform particle-in-cell (PIC) simulations of a simplified environment consisting of uniform, interpenetrating plasmas, both with and without an additional population of cosmic rays. We vary the relative density of the counterstreaming plasmas, the strength of a homogeneous parallel magnetic field, and the energy density in cosmic rays. We compare the early development of the unstable spectrum for selected configurations without cosmic rays to themore » growth rates predicted from linear theory, for assurance that the system is well represented by the PIC technique. Within the parameter space explored, we do not detect an unambiguous signature of any cosmic-ray-induced effects on the microscopic instabilities that govern the formation of a shock. We demonstrate that an overly coarse distribution of energetic particles can artificially alter the statistical noise that produces the perturbative seeds of instabilities, and that such effects can be mitigated by increasing the density of computational particles.« less
Massive gravity wrapped in the cosmic web
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shim, Junsup; Lee, Jounghun; Li, Baojiu, E-mail: jsshim@astro.snu.ac.kr, E-mail: jounghun@astro.snu.ac.kr
We study how the filamentary pattern of the cosmic web changes if the true gravity deviates from general relativity (GR) on a large scale. The f(R) gravity, whose strength is controlled to satisfy the current observational constraints on the cluster scale, is adopted as our fiducial model and a large, high-resolution N-body simulation is utilized for this study. By applying the minimal spanning tree algorithm to the halo catalogs from the simulation at various epochs, we identify the main stems of the rich superclusters located in the most prominent filamentary section of the cosmic web and determine their spatial extentsmore » per member cluster to be the degree of their straightness. It is found that the f(R) gravity has the effect of significantly bending the superclusters and that the effect becomes stronger as the universe evolves. Even in the case where the deviation from GR is too small to be detectable by any other observables, the degree of the supercluster straightness exhibits a conspicuous difference between the f(R) and the GR models. Our results also imply that the supercluster straightness could be a useful discriminator of f(R) gravity from the coupled dark energy since it is shown to evolve differently between the two models. As a final conclusion, the degree of the straightness of the rich superclusters should provide a powerful cosmological test of large scale gravity.« less
NASA Astrophysics Data System (ADS)
Rostamzadeh, N.; Hansen, K. L.; Kelso, R. M.; Dally, B. B.
2014-10-01
Wings with tubercles have been shown to display advantageous loading behavior at high attack angles compared to their unmodified counterparts. In an earlier study by the authors, it was shown that an undulating leading-edge configuration, including but not limited to a tubercled model, induces a cyclic variation in circulation along the span that gives rise to the formation of counter-rotating streamwise vortices. While the aerodynamic benefits of full-span tubercled wings have been associated with the presence of such vortices, their formation mechanism and influence on wing performance are still in question. In the present work, experimental and numerical tests were conducted to further investigate the effect of tubercles on the flow structure over full-span modified wings based on the NACA 0021 profile, in the transitional flow regime. It is found that a skew-induced mechanism accounts for the formation of streamwise vortices whose development is accompanied by flow separation in delta-shaped regions near the trailing edge. The presence of vortices is detrimental to the performance of full-span wings pre-stall, however renders benefits post-stall as demonstrated by wind tunnel pressure measurement tests. Finally, primary and secondary vortices are identified post-stall that produce an enhanced momentum transfer effect that reduces flow separation, thus increasing the generated amount of lift.
Ultra High Energy Cosmic Rays: Strangelets?
NASA Astrophysics Data System (ADS)
Xu, Ren-Xin; Wu, Fei
2003-06-01
The conjecture that ultra-high-energy cosmic rays (UHECRs) are actually strangelets is discussed. Besides the reason that strangelets can do as cosmic rays beyond the Greisen-Zatsepin-Kuzmin-cutoff, another argument to support the conjecture is addressed by the study of formation of TeV-scale microscopic black holes when UHECRs bombarding bare strange stars. It is proposed that the exotic quark surface of a bare strange star could be an effective astro-laboratory in the investigations of the extra dimensions and of the detection of ultra-high-energy neutrino fluxes. The flux of neutrinos (and other point-like particles) with energy larger than 2.3×1020 eV could be expected to be smaller than 10-26 cm-2 s-1 if there are two extra spatial dimensions.
Metal Precursors and Reduction in Renazzo Chondrules
NASA Astrophysics Data System (ADS)
Zanda, B.; Hewins, R. H.; Bourot-Denise, M.
1993-07-01
The positive Co-Ni correlation and Cr, P contents of metal in CR chondrites have generally been taken to indicate their primitive nature, probably inherited from condensation [1,2]. Si in the metal of primitive chondrites has also been reported and interpreted as a condensation heritage [3,4]. However, Cr, P, and Si (dissolved or in the form of inclusions) in metal of any CR chondrule generally fall within a +-10% range, though large interchondrule variations exist [5]. We have shown that Cr and Si in metal are in equilibrium with Fo and En in silicates, due to the reducing conditions that prevailed during chondrule formation [6]. In the present paper, we show that the Co-Ni trend was also established during chondrule formation out of heterogeneous precursor material with a variable Co/Ni ratio. Chondrules in Renazzo are classified as highly molten (HM), in which metal has been expelled to form a mantle outside the chondrule, medium molten (MM), with metal inside and at the periphery, and with evidence for grain coalescence, and little melted (LM), in which metal is only present in the form of small blebs dispersed among the silicates. In HM chondrules, Ni and Co concentrations are extremely homogeneous, comparatively low and in the cosmic ratio. In LM chondrules, quite the opposite: Ni and Co spread over a large range and the amount of scatter increases with decreasing degree of melting of the chondrule. In addition, they do not correlate along the cosmic ratio, but show a negative correlation if any. This heterogeneity is present not only from grain to grain in these chondrules, but also in individual metal grains. Such a heterogeneity is also exhibited in Cr and P abundances that span a much larger range than the +-10% found in the other chondrules. These results indicate that chondrule formation is responsible for the homogenization of Co and Ni contents of metal grains through coalescence and mixing. The less melted objects give an idea of the nature of metal in chondrule precursors, extremely heterogeneous and fine grained (each small heterogeneous metal bleb might be the result of partial melting of one or of coalescence and imperfect mixing of a few such grains). Co and Ni in these individual grains were not in the cosmic ratio, but wide sampling of dust in each chondrule precursor insured that this ratio was attained after mixing and homogenization, as seen in HM chondrule metal grains and from mean values of Co and Ni in LM chondrules. In MM chondrules, scatter of Ni and Co data are, as expected, intermediate between those of HM and LM chondrules, but Co and Ni are close to the cosmic ratio. The scatter is mostly due to addition of variable quantities of iron in the reduction during chondrule formation, which is responsible for Cr and Si integration into metal. Further evidence of such a process can be found in the less molten of these objects, in which metal grain coalescence is limited and peripheral grains are still different from inside grains. In these cases, Co and Ni distributions are clearly bimodal, high in inside grains, low in peripheral grains. Co/Ni in these two populations are somewhat scattered around the cosmic ratio, but their means (Ni: 7.75 = +- 0.24, Co: 0.36 +- 0.04, and Ni: 4.39 +- 0.34, Co: 0.23 +- 0.02, e.g., in the case of chondrule AL1) are very close to the cosmic ratio. This is in good agreement with the low values found in the homogeneous mantle grains of HM chondrules and, as noted by Lee et al. [7], indicates that the reducing agent was external to the chondrule. Cr abundances of these peripheral metal grains, however, match Cr abundances of the interior ones in these chondrules. This indicates that the redox state of all these grains was attained simultaneously and controlled by equilibrium with chondrule silicates. Slightly more extensive reduction of the latter close to the chondrule surface that added more Fe to peripheral metal grains resulted in only a minor variation of the Cr partition coefficient: it consequently also induced Cr addition, the Cr/Fe ratio varying only marginally. Therefore, we believe unlike [7] the process to have been nebular, and the reducing agent the nebular gas, although equilibrium with this gas was clearly not attained. References: [1] Weisberg M. K. et al. (1993) GCA, 57, 1567-1586. [2] Grossman L. and Olsen E. (1974) GCA, 38, 173-187. [3] Grossman L., et al. (1979) Science, 206, 449-451. [4] Rambaldi E. R. et al. (1980) Nature, 287; Nature, 293, 558-561. [5] Zanda B. et al. (1991) LPSC XXII, 1543-1544. [6] Hewins R. H. and Zanda B. (1992) Meteoritics, 27, 233. [7] Lee M. S. et al. (1992) GCA, 56, 2521-2533.
Bunch, Ted E; Hermes, Robert E; Moore, Andrew M T; Kennett, Douglas J; Weaver, James C; Wittke, James H; DeCarli, Paul S; Bischoff, James L; Hillman, Gordon C; Howard, George A; Kimbel, David R; Kletetschka, Gunther; Lipo, Carl P; Sakai, Sachiko; Revay, Zsolt; West, Allen; Firestone, Richard B; Kennett, James P
2012-07-10
It has been proposed that fragments of an asteroid or comet impacted Earth, deposited silica- and iron-rich microspherules and other proxies across several continents, and triggered the Younger Dryas cooling episode 12,900 years ago. Although many independent groups have confirmed the impact evidence, the hypothesis remains controversial because some groups have failed to do so. We examined sediment sequences from 18 dated Younger Dryas boundary (YDB) sites across three continents (North America, Europe, and Asia), spanning 12,000 km around nearly one-third of the planet. All sites display abundant microspherules in the YDB with none or few above and below. In addition, three sites (Abu Hureyra, Syria; Melrose, Pennsylvania; and Blackville, South Carolina) display vesicular, high-temperature, siliceous scoria-like objects, or SLOs, that match the spherules geochemically. We compared YDB objects with melt products from a known cosmic impact (Meteor Crater, Arizona) and from the 1945 Trinity nuclear airburst in Socorro, New Mexico, and found that all of these high-energy events produced material that is geochemically and morphologically comparable, including: (i) high-temperature, rapidly quenched microspherules and SLOs; (ii) corundum, mullite, and suessite (Fe(3)Si), a rare meteoritic mineral that forms under high temperatures; (iii) melted SiO(2) glass, or lechatelierite, with flow textures (or schlieren) that form at > 2,200 °C; and (iv) particles with features indicative of high-energy interparticle collisions. These results are inconsistent with anthropogenic, volcanic, authigenic, and cosmic materials, yet consistent with cosmic ejecta, supporting the hypothesis of extraterrestrial airbursts/impacts 12,900 years ago. The wide geographic distribution of SLOs is consistent with multiple impactors.
NASA Astrophysics Data System (ADS)
Mavromichalaki, H.; Preka-Papadema, P.; Theodoropoulou, A.; Paouris, E.; Apostolou, Th.
2017-01-01
The biological human system is probably affected by the solar and geomagnetic disturbances as well as the cosmic ray variations. In this work, the relation between the solar activity and cosmic ray variations and the cardiac arrhythmias over the time period 1997-2009 covering the solar cycle 23, is studied. The used medical data set refers to 4741 patients with cardiac arrhythmias and 2548 of whom were diagnosed with atrial fibrillation, obtained from the 2nd Cardiological Clinic of the General Hospital of Nicaea, Piraeus, in Greece. The smoothing method on a 365-day basis and the Pearson r-coefficient were used in order to compare these records with the number of sunspots, flares, solar proton events, coronal mass ejections and cosmic ray intensity. Applying a moving correlation function to ±1500 days, it is suggested that a change of the correlation sign between the medical data and each one of the above parameters occurs during a time interval of about 2-3 years. This interval corresponds to the time span of the polarity reversal of the solar magnetic field of this solar cycle, which always takes place around the solar cycle maximum. After then a correlation analysis was carried out corresponding to the rise (1997-2001) and the decay (2002-2009) phases of the solar cycle 23. It is noticeable that the polarity reversal of the solar magnetic field coincides with the period where the sign of the correlation between the incidence of arrhythmias and the occurrence number of the solar eruptive events and the cosmic ray intensity, changes sign. The results are comparable with those obtained from the previous solar cycle 22 based on medical data from another country.
Exploring cosmic origins with CORE: Inflation
NASA Astrophysics Data System (ADS)
Finelli, F.; Bucher, M.; Achúcarro, A.; Ballardini, M.; Bartolo, N.; Baumann, D.; Clesse, S.; Errard, J.; Handley, W.; Hindmarsh, M.; Kiiveri, K.; Kunz, M.; Lasenby, A.; Liguori, M.; Paoletti, D.; Ringeval, C.; Väliviita, J.; van Tent, B.; Vennin, V.; Ade, P.; Allison, R.; Arroja, F.; Ashdown, M.; Banday, A. J.; Banerji, R.; Bartlett, J. G.; Basak, S.; de Bernardis, P.; Bersanelli, M.; Bonaldi, A.; Borril, J.; Bouchet, F. R.; Boulanger, F.; Brinckmann, T.; Burigana, C.; Buzzelli, A.; Cai, Z.-Y.; Calvo, M.; Carvalho, C. S.; Castellano, G.; Challinor, A.; Chluba, J.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; D'Amico, G.; Delabrouille, J.; Desjacques, V.; De Zotti, G.; Diego, J. M.; Di Valentino, E.; Feeney, S.; Fergusson, J. R.; Fernandez-Cobos, R.; Ferraro, S.; Forastieri, F.; Galli, S.; García-Bellido, J.; de Gasperis, G.; Génova-Santos, R. T.; Gerbino, M.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Hazra, D. K.; Hernández-Monteagudo, C.; Hervias-Caimapo, C.; Hills, M.; Hivon, E.; Hu, B.; Kisner, T.; Kitching, T.; Kovetz, E. D.; Kurki-Suonio, H.; Lamagna, L.; Lattanzi, M.; Lesgourgues, J.; Lewis, A.; Lindholm, V.; Lizarraga, J.; López-Caniego, M.; Luzzi, G.; Maffei, B.; Mandolesi, N.; Martínez-González, E.; Martins, C. J. A. P.; Masi, S.; McCarthy, D.; Matarrese, S.; Melchiorri, A.; Melin, J.-B.; Molinari, D.; Monfardini, A.; Natoli, P.; Negrello, M.; Notari, A.; Oppizzi, F.; Paiella, A.; Pajer, E.; Patanchon, G.; Patil, S. P.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Ravenni, A.; Remazeilles, M.; Renzi, A.; Roest, D.; Roman, M.; Rubiño-Martin, J. A.; Salvati, L.; Starobinsky, A. A.; Tartari, A.; Tasinato, G.; Tomasi, M.; Torrado, J.; Trappe, N.; Trombetti, T.; Tucci, M.; Tucker, C.; Urrestilla, J.; van de Weygaert, R.; Vielva, P.; Vittorio, N.; Young, K.; Zannoni, M.
2018-04-01
We forecast the scientific capabilities to improve our understanding of cosmic inflation of CORE, a proposed CMB space satellite submitted in response to the ESA fifth call for a medium-size mission opportunity. The CORE satellite will map the CMB anisotropies in temperature and polarization in 19 frequency channels spanning the range 60–600 GHz. CORE will have an aggregate noise sensitivity of 1.7 μKṡ arcmin and an angular resolution of 5' at 200 GHz. We explore the impact of telescope size and noise sensitivity on the inflation science return by making forecasts for several instrumental configurations. This study assumes that the lower and higher frequency channels suffice to remove foreground contaminations and complements other related studies of component separation and systematic effects, which will be reported in other papers of the series "Exploring Cosmic Origins with CORE." We forecast the capability to determine key inflationary parameters, to lower the detection limit for the tensor-to-scalar ratio down to the 10‑3 level, to chart the landscape of single field slow-roll inflationary models, to constrain the epoch of reheating, thus connecting inflation to the standard radiation-matter dominated Big Bang era, to reconstruct the primordial power spectrum, to constrain the contribution from isocurvature perturbations to the 10‑3 level, to improve constraints on the cosmic string tension to a level below the presumptive GUT scale, and to improve the current measurements of primordial non-Gaussianities down to the fNLlocal < 1 level. For all the models explored, CORE alone will improve significantly on the present constraints on the physics of inflation. Its capabilities will be further enhanced by combining with complementary future cosmological observations.
Bunch, Ted E.; Hermes, Robert E.; Moore, Andrew M.T.; Kennett, Douglas J.; Weaver, James C.; Wittke, James H.; DeCarli, Paul S.; Bischoff, James L.; Hillman, Gordon C.; Howard, George A.; Kimbel, David R.; Kletetschka, Gunther; Lipo, Carl P.; Sakai, Sachiko; Revay, Zsolt; West, Allen; Firestone, Richard B.; Kennett, James P.
2012-01-01
It has been proposed that fragments of an asteroid or comet impacted Earth, deposited silica-and iron-rich microspherules and other proxies across several continents, and triggered the Younger Dryas cooling episode 12,900 years ago. Although many independent groups have confirmed the impact evidence, the hypothesis remains controversial because some groups have failed to do so. We examined sediment sequences from 18 dated Younger Dryas boundary (YDB) sites across three continents (North America, Europe, and Asia), spanning 12,000 km around nearly one-third of the planet. All sites display abundant microspherules in the YDB with none or few above and below. In addition, three sites (Abu Hureyra, Syria; Melrose, Pennsylvania; and Blackville, South Carolina) display vesicular, high-temperature, siliceous scoria-like objects, or SLOs, that match the spherules geochemically. We compared YDB objects with melt products from a known cosmic impact (Meteor Crater, Arizona) and from the 1945 Trinity nuclear airburst in Socorro, New Mexico, and found that all of these high-energy events produced material that is geochemically and morphologically comparable, including: (i) high-temperature, rapidly quenched microspherules and SLOs; (ii) corundum, mullite, and suessite (Fe3,/sup>Si), a rare meteoritic mineral that forms under high temperatures; (iii) melted SiO2 glass, or lechatelierite, with flow textures (or schlieren) that form at > 2,200 °C; and (iv) particles with features indicative of high-energy interparticle collisions. These results are inconsistent with anthropogenic, volcanic, authigenic, and cosmic materials, yet consistent with cosmic ejecta, supporting the hypothesis of extraterrestrial airbursts/impacts 12,900 years ago. The wide geographic distribution of SLOs is consistent with multiple impactors.
LFlGRB: Luminosity function of long gamma-ray bursts
NASA Astrophysics Data System (ADS)
Paul, Debdutta
2018-04-01
LFlGRB models the luminosity function (LF) of long Gamma Ray Bursts (lGRBs) by using a sample of Swift and Fermi lGRBs to re-derive the parameters of the Yonetoku correlation and self-consistently estimate pseudo-redshifts of all the bursts with unknown redshifts. The GRB formation rate is modeled as the product of the cosmic star formation rate and a GRB formation efficiency for a given stellar mass.
Size evolution of star-forming galaxies with 2
NASA Astrophysics Data System (ADS)
Ribeiro, B.; Le Fèvre, O.; Tasca, L. A. M.; Lemaux, B. C.; Cassata, P.; Garilli, B.; Maccagni, D.; Zamorani, G.; Zucca, E.; Amorín, R.; Bardelli, S.; Fontana, A.; Giavalisco, M.; Hathi, N. P.; Koekemoer, A.; Pforr, J.; Tresse, L.; Dunlop, J.
2016-08-01
Context. The size of a galaxy encapsulates the signature of the different physical processes driving its evolution. The distribution of galaxy sizes in the Universe as a function of cosmic time is therefore a key to understand galaxy evolution. Aims: We aim to measure the average sizes and size distributions of galaxies as they are assembling before the peak in the comoving star formation rate density of the Universe to better understand the evolution of galaxies across cosmic time. Methods: We used a sample of ~1200 galaxies in the COSMOS and ECDFS fields with confirmed spectroscopic redshifts 2 ≤ zspec ≤ 4.5 in the VIMOS Ultra Deep Survey (VUDS), representative of star-forming galaxies with IAB ≤ 25. We first derived galaxy sizes by applying a classical parametric profile-fitting method using GALFIT. We then measured the total pixel area covered by a galaxy above a given surface brightness threshold, which overcomes the difficulty of measuring sizes of galaxies with irregular shapes. We then compared the results obtained for the equivalent circularized radius enclosing 100% of the measured galaxy light r100T ~2.2 to those obtained with the effective radius re,circ measured with GALFIT. Results: We find that the sizes of galaxies computed with our non-parametric approach span a wide range but remain roughly constant on average with a median value r100T ~2.2 kpc for galaxies with 2
Cosmic clocks: a tight radius-velocity relationship for H I-selected galaxies
NASA Astrophysics Data System (ADS)
Meurer, Gerhardt R.; Obreschkow, Danail; Wong, O. Ivy; Zheng, Zheng; Audcent-Ross, Fiona M.; Hanish, D. J.
2018-05-01
H I-selected galaxies obey a linear relationship between their maximum detected radius Rmax and rotational velocity. This result covers measurements in the optical, ultraviolet, and H I emission in galaxies spanning a factor of 30 in size and velocity, from small dwarf irregulars to the largest spirals. Hence, galaxies behave as clocks, rotating once a Gyr at the very outskirts of their discs. Observations of a large optically selected sample are consistent, implying this relationship is generic to disc galaxies in the low redshift Universe. A linear radius-velocity relationship is expected from simple models of galaxy formation and evolution. The total mass within Rmax has collapsed by a factor of 37 compared to the present mean density of the Universe. Adopting standard assumptions, we find a mean halo spin parameter λ in the range 0.020-0.035. The dispersion in λ, 0.16 dex, is smaller than expected from simulations. This may be due to the biases in our selection of disc galaxies rather than all haloes. The estimated mass densities of stars and atomic gas at Rmax are similar (˜0.5 M⊙ pc-2), indicating outer discs are highly evolved. The gas consumption and stellar population build time-scales are hundreds of Gyr, hence star formation is not driving the current evolution of outer discs. The estimated ratio between Rmax and disc scalelength is consistent with long-standing predictions from monolithic collapse models. Hence, it remains unclear whether disc extent results from continual accretion, a rapid initial collapse, secular evolution, or a combination thereof.
WEAVE-QSO: A Massive Intergalactic Medium Survey for the William Herschel Telescope
NASA Astrophysics Data System (ADS)
Pieri, M. M.; Bonoli, S.; Chaves-Montero, J.; Pâris, I.; Fumagalli, M.; Bolton, J. S.; Viel, M.; Noterdaeme, P.; Miralda-Escudé, J.; Busca, N. G.; Rahmani, H.; Peroux, C.; Font-Ribera, A.; Trager, S. C.
2016-12-01
In these proceedings we describe the WEAVE-QSO survey, which will observe around 400,000 high redshift quasars starting in 2018. This survey is part of a broader WEAVE survey to be conducted at the 4.2m William Herschel Telescope. We will focus on chiefly on the science goals, but will also briefly summarise the target selection methods anticipated and the expected survey plan. Understanding the apparent acceleration in the expansion of the Universe is one of the key scientific challenges of our time. Many experiments have been proposed to study this expansion, using a variety of techniques. Here we describe a survey that can measure this acceleration and therefore help elucidate the nature of dark energy: a survey of the Lyα forest (and quasar absorption in general) in spectra towards z>2 quasars (QSOs). Further constraints on neutrino masses and warm dark matter are also anticipated. The same data will also shed light on galaxy formation via study of the properties of inflowing/outflowing gas associated with nearby galaxies and in a cosmic web context. Gas properties are sensitive to density, temperature, UV radiation, metallicity and abundance pattern, and so constraint galaxy formation in a variety of ways. WEAVE-QSO will study absorbers with a dynamic range spanning more than 8 orders of magnitude in column density, their thermal broadening, and a host of elements and ionization species. A core principal of the WEAVE-QSO survey is the targeting of QSOs with near 100% efficiency principally through use of the J-PAS (r < 23.2) and Gaia (r ≲ 20) data.
NASA Astrophysics Data System (ADS)
Dorman, L. I.; Dorman, I. V.
We extend our model (Dorman and Dorman, 1995) of cosmic ray atmospheric electric field effect on the case of neutron monitor. We take into account that about 0.07 of neu- tron monitor counting rate caused by negative soft muons captured by lead nucleons and formed mesoatoms with generation of several MeV energy neutrons from lead. In this case the neutron monitor or neutron supermonitor works as analyzer which de- tects muons of only one, negative sign. It is very important because the atmospheric electric field effect have opposite signs for positive and negative muons that main part of this effect in the muon telescope or in ionization chamber is compensated and we can observe only small part of total effect of one sign muons. On the basis of our gen- eral theory of cosmic ray meteorological effects with taking into account of negative soft muon acceleration and deceleration in the Earth atmosphere (in dependence of di- rection and intensity of electric field) we discuss the possibility of existing this effect in cosmic ray neutron component and made some rough estimations. REFERENCES: Dorman L.I. and Dorman I.V., 1995. "Cosmic-ray atmospheric electric field effects". Canadian J. of Physics, Vol. 73, pp. 440-443.
NASA Astrophysics Data System (ADS)
Lanz, Alicia; Arai, Toshiaki; Battle, John; Bock, James; Cooray, Asantha; Hristov, Viktor; Korngut, Phillip; Lee, Dae Hee; Mason, Peter; Matsumoto, Toshio; Matsuura, Shuji; Morford, Tracy; Onishi, Yosuke; Shirahata, Mai; Tsumura, Kohji; Wada, Takehiko; Zemcov, Michael
2014-08-01
Fluctuations in the extragalactic background light trace emission from the history of galaxy formation, including the emission from the earliest sources from the epoch of reionization. A number of recent near-infrared measure- ments show excess spatial power at large angular scales inconsistent with models of z < 5 emission from galaxies. These measurements have been interpreted as arising from either redshifted stellar and quasar emission from the epoch of reionization, or the combined intra-halo light from stars thrown out of galaxies during merging activity at lower redshifts. Though astrophysically distinct, both interpretations arise from faint, low surface brightness source populations that are difficult to detect except by statistical approaches using careful observations with suitable instruments. The key to determining the source of these background anisotropies will be wide-field imaging measurements spanning multiple bands from the optical to the near-infrared. The Cosmic Infrared Background ExpeRiment 2 (CIBER-2) will measure spatial anisotropies in the extra- galactic infrared background caused by cosmological structure using six broad spectral bands. The experiment uses three 2048 x 2048 Hawaii-2RG near-infrared arrays in three cameras coupled to a single 28.5 cm telescope housed in a reusable sounding rocket-borne payload. A small portion of each array will also be combined with a linear-variable filter to make absolute measurements of the spectrum of the extragalactic background with high spatial resolution for deep subtraction of Galactic starlight. The large field of view and multiple spectral bands make CIBER-2 unique in its sensitivity to fluctuations predicted by models of lower limits on the luminosity of the first stars and galaxies and in its ability to distinguish between primordial and foreground anisotropies. In this paper the scientific motivation for CIBER-2 and details of its first flight instrumentation will be discussed, including detailed designs of the mechanical, cryogenic, and electrical systems. Plans for the future will also be presented.
Evidence for a physical linkage between galactic cosmic rays and regional climate time series
Perry, C.A.
2007-01-01
The effects of solar variability on regional climate time series were examined using a sequence of physical connections between total solar irradiance (TSI) modulated by galactic cosmic rays (GCRs), and ocean and atmospheric patterns that affect precipitation and streamflow. The solar energy reaching the Earth's surface and its oceans is thought to be controlled through an interaction between TSI and GCRs, which are theorized to ionize the atmosphere and increase cloud formation and its resultant albedo. High (low) GCR flux may promote cloudiness (clear skies) and higher (lower) albedo at the same time that TSI is lowest (highest) in the solar cycle which in turn creates cooler (warmer) ocean temperature anomalies. These anomalies have been shown to affect atmospheric flow patterns and ultimately affect precipitation over the Midwestern United States. This investigation identified a relation among TSI and geomagnetic index aa (GI-AA), and streamflow in the Mississippi River Basin for the period 1878-2004. The GI-AA was used as a proxy for GCRs. The lag time between the solar signal and streamflow in the Mississippi River at St. Louis, Missouri is approximately 34 years. The current drought (1999-2007) in the Mississippi River Basin appears to be caused by a period of lower solar activity that occurred between 1963 and 1977. There appears to be a solar "fingerprint" that can be detected in climatic time series in other regions of the world, with each series having a unique lag time between the solar signal and the hydroclimatic response. A progression of increasing lag times can be spatially linked to the ocean conveyor belt, which may transport the solar signal over a time span of several decades. The lag times for any one region vary slightly and may be linked to the fluctuations in the velocity of the ocean conveyor belt.
NASA Technical Reports Server (NTRS)
Hornschemeier, Ann (Editor); Garcia, Michael (Editor)
2005-01-01
NASA's upcoming Constellation-X mission, one of two flagship missions in the Beyond Einstein program, will have more than 100 times the collecting area of any previous spectroscopic mission operating in the 0.25-40 keV bandpass and will enable high-throughput, high spectral resolution studies of sources ranging from the most luminous accreting supermassive black holes in the Universe to the disks around young stars where planets form. This booklet, which was assembled during early 2005 using the contributions of a large team of Astrophysicists, outlines the important scientific questions for the decade following this one and describes the areas where Constellation-X is going to have a major impact. These areas include the exploration of the space-time geometry of black holes spanning nine orders of magnitude in mass and the nature of the dark energy and dark matter which govern the expansion and ultimate fate of the Universe. Constellation-X will also explore processes referred to as "cosmic feedback" whereby mechanical energy, radiation, and chemical elements from star formation and black holes are returned to interstellar and intergalactic medium, profoundly affecting the development of structure in the Universe, and will also probe all the important life cycles of matter, from stellar and planetary birth to stellar death via supernova to stellar endpoints in the form of accreting binaries and supernova remnants.
Dark Energy, Dark Matter and Science with Constellation-X
NASA Technical Reports Server (NTRS)
Cardiff, Ann Hornschemeier
2005-01-01
Constellation-X, with more than 100 times the collecting area of any previous spectroscopic mission operating in the 0.25-40 keV bandpass, will enable highthroughput, high spectral resolution studies of sources ranging from the most luminous accreting supermassive black holes in the Universe to the disks around young stars where planets form. This talk will review the updated Constellation-X science case, released in booklet form during summer 2005. The science areas where Constellation-X will have major impact include the exploration of the space-time geometry of black holes spanning nine orders of magnitude in mass and the nature of the dark energy and dark matter which govern the expansion and ultimate fate of the Universe. Constellation-X will also explore processes referred to as "cosmic feedback" whereby mechanical energy, radiation, and chemical elements from star formation and black holes are returned to interstellar and intergalactic medium, profoundly affecting the development of structure in the Universe, and will also probe all the important life cycles of matter, from stellar and planetary birth to stellar death via supernova to stellar endpoints in the form of accreting binaries and supernova remnants. This talk will touch upon all these areas, with particular emphasis on Constellation-X's role in the study of Dark Energy.
Massive Stars and Star Clusters in the Era of JWST
NASA Astrophysics Data System (ADS)
Klein, Richard
Massive stars lie at the center of the web of physical processes that has shaped the universe as we know it, governing the evolution of the interstellar medium of galaxies, producing a majority of the heavy elements, and thereby determining the evolution of galaxies. Massive stars are also important as signposts, since they produce most of the light and almost all the ionizing radiation in regions of active star formation. A significant fraction of all stars form in massive clusters, which will be observable throughout the visible universe with JWST. Their luminosities are so high that the pressure of their light on interstellar dust grains is likely the dominant feedback mechanism regulating their formation. While this process has been studied in the local Universe, much less attention has been focused on how it behaves at high redshift, where the dust abundance is much lower due to the overall lower abundance of heavy elements. The high redshift Universe also differs from the nearby one in that observations imply that high redshift star formation occurs at significantly higher densities than are typically found locally. We propose to simulate the formation of individual massive stars from the high redshift universe to the present day universe spanning metallicities ranging from 0.001 to 1.0 and column densities from 0.1to 30.0 g/cm2 focusing on how the process depends on both the dust abundance and on the density of the star-forming gas. These simulations will be among the first to treat the formation of Population II stars, which form in regions of low metallicity. Based on these results, we shall then simulate the formation of clusters of stars across also cosmic time, both of moderate mass, such as the Orion Nebula Cluster, and of high mass, such as the super star clusters seen in starburst galaxies. These state-of-the-art simulations will be carried out using our newly developed advanced techniques in our radiation-magneto-hydrodynamic AMR code ORION, for radiative transfer with both ionizing and non-ionizing radiation that accurately handle both the direct radiation from stars and the diffuse infrared radiation field that builds up when direct radiation is reprocessed by dust grains. Our simulations include all of the relevant feedback effects such as radiative heating, radiation pressure, photodissociation and photoionization, protostellar outflows and stellar winds. The challenge in simulating the formation of massive stars and massive clusters is to include all these feedback effects self-consistently as they occur collectively. We are in an excellent position to do so. The results of these simulations will be directly relevant to the interpretation of observations with JWST, which will probe cluster formation in both the nearby and distant universe, and with SOFIA, which can observe high-mass star formation in the Galaxy. We shall make direct comparison with observations of massive protostars in the Galactic disk. We shall also compare with observations of star clusters that form in dense environments, such as the Galactic Center and in merging galaxies (e.g., the Antennae), and in low metallicity environments, such as the dwarf starburst galaxy I Zw 18. Once our simulations have been benchmarked with observations of massive protostars in the Galaxy and massive protoclusters in the local universe, they will provide the theoretical basis for interpreting observations of the formation of massive star clusters at high redshift with JWST. What determines the maximum mass of a star? How does stellar feedback affect the formation of individual stars and the formation of massive star clusters and how the answers to these questions evolve with cosmic time. The proposed research will provide high-resolution input to the study of stellar feedback on galaxy formation with a significantly more accurate treatment of the physics, particularly the radiative transfer that is so important for feedback.
NASA Astrophysics Data System (ADS)
Bradac, Marusa; Coe, Dan; Strait, Victoria; Salmon, Brett; Hoag, Austin; Bradley, Larry; Ryan, Russell; Dawson, Will; Zitrin, Adi; Jones, Christine; Sharon, Keren; Trenti, Michele; Stark, Daniel; Oesch, Pascal; Lam, Danel; Carrasco Nunez, Daniela Patricia; Paterno-Mahler, Rachel; Frye, Brenda
2018-05-01
When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and epoch of reionization? Recent observations indicate at least two critical puzzles in these studies. (1) First galaxies might have started forming stars earlier than previously thought (<400Myr after the Big Bang). (2) It is still unclear what is their star formation history and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z 6-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose to complete deep Spitzer imaging of the fields behind the 10 most powerful cosmic telescopes selected using HST, Spitzer, and Planck data from the RELICS and SRELICS programs (Reionization Lensing Cluster Survey; 41 clusters, 190 HST orbits, 440 Spitzer hours). 6 clusters out of 10 are still lacking deep data. This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population with much improved sample variance. The program will allow us to study stellar properties of a large number, 60 galaxies at z 6-11. Deep Spitzer data will be crucial to unambiguously measure their stellar properties (age, SFR, M*). Finally this proposal will establish the presence (or absence) of an unusually early established stellar population, as was recently observed in MACS1149JD at z 9. If confirmed in a larger sample, this result will require a paradigm shift in our understanding of the earliest star formation.
The Cosmic Baryon Cycle in the FIRE Simulations
NASA Astrophysics Data System (ADS)
Anglés-Alcázar, Daniel
2017-07-01
The exchange of mass, energy, and metals between galaxies and their surrounding circumgalactic medium represents an integral part of the modern paradigm of galaxy formation. In this talk, I will present recent progress in understanding the cosmic baryon cycle using cosmological hydrodynamic simulations from the Feedback In Realistic Environments (FIRE) project. Local stellar feedback processes regulate star formation in galaxies and shape the multi-phase structure of the interstellar medium while driving large-scale outflows that connect galaxies with the circumgalactic medium. I will discuss the efficiency of winds evacuating gas from galaxies, the ubiquity and properties of wind recycling, and the importance of intergalactic transfer, i.e. the exchange of gas between galaxies via winds. I will show that intergalactic transfer can dominate late time gas accretion onto Milky Way-mass galaxies over fresh accretion and standard wind recycling.
The Evolution of the Intergalactic Medium
NASA Astrophysics Data System (ADS)
McQuinn, Matthew
2016-09-01
The bulk of cosmic matter resides in a dilute reservoir that fills the space between galaxies, the intergalactic medium (IGM). The history of this reservoir is intimately tied to the cosmic histories of structure formation, star formation, and supermassive black hole accretion. Our models for the IGM at intermediate redshifts (2≲z≲5) are a tremendous success, quantitatively explaining the statistics of Lyα absorption of intergalactic hydrogen. However, at both lower and higher redshifts (and around galaxies) much is still unknown about the IGM. We review the theoretical models and measurements that form the basis for the modern understanding of the IGM, and we discuss unsolved puzzles (ranging from the largely unconstrained process of reionization at high z to the missing baryon problem at low z), highlighting the efforts that have the potential to solve them.
Finding the First Cosmic Explosions: Hypernovae and Pair-Instability Supernovae
NASA Astrophysics Data System (ADS)
Wiggins, Brandon; Whalen, D. J.; Migenes, V.; Astrophysics Research Group at Los Alamos National Laboratory
2014-01-01
The cosmic Dark Ages ended with the formation of the first stars at z ~ 20, or ~ 200 Myr after the Big Bang. Because they literally lie at the edge of the observable universe Pop III stars will be beyond the reach of even next generation observatories like JWST and the Thirty-Meter Telescope. But primordial supernovae could soon directly probe the properties of the first stars because they can be observed at high redshifts and their masses can be inferred from their light curves. I will present numerical simulations of Pop III hypernovae and pair-instability supernovae and their light curves done with the Los Alamos RAGE and SPECTRUM codes. We find that these two types of explosions will be visible at z ~ 10 - 15, revealing the positions of ancient dim galaxies on the sky and tracing their star formation rates.
NASA Technical Reports Server (NTRS)
Wright, E. L.; Meyer, S. S.; Bennett, C. L.; Boggess, N. W.; Cheng, E. S.; Hauser, M. G.; Kogut, A.; Lineweaver, C.; Mather, J. C.; Smoot, G. F.
1992-01-01
The large-scale cosmic background anisotropy detected by the COBE Differential Microwave Radiometer (DMR) instrument is compared to the sensitive previous measurements on various angular scales, and to the predictions of a wide variety of models of structure formation driven by gravitational instability. The observed anisotropy is consistent with all previously measured upper limits and with a number of dynamical models of structure formation. For example, the data agree with an unbiased cold dark matter (CDM) model with H0 = 50 km/s Mpc and Delta-M/M = 1 in a 16 Mpc radius sphere. Other models, such as CDM plus massive neutrinos (hot dark matter (HDM)), or CDM with a nonzero cosmological constant are also consistent with the COBE detection and can provide the extra power seen on 5-10,000 km/s scales.
Observations give us CLUES to Cosmic Flows' origins
NASA Astrophysics Data System (ADS)
Sorce, Jenny; Courtois, H.; Gottloeber, S.; Hoffman, Y.; Pomarede, D.; Tully, R. B.; Flows, Cosmic; CLUES
2014-01-01
In an era where the wealth of telescope-data and the development of computer superclusters keep increasing, the knowledge of Large Scale Structures' formation and evolution constitutes a tremendous challenge. Within this context the project Cosmic Flows has recently produced a catalog of peculiar velocities up to 150 Mpc. These velocities, obtained from direct distance measurements, are ideal markers of the underlying gravitational potential. They form a fantastic input to perform constrained simulations of the Local Universe within the CLUES project. A new method has recently been elaborated to achieve these simulations which prove to be excellent replicas of our neighborhood. The Wiener-Filter, the Reverse Zel'dovich Approximation and the Constrained Realization techniques are combined to build Initial Conditions. The resulting second generation of constrained simulations presents us the formidable history of the Great Attractor's and nearby supercluster's formation.
Simulating cosmic ray physics on a moving mesh
NASA Astrophysics Data System (ADS)
Pfrommer, C.; Pakmor, R.; Schaal, K.; Simpson, C. M.; Springel, V.
2017-03-01
We discuss new methods to integrate the cosmic ray (CR) evolution equations coupled to magnetohydrodynamics on an unstructured moving mesh, as realized in the massively parallel AREPO code for cosmological simulations. We account for diffusive shock acceleration of CRs at resolved shocks and at supernova remnants in the interstellar medium (ISM) and follow the advective CR transport within the magnetized plasma, as well as anisotropic diffusive transport of CRs along the local magnetic field. CR losses are included in terms of Coulomb and hadronic interactions with the thermal plasma. We demonstrate the accuracy of our formalism for CR acceleration at shocks through simulations of plane-parallel shock tubes that are compared to newly derived exact solutions of the Riemann shock-tube problem with CR acceleration. We find that the increased compressibility of the post-shock plasma due to the produced CRs decreases the shock speed. However, CR acceleration at spherically expanding blast waves does not significantly break the self-similarity of the Sedov-Taylor solution; the resulting modifications can be approximated by a suitably adjusted, but constant adiabatic index. In first applications of the new CR formalism to simulations of isolated galaxies and cosmic structure formation, we find that CRs add an important pressure component to the ISM that increases the vertical scaleheight of disc galaxies and thus reduces the star formation rate. Strong external structure formation shocks inject CRs into the gas, but the relative pressure of this component decreases towards halo centres as adiabatic compression favours the thermal over the CR pressure.
Connecting the Cosmic Star Formation Rate with the Local Star Formation
NASA Astrophysics Data System (ADS)
Gribel, Carolina; Miranda, Oswaldo D.; Williams Vilas-Boas, José
2017-11-01
We present a model that unifies the cosmic star formation rate (CSFR), obtained through the hierarchical structure formation scenario, with the (Galactic) local star formation rate (SFR). It is possible to use the SFR to generate a CSFR mapping through the density probability distribution functions commonly used to study the role of turbulence in the star-forming regions of the Galaxy. We obtain a consistent mapping from redshift z˜ 20 up to the present (z = 0). Our results show that the turbulence exhibits a dual character, providing high values for the star formation efficiency (< \\varepsilon > ˜ 0.32) in the redshift interval z˜ 3.5{--}20 and reducing its value to < \\varepsilon > =0.021 at z = 0. The value of the Mach number ({{ M }}{crit}), from which < \\varepsilon > rapidly decreases, is dependent on both the polytropic index (Γ) and the minimum density contrast of the gas. We also derive Larson’s first law associated with the velocity dispersion (< {V}{rms}> ) in the local star formation regions. Our model shows good agreement with Larson’s law in the ˜ 10{--}50 {pc} range, providing typical temperatures {T}0˜ 10{--}80 {{K}} for the gas associated with star formation. As a consequence, dark matter halos of great mass could contain a number of halos of much smaller mass, and be able to form structures similar to globular clusters. Thus, Larson’s law emerges as a result of the very formation of large-scale structures, which in turn would allow the formation of galactic systems, including our Galaxy.
Two Billion Years of Magmatism in One Place on Mars
NASA Astrophysics Data System (ADS)
Taylor, G. J.
2017-05-01
Thomas Lapen and Minako Righter (University of Houston), and colleagues at Aarhus University (Denmark), the Universities of Washington (Seattle), Wisconsin (Madison), California (Berkeley), and Arizona (Tucson), and Purdue University (Indiana) show that a geochemically-related group of Martian meteorites formed over a much longer time span than thought previously. So-called depleted shergottites formed during the time interval 325 to 600 million years ago, but now age dating on a recently discovered Martian meteorite, Northwest Africa (NWA) 7635, extends that interval by 1800 million years to 2400 million years. NWA 7635 and almost all other depleted shergottites were ejected from Mars in the same impact event, as defined by their same cosmic-ray exposure age of 1 million years, so all resided in one small area on Mars. This long time span of volcanic activity in the same place on the planet indicates that magma production was continuous, consistent with geophysical calculations of magma generation in plumes of hot mantle rising from the core-mantle boundary deep inside Mars.
STARFIRE: The Spectroscopic Terahertz Airborne Receiver for Far-InfraRed Exploration
NASA Astrophysics Data System (ADS)
Aguirre, James; STARFIRE Collaboration
2018-01-01
Understanding the formation and evolution of galaxies is one of the foremost goals of astrophysics and cosmology today. The cosmic star formation rate has undergone a dramatic evolution over the course of the last seven billion years, with a peak in cosmic star formation near z ~ 1, largely in dust-obscured star forming galaxies (DSFGs), followed by a dramatic fall in both the star formation rate and the fraction of star formation occurring in DSFGs. A variety of unextincted diagnostic lines are present in the far-infrared (FIR) which can provide insight into the conditions of star formation in DSFGs. Spectroscopy in the far-infrared is thus scientifically crucial for understanding galaxy evolution, yet remains technically difficult, particularly for wavelengths shorter than those accessible to ALMA.STARFIRE (the Spectroscopic Terahertz Airborne Receiver for Far-InfraRed Exploration) is a proposed integral-field spectrometer using kinetic inductance detectors, operating from 240 - 420 μm and coupled to a 2.5 meter low-emissivity carbon-fiber balloon-borne telescope. Using dispersive spectroscopy and the stratospheric platform, STARFIRE can achieve better performance than SOFIA or Herschel-SPIRE FTS. STARFIRE is designed to study the ISM of galaxies from 0.5 < z < 1.5, primarily in the [CII](158 μm) line, and also in cross-correlation with [NII] (122 μm). This offers a view of the star-forming medium with minimal impact from dust extinction through the period of peak cosmic star formation and into the current epoch where the star formation rate begins to decline. STARFIRE will be capable of making a high significance detection of the [CII] power spectrum in at least 4 redshift bins and measuring the [CII] x [NII] power spectrum at z ~ 1. The intensity mapped power spectra will be sensitive to one- and two-halo clustering, as well as shot noise, and will relate the mean [CII] intensity as a function of redshift (a proxy for star formation rate density) to the large scale structure. In addition, STARFIRE will detect at least 50 galaxies directly in the [CII] line, and will also be able to stack on optical galaxies to below the SPIRE confusion limit to measure the [CII] luminosity of more typical galaxies.
Genes that regulate both development and longevity in Caenorhabditis elegans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, P.L.; Albert, P.S.; Riddle, D.L.
1995-04-01
The nematode Caenorhabditis elegans responds to conditions of overcrowding and limited food by arresting development as a dauer larva. Genetic analysis of mutations that alter dauer larva formation (daf mutations) is presented along with an updated genetic pathway for dauer vs. nondauer development. Mutations in the daf-2 and daf-23 genes double adult life span, whereas mutations in four other dauer-constitutive genes positioned in a separate branch of this pathway (daf-1, daf-4, daf-7 and daf-8) do not. The increased life spans are suppressed completely by a daf-16 mutation and partially in a daf-2; daf-18 double mutant. A genetic pathway for determinationmore » of adult life span is presented based on the same strains and growth conditions used to characterize Daf phenotypes. Both dauer larva formation and adult life span are affected in daf-2; daf-12 double mutants in an allele-specific manner. Mutations in daf-12 do not extend adult life span, but certain combinations of daf-2 and daf-12 mutant alleles nearly quadruple it. This synergistic effect, which does not equivalently extend the fertile period, is the largest genetic extension of life span yet observed in a metazoan. 47 refs., 7 figs., 5 tabs.« less
The suppression of star formation by powerful active galactic nuclei.
Page, M J; Symeonidis, M; Vieira, J D; Altieri, B; Amblard, A; Arumugam, V; Aussel, H; Babbedge, T; Blain, A; Bock, J; Boselli, A; Buat, V; Castro-Rodríguez, N; Cava, A; Chanial, P; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Dubois, E N; Dunlop, J S; Dwek, E; Dye, S; Eales, S; Elbaz, D; Farrah, D; Fox, M; Franceschini, A; Gear, W; Glenn, J; Griffin, M; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Lagache, G; Levenson, L; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Panuzzo, P; Papageorgiou, A; Pearson, C P; Pérez-Fournon, I; Pohlen, M; Rawlings, J I; Rigopoulou, D; Riguccini, L; Rizzo, D; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Sánchez Portal, M; Schulz, B; Scott, D; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Viero, M; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M
2012-05-09
The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.
The Suppression of Star Formation by Powerful Active Galactic Nuclei
NASA Technical Reports Server (NTRS)
Dwek, E.
2012-01-01
The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight corre1ation between the mass of the black hole and the mas. of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming ga1axies are usually dust-obscured and are brightest at infrared and submillimeter wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(exp 44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expe11ing the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.
An extremely young massive clump forming by gravitational collapse in a primordial galaxy.
Zanella, A; Daddi, E; Le Floc'h, E; Bournaud, F; Gobat, R; Valentino, F; Strazzullo, V; Cibinel, A; Onodera, M; Perret, V; Renaud, F; Vignali, C
2015-05-07
When cosmic star formation history reaches a peak (at about redshift z ≈ 2), galaxies vigorously fed by cosmic reservoirs are dominated by gas and contain massive star-forming clumps, which are thought to form by violent gravitational instabilities in highly turbulent gas-rich disks. However, a clump formation event has not yet been observed, and it is debated whether clumps can survive energetic feedback from young stars, and afterwards migrate inwards to form galaxy bulges. Here we report the spatially resolved spectroscopy of a bright off-nuclear emission line region in a galaxy at z = 1.987. Although this region dominates star formation in the galaxy disk, its stellar continuum remains undetected in deep imaging, revealing an extremely young (less than ten million years old) massive clump, forming through the gravitational collapse of more than one billion solar masses of gas. Gas consumption in this young clump is more than tenfold faster than in the host galaxy, displaying high star-formation efficiency during this phase, in agreement with our hydrodynamic simulations. The frequency of older clumps with similar masses, coupled with our initial estimate of their formation rate (about 2.5 per billion years), supports long lifetimes (about 500 million years), favouring models in which clumps survive feedback and grow the bulges of present-day galaxies.
COSMIC REIONIZATION ON COMPUTERS: NUMERICAL AND PHYSICAL CONVERGENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnedin, Nickolay Y., E-mail: gnedin@fnal.gov; Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637; Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637
In this paper I show that simulations of reionization performed under the Cosmic Reionization On Computers project do converge in space and mass, albeit rather slowly. A fully converged solution (for a given star formation and feedback model) can be determined at a level of precision of about 20%, but such a solution is useless in practice, since achieving it in production-grade simulations would require a large set of runs at various mass and spatial resolutions, and computational resources for such an undertaking are not yet readily available. In order to make progress in the interim, I introduce a weakmore » convergence correction factor in the star formation recipe, which allows one to approximate the fully converged solution with finite-resolution simulations. The accuracy of weakly converged simulations approaches a comparable, ∼20% level of precision for star formation histories of individual galactic halos and other galactic properties that are directly related to star formation rates, such as stellar masses and metallicities. Yet other properties of model galaxies, for example, their H i masses, are recovered in the weakly converged runs only within a factor of 2.« less
A generic interface between COSMIC/NASTRAN and PATRAN (R)
NASA Technical Reports Server (NTRS)
Roschke, Paul N.; Premthamkorn, Prakit; Maxwell, James C.
1990-01-01
Despite its powerful analytical capabilities, COSMIC/NASTRAN lacks adequate post-processing adroitness. PATRAN, on the other hand is widely accepted for its graphical capabilities. A nonproprietary, public domain code mnemonically titled CPI (for COSMIC/NASTRAN-PATRAN Interface) is designed to manipulate a large number of files rapidly and efficiently between the two parent codes. In addition to PATRAN's results file preparation, CPI also prepares PATRAN's P/PLOT data files for xy plotting. The user is prompted for necessary information during an interactive session. Current implementation supports NASTRAN's displacement approach including the following rigid formats: (1) static analysis, (2) normal modal analysis, (3) direct transient response, and (4) modal transient response. A wide variety of data blocks are also supported. Error trapping is given special consideration. A sample session with CPI illustrates its simplicity and ease of use.
Cosmic Infrared Background Sources Clustered Around Quasars
NASA Astrophysics Data System (ADS)
Hall, Kirsten R.; Zakamska, Nadia; Marriage, Tobias; Crichton, Devin; Gralla, Megan
2017-06-01
Powerful quasars can be seen out to large distances. As they reside in massive dark matter halos, they provide a useful tracer of large scale structure. We stack Herschel-SPIRE images at 250, 350, and 500 microns at the locations of 13,000 quasars in redshift bins spanning 0.5 < z < 3.5. While the detected signal is dominated on instrumental beam scales by the unresolved dust emission of the quasar and its host galaxy, at z 2 the extended emission is clearly spatially resolved on Mpc scales. This emission is due to star-forming galaxies clustered around the dark matter halos hosting quasars. We measure radial surface brightness profiles of the stacked images to compute the angular correlation function of dusty star-forming galaxies correlated with quasars. We generate a halo occupation distribution model in order to determine the masses of the dark matter halos in which dusty star forming galaxies reside. We are probing potential changes in the halo mass most efficient at hosting star forming galaxies, and assessing any evidence that this halo mass evolved with redshift in the context of "cosmic downsizing".
NASA Astrophysics Data System (ADS)
O'Regan, J.; Muller, J.-P.; Matthews, S.
2012-04-01
The runaway breakdown hypothesis of lightning discharge has predicted relationships between cosmic rays' interactions with the atmosphere and thunderstorm production and lightning activity. Precipitating energetic particles lead to the injection of MeV-energy electrons into electrified thunderclouds [1,2], resulting in runaway breakdown occurring, and assisting in the process of charge separation [2]. Previous lightning studies show that correlations to solar activity are weak but significant, with better correlations to solar activity and cosmic rays when carried out over smaller geographical areas [3,4,5,6] and over longer timescales [6]. In this work, correlations are explored between variations of SEPs and lightning activity levels at various spatio-temporal scales. Temporal scales span from short-term (days) scales surrounding large Earth-directed coronal mass ejection (CME) events to long-term (years) scales. Similarly, spatial scales span from 1-degree x 1-degree latitudinal-longitudinal grid scales to an entirely global study, for varying timescales. Additionally, investigation of correlation sign and statistical significance by 1-degree latitudinal bands is also employed, allowing a comparative study of lightning activity relative to regions of greatest - and contrasting regions of relative absence of - energetic particle precipitation. These regions are determined from electron and proton flux maps, derived from measurements from the Medium Energy Proton and Electron Detector (MEPED) onboard the Polar Orbiting Environmental Satellite (POES) system. Lightning data is obtained from the World Wide Lightning Location Network (WWLLN) for the period 2005 to 2011. The correlations of lightning strike rates are carried out with respect to Relative Sunspot Number (R), 10.7cm Solar radio flux (F10.7), Galactic Cosmic Ray (GCR) neutron monitor flux, the Ap geomagnetic activity index, and Disturbance Storm Time (DST) index. Correlations show dramatic variations in both sign and significance over small geographic distances, similar to previous results [3,4,6], highlighting the complexity of the atmospheric processes contributing to the mechanism of thunderstorm generation and lightning discharge. We find correlations are generally more significant over larger timescales, as daily meteorological variability is smoothened out, suggesting a role for changing Solar activity levels in influencing thunderstorm development and onset of lightning discharge. Comparisons of small-scale correlation results to planetary wave patterns suggests an influence over the correlations of lightning activity to the above indices, as proposed by Schlegel et al. [6], and previously suggested by the results of Fritz [3] and Brooks [4]. Our results show agreement with Schlegel et al. [6] for the same region over Germany, but are in disagreement with their results for Austria. This lends support to the idea of the theory of planetary waves influence over correlation signs and significance across short geographic distances, as discussed by Schlegel et al. [6]. Acknowledgement: The authors wish to thank the World Wide Lightning Location Network (http://wwlln.net), a collaboration among over 50 universities and institutions (including MSSL) for providing the lightning location data used in this paper. [1] Ermakov, V.I. and Stozhkov, Yu.I., 2003. Cosmic rays in the mechanism of thundercloud production. 28th International Cosmic Ray Conference, pp. 4157-4160. [2] Kirkby, J., 2007. Cosmic rays and climate. Surv Geophys, vol. 28 (5-6) pp. 333-375. [3] Fritz, H., 1878. Die wichtigsten periodischen Erscheinungen der Meteorologie und Kosmologie. Natuurkundige Verhandelingen van de Hollandsche Maatschappij der Wetenschappen te Haarlem, Deel III, Haarlem. [4] Brooks, C.E.P., 1934. The variation of the annual frequency of thunderstorms in relation to sunspots. Quarterly Journal of the Royal Meteorological Society 60, 153-165. [5] Stringfellow, M.F., 1974. Lightning incidence in Britain and the solar cycle. Nature 249, 332-333. [6] Schlegel, K. et al, 2001. Thunderstorms, lightning and solar activity - Middle Europe. J Atmos Sol-Terr Phy vol. 63 (16) pp. 1705-1713
Simulating the physical properties of dark matter and gas inside the cosmic web
NASA Astrophysics Data System (ADS)
Dolag, K.; Meneghetti, M.; Moscardini, L.; Rasia, E.; Bonaldi, A.
2006-08-01
Using the results of a high-resolution, cosmological hydrodynamical re-simulation of a supercluster-like region, we investigate the physical properties of the gas located along the filaments and bridges which constitute the so-called cosmic web. First, we analyse the main characteristics of the density, temperature and velocity fields, which have quite different distributions, reflecting the complex dynamics of the structure-formation process. Then we quantify the signals which originate from the matter in the filaments by considering different observables. Inside the cosmic web, we find that the halo density is about 10-14 times larger than cosmic mean; the bremsstrahlung X-ray surface brightness reaches at most 10-16 erg s-1 cm-2 arcmin-2 the Compton-y parameter due to the thermal Sunyaev-Zel'dovich effect is about 10-6 the reduced shear produced by the weak lensing effect is ~0.01-0.02. These results confirm the difficulty of an observational detection of the cosmic web. Finally, we find that projection effects of the filamentary network can affect the estimates of the properties of single clusters, increasing their X-ray luminosity by less than 10 per cent and their central Compton-y parameter by up to 30 per cent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Indriolo, Nick; Neufeld, D. A.; Gerin, M.
2012-10-20
Absorption lines from the molecules OH{sup +}, H{sub 2}O{sup +}, and H{sup +} {sub 3} have been observed in a diffuse molecular cloud along a line of sight near W51 IRS2. We present the first chemical analysis that combines the information provided by all three of these species. Together, OH{sup +} and H{sub 2}O{sup +} are used to determine the molecular hydrogen fraction in the outskirts of the observed cloud, as well as the cosmic-ray ionization rate of atomic hydrogen. H{sup +} {sub 3} is used to infer the cosmic-ray ionization rate of H{sub 2} in the molecular interior ofmore » the cloud, which we find to be {zeta}{sub 2} = (4.8 {+-} 3.4) Multiplication-Sign 10{sup -16} s{sup -1}. Combining the results from all three species we find an efficiency factor-defined as the ratio of the formation rate of OH{sup +} to the cosmic-ray ionization rate of H-of {epsilon} = 0.07 {+-} 0.04, much lower than predicted by chemical models. This is an important step in the future use of OH{sup +} and H{sub 2}O{sup +} on their own as tracers of the cosmic-ray ionization rate.« less
Dancing in the dark: galactic properties trace spin swings along the cosmic web
NASA Astrophysics Data System (ADS)
Dubois, Y.; Pichon, C.; Welker, C.; Le Borgne, D.; Devriendt, J.; Laigle, C.; Codis, S.; Pogosyan, D.; Arnouts, S.; Benabed, K.; Bertin, E.; Blaizot, J.; Bouchet, F.; Cardoso, J.-F.; Colombi, S.; de Lapparent, V.; Desjacques, V.; Gavazzi, R.; Kassin, S.; Kimm, T.; McCracken, H.; Milliard, B.; Peirani, S.; Prunet, S.; Rouberol, S.; Silk, J.; Slyz, A.; Sousbie, T.; Teyssier, R.; Tresse, L.; Treyer, M.; Vibert, D.; Volonteri, M.
2014-10-01
A large-scale hydrodynamical cosmological simulation, Horizon-AGN, is used to investigate the alignment between the spin of galaxies and the cosmic filaments above redshift 1.2. The analysis of more than 150 000 galaxies per time step in the redshift range 1.2 < z < 1.8 with morphological diversity shows that the spin of low-mass blue galaxies is preferentially aligned with their neighbouring filaments, while high-mass red galaxies tend to have a perpendicular spin. The reorientation of the spin of massive galaxies is provided by galaxy mergers, which are significant in their mass build-up. We find that the stellar mass transition from alignment to misalignment happens around 3 × 1010 M⊙. Galaxies form in the vorticity-rich neighbourhood of filaments, and migrate towards the nodes of the cosmic web as they convert their orbital angular momentum into spin. The signature of this process can be traced to the properties of galaxies, as measured relative to the cosmic web. We argue that a strong source of feedback such as active galactic nuclei is mandatory to quench in situ star formation in massive galaxies and promote various morphologies. It allows mergers to play their key role by reducing post-merger gas inflows and, therefore, keeping spins misaligned with cosmic filaments.
Revealing the Cosmic Web-dependent Halo Bias
NASA Astrophysics Data System (ADS)
Yang, Xiaohu; Zhang, Youcai; Lu, Tianhuan; Wang, Huiyuan; Shi, Feng; Tweed, Dylan; Li, Shijie; Luo, Wentao; Lu, Yi; Yang, Lei
2017-10-01
Halo bias is the one of the key ingredients of the halo models. It was shown at a given redshift to be only dependent, to the first order, on the halo mass. In this study, four types of cosmic web environments—clusters, filaments, sheets, and voids—are defined within a state-of-the-art high-resolution N-body simulation. Within these environments, we use both halo-dark matter cross correlation and halo-halo autocorrelation functions to probe the clustering properties of halos. The nature of the halo bias differs strongly between the four different cosmic web environments described here. With respect to the overall population, halos in clusters have significantly lower biases in the {10}11.0˜ {10}13.5 {h}-1 {M}⊙ mass range. In other environments, however, halos show extremely enhanced biases up to a factor 10 in voids for halos of mass ˜ {10}12.0 {h}-1 {M}⊙ . Such a strong cosmic web environment dependence in the halo bias may play an important role in future cosmological and galaxy formation studies. Within this cosmic web framework, the age dependency of halo bias is found to be only significant in clusters and filaments for relatively small halos ≲ {10}12.5 {h}-1 {M}⊙ .
Fermi-LAT kills dark matter interpretations of AMS-02 data. Or not?
NASA Astrophysics Data System (ADS)
Belotsky, Konstantin; Budaev, Ruslan; Kirillov, Alexander; Laletin, Maxim
2017-01-01
A number of papers attempt to explain the positron anomaly in cosmic rays, observed by PAMELA and AMS-02, in terms of dark matter (DM) decays or annihilations. However, the recent progress in cosmic gamma-ray studies challenges these attempts. Indeed, as we show, any rational DM model explaining the positron anomaly abundantly produces final state radiation and Inverse Compton gamma rays, which inevitably leads to a contradiction with Fermi-LAT isotropic diffuse gamma-ray background measurements. Furthermore, the Fermi-LAT observation of Milky Way dwarf satellites, supposed to be rich in DM, revealed no significant signal in gamma rays. We propose a generic approach in which the major contribution to cosmic rays comes from the dark matter disc and prove that the tension between the DM origin of the positron anomaly and the cosmic gamma-ray observations can be relieved. We consider both a simple model, in which DM decay/annihilate into charged leptons, and a model-independent minimal case of particle production, and we estimate the optimal thickness of DM disk. Possible mechanisms of formation and its properties are briefly discussed.
The cosmic matrix in the 50th anniversary of relativistic astrophysics
NASA Astrophysics Data System (ADS)
Ruffini, R.; Aimuratov, Y.; Becerra, L.; Bianco, C. L.; Karlica, M.; Kovacevic, M.; Melon Fuksman, J. D.; Moradi, R.; Muccino, M.; Penacchioni, A. V.; Pisani, G. B.; Primorac, D.; Rueda, J. A.; Shakeri, S.; Vereshchagin, G. V.; Wang, Y.; Xue, S.-S.
Our concept of induced gravitational collapse (IGC paradigm) starting from a supernova occurring with a companion neutron star, has unlocked the understanding of seven different families of gamma ray bursts (GRBs), indicating a path for the formation of black holes in the universe. An authentic laboratory of relativistic astrophysics has been unveiled in which new paradigms have been introduced in order to advance knowledge of the most energetic, distant and complex systems in our universe. A novel cosmic matrix paradigm has been introduced at a relativistic cosmic level, which parallels the concept of an S-matrix introduced by Feynmann, Wheeler and Heisenberg in the quantum world of microphysics. Here the “in” states are represented by a neutron star and a supernova, while the “out” states, generated within less than a second, are a new neutron star and a black hole. This novel field of research needs very powerful technological observations in all wavelengths ranging from radio through optical, X-ray and gamma ray radiation all the way up to ultra-high-energy cosmic rays.
The energy dependence of the neon-22 excess in the cosmic radiation
NASA Technical Reports Server (NTRS)
Herrstroem, N. Y.; Lund, N.
1985-01-01
It has been recognized now for some time that the heavy neon isotope, neon-22, is overabundant by a factor of 3 to 4 with respect to neon-22 in the cosmic ray source compared to the ratio of these isotopes in the Solar System. In view of the otherwise remarkable similarity of the chemical composition of the cosmic ray source and the composition of the Solar Energetic Particles, the anomaly regarding the neon isotopes is so much more striking. The observed excess of neon-22 is too large to be explained as a result of the chemical evolution of the Galaxy since the formation of the Solar System. Further information on the origin of the neon-22 excess may come from a comparison of the energy spectra of the two neon isotopes. If the cosmic radiation in the solar neighborhood is a mixture of material from several sources, one of which has an excess of neon-22, then the source energy spectra of neon-20 and neon-22 may differ significantly.
NASA Astrophysics Data System (ADS)
Kitaura, Francisco-Shu
2016-10-01
One of the main goals in cosmology is to understand how the Universe evolves, how it forms structures, why it expands, and what is the nature of dark matter and dark energy. Next decade large and expensive observational projects will bring information on the structure and the distribution of many millions of galaxies at different redshifts enabling us to make great progress in answering these questions. However, these data require a very special and complex set of analysis tools to extract the maximum valuable information. Statistical inference techniques are being developed, bridging the gaps between theory, simulations, and observations. In particular, we discuss the efforts to address the question: What is the underlying nonlinear matter distribution and dynamics at any cosmic time corresponding to a set of observed galaxies in redshift space? An accurate reconstruction of the initial conditions encodes the full phase-space information at any later cosmic time (given a particular structure formation model and a set of cosmological parameters). We present advances to solve this problem in a self-consistent way with Big Data techniques of the Cosmic Web.
Cosmological simulations of dwarf galaxies with cosmic ray feedback
NASA Astrophysics Data System (ADS)
Chen, Jingjing; Bryan, Greg L.; Salem, Munier
2016-08-01
We perform zoom-in cosmological simulations of a suite of dwarf galaxies, examining the impact of cosmic rays (CRs) generated by supernovae, including the effect of diffusion. We first look at the effect of varying the uncertain CR parameters by repeatedly simulating a single galaxy. Then we fix the comic ray model and simulate five dwarf systems with virial masses range from 8 to 30 × 1010 M⊙. We find that including CR feedback (with diffusion) consistently leads to disc-dominated systems with relatively flat rotation curves and constant star formation rates. In contrast, our purely thermal feedback case results in a hot stellar system and bursty star formation. The CR simulations very well match the observed baryonic Tully-Fisher relation, but have a lower gas fraction than in real systems. We also find that the dark matter cores of the CR feedback galaxies are cuspy, while the purely thermal feedback case results in a substantial core.
The New Era of Precision Cosmology: Testing Gravity at Large Scales
NASA Technical Reports Server (NTRS)
Prescod-Weinstein, Chanda
2011-01-01
Cosmic acceleration may be the biggest phenomenological mystery in cosmology today. Various explanations for its cause have been proposed, including the cosmological constant, dark energy and modified gravities. Structure formation provides a strong test of any cosmic acceleration model because a successful dark energy model must not inhibit the development of observed large-scale structures. Traditional approaches to studies of structure formation in the presence of dark energy ore modified gravity implement the Press & Schechter formalism (PGF). However, does the PGF apply in all cosmologies? The search is on for a better understanding of universality in the PGF In this talk, I explore the potential for universality and talk about what dark matter haloes may be able to tell us about cosmology. I will also discuss the implications of this and new cosmological experiments for better understanding our theory of gravity.
Grain formation in astronomical systems: A critical review of condensation processes
NASA Technical Reports Server (NTRS)
Donn, B.
1978-01-01
An analysis is presented of the assumption and the applicability of the three theoretical methods for calculating condensations in cosmic clouds where no pre-existing nuclei exist. The three procedures are: thermodynamic equilibrium calculations, nucleation theory, and a kinetic treatment which would take into account the characteristics of each individual collision. Thermodynamics provide detailed results on the composition temperature and composition of the condensate provided the system attains equilibrium. Because of the cosmic abundance mixture of elements, large supersaturations in some cases and low pressures, equilibrium is not expected in astronomical clouds. Nucleation theory, a combination of thermodynamics and kinetics, has the limitations of each scheme. Kinetics, not requiring equilibrium, avoids nearly all the thermodynamics difficulties but requires detailed knowledge of many reactions which thermodynamics avoids. It appears to be the only valid way to treat grain formation in space. A review of experimental studies is given.
Probing Gas Stripping with Resolved Star-Formation Maps of Virgo Filament Galaxies
NASA Astrophysics Data System (ADS)
Collova, Natasha
2018-01-01
We are conducting a multi-wavelength study of the gas in galaxies at a variety of positions in the cosmic web surrounding the Virgo cluster, one of the best studied regions of high density in the Universe. Galaxies are very likely pre-processed in filaments before falling into clusters, and our goal is to understand how galaxies are altered as they move through the cosmic web and enter the densest regions. We present spatially-resolved H-alpha imaging results from the KPNO 0.9-m and INT 2.54-m telescopes for a preliminary sample of 30 galaxies. We will combine the star-formation maps with observations of molecular and atomic gas to calculate gas consumption timescales, characterize multiple phases of the galactic gas, and look for signatures of environmentally-driven depletion. This work is supported in part by NSF grant AST-1716657.
Global atmospheric particle formation from CERN CLOUD measurements.
Dunne, Eimear M; Gordon, Hamish; Kürten, Andreas; Almeida, João; Duplissy, Jonathan; Williamson, Christina; Ortega, Ismael K; Pringle, Kirsty J; Adamov, Alexey; Baltensperger, Urs; Barmet, Peter; Benduhn, Francois; Bianchi, Federico; Breitenlechner, Martin; Clarke, Antony; Curtius, Joachim; Dommen, Josef; Donahue, Neil M; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Jokinen, Tuija; Kangasluoma, Juha; Kirkby, Jasper; Kulmala, Markku; Kupc, Agnieszka; Lawler, Michael J; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mann, Graham; Mathot, Serge; Merikanto, Joonas; Miettinen, Pasi; Nenes, Athanasios; Onnela, Antti; Rap, Alexandru; Reddington, Carly L S; Riccobono, Francesco; Richards, Nigel A D; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Sengupta, Kamalika; Simon, Mario; Sipilä, Mikko; Smith, James N; Stozkhov, Yuri; Tomé, Antonio; Tröstl, Jasmin; Wagner, Paul E; Wimmer, Daniela; Winkler, Paul M; Worsnop, Douglas R; Carslaw, Kenneth S
2016-12-02
Fundamental questions remain about the origin of newly formed atmospheric aerosol particles because data from laboratory measurements have been insufficient to build global models. In contrast, gas-phase chemistry models have been based on laboratory kinetics measurements for decades. We built a global model of aerosol formation by using extensive laboratory measurements of rates of nucleation involving sulfuric acid, ammonia, ions, and organic compounds conducted in the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber. The simulations and a comparison with atmospheric observations show that nearly all nucleation throughout the present-day atmosphere involves ammonia or biogenic organic compounds, in addition to sulfuric acid. A considerable fraction of nucleation involves ions, but the relatively weak dependence on ion concentrations indicates that for the processes studied, variations in cosmic ray intensity do not appreciably affect climate through nucleation in the present-day atmosphere. Copyright © 2016, American Association for the Advancement of Science.
NASA Technical Reports Server (NTRS)
Mitchell, John; Yamamoto, Akira; Yoshimura, Koji; Makida, Yasuhiro; Matsuda, Shinya; Hasegawa, Masaya; Horikoshi, Atsushi; Tanaka,Ken-ichi; Suzuki, Junichi; Nishimura, Jun;
2008-01-01
The Balloon-borne Experiment with a Superconducting Spectrometer (BESS) collaboration has made precise measurements of the spectra of cosmic ray antiprotons and light nuclei and conducted a sensitive search for antinuclei. Ten BESS high-latitude flights, eight from Canada and two from Antarctica, span more than a Solar cycle between 1993 and 2007/2008. BESS measurements of low-energy antiprotons constrain candidate models for dark matter including the possible signature of primordial black hole evaporation. The stringent BESS measurements of antiprotons and the elemental and isotopic spectra of H and He provide strong constraints on models of cosmic-ray transport in the Galaxy and Solar System. BESS has also reported the first antideuterium upper limit. BESS employs a superconducting magnetic-rigity spectrometer with time-of-flight and aerogel Cherenkov detectors to identify incident particles by charge, charge sign, mass, and energy. The BESS-Polar long-duration instrument has reduced lower energy limit of 100 MeV (top of the atmosphere) to increase its sensitivity to possible primary antiproton sources. BESS-Polar II was rebuilt with extended magnet lifetime, improved detector and electronic performance, and greater data storage capacity. It was flown fro Antarctica December 2007-January 2008, recording about 4.6 bission events during 24.5 days at float altitude with the magnet on. During the flight the influence of a high-speed stream in the Solar wind was observed. Details of the BESS-Polar II instrument and flight performance are reported elsewhere at this conference. The successful BESS-Polar II flight at Solar minimum is especially important. Most cosmic-ray antiprotons are secondary products of nuclear interactions of primary cosmic-ray nuclei with the interstellar gas, giving a spectrum that peaks at about 2 GeV and falls rapidly to higher and lower energies. However, BESS data taken in the previous Solar minimum show a small excess over secondary expectations at low energies, possibly suggesting the presence of an additional component that may be masked at higher levels of Solar modulation. The high-statistics Solar minimum data obtained by BESS-Polar II will provide a difinitive test of this component. We will review the BESS program and report the latest results including the antiproton and proton spectra measured in the BESS-Polar I flight, the search for cosmic antinuclei, and the status of the BESS-Polar II analysis.
Carbonaceous Survivability on Impact
NASA Technical Reports Server (NTRS)
Bunch, T. E.; Becker, Luann; Morrison, David (Technical Monitor)
1994-01-01
In order to gain knowledge about the potential contributions of comets and cosmic dust to the origin of life on Earth, we need to explore the survivability of their potential organic compounds on impact and the formation of secondary products that may have arisen from the chaotic events sustained by the carriers as they fell to Earth. We have performed a series of hypervelocity impact experiments using carbon-bearing impactors (diamond, graphite, kerogens, PAH crystals, and Murchison and Nogoya meteorites) into Al plate targets at velocities - 6 km/s. Estimated peak shock pressures probably did not exceed 120 GPa and peak shock temperatures were probably less than 4000 K for times of nano- to microsecs. Nominal crater dia. are less than one mm. The most significant results of these experiments are the preservation of the higher mass PAHs (e. g., pyrene relative to napthalene) and the formation of additional alkylated PAHs. We have also examined the residues of polystyrene projectiles impacted by a microparticle accelerator into targets at velocities up to 15 km/s. This talk will discuss the results of these experiments and their implications with respect to the survival of carbonaceous deliverables to early Earth. The prospects of survivability of organic molecules on "intact" capture of cosmic dust in space via soft: and hard cosmic dust collectors will also be discussed.
NASA Technical Reports Server (NTRS)
Hubmayr, J.; Austermann, J.; Beall, J.; Becker, D.; Cho, H.-M.; Datta, R.; Duff, S. M.; Grace, E.; Halverson, N.; Henderson, S. W.;
2015-01-01
NIST produces large-format, dual-polarization-sensitive detector arrays for a broad range of frequencies (30-1400 GHz). Such arrays enable a host of astrophysical measurements. Detectors optimized for cosmic microwave background observations are monolithic, polarization-sensitive arrays based on feedhorn and planar Nb antenna-coupled transition-edge superconducting (TES) bolometers. Recent designs achieve multiband, polarimetric sensing within each spatial pixel. In this proceeding, we describe our multichroic, feedhorn-coupled design; demonstrate performance at 70-380 GHz; and comment on current developments for implementation of these detector arrays in the advanced Atacama Cosmology Telescope receiver
ACTPol: On-Sky Performance and Characterization
NASA Technical Reports Server (NTRS)
Grace, E.; Beall, J.; Bond, J. R.; Cho, H. M.; Datta, R.; Devlin, M. J.; Dunner, R.; Fox, A. E.; Gallardo, P.; Hasselfield, M.;
2014-01-01
ACTPol is the polarization-sensitive receiver on the Atacama Cosmology Telescope. ACTPol enables sensitive millimeter wavelength measurements of the temperature and polarization anisotropies of the Cosmic Microwave Background (CMB) at arcminute angular scales. These measurements are designed to explore the process of cosmic structure formation, constrain or determine the sum of the neutrino masses, probe dark energy, and provide a foundation for a host of other cosmological tests. We present an overview of the first season of ACTPol observations focusing on the optimization and calibration of the first detector array as well as detailing the on-sky performance.
Reviews in Modern Astronomy: Vol. 16: The Cosmic Circuit of Matter
NASA Astrophysics Data System (ADS)
Schielicke, Reinhard E.
2003-08-01
The 16th volume in the annual series on recent developments and scientific progress in astronomy and astrophysics contains thirteen invited reviews presented during the International Scientific Conference of the Society on "The Cosmic Circuit of Matter", held in Berlin, Germany. Readers also learn about the lecture on the behaviour of stars by infrared interferometry given by Charles H. Townes, Berkeley, USA who was awarded the Karl Schwarzschild medal 2002. Further contributions on the topic provide, among other, the latest results on the Solar atmosphere, formation of stars, substellar objects, galaxies and clusters of galaxies.
A search for anisotrophy in the cosmic microwave background on intermediate angular scales
NASA Technical Reports Server (NTRS)
Alsop, D. C.; Cheng, E. S.; Clapp, A. C.; Cottingham, D. A.; Fischer, M. L.; Gundersen, J. O.; Kreysa, E.; Lange, A. E.; Lubin, P. M.; Meinhold, P. R.
1992-01-01
The results of a search for anisotropy in the cosmic microwave background on angular scales near 1 deg are presented. Observations were simultaneously performed in bands centered at frequencies of 6, 9, and 12 per cm with a multifrequency bolometric receiver mounted on a balloon-borne telescope. The statistical sensitivity of the data is the highest reported to date at this angular scale, which is of critical importance for understanding the formation of structure in the universe. Signals in excess of random were observed in the data. The experiment, data analysis, and interpretation are described.
Evolution of NASA Scientific Ballooning and Particle Astrophysics Research
NASA Astrophysics Data System (ADS)
Jones, William Vernon
2017-01-01
Particle astrophysics research has a history in ballooning that spans over 100 years, ever since Victor Hess discovered cosmic rays on a manned balloon in 1912. The NASA Particle Astrophysics Program currently covers the origin, acceleration and transport of Galactic cosmic rays, plus the Nature of Dark Matter and Ultrahigh Energy Neutrinos. Progress in each of these topics has come from sophisticated instrumentation flown on Long Duration Balloon (LDB) flights around Antarctica for more than two decades. Super Pressure Balloons (SPB) and International Space Station (ISS) platforms are emerging opportunities that promise major steps forward for these and other objectives. NASA has continued development and qualification flights leading to SPB flights capable of supporting 1000 kg science instruments to 33 km for upwards of hundred day missions, with plans for increasing the altitude to 38 km. This goal is even more important now, in view of the Astro2010 Decadal Study recommendation that NASA should support Ultra-Long Duration Balloon (ULDB) flight development for studies of particle astrophysics, cosmology and indirect detection of dark matter. The mid-latitude test flight of an 18.8 MCF SPB launched from Wanaka, NZ in 2015 achieved 32 days of nearly constant altitude exposure, and an identical SPB launched from Wanaka in 2016 with a science payload flew for 46 days. Scientific ballooning as a vital infrastructure component for cosmic ray and general astrophysics investigations, including training for young scientists, graduate and undergraduate students, leading up to the 2020 Decadal Study and beyond, will be presented and discussed.
A three-phase amplification of the cosmic magnetic field in galaxies
NASA Astrophysics Data System (ADS)
Martin-Alvarez, Sergio; Devriendt, Julien; Slyz, Adrianne; Teyssier, Romain
2018-06-01
Arguably the main challenge of galactic magnetism studies is to explain how the interstellar medium of galaxies reaches energetic equipartition despite the extremely weak cosmic primordial magnetic fields that are originally predicted to thread the inter-galactic medium. Previous numerical studies of isolated galaxies suggest that a fast dynamo amplification might suffice to bridge the gap spanning many orders of magnitude in strength between the weak early Universe magnetic fields and the ones observed in high redshift galaxies. To better understand their evolution in the cosmological context of hierarchical galaxy growth, we probe the amplification process undergone by the cosmic magnetic field within a spiral galaxy to unprecedented accuracy by means of a suite of constrained transport magnetohydrodynamical adaptive mesh refinement cosmological zoom simulations with different stellar feedback prescriptions. A galactic turbulent dynamo is found to be naturally excited in this cosmological environment, being responsible for most of the amplification of the magnetic energy. Indeed, we find that the magnetic energy spectra of simulated galaxies display telltale inverse cascades. Overall, the amplification process can be divided in three main phases, which are related to different physical mechanisms driving galaxy evolution: an initial collapse phase, an accretion-driven phase, and a feedback-driven phase. While different feedback models affect the magnetic field amplification differently, all tested models prove to be subdominant at early epochs, before the feedback-driven phase is reached. Thus the three-phase evolution paradigm is found to be quite robust vis-a-vis feedback prescriptions.
Cosmic rays and terrestrial life: A brief review
NASA Astrophysics Data System (ADS)
Atri, Dimitra; Melott, Adrian L.
2014-01-01
“The investigation into the possible effects of cosmic rays on living organisms will also offer great interest.” - Victor F. Hess, Nobel Lecture, December 12, 1936 High-energy radiation bursts are commonplace in our Universe. From nearby solar flares to distant gamma ray bursts, a variety of physical processes accelerate charged particles to a wide range of energies, which subsequently reach the Earth. Such particles contribute to a number of physical processes occurring in the Earth system. A large fraction of the energy of charged particles gets deposited in the atmosphere, ionizing it, causing changes in its chemistry and affecting the global electric circuit. Remaining secondary particles contribute to the background dose of cosmic rays on the surface and parts of the subsurface region. Life has evolved over the past ∼3 billion years in presence of this background radiation, which itself has varied considerably during the period [1-3]. As demonstrated by the Miller-Urey experiment, lightning plays a very important role in the formation of complex organic molecules, which are the building blocks of more complex structures forming life. There is growing evidence of increase in the lightning rate with increasing flux of charged particles. Is there a connection between enhanced rate of cosmic rays and the origin of life? Cosmic ray secondaries are also known to damage DNA and cause mutations, leading to cancer and other diseases. It is now possible to compute radiation doses from secondary particles, in particular muons and neutrons. Have the variations in cosmic ray flux affected the evolution of life on earth? We describe the mechanisms of cosmic rays affecting terrestrial life and review the potential implications of the variation of high-energy astrophysical radiation on the history of life on earth.
Laboratory Studies of Optical Characteristics and Condensation Processes of Cosmic Dust Particles
NASA Technical Reports Server (NTRS)
Spann, J. F., Jr.; Abbas, M. M.; Venturini, C. C.
2000-01-01
Information about the optical characteristics and physical processes involving cosmic dust particles is vital for interpretation of astronomical observations and an understanding of the formation and processing of dust in the evolutionary cycle of matter in the interstellar medium. Cosmic dust particles are formed in a variety of astrophysical environments such as in cool stellar outflows and circumstellar envelopes. Definitive knowledge of the nature, composition, and physical processes of cosmic dust grains, however, can only be inferred from astronomical observations through laboratory experiments on the analogs of hypothesized dust particles and with modeling calculations. Laboratory investigations of the nature, composition, and optical characteristics of cosmic dust particles are being, carried out at many institutions with a variety of experimental techniques. Despite a wealth of available data, however, many basic issues remain unresolved. An experimental facility based on suspension of dust particles in electrodynamic balance in a pressure/temperature controlled environment in a cavity has been operational at the NASA Marshall Space Flight Center, and is currently being employed for studies of dust particle charging mechanisms using electron beams and with UV radiation. In this paper, we discuss two general classes of experiments under planning stages that may be simultaneously carried out on this facility for cosmic dust investigations (i) Infrared optical characteristics (extinction coefficients and scattering phase functions) of the analogs of hypothesized of cosmic dust particles, such as natural and synthetic amorphous silicates with varying compositions, amorphous carbon grains, polycyclic aromatic hydrocarbons (PAHs), and icy core-mantle particles etc. The initial spectral range under consideration is 1-25 micrometers, to be extended to the far infrared region in the future (ii) Condensation of volatile gases on nucleus dust particles to be investigated for planetary and astrophysical environments.
Revealing the z ~ 2.5 Cosmic Web with 3D Lyα Forest Tomography: a Deformation Tensor Approach
NASA Astrophysics Data System (ADS)
Lee, Khee-Gan; White, Martin
2016-11-01
Studies of cosmological objects should take into account their positions within the cosmic web of large-scale structure. Unfortunately, the cosmic web has only been extensively mapped at low redshifts (z\\lt 1), using galaxy redshifts as tracers of the underlying density field. At z\\gt 1, the required galaxy densities are inaccessible for the foreseeable future, but 3D reconstructions of Lyα forest absorption in closely separated background QSOs and star-forming galaxies already offer a detailed window into z˜ 2-3 large-scale structure. We quantify the utility of such maps for studying the cosmic web by using realistic z = 2.5 Lyα forest simulations matched to observational properties of upcoming surveys. A deformation tensor-based analysis is used to classify voids, sheets, filaments, and nodes in the flux, which are compared to those determined from the underlying dark matter (DM) field. We find an extremely good correspondence, with 70% of the volume in the flux maps correctly classified relative to the DM web, and 99% classified to within one eigenvalue. This compares favorably to the performance of galaxy-based classifiers with even the highest galaxy densities from low-redshift surveys. We find that narrow survey geometries can degrade the recovery of the cosmic web unless the survey is ≳ 60 {h}-1 {Mpc} or ≳ 1 deg on the sky. We also examine halo abundances as a function of the cosmic web, and find a clear dependence as a function of flux overdensity, but little explicit dependence on the cosmic web. These methods will provide a new window on cosmological environments of galaxies at this very special time in galaxy formation, “high noon,” and on overall properties of cosmological structures at this epoch.
Nitrate flux on the Ross Ice Shelf, Antarctica and its relation to solar cosmic rays
NASA Astrophysics Data System (ADS)
Zeller, Edward J.; Dreschhoff, Gisela A. M.; Laird, Claude M.
1986-11-01
Nitrate flux has been determined in the snow sequence deposited at Windless Bight on the Ross Ice Shelf (Antarctica). The data were obtained from on-site analysis of nitrate concentrations from a glaciological pit and a firn core spanning the time interval from midwinter 1971 to January 1986. The high resolution data can be combined with precipitation records collected from adjacent areas to provide a record of nitrate flow. The resulting time series contains a signal which corresponds to the two major solar events of 1972 and 1984. The concentration and flux profiles may be useful in studies of Antarctic ozone depletion.
Cosmic muon flux measurements at the Kimballton Underground Research Facility
NASA Astrophysics Data System (ADS)
Kalousis, L. N.; Guarnaccia, E.; Link, J. M.; Mariani, C.; Pelkey, R.
2014-08-01
In this article, the results from a series of muon flux measurements conducted at the Kimballton Underground Research Facility (KURF), Virginia, United States, are presented. The detector employed for these investigations, is made of plastic scintillator bars readout by wavelength shifting fibers and multianode photomultiplier tubes. Data was taken at several locations inside KURF, spanning rock overburden values from ~ 200 to 1450 m.w.e. From the extracted muon rates an empirical formula was devised, that estimates the muon flux inside the mine as a function of the overburden. The results are in good agreement with muon flux calculations based on analytical models and MUSIC.
COBE's search for structure in the Big Bang
NASA Technical Reports Server (NTRS)
Soffen, Gerald (Editor); Guerny, Gene (Editor); Keating, Thomas (Editor); Moe, Karen (Editor); Sullivan, Walter (Editor); Truszkowski, Walt (Editor)
1989-01-01
The launch of Cosmic Background Explorer (COBE) and the definition of Earth Observing System (EOS) are two of the major events at NASA-Goddard. The three experiments contained in COBE (Differential Microwave Radiometer (DMR), Far Infrared Absolute Spectrophotometer (FIRAS), and Diffuse Infrared Background Experiment (DIRBE)) are very important in measuring the big bang. DMR measures the isotropy of the cosmic background (direction of the radiation). FIRAS looks at the spectrum over the whole sky, searching for deviations, and DIRBE operates in the infrared part of the spectrum gathering evidence of the earliest galaxy formation. By special techniques, the radiation coming from the solar system will be distinguished from that of extragalactic origin. Unique graphics will be used to represent the temperature of the emitting material. A cosmic event will be modeled of such importance that it will affect cosmological theory for generations to come. EOS will monitor changes in the Earth's geophysics during a whole solar color cycle.
Inverse Flux versus Pressure of Muons from Cosmic Rays
NASA Astrophysics Data System (ADS)
Buitrago, D.; Armendariz, R.
2017-12-01
When an incoming cosmic ray proton or atom collides with particles in earth's atmosphere a shower of secondary muons is created. Cosmic ray muon flux was measured at the Queensborough Community College using a QuarkNet detector consisting of three stacked scintillator muon counters and a three-fold coincidence trigger. Data was recorded during a three-day period during a severe weather storm that occurred from March 13-17, 2017. A computer program was created in Python to read the muon flux rate and atmospheric pressure sensor readings from the detector's data acquisition board. The program converts the data from hexadecimal to decimal, re-bins the data in a more suitable format, creates and overlays plots of muon flux with atmospheric pressure. Results thus far show a strong correlation between muon flux and atmospheric pressure. More data analysis will be done to verify the above conclusion.
High redshift signatures in the 21 cm forest due to cosmic string wakes
NASA Astrophysics Data System (ADS)
Tashiro, Hiroyuki; Sekiguchi, Toyokazu; Silk, Joseph
2014-01-01
Cosmic strings induce minihalo formation in the early universe. The resultant minihalos cluster in string wakes and create a ``21 cm forest'' against the cosmic microwave background (CMB) spectrum. Such a 21 cm forest can contribute to angular fluctuations of redshifted 21 cm signals integrated along the line of sight. We calculate the root-mean-square amplitude of the 21 cm fluctuations due to strings and show that these fluctuations can dominate signals from minihalos due to primordial density fluctuations at high redshift (zgtrsim10), even if the string tension is below the current upper bound, Gμ < 1.5 × 10-7. Our results also predict that the Square Kilometre Array (SKA) can potentially detect the 21 cm fluctuations due to strings with Gμ ≈ 7.5 × 10-8 for the single frequency band case and 4.0 × 10-8 for the multi-frequency band case.
COSMIC-RAY-MEDIATED FORMATION OF BENZENE ON THE SURFACE OF SATURN'S MOON TITAN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou Li; Zheng Weijun; Kaiser, Ralf I.
2010-08-01
The aromatic benzene molecule (C{sub 6}H{sub 6})-a central building block of polycyclic aromatic hydrocarbon molecules-is of crucial importance for the understanding of the organic chemistry of Saturn's largest moon, Titan. Here, we show via laboratory experiments and electronic structure calculations that the benzene molecule can be formed on Titan's surface in situ via non-equilibrium chemistry by cosmic-ray processing of low-temperature acetylene (C{sub 2}H{sub 2}) ices. The actual yield of benzene depends strongly on the surface coverage. We suggest that the cosmic-ray-mediated chemistry on Titan's surface could be the dominant source of benzene, i.e., a factor of at least two ordersmore » of magnitude higher compared to previously modeled precipitation rates, in those regions of the surface which have a high surface coverage of acetylene.« less
Cosmic reionization on computers. I. Design and calibration of simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnedin, Nickolay Y., E-mail: gnedin@fnal.gov
Cosmic Reionization On Computers is a long-term program of numerical simulations of cosmic reionization. Its goal is to model fully self-consistently (albeit not necessarily from the first principles) all relevant physics, from radiative transfer to gas dynamics and star formation, in simulation volumes of up to 100 comoving Mpc, and with spatial resolution approaching 100 pc in physical units. In this method paper, we describe our numerical method, the design of simulations, and the calibration of numerical parameters. Using several sets (ensembles) of simulations in 20 h {sup –1} Mpc and 40 h {sup –1} Mpc boxes with spatial resolutionmore » reaching 125 pc at z = 6, we are able to match the observed galaxy UV luminosity functions at all redshifts between 6 and 10, as well as obtain reasonable agreement with the observational measurements of the Gunn-Peterson optical depth at z < 6.« less
Spallation processes and nuclear interaction products of cosmic rays.
Silberberg, R; Tsao, C H
1990-08-01
Most cosmic-ray nuclei heavier than helium have suffered nuclear collisions in the interstellar gas, with transformation of nuclear composition. The isotopic and elemental composition at the sources has to be inferred from the observed composition near the Earth. The source composition permits tests of current ideas on sites of origin, nucleosynthesis in stars, evolution of stars, the mixing and composition of the interstellar medium and injection processes prior to acceleration. The effects of nuclear spallation, production of radioactive nuclides and the time dependence of their decay provide valuable information on the acceleration and propagation of cosmic rays, their nuclear transformations, and their confinement time in the Galaxy. The formation of spallation products that only decay by electron capture and are relatively long-lived permits an investigation of the nature and density fluctuations (like clouds) of the interstellar medium. Since nuclear collisions yield positrons, antiprotons, gamma rays and neutrinos, we shall discuss these topics briefly.
Gaseous infall and star formation from redshift 2 to the Milky Way
NASA Astrophysics Data System (ADS)
Hill, Alex
2015-10-01
We propose to model magnetized gas as it flows into galaxy disks in Milky Way-like and redshift 2 environments in order to understand the pc to kpc scale physics that control a crucial link in galaxy evolution: how do galaxies get the gas which sustains star formation over cosmic time? UV observations with the Cosmic Origins Spectrograph (COS) on HST have demonstrated that star-forming galaxies have baryonic halos much more massive than the galaxies themselves; these halos are most likely a link in the evolution of galaxies as cosmological filaments feed ongoing star formation in galactic disks. However, the galaxy formation simulations that support this hypothesis do not resolve the parsec-scale hydrodynamic processes which determine if and how the gas in the halo can reach the disk. To address this theoretical disconnect, we will conduct magnetohydrodynamic simulations in which these clouds fall under the galactic potential into a state-of-the-art simulation of the three-phase interstellar medium in the galactic disk. We will leverage recent HST and radio observations of accreting clouds around the Milky Way to set the initial conditions of the gas, including magnetic fields and metallicity. Our results will connect the HST metallicity measurements directly to the impact of gaseous galactic halos and infall on galaxy evolution and the star formation history of the Universe.
Cosmic Star Formation: A Simple Model of the SFRD(z)
NASA Astrophysics Data System (ADS)
Chiosi, Cesare; Sciarratta, Mauro; D’Onofrio, Mauro; Chiosi, Emanuela; Brotto, Francesca; De Michele, Rosaria; Politino, Valeria
2017-12-01
We investigate the evolution of the cosmic star formation rate density (SFRD) from redshift z = 20 to z = 0 and compare it with the observational one by Madau and Dickinson derived from recent compilations of ultraviolet (UV) and infrared (IR) data. The theoretical SFRD(z) and its evolution are obtained using a simple model that folds together the star formation histories of prototype galaxies that are designed to represent real objects of different morphological type along the Hubble sequence and the hierarchical growing of structures under the action of gravity from small perturbations to large-scale objects in Λ-CDM cosmogony, i.e., the number density of dark matter halos N(M,z). Although the overall model is very simple and easy to set up, it provides results that mimic results obtained from highly complex large-scale N-body simulations well. The simplicity of our approach allows us to test different assumptions for the star formation law in galaxies, the effects of energy feedback from stars to interstellar gas, the efficiency of galactic winds, and also the effect of N(M,z). The result of our analysis is that in the framework of the hierarchical assembly of galaxies, the so-called time-delayed star formation under plain assumptions mainly for the energy feedback and galactic winds can reproduce the observational SFRD(z).
Modeling The Distribution Of Dark Matter And Its Connection To Galaxies
NASA Astrophysics Data System (ADS)
Mao, Yao-Yuan
2016-06-01
Despite the mysterious nature of dark matter and dark energy, the Lambda-Cold Dark Matter (LCDM) model provides a reasonably accurate description of the evolution of the cosmos and the distribution of galaxies. Today, we are set to tackle more specific and quantitative questions about the galaxy formation physics, the nature of dark matter, and the connection between the dark and the visible components. The answers to these questions are however elusive, because dark matter is not directly observable, and various unknowns lie between what we can observe and what we can calculate. Hence, mathematical models that bridge the observable and the calculable are essential for the study of modern cosmology. The aim of my thesis work is to improve existing models and also to construct new models for various aspects of the dark matter distribution, as dark matter structures the cosmic web and forms the nests of visible galaxies. Utilizing a series of cosmological dark matter simulations which span a wide dynamical range and a statistical sample of zoom-in simulations which focus on individual dark matter halos, we develop models for the spatial and velocity distribution of dark matter particles, the abundance of dark substructures, and the empirical connection between dark matter and galaxies. As more precise observational results become available, more accurate models are then required to test the consistency between these results and the LCDM predictions. For all the models we investigate, we find that the formation history of dark matter halos always plays a crucial role. Neglecting the halo formation history would result in systematic biases when we interpret various observational results, including dark matter direct detection experiments, the detection of dark substructures with strong-lensed systems, the large-scale spatial clustering of galaxies, and the abundance of dwarf galaxies. Rectifying this, our work will enable us to fully utilize the complementary power of diverse observational datasets to test the LCDM model and to seek new physics.
Observable Signatures of Cosmic Reionization and the End of the Dark Ages
NASA Astrophysics Data System (ADS)
Shapiro, Paul R.; Iliev, I. T.; Mellema, G.; Pen, U. L.; McDonald, P.; Bond, J. R.; Alvarez, M.; Ahn, K.
2007-12-01
Reionization exerted a strong feedback effect which left its imprint on all scales and on radiation backgrounds at all wavelengths. When the first stars formed inside minihalos of mass 106 solar masses at z > 20, ionizing radiation heated and expelled the gas inside their minihalos and escaped to create intergalactic H II regions. As these H II regions grew, their ionization fronts encountered other minihalos, which blocked their path and trapped them, causing this minihalo gas, too, to escape in a photoevaporative wind. Further star formation inside minihalos was affected not only by these I-fronts, but also by the rising dissociating background. Eventually, hierarchical clustering formed dwarf galaxies > 108 solar masses, where atomic cooling was effective enough to trigger more star formation, and intergalactic H II regions grew and merged to become 10's of comoving Mpc's in size. Inside these H II regions, gas pressure inhibited gravitational collapse, so the minimum mass of newly-formed galaxies jumped above 109 solar masses. Reionization ended when the intergalactic H II regions finally overlapped everywhere. We have studied this process by a variety of techniques, on a hierarchy of mass- and length-scales. The latter span the range from interiors of minihalos, to giant H II regions produced by the clustered formation of galaxies, to large-scale structure of the patchy distribution of neutral and ionized gas during the epoch of reionization. These results lead to predictions of a fluctuating background of redshifted 21-cm line radiation, temperature and polarization anisotropy of the CMB, gaps in the Gunn-Peterson absorption spectra of high-z quasars, and distortion of the luminosity function and spatial clustering of Lyman alpha emission-line galaxies during this epoch, among other things. I will summarize the latest theoretical developments in this talk. This work supported by NASA grants NNX07AH09G and NNG04GI77G and NSF AST-0708176.
Active Galactic Nuclei, Host Star Formation, and the Far Infrared
NASA Astrophysics Data System (ADS)
Draper, Aden R.; Ballantyne, D. R.
2011-05-01
Telescopes like Herschel and the Atacama Large Millimeter/submillimeter Array (ALMA) are creating new opportunities to study sources in the far infrared (FIR), a wavelength region dominated by cold dust emission. Probing cold dust in active galaxies allows for study of the star formation history of active galactic nuclei (AGN) hosts. The FIR is also an important spectral region for observing AGN which are heavily enshrouded by dust, such as Compton thick (CT) AGN. By using information from deep X-ray surveys and cosmic X-ray background synthesis models, we compute Cloudy photoionization simulations which are used to predict the spectral energy distribution (SED) of AGN in the FIR. Expected differential number counts of AGN and their host galaxies are calculated in the Herschel bands. The expected contribution of AGN and their hosts to the cosmic infrared background (CIRB) is also computed. Multiple star formation scenarios are investigated using a modified blackbody star formation SED. It is found that FIR observations at 350 and 500 um are an excellent tool in determining the star formation history of AGN hosts. Additionally, the AGN contribution to the CIRB can be used to determine whether star formation in AGN hosts evolves differently than in normal galaxies. AGN and host differential number counts are dominated by CT AGN in the Herschel-SPIRE bands. Therefore, X-ray stacking of bright SPIRE sources is likely to disclose a large fraction of the CT AGN population.
Aromatic ring generation as a dust precursor in acetylene discharges
NASA Astrophysics Data System (ADS)
De Bleecker, Kathleen; Bogaerts, Annemie; Goedheer, Wim
2006-04-01
Production of aromatic hydrocarbon compounds as an intermediate step for particle formation in low-pressure acetylene discharges is investigated via a kinetic approach. The detailed chemical reaction mechanism contains 140 reactions among 55 species. The cyclic hydrocarbon chemistry is mainly based on studies of polycyclic aromatic hydrocarbon formation in cosmic environments. The model explicitly includes organic chain, cyclic molecules, radicals, and ions up to a size of 12 carbon atoms. The calculated density profiles show that the aromatic formation yields are quite significant, suggesting that aromatic compounds play a role in the underlying mechanisms of particle formation in hydrocarbon plasmas.
Loaiza, Vanessa M; McCabe, David P
2012-02-01
Three experiments are reported that addressed the nature of processing in working memory by investigating patterns of delayed cued recall and free recall of items initially studied during complex and simple span tasks. In Experiment 1, items initially studied during a complex span task (i.e., operation span) were more likely to be recalled after a delay in response to temporal-contextual cues, relative to items from subspan and supraspan list lengths in a simple span task (i.e., word span). In Experiment 2, items initially studied during operation span were more likely to be recalled from neighboring serial positions during delayed free recall than were items studied during word span trials. Experiment 3 demonstrated that the number of attentional refreshing opportunities strongly predicts episodic memory performance, regardless of whether the information is presented in a spaced or massed format in a modified operation span task. The results indicate that the content-context bindings created during complex span trials reflect attentional refreshing opportunities that are used to maintain items in working memory.
Stochastic gravitational wave background from light cosmic strings
DOE Office of Scientific and Technical Information (OSTI.GOV)
DePies, Matthew R.; Hogan, Craig J.
2007-06-15
Spectra of the stochastic gravitational wave backgrounds from cosmic strings are calculated and compared with present and future experimental limits. Motivated by theoretical expectations of light cosmic strings in superstring cosmology, improvements in experimental sensitivity, and recent demonstrations of large, stable loop formation from a primordial network, this study explores a new range of string parameters with masses lighter than previously investigated. A standard 'one-scale' model for string loop formation is assumed. Background spectra are calculated numerically for dimensionless string tensions G{mu}/c{sup 2} between 10{sup -7} and 10{sup -18}, and initial loop sizes as a fraction of the Hubble radiusmore » {alpha} from 0.1 to 10{sup -6}. The spectra show a low frequency power-law tail, a broad spectral peak due to loops decaying at the present epoch (including frequencies higher than their fundamental mode, and radiation associated with cusps), and a flat (constant energy density) spectrum at high frequencies due to radiation from loops that decayed during the radiation-dominated era. The string spectrum is distinctive and unlike any other known source. The peak of the spectrum for light strings appears at high frequencies, significantly affecting predicted signals. The spectra of the cosmic string backgrounds are compared with current millisecond pulsar limits and Laser Interferometer Space Antenna (LISA) sensitivity curves. For models with large stable loops ({alpha}=0.1), current pulsar-timing limits exclude G{mu}/c{sup 2}>10{sup -9}, a much tighter limit on string tension than achievable with other techniques, and within the range of current models based on brane inflation. LISA may detect a background from strings as light as G{mu}/c{sup 2}{approx_equal}10{sup -16}, corresponding to field theory strings formed at roughly 10{sup 11} GeV.« less
Bayesian analysis of the dynamic cosmic web in the SDSS galaxy survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leclercq, Florent; Wandelt, Benjamin; Jasche, Jens, E-mail: florent.leclercq@polytechnique.org, E-mail: jasche@iap.fr, E-mail: wandelt@iap.fr
Recent application of the Bayesian algorithm \\textsc(borg) to the Sloan Digital Sky Survey (SDSS) main sample galaxies resulted in the physical inference of the formation history of the observed large-scale structure from its origin to the present epoch. In this work, we use these inferences as inputs for a detailed probabilistic cosmic web-type analysis. To do so, we generate a large set of data-constrained realizations of the large-scale structure using a fast, fully non-linear gravitational model. We then perform a dynamic classification of the cosmic web into four distinct components (voids, sheets, filaments, and clusters) on the basis of themore » tidal field. Our inference framework automatically and self-consistently propagates typical observational uncertainties to web-type classification. As a result, this study produces accurate cosmographic classification of large-scale structure elements in the SDSS volume. By also providing the history of these structure maps, the approach allows an analysis of the origin and growth of the early traces of the cosmic web present in the initial density field and of the evolution of global quantities such as the volume and mass filling fractions of different structures. For the problem of web-type classification, the results described in this work constitute the first connection between theory and observations at non-linear scales including a physical model of structure formation and the demonstrated capability of uncertainty quantification. A connection between cosmology and information theory using real data also naturally emerges from our probabilistic approach. Our results constitute quantitative chrono-cosmography of the complex web-like patterns underlying the observed galaxy distribution.« less
On the (Non)Evolution of H I Gas in Galaxies Over Cosmic Time
NASA Astrophysics Data System (ADS)
Prochaska, J. Xavier; Wolfe, Arthur M.
2009-05-01
We present new results on the frequency distribution of projected H I column densities f(N H I , X), total comoving covering fraction, and integrated mass densities ρH I of high-redshift, H I galactic gas from a survey of damped Lyα systems (DLAs) in the Sloan Digital Sky Survey, Data Release 5. For the full sample spanning z = 2.2-5 (738 DLAs), f(N H I , X) is well fitted by a double power law with a break column density Nd = 1021.55±0.04 cm-2 and low/high-end exponents α = -2.00 ± 0.05, - 6.4+1.1 -1.6. The shape of f(N H I , X) is invariant during this redshift interval and also follows the projected surface density distribution of present-day H I disks as inferred from 21 cm observations. We conclude that H I gas has been distributed in a self-similar fashion for the past 12 Gyr. The normalization of f(N H I , X), in contrast, decreases by a factor of 2 during the ≈2 Gyr interval from z = 4-2.2 with coincident decreases in both the total covering fraction and ρH I . At z ≈ 2, these quantities match the present-day values suggesting no evolution during the past ≈10 Gyr. We argue that the evolution at early times is driven by "violent" processes that removes gas from nearly half the galaxies at z ≈ 3 establishing the antecedents of current early-type galaxies. The perceived constancy of ρH I , meanwhile, implies that H I gas is a necessary but insufficient precondition for star formation and that the global star formation rate is driven by the accretion and condensation of fresh gas from the intergalactic medium.
Stellar Masses and Star Formation Rates of Lensed, Dusty, Star-forming Galaxies from the SPT Survey
NASA Astrophysics Data System (ADS)
Ma, Jingzhe; Gonzalez, Anthony. H.; Spilker, J. S.; Strandet, M.; Ashby, M. L. N.; Aravena, M.; Béthermin, M.; Bothwell, M. S.; de Breuck, C.; Brodwin, M.; Chapman, S. C.; Fassnacht, C. D.; Greve, T. R.; Gullberg, B.; Hezaveh, Y.; Malkan, M.; Marrone, D. P.; Saliwanchik, B. R.; Vieira, J. D.; Weiss, A.; Welikala, N.
2015-10-01
To understand cosmic mass assembly in the universe at early epochs, we primarily rely on measurements of the stellar masses and star formation rates (SFRs) of distant galaxies. In this paper, we present stellar masses and SFRs of six high-redshift (2.8 ≤ z ≤ 5.7) dusty, star-forming galaxies (DSFGs) that are strongly gravitationally lensed by foreground galaxies. These sources were first discovered by the South Pole Telescope (SPT) at millimeter wavelengths and all have spectroscopic redshifts and robust lens models derived from Atacama Large Millimeter/submillimeter Array observations. We have conducted follow-up observations to obtain multi-wavelength imaging data using the Hubble Space Telescope (HST), Spitzer, Herschel, and the Atacama Pathfinder EXperiment. We use the high-resolution HST/Wide Field Camera 3 images to disentangle the background source from the foreground lens in Spitzer/IRAC data. The detections and upper limits provide important constraints on the spectral energy distributions (SEDs) for these DSFGs, yielding stellar masses, IR luminosities, and SFRs. The SED fits of six SPT sources show that the intrinsic stellar masses span a range more than one order of magnitude with a median value ˜5 ×1010 M⊙. The intrinsic IR luminosities range from 4 × 1012 L⊙ to 4 × 1013 L⊙. They all have prodigious intrinsic SFRs of 510-4800 M⊙ yr-1. Compared to the star-forming main sequence (MS), these six DSFGs have specific SFRs that all lie above the MS, including two galaxies that are a factor of 10 higher than the MS. Our results suggest that we are witnessing ongoing strong starburst events that may be driven by major mergers.
Formation Stellaire Aux Échelles Des Galaxies
NASA Astrophysics Data System (ADS)
Boissier, S.
2012-12-01
Star Formation is at the very core of the evolution of galaxies. From their gas reservoir (filled by infall or fusions), stars form at the "Star Formation Rate" (SFR), with an enormous impact on many aspects of the evolution of galaxies. This HDR presents first the formalism concerning star formation (SFR, IMF), some theoretical suggestions on physical processes that may affect star formation on various galactic scales, and the methods used to determine the SFR from observations. A large part is dedicated to the "Star Formation Laws" (e.g. Schmidt law) on various scales (local, radial, and global law). Finally, the last part concerns the largest scales (evolution of the "cosmic" SFR and effect of the environment).
Advances in Interstellar and Planetary Laboratory Astrophysics with Ames’ COSmIC Facility
NASA Astrophysics Data System (ADS)
Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma
2017-06-01
The COSmIC facility was developed at NASA Ames to study interstellar, circumstellar and planetary analogs in the laboratory [1]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of neutral and ionized molecules and nanoparticles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of instruments that allow forming, processing and monitoring simulated space conditions in the laboratory. It is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a plasma in a free supersonic jet expansion coupled to high-sensitivity, complementary in situ diagnostics tools, used for the detection and characterization of the species present in the expansion: a Cavity Ring Down Spectroscopy (CRDS) and fluorescence spectroscopy systems for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [2].Recent advances achieved in laboratory astrophysics using COSmIC will be presented, in particular the advances that have been achieved in the domain of the diffuse interstellar bands (DIBs) [3] and in monitoring, in the laboratory, the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as circumstellar outflows [4] and planetary atmospheres [5, 6]. Plans for future laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics (NIR-MIR CRDS, Laser Induced Fluorescence spectra of cosmic molecule analogs and the laser induced incandescence spectra of cosmic grain analogs will also be addressed as well as the implications of the on-going studies for astronomy.References: [1] Salama F., In Organic Matter in Space, IAU S251, Kwok & Sandford eds.CUP, 4, 357 (2008).[2] Ricketts C., Contreras C., Walker, R., Salama F., Int. J. Mass Spec, 300, 26 (2011)[3] Salama F., Galazutdinov G., Krelowski J., Biennier L., Beletsky Y., In-Ok Song, The Astrophys. J., 728, 154 (2011)[4] Cesar Contreras & Farid Salama, The Astrophys. J. Suppl. Ser., 208, 6 (2013)[5] Sciamma-O'Brien E., Ricketts C., and Salama F. Icarus, 243, 325 (2014)[6] Sciamma-O'Brien E., Upton K. and Salama F. Icarus, in press (2017)
NASA Astrophysics Data System (ADS)
Chakrabarti, Anish
2012-02-01
Hosted by Brian Greene and based on his best-selling book of the same title, The Fabric of the Cosmos is a new four- part NOVA series that explores the deepest mysteries of space and time. The program was kicked-off by 30 ``Cosmic Cafes'' being held around the country funded by an NSF grant which allows SPS-NOVA to fund SPS chapters for these events. During the summer I assisted in planning this kick-off, reviewing and suggesting revisions of resources related to the NOVA series to make them relevant to an SPS audience. I also got to organize and moderate the first ``Cosmic Cafe.'' The Cosmic cafe that I organized was discussion based, with our speaker Dr. James Gates starting with a short talk and then opening the floor up for questions. By organizing a ``Cosmic cafe,'' I got real hand experience about the challenges an SPS chapter would face while organizing a cafe themselves. Based on my experience I shall also discuss the effectiveness of the first ever themed science cafe blitz. A science caf'e is an informal discussion with an expert in a very casual location, usually a restaurant, coffee shop, or a bar. A science cafe is mostly discussion based, but has a lot of freedom for the format. A ``Cosmic'' cafe is a science cafe which is based around the topics discussed in the documentary ``The Fabric of the Cosmos.''
CANDELS: A Cosmic Quest for Distant Galaxies Offering Live Views of Galaxy Evolution
NASA Astrophysics Data System (ADS)
Koo, David C.; CANDELS
2017-06-01
For decades, the study of distant galaxies has been pushing the frontiers of extra-galactic research, with observations from the best suite of telescopes and instruments and with theory from the most advanced computer simulations. This talk will focus on observations taken within the CANDELS fields to reveal the richness and complexity of this still-growing field. CANDELS (Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey) itself is the largest project ever taken by Hubble and is composed of optical and near-infrared images of five tiny regions of sky containing over 200,000 distant galaxies. All these regions, two of which are GOODS North and South, were already outstanding in possessing years of prior surveys taken by many teams worldwide and have continued to attract more and better spectra and panchromatic images from Keck, Hubble, Chandra, Spitzer, and other telescopes ranging from X-ray to radio. Combined together, the rich data within the CANDELS fields offer live views of galaxy evolution from “Cosmic Dawn” when the first infant galaxies and cosmic black holes were born, through “Cosmic Noon” during the peak of galaxy and black hole growth, and then to “Cosmic Afternoon” when star formation and black hole activities, morphologies, motions, and contents settled to those of our Milky Way and its zoo of cousins today. The talk will highlight some interesting discoveries from the last two periods and close with new mysteries challenging our field in the 21st century and future prospects for solving them.
NASA Astrophysics Data System (ADS)
Mahaffy, Paul; Farley, Ken; Malespin, Charles; Gellert, Ralph; Grotzinger, John
2014-05-01
The quadrupole mass spectrometer (QMS) in the Sample Analysis at Mars (SAM) suite of the Mars Science Laboratory (MSL) has been utilized to secure abundances of 3He, 21Ne, 36Ar, and 40Ar thermally evolved from the mudstone in the stratified Yellowknife Bay formation in Gale Crater. As reported by Farley et al. [1] these measurements of cosmogenic and radiogenic noble gases together with Cl and K abundances measured by MSL's alpha particle X-ray spectrometer enable a K-Ar rock formation age of 4.21+0.35 Ga to be established as well as a surface exposure age to cosmic radiation of 78+30 Ma. Understanding surface exposures to cosmic radiation is relevant to the MSL search for organic compounds since even the limited set of studies carried out, to date, indicate that even 10's to 100's of millions of years of near surface (1-3 meter) exposure may transform a significant fraction of the organic compounds exposed to this radiation [2,3,4]. Transformation of potential biosignatures and even loss of molecular structural information in compounds that could point to exogenous or endogenous sources suggests a new paradigm in the search for near surface organics that incorporates a search for the most recently exposed outcrops through erosional processes. The K-Ar rock formation age determination shows promise for more precise in situ measurements that may help calibrate the martian cratering record that currently relies on extrapolation from the lunar record with its ground truth chronology with returned samples. We will discuss the protocol for the in situ noble gas measurements secured with SAM and ongoing studies to optimize these measurements using the SAM testbed. References: [1] Farley, K.A.M Science Magazine, 342, (2013). [2] G. Kminek et al., Earth Planet Sc Lett 245, 1 (2006). [3] Dartnell, L.R., Biogeosciences 4, 545 (2007). [4] Pavlov, A. A., et al. Geophys Res Lett 39, 13202 (2012).
NASA Astrophysics Data System (ADS)
Bradac, Marusa; Coe, Dan; Bradley, Larry; Huang, Kuang-Han; Ryan, Russell; Dawson, Will; Zitrin, Adi; Hoag, Austin; Jones, Christine; Czakon, Nicole; Sharon, Keren; Trenti, Michele; Stark, Daniel; Bouwens, Rychard
2015-10-01
When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and epoch of reionization? Recent observations indicate at least two critical puzzles in these studies. First galaxies might have started forming stars earlier than previously thought (<400Myr after the Big Bang). Furthermore, it is still unclear what is their star formation history and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z>7-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose Spitzer imaging of the fields behind 41 powerful cosmic telescopes selected using Planck data from the RELICS program (Reionization Lensing Cluster Survey; 190 HST orbits). This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population with much improved sample variance. The program will allow us to detect early galaxies with Spitzer and directly study stellar properties of a large number, ~20 galaxies (10 at z~7, 7 at z~8, 3 at z~9, and 1 at z~10). Spitzer data will much improve photometric redshifts of the earliest galaxies and will be crucial to ascertain the nature of any z>~10 candidate galaxies uncovered in the HST data. Spitzer also allows for an efficient selection of likely line emitters (as demonstrated by our recent spectroscopic confirmation of the most distant galaxy to date at z=8.68). Finally this proposal will establish the presence (or absence) of an unusually early established stellar population, as was recently observed in MACS1149JD at z~9. If confirmed in a larger sample, this result will require a paradigm shift in our understanding of the earliest star formation.
NASA Astrophysics Data System (ADS)
Zinn, P.-C.; Middelberg, E.; Ibar, E.
2011-07-01
Context. Infrared-faint radio sources (IFRS) are extragalactic emitters clearly detected at radio wavelengths but barely detected or undetected at optical and infrared wavelengths, with 5σ sensitivities as low as 1 μJy. Aims: Spectral energy distribution (hereafter SED) modelling and analyses of their radio properties indicate that IFRS are consistent with a population of (potentially extremely obscured) high-redshift AGN at 3 ≤ z ≤ 6. We demonstrate some astrophysical implications of this population and compare them to predictions from models of galaxy evolution and structure formation. Methods: We compiled a list of IFRS from four deep extragalactic surveys and extrapolated the IFRS number density to a survey-independent value of (30.8 ± 15.0) deg-2. We computed the IFRS contribution to the total number of AGN in the Universe to account for the cosmic X-ray background. By estimating the black hole mass contained in IFRS, we present conclusions for the SMBH mass density in the early universe and compare it to relevant simulations of structure formation after the Big Bang. Results: The number density of AGN derived from the IFRS density was found to be ~310 deg-2, which is equivalent to a SMBH mass density of the order of 103 M⊙ Mpc-3 in the redshift range 3 ≤ z ≤ 6. This produces an X-ray flux of 9 × 10-16 W m-2 deg-2 in the 0.5-2.0 keV band and 3 × 10-15 W m-2 deg-2 in the 2.0-10 keV band, in agreement with the missing unresolved components of the Cosmic X-ray Background. To address SMBH formation after the Big Bang we invoke a scenario involving both halo gas accretion and major mergers.
Fermi-LAT kills dark matter interpretations of AMS-02 data. Or not?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belotsky, Konstantin; Budaev, Ruslan; Kirillov, Alexander
2017-01-01
A number of papers attempt to explain the positron anomaly in cosmic rays, observed by PAMELA and AMS-02, in terms of dark matter (DM) decays or annihilations. However, the recent progress in cosmic gamma-ray studies challenges these attempts. Indeed, as we show, any rational DM model explaining the positron anomaly abundantly produces final state radiation and Inverse Compton gamma rays, which inevitably leads to a contradiction with Fermi-LAT isotropic diffuse gamma-ray background measurements. Furthermore, the Fermi-LAT observation of Milky Way dwarf satellites, supposed to be rich in DM, revealed no significant signal in gamma rays. We propose a generic approachmore » in which the major contribution to cosmic rays comes from the dark matter disc and prove that the tension between the DM origin of the positron anomaly and the cosmic gamma-ray observations can be relieved. We consider both a simple model, in which DM decay/annihilate into charged leptons, and a model-independent minimal case of particle production, and we estimate the optimal thickness of DM disk. Possible mechanisms of formation and its properties are briefly discussed.« less
A cosmic web filament revealed in Lyman-α emission around a luminous high-redshift quasar.
Cantalupo, Sebastiano; Arrigoni-Battaia, Fabrizio; Prochaska, J Xavier; Hennawi, Joseph F; Madau, Piero
2014-02-06
Simulations of structure formation in the Universe predict that galaxies are embedded in a 'cosmic web', where most baryons reside as rarefied and highly ionized gas. This material has been studied for decades in absorption against background sources, but the sparseness of these inherently one-dimensional probes preclude direct constraints on the three-dimensional morphology of the underlying web. Here we report observations of a cosmic web filament in Lyman-α emission, discovered during a survey for cosmic gas fluorescently illuminated by bright quasars at redshift z ≈ 2.3. With a linear projected size of approximately 460 physical kiloparsecs, the Lyman-α emission surrounding the radio-quiet quasar UM 287 extends well beyond the virial radius of any plausible associated dark-matter halo and therefore traces intergalactic gas. The estimated cold gas mass of the filament from the observed emission-about 10(12.0 ± 0.5)/C(1/2) solar masses, where C is the gas clumping factor-is more than ten times larger than what is typically found in cosmological simulations, suggesting that a population of intergalactic gas clumps with subkiloparsec sizes may be missing in current numerical models.
Origins Space Telescope: Interstellar Medium, Milky Way, and Nearby Galaxies
NASA Astrophysics Data System (ADS)
Battersby, Cara; Origins Space Telescope Study Team
2017-01-01
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.This presentation will provide a summary of the science case related to the Interstellar Medium (ISM), the Milky Way, and Nearby Galaxies. Origins will enable a comprehensive view of magnetic fields, turbulence, and the multi-phase ISM; connecting physics at all scales, from galaxies to protostellar cores. With unprecedented sensitivity, Origins will measure and characterize the mechanisms of feedback from star formation and Active Galactic Nuclei (AGN) over cosmic time and trace the trail of water from interstellar clouds, to protoplanetary disks, to Earth itself in order to understand the abundance and availability of water for habitable planets.
NASA Astrophysics Data System (ADS)
Walth, Gregory; Egami, Eiichi; Clément, Benjamin; Rujopakarn, Wiphu; Rawle, Tim; Richard, Johan; Dessauges, Miroslava; Perez-Gonzalez, Pablo; Ebeling, Harald; Vayner, Andrey; Wright, Shelley; Cosens, Maren; Herschel Lensing Survey
2018-01-01
We present our recent ALMA observations of Herschel-detected gravitationally lensed dusty, star-forming galaxies (DSFGs) and how they compliment our near-infrared spectroscopic observations of their rest-frame optical nebular emission. This provides the complete picture of star formation; from the molecular gas that fuels star formation, to the dust emission which are the sites of star formation, and the nebular emission which is the gas excited by the young stars. DSFGs undergo the largest starbursts in the Universe, contributing to the bulk of the cosmic star formation rate density between redshifts z = 1 - 4. Internal processes within high-redshift DSFGs remains largely unexplored; such as feedback from star formation, the role of turbulence, gas surface density of molecular gas, AGN activity, and the rates of metal production. Much that is known about DSFGs star formation properties comes from their CO and dust emission. In order to fully understand the star formation history of DSFGs, it is necessary to observe their optical nebular emission. Unfortunately, UV/optical emission is severely attenuated by dust, making it challenging to detect. With the Herschel Lensing Survey, a survey of the cores of almost 600 massive galaxy clusters, we are able to probe faint dust-attenuated nebular emission. We are currently conducting a new survey using Keck/OSIRIS to resolve a sample of gravitationally lensed DSFGs from the Herschel Lensing Survey (>100 mJy, with SFRs >100 Msun/yr) at redshifts z=1-4 with magnifications >10x all with previously detected nebular emission lines. We present the physical and resolved properties of gravitationally lensed DSFGs at unprecedented spatial scales; such as ionization, metallicity, AGN activity, and dust attenuation.
NASA Astrophysics Data System (ADS)
Güttler, D.; Adolphi, F.; Beer, J.; Bleicher, N.; Boswijk, G.; Christl, M.; Hogg, A.; Palmer, J.; Vockenhuber, C.; Wacker, L.; Wunder, J.
2015-02-01
In 2012, Miyake et al. reported a sudden and strong increase of the atmospheric radiocarbon (14C) content in Japanese cedar trees of 1.2% between AD 774 and 775. While their findings were quickly confirmed by a German oak chronology for the Northern Hemisphere (NH), the question remained if the effect was seen in both hemispheres. Here we present the first annually resolved Southern Hemisphere (SH) 14C record spanning the interval AD 760-787, using New Zealand kauri (Agathis australis) chronology wood. An almost identical distinct increase compared to Northern Hemisphere data was observed, suggesting a cosmic event with globally uniform impact as a potential cause for the increase. Deploying a carbon cycle box model a worldwide averaged net 14C production of 2.2 ×108 14C atoms cm-2 was estimated, which is 3.7 times higher than the average annual 14C production. The immediate appearance of the event in tree rings on both hemispheres suggests a short duration event of significantly less than 1 yr.
NASA Technical Reports Server (NTRS)
Presper, T.; Kurat, G.; Koeberl, C.; Palme, H.; Maurette, Michel
1993-01-01
Antarctic micrometeorites (MM's) and Arctic cosmic spherules (CS's) have bulk compositions comparable to those of chondritic meteorites. However, abundance of Na, Ca, Mn, Ni, Co, and S are commonly lower in MM's and CS's as compared to chondrites. Our SEM, EMP, and INAA studies suggest that these elemental depletions in unmelted MM's are likely to be due to leaching of soluble components from the MM's in the upper atmosphere and the melt ice water. Depletions in CS's appear to be mainly due to volatilization during melting in the atmosphere or to sampling bias during aggregate formation or parent rock break-up.
Millimeter Astronomy at High Redshift
NASA Astrophysics Data System (ADS)
Decarli, Roberto
2017-11-01
Our understanding of galaxy formation and evolution critically depends on our ability of exposing the properties of the gaseous content of galaxies throughout cosmic history: how much gas is there, in which phase (ionized, atomic, molecular?), in which physical conditions (temperature, density), how efficiently does it turn into stars? We are now entering an exciting era where these questions can be addressed via observations of various gas tracers, especially at mm and sub-mm wavelengths. I will review how to observe various gas phases at high redshift, and discuss lessons we have learned so far from campaigns aimed at characterizing the gas content in galaxies in various cosmic epochs.
The Cosmic Skidmark: witnessing galaxy transformation at z = 0.19
NASA Astrophysics Data System (ADS)
Murphy, David N. A.
2015-02-01
We present an early-look analysis of the ``Cosmic Skidmark''. Discovered following visual inspection of the Geach, Murphy & Bower (2011) SDSS Stripe 82 cluster catalogue generated by ORCA (an automated cluster algorithm searching for red-sequences; Murphy, Geach & Bower 2012), this z = 0.19 1.4L* galaxy appears to have been caught in the rare act of transformation while accreting onto an estimated 1013-1014 h -1 M⊙-mass galaxy group. SDSS spectroscopy reveals clear signatures of star formation whilst deep optical imaging reveals a pronounced 50 kpc cometary tail. Pending completion of our ALMA Cycle 2 and IFU observations, we show here preliminary analysis of this target.
Characterizing the Peak in the Cosmic Microwave Background Angular Power Spectrum
NASA Astrophysics Data System (ADS)
Knox, Lloyd; Page, Lyman
2000-08-01
A peak has been unambiguously detected in the cosmic microwave background angular spectrum. Here we characterize its properties with fits to phenomenological models. We find that the TOCO and BOOM/NA data determine the peak location to be in the range 175-243 and 151-259, respectively (at 95% confidence) and determine the peak amplitude to be between ~70 and 90 μK. The peak shape is consistent with inflation-inspired flat, cold dark matter plus cosmological constant models of structure formation with adiabatic, nearly scale invariant initial conditions. It is inconsistent with open models and presents a great challenge to defect models.
Characterizing the peak in the cosmic microwave background angular power spectrum
Knox; Page
2000-08-14
A peak has been unambiguously detected in the cosmic microwave background angular spectrum. Here we characterize its properties with fits to phenomenological models. We find that the TOCO and BOOM/NA data determine the peak location to be in the range 175-243 and 151-259, respectively (at 95% confidence) and determine the peak amplitude to be between approximately 70 and 90 &mgr;K. The peak shape is consistent with inflation-inspired flat, cold dark matter plus cosmological constant models of structure formation with adiabatic, nearly scale invariant initial conditions. It is inconsistent with open models and presents a great challenge to defect models.
Phase diagram of dilute cosmic matter
NASA Astrophysics Data System (ADS)
Iwata, Yoritaka
2011-10-01
Enhancement of nuclear pasta formation due to multi-nucleus simultaneous collision is presented based on time-dependent density functional calculations with periodic boundary condition. This calculation corresponds to the situation with density lower than the known low-density existence limit of the nuclear pasta phase. In order to evaluate the contribution from three-nucleus simultaneous collisions inside the cosmic matter, the possibility of multi-nucleus simultaneous collisions is examined by a systematic Monte-Carlo calculation, and the mean free path of a nucleus is obtained. Consequently the low-density existence limit of the nuclear pasta phase is formed to be lower than believed up to now.
NASA Astrophysics Data System (ADS)
Hoffmann, K.; Srouji, R. G.; Hansen, S. O.
2017-12-01
The technology development within the structural design of long-span bridges in Norwegian fjords has created a need for reformulating the calculation format and the physical quantities used to describe the properties of wind and the associated wind-induced effects on bridge decks. Parts of a new probabilistic format describing the incoming, undisturbed wind is presented. It is expected that a fixed probabilistic format will facilitate a more physically consistent and precise description of the wind conditions, which in turn increase the accuracy and considerably reduce uncertainties in wind load assessments. Because the format is probabilistic, a quantification of the level of safety and uncertainty in predicted wind loads is readily accessible. A simple buffeting response calculation demonstrates the use of probabilistic wind data in the assessment of wind loads and responses. Furthermore, vortex-induced fatigue damage is discussed in relation to probabilistic wind turbulence data and response measurements from wind tunnel tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Thomas; Girichidis, Philipp; Gatto, Andrea
2015-11-10
The halo of the Milky Way contains a hot plasma with a surface brightness in soft X-rays of the order 10{sup −12} erg cm{sup −2} s{sup −1} deg{sup −2}. The origin of this gas is unclear, but so far numerical models of galactic star formation have failed to reproduce such a large surface brightness by several orders of magnitude. In this paper, we analyze simulations of the turbulent, magnetized, multi-phase interstellar medium including thermal feedback by supernova explosions as well as cosmic-ray feedback. We include a time-dependent chemical network, self-shielding by gas and dust, and self-gravity. Pure thermal feedback alonemore » is sufficient to produce the observed surface brightness, although it is very sensitive to the supernova rate. Cosmic rays suppress this sensitivity and reduce the surface brightness because they drive cooler outflows. Self-gravity has by far the largest effect because it accumulates the diffuse gas in the disk in dense clumps and filaments, so that supernovae exploding in voids can eject a large amount of hot gas into the halo. This can boost the surface brightness by several orders of magnitude. Although our simulations do not reach a steady state, all simulations produce surface brightness values of the same order of magnitude as the observations, with the exact value depending sensitively on the simulation parameters. We conclude that star formation feedback alone is sufficient to explain the origin of the hot halo gas, but measurements of the surface brightness alone do not provide useful diagnostics for the study of galactic star formation.« less
NASA Astrophysics Data System (ADS)
Romano, D.; Matteucci, F.; Zhang, Z.-Y.; Papadopoulos, P. P.; Ivison, R. J.
2017-09-01
We use state-of-the-art chemical models to track the cosmic evolution of the CNO isotopes in the interstellar medium of galaxies, yielding powerful constraints on their stellar initial mass function (IMF). We re-assess the relative roles of massive stars, asymptotic giant branch (AGB) stars and novae in the production of rare isotopes such as 13C, 15N, 17O and 18O, along with 12C, 14N and 16O. The CNO isotope yields of super-AGB stars, novae and fast-rotating massive stars are included. Having reproduced the available isotope enrichment data in the solar neighbourhood, and across the Galaxy, and having assessed the sensitivity of our models to the remaining uncertainties, e.g. nova yields and star formation history, we show that we can meaningfully constrain the stellar IMF in galaxies using C, O and N isotope abundance ratios. In starburst galaxies, where data for multiple isotopologue lines are available, we find compelling new evidence for a top-heavy stellar IMF, with profound implications for their star formation rates and efficiencies, perhaps also their stellar masses. Neither chemical fractionation nor selective photodissociation can significantly perturb globally averaged isotopologue abundance ratios away from the corresponding isotope ones, as both these processes will typically affect only small mass fractions of molecular clouds in galaxies. Thus, the Atacama Large Millimeter Array now stands ready to probe the stellar IMF, and even the ages of specific starburst events in star-forming galaxies across cosmic time unaffected by the dust obscuration effects that plague optical/near-infrared studies.
The role of the dark matter haloes on the cosmic star formation rate
NASA Astrophysics Data System (ADS)
Pereira, Eduardo S.; Miranda, Oswaldo D.
2015-11-01
The cosmic star formation rate (CSFR) represents the fraction of gas that is converted into stars within a certain comoving volume and at a given time t. However the evolution of the dark matter haloes and its relationship with the CSFR is not yet clear. In this context, we have investigated the role of the dark halo mass function - DHMF - in the process of gas conversion into stars. We observed a strong dependence between the fraction of baryons in structures, fb, and the specific mass function used for describing the dark matter haloes. In some cases, we have obtained fb greater than one at redshift z = 0 . This result indicates that the evolution of dark matter, described by the specific DHMF, could not trace the baryonic matter without a bias parameter. We also observed that the characteristic time-scale for star formation, τ, is strongly dependent on the considered DHMF, when the model is confronted against the observational data. Also, as part of this work it was released, under GNU general public license, a Python package called 'pycosmicstar' to study the CSFR and its relationship with the DHMF.
ERIC Educational Resources Information Center
Farjardo, Inmaculada; Arfe, Barbara; Benedetti, Patrizia; Altoe, Gianmarco
2008-01-01
Sixty deaf and hearing students were asked to search for goods in a Hypertext Supermarket with either graphical or textual links of high typicality, frequency, and familiarity. Additionally, they performed a picture and word categorization task and two working memory span tasks (spatial and verbal). Results showed that deaf students were faster in…
Cosmological surveys with multi-object spectrographs
NASA Astrophysics Data System (ADS)
Colless, Matthew
2016-08-01
Multi-object spectroscopy has been a key technique contributing to the current era of `precision cosmology.' From the first exploratory surveys of the large-scale structure and evolution of the universe to the current generation of superbly detailed maps spanning a wide range of redshifts, multi-object spectroscopy has been a fundamentally important tool for mapping the rich structure of the cosmic web and extracting cosmological information of increasing variety and precision. This will continue to be true for the foreseeable future, as we seek to map the evolving geometry and structure of the universe over the full extent of cosmic history in order to obtain the most precise and comprehensive measurements of cosmological parameters. Here I briefly summarize the contributions that multi-object spectroscopy has made to cosmology so far, then review the major surveys and instruments currently in play and their prospects for pushing back the cosmological frontier. Finally, I examine some of the next generation of instruments and surveys to explore how the field will develop in coming years, with a particular focus on specialised multi-object spectrographs for cosmology and the capabilities of multi-object spectrographs on the new generation of extremely large telescopes.
Energy calibration of CALET onboard the International Space Station
NASA Astrophysics Data System (ADS)
Asaoka, Y.; Akaike, Y.; Komiya, Y.; Miyata, R.; Torii, S.; Adriani, O.; Asano, K.; Bagliesi, M. G.; Bigongiari, G.; Binns, W. R.; Bonechi, S.; Bongi, M.; Brogi, P.; Buckley, J. H.; Cannady, N.; Castellini, G.; Checchia, C.; Cherry, M. L.; Collazuol, G.; Di Felice, V.; Ebisawa, K.; Fuke, H.; Guzik, T. G.; Hams, T.; Hareyama, M.; Hasebe, N.; Hibino, K.; Ichimura, M.; Ioka, K.; Ishizaki, W.; Israel, M. H.; Javaid, A.; Kasahara, K.; Kataoka, J.; Kataoka, R.; Katayose, Y.; Kato, C.; Kawanaka, N.; Kawakubo, Y.; Kitamura, H.; Krawczynski, H. S.; Krizmanic, J. F.; Kuramata, S.; Lomtadze, T.; Maestro, P.; Marrocchesi, P. S.; Messineo, A. M.; Mitchell, J. W.; Miyake, S.; Mizutani, K.; Moiseev, A. A.; Mori, K.; Mori, M.; Mori, N.; Motz, H. M.; Munakata, K.; Murakami, H.; Nakagawa, Y. E.; Nakahira, S.; Nishimura, J.; Okuno, S.; Ormes, J. F.; Ozawa, S.; Pacini, L.; Palma, F.; Papini, P.; Penacchioni, A. V.; Rauch, B. F.; Ricciarini, S.; Sakai, K.; Sakamoto, T.; Sasaki, M.; Shimizu, Y.; Shiomi, A.; Sparvoli, R.; Spillantini, P.; Stolzi, F.; Takahashi, I.; Takayanagi, M.; Takita, M.; Tamura, T.; Tateyama, N.; Terasawa, T.; Tomida, H.; Tsunesada, Y.; Uchihori, Y.; Ueno, S.; Vannuccini, E.; Wefel, J. P.; Yamaoka, K.; Yanagita, S.; Yoshida, A.; Yoshida, K.; Yuda, T.
2017-05-01
In August 2015, the CALorimetric Electron Telescope (CALET), designed for long exposure observations of high energy cosmic rays, docked with the International Space Station (ISS) and shortly thereafter began to collect data. CALET will measure the cosmic ray electron spectrum over the energy range of 1 GeV to 20 TeV with a very high resolution of 2% above 100 GeV, based on a dedicated instrument incorporating an exceptionally thick 30 radiation-length calorimeter with both total absorption and imaging (TASC and IMC) units. Each TASC readout channel must be carefully calibrated over the extremely wide dynamic range of CALET that spans six orders of magnitude in order to obtain a degree of calibration accuracy matching the resolution of energy measurements. These calibrations consist of calculating the conversion factors between ADC units and energy deposits, ensuring linearity over each gain range, and providing a seamless transition between neighboring gain ranges. This paper describes these calibration methods in detail, along with the resulting data and associated accuracies. The results presented in this paper show that a sufficient accuracy was achieved for the calibrations of each channel in order to obtain a suitable resolution over the entire dynamic range of the electron spectrum measurement.
The cosmic merger rate of neutron stars and black holes
NASA Astrophysics Data System (ADS)
Mapelli, Michela; Giacobbo, Nicola
2018-06-01
Six gravitational wave detections have been reported so far, providing crucial insights on the merger rate of double compact objects. We investigate the cosmic merger rate of double neutron stars (DNSs), neutron star-black hole binaries (NSBHs) and black hole binaries (BHBs) by means of population-synthesis simulations coupled with the Illustris cosmological simulation. We have performed six different simulations, considering different assumptions for the efficiency of common envelope (CE) ejection and exploring two distributions for the supernova (SN) kicks. The current BHB merger rate derived from our simulations spans from ˜150 to ˜240 Gpc-3 yr-1 and is only mildly dependent on CE efficiency. In contrast, the current merger rates of DNSs (ranging from ˜20 to ˜600 Gpc-3 yr-1) and NSBHs (ranging from ˜10 to ˜100 Gpc-3 yr-1) strongly depend on the assumptions on CE and natal kicks. The merger rate of DNSs is consistent with the one inferred from the detection of GW170817 only if a high efficiency of CE ejection and low SN kicks (drawn from a Maxwellian distribution with one dimensional root mean square σ = 15 km s-1) are assumed.
Carbon and Nitrogen Enrichment Patterns in Planetary Nebulae
NASA Astrophysics Data System (ADS)
Dufour, Reginald
2011-10-01
The goal of this project is to assess the role played in carbon production by low and intermediate mass stars {LIMS}, i.e. the progenitors of planetary nebulae {PNe}. One of the most pressing problems in galactic chemical evolution today is understanding the relative roles of LIMS {1-8 M_sun} versus massive stars {8-120 M_sun} in affecting the cosmic level of the element C. We are launching a fresh, ambitious project whose purpose is to employ STIS to obtain UV spectra of unprecedented-quality of 10 carefully chosen, bright solar metallicity PNe spanning a broad range in progenitor mass. Line strength measurements of important emission lines of C, N, and O such as OIII] 1660-6, NIII] 1747-54, CIII] 1907-9, and {when He++ is strong} CIV] 1550 and OIV] 1400 in each object will be used along with our own in-house abundance software to determine ion and element abundances for these three species. In turn, these results will be used to assess stellar yields {productivity rates} available in the literature. Favored yield sets will be used to calculate our own chemical evolution models in order to assess directly the importance of intermediate-mass stars in the cosmic evolution of C.
NANOCOSMOS: a trip to the nanoworld
NASA Astrophysics Data System (ADS)
Ruiz Zelmanovitch, N.; Castellanos, M.
2017-03-01
Cosmic dust is made in evolved stars. However, the processes involved in the formation and evolution of dust remain unknown so far. The project ''Gas and dust from stars to the laboratory: exploring the NANOCOSMOS'', takes advantage of the new observational capabilities (increased angular resolution) of the Atacama Large Millimeter/submillimeter Array (ALMA) to unveil the physical and chemical conditions in the dust formation zone of evolved stars. These observations, in combination with novel top-level ultra-high vacuum experiments and astrophysical modelling, will provide a cutting-edge view of cosmic dust. The importance of publishing scientific results based on NANOCOSMOS in the scientific literature goes without saying. But it is also important and a stated NANOCOSMOS objective to disseminate the achievements of the project and its scientific and technological results to a wider audience. In this presentation we will discuss the tools used to spread them to the society. This presentation is structured as follows: 1. What is Astrochemistry?; 2. What is NANOCOSMOS?; 3. Outreach in the NANOCOSMOS programme; 4. Conclusions.
The Role of Cosmic-Ray Pressure in Accelerating Galactic Outflows
NASA Astrophysics Data System (ADS)
Simpson, Christine M.; Pakmor, Rüdiger; Marinacci, Federico; Pfrommer, Christoph; Springel, Volker; Glover, Simon C. O.; Clark, Paul C.; Smith, Rowan J.
2016-08-01
We study the formation of galactic outflows from supernova (SN) explosions with the moving-mesh code AREPO in a stratified column of gas with a surface density similar to the Milky Way disk at the solar circle. We compare different simulation models for SN placement and energy feedback, including cosmic rays (CRs), and find that models that place SNe in dense gas and account for CR diffusion are able to drive outflows with similar mass loading as obtained from a random placement of SNe with no CRs. Despite this similarity, CR-driven outflows differ in several other key properties including their overall clumpiness and velocity. Moreover, the forces driving these outflows originate in different sources of pressure, with the CR diffusion model relying on non-thermal pressure gradients to create an outflow driven by internal pressure and the random-placement model depending on kinetic pressure gradients to propel a ballistic outflow. CRs therefore appear to be non-negligible physics in the formation of outflows from the interstellar medium.
THE ROLE OF COSMIC-RAY PRESSURE IN ACCELERATING GALACTIC OUTFLOWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Christine M.; Pakmor, Rüdiger; Pfrommer, Christoph
We study the formation of galactic outflows from supernova (SN) explosions with the moving-mesh code AREPO in a stratified column of gas with a surface density similar to the Milky Way disk at the solar circle. We compare different simulation models for SN placement and energy feedback, including cosmic rays (CRs), and find that models that place SNe in dense gas and account for CR diffusion are able to drive outflows with similar mass loading as obtained from a random placement of SNe with no CRs. Despite this similarity, CR-driven outflows differ in several other key properties including their overallmore » clumpiness and velocity. Moreover, the forces driving these outflows originate in different sources of pressure, with the CR diffusion model relying on non-thermal pressure gradients to create an outflow driven by internal pressure and the random-placement model depending on kinetic pressure gradients to propel a ballistic outflow. CRs therefore appear to be non-negligible physics in the formation of outflows from the interstellar medium.« less
On the Chemistry of Hydrides of N Atoms and O+ Ions
NASA Astrophysics Data System (ADS)
Awad, Zainab; Viti, Serena; Williams, David A.
2016-08-01
Previous work by various authors has suggested that the detection by Herschel/HIFI of nitrogen hydrides along the low-density lines of sight toward G10.6-0.4 (W31C) cannot be accounted for by gas-phase chemical models. In this paper we investigate the role of surface reactions on dust grains in diffuse regions, and we find that formation of the hydrides by surface reactions on dust grains with efficiency comparable to that for H2 formation reconciles models with observations of nitrogen hydrides. However, similar surface reactions do not contribute significantly to the hydrides of O+ ions detected by Herschel/HIFI that are present along many sight lines in the Galaxy. The O+ hydrides can be accounted for by conventional gas-phase chemistry either in diffuse clouds of very low density with normal cosmic-ray fluxes or in somewhat denser diffuse clouds with high cosmic-ray fluxes. Hydride chemistry in dense dark clouds appears to be dominated by gas-phase ion-molecule reactions.
NASA Technical Reports Server (NTRS)
Dibenedetto, F.
1973-01-01
By application of Lyttleton's theory for the formation of comets, it is shown that a possible mechanism for the origin and formation of a concentration of cosmic particles around the earth and the other planets of the solar system exists. In the vicinity of the neutral point, where the velocity of colliding particles is not greater than 6 km/s, it is found that if the solid particles after collision must remain in a solid state, there can be no possibility of accretion for Mercury, Mars, and the Moon, where the maximum value of the distance of the center of the planet to the asymptotic trajectory is less than the radius of the planet. On the other hand, the capture radii of microparticles in solid form varies from a minimum of 2.95 planetary radii for Venus and 3.47 for the Earth, to about 986 for Jupiter.
NASA Astrophysics Data System (ADS)
Mangeard, Pierre-Simon; Clem, John; Evenson, Paul; Pyle, Roger; Mitthumsiri, Warit; Ruffolo, David; Sáiz, Alejandro; Nutaro, Tanin
2018-05-01
Solar modulation refers to Galactic cosmic-ray variations with the ∼11 yr sunspot cycle and ∼22 yr solar magnetic cycle and is relevant to the space radiation environment and effects on Earth’s atmosphere. Its complicated dependence on solar and heliospheric conditions is only roughly understood and has been empirically modeled in terms of a single modulation parameter. Most analyses of solar modulation use neutron monitor (NM) data from locations with relatively low geomagnetic cutoff rigidity, i.e., the threshold for cosmic rays to penetrate Earth’s magnetic field. The Princess Sirindhorn Neutron Monitor at Doi Inthanon, Thailand, has the world’s highest cutoff rigidity (≈17 GV) where observations span a complete solar modulation cycle (since late 2007). The pattern of solar modulation at Doi Inthanon during 2011–2014 was qualitatively very different from that at a low geomagnetic cutoff and is not well described by the same modulation parameter. At other times, NM count rates from Doi Inthanon and McMurdo, Antarctica (cutoff ∼1 GV), were linearly correlated and confirm the observation from latitude surveys in the previous solar cycle that the slope of the correlation changes with solar magnetic polarity. Low solar magnetic tilt angles (<40° at negative polarity) were well correlated with variations at both NM stations, as predicted by drift models. At a higher tilt angle, the Doi Inthanon count rate is well correlated with the interplanetary magnetic field, which is consistent with an increase in diffusion at high rigidity short-circuiting the effects of drifts and the heliospheric current sheet.
Properties and Expected Number Counts of Active Galactic Nuclei and Their Hosts in the Far-infrared
NASA Astrophysics Data System (ADS)
Draper, A. R.; Ballantyne, D. R.
2011-03-01
Telescopes like Herschel and the Atacama Large Millimeter/submillimeter Array (ALMA) are creating new opportunities to study sources in the far-infrared (FIR), a wavelength region dominated by cold dust emission. Probing cold dust in active galaxies allows for study of the star formation history of active galactic nucleus (AGN) hosts. The FIR is also an important spectral region for observing AGNs which are heavily enshrouded by dust, such as Compton thick (CT) AGNs. By using information from deep X-ray surveys and cosmic X-ray background synthesis models, we compute Cloudy photoionization simulations which are used to predict the spectral energy distribution (SED) of AGNs in the FIR. Expected differential number counts of AGNs and their host galaxies are calculated in the Herschel bands. The expected contribution of AGNs and their hosts to the cosmic infrared background (CIRB) and the infrared luminosity density are also computed. Multiple star formation scenarios are investigated using a modified blackbody star formation SED. It is found that FIR observations at ~500 μm are an excellent tool in determining the star formation history of AGN hosts. Additionally, the AGN contribution to the CIRB can be used to determine whether star formation in AGN hosts evolves differently than in normal galaxies. The contribution of CT AGNs to the bright end differential number counts and to the bright source infrared luminosity density is a good test of AGN evolution models where quasars are triggered by major mergers.
LUNA: Nuclear astrophysics underground
DOE Office of Scientific and Technical Information (OSTI.GOV)
Best, A.
Underground nuclear astrophysics with LUNA at the Laboratori Nazionali del Gran Sasso spans a history of 20 years. By using the rock overburden of the Gran Sasso mountain chain as a natural cosmic-ray shield very low signal rates compared to an experiment on the surface can be tolerated. The cross sectons of important astrophysical reactions directly in the stellar energy range have been successfully measured. In this proceeding we give an overview over the key accomplishments of the experiment and an outlook on its future with the expected addition of an additional accelerator to the underground facilities, enabling the coveragemore » of a wider energy range and the measurement of previously inaccessible reactions.« less
Throwing light on dark energy.
Kirshner, Robert P
2003-06-20
Supernova observations show that the expansion of the universe has been speeding up. This unexpected acceleration is ascribed to a dark energy that pervades space. Supernova data, combined with other observations, indicate that the universe is about 14 billion years old and is composed of about 30%matter and 70%dark energy. New observational programs can trace the history of cosmic expansion more precisely and over a larger span of time than has been done to date to learn whether the dark energy is a modern version of Einstein's cosmological constant or another form of dark energy that changes with time. Either conclusion is an enigma that points to gaps in our fundamental understanding of gravity.
The Lesser Role of Starbursts in Star Formation at z = 2
NASA Astrophysics Data System (ADS)
Rodighiero, G.; Daddi, E.; Baronchelli, I.; Cimatti, A.; Renzini, A.; Aussel, H.; Popesso, P.; Lutz, D.; Andreani, P.; Berta, S.; Cava, A.; Elbaz, D.; Feltre, A.; Fontana, A.; Förster Schreiber, N. M.; Franceschini, A.; Genzel, R.; Grazian, A.; Gruppioni, C.; Ilbert, O.; Le Floch, E.; Magdis, G.; Magliocchetti, M.; Magnelli, B.; Maiolino, R.; McCracken, H.; Nordon, R.; Poglitsch, A.; Santini, P.; Pozzi, F.; Riguccini, L.; Tacconi, L. J.; Wuyts, S.; Zamorani, G.
2011-10-01
Two main modes of star formation are know to control the growth of galaxies: a relatively steady one in disk-like galaxies, defining a tight star formation rate (SFR)-stellar mass sequence, and a starburst mode in outliers to such a sequence which is generally interpreted as driven by merging. Such starburst galaxies are rare but have much higher SFRs, and it is of interest to establish the relative importance of these two modes. PACS/Herschel observations over the whole COSMOS and GOODS-South fields, in conjunction with previous optical/near-IR data, have allowed us to accurately quantify for the first time the relative contribution of the two modes to the global SFR density in the redshift interval 1.5 < z < 2.5, i.e., at the cosmic peak of the star formation activity. The logarithmic distributions of galaxy SFRs at fixed stellar mass are well described by Gaussians, with starburst galaxies representing only a relatively minor deviation that becomes apparent for SFRs more than four times higher than on the main sequence. Such starburst galaxies represent only 2% of mass-selected star-forming galaxies and account for only 10% of the cosmic SFR density at z ~ 2. Only when limited to SFR > 1000 M sun yr-1, off-sequence sources significantly contribute to the SFR density (46% ± 20%). We conclude that merger-driven starbursts play a relatively minor role in the formation of stars in galaxies, whereas they may represent a critical phase toward the quenching of star formation and morphological transformation in galaxies.
H2-based star formation laws in hierarchical models of galaxy formation
NASA Astrophysics Data System (ADS)
Xie, Lizhi; De Lucia, Gabriella; Hirschmann, Michaela; Fontanot, Fabio; Zoldan, Anna
2017-07-01
We update our recently published model for GAlaxy Evolution and Assembly (GAEA), to include a self-consistent treatment of the partition of cold gas in atomic and molecular hydrogen. Our model provides significant improvements with respect to previous ones used for similar studies. In particular, GAEA (I) includes a sophisticated chemical enrichment scheme accounting for non-instantaneous recycling of gas, metals and energy; (II) reproduces the measured evolution of the galaxy stellar mass function; (III) reasonably reproduces the observed correlation between galaxy stellar mass and gas metallicity at different redshifts. These are important prerequisites for models considering a metallicity-dependent efficiency of molecular gas formation. We also update our model for disc sizes and show that model predictions are in nice agreement with observational estimates for the gas, stellar and star-forming discs at different cosmic epochs. We analyse the influence of different star formation laws including empirical relations based on the hydrostatic pressure of the disc, analytic models and prescriptions derived from detailed hydrodynamical simulations. We find that modifying the star formation law does not affect significantly the global properties of model galaxies, neither their distributions. The only quantity showing significant deviations in different models is the cosmic molecular-to-atomic hydrogen ratio, particularly at high redshift. Unfortunately, however, this quantity also depends strongly on the modelling adopted for additional physical processes. Useful constraints on the physical processes regulating star formation can be obtained focusing on low-mass galaxies and/or at higher redshift. In this case, self-regulation has not yet washed out differences imprinted at early time.
NASA Astrophysics Data System (ADS)
Kruijer, Thomas S.; Fischer-Gödde, Mario; Kleine, Thorsten; Sprung, Peter; Leya, Ingo; Wieler, Rainer
2013-01-01
The short-lived 182Hf-182W isotope system can provide powerful constraints on the timescales of planetary core formation, but its application to iron meteorites is hampered by neutron capture reactions on W isotopes resulting from exposure to galactic cosmic rays. Here we show that Pt isotopes in magmatic iron meteorites are also affected by capture of (epi)thermal neutrons and that the Pt isotope variations are correlated with variations in 182W/184W. This makes Pt isotopes a sensitive neutron dosimeter for correcting cosmic ray-induced W isotope shifts. The pre-exposure 182W/184W derived from the Pt-W isotope correlations of the IID, IVA and IVB iron meteorites are higher than most previous estimates and are more radiogenic than the initial 182W/184W of Ca-Al-rich inclusions (CAI). The Hf-W model ages for core formation range from +1.6±1.0 million years (Ma; for the IVA irons) to +2.7±1.3 Ma after CAI formation (for the IID irons), indicating that there was a time gap of at least ˜1 Ma between CAI formation and metal segregation in the parent bodies of some iron meteorites. From the Hf-W ages a time limit of <1.5-2 Ma after CAI formation can be inferred for the accretion of the IID, IVA and IVB iron meteorite parent bodies, consistent with earlier conclusions that the accretion of differentiated planetesimals predated that of most chondrite parent bodies.
NASA Technical Reports Server (NTRS)
O'D. Alexander, Conel
2003-01-01
The chondrites are aggregates of components (e.g. chondrules, chondrule rims and matrix) that formed in the nebula but, at present, there is no consensus on how any of these components formed or whether their formation produced or post dated the chemical fractionations between the chondrites. Chondrites are, at present, the most primitive Solar System objects available for laboratory study and the conditions under which their principle components formed would provide the most direct constraints for models of nebula formation and evolution. The conditions under which chondrules formed is of particular importance because, if their relative abundance in chondrites approximates that in the nebula, they are the products of one of the most energetic and pervasive processes that operated in the early Solar System. The goal of this proposal was to combine theoretical modeling with a comprehensive study of the elemental and isotopic compositions of the major components in unequilibrated ordinary chondrites (UOCs), with the aim of determining the conditions in the nebula at the time of their formation. The isotopes of volatile and moderately volatile elements should be particularly revealing of conditions during chondrule formation, as evaporation under most conditions would lead to isotopic mass fractionation. Modeling of chondrule and matrix formation requires the development of a kinetic model of evaporation and condensation, and calibration of this model against experiments. Cosmic spherules present an opportunity to test our evaporation models under flash heating conditions that would be difficult to simulate experimentally. However, there is surprisingly little known about the isotopic compositions of silicate cosmic spherules, and a number of questions need to be addressed. Is the range of compositions they exhibit due to evaporation? If they are, are the relative volatilities consistent with the models/experiments and are the isotopic fractionations consistent with Rayleigh conditions? For instance, do the alkalis and S evaporate prior to significant melting so that conditions did not meet the Rayleigh criteria of rapid diffusion? If so, their isotopic fractionation might be considerably suppressed. Could this mechanism of K loss apply to chondrule formation? The Fe isotopic fractionation during evaporation of silicates has not been measured, so cosmic spherules might provide a clue to whether FeO diffusion is fast enough to maintain Rayleigh conditions during evaporation. And so on.
Measuring Alignments between Galaxies and the Cosmic Web at z ˜ 2-3 Using IGM Tomography
NASA Astrophysics Data System (ADS)
Krolewski, Alex; Lee, Khee-Gan; Lukić, Zarija; White, Martin
2017-03-01
Many galaxy formation models predict alignments between galaxy spin and the cosmic web (I.e., directions of filaments and sheets), leading to an intrinsic alignment between galaxies that creates a systematic error in weak-lensing measurements. These effects are often predicted to be stronger at high redshifts (z ≳ 1) that are inaccessible to massive galaxy surveys on foreseeable instrumentation, but IGM tomography of the Lyα forest from closely spaced quasars and galaxies is starting to measure the z ˜ 2-3 cosmic web with requisite fidelity. Using mock surveys from hydrodynamical simulations, we examine the utility of this technique, in conjunction with coeval galaxy samples, to measure alignment between galaxies and the cosmic web at z ˜ 2.5. We show that IGM tomography surveys with ≲5 h -1 Mpc sightline spacing can accurately recover the eigenvectors of the tidal tensor, which we use to define the directions of the cosmic web. For galaxy spins and shapes, we use a model parameterized by the alignment strength, {{Δ }}< \\cos θ > , with respect to the tidal tensor eigenvectors from the underlying density field, and also consider observational effects such as errors in the galaxy position angle, inclination, and redshift. Measurements using the upcoming ˜1 deg2 CLAMATO tomographic survey and 600 coeval zCOSMOS-Deep galaxies should place 3σ limits on extreme alignment models with {{Δ }}< \\cos θ > ˜ 0.1, but much larger surveys encompassing >10,000 galaxies, such as Subaru PFS, will be required to constrain models with {{Δ }}< \\cos θ > ˜ 0.03. These measurements will constrain models of galaxy-cosmic web alignment and test tidal torque theory at z ˜ 2, improving our understanding of the physics of intrinsic alignments.
NASA Astrophysics Data System (ADS)
Darvish, Behnam; Mobasher, Bahram; Martin, D. Christopher; Sobral, David; Scoville, Nick; Stroe, Andra; Hemmati, Shoubaneh; Kartaltepe, Jeyhan
2017-03-01
We use a mass complete (log(M/{M}⊙ ) ≥slant 9.6) sample of galaxies with accurate photometric redshifts in the COSMOS field to construct the density field and the cosmic web to z = 1.2. The comic web extraction relies on the density field Hessian matrix and breaks the density field into clusters, filaments, and the field. We provide the density field and cosmic web measures to the community. We show that at z ≲ 0.8, the median star formation rate (SFR) in the cosmic web gradually declines from the field to clusters and this decline is especially sharp for satellites (˜1 dex versus ˜0.5 dex for centrals). However, at z ≳ 0.8, the trend flattens out for the overall galaxy population and satellites. For star-forming (SF) galaxies only, the median SFR is constant at z ≳ 0.5 but declines by ˜0.3-0.4 dex from the field to clusters for satellites and centrals at z ≲ 0.5. We argue that for satellites, the main role of the cosmic web environment is to control their SF fraction, whereas for centrals, it is mainly to control their overall SFR at z ≲ 0.5 and to set their fraction at z ≳ 0.5. We suggest that most satellites experience a rapid quenching mechanism as they fall from the field into clusters through filaments, whereas centrals mostly undergo a slow environmental quenching at z ≲ 0.5 and a fast mechanism at higher redshifts. Our preliminary results highlight the importance of the large-scale cosmic web on galaxy evolution.
The Diffuse Gamma-Ray Background from Type Ia Supernovae
NASA Technical Reports Server (NTRS)
Lien, Amy; Fields, Brian D.
2012-01-01
The origin of the diffuse extragalactic gamma-ray background (EGB) has been intensively studied but remains unsettled. Current popular source candidates include unresolved star-forming galaxies, starburst galaxies, and blazars. In this paper we calculate the EGB contribution from the interactions of cosmic rays accelerated by Type Ia supernovae, extending earlier work which only included core-collapse supernovae. We consider Type Ia events in star-forming galaxies, but also in quiescent galaxies that lack star formation. In the case of star-forming galaxies, consistently including Type Ia events makes little change to the star-forming EGB prediction, so long as both supernova types have the same cosmic-ray acceleration efficiencies in star-forming galaxies. Thus our updated EGB estimate continues to show that star-forming galaxies can represent a substantial portion of the signal measured by Fermi. In the case of quiescent galaxies, conversely, we find a wide range of possibilities for the EGB contribution. The dominant uncertainty we investigated comes from the mass in hot gas in these objects, which provides targets for cosmic rays: total gas masses are as yet poorly known, particularly at larger radii. Additionally, the EGB estimation is very sensitive to the cosmic-ray acceleration efficiency and confinement, especially in quiescent galaxies. In the most optimistic allowed scenarios, quiescent galaxies can be an important source of the EGB. In this case, star-forming galaxies and quiescent galaxies together will dominate the EGB and leave little room for other contributions. If other sources, such as blazars, are found to have important contributions to the EGB, then either the gas mass or cosmic-ray content of quiescent galaxies must be significantly lower than in their star-forming counterparts. In any case, improved Fermi EGB measurements will provide important constraints on hot gas and cosmic rays in quiescent galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maté, Belén; Molpeceres, Germán; Jiménez-Redondo, Miguel
2016-11-01
The effects of cosmic rays on the carriers of the interstellar 3.4 μ m absorption band have been investigated in the laboratory. This band is attributed to stretching vibrations of CH{sub 3} and CH{sub 2} in carbonaceous dust. It is widely observed in the diffuse interstellar medium, but disappears in dense clouds. Destruction of CH{sub 3} and CH{sub 2} by cosmic rays could become relevant in dense clouds, shielded from the external ultraviolet field. For the simulations, samples of hydrogenated amorphous carbon (a-C:H) have been irradiated with 5 keV electrons. The decay of the band intensity versus electron fluence reflectsmore » a-C:H dehydrogenation, which is well described by a model assuming that H{sub 2} molecules, formed by the recombination of H atoms liberated through CH bond breaking, diffuse out of the sample. The CH bond destruction rates derived from the present experiments are in good accordance with those from previous ion irradiation experiments of HAC. The experimental simplicity of electron bombardment has allowed the use of higher-energy doses than in the ion experiments. The effects of cosmic rays on the aliphatic components of cosmic dust are found to be small. The estimated cosmic-ray destruction times for the 3.4 μ m band carriers lie in the 10{sup 8} yr range and cannot account for the disappearance of this band in dense clouds, which have characteristic lifetimes of 3 × 10{sup 7} yr. The results invite a more detailed investigation of the mechanisms of CH bond formation and breaking in the intermediate region between diffuse and dense clouds.« less
Measuring Alignments between Galaxies and the Cosmic Web at z ~ 2–3 Using IGM Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krolewski, Alex; Lee, Khee-Gan; Luki?, Zarija
Many galaxy formation models predict alignments between galaxy spin and the cosmic web (i.e., directions of filaments and sheets), leading to an intrinsic alignment between galaxies that creates a systematic error in weak-lensing measurements. These effects are often predicted to be stronger at high redshifts (z ≳ 1) that are inaccessible to massive galaxy surveys on foreseeable instrumentation, but IGM tomography of the Lyα forest from closely spaced quasars and galaxies is starting to measure the z ~ 2-3 cosmic web with requisite fidelity. Using mock surveys from hydrodynamical simulations, we examine the utility of this technique, in conjunction withmore » coeval galaxy samples, to measure alignment between galaxies and the cosmic web at z ~ 2.5. We show that IGM tomography surveys with ≲ 5 h -1 Mpc sightline spacing can accurately recover the eigenvectors of the tidal tensor, which we use to define the directions of the cosmic web. For galaxy spins and shapes, we use a model parameterized by the alignment strength, Δ (cos θ), with respect to the tidal tensor eigenvectors from the underlying density field, and also consider observational effects such as errors in the galaxy position angle, inclination, and redshift. Measurements using the upcoming ~ 1 deg 2 CLAMATO tomographic survey and 600 coeval zCOSMOS-Deep galaxies should place 3σ limits on extreme alignment models with Δ (cos θ) ~ 0.1, but much larger surveys encompassing > 10,000 galaxies, such as Subaru PFS, will be required to constrain models with Δ (cos θ) ~ 0.3. These measurements will constrain models of galaxy-cosmic web alignment and test tidal torque theory at z ~ 2, improving our understanding of the physics of intrinsic alignments.« less
Measuring Alignments between Galaxies and the Cosmic Web at z ~ 2–3 Using IGM Tomography
Krolewski, Alex; Lee, Khee-Gan; Luki?, Zarija; ...
2017-02-28
Many galaxy formation models predict alignments between galaxy spin and the cosmic web (i.e., directions of filaments and sheets), leading to an intrinsic alignment between galaxies that creates a systematic error in weak-lensing measurements. These effects are often predicted to be stronger at high redshifts (z ≳ 1) that are inaccessible to massive galaxy surveys on foreseeable instrumentation, but IGM tomography of the Lyα forest from closely spaced quasars and galaxies is starting to measure the z ~ 2-3 cosmic web with requisite fidelity. Using mock surveys from hydrodynamical simulations, we examine the utility of this technique, in conjunction withmore » coeval galaxy samples, to measure alignment between galaxies and the cosmic web at z ~ 2.5. We show that IGM tomography surveys with ≲ 5 h -1 Mpc sightline spacing can accurately recover the eigenvectors of the tidal tensor, which we use to define the directions of the cosmic web. For galaxy spins and shapes, we use a model parameterized by the alignment strength, Δ (cos θ), with respect to the tidal tensor eigenvectors from the underlying density field, and also consider observational effects such as errors in the galaxy position angle, inclination, and redshift. Measurements using the upcoming ~ 1 deg 2 CLAMATO tomographic survey and 600 coeval zCOSMOS-Deep galaxies should place 3σ limits on extreme alignment models with Δ (cos θ) ~ 0.1, but much larger surveys encompassing > 10,000 galaxies, such as Subaru PFS, will be required to constrain models with Δ (cos θ) ~ 0.3. These measurements will constrain models of galaxy-cosmic web alignment and test tidal torque theory at z ~ 2, improving our understanding of the physics of intrinsic alignments.« less
NASA Astrophysics Data System (ADS)
Libeskind, Noam I.; van de Weygaert, Rien; Cautun, Marius; Falck, Bridget; Tempel, Elmo; Abel, Tom; Alpaslan, Mehmet; Aragón-Calvo, Miguel A.; Forero-Romero, Jaime E.; Gonzalez, Roberto; Gottlöber, Stefan; Hahn, Oliver; Hellwing, Wojciech A.; Hoffman, Yehuda; Jones, Bernard J. T.; Kitaura, Francisco; Knebe, Alexander; Manti, Serena; Neyrinck, Mark; Nuza, Sebastián E.; Padilla, Nelson; Platen, Erwin; Ramachandra, Nesar; Robotham, Aaron; Saar, Enn; Shandarin, Sergei; Steinmetz, Matthias; Stoica, Radu S.; Sousbie, Thierry; Yepes, Gustavo
2018-01-01
The cosmic web is one of the most striking features of the distribution of galaxies and dark matter on the largest scales in the Universe. It is composed of dense regions packed full of galaxies, long filamentary bridges, flattened sheets and vast low-density voids. The study of the cosmic web has focused primarily on the identification of such features, and on understanding the environmental effects on galaxy formation and halo assembly. As such, a variety of different methods have been devised to classify the cosmic web - depending on the data at hand, be it numerical simulations, large sky surveys or other. In this paper, we bring 12 of these methods together and apply them to the same data set in order to understand how they compare. In general, these cosmic-web classifiers have been designed with different cosmological goals in mind, and to study different questions. Therefore, one would not a priori expect agreement between different techniques; however, many of these methods do converge on the identification of specific features. In this paper, we study the agreements and disparities of the different methods. For example, each method finds that knots inhabit higher density regions than filaments, etc. and that voids have the lowest densities. For a given web environment, we find a substantial overlap in the density range assigned by each web classification scheme. We also compare classifications on a halo-by-halo basis; for example, we find that 9 of 12 methods classify around a third of group-mass haloes (i.e. Mhalo ∼ 1013.5 h-1 M⊙) as being in filaments. Lastly, so that any future cosmic-web classification scheme can be compared to the 12 methods used here, we have made all the data used in this paper public.
Interference, aging, and visuospatial working memory: the role of similarity.
Rowe, Gillian; Hasher, Lynn; Turcotte, Josée
2010-11-01
Older adults' performance on working memory (WM) span tasks is known to be negatively affected by the buildup of proactive interference (PI) across trials. PI has been reduced in verbal tasks and performance increased by presenting distinctive items across trials. In addition, reversing the order of trial presentation (i.e., starting with the longest sets first) has been shown to reduce PI in both verbal and visuospatial WM span tasks. We considered whether making each trial visually distinct would improve older adults' visuospatial WM performance, and whether combining the 2 PI-reducing manipulations, distinct trials and reversed order of presentation, would prove additive, thus providing even greater benefit. Forty-eight healthy older adults (age range = 60-77 years) completed 1 of 3 versions of a computerized Corsi block test. For 2 versions of the task, trials were either all visually similar or all visually distinct, and were presented in the standard ascending format (shortest set size first). In the third version, visually distinct trials were presented in a reverse order of presentation (longest set size first). Span scores were reliably higher in the ascending version for visually distinct compared with visually similar trials, F(1, 30) = 4.96, p = .03, η² = .14. However, combining distinct trials and a descending format proved no more beneficial than administering the descending format alone. Our findings suggest that a more accurate measurement of the visuospatial WM span scores of older adults (and possibly neuropsychological patients) might be obtained by reducing within-test interference.
Galactic Disk Winds Driven by Cosmic Ray Pressure
NASA Astrophysics Data System (ADS)
Mao, S. Alwin; Ostriker, Eve C.
2018-02-01
Cosmic ray pressure gradients transfer energy and momentum to extraplanar gas in disk galaxies, potentially driving significant mass loss as galactic winds. This may be particularly important for launching high-velocity outflows of “cool” (T ≲ 104 K) gas. We study cosmic ray-driven disk winds using a simplified semi-analytic model assuming streamlines follow the large-scale gravitational potential gradient. We consider scaled Milky Way–like potentials including a disk, bulge, and halo with a range of halo velocities V H = 50–300 km s-1 and streamline footpoints with radii in the disk R 0 = 1–16 kpc at a height of 1 kpc. Our solutions cover a wide range of footpoint gas velocity u 0, magnetic–to–cosmic ray pressure ratio, gas–to–cosmic ray pressure ratio, and angular momentum. Cosmic ray streaming at the Alfvén speed enables the effective sound speed C eff to increase from the footpoint to a critical point where C eff,c = u c ∼ V H; this differs from thermal winds, in which C eff decreases outward. The critical point is typically at a height of 1–6 kpc from the disk, increasing with V H, and the asymptotic wind velocity exceeds the escape speed of the halo. Mass-loss rates are insensitive to the footpoint values of the magnetic field and angular momentum. In addition to numerical parameter space exploration, we develop and compare to analytic scaling relations. We show that winds have mass-loss rates per unit area up to \\dot{Σ}∼ Π0VH-5/3u02/3, where Π0 is the footpoint cosmic ray pressure and u 0 is set by the upwelling of galactic fountains. The predicted wind mass-loss rate exceeds the star formation rate for V H ≲ 200 km s-1 and u 0 = 50 km s-1, a typical fountain velocity.
The topology of the cosmic web in terms of persistent Betti numbers
NASA Astrophysics Data System (ADS)
Pranav, Pratyush; Edelsbrunner, Herbert; van de Weygaert, Rien; Vegter, Gert; Kerber, Michael; Jones, Bernard J. T.; Wintraecken, Mathijs
2017-03-01
We introduce a multiscale topological description of the Megaparsec web-like cosmic matter distribution. Betti numbers and topological persistence offer a powerful means of describing the rich connectivity structure of the cosmic web and of its multiscale arrangement of matter and galaxies. Emanating from algebraic topology and Morse theory, Betti numbers and persistence diagrams represent an extension and deepening of the cosmologically familiar topological genus measure and the related geometric Minkowski functionals. In addition to a description of the mathematical background, this study presents the computational procedure for computing Betti numbers and persistence diagrams for density field filtrations. The field may be computed starting from a discrete spatial distribution of galaxies or simulation particles. The main emphasis of this study concerns an extensive and systematic exploration of the imprint of different web-like morphologies and different levels of multiscale clustering in the corresponding computed Betti numbers and persistence diagrams. To this end, we use Voronoi clustering models as templates for a rich variety of web-like configurations and the fractal-like Soneira-Peebles models exemplify a range of multiscale configurations. We have identified the clear imprint of cluster nodes, filaments, walls, and voids in persistence diagrams, along with that of the nested hierarchy of structures in multiscale point distributions. We conclude by outlining the potential of persistent topology for understanding the connectivity structure of the cosmic web, in large simulations of cosmic structure formation and in the challenging context of the observed galaxy distribution in large galaxy surveys.
A kinematic classification of the cosmic web
NASA Astrophysics Data System (ADS)
Hoffman, Yehuda; Metuki, Ofer; Yepes, Gustavo; Gottlöber, Stefan; Forero-Romero, Jaime E.; Libeskind, Noam I.; Knebe, Alexander
2012-09-01
A new approach for the classification of the cosmic web is presented. In extension of the previous work of Hahn et al. and Forero-Romero et al., the new algorithm is based on the analysis of the velocity shear tensor rather than the gravitational tidal tensor. The procedure consists of the construction of the shear tensor at each (grid) point in space and the evaluation of its three eigenvectors. A given point is classified to be either a void, sheet, filament or a knot according to the number of eigenvalues above a certain threshold, 0, 1, 2 or 3, respectively. The threshold is treated as a free parameter that defines the web. The algorithm has been applied to a dark matter only simulation of a box of side length 64 h-1 Mpc and N = 10243 particles within the framework of the 5-year Wilkinson and Microwave Anisotropy Probe/Λ cold dark matter (ΛCDM) model. The resulting velocity-based cosmic web resolves structures down to ≲0.1 h-1 Mpc scales, as opposed to the ≈1 h-1 Mpc scale of the tidal-based web. The underdense regions are made of extended voids bisected by planar sheets, whose density is also below the mean. The overdense regions are vastly dominated by the linear filaments and knots. The resolution achieved by the velocity-based cosmic web provides a platform for studying the formation of haloes and galaxies within the framework of the cosmic web.
HIGH-ENERGY NEUTRINOS FROM SOURCES IN CLUSTERS OF GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Ke; Olinto, Angela V.
2016-09-01
High-energy cosmic rays can be accelerated in clusters of galaxies, by mega-parsec scale shocks induced by the accretion of gas during the formation of large-scale structures, or by powerful sources harbored in clusters. Once accelerated, the highest energy particles leave the cluster via almost rectilinear trajectories, while lower energy ones can be confined by the cluster magnetic field up to cosmological time and interact with the intracluster gas. Using a realistic model of the baryon distribution and the turbulent magnetic field in clusters, we studied the propagation and hadronic interaction of high-energy protons in the intracluster medium. We report themore » cumulative cosmic-ray and neutrino spectra generated by galaxy clusters, including embedded sources, and demonstrate that clusters can contribute a significant fraction of the observed IceCube neutrinos above 30 TeV while remaining undetected in high-energy cosmic rays and γ rays for reasonable choices of parameters and source scenarios.« less
NASA Astrophysics Data System (ADS)
Cautun, Marius; van de Weygaert, Rien; Jones, Bernard J. T.; Frenk, Carlos S.; Hellwing, Wojciech A.
2015-01-01
One of the important unknowns of current cosmology concerns the effects of the large scale distribution of matter on the formation and evolution of dark matter haloes and galaxies. One main difficulty in answering this question lies in the absence of a robust and natural way of identifying the large scale environments and their characteristics. This work summarizes the NEXUS+ formalism which extends and improves our multiscale scale-space MMF method. The new algorithm is very successful in tracing the Cosmic Web components, mainly due to its novel filtering of the density in logarithmic space. The method, due to its multiscale and hierarchical character, has the advantage of detecting all the cosmic structures, either prominent or tenuous, without preference for a certain size or shape. The resulting filamentary and wall networks can easily be characterized by their direction, thickness, mass density and density profile. These additional environmental properties allows to us to investigate not only the effect of environment on haloes, but also how it correlates with the environment characteristics.
Cosmic matrix in the jubilee of relativistic astrophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruffini, R., E-mail: ruffini@icra.it; ICRANet, Piazza della Repubblica 10, I–65122 Pescara; Université de Nice Sophie Antipolis, Nice, CEDEX 2, Grand Château Parc Valrose
2015-12-17
Following the classical works on Neutron Stars, Black Holes and Cosmology, I outline some recent results obtained in the IRAP-PhD program of ICRANet on the “Cosmic Matrix”: a new astrophysical phenomenon recorded by the X- and Gamma-Ray satellites and by the largest ground based optical telescopes all over our planet. In 3 minutes it has been recorded the occurrence of a “Supernova”, the “Induced-Gravitational-Collapse” on a Neutron Star binary, the formation of a “Black Hole”, and the creation of a “Newly Born Neutron Star”. This presentation is based on a document describing activities of ICRANet and recent developments of themore » paradigm of the Cosmic Matrix in the comprehension of Gamma Ray Bursts (GRBs) presented on the occasion of the Fourteenth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theory. A Portuguese version of this document can be downloaded at: http://www.icranet.org/documents/brochure{sub i}cranet{sub p}t.pdf.« less
Khakhaleva-Li, Zimu; Gnedin, Nickolay Y.
2016-03-30
In this study, we compare the properties of stellar populations of model galaxies from the Cosmic Reionization On Computers (CROC) project with the exiting UV and IR data. Since CROC simulations do not follow cosmic dust directly, we adopt two variants of the dust-follows-metals ansatz to populate model galaxies with dust. Using the dust radiative transfer code Hyperion, we compute synthetic stellar spectra, UV continuum slopes, and IR fluxes for simulated galaxies. We find that the simulation results generally match observational measurements, but, perhaps, not in full detail. The differences seem to indicate that our adopted dust-follows-metals ansatzes are notmore » fully sufficient. While the discrepancies with the exiting data are marginal, the future JWST data will be of much higher precision, rendering highly significant any tentative difference between theory and observations. It is, therefore, likely, that in order to fully utilize the precision of JWST observations, fully dynamical modeling of dust formation, evolution, and destruction may be required.« less
NASA Technical Reports Server (NTRS)
Chuss, David T.
2011-01-01
Observations of the cosmic microwave background (CMB) provide a powerful tool for probing the evolution of the early universe. Specifically, precision measurement of the polarization of the CMB enables a direct test for cosmic inflation. A key technological element on the path to the measurement of this faint signal is the capability to produce large format arrays of background-limited detectors. We describe the electromagnetic design of feedhorn-coupled, TES-based sensors. Each linear orthogonal polarization from the feed horn is coupled to a superconducting microstrip line via a symmetric planar orthomode transducer (OMT). The symmetric OMT design allows for highly-symmetric beams with low cross-polarization over a wide bandwidth. In addition, this architecture enables a single microstrip filter to define the passband for each polarization. Care has been taken in the design to eliminate stray coupling paths to the absorbers. These detectors will be fielded in the Cosmology Large Angular Scale Surveyor (CLASS).
Interpretation of the COBE FIRAS CMBR spectrum
NASA Technical Reports Server (NTRS)
Wright, E. L.; Mather, J. C.; Fixsen, D. J.; Kogut, A.; Shafer, R. A.; Bennett, C. L.; Boggess, N. W.; Cheng, E. S.; Silverberg, R. F.; Smoot, G. F.
1994-01-01
The cosmic microwave background radiation (CMBR) spectrum measured by the Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on NASA's Cosmic Background Explorer (COBE) is indistinguishable from a blackbody, implying stringent limits on energy release in the early universe later than the time t = 1 yr after the big bang. We compare the FIRAS data to previous precise measurements of the cosmic microwave background spectrum and find a reasonable agreement. We discuss the implications of the absolute value of y is less than 2.5 x 10(exp -5) and the absolute value of mu is less than 3.3 x 10(exp -4) 95% confidence limits found by Mather et al. (1994) on many processes occurring after t = 1 yr, such as explosive structure formation, reionization, and dissipation of small-scale density perturbations. We place limits on models with dust plus Population III stars, or evolving populations of IR galaxies, by directly comparing the Mather et al. spectrum to the model predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khakhaleva-Li, Zimu; Gnedin, Nickolay Y.
In this study, we compare the properties of stellar populations of model galaxies from the Cosmic Reionization On Computers (CROC) project with the exiting UV and IR data. Since CROC simulations do not follow cosmic dust directly, we adopt two variants of the dust-follows-metals ansatz to populate model galaxies with dust. Using the dust radiative transfer code Hyperion, we compute synthetic stellar spectra, UV continuum slopes, and IR fluxes for simulated galaxies. We find that the simulation results generally match observational measurements, but, perhaps, not in full detail. The differences seem to indicate that our adopted dust-follows-metals ansatzes are notmore » fully sufficient. While the discrepancies with the exiting data are marginal, the future JWST data will be of much higher precision, rendering highly significant any tentative difference between theory and observations. It is, therefore, likely, that in order to fully utilize the precision of JWST observations, fully dynamical modeling of dust formation, evolution, and destruction may be required.« less
Cosmic matrix in the jubilee of relativistic astrophysics
NASA Astrophysics Data System (ADS)
Ruffini, R.; Aimuratov, Y.; Belinski, V.; Bianco, C. L.; Enderli, M.; Izzo, L.; Kovacevic, M.; Mathews, G. J.; Moradi, R.; Muccino, M.; Penacchioni, A. V.; Pisani, G. B.; Rueda, J. A.; Vereshchagin, G. V.; Wang, Y.; Xue, S.-S.
2015-12-01
Following the classical works on Neutron Stars, Black Holes and Cosmology, I outline some recent results obtained in the IRAP-PhD program of ICRANet on the "Cosmic Matrix": a new astrophysical phenomenon recorded by the X- and Gamma-Ray satellites and by the largest ground based optical telescopes all over our planet. In 3 minutes it has been recorded the occurrence of a "Supernova", the "Induced-Gravitational-Collapse" on a Neutron Star binary, the formation of a "Black Hole", and the creation of a "Newly Born Neutron Star". This presentation is based on a document describing activities of ICRANet and recent developments of the paradigm of the Cosmic Matrix in the comprehension of Gamma Ray Bursts (GRBs) presented on the occasion of the Fourteenth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theory. A Portuguese version of this document can be downloaded at: http://www.icranet.org/documents/brochure_icranet_pt.pdf.
MUFASA: galaxy formation simulations with meshless hydrodynamics
NASA Astrophysics Data System (ADS)
Davé, Romeel; Thompson, Robert; Hopkins, Philip F.
2016-11-01
We present the MUFASA suite of cosmological hydrodynamic simulations, which employs the GIZMO meshless finite mass (MFM) code including H2-based star formation, nine-element chemical evolution, two-phase kinetic outflows following scalings from the Feedback in Realistic Environments zoom simulations, and evolving halo mass-based quenching. Our fiducial (50 h-1 Mpc)3 volume is evolved to z = 0 with a quarter billion elements. The predicted galaxy stellar mass functions (GSMFs) reproduces observations from z = 4 → 0 to ≲ 1.2σ in cosmic variance, providing an unprecedented match to this key diagnostic. The cosmic star formation history and stellar mass growth show general agreement with data, with a strong archaeological downsizing trend such that dwarf galaxies form the majority of their stars after z ˜ 1. We run 25 and 12.5 h-1 Mpc volumes to z = 2 with identical feedback prescriptions, the latter resolving all hydrogen-cooling haloes, and the three runs display fair resolution convergence. The specific star formation rates broadly agree with data at z = 0, but are underpredicted at z ˜ 2 by a factor of 3, re-emphasizing a longstanding puzzle in galaxy evolution models. We compare runs using MFM and two flavours of smoothed particle hydrodynamics, and show that the GSMF is sensitive to hydrodynamics methodology at the ˜×2 level, which is sub-dominant to choices for parametrizing feedback.
NASA Astrophysics Data System (ADS)
Dessauges-Zavadsky, Miroslava; Adamo, Angela
2018-06-01
Star-forming clumps dominate the rest-frame ultraviolet morphology of galaxies at the peak of cosmic star formation. If turbulence driven fragmentation is the mechanism responsible for their formation, we expect their stellar mass function to follow a power-law of slope close to -2. We test this hypothesis performing the first analysis of the stellar mass function of clumps hosted in galaxies at z ˜ 1 - 3.5. The sample is gathered from the literature with similar detection thresholds and stellar masses determined in a homogeneous way. To overcome the small number statistics per galaxy (each galaxy hosts up to a few tens of clumps only), we combine all high-redshift clumps. The resulting clump mass function follows a power-law of slope ˜-1.7 and flattens at masses below 2 × 107 M⊙. By means of randomly sampled clump populations, drawn out of a power-law mass function of slope -2, we test the effect of combining small clump populations, detection limits of the surveys, and blending on the mass function. Our numerical exercise reproduces all the features observed in the real clump mass function confirming that it is consistent with a power-law of slope ≃ -2. This result supports the high-redshift clump formation through fragmentation in a similar fashion as in local galaxies, but under different gas conditions.
Recent Progresses in Laboratory Astrophysics with Ames’ COSmIC Facility
NASA Astrophysics Data System (ADS)
Salama, Farid; Contreras, Cesar; Sciamma-O'Brien, Ella; Bejaoui, Salma
2016-06-01
We present and discuss the characteristics and the capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory [1]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of neutral and ionized molecules and nano particles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. COSmIC is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a plasma in free supersonic jet expansion coupled to two high-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) and laser induced fluorescence (LIF) systems for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [2].Recent laboratory results that were obtained using COSmIC will be presented, in particular the progress that has been achieved in the domain of the diffuse interstellar bands (DIBs) [3] and in monitoring, in the laboratory, the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as stellar/circumstellar outflows [4] and planetary atmospheres [5]. Plans for future, next generation, laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics will also be addressed as well as the implications of the current studies for astronomy.References: [1] Salama F., In Organic Matter in Space, IAU Symposium 251, Kwok & Sandford Eds.Cambridge University Press, Vol. 4, S251, p. 357 (2008) and references therein.[2] Ricketts C., Contreras C., Walker, R., Salama F., Int. J. Mass Spec, 300, 26 (2011)[3] Salama F., Galazutdinov G., Krelowski J., Biennier L., Beletsky Y., In-Ok Song, The Astrophys. J., 728, 154 (2011)[4] Cesar Contreras and Farid Salama, The Astrophys. J. Suppl. Ser., 208, 6 (2013)[5] Sciamma-O'Brien E., Ricketts C., and Salama F. Icarus, 243, 325 (2014)Acknowledgements: The authors acknowledge the support of NASA SMD.
NASA Astrophysics Data System (ADS)
Pozzetti, L.; Bolzonella, M.; Zucca, E.; Zamorani, G.; Lilly, S.; Renzini, A.; Moresco, M.; Mignoli, M.; Cassata, P.; Tasca, L.; Lamareille, F.; Maier, C.; Meneux, B.; Halliday, C.; Oesch, P.; Vergani, D.; Caputi, K.; Kovač, K.; Cimatti, A.; Cucciati, O.; Iovino, A.; Peng, Y.; Carollo, M.; Contini, T.; Kneib, J.-P.; Le Févre, O.; Mainieri, V.; Scodeggio, M.; Bardelli, S.; Bongiorno, A.; Coppa, G.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Kampczyk, P.; Knobel, C.; Le Borgne, J.-F.; Le Brun, V.; Pellò, R.; Perez Montero, E.; Ricciardelli, E.; Silverman, J. D.; Tanaka, M.; Tresse, L.; Abbas, U.; Bottini, D.; Cappi, A.; Guzzo, L.; Koekemoer, A. M.; Leauthaud, A.; Maccagni, D.; Marinoni, C.; McCracken, H. J.; Memeo, P.; Porciani, C.; Scaramella, R.; Scarlata, C.; Scoville, N.
2010-11-01
We present the galaxy stellar mass function (GSMF) to redshift z ≃ 1, based on the analysis of about 8500 galaxies with I < 22.5 (AB mag) over 1.4 deg2, which are part of the zCOSMOS-bright 10k spectroscopic sample. We investigate the total GSMF, as well as the contributions of early- and late-type galaxies (ETGs and LTGs, respectively), defined by different criteria (broad-band spectral energy distribution, morphology, spectral properties, or star formation activities). We unveil a galaxy bimodality in the global GSMF, whose shape is more accurately represented by 2 Schechter functions, one linked to the ETG and the other to the LTG populations. For the global population, we confirm a mass-dependent evolution (“mass-assembly downsizing”), i.e., galaxy number density increases with cosmic time by a factor of two between z = 1 and z = 0 for intermediate-to-low mass (log (ℳ/ℳ⊙) ~ 10.5) galaxies but less than 15% for log(ℳ/ℳ⊙) > 11. We find that the GSMF evolution at intermediate-to-low values of ℳ (log (ℳ/ℳ⊙) < 10.6) is mostly explained by the growth in stellar mass driven by smoothly decreasing star formation activities, despite the redder colours predicted in particular at low redshift. The low residual evolution is consistent, on average, with ~0.16 merger per galaxy per Gyr (of which fewer than 0.1 are major), with a hint of a decrease with cosmic time but not a clear dependence on the mass. From the analysis of different galaxy types, we find that ETGs, regardless of the classification method, increase in number density with cosmic time more rapidly with decreasing M, i.e., follow a top-down building history, with a median “building redshift” increasing with mass (z > 1 for log(ℳ/ℳ⊙) > 11), in contrast to hierarchical model predictions. For LTGs, we find that the number density of blue or spiral galaxies with log(ℳ/ℳ⊙) > 10 remains almost constant with cosmic time from z ~ 1. Instead, the most extreme population of star-forming galaxies (with high specific star formation), at intermediate/high-mass, rapidly decreases in number density with cosmic time. Our data can be interpreted as a combination of different effects. Firstly, we suggest a transformation, driven mainly by SFH, from blue, active, spiral galaxies of intermediate mass to blue quiescent and subsequently (1-2 Gyr after) red, passive types of low specific star formation. We find an indication that the complete morphological transformation, probably driven by dynamical processes, into red spheroidal galaxies, occurred on longer timescales or followed after 1-2 Gyr. A continuous replacement of blue galaxies is expected to be accomplished by low-mass active spirals increasing their stellar mass. We estimate the growth rate in number and mass density of the red galaxies at different redshifts and masses. The corresponding fraction of blue galaxies that, at any given time, is transforming into red galaxies per Gyr, due to the quenching of their SFR, is on average ~25% for log(ℳ/ℳ⊙) < 11. We conclude that the build-up of galaxies and in particular of ETGs follows the same downsizing trend with mass (i.e. occurs earlier for high-mass galaxies) as the formation of their stars and follows the converse of the trend predicted by current SAMs. In this scenario, we expect there to be a negligible evolution of the galaxy baryonic mass function (GBMF) for the global population at all masses and a decrease with cosmic time in the GBMF for the blue galaxy population at intermediate-high masses. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, program 175.A-0839.
NASA Ames’ COSmIC Laboratory Astrophysics Facility: Recent Results and Progress
NASA Astrophysics Data System (ADS)
Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma
2018-06-01
The COSmIC facility was developed at NASA Ames to study interstellar, circumstellar and planetary analogs in the laboratory [1, 2]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of molecules, ions and nanoparticles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of instruments that allow generating; processing and monitoring simulated space conditions in the laboratory. It is composed of a Pulsed Discharge Nozzle expansion that generates a plasma in a free supersonic jet expansion coupled to high-sensitivity, complementary in situ diagnostic tools, used for the detection and characterization of the species present in the expansion: a Cavity Ring Down Spectroscopy (CRDS) and fluorescence spectroscopy systems for photonic detection, and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [3, 4].Recent advances achieved in laboratory astrophysics using COSmIC will be presented, in particular in the domain of the diffuse interstellar bands (DIBs) [5, 6] and the monitoring, in the laboratory, of the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as circumstellar outflows [7] and planetary atmospheres [8, 9, 10]. Plans for future laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics (NIR-MIR CRDS, Laser Induced Fluorescence spectra of cosmic molecule analogs and the laser induced incandescence spectra of cosmic grain analogs) will also be addressed as well as the implications for astronomy.References: [1] Salama F., Proceed. IAU S251, Kwok & Sandford eds. CUP, 4, 357 (2008).[2] Salama F., et al., Proceed. IAU S332, Y. Aikawa, M. Cunningham, T. Millar, eds., CUP (2018)[3] Biennier L., et al., J. Chem. Phys., 118, 7863 (2003)[4] Ricketts C. et al. IJMS, 300, 26 (2011)[5] Salama F., et al., ApJ., 728, 154 (2011)[6] EDIBLES consortium, A&A 606, A76 (2017)[7] Contreras, C., Salama, F., ApJ. Suppl. Ser., 208, 6 (2013)[8] Sciamma-O'Brien E., Ricketts C., Salama F. Icarus, 243, 325 (2014)[9] Sciamma-O'Brien E., Upton K.T., Salama F. Icarus, Icarus, 289, 214 (2017)[10] Raymond A.W., et al.. ApJ., 853, 107 (2018)The authors acknowledge NASA SMD/APRA and SSW programs.
High-z Universe with Gamma Ray Bursts
NASA Technical Reports Server (NTRS)
Kouveliotou, C.
2011-01-01
Gamma-Ray Bursts (GRBs) are the most luminous explosions in space and trace the cosmic star formation history back to the first generations of stars. Their bright afterglows allow us to trace the abundances of heavy elements to large distances, thereby measuring cosmic chemical evolution. To date GRBs have been detected up to distances of z=8.23 and possibly even beyond z9. This makes GRBs a unique and powerful tool to probe the high-z Universe up to the re-ionization era. We discuss the current status of the field, place it in context with other probes, and also discuss new mission concepts that have been planned to utilize GRBs as probes.
Amplitudes of solar modulation of low energy cosmic rays
NASA Technical Reports Server (NTRS)
Von Rosenvinge, T. T.; Paizis, C.
1982-01-01
There have been differences of opinion regarding the origin and behavior of the solar modulation of galactic cosmic rays. It has been shown that the return to solar maximum intensity levels beginning in early 1978 was dominated by Forbush decreases. These Forbush decreases were caused by radially moving interplanetary shocks resulting from large solar flares. The present investigation is concerned with solar modulation effects which were observed during the previous solar minimum. The effects were associated with high-speed streams in the solar wind. These streams caused the formation of corotating interaction regions with both forward and reverse shocks. The modulation effects seen near earth are intimately connected with these shocks.
The formation and fragmentation of disks around primordial protostars.
Clark, Paul C; Glover, Simon C O; Smith, Rowan J; Greif, Thomas H; Klessen, Ralf S; Bromm, Volker
2011-02-25
The very first stars to form in the universe heralded an end to the cosmic dark ages and introduced new physical processes that shaped early cosmic evolution. Until now, it was thought that these stars lived short, solitary lives, with only one extremely massive star, or possibly a very wide binary system, forming in each dark-matter minihalo. Here we describe numerical simulations that show that these stars were, to the contrary, often members of tight multiple systems. Our results show that the disks that formed around the first young stars were unstable to gravitational fragmentation, possibly producing small binary and higher-order systems that had separations as small as the distance between Earth and the Sun.
Large-scale anisotropy of the cosmic microwave background radiation
NASA Technical Reports Server (NTRS)
Silk, J.; Wilson, M. L.
1981-01-01
Inhomogeneities in the large-scale distribution of matter inevitably lead to the generation of large-scale anisotropy in the cosmic background radiation. The dipole, quadrupole, and higher order fluctuations expected in an Einstein-de Sitter cosmological model have been computed. The dipole and quadrupole anisotropies are comparable to the measured values, and impose important constraints on the allowable spectrum of large-scale matter density fluctuations. A significant dipole anisotropy is generated by the matter distribution on scales greater than approximately 100 Mpc. The large-scale anisotropy is insensitive to the ionization history of the universe since decoupling, and cannot easily be reconciled with a galaxy formation theory that is based on primordial adiabatic density fluctuations.
The cosmic web and microwave background fossilize the first turbulent combustion
NASA Astrophysics Data System (ADS)
Gibson, Carl H.; Keeler, R. Norris
2016-10-01
Collisional fluid mechanics theory predicts a turbulent hot big bang at Planck conditions from large, negative, turbulence stresses below the Fortov-Kerr limit (< -10113 Pa). Big bang turbulence fossilized when quarks formed, extracting the mass energy of the universe by extreme negative viscous stresses of inflation, expanding to length scales larger than the horizon scale ct. Viscous-gravitational structure formation by fragmentation was triggered at big bang fossil vorticity turbulence vortex lines during the plasma epoch, as observed by the Planck space telescope. A cosmic web of protogalaxies, protogalaxyclusters, and protogalaxysuperclusters that formed in turbulent boundary layers of the spinning voids are hereby identified as expanding turbulence fossils that falsify CDMHC cosmology.
Anisotropies of the cosmic microwave background in nonstandard cold dark matter models
NASA Technical Reports Server (NTRS)
Vittorio, Nicola; Silk, Joseph
1992-01-01
Small angular scale cosmic microwave anisotropies in flat, vacuum-dominated, cold dark matter cosmological models which fit large-scale structure observations and are consistent with a high value for the Hubble constant are reexamined. New predictions for CDM models in which the large-scale power is boosted via a high baryon content and low H(0) are presented. Both classes of models are consistent with current limits: an improvement in sensitivity by a factor of about 3 for experiments which probe angular scales between 7 arcmin and 1 deg is required, in the absence of very early reionization, to test boosted CDM models for large-scale structure formation.
Constraining star formation through redshifted CO and CII emission in archival CMB data
NASA Astrophysics Data System (ADS)
Switzer, Eric
LCDM is a strikingly successful paradigm to explain the CMB anisotropy and its evolution into observed galaxy clustering statistics. The formation and evolution of galaxies within this context is more complex and only partly characterized. Measurements of the average star formation and its precursors over cosmic time are required to connect theories of galaxy evolution to LCDM evolution. The fine structure transition in CII at 158 um traces star formation rates and the ISM radiation environment. Cold, molecular gas fuels star formation and is traced well by a ladder of CO emission lines. Catalogs of emission lines in individual galaxies have provided the most information about CII and CO to-date but are subject to selection effects. Intensity mapping is an alternative approach to measuring line emission. It surveys the sum of all line radiation as a function of redshift, and requires angular resolution to reach cosmologically interesting scales, but not to resolve individual sources. It directly measures moments of the luminosity function from all emitting objects. Intensity mapping of CII and CO can perform an unbiased census of stars and cold gas across cosmic time. We will use archival COBE-FIRAS and Planck data to bound or measure cosmologically redshifted CII and CO line emission through 1) the monopole spectrum, 2) cross-power between FIRAS/Planck and public galaxy survey catalogs from BOSS and the 2MASS redshift surveys, 3) auto-power of the FIRAS/Planck data itself. FIRAS is unique in its spectral range and all-sky coverage, provided by the space-borne FTS architecture. In addition to sensitivity to a particular emission line, intensity mapping is sensitive to all other contributions to surface brightness. We will remove CMB and foreground spatial and spectral templates using models from WMAP and Planck data. Interlopers and residual foregrounds additively bias the auto-power and monopole, but both can still be used to provide rigorous upper bounds. The cross-power with galaxy surveys directly constrains the redshifted line emission. Residual foregrounds and interlopers increase errors but do not add bias. There are 300 resolution elements of the 7 degree FIRAS top-hat inside the BOSS quasar survey, spanning 66 spectral pixels to z 2. While FIRAS noise per voxel is 200 times brighter than the expected peak cosmological CII emission, strt-N averaging of spatial and spectral modes above results in a gain of 140. Intensity mapping is in its infancy, with predictions for surface brightness of line emission ranging over an order of magnitude, and limited knowledge of the intensity-weighted bias. Even if only upper bounds are possible, they complement existing measurements of individual galaxies, which can constitute a lower bound because they measure only a portion of the luminosity function. FIRAS and Planck provide unique opportunities to pursue CII and CO intensity mapping with well-characterized instruments that overlap with galaxy surveys in angular coverage and redshift. We will re-analyze the FIRAS data to optimize sensitivity and robustness, developing a spectral line response model, splitting the data into sub-missions to isolate noise properties, and re- evaluating data cuts. The tools and results here will support future survey concepts with significantly lower noise, such as PIXIE, PRISM, SPHEREX and proposed suborbital experiments designed specifically for intensity mapping. There is a growing appreciation that many phenomena could lie just below the published FIRAS bounds. The proposed work is an early step toward this new science.
Clusters of Galaxies and the Cosmic Web with Square Kilometre Array
NASA Astrophysics Data System (ADS)
Kale, Ruta; Dwarakanath, K. S.; Vir Lal, Dharam; Bagchi, Joydeep; Paul, Surajit; Malu, Siddharth; Datta, Abhirup; Parekh, Viral; Sharma, Prateek; Pandey-Pommier, Mamta
2016-12-01
The intra-cluster and inter-galactic media that pervade the large scale structure of the Universe are known to be magnetized at sub-micro Gauss to micro Gauss levels and to contain cosmic rays. The acceleration of cosmic rays and their evolution along with that of magnetic fields in these media is still not well understood. Diffuse radio sources of synchrotron origin associated with the Intra-Cluster Medium (ICM) such as radio halos, relics and mini-halos are direct probes of the underlying mechanisms of cosmic ray acceleration. Observations with radio telescopes such as the Giant Metrewave Radio Telescope, the Very Large Array and the Westerbork Synthesis Radio Telescope have led to the discoveries of about 80 such sources and allowed detailed studies in the frequency range 0.15-1.4 GHz of a few. These studies have revealed scaling relations between the thermal and non-thermal properties of clusters and favour the role of shocks in the formation of radio relics and of turbulent re-acceleration in the formation of radio halos and mini-halos. The radio halos are known to occur in merging clusters and mini-halos are detected in about half of the cool-core clusters. Due to the limitations of current radio telescopes, low mass galaxy clusters and galaxy groups remain unexplored as they are expected to contain much weaker radio sources. Distinguishing between the primary and the secondary models of cosmic ray acceleration mechanisms requires spectral measurements over a wide range of radio frequencies and with high sensitivity. Simulations have also predicted weak diffuse radio sources associated with filaments connecting galaxy clusters. The Square Kilometre Array (SKA) is a next generation radio telescope that will operate in the frequency range of 0.05-20 GHz with unprecedented sensitivities and resolutions. The expected detection limits of SKA will reveal a few hundred to thousand new radio halos, relics and mini-halos providing the first large and comprehensive samples for their study. The wide frequency coverage along with sensitivity to extended structures will be able to constrain the cosmic ray acceleration mechanisms. The higher frequency (>5 GHz) observations will be able to use the Sunyaev-Zel'dovich effect to probe the ICM pressure in addition to tracers such as lobes of head-tail radio sources. The SKA also opens prospects to detect the `off-state' or the lowest level of radio emission from the ICM predicted by the hadronic models and the turbulent re-acceleration models.
How to disentangle the Cosmic Web?
NASA Astrophysics Data System (ADS)
Shandarin, Sergei; Medvedev, Mikhail
2015-04-01
The Cosmic Web is a complicated highly-entangled geometrical object formed from remarkably simple - Gaussian - initial conditions. The full complexity of the Web can be fully appreciated in the six-dimensional phase space only, which study is, however, impractical due to numerous reasons. Instead, we suggest to use Lagrangian submanifold, i.e., the mapping x = x(q) , where x and q are three dimensional vectors representing Eulerian and Lagrangian coordinates. Being fully equivalent in dynamical sense to the phase space, it has the advantage of being a single valued and also metric space. In addition, we propose a new computational paradigm for the analysis of substructure of the Cosmic Web in cosmological cold dark matter (CDM) simulations. We introduce a new data-field - the flip-flop field - which carries wealth of information about the history and dynamics of the structure formation in the universe. The flip-flop (FF) field is an ordered data set in Lagrangian space representing the number of sign reversals of an elementary volume of each collisionless fluid element represented by a computational particle in a N-body simulation. This FF-field is effectively a multi-stream counter of each substructure element of the Cosmic Web. We demonstrate that the very rich subst Partially supported by DOE Grant DE-FG02-07ER54940 and NSF Grant AST-1209665.
Inviscid Analysis of Extended Formation Flight
NASA Technical Reports Server (NTRS)
Kless, James; Aftosmis, Michael J.; Ning, Simeon Andrew; Nemec, Marian
2012-01-01
Flying airplanes in extended formations, with separation distances of tens of wingspans, significantly improves safety while maintaining most of the fuel savings achieved in close formations. The present study investigates the impact of roll trim and compressibility at fixed lift coefficient on the benefits of extended formation flight. An Euler solver with adjoint-based mesh refinement combined with a wake propagation model is used to analyze a two-body echelon formation at a separation distance of 30 spans. Two geometries are examined: a simple wing and a wing-body geometry. Energy savings, quantified by both formation drag fraction and span efficiency factor, are investigated at subsonic and transonic speeds for a matrix of vortex locations. The results show that at fixed lift and trimmed for roll, the optimal location of vortex impingement is about 10% inboard of the trailing airplane s wing-tip. Interestingly, early results show the variation in drag fraction reduction is small in the neighborhood of the optimal position. Over 90% of energy benefits can be obtained with a 5% variation in transverse and 10% variation in crossflow directions. Early results suggest control surface deflections required to achieve trim reduce the benefits of formation flight by 3-5% at subsonic speeds. The final paper will include transonic effects and trim on extended formation flight drag benefits.
Evolution of Intrinsic Scatter in the SFR-Stellar Mass Correlation at 0.5 less than z Less Than 3
NASA Technical Reports Server (NTRS)
Kurczynski, Peter; Gawiser, Eric; Acquaviva, Viviana; Bell, Eric F.; Dekel, Avishai; De Mello, Duilia F.; Ferguson, Henry C.; Gardner, Jonathan P.; Grogin, Norman A.
2016-01-01
We present estimates of intrinsic scatter in the star formation rate (SFR)--stellar mass (M*) correlation in the redshift range 0.5 less than z less than 3.0 and in the mass range 10(exp 7) less than M* less than 10(exp 11) solar mass. We utilize photometry in the Hubble Ultradeep Field (HUDF12) and Ultraviolet Ultra Deep Field (UVUDF) campaigns and CANDELS/GOODS-S and estimate SFR, M* from broadband spectral energy distributions and the best-available redshifts. The maximum depth of the UDF photometry (F160W 29.9 AB, 5 sigma depth) probes the SFR--M* correlation down to M* approximately 10(exp 7) solar mass, a factor of 10-100 x lower in M* than previous studies, and comparable to dwarf galaxies in the local universe. We find the slope of the SFR-M* relationship to be near unity at all redshifts and the normalization to decrease with cosmic time. We find a moderate increase in intrinsic scatter with cosmic time from 0.2 to 0.4 dex across the epoch of peak cosmic star formation. None of our redshift bins show a statistically significant increase in intrinsic scatter approximately 100 Myr. Our results are consistent with a picture of gradual and self-similar assembly of galaxies across more than three orders of magnitude in stellar mass from as low as 10(exp 7) solar mass.
NASA Astrophysics Data System (ADS)
Li, Qi; Tan, Jonathan C.; Christie, Duncan; Bisbas, Thomas G.; Wu, Benjamin
2018-05-01
We present a series of adaptive mesh refinement hydrodynamic simulations of flat rotation curve galactic gas disks, with a detailed treatment of the interstellar medium (ISM) physics of the atomic to molecular phase transition under the influence of diffuse far-ultraviolet (FUV) radiation fields and cosmic-ray backgrounds. We explore the effects of different FUV intensities, including a model with a radial gradient designed to mimic the Milky Way. The effects of cosmic rays, including radial gradients in their heating and ionization rates, are also explored. The final simulations in this series achieve 4 pc resolution across the ˜20 kpc global disk diameter, with heating and cooling followed down to temperatures of ˜10 K. The disks are evolved for 300 Myr, which is enough time for the ISM to achieve a quasi-statistical equilibrium. In particular, the mass fraction of molecular gas is stabilized by ˜200 Myr. Additional global ISM properties are analyzed. Giant molecular clouds (GMCs) are also identified and the statistical properties of their populations are examined. GMCs are tracked as the disks evolve. GMC collisions, which may be a means of triggering star cluster formation, are counted and their rates are compared with analytic models. Relatively frequent GMC collision rates are seen in these simulations, and their implications for understanding GMC properties, including the driving of internal turbulence, are discussed.
How does the cosmic web impact assembly bias?
NASA Astrophysics Data System (ADS)
Musso, M.; Cadiou, C.; Pichon, C.; Codis, S.; Kraljic, K.; Dubois, Y.
2018-06-01
The mass, accretion rate, and formation time of dark matter haloes near protofilaments (identified as saddle points of the potential) are analytically predicted using a conditional version of the excursion set approach in its so-called upcrossing approximation. The model predicts that at fixed mass, mass accretion rate and formation time vary with orientation and distance from the saddle, demonstrating that assembly bias is indeed influenced by the tides imposed by the cosmic web. Starved, early-forming haloes of smaller mass lie preferentially along the main axis of filaments, while more massive and younger haloes are found closer to the nodes. Distinct gradients for distinct tracers such as typical mass and accretion rate occur because the saddle condition is anisotropic, and because the statistics of these observables depend on both the conditional means and their covariances. The theory is extended to other critical points of the potential field. The response of the mass function to variations of the matter density field (the so-called large-scale bias) is computed, and its trend with accretion rate is shown to invert along the filament. The signature of this model should correspond at low redshift to an excess of reddened galactic hosts at fixed mass along preferred directions, as recently reported in spectroscopic and photometric surveys and in hydrodynamical simulations. The anisotropy of the cosmic web emerges therefore as a significant ingredient to describe jointly the dynamics and physics of galaxies, e.g. in the context of intrinsic alignments or morphological diversity.
A magnified young galaxy from about 500 million years after the Big Bang.
Zheng, Wei; Postman, Marc; Zitrin, Adi; Moustakas, John; Shu, Xinwen; Jouvel, Stephanie; Høst, Ole; Molino, Alberto; Bradley, Larry; Coe, Dan; Moustakas, Leonidas A; Carrasco, Mauricio; Ford, Holland; Benítez, Narciso; Lauer, Tod R; Seitz, Stella; Bouwens, Rychard; Koekemoer, Anton; Medezinski, Elinor; Bartelmann, Matthias; Broadhurst, Tom; Donahue, Megan; Grillo, Claudio; Infante, Leopoldo; Jha, Saurabh W; Kelson, Daniel D; Lahav, Ofer; Lemze, Doron; Melchior, Peter; Meneghetti, Massimo; Merten, Julian; Nonino, Mario; Ogaz, Sara; Rosati, Piero; Umetsu, Keiichi; van der Wel, Arjen
2012-09-20
Re-ionization of the intergalactic medium occurred in the early Universe at redshift z ≈ 6-11, following the formation of the first generation of stars. Those young galaxies (where the bulk of stars formed) at a cosmic age of less than about 500 million years (z ≲ 10) remain largely unexplored because they are at or beyond the sensitivity limits of existing large telescopes. Understanding the properties of these galaxies is critical to identifying the source of the radiation that re-ionized the intergalactic medium. Gravitational lensing by galaxy clusters allows the detection of high-redshift galaxies fainter than what otherwise could be found in the deepest images of the sky. Here we report multiband observations of the cluster MACS J1149+2223 that have revealed (with high probability) a gravitationally magnified galaxy from the early Universe, at a redshift of z = 9.6 ± 0.2 (that is, a cosmic age of 490 ± 15 million years, or 3.6 per cent of the age of the Universe). We estimate that it formed less than 200 million years after the Big Bang (at the 95 per cent confidence level), implying a formation redshift of ≲14. Given the small sky area that our observations cover, faint galaxies seem to be abundant at such a young cosmic age, suggesting that they may be the dominant source for the early re-ionization of the intergalactic medium.
ORIGIN: Metal Creation and Evolution From The Cosmic Dawn
NASA Astrophysics Data System (ADS)
Piro, L.; den Herder, J. W.; Ohashi, T.; Hartmann, D. H.; Kouveliotou, C.
2011-08-01
ORIGIN is a mission designed to use Gamma-Ray Bursts as a unique probe to study the cosmic history of baryons and the metal enrichment from the first stars up to the present Universe. Reconstructing the cosmic history of metals, from the first population of stars to the processes involved in the formation of galaxies and clusters of galaxies, is a key observational challenge. Observing any single star in the early Universe is in fact beyond the reach of presently planned mission. By measuring GRB redshifts and abundances in the circumburst medium deep into the era of re-ionization (z>6), ORIGIN will discover when star formation started and how it evolved into the present day structures. ORIGIN will collect 400 GRBs per year covering the full redshift distribution. About twice per month a GRB from the re-ionization era will trigger the instruments. The resulting multi-element abundance patterns derived from high resolution X-ray and IR observations will map the evolving chemical composition of the early Universe, ``fingerprint'' the elusive PopIII stars, and constrain the shape of the Initial Mass Function (IMF) of the first stars. While not observing GRB afterglows, ORIGIN will map element abundances in local structures (z<2) by determining the properties of the hot IGM in clusters and groups of galaxies and the Warm-Hot Intergalactic Medium (WHIM). In this paper we focus on the use of GRB to track the earliest star populations.
Characterization of complex organics produced by proton irradiation of simulated Titan atmosphere
NASA Astrophysics Data System (ADS)
Taniuchi, T.; Hosogai, T.; Kaneko, T.; Kobayashi, K.
Titan the biggest satellite of Saturn has dense atmosphere that mainly consists of nitrogen and methane Voyager observation showed the presence of organic haze in Titan atmosphere Some scientists suggested the existence liquid hydrocarbon and water ice on surface Recently Huygens probe sent the analytical data about organic aerosol in Titan atmosphere to the Earth while in the Cassini-Huygens Mission It is supposed that Titan has somewhat similar environments to the primitive Earth so many observations and simulation experiments have been done where mainly UV light or electric discharges are used as energy sources Khare and Sagan reported that the organic materials produced by electric discharges in simulated Titan atmosphere tholin had structure with hydrocarbons nitriles hetero aromatic compounds and so on and that tholin yielded amino acids after hydrolysis They simulated the condition of upper atmosphere of Titan Though cosmic rays are possible effective energy source near the surface on Titan for the formation of organic compounds there were few laboratory simulations of cosmic ray tholin In this study we irradiated proton beam to the mixture of nitrogen and methane to verify the possibile formation of cosmic ray tholin in lower Titan atmosphere A mixture of methane 1-5 and nitrogen balance was irradiated with 3 MeV proton from a van de Graaff accelerator The resulting tholin was analyzed by Pyrolysis Py -GC MS and 1 H NMR to estimate the structure Gel permeation chromatography GPC and
Terrestrial Planets across Space and Time
NASA Astrophysics Data System (ADS)
Zackrisson, Erik; Calissendorff, Per; González, Juan; Benson, Andrew; Johansen, Anders; Janson, Markus
2016-12-01
The study of cosmology, galaxy formation, and exoplanets has now advanced to a stage where a cosmic inventory of terrestrial planets (TPs) may be attempted. By coupling semianalytic models of galaxy formation to a recipe that relates the occurrence of planets to the mass and metallicity of their host stars, we trace the population of TPs around both solar-mass (FGK type) and lower-mass (M dwarf) stars throughout all of cosmic history. We find that the mean age of TPs in the local universe is 7+/- 1 {Gyr} for FGK hosts and 8+/- 1 {Gyr} for M dwarfs. We estimate that hot Jupiters have depleted the population of TPs around FGK stars by no more than ≈ 10 % , and that only ≈ 10 % of the TPs at the current epoch are orbiting stars in a metallicity range for which such planets have yet to be confirmed. The typical TP in the local universe is located in a spheroid-dominated galaxy with a total stellar mass comparable to that of the Milky Way. When looking at the inventory of planets throughout the whole observable universe, we argue for a total of ≈ 1× {10}19 and ≈ 5× {10}20 TPs around FGK and M stars, respectively. Due to light travel time effects, the TPs on our past light cone exhibit a mean age of just 1.7 ± 0.2 Gyr. These results are discussed in the context of cosmic habitability, the Copernican principle, and searches for extraterrestrial intelligence at cosmological distances.
Evolution of Hot Gas in Elliptical Galaxies
NASA Technical Reports Server (NTRS)
Mathews, William G.
2004-01-01
This theory grant was awarded to study the curious nature, origin and evolution of hot gas in elliptical galaxies and their surrounding groups. Understanding the properties of this X-ray emitting gas has profound implications over the broad landscape of modern astrophysics: cosmology, galaxy formation, star formation, cosmic metal enrichment, galactic structure and dynamics, and the physics of hot gases containing dust and magnetic fields. One of our principal specific objectives was to interpret the marvelous new observations from the XMM and Chandru satellite X-ray telescopes.
Radiation effects in astrophysical ices
NASA Astrophysics Data System (ADS)
Boduch, Philippe; Dartois, Emmanuel; de Barros, Ana L. F.; da Silveira, Enio F.; Domaracka, Alicja; Lv, Xue-Yang; Palumbo, Maria Elisabetta; Pilling, Sergio; Rothard, Hermann; Seperuelo Duarte, Eduardo; Strazzulla, Giovanni
2015-07-01
The interaction of heavy ions with astrophysical ices was studied at different beamlines of GANIL by infrared absorption spectroscopy. This allowed simulating in the laboratory the physico-chemical modifications induced in icy objects in space, exposed to radiation fields such as the solar wind, magnetospheric particles and interstellar cosmic rays. We briefly discuss sputtering, destruction and formation of molecules, amorphization and compaction, implantation, and finally the formation of organic molecules. This latter topic is related to the question of the initial conditions for the emergence of life.
Protostar formation in the early universe.
Yoshida, Naoki; Omukai, Kazuyuki; Hernquist, Lars
2008-08-01
The nature of the first generation of stars in the universe remains largely unknown. Observations imply the existence of massive primordial stars early in the history of the universe, and the standard theory for the growth of cosmic structure predicts that structures grow hierarchically through gravitational instability. We have developed an ab initio computer simulation of the formation of primordial stars that follows the relevant atomic and molecular processes in a primordial gas in an expanding universe. The results show that primeval density fluctuations left over from the Big Bang can drive the formation of a tiny protostar with a mass 1% that of the Sun. The protostar is a seed for the subsequent formation of a massive primordial star.
The Average Star Formation Histories of Galaxies in Dark Matter Halos from z = 0-8
NASA Astrophysics Data System (ADS)
Behroozi, Peter S.; Wechsler, Risa H.; Conroy, Charlie
2013-06-01
We present a robust method to constrain average galaxy star formation rates (SFRs), star formation histories (SFHs), and the intracluster light (ICL) as a function of halo mass. Our results are consistent with observed galaxy stellar mass functions, specific star formation rates (SSFRs), and cosmic star formation rates (CSFRs) from z = 0 to z = 8. We consider the effects of a wide range of uncertainties on our results, including those affecting stellar masses, SFRs, and the halo mass function at the heart of our analysis. As they are relevant to our method, we also present new calibrations of the dark matter halo mass function, halo mass accretion histories, and halo-subhalo merger rates out to z = 8. We also provide new compilations of CSFRs and SSFRs; more recent measurements are now consistent with the buildup of the cosmic stellar mass density at all redshifts. Implications of our work include: halos near 1012 M ⊙ are the most efficient at forming stars at all redshifts, the baryon conversion efficiency of massive halos drops markedly after z ~ 2.5 (consistent with theories of cold-mode accretion), the ICL for massive galaxies is expected to be significant out to at least z ~ 1-1.5, and dwarf galaxies at low redshifts have higher stellar mass to halo mass ratios than previous expectations and form later than in most theoretical models. Finally, we provide new fitting formulae for SFHs that are more accurate than the standard declining tau model. Our approach places a wide variety of observations relating to the SFH of galaxies into a self-consistent framework based on the modern understanding of structure formation in ΛCDM. Constraints on the stellar mass-halo mass relationship and SFRs are available for download online.
Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere.
Almeida, João; Schobesberger, Siegfried; Kürten, Andreas; Ortega, Ismael K; Kupiainen-Määttä, Oona; Praplan, Arnaud P; Adamov, Alexey; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Dommen, Josef; Donahue, Neil M; Downard, Andrew; Dunne, Eimear; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Henschel, Henning; Jokinen, Tuija; Junninen, Heikki; Kajos, Maija; Kangasluoma, Juha; Keskinen, Helmi; Kupc, Agnieszka; Kurtén, Theo; Kvashin, Alexander N; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Leppä, Johannes; Loukonen, Ville; Makhmutov, Vladimir; Mathot, Serge; McGrath, Matthew J; Nieminen, Tuomo; Olenius, Tinja; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Riipinen, Ilona; Rissanen, Matti; Rondo, Linda; Ruuskanen, Taina; Santos, Filipe D; Sarnela, Nina; Schallhart, Simon; Schnitzhofer, Ralf; Seinfeld, John H; Simon, Mario; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Vaattovaara, Petri; Viisanen, Yrjo; Virtanen, Annele; Vrtala, Aron; Wagner, Paul E; Weingartner, Ernest; Wex, Heike; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Yli-Juuti, Taina; Carslaw, Kenneth S; Kulmala, Markku; Curtius, Joachim; Baltensperger, Urs; Worsnop, Douglas R; Vehkamäki, Hanna; Kirkby, Jasper
2013-10-17
Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.
Laurent, Olivier; Ancelet, Sophie; Richardson, David B; Hémon, Denis; Ielsch, Géraldine; Demoury, Claire; Clavel, Jacqueline; Laurier, Dominique
2013-05-01
Previous epidemiological studies and quantitative risk assessments (QRA) have suggested that natural background radiation may be a cause of childhood leukemia. The present work uses a QRA approach to predict the excess risk of childhood leukemia in France related to three components of natural radiation: radon, cosmic rays and terrestrial gamma rays, using excess relative and absolute risk models proposed by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Both models were developed from the Life Span Study (LSS) of Japanese A-bomb survivors. Previous risk assessments were extended by considering uncertainties in radiation-related leukemia risk model parameters as part of this process, within a Bayesian framework. Estimated red bone marrow doses cumulated during childhood by the average French child due to radon, terrestrial gamma and cosmic rays are 4.4, 7.5 and 4.3 mSv, respectively. The excess fractions of cases (expressed as percentages) associated with these sources of natural radiation are 20 % [95 % credible interval (CI) 0-68 %] and 4 % (95 % CI 0-11 %) under the excess relative and excess absolute risk models, respectively. The large CIs, as well as the different point estimates obtained under these two models, highlight the uncertainties in predictions of radiation-related childhood leukemia risks. These results are only valid provided that models developed from the LSS can be transferred to the population of French children and to chronic natural radiation exposures, and must be considered in view of the currently limited knowledge concerning other potential risk factors for childhood leukemia. Last, they emphasize the need for further epidemiological investigations of the effects of natural radiation on childhood leukemia to reduce uncertainties and help refine radiation protection standards.
European Pulsar Timing Array limits on an isotropic stochastic gravitational-wave background
NASA Astrophysics Data System (ADS)
Lentati, L.; Taylor, S. R.; Mingarelli, C. M. F.; Sesana, A.; Sanidas, S. A.; Vecchio, A.; Caballero, R. N.; Lee, K. J.; van Haasteren, R.; Babak, S.; Bassa, C. G.; Brem, P.; Burgay, M.; Champion, D. J.; Cognard, I.; Desvignes, G.; Gair, J. R.; Guillemot, L.; Hessels, J. W. T.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lassus, A.; Lazarus, P.; Liu, K.; Osłowski, S.; Perrodin, D.; Petiteau, A.; Possenti, A.; Purver, M. B.; Rosado, P. A.; Smits, R.; Stappers, B.; Theureau, G.; Tiburzi, C.; Verbiest, J. P. W.
2015-11-01
We present new limits on an isotropic stochastic gravitational-wave background (GWB) using a six pulsar data set spanning 18 yr of observations from the 2015 European Pulsar Timing Array data release. Performing a Bayesian analysis, we fit simultaneously for the intrinsic noise parameters for each pulsar, along with common correlated signals including clock, and Solar system ephemeris errors, obtaining a robust 95 per cent upper limit on the dimensionless strain amplitude A of the background of A < 3.0 × 10-15 at a reference frequency of 1 yr-1 and a spectral index of 13/3, corresponding to a background from inspiralling supermassive black hole binaries, constraining the GW energy density to Ωgw(f)h2 < 1.1 × 10-9 at 2.8 nHz. We also present limits on the correlated power spectrum at a series of discrete frequencies, and show that our sensitivity to a fiducial isotropic GWB is highest at a frequency of ˜5 × 10-9 Hz. Finally, we discuss the implications of our analysis for the astrophysics of supermassive black hole binaries, and present 95 per cent upper limits on the string tension, Gμ/c2, characterizing a background produced by a cosmic string network for a set of possible scenarios, and for a stochastic relic GWB. For a Nambu-Goto field theory cosmic string network, we set a limit Gμ/c2 < 1.3 × 10-7, identical to that set by the Planck Collaboration, when combining Planck and high-ℓ cosmic microwave background data from other experiments. For a stochastic relic background, we set a limit of Ω ^relic_gw(f)h^2<1.2 × 10^{-9}, a factor of 9 improvement over the most stringent limits previously set by a pulsar timing array.
Hipkiss, Alan R
2010-10-01
Because accumulation of altered proteins is the most common biochemical symptom of aging, it is at least possible that such proteotoxicity may cause aging and influence life span. The life span of the nematode worm Caenorhabditis elegans is strongly influenced by changes in the intracellular concentration of methylglyoxal (MG), a putative source of much age-related proteotoxicity and organelle, cellular, and molecular dysfunction. Glycerol has recently been shown to shorten, whereas oxaloacetate has been found to extend, life span in C. elegans. It is suggested here that glycerol and oxaloacetate exert opposing effects on MG formation in C. elegans. It is proposed that, if not secreted by aquaporin, glycerol is converted to glycerol phosphate and then to dihydroxyacetone phosphate (DHAP) via a reaction requiring nicotinamide adenine dinucleotide (NAD(+)). This inhibits operation of the glycerol phosphate cycle in which DHAP is converted into glycerol phosphate, which concomitantly regenerates NAD(+) from NADH, thereby ensuring glycolytic oxidation of glyceraldehyde-3-phosphate (G3P). Because DHAP and G3P spontaneously decompose into MG, and NAD(+) is required for conversion of G3P into phosphoglycerate, the glycerol-induced increased DHAP formation and decreased NAD(+) availability will increase the potential for MG generation. In contrast, oxaloacetate may decrease MG generation by stimulating the operation of the malate-oxaloacetate shuttle, in which oxaloacetate is converted to malate, which regenerates NAD(+) from NADH. By the ensuing G3P oxidation, increased NAD(+) availability will decrease the potential for MG formation. It should be noted that mitochondria are involved in the operation of the above cycle/shuttles and that increased NAD(+) availability also stimulates those sirtuin activities that increase mitogenesis and mitochondrial activity via effects on signal transduction and gene expression, which frequently accompany dietary restriction-induced life span extension.
Detection of low tension cosmic superstrings
NASA Astrophysics Data System (ADS)
Chernoff, David F.; Tye, S.-H. Henry
2018-05-01
Cosmic superstrings of string theory differ from conventional cosmic strings of field theory. We review how the physical and cosmological properties of the macroscopic string loops influence experimental searches for these relics from the epoch of inflation. The universe's average density of cosmic superstrings can easily exceed that of conventional cosmic strings having the same tension by two or more orders of magnitude. The cosmological behavior of the remnant superstring loops is qualitatively distinct because the string tension is exponentially smaller than the string scale in flux compactifications in string theory. Low tension superstring loops live longer, experience less recoil (rocket effect from the emission of gravitational radiation) and tend to cluster like dark matter in galaxies. Clustering enhances the string loop density with respect to the cosmological average in collapsed structures in the universe. The enhancement at the Sun's position is ~ 105. We develop a model encapsulating the leading order string theory effects, the current understanding of the string network loop production and the influence of cosmological structure formation suitable for forecasting the detection of superstring loops via optical microlensing, gravitational wave bursts and fast radio bursts. We evaluate the detection rate of bursts from cusps and kinks by LIGO- and LISA-like experiments. Clustering dominates rates for G μ < 10‑11.9 (LIGO cusp), G μ<10‑11.2 (LISA cusp), G μ < 10‑10.6 (LISA kink); we forecast experimentally accessible gravitational wave bursts for G μ>10‑14.2 (LIGO cusp), G μ>10‑15 (LISA cusp) and G μ>10‑ 14.1 (LISA kink).
On the connectivity of the cosmic web: theory and implications for cosmology and galaxy formation
NASA Astrophysics Data System (ADS)
Codis, Sandrine; Pogosyan, Dmitri; Pichon, Christophe
2018-06-01
Cosmic connectivity and multiplicity, i.e. the number of filaments globally or locally connected to a given cluster is a natural probe of the growth of structure and in particular of the nature of dark energy. It is also a critical ingredient driving the assembly history of galaxies as it controls mass and angular momentum accretion. The connectivity of the cosmic web is investigated here via the persistent skeleton. This tool identifies topologically the ridges of the cosmic landscape which allows us to investigate how the nodes of the cosmic web are connected together. When applied to Gaussian random fields corresponding to the high redshift universe, it is found that on average the nodes are connected to exactly κ = 4 neighbours in two dimensions and ˜6.1 in three dimensions. Investigating spatial dimensions up to d = 6, typical departures from a cubic lattice κ = 2d are shown to scale like the power 7/4 of the dimension. These numbers strongly depend on the height of the peaks: the higher the peak the larger the connectivity. Predictions from first principles based on peak theory are shown to reproduce well the connectivity and multiplicity of Gaussian random fields and cosmological simulations. As an illustration, connectivity is quantified in galaxy lensing convergence maps and large dark haloes catalogues. As a function of redshift and scale the mean connectivity decreases in a cosmology-dependent way. As a function of halo mass it scales like 10/3 times the log of the mass. Implications on galactic scales are discussed.
Introduction to Particle Acceleration in the Cosmos
NASA Technical Reports Server (NTRS)
Gallagher, D. L.; Horwitz, J. L.; Perez, J.; Quenby, J.
2005-01-01
Accelerated charged particles have been used on Earth since 1930 to explore the very essence of matter, for industrial applications, and for medical treatments. Throughout the universe nature employs a dizzying array of acceleration processes to produce particles spanning twenty orders of magnitude in energy range, while shaping our cosmic environment. Here, we introduce and review the basic physical processes causing particle acceleration, in astrophysical plasmas from geospace to the outer reaches of the cosmos. These processes are chiefly divided into four categories: adiabatic and other forms of non-stochastic acceleration, magnetic energy storage and stochastic acceleration, shock acceleration, and plasma wave and turbulent acceleration. The purpose of this introduction is to set the stage and context for the individual papers comprising this monograph.
A Novel Application of Fourier Transform Spectroscopy with HEMT Amplifiers at Microwave Frequencies
NASA Technical Reports Server (NTRS)
Wilkinson, David T.; Page, Lyman
1995-01-01
The goal was to develop cryogenic high-electron-mobility transistor (HEMT) based radiometers and use them to measure the anisotropy in the cosmic microwave background (CMB). In particular, a novel Fourier transform spectrometer (FTS) built entirely of waveguide components would be developed. A dual-polarization Ka-band HEMT radiometer and a similar Q-band radiometer were built. In a series of measurements spanning three years made from a ground-based site in Saskatoon, SK, the amplitude, frequency spectrum, and spatial frequency spectrum of the anisotropy were measured. A prototype Ka-band FTS was built and tested, and a simplified version is proposed for the MAP satellite mission. The 1/f characteristics of HEMT amplifiers were quantified using correlation techniques.
NASA Astrophysics Data System (ADS)
Alimi, J.-M.; Füzfa, A.; Boucher, V.; Rasera, Y.; Courtin, J.; Corasaniti, P.-S.
2010-01-01
Quintessence has been proposed to account for dark energy (DE) in the Universe. This component causes a typical modification of the background cosmic expansion, which, in addition to its clustering properties, can leave a potentially distinctive signature on large-scale structures. Many previous studies have investigated this topic, particularly in relation to the non-linear regime of structure formation. However, no careful pre-selection of viable quintessence models with high precision cosmological data was performed. Here we show that this has led to a misinterpretation (and underestimation) of the imprint of quintessence on the distribution of large-scale structures. To this purpose, we perform a likelihood analysis of the combined Supernova Ia UNION data set and Wilkinson Microwave Anisotropy Probe 5-yr data to identify realistic quintessence models. These are specified by different model parameter values, but still statistically indistinguishable from the vanilla Λ cold dark matter (ΛCDM). Differences are especially manifest in the predicted amplitude and shape of the linear matter power spectrum though these remain within the uncertainties of the Sloan Digital Sky Survey data. We use these models as a benchmark for studying the clustering properties of dark matter haloes by performing a series of high-resolution N-body simulations. In this first paper, we specifically focus on the non-linear matter power spectrum. We find that realistic quintessence models allow for relevant differences of the dark matter distribution with respect to the ΛCDM scenario well into the non-linear regime, with deviations of up to 40 per cent in the non-linear power spectrum. Such differences are shown to depend on the nature of DE, as well as the scale and epoch considered. At small scales (k ~ 1-5hMpc-1, depending on the redshift), the structure formation process is about 20 per cent more efficient than in ΛCDM. We show that these imprints are a specific record of the cosmic structure formation history in DE cosmologies and therefore cannot be accounted for in standard fitting functions of the non-linear matter power spectrum.
NASA Technical Reports Server (NTRS)
Von Glahn, Uwe H; Gray, Vernon H
1954-01-01
Studies were made to determine the effect of ice formations on the section drag of a 6.9-foot-chord 36 degree swept NACA 63A-009 airfoil with partial-span leading-edge slat. In general, the icing of a thin swept airfoil will result in greater aerodynamic penalties than for a thick unswept airfoil. Glaze-ice formations at the leading edge of the airfoil caused large increases in section drag even at liquid-water content of 0.39 gram per cubic meter. The use of an ice-free parting strip in the stagnation region caused a negligible change in drag compared with a completely unheated airfoil. Cyclic de-icing when properly applied caused the drag to decrease almost to the bare-airfoil drag value.
The 45th Annual Meteoritical Society Meeting
NASA Technical Reports Server (NTRS)
Jones, P. (Compiler); Turner, L. (Compiler)
1982-01-01
Impact craters and shock effects, chondrite formation and evolution, meteorites, chondrules, irons, nebular processes and meteorite parent bodies, regoliths and breccias, antarctic meteorite curation, isotopic studies of meteorites and lunar samples, organics and terrestrial weathering, refractory inclusions, cosmic dust, particle irradiations before and after compaction, and mineralogic studies and analytical techniques are discussed.
Experimental investigations relating to the properties and formation of cosmic grains
NASA Technical Reports Server (NTRS)
Donn, B.
1986-01-01
The interpretation of observations or theoretical analyses of interstellar processes requires a sound knowledge of relevant data. In many instances this can only be obtained by experiments carried out under appropriate conditions. The availability of such data applicable to the subject and the techniques for obtaining the data are surveyed.
SPECS: The Kilometer-baseline Far-IR Interferometer in NASA's Space Science Roadmap Presentation
NASA Technical Reports Server (NTRS)
Abel, Tom; Allen, Ron; Benford, Dominic; Blain, Andrew; Bombardelli, Claudio; Calzetti, Daniela; DiPirro, Michael J.; Ehrenfreund, Pascale; Evans, Neal; Fischer, Jackie
2004-01-01
A viewgraph presentation describing the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) mission is shown. The topics include: 1) Context: community planning and study status; 2) Science goals; 3) Mission requirements; 4) Mission concepts for SPIRIT and SPECS; and 5) Tethered formation flying, a key enabling technology.
NASA Astrophysics Data System (ADS)
Burton, Michael G.
2010-10-01
Antarctica provides a unique environment for astronomers to practice their trade. The cold, dry and stable air found above the high Antarctic plateau, as well as the pure ice below, offers new opportunities for the conduct of observational astronomy across both the photon and the particle spectrum. The summits of the Antarctic plateau provide the best seeing conditions, the darkest skies and the most transparent atmosphere of any earth-based observing site. Astronomical activities are now underway at four plateau sites: the Amundsen-Scott South Pole Station, Concordia Station at Dome C, Kunlun Station at Dome A and Fuji Station at Dome F, in addition to long duration ballooning from the coastal station of McMurdo, at stations run by the USA, France/Italy, China, Japan and the USA, respectively. The astronomy conducted from Antarctica includes optical, infrared, terahertz and sub-millimetre astronomy, measurements of cosmic microwave background anisotropies, solar astronomy, as well as high energy astrophysics involving the measurement of cosmic rays, gamma rays and neutrinos. Antarctica is also the richest source of meteorites on our planet. An extensive range of site testing measurements have been made over the high plateau sites. In this article, we summarise the facets of Antarctica that are driving developments in astronomy there, and review the results of the site testing experiments undertaken to quantify those characteristics of the Antarctic plateau relevant for astronomical observation. We also outline the historical development of the astronomy on the continent, and then review the principal scientific results to have emerged over the past three decades of activity in the discipline. These range from determination of the dominant frequencies of the 5 min solar oscillation in 1979 to the highest angular scale measurements yet made of the power spectrum of the CMBR anisotropies in 2010. They span through infrared views of the galactic ecology in star formation complexes in 1999, the first clear demonstration that the Universe was flat in 2000, the first detection of polarization in the CMBR in 2002, the mapping of the warm molecular gas across the ~ 300 pc extent of the Central Molecular Zone of our Galaxy in 2003, the measurement of cosmic neutrinos in 2005, and imaging of the thermal Sunyaev Zel’dovich effect in galaxy clusters in 2008. This review also discusses how science is conducted in Antarctica, and in particular the difficulties, as well as the advantages, faced by astronomers seeking to bring their experiments there. It also reviews some of the political issues that will be encountered, both at national and international level. Finally, the review discusses where Antarctic astronomy may be heading in the coming decade, in particular plans for infrared and terahertz astronomy, including the new facilities being considered for these wavebands at the high plateau stations.
Inverted initial conditions: Exploring the growth of cosmic structure and voids
Pontzen, Andrew; Roth, Nina; Peiris, Hiranya V.; ...
2016-05-18
We introduce and explore “paired” cosmological simulations. A pair consists of an A and B simulation with initial conditions related by the inversion δ A(x,t initial) = –δ B(x,t initial) (underdensities substituted for overdensities and vice versa). We argue that the technique is valuable for improving our understanding of cosmic structure formation. The A and B fields are by definition equally likely draws from ΛCDM initial conditions, and in the linear regime evolve identically up to the overall sign. As nonlinear evolution takes hold, a region that collapses to form a halo in simulation A will tend to expand tomore » create a void in simulation B. Applications include (i) contrasting the growth of A-halos and B-voids to test excursion-set theories of structure formation, (ii) cross-correlating the density field of the A and B universes as a novel test for perturbation theory, and (iii) canceling error terms by averaging power spectra between the two boxes. Furthermore, generalizations of the method to more elaborate field transformations are suggested.« less
NASA Astrophysics Data System (ADS)
Topchiev, N. P.; Galper, A. M.; Arkhangelskiy, A. I.; Arkhangelskaja, I. V.; Kheymits, M. D.; Suchkov, S. I.; Yurkin, Y. T.
2017-01-01
Scientific project GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) relates to the new generation of space observatories intended to perform an indirect search for signatures of dark matter in the cosmic-ray fluxes, measurements of characteristics of diffuse gamma-ray emission and gamma-rays from the Sun during periods of solar activity, gamma-ray bursts, extended and point gamma-ray sources, electron/positron and cosmic-ray nuclei fluxes up to TeV energy region by means of the GAMMA-400 gamma-ray telescope represents the core of the scientific complex. The system of triggers and counting signals formation of the GAMMA-400 gamma-ray telescope constitutes the pipelined processor structure which collects data from the gamma-ray telescope subsystems and produces summary information used in forming the trigger decision for each event. The system design is based on the use of state-of-the-art reconfigurable logic devices and fast data links. The basic structure, logic of operation and distinctive features of the system are presented.
Charting the parameter space of the global 21-cm signal
NASA Astrophysics Data System (ADS)
Cohen, Aviad; Fialkov, Anastasia; Barkana, Rennan; Lotem, Matan
2017-12-01
The early star-forming Universe is still poorly constrained, with the properties of high-redshift stars, the first heating sources and reionization highly uncertain. This leaves observers planning 21-cm experiments with little theoretical guidance. In this work, we explore the possible range of high-redshift parameters including the star formation efficiency and the minimal mass of star-forming haloes; the efficiency, spectral energy distribution and redshift evolution of the first X-ray sources; and the history of reionization. These parameters are only weakly constrained by available observations, mainly the optical depth to the cosmic microwave background. We use realistic semi-numerical simulations to produce the global 21-cm signal over the redshift range z = 6-40 for each of 193 different combinations of the astrophysical parameters spanning the allowed range. We show that the expected signal fills a large parameter space, but with a fixed general shape for the global 21-cm curve. Even with our wide selection of models, we still find clear correlations between the key features of the global 21-cm signal and underlying astrophysical properties of the high-redshift Universe, namely the Ly α intensity, the X-ray heating rate and the production rate of ionizing photons. These correlations can be used to directly link future measurements of the global 21-cm signal to astrophysical quantities in a mostly model-independent way. We identify additional correlations that can be used as consistency checks.
Cold dark matter: Controversies on small scales.
Weinberg, David H; Bullock, James S; Governato, Fabio; Kuzio de Naray, Rachel; Peter, Annika H G
2015-10-06
The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way's dwarf galaxy satellites. We review the current observational and theoretical status of these "small-scale controversies." Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years.
Winds of change: reionization by starburst galaxies
NASA Astrophysics Data System (ADS)
Sharma, Mahavir; Theuns, Tom; Frenk, Carlos; Bower, Richard G.; Crain, Robert A.; Schaller, Matthieu; Schaye, Joop
2017-06-01
We investigate the properties of the galaxies that reionized the Universe and the history of cosmic reionization using the 'Evolution and Assembly of Galaxies and their Environments' (eagle) cosmological hydrodynamical simulations. We obtain the evolution of the escape fraction of ionizing photons in galaxies assuming that galactic winds create channels through which 20 per cent of photons escape when the local surface density of star formation is greater than 0.1 M⊙ yr-1 kpc-2. Such threshold behaviour for the generation of winds is observed, and the rare local objects that have such high star formation surface densities exhibit high escape fractions of ˜10 per cent. In our model, the luminosity-weighted mean escape fraction increases with redshift as \\bar{f}_esc=0.045 ((1+z)/4)^{1.1} at z > 3, and the galaxy number weighted mean as
Formation of Glycerol through Hydrogenation of CO Ice under Prestellar Core Conditions
NASA Astrophysics Data System (ADS)
Fedoseev, G.; Chuang, K.-J.; Ioppolo, S.; Qasim, D.; van Dishoeck, E. F.; Linnartz, H.
2017-06-01
Observational studies reveal that complex organic molecules (COMs) can be found in various objects associated with different star formation stages. The identification of COMs in prestellar cores, I.e., cold environments in which thermally induced chemistry can be excluded and radiolysis is limited by cosmic rays and cosmic-ray-induced UV photons, is particularly important as this stage sets up the initial chemical composition from which ultimately stars and planets evolve. Recent laboratory results demonstrate that molecules as complex as glycolaldehyde and ethylene glycol are efficiently formed on icy dust grains via nonenergetic atom addition reactions between accreting H atoms and CO molecules, a process that dominates surface chemistry during the “CO freeze-out stage” in dense cores. In the present study we demonstrate that a similar mechanism results in the formation of the biologically relevant molecule glycerol—HOCH2CH(OH)CH2OH—a three-carbon-bearing sugar alcohol necessary for the formation of membranes of modern living cells and organelles. Our experimental results are fully consistent with a suggested reaction scheme in which glycerol is formed along a chain of radical-radical and radical-molecule interactions between various reactive intermediates produced upon hydrogenation of CO ice or its hydrogenation products. The tentative identification of the chemically related simple sugar glyceraldehyde—HOCH2CH(OH)CHO—is discussed as well. These new laboratory findings indicate that the proposed reaction mechanism holds much potential to form even more complex sugar alcohols and simple sugars.
Haymaker, W; Zeman, W; Turnbill, C E; Clayton, R K; Bailey, O T; Samorajski, T; Vogel, F S; Lloyd, B; Cruty, M R; Benton, E V; Kraft, L M
1975-04-01
Tissue reactions were found around the monitor (dosimeter) assemblies that had been implanted beneath the scalp of the five pocket mice that flew on Apollo XVII. Mitosis in the dentate gyrus of the hippocampal formation was considerably reduced in comparison with that in control animals. Otherwise the brain tissue as well as the menings in the flight animals appeared unaltered. Since the animals were exposed primarily to high Z-high energy (HZE) cosmic ray particles at the lower end of the high LET spectrum, the lack of changes in the brain cannot be taken as evidence that the brain will suffer no damage from the heavier HZE particles on prolonged manned missions.
Massive stars: privileged sources of cosmic-rays for interstellar astrochemistry
NASA Astrophysics Data System (ADS)
De Becker, M.
2015-01-01
Massive stars can be considered as crucial engines for interstellar physics. They are indeed the main providers of UV radiation field, and constitute a substantial source of chemical enrichment. On their evolution time-scale (at most about 10 Myr), they typically stay close to their formation site, i.e. close to molecular clouds very rich in interstellar molecules. These stellar objects have also the property to be involved in particle acceleration processes leading to the production of high energy charged particles (cosmic-rays). After rejection in the interstellar medium, these particles will play a substantial role in processes such as those simulated in various facilities dedicated to experimental astrochemistry. This short contribution intends to put these particles, crucial for astrochemistry, in their adequate astrophysical context.
A Quantitative Assessment of Student Performance and Examination Format
ERIC Educational Resources Information Center
Davison, Christopher B.; Dustova, Gandzhina
2017-01-01
This research study describes the correlations between student performance and examination format in a higher education teaching and research institution. The researchers employed a quantitative, correlational methodology utilizing linear regression analysis. The data was obtained from undergraduate student test scores over a three-year time span.…
NASA Technical Reports Server (NTRS)
Kogut, Alan J.; Fixsen, D. J.; Chuss, D. T.; Dotson, J.; Dwek, E.; Halpern, M.; Hinshaw, G. F.; Meyer, S. M.; Moseley, S. H.; Seiffert, M. D.;
2011-01-01
The Primordial Inflation Explorer (PIXIE) is a concept for an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. The instrument consists of a polarizing Michelson interferometer configured as a nulling polarimeter to measure the difference spectrum between orthogonal linear polarizations from two co-aligned beams. Either input can view the sky or a temperature-controlled absolute reference blackbody calibrator. Rhe proposed instrument can map the absolute intensity and linear polarization (Stokes I, Q, and U parameters) over the full sky in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). Multi-moded optics provide background-limited sensitivity using only 4 detectors, while the highly symmetric design and multiple signal modulations provide robust rejection of potential systematic errors. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10..3 at 5 standard deviations. The rich PIXIE data set can also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy.
The Cosmology Large Angular Scale Surveyor
NASA Technical Reports Server (NTRS)
Harrington, Kathleen; Marriage, Tobias; Ali, Aamir; Appel, John; Bennett, Charles; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe;
2016-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from inflation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).
The Transition from Earth-Centred Biology to Cosmic Life
NASA Astrophysics Data System (ADS)
Wickramasinghe, N. Chandra; Tokoro, Gensuke; Wainwright, Milton
A paradigm shift with potentially profound implications has been taking place over the past 3 decades. The convergence of research in diverse disciplines points to life being a cosmic phenomenon. A near-infinite information content of life appears to have evolved on a cosmological scale -- over vast distances, and enormous spans of time. It appears highly unlikely that life could have emerged from chemicals in "some warm little pond" on the Earth; in contrast we maintain that every species of life on the Earth, including Homo sapiens, is in essence the result of an assembly of cosmologically derived viral genes. The ingress of such genes that continues to the present day led to their accommodation within the genomes of evolving lineages, sifted according to the "natural processes of selection", a mechanism first enunciated by Patrick Matthews and later used by Darwin. The evidence for this point of view has now grown to the point where we believe, it will soon need to be accepted by the majority of the scientific community. This is particularly critical, since we suggest that new diseases capable of threatening Man's existence could arrive to Earth from space. Moreover, we need to understand that we must live in harmony with the Earth and its ever-changing biosphere if we are to coexist with it.
New isotopic clues to solar system formation
NASA Technical Reports Server (NTRS)
Lee, T.
1979-01-01
The presence of two new extinct nuclides Al-26 and Pd-107 with half lives of approximately one million years in the early solar system implies that there were nucleosynthetic activities involving a great many elements almost at the instant of solar system formation. Rate gas and oxygen isotopic abundance variations ('anomalies') relative to the 'cosmic' composition were observed in a variety of planetary objects, which indicates that isotopic heterogeneities caused by the incomplete mixing of distinct nucleosynthesis components permeate the entire solar system. These new results have major implications for cosmochronology, nucleosynthesis theory, star formation, planetary heating, and the genetic relationship between different planetary bodies
Geomagnetic Reversals of the Late Jurassic and Early Cretaceous Captured in a North China Core
NASA Astrophysics Data System (ADS)
Kuhn, T.; Fu, R. R.; Kent, D. V.; Olsen, P. E.
2016-12-01
The Tuchengzi formation in North China nominally spans nearly 20 million years of the Late Jurassic and Early Cretaceous, an interval during which age calibration of the Geomagnetic Polarity Time Scale (GPTS) based on seafloor magnetic anomalies is poorly known. The overlying Yixian formation is of special paleontological interest due to an abundance of spectacularly preserved macrofossils of feathered non-avian dinosaurs, birds, mammals, and insects. Scarce fossils in the Tuchengzi, sparse accurate radiometric dates on both the Tuchengzi and overlying Yixian formation, and scant previous paleomagnetic studies on these formations motivated our application of magnetostratigraphy as a geochronological tool. We constructed a geomagnetic reversal sequence from the upper 142m of a 200m core extracted in Liaoning Province at Huangbanjigou spanning the lower Yixian Formation and the unconformably underlying Tuchengzi Formation. Thermal demagnetization up to 680°C in steps of 25-50°C revealed predominantly normal overprints consistent with the modern day field with unblocking temperatures between 125°C and as high as 550°C, as well as normal and reverse characteristic components with unblocking temperatures between 500°C and 680°C. Going up from the base of the core, there is a reverse polarity magnetozone >6m thick, followed by a 5m normal magnetozone, a 10m reverse magnetozone, a 25m normal magnetozone, and a 6m reverse magnetozone truncated by the Yixian-Tuchengzi unconformity. Above the unconformity, all 81m of core were normal. These results indicate that a meaningful polarity stratigraphy can be recovered from the Tuchengzi and Yixian formations that will be invaluable for correlations across the Tuchengzi and potentially the Yixian formations, which span thousands of square kilometers and vary in thickness by many hundreds of meters. The results also demonstrate that, in combination with accurate and precise radiometric dates, the Tuchengzi Formation has the potential to provide tight constraints on presently poorly constrained Late Jurassic and Early Cretaceous parts of the GPTS and provide an independent reversal time scale by which seafloor-anomaly based time scales can be refined.
Physics of primordial star formation
NASA Astrophysics Data System (ADS)
Yoshida, Naoki
2012-09-01
The study of primordial star formation has a history of nearly sixty years. It is generally thought that primordial stars are one of the key elements in a broad range of topics in astronomy and cosmology, from Galactic chemical evolution to the formation of super-massive blackholes. We review recent progress in the theory of primordial star formation. The standard theory of cosmic structure formation posits that the present-day rich structure of the Universe developed through gravitational amplification of tiny matter density fluctuations left over from the Big Bang. It has become possible to study primordial star formation rigorously within the framework of the standard cosmological model. We first lay out the key physical processes in a primordial gas. Then, we introduce recent developments in computer simulations. Finally, we discuss prospects for future observations of the first generation of stars.
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bethermin, M.; Bielewicz, P.; Blagrave, K.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Kalberla, P.; Keihänen, E.; Kerp, J.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Serra, P.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Welikala, N.; White, M.; White, S. D. M.; Winkel, B.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
We present new measurements of cosmic infrared background (CIB) anisotropies using Planck. Combining HFI data with IRAS, the angular auto- and cross-frequency power spectrum is measured from 143 to 3000 GHz, and the auto-bispectrum from 217 to 545 GHz. The total areas used to compute the CIB power spectrum and bispectrum are about 2240 and 4400 deg2, respectively. After careful removal of the contaminants (cosmic microwave background anisotropies, Galactic dust, and Sunyaev-Zeldovich emission), and a complete study of systematics, the CIB power spectrum is measured with unprecedented signal to noise ratio from angular multipoles ℓ ~ 150 to 2500. The bispectrum due to the clustering of dusty, star-forming galaxies is measured from ℓ ~ 130 to 1100, with a total signal to noise ratio of around 6, 19, and 29 at 217, 353, and 545 GHz, respectively. Two approaches are developed for modelling CIB power spectrum anisotropies. The first approach takes advantage of the unique measurements by Planck at large angular scales, and models only the linear part of the power spectrum, with a mean bias of dark matter haloes hosting dusty galaxies at a given redshift weighted by their contribution to the emissivities. The second approach is based on a model that associates star-forming galaxies with dark matter haloes and their subhaloes, using a parametrized relation between the dust-processed infrared luminosity and (sub-)halo mass. The two approaches simultaneously fit all auto- and cross-power spectra very well. We find that the star formation history is well constrained up to redshifts around 2, and agrees with recent estimates of the obscured star-formation density using Spitzer and Herschel. However, at higher redshift, the accuracy of the star formation history measurement is strongly degraded by the uncertainty in the spectral energy distribution of CIB galaxies. We also find that the mean halo mass which is most efficient at hosting star formation is log (Meff/M⊙) = 12.6 and that CIB galaxies have warmer temperatures as redshift increases. The CIB bispectrum is steeper than that expected from the power spectrum, although well fitted by a power law; this gives some information about the contribution of massive haloes to the CIB bispectrum. Finally, we show that the same halo occupation distribution can fit all power spectra simultaneously. The precise measurements enabled by Planck pose new challenges for the modelling of CIB anisotropies, indicating the power of using CIB anisotropies to understand the process of galaxy formation.
NASA Astrophysics Data System (ADS)
Kasper, Justin C.; Abiad, Robert; Austin, Gerry; Balat-Pichelin, Marianne; Bale, Stuart D.; Belcher, John W.; Berg, Peter; Bergner, Henry; Berthomier, Matthieu; Bookbinder, Jay; Brodu, Etienne; Caldwell, David; Case, Anthony W.; Chandran, Benjamin D. G.; Cheimets, Peter; Cirtain, Jonathan W.; Cranmer, Steven R.; Curtis, David W.; Daigneau, Peter; Dalton, Greg; Dasgupta, Brahmananda; DeTomaso, David; Diaz-Aguado, Millan; Djordjevic, Blagoje; Donaskowski, Bill; Effinger, Michael; Florinski, Vladimir; Fox, Nichola; Freeman, Mark; Gallagher, Dennis; Gary, S. Peter; Gauron, Tom; Gates, Richard; Goldstein, Melvin; Golub, Leon; Gordon, Dorothy A.; Gurnee, Reid; Guth, Giora; Halekas, Jasper; Hatch, Ken; Heerikuisen, Jacob; Ho, George; Hu, Qiang; Johnson, Greg; Jordan, Steven P.; Korreck, Kelly E.; Larson, Davin; Lazarus, Alan J.; Li, Gang; Livi, Roberto; Ludlam, Michael; Maksimovic, Milan; McFadden, James P.; Marchant, William; Maruca, Bennet A.; McComas, David J.; Messina, Luciana; Mercer, Tony; Park, Sang; Peddie, Andrew M.; Pogorelov, Nikolai; Reinhart, Matthew J.; Richardson, John D.; Robinson, Miles; Rosen, Irene; Skoug, Ruth M.; Slagle, Amanda; Steinberg, John T.; Stevens, Michael L.; Szabo, Adam; Taylor, Ellen R.; Tiu, Chris; Turin, Paul; Velli, Marco; Webb, Gary; Whittlesey, Phyllis; Wright, Ken; Wu, S. T.; Zank, Gary
2016-12-01
The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic analyzer (ESA) on the ram side of SPP (SPAN-A) and an electron ESA on the anti-ram side (SPAN-B). The SPAN-A ion ESA has a time of flight section that enables it to sort particles by their mass/charge ratio, permitting differentiation of ion species. SPAN-A and -B are rotated relative to one another so their broad fields of view combine like the seams on a baseball to view the entire sky except for the region obscured by the heat shield and covered by SPC. Observations by SPC and SPAN produce the combined field of view and measurement capabilities required to fulfill the science objectives of SWEAP and Solar Probe Plus. SWEAP measurements, in concert with magnetic and electric fields, energetic particles, and white light contextual imaging will enable discovery and understanding of solar wind acceleration and formation, coronal and solar wind heating, and particle acceleration in the inner heliosphere of the solar system. SPC and SPAN are managed by the SWEAP Electronics Module (SWEM), which distributes power, formats onboard data products, and serves as a single electrical interface to the spacecraft. SWEAP data products include ion and electron velocity distribution functions with high energy and angular resolution. Full resolution data are stored within the SWEM, enabling high resolution observations of structures such as shocks, reconnection events, and other transient structures to be selected for download after the fact. This paper describes the implementation of the SWEAP Investigation, the driving requirements for the suite, expected performance of the instruments, and planned data products, as of mission preliminary design review.
Galaxy growth in a massive halo in the first billion years of cosmic history
NASA Astrophysics Data System (ADS)
Marrone, D. P.; Spilker, J. S.; Hayward, C. C.; Vieira, J. D.; Aravena, M.; Ashby, M. L. N.; Bayliss, M. B.; Béthermin, M.; Brodwin, M.; Bothwell, M. S.; Carlstrom, J. E.; Chapman, S. C.; Chen, Chian-Chou; Crawford, T. M.; Cunningham, D. J. M.; De Breuck, C.; Fassnacht, C. D.; Gonzalez, A. H.; Greve, T. R.; Hezaveh, Y. D.; Lacaille, K.; Litke, K. C.; Lower, S.; Ma, J.; Malkan, M.; Miller, T. B.; Morningstar, W. R.; Murphy, E. J.; Narayanan, D.; Phadke, K. A.; Rotermund, K. M.; Sreevani, J.; Stalder, B.; Stark, A. A.; Strandet, M. L.; Tang, M.; Weiß, A.
2018-01-01
According to the current understanding of cosmic structure formation, the precursors of the most massive structures in the Universe began to form shortly after the Big Bang, in regions corresponding to the largest fluctuations in the cosmic density field. Observing these structures during their period of active growth and assembly—the first few hundred million years of the Universe—is challenging because it requires surveys that are sensitive enough to detect the distant galaxies that act as signposts for these structures and wide enough to capture the rarest objects. As a result, very few such objects have been detected so far. Here we report observations of a far-infrared-luminous object at redshift 6.900 (less than 800 million years after the Big Bang) that was discovered in a wide-field survey. High-resolution imaging shows it to be a pair of extremely massive star-forming galaxies. The larger is forming stars at a rate of 2,900 solar masses per year, contains 270 billion solar masses of gas and 2.5 billion solar masses of dust, and is more massive than any other known object at a redshift of more than 6. Its rapid star formation is probably triggered by its companion galaxy at a projected separation of 8 kiloparsecs. This merging companion hosts 35 billion solar masses of stars and has a star-formation rate of 540 solar masses per year, but has an order of magnitude less gas and dust than its neighbour and physical conditions akin to those observed in lower-metallicity galaxies in the nearby Universe. These objects suggest the presence of a dark-matter halo with a mass of more than 100 billion solar masses, making it among the rarest dark-matter haloes that should exist in the Universe at this epoch.
Galaxy growth in a massive halo in the first billion years of cosmic history.
Marrone, D P; Spilker, J S; Hayward, C C; Vieira, J D; Aravena, M; Ashby, M L N; Bayliss, M B; Béthermin, M; Brodwin, M; Bothwell, M S; Carlstrom, J E; Chapman, S C; Chen, Chian-Chou; Crawford, T M; Cunningham, D J M; De Breuck, C; Fassnacht, C D; Gonzalez, A H; Greve, T R; Hezaveh, Y D; Lacaille, K; Litke, K C; Lower, S; Ma, J; Malkan, M; Miller, T B; Morningstar, W R; Murphy, E J; Narayanan, D; Phadke, K A; Rotermund, K M; Sreevani, J; Stalder, B; Stark, A A; Strandet, M L; Tang, M; Weiß, A
2018-01-04
According to the current understanding of cosmic structure formation, the precursors of the most massive structures in the Universe began to form shortly after the Big Bang, in regions corresponding to the largest fluctuations in the cosmic density field. Observing these structures during their period of active growth and assembly-the first few hundred million years of the Universe-is challenging because it requires surveys that are sensitive enough to detect the distant galaxies that act as signposts for these structures and wide enough to capture the rarest objects. As a result, very few such objects have been detected so far. Here we report observations of a far-infrared-luminous object at redshift 6.900 (less than 800 million years after the Big Bang) that was discovered in a wide-field survey. High-resolution imaging shows it to be a pair of extremely massive star-forming galaxies. The larger is forming stars at a rate of 2,900 solar masses per year, contains 270 billion solar masses of gas and 2.5 billion solar masses of dust, and is more massive than any other known object at a redshift of more than 6. Its rapid star formation is probably triggered by its companion galaxy at a projected separation of 8 kiloparsecs. This merging companion hosts 35 billion solar masses of stars and has a star-formation rate of 540 solar masses per year, but has an order of magnitude less gas and dust than its neighbour and physical conditions akin to those observed in lower-metallicity galaxies in the nearby Universe. These objects suggest the presence of a dark-matter halo with a mass of more than 100 billion solar masses, making it among the rarest dark-matter haloes that should exist in the Universe at this epoch.
Looking for early black holes signatures in the anisotropies of Cosmic backgrounds
NASA Astrophysics Data System (ADS)
Cappelluti, Nico
2016-04-01
We currently do not know how Super Massive Black Holes are seeded and grow to form the observed massive QSO at z~7. This is puzzling, because at that redshift the Universe was still too young to allow the growth of such massive black holes from stellar remnant black hole seeds. Theoretical models, taking into account the paucity of metals in the early Universe, explain this by invoking the formation of massive black holes seeds at z>10 as Direct Collapse Black holes of remnants of dead POPIII stars. As of today we cannot claim any detection of any high-z (z>7) black hole in their early stage of life. However, our recent measures of the arcminute scale joint fluctuations of the Cosmic X-ray Background and the Cosmic Infrared Background by Chandra and Spitzer can be explained by a population of highly absorbed z>10 Direct Collapse Black Holes.I will review the recent discoveries obtained with different instruments and by different teams and critically discuss these findings and the interpretations.
A new probe of the magnetic field power spectrum in cosmic web filaments
NASA Astrophysics Data System (ADS)
Hales, Christopher A.; Greiner, Maksim; Ensslin, Torsten A.
2015-08-01
Establishing the properties of magnetic fields on scales larger than galaxy clusters is critical for resolving the unknown origin and evolution of galactic and cluster magnetism. More generally, observations of magnetic fields on cosmic scales are needed for assessing the impacts of magnetism on cosmology, particle physics, and structure formation over the full history of the Universe. However, firm observational evidence for magnetic fields in large scale structure remains elusive. In an effort to address this problem, we have developed a novel statistical method to infer the magnetic field power spectrum in cosmic web filaments using observation of the two-point correlation of Faraday rotation measures from a dense grid of extragalactic radio sources. Here we describe our approach, which embeds and extends the pioneering work of Kolatt (1998) within the context of Information Field Theory (a statistical theory for Bayesian inference on spatially distributed signals; Enfllin et al., 2009). We describe prospects for observation, for example with forthcoming data from the ultra-deep JVLA CHILES Con Pol survey and future surveys with the SKA.
Fate of inflation and the natural reduction of vacuum energy
NASA Astrophysics Data System (ADS)
Nakamichi, Akika; Morikawa, Masahiro
2014-04-01
In the standard cosmology, an artificial fine tuning of the potential is inevitable for vanishing cosmological constant, though slow-rolling uniform scalar field easily causes cosmic inflation. We focus on the general fact that any potential with negative region can temporally halt the cosmic expansion at the end of inflation, where the field tends to diverge. This violent evolution naturally causes particle production and strong instability of the uniform configuration of the fields. Decaying of this uniform scalar field would leave vanishing cosmological constant as well as locally collapsed objects. The universe then continues to evolve into the standard Freedman model. We study the detail of the instability, based on the linear analysis, and the subsequent fate of the scalar field, based on the non-linear numerical analysis. The collapsed scalar field would easily exceed the Kaup limiting mass and forms primordial black holes, which may play an important role in galaxy formation in later stages of cosmic expansion. We systematically describe the above scenario by identifying the scalar field as the boson field condensation (BEC) and the inflation as the process of phase transition of them.
Cosmological constraint on the light gravitino mass from CMB lensing and cosmic shear
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osato, Ken; Yoshida, Naoki; Sekiguchi, Toyokazu
2016-06-01
Light gravitinos of mass ∼< O (10) eV are of particular interest in cosmology, offering various baryogenesis scenarios without suffering from the cosmological gravitino problem. The gravitino may contribute considerably to the total matter content of the Universe and affect structure formation from early to present epochs. After the gravitinos decouple from other particles in the early Universe, they free-stream and consequently suppress density fluctuations of (sub-)galactic length scales. Observations of structure at the relevant length-scales can be used to infer or constrain the mass and the abundance of light gravitinos. We derive constraints on the light gravitino mass usingmore » the data of cosmic microwave background (CMB) lensing from Planck and of cosmic shear from the Canada France Hawaii Lensing Survey survey, combined with analyses of the primary CMB anisotropies and the signature of baryon acoustic oscillations in galaxy distributions. The obtained constraint on the gravitino mass is m {sub 3/2} < 4.7 eV (95 % C.L.), which is substantially tighter than the previous constraint from clustering analysis of Ly-α forests.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hidaka, Hiroshi; Yoneda, Shigekazu, E-mail: hidaka@hiroshima-u.ac.jp, E-mail: s-yoneda@kahaku.go.jp
2014-05-10
The idea that solar system materials were irradiated by solar cosmic rays from the early Sun has long been suggested, but is still questionable. In this study, Sr, Ba, Ce, Nd, Sm, and Gd isotopic compositions of sequential acid leachates from the Kapoeta meteorite (howardite) were determined to find systematic and correlated variations in their isotopic abundances of proton-rich nuclei, leading to an understanding of the irradiation condition by cosmic rays. Significantly large excesses of proton-rich isotopes (p-isotopes), {sup 84}Sr, {sup 130}Ba, {sup 132}Ba, {sup 136}Ce, {sup 138}Ce, and {sup 144}Sm, were observed, particularly in the first chemical separate, whichmore » possibly leached out of the very shallow layer within a few μm from the surface of regolith grains in the sample. The results reveal the production of p-isotopes through the interaction of solar cosmic rays with the superficial region of the regolith grains before the formation of the Kapoeta meteorite parent body, suggesting strong activity in the early Sun.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khakhaleva-Li, Zimu; Gnedin, Nickolay Y., E-mail: zimu@uchicago.edu, E-mail: gnedin@fnal.gov
We compare the properties of stellar populations of model galaxies from the Cosmic Reionization On Computers (CROC) project with the exiting ultraviolet (UV) and IR data. Since CROC simulations do not follow cosmic dust directly, we adopt two variants of the dust-follows-metals ansatz to populate model galaxies with dust. Using the dust radiative transfer code Hyperion, we compute synthetic stellar spectra, UV continuum slopes, and IR fluxes for simulated galaxies. We find that the simulation results generally match observational measurements, but, perhaps, not in full detail. The differences seem to indicate that our adopted dust-follows-metals ansatzes are not fully sufficient.more » While the discrepancies with the exiting data are marginal, the future James Webb Space Telescope (JWST) data will be of much higher precision, rendering highly significant any tentative difference between theory and observations. It is, therefore, likely, that in order to fully utilize the precision of JWST observations, fully dynamical modeling of dust formation, evolution, and destruction may be required.« less
Technologies for Low Frequency Radio Observations of the Cosmic Dawn
NASA Technical Reports Server (NTRS)
Jones, Dayton L.
2014-01-01
The Jet Propulsion Laboratory (JPL) is developing concepts and technologies for low frequency radio astronomy space missions aimed at observing highly redshifted neutral Hydrogen from the Dark Ages. This is the period of cosmic history between the recombination epoch when the microwave background radiation was produced and the re-ionization of the intergalactic medium by the first generation of stars (Cosmic Dawn). This period, at redshifts greater than about 20, is a critical epoch for the formation and evolution of large-scale structure in the universe. The 21-cm spectral line of Hydrogen provides the most promising method for directly studying the Dark Ages, but the corresponding frequencies at such large redshifts are only tens of MHz and thus require space-based observations to avoid terrestrial RFI and ionospheric absorption and refraction. This paper reports on the status of several low frequency technology development activities at JPL, including deployable bi-conical dipoles for a planned lunar-orbiting mission, and both rover-deployed and inflation-deployed long dipole antennas for use on the lunar surface.
Separating Dark Physics from Physical Darkness: Minimalist Modified Gravity vs. Dark Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huterer, Dragan; Linder, Eric V.
The acceleration of the cosmic expansion may be due to a new component of physical energy density or a modification of physics itself. Mapping the expansion of cosmic scales and the growth of large scale structure in tandem can provide insights to distinguish between the two origins. Using Minimal Modified Gravity (MMG) - a single parameter gravitational growth index formalism to parameterize modified gravity theories - we examine the constraints that cosmological data can place on the nature of the new physics. For next generation measurements combining weak lensing, supernovae distances, and the cosmic microwave background we can extend themore » reach of physics to allow for fitting gravity simultaneously with the expansion equation of state, diluting the equation of state estimation by less than 25percent relative to when general relativity is assumed, and determining the growth index to 8percent. For weak lensing we examine the level of understanding needed of quasi- and nonlinear structure formation in modified gravity theories, and the trade off between stronger precision but greater susceptibility to bias as progressively more nonlinear information is used.« less
Separating dark physics from physical darkness: Minimalist modified gravity versus dark energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huterer, Dragan; Linder, Eric V.
The acceleration of the cosmic expansion may be due to a new component of physical energy density or a modification of physics itself. Mapping the expansion of cosmic scales and the growth of large scale structure in tandem can provide insights to distinguish between the two origins. Using Minimal Modified Gravity (MMG) - a single parameter gravitational growth index formalism to parametrize modified gravity theories - we examine the constraints that cosmological data can place on the nature of the new physics. For next generation measurements combining weak lensing, supernovae distances, and the cosmic microwave background we can extend themore » reach of physics to allow for fitting gravity simultaneously with the expansion equation of state, diluting the equation of state estimation by less than 25% relative to when general relativity is assumed, and determining the growth index to 8%. For weak lensing we examine the level of understanding needed of quasi- and nonlinear structure formation in modified gravity theories, and the trade off between stronger precision but greater susceptibility to bias as progressively more nonlinear information is used.« less
Hubble Sweeps a Messy Star Factory
2017-12-08
This sprinkle of cosmic glitter is a blue compact dwarf galaxy known as Markarian 209. Galaxies of this type are blue-hued, compact in size, gas-rich, and low in heavy elements. They are often used by astronomers to study star formation, as their conditions are similar to those thought to exist in the early Universe. Markarian 209 in particular has been studied extensively. It is filled with diffuse gas and peppered with star-forming regions towards its core. This image captures it undergoing a particularly dramatic burst of star formation, visible as the lighter blue cloudy region towards the top right of the galaxy. This clump is filled with very young and hot newborn stars. This galaxy was initially thought to be a young galaxy undergoing its very first episode of star formation, but later research showed that Markarian 209 is actually very old, with an almost continuous history of forming new stars. It is thought to have never had a dormant period — a period during which no stars were formed — lasting longer than 100 million years. The dominant population of stars in Markarian 209 is still quite young, in stellar terms, with ages of under 3 million years. For comparison, the sun is some 4.6 billion years old, and is roughly halfway through its expected lifespan. The observations used to make this image were taken using Hubble’s Wide Field Camera 3 and Advanced Camera for Surveys, and span the ultraviolet, visible, and infrared parts of the spectrum. A scattering of other bright galaxies can be seen across the frame, including the bright golden oval that could, due to a trick of perspective, be mistaken as part of Markarian 209 but is in fact a background galaxy. Credit: ESA/Hubble & NASA Acknowledgement: Nick Rose NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Wurster, James; Bate, Matthew R.; Price, Daniel J.
2018-04-01
We present results from radiation non-ideal magnetohydrodynamics (MHD) calculations that follow the collapse of rotating, magnetized, molecular cloud cores to stellar densities. These are the first such calculations to include all three non-ideal effects: ambipolar diffusion, Ohmic resistivity, and the Hall effect. We employ an ionization model in which cosmic ray ionization dominates at low temperatures and thermal ionization takes over at high temperatures. We explore the effects of varying the cosmic ray ionization rate from ζcr = 10-10 to 10-16 s-1. Models with ionization rates ≳10-12 s-1 produce results that are indistinguishable from ideal MHD. Decreasing the cosmic ray ionization rate extends the lifetime of the first hydrostatic core up to a factor of 2, but the lifetimes are still substantially shorter than those obtained without magnetic fields. Outflows from the first hydrostatic core phase are launched in all models, but the outflows become broader and slower as the ionization rate is reduced. The outflow morphology following stellar core formation is complex and strongly dependent on the cosmic ray ionization rate. Calculations with high ionization rates quickly produce a fast (≈14 km s-1) bipolar outflow that is distinct from the first core outflow, but with the lowest ionization rate, a slower (≈3-4 km s-1) conical outflow develops gradually and seamlessly merges into the first core outflow.
Constraining the Epoch of Reionization from the Observed Properties of the High-z Universe
NASA Astrophysics Data System (ADS)
Salvador-Solé, Eduard; Manrique, Alberto; Guzman, Rafael; Rodríguez Espinosa, José Miguel; Gallego, Jesús; Herrero, Artemio; Mas-Hesse, J. Miguel; Marín Franch, Antonio
2017-01-01
We combine observational data on a dozen independent cosmic properties at high-z with the information on reionization drawn from the spectra of distant luminous sources and the cosmic microwave background (CMB) to constrain the interconnected evolution of galaxies and the intergalactic medium since the dark ages. The only acceptable solutions are concentrated in two narrow sets. In one of them reionization proceeds in two phases: a first one driven by Population III stars, completed at z˜ 10, and after a short recombination period a second one driven by normal galaxies, completed at z˜ 6. In the other set both kinds of sources work in parallel until full reionization at z˜ 6. The best solution with double reionization gives excellent fits to all the observed cosmic histories, but the CMB optical depth is 3σ larger than the recent estimate from the Planck data. Alternatively, the best solution with single reionization gives less good fits to the observed star formation rate density and cold gas mass density histories, but the CMB optical depth is consistent with that estimate. We make several predictions, testable with future observations, that should discriminate between the two reionization scenarios. As a byproduct our models provide a natural explanation to some characteristic features of the cosmic properties at high-z, as well as to the origin of globular clusters.
Interstellar and Planetary Analogs in the Laboratory
NASA Technical Reports Server (NTRS)
Salama, Farid
2013-01-01
We present and discuss the unique capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to investigate the interaction of ionizing radiation (UV, charged particles) with molecular species (neutral molecules, radicals and ions) and carbonaceous grains in the Solar System and in the Interstellar Medium (ISM). COSmIC stands for Cosmic Simulation Chamber, a laboratory chamber where interstellar and planetary analogs are generated, processed and analyzed. It is composed of a pulsed discharge nozzle (PDN) expansion that generates a free jet supersonic expansion in a plasma cavity coupled to two ultrahigh-sensitivity, complementary in situ diagnostics: a cavity ring down spectroscopy (CRDS) system for photonic detection and a Reflectron time-of-flight mass spectrometer (ReTOF-MS) for mass detection. This setup allows the study of molecules, ions and solids under the low temperature and high vacuum conditions that are required to simulate some interstellar, circumstellar and planetary physical environments providing new fundamental insights on the molecular level into the processes that are critical to the chemistry in the ISM, circumstellar and planet forming regions, and on icy objects in the Solar System. Recent laboratory results that were obtained using COSmIC will be discussed, in particular the progress that have been achieved in monitoring in the laboratory the formation of solid particles from their gas-phase molecular precursors in environments as varied as circumstellar outflow and planetary atmospheres.
NASA Astrophysics Data System (ADS)
Grieder, P. K. F.
In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery. Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological and medical aspects of the cosmic radiation because of it ionizing character and the inevitable irradiation to which we are exposed. This book is a reference manual for researchers and students of cosmic ray physics and associated fields and phenomena. It is not intended to be a tutorial. However, the book contains an adequate amount of background materials that its content should be useful to a broad community of scientists and professionals. The present book contains chiefly a data collection in compact form that covers the cosmic radiation in the vicinity of the Earth, in the Earth's atmosphere, at sea level and underground. Included are predominantly experimental but also theoretical data. In addition the book contains related data, definitions and important relations. The aim of this book is to offer the reader in a single volume a readily available comprehensive set of data that will save him the need of frequent time consuming literature searches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abgrall, N.; Arnquist, I. J.; Avignone III, F. T.
The Majorana Demonstrator is an array of point-contact Ge detectors fabricated from Ge isotopically enriched to 88% in 76Ge to search for neutrinoless double beta decay. The processing of Ge for germanium detectors is a well-known technology. However, because of the high cost of Ge enriched in 76Ge special procedures were required to maximize the yield of detector mass and to minimize exposure to cosmic rays. These procedures include careful accounting for the material; shielding it to reduce cosmogenic generation of radioactive isotopes; and development of special reprocessing techniques for contaminated solid germanium, shavings, grindings, acid etchant and cutting fluidsmore » from detector fabrication. Processing procedures were developed that resulted in a total yield in detector mass of 70%. However, none of the acid-etch solution and only 50% of the cutting fluids from detector fabrication were reprocessed. Had they been processed, the projections for the recovery yield would be between 80% and 85%. Maximizing yield is critical to justify a possible future ton-scale experiment. A process for recovery of germanium from the acid-etch solution was developed with yield of about 90%. All material was shielded or stored underground whenever possible to minimize the formation of 68Ge by cosmic rays, which contributes background in the double-beta decay region of interest and cannot be removed by zone refinement and crystal growth. Formation of 68Ge was reduced by a significant factor over that in natural abundance detectors not protected from cosmic rays.« less
Abgrall, N.; Arnquist, I. J.; Avignone III, F. T.; ...
2017-10-07
The Majorana Demonstrator is an array of point-contact Ge detectors fabricated from Ge isotopically enriched to 88% in 76Ge to search for neutrinoless double beta decay. The processing of Ge for germanium detectors is a well-known technology. However, because of the high cost of Ge enriched in 76Ge special procedures were required to maximize the yield of detector mass and to minimize exposure to cosmic rays. These procedures include careful accounting for the material; shielding it to reduce cosmogenic generation of radioactive isotopes; and development of special reprocessing techniques for contaminated solid germanium, shavings, grindings, acid etchant and cutting fluidsmore » from detector fabrication. Processing procedures were developed that resulted in a total yield in detector mass of 70%. However, none of the acid-etch solution and only 50% of the cutting fluids from detector fabrication were reprocessed. Had they been processed, the projections for the recovery yield would be between 80% and 85%. Maximizing yield is critical to justify a possible future ton-scale experiment. A process for recovery of germanium from the acid-etch solution was developed with yield of about 90%. All material was shielded or stored underground whenever possible to minimize the formation of 68Ge by cosmic rays, which contributes background in the double-beta decay region of interest and cannot be removed by zone refinement and crystal growth. Formation of 68Ge was reduced by a significant factor over that in natural abundance detectors not protected from cosmic rays.« less
NASA Astrophysics Data System (ADS)
Abgrall, N.; Arnquist, I. J.; Avignone, F. T., III; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Caja, J.; Caja, M.; Caldwell, T. S.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Dunstan, D. T.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Haufe, C. R. S.; Henning, R.; Hoppe, E. W.; Jasinski, B. R.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; Lopez, A. M.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Meyer, J. H.; Myslik, J.; O'Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Reine, A. L.; Reising, J. A.; Rielage, K.; Robertson, R. G. H.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Toth, L. M.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.; Zhu, B. X.
2018-01-01
The MAJORANA DEMONSTRATOR is an array of point-contact Ge detectors fabricated from Ge isotopically enriched to 88% in 76 Ge to search for neutrinoless double beta decay. The processing of Ge for germanium detectors is a well-known technology. However, because of the high cost of Ge enriched in 76 Ge special procedures were required to maximize the yield of detector mass and to minimize exposure to cosmic rays. These procedures include careful accounting for the material; shielding it to reduce cosmogenic generation of radioactive isotopes; and development of special reprocessing techniques for contaminated solid germanium, shavings, grindings, acid etchant and cutting fluids from detector fabrication. Processing procedures were developed that resulted in a total yield in detector mass of 70%. However, none of the acid-etch solution and only 50% of the cutting fluids from detector fabrication were reprocessed. Had they been processed, the projections for the recovery yield would be between 80% and 85%. Maximizing yield is critical to justify a possible future ton-scale experiment. A process for recovery of germanium from the acid-etch solution was developed with yield of about 90%. All material was shielded or stored underground whenever possible to minimize the formation of 68Ge by cosmic rays, which contributes background in the double-beta decay region of interest and cannot be removed by zone refinement and crystal growth. Formation of 68Ge was reduced by a significant factor over that in natural abundance detectors not protected from cosmic rays.
Abgrall, N.; Arnquist, I. J.; Avignone III, F. T.; ...
2017-10-07
The Majorana Demonstrator is an array of point-contact Ge detectors fabricated from Ge isotopically enriched to 88% in 76Ge to search for neutrinoless double beta decay. The processing of Ge for germanium detectors is a well-known technology. However, because of the high cost of Ge enriched in 76Ge special procedures were required to maximize the yield of detector mass and to minimize exposure to cosmic rays. These procedures include careful accounting for the material; shielding it to reduce cosmogenic generation of radioactive isotopes; and development of special reprocessing techniques for contaminated solid germanium, shavings, grindings, acid etchant and cutting fluidsmore » from detector fabrication. Processing procedures were developed that resulted in a total yield in detector mass of 70%. However, none of the acid-etch solution and only 50% of the cutting fluids from detector fabrication were reprocessed. Had they been processed, the projections for the recovery yield would be between 80% and 85%. Maximizing yield is critical to justify a possible future ton-scale experiment. A process for recovery of germanium from the acid-etch solution was developed with yield of about 90%. All material was shielded or stored underground whenever possible to minimize the formation of 68Ge by cosmic rays, which contributes background in the double-beta decay region of interest and cannot be removed by zone refinement and crystal growth. Formation of 68Ge was reduced by a significant factor over that in natural abundance detectors not protected from cosmic rays.« less
NASA Astrophysics Data System (ADS)
Koprowski, M. P.; Dunlop, J. S.; Michałowski, M. J.; Coppin, K. E. K.; Geach, J. E.; McLure, R. J.; Scott, D.; van der Werf, P. P.
2017-11-01
We present a new measurement of the evolving galaxy far-IR luminosity function (LF) extending out to redshifts z ≃ 5, with resulting implications for the level of dust-obscured star formation density in the young Universe. To achieve this, we have exploited recent advances in sub-mm/mm imaging with SCUBA-2 on the James Clerk Maxwell Telescope and the Atacama Large Millimeter/Submillimeter Array, which together provide unconfused imaging with sufficient dynamic range to provide meaningful coverage of the luminosity-redshift plane out to z > 4. Our results support previous indications that the faint-end slope of the far-IR LF is sufficiently flat that comoving luminosity density is dominated by bright objects (≃L*). However, we find that the number density/luminosity of such sources at high redshifts has been severely overestimated by studies that have attempted to push the highly confused Herschel SPIRE surveys beyond z ≃ 2. Consequently, we confirm recent reports that cosmic star formation density is dominated by UV-visible star formation at z > 4. Using both direct (1/Vmax) and maximum likelihood determinations of the LF, we find that its high-redshift evolution is well characterized by continued positive luminosity evolution coupled with negative density evolution (with increasing redshift). This explains why bright sub-mm sources continue to be found at z > 5, even though their integrated contribution to cosmic star formation density at such early times is very small. The evolution of the far-IR galaxy LF thus appears similar in form to that already established for active galactic nuclei, possibly reflecting a similar dependence on the growth of galaxy mass.
LOFAR/H-ATLAS: the low-frequency radio luminosity-star formation rate relation
NASA Astrophysics Data System (ADS)
Gürkan, G.; Hardcastle, M. J.; Smith, D. J. B.; Best, P. N.; Bourne, N.; Calistro-Rivera, G.; Heald, G.; Jarvis, M. J.; Prandoni, I.; Röttgering, H. J. A.; Sabater, J.; Shimwell, T.; Tasse, C.; Williams, W. L.
2018-04-01
Radio emission is a key indicator of star formation activity in galaxies, but the radio luminosity-star formation relation has to date been studied almost exclusively at frequencies of 1.4 GHz or above. At lower radio frequencies, the effects of thermal radio emission are greatly reduced, and so we would expect the radio emission observed to be completely dominated by synchrotron radiation from supernova-generated cosmic rays. As part of the LOFAR Surveys Key Science project, the Herschel-ATLAS NGP field has been surveyed with LOFAR at an effective frequency of 150 MHz. We select a sample from the MPA-JHU catalogue of Sloan Digital Sky Survey galaxies in this area: the combination of Herschel, optical and mid-infrared data enable us to derive star formation rates (SFRs) for our sources using spectral energy distribution fitting, allowing a detailed study of the low-frequency radio luminosity-star formation relation in the nearby Universe. For those objects selected as star-forming galaxies (SFGs) using optical emission line diagnostics, we find a tight relationship between the 150 MHz radio luminosity (L150) and SFR. Interestingly, we find that a single power-law relationship between L150 and SFR is not a good description of all SFGs: a broken power-law model provides a better fit. This may indicate an additional mechanism for the generation of radio-emitting cosmic rays. Also, at given SFR, the radio luminosity depends on the stellar mass of the galaxy. Objects that were not classified as SFGs have higher 150-MHz radio luminosity than would be expected given their SFR, implying an important role for low-level active galactic nucleus activity.
NASA Astrophysics Data System (ADS)
Morlok, A.; Sutton, Y. C.; Braithwaite, N. St. J.; Grady, Monica M.
2012-12-01
One hundred years of the cosmological constant: from "superfluous stunt" to dark energy
NASA Astrophysics Data System (ADS)
O'Raifeartaigh, Cormac; O'Keeffe, Michael; Nahm, Werner; Mitton, Simon
2018-05-01
We present a centennial review of the history of the term known as the cosmological constant. First introduced to the general theory of relativity by Einstein in 1917 in order to describe a universe that was assumed to be static, the term fell from favour in the wake of the discovery of the expanding universe, only to make a dramatic return in recent times. We consider historical and philosophical aspects of the cosmological constant over four main epochs; (i) the use of the term in static cosmologies (both Newtonian and relativistic): (ii) the marginalization of the term following the discovery of cosmic expansion: (iii) the use of the term to address specific cosmic puzzles such as the timespan of expansion, the formation of galaxies and the redshifts of the quasars: (iv) the re-emergence of the term in today's Λ-CDM cosmology. We find that the cosmological constant was never truly banished from theoretical models of the universe, but was marginalized by astronomers for reasons of convenience. We also find that the return of the term to the forefront of modern cosmology did not occur as an abrupt paradigm shift due to one particular set of observations, but as the result of a number of empirical advances such as the measurement of present cosmic expansion using the Hubble Space Telescope, the measurement of past expansion using type SN Ia supernovae as standard candles, and the measurement of perturbations in the cosmic microwave background by balloon and satellite. We give a brief overview of contemporary interpretations of the physics underlying the cosmic constant and conclude with a synopsis of the famous cosmological constant problem.
Terrestrial effects of high energy cosmic rays
NASA Astrophysics Data System (ADS)
Atri, Dimitra
On geological timescales, the Earth is likely to be exposed to higher than the usual flux of high energy cosmic rays (HECRs) from astrophysical sources such as nearby supernovae, gamma ray bursts or by galactic shocks. These high-energy particles strike the Earth's atmosphere, initiating an extensive air shower. As the air shower propagates deeper, it ionizes the atmosphere by producing charged secondary particles and photons. Increased ionization leads to changes in atmospheric chemistry, resulting in ozone depletion. This increases the flux of solar UVB radiation at the surface, which is potentially harmful to living organisms. Increased ionization affects the global electrical circuit, which could enhance the low-altitude cloud formation rate. Secondary particles such as muons and thermal neutrons produced as a result of hadronic interactions of the primary cosmic rays with the atmosphere are able to reach the ground, enhancing the biological radiation dose. The muon flux dominates the radiation dose from cosmic rays causing damage to DNA and an increase in mutation rates and cancer, which can have serious biological implications for surface and sub-surface life. Using CORSIKA, we perform massive computer simulations and construct lookup tables for 10 GeV - 1 PeV primaries, which can be used to quantify these effects from enhanced cosmic ray exposure to any astrophysical source. These tables are freely available to the community and can be used for other studies. We use these tables to study the terrestrial implications of galactic shock generated by the infall of our galaxy toward the Virgo cluster. Increased radiation dose from muons could be a possible mechanism explaining the observed periodicity in biodiversity in paleobiology databases.
DustPedia: A Definitive Study of Cosmic Dust in the Local Universe
NASA Astrophysics Data System (ADS)
Davies, J. I.; Baes, M.; Bianchi, S.; Jones, A.; Madden, S.; Xilouris, M.; Bocchio, M.; Casasola, V.; Cassara, L.; Clark, C.; De Looze, I.; Evans, R.; Fritz, J.; Galametz, M.; Galliano, F.; Lianou, S.; Mosenkov, A. V.; Smith, M.; Verstocken, S.; Viaene, S.; Vika, M.; Wagle, G.; Ysard, N.
2017-04-01
The European Space Agency has invested heavily in two cornerstones missions: Herschel and Planck. The legacy data from these missions provides an unprecedented opportunity to study cosmic dust in galaxies so that we can, for example, answer fundamental questions about the origin of the chemical elements, physical processes in the interstellar medium (ISM), its effect on stellar radiation, its relation to star formation and how this relates to the cosmic far-infrared background. In this paper we describe the DustPedia project, which enables us to develop tools and computer models that will help us relate observed cosmic dust emission to its physical properties (chemical composition, size distribution, and temperature), its origins (evolved stars, supernovae, and growth in the ISM), and the processes that destroy it (high-energy collisions and shock heated gas). To carry out this research, we combine the Herschel/Planck data with that from other sources of data, and provide observations at numerous wavelengths (≤slant 41) across the spectral energy distribution, thus creating the DustPedia database. To maximize our spatial resolution and sensitivity to cosmic dust, we limit our analysis to 4231 local galaxies (v< 3000 km s-1) selected via their near-infrared luminosity (stellar mass). To help us interpret this data, we developed a new physical model for dust (THEMIS), a new Bayesian method of fitting and interpreting spectral energy distributions (HerBIE) and a state-of-the-art Monte Carlo photon-tracing radiative transfer model (SKIRT). In this, the first of the DustPedia papers, we describe the project objectives, data sets used, and provide an insight into the new scientific methods we plan to implement.
One hundred years of the cosmological constant: from "superfluous stunt" to dark energy
NASA Astrophysics Data System (ADS)
O'Raifeartaigh, Cormac; O'Keeffe, Michael; Nahm, Werner; Mitton, Simon
2018-03-01
We present a centennial review of the history of the term known as the cosmological constant. First introduced to the general theory of relativity by Einstein in 1917 in order to describe a universe that was assumed to be static, the term fell from favour in the wake of the discovery of the expanding universe, only to make a dramatic return in recent times. We consider historical and philosophical aspects of the cosmological constant over four main epochs; (i) the use of the term in static cosmologies (both Newtonian and relativistic): (ii) the marginalization of the term following the discovery of cosmic expansion: (iii) the use of the term to address specific cosmic puzzles such as the timespan of expansion, the formation of galaxies and the redshifts of the quasars: (iv) the re-emergence of the term in today's Λ-CDM cosmology. We find that the cosmological constant was never truly banished from theoretical models of the universe, but was marginalized by astronomers for reasons of convenience. We also find that the return of the term to the forefront of modern cosmology did not occur as an abrupt paradigm shift due to one particular set of observations, but as the result of a number of empirical advances such as the measurement of present cosmic expansion using the Hubble Space Telescope, the measurement of past expansion using type SN Ia supernovae as standard candles, and the measurement of perturbations in the cosmic microwave background by balloon and satellite. We give a brief overview of contemporary interpretations of the physics underlying the cosmic constant and conclude with a synopsis of the famous cosmological constant problem.
Multipolar moments of weak lensing signal around clusters. Weighing filaments in harmonic space
NASA Astrophysics Data System (ADS)
Gouin, C.; Gavazzi, R.; Codis, S.; Pichon, C.; Peirani, S.; Dubois, Y.
2017-09-01
Context. Upcoming weak lensing surveys such as Euclid will provide an unprecedented opportunity to quantify the geometry and topology of the cosmic web, in particular in the vicinity of lensing clusters. Aims: Understanding the connectivity of the cosmic web with unbiased mass tracers, such as weak lensing, is of prime importance to probe the underlying cosmology, seek dynamical signatures of dark matter, and quantify environmental effects on galaxy formation. Methods: Mock catalogues of galaxy clusters are extracted from the N-body PLUS simulation. For each cluster, the aperture multipolar moments of the convergence are calculated in two annuli (inside and outside the virial radius). By stacking their modulus, a statistical estimator is built to characterise the angular mass distribution around clusters. The moments are compared to predictions from perturbation theory and spherical collapse. Results: The main weakly chromatic excess of multipolar power on large scales is understood as arising from the contraction of the primordial cosmic web driven by the growing potential well of the cluster. Besides this boost, the quadrupole prevails in the cluster (ellipsoidal) core, while at the outskirts, harmonic distortions are spread on small angular modes, and trace the non-linear sharpening of the filamentary structures. Predictions for the signal amplitude as a function of the cluster-centric distance, mass, and redshift are presented. The prospects of measuring this signal are estimated for current and future lensing data sets. Conclusions: The Euclid mission should provide all the necessary information for studying the cosmic evolution of the connectivity of the cosmic web around lensing clusters using multipolar moments and probing unique signatures of, for example, baryons and warm dark matter.
Jet-induced star formation by accreting black holes: impact on stellar, galaxy, and cosmic evolution
NASA Astrophysics Data System (ADS)
Mirabel, Igor Felix
2016-07-01
Evidence that relativistic jets trigger star formation along their axis has been found associated to low redshift and high redshift accreting supermassive black holes. However, the physical processes by which jet-cloud interaction may trigger star formation has so far not been elucidated. To gain insight into this potentially important star formation mechanism during reionization, when microquasars were form prolifically before AGN, our international team is carrying out a muliwavelength study of a microquasar jet-induced star formation region in the Milky Way using data from space missions (Chandra, Integral, ISO, Herschel) and from the ground (at cm and mm wavelengths with the VLA and IRAM, and IR with Gemini and VLT). I will show that this relative nearby star forming region is an ideal laboratory to test models of jet-induced star formation elsewhere in the universe.
Recent progress in simulating galaxy formation from the largest to the smallest scales
NASA Astrophysics Data System (ADS)
Faucher-Giguère, Claude-André
2018-05-01
Galaxy formation simulations are an essential part of the modern toolkit of astrophysicists and cosmologists alike. Astrophysicists use the simulations to study the emergence of galaxy populations from the Big Bang, as well as the formation of stars and supermassive black holes. For cosmologists, galaxy formation simulations are needed to understand how baryonic processes affect measurements of dark matter and dark energy. Owing to the extreme dynamic range of galaxy formation, advances are driven by novel approaches using simulations with different tradeoffs between volume and resolution. Large-volume but low-resolution simulations provide the best statistics, while higher-resolution simulations of smaller cosmic volumes can be evolved with self-consistent physics and reveal important emergent phenomena. I summarize recent progress in galaxy formation simulations, including major developments in the past five years, and highlight some key areas likely to drive further advances over the next decade.
Cosmic ray driven outflows in an ultraluminous galaxy
NASA Astrophysics Data System (ADS)
Fujita, Akimi; Mac Low, Mordecai-Mark
2018-06-01
In models of galaxy formation, feedback driven both by supernova (SN) and active galactic nucleus is not efficient enough to quench star formation in massive galaxies. Models of smaller galaxies have suggested that cosmic rays (CRs) play a major role in expelling material from the star-forming regions by diffusing SN energy to the lower density outskirts. We therefore run gas dynamical simulations of galactic outflows from a galaxy contained in a halo with 5 × 1012 M⊙ that resembles a local ultraluminous galaxy, including both SN thermal energy and a treatment of CRs using the same diffusion approximation as Salem & Bryan. We find that CR pressure drives a low-density bubble beyond the edge of the shell swept up by thermal pressure, but the main bubble driven by SN thermal pressure overtakes it later, which creates a large-scale biconical outflow. CRs diffusing into the disc are unable to entrain its gas in the outflows, yielding a mass-loading rate of only ˜ 0.1 per cent with varied CR diffusion coefficients. We find no significant difference in mass-loading rates in SN-driven outflows with or without CR pressure. Our simulations strongly suggest that it is hard to drive a heavily mass-loaded outflow with CRs from a massive halo potential, although more distributed star formation could lead to a different result.
A Novel Approach to Visualizing Dark Matter Simulations.
Kaehler, R; Hahn, O; Abel, T
2012-12-01
In the last decades cosmological N-body dark matter simulations have enabled ab initio studies of the formation of structure in the Universe. Gravity amplified small density fluctuations generated shortly after the Big Bang, leading to the formation of galaxies in the cosmic web. These calculations have led to a growing demand for methods to analyze time-dependent particle based simulations. Rendering methods for such N-body simulation data usually employ some kind of splatting approach via point based rendering primitives and approximate the spatial distributions of physical quantities using kernel interpolation techniques, common in SPH (Smoothed Particle Hydrodynamics)-codes. This paper proposes three GPU-assisted rendering approaches, based on a new, more accurate method to compute the physical densities of dark matter simulation data. It uses full phase-space information to generate a tetrahedral tessellation of the computational domain, with mesh vertices defined by the simulation's dark matter particle positions. Over time the mesh is deformed by gravitational forces, causing the tetrahedral cells to warp and overlap. The new methods are well suited to visualize the cosmic web. In particular they preserve caustics, regions of high density that emerge, when several streams of dark matter particles share the same location in space, indicating the formation of structures like sheets, filaments and halos. We demonstrate the superior image quality of the new approaches in a comparison with three standard rendering techniques for N-body simulation data.
Synoptic Formation of Double Tropopauses
NASA Astrophysics Data System (ADS)
Liu, Chengji; Barnes, Elizabeth
2018-01-01
Double tropopauses are ubiquitous in the midlatitude winter hemisphere and represent the vertical stacking of two stable tropopause layers separated by a less stable layer. By analyzing COSMIC GPS data, reanalysis, and eddy life cycle simulations, we demonstrate that they often occur during Rossby wave breaking and act to increase the stratosphere-to-troposphere exchange of mass. We further investigate the adiabatic formation of double tropopauses and propose two mechanisms by which they can occur. The first mechanism operates at the tropopause break in the subtropics where the higher tropical tropopause sits on one side of the break and the lower extratropical tropopause sits on the other. The double tropopauses are then formed by differential meridional advection of the higher and lower tropopauses on the two sides of the tropopause break. We show that anticyclonic wave breaking can form double tropopauses mainly by providing stronger poleward advection of the higher tropopause in its poleward lobe. Cyclonic wave breaking mainly forms double tropopauses by providing stronger equatorward advection of the lower tropopause in its equatorward lobe. We demonstrate in the COSMIC GPS data and reanalysis that about half of the double tropopauses in the Northern Hemisphere winter can be directly attributed to such differential advection. For the second mechanism, adiabatic destabilization of the air above the tropopause contributes to the formation of a double tropopause. In this case, a tropopause inversion layer is necessary for this destabilization to result in a double tropopause.
NASA Astrophysics Data System (ADS)
Wisnioski, E.; Förster Schreiber, N. M.; Wuyts, S.; Wuyts, E.; Bandara, K.; Wilman, D.; Genzel, R.; Bender, R.; Davies, R.; Fossati, M.; Lang, P.; Mendel, J. T.; Beifiori, A.; Brammer, G.; Chan, J.; Fabricius, M.; Fudamoto, Y.; Kulkarni, S.; Kurk, J.; Lutz, D.; Nelson, E. J.; Momcheva, I.; Rosario, D.; Saglia, R.; Seitz, S.; Tacconi, L. J.; van Dokkum, P. G.
2015-02-01
We present the KMOS3D survey, a new integral field survey of over 600 galaxies at 0.7 < z < 2.7 using KMOS at the Very Large Telescope. The KMOS3D survey utilizes synergies with multi-wavelength ground- and space-based surveys to trace the evolution of spatially resolved kinematics and star formation from a homogeneous sample over 5 Gyr of cosmic history. Targets, drawn from a mass-selected parent sample from the 3D-HST survey, cover the star formation-stellar mass (M *) and rest-frame (U - V) - M * planes uniformly. We describe the selection of targets, the observations, and the data reduction. In the first-year of data we detect Hα emission in 191 M * = 3 × 109-7 × 1011 M ⊙ galaxies at z = 0.7-1.1 and z = 1.9-2.7. In the current sample 83% of the resolved galaxies are rotation dominated, determined from a continuous velocity gradient and v rot/σ0 > 1, implying that the star-forming "main sequence" is primarily composed of rotating galaxies at both redshift regimes. When considering additional stricter criteria, the Hα kinematic maps indicate that at least ~70% of the resolved galaxies are disk-like systems. Our high-quality KMOS data confirm the elevated velocity dispersions reported in previous integral field spectroscopy studies at z >~ 0.7. For rotation-dominated disks, the average intrinsic velocity dispersion decreases by a factor of two from 50 km s-1at z ~ 2.3 to 25 km s-1at z ~ 0.9. Combined with existing results spanning z ~ 0-3, we show that disk velocity dispersions follow an evolution that is consistent with the dependence of velocity dispersion on gas fractions predicted by marginally stable disk theory. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDS 092A-0091, 093.A-0079).
Collisionless Weibel shocks: Full formation mechanism and timing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bret, A.; Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real; Stockem, A.
2014-07-15
Collisionless shocks in plasmas play an important role in space physics (Earth's bow shock) and astrophysics (supernova remnants, relativistic jets, gamma-ray bursts, high energy cosmic rays). While the formation of a fluid shock through the steepening of a large amplitude sound wave has been understood for long, there is currently no detailed picture of the mechanism responsible for the formation of a collisionless shock. We unravel the physical mechanism at work and show that an electromagnetic Weibel shock always forms when two relativistic collisionless, initially unmagnetized, plasma shells encounter. The predicted shock formation time is in good agreement with 2Dmore » and 3D particle-in-cell simulations of counterstreaming pair plasmas. By predicting the shock formation time, experimental setups aiming at producing such shocks can be optimised to favourable conditions.« less
Benzene formation in Titan's lower atmosphere
NASA Astrophysics Data System (ADS)
Plane, J. M. C.; Douglas, K.; Blitz, M. A.; Heard, D. E.; Seakins, P. W.; Feng, W.; Willacy, K.
2017-09-01
The most distinctive feature of Saturn's moon Titan is that it is covered in a thick haze. The haze consists of organic particles called tholins, of which benzene is thought to be an important precursor. Here we examine two pathways to form benzene. The first involves reactions on cosmic dust particles, which mostly do not ablate when entering Titan's atmosphere and accumulate in the lower atmosphere. We have shown in the laboratory that acetylene molecules stick on synthetic cosmic dust at low temperatures, and react efficiently to make benzene. The second pathway is through gas phase reactions involving radical species formed through methane photochemistry. A new lab study shows that the rates of critical reactions involving these radicals vary unexpectedly at low temperatures, leading to significant changes in important benzene precursors.
Next Steps Forward in Understanding Martian Surface and Subsurface Chemistry
NASA Astrophysics Data System (ADS)
Carrier, Brandi L.
2017-09-01
The presence of oxidants such as hydrogen peroxide (H2O2) and perchlorate (ClO4-), which have been detected on Mars, has significant implications for chemistry and astrobiology. These oxidants can increase the reactivity of the Martian soil, accelerate the decomposition of organic molecules, and depress the freezing point of water. The study by Crandall et al. "Can Perchlorates be Transformed to Hydrogen Peroxide Products by Cosmic Rays on the Martian Surface" reveals a new formation mechanism by which hydrogen peroxide and other potential oxidants can be generated via irradiation of perchlorate by cosmic rays. This study represents an important next step in developing a full understanding of Martian surface and subsurface chemistry, particularly with respect to degradation of organic molecules and potential biosignatures.
Collisionless Dynamics and the Cosmic Web
NASA Astrophysics Data System (ADS)
Hahn, Oliver
2016-10-01
I review the nature of three-dimensional collapse in the Zeldovich approximation, how it relates to the underlying nature of the three-dimensional Lagrangian manifold and naturally gives rise to a hierarchical structure formation scenario that progresses through collapse from voids to pancakes, filaments and then halos. I then discuss how variations of the Zeldovich approximation (based on the gravitational or the velocity potential) have been used to define classifications of the cosmic large-scale structure into dynamically distinct parts. Finally, I turn to recent efforts to devise new approaches relying on tessellations of the Lagrangian manifold to follow the fine-grained dynamics of the dark matter fluid into the highly non-linear regime and both extract the maximum amount of information from existing simulations as well as devise new simulation techniques for cold collisionless dynamics.
The cosmic web in CosmoGrid void regions
NASA Astrophysics Data System (ADS)
Rieder, Steven; van de Weygaert, Rien; Cautun, Marius; Beygu, Burcu; Portegies Zwart, Simon
2016-10-01
We study the formation and evolution of the cosmic web, using the high-resolution CosmoGrid ΛCDM simulation. In particular, we investigate the evolution of the large-scale structure around void halo groups, and compare this to observations of the VGS-31 galaxy group, which consists of three interacting galaxies inside a large void. The structure around such haloes shows a great deal of tenuous structure, with most of such systems being embedded in intra-void filaments and walls. We use the Nexus+} algorithm to detect walls and filaments in CosmoGrid, and find them to be present and detectable at every scale. The void regions embed tenuous walls, which in turn embed tenuous filaments. We hypothesize that the void galaxy group of VGS-31 formed in such an environment.
Massless charged particles: Cosmic censorship, and the third law of black hole mechanics
NASA Astrophysics Data System (ADS)
Fairoos, C.; Ghosh, Avirup; Sarkar, Sudipta
2017-10-01
The formulation of the laws of Black hole mechanics assumes the stability of black holes under perturbations in accordance with the "cosmic censorship hypothesis" (CCH). CCH prohibits the formation of a naked singularity by a physical process from a regular black hole solution with an event horizon. Earlier studies show that naked singularities can indeed be formed leading to the violation of CCH if a near-extremal black hole is injected with massive charged particles and the backreaction effects are neglected. We investigate the validity of CCH by considering the infall of charged massless particles as well as a charged null shell. We also discuss the issue of the third law of Black hole mechanics in the presence of null charged particles by considering various possibilities.
Observational constraints on extended Chaplygin gas cosmologies
NASA Astrophysics Data System (ADS)
Paul, B. C.; Thakur, P.; Saha, A.
2017-08-01
We investigate cosmological models with extended Chaplygin gas (ECG) as a candidate for dark energy and determine the equation of state parameters using observed data namely, observed Hubble data, baryon acoustic oscillation data and cosmic microwave background shift data. Cosmological models are investigated considering cosmic fluid which is an extension of Chaplygin gas, however, it reduces to modified Chaplygin gas (MCG) and also to generalized Chaplygin gas (GCG) in special cases. It is found that in the case of MCG and GCG, the best-fit values of all the parameters are positive. The distance modulus agrees quite well with the experimental Union2 data. The speed of sound obtained in the model is small, necessary for structure formation. We also determine the observational constraints on the constants of the ECG equation.
Electric currents in cosmic plasmas
NASA Technical Reports Server (NTRS)
Alfven, H.
1977-01-01
It is suggested that dualism is essential for the physics of cosmic plasmas, that is, that some phenomena should be described by a magnetic field formalism, and others by an electric current formalism. While in earlier work the magnetic field aspect has dominated, at present there is a systematic exploration of the particle (or current) aspect. A number of phenomena which can be understood only from the particle aspect are surveyed. Topics include the formation of electric double layers, the origin of 'explosive' events like magnetic substorms and solar flares, and the transfer of energy from one region to another. A method for exploring many of these phenomena is to draw the electric circuit in which the current flows and then study its properties. A number of simple circuits are analyzed in this way.
Numerical Tests of the Cosmic Censorship Conjecture with Collisionless Matter Collapse
NASA Astrophysics Data System (ADS)
Okounkova, Maria; Hemberger, Daniel; Scheel, Mark
2016-03-01
We present our results of numerical tests of the weak cosmic censorship conjecture (CCC), which states that generically, singularities of gravitational collapse are hidden within black holes, and the hoop conjecture, which states that black holes form when and only when a mass M gets compacted into a region whose circumference in every direction is C <= 4 πM . We built a smooth particle methods module in SpEC, the Spectral Einstein Code, to simultaneously evolve spacetime and collisionless matter configurations. We monitor RabcdRabcd for singularity formation, and probe for the existence of apparent horizons. We include in our simulations the prolate spheroid configurations considered in Shapiro and Teukolsky's 1991 numerical study of the CCC. This research was partially supported by the Dominic Orr Fellowship at Caltech.
VizieR Online Data Catalog: SOFIA Massive (SOMA) Star Formation Survey. I. (De Buizer+, 2017)
NASA Astrophysics Data System (ADS)
De Buizer, J. M.; Liu, M.; Tan, J. C.; Zhang, Y.; Beltran, M. T.; Shuping, R.; Staff, J. E.; Tanaka, K. E. I.; Whitney, B.
2018-02-01
The following eight sources, AFGL 4029, AFGL 437, IRAS 07299-1651, G35.20-0.74, G45.45+0.05, IRAS 20126+4104, Cepheus A, and NGC 7538 IRS9, were observed by SOFIA with the FORCAST instrument (see Table 1). Data were taken on multiple flights spanning the Early Science period, Cycle 1, and Cycle 2 SOFIA observing cycles (spanning 2011 May to 2014 June). (4 data files).
A measurement of time-averaged aerosol optical depth using air-showers observed in stereo by HiRes
NASA Astrophysics Data System (ADS)
High Resolution Fly'S Eye Collaboration; Abbasi, R. U.; Abu-Zayyad, T.; Amann, J. F.; Archbold, G.; Atkins, R.; Belov, K.; Belz, J. W.; Benzvi, S.; Bergman, D. R.; Boyer, J. H.; Cannon, C. T.; Cao, Z.; Connolly, B. M.; Fedorova, Y.; Finley, C. B.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G. A.; Hüntemeyer, P.; Jui, C. C. H.; Kirn, M. A.; Knapp, B. C.; Loh, E. C.; Manago, N.; Mannel, E. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; O'Neill, A.; Reil, K.; Roberts, M. D.; Schnetzer, S. R.; Seman, M.; Sinnis, G.; Smith, J. D.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Zech, A.
2006-03-01
Air fluorescence measurements of cosmic ray energy must be corrected for attenuation of the atmosphere. In this paper, we show that the air-showers themselves can yield a measurement of the aerosol attenuation in terms of optical depth, time-averaged over extended periods. Although the technique lacks statistical power to make the critical hourly measurements that only specialized active instruments can achieve, we note the technique does not depend on absolute calibration of the detector hardware, and requires no additional equipment beyond the fluorescence detectors that observe the air showers. This paper describes the technique, and presents results based on analysis of 1258 air-showers observed in stereo by the High Resolution Fly’s Eye over a four year span.
Advanced ACTPol Multichroic Polarimeter Array Fabrication Process for 150 mm Wafers
NASA Astrophysics Data System (ADS)
Duff, S. M.; Austermann, J.; Beall, J. A.; Becker, D.; Datta, R.; Gallardo, P. A.; Henderson, S. W.; Hilton, G. C.; Ho, S. P.; Hubmayr, J.; Koopman, B. J.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Pappas, C. G.; Salatino, M.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.
2016-08-01
Advanced ACTPol (AdvACT) is a third-generation cosmic microwave background receiver to be deployed in 2016 on the Atacama Cosmology Telescope (ACT). Spanning five frequency bands from 25 to 280 GHz and having just over 5600 transition-edge sensor (TES) bolometers, this receiver will exhibit increased sensitivity and mapping speed compared to previously fielded ACT instruments. This paper presents the fabrication processes developed by NIST to scale to large arrays of feedhorn-coupled multichroic AlMn-based TES polarimeters on 150-mm diameter wafers. In addition to describing the streamlined fabrication process which enables high yields of densely packed detectors across larger wafers, we report the details of process improvements for sensor (AlMn) and insulator (SiN_x) materials and microwave structures, and the resulting performance improvements.
Advanced ACTPol Multichroic Polarimeter Array Fabrication Process for 150 mm Wafers
NASA Technical Reports Server (NTRS)
Duff, S. M.; Austermann, J.; Beall, J. A.; Becker, D.; Datta, R.; Gallardo, P. A.; Henderson, S. W.; Hilton, G. C.; Ho, S. P.; Hubmayr, J.;
2016-01-01
Advanced ACTPol (AdvACT) is a third-generation cosmic microwave background receiver to be deployed in 2016 on the Atacama Cosmology Telescope (ACT). Spanning five frequency bands from 25 to 280 GHz and having just over 5600 transition-edge sensor (TES) bolometers, this receiver will exhibit increased sensitivity and mapping speed compared to previously fielded ACT instruments. This paper presents the fabrication processes developed by NIST to scale to large arrays of feedhorn-coupled multichroic AlMn-based TES polarimeters on 150-mm diameter wafers. In addition to describing the streamlined fabrication process which enables high yields of densely packed detectors across larger wafers, we report the details of process improvements for sensor (AlMn) and insulator (SiN(sub x)) materials and microwave structures, and the resulting performance improvements.
Fundamental tests of galaxy formation theory
NASA Technical Reports Server (NTRS)
Silk, J.
1982-01-01
The structure of the universe as an environment where traces exist of the seed fluctuations from which galaxies formed is studied. The evolution of the density fluctuation modes that led to the eventual formation of matter inhomogeneities is reviewed, How the resulting clumps developed into galaxies and galaxy clusters acquiring characteristic masses, velocity dispersions, and metallicities, is discussed. Tests are described that utilize the large scale structure of the universe, including the dynamics of the local supercluster, the large scale matter distribution, and the anisotropy of the cosmic background radiation, to probe the earliest accessible stages of evolution. Finally, the role of particle physics is described with regard to its observable implications for galaxy formation.
Dark Candles of the Universe: Black Hole Observations
NASA Astrophysics Data System (ADS)
Aykutalp, Aycin
2016-03-01
In 1916, when Karl Schwarzschild solved the Einstein field equations of general relativity for a spherically symmetric, non-rotating mass no one anticipated the impact black holes would have on astrophysics. I will review the main formation channels for black hole seeds and their evolution through cosmic time. In this, emphasis will be placed on the observational diagnostics of astrophysical black holes and their role on the assembly of galaxy formation and evolution. I then review how these observations put constrain on the seed black hole formation theories. Finally, I present an outlook for how future observations can shed light on our understanding of black holes. This work is supported by NSF Grant AST-1333360.
Formation of Glycerol through Hydrogenation of CO Ice under Prestellar Core Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedoseev, G.; Chuang, K.-J.; Qasim, D.
Observational studies reveal that complex organic molecules (COMs) can be found in various objects associated with different star formation stages. The identification of COMs in prestellar cores, i.e., cold environments in which thermally induced chemistry can be excluded and radiolysis is limited by cosmic rays and cosmic-ray-induced UV photons, is particularly important as this stage sets up the initial chemical composition from which ultimately stars and planets evolve. Recent laboratory results demonstrate that molecules as complex as glycolaldehyde and ethylene glycol are efficiently formed on icy dust grains via nonenergetic atom addition reactions between accreting H atoms and CO molecules,more » a process that dominates surface chemistry during the “CO freeze-out stage” in dense cores. In the present study we demonstrate that a similar mechanism results in the formation of the biologically relevant molecule glycerol—HOCH{sub 2}CH(OH)CH{sub 2}OH—a three-carbon-bearing sugar alcohol necessary for the formation of membranes of modern living cells and organelles. Our experimental results are fully consistent with a suggested reaction scheme in which glycerol is formed along a chain of radical–radical and radical–molecule interactions between various reactive intermediates produced upon hydrogenation of CO ice or its hydrogenation products. The tentative identification of the chemically related simple sugar glyceraldehyde—HOCH{sub 2}CH(OH)CHO—is discussed as well. These new laboratory findings indicate that the proposed reaction mechanism holds much potential to form even more complex sugar alcohols and simple sugars.« less
Cosmic: Carbon Monoxide And Soot In Microgravity Inverse Combustion
NASA Technical Reports Server (NTRS)
Mikofski, M. A.; Blevins, L. G.; Davis, R. W.; Moore, E. F.; Mulholland, G. W.; Sacksteder, Kurt (Technical Monitor)
2003-01-01
Almost seventy percent of fire related deaths are caused by the inhalation of toxins such as CO and soot that are produced when fires become underventilated.(1) Although studies have established the importance of CO formation during underventilated burning,(2) the formation processes of CO (and soot) in underventilated fires are not well understood. The goal of the COSMIC project is to study the formation processes of CO and soot in underventilated flames. A potential way to study CO and soot production in underventilated flames is the use of inverse diffusion flames (IDFs). An IDF forms between a central air jet and a surrounding fuel jet. IDFs are related to underventilated flames because they may allow CO and soot to escape unoxidized. Experiments and numerical simulations of laminar IDFs of CH4 and C2H4 were conducted in 1-g and micro-g to study CO and soot formation. Laminar flames were studied because turbulent models of underventilated fires are uncertain. Microgravity was used to alter CO and soot pathways. A IDF literature survey, providing background and establishing motivation for this research, was presented at the 5th IWMC.(3) Experimental results from 1-g C2H4 IDFs and comparisons with simulations, demonstrating similarities between IDFs and underventilated fires, were presented at the 6th IWMC.(4) This paper will present experimental results from micro-g and 1-g IDFs of CH4 and C2H4 as well as comparisons with simulations, further supporting the relation between IDFs and underventilated flames.
Contribution of HI-bearing ultra-diffuse galaxies to the cosmic number density of galaxies
NASA Astrophysics Data System (ADS)
Jones, M. G.; Papastergis, E.; Pandya, V.; Leisman, L.; Romanowsky, A. J.; Yung, L. Y. A.; Somerville, R. S.; Adams, E. A. K.
2018-06-01
We estimate the cosmic number density of the recently identified class of HI-bearing ultra-diffuse sources (HUDs) based on the completeness limits of the ALFALFA survey. These objects have HI masses approximately in the range 8.5 < logMHI/M⊙ < 9.5, average r-band surface brightnesses fainter than 24 mag arcsec-2, half-light radii greater than 1.5 kpc, and are separated from neighbours by at least 350 kpc. In this work we demonstrate that they contribute at most 6% of the population of HI-bearing dwarfs detected by ALFALFA (with similar HI masses), have a total cosmic number density of (1.5 ± 0.6) × 10-3 Mpc-3, and an HI mass density of (6.0 ± 0.8) × 105 M⊙ Mpc-3. We estimate that this is similar to the total cosmic number density of ultra-diffuse galaxies (UDGs) in groups and clusters, and conclude that the relation between the number of UDGs hosted in a halo and the halo mass must have a break below M200 1012 M⊙ in order to account for the abundance of HUDs in the field. The distribution of the velocity widths of HUDs rises steeply towards low values, indicating a preference for slow rotation rates compared to the global HI-rich dwarf population. These objects were already included in previous measurements of the HI mass function, but have been absent from measurements of the galaxy stellar mass function owing to their low surface brightness. However, we estimate that due to their low number density the inclusion of HUDs would constitute a correction of less than 1%. Comparison with the Santa Cruz semi-analytic model shows that it produces HI-rich central UDGs that have similar colours to HUDs, but that these UDGs are currently produced in a much greater number. While previous results from this sample have favoured formation scenarios where HUDs form in high spin-parameter halos, comparisons with recent results which invoke that formation mechanism reveal that this model produces an order of magnitude more field UDGs than we observe in the HUD population, and these have an occurrence rate (relative to other dwarfs) that is approximately double what we observe. In addition, the colours of HUDs are bluer than predicted, although we suspect this is due to a systematic problem in reproducing the star formation histories of low-mass galaxies rather than being specific to the ultra-diffuse nature of these sources.
ERIC Educational Resources Information Center
Nersessian, Nancy J.
2012-01-01
As much research has demonstrated, novel scientific concepts do not arise fully formed in the head of a scientist but are created in problem-solving processes, which can extend for considerable periods and even span generations of scientists. To understand concept formation and conceptual change it is important to investigate these processes in…
Multi-body Dynamic Contact Analysis Tool for Transmission Design
2003-04-01
frequencies were computed in COSMIC NASTRAN, and were validated against the published experimental modal analysis [17]. • Using assumed time domain... modal superposition. • Results from the structural analysis (mode shapes or forced response) were converted into IDEAS universal format (dataset 55...ARMY RESEARCH LABORATORY Multi-body Dynamic Contact Analysis Tool for Transmission Design SBIR Phase II Final Report by
Spitzer Lensing Cluster Legacy Survey
NASA Astrophysics Data System (ADS)
Soifer, Tom; Armus, Lee; Bradac, Marusa; Capak, Peter; Coe, Dan; Siana, Brian; Treu, Tommaso; Vieira, Joaquin
2015-11-01
Cluster-scale gravitational lenses act as cosmic telescopes, enabling the study of otherwise unobservable galaxies. They are critical in answering the questions such as what is the star formation history at z > 7, and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z>7-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose a program that obtains shallow Spitzer/IRAC imaging of a large sample of cluster lenses, followed by deep imaging of those clusters with the largest number of z > 7 candidate galaxies. This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population. Furthermore, it will enable the measurements of the stellar mass of the galaxy cluster population, thereby allowing us to chart the build-up of the cluster red sequence from z~1 to the present and to determine the physical processes responsible for this stellar mass growth.
Tracing the Baryon Cycle within Nearby Galaxies with a next-generation VLA
NASA Astrophysics Data System (ADS)
Kepley, Amanda A.; Leroy, Adam; Murphy, Eric J.; ngVLA Baryon Cycle Science Working Group
2017-01-01
The evolution of galaxies over cosmic time is shaped by the cycling of baryons through these systems, namely the inflow of atomic gas, the formation of molecular structures, the birth of stars, and the expulsion of gas due to associated feedback processes. The best way to study this cycle in detail are observations of nearby galaxies. These systems provide a complete picture of baryon cycling over a wide range of astrophysical conditions. In the next decade, higher resolution/sensitivity observations of such galaxies will fundamentally improve our knowledge of galaxy formation and evolution, allowing us to better interpret higher redshift observations of sources that were rapidly evolving at epochs soon after the Big Bang. In particular, the centimeter-to-millimeter part of the spectrum provides critical diagnostics for each of the key baryon cycling processes and access to almost all phases of gas in galaxies: cool and cold gas (via emission and absorption lines), ionized gas (via free-free continuum and recombination lines), cosmic rays and hot gas (via synchrotron emission and the Sunyaev-Zeldovich effect). This poster highlights a number of key science problems in this area whose solutions require a next-generation radio-mm interferometer such as the next-generation VLA.
HerMES: Redshift Evolution of the Cosmic Infrared Background from Herschel/SPIRE
NASA Astrophysics Data System (ADS)
Vieira, Joaquin; HerMES
2013-01-01
We report on the redshift evolution of the cosmic infrared background (CIB) at wavelengths of 70-1100 microns. Using data from the Herschel Multi-tiered Extragalactic Survey (HerMES) of the GOODS-N field, we statistically correlate fluctuations in the CIB with external catalogs. We use a deep Spitzer-MIPS 24 micron flux-limited catalog complete with redshifts and stack on MIPS 70 and 160 micron, Herschel-SPIRE 250, 350, and 500 micron, and JCMT-AzTEC 1100 micron maps. We measure the co-moving infrared luminosity density at 0.1
NASA Technical Reports Server (NTRS)
Prescod-Weinstein, Chanda; Afshordi, Niayesh
2011-01-01
Structure formation provides a strong test of any cosmic acceleration model because a successful dark energy model must not inhibit or overpredict the development of observed large-scale structures. Traditional approaches to studies of structure formation in the presence of dark energy or a modified gravity implement a modified Press-Schechter formalism, which relates the linear overdensities to the abundance of dark matter haloes at the same time. We critically examine the universality of the Press-Schechter formalism for different cosmologies, and show that the halo abundance is best correlated with spherical linear overdensity at 94% of collapse (or observation) time. We then extend this argument to ellipsoidal collapse (which decreases the fractional time of best correlation for small haloes), and show that our results agree with deviations from modified Press-Schechter formalism seen in simulated mass functions. This provides a novel universal prescription to measure linear density evolution, based on current and future observations of cluster (or dark matter) halo mass function. In particular, even observations of cluster abundance in a single epoch will constrain the entire history of linear growth of cosmological of perturbations.
NASA Astrophysics Data System (ADS)
Burgarella, D.; Levacher, P.; Vives, S.; Dohlen, K.; Pascal, S.
2016-07-01
FLARE (First Light And Reionization Explorer) is a space mission that will be submitted to ESA (M5 call). Its primary goal (~80% of lifetime) is to identify and study the universe before the end of the reionization at z > 6. A secondary objective (~20% of lifetime) is to survey star formation in the Milky Way. FLARE's strategy optimizes the science return: imaging and spectroscopic integral-field observations will be carried out simultaneously on two parallel focal planes and over very wide instantaneous fields of view. FLARE will help addressing two of ESA's Cosmic Vision themes: a) << How did the universe originate and what is it made of? » and b) « What are the conditions for planet formation and the emergence of life? >> and more specifically, << From gas and dust to stars and planets >>. FLARE will provide to the ESA community a leading position to statistically study the early universe after JWST's deep but pin-hole surveys. Moreover, the instrumental development of wide-field imaging and wide-field integral-field spectroscopy in space will be a major breakthrough after making them available on ground-based telescopes.
Studying Star and Planet Formation with the Submillimeter Probe of the Evolution of Cosmic Structure
NASA Technical Reports Server (NTRS)
Rinehart, Stephen A.
2005-01-01
The Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) is a far- infrared/submillimeter (40-640 micrometers) spaceborne interferometry concept, studied through the NASA Vision Missions program. SPECS is envisioned as a 1-km baseline Michelson interferometer with two 4- meter collecting mirrors. To maximize science return, SPECS will have three operational modes: a photometric imaging mode, an intermediate spectral resolution mode (R approximately equal to 1000-3000), and a high spectral resolution mode (R approximately equal to 3 x 10(exp 5)). The first two of these modes will provide information on all sources within a 1 arcminute field-of-view (FOV), while the the third will include sources in a small (approximately equal to 5 arcsec) FOV. With this design, SPECS will have angular resolution comparable to the Hubble Space Telescope (50 mas) and sensitivity more than two orders of magnitude better than Spitzer (5sigma in 10ks of approximately equal to 3 x 10(exp 7) Jy Hz). We present here some of the results of the recently-completed Vision Mission Study for SPECS, and discuss the application of this mission to future studies of star and planet formation.
Shocked molecular gas and the origin of cosmic rays
NASA Astrophysics Data System (ADS)
Reach, William; Gusdorf, Antoine; Richter, Matthew
2018-06-01
When massive stars reach the end of their ability to remain stable with core nuclear fusion, they explode in supernovae that drive powerful shocks into their surroundings. Because massive stars form in and remain close to molecular clouds they often drive shocks into dense gas, which is now believed to be the origin of a significant fraction of galactic cosmic rays. The nature of the supernova-molecular cloud interaction is not well understood, though observations are gradually elucidating their nature. The range of interstellar densities, and the inclusion of circumstellar matter from the late-phase mass-loss of the stars before their explosions, leads to a wide range of possible appearances and outcomes. In particular, it is not even clear what speed or physical type of shocks are present: are they dense, magnetically-mediated shocks where H2 is not dissociated, or are they faster shocks that dissociate molecules and destroy some of the grains? SOFIA is observing some of the most significant (in terms of cosmic ray production potential and infrared energy output) supernova-molecular cloud interactions for measurement of the line widths of key molecular shocks tracers: H2, [OI], and CO. The presence of gas at speeds 100 km/s or greater would indicate dissociative shocks, while speeds 30 km/s and slower retain most molecules. The shock velocity is a key ingredient in modeling the interaction between supernovae and molecular clouds including the potential for formation of cosmic rays.
The effect of extreme ionization rates during the initial collapse of a molecular cloud core
NASA Astrophysics Data System (ADS)
Wurster, James; Bate, Matthew R.; Price, Daniel J.
2018-05-01
What cosmic ray ionization rate is required such that a non-ideal magnetohydrodynamics (MHD) simulation of a collapsing molecular cloud will follow the same evolutionary path as an ideal MHD simulation or as a purely hydrodynamics simulation? To investigate this question, we perform three-dimensional smoothed particle non-ideal MHD simulations of the gravitational collapse of rotating, one solar mass, magnetized molecular cloud cores, which include Ohmic resistivity, ambipolar diffusion, and the Hall effect. We assume a uniform grain size of ag = 0.1 μm, and our free parameter is the cosmic ray ionization rate, ζcr. We evolve our models, where possible, until they have produced a first hydrostatic core. Models with ζcr ≳ 10-13 s-1 are indistinguishable from ideal MHD models, and the evolution of the model with ζcr = 10-14 s-1 matches the evolution of the ideal MHD model within 1 per cent when considering maximum density, magnetic energy, and maximum magnetic field strength as a function of time; these results are independent of ag. Models with very low ionization rates (ζcr ≲ 10-24 s-1) are required to approach hydrodynamical collapse, and even lower ionization rates may be required for larger ag. Thus, it is possible to reproduce ideal MHD and purely hydrodynamical collapses using non-ideal MHD given an appropriate cosmic ray ionization rate. However, realistic cosmic ray ionization rates approach neither limit; thus, non-ideal MHD cannot be neglected in star formation simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaikh, Zubair; Bhaskar, Ankush; Raghav, Anil, E-mail: raghavanil1984@gmail.com
The transient interplanetary disturbances evoke short-time cosmic-ray flux decrease, which is known as Forbush decrease. The traditional model and understanding of Forbush decrease suggest that the sub-structure of an interplanetary counterpart of coronal mass ejection (ICME) independently contributes to cosmic-ray flux decrease. These sub-structures, shock-sheath, and magnetic cloud (MC) manifest as classical two-step Forbush decrease. The recent work by Raghav et al. has shown multi-step decreases and recoveries within the shock-sheath. However, this cannot be explained by the ideal shock-sheath barrier model. Furthermore, they suggested that local structures within the ICME’s sub-structure (MC and shock-sheath) could explain this deviation ofmore » the FD profile from the classical FD. Therefore, the present study attempts to investigate the cause of multi-step cosmic-ray flux decrease and respective recovery within the shock-sheath in detail. A 3D-hodogram method is utilized to obtain more details regarding the local structures within the shock-sheath. This method unambiguously suggests the formation of small-scale local structures within the ICME (shock-sheath and even in MC). Moreover, the method could differentiate the turbulent and ordered interplanetary magnetic field (IMF) regions within the sub-structures of ICME. The study explicitly suggests that the turbulent and ordered IMF regions within the shock-sheath do influence cosmic-ray variations differently.« less
Taking the Universe's Temperature with Spectral Distortions of the Cosmic Microwave Background.
Hill, J Colin; Battaglia, Nick; Chluba, Jens; Ferraro, Simone; Schaan, Emmanuel; Spergel, David N
2015-12-31
The cosmic microwave background (CMB) energy spectrum is a near-perfect blackbody. The standard model of cosmology predicts small spectral distortions to this form, but no such distortion of the sky-averaged CMB spectrum has yet been measured. We calculate the largest expected distortion, which arises from the inverse Compton scattering of CMB photons off hot, free electrons, known as the thermal Sunyaev-Zel'dovich (TSZ) effect. We show that the predicted signal is roughly one order of magnitude below the current bound from the COBE-FIRAS experiment, but it can be detected at enormous significance (≳1000σ) by the proposed Primordial Inflation Explorer (PIXIE). Although cosmic variance reduces the effective signal-to-noise ratio to 230σ, this measurement will still yield a subpercent constraint on the total thermal energy of electrons in the observable Universe. Furthermore, we show that PIXIE can detect subtle relativistic effects in the sky-averaged TSZ signal at 30σ, which directly probe moments of the optical depth-weighted intracluster medium electron temperature distribution. These effects break the degeneracy between the electron density and the temperature in the mean TSZ signal, allowing a direct inference of the mean baryon density at low redshift. Future spectral distortion probes will thus determine the global thermodynamic properties of ionized gas in the Universe with unprecedented precision. These measurements will impose a fundamental "integral constraint" on models of galaxy formation and the injection of feedback energy over cosmic time.